
The Madhoc Metropolitan Adhoc

Network Simulator

Luc Hogie1, Frédéric Guinand2 and Pascal Bouvry1

1Université du Luxembourg, Campus Kirchberg
6, rue R. Coudenhove-Kalergi. L-1359 Luxembourg

{luc.hogie, pascal.bouvry}@uni.lu

2Université du Havre, Laboratoire d’Informatique
25, rue Philippe Lebon. 76600 Le Havre. France

frederic.guinand@univ-lehavre.fr

March 22, 2006

2

Contents

1 Introduction 5

2 Models 7
2.1 Network model . 7

2.1.1 Hardware . 7
2.1.2 Software . 10

2.2 Ad hoc application model . 10
2.2.1 Application . 10
2.2.2 Monitor . 12

2.3 Simulation model . 12
2.3.1 Languages . 13
2.3.2 Discrete-event, discrete time, resolution... 13
2.3.3 Simulation area and projections 14
2.3.4 Random number generation 15
2.3.5 Scheduling . 15
2.3.6 Termination condition . 16
2.3.7 Application deployment 16

3 Scenarios 19
3.1 Random waypoint . 19

3.1.1 City place . 20
3.1.2 Market place . 20
3.1.3 Concert place . 21

3.2 Human mobility . 21
3.2.1 On metropolitan mobility 22
3.2.2 Human mobility, a mobility model driven by the inten-

tions of humans . 22
3.3 Real-world mobility based on human mobility 24

3.3.1 Highway . 25
3.3.2 Mall . 25
3.3.3 Streets . 26
3.3.4 Supermarket . 27
3.3.5 Train station . 28

3

4 CONTENTS

4 Using madhoc 31
4.1 Requirements . 31
4.2 Packaging . 31
4.3 Installation . 32

4.3.1 Installation on UNIX operating systems 32
4.3.2 Installation on Windows operating systems 33

4.4 Using madhoc . 33
4.4.1 Configuring madhoc as a standalone application 34
4.4.2 Configuring madhoc as a framework 35

4.5 Using madhoc as a standalone application 35

5 The graphical user interface 37
5.1 Monitor views . 38

5.1.1 Standard views . 38

6 Advanced usage 43
6.1 Creating a new module . 43

6.1.1 Example . 43
6.2 Graphical and command-line user interfaces 46

6.2.1 Using the GUI . 46
6.2.2 Graphical 2D plotter . 46

6.3 Using madhoc as a framework . 46
6.4 Accelerating the simulation process 48

6.4.1 Acceleration tricks specific to broadcasting simulation . . 49

7 Open issues 51
7.0.2 Initialization of the mobility 51
7.0.3 Altering the resolution of the simulation 51

8 Targetted applications 53
8.0.4 Broadcasting . 53
8.0.5 Mobility models . 53
8.0.6 Ad hoc computing: towards the ad hoc grid 54

9 OOP implementation in java 55

10 Grid 57

Chapter 1

Introduction

Note:
This document stands for a user manual and a technical reference for the mad-
hoc simulator. Writing such a document is difficult because several approaches
are possible in defining its structure and there do not exist any precise guidelines
of how to proceed. In this document, we will try to keep things as simple and
logical as possible. Obviously, we cannot give all details of madhoc in one single
document. Hence, in addition to this pages, the reader should browse the source
code, which is publicly available. Note that if the source code is not completely
documented, its structure should be easily understandable to people used to the
OO programming paradigm and to the Java language.

Mobile ad hoc networks (MANETs) are networks composed of a set of com-
municating devices (called nodes all along this article) able to spontaneously
interconnect without any pre-existing infrastructure. Stations in range to one
another communicate in a point-to-point fashion. In addition to that, these
nodes are generally mobile. The main interest in MANETs is growing. Not
only their im- importance in military applications is tightening, but also their
impact on business is becoming clear. The wide spread of mobile phones, PDAs,
Pocket PCs—which now embed Bluetooth and WiFi (IEEE 802.11) network
adapters—enables the spontaneous creation of metropolitan ad hoc networks
[10]. These networks could then constitute the infrastructure of numerous appli-
cations such as emergency and health-care systems [19], groupware [8], gaming
[25][13][24], advertisements, customer-to-customer applications (like the UbiBay
project [12]), etc.

Up to now, MANETs have been mostly investigated at the lowest layers of
the network stack. Indeed, many studies tackle issues like routing [26], broad-
casting [30], security [?], etc. The vast majority of them resort to MANETs
simulation. Unfortunately, the simulation platforms available do not model
the networks in a realistic manner and are limited. For example, by simula-
tions, broadcasting [30] has shown to operate well on non-partitioned networks
composed of few identical stations moving according the random waypoint mo-

5

6 CHAPTER 1. INTRODUCTION

bility model. But how would broadcasting protocols operate on large (> 10,000
stations) heterogeneous networks? More generally, is broadcasting merely prac-
ticable over this structure? Such questions are still unanswered because no tool
actually enable researchers to solve them. Unfortunately, the investigation of
metropolitan ad hoc networks has an even greater need of simulating

Indeed, investigating ad hoc networks poses a fundamental problem: due to
the lack of existing networks, carrying out experiments on real devices is not pos-
sible. At best this could be done on a small set of devices, but doing this would
not help much in producing relevant results. The only workable alternative
turns out to be software-based MANETs simulation. Unfortunately simulation
does not really solve the issue: most simulators do not feature realistic network
models (in terms of station mobility and propagation of the radio waves) and
do not permit the simulation of sensibly large networks. For example, the most
popular mobility model (random waypoint) has been found by Yoon and al. [31]
to have harmful side-effects on the simulation. Efforts towards realistic models
have been observed only recently through projects like the NAB [15] and Jane
[11, 20] simulators, the UDEL [7] models, etc. These initiatives all attempt to
allow the simulation of metropolitan ad hoc networks. Unfortunately these are
on-going research projects, they are hence hardly re-usable as is. Therefore,
the studies of metropolitan MANETs may require the development of custom
simulators.

Our initial purpose is the investigation of the ad hoc grid issue. By looking
for an experimentation platform, we realized that developing a custom solution
was the most sensible choice, hence this article.

This article presents the madhoc simulator. madhoc is a metropolitan ad
hoc network simulator targeting the investigation of ad hoc grid-computing [3].
It features the components required for both realistic and large-scale simula-
tions, as well as the tools essential to an effective monitoring of the simulated
applications.

Chapter 2

Models

In this section, we will present, sequentially, the models for the network, for the
ad hoc applications and for the simulation engine.

2.1 Network model

A good place to start with madhoc is probably to understand what does it
simulate. In this section we distinguish the hardware and software parts of the
network model.

2.1.1 Hardware

madhoc models an heterogeneous mobile ad hoc network. Mobility does not
mean that all nodes are in a continuous move. It simply defines that nodes have
the ability to move.

Different devices

On today’s electronics market, mobile communicating devices can be found em-
bedded on laptops, PDAs and mobile phones. These machines are very different
in their technical aspects and in the way they are used. More precisely, Laptops
are much more capable (in terms of computations) than a PDA, and the latter
is in turn much more capable than a mobile phone. A mobile phone is mobile,
as well as PDA and laptops. However, when switched on, PDAs and laptops
usually do not move (except in the case of people working in a vehicle). This
constitutes the major difference between these devices.

Different networking technologies

Mobile phones, PDAs and laptops do not feature (for the moment) the same
communicating technologies. More precisely, the very limited energy storage of a
mobile phone refrains it from using powerful radio signals. Hence mobile phones

7

8 CHAPTER 2. MODELS

Location

Station

point

2

MessageBuffer

NetworkingUnit

incomingMessageQueue

2

NetworkingTechnology

NetworkInterface

networkTypenetworkingUnitnetworkingUnit

Figure 2.1: The station model

(as well as PDAs) are generally operating in a 8-12 meters range, thanks to their
built-in Bluetooth adapter (although some mobile phone/PDAs equipped with
WiFi interface are being appearing for a short while). On the other hand, all
today’s laptops feature WiFi network interfaces, all new devices come with a
high-speed WiFi interface which provide a bandwidth up to 54Mbps. Some of
them also integrate a Bluetooth adapter. These divergences in the way devices
are equipped have a serious impact on the topology of the network. Imagine
a Bluetooth mobile phone moving in an area populated with dozens of WiFi
laptops. Since WiFi and Bluetooth are incompliant, the mobile phone won’t be
able to establish any connection with its geographical neighbors.

madhoc currently supports WiFi (IEEE802.11b), Bluetooth and Wireless
USB. These protocols, which mostly stand at the PHY and MAC layers, are
not modeled with detail. Protocols are represented in terms of:

• bandwidth: the bandwidth is shared by all communicating devices operat-
ing on a common media. All devices have the same chance to send/receive
data.

• range of coverage: define the maximum distance to/from which the devices
can receive data;

• packet size: emitted data is organized into packets. A packet is the small-
est chunk of data that can be emitted over the network, for a given pro-
tocol.

• data transfer cost (see figure2.2): define the price for emitting one byte
over the network. madhoc defines several basic cost models.

This model permits to consider the impact on communication technologies
on network connectivity and bring heterogeneity.

