
Table of Contents

DIP065 User's Manual • 13006502-1.0.1

Introduction Chapter 1

Chapter Overview ……………….……………….…………………… 1-1
Introduction ……………….……………….…………………………... 1-1

Hardware Requirements Chapter 2

Chapter Overview ……………….……………….…………………… 2-1
DeviceNet Terminal Block Connector…………….………………… 2-1
Power Connections ……………….……………….…………………. 2-1

Functional Requirements Chapter 3

Chapter Overview ……………….……………….…………………… 3-1
RS232 Serial Channel ……………….…………………….…………. 3-1
Data Rates ……………….……………….…………………………… 3-1
Data Buffering ……………….……………….……………………….. 3-1
Data Flow ……………….…………………….…………………….…. 3-2
Data Packets ……………….…………………….…………………… 3-2
Configuration Packets ……………….…………………….…………. 3-2
Flow Control ……………….…………………….…………………….. 3-3
Configuration Control ……………….…………………….…………… 3-3
Error Management ……………….…………………….……………… 3-3
Synchronization ……………….…………………….…………………. 3-4

Protocol Formats Chapter 4

Chapter Overview ……………….……………….…………………… 4-1
STX (Start of Packet) ……………….…………………….………….. 4-1
ETX (End of Packet) ……………….…………………….…………… 4-1
CHECKSUM ……………….…………………….…………………….. 4-1
Data Configuration Packets ……………….…………………….…… 4-1
Acknowledgement Packets ……………….…………………….……. 4-2
Error Codes ……………….…………………….……………………… 4-2

DRV052 Functions Chapter 5

Chapter Overview ……………….……………….…………………… 5-1
DN Functions ……………….……………….………….…………….. 5-1
CAN Functions ……………….……………….………………………. 5-8
VXD Functions ……….……………….………………………………. 5-10
Utility Functions ………….………….………….………….…………. 5-12
Error Codes ………….………….………….………….……………… 5-12
Visual Basic Function Prototypes ………….………….……………. 5-13

Obtaining Help Chapter 6

Chapter Overview ……………….……………….…………………… 6-1
Sources for Help ………………………………………………………. 6-1

Chapter 1

DIP065 User's Manual • 13006502-1.0.1

Introduction

Chapter Overview This chapter serves as an introduction to the DIP065.

For information on See Page

Introduction 1-1

Introduction The following serial protocol has been developed to support the DIP
RS232 to CAN network adapter. This protocol will be considered
proprietary to DIP. The protocol will be supported on the DIP065 CAN
based microcontroller hardware adapter (CAN Serial Interface Module)
using a full duplex serial RS232 electrical interface.

The CAN protocol specifications are specifically not defined. It is the
intent of the DIP065 module to allow various CAN protocols to be
processed using software supplied on the controlling RS232 device
(HOST system). The DIP065 will pass messages through with no
interpretation of the data.

Data transferred on the CAN network consist of variable length packets.
The maximum packet length is 8 data bytes + 2 control bytes. Since the
DIP065 module is to pass data through with no attempt to interpret the
CAN message protocol the serial protocol will simply prepend a suitable
STX character and append a checksum/ETX character to the CAN
packets.

The DIP065 module is not intended to be a control interface, but to
instead provide a method to monitor and configure a CAN network or
individual CAN device.

Chapter 2

DIP065 User's Manual • 13006502-1.0.1

Hardware Requirements

Chapter Overview This chapter will address the DIP065 Hardware Requirements.

For information on See Page

DeviceNet Terminal Block Connector 2-1

Power Connections 2-1

DeviceNet Terminal The DIP065 serial adapter connects to DeviceNet using the following pin
Block Connector description. Notice that Pin 1 and Pin 5 are OUTPUT pins.

! Pin 1 is the leftmost pin on the unit.

Pin Description
1 Common Out (Bus -)
2 CAN Low
3 Shield
4 CAN High
5 +15 VDC Out (Bus +)

Power Connections The DIP065 may be powered either from a local power source (9-12
VDC 500mA) or from a 9 volt battery. The unit is able to supply +15
VDC at 100 mA using a rechargeable NiCd 150mAh for approximately
one hour.

