
MasterTool Programming
Programming Manual

Ref. 6399-601.4
Issue. H 01/2005

General Conditions

iii

No part of this document may be copied or reproduced in any form without the prior written consent of ALTUS
Information Systems S.A. who reserve the right to carry out alterations without advice.

According to legislation in force in Brazil, the Consumer Defence Code, we are giving the following

information regarding personal safety and installation by the client.

• The industrial automation equipment, built by ALTUS are strong and reliable due to the

stringent quality control it is subjected to. However the electronic industrial control equipment

(programmable controllers, numerical commands, etc.) can cause damage to the machines or

processes through their controllers when there are defective components and programming or

installation errors. This can even put human lives at risk.

• The user should consider the possible consequences of the defects and should provide additional

external installations for security so that, if necessary, the security of the system can be maintained

especially during the initial installation and testing.

• It is essential to completely read the manuals and/or about the technical characteristics of the

product before it’s installation or use.

ALTUS guarantee their equipment against genuine production faults for a period of twelve months starting

from the shipping date. This guarantee is given in terms of factory maintenance, that is to say, the transportation

costs of returning to factory will be borne by the client. The guarantee will be automatically suspended where

there are modifications introduced to the equipment by personnel not authorised by ALTUS. ALTUS are

exempt from any responsibility with regard to repairs or replacement parts owing to faults created by outside

influences, through inappropriate use, as well as the result of accidents or force majeure.

ALTUS guarantees that their equipment works in accordance with the clear instructions contained in their

manuals and/or the technical characteristics, not guaranteeing the success of any particular type of application

of the equipment.

ALTUS does not acknowledge any other guarantee, direct or implied, principally when it is dealing with supply

of third parties.

Requests for additional information about the supply and/or characteristics of the equipment and ALTUS

services should be put in writing. The address for ALTUS can be found on the back cover. ALTUS is not

responsible for supplying information about their equipment without formal registration.

COPYRIGHTS

MASTERTOOL and QUARK are the registered trademarks of ALTUS Information Systems S.A.

IBM is the registered trademark of the International Business Machines Corporation.

Index

v

Index

Preface xvii

Description of this Manual ...xvii
Related Manual...xviii
Terminology..xviii
Conventions Used..xix
Conventions for Use with the Mouse...xx
Technical Support ...xxi
Issue of this Manual ..xxi

Introduction 1

Programming Language..1

Diagrams of Relays Language 1

Elements of Programming...1
ALTUS PLCs Memory Organization..2
Logics 4
Operands 5

Identifying an Operand through Address..6
Identification of an Operand through Tag ..6
Operands Used in MasterTool...7
Identification of Simple Operands ...8
Identification of Constant Operands ..9
Identification of Table Operands ...10
Operands %E - Input Relays ...10
Operands - Output Relays...11
Operands %A - Auxiliary Relays ..12
Operands %R - Addresses in the Bus ..13
Operands %M - Memories ..15
Operands %D - Decimals..16
Operands %KM and %KD - Constants ...17
Operands %TM and %TD - Tables...17
Indirect Access ...18
Declaration of Operands ...20

Index

vi

Retentive Operands...24
Instructions ..25

Restrictions as to How Much to Use Instructions in the PLC’s......................................27
Graphic Representation of Instructions..28
Description of Instructions Syntax...29
Restrictions as to Positioning of the Instructions ..30

Programming Project..32
Structure of a Programming Project ..32
Operation Status of the PLC ...39
Execution of the Programming Project...41
Elaboration of Programming Projects ..42
Depuration of Programming Projects...51
Program Execution Cycle Times ...63
Protection Levels of the PLC...65
Interlocking of Commands in the PLC...67

Router Project ..70
Building up a Router Project ...70
Router Operation States ..72

Instructions 1

List of Instructions ...1
Conventions Used ...1
Instructions of the Relays Group ...2
Instructions of the Relays Group ...4
Contacts 5
Coils 6
SLT - Jump Coil...7
PLS - Pulse Relay...9
RM, FRM - Master Relay, End of Master Relay ...10
Instructions of Group Moving ...10
MOV - Moving of Simple Operands..12
MOP - Moving of Parts (Subdivisions) of Operands..14
MOB - Moving of Blocks of Operands..17
MOT - Moving of Tables..19
MES - Moviment of Inputs/Outputs ..22
CES - Conversion of Inputs/Output...24
AES - Update Inputs/Outputs..26
CAB - Load Block..28
Arithmetic Instructions of the Group ...33
SOM - Addition..34
SUB - Subtraction ..36
MUL - Multiplication ...38
DIV - Division..39
AND - AND Binary between Operands ...41

Index

vii

OR - Or Binary between Operands..43
XOR - Or exclusive between Operands ...45
CAR - Load Operands ..47
Instructions of Comparison of Operands - Equals, More than and Less than48
Instructions of Group Counters ...52
CON - Simple Counter ...53
COB - Bidirectional Counter...55
TEE - Timer in the Powering ..57
TED - Timer in the Turning Off..59
Group Converter instructions ..61
B/D - Conversion Binary-Decimal...62
D/B - Conversion Decimal-Binary...62
A/D - Conversion Analog - Digital ..63
D/A - Conversion Digital - Analog..66
General Group Instructions ...69
LDI - Connect/Disconnect Indexed..70
TEI - Test of Indexed Status ...73
SEQ - Sequencer ..75
CHP - Procedure Module Call...82
CHF - Function Module Call ..84
ECR - Write from Operands to another PLC ...88
LTR - Reading of Operands from Another PLC ..98
LAI - Free Updating of Images of Operands ..100
Group Connection Instructions..101
LGH - Horizontal Connection ...101
LGN - Denied Connection...101
LGV - Vertical Connection ...101

Function Modules 1

F-RELOG.000 - Function to Access the Real Time Clock...4
Introduction..4
Programming..4

F-LEDS.001 - Function to Access the LEDs Module Panel...7
Introduction..7
Programming..7

F-PT100.002 - Function to read Module Pt 100..10
Introduction..10
Programming..10

F-TERM0.003 Function to Read Termopar Module..14
Introduction..14
Programming..14

F-CONTR.004 - Function to Access the Rapid Counter Module ...18
Introduction..18
Programming..18

Index

viii

F-CONT.005 - Function to Access the Fast Counting Inputs...21
Introduction ..21
Programming..21
Description of Functioning..23

F-ANLOG.006 - Function to Convert A/D or A/D Integrated..24
Introduction ..24
Programming..24

F-EVENT.017 - Function to Access the Module Register of Events26
Introduction ..26
Programming..27

F-ALNET2.032 - Function Read from Statistics of ALNET II ..40
Introduction ..40
Programming..40

F-PID.033 - PID Control Function ...46
Introduction ..46
Programming..47

F - RAIZN.034 - Square Root Function with Normalization of Scale54
Introduction ..54
Programming..54

FR-ARQ2.035 to F-ARQ31.042 - Functions Data File ..57
Introduction ..57
Programming..58

F-MOBT.043 - Function for Moving of blocks from Table Operands....................................63
Introduction ..63
Programming..63

F-STMOD.045 - Function Status of the Buses and I/O Modules ...66
Introduction ..66
Programming..66

F-RELG.048 - Function to Access the Real Time Clock..72
Introduction ..72
Programming..72

F-SINC.049 - Function to Access the Synchronized Real Time Clock76
Introduction ..76
Programming..76

F-RELOG.061 - Function to Access the Real Time Clock of QK801 and QK2000................82
Introduction ..82
Programming..82

F-ALNET1.062 - Function Interpreter of the ALNET I Protocol for QK80186
Introduction ..86
Programming..86

F-IMP.063 Function for Printing ASCII Characters...91
Introduction ..91
Programming..91

F-RECEP.064 - Function for Reception of ASCII Characters ..95

Index

ix

Introduction..95
Programming..95

F-UTR_S.068 - Function to turn on UTRs outputs ...99
Introduction..99
Programming..100

F-COMPB.070 – Function to Compare Operands Blocks..107
Introduction..107
Programming..108
Inputs and Outputs ...109

F-NORM.071 - Function for Normalization..111
Introduction..111
Programming..111

F-COMPF.072 - Function for Multiple Comparisons...114
Introduction..114
Programming..114

F-ALMLOG.075 – Function to Logic Alarms...117
Introduction..117
Programming..117
Operation ...119
Inputs and Outputs ...120

F-XMOV.088 – Module to Move the Data From the CPU to Memory Operands121
Parameters:...121
Inputs of the function..122
Outputs of the function ...122
Functioning: ...122

F-ANDT.090, F-ORT.091 and F-XORT.092 - Functions of Logic Operations between Table
Operands ..124

Introduction..124
Programming..125

F-NEGT.093 - Function for the logic denial of Table Operands ..128
Introduction..128
Programming..128

Appendix A Execution Times of the Instruction 1

Description of Execution Times..1
Relays 2
Movements ..4
Arithmetic..7
Counters 10
Conversor ..11
General 12

Appendix B Execution Times of the Function Modules 1

Index

x

Description of Execution Times ..1

Figures

xi

Figures

Figure 2-1 Logic Format ...4
Figure 2-2 Processing Order of the Logic Cells ...5
Figure 2-3 Format of a Simple Operand ..8
Figure 2-4 Format of a Constant Operand ...9
Figure 2-5 Operand Table Format ... 10
Figure 2-6 Format of Operands %E... 11
Figure 2-7 Format of operands %S.. 12
Figure 2-8 Formats of Operands %A... 13
Figure 2-9 Formats of the Operands.. 13
Figure 2-10 Formats of Operands %M .. 15
Figure 2-11 Format of Memory Operand... 15
Figure 2-12 Formats of Operands %D... 16
Figure 2-13 Format of Decimal Operand... 16
Figure 2-14 Format of Constant Operands .. 17
Figure 2-15 Format of Table Operands.. 18
Figure 2-16 Format of an Indirect Access.. 18
Figure 2-17 Format of Instructions Syntax .. 30
Figure 2-18 Format of Name of Modules in File.. 32
Figure 2-19 Parameter Passing for Module F .. 38
Figure 2-20 Operating Statuses of the PLC ... 41
Figure 2-21 Execution of Programming Project... 42
Figure 2-22 Maximum Number of Levels for Call from Modules .. 44
Figure 2-23 Recursive Call of Modules ... 44
Figure 2-24 Module Call Loop .. 45
Figure 2-25 Care in Use of Module E018 .. 47
Figure 2-26 Care in Use of Module E020 .. 48
Figure 2-27 Incoherent Situation in Logic Monitoring .. 53
Figure 2-28 Compaction of RAM Memory.. 58
Figure 2-29 Compaction of RAM Memory-2... 59
Figure 2-30 Compaction of RAM Memory-3... 59
Figure 2-31 Format of Name of Module R in file... 70
Figure 2-32 Operating Statuses of the Router .. 73
Figure 3-1 Example of SLT Instruction...7
Figure 3-2 Example of Instruction MOP ... 15

Figures

xii

Figure 3-3 Dialogue Box CAB - Values...29
Figure 3-4 Dialogue Box CAB - Editing in ASCII...30
Figure 3-5 CAB - Initialize table ..31
Figure 3-6 Example of Instructions of Comparison..49
Figure 3-7 Example of the Instructions of Comparison ..49
Figure 3-8 Incorrect Use of the Instruction CAR..50
Figure 3-9 Correct Use of the Instructions CAR...51
Figure 3-10 Diagram of Times of the Instruction TEE...58
Figure 3-11 Diagram of Times of Instruction TED ..60
Figure 3-12 Dialogue Box CHF - Input Parameters..86
Figure 3-13 Dialogue Box ECR - Parameters...90
Figure 3-14 Control Operand for Instruction ECR and LTR ..94
Figure 4-1 Layout for the Events Registers ..31
Figure 4-2 Example 1 of Use of Module F-EVENT.017...38
Figure 4-3 Example 2 of Use of Module F-EVENT.017...39
Figure 4-4 Example of Use of Module Function F-ALNET.032 ...44
Figure 4-5 Diagram of Times of Example of F-ALNET.032 ..45
Figure 4-6 Diagram in Blocks of the Function PID..47
Figure 4-7 Example of Diagram of Setting Input Times...75
Figure 4-8 Example of Diagram of Times of Input Set Maintained Synchronism.......................................79
Figure 4-9 Example of Diagram of Times of Input Setting External Pulse ...80
Figure 4-10 Example of Diagram of Input Set Times...85

Tables

xiii

Tables

Table 2-1 Shows the memory capacity of the applications program for each controller3
Table 2-2 Operands Used in MasterTool ...7
Table 2-3 Memory Capacity of the PLC’s Numeric Operands ... 20
Table 2-4 Occupied Memory and Location of Operands .. 21
Table 2-5 Maximum Quantity of Operands ... 22
Table 2-6 Maximum Quantity of Operands ... 23
Table 2-7 Maximum Quantity of Operands ... 24
Table 2-8 Non-existent Instructions in Certain PLCs .. 27
Table 2-9 Braking of Commands in the PLC (loading module) ... 68
Table 2-10 Braking of Commands in the PLC (Compacting RAM)... 69
Table 3-1 Instructions of Relays Group ...4
Table 3-2 Syntax of the Instructions RNA and RNF..5
Table 3-3 Syntax of Instructions BOB, BBL and BBD ..6
Table 3-4 Syntax Instruction SLT ...8
Table 3-5 Syntax of PLS Instruction..9
Table 3-6 Instructions of Group Movements.. 11
Table 3-7 Syntax of the Instruction MOV ... 13
Table 3-8 Syntaxes of the Instruction MOP... 16
Table 3-9 Syntax of the Instruction MOB.. 18
Table 3-10 Syntax of the Instructions MOT .. 21
Table 3-11 Syntaxes of the Instruction MES ... 23
Table 3-12 Syntaxes of the Instruction CES .. 25
Table 3-13 Syntaxes of the Instruction AES .. 27
Table 3-14 Syntax of the Instruction CAB... 32
Table 3-15 Arithmetic Instructions of the Group ... 33
Table 3-16 Syntaxes of the Instruction SOM ... 35
Table 3-17 Syntaxes of the Instruction SUB.. 37
Table 3-18 Syntax of the Instruction MUL .. 38
Table 3-19 Syntax of the Instruction DIV.. 40
Table 3-20 Point to Point Operations .. 41
Table 3-21 Syntaxes of the Instruction AND ... 42
Table 3-22 Operations Point to Point (OR).. 43
Table 3-23 Syntaxes of the Instruction OR.. 44
Table 3-24 Operations Point to Point (XOR) ... 45

Preface

Table 3-25 Syntaxes of the Instruction XOR..46
Table 3-26 Syntax of the Instruction CAR...47
Table 3-27 Syntax of the Instructions More than, Equals and Less than...51
Table 3-28 Instructions of Group Counters ..52
Table 3-29 Syntax of Instruction CON...54
Table 3-30 Syntax of the Instruction COB...56
Table 3-31 Syntax of the Instruction TEE..58
Table 3-32 Syntax of the Instruction TED ...60
Table 3-33 Group Converter Instructions...61
Table 3-34 Syntax of the Instruction B/D...62
Table 3-35 Syntax of the Instruction D/B...63
Table 3-36 Syntax of Instruction A/D..65
Table 3-37 Instruction D/A - Output in Tension ..67
Table 3-38 Instruction D/A - Output in Current...67
Table 3-39 Syntax of the Instruction D/A ..68
Table 3-40 General Group Instructions..69
Table 3-41 Syntaxes of the Instruction LDI ...72
Table 3-42 Syntaxes of the Instructions TEI ..74
Table 3-43 Syntax of the Instruction SEQ..81
Table 3-44 Syntax of CHP Instruction ...83
Table 3-45 Syntax of Instruction CHF ...87
Table 3-46 Addresses of Node and Sub-network ..89
Table 3-47 Operand for Local and Remote PLCs in ECR...92
Table 3-48 Occupation in Bytes of the Operands of the ECR ...93
Table 3-49 Example of Occupation in Bytes ..93
Table 3-50 Syntax of the Instruction ECR ...96
Table 3-51 Syntax of the LTR Instruction..98
Table 3-52 Group Connection Instructions ..101
Table 4-1 List of Function Modules Supplied through ALTUS ... 3
Table 4-2 Values read by the clock (F- RELOG.000) .. 5
Table 4-3 Linearisation and Configuration of the Modules AL - 1117 and QK 1117..................................12
Table 4-4 Values Read from Modules AL-1109 and QK1109 ..16
Table 4-5 Frequency of Counting AL-600 ...23
Table 4-6 Interface Configuration Parameters..29
Table 4-7 Declaration of the Module AL-3130 in the Bus..37
Table 4-8 Description of Values of Statistics and Parameters...43
Table 4-9 Additional Parameters of the P/D...50
Table 4-10 Occupation of the Field of the Files..60
Table 4-11 Capacity of the Functions Data Files..61
Table 4-12 Format for Storing of the Status of the I/O for the AL-2002/MSP ..67
Table 4-13 Format for storing of the I/O Status for the AL-2003 ...68
Table 4-14 Format for storing the Status of the Buses..70
Table 4-15 Values Read from the Clock (F-RELG.048) ...73
Table 4-16 Values of the Days of the Week (F-RELG.048) ..74

Tables

xv

Table 4-17 Values Read from the Clock (F-SINC.049).. 77
Table 4-18 Values of the Days of the Week (F-SINC.049)... 78
Table 4-19 Values Read from the Clock (F-RELOG.061).. 83
Table 4-20 Values of the Days of the Week (F-RELOG.061)... 84
Table 4-21 Commands Executed by Module F - ALNET1.062 .. 89
Table 4-22 Commands not executed by Module F-ALNET1.062... 90
Table 4-23 Definition of ranges... 115

Preface

xvii

Preface

Description of this Manual
This Manual gives a general description, instructions for programming, method
of operating and commands of the software programmer MasterTool
Programming. It was written assuming a familiarity with the use of standard
IBM PC® microcomputers and WindowsTM operating environment.

The software programmer MasterTool Programming MT4000 or MT4100
referred to from now on as MasterTool® was developed for programming in the
relay and blocks language of the programmable controller series ALTUS AL-
600, AL-2000, AL-3000, QUARK® and PICCOLO as well as the
configuration of the router devices AL-2400/S, AL-2401, QK2400 and
QK2401.

This manual is divided into 6 chapter and two appendixes.

Chapter 1, Introduction, present the basic characteristics of PLCs
programming and ALTUS router devices.

Chapter 2, Diagrams of Relays Language, show this language
components.

Chapter 3, Instructions, describe the function and sintaxe of all instructions.

Chapter 4, Function Modules, describe objective of ALTUS sponsored
function modules and its statement programming.

Appendix A, Instruction Execution Time, show a list of execution time of
instructions .

Appendix B, Function Modules Execution Times, has a list of execution
time of function modules .

Preface

xviii

Related Manual
For more information about the MasterTool programmer, the ALTUS series of
PLCs, the programming language and the networks ALNET I and ALNET II
we recommend the following manuals:

• User’s Manual for AL-3830

• MasterTool User’s Manual

• User’s Manual AL-600

• Use’s Manual AL-2000/MSP

• User’s Manual AL-2002/MSP

• User’s Manual AL-2003

• User’s Manual AL-3000

• User’s Manual for PLCs in the QUARK series.

• User’s Manual for PLCs in the PICCOLO series.

• User’s Manual for ALNET II

• User’s Manual for FOCOS

• Technical Characteristics

• NT-031: ALNET PROTOCOL

Terminology
In this manual the words “software”, “hardware”, “mouse”, “tag” and “wire-
info” are used freely, in general and frequently. For this reason, despite their
being English words, they appear without inverted commas.

The abbreviation MSP indicates “Multi Station Processor”, that is to say,
refers to the PLC’s capacity to carry out distributed processes in several
stations.

The name MasterTool identifies the ALTUS program for the standard IBM-
PC® microcomputer, executed in the operating environment of WindowsTM

95/98/ME (MT4000) or Windows TM NT/2000 (only MT4100 it’s compatible).
It allow applications development in the PLCs series AL-600, AL-2000, AL-
3000, QUARK, PICCOLO, Ponto Series besides AL-2400/S, AL-2401,
QK2400 and QK2401 router devices.

Preface

xix

Throughout manual this program will be referred to through the appropriate
initials or as “MasterTool programmer”.

The word “module”, when it refers to hardware, is used for denoting each of
the components of the equipment.

The word “module”, when it refers to software, is used to denote each of the
components of an applications program.

Conventions Used
The symbols used throughout this manual have the following significance:

• This mark indicates a list of items or topics

CAPITAL LETTER indicate names of keys, for example ENTER.

KEY 1 + KEY 2 is used for keys which have to be pressed simultaneously. For
example, the simultaneous pressing of keys CTRL and END is indicated by CTRL
+ END.

KEY 1 , KEY 2 is used for keys which have to be pressed sequentially. For
example, the message “Press ALT, F10” indicates that the ALT key should be
pressed and freed and then the F10 key pressed and freed.

CAPITAL LETTERS indicate file names and folder names.

Italics indicate words and characters which are keyed in on the keyboard or
viewed on screen. For example, if you are asked to key in A: MasterTool
these characters are keyed in exactly as they appear in the manual.

BOLD-FACED TYPE is used for names of commands or options, or for
emphasising important parts of the text.

Waming messages have the following format and significance.

ÂÂÂÂDANGER:
The label DANGER indicates a risk to life, serious harm to people or that
substantial material damage may happen it the necessary precautions are
not taken.

Preface

xx

ªATTENTION:
The label ATTENTION indicates a risk to life, of serious harm to people or
that substantial material damage can happen if the necessary precautions are
not taken.

WARNING:
The label WARNING indicates that harm to people or minimal material
damage can happen if the necessary precautions are not taken.

Contains important information about the product, its operation or a part of the
text which should be given special WARNING.

☺HINT:
The label HINT indicates a better way of carrying out a task.

Conventions for Use with the Mouse
Despite MasterTool only being able to be executed with the use the keyboard,
it’s execution can be achieved more efficiently with a mouse.

Some terms are used to describe the action to be executed with the mouse in
order to achieve a specific task.

Term Significance
Click Pressing the main button on the mouse. Normally the

main button is on the left, but it can be changed for
use by left-handed people through the Control
Panel of Windows, by the Configurations
command, Mouse.

Click twice or
double click

Press the button twice with a short time interval.
This time interval can be configured in the Control
Panel of Windows, by the Configurations
command, Mouse.

Drag Press the main button on the mouse, move the mouse
to the required position, keeping the button pressed
and then releasing.

Preface

xxi

Technical Support
Any questions about the product should be directed to ALTUS support service.
The address and telephone number can be found on the back cover.

Internet address:

E-Mail: altus@altus.com.br

Home page: http://www.altus.com.br

In the event of the equipment already being installed, it is advisable to provide
the following information before getting in contact:

version of MasterTool programmer, which can be obtained starting with
command Help, About MasterTool or selecting the button

information about MasterTool

information about the status of the PLC, available through the command
Communication, Status, option information about MasterTool programmer or
selecting the button

information about the PLC or router

contains the applications program, available through the command
Communication, Modules of the MasterTool programmer.

Issue of this Manual
The reference code, of the issue and the date of the current manual is indicated
on the cover. A change in the issue can mean alterations to the functional
specification or improvements to the Manual.

The information which cannot be included in this manual appears in file
README.WRI, which accompanies the MasterTool product. In order to
consult it the WindowsTM software WRITE.EXE should be used:

The following is an account of the corresponding alterations to each issue of
this Manual.

Issue A Date 01/99

First issue of the manual.

Issue B Date 08/2000

Preface

xxii

PL104 and PL105 include.
Error correction.

Issue C Date 06/02

Contents equaled with portuguese (brazilian) manual
version.

Issue H Date 01/05

Sincronization of the manuals (Portuguese and English).

Chapter 1

1

Introduction

Welcome to ALTUS language of Relays and Blocks, a language which allows
constructing application programs for ALTUS PLCs with MasterTool
Programming.

The applications program’s objective is the execution of control tasks. This
program, when loaded into the programmable controller (PLC), makes this pass
to exercise the control functions of the machine or process which is being
programmed.

Programming Language
Programmable controllers came to replace relay control panels. In this context,
a programming language which approaches it more from the experience of
technicians and engineers will be a more adequate solution for the development
of PLC’s applications programs.

In view of this, the available instructions for construction of the applications in
MasterTool are programmed in a language of relays and blocks, very similar to
language of electrical contacts and bobbins, used in the description of the relay
control panels.

The main advantage of using this type of language is its quick learnship, since
it is very much like conventional electrical outlines.

The accompaniment and verification of the functioning of on applications
program is similar to the electrical outline, with the advantage of visualising the
status of the contacts and reels in the MasterTool window.

Chapter 2

1

Diagrams of Relays Language

This chapter describes the ALTUS Relays and Blocks language. It detailing
those elements of the language, the modular structure of an applications
program and the function of each module.

After reading this chapter it will be possible to structure an applications
program as well as carry out the configuration of the PLCs and router devices.

Elements of Programming
An applications program is made up of 4 basic elements:

• Modules

• logics

• instructions

• operands

An applications program is composed of different modules, allowing a better
structure for the routines according to its functions. The modules are
programmed in the language of relays, following the global tendency for
Normalization in this area.

An applications program module is divided into programming logics. The
format of an applications program logic used in PLCs in the series AL-600,
AL-2000, AL-3000, QUARK and PICCOLO allows up to eight elements in the
series and up to four parallel routers.

The instructions are used to execute determined tasks for the environment of
readings and for alterations to the value of the operands.

Chapter 2 Language of Diagrams of Relays

2

The operands identify different types of variables and constants used in the
elaboration of an applications program, being able to have its value changed
according to the program carried out. An example of variables are points of I/O
and memory counters.

Each component element of the applications program is explained in detail in
the following sections.

ALTUS PLCs Memory Organization
The applications program is stored in the controller in an area of memory
divided into banks. There can exist one or more RAM and EPROM memory
banks, according to the model of the PLC and its memory configuration, each
bank having 16, 32 or 64 Kbytes. The EPROM memory can exist in
removable cartridge form or EPROM flash in the PLC.

In this manual, in the MasterTool help and in MasterTool programmer, the
name EPROM refers indistinctly to memory for permanent recording of the
application program used in the PLC, that is to say of type EPROM cartridge
or EPROM flash.

In the directory window of the PLC’s modules (options Communication,
Modules) it is possible to visualise the quantity of free memory in each bank,
for each type existing in the controller. C.f. Modules Option in the section
Communication Command in chapter 4.

Table 2-1 shows the memory capacity of the applications program for each
controller. In this table the EPROM flash memory (flash) was distinguished
from the EPROM cartridge (EPROM) to indicate with greater precision the
type of memory used in each PLC model, although they may be equal.

Chapter 2 Language of Diagrams of Relays

3

Controller Standard Capacity of Banks Maximum Capacity of Banks

0 1 2 3 0 1 2 3

AL-600 flash - - - - 32K 32K 32K 32K

RAM 16K - - - 16K 32K 32K 32K

AL-3003 EPROM 32K - - - 32K 32K - -

RAM 32K - - - 32K 32K - -

AL-3004 EPROM 16K - - - 32K - - -

RAM 16K - - - 16K - - -

AL-2000/MSP flash 32K 32K - - 32K 32K 32K 32K

RAM 32K - - - 32K 32K 32K 32K

AL-2002/MSP flash 32K 32K - - 32K 32K 32K 32K

RAM 32K - - - 32K 32K 32K 32K

AL-2003 flash 16 banks of 64 Kbytes 16 banks of 64 Kbytes

RAM 64K 64K - - 64K 64K - -

PL101, PL102, flash - - - - - - - -

PL103 RAM 16K - - - - - - -

PL104, PL105 flash 32K - - - 32K - - -

RAM 32K 32K - - 32K 32K - -

QK600 flash - - - - 32K 32K 32K 32K

RAM 16K - - - 16K 32K 32K 32K

QK800 flash 32K - - - - - - -

RAM 32K - - - - - - -

QK801 flash 32K 32K - - 32K 32K 32K 32K

RAM 32K - - - 32K 32K 32K 32K

QK2000 flash 32K 32K - - 32K 32K 32K 32K

RAM 32K - - - 32K 32K 32K 32K

Table 2-1 shows the memory capacity of the applications program for each controller

The values of the numeric operands (% M, %D, %TM and %TD) are stored in
a separate area of the program, with different sizes according to the model of
PLC. The amount of operands memory free can be checked in the editing
window of module C in the operands panel. For further information about the

Chapter 2 Language of Diagrams of Relays

4

Editing Window of module C, c.f. section Editing Windows, in chapter 3 of
the User’s Manual.

The binary operands (%E, %S and %A) have area permanently reserved for
their values in the internal memory of the microprocessor.

The use of memory operands is shown in detail in the section Declaration of
Operands, in the same chapter.

For further information about the capacities and memory organization of each
controller, consult their respective Users Manuals (c.f. section Related
Manuals, in the preface of this manual).

Logics
The word logic refers to a programming matrix made up of 32 cells (matrix
elements arranged in four lines 0 to (3 to 8) columns (0 to 7). Instructions can
be placed in each one of these cells, being possible to program up to 32
instructions in the same logic.

Each logic present to the program, simulates a short part of a real diagram of
relays. Figure 2-1 shows the format of an applications program logic.

Figure 2-1 Logic Format

Chapter 2 Language of Diagrams of Relays

5

The two lateral lines of the logic represent energy bars between the instructions
placed for execution. Symbolic instructions usually found in diagrams are
available for programming, such as contracts, coils, connections and
instructions shown in boxes as timers, counters and arithmetics.

The logic should be programmed in a format which reel and inputs of
instructions from boxes may be “powered” starting from the closure of a flow
of “current” from the left to the right between the two bars, through the
contacts or from the outputs of interconnected boxes. However, the flow of
“electrical current” simulated in a logic flows only in the sense of from an
energy bar on the left to the right, different from the real electrical outlines. The
concept used simplifies very much the logic project of relays, once that is not
necessary to be concerned with the escape paths of current.

The processing of the instructions of a logic carried out in columns, from
column 0 to 7. One column is processed in the sequential order of its lines,
from line 0 to line 3. Figure 2-2 shows the processing order of the logic cells.
The number existing in each cell indicates its order in the processing.

Figure 2-2 Processing Order of the Logic Cells

Operands
Operands are elements used for MasterTool instructions in the elaboration of
an applications program.

The operands can define constant values, defined at the time of programming,
or variables, identified through an address or tag, with values able to be
changed during the execution of an applications program.

Chapter 2 Language of Diagrams of Relays

6

Identifying an Operand through Address

The identification and use of an operand through its address is characterised
through character % as first character of the name. The rest of the name used
should follow the rules for forming the addresses of operands.

The format of each operand can be seen in the section Identification of
Simple Operands and in the subsequent sections, in this same chapter.

Identification of an Operand through Tag

The identification and use of an operand through its tag is characterised
through use of a name, with up to 7 characters (alphanumeric), which can be
attributed to any operand, except constants. This name passes to represent the
operand in the processes of programming, monitoring, purifying and
documentation of an applications program.

MasterTool does not allow the use of TAGs for operands of the type constant
(%KM or %KD).

E.g.:
Attribute the tag CONT1 to the operand %M0000. Always when the
operand %M000 reeds to be used in the editing of the applications
program, it can use its tag CONT1.

☺HINT:
The choice of name tag for the operand should reflect at the most the function
which the contents of the operand executes in the applications program.
E.g.: TANK 1, stores the volume of tank 1.

The identification of an operand through its address can always be done, once
the whole operand has an address. The identification of an operand through its
tag, can only be achieved after attributing the tag to an operand.

The attributing of tags to operands can be achieved through the command
Operands from the menu Report or directly at the time of programming. In the
second case, to fill in the name of an instruction operand with a non-existent
tag, indicates the non-existence of a tag definition, and asks which type of
operand the tag should be created for.

Chapter 2 Language of Diagrams of Relays

7

For further information about creating and attributing tags to operands, c.f.
sections about the command Report, Operands, in chapter 4 and Inserting
Tags and Comments for Operands in chapter 5 of MasterTool User’s
Manual.

The operands can also be visualised through their associated wire-info,
However, an operand cannot be forced or monitored by keying in the wire-info
instead of the tag or address.

Operands Used in MasterTool

The operand available in MasterTool are shown in table 2-2:

Type Operand

%E Input Relays

%S Output Relays

%R Bus Address

%A Auxiliary Relays

%M Memories

%D Decimals

%KM Memory Constants

%KD Decimal Constants

%TM Memory Tables

%TD Decimal Tables

Table 2-2 Operands Used in MasterTool

The operands are divided into 3 groups:

• simple operands

• constant operands

• table operands

Chapter 2 Language of Diagrams of Relays

8

Identification of Simple Operands

The simple operands are used with variables of storing the values in the
applications programs. According to the instruction which they use, they can be
referenced in full or in a subdivision (one part of the operand). The
subdivisions of operands can be word, octet, nibble or point.

The general format of a simple operand can be seen in figure 2-3.

Figure 2-3 Format of a Simple Operand

Operand type:

• %I - input

• %O - output

• %A - auxiliary

• %R - bus address

• %M - memory

• %D - decimal

Subdivision type

• . - point of box word

• h - point of high word

• n - nibble (4 points)

• b - octet (8 points)

• w - word (16 points)

Chapter 2 Language of Diagrams of Relays

9

Examples of addresses:

• % E0002.3 - point 3 of input operand 2

• %S0004.7 - point 7 of output operand 4

• %A0039n I - nibble I of auxiliary operand 39

• %A0045 - auxiliary octet 45

• %M0205 - memory operand 205

• %M020560 - octet 0 of memory 205

• %D0029 - decimal operand 29

• %D0034wl - word I of decimal operand 34

Examples of tags:

• FORNO

• LIMSUP

• CHAVE1

Identification of Constant Operands

The constant operands are used to define the fixed values during the editing of
an applications program.

The general format of a constant operand can be seen in figure 2-4.

Figure 2-4 Format of a Constant Operand

Constant type:

• %M memory

• %D decimal

Examples:

Chapter 2 Language of Diagrams of Relays

10

• %KM+05172 - positive constant memory

• %KD-0974231 - constant negative decimal

Identification of Table Operands

Tables of Operands are groups of simple operands set out in one dimensional
arrays. Indices are used to determine the position of the table is required to be
read or altered. Memory or decimal operand tables are possible.

The general format of an operand table can be seen in figure 2-5.

Figure 2-5 Operand Table Format

Table type:

• % TM memory

• % TD decimal

Examples:

• % TM0026 - memory table 26

• % D0015 - decimal table 15

Operands %E - Input Relays

Operands are used to reference points of digital modules of input. Their
quantity is determined through the number of I/O modules which are arranged
behind the scenes of the system. C.f. item Configuring the Bus in the section
Configuring the Module C in chapter 5 of the MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

11

The operands %E are normally used in binary instructions (contacts, reels) and
for movement. They use up one byte of memory (8 bits), storing the values of
the points directly in each bit. The values of the operands are stored in the
internal memory of the microprocessor, not using the space available in the
applications program.

The formats of the operands %E can be seen in figure 2-6.

Figure 2-6 Format of Operands %E

Examples:

• % E0018.6 - point 6 of the input octet 18

• % E0021n0 - nibble 0 of the input octet 21

• % E0025 - input octet 25

Operands - Output Relays

Operands are used to reference points of digital modules of output. Their
quantity is determined through the number of I/O modules which are arranged
behind the scenes in the system. C.f. item Configuring the Bus in the section
Configuring the Module C in chapter 5 of the MasterTool User’s Manual.

The operands % are used in binary instructions (contacts, reels) and for
movement. They use up one byte of memory (8 bits), storing the values of the
points directly in each bit. The values of the operands are stored in the internal
memory of the microprocessor, not using the available space of the applications
program.

Chapter 2 Language of Diagrams of Relays

12

The format of the operands can be seen in figure 2-7.

Figure 2-7 Format of operands %S

Examples:

• %S0011.2 - point 2 of output octet 11

• %S0010n1 - nibble 1 of output octet 10

• %S0015 - output octet 15

Operands %A - Auxiliary Relays

The auxiliary relays are operands used to store and manipulate the intermediate
binary values in the processing of the applications program. Their quantity in
the controllers is fixed (c.f. section Declaration of the Operands in this
same chapter).

Operands %A are used in binary instructions (contacts, reels) and for
movement. They use up one byte of memory (8 bits), storing values directly in
each bit. The values of the operands are stored in the internal memory of the
microprocessor, not using the space available to the applications program.

Chapter 2 Language of Diagrams of Relays

13

The formats of the Operands %A can be seen in figure 2-8.

Figure 2-8 Formats of Operands %A

Examples:

• %A0032.7 - point 7 of auxiliary output 32

• %A0087n1 - nibble 1 of auxiliary output 87

• %A0024 - auxiliary octet 24

Operands %R - Addresses in the Bus

Operands are used to reference points or octets in the bus of the input and
output modules of the controller. These operands represent only addresses of
the bus, not storing values not even occupying memory space. They are used in
same instructions or functions which access the modules.

The formats of the operands %R can be seen in figure 2-9.

Figure 2-9 Formats of the Operands

Chapter 2 Language of Diagrams of Relays

14

In the PLCs AL-3003, AL-3004 and the buses 0 and 1 of AL-2002/MSP
and of AL-2003, each position in the bus corresponds to 8 octets of operands
%R. In this way, in position 0 has the operands %R0000 to %R0007, in
position 1, %R0008 to %R0015, and so on.

To obtain the first operand from the determined position of the bus, simply
calculate:

Octet Address = Position in the Bus X 8

In the PLCs PL101, PL102 and PL103, each position in the bus
corresponding to the 4 octets of the operands %R. In this way, position 0 has
the operands %R0000 to %R0003; in position 1, %R0004 and %R0007, and
so on.

In order to obtain the first operand from the position determined in the bus, stop
to calculate:

Octet Address = Position in Bus X 4

In the PLCs AL-600, AL-2000/MSP, QK800, QK801, QK2000/MSP and in
the buses from 2 to 9 of the AL-2002/MSP and of the
AL-2003, each position in the bus corresponds to 2 octets of %R operands. In
this way, position 0 has the operands %R0000 and %R0001; in position 1,
%R0002 and %R0003 and so on.

In order to obtain the first operand of the position determined in the bus stop to
calculate:

Octet Address = Position in Bus X 2

The addresses for each position of the bus are automatically shown in the
window of the declaration of the bus in column Addresses (c.f. item
Configuring the Bus in the section Configuring Module C in chapter 5
of the MasterTool User’s Manual.

Examples:

• %R0026 - octet 26 of the bus

• %R0015.7 - point 7 of octet 15 of the bus

Chapter 2 Language of Diagrams of Relays

15

Operands %M - Memories

The operands %M are used for numerical processing, storing values in simple
precision, with signal.

The formats of the operands %M can be seen in figure 2-10.

Figure 2-10 Formats of Operands %M

The quantity of memory operands is configurable in the declaration of the
module C, being the maximum limit depending on the PLC model in use (c.f.
section Declaration of Operands in the same chapter).

The operands %M are used in instructions of movement, comparison,
arithmetic, counting, timing and conversion. They can be used in contacts, for
the same form as the operands %E, %S and %A. These operands use up two
bytes of memory (16 bits) storing the value in in two complement from (2)
according to figure 2-11.

Figure 2-11 Format of Memory Operand

Examples:

• %M0032 - memory 32

• %M0072n1 - nibble 1 of memory 72

• %M0084.F - point 15 of memory 84

Chapter 2 Language of Diagrams of Relays

16

Operands %D - Decimals

The operands %D are used for numerical processing, storing values in BCD
format with up to 7 digits and signal.

The formats of the operands %D can be seen in figure 2-12.

Figure 2-12 Formats of Operands %D

The quantity of decimal operands is configurable in the declaration of module
C, being the maximum limit depending on the PLC model being used (c.f.
section Declaration of Operands in the same chapter).

The operands %D are used in instructions of movement, comparison, arithmetic
and conversion. They can be used in contacts, in the same form as the operands
%E, %S and %A. These operands use up four bytes of memory (32 bits),
storing the value in the format BCD (each digit occupies 4 bits), with signal,
according to figure 2-13.

Figure 2-13 Format of Decimal Operand

Chapter 2 Language of Diagrams of Relays

17

Examples:

• %D0041 - decimal 41

• %D0023b2 - octet 2 of the decimal 23

• %D0059n - nibble 6 of the memory 59

• %D0172hA - point 10 of the word 1 of the memory 172

Operands %KM and %KD - Constants

Operands are used to define the fixed values in the elaboration of the
applications program. These are two types of constant, %KM and KD, each
one following a different format from the representation of values, being
identical to the operands %M and %D, respectively.

The format of the constant operands can be seen in figure 2-14.

Figure 2-14 Format of Constant Operands

These operands are used for instructions of movement, comparison, arithmetic,
counting and timing.

Examples:

• %KM+00241 - memory constant + 241

• %KD-0019372- decimal constant - 19.372

Operands %TM and %TD - Tables

Tables of operands are grouped with simple operands, made up of one-
dimensional arrays with the objective of storing numerical values. Each table
has a number of configurable positions, where each position can count exactly
the same values of an operand %M or %D if the table was of type %TM or
%TD, respectively.

Chapter 2 Language of Diagrams of Relays

18

The format of the table operands can be seen in figure 2-15.

Figure 2-15 Format of Table Operands

The quantity of tables and the number of positions of each one is configurable
in the declaration of module C. They can be defined in up to 255 tables in total
and up to the maximum of 255 positions in each table, respecting the limit of
the memory of the operands of the PLC.

The tables are used in instructions of movement.

Indirect Access

This form of access is used in conjunction with a memory operand %M to
reference other operands in the system indirectly.

The sign *, placed in front of a type of operand, indicates that it is referenced
through the address contained in the specific memory to the left of the sign.

The format of indirect access can be seen in figure 2-16.

Figure 2-16 Format of an Indirect Access

In MasterTool, the indirect access to the tables is shown with the asterisk.

Chapter 2 Language of Diagrams of Relays

19

The indirect access is used in instructions of movement, comparison, counting
and timing.

Example:

• %M0043*E - input octet referenced indirectly through memory 43

• %M1824*A - auxiliary octet referenced indirectly through memory 1824

• %M0371TD - table of decimals referenced indirectly through memory 371

• %M0009*M - memory operand referenced indirectly through memory 9

Example:

This instruction moves the value +431 to the memory operand whose address is
the value correctly stored in %M0009. If %M0009 contains the value 32, then
the value +431 may be stored in %M0032. If %M0009 contains the value 12
then the constant value will be stored in %M0012.

WARNING:
It is the responsibility of the applications program that the value contained in
the reference memory (%M0009, in the example) represents valid addresses,
not containing negative values or above of the existing addresses for that type
of operand referenced indirectly. The instructions do not carry out invalid
indirect access, normally having an output sign to indicate an error.

If in the program of the previous example there were 256 operands %M to be
declared, the value of %M0009 should be between 0 and 255 so that the
instruction will be executed correctly. If the value is not in this band, access
will not be achieved.

Chapter 2 Language of Diagrams of Relays

20

Declaration of Operands

The operands %E, %S and %A occupy their own memory areas permanently
reserved in the PLC’s microprocessor. The number of these operands in the
controllers, therefore is constant.

The operands %R do not use up memory space, only being addresses to access
the buses.

To represent fixed values, the constant operands (%KM and %KD) also do not
occupy memory space, being stored in their own applications program in the at
the programming stage. There are no limits to the number of constant operands
used in the program.

It can declare the number of operands %M, %D, %TM and %TD, these
occupying their own area of RAM memory in the CPU being used. The table 2-
3 shows the maximum capacity of memory for the storage of these operands in
each controller. The operands %E, %S and %A do not occupy this area.

Controller Operands Memory
%M, %D, %TM and %TD

AL-600 8 Kbytes

AL-3003 11,5 Kbytes

AL-3004 11,5 Kbytes

AL-2000/MSP 15,5 Kbytes

AL-2002/MSP 15,5 Kbytes

AL-2003 48 Kbytes

QK600 8 Kbytes

QK800 15,5 Kbytes

QK801 15,5 Kbytes

QK2000 15,5 Kbytes

PL101 11,5 Kbytes

PL102 11,5 Kbytes

PL103 11,5 Kbytes

PL104 , PL105 15,5 Kbytes

Table 2-3 Memory Capacity of the PLC’s Numeric Operands

Chapter 2 Language of Diagrams of Relays

21

The declaration of the operands is carried out through the editing window of
module C of MasterTool, being stored in module C. The number of operands
declared should be tailored to the maximum capacity of the available memory.
C.f. items Configuring Simple Operands, Configuring Table
Operands and Configuring Retentive Operands in the section
Configuring Module C in chapter 5 of the MasterTool User’s Manual.