2.1. NETWORK MODEL 9

Application

ConfigurableMessage

sourceStationApplication

ComputationalUnit

ComputerUnit

Station

cpu

CostModel

NetworkingTechnology

costModel

LinearCostModel

MadhocSimulation

Simulation

MobilityMedium

MobilityModel

mobilityMedium

mobilityModel
2

Monitor

simulationApplication

SimulationApplicationTerminationCondition

monitor

MonitorInitializer

initializer

2

Network

network

network

network

Projection

sourceNetwork

2

network

NetworkEnvironment

networkEnvironment

2

RadioPropagationModel

networkEnvironment
2

NetworkingUnit

networkingUnit

NodeMemory RandomNumberGenerator

RandomNumberGenerator_2

simulation

simulation

simulation

2

device station

ThresholdedCostModel ZeroCostModel

Figure 2.2: madhoc features a cost model.

Different computational/storage capacities

Initially targeting the analysis of the future ad hoc grids, madhoc integrate a
basic model for the ad hoc grid node. More precisely, it endows the nodes with
computational power and storage ability. madhoc assumes that those abilities
depends on the type of device considered. A laptop will generally embed a fast
processor coupled with a quite large central memory and a several gigabytes
hard-disk. PDAs and mobile phone embeds energy-efficient components, hence
their computation capacities is severely limited.

Different mobility models

madhoc defines a set of mobility models. A mobility model define how nodes
move. Currently madhoc implements the random mobility model, the random
waypoint mobility model and the human mobility model. The latter is madhoc
specific an is highlighted in section 3.2.

madhoc’s architecture permits node to have distinct mobility models. This
is achievable by using the simulation in framework mode (see section 4.4.2).

Application

ConfigurableMessage

sourceStationApplication

Buffer

Cel

Location

cel

Cloneable

ComputationalUnit

ComputerUnit

Station

cpu

ComputerType

NetworkNodeTypeBaseProjection

acceptedComputerType type

Connection

CostModel

NetworkingTechnology

costModel

Grid

NetworkEnvironment

grid

LinearCostModel

Point

MadhocSimulation

Simulation

MemoryObject

TransferableObject

MessageBuffer

NetworkingUnit

incomingMessageQueue

2

MessageTransferInformation

transferInformation

MobilityMedium

MobilityModel

mobilityMedium

mobilityModel

2

Monitor

simulationApplication

SimulationApplicationTerminationCondition

monitor

MonitorInitializer

initializer
2

Network

network

network

network

Projection

sourceNetwork

2

network

networkEnvironment

2

RadioPropagationModel

networkEnvironment
2

NetworkInterface

networkType

networkingUnit

networkingUnit

d1

2

NodeMemory

RandomNumberGenerator

simulation

simulation

simulation

2

device station computer

2

source

ThresholdedCostModel

content

ZeroCostModel

Figure 2.3: The general mobility framework on top of which all mobility models
are implemented.

10 CHAPTER 2. MODELS

2.1.2 Software

In order to enable node-2-node communication, madhoc implements some basic
mechanisms which allow the nodes to asynchronously send messages to each
others.

Application

ConfigurableMessage

sourceStationApplication

ComputationalUnit

ComputerUnit

Station

cpu

CostModel

NetworkingTechnology

costModel

LinearCostModel

MadhocSimulation

Simulation

MobilityMedium

MobilityModel

mobilityMedium

mobilityModel
2

Monitor

simulationApplication

SimulationApplicationTerminationCondition

monitor

MonitorInitializer

initializer

2

Network

network

network

network

Projection

sourceNetwork

2

network

NetworkEnvironment

networkEnvironment

2

RadioPropagationModel

networkEnvironment
2

NetworkingUnit

networkingUnit

NodeMemory RandomNumberGenerator

RandomNumberGenerator_2

simulation

simulation

simulation

2

device station

ThresholdedCostModel ZeroCostModel

Figure 2.4: The model for the network.

PHY and MAC layers

As explained in section 2.1.1, madhoc models the PHY and MAC layers only
in terms of available bandwidth, signal power and packet size. Collisions, in-
terferences are not modeled by statistical models. This makes the simulator
lightweight and consequently enables the simulation of large networks. In the
code, madhoc does not make any clear difference between PHY and MAC layers.
Their properties are both expressed within the same algorithms.

Network and transport layers

madhoc consider that in the context of large heterogeneous MANETs, multi-hop
networking is unachievable. Then it does not feature any internal mechanism for
multi-hop applications like routing. This limitation is not a problem as madhoc
aims at simulating localized applications.

2.2 Ad hoc application model

2.2.1 Application

Definition

There is not yet any universally accepted definition of what is an ad hoc ap-
plication. In our context, an ad hoc application is a piece of software that is
executed in the mobile devices and is able to communicate in its steadily chang-
ing environment. The application is not the global thing that run on all nodes

2.2. AD HOC APPLICATION MODEL 11

in a network, it is the piece of code that run on one particular node. The appli-
cation can be executed on only a subset of the nodes in the network. Moreover,
several applications can be executed on one single node.

Because the environment is changing, the application must then be robust
to connections/disconnections of peers. As this robustness depends on the ap-
plication, it cannot be defined at a middleware-level. The middleware cannot
do more than providing convenient facilities for the applications to obtain in-
formation about their changing environment.

Connection/disconnections

In order to enable the nodes to be aware of new neighbors, simulators usually
use event-driven notification. More precisely, when the simulator finds a new
link, it dynamically invokes a method on the two nodes involved. This method,
initially abstract, needs to be implemented by the application that defines what
to do in case of a connection/disconnection event. This application of the ob-
server design pattern, based on polymorphism, has proved elegant and flexible.
However, madhoc does not uses this because, based on our experience of ad hoc
programming, we assumed that event-based strategies bring more complexity
than flexibility. madhoc then does not dynamically invoke anything on nodes
newly in range. Instead it provides all nodes with an utility method that re-
turns a set of the nodes that were not yet in range last time it was invoked.
Applications are then free to invoke this method or not.

Note: Another drawback of the event-based notification is that the code
of handler methods is executed by the simulator in a routine dedicated to the
construction of the interconnection network: a routine that should not execute
any application-level code.

Application identification

As nodes can execute several applications, there is the need to have a way of
identifying the different applications running on one given node. madhoc defines
than applications running on a given node are identified by their class (similarly,
IP identifies processes by their port numbers). Consequently, the situation in
which two applications of the same class would run on the same node (conflicting
services) cannot happen.

Node-2-node communication

Application communicate exclusively in asynchronous and unconnected mode
by using the message-passing paradigm. madhoc does not implement any
”connected-mode” connection patterns such as sockets. A message can be sent
in unicast (one recipient), multicast (multiple recipients) and broadcast (all
nodes in the neighborhood are implicitely recipients) modes. madhoc does not
strongly define what a message is. It only impose that a message should be
transferable across the network links. Then by defining a new kind of mes-
sage, the user should implement some specific method that will allow madhoc

12 CHAPTER 2. MODELS

to know the number of bytes used to code the message and to make a copy of
the message.

2.2.2 Monitor

Ad hoc applications are inherently distributed over a highly dynamic network
infrastructure. Consequently, deployment and monitoring are challenging issues.
Simulation allows to put in place things that would not be possible in the real
world. Then madhoc defines the self-explanatory concept of monitor.

Definition

A monitor is an abstraction defined at the level of the simulation. It does not
have any instance in the real world. A monitor aims at maintaining a global
view on all applications of a given class and at carrying out operations applicable
to a set of applications, such as their deployment, their initialization and the
observation of the decentralized process.

Measurement

The greatest benefit of monitors is that they provide the user with virtual sensors
which allow the user to observe what is going on in the simulation process. Just
like a physical sensor (thermometer, barometer, etc), a madhoc sensor will take
measures on a given system. Measures are taken at each iteration. Each new
measure is appended to an history.

There exist several sorts of measures as the phenomenon that are sensed
are of various nature. If the phenomenon can be sensed as a numerical value
(like the network throughput and the simulation time that can be expressed as
numbers) the measure is said to be numerical. It is important to distinguish
numerical measure from the other as their nature allow specific things to be
done with them (e.g. mathematical operations, graphical rendering, etc).

Unfortunately, sensing takes time. The more sensors are defined, the longer
will take the simulation. Then, for the development process, it is advisable to
use as many sensors are available in order to detect the slightest flaw of the
code, but for the research experimentations, the user should enable only the
metrics he is interested in, by discarding the others.

2.3 Simulation model

This section explains how madhoc models the concept of simulation and details
some of its important aspects, for our point of view, in the case of the simulation
of MANETs.

2.3. SIMULATION MODEL 13

DistributionSensor

+ getValueClass() : class

Sensor

+ hashCode() : int

MeasureHistory

- values : sequence
- nonNullValues : set

+ getValues() : sequence
+ createFigure(MeasureHistory, MeasureHistory) : org.lucci.up.data.Figure
+ getProjection() : org.lucci.madhoc.simulation.projection.Projection
+ setProjection(org.lucci.madhoc.simulation.projection.Projection) : void
+ setSensor(Sensor) : void
+ getSensor() : Sensor

NaturalIntegerSensor

NaturalNumberSensor

NumericalSensor

- precision : int

+ getUnit() : org.lucci.madhoc.simulation.measure.Unit
+ getValueClass() : class
+ getPrecision() : int
+ setPrecision(int) : void
+ createMeasureHistory() : MeasureHistory

NumericalMeasureHistory

+ getAverage() : java.lang.Double

sensor

Figure 2.5: The measurement model.

2.3.1 Languages

All the executable code within madhoc is written in Java. Dissimilarly, ns-2 and
many other simulators use a natively compiled language such as C or C++ in
their core and require the user to write extension in some interpreted language
like TCL. Nothing like this exists in madhoc. Here the only things that are not
written in Java are the configuration files, if any. Then, a new extension consists
of some .class files that contain the executable code and optional configuration
file that enables the user to interact with the extension.