Chapter 3

DIP065 User's Manual • 13006502-1.0.1

Functional Requirements

Chapter Overview This chapter will address the DIP065 Functional Requirements.

For information on See Page

RS232 Serial Channel 3-1

Data Rates 3-1

Data Buffering 3-1

Data Flow 3-2

Data Packets 3-2

Configuration Packets 3-2

Flow Control 3-3

Configuration Control 3-3

Error Management 3-5

Synchronization 3-5

RS232 Serial Channel The purpose of the DIP065 Serial protocol is to allow an RS232 serial
channel to gain access to a CAN based control network. The RS232
channel will typically be (but in no way limited to) an IBM PC compatible
personal computer (HOST system). Electrical power for the RS232
transceivers will be derived from the DSR/DTR signal pair.

Pin Description
2 RX (Receive)*
3 TX (Transmit)*
4 DTR (Data Ready)
5 GND (Ground)*
7 RTS (Ready to Send)

! These are the minimum required signals needed to operate the serial
interface.

Data Rates The RS232 serial interface will operate at 9600 baud, 1 stop bit, no parity.
The CAN network operating rate will be determined by the configuration
registers as set by the HOST software.

Data Buffering CAN data rates vary from very low (less than 9600 baud) to very high (1
megabaud). The DIP065 module will allow for 176 data bytes to be
buffered in a receive FIFO structure for data packets received from the
CAN network pending transmission to the RS232 channel.

3-2 Functional Requirements

DIP065 User's Manual • 13006502-1.0.1

Due to the typically much higher data rate for the CAN network there is
little need to provide RS232 to CAN data buffering. The only time the
RS232 channel can operate faster than the CAN network is when the
network itself is heavily loaded or a fault condition has occurred. In both
cases it is considered reasonable that the HOST software will want to take
corrective actions so message buffering in fact would prove a hindrance.

Data Flow Information flowing between the DIP065 and the HOST are considered to
be either DATA packets (transferred to or from the CAN channel) and
CONFIGURATION packets (information used to control the operation of
the DIP065 module).

Data Packets Packets of information sent from the HOST to the CAN network will be
received and buffered in an internal transmit buffer. Upon verification of
message checksums and data format (ETX) the data will be transferred to
the CAN transmit buffer and then the appropriate transmit control signals
will be generated. At this point the transmit buffer will be considered empty
and another transmit request can be accepted.

Following successful completion of the CAN transmission an
ACKNOWLEDGE packet will be returned to the HOST. If errors occur an
error packet will be returned to the HOST.

Packets of information received on the CAN network which are accepted
by the controller will be transferred to a receive FIFO. A background
handler will automatically transfer data from the receive FIFO to the RS232
serial channel, encapsulated with STX and CHECKSUM, ETX bytes.

When the HOST responds with an acknowledge the DIP065 will either
retransmit the packet (error condition) or proceed with the next available
packet if one is available. If the HOST does not respond the receive FIFO
will eventually overflow. The DIP065 may be configured to either discard
subsequent CAN packets or to throw away the oldest packets.

Configuration Packets Configuration packets must also be acknowledged by the receiver before
the transmitter is free to send further packets.

If the HOST sends a request to write configuration information the DIP065
will process the request and then return either an acceptance or failure
acknowledgement.

If the HOST sends a request to read configuration information the DIP065
will process the request and return either a failure acknowledgement or the
requested information. No response is expected from the HOST.

The DIP065 module will never send an unsolicited configuration packet.

Functional Requirements 3-3

DIP065 User's Manual • 13006502-1.0.1

Flow Control Packets are defined as either DATA packets to/from the CAN interface or
CONFIGURATION packets which transfer status and control information.

Packet flow is controlled by the receiver generating an ACKNOWLEDGE
after receiving each packet. The transmitter will not initiate another
transmission of the same type until an acknowledge has been received.

In cases where the receive FIFO is not empty (DIP065 sending transactions
to HOST) the HOST may force a pause by not responding to a
transmission. During the pause the DIP065 will continue to process
configuration packets sent by the HOST.