The reserve of the operands %M and %D is carried out in blocks of 256 bytes.
In the case of memory operands, this quantity corresponds to 128 operands. In
decimal operands, corresponds to 64 operands.

The operands %TM and %TD are declared finding out the number of tables
necessary for each type and the number of positions which each table contains.
It is possible to define up to 255 tables in total and up to 255 positions for each
table, respecting the limit of RAM memory of the operands.

Table 2-4 shows the memory space used up for each type of operands and
where its values are stored.

Operand Memory Occupied Location

%E - input 1 byte Microprocessor

%S - output 1 byte Microprocessor

%A - auxiliary 1 byte Microprocessor

%R - bus - -

%KM - constant M - -

%KD - constant D - -

%M - memory 2 bytes RAM of operands

%D - decimal 4 bytes RAM of operands

%TM - table M 2 bytes per position RAM of operands

%TD - table D 4 bytes per position RAM of operands

Table 2-4 Occupied Memory and Location of Operands

Chapter 2 Language of Diagrams of Relays

22

The tables 2-5, 2-6 and 2-7 show the number of octets for the ALTUS PLCs
include inputs and output simultaneously, according to the configuration of the
input and output modules used in the bus. Therefore, the sum of the number of
the operands %E with %S should be smaller or equal to this limit.

Operand AL-600 and
QK600

AL-3003 AL-3004 AL-2000

%I
input

%E0000 to
%E0031

%E0000 to
%E0063

%E0000 to
%E0005

%E0000 to
%E0063

%S
output

%S0000 to
%S 0031

%S0000 to
%S0063

%S0006 to
%S0009

%S0000 to
%S0063

%A
auxiliary

%A0000 to
%A0095

%A0000 to
%A0095

%A0000 to
%A0095

%A0000 to
%A0095

%R
bus

%R0000 to
%R0031

%R0000 to
%R0127

%R0000 to
%R0127

%R0000 to
%R0063

%M
memory

%M0000 to
%M4095

%M0000 to
%M5887

%M0000 to
%M5887

%M0000 to
%M7935

%D
decimal

%D0000 to
%D2047

%D0000 to
%D2943

%D0000 to
%D2943

%D0000 to
%D3967

%TM
memory
table

4096
total positions

5888
total positions

5888
total positions

7936
total positions

%TD
decimal
table

2048
total positions

2944
total positions

2944
total positions

3968
total positions

Table 2-5 Maximum Quantity of Operands

Chapter 2 Language of Diagrams of Relays

23

Operand AL-2002 AL-2003 PL101 PL102

%I
input

%E0000 to
%E0063

%E0000 to
%E0255

%E0000 to
%E0063

%E0000 to
%E0063

%S
output

%S0000 to
%S0063

%S0000 to
%S0255

%S0000 to
%S0063

%S0000 to
%S0063

%A
auxiliary

%A0000 to
%A0095

%A0000 to
%A0511

%A0000 to
%A0095

%A0000 to
%A0095

%R
bus

%R0000 to
%R0511

%R0000 to
%R0511

%R0000 to
%R0063

%R0000 to
%R0063

%M
memory

%M0000 to
%M7935

%M0000 to
%M9984

%M0000 to
%M4095

%M0000 to
%M4095

%D
decimal

%D0000 to
%D3967

%D0000 to
%D9984

%D0000 to
%D2047

%D0000 to
%D2047

%TM
memory table

7936
total position

9999
total position

4096
total position

4096
total position

%TD
decimal table

3968
total position

9999
total position

2048
total position

2048
total position

Table 2-6 Maximum Quantity of Operands

Chapter 2 Language of Diagrams of Relays

24

Operand PL103 PL104
PL105

QK800 QK801

QK2000

%I
input

%E0000 to
%E0063

%E0000 to
%E0063

%E0000 to
%E0031

%E0000 to
%E0063

%S
output

%S0000 to
%S0063

%S0000 to
%S0063

%S0000 to
%S0031

%S0000 to
%S0063

%A
auxiliary

%A0000 to
%A0095

%A0000 to
%A0095

%A0000 to
%A0095

%A0000 to
%A0095

%R
bus

%R0000 to
%R0063

%R0000 to
%R0063

%R0000 to
%R0031

%R0000 to
%R0063

%M
memory

%M0000 to
%M4095

%M0000 to
%M7935

%M0000 to
%M7935

%M0000 to
%M7935

%D
decimal

%D0000 to
%D2047

%D0000 to
%D3967

%D0000 to
%D3967

%D0000 to
%D3967

%TM
 memory table

4096
total position

7936
total position

7936
total position

7936
total position

%TD
decimal table

2048
total position

3968
total position

3968
total position1

3968
total position

Table 2-7 Maximum Quantity of Operands

The table still specifies the maximum possible number of operands %M, %D,
%TM and %TD with the operands memory used totally for each type, with the
declaration of the rest. If two or more different types of operands in an
applications program are to be declared, the maximum possible number for
each type will be different from the values presented.

Retentive Operands

Retentive Operands are operands which have their values preserved when the
CPU is turned OFF (disconnected). The operands not retentive have their value
zeroed at the moment the programmable controller is disconnected.

All the table operands are always retentive . It is possible to configure the
number of operands %M (memory), %D (decimal), %O (output) and %A
(auxiliary) retentive .

Chapter 2 Language of Diagrams of Relays

25

The retentive operands are configured starting from the last addresses up to the
first, obeying the same rule as simple operands. That is to say, the reserve is
carried out in blocks of 256 for numeric operands. The declaration of the
operands %S and %A is carried out octet to octet.

For example, there are 512 operands %M declared (%M0000 to %M0511),
and it is required that 128 of these operands are retentive , the operands
%M0384 to %M0511 are considered retentive .

C.f. item Configuring Retentive Operands in the section Configuring
Module C in chapter 5 of the MasterTool User’s Manual.

Instructions
The ALTUS PLCs use the language of relays and blocks to elaborate the
applications program, whose main advantage, beyond and its graphic
representation is to be similar to the conventional diagrams of relays.

The programming of this language, carried out through. MasterTool, uses a
group of powerful instructions in chapter 3 Reference of Instructions, in
this manual.

MasterTool instructions can be divided into 7 groups:

• RELAYS containing the instructions:

• RNA contact open normally
• RNF contact closed normally
• BOB simple reels
• BBL reel connected
• BBD reel disconnected
• SLT reel jump
• PLS pulse relay
• RM master relay
• FRM end of master relay

• MOVEMENTS containing the instructions:

• MOV moving of simple operands
• MOP moving of parts of operands
• MOB moving of blocks of operands
• MOT moving of tables of operands
• MES moving of inputs and outputs
• CES conversion of inputs and outputs
• AES updating of inputs or outputs

Chapter 2 Language of Diagrams of Relays

26

• CAB load block of constants

• ARITHMETICS containing the instructions:

• SOM SUM
• SUB subtraction
• MUL multiplication
• DIV division
• AND function “and” binary between operands
• OR function “or” binary between operands
• XOR function “or” exclusive “binary between operands”
• CAR load operand
• = equals
• < less than
• > more than

• COUNTERS containing the instructions:

• CON simple counter
• COB bidirectional counter
• TEE timer for turning on
• TED timer for turning off

• CONVERTORS containing the instructions:

• B/D conversion binary - decimal
• D/B conversion decimal - binary
• A/D conversion analog - digital
• D/A conversion digital - analogue

• GENERAL containing the instructions:

• LDI connect or disconnect the indexed points
• TEI test the status of indexed points
• SEQ sequencer
• CHP call procedure module
• CHF call function module
• ECR write from operands in other PLC
• LTR read from operands in other PLC
• LAI read updating of image of operands

• CONNECTIONS containing the instructions:

• LGH horizontal connection
• LGV vertical connection
• LGN denied connection

Chapter 2 Language of Diagrams of Relays

27

Restrictions as to How Much to Use
Instructions in the PLC’s

The language of relays and blocks is perfectly compatible between the PLCs
programmed through MasterTool. Due to the characteristics of functioning,
nevertheless, some instructions are not available in all the controllers. Table 2-8
shows the instructions and the controllers in which they cannot be used.

- indicates that the PLC has the instructions

- indicates that the PLC does not have the instructions

UCPs

Instruction

AL-600 AL-3003,
AL-3004

QK600,
QK800,
QK801

PL101,
PL102,
PL103,
PL104,
PL105

AL-2000,
AL-2002,
AL-2003,
QK2000

CES

A/D

D/A

ECR

LTR

LAI

Table 2-8 Non-existent Instructions in Certain PLCs

MasterTool does not permit an instructions which cannot be executed in the
PLC for which it is configured to be inserted in the applications program.

WARNING:
On editing an applications program module, the type of CPU declared in the
item CPU Model in the editing windows of module C should be from the
CPU where the program was executed.

Chapter 2 Language of Diagrams of Relays

28

WARNING:
If is required to change the type of CPU for another, after the program to be
edited, you should search and remove the instructions which cannot be used in
the new type of CPU. This procedure should be carried out in all the program
modules.

Graphic Representation of Instructions

The following figures show the maximum configurations of input and outputs
in each type, not being necessary all used in a certain instruction.

Instructions with a cell

Instructions with two cells

Chapter 2 Language of Diagrams of Relays

29

Instructions with three cells

Instructions with four cells

Instruction with six cells

Description of Instructions Syntax

The description of the possible operands to be programmed in the cells of each
instruction is carried out in accordance with the format shown in figure 2-17.

Chapter 2 Language of Diagrams of Relays

30

Figure 2-17 Format of Instructions Syntax

Various different combinations of operands can be specified for the same
instruction

Example:

This syntax declaration shows that, like the first operand, % M or % D can be
used. If the first operand is % M, the second can only be % KM, % M or %
M*M (accessed indirectly in memory). If the first is % D, the second can only
be % KD, % D or % M*D (accessed indirectly in decimal).

Restrictions as to Positioning of the Instructions

There are rules to be respected as to the positioning of the instructions in the 8
logic columns. The instructions can be divided into three categories:

• Instructions which can be edited only in column 7:

• BOB simple reel
• BBL connected reel
• BBD disconnected reel
• SLT jump reel
• RM master relay
• FRM end of Master relay

Chapter 2 Language of Diagrams of Relays

31

Instructions which can be edited in columns 0 to 6:
• RNA relay open normally
• RNF relay closed normally
• PLS relay pulse
• LGH horizontal connection
• LGV vertical connection
• LGN denied connection
• DIV division
• MOB moving of blocks of operands
• > more than
• < less than
• = equals
• SEQ sequencer
• CHF call function module
• ECR write from operands into other PLC
• LTR read from operands into other PLC

• Instructions which can be edited in all the columns:

• MOV moving of simple operands
• MOP moving of parts of operands
• MOT moving of table of operands
• MES moving of inputs or outputs
• CES conversion of inputs of outputs
• AES updating of inputs or outputs
• CAB load block of constants
• SOM sum
• SUB subtraction
• MUL multiplication
• AND function “and” binary between operands
• OR function “or” binary between operands
• XOR function “or exclusive” binary between operands
• CON simple counter
• COB bidirectional counter
• TEE timer for turning on
• TED timer for turning off
• B/D binary conversion - decimal
• D/B decimal conversion - binary
• CAR load operand
• LDI connect or disconnect indexed points
• TEI status test for indexed points
• CHP call procedure module
• LAI free updating of image
• A/D analog conversion - digital
• D/A digital conversion - analogue

Chapter 2 Language of Diagrams of Relays

32

Programming Project

Structure of a Programming Project

Functionally, a programming project, can be seen as a collection of modules
used to carry out a specific task, also known as an applications program. This
allows a hierarchical view of the project with the creation of sub-routines and
functions.

The modules are called for execution through executive software (operating
system of the PLC). or for other modules, through appropriate instructions.
When stored on disk, the programming project corresponds to a group of files,
where each file contains a module, named as shown in figure 2-18.

Figure 2-18 Format of Name of Modules in File

Example: F-PID. 033

In some places in this manual and in the Help the program modules are
referenced only through their type and number, when it is not relevant to use
their name.

Example: E018

WARNING:
The file name corresponds to a program module which should not be changed
through another application of Windows TM. To change the name of a file, it
should be read and saved with the name required through MasterTool. C.f.
section Saving a Module with Another Name in chapter 5 of the
MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

33

If the files name is modified through another WindowsTM application, it can be
given an name invalid for it, not being able any more to be read to MasterTool
or loaded into the PLC.

There are 4 types of modules which can do part of a programming project:

• Module C (Configuration): there is a configuration module for the
project, containing the configuration parameters of the PLC (C000).

• Module E (Execution): there can be up to 4 execution modules for the
project. They are only called through the operating system of the PLC
(E000, E001, E018 and E020).

• Module P (Procedure): there can be up to 112 procedure modules per
project. They contain passages of the applications program being called
through instructions placed in execution modules, procedure or function.
After they are executed, the returns to the following instruction of the call.
The modules P act as sub-routines not allowing parameter passing for the
module called (P000 to P111).

• Module F (Function): there can be up to 112 function modules per
project. They contain passages of the applications program written in
generic form, allowing parameter passing to the module called, in this way
they can be reapproved in various different applications programs. They
are similar to instructions, being able to be called for, modules of
execution, procedure or function. (F000 to F111).

Module C - Configuration

Module C contains the configuration parameters of the PLC. Its creation is a
pre-requisite for editing the rest of the MasterTool programming project
modules. The definition of the parameters contained in module C is carried out
through the editing window of module C. For further details regarding how to
configure in module C, c.f. section Configuring Module C in chapter 5 of
the MasterTool User’s Manual.

There is only one module C per programming project, having as its own name
the name of the project and the number 000.

Contents of a module C:

• Declaration of the Bus of I/O modules: specifies the configuration of
the I/O modules to be used in the programmable controller, indicating the
distribution of these modules and special modules in the PLC’s bus. The
declaration of the modules defines, in this way, the number of points and
the I/O addresses to be used in applications program. The declaration takes
place in the editing window of module C. For further information about
how to configure the bus, c.f. the item Configuring the Bus in the

Chapter 2 Language of Diagrams of Relays

34

section Configuring Module C in chapter 5 of the MasterTool User’s
Manual.

• Declaration of Operands: specifies the number of simple operands and
tables of operands which are used in the programming project, within each
available type. It also allows the definition of the retainability of the
operands, that is to say, which operands can keep their contents even with a
power cut.

• Declaration of Simple Operands: allows the definition of the

number of Memory operands (%M) and Decimal (%D). It takes place
in the editing window of module C. For more information regarding
how to declare simple operands, c.f. the item Configuring Simple
Operands in the section Configuring Module C in chapter 5 of
the MasterTool User’s Manual.

• Declaration of Table Operands: allows the definition of the
number of tables of Memory operands (%TM) and of Decimal
operands (%TD) and of the number of positions in each one. One
table shows a group of operands, being defined in the editing window
of Module C. For further information about how to configure table
operands, c.f. the item Configuring Table Operands in the section
Configuring Module C in chapter 5 of the MasterTool User’s
Manual.

• Declaration of Retentive Operands: specifies the number of
simple operands which are retentive , within the operands already
declared. Retentive operands are those which continue with their
contents unchanged through a power cut, those not being retentive are
zeroed when the system restarts. The table operands are all retentive .
The declaration is made in the editing window of Module C. For more
information regarding how to configure retentive operands, c.f. the
item Configuring Retentive Operands in the section
Configuring Retentive Operands in chapter 5 of the MasterTool
User’s Manual.

• Declaration of the General Parameters of the CPU: there are
generic parameters necessary for the functioning of the programmable
controller, such as the type of CPU in which the applications program will
be loaded, the period of calling the activated modules for interruption and
the maximum time of the scan cycle. These parameters are declared in the
editing window of Module C. For more information about how to configure
the general parameters, c.f. section Configuring Module C in chapter 5
of the MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

35

• Declaration of the Parameters of the ALNET I Network:
specifies the parameters necessary for the functioning of communication in
ALNET I. These parameters are configured in the editing window of
Module C. For further information regarding how to configure parameters
of ALNET I, c.f. item Configuring Parameters of the ALNET I
Network in the section Configuring Module C in chapter 5 of the
MasterTool User’s Manual.

• Declaration of the Parameters of the ALNET II Network:
specifies the parameters necessary for the functioning of communication in
ALNET II, for the programmable controllers which allow its use. These
parameters are configured in the editing window of Module C. For further
information about how to configure parameters of ALNET II c.f. item
Configuring Parameters of the ALNET II network in the section
Configuring Module C in chapter 5 of the MasterTool User’s Manual.

• Declaration of the Parameters of the Ethernet Network: specifies
the various parameters necessary for the functioning of communication in
Ethernet, for the programmable controllers which allow its use. These
parameters are configured in the editing window of Module C. For further
information regarding how to configure parameters of Ethernet, c.f. item
Configuring Parameters of the Ethernet Network in the section
Configuring Module C in chapter 5 of the MasterTool User’s Manual.

• Declaration of the Parameters of the Synchronism Network:
specifies the various parameters necessary for the functioning of
communication with the synchronism network, for the programmable
controllers which allow its use. These parameters are configured in the
editing window of Module C. For more information regarding how to
configure parameters for the synchronism network, c.f. item Configuring
parameters of the Synchronism Network in the section
Configuring Module C in chapter 5 of the MasterTool User’s Manual.

Module E - Execution

The modules E contain passages of the applications program, being called for
execution through executive software. These are different Modules E, differing
from each other through the way they are called for execution, according to
their number.

Types of Modules:

Chapter 2 Language of Diagrams of Relays

36

• E000 - Initialization Module: is executed once, when the PLC is
turned on or in the passage of programming mode for execution with
MasterTool, before the cyclical execution of Module E001.

• E001 - Sequential Module of Applications Program: contains the
main passage of the applications program, being executed cyclically.

• E018 - Module Actioned for Time Interruption: the passage of
applications program placed in this module is called for execution at time
intervals. It defines the calling period for the applications program in the
general parameters of Module C, being able to choose between 50ms,
25ms, 10ms, 5ms, 3.125ms, 2.5ms, 1.25ms and 0.625ms. At the running
time, the sequential execution of the applications program is interrupted
and the module E018 is executed. After it is finished, the system returns to
execution for the sequential processing point where the module E001 has
been interrupted. The time continues to be counted during the call of
Module E018, its execution having to be as short as possible so as not to
an excessive increase in the time of Module E001 is cycle.

WARNING:
The execution time of Module E018 cannot be more or equal to the time period
of the call. If this happens, the PLC goes into error mode displaying the
message Recessed in Module E018, in the window Information
(command Communication, Status, Information).

• E020 - Module Activated through Input of Interruption: the
passage of the applications program placed in this Module is executed with
the activating of the input of the interruption of the PLC’s AL-600/4, AL-
600/8, AL-600/16, QK600, PL102 or PL103. When rise into the present
signal in this input occurs, the sequential execution of the applications
program is interrupted and Module E020 is executed. When it is finished,
the system returns to execution for the sequential processing point where
the Module E0001 was interrupted. If the input is activated very often, the
module’s execution time has to be as short as possible, so that there is not
an excessive increase in the cycle time of the Module E001.

WARNING:
The execution time of Module E020 cannot be greater than or equal to the
calling period. If this happens, the PLC goes into error mode displaying the
message Recessed in Module E020, in the window Information
(command Communication, Status, Information).

Chapter 2 Language of Diagrams of Relays

37

The Module E020 only works in the PLCs AL-600/4, AL-600/8, AL-600/16,
starting from the version 1.20 of the executive software, as well as in the PLCs
QK600, PL102 and PL103. Only these PLCs have a rapid input of interruption
that operates the E020.

☺HINT:
If the PLC module defined in the Module C allows the use of a certain type of
module, but MasterTool does not enable its creation, it can use the generic
execution module, defining its number according to its needs
(E-.018 or E-.020).

Module P - Procedure

The Modules P contain passages of applications programs called starting from
Modules E, P or F through the instruction CHP (Procedure Call).

This type of module does not have parameter passing, being similar to the
concept of the sub-routine.

The maximum number of modules of this type is 112 (P000 to P111).

The module P is useful to contain passages of applications programs which
should be repeated several times in the main program, being like this
programmed once only and called when necessary, being economical with the
programs memory.

They can be used also for a better structure of the main program, dividing it
into segments according to its function and declaring then in different Modules
P. In this case, the execution module continues E001 only and calls the
Modules P in the required sequence.

Examples:

• P-MECAN.000 - carries out the Mechanical breaking of the machine

• P-TEMPER.001 - achieves control of temperatures

• P-VIDEO.002 - achieves the man-machine interface

• P-IMPRES.003 - manages the printing of reports

Module F - Function

The Modules F contain passages of applications programs called from the start
of Modules E, P or F, through the instruction CHF (Call Function).

Chapter 2 Language of Diagrams of Relays

38

In the call from Modules F it is possible to pass the values as parameters for
the module called. These modules are usually written in generic form to be
approved for different applications programs, in the language of relays or of
machine, being similar to the instructions of the language of relays. The values
of the parameters are sent and returned through the lists of existing operands in
the call instruction and in Module F.

In the editing of an instruction CHF, 2 lists of operands should be defined that
are used for:

• sending parameters for execution of the function module (Input)

• receiving the values returned through the function module (Output)

In editing the function module, 2 lists of operands should be defined, using the
command Editing, Edit, Parameters, which are used for:

• receiving parameters of instruction CHF (Input)

• sending values of return for the instructions CHF (Output)

The passing of parameters is achieved through the copy of the values of the
declared operands (passing of parameters for value). Figure 2-19 shows the
flow of data between instruction CHF and the function module.

Figure 2-19 Parameter Passing for Module F

Further information regarding parameter passing can be found in the
description of the instruction CHF in the same manual. The passing of all types
of operands is permitted.

Examples:

• F-LINEAR.002 - executes the linearisation of values read from a sensor

Chapter 2 Language of Diagrams of Relays

39

• F-PID.033 - carries out calculations for implementing the control PID
loop

Operation Status of the PLC

There are five statuses or modes of operation of the PLC: initializing ,
execution, programming, cycling and error. The status in which the
programmable controller finds itself is indicated in the LEDs of the front panel
of the CPU, also being able to consult MasterTool, through the dialogue box
Status (options Communication, Status, starting from the main menu). To
obtain specific information about these operating modes, consult the User’s
Manual for the controller used.

• Status Initialization : the PLC initializes the different data structures
for use by the executive program and achieves consistency in the
programming project present in the memory. This status occurs after the
controller is turned on, passing after a few seconds to the execution status.
If no applications program exists in memory, the PLC passes to error
mode.

 While the PLC is initialized, it can activate the command
Communication, Status, Programming, or equivalent short cut in the
tool bars, having done that the PLC passes directly to programming status,
instead of executing the applications program. This procedure is useful for
the reInitialization of PLCs with programs containing serious
programming errors.

 For example, a module with an infinite execution loop, programmed with
an instruction for jumping to a previous logic, provokes the actioning of the
CPU’s guard dog circuit that is always connected, after Initialization
status. Executing itself the previous procedure straight after being turned
on, the PLC passes to the programming status after initializing , allowing
the erasing or the substitution of the program.

• Executive Status: normally the programmable controller is found in this
status, continually sweeping away the input points and updating the output
points according to the logic programmed. This status shows that the PLC
is executing an applications program correctly.

• Programming Status: The applications program is not executed, not
having the reading of the input points, the outputs being deactivated and the
PLC’s memory compacted. The PLC remains non-operational, waiting for
commands from MasterTool. This mode is normally used to load
programming project modules for MasterTool through the serial channel.
At the passing for execution or cycling status starting from the
programming status, the operands are zeroed.

Chapter 2 Language of Diagrams of Relays

40

• Cycling Status: when in cycling mode, the programmable controller does
not execute the module E001 cyclically, remaining to wait for the
commands from MasterTool. Each command execute cycle activated in
MasterTool (options Communication, Status, Execute Cycle starting
from the main menu or equivalent shortcut) fires one single scan of the
applications program (Module E001), the PLC remaining to wait for a new
command after executing the scan. When the PLC passes to cycled mode,
the counting of time in the timers stops, being the same increments of one
unit of time for each two scans executed. The calls to the module of
interruption of time E018 are not carried out in this mode. The Module
E020, activated through the input of external interruption, continues being
called in this mode.

• Error Status: shows there was some anomaly in the PLC during the
processing of the programming project. The type of error occurring can be
checked through the dialogue box (options Communication, Status,
Information starting from the main menu), while the PLC is in this
status. The output of the error status is only possible passing the
programmable controller to programming mode.

In normal conditions, the programmable controller can be in the modes of
execution, programming and cycling, these modes being Actioned through the
MasterTool commands (options Execution, Programming and Cycling in
the dialogue box Status, or their shortcut equivalents in the Tool Bars. In the
event of some functional error in these modes, the PLC passes to error status.
The recovery of error mode is only possible by passing the programmable
controller to programming mode. Figure 2-20 shows the possibilities for
changing statuses.

Chapter 2 Language of Diagrams of Relays

41

Figure 2-20 Operating Statuses of the PLC

In the modes of execution, programming and cycling it is possible to load and
read project modules from the programming project through the serial channel
of the programmable controller, as well as monitoring and forcing whatever
operands are used. These operations are not possible if the PLC is in error
mode.

The operands which are not retentive are zeroed in the passing of the
programming mode for execution or programming for cycling, the rest of them
remaining unchanged.

Execution of the Programming Project

When the PLC is powered or after the passing to execution mode, the
Initialization s of the system are carried out according to the contents of
Module C, being straight after executing Module E000 once.

The programmable controller then passes to cyclical processing of Module
E001, updating the inputs and outputs and calling the Module E018, when it
exists, for each period of interruption time programmed. In PLCs AL-600/4,
AL-600/8, AL-600/16, QK600, PL102 and PL103, the Module E020 is called,
when existing, with the activating of the interruption input. Figure 2-21 shows
the execution of the applications program in outline.

Chapter 2 Language of Diagrams of Relays

42

Figure 2-21 Execution of Programming Project

Elaboration of Programming Projects

General Considerations

A programming project is made up at least one Module C (configuration) and
one Module E001 (execution). The minimum condition for the execution of a
programming project is the presence of these two modules in the programmable
controller’s CPU.

The first step in the editing of a MasterTool programming project is the
creation or reading of the project. The configuration module of the project is
created automatically when the new project is created, once this module has the
declarations of the modules of input and output and the operands used in the
whole project. Each module which contains passages of applications program
(E, P or F) requires Module C to be present in MasterTool for it to be able to
be edited.

Chapter 2 Language of Diagrams of Relays

43

After the creation or reading of a project, it can edit the project adding modules
already in existence, creating new modules for the project or excluding modules
already made part of the project.

MasterTool allows various modules to be loaded and remain simultaneously in
its memory.

Considering Operands

The various modules which make up a programming project should preferably
be programs using the same Module C. If a module already programmed needs
to be used in another programming project, the operands used for the module
should be obliged to be declared in Module C of the new project.

The available operands in the programmable controller are of common use to
all the programming project modules present in the PLC (global operands).
Consequently, there are two modules which can be inadvertently accessed by
the same operand, with errors occurring in the functioning of both.

To elaborate a programming project, operands should be reserved in a
sufficient number for the project, preferably separated in groups, each group
used for only one module. The operands used in Modules F programmed in
language of relays and blocks can also be accessed for any other program
modules present in the PLC, the same applies to operands used in the parameter
passing. To guarantee its generic character, each Module F should use a
different group of operands from the rest used in the applications program.

Use of Modules P and F

Inside a programming project module the instructions can be placed to call
other modules. The instructions CHP and CHF call, respectively the modules of
procedure and function. They carry out the generating of calls to modules,
verifying the existence or not of the modules in the directory of the
programmable controller, based on their types and numbers.

In the CPUs AL-600, AL-600/4, AL-600/8, AL-600/16, AL-3003, AL-3004,
AL-2000/MSP, AL-2002/MSP, AL-2003, QK600, QK800, QK801,
QK2000/MSP, PL101, PL102 and PL103 there are 18 call levels, since the
Modules E (higher level). In PLC AL-2003 there are 32 calls levels.

Chapter 2 Language of Diagrams of Relays

44

That is to say up to 18 consecutive calls from modules can be executed without
the execution of any being finalised. It should be considered that the module
E018 (if existing) and the modules called for it also occupy call levels.

Figure 2-22 Maximum Number of Levels for Call from Modules

When the maximum number of calls accumulated without return is surpassed,
the system may not carry them out, continuing with the normal execution of the
applications program. In cases where calls occur for non-existent modules or
the above the number of total calls, warning messages are shown in the window
Information (options, Communication, Status, Information starting
from the main menu), since these situations can cause processing errors
according to the programmed logic.

It is possible to call from a module to itself (programming for recourse) taking
the necessary care, that is to say, should be predicted in the applications
program passage with recourse one moment in which there are no more calls to
the same module. Although it is possible, the use of such procedure is not
advisable in programmable controllers, due to the long time for processing
which a small passage of applications program can need to be executed and the
facility of infinite loops of execution.

Figure 2-23 Recursive Call of Modules

Chapter 2 Language of Diagrams of Relays

45

Undue programming with dead locks should be avoided. If a programming
project module calls another and this also carries out a call to the first, if the
call instructions in the two modules can not be disabled, both remain called
mutually until the passing of the programmable controller to error mode, for an
excess of execution time of the applications program.

The same situation can occur with calls linked together between different
modules, when a module called changes to call some initial module of the chain.
For example, if module P005 calls P002, this calls P007 and this calls P005
again, the processing can remain in this loop if no calling instruction is
disabled.

Figure 2-24 Module Call Loop

Use of Module E018

Module E018 should be used when quick processing is necessary for some
points of input and output of the programmable controller, like for example, in
sensing the end limit in Systems of rapid positioning. The instruction for
updating the points of I/O (AES) should used in this case, carrying out a
similar process in module E018 to a complete loop of main program execution.
The inputs are read, the passage of the applications program required is
executed and the outputs are updated.

In this way, this module makes itself useful when it requires a response from
the operations of output after a fixed time of stimulating inputs, indepent from
the verification time of the main program, which can vary. This characteristic
is also important in position control Systems.

Another application for Module E018 is the generation of time less than 100ms
for the main program. Timers can be created with precision of 50ms, 10ms or
less, if necessary, through the use of instructions counting in the module of time
interruption.

This module is useful when precise time control is needed in the PLC’s
processing.

Chapter 2 Language of Diagrams of Relays

46

Use of Module E020

The rapid input of interruption of PLCs in the series AL-600 and PICCOLO
can be used for immediate processing from a point of input, being useful for
quick control of positionings. With its activation, the module E020 is called for
execution, carrying out the processing needed and the updating of output points
through the instruction AES.

Module E020 can also be used in activating the devices or security procedures,
activation devices or other applications which need fast updating.

The input of interruption is also used as a second counting input in PLCs in the
series AL-600 and PICCOLO and in the CPU QK600, not being necessary for
any adjustment in the equipment to select its function. If module E020 is
present in the PLC, this is called to each actioning of the input. If the
applications program calls the module F-CONT.005, this carries out the
reading and writing of the counting value, increasing each a each input
actioning. If required, it can use this input with both the functions, with the
module F-CONT.005 counting the number of times that the module E020
was actioned.

Module E020 only acts in the PLCs AL-600/4 AL-600/8 and AL-600/16
starting from version 1.20 of the executive software, and in the PLCs QK600,
PL102 and PL103. Only these PLCs have a rapid input of interruption which
actions the E020.

Care in the Use of Module E018

Some special care is necessary in programming module E018. As it is called
from synchronised mode to each fixed time period, interrupting the process of
module E001, its execution time should be as short as possible so as not to add
excessively to the overall cycle time of the applications program.

If the interval between the calls from module E018 is programmed for 25 ms,
for example, and its execution time is 20 ms, they restore only 5 ms for the
execution of the main program before which E018 will be called again. This
situation considerably increases the cycle of module E001.

Chapter 2 Language of Diagrams of Relays

47

Figure 2-25 Care in Use of Module E018

If the execution of module E018 takes more than the time interval programmed
for their calls, the PLC passes to error status, sending the message “Re-input in
module E018” in the window. Information (options Communication,
Status, Information starting from the main menu). In this situation, the
period of the call used should be increased or the execution time of module
E018 should be reduced so that the programming project can be executed
correctly.

The instructions behave the same when executed in module E018, except in
relation to some other particular characteristics. The timers (TEE and TED)
continue to count the time at each 100 ms, any which is in the period of
actioning programmed for the module, exactly as in the execution cycle. The
pulse relay (PLC) action its output during an execution of module E018,
zeroing it in the next call. The instructions CHP and CHF can be used in the
some way as in the main program the modules having to be actioned through
them obeying the same rules of programming applying to module E018. The
maximum number of levels of call from modules used in the module E018
should be added to the maximum level used in E001, the sum having to be less
than the limit of the system (18 levels).

Care in Programming Module E020

Some special care is needed in programming module E020. Its processing time
should be short, mainly if input of interruption was actioned often, so as not to
increase excessively the overall cycle time of the applications program.

Chapter 2 Language of Diagrams of Relays

48

If the of interruption is actioned 30 ms, for example, and the execution time of
E020 is 25 ms, it restores only 5 ms for the execution of the main program
before which the module is called again. This situation considerably increases
the cycle time of module E001.

Figure 2-26 Care in Use of Module E020

If module E020 is being executed and a new actioning occurs in the PLC’s
interruption input, this actioning is ignored, continuing normally with the
module’s execution. This situation does not cause the change to error mode, the
PLC remaining in normal execution. Therefore, the PLC ignores actionings of
the rapid interruption input which occur in times less than the execution time of
E020.

The instructions continue to behave the same when executed in the module
E020, except in relation some particular characteristics.

The call from the module depends on the process which is being controlled, not
occurring in periodic form. This characteristic makes the use of the times in
E020 impractical, that is to say, the instructions TEE and TED should not be
used in it. The pulse relay (PLC) actions its output during an execution of
module E020, zeroing it in the next call. The instructions CHP and CHF can be
used in the some way as in the main program, the modules having to be
actioned through them obeying the same programming rules applying to module
E020. The maximum number of levels of module calls used in the module E020
should be increased to the maximum level used in E001 and E018, the sum
having to be less than the limit of the system (18 levels).

Chapter 2 Language of Diagrams of Relays

49

Use of Operands in Programming of Modules E018 and E020

Other care necessary is with the data sharing between the modules E018 or
E020 and the rest present in the programmable controller. The interruptions can
occur at any point of the main program of execution cycle (module E001 or
modules P or F called through it), including during the processing of its
instructions. As the operands are all of common use to any programming
project module, care should be taken not to inadvertently use, in modules E018
or E020 any operand which is used in another programming project module,
since this use, according to the case, can cause incorrect functioning. When the
module E018 and E020 are used simultaneously, both should use exclusive
operands.

In order to share the data between the Modules E018, E020 and other module
any cyclical execution should use the instructions MOV (moving of simple
operands) and MOB (moving of blocks of operands), to create an image of
operands which contain the data to be shared. These instructions should be
used in the modules pertaining to the normal execution cycle and not in
modules E018 or E020.

For example if it is necessary that the module E018 uses the value contained in
a memory used in the main program, it should pass the value this memory to
another through the instruction MOV, the module E018 only having to use this
last are. The MOV instruction should be in the main program, and not in the
module E018.

The contrary flow of data also demands the creation of image operands. If
module E020 manipulates a table and the main program needs to use the values
in this table, these values should be copied to a second table for exclusive use
of the main program, through the instruction MOB. The instruction MOB
should be in the main program and not in Module E020.

A similar situation occurs for reel instructions. If some point of an operand is
modified in the main program through a reel, it is not permitted to change any
point pertaining to the whole octet of the same operand in Modules E018 or
E020. This restriction does not exist when the octets used belong to the group
%S0000 to %S0015.

Chapter 2 Language of Diagrams of Relays

50

However it is possible that the points of an operand are altered in the Modules
E018 or E020 through a reel and are only tested for another module with
contact instructions, for example. The opposite situation is permitted, that is to
say the operand points changed in the main program through coils can be tested
in Modules E018 or E020 through contacts.

Other care to be taken with respect to the updating of the inputs and outputs of
Modules E018 or E020.

Preferably the inputs used in its processing should be only updated in these
modules, using the instruction AES. As the application program of the cyclical
execution can be interrupted in any place for these modules, if the input images
of the main program are updated in these, these can take on different values at
different points of the applications program during the same execution cycle.
This fact can cause errors if an input operand is used in various areas of the
main program, since normally it is supposed that its value remains unaltered in
the same verification process.

Due to this fact, it is recommended to use exclusive input octets for the
Modules E018 or E020, if it is necessary for its updating in it, not being the
octets used in the main program.

If it is necessary to update the inputs used simultaneously in the interruptions
and in the cyclical processing, the value of these can be copied to auxiliary
operands in the rest of it. Also it cannot update input images in Modules E018
or E020 with the instruction AES, but only read directly the values of the I/O
modules to memory operands through the instruction MES, and use these
memories in contacts to carry out the processing in the interruption modules.

The updating of output octets in Modules E018 or E020 (through the
instruction AES) is possible, since the points pertaining to these octets are
action through coils only in these modules.

In Modules E018 and E020, the values with the instruction MES in output
modules declared in the bus through MasterTool should not be written, since
the verification of output also carries out the updating of the values in these
modules.

When a Module E018 or E020 is being executed and the compaction is
actioned, the modules can be transferred to another position in memory through
the routine of compaction. During this transfer its call will be disabled, some
interruptions being possible without which the Modules E018 or E020 will be
processed. Attention should be paid to this effect of compaction regarding the
execution of the module actioned for interruption. During the compaction of the
rest of the modules, still, the Modules E018 or E020 continue being executed.

Chapter 2 Language of Diagrams of Relays

51

Simultaneous Use of Modules E018 and E020

It is possible to simultaneously use Module E018 (actioned periodically
through time interruption) with the Module E020 in the PLCs AL-600/4, AL-
600/8, AL-600/16, QK600, PL102 and PL103.

Execution priorities do not exist for the interruptions of the two modules. That
is to say if Module E020 is being executed and the next time interruption
occurs, the processing of E020 is interrupted and the Module E018 is executed,
returning afterwards to execution interrupted by E020.

In this way, if Module E018 is being executed and the input interruption is
actioned, the processing of E018 is interrupted, Module E020 is executed,
returning after to the execution interrupted by E018.

Some care should be taken in the simultaneous use of the two modules.

The execution time of the module should add up to the maximum number of
call levels of the Modules E001, E018 and E020, the result having to be less or
equal to the maximum number allowed (18 levels).

The two modules should use exclusive operands, following the rules in the
section Use of Operands in the Programming of Modules E018 and
E020, in this same chapter.

Depuration of Programming Projects

Various facilities are previewed in the programmable controller to help the
depuration of the programming project, being described as follows.

Information about the Status of the PLC

Various information about the status of the controller can be obtained with the
actioning of the options Communication, Status, Information in
MasterTool:

Chapter 2 Language of Diagrams of Relays

52

Shortcut:

• CPU Model - indicates the type of controller with which MasterTool is
communicating.

• Version of Executive - shows the number of the version of the executive
program which the PLC contains.

• Mode of Operation - shows the actual operation of the PLC: execution,
programming cycling or error.

• Error/Warning Message - if the PLC is in an error mode, a message is
shown indicating the cause of the error. If the PLC is in another mode, a
message indicates the existence of problems that do not cause the change to
error mode (for example, the PLC’s battery is flat). C.f. Error
Messages, appendix A of the MasterTool User’s Manual.

• Outputs - indicate if the outputs are enabled or disabled.

• Forced Relays - indicate if any forced point off input or output exists.

• Change of Modules with PLC powered - indicates the possibility of
changing from modules with PLC powered.

• Compacting RAM - indicating if the PLC is compacting the RAM
memory of the applications program.

• Copying Module - indicates if any module is being loaded into the PLC,
transferring from RAM to EPROM flash or from EPROM flash to RAM,
or if the PLC is erasing the flash memory

• Protection Level - shows the current protection level of the PLC.

• Cycle Times - shows the instantaneous value, average, maximum and
minimum of the cycle time of the applications program. C.f. section
Program Execution Cycle Times in this same chapter.

• Actioning Period of E018 - shows the period of module call actioned
for time interruption E018, if it is present in the PLC.

The status windows of the PLC (options Communication, Status,
Information), directory of modules (options Communication, Modules)
and monitoring (options Communications, Monitor Operands or
Monitor Block of Operands or Monitor Tables) supplies various
information used to verify the correct functioning of the controller. This
information can be obtained from a distance, if the PLC is connected to a
network. When MasterTool is connected to any PLC, it regards the obtaining
of this information as the first step to take.

Chapter 2 Language of Diagrams of Relays

53

Monitoring

Through MasterTool it is possible to monitor the values of on or more operands
in the PLC in any mode of operation, except error mode.

The values of the operands contained in a logic of an applications program can
be visualised directly in the PLC allowing the verification of its functioning.

For more information about how to carry out the monitoring, c.f. items
Monitoring Simple Operands, Monitoring Table Operands and
Monitoring Programs in the section Communicating with the PLC or
Router in chapter 5 of the MasterTool User’s Manual.

The monitoring of operands in the PLC occurs at the end of the execution cycle
of the applications program. Due to this, incoherent situations can be visualised
in the monitoring of the logics, if the values of the operands are modified in the
subsequent logics to be monitored.

Figure 2-27 Incoherent Situation in Logic Monitoring

Chapter 2 Language of Diagrams of Relays

54

Forcing

The values of the operands can also be forced with MasterTool, that is to say,
can modify the content of any programming project operand. The forcing of
operands is permitted in any operating mode. The forcing of operands is
permitted in any operating mode, except error mode. C.f. items Forcing
Simple Operands and Forcing Table Operands in the section
Communicating with the PLC or Router in chapter 5 of the MasterTool
User’s Manual.

The operands %A, %M, %D, %TM and %TD have their value altered only for
one verification, straight after a command has been sent to the PLC. So that the
forced value remains in the operands, it cannot have any instruction in the
program which modifies it.

The forcing of the operands %E and %S is carried out in a permanent way in
the controller. After the commands is sent to the PLC, the value is forced in all
the verifications of the applications program, until the operand is freed. The
LED FC in the CPU panel remains connected if there is some forced operand
%E or %S.

The forced values in operands %E superimpose those obtained in the reading of
the input modules, before the start of each execution cycle of the applications
program. The program is executed with the value forced, as if the point of input
corresponds with this value, being able to be visualised in the monitoring.

For example, if the operand %E0002.5 is forced with the value, the
applications program will be executed with this value for this operand, not
importing the status of the point in the module of corresponding input. The
monitoring of %E0002.5 always the value 1.

The values forced in the operands %S are sent directly to the output modules,
independent of the values obtained after the execution of the applications
program. The monitoring shows the forced value, which corresponds to the
value assumed through the corresponding point in the operand in the output
module.

For example, if the operand %S0024.3 is forced with the value 0, the respective
point in the output module remains disconnected, not importing the status of the
coil which contains the monitoring of %S0024.3 always shows the value 0.

WARNING:
Incoherent situations can be visualised in monitoring logics with operands %S
forced. This happens because the value monitored can be different from the
value really obtained through the applications program.

Chapter 2 Language of Diagrams of Relays

55

WARNING:
All the forcing of operands %E and %S are removed when the turning off the
PLC. The forcing of these operands should be used in temporary form, only to
help the depuration of the programming project. The operands %E or %S
should not be left forced in character permanently, since they are freed with the
turning off and after the turning on of the controller.

Operands %E and %S stop being forced through the PLC through the
command liberating from forcing. The liberation consists of cancelling the
forcing previously determined. The operands %E return to have their values
updated according to the input modules, while the output modules receive the
values obtained in the processing of the applications program.

WARNING:
Force operation doesn’t actuate in %E or %S operands that has been updated
by AES instruction. This instruction read %E operands or write %S operands
and it doesn’t make operands forcing efects. For this reason, I recommend you
don’t make operands force with operands that has been updated by AES actives
program instructions.

For further information about how to free forced operands, c.f. item
Liberating Forced Operands in the section Communicating with the
PLC or Router in chapter 5 of the MasterTool User’s Manual.

Disabling the Outputs

For the “on Initialization ” security when if the applications program is used
directly in the machine, the actionings of output by the programmable
controller can be disabled through the disable command. The application
program continues to be executed in the PLC, with the verification of the inputs
and calculation of the output values, however with all the output points kept
deactivated. The operands %S can be monitored and given the values waiting
for them.