2.3.2 Discrete-event, discrete time, resolution...

Unlike many other simulators, madhoc does not rely on the discrete-event sim-
ulation paradigm. Instead of jumping from event to event, madhoc’s kernel
iterates upon time. Time is discrete. The time-interval between two iterations
is called the resolution.

14 CHAPTER 2. MODELS

The resolution of a simulation process is defined by the user. The configu-
ration key simulation resolution allows the user to modify it. You should of
course use the same resolution for all the experiments otherwise your result can-
not be assumed to be consistent. The greatest is the resolution, the faster—and
the less accurate—is the simulation process. The resolution of the simulation
ideally depends on the application you want to simulate. In the specific case of
RAD-based broadcasting, the resolution should be at least twice lower than the
maximum RAD otherwise the benefit of using a RAD is simply lost. In the spe-
cific case of the simulation of mobility, the resolution should ensure that mobile
node move with reasonably small steps, otherwise some connections that would
have occurred in the real world would not be simulated. In our case—RAD-
based broadcasting in mobile network, the definition of the resolution should fit
the constraints brought by both broadcasting and mobility.

2.3.3 Simulation area and projections

Simulation area

For the sake of simplicity, madhoc defines that nodes evolve in a square-shape
surface. The surface of the simulation area can be defined by using the simulation area surface.
It is expressed in square meters. Because madhoc relies on a specific technique
called bining (bining is a general modeling technique which consists in dividing
a considered zone in a grid—multi-dimensional griding is possible—so as oper-
ations on the zone are executed with a lower complexity), the surface exhibits
the following constraint: it must be multiple of 10,000. The number of nodes
in the simulation area is constant: nodes cannot step out of the simulation area
as well as no new node can step in.

Projections

In many cases the user will want to consider only a sub-network. For example,
the user may want to observe what is going on only on a specific zone of the sim-
ulation area, he may want to observe what happens only on Bluetooth nodes,
etc. In order to make this possible, madhoc defines the concept of network
projection. Just like the mathematical definition of projection, a projection of
the simulated network will result in a set of the nodes that match the crite-
ria defined by the projection itself. The communication links retained in the
projection are the links whose two participants are part of the projection. The
sensors available in the simulation will be used on each projection, generating
several measure repository. Several projections has been predefined.

As convenient as projections are, processing the projections is a cumbersome
task for the simulator: at each iteration it needs to find out which nodes belong
to a projection, and then apply the measurement available on this newly created
set of nodes. It is then important that the user define only the projections that
are relevant to him.

madhoc has a set of pre-defined projections. Some of them are described in
the following:

2.3. SIMULATION MODEL 15

Application

Configurable

ComputerType

NetworkNodeTypeBaseProjection

acceptedComputerType

Station

type

ComputerUnit

CostModel

NetworkingTechnology

costModel

IdentityProjection

Projection

JPanel

MadhocSimulation

Simulation

MeasureHistory

MobilityModel

mobilityModel

2

Monitor

simulationApplication

MonitorView

simulationApplication

Sensor

simulationApplication

SimulationApplicationTerminationCondition

monitor

MonitorInitializer

initializer

2

Network

network

network

network

sourceNetwork

2

network

NetworkEnvironment

networkEnvironment

2

RadioPropagationModel

networkEnvironment

2

NetworkInterfaceBasedProjection

acceptedNetworkType

NumericalMeasureHistory

OnlyBridgesProjection OnlyConnectedDeviceProjection

projection

ProjectionComponent

projection

projectionComponent

SimulationRuntimeListener Tree

projectionFrame

2

TreeSelectionListener

RandomNumberGenerator

RandomProjection

RoundWindowProjection

WindowProjection

sensor

simulation

simulation

simulation

2

SquareWindowProjection

device station

Figure 2.6: The model of network projections.

identity projection gathers all the stations in the initial network. This is the
most basic projection as it projects everything.

window projection considers a sub-area of the simulation area whose center
is the center of the latter. The window can be either a square or a circle.
The size of the window is parametrizable.

network technology-based projection considers the subset of the nodes in
the network that embeds a network adapter of a given type.

only-connected-nodes projection gathers all the node that have at least
one neighbor.

random projection is a projection made of a set of nodes that are randomly
selected. This projection is useful if the user wants to operate on only
a subset of the simulated nodes—for performance reasons, for example—
while keeping a certain degree of statistical confidence.

2.3.4 Random number generation

madhoc provides a build-in customizable random number generator.
The configuration key random number generator seed allows the user to

specify the seed for the random number generator. Any integer number is
allowed. The value ip uses the IP address of the local computer as the seed.
The value time uses the current time. The value time + ip uses a mix of both.
This allows the experiments to be potentially reproducible.

2.3.5 Scheduling

The application scheduler implemented in the core of the simulator works in
a sequential manner. This had be chosen for performance issue: dedicating
one thread by node would have been way too cumbersome and the number of
simulated nodes would have been a lot lower.

16 CHAPTER 2. MODELS

Practically, the scheduler manages a list of the simulated nodes. It iterates
on this list by invoking the run() method on every nodes.

On the use of stochasticity for scheduling

Initially the list of nodes on which the scheduler iterated always featured the
same order. On runtime, we could notice that some nodes processed faster
that others, that some nodes transmitted over the network without any prob-
lems while other nodes constantly could not. We then noticed that on the
low-bandwidth communication links, only a few nodes were able to transmit
before the link is saturated, the others—if any— were blocked. Moreover these
privileged few nodes were always the same, the scheduling was hence unfair.

In order to give all application the same chance to execute and to emit data
on the network during an iteration of the simulator, the application scheduler
executes in a stochastic fashion. More precisely, along one single iteration, all
applications are asked to execute multiples times, each time for a very short
period. The order the applications is randomized. At each turn all applications
are invoked, but in an non-predefined order.

2.3.6 Termination condition

madhoc is a general simulator. As such, it provides a general model for the
termination condition of the simulations, as explained in this section. A simu-
lation is said to be terminated if all the applications it executes are terminated,
if the concept of ”termination” makes sense. More precisely, a broadcasting ap-
plication can be said to be terminated when all the nodes are reached, or when
the broadcast message has expired. Whatever it is, the termination condition
is easy to define. In the case of beaconing applications (the application that
steadily sends ”hello” messages in the neighborhood), the concept of ”termina-
tion” does not make sense. A beaconing application should never terminate,
unless the node may want to become invisible, which is out of scope here.

Then, if all the applications that define a termination condition are termi-
nated (the termination condition is true), the simulation itself can be said to be
terminated.

As the termination condition of an application depends to itself, it must be
defined by the programmer.

2.3.7 Application deployment

In this section we will explain how an application gets deployed within madhoc.

Deploying the application

A monitor is not only in charge of taking measures on the applications its
represents. It is also in charge of deploying the application accross the network.
On startup, madhoc checks the configuration to get the list of monitors that

2.3. SIMULATION MODEL 17

needs to be created. From each monitor class found, madhoc instantiates a
monitor object and delegate to it the deployment of the application. For every
node in the network, the monitor will instantiate an application object. When
this is done, the application is ready to be executed.

Taking measures

However, if nothing more is done, the application does not give any feedback to
the user of how it works. Then the monitor instantiates the sensors that will,
at each iteration, take measures on the application. In the case of the graphical
model, these measures can be displayed at once on the interface. In the case of
the console mode, they will be printed on stdout when the simulation will have
finished.

Keeping an eye

In the specific case of the graphical interface, madhoc allows the user to create
graphical views on the applications it develops. This views, which are standard
Swing components, will be dynamically integrated into the standard interface.
Moreover, their content will be updated at each iteration of the simulation
process. The user can then have a precise view of the simulated application.

18 CHAPTER 2. MODELS

Chapter 3

Scenarios

In [6], Bohacek states that a simulator does not always need to be realistic
but only must stress the protocol so as we can be sure that it will operate in
the real world. Up to now, most studies have relied on randomized mobility
models [4][30][18][22], especially on the Random Waypoint Mobility Model [31].
Thanks to several studies focusing on the wallop of random waypoint mobility
model [31][5][27], researchers are now aware of the harmful impact of stochastic
mobility patterns. One the other hand, an effort towards more realistic mobility
models can be observed through papers and projects like the Group Mobility
Model [14], the Graph-based Mobility Model [28], the Obstacle Mobility Model
[17][16], the UDEL model [6][7], and the GEMM project [23]. Surveys of mo-
bility models can be found in [9][23]. Studying the impact of realistic mobility
model on distributed applications, Tugcu and Ersoy [29] have shown that the
choice of the mobility model has a significant impact on the performance of the
mobile systems. The effect on the relative performance becomes more important
especially when the algorithms try to predict the mobility of the nodes.

madhoc currently defines two mobility models: random waypoint and human
mobility.

The following table gives the name of the configuration keys that need to be
set in order to define a given value for the simulation.

Parameter Configuration key
Simulation area surface simulation area surface
Mobile phone density network phone density

PDA density network pager density
Laptop density network laptop density
Hotspot density network hotspot density

3.1 Random waypoint

Random waypoint is a commonly used mobility model. In the random waypoint
mobility model, as described in [?], each station chooses randomly a destination

19

20 CHAPTER 3. SCENARIOS

in the simulation area and moves towards this destination with a randomly
chosen velocity. When the destination is reached, the station remains at the
same place for a while. This process is repeated by each station until the end
of the simulation. In addition to that, within madhoc, in order to reduce the
”harmful” behavior inherent to the random waypoint mobility model [31], each
simulation process is initialized using the stationary distribution pattern [21].