Configuration Control Two levels of configuration control are required. The CAN control
subsystem has specific control registers to determine transmission rates and
address filtering. In addition, configuration control is provided to determine
the RS232 packet management.

The CAN packet header uses 4 bits to define the packet length, allowing for
potentially 16 different message lengths (0-15). Only packet lengths of 0-8
are acceptable, leaving 7 undefined lengths which can be used to transfer
configuration information. The following configuration transfers will be
supported:

Code 9 allows the RS232 channel to access the CAN interface set up
registers.

OBJ = 0 ; RESERVED
RTRLEN = 0x09 ; Write configuration
DATA ; ACCEPTANCE code
DATA+1 ; MASK code
DATA+2 ; TIM0 code
DATA+3 ; TIM1 code

OBJ = 0 ; RESERVED
RTRLEN = 0x19 ; Write configuration
DATA ; ACCEPTANCE code
DATA+1 ; MASK code
DATA+2 ; TIM0 code
DATA+3 ; TIM1 code

Code 10 allows the RS232 channel to access the CAN interface
control/status registers.

OBJ = 0 ; RESERVED
RTRLEN = 0x0A ; Write configuration or
DATA ; CAN_CONTROL

OBJ = 0
RTRLEN = 0x1A ; Read configuration
DATA ; CAN_STATUS

3-4 Functional Requirements

DIP065 User's Manual • 13006502-1.0.1

Code 11 allows the RS232 channel to set the XHold mode and the
DiscardMode registers and to reset the device. The first byte contains the
mode byte, shown below. The second byte must be 0.

OBJ = 0
RTRLEN = 0x0B ; Write configuration or
DATA = mode byte
DATA+1 = 0

 x x x x x x x x
 | --- ---
 | | |------- 00 = do nothing
 | | 01 = flush XHOLD buffer
 | | 10 = disable ACK requirement
 | | 11 = enable ACK requirement
 | |
 | |----------- 0x = do nothing
 | 10 = discard oldest packet on overflow
 | 11 = discard newest packet on overflow
 |
 |--------------- 1 = Master Reset (no acknowledge)

When read, the AccessMode function returns 2 bytes. The first byte is
the ModeControl status, shown below. The second byte is the number of
bytes in the HOLD buffer.

OBJ = 0
RTRLEN = 0x1B ; Read configuration
DATA = Mode Control
DATA+1 = Number of bytes in Hold Buffer

 x x x x x x x x
 | | |
 | | |------ if set, HOLD buffer waiting for an ACK
 | |
 | |-------- if set, HOLD buffer waits for ACK/NAK
 |
 |---------- if set, discard new message if XHOLD is

 full

Code 12 -14 Reserved

Code 15 AccessStatus() allows the RS232 channel to access the last
STATUS information or clear the XHOLD function to send the next
packet.

The DIP065 sends two types of unsolicited messages: status and DATA
(from CAN). When a WRITE_STATUS is received with the parameter
byte == 0 it indicates that the last DATA packet has been acknowledged
and the XHOLD function is free to send the next packet.

If the parameter byte == 0x1 it indicates that the last data byte was
received incorrectly and should be retransmitted.

Functional Requirements 3-5

DIP065 User's Manual • 13006502-1.0.1

NOTE: ONLY DATA packets are expected to be acknowledged by the
HOST.

NOTE: The WRITE_STATUS does not generate an explicit response. If
the parameter byte is 0 then the implicit response occurs when the next
CAN packet is received and transfered. If the parameter byte is 1 the
implicit response occurs immediately by the retransmission of the
previous packet. If the parameter byte > 1 then the function returns an
E_PARAMETER message.

The StatusByte may be read. It has the following bit interpretations:

 x x x x x x x x
 | | |
 | | |------ if set, HOLD buffer waiting for an ACK
 | |
 | |-------- if set, HOLD buffer waits for ACK/NAK
 |
 |---------- if set, discard new message if XHOLD is full

OBJ = 0
RTRLEN = 0x0F ; Write configuration or
DATA = StatusByte

OBJ = 0
RTRLEN = 0x1F ; Read configuration
DATA = Status Byte

Error Management All packets sent by either the HOST or the DIP065 must be acknowledged.
Configuration READ requests are acknowledged with either the requested
data or an error packet. All other transactions are specifically acknowledged
by a an error packet or an ACK packet.