For more information regarding the disabling of outputs, c.f. item Enabling
and Disabling the Outputs in the section Communicating with the
PLC or Router in chapter 5 of the MasterTool User’s Manual.

WARNING:
If the PLC is turned off, the disabling of the points of output is removed. That
is to say, when the PLC is turned on again, the status of the memory operands
will normally be transferred, to the end of each verification, for the points of
output. The disabling should be used in temporary form, only to help the
depuration of the programming project.

Chapter 2 Language of Diagrams of Relays

56

Modifications in the Program

The loading of the modules during the execution of the programming project
(loading “on line”) makes possible successive modifications and messages from
the module in the dedepuration for the programmable controller.

In this mode it is not necessary to reinitialize the control application program
not even a change of status from programmable controller to each alteration
carried out in a module.

WARNING:
After any modification carried out in Module C of the programming project, it
should be sent to the PLC.

WARNING:
If the declaration of the simple operands or tables may be modified, it advises
itself to reinitialize the PLC, passing to programming mode, loading the
Module C and returning to execution mode. Functioning errors can occur
altering the configuration of the operands and sending the Module C, with the
controller, into execution mode.

After a certain number of successive loads in execution mode, however, it can
make necessary the compaction of the RAM memory for reasons explained in
the section Managing Programming Project Modules in the PLC, in
this chapter. This type of loading is only possible if there is enough free
memory in the PLC storing the module to be sent.

At the end of the dedepuration of a program module, its transfer is suggested to
an EPROM flash memory or its recording in the EPROM cartridge, freeing the
space available in the RAM memory of the program.

Cycling Mode

The execution of the programming project in cycling mode makes use, in the
verification of the functioning of rapid brakes in the applications program.

The rest of the facilities of dedepuration continue acting in the same way as
in the execution mode (monitoring, forcing, loading and other operations with
modules).

In cycling mode, the operand values remain constants among the cycles, except
the input points (%E) which continue being continually updated, showing their
real values.

Chapter 2 Language of Diagrams of Relays

57

Managing Programming Project Modules

The modules which make up the applications program are independent among
them selves, not needing the connection (“link”) through the auxiliary
programs. The loading of modules in the programmable controller for the serial
channel can be carried out in any order, allowing only the model altered to be
loaded into the PLC, if the programming projects have to be maintained.

WARNING:
Only the module type and its number are relevant to the CPU in this system, the
name being ignored. If two modules with equal type and number but with
different names are to be loaded into the PLC, only the last to be loaded will be
considered.

The programmable controller organizes an internal directory where the various
information regarding modules contained in it are stored, able to be consulted
for MasterTool through the directory command of modules (options
Communication, Modules starting from the main menu). When this
command is to be actioned, a dialogue box is opened, showing in its upper
section, two panels called RAM Modules and EPROM Modules with the
list of names and the memory occupied by each module in the PLC.

In the panel Memory Occupied details the total number of modules and the
total memory space occupied by them (sum of all the individual occupations),
beyond the total space occupied in RAM or EPROM.

The panel Memory Free shows the amounts of RAM memory and EPROM
available for the loading new modules, in each memory bank existing in the
programmable controller.

Only the modules present in the directory are considered valid for execution in
the PLC.

A program module present in the directory can only be in one type of memory,
RAM or EPROM, never in both at the same time. The modules loaded by the
serial channel are always stored in RAM memory of the applications program.

Compaction

The memory of the programmable controller’s memory is divided into one or
more banks, depending on the CPU model used (c.f. table 2-1 in the section
Organization of Memory in PLCs in this chapter.

Chapter 2 Language of Diagrams of Relays

58

As the modules which make up the programming project are sent to the PLC
through the serial channel, they occupy the first memory bank, from its
beginning to its end. When the space remaining in the first bank is not enough
to load the next module, it will be loaded into the following bank, if one exists.

At each loading of a new module into the programmable controller, the
executive software tests if there is enough space for it from the first to the last
bank available. The loading of a new module is only possible if there is free
memory available for its storage.

Inside the RAM memory bank, the loading of a module is always carried out
starting from the first position after the last module present. If a module at the
start of the bank is removed, the modules which are after it should be
transferred to occupy its space in the memory, so that this space is available at
the end of the bank for other modules to be loaded. This procedure names itself
compaction of RAM memory of the applications program.

Example:

Supposing that the first memory bank of the programmable controller is
initially with the following modules:

Figure 2-28 Compaction of RAM Memory

Chapter 2 Language of Diagrams of Relays

59

If Module P010 is removed from the PLC the bank 0 will pass to have the
following organization :

Figure 2-29 Compaction of RAM Memory-2

The space previously occupied by P010 is not taken advantage of by the
programmable controller, since to carry out the compaction of the PLC’s
memory, bank 0 passes to the following configuration.

Figure 2-30 Compaction of RAM Memory-3

The Modules E018 and E001 are transferred to the space previously occupied
by Module P010, making this space available to the end of the memory of the
bank for loading the other module.

Chapter 2 Language of Diagrams of Relays

60

If the programmable controller is in programming mode or cycling, the RAM
memory banks of the program are automatically kept compacted by the
executive program. In execution mode, however, the compaction should be
actioned manually, through MasterTool (options Communication,
Modules, Compact RAM from the main menu).

This procedure is common when different loadings of modules in execution
mode are carried out (loads “on line”), typically when a module is being
purified, needing successive alterations and transmissions for the PLC.

WARNING:
Depending on the location of the modules in memory, the procedure for
compaction can much increase the time for some cycles of applications
programs, when carried out in execution mode. It is important to be aware of
the effects of this increase in processing time. Be advised that the compaction is
not fired if the machine under control is in operation or with its main active
actionings.

Due to this mechanism of managing the modules in the programmable
controller, it is possible that the sum of the available memory in the PLC banks
with the value occupied by modules is less than the total memory of the
program.

Use of EPROM or EPROM Flash Memory

The controllers can count 2 different types of to permanently record from the
applications program:

• EPROM Memory - is shown in cartridge form, connected in the front
panel of the PLC. The programming project is recorded in cartridges
through the recorder AL-2860, connected to MasterTool, and removed with
appropriate erasers, using ultraviolet light. Used in the controllers AL-3003
and AL-3004.

• EPROM flash Memory - is placed on the board of the PLC’s circuit,
not being necessary to remove it for recording or erasing programs. These
operations are carried out through their own controller, through
MasterTool commands. Used in controllers from the series AL-600,
AL-2000, PL104, PL105 and QUARK.

Both types have peculiar characteristics: they can be partially recorded,
however they do not allow the partial erasure of their contents. That is to say, it
is only possible to erase all the contents of memory in the erasing.

Each PLC only uses the two types mentioned before. No PLC has both types of
EPROM memory.

Chapter 2 Language of Diagrams of Relays

61

The memory configuration of each PLC model is shown in the section
Organization of Memory of the PLC’s in this chapter.

In this manual, in Help and Master, the name EPROM refers indistinctly to
memory used to permanently record the programming project of the PLC, that
is to say the type of EPROM cartridge or EPROM flash.

Transference of Modules from RAM to Flash:

After they are loaded into the RAM memory of the program, through the serial
of the PLC, the programming project’s modules can be transferred to EPROM
flash. This command is only unable in PLC’s which have flash memory. For
further information about the transferring modules from RAM to EPROM
Flash c.f. item Transferring Modules from RAM to EPROM Flash in
the section Communicating with the PLC or Router in chapter 5 of the
MasterTool User’s Manual.

It is possible to transfer one single module or a group of modules, the same
with the PLC executing the program. The transfer in execution mode is carried
out partially in each verification, being able to wait several seconds until it is
completed, mainly of these was a long time of cycle of execution. At the end of
the transfer, the module in RAM is automatically erased and the information
from the directory is modified.

Managing the module loading in EPROM flash is identical to the RAM
memory, shown in the previous section Compaction. That is to say the RAM
module is recorded in the first bank of flash which has enough space free for
the counter, after the last module of the last module of the bank. The search for
free space occurs in the sequential order of the banks (0, 1, 2 and 3).

The EPROM memory of PL101, PL102 and PL103 make possible the carrying
out of backup of RAM memory. It is only possible to transfer all the modules
of RAM to EPROM or all the modules of EPROM to RAM. It is not possible
to visualise the contents of the EPROM memory.

If PL101, PL102 or PL103 is turned on without there being programming
modules in RAM memory all the existing program modules in EPROM
memory are transferred to RAM.

In PL104 e PL105 flash EPROM memoty is used to store executive program.

Chapter 2 Language of Diagrams of Relays

62

Transference of EPROM modules to RAM:

The modules present in EPROM flash memory or in EPROM cartridge can be
transferred to the RAM memory of the program. For further information about
how to transfer modules from EPROM to RAM, c.f. item Transferring
Modules from EPROM to RAM in the section Communicating with
the PLC or Router in chapter 5 of the MasterTool User’s Manual.

It is possible to transfer one single module or a group of module, the same with
the PLC executing the program. The transferring into execution mode is
partially carried out in each verification, being able to wait several seconds
until it is completed, mainly if the cycle execution time is long. At the end of
the transfer, the information from the directory is modified.

The management of the loading of the module into EPROM flash is identical to
that of RAM memory, shown in the previous section Compaction.

Erasing and re-enabling modules in EPROM:

The erasing command can be used for modules stored in the EPROM memory
of the PLC. As the erasing of EPROMs is only possible for all its contents, this
command only retires the information from the modules directory, not carrying
out a real erasing of the memory.

The same happens if a module recorded in EPROM is substituted for a new
module of the same type and number loaded by the serial channel. The new
module is stored in RAM, remaining the old one in EPROM, only the new one
in RAM being shown in the directory.

The module removed through the erasing command or substituted with the load
from a new module can be restored to the directory, since its contents are still
recorded in EPROM memory. This recovery is possible with the modules re-
enabling command.

The re-enabling renders the module non-existent in the directory and reappears
in EPROM, or that one already existing in RAM may be substituted for a
previous one in EPROM.

For further information regarding how to erase or re-enable modules, c.f. items
Erasing Modules in the PLC or Router and Re-enabling Modules in
EPROM in the section Communicating with the PLC or Router in
chapter 5 of the MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

63

Erasing from EPROM Memory:

With the total erasing from EPROM memory, all the modules are removed, all
the available space being available for the recording of the new modules.

To erase the EPROM cartridge an appropriate eraser device should be used,
after the removal of the cartridge from the PLC.

To erase the EPROM flash memory, use the options Communications,
Modules, Erase Flash which are the PLC in programming mode. The
erasing can wait several seconds, depending on the capacity of the flash used in
the PLC. For further information regarding how to erase the flash memory, c.f.
item Erasing the EPROM Flash Memory in the section
Communicating with the PLC or Router in chapter 5 of the MasterTool
User’s Manual.

Program Execution Cycle Times

The maximum time possible for the execution of a complete cycle of the
applications program in the programmable controller is configurable for 100ms
to 800ms. That is to say, the complete execution of a verification of Module
E001 cannot be extended for more than the value configured, including the calls
to the Modules P and F and the actioning of the time interruption Module
E018. The executive software carries out a continuous verification in the cycle
time, passing automatically to error status if this limit is overtaken.

It can verify the execution times of the applications program through the PLC’s
information window (options Communication, Status, Information
starting from the main menu) various execution cycle times being given,
specified as follows:

• Instantaneous cycle time: shows the cycle time of the last verification
executed by the PLC before sending the information of its status to
MasterTool. This item is useful in cycling mode, when it shows the
execution time of the last cycle fired in the programmable controller.

• Average cycle time: shows the average times of execution of the last
256 verifications carried out by the PLC. In execution mode this parameter
gives a general idea of the processing time of the applications program, as
opposed to the instantaneous cycle time, which can be shown an untypical
value isolated from a verification. As this time is calculated only at each
256 varreduras, at times its value needs a few seconds to be updated,
mainly in the case of an abrupt increase in the execution time (including the
new modules in the programmable controller for example.

Chapter 2 Language of Diagrams of Relays

64

• Maximum cycle time: shows the longest time between all the cycles
carried out since the passing of the PLC into execution or cycling mode.

• Minimum cycle time: shows the shortest time between all the cycles
carried out since the passing of the PLC to execution or cycling mode.

The cycle times are shown in milliseconds (ms), being the counts initialized in
the passing from programming mode to execution or programming to cycling.

The service of the serial communication with MasterTool increases the
application program’s cycle time in the PLC, being able, in some cases, to
overtake the maximum cycle time selected. If the time limit for execution is
overtaken only due to the commands from the serial communication
(monitoring, forcing and the rest), the PLC does not Enter error status. It is
possible therefore, to indicate from the maximum cycle time greater than that
selected without which the programmable controller will have to Enter error
mode.

The procedure of compaction of program memory by the programmable
controller always follows the previous rule. In some cases, the compaction
routine needs to copy a much extended module into the memory between two
cycles of the applications program, increasing in the extreme the execution time
of one verification. In this situation the PLC does not Enter error status.

Status care should be taken when the execution cycle times move nearer to the
maximum time selected. The simple fact that the applications program is to be
executed correctly with the more common conditions of the input points does
not guarantee that its verification time, in real conditions of the machine
functioning, will remain inside the value limit.

WARNING:
Each programming project should be examined carefully in the search for
situations which will cause the longer execution times.
These situations should be simulated and the times averaged, verifying if they
are not excessive. This procedure should be carried the same in the
programming project with cycle times well below the limit, to ensure it
functions well.

It is possible that in some isolated verifications the cycle time exceeds the
maximum time selected without which the PLC passes to error mode, in case
these sporadic verifications do not cause delays in the system’s timers.

WARNING:
If the PLC indicates a greater maximum cycle time than that selected without
which it will have to have a memory compaction, even if it continues normally
in execution mode, the program should be examined to reduce its cycle time in
situations which cause greater times.

Chapter 2 Language of Diagrams of Relays

65

☺HINT:
Some typical procedures exist to reduce the execution time of the much
extended applications programs. A good management of the modules call can
reduce the total cycle time sensibly, the calls of a few modules of the
applications program being carried out in each verification, not allowing then
all to be fired in the same cycle. The use of jump instructions in the modules,
reduces their execution time, since a jumped passage of applications program is
disregarded by the executive software. The master relay and end of master
relay instructions do not have this property, since the segment of applications
program delimited by them continue to be executed the same as when the RM
coil is disabled.

☺HINT:
The Initialization s of values in operands or tables in Module E000 should be
carried out, devised specially for this intention the execution of module E000,
for not to be cycled, can delay more than the maximum time, this time being
disregarded in counting the time of the first verification of Module E001. As
the mode is, executed, it becomes meaningless to the programming of the timers
(TEE, TED) in module E000.

Protection Levels of the PLC

CPUs in the series AL-600, AL-2000, QUARK and Piccolo have a mechanism
to protect the programming project and the operands, allowing the blockage of
the loading of program modules, forcing the values or same, readings of
modules and monitoring for un-authorised operators.

These characteristics are of interest to critical processes, to avoid accidental
modifications in the data or in the control program or in the need for secrecy.

The blocking of operations is carried out through the protection levels, which
can be defined only for operators which know a pre-defined password. The
controller can work on four different:

Chapter 2 Language of Diagrams of Relays

66

Level 0 - all the PLC’s operands are permitted.

• Level 1 - not possible to alter the programming project (to erase or load
new program modules) or change the status of the PLC. Can force and
monitor operands and read program modules.

• Level 2 - not possible to alter the programming project (to erase or load
new program modules). Not possible to force operands or change the status
of the PLC. Possible to monitor operands and read program modules.

• Level 3 - not possible to read or alter the programming project, to monitor
or force variables not even to change the status of the PLC. Possible only
to consult the status of the PLC and its directory.

The change of protection level is carried out with the options
Communication, Status, Protection in MasterTool, having to key in the
password to achieve correct access. The PLC’s protection level can be
consulted with MasterTool through the options Communication, Status,
Information.

The use of different protection levels from zero allows only authorized people,
who know the password, modify the program or the PLC’s data. Unauthorised
operators, even are prevented from carrying out inadvertent alterations.

The access password can have from one to eight alphanumeric characters. It is
defined or changed with the options Communication, Status, Password,
the previous password and the new password having to be keyed in twice, for
the change to be confirmed.

The PLC is supplied with a password. It is not necessary to key in any value in
previous password field to define the first password.

WARNING:
The password should be written and kept in a secure place. If the password
programmed in the PLC is lost, ALTUS should be contacted.

The PLC’s protection acts not only to carry out operations with MasterTool,
but also the commands received through ALNET I and ALNET II, with the
same characteristics defined for each level.

For more information about how to alter the protection level and the password
of the PLC, c.f. items Altering the Protection Level and Altering the
Password in the section Communicating with the PLC or Router in
chapter 5 of the MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

67

Interlocking of Commands in the PLC

In the series AL-2000 and in the CPU QK2000/MSP in the Quark series it is
possible to use the ALNET I and ALNET II communication networks together.
When interconnected in this way, it is possible to receive two commands
simultaneously whose concurrent execution will not be desirable, due to their
characteristics. For example, the PC can receive a command to transfer from
EPROM to RAM through ALNET II while the same command is being loaded
in ALNET I.

Similar situations occur with the commands for transferring program modules
from EPROM Memory to RAM to flash or erasing from flash memory.

The execution of these commands can be extended for several seconds, during
these the PLC can receive other commands which conflict with operation in
progress. For example, PLC can receive one command to erase the flash
memory while a module may be being transferred to the same memory.

To resolve possible conflicts, there is a braking mechanism to execute some of
the commands available in the PLC. These commands cannot be executed if the
PLC is carrying out a specific operation. There are two internal signals,
loading module (CM) and compacting RAM (CR) which are used for this
intention. The tables 2-9 and 2-10 show the commands which use the braking
and the actioning of the signals.

The status of the signals corrying module and compacting RAM can be verified
in the information window of the PLC, options Communication, Status,
Information on MasterTool. While any of the signals are actioned, the LED
FC of the panel in the PLC remains alight.

Chapter 2 Language of Diagrams of Relays

68

Operation carried out in PLC Command blocked
(ALNET I, ALNET II)

Signal
ON

Loading of Modules Loading of modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Request to load modules
Re-enabling of modules in
EPROM
Erasing of EPROM Flash
Compaction

CM

Transfer from EPROM to RAM Loading of modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Request to load modules
Re-enabling of modules in
EPROM
Erasing of EPROM Flash
Compaction

CM

Transferência de RAM para
Flash

Loading of modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Request to load modules
Re-enabling of modules in
EPROM
Erasing of EPROM Flash
Compaction

CM

Erasing from EPROM Flash Loading of modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Request to load modules
Re-enabling of modules in
EPROM
Erasing of EPROM Flash
Compaction

CM

Legend: CM - Loading Module

Table 2-9 Braking of Commands in the PLC (loading module)

Chapter 2 Language of Diagrams of Relays

69

Operation carried out in PLC Command blocked
(ALNET I, ALNET II)

Signal
ON

Compaction Load modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Request loading of modules
Re-enabling of modules in
EPROM
Removal of modules
Compaction

CR

Legend: CR - Compacting RAM

Table 2-10 Braking of Commands in the PLC (Compacting RAM)

For example, while a module is being loaded into the PLC through ALNET I or
ALNET II, the commands for loading modules, transfer from EPROM to
RAM, transfer from flash, requesting to load modules, re-enabling of modules
in EPROM, erasing of EPROM Flash and compaction not be possible to
execute, if they are received through another network. If they are received
through another network. If they are received through PLC a reply indicating
that their execution is impossible is transmitted to the applicant.

WARNING:
The braking of the commands does not occurs in PLCs AL-3003 and
AL-3004. The LED of the front panel is not lit when the operations in tables 2-
8 and 2-9 are carried out.

Chapter 2 Language of Diagrams of Relays

70

Router Project

Building up a Router Project

A router project is made up of on single configuration module of networks
(Module R) which have the necessary parameters to configure the routing of
the network.

The network configuration module is called for execution through the executive
software (operational system of the router). When stored on disk, the
programming project corresponding to an archive, named as shown in
figure 2-30.

Figure 2-31 Format of Name of Module R in file

Example: R-GAT1.000

In some places in this manual and in the Help the program modules are
referenced only by their type and number, when the name used is not relevant.

Example: R000

WARNING:
The file name corresponding to a program module should not be altered
through another application of WindowsTM. To change the name of a file, it
should be read and saved with the required name through MasterTool.
C.f. section Saving a Module with Another Name in chapter 5 of the
MasterTool User’s Manual.

If the file name is modified through another application of WindowsTM, it can be
attributed with an invalid name, not being able to be read to MasterTool or
loaded in the PLC.

Chapter 2 Language of Diagrams of Relays

71

Module R - Configuration of Router

Module R contains the parameters for configuring the router. The definition of
the parameters contained in the router is carried out through the editing window
of Module R, c.f. section Configuring Module R, in chapter 5 of the
MasterTool User’s Manual.

There is only one Module R for the router project, having the project name as
its own name, for better identification.

Contents of Module R:

• Declaration of CPU Model: specifies the CPU model in which the
router project is to be executed. The editing of this parameter is carried out
in the editing window of Module R. For further information, c.f. item
Configuring the CPU Model in the section Configuring Module R
in chapter 5 of the MasterTool User’s Manual.

• Declaration of Channel Parameters: specifies the configuration
parameters relating to each channel of the router. For more information
regarding the function of each router channel, c.f. the manual for the router
being used. For more information about how to declare the parameters, c.f.
the manual of the router used. The channel parameters are declared in the
editing window of Module R. For more information about declaring the
parameters c.f. item Configuring the Channel Parameters in the
section Configuring Module R in chapter 5 of the MasterTool User’s
Manual.

• Declaration of the Channel Routing: specifies the routing table of the
channel, that is to say, for whatever sub-network has to be revised the
command for that arrives at the sub-network destination. This table is
declared in the editing window of Module R. For more information about
how to declare the routing table, c.f. item Configuring the Channel
Routing, in the section Configuring Module R in chapter 5 of the
MasterTool User’s Manual.

• Declaration of the Channel Redundancy: specifies the parameters of
redundancy of the channel: enabling or not of the redundancy, test period
for the active connection and behind for commutation. They should be
declared in the editing window of module R. For more information about
how to declare the parameter of redundancy c.f. item Configuring the
Channel Redundancy in the section Configuring Module R in
chapter 5 of the MasterTool User’s Manual.

Chapter 2 Language of Diagrams of Relays

72

Router Operation States

There are four states or operation modes of the router: Initialization, execution,
programming, and error. The status in which the router finds itself is indicated
in the LEDs in the front panel of the CPU, being able also to be consulted
through MasterTool through the dialogue box Status (options
Communication, Status, Starting from the main menu). To obtain specific
information about the modes of operation, consult the user’s manual of the
router used.

• Initialization Status: the router initializes the various data structures
used by the executive program and carries out consistencies in the router
project present in memory. This status occurs after the powering of the
router, passing after some seconds to the execution status. If a module R
does not exist in memory the router passes to error mode.

While the router is initializing , the command Communication, Status,
Programming can be actioned, or equivalent in the tool bar, in doing this
the router passes directly to programming status, instead of passing to
execution mode. This procedure is useful to reinitialize the routers with
modules R containing serious configuration errors.

• Execution Status: normally the router is found in this status executing
the router according to module R. This status indicates that the router is
executing the routing correctly.

• Programming Status: the router is not executing. The router is not
executing. The router remains non-operational waiting for commands from
MasterTool. This mode is normally used to load from the project module of
the router to MasterTool through the serial channel.

• Error Status: indicates that there is some anomaly in the router during
the processing of the router. The type of error occurring can be checked
through the dialogue box (options Communication, Status,
Information starting from the main menu), while the router is not in this
status. The output from the error status is only possible passing the router
to programming mode.

In normal conditions, the router can be in execution and programming modes,
these modes being actioned through the MasterTool commands (options
Execution, Programming and Cycling from the dialogue box Status, or
their equivalent short cuts in the Tool Bars. If some incorrect functioning
occurs in these modes, the router passes to error status. The recovery of the
error mode is only possible by passing the router to programming mode. Figure
2-31 shows the possible ways to change status.

Chapter 2 Language of Diagrams of Relays

73

Figure 2-32 Operating Statuses of the Router

In execution and programming modes, it is possible to load and read modules R
to the serial channel of the router as well as monitor and force any operands
used. These operations are not possible if the router is in error mode.

Chapter 3

1

Instructions

This chapter gives a list of integral instructions of the ALTUS Language of
Diagrams and Relays, describing the format, use, syntax and gives examples of
each instruction.

List of Instructions
The ALTUS PLCs use the language of relays and blocks to elaborate the
applications program, whose main advantage, apart from its graphic
representation is being similar to the conventional diagrams of relays.

The programming of this language, carried out through MasterTool, uses a
group of powerful instructions shown in the following sections.

MasterTool instructions can be divided into 7 groups:

• RELAYS

• MOVEMENTS

• ARITHMETIC

• COUNTERS

• CONVERSIONS

• GENERAL

• CONNECTIONS

Conventions Used

Different conversions are used for the presentation of groups and instructions
making a better visualisation and recognition of the items described, aiming at a
simpler method of learning and a source of direct consulting of the required
topics.

Chapter 3 Instructions Reference

2

Presentation of the Groups

The descriptions of each group follows this routine.

1. The group is described with a little containing the name of the group.

2. Straight after the little, a brief descriptions of the common characteristics of
the group is given.

3. Finishing the presentation of the group, a table is displayed containing the
name a the instruction in the first column, the description of the name of the
instructions in the second column and in the sequence of keys to carry out
the insertion of the instruction directly through the keyboard in the third
column.

Example:

Instructions of the Relays Group

The instructions of the Relays group are used for the logic processing of the
diagrams of relays. Through these instructions it is possible to manipulate the
values of the digital points of input (%I) and output (%O) as well as points of
auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used for divert the flow and control of the processing of the
applications program.

Name Description of Name Editing
Sequence

Tool
Bars

RNA contract normally open ALT, R, A

RNF contact normally closed ALT, R, F

BOB simple coil ALT, R, B

SLT jump coil ALT, R, S

BBL connected coil ALT, R, L

BBD disconnected coil ALT, R, D

PLS pulse relay ALT, R, P

FRM end of master relay ALT, R, M

RM master relay ALT, R, R

Chapter 3 Instructions Reference

3

Presentation of the Instructions

The description of each instruction is made in the following way.

1. The instruction is described with a little containing the name of the
instruction and the description of the name. A figure presented as an
instruction is visualised in the diagram of relays containing its operands,
input and output. Above each figure a brief description of the significance of
each operand is displayed.

2. The item Description contains information describing the functioning of
the instruction according to the enabled inputs and the types of operand
used. Also described in this item are the outputs which are actioned after the
execution of the instruction.

3. The item Syntax describes the combinations of operands which can be used
in the instruction. This item is only present in instructions which have
operands.

4. The item Example gives an example of the use of an instruction describing
its behaviour. This item is only present in instructions which require major
detailing of their functioning.

5. There are also other items which describe a specific characteristic of the
instruction if it is necessary.

Example:

PLS - Pulse Relay

Description:

The instruction pulse relay generates a pulse from a scan on its output, that is
to say, remains powered during a scan of the applications program when the
status of its input may pass from turned off to powered.

The auxiliary relay declared serves as data storage, avoiding limits as to the
number of pulse instructions present in the applications program.

Chapter 3 Instructions Reference

4

WARNING:
The value of the auxiliary relay should not be modified in any other point of the
applications program.

Syntax:

Instructions of the Relays Group

The instructions of the Relays group are used for the logic processing of the
diagrams of relays. Through these instructions it is possible to manipulate the
values of the digital points of input (%I) and output (%O) as well as points of
auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used to divert the flow and control of the processing of the
applications program.

Name Description of Name Editing
Sequence

Tool
Bars

RNA contract normally open ALT, R, A

RNF contact normally closed ALT, R, F

BOB simple coil ALT, R, B

SLT jump coil ALT, R, S

BBL connected coil ALT, R, L

BBD disconnected coil ALT, R, D

PLS pulse relay ALT, R, P

FRM end of master relay ALT, R, M

RM master relay ALT, R, R

Table 3-1 Instructions of Relays Group

Chapter 3 Instructions Reference

5

Contacts

• RNA contact normally open

• RNF contact normally closed

Description:

These instructions reflect, logically, the real behaviour of an electrical contact
of a relay in the applications program.

The contact normally open, closes according to the status of its associated
operand. If the operand point is in the logic status 1 or 0, the contact normally
open is closed or opened respectively.

The contact normally has behaviour opposite to normally open. If the point of
the associated operand is in the logic status 1 or 0, the contact normally closed
is opened or closed respectively.

When a contact is closed, the instruction transmits the logic status of its input
to its output. If it is open, the input value is not placed on the output.

Syntax:

Table 3-2 Syntax of the Instructions RNA and RNF

Chapter 3 Instructions Reference

6

Coils

• BOB Simple Coil

• BBL Connected Coil

• BBD Disconnected Coil

Description:

The coil instructions modify the logic status of the operand in the image
memory of the programmable controller, according to the status of the
actioning line of the instructions.

The simple coils connect or disconnect the operand point according to the
actioning line, while the of type connected and of type disconnected only
connect or disconnect. Operands when the line is powered (“set/reset”).

These instructions can only be positioned in column 7 of the logic.

Syntax:

Table 3-3 Syntax of Instructions BOB, BBL and BBD

Chapter 3 Instructions Reference

7

SLT - Jump Coil

Description:

The instruction jump coil serves as a controller of execution sequence of an
applications program, being used to divert its processing to a determined logic.

Its operand is a constant which determines the number of logics to be jumped
starting with the powering of the coil the determining of the logic destination is
carried out by the sum of the constant which accompanies the instruction with
the number of the logic where it is found.

When the actioning line of the jump coil is turned off, the jump does not take
place, and the following instruction which in the coil is declared and executed.

Example:

If the following instruction is in logic 2, the execution of the applications
program is diverted to logic 7 if the actioning line is powered, that is to say, if
the value of the point %A0009.3 is 1. If the value of this point is 0, the
execution continues normally in logic 003.

Figure 3-1 Example of SLT Instruction

This instruction can only be placed in 7 column of the logic.

Chapter 3 Instructions Reference

8

In this instruction it is possible to use a constant %KM with zero value or with
negative value. If programmed with zero value, the logic destination is the same
as that which contains the jump coil, when it is powered. That is to say, the
processing is diverted to the start of the coil’s own logic. If the value
programmed is negative, the processing is diverted to a logic before the logic
which contains the jump coil.

WARNING:
The use of a zero constant or negative corresponds to an unconventional use of
the instruction. If it is required to use it there, the necessary precautions should
be taken to avoid the input in a loop or the excessive increase of the cycle time
of the applications program. It is recommended nevertheless, to use the jump
coil only with positive constants greater than zero.

The control of the execution of these situations should be carried out through a
braking which disconnects the jump from the previous logic, after a certain
number of loops have been executed in the return passage.

If the logic destination overtakes the last logic the applications program, the
PLC jumps to the end of the program and continue its normal cycle.

If the logic destination of a return jump is less than the first logic of the
applications program, the execution is restarted starting from logic 0.

Syntax:

Table 3-4 Syntax Instruction SLT

Chapter 3 Instructions Reference

9

PLS - Pulse Relay

Description:

The instruction pulse relay generates a pulse for a scan in its output, that is to
say, it remains powered during a scan of the applications program when the
status of its input may pass from turned off to powered.

The auxiliary relay declared serves as a memoriser, avoiding limits as to the
number of pulse instructions present in the applications program.

WARNING:
The value of the auxiliary relay should not be modified in any other point of the
applications program.

Syntax:

Table 3-5 Syntax of PLS Instruction

Chapter 3 Instructions Reference

10

RM, FRM - Master Relay, End of Master Relay

• RM Master Relay

• FRM End of Master Relay

Description:

The master relay instructions end of master relay instructions are used to
delimit passages of the applications programs, the logic bar of supply in these
powered or not, according to the status of the actioning line.

These instructions do not need operands since it is possible to position then
only in column 7 of the logic.

When the input of instruction RM is turned off, the logic bar of the supply is
turned off since the following logic until the logic which contains the FRM
instruction.

As these instructions always act on the logic following the one counted, it is
advisable that their position should always be as the instructions in the logic in
which they are present. This being so, the passage of applications program
delimited visually through instructions in the diagram corresponds exactly to
that controlled by the instructions, therefore avoiding bad interpretation of its
functioning.

WARNING:
The instructions CON, COB, TEE and TED contain outputs powered in the
same way without their outputs being actioned. These outputs remain powered
the same within the passage over the turned off command of a master relay,
being able to result in unwanted actionings.

Instructions of Group Moving

These instructions are used to Manipulate and transfer numerical values
between constants, simple operands or tables of operands.

Chapter 3 Instructions Reference

11

Name Description of Name Editing
Sequence

Tool Bars

MOV moving of simple operands ALT, M, V

MOP moving of parts of operands ALT, M, P

MOB moving of blocks of operands ALT, M, B

MOT moving of tables of operands ALT, M, T

MES moving of inputs or outputs ALT, M, E

AES updating of inputs or outputs ALT, M, A

CES conversion of inputs or outputs ALT, M, S

CAB load block ALT, M, C

Table 3-6 Instructions of Group Movements

Chapter 3 Instructions Reference

12

MOV - Moving of Simple Operands

OPER1 - origin operand
OPER2 - destination operand

Description:

This instruction moves the contents of simple operands, without carrying out
conversions between different types of operands, when the enabled input is
actioned.

The operand which occupies the first instruction cell (OPER 1) is the origin
operand, whose value is moved to the destination operand, specified in the
second cell (OPER 2).

If the format of the destiny operand is less than the origin, the more significant
octets are zeroed. If the movingis carried out, the output success is actioned.

If the indirect indices exceed the limits of the operands declared in the
configuration module, the moving is not carried out and the output success is
not lit up.

The moving of subdivisions of operands is not permitted. For this reason, the
instruction MOP should be used.

Chapter 3 Instructions Reference

13

Syntax of the Instruction:

Table 3-7 Syntax of the Instruction MOV

Chapter 3 Instructions Reference

14

MOP - Moving of Parts (Subdivisions) of Operands

OPER1 - origin operand
OPER2 - destination operand

Description:

This instruction moves the contents of parts of simple operands (words, octets,
nibbles, points) when the enabled input is powered. The conversion between
types of operands is not carried out, only the moving of values.

The operand which occupies the first cell of the instruction (OPER 1) is the
origin operand, whose value is moved to the destiny operand specified in the
second cell (OPER 2). The type of subdivision used in the first operand should
be the same as the second.

WARNING:
If the moving is carried out from a constant to an operand, the subdivision is
always considered a less significant equal constant to that declared in the
destination operand. Due to this characteristic, the real value to be moved
should always be declared in the origin constant to make the program clearer.

Example:

Chapter 3 Instructions Reference

15

The destination operand is declared with nibble division. Therefore, the less
significant nibble of the origin constant (with value equal to 1101 in binary, 13
in decimal) to be moved to nibble 2 of memory M0061.

Figure 3-2 Example of Instruction MOP

The remaining bits which make up the constant are ignored, that is to say, the
result of the moving will be identical using a constant %KM00013. The
example shown uses a the functioning higher value than that of the moving to
better illustrate of the MOP. For better interpretation of the program the value
%KM00013 should be used.

Chapter 3 Instructions Reference

16

Syntax:

Table 3-8 Syntaxes of the Instruction MOP

Chapter 3 Instructions Reference

17

MOB - Moving of Blocks of Operands

OPER1 - first operand of origin block
OPER2 - number of transfers to be carried out
OPER3 - control operand
OPER4 - first operand of destination block
OPER5 - number of transfers for scan

Description:

This instruction carries out the copy the value of a block of origin operands to
the destination block.

It specifies the first operand of the origin block in OPER 1 and the first
operand of the destination block in OPER 4. The total number of transfers to
be carried out is declared in parameter OPER 2, to the number of transfers for
the scan (OPER 5) should always be specified and a memory accumulated to
count the number of transfers (OPER 3).

If the origin or destination block is a table, the transfer should begin in its first
position.

If the operand format is less than the origin, the more significant octets of the
origin value are ignored. If opposite is the case, the more significant octets of
the destination are zeroed.

The number of transfers for scan is limited in 255 operands. In general, if
possible, a high number of transfers in the some scan should be avoided, to
reduce the execution time of the program.

In each MOB instruction a memory is used as control operand (OPER 3),
which should be zeroed before the first execution.

Chapter 3 Instructions Reference

18

WARNING:
The control operand should not have its contents altered in any part of the
applications program, under penalty of preventing the correct execution of the
instruction. Each occurrence of this instruction in the program should have an
operand of exclusive control, different from to rest. This operand cannot be
retentive .

When connected, the outputs of the second and third cells show, respectively,
that at least one of the component operands of the origin or destination block
has a greater address than the maximum number declared for the operand or
table used, no moving being carried out. If the value of the second operand is
negative the output origin index invalid is actioned.

The output of the first cell is actioned in the scan in which the moving is
completed.

WARNING:
The input enable should remain active until the moving is concluded. As this
instruction is executed in multiple execution cycles, it should not be jumped
while the moving is still in progress.

Syntax:

Table 3-9 Syntax of the Instruction MOB

Chapter 3 Instructions Reference

19

MOT - Moving of Tables

OPER1 - origin table or origin operand
OPER2 - table index
OPER3 - destination operand or destination table

Description:

This instruction allows the two operations: to transfer the value from one
position of the table to a simple operand or from one simple operand to a
position in the table.

The operand which occupies the first instruction cell (OPER 1) is the origin
operand, whose value is moved to the destination operand specified in the third
cell (OPER 3). OPER 2 contains the position of the table declared in OPER 1
or OPER 3.

Reading from the contents of the table:

Allows reading of the contents of a table position and loads into a memory
operand or decimal operand.

The instruction is programmed in the following way:

• OPER1 - specifies the address of the table to be read (%TM,
%M*TM, %TD)

• OPER2- specifies the position (%KM) to be read or the memory (%M)
which contains this position

• OPER3 - specifies where the contents of the table position should be
transferred to (%M, %M*M, %D, %M*D)

Chapter 3 Instructions Reference

20

If the first operand to reference a table indirectly is not specified or if the value
of the second operand is negative or greater than the last position defined for
the table, the transfer is not carried out or the output origin index invalid is
actioned. If the third operand to indirectly reference an operand is not declared,
the transfer is not carried out and the output destination index invalid is
actioned.

Writing values into the table:

It allows a constant value or the contents of a memory operand or decimal
operand to be written into a table position.

The instruction is programmed in the following way:

• OPER1- specifies the origin operand (%KM, %M, %M*M, %KD, %D,
M*D)

• OPER2- specifies the position (%KM) to be written in the table or the
memory (%M) which contains this position

• OPER3- specifies the address of the table where the contents
(%TM, %M*TM, %TD, %M*TD) are transferred to

If the first operand indirectly references an undeclared the transfer of the
contents is not carried out and the output origin index invalid is actioned. If
the value of the second operand is negative or greater than the last position
defined for the table, or if the third operand indirectly to reference a table is not
specified, the transfer of the contents is not carried out and the output
destination index invalid is actioned.

This instruction simplifies the programming of a series of algorithms involving
decodifications, sequencings, generating of curves, storing and comparison of
values, among others.

Chapter 3 Instructions Reference

21

Syntax:

Table 3-10 Syntax of the Instructions MOT

Chapter 3 Instructions Reference

22

MES - Moviment of Inputs/Outputs

OPER1 - first origin operand
OPER2 - number of octets to transfer
OPER3 - first destination operand

Description:

This instruction is used to transfer data directly between memory operands and
octets of the input and output modules bus. It is possible to carry out readings
of values of the octets of the bus or to write to it according to the operands
programmed in the instruction.

The operand which occupies the first instruction cell (OPER1) is the origin
operand, whose contents will be moved to the destination operand specified in
the third cell (OPER3). OPER2 defines the number of octets to be transferred
starting from the first origin and destination specified.

WARNING:
The number of octets to be transferred is limited to 255.

If a constant is programmed in the first cell (write the value in the bus), its
value is moved to all the octets of the buses specified for operands in the second
and third cells.

Always when the input enable is powered, one of the output of the instruction
is powered, according to the following rules.

The output origin index invalid is powered in 3 situations:

• the number of transfer specified in OPER2 is negative, zero, greater than
the maximum number of octets in the bus of the PLC used (reading of the
bus) or greater than the memories limit configured (writing to the bus)

• the first position read was greater than the maximum number of octets in
the bus of the PLC used (%M*R programmed in OPER1)

Chapter 3 Instructions Reference

23

• the first address of memory to be written is negative or greater than the last
memory address configured (%M*M programmed in OPER1)

The output destination index invalid is powered when:

• the number of transfers specified in OPER2 is greater than the memories
limit configured (reads from the bus) or greater than the maximum number
of octets in the bus of the PLC used (writes to the bus)

• the first position written is greater than the maximum number of octets in
the bus of the PLC used (%M*R programmed in OPER3).

• the first memory address to be read is negative or greater than the last
memory address configured (%M*M programmed in OPER3)

The output success is powered when the outputs origin index invalid and
destination index invalid are not powered.

This instruction is only used for special access to the bus. For its use, it is
essential to know exactly what 1/0 module is placed in the physical position of
the bus read or written to the MES and how it is accessed. As the module of
and output supplied through ALTUS have specific instructions for their access,
the MES instruction is not necessary in most applications programs.

It is not possible to write values in octets of digital modules of input or to read
values of octets of digital modules of output with the MES.

Syntax:

Table 3-11 Syntaxes of the Instruction MES

Chapter 3 Instructions Reference

24

CES - Conversion of Inputs/Output

OPER1 - origin operand
OPER2 - destination operand

Description:

This instruction is used to transfer data directly between memory operands and
octets in the bus, converting the binary values to BCD, when writing to the bus,
or BCD, for binary, when reading.

If it is required to convert the bus octets to a memory, the initial octet should be
programmed in OPER1 and the memory to receive the converted values in
OPER2. The instruction concatenates the octet value specified with the
following octet, converts from the BCD format to binary and stores the
converted value in the destination memory.

If it is required to convert value from one memory or constant memory to the
bus, the value to be converted should be specified in OPER1, and in OPER2
the initial octet to receive the values. The instruction converts the value to BCD
format end writes it to the octet specified and the following one.

If the value moved to the bus has more than 4 digits, the more significant
surplus digits are discarded.

Example:

To move the contents of %M0100 to %R0010:

• value of %M0100 = 21947, equivalent to 101010110111011 binary form

• value of %M0100 = 21947, converted to 0010 0001 1001 0100 0111 in
the BCD form

• value moved to %R0010 = 47 in the BCD form, equivalent to 0100 0111
written in the octet

• value moved to %R0011 = 19 in BCD format, equivalent to 0001 1001
written in the octet

Chapter 3 Instructions Reference

25

The instruction is always executed when the input enable is powered. The
output success is powered if the instruction is executed correctly.

The output error is powered when an invalid access is made to same operand
indirectly referenced for a memory.

Syntax:

Table 3-12 Syntaxes of the Instruction CES

This instruction is not available for the CPUs AL-3003 and AL-3004.

Chapter 3 Instructions Reference

26

AES - Update Inputs/Outputs

OPER1 - first octet of operands to update
OPER2 - number of octets update

Description:

This instruction executes an immediate updating in the memory image for the
specified operands. Its updating is identical to the scan of the 1/0 points carried
out by the executive program at the end of each scan, however with the number
of operands limited.

The first operand (OPER1) contains the first octet of operands to be updated,
while the second operand (OPER2) shows the total number of octets to update.
The operands % I (input) are read from the bus to the image memory and the
operands % S (output) are written from the image memory to the bus when the
instruction is executed.

If the number of operands to update exceeds the number of operands declared,
it is only possible to update from the type declared.

If no octet is updated from the instruction, the output success is turned off.

The instruction AES should be used only in special processing, where there is a
very fast time delay or a constant is demanded by the PLC. In relatively small
applications programs, with a short scan time and common control tasks, it
does not have to be used.

Chapter 3 Instructions Reference

27

Example:

If the PLC’s configuration is 16 input octets (%E0000 to %ED015) and 8
output octets (%S0016 to %0023), the instruction shown will update only 4
octets (%E0012 to E0015). No output octet is updated.

Syntax:

Table 3-13 Syntaxes of the Instruction AES

Chapter 3 Instructions Reference

28

CAB - Load Block

OPER1 - initial operand or table to be loaded
OPER2 - number of operands or positions of table
OPER3 - table of constants to be loaded

Description:

This instruction allows the loading of up to 255 constant values in a block of
operands or tables.

