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Abstract fixed set of properties (such as race detection), or are lim-
ited to enforcing stylistic rules (e.g., that switch statements
Many software defects result from the violation of pro- have at most five case arms).
gramming rules: rules that describe how to use a program-  This paper describeléJ, an extensible bug-finding sys-
ming language and its libraries and rules that describe the tem for checking Java. It provides users with a language and
dos and don'ts within a given application, library or sys- runtime system that allows them to write extensions that are
tem. MJ is a language and an engine that can succinctly dynamically linked into a sophisticated compiler framework
express many of these rules for programs written in Java. and automatically applied to bytecode. Many extensions are
MJ programs are checkers that are compiled into compiler |ess than a hundred lines of code, are easily applied to new

extensions. A static analysis engine applies the extensionsystems without alterations, and have found dozens of bugs
to user code and flags rule violations. We have implementedin widely-used systems.

and 'tes'ged severql extensionsNhJ for both general and MJis based on the metacompilation approach [8], which
appllcatl.on-specm(.: rules. Our checkers have found dozens, originally developed in the context of C. This paper ex-
of bugs in some widely-deployed and mature software SySygngs this approach to Java, demonstrating that it works well
tems. in the context of a type-safe language. The cornerstone of
the approach is that many abstract rules have a straightfor-
ward mapping to source code. Thus, given knowledge of a
1. Introduction rule, a compiler extension can automatically find violations
of it. For example, the rule “calls ta.lock() must be
Software has too many bugs. Recently, there has beerimatched with a call tar.unlock() " can be checked by
a significant amount of work devising automatic tools to following every path after a.lock() ~ call making sure
detect such bugs. These range from annotation-based apt hits anv.unlock() ~ call. In general, checking rules
proaches [9, 11, 17], to stand-alone tools tailored to check-has two parts: (1) mapping the actions that are relevant
ing specific error types [4, 19], to tools that allow users to t0 @ rule to source code and (2) expressing the rule con-
extend them to check new properties [2, 5, 7, 8]. straints on these actionklJ supports the first by providing
Annotation-based systems have the strength of provid-arich, high-level pattern language that allows users to easily
ing a form of checkable documentation, but tend to require Match source constructs. It supports checking in two ways.
a heavy investment by the user before yielding good results.First, it provides a simple state machine-based, dataflow-
In contrast, tool-based approaches tend to have a muctPriented language which allows users to concisely express
lower incremental cost per-checked line of code, and henceconstraints. While the language provides a framework, it
higher bug counts (often thousands for large systems). Ex-does not limit the analyses users can implement—users can
tensible tools have the further advantage that they can bdnterweave arbitrary code to extend and customize it. Sec-
easily tailored to do unusual analyses (such as using statisond,MJ plugs these checks into a compiler framework that
tical analysis to infer which properties to check) or to di- takes care of both low-level details and provides sophisti-
rectly target identified expensive bugs to ensure they will cated analyses. For example, this framework automatically
not be reintroduced. reconstructs variables from bytecode-level register assign-
The bulk of this prior work has focused on unsafe lan- ments, uses reaching definitions and other dataflow analyses
guages (i.e., C and C++). Although some bug-finding tools to track these variables, and performs flow-sensitive analy-
for Java have been developed, most are either annotationsis.
based and require a large amount of labor, or only check a The main contributions of this paper are:



; : sm stringchecker {
1. A system and language that make it easy to write a state decl { javalang.String } str

broad set of checkers in a unified framework. { public HashMap tracking = new HashMap(); }

X init { tracking = new HashMap();
2. Showing that common sources of bugs can be ex- t 9 PO: )

pressed succinctly within this framework: most of our start:

checkers are less than a hundred lines of code. { str = java.lang.String.anymethod(...) }
==> str.tracked, {
3. Showing that the approach is effective by using it to ~ tracking.put(str.getDefinition(), ...);

find dozens of bugs in more than six different systems.