To a large degree the error management is controlled by the HOST.

Synchronization The HOST and DIP065 must maintain synchronization since the data bytes
are transmitted in binary format. The units will re-synchronize upon receipt
of 10 ETX characters. Note that this character burst may cause at least 1
NACK transaction to occur within the DIP065 module.

Chapter 4

DIP065 User's Manual • 13006502-1.0.1

Protocol Formats

Chapter Overview This chapter will address the DIP065 Protocol Formats.

For information on See Page

STX (Start of Packet) 4-1

ETX (End of Packet) 4-1

CHECKSUM 4-1

Data Configuration Packets 4-1

Acknowledgement Packets 4-2

Error Codes 4-2

The transfer formats for data, configuration and acknowledgment packets
share a common format consisting of a start of packet flag byte, the packet
information, a checksum and an end of packet flag byte.

STX (Start of Packet) All packets sent between the HOST and the DIP065 will start with an STX
character. The STX character is the standard ASCII character 02H. The
DIP065 module will ignore all RS232 data until the receipt of the STX
character and will continue to buffer data until the receipt of the ETX
character, up to a maximum of 11 characters (2 header + 8 data +
checksum).

ETX (End of Packet) All packets sent between the HOST and the DIP065 will end with an
ETX character. The ETX character is the standard ASCII character 03H.
The ETX character may be used to force synchronization.

CHECKSUM All packets will include a 2's complement checksum of all packet
information except the STX and ETX characters. The modulus 256 sum of
all data + the checksum will be 0.

DATA AND DATA and CONFIGURATION packets are identical in format:
CONFIGURATION
PACKETS

STX OBJ RTRLEN <...DATA...> CHKSUM ETX

STX 02H

OBJ Object identifier bits 11-3 for data packets. Reserved field (0) for
configuration packets.

RTRLEN Object identifier bits 2-0, RTR, Length (0-8) for data packets (see
CAN Specifications). Command type code (9-15) for configuration
packets.

4-2 Protocol Formats

DIP065 User's Manual • 13006502-1.0.1

DATA Variable length data. For data packets the length is encoded in the
RTRLEN field. For configuration information the length is implicit
in the configuration command byte.

CHKSUM Two's complement of OBJ, RTRLEN, DATA.

ETX 03H

ACKNOWLEDGEMENT Acknowledgement packets are used to verify transmission of previous
PACKETS packets and report failures.

STX STATUS CHKSUM ETX

STX 02H

STATUS Error code (see Errors).

CHKSUM Two's complement of STATUS.

ETX 03H

ERROR CODES The following error codes are defined.

ERROR CODE DESCRIPTION

E_OK 0 No Error. The last transmitted packet was
accepted an fully processed. This is the ACK
packet.

E_FULL 1 The RS232 to CAN receive buffer is in use due to
a previous attempt to transmit. This error is
generated upon receiving a transmit request before
a previous transmit packet has been transferred to
the CAN transmit buffer.

E_PARAM 2 An invalid configuration parameter was received
in a command packet. The packet is ignored.

E_CHKSUM 3 A received checksum was incorrect.

Chapter 5

DIP065 User's Manual • 13006502-1.0.1

DRV052 Functions

Chapter Overview This chapter addresses the DRV052 functions (Windows).

For information on See Page

DN Functions 5-1

CAN Functions 5-8

VXD Functions 5-10

Utility Functions 5-12

Error Codes 5-12

Visual Basic Function Prototypes 5-13

Note: drv052.dll was recompiled under the
following names:
Drv052_c.dll (C calling convention) (C,C++)
Drv052_p.dll (Pascal calling convention) (Vbasic)

DN Functions These functions allow the user to send DeviceNet commands:

• DNAllocate
• DNFree
• DNReset
• DNGetAttribute
• DNSetAttribute

DNAllocate

This function allows the user to create a M/S connection with a
node within the DeviceNet network.

