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Abstract

Many software defects result from the violation of pro-
gramming rules: rules that describe how to use a program-
ming language and its libraries and rules that describe the
dos and don’ts within a given application, library or sys-
tem. MJ is a language and an engine that can succinctly
express many of these rules for programs written in Java.
MJ programs are checkers that are compiled into compiler
extensions. A static analysis engine applies the extensions
to user code and flags rule violations. We have implemented
and tested several extensions inMJ for both general and
application-specific rules. Our checkers have found dozens
of bugs in some widely-deployed and mature software sys-
tems.

1. Introduction

Software has too many bugs. Recently, there has been
a significant amount of work devising automatic tools to
detect such bugs. These range from annotation-based ap-
proaches [9, 11, 17], to stand-alone tools tailored to check-
ing specific error types [4, 19], to tools that allow users to
extend them to check new properties [2, 5, 7, 8].

Annotation-based systems have the strength of provid-
ing a form of checkable documentation, but tend to require
a heavy investment by the user before yielding good results.
In contrast, tool-based approaches tend to have a much
lower incremental cost per-checked line of code, and hence
higher bug counts (often thousands for large systems). Ex-
tensible tools have the further advantage that they can be
easily tailored to do unusual analyses (such as using statis-
tical analysis to infer which properties to check) or to di-
rectly target identified expensive bugs to ensure they will
not be reintroduced.

The bulk of this prior work has focused on unsafe lan-
guages (i.e., C and C++). Although some bug-finding tools
for Java have been developed, most are either annotation-
based and require a large amount of labor, or only check a

fixed set of properties (such as race detection), or are lim-
ited to enforcing stylistic rules (e.g., that switch statements
have at most five case arms).

This paper describesMJ, an extensible bug-finding sys-
tem for checking Java. It provides users with a language and
runtime system that allows them to write extensions that are
dynamically linked into a sophisticated compiler framework
and automatically applied to bytecode. Many extensions are
less than a hundred lines of code, are easily applied to new
systems without alterations, and have found dozens of bugs
in widely-used systems.

MJ is based on the metacompilation approach [8], which
we originally developed in the context of C. This paper ex-
tends this approach to Java, demonstrating that it works well
in the context of a type-safe language. The cornerstone of
the approach is that many abstract rules have a straightfor-
ward mapping to source code. Thus, given knowledge of a
rule, a compiler extension can automatically find violations
of it. For example, the rule “calls tov.lock() must be
matched with a call tov.unlock() ” can be checked by
following every path after av.lock() call making sure
it hits an v.unlock() call. In general, checking rules
has two parts: (1) mapping the actions that are relevant
to a rule to source code and (2) expressing the rule con-
straints on these actions.MJ supports the first by providing
a rich, high-level pattern language that allows users to easily
match source constructs. It supports checking in two ways.
First, it provides a simple state machine-based, dataflow-
oriented language which allows users to concisely express
constraints. While the language provides a framework, it
does not limit the analyses users can implement—users can
interweave arbitrary code to extend and customize it. Sec-
ond,MJ plugs these checks into a compiler framework that
takes care of both low-level details and provides sophisti-
cated analyses. For example, this framework automatically
reconstructs variables from bytecode-level register assign-
ments, uses reaching definitions and other dataflow analyses
to track these variables, and performs flow-sensitive analy-
sis.

The main contributions of this paper are:



1. A system and language that make it easy to write a
broad set of checkers in a unified framework.

2. Showing that common sources of bugs can be ex-
pressed succinctly within this framework: most of our
checkers are less than a hundred lines of code.

3. Showing that the approach is effective by using it to
find dozens of bugs in more than six different systems.

The rest of this paper is structured as follows: Section 2
explains the syntax and semantics ofMJ using three small
examples. Section 3 describes theMJ language; Section 4
describes the system in detail. Section 5 reports on our ex-
periences with uses of specific extensions. Section 6 dis-
cusses related work, and Section 7 concludes.

2. Overview

This section gives two motivating examples forMJ. In
Java, objects of the built-in string class are immutable. A
common source of bugs is to assume that string opera-
tions such asreplace() , concat() , or trim() affect the
string objects to which they are applied, when in fact a new
string object is returned. As an example, consider the code
in Figure 1, whichMJ found in Oceanstore [16], a large
software system for distributed global persistent data.