The rest of this paper is structured as follows: Section 2 St-tracked: -~
explains the syntax and semantics\dd using three small tstr t}raglg:g.{removéésm g;ctgisﬁni?gn(l;)s.e
examples. Section 3 describes d language; Section 4 kL '
describes the system in detail. Section 5 reports on our ex-  final { bugs.addAll(tracking.values()); }
periences with uses of specific extensions. Section 6 dis-

cusses related work, and Section 7 concludes. Figure 2. String checker: identifies locations

) where (immutable) strings are discarded
2. Overview

This section gives two motivating examples fdid. In . o
Java, objects of the built-in string class are immutable. A the so-bound definition reaches. In addition, it will record

common source of bugs is to assume that string Opera_this match in a hashtable, which is accomplished by calling

tions such ageplace() , concat() ,ortrim() affect the out to the user-specified Java code embedded it the
string objects to which they are applied, when in fact a new I clause.

string object is returned. As an example, consider the code  SuPsequently, the analysis engine will examine all loca-
in Figure 1, whichMJ found in Oceanstore [16], a large tions reached by that definition to see whether they use the

software system for distributed global persistent data. returned value. This check is described using the simple
In this code snippet, the programmer tries to create atistr } pattern, which denotes any use other than simply as-

unique message id by combining (concatenating) differentSiQ”ing the returned value to one (or morg) Iogal variables.
elements of a message and computing a SHA-1 hash on thd IS guarded by the statr.tracked , which bindsstr
result. In reality, only the messagec element is used to  1© Only those values tracked from a previous call to a string
compute the SHA-1 hash, making the message id not nearl)fnethOd- If a use is found along any path, the definition is
as unique (and secure) as the programmer intended. Thigémoved from the hashtable. After all paths have been ex-
example demonstrates both that potentially serious logicalP!0red, definitions that are left in the hashtable are flagged
bugs can result from obvious violations of simple API rules @S Potential errors.

and that they can be readily detected automatically. A second example illustratellJ's ability to perform
Figure 2 shows a simpleMJ program that can simple flow-sensitive analyses. In Java, a common idiom is

identify this and similar bugs. It uses the pattern to check if an object referencensll , and then to derefer-

java.lang.String.anymethod(...) to match code
locations where any method of the String class is invoked sm nulichecker {
with any number of parameters. Upon finding a match, the state decl anyobject o;
analysis engine will bind the returned value to a state vari- start:
ablestr , which will be tracked to all code locations that { 0= nul } ==> true = o.isnotnull,
false = o.isnull ;
o.isnull:
{ anyclass.anyfield = o } ==>
public SecureHash generate_msg_id() { { /* ignore this innocuous use */ }

String id = src.toString(); /I any use § .
id.concat( dest.toString() ); 1 {0} ==>{em("use of null object”); }
id.concat( Integer.toString(channel_id) ); o.snotnull: { o.size() } ==>
id.concat( Integer.toString(sequence) ); { / possible size() pattern */ }
id.concat( Integer.toString(frg_index) ); ;
msg_id = new SHA1Hash(id); }
return msg_id,; ) ]
} Figure 3. Null checker: flags when variables

are accessed that could be null

OceanStore ostore/tapestry/channel/ChannelRouteMsg.java:

Figure 1. Callsto id.concat do not affect id .



stringchecker checks that results of string manipulations
aren't discarded, warns if non-interned strings are
compared, warns if unneeded copies are made

droppedexceptionswarns if exceptions aren’t thrown

apples&oranges warns if Object.equals() is invoked on in-
compatible objects

nulichecker warns if a pointer known to be or possibly null
is dereferenced.

lockunlock checks that calls to lock/unlock methods are
paired on all paths.

signedbyte warns of potentially wrong sign-extension.

superfinalizer warns if finalize() method doesn't call su-
per.finalize() on all paths

staticlock warns when a public static field is used as a lock.
neverused flags redundant operations

nullargs infers statistically if arguments must be checked
for null

Table 1. Examples of the types of properties
that can be checked by short MJ programs

ence the reference only on those paths where it igulbt .
Not following this idiom is often a bug that can crash the
current thread or application. Figure 3 showsNa pro-

JDK 1.4 javax/swing/LayoutComparator.java:

if (@ == null) {
/I 'a’ is not part of a Window hierarchy.
Can't cope.
throw new ClassCastException(a.toString());

Rhino 1.5 RC5 org/mozilla/javascript/IRFactory.java:

String s = id.getString();
if (s != null && s.equals("__proto__")
|| s.equals("__parent_ ") { ... }

Jigsaw 2.2.2 org/w3cl/jigsaw/filters/UseProxyFilter.java:

Reply r = request.makeReply(HTTP.USE_PROXY);

if (r != null) {
.
r.setStream(g);

r.setLocation(proxy_url);
return r;