Random waypoint is supported in madhoc for the sake of compatibility and
respect of the previous works in the domain.

Parameter name Configuration key
Node velocity interval random waypoint mobility velocity interval
Pause time interval random waypoint mobility pause interval

3.1.1 City place

Parameter name Value Unit
Simulation area surface 200 × 200 m2

Mobile phone density 3.000 node/km2

PDA density 500 node/km2

Laptop density 100 node/km2

Velocity interval [0.3 1] m/s−1

Pause duration interval [0 10] s

As illustrated on figure 3.1, the network which is formed by the presence
of people walking accross a city place. Because a city place is an open area,
no obstacle prevent the propagation of radio waves. Consequently the network
is well connected. The devices not equipped with a WiFi adapter tend to be
isolated due to their short coverage radius.

3.1.2 Market place

Parameter name Value Unit
Simulation area surface 200 × 200 m2

Mobile phone density 5.000 node/km2

PDA density 1000 node/km2

Laptop density 10 node/km2

Velocity interval [0.3 1] m/s−1

Pause duration interval [0.01 60] s

Figure 3.2 shows the result in terms of node location of the market place
environment.

As illustrated in figure 3.3, the resulting network is heavily connected. This
comes because of the high density of devices and the lack of obstacles.

3.2. HUMAN MOBILITY 21

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

City place

Figure 3.1: On the left, an example of a network formed by people wandering
accross a place in a city. On the right, the average degree distribution for such
networks.

3.1.3 Concert place

Parameter name Value Unit
Simulation area surface 50 × 50 m2

Mobile phone density 5000 node/km2

PDA density 1000 node/km2

Laptop density 0 node/km2

Velocity interval [0 0.2] m/s−1

Pause duration interval [5 600] s

The concert place and the market place environment lead to a similar con-
nectivity. This is because of similar densities. The main difference between
these two environment resides in the velocity. More precisely, while nodes in
a market place have the speed of a pedestrian, those in a concert place barely
move. This difference of velocity of the nodes is not visible on static views as
these presented here but has a great impact on how protocol process. In the
specific case of a dynamic broadcasting protocol, the movements in the market
place environment, which result to many connection/disconnections between
nodes, may entail lots of re-broadcasting of a packet.

3.2 Human mobility

Human mobility is the default mobility model in madhoc. It is a generic mobility
model that roughly represent the ”clever” mobility of people in metropolitan
areas.

22 CHAPTER 3. SCENARIOS

Figure 3.2: 4,000 nodes moving according to the market place environment.

3.2.1 On metropolitan mobility

Simulating metropolitan mobility is difficult because urban zones feature an
extensive list of dissimilar configurations (avenues, pedestrian areas, places,
shopping malls, etc). Building a generic model that take into consideration
all the components of a city is a daunting task. So far, attempts at modeling
metropolitan mobility focus on specific configurations. The Manhattan mobil-
ity model is the most relevant initiative. The city-chapter and the graph-based
mobility models [9] are generalizations of it. In the Manhattan model, the sta-
tion is allowed to move along the horizontal or vertical streets on the urban
map. Unfortunately the model fails at representing important characteristics of
metropolitan environment, such as the existence of shopping zones, the width
of the streets, etc. Moreover, nothing is said about the propagation of radio
waves.

3.2.2 Human mobility, a mobility model driven by the
intentions of humans

Humans do not move randomly. When moving, they have a determined target
spot and move towards it. The target may be a few meters away (next shop, next
crossroads, other sidewalk, etc) as well as far away (next district, next city, etc).

3.2. HUMAN MOBILITY 23

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Market place

Figure 3.3: On the left, an example of a network formed by people wandering
accross in a market. On the right, the average degree distribution for such
networks.

Upon time, their target change. Most of the time, people have a dynamically
changing list of targets. This list can be composed of two spots (like a secretary
regularly moving from her office to her boss’ office and vice versa) or more
(people shopping). This list of target spots is dynamically changing because of
various parameters that will appear upon time (locations of the target places,
closure times, high frequentation times, etc). The behavior described in this
paragraph is different from what is proposed by random waypoint. Our scenario
can be said to be some constrained waypoint (the constrained waypoint mobility
model does not rely on randomness, then the destinations and pause times are
given by a scenario) enriched with advanced rules based on human’s decision.
The human mobility model proposed by madhoc models this.

The general principles of human mobility

The human mobility defines that the simulation area is populated with fixed
places that constitutes targets for the nodes in move. Places are randomly
located within the mall so as the distance between two given places must not be
lower than 10m. A place has a round shape (whose radius is randomly chosen
in a given interval) surrounded with walls. Walls are important because they
obstruct mobility and attenuate the radio signal. People within a given place
move according to the random mobility model. The speed of nodes moving
within a spot is not defined by the human mobility model as it depends on the
kind of environment that is modeled.

By randomly moving within a given place, nodes soon or later reach the
edge of the place, then they are considered to be gone out of the place. At this
moment the next target place it chosen. The decision of the next target place
is based on the list of places that still have not yet visited and on the distance

24 CHAPTER 3. SCENARIOS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Concert place

Figure 3.4: On the left, an example of a network formed by people attending a
concert. On the right, the average degree distribution for such networks.

between the current location of the node and the targets so as the closest places
are preferred. Once the list of places that have not yet visited is empty, it is
refilled with all the places in the simulation.

Emerging topology of human mobility

As shown on figure 3.6, the human mobility model can generates the emergence
of dense and highly connected regions. These regions are sometimes isolated,
meaning that they are not connected to the rest of the network. At runtime,
one can observe that they sporadically get connected to other regions thin paths
(like chains). This kind of topology illustrates that applications—as well as
protocols—must deal with high variations of the density.

By changing the parameters of the human mobility, we can achieve the
simulation of various types of mobility: mobility within mall centers, in the city,
in a train station and so forth. In the next section we propose some mobility
models built on top of the human mobility model.

3.3 Real-world mobility based on human mobil-
ity

Mobility impacts the topology on the network, but not only. The speed of the
nodes also have a very important impact on the dynamicity. More precisely, a
network in which the nodes move quickly could perfectly have the same topol-
ogy than one in which the nodes move slowly—meaning that the two networks
exhibit the same degree distribution, the same number of partitions, etc. But if
the nodes move faster, the network is very likely to be extremely dynamic.

3.3. REAL-WORLD MOBILITY BASED ON HUMAN MOBILITY 25

This section provides the parameters used for modeling various metropolitan
networks with madhoc.

Parameter name Value
Spot density human environment spot density
Spot radius human environment spot radius

Wall obstruction ratio human environment wall obstruction
Out-spot velocity human mobility out spot speed
In-spot velocity human mobility in spot speed

3.3.1 Highway

Parameter name Value Unit
Simulation area surface 1000 × 1000 m2

Mobile phone density 50 node/km2

PDA density 20 node/km2

Laptop density 10 node/km2

Spot density 1 spot/km2

Spot radius [10 10] m
Wall obstruction ratio 0.1

Out-spot velocity [20 40] m/s−1

In-spot velocity [20 40] m/s−1

The highway mobility environment is characterized by nodes moving at a
very high speed. The density of spot is defined so as there are preferably only
3 spots in the simulation area. Numerous spots would result in too many in-
tersections of nodes which would lead to unrealistic behavior. The highway
environment is very different from the other ones in the sense that the con-
nectivity it produce it specific: most links are organized into chains of nodes
moving in opposite senses.

3.3.2 Mall

The mall mobility model represents the mobility of nodes with an area made of
shops connected by corridors. Spot model shops.

Parameter name Value Unit
Simulation area surface 300 × 300 m2

Spot density 1000 place/km2

Spot radius [1 10] m
Wall obstruction ratio 0.7
Mobile phone density 5000 node/km2

PDA density 1000 node/km2

Laptop density 500 node/km2

Hotspot density 0 node/km2

Out-spot velocity [0.3 1] m/s−1

In-spot velocity [0.3 0.8] m/s−1

26 CHAPTER 3. SCENARIOS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2 4 6 8 10 12 14 16 18

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Highway

Figure 3.5: On the left, an example of a network formed by cars driving on a
highway section. On the right, the average degree distribution for such networks.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Mall

Figure 3.6: On the left, an example of a network formed by people shopping in
a mall. On the right, the average degree distribution for such networks.

3.3.3 Streets

The street environment model the network formed by vehicle driving in a city
section. Here spots represent the crossroads. The resulting connectivity exhibit
some very high dense regions (in terms of communication links), which are the
crossroads, connected by thin paths formed by nodes moving along streets.

3.3. REAL-WORLD MOBILITY BASED ON HUMAN MOBILITY 27

Parameter name Value Unit
Simulation area surface 1000 × 1000 m2

Spot density 50 place/km2

Spot radius [3 15] m
Wall obstruction ratio 0.9
Mobile phone density 5000 node/km2

PDA density 1000 node/km2

Laptop density 500 node/km2

Hotspot density 0 node/km2

Out-spot velocity [1 20] m/s−1

In-spot velocity [0.3 20] m/s−1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 20 40 60 80 100 120

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Streets

Figure 3.7: On the left, an example of a network formed by cars driving in a
city section. On the right, the average degree distribution for such networks.