The initial operand or table to be carried is specified in the first parameter
(OPER1), the number of operands or positions of the table to be loaded in the
second operand (OPER2) and the value of the constants in the third (OPER3).

The value of the second operand should be positive, less or equal to
%KM+128.

The third operand (OPER3) is made up of a table of constant values to be
loaded. These values are declared by selecting the button Block, an editing
window being open in MasterTool. The constants are of type %KM if the type
of the first operand is %E, %S, %A, %M, %TM or they are of type %KD if
the first operand is %D or %TD. If the first operand is an octet (%E, %S or
%A), only the values of the less significant octets of each constant declared are
moved.

Also it is possible to carry out the declaration of the values of the table in
ASCII. This mode allows. In this mode it is possible to insert the addresses or
tags of operands which should represent its value at the moment when the
instruction is executed. The address or tag of operand should be keyed in
between keys ({ }).

E.g.: If %M0000 has the value 35 and that it has loaded the following text in
ASCII “Value of {%M0000}”. The text is as follows:

Chapter 3 Instructions Reference

29

Value of %M0000:00035.

When the button Block is selected the dialogue box CAB - Values is shown:

Figure 3-3 Dialogue Box CAB - Values

To carry out the editing of the constants

1. Position the cursor on the index to be edited. If it is necessary to roll the
pages, the keys PAGE DOWN and PAGE UP or the vertical roll bar can be
used.

2. Key in the constant value.

 To carry out editing in ASCII

1. Select the button Editing ASCII. The dialogue box CAB - Editing in
ASCII is shown.

Declaration of constant values table

Press the button to do ASCII
editing

Press the button to Initialize
the constant values with a
specific value

Chapter 3 Instructions Reference

30

2. Key in the text which it is required to be loaded in the constants of the CAB
and select the Ok button.

Figure 3-4 Dialogue Box CAB - Editing in ASCII

To initialize the constants with a specific value

1. Select the button Initialize. The window CAB-Initialize table is
displayed.

2. In the item Value, key in the value to be initialized in the constants.

3. In the item Initial position, key in the number of the first position to
receive the value of Initialization .

4. In the item Final position, key in the number of the last position to receive
the Initialization value.

5. Select the button Ok.

Key in the text may be attributed at constant table of
the CAB instructions.

Chapter 3 Instructions Reference

31

Figure 3-5 CAB - Initialize table

The output destination index invalid is actioned when some operand can
not be accessed or a table position does not exist. The output success is always
actioned when the instruction is executed correctly. If the output destination
index invalid is actioned, no loading of constants occurs.

The loading of the constant values is entirely carried out in one scan of the
applications program, be able to cause an excessive time cycle when it is
extended. In most parts of applications programs, the instruction CAB can only
be executed in the Initialization (loading of tables whose contents are only
read) or at some special times, not needing to be called in all the scans. In these
cases, it is recommended that it is programmed in the applications program
module of Initialization or that it is actioned only at the necessary loading
times.

Key in the value will be

Key in the first position number which
will be receive the initialization value

Key in the last position number which
will be receive the initialization value

Chapter 3 Instructions Reference

32

Syntax:

Table 3-14 Syntax of the Instruction CAB

Chapter 3 Instructions Reference

33

Arithmetic Instructions of the Group

The arithmetic instructions modify the values of numerical operands, allowing
arithmetic and logic calculations to be carried out between them. They also
allow comparison between values of operands.

Name Description of Name Editing
Sequence

Tool
Bar

SOM addition ALT, A, S

SUB subtraction ALT, A, B

MUL multiplication ALT, A, M

DIV division ALT, A, D

AND function AND binary between
operands

ALT, A, A

OR function OR binary between
operands

ALT, A, O

XOR function OR EXCLUSIVE
between operands

ALT, A, X

CAR load operands ALT, A, C

IGUAL equals ALT, A, I

MENOR less than ALT, A, N

MAIOR more than ALT, A, R

Table 3-15 Arithmetic Instructions of the Group

Chapter 3 Instructions Reference

34

SOM - Addition

OPER1 - first plot
OPER2 - second plot
OPER3 - total

Description:

This instruction carries out the arithmetic sum of operands. When the input
enabled is powered, the values of the specified operands in the first two cells
are added and the result stored in the operand of the third cell.

If the result of the operation is more or less than is allowed to be stored, the
output overflow is powered and the maximum or minimum storable value is
attributed the total variable as the result.

If the input enable is not powered, all the outputs are turned off and the value
of OPER3 is not altered.

Chapter 3 Instructions Reference

35

Syntax:

Table 3-16 Syntaxes of the Instruction SOM

Chapter 3 Instructions Reference

36

SUB - Subtraction

OPER1 - first plot
OPER2 - second plot
OPER3 - result

Description:

This instruction carries out the subtraction arithmetic between operands. When
enables is powered, the value of the operand of the second cell is subtracted
from the first cell. The result is stored in the memory specified in the third cell.

The lines of output result > 0, result = 0 and the result < 0 can be used for
comparisons and are actioned according to the result of the subtraction.

If the input enable is not powered, all the outputs are turned off and OPER3
remains unaltered.

If the result of the operation exceeds the greatest or smallest storable value in
the operand, the respective value limit is considered as the result.

Chapter 3 Instructions Reference

37

Syntax:

Table 3-17 Syntaxes of the Instruction SUB

Chapter 3 Instructions Reference

38

MUL - Multiplication

OPER1 - multiplied
OPER2 - multiplier
OPER3 - product

Description:

This instruction carries out the multiplication arithmetic of operands. When the
input enable is powered, the multiplication of the contents of the specified
operand takes place in the first cell by those specified in the second.

The result is stored in the specified memory of the third cell. If this is more than
the maximum value storable in a memory, the final result is this value and the
output overflow is powered. If the output enable is turned off, no output is lit
and OPER3 remains unchanged.

Syntax:

Table 3-18 Syntax of the Instruction MUL

Chapter 3 Instructions Reference

39

DIV - Division

OPER1 - divided
OPER2 - divider
OPER3 - quotient
OPER4 - remainder

Description:

This instruction carries out the division arithmetic of operands. When the input
enable is powered, the division of the value of the operand in the first cell by
the second takes place, the result being stored in the specified memory in the
third cell and the remainder of the operation placed in the fourth operand. The
operands of the first and second cells can be of the type memory or constant.

If the value of the second operand is zero, the output division by zero is
actioned and the maximum or minimum storable value is placed in the operand,
according to the sign of OPER1. In this case, zero will be stored in OPER4
(remainder). The outputs of the instruction are only powered if the input
enable is actioned. If it is not actioned, OPER3 and OPER4 remain
unchanged.

Chapter 3 Instructions Reference

40

Syntax:

Table 3-19 Syntax of the Instruction DIV

Chapter 3 Instructions Reference

41

AND - AND Binary between Operands

OPER1 - first operand
OPER2 - second operand
OPER3 - result

Description:

This instruction carries out the operation “and” binary between the first two
operands, storing the result in the third.

The operation is carried out point between the operands. The table to follow
shows the possible combinations of the “and” point to point operation.

point OPER1 point OPER2 point OPER3 (result)

0 0 0

0 1 0

1 0 0

1 1 1

Table 3-20 Point to Point Operations

Chapter 3 Instructions Reference

42

Example:

In this example it is required to keep the less significant value of the nibble of
%M0000, zeroing the rest of the operand. If %M0000 contains 215 (11010111
binary), the result of the “and” binary with 15 (00001111 binary) is 7
(0000011 binary).

Decimal Binary

215 00000000 11010111 (contents of %M0000)

AND 15 AND 00000000 00001111 (value of %KM+00015)

7 00000000 00000111 (result in %M0001)

Therefore, the decimal value 7 is stored in %M0001.

Syntax:

Table 3-21 Syntaxes of the Instruction AND

Chapter 3 Instructions Reference

43

OR - Or Binary between Operands

OPER1 - first operand
OPER2 - second operand
OPER3 - result

Description:

This instruction carries out the operation “or” binary between the values of the
first two operands, storing the result in the third.

The operation is carried out point to point between the operands. The table to
follow shows the possible combinations of the operation “or” point to point.

point OPER1 point OPER2 point OPER3 (result)

0 0 0

0 1 1

1 0 1

1 1 1

Table 3-22 Operations Point to Point (OR)

Chapter 3 Instructions Reference

44

Example:

In this example it is required to force the less significant nibble of %M0000 to
1, saving the value in the other nibbles. If %M000 contains 28277
(0110111001110101 binary) the result is 28287 (011011100111111 binary).

Decimal Binary

28277 01101110 01110101 (contents of %M0000)

OR 15 OR 00000000 00001111 (value of %KM+00015)

28287 01101110 01111111 (result in %M0001)

Syntax:

Table 3-23 Syntaxes of the Instruction OR

Chapter 3 Instructions Reference

45

XOR - Or exclusive between Operands

OPER1 - first operand
OPER2 - second operand
OPER3 - result

Description:

This instruction carries out the operation “or exclusive” binary between the two
first operands, storing the result in the third.

The operation is carried out point to point between the operands. The table to
follow shows the possible combinations of the operation “or exclusive” point to
point.

point OPER1 point OPER2 point OPER3 (result)

0 0 0

0 1 1

1 0 1

1 1 0

Table 3-24 Operations Point to Point (XOR)

Chapter 3 Instructions Reference

46

Example:

In this example it is required to invert the points contained in the less significant
nibble of %M0000, saving the rest of the operand. If %M0000 contains 1612
(0000011001001100 binary), the result is 16603 (0000011001000011 binary).

Decimal Binary

1612 00000110 01001100 (contents of %M0000)

XOR 15 XOR 00000000 00001111 (value of %KM+00015)

1603 00000110 01000011 (result in %M0001)

Therefore, the decimal value 1603 is stored in M001.

Syntax:

Table 3-25 Syntaxes of the Instruction XOR

Chapter 3 Instructions Reference

47

CAR - Load Operands

OPER - operand to be loaded

Description:

The instruction loaded in the operand carries the loading of the value of the
operand specified in the special internal register in the PLC, for the subsequent
use of the instructions of comparison (more than, less than, equals). The
operand remains loaded until the next instruction for loading, being able to be
used for different logics, including subsequent scan cycles.

The output success is actioned if the loading is carried out. If some indirect
access of the operand is not possible (invalid index), the output success is not
actioned.

See considerations and examples shown in the following section, Instructions
of Comparison of Operands.

Syntax:

Table 3-26 Syntax of the Instruction CAR

Chapter 3 Instructions Reference

48

Instructions of Comparison of Operands - Equals, More
than and Less than

OPER - operand to be compared

Description:

The instructions more than, less than and equals carry out comparisons of the
operand specified with the value loaded previously in the internal register with
the instruction CAR (Load Operand), supplying the result of the comparison in
its outputs. If any indirect access is invalid, the output is deactioned.

For example, the instruction more power to its output if the value of the
operand present in the last active CAR instruction is greater than the value of
its operand. The equals instructions and less than work in an identical way,
changing only the type of the comparison carried out.

If the operands to be compared are of the same type, they are compared
according to their storage format (taking their signs into consideration). If they
are not of the same type, they are compared point to point (as binary values
without sign).

WARNING:
It is suggested that operands of equal types are always compared to avoid
wrong interpretation in the results when the operands have negative values. C.f.
following example.

Chapter 3 Instructions Reference

49

Example:

Figure 3-6 Example of Instructions of Comparison

As the types of operands are different (%M and %D), the comparison is carried
out point to point, without taking the arithmetic signs into consideration. Due to
this fact, if %M0012 has value -45 and %D0010 has the value +21, the
operand %A0003.2 will be powered, as if the value of %M0012 is greater than
%D0010, which actually is not.

%M0012 =-45 1111 1111 1101 0011

%D0000 =+21 0000 0000 0000 0000 0000 0000 0010 0001

To consider the signs in the comparison of the example, the value of the
memory operand should be converted to a decimal, using this last in the
instruction CAR, as shown in the logic to follow:

The value 111 111 1101 0011 (%M0012) is greater than 100001 (%D0010) in
the comparison point to point. Showing it as a negative value.

Figure 3-7 Example of the Instructions of Comparison

Chapter 3 Instructions Reference

50

WARNING:
Due to the processing order or the instructions in the logic, care should be taken
in positioning the instructions of comparison to avoid errors in interpretation in
its functioning. C.f. section Logics in this same chapter and the example to
follow.

Example:

Figure 3-8 Incorrect Use of the Instruction CAR

In the logic shown, it is required to compare the value of the operands
%M0000, %M0001, %M0002 and %M0003 with the constants %KM00000,
%KM00001, %KM00002 and %KM00003, respectively. However, the
functioning. As the processing of the logic takes places in columns, at the end
of the execution of column 0 the value of %M0003 will be loaded to the
comparisons in column 1. In reality, only the value of the operand %M0003
will be compared with the constants present in column 1.

For the required functioning, the logic should be programmed in the following
way:

Chapter 3 Instructions Reference

51

Figure 3-9 Correct Use of the Instructions CAR

WARNING:
To avoid wrong interpretations in the functioning of the comparison, it is
suggested to use only one instruction CAR for the column of the logic.

Syntax:

Table 3-27 Syntax of the Instructions More than, Equals and Less than

Chapter 3 Instructions Reference

52

Instructions of Group Counters

The counter instructions are used to carry out counts of events or the time of
the applications program.

Name Description of Name Editing
Sequence

Tool
Bar

CON simple counter ALT, C, N

COB bidirectional counter ALT, C, B

TEE timer in the powering ALT, C, T

TED timer in the turning off ALT, C, D

Table 3-28 Instructions of Group Counters

Chapter 3 Instructions Reference

53

CON - Simple Counter

OPER1 - counter
OPER2 - limit of count

Description:

This instruction carries out simple counts, with the increase of one unit in each
actioning.

The instruction simple counter has two operands. The first always of type %M,
specifies the memory which writes up the events. The second establishes the
value limit of the counting to power the of the upper cell and can be of type
%KM or operand %M referenced indirectly.

If the input active is turned off, the memory in OPER1 is zeroed, the output
no limit powered and the output limit turned off.

When the input active is powered, each transition of connection in the input
increase raises the value of the operand counter (OPER1) by one unit.

If the value of the first operand is equal to the second operand, the output limit
is powered. The counter variable is not increased with new transitions in the
input increment, staying with the value limit. If it is less, the output limit is
turned off. The logic status of the output no limit is exactly the opposite of the
output limit, being the deactivated instruction.

In case of invalid indirect access to the second operand of the instruction, the
output no limit is powered.

WARNING:
With the input active deactivated, the output no limit always remains
powered, also when the instruction is in a command passage through the
instruction RM (master relay). Due to this care should be taken not to carry out
unrequired actionings in the logic.

Chapter 3 Instructions Reference

54

Syntax:

Table 3-29 Syntax of Instruction COM

Chapter 3 Instructions Reference

55

COB - Bidirectional Counter

OPER1 - counter
OPER2 - count step
OPER3 - count limit

Description:

This instruction carries out counts with the value for increase or decrease
defined for an operand. The bidirectional counter instruction allows counts in
both directions, that is, increases or decreases the contents of type memory.

The first operand contains the accumulated memory of the value counted while
the second specifies the value of the increase or decrease required. The third
operand contains the value limit of the count.

The count always takes place when the input active is powered and the inputs
increase or decrease have a transition from disconnected to connected. If
both the inputs have the transition in the same scan cycle of the program, there
is no increase nor decrease in the value of the memory declared in OPER1.

If the value of the increase is negative, the input increase causes decreases and
the input decrease causes increases in the value of the count.

If the value of the first operand makes more than or equal to the third operand,
the output upper limit is powered, not being increased.

If the value of the first operand is equal to or less than zero, the output lower
limit is actioned, zero being stored in the first operand.

If the value of the first operand is between zero and the limit, the output no
limit is actioned. If the input active is not powered, the output lower limit is
powered and the first operand is zeroed.

In case of invalid indirect access to any one of the operands of the instruction,
the outputs lower limit is powered.

Chapter 3 Instructions Reference

56

WARNING:
With the input active deactivated, the output lower limit always remains
powered, the same when the instruction is in a passage commanded by the
instruction RM (master relay). Due to this care should be taken not to carry out
unrequired actionings in the logic.

Syntax:

Table 3-30 Syntax of the Instruction COB

Chapter 3 Instructions Reference

57

TEE - Timer in the Powering

OPER1 - time accumulator
OPER2 - time limit (tenths of seconds)

Description:

This instruction carries out time counts with the powering of its two actioning
inputs.

The instruction TEE has two operands. The first (OPER1) specifies the
accumulated memory of the time count. The second operand (OPER2) shows
the maximum time to be accumulated. The time count is carried out in tenths of
seconds, that is to say, each unit increased in OPER1 corresponds to 0.1
seconds.

While the inputs free and active are powered simultaneously, the operand
OPER1 is increased by each tenth of a second. When OPER1 is more than or
equal to OPER2, the output Q is powered and -Q turned off, OPER1 keeping
the same value as OPER.

In the deactioning of the input free, there is an interruption in the count time,
OPER1 keeping the same value. Deactioning the input active, the value in
OPER1 is zeroed.

If OPER2 is negative or the indirect access is invalid, OPER1 is zeroed and the
output - Q is powered.

The logic status of output Q is exactly the opposite of the output -Q being the
deactivated instruction.

WARNING:
With the input active deactivated, the output -Q always remains powered, the
same when the instruction is in a passage commanded by the instruction RM
(master relay). Due to this care should be taken not to carry out unrequired
actionings in the logic.

Chapter 3 Instructions Reference

58

Diagram of Times:

Figure 3-10 Diagram of Times of the Instruction TEE

Syntax:

Table 3-31 Syntax of the Instruction TEE

Chapter 3 Instructions Reference

59

TED - Timer in the Turning Off

OPER1 - time accumulator
OPER2 - time limit (tenths of seconds)

Description:

This instruction carries out the time counts with the turning off its actioning
input.

The instruction TED has two operands. The first (OPER1) specifies the
accumulated memory of the time count. The second operand (OPER2) shows
the maximum time to be accumulated. The time count is carried out in tenths of
seconds, that is to say, each unit increased in OPER1 corresponds to 0.1
seconds.

While the input active is powered and the input block turned off, the operand
OPER1 is increased by each tenth of a second. When OPER1 is greater than or
equal to OPER2, the output Q is turned off and -Q powered, OPER1 keeping
the same value as OPER2.

The output Q always powered when the input active is powered and OPER1
is less than OPER2.

Actioning the input block, there is an interruption in the time count, while
deactioning the input active, the time of the accumulator is zeroed and the
output Q is deactioned.

If OPER2 is negative or the indirect access is invalid, OPER1 is zeroed and the
output Q is powered.

The logic status of output -Q is exactly the opposite of the output Q, being the
deactivated instruction.

WARNING:
With the input active deactivated, the output - Q always remains powered, the
same when the instruction is in a passage commanded by instruction RM
(master relay). Due to this care should be taken not to carry out unrequired
actionings in the logic.

Chapter 3 Instructions Reference

60

Diagram of Times:

Figure 3-11 Diagram of Times of Instruction TED

Syntax:

Table 3-32 Syntax of the Instruction TED

Chapter 3 Instructions Reference

61

Group Converter instructions

This group has instructions which allow the conversion between the formats of
storing the values used in the operands of the applications program and
accesses to analog modules in the input and output bus.

Name Description of Name Editing
Sequence

Tool
Bar

BIN/DEC conversion binary-decimal ALT, V, B

DEC/BIN conversion decimal-binary ALT, V, D

ANA/DIG conversion analogue-digital ALT, V, A

DIG/ANA conversion digital-analogue ALT, V, G

Table 3-33 Group Converter Instructions

Chapter 3 Instructions Reference

62

B/D - Conversion Binary-Decimal

OPER1 - origin
OPER2 - destination

Description:

This instruction converts values stored in binary format, contained in memory
operands (%M), to decimal format (BCD), storing them in decimal operands
(%D).

The binary value contained in the first operand (OPER1) is converted to
decimal value and stored in the second operand (OPER2). The output success
is actioned and the conversion is carried out correctly. If any invalid indirect
access happens to the operand, the output success is not powered.

Syntax:

Table 3-34 Syntax of the Instruction B/D

D/B - Conversion Decimal-Binary

OPER1 - origin

Chapter 3 Instructions Reference

63

OPER2 - destination

Description:

This instruction converts values stored in decimal format, contained in decimal
operands (%D), to binary format, storing them in memory operand (%M).

The decimal value contained in the first operand (OPER1) is converted to
binary value and stored in the second operand (OPER2). The output success is
actioned if the conversion is correctly carried out. If any invalid indirect access
to the operand happens, the output success is not powered.

If the value converted results in a value greater than the maximum storable in
operands %M, the output success is not powered, the limit value being stored
in the destination operand. In this case, the output overflow is powered.

Syntax:

Table 3-35 Syntax of the Instruction D/B

A/D - Conversion Analog - Digital

OPER1 - address of module in the bus/number of channels to convert
OPER2 - first operand to receive the converted value

Description:

This instruction converts the values read from an analog input module to
numerical values stored in operands.

Chapter 3 Instructions Reference

64

It is possible to read 1 or 8 channels by changing only the specification of the
first operand, which shows the address in the bus occupied by module A/D.
This module should be specified in the declaration of the bus, carried out in
MasterTool. The address to be programmed in OPER1 can be obtained directly
in MasterTool. The values converted are placed in operands of type memory,
defined in OPER2.

The conversion is carried out only if the input enable is powered.

If OPER1 is with subdivision of type point (%RXXXX.X), the conversion is
only carried for the channel of the module relative to the point. The points .0 to
.7 of the operand correspond to the channels of the module, respectively. In this
format, the execution time for the instruction is significantly less than the
conversion of the 8 channels, being suitable, for example, for use in modules of
program E018, actioned for time interruption.

If OPER1 is specified as %RXXXX (conversion of 8 channels), the converted
values are placed in the declared memory in OPER2 and in the 7 subsequent
memories.

If OPER1 is specified as %RXXXX.X (conversion of 1 channel), the value
already converted is placed in the declared memory in OPER2.

The modules available to carry out the conversion A/D are shown as follows.
The values converted for the instruction belong to a track related to the
characteristic of each module:

Chapter 3 Instructions Reference

65

AL-1103 (10 bits): values from 0000 to 1023

• AL-1116 (12 bits): values from 0000 to 4095

• AL-1119 and QK1119 (12 bits): values from 0000 to 4095

• QK1136 (12 bits): values from 0000 to 3999, with indication of over flow
(4000 to 4095)

• AL-1139 e QK1139 (12 bits): values from 0000 to 3999, with indication of
over flow (4000 to 4095)

The output of error for the instruction is activated in some of he following
situations:

• module declared in the bus is invalid for the instruction (it is not one of the
modules previously related)

• attempt to access the operands not declared

• conversion error (except AL-1103)

Syntax:

Table 3-36 Syntax of Instruction A/D

This instruction is not available for the CPUs AL-3003, AL-3004, PL101,
PL102, PL103, PL104 and PL105.

Chapter 3 Instructions Reference

66

D/A - Conversion Digital - Analog

OPER1 - first operand with the values to be converted
OPER2 - address of module in bus/number of channels to convert

Description:

This instruction converts the numerical values of memories to analog signals.
The values are converted through cards of analog output AL-1203, AL-1214,
AL-1222 or QK1222 being possible to convert from 1 or 4 channels using only
one D/A instruction.

The first operand specifies the first memory with the value to convert.

The second operand indicates the address of the D/A module in the module bus.
The module should be specified in the declaration of the bus, carried out in
MasterTool. The address to be programmed in OPER2 can be obtained directly
through MasterTool.

The conversion is achieved only if the input enable is energized.

If OPER2 is specified with subdivision of type point (%RXXXX.X), the
conversion is carried out by the operand declared in OPER1 to the channel of
the module corresponding to the point. The points .0 to .3 of the operand
correspond to the channels 0 to 3 of the module, respectively.

If OPER2 is specified as %RXXXX (conversion of 4 channels), the values to
be converted are obtained from the memory declared in OPER1 and 3
subsequent ones.

The modules available to carry out the D/A conversion are shown as follows.
The values converted by the instruction belong to a track related to the
characteristic of each module:

Chapter 3 Instructions Reference

67

Output in Tension

Module Resolution Normalization Track

AL-1203 10 bits not used 0000 to 1000

AL-1214 10 bits not used 0000 to 1000

AL-1222, QK1222 12 bits disconnected 0000 to 4000

QK1222, QK1222 12 bits connected -2000 to +2000

Table 3-37 Instruction D/A - Output in Tension

Output in Current

Module Resolution Normalization Track

AL-1203 10 bits not used 0000 to 1000

AL-1214 10 bits not used 0000 to 1000

AL-1222, QK1222 11 bits disconnected 0000 to 2000

Table 3-38 Instruction D/A - Output in Current

The values of AL-1222 and QK1222 converted still depend the input
normalize , which converts symmetrical values when powered. This becomes
useful when it is necessary to work with negative values, for example in the
tension track of +/-10V.

There is no Normalization for modules AL-1203 and AL-1214, only for AL-
1222 and QK1222. However, the Normalization is only possible for operation
in tension mode.

WARNING:
In current mode the input normalize should not be powered.

The AL-1222 and QK1222 can work with the 4 outputs in tension mode or
current mode, or the two modes simultaneously. The selection of the operation
mode is achieved by the user through the programming of the addressing of the
module in OPER2:

• If %RXXXX is even, convert current.

• If %RXXXX is odd, convert tension.

Chapter 3 Instructions Reference

68

Example:

If the module is placed in the address %R0024 of the bus, if the instruction is
programmed with %R0024, the AL-1222 and QK1222 will operate in current
mode. If it is programmed with %R0025, it will operate in tension mode.

WARNING:
The instruction cannot be jumped during the execution of the applications
program under penalty of the values sampled being incorrect.

The error output of the instruction is activated in some of the following
situations:

• module declared in the bus is invalid for the instruction (is not one of the
modules previously related)

• attempt to access the operands not declared

Syntax:

Table 3-39 Syntax of the Instruction D/A

This instruction is not available for the CPUs AL-3003, AL-3004, PL102,
PL103, PL104 and PL105.

Chapter 3 Instructions Reference

69

General Group Instructions

The general group instructions allow the testing and actionings of points
indirectly, implementations of status machines, calls for procedures and
functions, and writing and reading of operations in ALNET II.

Name Description of the Name Editing
Sequence

Tool
Bar

LDI connect or disconnect indexed
points

ALT, G, L

TEI test of status of indexed points ALT, G, T

SEQ sequencer ALT, G, S

CHP call procedure module ALT, G, P

CHF call function module ALT, G, F

ECR write operands to another PLC ALT, G, E

LTR read operands from other PLC ALT, G, T, T

LAI free updating of images ALT, G, I

Table 3-40 General Group Instructions

Chapter 3 Instructions Reference

70

LDI - Connect/Disconnect Indexed

OPER1 - address of point to be connected or disconnected
OPER2 - address lower limit
OPER3 - address upper limit

Description:

This instruction is used to connect or disconnect indexed points for a memory,
delimited by operands of upper and power limit.

The first operand specifies the memory whose contents reference the auxiliary
operand, input or output to be connected or disconnected. It should be declared
as the operand of indirect access to the operand %E or %A (%MXXXX*E or
%MXXXX*A). The same when the instruction is used to connect or disconnect
points of output (%0), the representation in this operand will be as indirect
access to the input (%MXXXX*E).

The second operand the address of the first valid output or auxiliary relay in the
instruction. It should be specified with subdivision of point (%RXXXX.X,
%SXXXX.X or %AXXXX.X).

The third operand specifies the address of the last output relay or valid help in
the instruction. It should be specified with subdivision of point (%EXXXX.X,
%SXXXX.X or %AXXXX.X).

If the inputs connect or disconnect will be actioned, the point specified by
the value contained in the memory operand (OPER1) is connected or
disconnected if there is a limit for OPER2 and OPER3 in the addresses areas.
For example, if these operands correspond to %S0003.3 and %S0004.5,
respectively, this instruction only acts for the elements of %S0003.3 to
%S0003.7 and from %S0004.5.

Chapter 3 Instructions Reference

71

If the relay or help pointed at the memory index is outside the defined limits for
the defined limits for the parameters of the second and third cells, the output
upper index invalid or lower index invalid is connected. The output of
the first cell is actioned if any one of the inputs connect or disconnect is
powered and the access is correctly carried out.

If the inputs remain deactioned, all the outputs of the instruction remain turned
off.

If both the inputs are powered simultaneously, no operation is carried out, and
all the turned off.

In OPER1 a value which specifies the required point should be loaded to
connect or disconnect, according to the following formula:

VALUE OPER1 = (OCTET*8) + POINT

Example:

For example, if S0010.5 is the point requires to be connected indirectly, then:

OCTET = 10

POINT = 5

VALUE OPER1 = (10*8) + 5 = 85

The value to be loaded in OPER1 is 85.

WARNING:
This instruction allows the points of the operands %E to be connected or
disconnected indirectly superimposing the value of the scan of the input
modules after their execution.

Chapter 3 Instructions Reference

72

Syntax:

Table 3-41 Syntaxes of the Instruction LDI

Chapter 3 Instructions Reference

73

TEI - Test of Indexed Status

OPER1 - address of point to be tested
OPER2 - address lower limit
OPER3 - address upper limit

Description:

This instruction is used to test the status of the points indexed for a memory,
delimited for operands of lower and upper limit.

The first operand specifies the memory whose contents reference the auxiliary
operand or output relay to be tested. The operand %E or %A (%MXXXX*E or
%MXXXX*A) should be declared as the operand of indirect access. The same
when the instruction is used to test output points (%S), the representation of
this operand will be as indirect access to the input (%MXXXX*E).

The second operand specifies the address of the valid output or auxiliary relay
in the instruction. It should be specified with the subdivision of point
(%EXXXX.X, %SXXXX.X or %AXXXX.X).

The third operand specifies the address of the last a valid output or auxiliary
relay in the instruction. It should be specified with the subdivision of point
(%EXXXX.X, %SXXXX.X or %AXXXX.X).

If the input enable is powered, the status of the relay or auxiliary specified for
the value contained in the memory index (OPER1) is examined. According to
whether they are 1 or 0, the output answer is connected or not.

The point indexed by memory is tested if it is in the area of addresses limited
for OPER2 and OPER3. For example if these operands corresponds to
%S0003.3 and %S0004.5, respectively, this instruction only acts for the
elements of %S0003.3 to %S0003.7 and from %S0004.0 to %S0004.5.

Chapter 3 Instructions Reference

74

If the relay or auxiliary pointed at the memory index is outside the limits
defined by the parameters of the second and third cells, the output upper
index invalid or lower index invalid is connected the output of the first
cell disconnected. This verification is only carried out at the moment when the
input enable is powered.

The calculation of the value to be stored in the first operand, to reference the
required point, is the same specified in the instruction LDI.

Syntax:

Table 3-42 Syntaxes of the Instructions TEI

Chapter 3 Instructions Reference

75

SEQ - Sequencer

OPER1 - table of conditions or first table of statuses
OPER2 - index of the table(s) (current status)
OPER3 - operand base of the first series of conditions
OPER4 - operand base of the second series of conditions

Description:

This instruction allows the programming of complex sequencer with specific
conditions of evolution for each status. Its form of programming is similar to
“state machine”.

The instruction can be executed in two modes: the 1000 mode and the 3000
mode. When the input mode is turned off, the instruction is executed in 3000
mode. In the 3000 mode more complex sequences can be programmed.

1000 Mode:

In this mode a fixed sequence of evolution of the statuses occurs. The evolution
always happens from the current status to the following one, and from the last
to the first.

The first operand specifies a table where each position contains the address of
an auxiliary operand point which is tested as a condition of evolution for the
next status.

The second operand specifies a memory which stores the current status and
serves from index to a specified table in the first operand.

The third operand is irrelevant, however an operand of type memory or
auxiliary should be specified in this cell, since MasterTool achieves the
consistency according to the 3000 mode.

The fourth operand is irrelevant, however it should be specified in an operand
of type memory or auxiliary in this cell, since MasterTool achieves consistency
in accordance with the 3000 mode.

Chapter 3 Instructions Reference

76

When the input enable is turned off, the outputs pulse and invalid index are
turned off, independent of any other condition. When the input enable is
powered, the pulse output is normally powered, and the output invalid index
is normally turned off.

Beyond this, when the input enable is powered, the table position (OPER1)
indexed by the current status (OPER2) is accessed and the auxiliary operand
point referenced in this table position is examined. If this point is powered, the
contents of OPER2 is increased (or zeroed, if it is pointed at the last table
position OPER1) and a turning off pulse occurs in the output pulse with the
duration of a program cycle. If the point examined is turned off nothing
happens and the memory value in OPER2 remains unchanged.

The output invalid index is activated if the memory OPER2 (current status)
contains a value which indexes a non-existent position in the table specified in
OPER1. This can happen by modifying the memory OPER2 at one point of the
applications program outside the instruction SEQ (in the Initialization of
OPER2, for example). Care should be taken to define and initialize the table
specified in OPER1 with the legal values.

The values in decimal format which specify the points of auxiliary operands
which have to be tested as conditions of evolution should be loaded into the
table specified in OPER1. The calculation of these values is specified through
the equation:

VALUE = (address of the operand *8) + address of the subdivision

Example:

If %A0030.2 is the point which it is required to use as a condition of evolution
starting from the status 4, then:

Address of operand = 30

Address of subdivision = 2

VALUE = (30 * 8) + 2 = 242

The value to be loaded in position 4 of the table OPER1 should be 242 so that
the point %A0030.2 causes the evolution for the next status, that is the status 5
(or the status 0, if the table has 5 positions).

Chapter 3 Instructions Reference

77

3000 Mode:

In this mode it is possible to define the evolution sequence and choose one of
two paths starting from the current status. Therefore, 2 degrees of freedom are
offered in relation to the 1000 mode, allowing more complex status machines to
be used.

The first operand specifies the first of the two subsequent tables that are used
for each instruction. The two table have to be the same size. Each position of
the first table contains the next status if the condition associated to operand 3 is
powered. Each position of the second table contains the next status if the
condition associated to the operand 4 is powered.

The second operand specifies a memory which shows what the current status is
and serves as an index for the tables specified in the first operand.

The third operand specifies an operand which serves from base to determine the
condition of evolution starting from the status OPER2 to the status indexed for
OPER2 in the first table.

The fourth operand specifies an operand which serves from base to determine
the condition of evolution starting from the status OPER2 for the status
indexed for OPER2 in the second table.

When the input enable is turned off, the outputs pulse and invalid index are
turned off, independent of any other condition. When the input enable is
powered, the pulse output is normally powered, and the output invalid index
is normally turned off.

After this, when the input enable is powered, the instruction searches the value
of the memory OPER2 (current status) and tests the respective condition of
evolution with base in OPER3. If this condition is powered, the operand
OPER2 is loaded with a new status, indexed through operand OPER2 in the
first table specified for OPER1. If the condition of evolution associated with
OPER2 and with the base in OPER3 is turned off, it tests the evolution
condition associated to OPER2 and with base in OPER4. If this last condition
is powered, the operand OPER2 is loaded with a new status, indexed through
its own operand OPER2 in the second table specified for OPER1. If at least
one of the 2 conditions above are powered, a status transition occurs, and a
turning off pulse with the duration of an applications program cycle takes place
in the pulse output of the instruction. If neither of the 2 conditions are
powered, nothing happens and the value of memory OPER2 (current status)
remains unchanged, as well as the pulse output continuing powered.

Chapter 3 Instructions Reference

78

The output invalid index is activated if the memory OPER2 contains a value
which indexes a non-existent position in the tables specified in OPER1. This
can happen by modifying the memory OPER2 in one point of the applications
program outside of the instruction SEQ (in the Initialization of OPER2, for
example) or in the appropriate SEQ instruction, if any of the positions of the
tables specified in OPER1 contain invalid values for being the next status. Care
should be taken to define the 2 tables specified for OPER1 with the same size,
and they should be initialized with legal values (example: if the tables have 10
positions, only values between 0 and 9 should be loaded in positions of this
table, since only these can have legal status.

The conditions of evolution associated to the current status (OPER2) are
determined with base in OPER3 (next status is loaded starting from the first
table) or with base in OPER4 (next status is loaded starting from the second
table. Knowing that the operands OPER3 and OPER4 are of memory type (16
bits) or of auxiliary type (8 bits), suppose the following is the case:

ESTADO = contents of operand OPER2 (current status)

END3 = address of OPER3

END4 = address of OPER4

END1 = address of point to be tested, with base in OPER3

SUB1 = subdivision of point to be tested, with base in OPER3

END2 = address of point to be tested, with base in OPER4

SUB2 = subdivision of point to be tested, with base in OPER4

The points tested as evolution condition associated to each table are:

M<END1>.<SUB1> or A<SUB1> (first table) and M<END2>.<SUB2> or
A<END2>.<SUB2> (second table)

Chapter 3 Instructions Reference

79

where:

END1 = END3 + STATUS/16 (if operand %M)

END1 = END3 + STATUS/8 (if operand %A)

SUB1 = REST (STATUS/16) (if operand % M)

SUB1 = REST (STATUS/8) (if operand % A)

END2 = END4 +STATUS/16 (if operand % M)

END2 = END4 + STATUS/8 (if operand % A)

SUB2 = REST (STATUS/16) (if operand % M)

SUB2 = REST (STATUS/8) (if operand % A)

Example:

They may be:

OPER1 = %TM000

OPER2 = %M0010

OPER3 = %M0100

OPER4 = %A0020

Where:

%TM000 Position Value

000 00001

001 00002

002 00004

003 00001

004 00000

Chapter 3 Instructions Reference

80

%TM001 Position Value

000 00001

001 00003

002 00001

003 00004

004 00000

%M0010 = 00001

%M0100 XXXXX

%M0101 XXXXX

%M0102 XXXXX

%M... ...

%A0020 XXXXX

%A0021 XXXXX

%A0022 XXXXX

%A... ...

Then the evolution starting from status 1 are:

For the first table:

• 100 + 1/16 = 100

• rest (1/16) = 1

• point to be tested = %M0100.1

For the second table:

• 20 + 1/8 = 20

• rest (1/8) = 1

• point to be tested = %A0020.1

Chapter 3 Instructions Reference

81

Based on the conditions of %M0100.1 and %A0020.1 we have, starting from
one of the tables, the new status of the operand %M0010:

%M0100.1 %A0020.1 %M0010 Observation

0 0 00001 Change of status Does not
have a Change of status

0 1 00003 Change of status according to
%TM001

1 0 00002 Change of status according to
%TM000

1 1 00002 Change of status according to
TM000 (OPER 3 has priority

over OPER4).

Syntax:

Table 3-43 Syntax of the Instruction SEQ

Chapter 3 Instructions Reference

82

CHP - Procedure Module Call

OPER1 - name of module to call
OPER2 - number of module to call

Description:

This instruction carries out the diversion of the processing of the current
module to the Procedure module specified in their operands, if it is present in
the PLC. At the end of the execution of the module called, the processing
returns to the instruction following the CHP. There is no passing of parameters
to the module called.

The first operand (OPER1) is documentational and specifies the name of the
module to be called. The second operand (OPER2) specifies the number of this
module, the fact that the module called is of type procedure being implicit.

If the module called does not exist, the output success is turned off and the
execution continues normally after the instruction. The name of the module is
not considered for the PLC for the call but only its number. If there is a module
P with the same number as the module called, however with different name, this
same module is executed like this.

C.f. section Use of Modules P and F in chapter 2 of this manual.

Chapter 3 Instructions Reference

83

Example:

Syntax:

Table 3-44 Syntax of CHP Instruction

Chapter 3 Instructions Reference

84

CHF - Function Module Call

OPER1 - name of module to call
OPER2 - number of parameters to send
OPER3 - number of parameters to return
OPER4 - number of module to call
OPER5 - list of parameters to send
OPER6 - list of parameters to return

Description:

The instruction the function Module carries out diversion of the processing of
the current module to the module specified, if this is present in the PLC. At the
end of the execution of the module called, the processing returns to the
instruction following the CHF.

The name and number of the module should be declared as operands OPER1
and OPER4 respectively, the fact that the module called is of function type
being implicit. If the module called does not exist in the controller, the
execution continues normally after the call instruction, with the output
succeeded disconnected from it. The name of the module is not taken into
consideration by the PLC, being in the applications program only as a
documentational reference, only its type and number being taken into
consideration for the call. If there is a module F with the same number called
but a different name, this module is executed.

The passing of values of operands (parameters) to the module called and vice-
versa after its execution. In the fifth cell of the instruction (OPER5) a list of
operand to be sent to the module called is specified. Before the execution of the
module, the values of these operands are copied to the operands specified in the
list of parameters of the input of the module F, declared in the MasterTool
option Parameters when it was programmed.

After calling for the execution of module F, the values of the operands declared
in the list of parameters of output (option MasterTool Parameters in its
programming) are copied to the operands declared in the list of operands to

Chapter 3 Instructions Reference

85

return from the instruction CHF (OPER6). Having finalised the copy of the
return, the processing continues in the instruction following the call.

WARNING:
MasterTool does not achieve any consistency in relation to the operands
programmed as parameters, as much in the CHF instruction as in module F.

The list of operands to be sent to module F should count the same number of
operands with the same type of them declared as input parameters of the
module, so that the copy of their values is correctly made. The copy of the
operands is carried our in the same order in which they are arranged in the list.
If one of the list has fewer operands in relation to another, the values of the
surplus operands are not copied. If the operands have different types, the copy
of the values is carried out with the same rules used in the instruction MOV
(simple moving of operands). This principal is also valid for the list return
parameters of Module F.

The passing of parameters is carried out with the copy of values of declared
operands (parameter passing for value), although these operands still remain in
overall use, usable for any module present in the PLC. The F module can be
programmed in generic form, to be re-used in different applications programs
as new instructions. It is advisable that they use their own operands, not used
for any other module present in the applications program, avoiding inadvertant
alteration in operands used in other modules.

The passing of simple operands and constants for module F is possible. The
passing of tables as parameters is not permitted, due to the long time that is
needed to copy the contents of module F. Meanwhile, the address of a table can
be passed to Module F contained in an operand memory and indirect access to
the table is carried out in this module.

It’s not possible to pass operands with subdivisions for module F , for example
%M004.2, %A0021n1, etc. Only simple operands should be used.

Chapter 3 Instructions Reference

86

To carry out the editing of parameters

1. Declare the number of parameters to send and return in OPER2 and
OPER3, limited to 10 for each one (%KM + 00000 to %KM + 00010).

2. Select the button Input. The window CHF - Input Parameters.

3. Place the cursor on the index to be editing and key in the address or tag of
the required operand for that position.

4. Repeat step until all the operand used as input parameters have been edited.

5. Select button Ok.

6. To edit the output parameters of the CHF, repeat step 2 selecting the button
Output, and after repeat steps 3, 4 and 5.

Figure 3-12 Dialogue Box CHF - Input Parameters

C.f. section Use of Modules P and F in chapter 2 of this manual.

If the value of OPER2 or OPER3 is more than 10, MasterTool considers such
a value as equal to 10 (%KM + 00010).

Key in the used operands as
input parameters

Chapter 3 Instructions Reference

87

 Example:

Syntax:

Table 3-45 Syntax of Instruction CHF

Chapter 3 Instructions Reference

88

ECR - Write from Operands to another PLC

OPER1 - address of remote controller node
OPER2 - address of remote controller sub-network
OPER3 - control operand of instruction
OPER4 - editing window of operands

Description:

This instruction carries out the reading of values of operands of the controller
where it is being executed in operands present in other PLCs, through the
communication network ALNET II. For its use, therefore, it is essential that the
controller that executes is connected to other PLCs through ALNET II.

Through ECR it possible to transfer values of individual operands or of groups
of operands, being possible to program up to 6 different communications in one
instruction.

The ECR can be programmed for priority, send an urgent communication,
processed through “bridges” and for the PLC destination of the common
communications. The ECR priority allows only one communication, being
useful for the signalling of alarms or emergency situations between PLCs.

To program the instruction, it should declare in the first and second cells
(OPER1 and OPER2), the address of the node and sub-network of the
programmable controller destination which will receive the values written.

These operands are programmed as constants of memory type (%KM) and
have the same significance as the address configured in the options
Communication, Address, Sub-network and
Communication, Address, Node.
The table 3-46 shows the values possible for node addresses in the sub-
network.