Figure 4. Typical null checker bugs

Table 1 shows a list of checkers we implemented to
demonstrate the flexibility and applicability éflJ. The
checkers shown are generally small (the median number of
lines is 68), the largest checker (heverused) is 391 lines, the
majority of which is code that relates to statistical ranking
and HTML presentation. Table 2 shows the codebases over
which we ran our checkers. On a 1.13GHz PC with 2 GB of
RAM using Sun’s JDK 1.4 Hotspot VM, it took between a
few seconds and 2 minutes to run these checkers, depending
on the codebase.

gram that can detect such violations. This checker matches

conditional branches that depend on the outcome of a com-,

parison withnull . Different variable states are propagated
along the trueig¢null ) and false ignotnull ) edges in
the control flow graph, carrying with them the flow-related

information about the outcome of the test. If a subsequent
use of this object reference is found along a path that is

reachable from thsnull  edge, the checker flags this as a

possible bug. Figure 4 shows three typical bugs this checkerJ

found in mature and widely-used software systems.

ceanStore A distributed global persistent storage system,
CVS Jan 2003, 166K

JDK 1.4 javax javax.* hierarchy in JDK 1.4.1, including
the Swing GUI, 132K

Ptolemy A system for simulation, version 11 2.0.1, 87K

igsaw W3C's webserver, version 2.2.2, 68K

MJ extensions are not verifiers and can miss errors. Con-OpenMap OpenMap 4.6beta Sep 2003 by BBN Technolo-

versely, they may report false positivelgld language fea-

tures can be used to identify and suppress certain false pos-
itives. For instance, we found that the nullchecker produces

gies [3], 124K
Mozilla Rhino JavaScript engine, version 1.5 RC5, 31K

a number of false positives for Java collection types if the Netbeans A integrated IDE for Java, CVS May 2003,

programmer treated aull reference similar to a collec-

217K

tion with zero elements. In these cases, the null check was

followed by a call to a method such sige() on the non-
null path. The result okize() was then used to guard
against the potentially dangerous access. Addinglgat-
tern{o.size() } guarded by the "o.isnotnull” state allows
us to recognize this particular false positive easily.

Table 2. Code bases to which we applied our
checkers. The line numbers are the estimated
effective number of lines as computed from
the line number information in the bytecode



3. TheMJ Language i
. | Java Code
MJ Compiler K
The MJ system consists of a description language for MJ program -——— )
analyses, a compiler that turns these analyses into compiler /| MJruntime
passes, and runtime support for processing and presenting /l ; J K
analysis results. Its basic structure is shown in Figure 5. To| java file s
analyze code using thdJ system, a user merely has to load
its bytecode into thdoEQ environment, which requires the ‘ _ £
same actions needed to run it, such as placing jar files and ;55 file - 3§ - % - joeq
setting up classpaths. S e ; /" compiler
An MJ checker is compiled to Java code by ¥d com- ) ’ pipeline
piler. The compiled Java code, along with tdd runtime, L
is dynamically loaded by thdoeqQ analysis framework.
TheMJ runtime provides support for accessilmgQ inter- Analysis Results

nals. A library ranks and presents analysis results; its output
can be either plain text for quick analyses, XML for pro-
cessing in a bug database, or HTML. The produced HTML Figure 5. Overview of the MJ system
links to the original source code, marking the flagged lines

in color for easy inspection.

3.1. Pattern Matching flagging a false positive if the programmer used an id-
iom such asif (o == null) System.exit(1); " fol-

The MJ language is based on tmeetal checking lan-  |0Wed by an access

guage we developed for checking C code [13]J pro- Table 3 shows some examples of legal patterns. These
grams use a state machine abstraction that is combined withinclude arithmetic operations, comparisons of scalars and
traditional dataflow analysis [18]. A programmer can spec- references, array reads and writes, object allocations, type
ify patterns that match Java source code constructs, such atests (instanceof), type casts, method invocations (including
method invocations, field accesses etc. Patterns are assoctalls to initializers, static methods and the super.* calling
ated with actions, which are performed if a location match- convention), field accesses, and others. For field accesses
ing the pattern is encountered in bytecode. An action mayand method invocations, a programmer may use regular ex-
propagate a new global state to source locations that argressions to specify the field and method name; for instance,
reachable from the location matched. "“set.*"(...) will match all set methods with any

Patterns may contain references to typed state variables\wumber of arguments. In addition, we support several kinds
declared in theMJ program. If a pattern containing such a of wildcards:anymethod , anyfield , anyclass , anyob-
variable is matched, the variable is bound to the operand inject , andanyvalue . Special patterns are used for entering
whose place it occurs. If the analysis associates a state withkand leaving synchronized blocks and for paths that leave a
a variable, the resulting state variable is propagated to allcurrent method.