3.3.4 Supermarket

The spot represent the edges of the

Parameter name Value Unit
Simulation area surface 50 × 50 m2

Spot density 100, 000 place/km2

Spot radius [3 15] m
Wall obstruction ratio 0.2
Mobile phone density 50, 000 node/km2

PDA density 30, 000 node/km2

Laptop density 500 node/km2

Out-spot velocity [0.3 1.5] m/s−1

In-spot velocity [0.1 0.5] m/s−1

28 CHAPTER 3. SCENARIOS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Supermarket

Figure 3.8: On the left, an example of a network formed by people shopping in
a supermarket. On the right, the average degree distribution for such networks.

3.3.5 Train station

The train station environment model pedestrian walking in the hall of a train
station, going to shops, buying tickets... The resulting movement for the node
is slow, with lots of pauses.

Parameter name Value Unit
Simulation area surface 100 × 100 m2

Spot density 10, 000 place/km2

Spot radius [1 2] m
Wall obstruction ratio 0.1
Mobile phone density 8, 000 node/km2

PDA density 2, 000 node/km2

Laptop density 500 node/km2

Out-spot velocity [0.3 1] m/s−1

In-spot velocity [0.3 0.3] m/s−1

3.3. REAL-WORLD MOBILITY BASED ON HUMAN MOBILITY 29

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

in
 [0

 1
]

Degree (number of nodes)

Train station

Figure 3.9: On the left, an example of a network formed by people roaming in a
train station. On the right, the average degree distribution for such networks.

30 CHAPTER 3. SCENARIOS

Chapter 4

Using madhoc

4.1 Requirements

madhoc requires the version 1.5 of the java runtime environment. This software
is freely available on Sun’s website. It also makes use of the following projects:

Up is a Swing component dedicated to the rendering of numeric data. It may be
used for scientific, statistic, geometric data rendering. More generally, it
is able to render any object that can be said to be composed of points. Up
keeps things easy using a very common object-oriented model: the com-
posite design pattern. Practically, Up merely renders a figure, assuming
that a figure is composed of points and child figures. Up also automatically
adapts the axis system according to the graphical environment.

EPSGraphics is a package that allow Java application (Up in our case) to pro-
duce PostScript files. It is required only if you want to generate PostScript
files.

iText is a package that allow Java application (Up in our case) to produce PDF
files. It is required only if you want to generate PDF files.

Javamail is not mandatory but it allows madhoc to send me a e-mail message
in case it encounters an problem. This is totally transparent to the user.
Javamail is Sun product and is freely downloadable from Sun’s website.
Note that Javamail requires the Sun’s activaction toolkit which is also
free.

4.2 Packaging

madhoc comes as a set of jar files. The jar files which come with the madhoc
distribution contain both the source code and the compiled bytecode of mad-
hoc. In the distribution you have, the source code might be obsfucated for

31

32 CHAPTER 4. USING MADHOC

performance reasons. If it is not the case, feel free to unjar the source and look
at it. The following list give some explanations on the content and role of each
jar file.

Madhoc.jar is the core of the madhoc simulator, which is absolutely necessary
for running it ;

Madhoc-Broadcasting.jar contains the implementation of standard broad-
casting protocols ;

Madhoc-HumanMobility.jar contains the code for the mall mobility model
;

Madhoc-NetworkMonitor.jar contains the code (sensors, graphical views,
etc) for monitoring the general behavior of the network ;

Madhoc-AdHocComputing.jar contains the code for ad hoc scattering which
is the reverse operation to broadcasting ;

Madhoc-BroadcastingMalaga.jar features some specific code developed for
the need of the researchers at Màlaga university ;

Toools.jar is a set of utility classes used by madhoc ;

Up.jar permits the 2D graphical representation of the data collected by the
sensor plus various data structures ; Up is a standalone project hosted at
http://amy.sunsite.dk/up ;

skinlf.jar permits the use of the Skin Look&Feel, which is required by some
version of madhoc. This jar file is needed only if you use the graphical
interface and want to have the use this look&feel.

4.3 Installation

As madhoc is a pure Java application, installing it on any computer is trivial.
madhoc comes with a set of .jar files. These files can be freely downloaded
at http://www-lih.univ-lehavre.fr/∼hogie/madhoc. Please take care at
downloading the most recent files, which can be identifiable by looking at its
date, which is part of its filename.

Copy these files anywhere in your file system and include them in the class-
path. At this step, madhoc is completely installed on your computer.

4.3.1 Installation on UNIX operating systems

On UNIX-type operating systems (including Linux), the easiest way of installing
madhoc (as well of any pure-java application) is to copy the .jar files in your
$HOME/lib directory. Then the $HOME/.profile file (or another file, depending
on your shell) should have the following command, which automatically include

4.4. USING MADHOC 33

into the CLASSPATH environment variable all the jar files found in the $HOME/lib
directory.

for j in $HOME/lib/*.jar
do

CLASSPATH=$CLASSPATH:"$f"
done

export CLASSPATH

4.3.2 Installation on Windows operating systems

There is no de-facto standard for installing Java programs on the Windows
operating system. The installation of madhoc will then depend on your java
runtime environment. Note that on Windows, the PATH separator character
which seperate the jar file paths within the CLASSPATH variable is the ”;”
character (on UNIX, the path separator is ”:”).

Installation on Cygwin environments

Cygwin is an UNIX environment built on top of the Windows platform. It is a
very good option to those who do not wish to set up a dual-boot system, and
turns out to me more flexible solution than the latter. Installing madhoc on
Cygwin is no problem. The user simply got to pay attention to the fact that
Cygwin does not runs a UNIX JDK but a Windows one. Consequently, the
PATH separator the user need to specify on in Cygwin configuration is ”;”. The
way Cygwin manages the file system poses also some troubles. For example, it
turns out to be better to write c: then /cygdrive/c, which theoretically both
refer to the C logical disk drive.

4.4 Using madhoc

madhoc can be used in two different ways: as a framework or as a standalone
application. On the one hand, using it as a framework consits of manipulat-
ing its API (application programming interface) from a user program. Doing
this requires a advanced knowledge of the Java programming language and a
good understanding of madhoc object-oriented model. On the other hand, using
madhoc as a standalone application consists of executing the madhoc applica-
tion just like any other application: within a process of the operating system.
In this case madhoc works pretty much like a Unix filter: it accepts its input
data from the command line or as a command-line argument and generate its
output on the standard output or to a file.

Whether madhoc is used as a framework or as a standalone application, it
needs to be fed with some configuration information. This information defines
what to do and how to do it.

34 CHAPTER 4. USING MADHOC

Formally speaking, the configuration is a set of key/value entries in which
each key is a unique string and the value is a set of strings. Pragmatically
speaking, the way the configuration information is passed to madhoc depends
on the way the simulator is used.

4.4.1 Configuring madhoc as a standalone application

In the case of running madhoc as a standalone application, the configuration
information must be passed either by the standard input of the process or by
providing it as an ASCII text file whose name is specified on madhoc’s com-
mand line. Except from the lines beginning with the ”#” character which are
considered as comment lines and blank lines which all are skipped, all lines con-
stituting a configuration text must strictly respect the following BNF (Bacus
Normal Form) definition:

line := key = {value(, value)∗}key := [=] + value := [,}]∗

Here follows as example of correct configuration entries:

some comment
simulation_name = {my simulation}
simulation_resolution = {10} # some other comment

Each line is called a configuration entry. Entries are mandatory as soon as
madhoc ask for them, since madhoc does not make any assumption of default
values. If a configuration entry cannot be found in the configuration provided
by the user, madhoc immediately interrupts and prints an explicit error message
on the standard error.

The configuration can be wholly contained in a single file as well as it can
be split in several files. Indeed, when scanning its command-line parameters,
madhoc check if a given parameter is a directory or not. If the parameter
is a normal file (not a directory) whose the name ends with .madhoc, it is
considered to be a configuration file and is used as such. If the given command-
line parameter specifies a directory, the latter is scanned to configuration files.
A full example of a configuration (split in several files for the sake of clarity)
can be downloaded at:

http://www-lih.univ-lehavre.fr/~hogie/madhoc/code/config.zip

There exists a long list of configuration keys available in the default madhoc.
The example configuration file whose the url was given in the previous paragraph
contains all the configuration keys allowed in madhoc as it comes by default.
We did not wish to give long explanation on al configuration keys herein. The
example configuration file is wealthly documented. Please refer to it for further
explanations.

4.5. USING MADHOC AS A STANDALONE APPLICATION 35

4.4.2 Configuring madhoc as a framework

When using madhoc as a framework, there is no need to handle text files.
Here you need to instantiate a org.lucci.madhoc.config.ConfigurationKeys
object and set its fields to the appropriate values. The name of the fields of the
configuration object The following example is the same of the one in the previous
section, adapted to a framework-mode.

ConfigurationKeys config = new ConfigurationKeys();
config.simulation_name = "my simulation";
config.simulation_resolution = "10";

The ConfigurationKeys object features all the configuration keys available as
public static fields. For each of them, it also define some default values. Please
pay attention at setting all the configuration keys you need at an appropriate
value. Leaving configuration keys to unappropriate default value is indeed a
fairly frequent mistake.

Configuring a new module

If you have developed a new module for madhoc (a new protocol, a new monitor
or whatsoever), you might want to give the user the ability to configure it.

In the case of madhoc as a standalone application, the user just had to add
new items in the configuration by editing the configuration files. In the case of
using madhoc as a framework, there is no possibility to directly modify the con-
figuration object nor the its class as the latter is already compiled and contained
in a jar file. Then the user need to subclass the class of the configuration object
and define the new configuration items as fields of the newly created subclass.

Why using a configuration object?