Function Prototype:

long DNAllocate (unsigned short int node, unsigned short int conn,
unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to allocate. The
value ranges from 0 to 63.

conn Connection to be established with the node. (Explicit =1,
Poll= 2, Strobe= 4, etc).

Chapter 5

DIP065 User's Manual • 13006502-1.0.1

buf Pointer to an array of bytes for a response from
DNAllocate. The size of the array must be 150.

5-2 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

C Declaration:

long rts;
int node;
int conn;
unsigned char buf[150];

rts = DNAllocate(node,conn,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim node As Integer
Dim conn As Integer
Dim buf(150) as Byte

rts =DNAllocate(node,conn,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of CAN message
buf[6],.... Message from node

Comments:

This function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon as it is received.

DRV052 Functions 5-3

DIP065 User's Manual • 13006502-1.0.1

DNFree

This function allows the user to free M/S connection with a node
within the DeviceNet network.

Function Prototype:

long DNFree (unsigned short int node, unsigned short int conn,
unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to free. The value
ranges from 0 to 63.

conn Connection to be established with the node. (Explicit =1,
Poll= 2, Strobe= 4).

buf Pointer to an array of bytes for function DNFree. The size
of the array must be 150.

C Declaration:

long rts;
int node;
int conn;
unsigned char buf[150];

rts = DNFree(node,conn,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim node As Integer
Dim conn As Integer
Dim buf(150) as byte

rts =DNFree(node,conn,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node

5-4 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

buf[4],[5] Size of CAN message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DNReset

This function allows the user to reset the node.

Function Prototype:

long DNReset (unsigned short int node, unsigned short int clss,
unsigned short int inst, unsigned short int rlen, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

rlen Number of characters send in *buf. Set to 0 if no
data is to be sent.

buf On entry, buf has data to be sent to the node. On
exit, buf has data response from DNReset. The size
of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int rlen;
unsigned char buf[150];

rts = DNReset(node,clss,inst,rlen,&buf);

DRV052 Functions 5-5

DIP065 User's Manual • 13006502-1.0.1

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim rlen as Integer
Dim buf(150) as byte

rts =DNReset(node,clss,inst,rlen,buf(0))

Return Data:
*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DNGetAttribute

This function supports DeviceNet Service GET_SINGLE.

Function Prototype:

long DNGetAttribute (unsigned short int node, unsigned short int clss,
unsigned short int inst, unsigned short int attr, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

5-6 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

attr Attribute to be accessed.

buf On exit, buf has data response from
DNGetAttribute. The size of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int attr;
unsigned char buf[150];

rts = DNGetAttribute(node,clss,inst,attr,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim attr as Integer
Dim buf(150) as byte

rts =DNGetAttribute(node,clss,inst,attr,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DRV052 Functions 5-7

DIP065 User's Manual • 13006502-1.0.1

DNSetAttribute

This function supports DeviceNet Service SET_SINGLE.

Function Prototype:

long DNSetAttribute(unsigned short int node, unsigned short int
clss, unsigned short int inst, unsigned short int attr, unsigned short
int rlen, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

attr Attribute to be accessed.

rlen Number of characters send in *buf. Set to 0 if no
data is to be sent.

buf On entry, buf has the data to be sent to the node. On
exit, buf has data response from DNSetAttribute.
The size of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int attr;
int rlen;
unsigned char buf[150];

rts = DNSetAttribute(node,clss,inst,attr,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim attr as Integer
Dim int as Integer
Dim buf(150) as byte

5-8 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

rts =DNSetAttribute(node,clss,inst,attr,rlen,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

CAN functions These functions allow the user to receive and transmit generic
CAN messages.

CANRcv

This function will read a message from the VXD. If no messages
are available an Error code is generated.

Function Prototype:

long CANRcv (unsigned short int *radd, unsigned short int *rlen,
unsigned char *buf)

Parameters:

radd 11-bit identifier.

rlen Number of characters received.

buf On exit, data response from CANRcv. The size of
the array must be 150.