locations that this operand reaches. _ Pattern matching relies on compile-time type informa-
Patterns are guarded by states, which are either globaljon e follow the intuition that a programmer would have
states or those of sFate variables. For instance, in Figure 2gpq .t the types of the objects involved. When matching a
the pattern{ str  } is guarded by statetr.tracked . If  nethod invocation or field access, we match sites where the
a pattern is guarded by a state, a match is only possible abbject’s compile-time type is compatible with the type spec-
those locations that are reached by the guarding state. lfifieq For object allocations, we require that the type be the
a state guards multiple patterns, which must be separatedme. A special keyworahynew matches allocation sites
by a “| ” character, the analysis engine matches patterns inynat are merely compatible with the type given. A special

the order in which they are listed. A specigdrt  stateis  mqqifierexact restricts call sites and field accesses to the
assumed to reach all locations. A speci@p state may  oyqct compile-time type.

be used to stop the propagation of a state variable. For in-

stance, If an analysis cannot be expressed in the pattern and state

model thatMJ supports directly, then a programmer may
use callouts written in Java. A specl..}  pattern al-
lows a user to specify arbitrary Java code that is invoked
prevents the propagation of variable staienull when when the analysis engine needs to determine if an action
a call toexit()  is seen, preventing the nullchecker from should be triggered at a given location.

o.isnull:
{ static java.lang.System.exit(int) } ==> o.stop



Examples of declarations
state decl anyobject o;
state decl anyvalue r;
state decl {int } v
state decl { java.io.File 5

Examples of patterns

java.lang.String.anymethod(...) matches all
method calls on &tring  object with any number of
arguments

static java.lang.System.exit(int) matches calls
to System.exit() with one integer argument

super.finalizer() matches all

finalizer()

calls tosuper.-

f = anyclass.anymethod(...)
returning gava.io.File

matches any method
object

r = anyobject." *[Ffllag.*" matches all reads
from fields that havélag or Flag in their field name

v = byte][int] matches reads from a byte array

return v matches return statements that return

v | int  matches any bitwise or of with an integer
operand

new Type() matches any allocation afype objects

(Type)o matches any cast ofto Type

0 null  matches any test af againstull

lock o matches the beginning of synchronized(o) block

Table 3. Examples of declarations and pat-
terns MJ supports

4. MJ's Runtime Environment

MJ programs are translated into specialized dataflow
problems. State propagation is modeled as a dataflow prob
lem whose transfer function creates states for code location

analysis to track variable states to the locations they reach
In this section, we explain how our generated code imple-

ments these algorithms. We give some necessary back
ground on theJoeQ compiler infrastructure first.

4.1. TheJoeg Infrastructure

JOEQ [20] is a component framework designed to fa-

cilitate research in virtual machine and compilation tech-
nologies. We use its frontend to load Java bytecode, which
allows us to add our analyses as passes to its compiler.
BecauseJoEQ was designed with extensibility in mind it
makes extensive use of the visitor design pattern [AQEQ

is itself implemented in Java, so adding a pass is as simple
as writing a specific visitor class faloeQ's intermediate
representation (IR).

A MJ program is compiled into a set of Java classes that
implement a specialized intraprocedural forward dataflow
analysis. A static skeleton class provides the frame for the
analysis, the generated program subclasses from this skele-
ton. The skeleton provides the basic framework for travers-
ing the control flow graph and computing dataflow facts,
compiler-generated subclass implements the specific tran-
sition function given by theMJ program. User-provided
code is enclosed in methods of that subclass and invoked
as needed. The translatbtl program uses the underlying
JoEQinfrastructure.

Using JOEQ benefits us in several ways: first, it per-
forms the mundane task of Java class loading, including
the resolution of link-time references. More importantly,
it allows us to make seamless use of other analysis com-
ponents, such as class hierarchy analysis, that have been
implemented within or for thdoeq framework.

4.2. Dataflow Formulation

MJ's dataflow analysis computes dataflow facts for each
quad instruction inJOEQs IR. Quads are a form of four-
address-code; operands are registers, constants, or types.
Quad IR uses a similar instruction set as Java bytecode:
for instance, aetfield (read from instance field) byte-
code instruction is translated intoGETFIELD quad. The
main difference between bytecode and quad IR is that the
bytecode-to-quad translation replaces Java’s stack-based
execution model with a more convenient to use register-
based model. Every local variable, incoming parameter, and
stack location is assigned a register.