In the early versions of madhoc, no configuration object existed. The user
was then required to directly manipulate the classes of the simulator, just like
developers usually use frameworks (like Swing, Collections, etc). But as madhoc
evolved, it became more and more complex. Manipulating the classes of the
recent versions of madhoc turns out to be a cumbersome task.

Introducing the configuration object was then a good way of breaking the
complexity of the system by turning the madhoc user’s view to a planar one.

4.5 Using madhoc as a standalone application

The executable class that must be invoked for starting madhoc is:

org.lucci.madhoc.Madhoc

36 CHAPTER 4. USING MADHOC

There are two ways of invoking it.
You can specifiy a directory and/or configuration files in the command line.

Configuration files will be loaded directly while directories will be scanned for
configuration files to be loaded.

java org.lucci.madhoc.Madhoc config/ a.madhoc b.madhoc

Then, the following command loads all the configuration files in the current
directory:

java org.lucci.madhoc.Madhoc .

If you do not specify anything on the command line, madhoc reads its con-
figuration for its standard input. You can then invoke madhoc this way:

cat config.madhoc | java org.lucci.madhoc.Madhoc

Warning! In this case, you should however make sure that all the configura-
tion files start or end with a newline character. If not, by concatening two files
whose the first does not end with a newline character, the pipe will append the
first line of the second file to the last line of the first file, and will hence generate
an invalid syntax.

Chapter 5

The graphical user interface

If you wish to launch the graphical user interface, you need to set the simulation interaction mode
to graphical. This will completely initialize the simulation and then instanti-
ate a graphical application that will give the user the ability to observe in many
ways the simulation process.

When the GUI starts, it opens a desktop environment in which every win-
dows correspond to a distinct projection 2.3.3 of the simulated network, as illus-
trated on image 5.1 Projections are easily identifiable since their name entitles
the corresponding window.

Figure 5.1: On start-up, madhoc open one window for each projection available

All windows have the same features. A window is split vertically in two
zones. As shown on image 5.2 the left side of the window shows a tree widget
(graphical component). This tree is three-levels-deep and is organized as follows:

37

38 CHAPTER 5. THE GRAPHICAL USER INTERFACE

root is the name of the simulation

first level shows the monitors 2.2.2 available

second level (the deepest one) shows the views made available by each monitor
(see section 5.1).

Figure 5.2: A tree for selecting the views.

5.1 Monitor views

A view is a widget that permit the graphical rendering of some information
exposed by its monitor. Views are shown on the right side of the projection
window. More than one view is showable simultaneously. Showing one single
views is achievable by simply selecting the requested one on the tree widget
(note that selecting a tree node at zero and first level does not do anything).
You can select multiple views by keeping the Ctrl key pressed while clicking
on the corresponding leafs (this way of doing is very common on graphical user
interfaces).

5.1.1 Standard views

madhoc comes with a set of standard monitors that features views which are
directly usable. Before starting madhoc, ensure that the configuration key
monitors class include the org.lucci.madhoc.broadcast.NetworkMonitor
and org.lucci.madhoc.simulation.monitor.SimulationMonitor classes

Aircraft views

The aircraft views comes with the network monitor. It provides an 2D repre-
sentation of the simulated network, as if it is was observed from an aircraft or
a satellite. Image 5.3 shows and example of an aircraft view.

5.1. MONITOR VIEWS 39

Figure 5.3: An aircraft view of a network.

Numerical measures list

The numerical measures list view comes with the simulation monitor. It provides
a table whose rows represent a numerical measure (see section measures). All
numerical measures in the simulator are represented here. As shown on image
5.4, different colors permit to recognize which monitor the measure come from
(the colors used here are the same as the colors used on the tree widget, on the
left side of the projection window).

Figure 5.4: A view that give an overview of all the numerical measures available
in the simulation process.

2D representation view

The 2D representation view aim to improve the functionality of the numerical
measure list view. It permits the user to select two measures on the latter view

40 CHAPTER 5. THE GRAPHICAL USER INTERFACE

and graphical expose the relations between them, on a 2D axis system. The way
the measure have to be selected is intuitie. The control panel on the right side of
the 2D representation view shows two checkbox that indicate which dimension
is currently being configured. By default, the X dimension is selected, as shown
on image 5.5. Then click on whatever measure within the numerical measure list
view. It can observed that the X axis of the 2D representation is immediately
updated with the name and color of the selected measure. Now change the
selected dimension using the appropriate checkbox on the 2D representation
view’s control pane. Then click on some other measure in the numerical measure
list view. Just like what happened for the X axis, the Y one is updated. madhoc
now shows a color 2D mathematic function which highlight the relation betweent
the two selected measures, as shown in the example image 5.6. Most of the time,
the user will want to use the simulated time measure on the X axis (image
5.6).

Figure 5.5: The widget that select the dimension to be set.

Figure 5.6: The evolution of network coverage (in the case of a broadcasting
application) upon time.

Distribution view

The distribution view (an example is given on image ??) permits the 2D reprenta-
tion of every distribution measures 2.2.2 available in the current simulation. The
export function described in section 5.1.1 is also available here.

Image exportation

Often, it turns out to be very useful to export the displayed image to a disk
file. For doing this, right-click on the rendered image. A popup menu will

5.1. MONITOR VIEWS 41

then propose a Save as... menu item that will give you the ability to save the
image to various common image formats. If the image is targeted to an scientific
paper, vector format (PostScript, PDF or SVG) is obviously the way to go as
vector-based image representation ensure perfect scaling or the produced image.
People willing to re-work the rendering with a tool like GNUPlot [1] have the
possibility to export the rendered data as a tab-separated file that will be easily
red by GNUPlot. If the image is targeted to a web-site, bitmap format will be
preferred. Note that JPG is a lossy compression technique that is better forget
about in our concern, since it produce dirty graphics.

This functionality, as well as the rendering capability, is provided by the UP
project [2].

42 CHAPTER 5. THE GRAPHICAL USER INTERFACE

Chapter 6

Advanced usage

6.1 Creating a new module

Section gives the initialization process of a simulated application. This helps at
understanding what needs to be written by the programmer at the development
stage.

What need to be hardcoded in Java are the monitor and the code of the
application. These two components are enough for deploying and executing the
application. It is very likely that the user will want to have some feedback on
the application he is developing. Then he needs to write one or more sensors
that will periodically take measures on the application and report them to the
user interface, be it graphical or console-based.

Optionally, if the user wants to use the advanced features of the graphical
user interface, he has the possibility to define new views for his applications.
These views, which are Swing components, will be dynamically integrated in
the madhoc’s GUI.

6.1.1 Example

The best way to know how to create a new application for madhocis to look at
the following example. In the following we will define a simple application that
merely periodically sends ”hello´´ messages to its neighbors.

The code of the application

First you need to define what your application does. This is done by deriving
the class:

org.lucci.madhoc.network.Application

To do this, you need to implements the following methods:

String getName()

43

44 CHAPTER 6. ADVANCED USAGE

void configure()

void doIt(double time)

String getName() requires that you simply define and return a name for this
application. The name identifies the application, so take care at not using a
name that is already in use.

public String getName()

{
return "hello message application";

}

The void configure() method codes how the application will handle its
configuration parameters. In our present case, the configuration simply
indicates to which frequency the application will emit hello messages.

public void configure() throws Throwable

{
this.helloFrequency = 1000 ∗

getMonitor().getNetwork().getSimulation().getConfiguration()

.getInteger("hello application frequency");

}

Obviously, the helloFrequency field must have been defined. In order this to
work, the hello application frequency configuration key must be defined in any
configuration file. Here it is advisable to create a new configuration file that
will be dedicated to our new application.

The void doIt(double time) method is invoked at each iteration of the
simulator. This is where what the application do is actually coded. An
application that periodically sends its identity to its neighbors could be
implemented in the following way:

public void doIt(double time)

{
if (getSimulatedTime() % this.helloFrequency == 0)

{
Message message = new Message();

TransferableDouble id = new TransferableDouble();

id.setValue(getComputer().getIdentifier());

message.setContent(id);

message.setSourceStationApplication(this);

getComputer().getNetworkingUnit().getOutgoingMessageQueue().add(message);

}

for (Message msg : getIncomingMessages())

{
++incomingMessageCount;

}

6.1. CREATING A NEW MODULE 45

}

Obviously, the incomingMessageCount field must have been defined.

Deploying the application

The code of the application must now be attached by some means to the
simulator itself. To do this, a monitor for the application must be defined. A
monitor is a subclass of:

org.lucci.madhoc.simulation.Monitor

By deriving this class, you just need to give a name to the monitor. A name
that looks like my application monitor is not a bad idea. The last thing you
need to do is to provide the minimum configuration keys for the newly created
application.

If you want the new application to be the only application to be executed,
then simply use:

monitors class={my package.MyMonitor}

Otherwise, add the class name of the monitor to the list of monitor classes. This
configuration entry makes the simulator aware of the new application.

The application itself requires a few configuration entries to start. Indicate
the simulator which application the monitor will deploy:

my application monitor protocol class={my package.MyApplication}

Indicate the termination condition of the application. In our case, the
application never terminates.

my application monitor termination conditions={none}

Furthermore, the application does not need specific code to be initialized:

my application monitor initializer={none}

We did not define any measure for the application, so filtering measure makes
no sense. Just allow everything or nothing, it does not matter.

my application monitor measures regex={.∗}

The application wants to know how often it must send hello message. This is
given by the following configuration entry. In this case, a message is sent every
2 seconds.

hello application frequency={2}

46 CHAPTER 6. ADVANCED USAGE

6.2 Graphical and command-line user interfaces

madhoc can be used in 3 differents ways: as a console program, as a graphical
application as well as a framework.