C Declaration:

long rts;
int radd;

DRV052 Functions 5-9

DIP065 User's Manual • 13006502-1.0.1

int rlen;
unsigned char buf[150];

rts = CANRcv(radd,rlen,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim radd As Integer
Dim rlen as Integer
Dim buf(150) as byte

rts =CANRcv(radd,rlen,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comment:

The function returns a non-zero value for Error. See Error Codes
for details.

CANXmit

This function will write a message to the VXD.

Function Prototype:

long CANXmit (unsigned short int xadd, unsigned short int xlen,
unsigned char *buf);

Parameters:

radd 11-bit identifier.

xlen Number of characters received. This value must be
less or equal to 8.

5-10 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

buf On entry, data to be sent to the node.

C Declaration:

long rts;
int xadd;
int xlen;
unsigned char buf[150];

rts = CANXmit(xadd,xlen,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim xadd As Integer
Dim xlen as Integer
Dim buf(150) as byte

rts =CANXmit(xadd,xlen,buf(0))

Return Value:
NONE

VXD functions LoadVXD

This function loads the proper driver for the DIP052 and DIP065.
The DRV052.DLL can be used on Windows 95 and NT operating
system.

Function Prototype:

long LoadVXD (unsigned short int Port, unsigned short int IRQ,
 unsigned char *Config);

Configuring DIP065:

COMM ADDRESS
Port

COM 1 2F8H
COM 2 3F8H

DRV052 Functions 5-11

DIP065 User's Manual • 13006502-1.0.1

The 4-byte configuration array consists of the following UNSIGNED
CHAR fields:

Config[4] accept_code.
accept_code Message IDENTIFIER(s) to be recognized by this

node. Defines which message packets received by the
controller will be accepted, subject to mask_code
operation.

Config[5] mask_code.
mask_code MASK value which will be applied to accept_code

and Message IDENTIFIER when qualifying message
acceptance. The mask_code value is 'AND'ed with
both the incoming message IDENTIFIER and the
accept_code. Setting a bit within the mask_code
informs the controller to ignore the corresponding bit
in the accept_code. A mask_code of 0xFF will allow
the controller to receive all packets.

Config[6] Bus Time 0
Bus Time 0 Baud rate multiplier and jitter correction control bits.
(Refer to x32 specific register information).

Config[7] Bus Time 1
Bus Time 1 Data bit sampling control. (Refer to x32 specific
register information).

To set up the data rate to 125kb use:
Bus Time 0 DEF_SPD125_0 0x03
Bus Time 1 DEF_SPD125_1 0x1c

To set up the data rate to 250kb use:
Bus Time 0 DEF_SPD250_0 0x01
Bus Time 1 DEF_SPD250_1 0x1c

To set up the data rate to 500kb use:
Bus Time 0 DEF_SPD500_0 0x00
Bus Time 1 DEF_SPD500_1 0x1c

To set up the data rate to 1000kb use:
Bus Time 0 DEF_SPD1000_0 0x00
Bus Time 1 DEF_SPD1000_1 0x14

5-12 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

Port 0x2f8, 0x3f8 for DIP065
IRQ IGNORED
Config As described above

UnloadVXD

This function unloads the proper driver for the DIP052 and
DIP065. The DRV052.DLL can be used on Windows 95 and NT
operating system.

Function Prototype:

long UnloadVXD();

Utility functions These functions allow the user to make some simple conversion
between data types.

The first set of functions converts bytes into integers, longs or
floats by pointing to an element of the array.

unsigned short int Byte2Int (unsigned char *bData);
long Byte2Long (unsigned char *bData);
float Byte2Float (unsigned char *bData);

The second set of functions converts integers, longs or floats into
bytes. These functions return 0.

long Int2Byte (unsigned short int *Param1, unsigned char
*bData);
long Long2Byte (unsigned long *Param1, unsigned char *bData);
long Float2Byte (float *Param1, unsigned char *bData);

Error Codes All user interface functions will return status information in the form of an
unsigned long. The following are possible error codes.