MJ patterns match individual quad instructions in
JoEQs IR. Because the Java source-to-bytecode transla-
tion preserves most of a program’s semantics, we can easily
identify most source patterns in the quad representation. We

; ) CalionNg;se the line number information and local variable tables (if
as needed, and perform a combined reaching definitions

available) to map quads and registers back to source code
lines and local variables.

We implement the dataflow analysis using a traditional
worklist algorithm. Each quad has an associated state
cache, which includes global states and those bound to a
state variable. Global states are represented as integers. A
variable state is a tuplév.i, def, set)wherewv represents
the state variable in th#J program,v.i the integer rep-
resenting the stateis in, anddefrepresents the source lo-



cation where the variable was bound. A definition is a pair state variable declaration, the user tells the runtime sys-
(quad, reg), meaning that this variable was bound to regis- tem to use instances of a user-provided class to represent
terreg at quadquad. regset represents the set of registers states instead of the default, system-provided implemen-
that the so-defined register can reach. tation. For instancestate decl { int } typeflag

The set of states held in a quad’s state cache representsse DependentStateVariable; tells the MJ runtime
thein set for that quad in the dataflow analysis. Our gen- to instantiate objects of the user cla®spendentState-
erated code computes the transfer function for a quad asvariable  when tracking instances afpeflag . The
follows. For each global state in ite set, we examine if  user-provided class is responsible for implementing the
any of the patterns guarded by that state match this quaddataflow analysis methods that implement the transfer func-
If the quad does not match the pattern, the global state istion across a quad and the confluence function that is used
propagated to all successor quads. If there is a match, thevhen merging successor states.
action associated with the match dictates what function is
to be executed. If the action describes a new global state4.4. Limitations
other than theatop state as its target, a new global state is
created and propagated to all or some successors. Instead of basing our pattern matching on the quad IR,

If the action targets a state variable, a new variable statewe could have modified a Java source frontend to match
is created that is bound to the registers that contained thesource code directly. Aside from the obvious advantage
operands that matched the position of the state variable inthat working with compiled code enables analyses in the ab-
the MJ program. For instance, consider the!= null sence of source code, using quads also simplifies the match-
pattern shown in Figure 3 in conjunction with the following ing of patterns that may occur in different variations. For
quad with quad id#2. This quad is a conditional branch instance, a pattern such as< b will also match if the
that jumps to labeBB7 if registerR2 is not equal towll : source code contained a negated pattern suth as a,
because their representations at the IR level are identical.

A disadvantage of quad matching is that a few source
In the null checker, the transfer function for this quad constructs generate multiple quads. For instance, an object
will propagate variable stat&.isnotnull, (#2, R2), R2) allocation using thenew operator is translated into MEW
to the quad at labeBB7, and it will propagate variable quad inStrUCtion, followed by aNVOKESPECIAL instruc-
state (o.isnull, (#2, R2), R2) to the fallthrough quad of tion to call the respective constructor. MJ programmer
the branch. may decide to match on either instruction, depending on

Variable states that are in thie set of a quad require  the analysis.
additional handling: first, when deciding whether a quad A second example of more complex matching iare
matches the pattern guarded by such a state, we need to alsganceof type inclusion tests. These are not directly trans-
check whether any of the registers in the variable state’s regJated into a branch instruction: instead, the result of the
ister regset may reach the register that is used in place of test is stored in a register, which is subsequently tested in
the bound variable. Second, even if there is no match, a branch. In this case, a state variable needs to keep track of
we need to Compute reaching deﬁnitions in para”e' by two I’egiSteI’S: the register that holds the reference to the ob-
adding copied registers to a stateisyset and by remov- ject to which the type test was applied, and the register that
ing a quad’s killset from the stateis:gset. If the regset holds the boolean result of the test. We use a user-defined
becomes empty (that is, if the definition to which the vari- state variable as described in Section 4.3 to implement this.
able was bound is dead), the state is killed.

The confluence operator for our dataflow analysis is the 5. Applications
union of theregsets computed individually for eacfv.i,
def) pair. In other words, we merge register sets at join  Thijs section presents a suite of checkers written using

points if they represent the same variable state and if theymJ. These checkers give a feel for the variety of checks
were bound at the same location in the quad code. that can be expressed in theJ framework.