In either case, the user needs to define the configuration for the simulation.
Whether you want to use the graphical user interface or the command-line

tool, you need to provide the configuration for the network you want to simulate.
Their entry point is the same, that is the org.lucci.madhoc.Madhoc class.

Whether madhoc route the execution to the GUI or the console mode depends
on the simulation interaction mode configuration key. You can set it either
to graphical or console.

6.2.1 Using the GUI

The graphical user interface aims at providing the user with excellent visualiza-
tion capabilities on the application he is developing. Organized as a desktop,
each internal window represent a projection of the network. All projections
feature the same tools, called views. These views are organized are classified
(using the tree on the left side of the window) with regards to the monitor which
made them available. One or several views can be activate at the same time by
clicking on them (for activating multiple views, click on them by pressing the
Ctrl key).

Numerical measure list

This view lists all the sensors available in the simulator. The values presented
are the ones extracted by considering the given projection only. So the values
for the same sensors on different projections may be different. The measures
are classified according to the monitor that made them available.

6.2.2 Graphical 2D plotter

This view allows the graphical representation of any measure in relation with
any other. In order to define which measure to represent as a 2D plot, select
them using the numerical measure list view. Both views must hence be active
in order to do that.

6.3 Using madhoc as a framework

By using the framework, the user (actually the programmer) needs to define the
configuration by setting the values of the public fields of a ConfigurationKeys
object.

ConfigurationKeys keys = ConfigurationKeys();

show how to set a parameters

6.3. USING MADHOC AS A FRAMEWORK 47

there are plently of such parameters available to the user
keys.simulation_name = "my simulation";

As explained in section ??, the configuration is a set of key/values pair.
At the level of the code, it is a data structure that has nothing to do with the
configuration keys available. However in the framework mode, the configuration
object must be initialized with the set of keys provided by the user.

Decoupling the keys from the data structure that is actually used by the
simulation may sound strange. Indeed it is strange but it has the great ad-
vantage that the keys available (actually the keys allowed) are hardly coded in
Java. This way the user cannot use non-existing keys. More over, programmers
who use a Java editor which provide code completion can use the latter for
completing the name of the keys. The configuration data structure must then
be initialized in the following way:

Configuration config = new Configuration();
config.load(keys);

Then a simulation object must be created and initialized with the configura-
tion. The configuration contains enough data to allow a complete initialization
of the simulator. In case some configuration keys are missing or have been fed
with unsuitable values, explicit errors will be shows as java exceptions.

Simulation simulation = new Simulation();
simulation.configure(config);

At this step, the simulation is completely initialized and is hence ready to
use.

execute one single iteration of the simulator
simulation.iterate();

madhoc does not run until the simulation has completed. The simulation
must be progressively advanced by the user. A typical way of executing a
simulation is a invoke the iterate() method in the body of a while loop
whose the termination condition (consequently the termination condition of the
simulation) depends on the simulated application. The following code simulates
one second of network activity.

iterate until the simulated time is lower than 1 second
while (simulation.getSimulatedTime() < 1)
{

simulation.iterate();
}

48 CHAPTER 6. ADVANCED USAGE

When the simulation is being running (in the body of the while loop) or
when it has completed, after the block) it is possible to get some information
on the simulation process. Indeed, the framework features an extensive list
of utility methods (like getSimulatedTime() that can be used for retrieving
informations on the simulated network and applications. In order to obtain
some information that is specific to a given application, it is advisable to get
the instance of the latter application, which is exposed within the simulation as
a Monitor object.

gets the monitor that is in charge of observing what’s
going on in the network
Monitor networkMonitor = simulation.getNetwork()

.getMonitorMap(NetworkMonitor.class);

Sensors are designed for application-specific purposes. They are hence ex-
posed by monitors. Obtaining a sensor can be done using the following code.

retrives the sensor that is in charge of measuring the network throughput
Sensor throughputSensor = networkMonitor.getSensorMap().get(ThroughputSensor.class);

As explained in section 2.2.2, sensors are asked to take measure on every
projections at the end of each iteration. Measures are then stored into an
history that is taken care of by the projection object. The latter history can be
retrieve in the following way.

first gets the instance of the projection we are
interested in (all the network)
Projection projection = simulation.getNetwork()

.getProjectionMap(IdentityProjection.class);

and then get the history for the measure we are interested in (the throughput)
MeasureHistory history = projection.getHistory(throughputSensor);

The set of values that have be archived in the history can be obtained by
invoking the getValues() method on the MeasureHistory object. If the mea-
sure is a numerical measure (see section 2.2.2), metrics like the average or the
standard deviation can then easily be obtained out of this list.

6.4 Accelerating the simulation process

If you need to increase the surface of the area you want to simulate, or increase
the number of nodes in the networks, you may want the simulator the operate
more efficiently. There are several ways of doing this, as described hereafter.

6.4. ACCELERATING THE SIMULATION PROCESS 49

• Increasing the resolution will fasten up the simulator in a linear way. This
is the first thing you should look at. But increasing the resolution will
make the simulation less accurate, depending on what you want to simu-
late. Then you should be able to define which is the maximum resolution
under which the behavior of the simulation will change insignificantly.
However you should be extremely cautious by altering the resolution of
the simulation because it may lead to unpredictable results.

• Reducing the number of projections also improve the performance of the
simulation. It is important that you define only the projections you need
for your simulations. Adding/discarding projections has no effect on the
simulation engine.

• reducing the sensors by selecting those only which provide the metrics you
are interested in. Several sensors (like the ones which counts the number
of partition, which measure the degree distribution in the network, etc)
require a considerable amount of time to proceed. If you are not interested
in their measures, just discard them.

6.4.1 Acceleration tricks specific to broadcasting simula-
tion

• Discarding the RAD is a trick specific to broadcasting. If the resolution
of the simulation is high, the RAD becomes useless because it is a low
level mechanism. In some broadcasting protocols (such as DFCN, AHBP,
etc), the RAD is important because it has a serious impact on the order
protocol-level information is delivered to the node. Hence discarding the
RAD may change the behavior of the broadcasting protocol. Discarding
the RAD in DFCN makes it loose some benefit of its cumulative neigh-
borhood mechanism, which head to more message emissions. Depending
on what you want to simulate, this harm can be simply ignored.

• Making the nodes moving faster is also a broadcasting-specific trick. It
increases the number of connection/disconnection which permits some
broadcasting protocols (like DFCN and AHBP EX which use the ”new
connection event” as a trigger for considering a re-emission) to process
significantly faster.

50 CHAPTER 6. ADVANCED USAGE

Chapter 7

Open issues

madhoc targets the simulation of metropolitan networks. So far, only few re-
search projects have focused on this. Along the conception/development of
madhoc, we have been facing several complex issues.

7.0.2 Initialization of the mobility

The initialization of mobility is difficult. How can we make sure that the initial
network is valid? The structure of the network is a consequence of the mobility.
But because the mobility rules are complex, the topology it will generate cannot
be predicted. A solution is to run the simulator by discarding the first measures.
How long this initialization process should last?

This issue is a real problem because it might prevent researchers from build-
ing relevant models for certain mobility patterns.

7.0.3 Altering the resolution of the simulation

The concept of resolution is described in section 2.3.2. madhoc has initially
been developed considering a fixed resolution of 4 iterations per second. Lately
we had to change this by supporting a user-defined resolution. But simulating
a network with a resolution that is not static is extremely difficult. The most
difficult point is probably the simulation of the data transfer which is tightly
linked to time.

51

52 CHAPTER 7. OPEN ISSUES

Chapter 8

Targetted applications

8.0.4 Broadcasting

madhoc were primarily designed to make easy the development and experimen-
tation of broadcasting. protocols. Two efficient protocols were defined using
madhoc: DFCN and CABP. DFCN is a bandwidth efficient protocols for mo-
bile networks. CAPB is an extension of the DFCN protocol. CAPB adapts its
strategy to the degree of urgency of the message that is being broadcasted. The
more urgent is a message, the less greedy will CABP react.

8.0.5 Mobility models

Mobility models

A second application of the madhoc simulator is the development of novel mo-
bility and radio propagation models for the simulation of metropolitan networks.
Then we have developped the mall mobility model. The mall mobility model
simulates the mobility of people walking in a mall center. It defines a mall as a
wide area made of shops and corridors which connect them. People in the mall
then move from shop to shop using the corridors. The mall mobility model uses
the constraint waypoint mobility model at two different scales (at the levels of
the shops and, at the bigger scale, the level of the mall).

First, a shop is a round place (whose radius is randomly chosen in a given
interval) surrounded with walls, which obstruct human mobility and attenuate
the radio signal. Shops are randomly located within the mall so as the distance
between two given shops must not be lower than 10m. People within a given
shop move according to the random waypoint mobility model, at a speed chosen
in between 1 and 4 km/h. Pauses last between 1 and 20 seconds. At most 20
pauses are allowed. When a station goes out of a shop, it randomly choses its
next destination shop.

Second, a corridor is a bi-directional path connecting two shops. There is
always one corridor connecting two given shops. People walk in corridors at a
speed randomly chosen between 2 and 6 km/h. In order to model the broadness

53

54 CHAPTER 8. TARGETTED APPLICATIONS

of the corridors, a variation of the direction of people walking into them is
tolerated. The broader is the corridor, the bigger variation is tolerated.