Chapter 3 Instructions Reference

89

Sub-network Node Type of Communication

000 000 point-to-point

000 001 a 255 ALNET I

001 a 063 001 a 031 ALNET II wich one node

100 001 a 015 ALNET II with multicast group in all the
sub-networks

101 a 163 001 a 015 ALNET II with multicast group in a specific
sub-network

200 xxx ALNET II in broadcast for all the sub-
network

201 a 263 xxx ALNET II in broadcast for a specific
sub-network

Table 3-46 Addresses of Node and Sub-network

The address of the Sub-network equal to 000 show that the communication is
carried out using ALNET I and that the value contained in option Node shows
the node that receives the communication.

The address of node 000 determines that all the PLCs in the network may hear
and respond to the command sent. The specification of the address of the node
in the band from 001 to 254 ensures that only the corresponding PLC identifies
and responds to the command.

The address of the sub-network between the values 001 and 063 shows that the
communication is carried out using ALNET II and that it is aimed at a single
node indicated in the option Node (global multicast).

The sub-network address 100 shows that the communication is carried out
using ALNET II and that it is aimed at all the nodes of the sub-network shown
in the option Sub-network less than 100 which belongs to the multicast
group specified in option Node (local multicast).

The address of the sub-network 200 shows that the communication is carried
out using ALNET II and is aimed at all the nodes of all the sub-networks
(global broadcast). The value contained in the option Node is not relevant in
this option.

Chapter 3 Instructions Reference

90

The address of the sub-network between 201 and 263 shows that the
communications is carried out using the ALNET II and aimed at all the nodes
of the sub-network shown in the option Sub-network less 200 (local
broadcast). The value contained in option Node is not relevant in this option.

In the third cell (OPER3) a decimal operand (%D) should be declared to be
used for its own instruction in the control of its processing.

WARNING:
The operand %D programmed in OPER3 cannot have its value modified at no
other point of the applications program for the correct functioning of the ECR.
Consequently, each new instruction ECR or LTR inserted in the applications
program should use an operand %D different from the rest. This operand
cannot be retentive .

To carry out the editing of the ECR parameters

1. Select button PLC. The dialogue box ECR - Parameters is displayed.

Figure 3-13 Dialogue Box ECR - Parameters

This dialogue box is divided in two parts: LOCAL PLC and REMOTE PLC,
which each has three columns. In the three columns which make up the local
PLC it is possible to define the operand or the group of operands whose values
are sent to the programmable controller destination. The operands which will
receive the value in the destination controller are declared, being able to be
different from the local PLC. The dialogue box has six lines, allowing the
definition of up to six different communications in the same ECR instruction
for the same controller destination.

Chapter 3 Instructions Reference

91

The item Priority Message allows the editing of a priority ECR when it is
selected.

In the editing of a priority ECR, only the line for the editing of the
communication, recognised by the initial P/1 is valid, while in a non-priority
ECR the communications P/1, 2, 3, 4, 5 and 6 are valid. If during the change
between priority ECR and non-priority there are already are edited operands,
the communication of number P/1 passes to be the communication of the
priority ECR and vice-versa. The remaining operands are edited in the same
way as in a non-priority ECR.

The operands specified for the local PLC exist in MasterTool according to the
constant declarations in module C present in it, for they belong to the
applications program which is being edited. The operands declared to the
remote PLC do not have consistency in the types and addresses, for they belong
to an applications program from another programmable controller. However,
the number of bytes occupied by the block of operands declared in the local
PLC should be equal to the number of bytes occupied by operands of the
remote PLC in each communications so that the writing is carried out correctly.
The maximum number of bytes possible to be occupied by a block of operands
in each communication is limited to 220.

The following are the types of operands possible to be programmed for the
local and remote PLC, with the correct arrangement of them in the editing
columns and their respective significance.

Chapter 3 Instructions Reference

92

 LOCAL PLC or REMOTE PLC Significance

%EXXXX Individual operand %EXXXX

%SXXXX Individual operand %SXXXX

%AXXXX Individual operand %AXXXX

%MXXXX Individual operand %MXXXX

%DXXXX Individual operand %DXXXX

%EXXXX .. %EYYYY Operands Group %EXXXX at %EYYYY

%SXXXX .. %SYYYY Operands Group %SXXXX at %EYYYY

%AXXXX .. %AYYYY Operands Group %AXXXX at %EYYYY

%MXXXX .. %MYYYY Operands Group %MXXXX at %EYYYY

%DXXXX .. %DYYYY Operands Group %DXXXX a %EYYYY

%TMXXXX YYY Table %TMXXXX position YYY

%TDXXXX YYY Table %TDXXXX position YYY

%TMXXXX III .. FFF Table %TMXXXX position III a FFF

%TDXXXX III .. FFF Table %TDXXXX position III a FFF

Table 3-47 Operand for Local and Remote PLCs in ECR

MasterTool allows the free editing of operands in the same line, making
possible the change columns with the help of the arrow keys of horizontal
movement. The consistencies are achieved in the attempt to change the line
(vertical arrows) or confirmation of the contents editing in the window with the
ENTER key. It is possible to give up the alterations carried out by actioning the
ESC key, the instruction remaining with the previous contents at the opening of
the editing window.

The following table shows the number of octets occupied by each type of
operand possible to be programmed in the definitions to be written.

Chapter 3 Instructions Reference

93

Operand Number of bytes

%E 1

%S 1

%A 1

%M 2

%D 4

%TM 2 per position

%TD 4 per position

Table 3-48 Occupation in Bytes of the Operands of the ECR

The calculation of the number of bytes occupied in the declaration of the local
and remote PLC is carried out by multiplying the number of operands declared
by the octets of the corresponding type. In the table to follow some examples
are shown.

LOCAL PLC or REMOTE PLC Calculation Bytes

%E0004 1 operand x 1 byte 1

%S0020 1 operand x 1 byte 1

%A0018 1 operand x 1 byte 1

%M0197 1 operand x 2 bytes 2

%D0037 1 operand x 4 bytes 4

%E0005 .. %E0008 4 operands x 1 byte 4

%S0024 .. %S0031 8 operands x 1 byte 8

%A0089 .. %A0090 2 operands x 1 byte 2

%M0002 .. %M0040 39 operands x 2 bytes 78

%D0009 .. %D0018 10 operands x 4 bytes 40

%TM0031 101 1 position x 2 bytes 2

%TD0002 043 1 position x 4 bytes 4

%TM0000 000 .. 002 3 positions x 2 bytes 6

%TD0007 021 .. 025 5 positions x 4 bytes 20

Table 3-49 Example of Occupation in Bytes

Chapter 3 Instructions Reference

94

In order to action the input enable, the communication is sent form the first
writing present in the ECR, the output occupied being powered by it. At the
moment when the communication is complete, the instruction sends the next
writing, independently of the status of the enabling input, repeating this
procedure for the rest of the communications existing in this instruction. At the
end of the last writing, the output occupied of the ECR is turned off, with the
sending of a pulse with the duration of one scan in the error output if it has not
been possible to carry out some communication.

The statuses of the six communications of the instruction are placed in the first
six nibbles of the operand D programmed in OPER3. The last two nibbles are
used to control their processing.

Figure 3-14 Control Operand for Instruction ECR and LTR

The communication status stored in each nibble is coded in the following way:

• 0 - communication with success

• 1 - operand not defined

• 2 - address of local controller equal to remote controller (communication
for its own PLC)

• 3 - operand block invalid

• 4 - type of operand invalid

• 5 - time-out for transmission of packet

• 6 - not enough room in line

Chapter 3 Instructions Reference

95

• 7 - buffer transmission fault

• 8 - time-out for requisition

• 9 - hardware error

• 10- remote PLC protégé

Briefly, in firing the execution of an ECR instruction all the communications
existing in it are carried out, the same when its enabling input is turned off.
When all the writings are completed, the next ECR or LTR instruction found in
the applications program with the input enable powered become active,
starting to process their communications.

WARNING:
The applications program cannot out jumps over the active ECR instruction or
stop to execute the module which it contains, to ensure correct processing.

In an applications program being executed in the PLC, in a data moment, only
one access instruction for ALNET II (ECR or LTR) is considered active, even
if there are several instructions with enable actioned. The output engaged
determines which instruction is active, be able to be used to synchronise the
communications with the applications program. To avoid overloading in the
information traffic of the network, it is advisable if possible to send the ECR
instructions periodically, avoiding keeping them permanently enabled in the
applications program. One procedure recommended is to disconnect the input
enable as soon as the output occupied is powered, avoiding a new firing of
the instruction after its termination.

The priority ECR does not follow the processing order of the non-priority
ECRs being processed and transmitting their data as quickly as possible, to be
enabled. For this reason a priority should not remain permanently enabled,
having to be fired only in alarm situations or periodically. If the opposite is the
case, it can prevent the remaining ECRs of the program from carrying out their
communications or cause the exhaustion of the reception buffers of the
destination PLC.

If the instruction is programmed by specifying the node address equal to the
address of its own controller which it executes (writing the values of its own),
the output error is powered.

If no operand has been defined in OPER4, the output error and occupied are
turned off.

Chapter 3 Instructions Reference

96

Syntax:

Table 3-50 Syntax of the Instruction ECR

Example:

Contents of the editing window in OPER4 of non priority ECR:

COM Local PLC Remote PLC

1 %M0004 %A0014 .. %A0015

2 %S0038 .. %S0041 %D0027

3 %TD0007 028 .. 030 %M0009 .. %M0014

4 %M0006 %M0018

5 %A0013 .. %A0020 %D0003 .. %D0004

6 %TM0019 000 .. 004 %TM0032 018 .. 022

This instructions carries out writing into the programmable controller with the
node address equal to 2 in the sub-network 1. Six communications are defined
for it, transferring different types of data types between the PLCs. The
communication 0 sends the contents of a memory operand into the local PLC
for two auxiliary operands in the remote PLC, 2 octets being transferred. The
communications 1, 2, 3, 4 and 5 transfer, respectively, 4, 12, 2, 8 and 10 octets
between the controllers.

Chapter 3 Instructions Reference

97

Contents of the editing window in OPER4 in a priority ECR:

COM Local PLC Remote PLC

P/1 %M0004 %A0014 .. %A0015

This instruction carries out writing into the programmable controller with the
node address equal to 2 in the sub-network 1. A priority communication is
defined for it. The communication P/1 sends the contents of a memory into the
local PLC to the two auxiliary operands in the remote PLC, 2 octets being
transferred.

This instruction can only be used in the CPUs AL-2000/MSP, AL-2002/MSP,
AL-2003 and QK2000/MSP.

Chapter 3 Instructions Reference

98

LTR - Reading of Operands from Another PLC

OPER1 - node address of the remote controller
OPER2 - sub-network address of the remote controller
OPER3 - control operand of the instruction
OPER4 - editing window of the operands

Description:

This instruction carries out the reading of operand values present in other
programmable controllers for operands of the programmable controller where it
is being executed, through ALNET II communication network. For its use,
therefore, it is essential that the PLC which executes it is connected to other
PLCs through ALNET II.

Through the LTR individual operand values or groups of operands can be read,
being possible to program up to 6 different communications of reading in one
instruction.

The programming of the instruction LTR is identical to ECR, observing the
same restrictions. In the LTR, the transfer occurs of values of operands
declared in the remote PLC to the local PLC, this being the one difference
between the two.

WARNING:
The instructions LTR differs from the ECR in the possibility of priority
messages, that is to say, it is not possible to edit a priority LTR.

Syntax:

Table 3-51 Syntax of the LTR Instruction

Chapter 3 Instructions Reference

99

Example:

Contents of the editing window in OPER4 in na LTR:

COM Local PLC Remote PLC

1 %M0004 %A0014 .. %A0015

2 %S0038 .. %S0041 %D0027

3 %TD0007 028 .. 030 %M0009 .. %M0014

4 %M0006 %M0018

5 %A0013 .. %A0020 %D0003 .. %D0004

6 %TM0019 000 .. 004 %TM0032 018 .. 022

This instruction carries out readings in the programmable controller with the
mode address equal to 2 in the sub-network 1. Six communications are defined
for it, transferring different types of data between the PLCs. The
communication 0 reads the contents of two auxiliary operands in the remote
PLC for a memory operand in the local PLC, 2 octets being transferred. The
communications 1, 2, 3, 4 and 5 transfer, respectively, 4, 12, 2, 8 and 10 octets
between the programmable controllers.

This instruction can only be used in CPU AL-2000/MSP, AL-2002/MSP, AL-
2003 and QK2000/MSP.

Chapter 3 Instructions Reference

100

LAI - Free Updating of Images of Operands

Description:

The instruction frees the updating of the image of the operands and carries out
the processing of the pending communications of ALNET II for the local PLC.

To return to the processing of the executive software, at the end of each scan,
the PLC processes the requisitions for reading and other services which have
been requested for other PLCs present in the network, during the execution of
the applications program.

The programmable controller has an area of memory reserved for the storing of
up to 32 communications received during the execution loop of the applications
program, while the executive software does not process them. If the
applications program has a relatively high execution time and the
programmable controller receives many request for services from the network,
it is possible that the PLC does not get answered, reaching the limit of 32
pending communications waiting for processing. In this case, the PLC returns
an answer to the request indicating the impossibility of waiting for its
communication.

The instruction LAI executes the processing of pending receptions and
transmissions in the PLC, reducing the possibility of the situation described
previously occurring and reducing the service times of the requests. Their use is
recommended in applications programs with a long cycle time, having to be
inserted in intermediate points of the modules, dividing them into passages with
approximately 20 ms execution time.

WARNING:
The values of the operands of the applications program can be modified after
the execution of an LAI, since other equipment connected to the network can be
requesting writing in them. The influence of this fact should be considered
when inserting this instruction in the applications program.

This instruction can only be used in CPUs AL-2000/MSP, AL-2002/MSP, AL-
2003 and QK2000/MSP.

Chapter 3 Instructions Reference

101

Group Connection Instructions

The group connection instructions allow the building of paths in series and in
parallel as well as the inversion of the signal.

Name Description of the Name Editing
Sequence

Tool
Bar

LGH horizontal connection ALT, L, H

LGN denied connection ALT, L, N

LGV vertical connection ALT, L, V

Table 3-52 Group Connection Instructions

LGH - Horizontal Connection

LGN - Denied Connection

LGV - Vertical Connection

Description:

The connections are auxiliary elements in the construction of the diagrams of
relays, to interconnect the remaining instructions.

The denied connection inverts the logic status of its input in its output.

Chapter 4

1

Function Modules

This chapter contains the description of the Function modules (F) which
accompany MasterTool, available for the programmable controllers in the
series AL - 600, AL - 2000, QUARK and PICCOLO.

The function modules implement different routines for specific use or for
access to special I/O modules for the applications program, being similar to the
instructions, however loaded as program modules. Its execution is activated for
other modules through the instruction CHF.

The modules which accompany MasterTool are programmed in Machine
language, not being able to be read to the programmer and visualised as the
modules in diagram of relays. They should loaded directly from disk to the PLC
(options Communication, Read/Send Module).

Each CPU module has a group of F modules of its own, contained in
corresponding subdirectories in MasterTool. The table 4-1 shows the functions
existing for each CPU, as well as the special modules of I/O which are
accessed through them.

The CPUs PL102 and PL103 of the PICCOLO series have only the function
modules F-CONT.005 , F-ANLOG.006 and F-PID.033.

The CPUs PL104 of the PICCOLO series have only the function modules
F-CONT.005, F-ANLOG.006, F-PID.033 and F-relg.048.

The CPUs PL105 of the PICCOLO series have only the function modules
F-PID.033 and F-relg.048.

Chapter 4 Function Reference of the Modules

2

Function AL-600,

QK600

AL-2000 AL-2002,

AL-2003

QK80

0

QK80

1

PL104 PL105 QK2000 I/O Module

F-RELOG.000 AL-1420

F-LEDS.001 AL-1460

F-PT100.002 AL-1117, QK1117

F-TERMO.003 AL-1109, QK1109

F-CONTR.004 AL-1440, AL-1450,

QK1450

F-CONT.005 AL-600

F-ANLOG.006 AL-600

F-EVENT.017 AL-3130, AL-3132

F-ALNET2.032

F-PID.033

F-RAIZN.034

F-ARQ2.035

F-ARQ4.036

F-ARQ8.037

F-ARQ12.038

F-ARQ15.039

F-ARQ16.040

F-ARQ24.041

F-ARQ31.042

F-MOBT.043

F-STMOD.045

F-RELG.048

Chapter 4 Function Reference of the Modules

3

Function AL-600,

QK600

AL-2000 AL-2002,

AL-2003

QK80

0

QK80

1

PL104 PL105 QK2000 I/O Module

F-SINC.049

F-RELG.061

F-ALNET1.062

F-IMP.063

F-RECEP.064

F-NORM.071

F-COMPF.072

F-ANDT.090

F-ORT.091

F-XORT.092

F-NEGT.093

Table 4-1 List of Function Modules Supplied through ALTUS

During the installation of MasterTool different modules are copied with the
some name, being stored in different subdirectories, according to the type of
CPU to which they are destined. The CPU having the same name, these
modules differ in their contents. For example, the module F-RELOG.000 is
present in the subdirectories \AL-600, \AL-2000, \AL-2002 and \AL-2003,
however being four different files, each one destined for a particular CPU.

WARNING:
The files contained in the subdirectory of a PLC should not be copied to
another PLC, at the risk of losing the modules. Only the modules contained in
the corresponding subdirectory of the CPU used should be loaded into the
controller.

If there are doubts about the of CPU for which the module was programmed,
use the file information command (command File, Module Information
in MasterTool).

Chapter 4 Function Reference of the Modules

4

F-RELOG.000 - Function to
Access the Real Time Clock

Introduction

The function F- RELOG.000 carries out the access to the module real time
clock Al-1420. This module implements a clock and calendar with great
precision, allowing the development of applications programs that depend on
very stable time bases. The module still continues to keep the time information
with a system power failure, then it is supplied by batteries.

Programming

Operands

The cells of the CHF instruction used for the function call are programmed in
the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3 this operand should compulsorily be a memory constant
with value 2 (% KM + 00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM + 0000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the instruction
is edited. The number of editable parameters is specified in OPER1, being
set at 2 for this module:

Chapter 4 Function Reference of the Modules

5

%RXXXX - Address of bus where the module AL-142 is kept.

• %MXXXX or %TMXXXX - Specification of the operands for

where there are read or found the clock values. If this parameter is
specified as memory the values are read or found for the memory
declared and the six subsequent ones. If it is specified as table, the
values are placed or found starting from position 0 to 6. If the
operands are not declared, the reading or finding of the time values is
not achieved and the instruction outputs are disconnected.The tables
can be used with more than 1 positions, with the function ignoring the
surplus positions. The values are read or set in the operands in the
following sequence:

Operand Table Position Contents Format

%MXXXX 0 Seconds 000XX

%MXXXX+1 1 Minutes 000XX

%MXXXX+2 2 Hours 000XX

%MXXXX+3 3 Day of Month 000XX

%MXXXX+4 4 Month 000XX

%MXXXX+5 5 Year 000XX

%MXXXX+6 6 Day of the week 000XX

Table 4-2 Values read by the clock (F- RELOG.000)

The contents of these operands can be read or modified at any time,
but they are update with the real hour of the module only when the
instruction is executed. The 24 hour format is used in counting the
time.

• OPER4 - Not used.

Inputs and Outputs

Description of the inputs:

• enable - when this input is powered CHF the function is called, the
parameters programmed in the instruction being analysed. If they are
incorrect, all the outputs of the instruction are turned off. If they are
correct, they output pulse 1 Hz is connected for one scan each second.

• read clock - when powered, the time values of the module are
transferred to the memory operands or for the table declared as the second
parameter in OPER3.

Chapter 4 Function Reference of the Modules

6

• set clock - when powered, the values contained in the memory or table
operands declared are transferred to the module.

WARNING:
If the last two inputs are powered simultaneously, the setting of the module’s
values are carried out.

Description of the outputs:

• pulse 1 Hz - indicates if there is a change in the seconds count in the
clock. The pulse last scan and be used to synchronise events in the
applications program which use the Real Time Clock. This pulse can also
be used to carry out the reading of the clock only when there is a change of
seconds, economising on the execution time, since the reading of the
insulated pulse is processed in more quickly.

• lost time pulse - this outputs is connected in the first scan after the
powering of the PLC if the clock was fixed with the battery supply for a
failure of the main supply. So that it is actioned, it is necessary that the
instruction is enabled during the first scan of the controller.

WARNING:
When the module is left without battery power and with the PLC disconnected,
invalid values can be obtained in the hourly reading, without having counted the
time and without actioning of the output pulse 1 Hz. So that the clock returns
to correct functioning, it stops to carry out the setting of the time, programming
a new hour.

Use

This function can be used in CPUs AL-600, AL-2000/MSP, AL-2002/MSP
and AL-2003.

Chapter 4 Function Reference of the Modules

7

F-LEDS.001 - Function to Access the LEDs Module Panel

Introduction

The function F-LEDS.001 carries out the interfacing of the applications
program with the multiplexer module of the LEDs AL-1460, allowing the
status of the system’s digital points octets to be sent to this.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters that are passed to the
function in OPER3. This operand should compulsorily be a memory
constant with value 4 (%KM+00004).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the of parameter possible to be programmed
in the editing window of OPER4. As this function does not need any
parameters in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 4 for this module:

• %RXXXX - Address of bus where module AL-1460 is kept.
• %AXXXX , %EXXXX or %SXXXX - Address of initial octet

staring from the movements made to the LEDs panel.

• %KM+XXXXX - Number of octets to be transferred.

Chapter 4 Function Reference of the Modules

8

• %KM+XXXXX - Number of initial octet of the LEDs panel where
the movements are made to. Should be contained in the interval
between 0 to 31.

WARNING:
The space for addressing the auxiliary relays (%AXXXX) is found next to the
input and output relays (%EXXXX and found next to the input output relays
(%EXXXX and %SXXXX). In this way, if the initial octet to be transferred is
% S 0062 and the number of transfers is 5, the octets transferred are % S0062,
% S0063, % A0000, % A0001 and % A0002.

• OPER4 - Not used.

Inputs and Outputs

Description of inputs:

• enable - when this input is powered, the function carries out the transfer
octets to the LEDs panel. The octets to be transferred are defined by the
second and third parameters of OPER3, and the destination of the transfer
through the fourth parameter.

• initialize - when this input is powered all the LEDs in the panel are put
out. The input can be used during the execution of the applications
program to put out all the LEDs without needing to carry out modifications
in the values of the octets.

WARNING:
In order to visualise the values in the panel, the input initialized should be
turned off.

• leds test - when this input powered, the instruction connects all the LEDs
in the panel, allowing the verification of their functioning. This input can be
powered during the execution of the applications program with the being
the lighting of all the LEDs without needing to carry out modifications in
the values of the octets.

WARNING:
If the initialize and leds test inputs are powered out the same time, the
Initialization of the module is carried out, resulting in the putting out of the
LEDs in the panel.

Description of outputs:

• transfer achieved - after all the octets are transferred or if the input leds
test is activated, this output is powered, this output is powered. If the

Chapter 4 Function Reference of the Modules

9

number of transfers and the initial address of the octets source or
destination will be incompatible, the instruction is not carried out and the
output is turned off.

Use

This function can be used in CPUs AL-600, AL-2000/MSP, AL - 2002/MSP,
AL-2003, QK800 and QK2000/MSP.

Chapter 4 Function Reference of the Modules

10

F-PT100.002 - Function to read Module Pt 100

Introduction

The function F-PT100.002 carries out the reading of the temperatures
supplied by modules AL-1117 and QK1117, module interface with up to 4
sensors of type PT - 100. The values read can be linearised or not, the reading
of 1 or 4 channels being possible, changing only the programming of the
parameters used in its call.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters that are passed to the
function in OPER3. This operand should compulsorily be constant with
value 4 (%KM + 00004).

• OPER2 - Should be an operand of memory constant type with value 0
(%KM + 0000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool, when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 4 for this module:
• %RXXXX or %RXXXX.X - Address of the bus where the

module AL-1117 or QK1117 is kept. If it is specified with subdivision
of point (%RXXXX.X), the reading is only carried out for the module
channel corresponding to the point (points .0 to .3 of the
corresponding operand to the channels 0 to 3 of the module

Chapter 4 Function Reference of the Modules

11

respectively). If the specification in not made with subdivision of point
(%RXXXX) all 4 channels are read (0 to 3).

• %KM+XXXXX - Specification of type linearisation to be executed

(c.f. table 6-2 for adjustment of modules AL-1117 and QK1117. The
following types are valid:

• %KM+00000 - the function does not execute any linearisation

showing the converter output with values between 0 and 4095 as
a result.

• %KM+00001 - the function executes linearisation for the

temperature band from -30.00 to +50.00 ºC, represented in
values from +0000 to +8000 (Value stored = (T + 30) X100).

• %KM+00002 - the function executes linearisation for the

temperature band -30.00 to +370.00 ºC, represented in values of
+0000 to +4000 (Value stored = (T + 30) x 10).

• %KM+00003 - the function executes linearisation for the

temperature band from -30.00 to +770.00 ºC represented in
values from +0000 to 8000 (value stored = (T + 30) x 10.

• %KM+00004 - the function executes linearisation for the

temperature band from -30.00 to +50.00 ºC represented in values
from -3000 to +5000.

• %KM+00005 - the function executes linearisation for the

temperature band from -30.00 to +370.00 ºC, represented in
values from -0300 to +3700.

• %KM+00006 - the function executes linearisation for the

temperature band from -30.00 to +770,00 ºC represented in
values from -0300 to +7700.

Chapter 4 Function Reference of the Modules

12

Linearisation
Constant

Measurement Band Value Stored PA5 PA6

%KM+00000 any 0000 to +4095 0/1 0/1

%KM+00001 -30 oC to +50 Oc 0000 to +8000 0 0

%KM+00002 -30 oC to +370 oC 0000 to +4000 1 1

%KM+00003 -30 oC to +770 oC 0000 to +8000 2 1

%KM+00004 -30 oC to +50 oC -3000 to +5000 0 0

%KM+00005 -30 oC to +370 oC -0300 to +3700 1 1

%KM+00006 -30 oC to +770 oC -0300 to +7700 2 1

Table 4-3 Linearisation and Configuration of the Modules AL - 1117 and QK 1117

WARNING:
If the sensor temperature exceeds the measurement band, the value 9999 will be
stored in the corresponding channel

• %MXXXX - Specification of the operand where the values of the

channels are stored after the reading and linearisation. If the first
parameter is specified as %RXXXX.X (reading from a channel), only
the memory position declared in parameter 3 is updated. If the first
parameter is specified as %RXXXX (reading from 4 channels), the
memory declared in parameter 3 is used and the next three the same.

• %MXXXX - Operand used for function for the internal control of its

processing.

WARNING:
The control operand should not have its contents altered in any part of the
applications program, under, penalty of threatening the correct execution of the
function. Each CHF for this module should have a control operand, different
from the rest. The control operand should not be retentive .

• OPER4 - Not used.

Chapter 4 Function Reference of the Modules

13

Inputs and Outputs

Description of the inputs:

• enable - When this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed.

Description of outputs:

• success - is powered when the function is correctly executed.

• error - this output is always powered when one of the following errors
occurs:

• break in connection with the sensor Pt - 100
• short circuit in the connection with the sensor Pt - 100
• the module declared in the bus is not AL-1117 or QK1117
• error in specification of operands or attempt to access operands not

declared

In the first two errors, the value of the operand corresponding to the
channel receive the value 9999.

WARNING:
The error output is implemented starting from version 1.10 of F-PT100.002.

Use

This function can be used in CPUs AL-600, AL-2002/MSP, AL-2002/MSP,
AL-2003, QK800, QK801 and QK2000/MSP.

WARNING:
The updating time for each channel is 400 ms. This time is written up by its
own function. In this way, the CHF instruction used for the call of module F
should not be jumped, under, penalty of increasing the time.

The function cannot be for another channel before closing the conversion of the
current channel.

Chapter 4 Function Reference of the Modules

14

F-TERM0.003 Function to Read
Termopar Module

Introduction

The function F-TERM0.003 carries out the temperature readings supplied
by modules AL-1109 and QK1109. The values read can be linearised or not
being possible to read from 1 or 4 channels, changing only the programming of
the parameters used in its call.

Programming

Operands

The cells of the instruction CHF used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3. It is compulsory for this operand to be a memory
constant with value 5 (%KM+00005).

• OPER2 - Should be an operand of type memory constant with the value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF is
edited. The number of editable parameters is specified in OPER1, being set
at 5 for this module:

Chapter 4 Function Reference of the Modules

15

%RXXXX or %RXXXX.X - Address of bus where the module AL-1109
or QK1109 is kept. If it is specified with subdivision of point (%RXXXX.X),
the reading is only carried out for the channel of the module corresponding to
the point (points .0 to .3 of the operand, corresponding to the channels 0 to 3 of
the module, respectively). If the specification is not made with subdivision of
point (%RXXXX), all 4 channels are read (0 to 3).

• %KM+XXXX - Specification of type of termopar:

• %KM+00000 - value supplied by module without linearisation

• %KM+00001 - termopar type J

• %KM+00002 - termopar type R

• %KM+00003 - termopar type S

• %KM+00004 - termopar type K

• %KM+00005 - termopar type B

• %KM+XXXXX - Defines the value normalize d, represented (0000
to 1000) or in degrees (c.f. table 4-3):

• %KM+00000 - result in degrees Celsius

• %KM+00001 - result normalize d

Chapter 4 Function Reference of the Modules

16

Type of Termopar Result in degrees Normalized

Celsius Result

J 0000 to 1000 0000 to 1000

R 0000 to 1500 0000 to 1000

S 0000 to 1500 0000 to 1000

K 0000 to 1250 0000 to 1000

B 0000 to 1800 0000 to 1000

Table 4-4 Values Read from Modules AL-1109 and QK1109

WARNING:
If the temperature of the sensor exceeds the measurement band, the value 9999
will be stored in the corresponding channel.

• %MXXXX - Specification of the operand where the values of the

channel are stored after the reading and Normalization . If the first
parameter is specified as %RXXXX.X (reading of a channel) only the
memory position declared in as %RXXXX (reading of 4 channels),
the memory declared in parameter 3 and the following 3 are used.

• %MXXXX - Operand used by function the internal control of its

processing.

WARNING:
The control operand should not have its contents altered in any part of the
applications program, under penalty of endangering the correct execution of the
function. Each CHF for this module F should have an exclusive control
operand, different from the rest.

• OPER4 - Not used.

Input and Outputs

Description of inputs:

• enable - when this input is powered the function is called, the parameters
programmed in instruction CHF being analysed.

Chapter 4 Function Reference of the Modules

17

Description of the outputs:

• success - is powered when the function is correctly executed.

• error - this output is always powered when one of the following errors
occurs:

• break of the connection with the termopar sensor
• the module declared in the bus is not AL-1109 or QK1109
• error in the specification of the operands or attempt to access the

operands not declared

In the first error, the value of the operand corresponding to the channel
receives the value 9999.

WARNING:
The error output is implemented starting from version 1.10 from
F-TERM0.003.

Use

This function can be used in the CPUs AL-600, AL-2000/MSP, AL-
2002/MSP, AL-2003, QK800, QK801 and QK2000/MSP.

WARNING:
Starting from version 1.10 of module F-TERM0.003, the error output is
connected and the value 9999 is placed in the channels of the first scan of the
program execution. The updating time for a channel was reduced from 400ms
to 100ms starting from this version.

WARNING:
The updating time for each channel is 100ms. This time is written up by its
own function. In this way the CHF instruction used for the call of module F
should not be jumped, under penalty of increasing the conversion time.

The function cannot be called for another channel before closing the conversion
of the current channel.

Chapter 4 Function Reference of the Modules

18

F-CONTR.004 - Function to Access
the Rapid Counter Module

Introduction

the function F-CONTR.004 carries out the interfacing of the applications
program with the rapid counter module AL-1440 and rapid counter with
interface for optical transducers AL-1450 and QK1450.

Programming

Operands

The cells of the CHF instruction used for the function call are programmed in
the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3. It is compulsory for this operand to be a memory
constant with value 4 (%KM+00004).

• OPER2 - Should be an operand of type memory constant with the value 0
(%DM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of the OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the instruction
CHF is edited. The number of editable parameters is specified in OPER1
being set at 4 for this module:

• %RXXXX - Address of bus where the module AL-1440, AL-1450 or
QK1450 is kept.

Chapter 4 Function Reference of the Modules

19

• %DXXXX - Operand with the value to be read or written to the
counting register of the module.

• %DXXXX - Operand with the value to be read or written to the

comparison register of the module.

• %AXXXX - Octet which contains a group of instructions for the

module, described as follows:

• %AXXXX.0 - inhibit counting
• %AXXXX.1 - zero count register
• %AXXXX.2 - enable output relays (comparison for hardware)
• %AXXXX.3 - enable reference input
• %AXXXX.4 - execute reading of count
• %AXXXX.5 - execute writing of count
• %AXXXX.6 - execute writing of comparer
• %AXXXX.7 - not used

• OPER4 - not used.

Inputs and Outputs

Descriptions of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect,
all the outputs of the instruction are turned off. If they are correct, the
instructions contained in the auxiliary octet %AXXXX are executed,
carrying out the operations of reading and writing according to the
specification. When the input enable is turned off, the previous instructions
sent to the module are kept, not executing any reading or writing operation
in it.

Description of the outputs:

• zero counting - is activated when the count register reaches the value
zero. Its activation is carried out at least during one scan of the applications
program, if the count passes for zero and does not remain with this value.

• equal counting - is activated when the count value reaches the value
equal to the comparer register. Like this as the previous output, it is
activated for at least one scan of the applications program.

Chapter 4 Function Reference of the Modules

20

• instantaneous read - is activated only during the scan following the
request to read, if this is not disabled for the modules point of adjustment.
In this case, the next reading of the count supplies the value of this at the
moment when the instantaneous read was asked for.

WARNING:
If the reading and writing in the counting module are requested simultaneously,
only the writing is executed. Independently of this situation, the writing in the
register is always executed when requested, if the instruction is enabled. It
should be taken into account that each reading or writing operation is relatively
slow. In this way, unnecessary operations should be avoided so as not to
involve the scan time of the applications program.

WARNING:
After the PLC is connected, the value of the count and comparison registers is
random, having be initialized appropriately.

Further information can be obtained in the Technical Characteristics of the
modules AL-1440, AL-1450 and QK1450.

Use

This function can be used in the PLCs AL-600, AL-2000/MSP, AL-
2002/MSP, AL-2003, QK800, QK801 and QK2000/MSP.

Chapter 4 Function Reference of the Modules

21

F-CONT.005 - Function to Access the Fast Counting Inputs

Introduction

The function F-CONT.005 carries out the interfacing of the applications
program with the rapid count inputs in the CPUs AL-600, QK600, PL102 and
PL103 and PL104.

The CPUs AL-600, QK600, PL102, PL103 and PL104 have two fast counting
inputs in the front panel, allowing the counting of pulses with high frequency
(up to 10 KHz) when an inadequate count is made through the conventional
points of input.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameter which are passed to the
function in OPER3. It is compulsory for this operand to be a memory
constant with value 3 (%KM+00003).

• OPER2 - It should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF is
edited. The number, of editable parameters is specified in OPER1, being
set at 3 for this module:

• %KM+XXXXX - Number of input counted (0 or 1).

Chapter 4 Function Reference of the Modules

22

• %DXXXX - Operand which stores the count value.

• %MXXXX - Operand used for function for the internal control of its

processing.

 WARNING:
The control operand should not have its contents altered in any part of the
applications program, under penalty of endangering the correct execution of the
function. Each CHF for this module F should have exclusive control operand,
different from the rest.

• OPER4 - Not used.

 Inputs and Outputs

 Description of the inputs

• enable - when this input is powered the function is called, the programmed
parameters being analysed in the CHF instruction. If they are incorrect, the
error output is powered.

• zero - causes the zeroing of the count value, when enabled.

• load - when activated, ensures that the value stored in the operand will be
the new count value.

 Description of the outputs:

• zero counting - is powered when the operand value of the count has the
value zero.

• count limit - is powered when the operand value of the count has the
value + 9999999.

• error - is powered if an error occurs in the specification of the operands or
attempt to access the operands not declared.

When the programming PLC is to be executed, the ZERO input of the
functions F-CONT.005 should be actioned for a scan, in a way that allows
the function to be referenced, seeing that its operands of control and count are
zeroed in the change of status.

Use

This function can be only be used in CPUs AL-600, QK600, PL102, PL103
and PL104.

Chapter 4 Function Reference of the Modules

23

Description of Functioning

Each counter carries out an incremental count, from 0 to + 9999999 pulses,
stored, in one operand %D. When the count reaches the value limit, the operand
is not increased, connected to the output limit of the count in the CHF
instruction.

The value in the count operand can be initialized with the actioning of the zero
input of the instruction. To begin the count with a value different from zero,
stop to move the value required for the operand %D and action the loading of
the instruction.

The function should be called periodically, in the normal scan cycle or in the
module executed for time interruption E018. The maximum frequency of the
count depends on the period of the call, being shown in table 4-4.

Maximum Frequence of Count Period of Function Call

2,5 KHz 100 ms

3,4 KHz 75 ms

5,0 KHz 50 ms

10,4 KHz 25 ms

Table 4-5 Frequency of Counting AL-600

The function can be called several times in programs with a long scan cycle
time, allowing the count to be more frequent.

For example, if the cycle time of the applications programs is 85ms and it is
necessary to count pulses up to 7KHz, the function call should be repeated 4
times throughout the program or include it in the module E018 with an
execution frequency of 25ms.

Chapter 4 Function Reference of the Modules

24

F-ANLOG.006 - Function to Convert
A/D or A/D Integrated

Introduction

The function F-ANLOG.006 carries out the conversion A/D
(analogue/digital) or D/A (digital/analogue) from the available integrated
analog channels in the CPUs AL-600, QK600, PL102, PL103 and PL104
(DAC 1 and DAC 2).

Using two CHF instructions, it is possible to carry out the A/D conversion in
one of the channels and D/A in another or the same type of conversion in both.

Programming

Operands

The cells of the CHF instruction used for the function call are programmed in
the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3. It is compulsory for this operand to be a memory
constant with value 3 (%KM+00003).

• OPER2 - It should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a windows visualised in MasterTool when the instruction
is edited. The number, being set at 3 for this module:

Chapter 4 Function Reference of the Modules

25

• %KM+XXXXX - Specification of the channel to be converted.
Should use %KM+00000 for DAC 1 and %KM1 for DAC 2.

• %KM+XXXXX - Type of conversion to be carried out in the

channel defined by previous parameter. Should use %KM+00000 to
convert A/D and %KM+00001 to convert D/A.

• %MXXXX - Specification of operand where the value to be written

into the converter if there is a D/A conversion or value read if there is
an A/D conversion.

• OPER4 - Not used.

Inputs and Outputs

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in instruction CHF being analysed.

Description of the output:

• success - is powered when the function was correctly executed.

• error - is powered if an error occurs in the specification of the operands or
attempt to access the operands not declared.

Use

This function can only be used in CPUs AL-600, QK600, PL102, PL103 and
PL104.

Chapter 4 Function Reference of the Modules

26

F-EVENT.017 - Function to Access
the Module Register of Events

Introduction

The function F-EVENT.017 carries out the access to interfaces AL-3130
and AL-3132, which have 32 digital inputs with register of events.

The interfaces AL-3130 and AL-3132 are equivalent to the software. In this
description of the F-EVENT all the reference to AL-3130 is valid for AL-
3132, except when there is explicit reference.

The interface AL-3130 registers the status variations in their inputs with an
accuracy of 1 millisecond, allowing the monitoring of digital events in real
time. The interface stores the events in a local memory, in independent form,
while the CPU processes the applications program. The function F-EVENT
transfers these events from the interface memory to a table, defined in the
instruction of the CHF call.

Each AL-3130 present in the bus of the PLC contains an internal clock
synchronised with the clock of AL-2002, eliminating differences in the times of
events registered in different interfaces. This synchronisation occurs in
transparent form in the applications program.

If different PLCs are interconnected through the synchronism network and by
ALNET II, the clocks in all the AL-3130 of the system keep the hour of the
clock in the PLC managing the synchronism.

The interface always registers changes in the hour of its clock, occurring due to
final settings in the CPUs clock through the function F-RELG.048 or
F-SINC.049 for the correct evaluation of the data in the registered events.

For further information regarding the synchronisation of the controllers, consult
the User’s Manual AL-2002 and the ALTUS Networks Manual.

Chapter 4 Function Reference of the Modules

27

Programming

Before programming the function call, the interface in the position of the bus in
which it is kept should be declared, through the editing window of module C. It
can declare it with two different codes:

• AL-3130/AL-3132 - events only

• AL-3131/AL-3133 - events and inputs

If declared as AL-3130 (or AL-3132), the interface is not accessed by the scan
of the PLC’s I/O, the operands %E not being reserved for their input octets. In
this way, the interface only registers the transitions of its inputs and the
applications program cannot process the values of the points as in a digital
input module.

If it is declared as AL-3131 (or AL-3133), operands %E are associated to
points of input, and the PLC accesses them in its scan of I/O. Like this, after
the register of events, the values of module input points are used for the
applications program.

WARNING:
The updating of the module input points for operands %E is only possible
starting from version 1.10 of the execute software in AL-3130. In AL-3132 it
is always possible.

The CHF instruction has two types of call for function F-EVENT:

• configuration call

• reading of events call

The configuration call allows the applications program to specify or read the
interfaces parameters of functioning.

The call to read events transfers the interfaces events register to the table
specified.

Configuration Call

The configuration call is used to program or read parameters of the modules
functioning.

The parameters of configuration are:

• the disabling masks of the events register

• the debounce time

• overflow options

Chapter 4 Function Reference of the Modules

28

The disabling masks allow the deactivation of the events register for points
used as normal input, avoiding the generation of unrequired events, which
forces the program to identify and discard them. There are 4 masks, each one
specifying an interface octet, each bit corresponding to an input point. The bit
connected holds back the input corresponding to the events.

The debounce time specifies, in milliseconds, how long the interface should
ignore the variations of an input after its change of status. The debounce is use
full to eliminate noise in the signals which action the interface. If one input is
actioned for a relay contact, for example, it avoids the vibration causing
different events in the interface, instead of a single one. The debounce works as
a filter, ignoring the contact noise to open or close. The instant of the opening
or closing is registered, then the variations of the input status are ignored
during the debounce time. The time can be specified between 0 and 255
milliseconds, being valid for all the interface inputs.

The debounce time always affects the digital inputs, if the interface is declared
as AL-3131/AL-3133.

The overflow options in the functioning mode when new events occurs after the
maximum number of events storable in the interface is surprassed (interface
memory totally full). Two options can be selected:

• option 0 - keep old events

• option 1 - keep new events

Option 0, automatically configured with the powering of AL-3130, keeps the
older events in the interface. The new events which occur, after the memory is
completely full, are ignored.

In option 1, the new events are saved, the older ones being discarded for the
storing of the new ones.

WARNING:
The memory of storing the events of interfaces AL-3130 are emptied with the
reading of events by the applications program, through the function
F-EVENT.017. The program should carry out periodic readings, to prevent
the interface memory becoming totally full, with possible loss of the events
register.

Chapter 4 Function Reference of the Modules

29

Configuration

The cells of the CHF instruction for the call for the configuration are
programmed in the following way:

• OPER1 - Specifies the number of parameters that are passed to the
function in OPER3. It is compulsory for this operand to be a memory
constant with value 2 (%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+0000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 2 for this call.

• %RXXXX - Address of bus where the interface AL-3130 or AL-

3132 is kept.

• %TMXXXX - Specification of the memory table where the interface

configuration parameters are placed. The values are read or set
position 0 to 5 in the table. If the table is not declared or has less than
6 position, the reading or set of the configuration values is not carried
out and all the output are disconnected. It is possible to use tables with
more 6 positions, as the function ignores the surplus position. The
value are read or set in the operands in the following sequence:

Table Position Contents Format

0 Disabling mask octet 0 00XXX

1 Disabling mask octet 1 00XXX

2 Disabling mask octet 2 00XXX

3 Disabling mask octet 3 00XXX

4 Debounce 00XXX

5 Overflow 0000X

Table 4-6 Interface Configuration Parameters

Format

Disabling masks of events register:

Chapter 4 Function Reference of the Modules

30

Mask bit: 7 6 5 4 3 2 1 0

Octet point: 7 6 5 4 3 2 1 0

Bit value 0 - events register enabled

1 - events register disabled

Debouce:

Value: 0 to 225 milliseconds Overflow

Overflow:

Value: 0 - keep old events

1 - keep new events

• OPER4 - Not used.

Reading of events

In the call like the reading of events, the function transfer the data read from the
interface AL-3130 to a memory table.