#2 IFCMP_A R2 Object, AConst: null, NE, BB7

4.3. User-Defined States 5.1. Checking Language-specific Properties

For cases where the provided state model is too restric- MJ extensions do not have be involved to be useful.
tive, we provide a way for users to extend and customize Some language-specific rules can be expressed very suc-
how MJ creates and propagates states. For instance, ainctly. For instance, in Java, while all objects can be com-
user may wish to track additional, dependent definitions pared usingDbject.equals() , typically the comparison
along with a state variable. By addinguae clause to a  make only sense if the compile-time type of the objects are



Bug caused by usingsquals() on incompatible types

boolean filterComment()

{

User user = User.getUser();
Document d = getContainingDocument();
return !user.equals(d.getAuthor());

}
Short checker that found this bug:

sm applesandoranges {
decl anyobject objl, objr;

start:
{ objl.equals(objr) } ==> {
/I warn if lobjl.type.isCompatible(objr.type);
}
}

Figure 6. Bug caused by using equal()
incompatible types, resulting in loss of confi-
dentiality in a commercial system.

sm lockunlock {
state decl anyobject v;

start:
{ v."lock"(...) } ==> v.locked,;

v.locked:
{ v."unlock"(...) } ==> v.stop
| $end_of path$ ==> {
I* flag error */ };

Figure 8. Lock checker: flags where intrapro-
cedural lock/unlock pairing is violated

violated: by placing the call to B into the finally clause, the
programmer ensures that B is called no matter which path
is taken to leave the try block.

Nevertheless, the compiler cannot enforce proper use of
try/finally. Figure 7 shows a bug in Jigsaw 2.2.2 where the
programmer mistakenly placed the required call to unlock
in a catch instead of a finally clause.

Figure 8 shows a simpl®lJ program that detected this

related; otherwise, the implementation of equals() may ei- pug: this checker matches invocationsvdbck() ~ and

ther crash or, worse, silently retuiaise , leaving a possi-

ble error untrapped.

tracks the locked instance If a call tounlock() is en-
countered that is invoked on the same object, we stop track-

Figure 6 shows a security hole caused by violating this ing the object. If a tracked object reach&nd of path$,
rule and a checker that found it. The shofilterCom- i.e., an edge in the control flow graph that leaves the current
ment() method is part of a code base of a leading enter- function, a potential error is signaled.
pl’ise software SyStem. The method’s purpose is to deter- ThlS error occurred despite a comment by the imple_
mine whether a user requesting a document is authorizednenter of theResourceReference  interface that explic-
to see comments that should be visible only to the author.itly recommends the use of the try/finally pattern when us-
In this case, the consequence of this bug was a breach ofng this interface. The length of that comment is about the
confidentiality, exposing these comments to all viewers.  same as the length of checker; we conclude that analysis
tools such a$1J could be used as enforceable documenta-
tion. It is also possible to develop checkers in conjunction
with the use of automatic interface extraction tools, such
as [21].

5.2. Checking Interface Properties

Many APIs have the property that a call&enust be fol-
lowed by a call taB. For instance, calls tlock() must be
paired with calls tainlock() . Java provides the try/finally ~ 5.3. Redundant Operations
construct to reduce the likelihood that such properties are

Redundancies, such as redundant assignments, have
been shown to be correlated with actual bugs in C code [22].
To test whether this holds true for Java code as well, we
try {Diremr Resource di implemented aMJ extensionpeverused , that identifies

(D?:ectoryResource)root.lock(); Such redundancies. .

Figure 9 shows an example of a bug this checker found
} catch (InvalidResourceException ex) { in the OceanStore system: a function that needs to up-

root.unlock(); date a value in a hashtable did not, presumably because
s the programmer mistakenly assumed that an assignment
Figure 7. Mismatched pairing: the program- to a reference that was obtained from the hashtable via
mer placed the call to unlock() in the catch get() would affect the value stored in the hashtable. Our
instead of a finally  block. checker flags this example because the result of the call to

msg.getMsgs()  is never used.

Jigsaw org/w3cl/jigsaw/proxy/ProxyFrame.java:



OceansStore ostore/apps/visdemo/Visdemo.java:

public void registerRegMsg(SonarReqMessage msg) {
SecureHash treeld = ... /* ... *
QSVector network_msg =
(QSVector)_network_msgs.get(treeld);

if(msg.getType() == SonarRegMessage.NETWORK &&
network_msg != null)
network_msg = msg.getMsgs();
/* network_msg is dead here, needed was:
_network_msgs.put(treeld, network_msg) */

Figure 9. A bug from a redundancy: a return
result is never used

Our checker looks for instance and static field reads, ob-

pattern{anynew java.lang.Throwable() } allowed for

easy identification of allocation sites of all throwables. This
example demonstrates a strengthvbf: it makes it easy to
create checkers tailored to specific bug patterns that emerge
while analyzing actual code.