The mall mobility model generates the emergence of dense and highly con-
nected regions. These regions are sometimes isolated. At runtime, one can
observe that they get sporadically get connected to other regions thin paths
(like chains). This kind of topology illustrates that applications—as well as
protocols—must deal with high variations of the density.

Pedestrian area mobility

The pedestrian area mobility model simulates the mobility of people walking in
a pedestrian-only city area. This mobility model is an extension of the graph-
based mobility model [28]. More precisely the street network is represented
as a grid, each edge being a street section and each node being a crossroads.
Similarly to the mall mobility model, in order to model the broadness of the
streets, a variation of the direction of people walking into them is tolerated.
People walk at a speed randomly chosen between 2 and 6 km/h. Just like in
the random waypoint and mall mobility models, people make short pause whose
duration is randomly chosen between 1 and 20s.

The radio propagation model is constrained by the street graph. More pre-
cisely, in order to model the signal attenuation of the walls, a given node can
communicate with other nodes located on the same edge and on aligned edges,
using the path loss model. The broadness of crossroads is represented by allow-
ing all nodes close to a given crossroads to communicate with one another.

The pedestrian area mobility model is still under development.

8.0.6 Ad hoc computing: towards the ad hoc grid

Our main target is the investigation of computations distributed over mobile ad
hoc networks. madhoc were developed with this idea in mind.

We are currently working at realistically modeling the properties of the fu-
ture ad hoc grid and at predicting its behavior.

We are now focusing on building a basic grid application which consist of
the distribution of on single task. It may sound simple, but actually many
questions arise: According to what policy the distribution should occur? How
to ensure that the result of a task will come back the client node? And so on.
This research is on progress.

Chapter 9

OOP implementation in
java

The madhoc project has begun in January 2004. Since then, 20,000 lines of
code have been written. The code organized in 205 classes, classified in 42
packages. All along the development process, a great attention has been paid to
the elegancy of the design and to the quality of the algorithms. The resulting
code is clean and stable.

madhoc simulations deal with numerous entities of the same class: the sta-
tions. Such architecture is used many other software, like in multi-agent frame-
works. Experience has shown that modeling the entities as columns in a huge
array of primitive objects could improve the simulations efficiency by factor 10.
However doing this merely discards the advantages of OO programming (mod-
ularity, reusability...). But we initially considered that using such a technique
would have prevented us from developing madhoc as it is now, and would greatly
compromise its ”open” model.

55

56 CHAPTER 9. OOP IMPLEMENTATION IN JAVA

Chapter 10

Grid

madhoc
What constitutes the main obstacle to the constitution of large grid is general

network security.
Generally, the client/server defines that only one daemon (server software) of

a given type runs on a given computer. Things do not work like this in madhoc’s
grid. It defines that exactly one server (called simulation server) runs on every
processor. Then a workstation equiped with n processors will run n simulation
servers. There are no relations between simulation servers running on a same
given computer: they operate in an autonomous and independant manner.

On every computer participating to madhoc’s grid, there is a server running.
This server periodically looks for tasks to execute. The number of task it can
execute simulatenously depends on the number of processor of its hosting com-
puter. As a madhoc simulation is a monothread processus, a single computer
can simulatenously run as many simulation as it embeds processors.

57

58 CHAPTER 10. GRID

Bibliography

[1] GNUPlot. http://www.gnuplot.info/.

[2] Ultimate Plotter. Up. http://amy.sunsite.dk/up/.

[3] Kaizar Amin, Gregor von Laszewski, and Armin R. Mikler. Toward an Ar-
chitecture for Ad Hoc Grids. In 12th International Conference on Advanced
Computing and Communications (ADCOM 2004), Ahmedabad Gujarat,
India, 15-18 December 2004.

[4] Christian Bettstetter. Smooth is better than sharp: a random mobility
model for simulation of wireless networks. In MSWIM ’01: Proceedings of
the 4th ACM international workshop on Modeling, analysis and simulation
of wireless and mobile systems, pages 19–27. ACM Press, 2001.

[5] Christian Bettstetter, Giovanni Resta, and Paolo Santi. The node distribu-
tion of the random waypoint mobility model for wireless ad hoc networks.
IEEE Transactions on Mobile Computing, 2(3):257–269, 2003.

[6] Stephan Bohacek and Vinay Sridhara. The graph properties of manets in
urban environments. In (In Submission), 2004.

[7] Stephan Bohacek and Vinay Sridhara. The udel models - manet mobility
and path loss in an urban. In (In Submission), 2004.

[8] Dominik Buszko, Wei-Hsing (Dan) Lee, and Abdelsalam (Sumi) Helal. De-
centralized ad-hoc groupware api and framework for mobile collaboration.
In GROUP’01: Proceedings of the International ACM SIGGROUP Con-
ference on Supporting Group Work, pages 5–14. ACM Press, 2001.

[9] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad
Hoc Network Research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483–502, 2002.

[10] Marco Conti, Silvia Giordano, Gaia Maselli, and Giovanni Turi. Mobile-
man: Mobile metropolitan ad hoc networks. In Proceedings of the 8th
International IFIP-TC6 Conference, Lecture Notes in Computer Science
LNCS 2775, pages 194–205, September 2003.

59

60 BIBLIOGRAPHY

[11] Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm. A
java-based uniform workbench for simulating and executing distributed mo-
bile applications. Scientific Engineering of Distributed Java Applications,
november 2003.

[12] Hannes Frey, Johannes K. Lehnert, and Peter Sturm. Ubibay: An auc-
tion system for mobile multihop ad-hoc networks. In Workshop on Ad
hoc Communications and Collaboration in Ubiquitous Computing Environ-
ments, 2002.

[13] D. Görgen, H. Frey, and C. Hutter. Information dissemination based on the
en-passant communication pattern. KiVS: Fachtagung Kommunikation in
Verteilten Systemen, 2005.

[14] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A
group mobility model for ad hoc wireless networks. In MSWiM ’99: Pro-
ceedings of the 2nd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems, pages 53–60. ACM Press, 1999.

[15] EPFL Information Sciences Institute. The nab (network in a box) wireless
network simulator. In http://nab.epfl.ch, 2004.

[16] Amit Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, , and Sub-
hash Suri. Real world environment models for mobile ad hoc networks.
Journal on Special Areas in Communications - Special Issue on Wireless
Ad hoc Networks, 14(2), January 2005.

[17] Amit Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and Sub-
hash Suri. Towards realistic mobility models for mobile ad hoc networks.
In MobiCom ’03: Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 217–229. ACM Press, 2003.

[18] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and
Mikael Degermark. Scenario-based performance analysis of routing pro-
tocols for mobile ad-hoc networks. In MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and
networking, pages 195–206. ACM Press, 1999.

[19] C. Kunze, U. Grossmann, W. Storka, and KD. Muller-Glaser. Applica-
tion of ubiquitous computing in personal health monitoring systems. In
DGBMT: Jahrestagung der Deutschen Gesellschaft Für Biomedizinische
Technik, pages 360–362, 2002.

[20] Johannes K. Lehnert, Daniel Görgen, Hannes Frey, and Peter Sturm. A
scalable workbench for implementing and evaluating distributed applica-
tions in mobile ad hoc networks. In WMC’04: Western Simulation Multi-
Conference, pages 154–161, 2004.

BIBLIOGRAPHY 61

[21] William Navidi and Tracy Camp. Stationary distributions for the ran-
dom waypoint mobility model. IEEE Transactions on Mobile Computing,
3(1):99–108, 2004.

[22] Guangyu Pei, Mario Gerla, Xiaoyan Hong, and Ching-Chuan Chiang. A
wireless hierarchical routing protocol with group mobility. In WCNC1999;
IEEE Wireless Communications and Networking Conference, number 1,
pages 1538–1542. IEEE, IEEE, September 1999.

[23] Ray and Suprio. Realistic mobility for manet simulation, December 2004.

[24] Sebastien Matas Riera, Oliver Wellnitz, and Lars Wolf. A zone-based gam-
ing architecture for ad-hoc networks. In NETGAMES ’03: Proceedings of
the 2nd workshop on Network and system support for games, pages 72–76.
ACM Press, 2003.

[25] Hartmut Ritter, Min Tian, Thiemo Voigt, and Jochen H. Schiller. A highly
flexible testbed for studies of ad-hoc network behaviour. In LCN, pages
746–752, 2003.

[26] E. Royer and C. Toh. A review of current routing protocols for ad-hoc
mobile wireless networks. In IEEE Personal Communications, 1999.

[27] Christian Schindelhauer, Tamas Lukovszki, Stefan Ruhrup, and Klaus Vol-
bert. Worst case mobility in ad hoc networks. In SPAA ’03: Proceedings
of the fifteenth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 230–239. ACM Press, 2003.

[28] Jing Tian, Jörg Hähner, Christian Becker, Illya Stepanov, and Kurt Rother-
mel. Graph-based mobility model for mobile ad hoc network simulation.
In Annual Simulation Symposium, pages 337–344, 2002.

[29] Tuna Tugcu and Cem Ersoy. How a new realistic mobility model can
affect the relative performance of a mobile networking scheme. Wireless
Communications and Mobile Computing, 4(4):383–394, 2004.

[30] B. Williams and T. Camp. Comparison of broadcasting techniques for mo-
bile ad hoc networks. In MOBIHOC: Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 194–205,
2002.

[31] Jungkeun Yoon, Mingyan Liu, and B. Noble. Random waypoint considered
harmful. In INFOCOM: Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies, pages 1312–1321, March
2003.