In this code snippet, the programmer tries to create a
unique message id by combining (concatenating) different
elements of a message and computing a SHA-1 hash on the
result. In reality, only the messagesrc element is used to
compute the SHA-1 hash, making the message id not nearly
as unique (and secure) as the programmer intended. This
example demonstrates both that potentially serious logical
bugs can result from obvious violations of simple API rules
and that they can be readily detected automatically.

Figure 2 shows a simpleMJ program that can
identify this and similar bugs. It uses the pattern
java.lang.String.anymethod(...) to match code
locations where any method of the String class is invoked
with any number of parameters. Upon finding a match, the
analysis engine will bind the returned value to a state vari-
ablestr , which will be tracked to all code locations that

OceanStore ostore/tapestry/channel/ChannelRouteMsg.java:

public SecureHash generate_msg_id() {
String id = src.toString();
id.concat( dest.toString() );
id.concat( Integer.toString(channel_id) );
id.concat( Integer.toString(sequence) );
id.concat( Integer.toString(frg_index) );
msg_id = new SHA1Hash(id);
return msg_id;

}

Figure 1. Calls to id.concat do not affect id .

sm stringchecker {
state decl { java.lang.String } str;
{ public HashMap tracking = new HashMap(); }
init { tracking = new HashMap(); }

start:
{ str = java.lang.String.anymethod(...) }
==> str.tracked, {

tracking.put(str.getDefinition(), ...);
};

str.tracked:
{ str } ==> { // matches any use

tracking.remove(str.getDefinition());
};
final { bugs.addAll(tracking.values()); }

}

Figure 2. String checker: identifies locations
where (immutable) strings are discarded

the so-bound definition reaches. In addition, it will record
this match in a hashtable, which is accomplished by calling
out to the user-specified Java code embedded in the{ ...

} clause.
Subsequently, the analysis engine will examine all loca-

tions reached by that definition to see whether they use the
returned value. This check is described using the simple
{str } pattern, which denotes any use other than simply as-
signing the returned value to one (or more) local variables.
It is guarded by the statestr.tracked , which bindsstr

to only those values tracked from a previous call to a string
method. If a use is found along any path, the definition is
removed from the hashtable. After all paths have been ex-
plored, definitions that are left in the hashtable are flagged
as potential errors.

A second example illustratesMJ’s ability to perform
simple flow-sensitive analyses. In Java, a common idiom is
to check if an object reference isnull , and then to derefer-

sm nullchecker {
state decl anyobject o;

start:
{ o != null } ==> true = o.isnotnull,

false = o.isnull ;
o.isnull:

{ anyclass.anyfield = o } ==>
{ /* ignore this innocuous use */ }

// any use
| { o } ==> { err("use of null object"); } ;

o.isnotnull: { o.size() } ==>
{ /* possible size() pattern */ }

;
}

Figure 3. Null checker: flags when variables
are accessed that could be null
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stringchecker checks that results of string manipulations
aren’t discarded, warns if non-interned strings are
compared, warns if unneeded copies are made

droppedexceptionswarns if exceptions aren’t thrown

apples&oranges warns if Object.equals() is invoked on in-
compatible objects

nullchecker warns if a pointer known to be or possibly null
is dereferenced.

lockunlock checks that calls to lock/unlock methods are
paired on all paths.

signedbyte warns of potentially wrong sign-extension.

superfinalizer warns if finalize() method doesn’t call su-
per.finalize() on all paths

staticlock warns when a public static field is used as a lock.

neverused flags redundant operations

nullargs infers statistically if arguments must be checked
for null

Table 1. Examples of the types of properties
that can be checked by short MJ programs

ence the reference only on those paths where it is notnull .
Not following this idiom is often a bug that can crash the
current thread or application. Figure 3 shows anMJ pro-
gram that can detect such violations. This checker matches
conditional branches that depend on the outcome of a com-
parison withnull . Different variable states are propagated
along the true (isnull ) and false (isnotnull ) edges in
the control flow graph, carrying with them the flow-related
information about the outcome of the test. If a subsequent
use of this object reference is found along a path that is
reachable from theisnull edge, the checker flags this as a
possible bug. Figure 4 shows three typical bugs this checker
found in mature and widely-used software systems.