5.4. Inferring Application-specific Properties

MJ also allows the construction of analyses that infer
programming rules from programmer behavior. For in-
stance, different implementations of a virtual method of a
class or interface are expected to abide by the same contract.
Most implementations are error-free and will exhibit similar
behavior. Implementations that deviate from the dominant
behavior are likely bugs.

As an example of such an analysis, we analyzed how
methods treated object references they received as argu-

ject allocations, and instance and static method invocationsments. We modified our nulichecker to track incoming

whose results are never used. We ran this checker over OUparameters and recorded if a parameter was checked and
codebases; we found that reads from static fields that arejereferenced(), or dereferenced uncheckedl){ or not
unused are often the result of defensive programming: agereferenced at all. We only included virtual and interface

programmer might initialize a local variable to some safe

methods with more than one implementation and grouped

value. We found numerous instances of unused reads of inynethods by their shared supermethod. We expect that if
stance fields; in some cases one field is read but a differenty narameter is almost always checked before being deref-

field is used.

To determine whether a method call or object alloca-
tion whose return value is discarded is a bug or not, we

attempted to use statistical ranking [15]. We compared the

number of sites, where a given method or constructor was
invoked to the number of sitaswhere the return value of

erenced, then dereferencing it without checking is a bug.
Conversely, if it is almost always accessed without a check,
the check might be redundant.

For instance, in OpenMap we identified 5 methods for
which C # 0 andU # 0. We used statistical analysis
to sort the results based on the ratio@f(C + U), ad-

the invocation was used. The underlying assumption is thatjusted for total number. The three top-ranked entries had

if a method’s result is used almost all of the time, then the
instances in which it is discarded are likely errors. We found
that using statistical ranking in this way worked well in that

C,=23U; =1,C, =23,Uy = 1,Cy = 17,U5 = 2.
The developers of OpenMap confirmed that all 4 unchecked
accesses were indeed bugs. For the other packages we ana-

it pushed redundant calls to the top. We were surprised bylyzed, the analysis failed to find obvious bugs that we could
the sheer number of redundant calls that can be found inconfirm without deeper knowledge of the system.

mature Java code. However, statistical ranking did not push

the most serious bugs to the top; most top-ranked redun-g g Generalizing Identified Bugs

dant calls were simply inefficiencies: a programmer would
ignore and then repeat the call. Still, we believe that a dili-

gent programmer would want to inspect all such instances

and clean them up.

To our surprise, we found that a particular class of bugs
showed up at the top of the ranking for unused objects:
namely exceptions. Unused exceptions typically occur if a
programmer forgets a precedittgow keyword. For in-
stance, in Ptolemy, objects of tygtolemy.kernel.-
util.lllegalActionException are used 838 out of

Easy-to-use tools such &4J can change the way pro-
grammers write test cases for bugs they encounter and fix.

boolean checklPRange(Request r, User u) {
byte abyteO[] ... get IP address
.
long | = OL;
for(int i = 0; i < 4; i++)

| =1 << 8 | abyte0O[i];
*

/*

839 times, ranking the one occurrence where a program-

mer erroneously omitted the throw at the top. After hav-
ing the obvious-in-hindsight realization that exceptions are
practically never constructed for side-effect, we wrote a
smaller checker that identifies this very case. TVié

Figure 10. Bug caused by Java's automatic
sign extension



sm badbyteor {
state decl { int } x;
state decl { long } Ix;

5.6. Summary of Results

Figure 12 summarizes the number of bugs that were
found by four of our checkers that check language-specific
properties. We only counted those bugs that were either
x.castfrombyte: confirmed by the developers or that we could verify with-

{ Ix = (long)x } ==> Ix.castfrombyte out knowledge of the system in question. For the A&O
{x Pt } ==> { and the nullchecker, we also list the number of false pos-
/* possible error */ }, x.stop; o ! . p

itives (FPs), and potential bugs or redundant checks (la-

start:
{ x = byte [ int ] } ==> x.castfrombyte;

Ix.castfrombyte: beled “Bugs?”). A major cause of false positives for the
{x] long } ==>{ _ nullchecker are false paths, which we expect to rectify by
} * possible error =/}, lx.stop; including path-sensitivity to our analysis. The table does
not include the bugs we found with more specialized analy-
Figure 11. Checker that flags if a value read ses, and it does not include the many anomalies found by the
from a byte array is ORed with an int or long neverused checker, which included several confirmed bugs.