The cells of the CHF instruction used for the call of the function to read events
are programmed in the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3. Its is compulsory for this operand to be a memory
constant with value 2 (%KM + 00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM + 0000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 2 for this call:

Chapter 4 Function Reference of the Modules

31

• %RXXXX - Address of bus where the interface AL-3130 or AL-
3132 is kept.

• %TMXXXX - Memory table where the registers of the events read

from AL-3130 are placed. The registers of events are placed starting
from the position defined for a Pointer (c.f. layout of table
%TMXXXX).

If the table is not declared, the reading is not carried out and the 3 outputs
of the instruction are disconnected. The table should have a minimum of
12 positions, but the recommended value to optimise the data transmission
of data in the network is of 64 positions.

• OPER4 - Not used.

Format of table and events

The layout for the registers of events follows the format:

Figure 4-1 Layout for the Events Registers

• At the first position the aplication should inform CP identification to
supervisory system: sub-network and node:

12 8 4 0

Ident. CP 0 0 S S S S S S 0 0 0 N N N N N

SSSSSS - sub network (1 to 64)

Chapter 4 Function Reference of the Modules

32

NNNN - node (1 to 31)
• The second and third positions are reserved for use by the

application/supervisory.

• Number updating: sequential number which identifies the updating of

the table. It is a 32 bit number which is increased by F-EVENT on
each updating of the table. It is used for supervisors or application to
validate the data read.

• Pointer: table position which points to the next available position. Its
minimum value is 8, and its maximum value is the size of the table
(table 100% full). It is updated by F-EVENT at each new event placed
in the table. It should be zeroed for application or similar supervisor to
free the table for new events.

• Events Date: date (day and month) of events in table. This position is
managed by F-EVENT and must be re-initialized with zero. Date has
the following format:

12 8 4 0

Events Date 0 0 0 0 MM MM 0 0 0 D D D D D

MMMM - events month (1 a 12)
DDDDDD - eventos day (1 a 31)

ATTENTION:
Date is managed by F-EVENT according to UCP events actual date, stored at
AL-313X modules.

• Table size: although the function F-EVENT can work with tables
from 12 to 255 position, the use of tables of size 64 bytes is
recommended, appropriate for the transmission of the table by
ALNET II.

• Events: the events occupy four adjacent position in the table.

The events have the format:

12 8 4 0

Position n 0 0 1 0 1 0 1 1 0 b b b e e e e

0

Position n+1 0 0 0 0 0 0 0 0 0 r r r r r r r

8 0

Position n+2 A D 0 h h h h h 0 0 m m m m m m

Chapter 4 Function Reference of the Modules

33

10 0

Position n+3 s s s s s s l l l l l l l l l l

FIELDS:
bbb - octet bit (0 - 1)
eeee - event status

0 - status 0 of the input
1 - status 1 of the input
14 - change in the time: previous hour
15 - change in the time: current hour

rrrrrr - address of the AL-3130 (%RXXXX) + Nº octet
A - date delay (only eeee = 15)
D - date change (only eeee = 15)
hhhhh - hour of the event (0 to 23)
mmmmmm - minutes of the event (0 to 59)
ssssss - seconds of the event (0 to 59)
llllllllll - milliseconds (0 to 999)

Chapter 4 Function Reference of the Modules

34

Observation: the values 14 and 15 of the status do not signify a transition from
some input point, but yes that there is a setting of the clock from 3130. In this
case, the value of the fields T, tttt and bbbb do not have significance (0).

Ex. 1:
An event in bit 5, status “1”, in the third octet of AL-3130 of position
R024, the 14 hours, 30 minutes, 10 seconds and 456 milliseconds,
produces the register:

Pal 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1

Pal 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Pal 2 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0

Pal 3 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0

Ex. 2:
A setting of the hour gives two events registers: the first with the previous
hour and the second with the current hour. An event of “current hour” in
AL-3130 of the address R016, 08:32:25, milliseconds 000, produces the
register:

Pal 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1

Pal 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Pal 2 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

Pal 3 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Chapter 4 Function Reference of the Modules

35

Inputs and Outputs

Description of the Inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect,
all the instructions outputs are turned off. If they are correct, the output
succeeded returns connected.

WARNING:
The function carries out Initialization procedures and the setting of the time of
the time of the interface automatically. Due to this, each scan cycle of the
applications program should be called, keeping the input enable of the CHP
instruction always powered.

• read event/config - when powered, the function carries out the interface
configuration. If turned off, it carries out the reading of the events.

IMPORTANT:
AL-3130 only generate events if receive the CPU synchronism signal. To set
CPU to send synchronism you must declare CPU “generate” or “receive”
synchronism (see MasterTool C module, networks frame, click on synchronism
button).

• read/write

• in configuration mode - when powered, the values contained in the

configuration table are transferred to the interface. When turned off
the configuration is read by the interface to a table.

• in reading of events mode powered, the events registers are transferred

to a specified table, if the events exist and if there are free positions.
When turned off, the events are not transferred. This input can be used
to hold up the reading of events while it processes the table thus,
allowing the function to be called in each cycle.

Description of the outputs:

• success - indicates that the call parameters are correct and that the
function was correctly executed.

• in reading of events mode: indicates also that the interface is active.

• read events /active interface

• in configuration mode - if powered, indicates that the interface is

active.

Chapter 4 Function Reference of the Modules

36

• in reading of events mode - if powered, indicates that at least one
event register was read to table in the current scan.

• overflow - if connected, indicates that the internal memory of the AL-
3130 was completely full. Subsequent reading operations, carried out
successfully, disconnect this output. The overflow output is actioned in
reading of events mode.

Diagnostics

The status interface active, referred to above, is the consequence of several
factors which should be verified, in case their are difficulties in programming
the F-EVENT:

• hot swap key switched off (position RUN)

• the interface is not in error (led ERR put out)

• AL-3130 is receiving synchronism from the CPU (CPU correctly
configured and connected)

• AL-3130 is declared in the bus of the PLC

• function F-EVENT is loaded in the CPU

If the interface is not active, the outputs success (events call) and interface
active (configuration call) do not switch on. If the F_EVENT has not been
loaded in the CPU, the output succeeded of the configuration call also is not
switched on.

In case of CPU synchronism fault then ERR AL-313X module leds make blink
each 2 seconds, repeatedly.

Use

This function can only be used in the CPUs AL-2002/MSP and AL-2003.

Example of Application

Declaration in the bus:

The interface can be declared in two ways: As AL-3130/AL-3132 or as AL-
3131/AL-3133. If it is declared as even, the interface can only be used for
dealing with events. If it is declared as odd, the interface can also be used as
an input interface, without losing the events function.

Chapter 4 Function Reference of the Modules

37

Position Model Inputs Output Address

00 AL-3131 %E0000-%E0003 %R0000

01 AL-3132 %R0008

Table 4-7 Declaration of the Module AL-3130 in the Bus

Initialization:

Configuration and events tables must be initializated by application. In events
table you must to do node and subnet initializating like PLC declaration and
change remainder fields with zeroes.

Use in the diagram of relays:

In the above example, the interface is configured in the logic 000. It is
interesting that the configuration is always made for each scan, afterwards the
interface can be changed with the PLC connected (hot change).

The format of the %TM0000 in the configuration call follows that previously
described.

The relay %A0000.0 always switches on when the function is called and the
parameters are correct.

The relay %A0000.1 switches on when the interface is active %A0000.1
disconnect signifies inactive interface or in error.

In the logic 001 the interface configuration is switched on. The table position
%TM0001 have significance identical to %TM0000.

The relay %A0001.0 always switches on when the function is called and the
parameters are correct.

The relay %A0001.1 switches on when the interface is active %A0001.1
disconnected signifies interface inactive or in error.

Chapter 4 Function Reference of the Modules

38

 Logic: 000 -

 Logic: 001 -

Figure 4-2 Example 1 of Use of Module F-EVENT.017

Logic 000 - Module F-EVENT.017:

Input Output

%R0000

%TM0000

Logic 001 - Module F-EVENT.017:

Input Output

%R0000

%TM0001

The logic 2 shows the reading of the interface points. The reading is possible
since the interface may be declared as AL-3131 or AL-3133 in the bus. The
reading of the points is independent of the configuration masks, but they are
affected by the value of the “debounce”.

Chapter 4 Function Reference of the Modules

39

Figure 4-3 Example 2 of Use of Module F-EVENT.017

Logic 003 - Module F-EVENT.017:

Input Output

%R0000

%TM0002

In the logic 3 of the example the reading of the events registered by AL-3130 is
shown. The events are transferred by the AL-3130 to the table %TM0002. The
position 5 of %TM0002 always points to the next available position in the
table.

The relay %A0002.0 always switches on when the function is called, the
parameters are correct and the interface is active.

The relay %A0002.1 switches on when an updating has been carried out in the
events table in the scan in question.

The relay %A0002.2 switches on when overflow occurs in the internal memory
of the interface. The overflow disconnects as the events are withdrawn from the
interface to the table %TM0002.

Chapter 4 Function Reference of the Modules

40

F-ALNET2.032 - Function Read from
Statistics of ALNET II

Introduction

The function F-ALNET2.032 allows the reading and the writing of the
values of the configuration parameters and of the statistics of the functioning of
the PLC in ALNET II by the applications program.

Programming

Operands

The cells of the CHF instruction used for the function call are programmed in
the following way:

• OPER1 - Specifies the number of parameters which are passed to the
function in OPER3. This It is compulsory for this operand to be a memory
constant with value 1 (%KM+00001).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER is 0.

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 1 for this module:

Chapter 4 Function Reference of the Modules

41

%MXXXX or %TMXXXX - Memory or table operand which receives the
values of the statistics and parameters. If an operand %M is used it should be
defined in the minimum 41 operands starting from the one declared (including
this one too) so that the function is executed correctly. If it is an operand table,
this should have at least 41 positions.

• OPER4 - Not used.

Inputs and Outputs

Description of inputs:

• enable - when input is powered the function is called, the parameters
programmed in the CHF instruction. If they are incorrect, all the outputs in
the instruction are turned off. If they are correct, the values are copied, the
success output being actioned.

• initialize - when powered, zeroes the values of the statistics.

• write - if powered, transfers the values of the last 3 table parameters to the
PLC’s variables, forcing the status of the physical connections.

Description of the outputs:

• success - is powered when the function has been executed correctly.

• error - is powered if an error occurs in the specification of the operands or
there is an attempt to access operands not declared.

WARNING:
The input write is implemented starting from version 1.20 of F-ALNET2.032.
The error output is implemented starting from version 1.10.

Chapter 4 Function Reference of the Modules

42

Description of the Values of the Statistics and Parameter
Operand Table Position Contents

Statistics of transmissions

%MXXXX 0 Number of error free transmissions

%MXXXX+1 1 Number of transmissions with collision error

%MXXXX+2 2 Number of transmissions with undernun error

%MXXXX+3 3 Number of transmissions without ACK reception of hardware

%MXXXX+4 4 Number of transmission retries

%MXXXX+5 5 Number of service time-outs

%MXXXX+6 6 Number of failures of transmission buffers

%MXXXX+7 7 Not used

%MXXXX+8 8 Not used

Statistics of receptions

%MXXXX+9 9 Number of error free receptions

%MXXXX+10 10 Number of receptions with collision error

%MXXXX+11 11 Number of receptions with overrun error

%MXXXX+12 12 Number of receptions with CRC error

%MXXXX+13 13 Number of receptions with alignment error

%MXXXX+14 14 Number of receptions of packets with size error

%MXXXX+15 15 Number of packet time-outs

%MXXXX+16 16 Number of failures of reception buffers

%MXXXX+17 17 Not used

Chapter 4 Function Reference of the Modules

43

Operand Table Position Contents

Configuration Parameters

%MXXXX+18 18 Communication speed (c.f. table to follow)

%MXXXX+19 19 Station address

%MXXXX+20 20 Local sub-network address

%MXXXX+21 21 Multicast groups

%MXXXX+22 22 Address of gateway 1

%MXXXX+23 23 Address of gateway 2

%MXXXX+24 24 "Time-out" in bus (tenths of seconds)

%MXXXX+25 25 "Time-out" in bus (tenths of seconds)

%MXXXX+26 26 "Time-out" of packet (tenths of seconds)

%MXXXX+27 27 Number held back from transmission

%MXXXX+28 28 Type of physical connection (0 - eletric, 1 - optical)

%MXXXX+29 29 Redundancy of physical connection (0 - without, 1 - with)

%MXXXX+30 30 Period for testing redundancy (seconds)

%MXXXX+31 31 Time for communication from physical connection (seconds)

%MXXXX+32 32 Not used

%MXXXX+33 33 Not used

%MXXXX+34 34 Physical connection selected (1 or 2)

%MXXXX+35 35 Connection status 1 (0 - normal, 1 - failure)

%MXXXX+36 36 Connection status 2 (0 - normal, 1 - failure)

%MXXXX+37 37 No used

Configuration parameter possible to be written

%MXXXX+38 38 Physical connection forced (0 - not forced, 1 or 2)

%MXXXX+39 39 Status forced by connection 1 (0 - normal, 1 - failure)

%MXXXX+40 40 Status forced by connection 2 (0 - normal, 1 - failure)

Table 4-8 Description of Values of Statistics and Parameters

Chapter 4 Function Reference of the Modules

44

Baud Rate 0 - 2 Mbaud

1 - 1 Mbaud

2 - 500 Kbaud

3 - 250 Kbaud

4 - 125 Kbaud

5 - 64 Kbaud

6 - 25 Kbaud

Further information about the significance of the statistics and parameters can
be found in the ALNET II User’s Manual.

Use

This function can be used in CPUs AL-2000/MSP, AL-2002/MSP, AL-2003
and QK2000/MSP.

Example of Application

Figure 4-4 Example of Use of Module Function F-ALNET.032

Chapter 4 Function Reference of the Modules

45

Logic 000 - Module F-ALNET2.032:

Input Output

%TM0000

Figure 4-5 Diagram of Times of Example of F-ALNET.032

%TM0000 may be a table with 41 positions.

So that it may be possible to write the 3 single status parameters of the
network ALNET II which can be changed by the applications program (c.f.
parameters 38, 39, 40), first the enabling signal of the function should be
withdrawn.

Following this, the required values are placed in the positions corresponding to
the parameters in %TM0000 (positions 38, 39 and 40). At this moment, the
enabling signal is activated again, when a writing pulse is generated by the
scan.

The writing pulse may lead to the alteration of the required parameters.
Independently of the writing pulse, while the enabling signal is active, the
%TM0000 is being updated with the group of statistics and ALNET II
parameters.

Chapter 4 Function Reference of the Modules

46

F-PID.033 - PID Control Function

Introduction

The function F-PID.033 implements the proportional control algorithm,
integral and derivative. Starting from a measured variable (MV) and from the
required set point (SP) the function calculates the Controlled variable (CV) for
the system controlled. This value is calculated periodically, taking into
consideration the proportional, integral and derivative factors programmed. The
function’s blocks diagram is shown in figure 4-6.

The most important characteristics introduced by the control loop implemented
are:

• desaturation of the integral action (anti-reset windup)

• accompaniment of the output in manual mode and balanced
manual/automatic (output tracking and bumpless transfer)

• direct or reverse action

• adjustable maximum and minimum output limits

• derivative action calculated for different samples

• capacity to carry out discreet integral

• shift with signal

• execution time of 1.6 ms in the worst case

• resolution of output of 1: 1000

Chapter 4 Function Reference of the Modules

47

Figure 4-6 Diagram in Blocks of the Function PID

The use of the function PID in the application program allows a series of
facilities which are integrated into the system, without the use of external
controllers. For example:

• automatic/manual function

• inhibition of integral or derivative factor

• cascade loops

• generation of curves of set points

• modification of the control parameters by program

• modification of the control policy in function of the process’s status

Programming

Operands

The cells of the CHF instruction used for the function call are programmed in
the following way:

Chapter 4 Function Reference of the Modules

48

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. It is compulsory for this operand to be a memory constant with
value 5 (%KM+00005).

• OPER2 - Specifies the number of parameters passed to the function in
OPER4. It is compulsory for this operand to be a memory constant with
value 0 (%KM+00000).

• OPER3 - Contains the parameters passed to the function declared through
a window visualised in MasterTool when the CHF instruction is edited.
The number of editable parameters is specified in OPER1, being set at 5
for this module:

• %TMXXXX - Table which contains the parameters used by the
control algorithm. Should count 16 positions.

• %MXXXX - Memory which contains the measure value of the

process, normally obtained through an A/D instruction.

• %MXXXX - Contains the set point, which is the value required for

the measured variable. Its value can be modified according to the
control politic required.

• %MXXXX - Memory which contains the controlled variable in the

process, generally actioned by a D/A instruction.

• %AXXXX - Auxiliary octet which contains control points of the

PID function.

• OPER4 - Not used.

Chapter 4 Function Reference of the Modules

49

Inputs and Outputs

Description of the inputs:

• enable - when this input powered the function is called, the programmed
parameters in the CHF instruction being analysed. If the number of
parameters or their type is different from the needs of the function all the
outputs of the instruction are turned off. If they are correct, the control
calculation PID is carried out.

• automatic (0)/manual (1) - when powered, the action operand does not
receive the value calculated by the function (manual mode).

• direct (0)/reverse (1) - specifies form of action of the control.

Description of the outputs:

• success - is powered when then function has been correctly executed.

• error - is powered if an error occurs in the specification of the operands or
there is an attempt to access operands not declared.

Additional Parameters

Apart from operands programmed in the CHF call instruction other parameters
should be loaded into the table declared in OPER3. This table should contain
16 positions, being used to define the parameters used for the control algorithm
and to store intermediate results. The table 4-9 presents the parameters which
should be loaded in each table position as well as minimum and maximum
values.

Chapter 4 Function Reference of the Modules

50

Po Parameter stored Form Variation allowed Table value

00 Proportional gain x 10 GP x 10 GP: 1,0 a 100,0 10 a 1000

01 Integral factor - fraction part dt / TI TI: 1 a 1000 s/rep 0,0001 a 10,000

02 Integral factor - integral part dt: 0,1 a 10 s

03 Derivative factor - integral part TD / 3dt TD: 1 a 1000 s 0,0333 a 3333,3333

04 Derivative factor - integral part dt: 0,1 a 10 s

05 Dislocated DE 0 a 1000 0 a 1000

06 Minimum value of output 0 a 1000 0 a 1000

07 Maximum value of output 0 a 1000 0 a 1000

08 Not used

09 Variable measure N – 1 0 a 1000

10 Variable measure N – 2 0 a 1000

11 Variable measure N – 3 0 a 1000

12 Error 0 a 1000

13 Proportional action by x 10 0 a 65535

14 Whole action - part frac x 10 0 a 65535

15 Whole action - part int x 10 0 a 65535

Table 4-9 Additional Parameters of the P/D

To make possible a greater execution speed, some parameters should be loaded
in the table already pre-calculated. Being values relatively fixed, in this way
avoiding recalculation for each function call.

The parameters which should be pre-calculated are:

• Proportional gain x 10 (position 0) - Is calculated by multiplying the
proportional gain required for 10.

• Integral multiplicative factor - Is calculated by dividing the sample interval
(dt) by the whole gain required. The unit of dt is seconds, its minimum
value being 0.1 seconds and maximum 10.0 seconds and should be equal to
the interval in which the routine is executed. The Ti is seconds/repetition,
able to vary from 1 to 1000 seconds/repetition Ti equals to 1
second/repetition signifies the maximum integral effect.

Chapter 4 Function Reference of the Modules

51

• Multiplicative derivative factor (positions 3 and 4) - Is calculated by
dividing the derivative gain (TD) by the sample interval (dt) and by value
3. The unit of TD is seconds, being possible to vary from 1 to 1000
seconds. TD equal to 1000 seconds signifies maximum derivative effect. It
is recommended that the greater the value of the TD, the greater should be
the sample interval. The same for the TD values = 1 second, the sample
interval should be more than 0.2 seconds. If such care is not taken, the
derivative term only produces “noise” and the control action will be very
abrupt.

• Dislocating (position 5) - Allows the introduction of a shift (“bias”) in the
controlled value, avoiding negative errors causing saturation in the
minimum value of the output. Generally this value is set to 50% (500) or
equal to the set point, if the proportional gain is small.

• The minimum and maximum output values (positions 6 and 7) - They are
optional values which limit the excursion of the controlled value, being able
to be modified dynamically in the function of the operational conditions. If
the maximum value is more tham or equal to 1000 and the minimum value
equals 0, no limitation is carried out.

The measure value, the controlled value, the dislocating, the maximum and
minimum values have as variation the band from 0 to 1000, which corresponds
to a variation of 0 to 100% in the variables of the process.

The remaining positions of the table are used exclusively by the function PID,
not being able to be modified by the applications program. Position 12 (error)
can be consulted by the program. Positions 14 and 15 accumulate the whole
factor, being able to be zeroed, if necessary. It is recommended that these
positions are zeroed at the beginning of the processing to avoid random value
becoming stored.

Apart from the table of parameters, same control points are used by the
function, contained in the auxiliary octet specified (%AXXXX).

• %AXXXX.4 - Signal for whole action - Is used by the function PID. When
tumed off, the integral term is positive, if the opposite it is negative. It can
be read by the program, if required.

• %AXXXX.5 - Signal for dislocating. Indicates to the function what the
signal for dislocating is, having to be actioned by the program. The point
tumed off indicates positive shift. When powered, the shift is negative.

• %AXXXX.6 - Inhibits derivative action - When powered the function does
not execute the derivative action.

• %AXXXX.7 - Inhibits whole action. When powered, the whole action is
not calculated, remaining attributed as the last value calculated before the
inhibition, unless the value limit are exceeded.

Chapter 4 Function Reference of the Modules

52

Characteristics of Functioning

The desaturation of the whole action (anti-reset windup) is done in a mode to
avoid the integral term continuing to accumulate error when trouble in the
process causes the saturation of the output of the controller in some limits. At
the moment when the output value reaches any of the limits (maximum or
minimum), the integral term is set at its current value, blocking its undefined
increase, without influencing the output.

This ensures that it will have a answer from the controller so the trouble which
saturated the output disappears. The function can be executed in manual mode,
by powering the second input of the CHF instruction. In this mode, the routine
does not modify the action output value any more, but accompanies it. That is,
en function of the value of the fixed output and of the measure value of the
process, the proportional and derivative term are calculated and the integral
term is forced to an adequate value, in a way that, when a transition occurs
from manual to automatic, the routine reassumes control with the initial value
of the output equal to the last value of the output in manual mode. This act of
communication from manual/automatic is called balanced (bumpless transfer).

The form of control can be direct or reverse. This selection is carried out by
turning off or powering the third input of the CHF instruction. If the process is
such that the measure value grows when the value of the output of the action
grows, the direct action should be selected. If the measure value decreases with
the increase of the output of the action, then the reverse action should be used.

The interval between samples of a PID loop can very from 0.1 to 10.0 seconds.
It is the responsibility of the user to program a trigger of the function, that is to
say, a passage of applications program that only enables the PID routine in the
time intervals required. Note that the value of the sample interval used for the
calculation of the multiplicative factors integral and derivative should coincide
with the time interval of the calls of the trigger . As each routine execution can
last up to 3 ms, it is advisable that each different control loop is fired in
different scans of the program.

Example of Application

As an example of use, the following adjustment values are required for a
control loop:

SP = 62

PG = 5 (PG = 100 / proportional band em %)

TI = 100 seconds/repetition

TD = 5 second

Chapter 4 Function Reference of the Modules

53

dt = 1 second

S = 50%

MAX = 80%

MIN = 0%

The values which should be loaded in the table of parameters are:

Position Value

0 50 PG X 10 (50)

1 100 dt / TI (0,0100)

2 0

3 6666 TD / 3dt (1,6666)

4 1

5 500 S

6 0 MIN

7 800 MAX

8 620 SP

Use

This function can be used in CPUs AL-600, AL-2000/MSP, AL-2002/MSP,
AL-2003, QK800, QK801, QK2000/MSP, PL102, PL103, PL104 and PL105.
For further information see F-PID16.056.

WARNING:
The module F-PID.033 can be used in the PLC AL-2000/MSP only starting
from version 1.10 or the executive software.

Chapter 4 Function Reference of the Modules

54

F - RAIZN.034 - Square Root Function
with Normalization of Scale

Introduction

The function F-RAIZN.034 extracts the square root of a value supplied and
normalize s the result to a previously defined scale, if required.

The calculation carried out corresponds to the following expression:

Op Destination = Square Root (Op Source) *Normalization Constant/256

The Normalization executed together with the processing of the square root
ensures very precise results, since internal variables with greater storage
capacity than memory operands are used.

This function is typically used in the linearisation of the readings from
translaters which supply values in quadratic scale, that is to say, with the
output proportional to the root of the signal measure.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. It is compulsory for this operand to be a memory constant with
value 3 (%KM+00003).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

Chapter 4 Function Reference of the Modules

55

• OPER3 - Contains the parameters which are passed to the function,
declared through a window visualised in MasterTool when the CHF
instruction is edited. The number of editable parameters is specified in
OPER1, being set at 3 for this module:

• %MXXXX - Operand with the value to be extracted to the square
root (source). This value should be positive so that the calculation can
be carried out.

• %MXXXX or %KM+XXXXX - Memory or constant operand

for the Normalization of button of scale of the square root extracted.
The value programmed is divided by 256 and multiplied by the root of
the operand supplied, giving the value of the destination operand,
when the instructions second input is powered.

• %MXXXX - Operand which receives the result of the normalize d

square root (destination).

• OPER4 - Not used.

Inputs and outputs

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect,
all the outputs of the instruction are turned off. If they are correct, the
calculations are carried out, the outputs success or error being actioned.

• normalize - when powered, carries out the adjustment of the button of
scale to value of the square root obtained. If turned off, the value of the
memory operand destination simply receives the square root of the source
operand.

Description of the Outputs:

• success - indicates that the calculation of the root and its Normalization
has been carried out correctly. When turned off, indicates that the input
enabled is not actioned, the module is not loaded into the PLC, the
operands were not correctly defined or negative values are stored in them.

• error - this output is always powered when one of the following errors
occurs:
• negative values exist in the supply operand or in the Normalization

constant
• error in the specification of the operands or attempt to access the

operands not declared.

Chapter 4 Function Reference of the Modules

56

WARNING:
In the version 1.00 of F-RAIZN.034 the output error is not actioned in the
attempt to access the operands not declared.

Use

This function can be used in the CPUs AL-600, AL-2000/MSP, AL-
2002/MSP, AL-2003, QK800, QK801 and QK2000/MSP.

Example of Application

To normalize the value of the destination operand in a form that has the same
scale as the operand supplied, the value to be declared in the Normalization
operand should be equal to the square root of the operand supplied multiplied
by 256.

For example, there may be the case of a transducer which supplies values from
0 to 1024, proportional to the root of an outflow, and it may be required that
these values are linearised to the same scale of values (0 to 1024). The
Normalization constant programmed is 8192 (square root (1024) *256).

Chapter 4 Function Reference of the Modules

57

FR-ARQ2.035 to F-ARQ31.042 -
Functions Data File

Introduction

The function data file allow the use of the applications program memory to
store large quantities of information, using concepts of registers and fields. In
this way it obtains great flexibility in the utilisation of the PLC’s memory
banks, apart from a substantial increase in the data storage capacity.

There are different function which implement data files, being identical in the
programming mode and functioning, differing only in the storage capacity. The
modules available are:

• F-ARQ2.035 - File function with 2 Kbytes of data

• F-ARQ4.036 - File function with 4 Kbytes of data

• F-ARQ8.037 - File function with 8 Kbytes of data

• F-ARQ12.038 - File function with 12 Kbytes of data

• F-ARQ15.039 - File function with 15 Kbytes of data

• F-ARQ16.040 - File function with 16 Kbytes of data

• F-ARQ24.041 - File function with 24 Kbytes of data

• F-ARQ31.042 - File function with 31 Kbytes of data

Each file can have up to 255 registers, numbered from 0 to 254, being that each
register can have up to 255 fields, also numbered from 0 to 254. Note,
however, that the total quantity of memory occupied cannot exceed the modules
capacity.

Each field occupies the same number of bytes of the operand where the files
readings or writings are carried out.

Chapter 4 Function Reference of the Modules

58

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. It is compulsory for this operand to be a memory constant with
value 5 (%KM+00005).

• OPER2 - Specifies the number of parameters passed to the function in
OPER4. It is compulsory for this operand to be a memory constant with
value 0 (%KM+0000).

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 5 for this module:

• %MXXXX, %DXXXX, %AXXXX, %EXXXX, %SXXXX,
%TMXXXX, %TDXXXX, %KM+XXXXX or %KD+XXXXXXX -
Operand from where the data is read in the writing operations in the
file or to where the data is copied into readings of the file (parameter
1).

• %MXXXX - Number of register from/to which the data will be

copied (parameter 2). Should contain between 0 and the total number
of registers less 1.

• %MXXXX - Number of field from/to which the data will be copied

(parameter 3). Should contain between 0 and the total number of fields
less 1.

• %KM+XXXXX - Total number of registers (1 to 255) required for

the file (parameter 4).

• %KM+XXXXX - Total number of fields (1 to 255) required for the

file (parameter 5).

• OPER4 - Not used.

Chapter 4 Function Reference of the Modules

59

Inputs and Output

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If the number of
parameters or their type are different from the needs of the module, the
error output is powered. If they are correct a attempt to access the file is
carried out.

• read/write - when powered, the value of the first parameter is copied to
the register and the field specified in the second and third parameters. If it
is turned off, the value is read from the field and copied to the first
parameter.

Description of the outputs:

• success - indicates that the access to the data file was correctly carried
out.

• invalid index - this output is connected:

• the field to be read or written was not specified

• the declaration of the registers and fields exceeds the modules memory

capacity

• there is an attempt to read when the first parameter is a constant

• there is an attempt to write the module being stored in EPROM

memory

• error - is powered if an error occurs in the specification of the parameters
or attempt to access the operands not declared.

Use

This function can be used in the CPUs AL-600, AL-2000/MSP, AL-
2002/MSP, AL-2003, QK800, QK801 and QK2000/MSP.

Description of the Functioning

For correct declaration of the number of fields and registers of the file, the
following calculation should be carried out:

Occupation of the file = Num. registers X Num. fields X Num. bytes per field

Chapter 4 Function Reference of the Modules

60

(parameter 4) (parameter 5)

The number of bytes per field occupied for each type of operand can be
obtained from table 4-10.

Parameter 1 Number of bytes per field

%MXXXX 2

%DXXXX 4

%AXXXX 1

%EXXXX 1

%SXXXX 1

%TMXXXX 2

%TDXXXX 4

%KM+XXXXX 2

%KD+XXXXXXX 4

Table 4-10 Occupation of the Field of the Files

The value obtained in the previous calculation should be less than or equal to
the total capacity of the function used, according to table 4-11.

Chapter 4 Function Reference of the Modules

61

Function Capacity (bytes)

F-ARQ2.035 2048

F-ARQ4.036 4096

F-ARQ8.037 8192

F-ARQ12.038 12288

F-ARQ15.039 15360

F-ARQ16.040 16384

F-ARQ24.041 24576

F-ARQ31.042 31744

Table 4-11 Capacity of the Functions Data Files

WARNING:
Different CHF instruction for access to the same file can be declared in the
same program. In all these instructions the operands with the values to be
written or that receive the same number of bytes per field (c.f. table 4-5).

Therefore, it is possible to indistinctly read or write operands %E, %S and %A
of one file or %KM, %M and %TM of another. Never the less they should not
be accessed with operands %M or %D in the same file.

If the first parameter is a table (%TM or %TD), all the fields of the register
indicated in the second parameter are copied, that is to say, the transfer of data
is carried out between the register and the table, being that the value of the third
parameter (number of field is ignored).

If the table has fewer positions than the number of fields in the register, only
the fields which correspond to the existing positions are transferred. If the table
has more positions than the number of fields in the register, only the existing
fields are transferred.

The operation of writing the data copies it to the appropriate area of memory
occupied by the function module.

WARNING:
If the module F-ARQ is stored in EPROM Flash, it is not possible to write
data in the file, only to read data. To carry out the writing of the data into the
files, the F modules corresponding to the them should be in the RAM memory
of the applications program.

Chapter 4 Function Reference of the Modules

62

WARNING:
During the reading of a PLC’s module data file with MasterTool or during its
transferring from RAM to Flash, no writing of data to it should be carried out.

This is because the writing of data modifies the module read, being considered
invalid by the programmer or by the PLC due to the alterating of its checksum.

The functions data files are modules of the applications programs being able to
be loaded or read by the PLC and stored on disks. For example, there may be
the case of a PLC controlling a injector machine, storing different configuration
parameters in an F-ARQ8.037 module. After the parameters are stored, this
module F can be read and stored on disk, to load in other equal injected
machines.

Example of Application

As an example if it a file with 120 registers and with 8 fields for register to
store operands %D, the occupation of memory will be:

Occupation of the file = 120 registers X 8 fields/register X 4 bytes/field

Occupation of the file = 3840

The configuration requires 3840 bytes to be occupied, the module
F-ARQ4.036 having to be used, then it allows the storing of 4096 bytes.

The parameters programmed in OPER3 of the CHF instruction for the access
to the file are:

• %D0020 - operand to where it will be read or with the value to be written
in the file

• %M0100 - contains the number of the register to be read or written, having
to have between 0 and 119 (120 register in total).

• %M0101 - contains the number of the field to be read or written, having to
have between 0 and 7 (8 register in total).

• %KM+00120 - total number of registers.

• %KM+00008 - total number of fields

Chapter 4 Function Reference of the Modules

63

F-MOBT.043 - Function for Moving of
blocks from Table Operands

Introduction

The function F-MOBT.043 carries out the copy of blocks of numeric
operands (%M or %D) or positions of tables (%TM or %TD) up to 255 values
of simple operands can be copied to tables and vice versa, also transferring the
positions from one table to another. It is possible to specify the initial position
of the block to be copied into the table supplied and into the destination table.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. It is compulsory for this operand to be a memory constant with
value 5 (%KM+00005).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameter is specified in OPER1, being set
at 5 for this module:
• %MXXXX, %DXXXX, %TMXXXX or %TDXXXX - Initial

operand from where the values are copied (source operand).

Chapter 4 Function Reference of the Modules

64

• %KMXXXX - Initial position to be transferred from the source

operand is a simple operand (%M or %D).

• %MXXXX, %DXXXX, %TMXXXX or %TDXXXX - Initial

operand where the values are copied to (destination operand).

• %KMXXXX - Initial position where the values in the destination

table are copied to. This parameter is disregarded if the destination
operand (%M or %D).

• %KMXXXX - Number of simple operands or table positions to be

transferred starting from the operand or from the initial position in the
parameters previously declared. It should be less than or equal to 255.

• OPER4 - not used.

Inputs and Outputs

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If these are incorrect,
the outputs of the invalid index are actioned.

Description of the outputs:

• success - indicates that the moving was correctly carried out

• source index invalid - indicates that there was an error in the
specification of the supply operand:

• the operand is not declared in module C
• the type of parameter 2 is not %KM
• the initial position programmed does not exist, if the source operand is

table
• there are not enough operands or table positions to carry out the

movement

Chapter 4 Function Reference of the Modules

65

destination index invalid - indicates that there was an error in the
specification of the destination operand:

• the operand is not declared in module C
• the type of parameter 4 is not %KM
• the initial position programmed does not exist, if the destination

operand is table
• there are not enough operand or table positions to carry out the

movement

If the two outputs of the invalid index are actioned simultaneously, some of the
following errors occur:

• the number of parameters programmed in OPER1 is different from five.

• the type of parameter 5 is not %KM

• the total number of position to be transferred is greater than 255

Use

This function can be used in the CPUs AL-600, AL-2000/MSP, AL-
2002/MSP, AL-2003, QK800, QK801 and QK2000/MSP.

WARNING:
This function allows the moving of a large number of operands in one scan. It
should be used with care so that the maximum time of the program cycle is not
exceeded.

Chapter 4 Function Reference of the Modules

66

F-STMOD.045 - Function Status of the
Buses and I/O Modules

Introduction

The function F-STMOD.045 makes possible the reading of the buses, of the
octets and of the PLC’s I/O modules. It allows special actions and procedures
to be in the applications program, in the case of hot swap or error in some
module or bus. It also places the arrangement of the applications program in
the configuration of I/O modules used by the PLC.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 4
(%KM+00004).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 4 for this module:

Chapter 4 Function Reference of the Modules

67

• %MXXXX or %TMXXXX - Memory or table operand which
receives the status values of the I/O octets. If an operand %M is used,
they should be defined in a minimum of 16 operands starting from the
one declared (including it) so that the function may be executed
correctly. If there is a table operand, it should have at least 16
positions. Each point of the operand %M or of the position of the table
represents the status of an operand %E or %S (only the least
significant points of its byte, .0 to .7). The value 0 in the point
indicates that the octet is being updated normally by the I/O scan,
while the value 1 indicates that the module or bus corresponding to the
octet is in error or deactivated for hot swap. The table to follow shows
the points of the operands corresponding to the status of the I/O
octets.

WARNING:
For use with the PLC AL-2003 a minimum of 32 memory operands should be
defined, or 32 table positions, as first parameter, for the visualisation of the
statuses of the 256 I/O octets.

Operand Table

Position

I/O Octet Associated to the or Table Position the Operand

.7 .6 .5 .4 .3 .2 .1 .0

%MXXXX 0 %E0007 %E0006 %E0005 %E0004 %E0003 %E0002 %E0001 %E0000

%MXXXX+1 1 %E0015 %E0014 %E0013 %E0012 %E0011 %E0010 %E0009 %E0008

%MXXXX+2 2 %E0023 %E0022 %E0021 %E0020 %E0019 %E0018 %E0017 %E0016

%MXXXX+3 3 %E0031 %E0030 %E0029 %E0028 %E0027 %E0026 %E0025 %E0024

%MXXXX+4 4 %E0039 %E0038 %E0037 %E0036 %E0035 %E0034 %E0033 %E0032

%MXXXX+5 5 %E0047 %E0046 %E0045 %E0044 %E0043 %E0042 %E0041 %E0040

%MXXXX+6 6 %E0055 %E0054 %E0053 %E0052 %E0051 %E0050 %E0049 %E0048

%MXXXX+7 7 %E0063 %E0062 %E0061 %E0060 %E0059 %E0058 %E0057 %E0056

Table 4-12 Format for Storing of the Status of the I/O for the AL-2002/MSP

Chapter 4 Function Reference of the Modules

68

Operand Table

Position

I/O Octet Associated to the or Table Position the Operand

.7 .6 .5 .4 .3 .2 .1 .0

%MXXXX 0 %E0007 %E0006 %E0005 %E0004 %E0003 %E0002 %E0001 %E0000

%MXXXX+1 1 %E0015 %E0014 %E0013 %E0012 %E0011 %E0010 %E0009 %E0008

%MXXXX+2 2 %E0023 %E0022 %E0021 %E0020 %E0019 %E0018 %E0017 %E0016

%MXXXX+3 3 %E0031 %E0030 %E0029 %E0028 %E0027 %E0026 %E0025 %E0024

%MXXXX+4 4 %E0039 %E0038 %E0037 %E0036 %E0035 %E0034 %E0033 %E0032

%MXXXX+5 5 %E0047 %E0046 %E0045 %E0044 %E0043 %E0042 %E0041 %E0040

%MXXXX+6 6 %E0055 %E0054 %E0053 %E0052 %E0051 %E0050 %E0049 %E0048

%MXXXX+7 7 %E0063 %E0062 %E0061 %E0060 %E0059 %E0058 %E0057 %E0056

%MXXXX+8 8 %E0071 %E0070 %E0069 %E0068 %E0067 %E0066 %E0065 %E0064

%MXXXX+9 9 %E0079 %E0078 %E0077 %E0076 %E0075 %E0074 %E0073 %E0072

%MXXX+10 10 %E0087 %E0086 %E0085 %E0084 %E0083 %E0082 %E0081 %E0080

%MXXX+11 11 %E0095 %E0094 %E0093 %E0092 %E0091 %E0090 %E0089 %E0088

%MXXX+12 12 %E0103 %E0102 %E0101 %E0100 %E0099 %E0098 %E0097 %E0096

%MXXX+13 13 %E0111 %E0110 %E0109 %E0108 %E0107 %E0106 %E0105 %E0104

%MXXX+14 14 %E0119 %E0118 %E0117 %E0116 %E0115 %E0114 %E0113 %E0112

%MXXX+15 15 %E0127 %E0126 %E0125 %E0124 %E0123 %E0122 %E0121 %E0120

%MXXX+16 16 %E0135 %E0134 %E0133 %E0132 %E0131 %E0130 %E0129 %E0128

%MXXX+17 17 %E0143 %E0142 %E0141 %E0140 %E0139 %E0138 %E0137 %E0136

%MXXX+18 18 %E0151 %E0150 %E0149 %E0148 %E0147 %E0146 %E0145 %E0144

%MXXX+19 19 %E0159 %E0158 %E0157 %E0156 %E0155 %E0154 %E0153 %E0152

%MXXX+20 20 %E0167 %E0166 %E0165 %E0164 %E0163 %E0162 %E0161 %E0160

%MXXX+21 21 %E0175 %E0174 %E0173 %E0172 %E0171 %E0170 %E0169 %E0168

%MXXX+22 22 %E0183 %E0182 %E0181 %E0180 %E0179 %E0178 %E0177 %E0176

%MXXX+23 23 %E0191 %E0190 %E0189 %E0188 %E0187 %E0186 %E0185 %E0184

%MXXX+24 24 %E0199 %E0198 %E0197 %E0196 %E0195 %E0194 %E0193 %E0192

%MXXX+25 25 %E0207 %E0206 %E0205 %E0204 %E0203 %E0202 %E0201 %E0200

%MXXX+26 26 %E0215 %E0214 %E0213 %E0212 %E0211 %E0210 %E0209 %E0208

%MXXX+27 27 %E0223 %E0222 %E0221 %E0220 %E0219 %E0218 %E0217 %E0216

%MXXX+28 28 %E0231 %E0230 %E0229 %E0228 %E0227 %E0226 %E0225 %E0224

%MXXX+29 29 %E0239 %E0238 %E0237 %E0236 %E0235 %E0234 %E0233 %E0232

%MXXX+30 30 %E0247 %E0246 %E0245 %E0244 %E0243 %E0242 %E0241 %E0240

%MXXX+31 31 %E0255 %E0254 %E0253 %E0252 %E0251 %E0250 %E0249 %E0248

Chapter 4 Function Reference of the Modules

69

Table 4-13 Format for storing of the I/O Status for the AL-2003

n.b.:

- The octets are all represented as input (%E).

Starting from the determined address the outputs (%S) should be taken into
consideration, depending on the configuration of modules used in the buses.

- In the PLC AL-2002, the last 8 operand %M or the last 8 table position
are reserved for future use, having to be declared for correct execution of
the function.

- If the PLC is an AL-2003, all the operands or 32 table position are used
for storing the I/O status.

- Value of point: 0 - octet being updated in normal form with the I/O

module corresponding or not used

in the configuration of the bus

1 - octet not updated, bus or module

in error or deactivated for hot swap.

%MXXXX or %TMXXXX - Memory or table operand which receives the
values of the bus status. If the operand %M is used, a minimum of 10 operands
should be defined starting from and including the one declared so that the
function may be executed correctly. If it is a table operand this should have at
least 10 positions. Each operand or table position corresponding to the status of
a bus.

Chapter 4 Function Reference of the Modules

70

Operand Table Position Associated Bus

%MXXXX 0 Status of bus 0

%MXXXX + 1 1 Status of bus 1

%MXXXX + 2 2 Status of bus 2

%MXXXX + 3 3 Status of bus 3

%MXXXX + 4 4 Status of bus 4

%MXXXX + 5 5 Status of bus 5

%MXXXX + 6 6 Status of bus 6

%MXXXX + 7 7 Status of bus 7

%MXXXX + 8 8 Status of bus 8

%MXXXX + 9 9 Status of bus 9

Table 4-14 Format for storing the Status of the Buses

n.b.