MJ extensions are not verifiers and can miss errors. Con-
versely, they may report false positives.MJ language fea-
tures can be used to identify and suppress certain false pos-
itives. For instance, we found that the nullchecker produces
a number of false positives for Java collection types if the
programmer treated anull reference similar to a collec-
tion with zero elements. In these cases, the null check was
followed by a call to a method such assize() on the non-
null path. The result ofsize() was then used to guard
against the potentially dangerous access. Adding aMJ pat-
tern{o.size() } guarded by the ”o.isnotnull” state allows
us to recognize this particular false positive easily.

JDK 1.4 javax/swing/LayoutComparator.java:

if (a == null) {
// ’a’ is not part of a Window hierarchy.

Can’t cope.
throw new ClassCastException(a.toString());

}

Rhino 1.5 RC5 org/mozilla/javascript/IRFactory.java:

String s = id.getString();
if (s != null && s.equals("__proto__")

|| s.equals("__parent__")) { ... }

Jigsaw 2.2.2 org/w3c/jigsaw/filters/UseProxyFilter.java:

Reply r = request.makeReply(HTTP.USE_PROXY);
if (r != null) {

/* ... */
r.setStream(g);

}
r.setLocation(proxy_url);
return r;

Figure 4. Typical null checker bugs

Table 1 shows a list of checkers we implemented to
demonstrate the flexibility and applicability ofMJ. The
checkers shown are generally small (the median number of
lines is 68), the largest checker (neverused) is 391 lines, the
majority of which is code that relates to statistical ranking
and HTML presentation. Table 2 shows the codebases over
which we ran our checkers. On a 1.13GHz PC with 2 GB of
RAM using Sun’s JDK 1.4 Hotspot VM, it took between a
few seconds and 2 minutes to run these checkers, depending
on the codebase.

OceanStore A distributed global persistent storage system,
CVS Jan 2003, 166K

JDK 1.4 javax javax.* hierarchy in JDK 1.4.1, including
the Swing GUI, 132K

Ptolemy A system for simulation, version II 2.0.1, 87K

Jigsaw W3C’s webserver, version 2.2.2, 68K

OpenMap OpenMap 4.6beta Sep 2003 by BBN Technolo-
gies [3], 124K

Mozilla Rhino JavaScript engine, version 1.5 RC5, 31K

Netbeans A integrated IDE for Java, CVS May 2003,
217K

Table 2. Code bases to which we applied our
checkers. The line numbers are the estimated
effective number of lines as computed from
the line number information in the bytecode
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3. TheMJ Language

The MJ system consists of a description language for
analyses, a compiler that turns these analyses into compiler
passes, and runtime support for processing and presenting
analysis results. Its basic structure is shown in Figure 5. To
analyze code using theMJ system, a user merely has to load
its bytecode into theJOEQ environment, which requires the
same actions needed to run it, such as placing jar files and
setting up classpaths.

An MJ checker is compiled to Java code by theMJ com-
piler. The compiled Java code, along with theMJ runtime,
is dynamically loaded by theJOEQ analysis framework.
TheMJ runtime provides support for accessingJOEQ inter-
nals. A library ranks and presents analysis results; its output
can be either plain text for quick analyses, XML for pro-
cessing in a bug database, or HTML. The produced HTML
links to the original source code, marking the flagged lines
in color for easy inspection.

3.1. Pattern Matching

The MJ language is based on themetal checking lan-
guage we developed for checking C code [13].MJ pro-
grams use a state machine abstraction that is combined with
traditional dataflow analysis [18]. A programmer can spec-
ify patterns that match Java source code constructs, such as
method invocations, field accesses etc. Patterns are associ-
ated with actions, which are performed if a location match-
ing the pattern is encountered in bytecode. An action may
propagate a new global state to source locations that are
reachable from the location matched.

Patterns may contain references to typed state variables
declared in theMJ program. If a pattern containing such a
variable is matched, the variable is bound to the operand in
whose place it occurs. If the analysis associates a state with
a variable, the resulting state variable is propagated to all
locations that this operand reaches.