It also does not include the bugs found in the commercial
closed-source codebase.

An anecdote illustrates this conviction. A colleague work-

ing for an ecommerce company asked the first author for6' Related Work

help with a problem in a third-party library used to im-

plement IP-address based access control. Figure 10 shows A variety of bug detection and checking tools have

a decompiled picture of the relevant code portion. Their Peen developed for unsafe languages such as C and C++.

code worked fine on the company’s internal (10.0.0.x) net- These include annotation-based approaches [9, 11], tools

work, but failed for a customer who used IP addresses inthat cover a specific set of error types [4, 19], such as buffer

the range 160.x.x.x, whose representation in a byte arrayoVerrun errors, and to tools that allow users to extend them

contains negative values (160 = -96). The bug was caused© check new properties [2, 5, 7, 8]. In the remainder of this

because a programmer disregarded Java’s rules for sign exsection, we focus on the work that has been done in the Java

pansion: all scalars, including bytes, in Java are signed, ancONntext.

promotion toint orlong extends the sign, which flooded =~ The most closely related project to ours is the Find-

the higher-order bits of the IP address with 1s. Bugs [14] system. FindBugs is a framework for writing
Figure 11 shows &J program that captures the essence bug detectors for Qava code. It provides an API to_ plugins

of this bug. In the start state, it matches all reads from byte that check for particular bug patterns, and IM8 provides

arrays. The integer value read from the array is tracked inSUpport for presentmg bugs to the user. Uniig, F!nd-

a state variable. The program flags if that value is used in aB49S do€s not provide language support for writing bug

bitwise OR. (If the programmer means to treat the value asdetectorg. All bug detect_or: pl_ugéins have to be wgtterclj_:cn
an unsigned value, it would likely be used in a bitwise AND J2va and must interact with FindBugs's API. Another dif-

with constant Oxff.) To account for the situation shown in [€rence is that FindBugs is based on a bytecode-engineering

the example, we also match the case where the value is caé{bfafY [6], and does not.have the support of an underlying
to a 64-bit long, track the resulting long value and flag if COMPiler infrastructure likdoeq.
that long value is used in a bitwise OR comparison. Hav- Jlintand Jiint2 [1] are other examples of tools that sup-

ing written this checker, we tested it against our other code POt & fixed set of analyses. Jlint2 has been used success-
bases. Indeed, in Jigsaw class.w3c.www.mux.Mux- fully to find concurrency-related and other bugs in Java code

Reader , we found this statement using global static analy§|§. .
ESC/Java and Houdini [10, 17] are annotation-based
ali] = (buffer[bufptr] | tools that use a theorem prover to check invariants in Java
(buffer[bufptr+1] << 8)) & OXxfff; coc_je. Whlle_ !ESC/Java is ablg tq prove much _stronger prop-
erties, requiring annotations limits its scalability.

in methodmsgShortArrayTolntArray()

This example shows thidJ programs can in some cases /- Conclusion
take the place of unit tests: a programmer who finds and
fixes an unexpected bug can generalize the underlying root Static analysis is a promising method for finding and
cause of the bug in a checker. eliminating bugs at compile time in Java. Key for making



Package LoC | stringchecker| dropped-| apples&oranges nullchecker Total Bugs
exceptions| Bugs FP | Bugs | Bugs?| FP
OceanStore 166K 5 0 2 0 5 5] 13 12
JDK 1.4 javax | 132K 1 0 0 2 9 2| 22 10
Ptolemy 87K 4 1 0 0 1 1 1 6
Jigsaw 68K 4 0 0 1 1 13| 13 5
OpenMap 124K 4 19 0 0 8 41 0 31
Mozilla Rhino | 31K 0 0 0 0 1 41 3 1
Netbeans 217K 4 2 0 3 3 5| 18 9
Total 825K 22 22 2 6 28 34| 70 74

Figure 12. Bugs and false positives from four of our generic checkers.

static analysis work is the availability of flexible tools that

allow developers to devise specific analyses for the specific

sources of problems that exist within their application or
system. MJ allows the construction of such analyses; we
have demonstrated its flexibility by applying it to a variety (12]
of bug-finding analyses.
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