E_OK 0x00 - No error detected.
E_TIMEOUT 0xffff - Timed out due to lack of response.
E_NOTCONFIG 0xfffe - DIP052 has not been configured.
E_BUSY 0xfffd - DIP052 controller not available.
E_EMPTY 0xfffc - No messages in receive queue.
E_FULL 0xfffb - Transmit queue is full.
E_PRESENT 0xfffa - DIP052 not present at specified port.
E_LENGTH 0xfff9 - length parameter incorrect.
E_PRESENT 0xfff8 - Unable to determine OS.
E_LENGTH 0xfff7 - Generic error.
E_LENGTH 0xfff5 - COM port is in used by another

device.

DRV052 Functions 5-13

DIP065 User's Manual • 13006502-1.0.1

Visual Basic
Function Prototypes The following section describes the declaration under Visual Basic.

Function Prototypes and Declaration:

Declare Function DNAllocate Lib "drv052.dll" (ByVal node As
Integer, ByVal conn As Integer, rbuf As Any) As Long

Declare Function DNFree Lib "drv052.dll" (ByVal node As
Integer, ByVal conn As Integer, rbuf As Any) As Long

Declare Function DNReset Lib "drv052.dll" (ByVal node As
Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal rlen
As Integer, rbuf As Any) As Long

Declare Function DNGetAttribute Lib "drv052.dll" (ByVal node
As Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal
attr As Integer, rbuf As Any) As Long

Declare Function DNSetAttribute Lib "drv052.dll" (ByVal node
As Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal
attr As Integer, ByVal rlen As Integer, rbuf As Any) As Long

Declare Function CANRcv Lib "drv052.dll" (radd As Integer, rlen
As Integer, rbuf As Any) As Long

Declare Function CANXmit Lib "drv052.dll" (ByVal radd As
Integer, ByVal rlen As Integer, rbuf As Any) As Long

Declare Function LoadVXD Lib "drv052.dll" (ByVal port As
Integer, ByVal Irq As Integer, config As Any) As Long

Declare Function UnloadVXD Lib "drv052.dll" () As Long

Declare Function Byte2Int Lib "drv052.dll" (xbuf As Any) As
Integer

Declare Function Byte2Long Lib "drv052.dll" (xbuf As Any) As
Long

Declare Function Byte2Float Lib "drv052.dll" (xbuf As Any) As
Single

Declare Function Int2Byte Lib "drv052.dll" (par1 As Integer, xbuf
As Any) As Long

5-14 DRV052 Functions

DIP065 User's Manual • 13006502-1.0.1

Declare Function Long2Byte Lib "drv052.dll" (par1 As Long, xbuf
As Any) As Long

Declare Function Float2Byte Lib "drv052.dll" (par1 As Single,
xbuf As Any) As Long

Chapter 6

DIP065 User's Manual • 13006502-1.0.1

Obtaining Help

Chapter Overview This chapter will focus on obtaining help with the product.

For information on See Page

Sources for Help 6-1

Sources for Help Sources for obtaining help are listed below.

! Visit the DIP Web Site at http://www.dipinc.com.
The newest updates and revisions to the software as well as the
documentation will be posted there.

! Send a request for information through e-mail to
info@dipinc.com. If the question is related to sales or
marketing, send your e-mail to sales@dipinc.com.

! Reach us by telephone at (909) 686-4211.

! Fax us at (909) 686-4122.

! Send us Postal Mail at:

DIP, Inc.
1860 Chicago Ave. Suite I-5
Riverside, CA 92507
USA

���������	
����
�

����������	
����
�
���������������������������
���������� �!�"��#�"�������$��%��
�����&���'�(�����"��$)�����*

����������	
������
�	��	
�����
�	

��������	
��
�������������

���������
�	
���
�����

������������������

��
��������
������

����������
��
�����������

�+��
"&&�����#���,&�

-

.

�&")���&����!

���������
�	��

���������	
����
�

����������	
����
�
���������������������������
���������� �!�"��#�"�������$��%��
�����&���'�(�����"��$)�����*

����������	
������
�	��	
�����
�	

��������	�
��

����������

������������	�

��
���
����

�����������	

�����������

�+��
"&&�����#���,&�

-

.

�&")���&����!

���������
����

	 ���'�(�
���
����(�$�"#���
&�����%�$���/#�0��%���	�/1�
(�$�,��"���������2����"(%�$���*