- Status values: %MXXXX = 0 - bus not used

%MXXXX.4 (bit 4) - bus with error

%MXXXX.6 (bit 6) - bus deactivated for module hot
 swap

%MXXXX.7 (bit 7) - bus functioning normally

• %MXXXX or %TMXXXX - Memory or table operand which receives
the values of the modules status. If an operand %M is used, a minimum of
160 operands should be defined starting from and including the one
declared so that the function may be executed correctly. If it is a table
operand, this should have at least 160 positions. Each operand %M or table
position corresponds to a module of the bus, with its status represented by
the following values:

Chapter 4 Function Reference of the Modules

71

%MXXXX = 0 - module non-existent
%MXXXX.4 (bit 4) - module with error
%MXXXX.6 (bit 6) - module de-activated for hot swap
%MXXXX.7 (bit 7) - module functioning normally

• %MXXXX or %TMXXXX - Memory or table operand which receives
the values from the modules directory. If and operand %M is used, a
minimum of 160 operands should be defined starting from and including
the one declared so that the function may be executed correctly.If it is a
table operand, this should have at least 160 position. Each operand %M or
table position corresponds to a bus module, containing its respective
identification code. This code can be obtained in the editing window of the
parameters of the I/O modules in MasterTool (options Options Modules of
I/O) in the field type.

• OPER4 - not used.

Inputs and Outputs

Description of inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect,
the output success is turned off. If they are correct, the function carries out
the reading of the modules directory to the operand declared in OPER3.

• status modules - when this input is powered, the function carries out the
status reading of the modules to the operand declared in OPER3.

• directory modules - when this is powered, the function carries out the
reading of the modules to the operand declared in OPER3.

Description of the outputs:

• success - this outputs is powered when the function was correctly
executed.

• error - is powered when an error occurs in the specification of the
operands or when there is an attempt to access the operands not declared.

Use

This function can only be used in the CPUs AL-2002/MSP and AL-2003.

Chapter 4 Function Reference of the Modules

72

F-RELG.048 - Function to Access the
Real Time Clock

Introduction

The function F-RELG.048 carries out the access of the real time clock
contained in the CPU AL-2002. The clock has complete hour and calendar,
allowing the development of applications programs which depend on precise
time bases. The time information is kept the same when there is power failure
in the system, since the CPU is powered by batteries.

This function has similar characteristics to function F-SINC.049, since both
execute accesses to the same clock, differing only in the methods of setting.
They can be used simultaneously in the same program, if necessary.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 2
(%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameters possible to be
programmed in the editing window of OPER 4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

Chapter 4 Function Reference of the Modules

73

• OPER3 - Contains the parameter passed to the function, declared through
a window visualised in MasterTool when the CHF instruction is edited.
The number of editable parameters is specified in OPER1, being set at 2
for this module:

• %MXXXX or %TMXXXX - Specification of the operands to
where the clock values are read. If this parameter is specified as
memory, the values are read to the memory declared and the following
six. If it is specified as table, the values are placed starting from
position 0 to 6. If the operands are not declared, the reading of the
time values is not carried out and the instruction outputs are
disconnected. It is possible to use tables with more than 7 positions,
being that values are read from operands in the following sequence:

Operand Table Position Content Format

%MXXXX 0 Seconds 000XX

%MXXXX + 1 1 Minutes 000XX

%MXXXX + 2 2 Hours 000XX

%MXXXX + 3 3 Day of the month 000XX

%MXXXX + 4 4 Month 000XX

%MXXXX + 5 5 Year 000XX

%MXXXX + 6 6 Day of the week 000XX

Table 4-15 Values Read from the Clock (F-RELG.048)

The contents of these operands can be read at any time, but are updated with
the real hour of the clock only when the instruction is executed. The 24 hour
format is used in the time count. The days of the week are counted with values
from 1 to 7.

Chapter 4 Function Reference of the Modules

74

Value Day of the Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Table 4-16 Values of the Days of the Week (F-RELG.048)

• %MXXXX or %TMXXXX - Specification of the operands from
where the clock values are set, with the actioning of some of the inputs
to set the function. If this parameter is specified as memory, the values
are copied from the memory declared and the following 6. If it is
specified as table, the values are copied from position 1 to 6. If the
operands are not declared, the setting is not carried out and the outputs
of the instructions are disconnected. The values to be copied to clock
should be placed in the operands in the same sequence as the operands
of reading (seconds, minutes, hours, day of the month, year and day of
the week).

• OPER4 - Not used.

Inputs and Outputs

Description of the outputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction are analysed. If they are incorrect, all
the output of the instruction are turned off. If they are correct, the time
values of the clock are transferred to the memory operands or to a table
declared as first parameter in OPER3, the output success is powered and
the output pulse a second is connected by a scan at each second.

• set clock - when powered, the values of the operands declared as second
parameter in OPER3 are set in the clock, if the values are correct. While
the input is actioned the time is not counted, the output pulse a second
remaining turned off.

Chapter 4 Function Reference of the Modules

75

Example:

Figure 4-7 Example of Diagram of Setting Input Times

Description of the output:

• success - is powered when the function has been correctly executed.

• pulse a second - indicates if there was a change in the clock. The pulse
lasts one scan and can be used to synchronise events of the applications
program.

• loss of time - this output is connected if the clock was left without battery
power during a failure of the main supply. It is deactivated with the setting
of the clock.

Use

This function can only be used in the CPUs AL-2002/MSP, AL-2003, PL104
and PL105.

WARNING:
The battery power is supplied to the CPU through the bus. Therefore, the
removal of the CPU AL-2002/MSP from the background results in the loss of
the clock’s time.

Chapter 4 Function Reference of the Modules

76

F-SINC.049 - Function to Access the
Synchronized Real Time Clock

Introduction

The function F-SINC.049 carries out access to the real time clock contained
in the CPU AL-2002/MSP. The clock has complete time and calendar,
allowing the development of applications programs which depend on precise
time bases. The time information is kept the same with a system power failure,
since the CPU is powered by batteries

The clocks of various AL-2002 controllers can operate synchronised with a
precision of 1 millisecond, through the synchronism networks and ALNET II.
The function F-SINC.049 has characteristics for use in controllers which
operate with their clocks synchronised, especially in the PLC’s synchronism
generator.

This function has similar characteristics to the function F-RELG.048 since
both execute access to the same clock, differing only in the setting methods.
They can be used simultaneously in the same program if necessary.

For further information concerning the synchronisation of the controllers,
consult the AL-2002 User’s Manual or the ALTUS Networks Manuals.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

Chapter 4 Function Reference of the Modules

77

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 2
(%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 2 for this module:

• %MXXXX or %TMXXXX - Specification of the operands to
where the clock values are read. If this parameter is specified as
memory, the values are read to the memory declared and the following
6. If it is specified as table the values are placed starting from
position 0 to 6. If the operands are not declared, the reading of the
time values is not carried out and the instructions outputs are
disconnected. It possible to use tables with more than 7 position, as
the function disregards the surplus positions. The values are read from
the operands in the following sequence:

Operand Table Position Content Format

%MXXXX 0 Seconds 000XX

%MXXXX + 1 1 Minutes 000XX

%MXXXX + 2 2 Hours 000XX

%MXXXX + 3 3 Day of the month 000XX

%MXXXX + 4 4 Month 000XX

%MXXXX + 5 5 Year 000XX

%MXXXX + 6 6 Day of the week 000XX

Table 4-17 Values Read from the Clock (F-SINC.049)

The contents of these operands can be read at any time, but are updated with
clock’s the real time only when the instruction is executed. The 24 hour format
is used in the time count. The days of the week are counted with values from 1
to 7:

Chapter 4 Function Reference of the Modules

78

Value Day of the Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Table 4-18 Values of the Days of the Week (F-SINC.049)

• %MXXXX or %TMXXXX - Specification of the operands from

where the clock value are set, with the actioning of any of the
function’s setting inputs. If this parameter is specified as memory, the
value are copied from the memory declared and the following 6. If
specified as table the values copied from position 0 to 6. If the
operands are not declared, the setting is not carried out and the
instruction’s outputs are disconnected. The values to be copied to the
clock should be placed in the operands in the same sequence of the
reading operands (seconds, minutes, hours, day of the month, month,
year and day of the week).

• OPER4 - Not used.

Inputs and Outputs

Descriptions of the inputs:

• enable - when this input is powered the function is called, with the
parameters programmed in the CHF instruction being analysed. If these are
incorrect, all the instruction’s outputs are turned off. If they are correct the
clock’s time values are transferred to the memory operands or to the table
declared as first parameter in OPER3, the output success is powered and
the pulse a second is connected by a scan every second.

• set maintained synchronism - when powered, the values of the
operands declared as second parameter in OPER3 are set in the clock, if
they are correct, the sequence for increasing by seconds being maintained.
In this way, the sequence of the second pulses is not altered, only the time
value contained in the clock. This characteristic is useful to set the PLC’s
synchronism generator, since it does not modify the time base of the rest of
the system’s controllers, only the time values.

Chapter 4 Function Reference of the Modules

79

Figure 4-8 Example of Diagram of Times of Input Set Maintained Synchronism

• set external pulse - when powered, the values of the operands declared
as second parameter in OPER3 are programmed to be set in the clock in the
next pulse in the synchronism input of the PLC, if the PLC is configured
as synchronism generator. When the pulse occurs in the synchronism input,
the time values are accepted, if the values are correct. The second count is
started immediately the external pulse is actioned, changing the sequence of
the second pulses generated. In this way it is possible to set the controller
which manages the control system’s synchronism of external clocks or
other systems. It is not necessary for the input to remain powered until the
actioning of the pulse for this setting to be carried out.

Chapter 4 Function Reference of the Modules

80

Figure 4-9 Example of Diagram of Times of Input Setting External Pulse

WARNING:
This setting is only possible for PLCs configured as synchronism generators.
The external pulse should occur up to 6 seconds after the input to be actioned.
After this period the time values are not changed by an external pulse, only
initializing the second count.

If the PLC is configured as synchronism generator, the simultaneous actioning
of the inputs sets maintained synchronism and the setting of the external pulse
is done so that the PLC generates a setting of the time values in all the other
PLCs connected to the synchronism network (absolute setting), not modifying
the time of its clock. In order for this setting to occur, apart from the PLCs
connected to the synchronism network, they should be interconnected by
ALNET II. This setting is identical to that carried out automatically each
minute by the PLC’s synchronism generator.

Chapter 4 Function Reference of the Modules

81

Description of the outputs:

• success - is powered when the function has been correctly executed.

• pulse a second - indicates it there was a change in the clock’s second
count. The pulse applications program’s events.

• loss of time - this output is connected if the clock was left without battery
power during failure of the main supply. It is deactioned with the setting of
the clock.

Use

This function can only be used in CPUs AL-2002/MSP and AL-2003.

WARNING:
The battery power is supplied to the CPU through the bus. Therefore, the
removal of the CPU AL-2002/MSP from the rack results in the loss of the
clock’s time.

Chapter 4 Function Reference of the Modules

82

F-RELOG.061 - Function to Access the
Real Time Clock of QK801 and QK2000

Introduction

The function F-RELOG.061 carries out the access to the real time clock
contained in CPUs QK2000 and QK801. The clock has complete time and
calendar, allowing the development of applications programs which depend on
precise time bases. The time information is kept the same when these is a power
failure in the CPU, since the clock remains powered by battery.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function is
OPER3. This operand must be a memory constant with value 2
(%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). If determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is zero.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the instruction CHF is
edited. The number of editable parameters is specified in OPER1, being set
at 2 for this module:

Chapter 4 Function Reference of the Modules

83

• %MXXXX or %TMXXXX - Specification of the operands where
the clock value are read to. If this parameter is specified as memory
the values are read to the memory declared and the following 6. If its
is specified as table, the values are placed starting from position 0 to
6. If the operands are not declared, the reading of the time values is
not carried out and the instruction outputs are disconnected. It is
possible to use tables with more than 7 positions, as the function
disregards surplus positions. The values are read from the operands in
the following sequence:

Operand Table Position Content Format

%MXXXX 0 Seconds 00XX

%MXXXX + 1 1 Minutes 00XX

%MXXXX + 2 2 Hours 00XX

%MXXXX + 3 3 Day of the Month 00XX

%MXXXX + 4 4 Month 00XX

%MXXXX + 5 5 Year 00XX

%MXXXX + 6 6 Day of the Week 00XX

Table 4-19 Values Read from the Clock (F-RELOG.061)

The contents of these operands can be used at any time, but are only
updated with the real time of the clock when the function is executed.
The 24 hour format is used to count the time and the days of the week
are counted with values from 1 to 7:

Chapter 4 Function Reference of the Modules

84

Value Day of the Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Table 4-20 Values of the Days of the Week (F-RELOG.061)

• %MXXXX or %TMXXXX - Specification of the operands where

the clock value are set from, with the actioning of the input of setting
the function. If this parameter is specified as memory, the values are
copied from the memory declared and the 6 following. If it specified as
table, the values are copied from position 0 to 6. If the operands are
not declared, the setting is not carried out and the instruction’s outputs
are disconnected. The values to be copied to the clock should be
placed in the operands in the same sequence as the operands of the
reading (seconds, minutes, hours, day or the month, month year and
day of the week)

• OPER4 - Not used.

Inputs and Outputs

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect all
the outputs of the instruction are turned off. If they are correct, the time
values of the clock are transferred to the memory operands or to the table
declared as first parameter in OPER3, the output success is powered and
the output pulse a second is connected by a scan every second.

• set clock - when powered, the values of the operands declared as second
parameter in OPER3 are set in the clock, if they are with correct values.
While this input is actioned the time is not counted, the output pulse a
second remaining turned off.

Chapter 4 Function Reference of the Modules

85

Figure 4-10 Example of Diagram of Input Set Times

Description of the outputs:

• success - is powered when the function was executed correctly.

• pulse a second - indicates if these was a change in the clock’s second
count. The pulse lasts for one scan be used to synchronise applications
program events.

• loss of time - this output is connected if the clock was left without battery
power during failure of the main supply . It is deactioned with the setting of
the clock

Use

This module can be used in CPUs QK801 and QK2000/MSP.

Chapter 4 Function Reference of the Modules

86

F-ALNET1.062 - Function Interpreter
of the ALNET I Protocol for QK801

Introduction

The function F-ALNET1.062 implements the communication in the
secondary serial channel of the QK801 controller, allowing it to receive and
execute ALNET I protocol commands as a slave device. In this way, the PLC
QK801 can be connected to an ALNET I supervision network or to peripheral
equipment through this channel

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 2
(%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is zero.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 2 for this module:

Chapter 4 Function Reference of the Modules

87

• %KMXXXX - Specification of the baud rate of the communication
in the secondary serial channel. The value of the constant
corresponding directly to the number of bauds, being able to take on
the values 9600, 4800, 2400, 1200, 600 or 300.

• KMXXXX - Specification of use of MODEM signals (RTS, CTS,

DTR and DSR), when the secondary serial channel is used in standard
RS-232. If programmed with the value 0, the communication does not
use the MODEM signals. This constant should be programmed with
the value 0 when the secondary serial channel follows the RS-485
standard .

• OPER4 - Not used.

Input and Outputs

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If any are incorrect,
the error output is powered. If they are correct, the function interprets,
executes and responds to the ALNET I protocol received in the secondary
serial channel of the PLC.

WARNING:
To function correctly, the input enabled should be powered in the execution
applications program’s first execution cycle. The configuration of the
secondary serial channel of the QK801 is executed in the first cycle.

Description of the outputs:

• success - is powered when the function was called (is present in the
controller)

• executed command pulse- indicates that a command received by the
serial channel has been processed, being powered by a scan.

• error - is permanently powered in case an error occurs in the programming
of the function’s constants or in the serial communication by a scan.

Chapter 4 Function Reference of the Modules

88

ALNET I Protocol

The second serial channel of the PLC QK801 is directed for use with
supervisory systems or man-machine interfaces, not executing the commands
referring to the modules of the applications program, nor the PLC’s change of
status commands.

The ALNET I commands executed by module F are shown in the table to
follow, indicating the version of the protocol to which they belong. The
commands of version 1.00 are used in networks which contain controllers from
the series AL-1000 or AL-500. The commands of version 2.00 can be used in
networks which contain only controllers from the series AL-600,
AL-2000, AL-3000 or QUARK, not having any controller from the series
AL-1000 or AL-500.

Chapter 4 Function Reference of the Modules

89

Num Description of the command V1.00 V2.00

002 Force simple operand AL-1000 x

004 Free all those forced x x

006 Monitor simple operand AL-1000 x

009 Disable digital output x x

010 Enable digital outputs x x

012 Force table position AL-1000 x

013 Monitor table position AL-1000 x

014 Force block of table AL-1000 x

015 Monitor block of table AL-1000 x

032 Receive program module x

037 Read status x

038 Read program’s modules directory x

039 Read program module’s status x

040 Monitor simple operands x

041 Monitor table operands x

042 Read status of forcings x

129 Force simple operands x

130 Force table operands x

131 Free operands x

133 Write simple operands x

134 Change the protection level x

135 Change the password x

Table 4-21 Commands Executed by Module F - ALNET1.062

The table to follow shows the commands which are not executed by module
F-ALNET1.062:

Chapter 4 Function Reference of the Modules

90

Num Description of the command V1.00 V2.00

005 Pass to programming mode * *

007 Pass to cycled mode * *

008 Execute a cycle * *

011 Pass to execution mode * *

031 Request to load program module *

033 Remove program module *

034 Transfer module from EPROM to RAM *

035 Re-enable module in EPROM *

036 Compact RAM memory *

045 Transfer module from RAM to EPROM flash *

046 Erase EPROM Flash memory *

047 Read communication status *

193 Load from program module *

Table 4-22 Commands not executed by Module F-ALNET1.062

Use

This module can be used in the CPU QK801.

Chapter 4 Function Reference of the Modules

91

F-IMP.063 Function for Printing
ASCII Characters

Introduction

The function F-IMP.063 allows ASCII characters to be sent by the main
serial channel of the programmable controllers to devices as printer or video
terminals, allowing the printing or visualisation of pre-defined texts in
conjunction with values of operands.

This function can work in two distinct ways: sending text and memory
operands together or sending a sequence of values of up to 255 memory
operands, without texts. The values of the memory operands are corded in
ASCII format, for sending through the serial communication interface.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 3
(%KM+00003).

• OPER2 - Should be an operand of type constant with value D
(%KM+0000). Determines the number of parameters possible to be
programmed in the editing of OPER4. As this function does not need any
parameter in OPER4, the value of OPER2 is zeroed.

Chapter 4 Function Reference of the Modules

92

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at three for this module:

• %MXXXX or %TMXXXX - When specified as %MXXXX,

indicates the initial operand to be sent through the PLC’s primary
channel. When specified as %TMXXXX it indicates the table which
contains the text and/or memory operands to be sent. The maximum
number of characters sent is 255, allowing the use of one %TM from
the maximum 128 positions.

• %KM+XXXXX - Indicates the number of memory operands to be

sent starting from the operand %MXXXX specified in the previous
parameter. When %TMXXXX is used in the previous parameter, the
value of this parameter is ignored by the function. The value of this
operand should be between 1 and 255.

• %MXXXX - Control operand of the function.

WARNING:
The control operand is for the exclusive use by the function, not being able to
be altered in any part of the applications program, under penalty of
endangering its correct execution.

• OPER4 - Not used.

Description of the inputs:

• enable - when this input is powered the function is called, the programmed
parameters being analysed in the CHF instruction. If they are incorrect, the
output error is powered. This input should remain powered until the
output concluded sending is pulsated.

WARNING:
Once started, the execution of the F-IMP.063 function should continue until
it is finished (level of the output concluded sending returning to 0 after to
take on status in (). In this way, the CHF instruction which carries out the call
to F-IMP.063 should not be jumped nor turned off.

• suppress space - this output is only used when the first parameter of
OPER3 is specified as %MXXXX. When powered, it suppresses the 5
spaces in white sent between the value of each operand %M.

Chapter 4 Function Reference of the Modules

93

• suppress CR and LF - this output is only used when the first parameter
of OPER3 is specified as %MXXXX. When powered, it suppresses the
sending of the CR characters (return of car) and LF (new line) after the
sending of the operands has been completed.

Description of the outputs:

• concluded sending - this output is powered for a scan as soon as the
sending of characters has been completed.

• active printing - this output is powered while the character are being sent
to the output device. So straightaway the sending closes, the output is
turned off.

• error - is powered if there is an error in the operands’ specification,
attempt to access operands not declared or time out in the signal test of
MODEM (CTS and RTS).

Use

• Number of calls - all the calls belonging to F-IMP.063 can exist in the
applications program if necessary, until the last of their characters has been
sent, even if other have been enabled. When the sending of the ASCII
characters from the active function is concluded a scan pulse in the output
concluded sending indicates that the communication channel is free,
being activated at the next call of the F-IMP.063 which is enabled.

• Printing of texts - if an operand %TM is used as the function’s first
parameter, the first table position after the last character to be sent should
have the value 0. This value is recognised by the function as a marker for
the end of the text. If this value is omitted, the function may send all the
characters existing in the table up to a limit of 255.

The text to be sent should be stored in the table before the call module F-
IMP.063 is enabled, CAB instructions being able to be used for this
purpose. The text can be visualised in ASCII format during the insertion of
the CAB instruction.

The ASCII characters used by the function are in the range 0 to 127.

• Use of the signals of MODEM (CTS and RTS) - in a way that allows the
use of devices which use or don’t use MODEM signals, the function can
carry out treatment of the RTS and CTS signals or depress them. This
definition is achieved via MasterTool, the treatment of the signals is only
carried out in the sending of the first byte of each communication. In this
way it should administer the sending of the characters into the function of
the buffer size of the reception by destination device.

Chapter 4 Function Reference of the Modules

94

Being selected for use by MODEM signals, if there is no actioning of CTS
signal after 200ms of CTS signal after 200ms of the actioning of the RTS
signal, the output error is powered, with the following aspects having to be
verified:

• connection of cables which connects the PLC to the output device.
• sending of character not recognised by the output device.
• incompatibility of configuration between the PLC and the output

device.
• permanent over flow reception buffer of output device in function of

its size X rate of sending characters.

• Configuration of serial channel - the function works with the following
serial channel configuration:

• 8 bits of data
• without parity
• band rate configurable (via MasterTool)

After execution is complete, the function automatically reconfigures the
serial channel, allowing communication via the ALNET I protocol.

• Execution time - When the input enable is powered and no other printing
was active, the function analises the parameters, prepares the group of
characters to be sent and fires its transmission. Depending on the contents
to be sent, this preparation can need quile a long time for execution,
significantly increasing the execution time of this cycle of the applications
program. In the subsequent cycles the function only tests the end of the
sending of the characters, with the execution time somewhat reduced.

This function can be used in the CPUs QK800, QK801 and QK2000/MSP.

Chapter 4 Function Reference of the Modules

95

F-RECEP.064 - Function for
Reception of ASCII Characters

Introduction

The function F-RECEP.064 allows the reception of ASCII characters
through the main serial channel of the PLC.

Through this function is possible receive characteres of any devices with RS-
232 serial interface having 1 start bit, 7 data bits, 1 parity bit (even) and 1 stop
bit.

Through this function it is possible to receive a maximum of 255 characters,
which are stored in memory operands or in a table.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in
the following way:

• OPER1 - Specifies the number of parameter passed to the function in
OPER4. This operand must be a memory constant with value 4
(%KM+00004).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameter possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 in zeroed.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is

Chapter 4 Function Reference of the Modules

96

edited. The number of editable parameters is specified in OPER1, being set
at four for this module:

Chapter 4 Function Reference of the Modules

97

• %MXXXX or %TMXXXX - Storing operand. When specified as
%MXXXX, it indicates the first memory operand of reception,
starting from the characters, received by the serial channel, which are
stored. When specified as %TMXXXX it indicates the table which
should receive the ASCII characters.

• %KM+XXXXX - Position of storing. Shows the first table position

to be occupied by data received through the serial channel, if the
storing operand (first parameter) is a table. If the first parameter is a
memory (%MXXXX), the value of this constant is disregarded.

• %KM+XXXXX - Number of characters. Shows the number of

characters to be received in a communication.

WARNING:
A communication can receive a maximum of 255 characters. If stored in a table
an attempt should be made to ensure that the table has enough positions to
receive the characters programmed. That is to say, the initial table position plus
the number of table operand position.

• %MXXXX - Control operand of the function.

WARNING:
The control operand is for the exclusive use of the function, and is not
supposed to be altered in any part of the applications program under penalty of
endangering its correct execution.

• OPER4 - Not used.

Description of the inputs:

• enable - when this input is powered the function is called, the parameters
programmed being analysed in the CHF instruction. If they are incorrect,
the output error is powered. This input should remain turned on until the
output sending concluded is pulsated.

WARNING:
In order that the characters are correctly received and stored, while the call to
the function F-RECEP.064 is enabled it should not be jumped through any
jump reel instruction.

• reset - this input is used to re-initialize the function, returning to store the
characters received starting from the first position or operand programmed.
While it is powered the function remains inactive.

Description of the outputs:

Chapter 4 Function Reference of the Modules

98

• concluded reception - this output is powered through a scan as soon as
the total number of characters is received.

• active reception - this output is powered while the characters are being
received. When the reception is finished, with the arrival of the last
character programmed, this output is turned off.

• error - this output is powered if an error occurs in the specification of the
operands, an attempt is a parity error in the characters received.

Use

All the calls of F-RECEP.064 can be present in the applications program if
necessary. However only one call remains active in the program, up to the end
of the reception of the characters programmed, even if others are enabled. After
the reception of active functions ASCII characters has finished, a scan pulse in
the output concluded reception indicates that the communication channel is
free, being activated at the next call of F-RECEP.064 which is enabled.

The ASCII characters used by the function are in the range 0 to 127.

The function works with the following serial channel configuration:

• 7 data bits

• 1 parity bit (par)

• configurable baud rate (via MasterTool).

This function can be used in the CPUs QK800, QK801 and QK2000/MSP.

Chapter 4 Function Reference of the Modules

99

F-UTR_S.068 - Function to turn on
UTRs outputs

Introduction

F-UTR_S.068 function make access in AL-3202 digital outputs modules,
implementing special matches for PLCs in remote terminals units (UTRs).

AL-3202 module has 32 digitals outputs and work with “check before operate”
principle. Its points can be configured to work like common outputs - accessed
per %S operands through I/O scanning, double-stability, “trip/close” or
“rise/lower” outputs.

F-UTR_S.068 function receive commands to activate supervisory station
through a table. Send commands to AL-3202 output modules, read the
operations states and share commands in seekings. To this operation, AL-3202
modules must be configured as double-stability, “trip/close”, “trip/close SBO”
or “rise/lower”.

F-UTR_S.068 function must be used only in one program logic, the control of
all AL-3202 PLC modules is done by one call.

F-CBO.018 function must be used to configure each AL-3202 module existent
in bus.

Chapter 4 Function Reference of the Modules

100

Programming

Operands

CHF instruction cells are used for function calls and programmed like
follow:

• OPER1 - Specifies the number of parameter passed to the function in
OPER3. This operand must be a memory constant with value 1
(%KM+00001).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameter possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 in zeroed.

• OPER3 - Contains the parameters passed to the function, declared through
a window visualised in MasterTool when the CHF instruction is edited.
The number of editable parameters is specified in OPER1, being set at one
for this function:

• TMXXXX - Table where the supervisory write commands for
outputs and read the respective state. Each function interprets
existents commands in its first 3 positions storing consequent
operation in the follow positions, accordant the format shown in this
chapt. Case the table has less than 7 positions, the commands isn’t
interpreted by function and its “operands error” is switched on.

• OPER4 - Not used.

Inputs and Outputs

Description of the inputs:

• enable - when this input get power then function is called and analyse the
parameters programmed in CHF instruction. If they are correct only
success output is switched on. If any are incorrect, the success and
operands error output are powered.

Description of the outputs:

• success - is powered when function get call (is present in the controller)

• operands error - is powered if occur operands specification error or if
tried access operands not declared.

Chapter 4 Function Reference of the Modules

101

• command error - it is powered if command was rejected by AL-3202
module. In this case you must to analize %TMXXXX table state fields to
discover error reasons.

ATTENTION:
This output only get power by scanning (pulse).

Use

This function can be used only in AL-2002 and AL-2003 CPUs

Function processing

The Supervisory program write in table positions 0 to 2 declared in function,
commands to action. The positions 3 to 5 needing to be read only if happen one
error, if error command output get active.

The %TMXXXX table must be initialized with zeroes by CAB instruction in
the first CPU scanning.

Table Format %TMXXXX

Table fields description:

Position 0 - supervisory command:

Chapter 4 Function Reference of the Modules

102

Code Command
1 Turn on the double-stable point
3 Turn off the double-stable point
5 Rise
7 Lower
9 Trip
11 Close
13 Select trip
15 Select close
17 Operate trip
19 Operate close
21 Cancel

Supervisory make command match through shown codes in table above. The
function switch off the 0 bit from 0 position after command executing. See
format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 C C C C A

A = 1 - activate command

0 - executed command

CCCC - command code

Position 1 - actioned point address:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 R R R R 0 o o P P P

RRRR - bus module position (0-15)

oo - module octet number (0-3)

PPP - Number of the point to action octet (0-7 for double-stability commands,
0-3 to other ones)

The address is useless for command 21.

Chapter 4 Function Reference of the Modules

103

Position 2 - "rise/lower" actioning time (1 to 255 seconds tenth)

This time only is needed in 5 and 7 commands.

Position 3 - command state #0:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Er x x x x Se x In To Oc Sa Co Sc Fo Nc x

Er - any error
Se - Invalid Operate/Cancel
In - Inactive AL-3202
To - Time out Select
Oc - Busy Module
Sa - output Error
Co - Invalid Command
Sc - Operate/Cancel Command after configuration
Fo - switched off 24V energy source
Nc - Unconfigurated Module
x - Reserved

Position 4 - command state #1:

Chapter 4 Function Reference of the Modules

104

Position 5 - command state #2:

Table 4 and 5 positions has each output points state:

• "1" mean output point is damaged

• "0" mean point is OK.

Only is needed to look this positions if outputs error occur (bit Sa in #0 state)

Position 6 - reserved to function internal use.

Configurating

AL-3202 module must be configured as double-stable commands, "rise/lower"
or "trip/close" to acceptance. This configuration is made module to module by
F-CBO.018 function.

Configuring codes:

0 S operands access (I/O scanning)

1 double- stability mode

2 "rise/lower" mode

3 "trip/close" mode

4 "trip/close" SBO mode

Exception Situations

CBO AL-3202 output module has complex programmation. It require right
arquiteture understanding to comprehend exceptions situations.

Chapter 4 Function Reference of the Modules

105

Just one F-UTR_S call function can access all AL-3202 PLC boards. It does
state report that has relation with board address (TMXXXX position 1).

The bits error between 1 to 7 are generated by hardware (AL-3202) besides
they are specifics to one card.

Bits 8 to 10 and 15 are generated by software (CPU), corresponding to one
situation that involves all the PLC.

Some bits are "latch" type, it mean error remain stored until new command is
executed.

Bellow is described errors bits behaviour:

• Er - any error - The Er bit indicates any error situation. The other bits
serve to detail the kind of occurred error. Following Er bit the second
function output is turned on, and can be tested directly by application.

• If - invalid Operate/Cancel - Error that occur when you try to do
"operate" or "cancel" command without executed previous "select"
command, or the point addressed by "operate" isn’t the same of selected
(different address), or if selection change to "trip" having "operate" as
reverse close.

• In - AL-3202 inative - Occur when CPU can’t access AL-3202 module:
the swap key is STDBY, the AL-3202 module is removed from embroidery
frame, the AL-3202 module stay without error, wrong address (RRRR field
in %TMXXXX position 1), or module isn’t declared in Bus.

• To - Time out selection (latch) - Occur when "operate" or "cancel"
command arrive to AL-3202 module after selected time expired. This time
must be specified in module configuration, between 0,1 to 25,5 seconds
(see F-CBO.018 description).

• Oc - Busy Module - The Oc bit stay turned on during command
execution. The Oc bit is considered error if another command was actioned
in last execution. In this case, the Er bit also take switch on. Is normal Oc
bit appear with power after t/c, r/l or SBO t/c command.

• Sa - outputs Error - This bit indicate that AL-3202 module has one or
more outputs hardware damaged. You must analize positions %TMXXXX
4 and 5 to know what output is damaged.

• Co - Invalid Command (latch) - AL-3202 octet addressed doesn’t
configured according the sent command (see F-CBO.018 - Configuration).

• Sc - Operate/Cancel Command after configuration (latch) - This error
happen if the operate/cancel command was sent to AL-3202 after
configuring command. This action can happen if input 1 F-CBO function

Chapter 4 Function Reference of the Modules

106

stay powered while SELECT and OPERATE/CANCEL execution
sequence (see description of F-CBO.018).

• Fo - 24V energy source off - This bit tell that AL-3202 24V energy
source isn’t active, or tell that cable to streaming data between two AL-
3202 modules isn’t conected. This error can be reverted after problem
correction and AL-3202 module reconfiguration, if powered like inputs 0,
1, e 2 of F-CBO (see F-CBO.018 description).

• Nc - not configured - Indicate module didn’t receive configuration after
take change, after take source energy or after PLC has changed from
"programming" to "executing". It can happen in module swap, case F-CBO
function didn’t active (see F-CBO.018 description).

Applications example

Going ahead is presented some activation commands points examples.

In left side is placed table of written representation values per supervisory,
before function processing (0 to 4 positions). In right side is shown the values
monitorated by supervisory and after function processing.

1) Double-stable output 7 point of 1st %R0032 I/O Bus lodged module
immediate activation.

Sup.--> PLC Sup.<--PLC
TMXXX TMXXX

0 1 - double-stable activation of lock contact 0 0
1 279 - point address of (32 + 1)X8 + 7 1 279
2 0 - not used 2 0
3 - Operation status 3 0
4 - Oct 3/2 output status 4 0
5 - Oct 1/0 output status 5 0
6 - internal function use 6

2) Immediate activation per 1 second by "rise/lower" point having 2 outputs of
3rd module octet and that were lodged in %R0048 I/O Bus address.

Sup.--> PLC Sup.<--PLC
TMXXX TMXXX

0 7 - “lower” activation 0 6
1 410 - (48 + 3) X8 + 2 point address 1 410
2 100 - one second activation time 2 100
3 - Operation status 3 0
4 - Oct 3/2 output status 4 0
5 - Oct 1/0 output status 5 0
6 - internal function use 6

Chapter 4 Function Reference of the Modules

107

3) “trip/close” point select with 5 outputs of 0 module octet of %R0024 lodged
in I/O Bus module.

Sup.--> PLC Sup.<--PLC
TMXXX TMXXX

0 13 - “trip” command selection 0 12
1 197 - (24 + 0) X8 + 5 point address 1 197
2 0 - not used 2 0
3 - Operation status 3 0
4 - Oct 3/2 output status 4 0
5 - Oct 1/0 output status 5 0
6 - internal function use 6

4) “trip/close” point operation selected from before example.

Sup.--> PLC Sup.<--PLC
TMXXX TMXXX

0 17 - “trip” command operation 0 16
1 197 - (24 + 0) X8 + 5 point address 1 197
2 0 - not used 2 0
3 - Operation status 3 0
4 - Oct 3/2 output status 4 0
5 - Oct 1/0 output status 5 0
6 - internal function use 6

F-COMPB.070 – Function to Compare
Operands Blocks

Introduction

The function F-COMPB.070 compare two blocks of operands (BLC1 and
BLC2), verifying if the module of the diference between the components is
bigger then the value specified on a third block (BLC3). And more, it informs
the relative position of the blocks that the first diference were detected.

Chapter 4 Function Reference of the Modules

108

This is usefull to detect the need of transmition of messages that are not being
requested, besides other needs , as the control of writes via driver AL-2730 and
controlers, log of alarms and events, ...

In the case of the use to generate messagens non-requested, BLC1 the actual
value of na group of variables (analogicals or digitals), and BLC2 the static
value of these variables since the last transmition of the massages non
requested. BLC3 defines the "dead-band" of each variable of the group in the
case of analogical variables, on digital variables it should be ignored.

Programming

OPER1 specifies the number of operands passed to the function, and it should
be KM+00008.

OPER2 should be KM+00000.

OPER3 is the list of the 8 parameters of the function input:

- PAR1: informs the length of the blocks BLC1, BLC2 and BLC3. TAM can
be informed in two ways:

Mxxxx (TAM = containing of Mxxxx)

KMxxxx (TAM = Kmxxxx)

- PAR2: first part of caracterization of the block BLC1, it can be done in two
ways:

Mxxxx (BLC1 = M[xxxx+OFS1]...M[xxxx+OFS1+TAM-1]

TMxxxx (BLC1 = TMxxxx[OFS1]...TMxxxx[OFS1+TAM-1]

- PAR3: informs the value of OFS1 of the block BLC1. OFS1 can be informed
in two ways:

Mxxxx (OFS1 = containing of Mxxxx)

KMxxxx (OFS1 = KMxxxx)

- PAR4: first part of the caracterization of the block BLC2, it can be done in
two ways:

Mxxxx (BLC2 = M[xxxx+OFS2]...M[xxxx+OFS2+TAM-1]

TMxxxx (BLC2 = TMxxxx[OFS2]...TMxxxx[OFS2+TAM-1]

- PAR5: informs the value of OFS2 of the block BLC2. OFS2 can be informed
in two ways:

Mxxxx (OFS2 = containing of Mxxxx)

Chapter 4 Function Reference of the Modules

109

KMxxxx (OFS2 = KMxxxx)

- PAR6: first part of the caracterization of the block BLC3, it can be done in
two ways:

Mxxxx (BLC3 = M[xxxx+OFS3]...M[xxxx+OFS3+TAM-1]

TMxxxx (BLC3 = TMxxxx[OFS3]...TMxxxx[OFS3+TAM-1]

- PAR7: informs the value of OFS3 of the block BLC3. OFS3 can be informed
in two ways:

Mxxxx (OFS3 = containing of Mxxxx)

KMxxxx (OFS3 = KMxxxx)

- PAR8: operand that returns the relative position of the blocks BLC1 and
BLC2 that the first difference ocurrs, or either the “n” first relative positions
where the “n” first diferences have occured. This operand can be specified in
two ways:

Mxxxx

TMxxxx

When an Mxxxx operand, it returns the position of the first occurence, ro teh
value "-1" when non difference was found.

When an TMxxxx with "T" positions, and “D” represents the number of
differences between BLC1 and BLC2:

- the first D positions of TMxxxx are writen with the relatives positions where
the differences were detected.

- the position TMxxxx[D] is filled with value "-1" to sinalize the end of
differences.

- if eventually D is greater then T, the algorithm is abandoned after the
detection of the Tth difference, and the TMxxxx is filled with the relative
positions of the T first differences.

OPER4 is an empty list.

Inputs and Outputs

The input "enable" active the execution of the function F-COMPB.070.

The input "ignore_3" make the algorithm ignore the third block (BLC3), as if it
null. In this case, it can be specified any operand in the place of PAR6 and
PAR7. In this way, the function verifies if BLC1 and BLC2 are exactly equal
or differents, that is usefull to digital variables.

Chapter 4 Function Reference of the Modules

110

The input "copy_1_2" specifies that, when the algorithm detect the need to
activate the output “different”, the block BLC1 will be copied over the block
BLC2. This is usefull to update the last block transmited on a non-requested
message (BLC2) with the values that will be transmited in function of the
“different” output activation.

The output "success" is activated if the input “enable” is powered on and if the
module F-COMPB.070 is on the memory.

The output “error” indicates one of the following possibilities:

- some of the operands OPER1 or OPER2 do not have the expected value

- problems on parameters of OPER3:

- if some of the operands on PAR1, PAR3, PAR5 or PAR8 is not of the type M
or TM, or if it is not configured on the module C000. In the case of TMs, the
min length must be 1.

- if some of the operands PAR2, PAR4, PAR6 or PAR7 are not of the type M
or KM, or it is not configured on module C000.

- if the value of the parameter PAR7 is less then 1 or greater then 255.

- if any of the blocks BLC1, BLC2 or BLC3, characterized by PAR1, PAR2,
PAR3, PAR4, PAR5, PAR6 and PAR7 are not completely configured on
module C000.

If the input "ignore_3" is active, PAR5 and PAR6 should not be consisted, as it
will be not used. In this case, any information can be placed on PAR5 and
PAR6.

The output "different" is activated if, to any position "i" the blocks (between 0
and TAM):

abs(BLC1[i] - BLC2[i]) > BLC3[i]

where "abs(x)" is the absolutvalue of "x"

where "i" vary from 0 to TAM-1

Uses

This function can be used on the CPUs AL-2000, AL-2002, AL-2003, AL-
2004, GR310, GR316, GR330, GR350, GR351, GR370, GR371, PO3045,
PO3145, PO3042, PO3142, PO3242, PO3342 and QK2000.

Chapter 4 Function Reference of the Modules

111

F-NORM.071 - Function for Normalization

Introduction

The function F-NORM.071 normalize s whole operands, implementing the
function M [output] = (M [input] - A) * C/ (B-A), where A, B and C are
constants.

Programming

The cells of the CHF instruction used to call the function are programmed in
the following way.

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 6
(%KM+00006).

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in MasterTool when the CHF instruction is
edited. The number of editable parameter is specified in OPER1, being 6
for this call:

• %KM+XXXX - Number of operands to process (1 to 127)

• %MXXXX - Initial input operand

• %MXXXX - Initial output operand

• %KM+XXXX - Offset to subtract from the input operand (A)

Chapter 4 Function Reference of the Modules

112

• %KM+XXXX - Value reference of the input (B)

• %KM+XXXX- Value normalize d by the output corresponding

to B (C)

• OPER4 - Not used.

Operation

A F-NORM.071 implements the following calculation:

M [output] = (M [input] - A) *C/ (B-A)

being:

M [input] - range of whole operands of input
M [output] - range of whole operands of output
A - offset for the input
B - reference value of the input to normalize
C - normalize d value of the output corresponding to B

The output is the Normalization of the input and the way that for input data
with the value A the corresponding output is 0, and for an input value B the
corresponding output will be C. If in this range, the output value will be
proportional to the input, according to the formula given.

The function works with a band of up to 127 operand (1 to 127).

Inputs and Output

Description of the functions inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed. If they are incorrect,
the output instruction error is powered, and the rest become turned off. If
the parameters are correct, only the success output is powered.

Description of the functions outputs:

• success - indicates that the call parameters are correct and that the
function has been correctly executed.

• error - is connected if and error occurs in the call parameters.

Chapter 4 Function Reference of the Modules

113

Use

This function can be used in CPUs AL-600, AL-2000/MSP, AL-2002, AL-
2003, QK800 and QK2000.

Example

There may be a whole value originating from an A/D instruction, with variation
from 0 to 4095. It may be required to normalize the output for 0 to 100,
corresponding to input values between 800 and 4000. We have

A = 800
B = 4000
C = 100

Results:

Entrada Saída
0 -25

800 0
2400 50
4000 100
4095 102

Chapter 4 Function Reference of the Modules

114

F-COMPF.072 - Function for
Multiple Comparisons

Introduction

The function F-COMPF.072 divides an operand into specified ranges,
presenting output in binary form, where the bit connected indicates the operand
pertaining to the respective band.

Programming

The cells of the CHF instruction used for the call are programmed in the
following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 4
(%KM+00004)

• OPER2 - Should be an operand of type memory constant with value 0
(%KM+00000). Determines the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function declared through
a window visualised in MasterTool when the CHF instruction is edited.
The number of editable parameters is specified in OPER1, being 4 for this
call:

• %KM+XXXX - Number of operands %MXXXX to examine

• %MXXXX - Initial input operand for comparison

• %MXXXX - Initial output operand for the indicator bits

Chapter 4 Function Reference of the Modules

115

• %TMXXXX - Table which specifies up to 16 ranges of values to
quality the input (operands/c.f. format to follow)

Table Position Contents

0 Reserved

1 Reserved

2 Start range 0

3 End range 0

4-31 <continue the range definitions>

32 Start range 15

33 End Range 15

Table 4-23 Definition of ranges

The table should have a minimum size of 4 position (1 range). To optimise the
function’s execution time, it is recommended that the table is defined with the
exact size to count the definitions of the necessary ranges.

• OPER4 - Not used.

Operation

The beginning and end of each comparison range are specified as whole
numbers.

The operand is considered in the range if this condition is true:
(start of range) = %MXXXX < (end of band)

Each range in the table %TMXXXX corresponds to a bit in the operand
%MXXXX being that the 0 bit of the output operand corresponds to the range
0 and so on successively. The bits correspond to the ranges not defined are
always 0. The ranges can be superimposed.

The number of operands to process is given by the first parameter
(%KM+XXXX), being able to be defined from 1 to 127.

Chapter 4 Function Reference of the Modules

116

Inputs and Outputs

Description of the function’s inputs:

• enable - when this input is powered the function is called, with the
parameters programmed being analysed in the CHF instruction. If they are
incorrect, the error output of the instruction is powered and the rest are
turned off. If the parameters are correct only the output success is powered.

Description of the function’s outputs:

• success - indicates that the call parameters are correct and that the
function has been correctly executed.

• error - is connected if an error occurs in the call parameters.

Use

This function can be used in CPUs AL-600, AL-2000/MSP, AL-2002, AL-
2003, QK800, QK801, and QK2000.

Chapter 4 Function Reference of the Modules

117

F-ALMLOG.075 – Function to Logic Alarms

Introduction

The function F-ALMLOG.075 analises a variable from 2 presets generating 1
bit to each band (alarm of high and low). The presets will determine the bands
of high and low. The function allows the programming of an hysteresis to each
variable too.

It can be analysed up to 255 variables on only one call of the function. The
function can use simple operands (%M) or tables (%TM).

Programming

The cells of the instruction CHF used on the call are programmed as the
following way:

- OPER1 – Specifies the number of parameters that are passed to the function
on OPER3. This Operand should be obligatory a memory constant with value 7
(%KM+00007) or 6 (%KM+00006). The value of OPER1 is a need when the
hysteresis are being programmed to the alarms, and 6 when hysteresis are not
being used.

- OPER2 – It should an constant operand with value 0 (%KM+00000).
Determines the number of possible parameters to be programmed on the edition
window of OPER4. As this function do not need any parameter on OPER4, the
value of OPER2 is 0.

Chapter 4 Function Reference of the Modules

118

- OPER3 – It contains the parameters that are passed to the function, declared
through an window visualized on MasterTool when the CHF instruction is
edited. The number of editable parameters is specified on OPER1:

%KM+XXXX – Number of operands or positions to analise (1 to 255)

%MXXXX or %TMXXXX – Input Block 1 – First input operand to the
analysed variables (1 to 255 operands or positions)

%MXXXX or %TMXXXX – Input Block 2 – First input operand to the
definition of the presets of the high alarm (1 to 255 operands or positions)

%MXXXX or %TMXXXX – Input Block 3 – First input operand to the
definition of the presets of the low alarm (1 to 255 operands or positions)

%MXXXX or %TMXXXX – Output Block 1 – First output operand to the
high alarms bits (1 to 16 operands or positions). The number of operands or
positions used from the first operand can be calculated dividing the number of
variables by 16 + 1 if the the rest is equal to 0.

%MXXXX or %TMXXXX – Output Block 2 – First output operand to the
low alarms bits (1 to 16 operands or positions). The number of operands or
positions used from the first operand can be calculated dividing the number of
variables by 16 + 1 if the rest is equal to 0.

%MXXXX or %TMXXXX – Input Block 4 – First input operand to the
definition of hysteresiss (1 to 255 operands or positions), when OPER1 is 7.

To time optimization of the function execution, it is recomended when the table
using, the right length of the table to contain pragrammed variables on the
function.

- OPER4 – Not used.

Chapter 4 Function Reference of the Modules

119

Operation

The presets are configures with inger numbers.

The bit of high alarm is turned on when the value of the variable analysed is
grater then the high preset programmed, and the bit of the alarm low is turned
on when the value of the variable is lower then the low preset.

Variable analysed > preset high = bit of high alarm on 1

 < preset low = bit of low alarm on 1

Hysteresis:

When the utilization of hysteresis will be programmed, the function will just
turn off the alarm bits when:

Variable analysed < preset high - hysteresis = bit of high alarme on 0

 > preset low + hysteresis = bit of low alarm on 0

Each alarm preset correspond to one bit on the output operand, and the bit 0
from the first operand of the output block 1 correspond to the high alarm of the
first variable, and successively. The same accurs to the operands of the output
block 2, low alarm. The bits correspondent to alarms not defined are always 0.

The number of operands to process is given by the first parameter
(%KM+XXXX), and it can be defined from 1 to 255.

The programmed blocks on the function are the following:

Input 1 Input 2 Input 3 Output 1 Output 2 Input 4
Input Variable Preset High Preset Low Alarm High Alarm Low Hysteresis

1 1 1 1 1 1
to to to to to to

255 255 255 16 16 255

Chapter 4 Function Reference of the Modules

120

Inputs and Outputs

Description of the inputs of the function:

- enable – when this input is powered on tha function is called, and the
programmed parameters will be analysed on the instruction CHF. If the
parameters are incorrect, the output error is powered on and all the other
powered off. If the parameters are correct, only the output success is powered
on.

Description of the outputs of the function:

- success – indicates that the parameters of the function are correct and the
function had been correctly executed.

- error – it is powered on if there is some error on the parameters of the
function.

- alarm – it is powered on if a new alarm occurrs (high or low). This output
is powered on by a sweep.

Uses

This function can be used on the CLPs AL-2003, AL-2004, GR310, GR316,
GR330, GR350, GR351, GR370, GR371, PO3045, PO3145, PO3042,
PO3142, PO3242 and PO3342.

Chapter 4 Function Reference of the Modules

121

F-XMOV.088 – Module to Move the Data
From the CPU to Memory Operands

Parameters:

OPER1

Specifies the number of parameters that are passed to the function on OPER3.
This operand must be a memory constant with value 1 (KM+00001).

OPER2

Specifies the number of parameters that are passed to the function on OPER4.
This operand must be a memory constant with value 0 (KM+00000).

OPER3

It contains the parameters that are passed to the function, declared through a
window visualized on MasterTool programming when the instruction CHF is
edited. The number of editable parameters is specified on OPER1, it is fixed on
1 to this module:

Mxxxxx or TMxxx: specification of the first memory operand, or a table
memory, where the movimentations are configured, as the description below. It
should exist at least two more consecutives memory operands besides the
declared, or, in the case of a table, the min of 3 positions.

OPER4

Not used.

Chapter 4 Function Reference of the Modules

122

Inputs of the function

enable: when this input is powered onthe function is called, and the
programmed parameters will be analysed. If the number of parameters or it
type are different from the needs of the function, all the outputs of the
instruction are powered off.

Outputs of the function

- success: this output is powered on when the function is executed with
success. In this case, all of the objects will be transfered to the buffer
destiny of the data. transferido

- Error Param: this output is powered on if some of the configuration
parameters of the function are wrong: number of input parameters, type of
the operands, or either, min number of operands or positions declared. This
output is powered on too if the memory operand defined as buffer is not
declared or if the number of objects are invalid. In this case, non of the
objects is transfered to the buffer destiny of the data.

- Error Object: this output is powered on if some of the objects declared on
the configuration operands are wrong, typically not declared operand. In
this case, part of the objects can be transfered to the buffer destiny of the
data.

In the case of the number of M operands declared as destiny buffer of the data
is small to store the objects, the two outputs ERROR PARAM and ERROR
OBJECTS are activated simultaniously. In this case, a part of the objects can
be transfered to the buffer destiny of the data.

Functioning:

Each M operand of the destiny buffer of the movimentation is capable to store
2 bytes of data (high - low).

The first byte of an object always is stored from the low part of na M operand
of the buffer.

The objects are stored sequencialy on the buffer, from the M destiny operand
specified on the configuration table.

The function do not store the data previously stored on the table if an error of
object definition or the overflow of the storing buffer is found.

Chapter 4 Function Reference of the Modules

123

Configuration:

Operand (or Position) Containing Description of the containing
Mxxxxx Reserved Reserved position.

Mxxxxx + 1 Address M destiny Address of the first memory operand of the destiny of the objects (destiny buffer
of the data).

Mxxxxx + 2 Number of objects Number of objects defined as following. Valid values: 0 to 64.
Mxxxxx + 3 From this position on, the onjects are defined.
Mxxxxx + 4 First object Each definition of the object ocupy 3 operands M or positions of TM.
Mxxxxx + 5 The definitions of the objects are described following.

Type of the object First operand/position: definition of the type of the object
... Address Second operand/position: definition of the first address

Quantity Third operand/position: definition of the quantity.
Mxxxxx + N - 3
Mxxxxx + N - 2 Last object
Mxxxxx + N - 1

Definition of the types of the objects:

Operands of Definition
Type of the object Byte high Byte low Description

0 0 Movimentation of values on memory operands.
M Operand First operand Address of the first M operand.

Quantity Quantity of M operands to be transfered.
0 2 Movimentation of values present on decimal operands.

D Operand First operand Address of the first operand D.
(Obs. 1) Quantity Quantity of D operands to be transfered.

0 8 Movimentation of values present on E/S operands.
E/S Operand First operand Address of the first E/S operand.

(Obs. 2) Quantity Quantity of E/S operands to be transfered.
0 9 Movimentation of the values on A operands.

A Operand First operand Address of the first A operand.
(Obs. 2) Quantity Quantity of operands A to be transfered.

0 16 Movimentation of values on decimal operands.
KM Constant Value Value to be transfered.

Quantity Quantity of constants to be transfered.
0 32 Movimentation of values on memory tables.

TM Operand First position Table Address of TM and the first position to be transfered.
quantity Quantity of positions to be transfered.

0 34 Movimentation of the values on decimal tebles.
Operand TD First position Table Address of the TD and the first position to be transfered.

(Obs. 1) Quantity Quantity of positions to be transfered.

Observations:

1. Each operand D or position of TD will occupy 2 M operands of the buffer:
o byte less significative of the first M operand will store the byte less

Chapter 4 Function Reference of the Modules

124

significative of the D operand., and the byte more significative of the
second M operand will store the byte more significative of the D operand.

2. Odd number of bytes of an object are stored on ([number of bytes + 1] / 2
) M operands, where the last byte will be stored on the byte less
significative of the M operand, and the byte more significative should be
unvalued (the high part of the M operand is not affected).

Uses

This function can be used on the CLPs AL-2003, AL-2004, GR310, GR316,
GR330, GR350, GR351, GR370, GR371, PO3045, PO3145, PO3042,
PO3142, PO3242 and PO3342.

F-ANDT.090, F-ORT.091 and F-XORT.092 -
Functions of Logic Operations between
Table Operands

Introduction

The function F-ANDT.090, F-ORT.091 and F-XORT.092 allow the
carrying out of logical operations AND/and), OR (or) or XOR (or exclusive),
respectively, between simple operands (M or D) and or tables (TM or TD). Up
to 255 logic operations in one single function call It is necessary that the three
operands (supply, supply 2 and destination) are of the same type (memory or
decimal).

Chapter 4 Function Reference of the Modules

125

Programming

The cells of the CHF instruction used to call the programs in the following
way:

• OPER1 - Specifies the number of parameters passed to the function i
OPER3. This operand must be a memory constant with value 3
(KM+00003).

• OPER2 - Should be an operand of type memory constant with value 0
(KM+00000). Determine the number of parameters possible to be
programmed in the editing window of OPER4. As this function does not
need any parameter in OPER 4, the value of OPER is 0.

Chapter 4 Function Reference of the Modules

126

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in AL-3830 when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 3 for this module:

• MXXXX, DXXXX, TMXXXX or TDXXXX - Simple or table
operand whose values are denied (source operand).

• MXXXX, DXXXX, TMXXXX or TDXXXX - Simple or table
operand where the denied values are stored (destination operand).

• KMXXXX - Number of simple operands or table positions to be
denied. Should be less than or equal to 255.

• OPER4 - Not used.

Inputs and Outputs

Description of the function’s inputs:

• enable - when this input is powered the function is called, the parameters
programmed in the CHF instruction being analysed in the CHF instruction.
If they are incorrect, the outputs of the invalid index are actioned.

Description of the function’s outputs:

• success - indicates that the moving was carried out correctly.

• source index invalid - indicates that there was an error in the
specification of the supply operand:
• the operand is not declared in the module C
• there are not enough positions to carry out the logic

• destination index invalid - indicates that there was an error in the
specification of the destination operand:
• the operand is not declared in module C
• there are not enough positions to carry out the logic

If the two outputs of the invalid index are actioned simultaneously, some of the
following errors occurs:

• - the number of parameter programmed in OPER is different from three

• - the type of one the parameters in OPER3 is not valid

• - the type of destination operand is different from the source operand

• - the total number of positions to be transferred is more than 255

Chapter 4 Function Reference of the Modules

127

Use

This function can be used in the CPUs AL-600, AL-2000/MSP, AL-
2002/MSP, QK800 and AL-2000/MSP.

WARNING:
This function allows the denial of a large number of operands in a single scan.
It should be used with care so that the maximum time of the program cycle is
not exceeded.

Chapter 4 Function Reference of the Modules

128

F-NEGT.093 - Function for the logic
denial of Table Operands

Introduction

The function F-NEGT.093 carries out the logic denial of simple (M or D) or
table operands (TM or TD). Up to 255 positions can be denied in one single
function call. The result of the alteration can be stored in this operand,
substituting the original value, or in another operand, since it may be of the
same type as the first (memory or decimal).

Programming

The cells of the CHF instruction used for the call are programmed in the
following way:

• OPER1 - Specifies the number of parameters passed to the function in
OPER3. This operand must be a memory constant with value 4
(KM+00004).

• OPER2 - Should be an operand of constant memory type with value 0
(KM+00000). It determines the number of parameters possible to be
programmed in the editing window of OPER4. As these functions do not
need any parameter in OPER4, the value OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared
through a window visualised in AL-3830 when the CHF instruction is
edited. The number of editable parameters is specified in OPER1, being set
at 4 for these modules:

Chapter 4 Function Reference of the Modules

129

• MXXXX, DXXXX, TMXXXX or TDXXXX - Simple or table
whose value will be used to carry out the logic (supply operand 1).

• MXXXX, DXXXX, TMXXXX or TDXXXX - Simple or table
whose value will be used to carry out the logic (supply operand 2).

• MXXXX, DXXXX, TMXXXX or TDXXXX - Simple operand
where the value resulting from the logic will be stored (destination
operand).

• KMXXXX - Number of simple operands or table positions with
which the logic operation will be.

• OPER4 - Not used.

Inputs and Outputs

Description of the function’s inputs:

• enable - when this input is powered the function is called, the parameters
programmed being analysed in the CHF instruction. If they are incorrect,
the outputs of the invalid index are actioned.

Description of the function’s outputs:

• success - indicates that the moving was correctly carried out.

• source index invalid - indicates that these was an error in the
specification of the source operand:
• operand is not declared in module C
• there are not enough positions to carry out the logic

• destination index invalid - indicates that there was an error in the
specification of the destination operand:
• the operand is not declared in module C
• there are not enough positions to carry out the logic

Chapter 4 Function Reference of the Modules

130

If the two outputs of the invalid index are actioned simultaneously, some of the
following errors occur:

• - the number of parameter programmed in OPER1 is different from four

• - the type of one or more parameters in OPER4 is not valid

• - the parameters in OPER4 are of different types (memory and decimal)

• - the total number of positions to be transferred is more than 255

Use

This function can be in the CPUs AL-600, AL-2000/MSP, AL-2002/MSP,
QK800, QK801 and AL-2000/MSP.

WARNING:
These functions allow the execution of logic operations of a large number of
operands in a single scan. If should be used with care so that the maximum
cycle time of the program is not exceeded.

Appendix A

A-1

Appendix A
Execution Times of the Instruction

The execution times shown to follow are valid for the CPU AL-600, AL-600/4,
AL-600/8, AL-600/16, AL-2000/MSP, AL-2002/MSP, QK600, QK800,
QK801, QK2000/MSP, PL101, PL102 and PL103

The CPUs AL-3003 and AL-3004 have a processing speed 25% slower To
obtain the execution time the time presented should be multiplied by 1.25.

The CPU AL-3003/U2 has a 12.5% faster processing speed. To obtain the
execution time the time presented should be multiplied by 1.25.

Description of Execution Times
The execution times of the instructions are described in a table for each
instruction having the following items.

• Header - name of instruction or instructions for which the time
measurements are.

• Situation - describes the situation in which the time was measured

 E.g.: enabled, disabled, direct access, indirect access.

• Execution Time - describes execution time measured for each situation
of the instruction.

 E.g.: 2.4 µs

Appendix A Execution Times of the Instruction

A-2

Relays

RNA - Contact Normally Open

Situation Execution Time

Maximum Time (%E0000.0 to %E0015.7) 2,4 µs

Average Time (%E0016.0 to %E0063.7)
(%A0000.0 to %A0095.7)

4,8 µs

Minimum Time (%M0000.0 to %M0127.F) 8,0 µs

RNF - Contact Normally Closed

Situation Execution Time

Maximum Time (%E0000.0 to %E0015.7) 2,4 µs

Average Time (%E0016.0 to %E0063.7)
(%A0000.0 to %A0095.7)

4,8 µs

Minimum Time (%M0000.0 to %M0127.F) 8,0 µs

BOB - Simple Reels

Situation Execution Time

Maximum Time (%S0000.0 to %S0015.7) 2,4 µs

Average Time (%S0001.5 to %S0063.7)
(%A0000.0 to %A0095.7)

6,4 µs

Minimum Time (%M0000.0 to %M0127.F) 9,6 µs

Appendix A Execution Times of the Instruction

A-3

BBL - Reel Connected

Situation Execution Time

Minimum Time (%S0000.0 to %S0015.7) 4,0 µs

Average Time (%S0016.0 to %S0063.7)
(%A0000.0 to %A0095.7)

8,0 µs

Maximum Time (%M0000.0 to %M0127) 11,2 µs

BBD - Reel Disconnected

Situation Execution Time

Minimum Time (%S0000.0 to %S0015.7) 4,0 µs

Average Time (%S0016.0 to %S0063.7)
(%A0000.0 to %A0095.7

8,0 µs

Maximum Time (%M0000.0 to %M0127) 11,2 µs

STL - Jump Reel

Situation Execution Time

Disabled 26 µs

Enabled 32 µs

PLS - Pulse Reel

Situation Execution Time

Disabled, Enabled 51 µs

Appendix A Execution Times of the Instruction

A-4

RM - Master Relay

Situation Execution Time

Disabled, Enabled 26 µs

FRM - End of Master Relay

Situation Execution Time

Disabled, Enabled 15 µs

Movements

MOV - Moving of Simple Operands

Situation Execution Time

Disabled 35 µs

Average time (direct access) 88 µs

Maximum time (indirect access) 128 µs

MOP - Moving of Parts of Operands

Situation Execution Time

Disabled 35 µs

Enabled 120 µs

Appendix A Execution Times of the Instruction

A-5

MOB - Moving of Blocks of Operands

Situation Execution Time

Disabled 42 µs

Moving of 8 operands %M / positions %TM for scan 365 µs

Moving of 128 operands %M / positions %TM for scan 2400 µs

Moving of 255 operands %M / positions %TM for scan 4600 µs

Moving of 8 operands %D / positions %TD for scan 480 µs

Moving of 128 operands %D / positions %TD for scan 4100 µs

Moving of 255 operands %D / positions %TD for scan 7900 µs

MOT - Moving of Tables

Situation Execution Time

Disabled 38 µs

Average time (direct access) 160 µs

Maximum time (indirect access) 230 µs

MES Moving of Inputs or Outputs

Situation Execution Time

Disabled 32 µs

Moving of 1 operand %M direct access 150 µs

Moving of 8 operand %M direct access 470 µs

Moving of 8 operand %M indirect access 4990 µs

Appendix A Execution Times of the Instruction

A-6

AES - Updating of Inputs or Outputs

Situation Execution Time

Disabled 32 µs

Updating of 1 operand %E or %S 150 µs

Updating of 8 operand %E or %S 242 µs

CES - Conversion of Inputs or Outputs

Situation Execution Time

Disabled 32 µs

Conversion from reading with direct acess 260 µs

Conversion from writing with direct acess 245 µs

Conversion from reading with indirect acess 270 µs

Conversion from writing with indirect acess 260 µs

CAB - Load Block of Operands

Situation Execution Time

Disabled 52 µs

Load of 8 operands %A direct access 145 µs

Load of 8 operands %M direct access 220 µs

Load of 8 operands %M indirect access 285 µs

Appendix A Execution Times of the Instruction

A-7

Arithmetic

SOM - Addition

Situation Execution Time

Disabled 35 µs

Average time (operands %M) 90 µs

Maximum time (operands %D) 128 µs

SUB - Subtraction

Situation Execution Time

Disabled 35 µs

Average time (operands %M) 110 µs

Maximum time (operands %D) 170 µs

MUL - Multiplication

Situation Execution Time

Disabled 35 µs

Enabled without overflow 130 µs

Enabled with overflow 120 µs

Appendix A Execution Times of the Instruction

A-8

DIV - Division

Situation Execution Time

Disabled 46 µs

Value less than 128 in dividing 140 µs

Value greater than 128 in dividing and less than 128 in
the divider

258 µs

Value more than 128 in dividing and in the divider 460 µs

AND - And Binary between Operands

Situation Execution Time

Disabled 35 µs

Average time (operands %M) 92 µs

Maximum time (operands %D) 110 µs

OR - Or Binary between Operands

Situation Execution Time

Disabled 35 µs

Average time (operands %M) 92 µs

Maximum time (operands %D) 110 µs

XOR - Or Exclusive Binary between Operands Situation

Situation Execution Time

Disabled 35 µs

Average time (operands %M) 92 µs

Maximum time (operands %D) 110 µs

Appendix A Execution Times of the Instruction

A-9

CAR - Load Operand

Situation Execution Time

Disabled 34 µs

Average time (direct access) 75 µs

Maximum time (indirect access) 100 µs

= - Equals

Situation Execution Time

Disabled 34 µs

Average time (direct access) 80 µs

Maximum time (indirect access) 100 µs

< - Less Than

Situation Execution Time

Disabled 34 µs

Average time (direct access) 95 µs

Maximum time (indirect access) 130 µs

> - More Than

Situation Execution Time

Disabled 34 µs

Average time (direct access) 95 µs

Maximum time (indirect access) 130 µs

Appendix A Execution Times of the Instruction

A-10

Counters

CON - Simple Counter

Situation Execution Time

Disabled 115 µs

Average time (direct access) 120 µs

Maximum time (indirect access) 130 µs

COB - Bidirectional Counter

Situation Execution Time

Disabled 170 µs

Average time (direct access) 180 µs

Maximum time (indirect access) 230 µs

TEE - Timer in the Powering

Situation Execution Time

Disabled 85 µs

Average time (direct access) 90 µs

Maximum time (indirect access) 110 µs

TED - Timer in the Turning Off

Situation Execution Time

Disabled 85 µs

Average time (direct access) 90 µs

Maximum time (indirect access) 110 µs

Appendix A Execution Times of the Instruction

A-11

Conversor

B/D - Conversion Binary - Decimal

Situation Execution Time

Disabled 34 µs

Average time (direct access) 115 µs

Maximum time (indirect access) 155 µs

D/B - Conversion Binary - Decimal

Situation Execution Time

Disabled 34 µs

Average time (direct access) 135 µs

Maximum time (indirect access) 170 µs

A/D - Conversion Analog - Digital

Situation Execution Time

Disabled 34 µs

Conversion of 1 channel AL-1103 315 µs

Conversion of 8 channel AL-1103 1570 µs

Conversion of 1 channel AL-1116 ou AL-1119 350 µs

Conversion of 8 channel AL-1116 ou AL-1119 2140 µs

D/A - Conversion Digital - Analogue

Situation Execution Time

Disabled 34 µs

Conversion of 1 channel AL-1103 315 µs

Conversion of 8 channel AL-1103 1570 µs

Appendix A Execution Times of the Instruction

A-12

General

LDI - Connect or Disconnect Indexed

Situation Execution Time

Disabled 40 µs

Enabled 65 µs

TEI - Test of Indexed Status

Situation Execution Time

Disabled 40 µs

Enabled 85 µs

SEQ - Sequencer

Situation Execution Time

Disabled 40 µs

Enabled (mode AL-1000) 95 µs

Appendix A Execution Times of the Instruction

A-13

CHP - Call Procedure Module

Situation Execution Time

Disabled 35 µs

Enabled 138 µs

CHF - Call Function Module

Situation Execution Time

Disabled 45 µs

Call of module in machine language 80 µs

Call of module in relays language without passing
parameters

240 µs

Call of module in relays language with the passing of 4
parameters

550 µs

Call of module in relays language with the passing of 8
parameters

710 µs

ECR - Writing of Operands in another PLC

Situation Execution Time

Disabled 150 µs

Enabled with other ECR or LTR communicating
(inactive)

150 µs

First processing cycle of a communication with block of 8
operands

900 µs

First processing cycle of a communication with block of
110 operands

2370 µs

Enabled awaiting response 150 µs

Appendix A Execution Times of the Instruction

A-14

LTR - Reading of Operands from another PLC

Situation Execution Time

Disabled 150 µs

Enabled with other ECR or LTR communicating
(inactive)

150 µs

First processing cycle of a communication with any
number of operands

790 µs

Enabled awaiting response 150 µs

LAI - Free Updating of the Operands’ Images

Situation Execution Time

Disabled 32 µs

Enabled inactive 150 µs

Maximum processing time of requisitions or responses to
commands

2100 µs

Maximum processing time of responses to commands
without data, only confirmations

450 µs

Appendix B

B-1

Appendix B
Execution Times of the
Function Modules

The execution times shown here are valid for CPUs AL-600, AL-600/4, AL-
600/8, AL-600/16, AL-2000/MSP, AL-2002/MSP, QK800, QK801 and
QK2000/MSP.

The CPUs AL-3003 and AL-3004 have a 25% slower processing speed. To
obtain the execution time the time shown should be multiplied by 1-25.

The CPU AL-3003/V2 has a 12.5% faster processing speed. To obtain the
execution time the shown should be multiplied by 0-875.

Description of Execution Times
The execution times of the instructions are described in a table for each
instruction or group of instructions which have the same times having the
following items:

• Header - name of function module to which the time measures were for

• Situation - describes the situation in which the time was measured.

 E.g. enabled, disabled, direct access, indirect access.

• ENT0, ENT1 and ENT2 - describes the values of the inputs.
• x - value is not relevant
• 0 - input turned off
• 1 - input powered

Appendix B Execution Times of the Function Modules

B-2

• Execution Time - describes execution time measured for each situation
of the instruction.

E.g.: 2,4 µs

F-RELOG.000

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Reading of pulse 1 0 0 250 µs

Reading of time 1 1 0 940 µs

Setting of time 1 0 1 1050 µs

Reading and setting of time 1 1 1 1050 µs

• ENT0 = input enabled

• ENT1 = input read clock

• ENT2 = input set clock

F-LEDS.001

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

LEDs test 1 0 1 2100 µs

Initialization 1 1 0 55 µs

Transfer of 8 octets 1 0 0 925 µs

Transfer of 32 octets 1 0 0 2360 µs

• ENT0 - input enable

• ENT1 - input initialise

• ENT2 - input leds test

Appendix B Execution Times of the Function Modules

B-3

F-PTT100.002

Situation ENT0 Execution Time

Disabled 0 50 µs

Conversion of 1 channel without linearisation 1 425 µs

Conversion of 1 channel with linearisation 1 430 µs

Conversion of 4 channels without linearisation 1 405 µs

Conversion of 4 channels with linearisation 1 420 µs

• ENT 0 = input enable

F-TERMO.003

Situation ENT0 Execution Time

Disabled 0 50 µs

Conversion of 1 channel without lin. in degrees 1 260 µs

Conversion of 1 channel with lin. normal 1 260 µs

Conversion of 4 channels without lin. in degrees 1 260 µs

Conversion of 4 channels with lin. normal 1 260 µs

• ENT 0 = input enable

Appendix B Execution Times of the Function Modules

B-4

F-CONTR.004

Situation ENT0 Execution Time

Disabled 0 50 µs

Activate comparison relays 1 500 µs

Inhibition of the counting 1 756 µs

Write count 1 785 µs

Read count 1 940 µs

• ENT 0 = input

• ENT 1 = input

• ENT 2 = input

F-CONT.005

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Read count 1 0 0 360 µs

Zero count 1 1 0 295 µs

Load count 1 0 1 285 µs

• ENT0 = input enable

• ENT1= input zero

• ENT2= input load

Appendix B Execution Times of the Function Modules

B-5

F-ANLOG.006

Situation ENT0 Execution Time

Disabled 0 50 µs

Functioning as A/D 1 555 µs

Functioning as D/A 1 280 µs

ENT 0 = input enable

F-EVENT.017

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Configuration 1 1 x 1100 µs

Events 1 0 1 1000 µs
+ 500 ms
per event

• ENT0 = input enable

• ENT1 = input read event/configure

• ENT2 = input read/write

F-ALNET2.032

Situation ENT0 ENT1 Execution Time

Disabled 0 x 50 µs

Reading of values 1 0 640 µs

Initialization of values 1 1 790 µs

• ENT0 = input enable

• ENT1= input initialise

Appendix B Execution Times of the Function Modules

B-6

F-PID.033

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Calculation of PID factors with
automatic mode

1 0 x 1600 µs

Integral action inhibited with
automatic mode

1 0 x 1330 µs

Derivative action inhibited with
automatic mode

1 0 x 1240 µs

Adjustments I and D inhibited with
automatic mode

1 0 x 950 µs

Calculation of PID factors with
manual mode

1 1 x 1160 µs

Integral action inhibited with
manual mode

1 1 x 470 µs

Derivative action inhibited with
manual mode

1 1 x 780 µs

Adjustments I and D inhibited with
manual mode

1 1 x 470 µs

• ENT0 = input enable

• ENT1 = input automatic/manual mode

• ENT2 = input direct/reverse action

Appendix B Execution Times of the Function Modules

B-7

F-RAIZN.034

Situation ENT0 ENT1 Execution Time

Disabled 0 x 50 µs

Root 0 to 127 without Normalization 1 0 330 µs

Root 128 to 32767 without Normalization 1 0 440 µs

Root 0 to 127 with Normalization 1 1 380 µs

Root 128 to 32767 with Normalization 1 1 490 µs

• ENT0 = input enable

• ENT1 = input normalize

F-ARQ2.035 to F-ARQ31.042

Situation ENT0 ENT1 Execution Time

Disabled 0 x 50 µs

Reading of value in file 1 0 520 µs

Writing of value in file 1 1 430 µs

Attempt to access invalid 1 x 190 µs

ENT 0 = input enable

ENT 1 = input read/write

Appendix B Execution Times of the Function Modules

B-8

F-MOBT.043

Situation ENT0 Execution Time

Disabled 0 50 µs

Moving of 8 operands %M positions %TM 1 595 µs

Moving of 128 operands %M positions %TM 1 2520 µs

Moving of 255 operands %M positions %TM 1 4620 µs

Moving of 8 operands %D positions %TD 1 720 µs

Moving of 128 operands %D positions %TD 1 4410 µs

Moving of 255 operands %D positions %TD 1 8360 µs

• ENT 0 = input enable

F-STDMOD.045

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Reading of status of I/O octets from
the bus

1 0 0 650 µs

Reading of module directory 1 0 1 2350 µs

Reading of module status 1 1 0 2350 µs

Reading of directory and status of
modules

1 1 1 4060 µs

ENT 0 = input enable

ENT 1 = input modules status

ENT 2 = input modules directory

Appendix B Execution Times of the Function Modules

B-9

F-RELG.048

Situation ENT0 ENT1 Execution Time

Disabled 0 x 50 µs

Reading of clock 1 0 475 µs

Setting of clock 1 1 690 µs

• ENT0 = input enable

• ENT1 = input set clock

F-SINC.049

Situation ENT0 ENT1 ENT2 Execution Time

Disabled 0 x x 50 µs

Reading of clock 1 0 0 475 µs

Setting of clock in the next pulse 1 0 1 690 µs

Setting of clock in the next second 1 1 0 690 µs

• ENT 0 = input enable

• ENT 1 = input set synchronism maintained

• ENT 2 = input set external pulse

Appendix B Execution Times of the Function Modules

B-10

F-ALNET1.062

Situation ENT0 Execution Time

Disabled 0 50 µs

Configuration of second serial channel (first
program cycle)

1 360 µs

Enabled without reception of command 1 300 µs

Enabled processing command for monitoring of 1
operand %M

1 330 µs

Enabled processing command for monitoring of 48
operands %D

1 1700 µs

• ENT 0 = input enable

F-IMP.063

Situation ENT0 Execution Time

Disabled 0 50 µs

Enabled with other transmission active 1 100 µs

Enabled waiting for end of transmission 1 105 µs

Preparing transmission of the text with 1 character
(a cycle of program)

1 170 µs

Preparing transmission of the text with 100
character
(a cycle of program)

1 1520 µs

Preparing transmission of the text with 255
character
(a cycle of program)

1 3625 µs

Preparing transmission of 1 operand %M
(a cycle of program)

1 279 µs

Preparing transmission of 100 operand %M
(a cycle of program)

1 14000 µs

Preparing transmission of 255 operand %M
(a cycle of program)

1 35000 µs

Appendix B Execution Times of the Function Modules

B-11

• ENT0 = enable

F-RECEP.064

Situation ENT0 Execution Time

Disabled 0 50 µs

Enabled awaiting reception 1 70 µs

Receiving characters 1 80 µs

• ENT = input enable

Remissive Index

B-1

Remissive Index

—A—

A/D, 3-64
description, 3-64
syntax, 3-65
AES, 3-27
description, 3-27
example, 3-28
syntax, 3-28
AND, 3-41
description, 3-41
example, 3-42
syntax, 3-42

—B—

B/D, 3-62
description, 3-62
syntax, 3-62

BOB, BBL and BBD, 3-6
description, 3-6

—C—

CAB, 3-29
description, 3-29
syntax, 3-33
CAR, 3-47
description, 3-47
CES, 3-25
description, 3-25
example, 3-25
syntax, 3-26
CHF, 3-84
description, 3-84
example, 3-87

syntax, 3-87
CHP, 3-82
description, 3-82
example, 3-83
syntax, 3-83
COB, 3-55
description, 3-55
syntax, 3-56
CON, 3-53
description, 3-53
syntax, 3-54

—D—

D/A, 3-66
description, 3-66
example, 3-68
syntax, 3-68
D/B, 3-63
description, 3-63
syntax, 3-63
DIV, 3-40
description, 3-40
syntax, 3-40

—E—

ECR
description, 3-88
example, 3-96
syntax, 3-96
Equals, More than and Less than, 3-48
description, 3-48
example, 3-49; 3-50
syntax, 3-51
ECR, 3-88

Remissive Index

I-2

—F—

F - RAIZN.034, 4-53
example of application, 4-55
inputs and outputs, 4-54
introduction, 4-53
operands, 4-53
programming, 4-53
use, 4-55
F-ALNET1.062, 4-85
F-ALNET2.032, 4-39
description of the values, 4-41
example of application, 4-43
inputs and outputs, 4-40
introduction, 4-39
operands, 4-39
programming, 4-39
use, 4-43
F-ANDT.090, F-ORT.091 and F-XORT.092, 4-7
inputs and outputs, 4-8
introduction, 4-7
programming, 4-7
use, 4-9
F-ANLOG.006, 4-24
inputs and outputs, 4-25
introduction, 4-24
operands, 4-24
programming, 4-24
use, 4-25
F-COMPF.072, 4-4
inputs and outputs, 4-6
introduction, 4-4
operation, 4-5
programming, 4-4
use, 4-6
F-CONT.005, 4-21
description of functioning, 4-23
inputs and outputs, 4-22
introduction, 4-21
operands, 4-21
programming, 4-21
F-CONTR.004, 4-18
inputs and outputs, 4-19
introduction, 4-18
operands, 4-18
programming, 4-18
use, 4-20
F-IMP.063, 4-90
introduction, 4-90

operands, 4-90
programming, 4-90
use, 4-92
F-LEDS.001, 4-7
inputs and outputs, 4-8
introduction, 4-7
operands, 4-7
programming, 4-7
use, 4-9
F-MOBT.043, 4-62
inputs and outputs, 4-63
introduction, 4-62
operands, 4-62
programming, 4-62
use, 4-64
F-NEGT.093, 4-10
inputs and outputs, 4-11
introduction, 4-10
programming, 4-10
use, 4-12
F-NORM.071, 4-1
example, 4-3
inputs and output, 4-2
introduction, 4-1
operation, 4-2
programming, 4-1
use, 4-3
F-PID.033, 4-45
additional parameters, 4-48
characteristics of functioning, 4-51
example of application, 4-51
inputs and outputs, 4-48
introduction, 4-45
operands, 4-47
programming, 4-47
use, 4-52
F-PT100.002, 4-10
inputs and outputs, 4-13
introduction, 4-10
operands, 4-10
programming, 4-10
use, 4-13
FR-ARQ2.035, 4-56
description of the functioning, 4-58
example of application, 4-61
inputs and output, 4-58
introduction, 4-56
operands, 4-57
programming, 4-57

Remissive Index

I-3

use, 4-58
F-RECEP.064, 4-94
introduction, 4-94
operands, 4-94
programming, 4-94
use, 4-96
F-RELG.048, 4-71
example, 4-74
inputs and outputs, 4-73
introduction, 4-71
operands, 4-71
programming, 4-71
use, 4-74
F-RELOG.000
inputs and outputs, 4-5
introduction, 4-4
operands, 4-4
programming, 4-4
use, 4-6
F-RELOG.061, 4-81
ALNET I protocol, 4-87
input and outputs, 4-86
inputs and outputs, 4-83
introduction, 4-81; 4-85
operands, 4-81; 4-85
programming, 4-81; 4-85
use, 4-84; 4-89
F-SINC.049, 4-75
inputs and outputs, 4-77
introduction, 4-75
operands, 4-75
programming, 4-75
use, 4-80
F-STMOD.045, 4-65
inputs and outputs, 4-70
introduction, 4-65
operands, 4-65
programming, 4-65
use, 4-70
F-TERM0.003, 4-14
input and outputs, 4-16
introduction, 4-14
operands, 4-14
programming, 4-14
use, 4-17
Function Modules, 4-1

—I—

Instructions, 3-1
arithmetic, 3-34
coils, 3-6
comparison of operands, 3-48
connection, 3-101
contacts, 3-5
converter, 3-61
counters, 3-52
general, 3-69
list of instructions, 3-1
relays group, 3-2

—L—

LAI, 3-100
description, 3-100
LDI, 3-70
description, 3-70
example, 3-71
syntax, 3-72
LGH, LGN and LGV, 3-101
description, 3-101
LTR, 3-98
description, 3-98
example, 3-99
syntax, 3-99

—M—

MES, 3-23
description, 3-23
syntax, 3-24
MOB, 3-18
description, 3-18
syntax, 3-19
MOP, 3-15
description, 3-15
example, 3-15
syntax, 3-17
MOT, 3-20
description, 3-20
syntax, 3-22
MOV, 3-13
description, 3-13
syntax, 3-14
MUL, 3-39
description, 3-39
syntax, 3-39

Remissive Index

I-4

—O—

OR, 3-43
description, 3-43
example, 3-44
syntax, 3-44

—P—

PLS, 3-10
 description, 3-3
 syntax, 3-4
description, 3-10
syntax, 3-10
PLS , 3-3
Programming Project, 2-32
depuration of programming projects, 2-51
elaboration of programming projects, 2-42
execution of the programming project, 2-41
module C - configuration, 2-33
module E - execution, 2-35
module F - function, 2-37
module P - procedure, 2-37
operation status of the PLC, 2-39
program execution cycle times, 2-63
structure, 2-32

—R—

RM, FRM, 3-11
description, 3-11
RNA and RNF
description, 3-5

RNA e RNF, 3-5
syntax, 3-6
Router Project, 2-70
building up a router project, 2-70
module R, 2-71

operation statues of the router, 2-72

—S—

SEQ, 3-75
description, 3-75
example, 3-76; 3-79
syntax, 3-81
SLT, 3-8
description, 3-8
example, 3-8
syntax, 3-9
SOM, 3-35
description, 3-35
syntax, 3-36
SUB, 3-37
description, 3-37
syntax, 3-38

—T—

TED, 3-59
description, 3-59
diagram of times, 3-60
syntax, 3-60
TEE, 3-57
description, 3-57
diagram of times, 3-58
syntax, 3-58
TEI, 3-73
description, 3-73
syntax, 3-74

—X—

XOR, 3-45
description, 3-45
example, 3-46
syntax, 3-46

	Preface
	Description of this Manual
	Related Manual
	Terminology
	Conventions Used
	Conventions for Use with the Mouse
	Technical Support
	Issue of this Manual

	Introduction
	Programming Language

	Diagrams of Relays Language
	Elements of Programming
	ALTUS PLCs Memory Organization
	Logics
	Operands
	Identifying an Operand through Address
	Identification of an Operand through Tag
	Operands Used in MasterTool
	Identification of Constant Operands
	Identification of Table Operands
	Operands %E - Input Relays
	Operands - Output Relays
	Operands %A - Auxiliary Relays
	Operands %R - Addresses in the Bus
	Operands %M - Memories
	Operands %D - Decimals
	Operands %KM and %KD - Constants
	Operands %TM and %TD - Tables
	Indirect Access
	Retentive Operands

	Instructions
	Restrictions as to How Much to Use �Instructions in the PLC’s
	Graphic Representation of Instructions
	Description of Instructions Syntax
	Restrictions as to Positioning of the Instructions

	Programming Project
	Structure of a Programming Project
	Operation Status of the PLC
	Execution of the Programming Project
	Elaboration of Programming Projects
	Depuration of Programming Projects
	Program Execution Cycle Times
	Protection Levels of the PLC
	Interlocking of Commands in the PLC
	Building up a Router Project
	Router Operation States

	Instructions
	List of Instructions
	Conventions Used
	Instructions of the Relays Group
	Instructions of the Relays Group
	Contacts
	Coils
	Instructions of Group Moving
	CES - Conversion of Inputs/Output
	AND - AND Binary between Operands
	OR - Or Binary between Operands
	XOR - Or exclusive between Operands
	CAR - Load Operands
	Instructions of Comparison of Operands - Equals, More than and Less than
	D/B - Conversion Decimal-Binary
	A/D - Conversion Analog - Digital
	General Group Instructions
	LAI - Free Updating of Images of Operands
	Group Connection Instructions
	LGH - Horizontal Connection
	LGN - Denied Connection
	LGV - Vertical Connection

	Function Modules
	F-RELOG.000 - Function to Access the Real Time Clock
	Introduction
	Programming
	Introduction
	Programming
	Introduction
	Programming

	F-TERM0.003 Function to Read Termopar Module
	Introduction
	Programming

	F-CONTR.004 - Function to Access the Rapid Counter Module
	Introduction
	Programming
	Introduction
	Programming
	Description of Functioning

	F-ANLOG.006 - Function to Convert A/D or A/D Integrated
	Introduction
	Programming

	F-EVENT.017 - Function to Access the Module Register of Events
	Introduction
	Programming

	F-ALNET2.032 - Function Read from Statistics of ALNET II
	Introduction
	Programming

	F-PID.033 - PID Control Function
	Introduction
	Programming

	F - RAIZN.034 - Square Root Function with Normalization of Scale
	Introduction
	Programming
	Introduction
	Programming

	F-MOBT.043 - Function for Moving of blocks from Table Operands
	Introduction
	Programming

	F-STMOD.045 - Function Status of the Buses and I/O Modules
	Introduction
	Programming

	F-RELG.048 - Function to Access the Real Time Clock
	Introduction
	Programming

	F-SINC.049 - Function to Access the Synchronized Real Time Clock
	Introduction
	Programming

	F-RELOG.061 - Function to Access the Real Time Clock of QK801 and QK2000
	Introduction
	Programming

	F-ALNET1.062 - Function Interpreter of the ALNET I Protocol for QK801
	Introduction
	Programming

	F-IMP.063 Function for Printing �ASCII Characters
	Introduction
	Programming

	F-RECEP.064 - Function for �Reception of ASCII Characters
	Introduction
	Programming

	F-UTR_S.068 - Function to turn on UTRs outputs
	Introduction
	Programming

	F-COMPB.070 – Function to Compare Operands Blocks
	Introduction
	Programming
	Inputs and Outputs

	F-NORM.071 - Function for Normalization
	Introduction
	Programming

	F-COMPF.072 - Function for �Multiple Comparisons
	Introduction
	Programming

	F-ALMLOG.075 – Function to Logic Alarms
	Introduction
	Programming
	Operation
	Inputs and Outputs

	F-XMOV.088 – Module to Move the Data From the CPU to Memory Operands
	Parameters:
	Inputs of the function
	Outputs of the function
	Functioning:

	F-ANDT.090, F-ORT.091 and F-XORT.092 - Functions of Logic Operations between Table Operands
	Introduction
	Programming

	F-NEGT.093 - Function for the logic denial of Table Operands
	Introduction
	Programming

	Appendix A�Execution Times of the Instruction
	Description of Execution Times
	Relays
	Movements
	Arithmetic
	Counters
	Conversor
	General

	Appendix B �Execution Times of the �Function Modules
	Description of Execution Times