Patterns are guarded by states, which are either global
states or those of state variables. For instance, in Figure 2,
the pattern{ str } is guarded by statestr.tracked . If
a pattern is guarded by a state, a match is only possible at
those locations that are reached by the guarding state. If
a state guards multiple patterns, which must be separated
by a “| ” character, the analysis engine matches patterns in
the order in which they are listed. A specialstart state is
assumed to reach all locations. A specialstop state may
be used to stop the propagation of a state variable. For in-
stance,

o.isnull:
{ static java.lang.System.exit(int) } ==> o.stop

prevents the propagation of variable stateo.isnull when
a call toexit() is seen, preventing the nullchecker from

MJ program

.java file

pipeline
compiler

joeq

Java Code

MJ runtime

Analysis Results

MJ Compiler

.class file

lo
ad
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by
te
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de
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Figure 5. Overview of the MJ system

flagging a false positive if the programmer used an id-
iom such as “if (o == null) System.exit(1); ” fol-
lowed by an access too.

Table 3 shows some examples of legal patterns. These
include arithmetic operations, comparisons of scalars and
references, array reads and writes, object allocations, type
tests (instanceof), type casts, method invocations (including
calls to initializers, static methods and the super.* calling
convention), field accesses, and others. For field accesses
and method invocations, a programmer may use regular ex-
pressions to specify the field and method name; for instance,
"ˆset.*"(...) will match all set methods with any
number of arguments. In addition, we support several kinds
of wildcards:anymethod , anyfield , anyclass , anyob-

ject , andanyvalue . Special patterns are used for entering
and leaving synchronized blocks and for paths that leave a
current method.

Pattern matching relies on compile-time type informa-
tion. We follow the intuition that a programmer would have
about the types of the objects involved. When matching a
method invocation or field access, we match sites where the
object’s compile-time type is compatible with the type spec-
ified. For object allocations, we require that the type be the
same. A special keywordanynew matches allocation sites
that are merely compatible with the type given. A special
modifierexact restricts call sites and field accesses to the
exact compile-time type.

If an analysis cannot be expressed in the pattern and state
model thatMJ supports directly, then a programmer may
use callouts written in Java. A special${...} pattern al-
lows a user to specify arbitrary Java code that is invoked
when the analysis engine needs to determine if an action
should be triggered at a given location.
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Examples of declarations
state decl anyobject o;

state decl anyvalue r;

state decl { int } v;

state decl { java.io.File } f;

Examples of patterns

java.lang.String.anymethod(...) matches all
method calls on aString object with any number of
arguments

static java.lang.System.exit(int) matches calls
to System.exit() with one integer argument

super.finalizer() matches all calls tosuper.-

finalizer()

f = anyclass.anymethod(...) matches any method
returning ajava.io.File object

r = anyobject.".*[Ff]lag.*" matches all reads
from fields that haveflag or Flag in their field name

v = byte[int] matches reads from a byte array

return v matches return statements that returnv

v | int matches any bitwise or ofv with an integer
operand

new Type() matches any allocation ofType objects

(Type)o matches any cast ofo to Type

o == null matches any test ofo againstnull

lock o matches the beginning of synchronized(o) block

Table 3. Examples of declarations and pat-
terns MJ supports

4. MJ’s Runtime Environment

MJ programs are translated into specialized dataflow
problems. State propagation is modeled as a dataflow prob-
lem whose transfer function creates states for code locations
as needed, and perform a combined reaching definitions
analysis to track variable states to the locations they reach.
In this section, we explain how our generated code imple-
ments these algorithms. We give some necessary back-
ground on theJOEQ compiler infrastructure first.

4.1. TheJOEQ Infrastructure

JOEQ [20] is a component framework designed to fa-

cilitate research in virtual machine and compilation tech-
nologies. We use its frontend to load Java bytecode, which
allows us to add our analyses as passes to its compiler.
BecauseJOEQ was designed with extensibility in mind it
makes extensive use of the visitor design pattern [12].JOEQ

is itself implemented in Java, so adding a pass is as simple
as writing a specific visitor class forJOEQ’s intermediate
representation (IR).

A MJ program is compiled into a set of Java classes that
implement a specialized intraprocedural forward dataflow
analysis. A static skeleton class provides the frame for the
analysis, the generated program subclasses from this skele-
ton. The skeleton provides the basic framework for travers-
ing the control flow graph and computing dataflow facts,
compiler-generated subclass implements the specific tran-
sition function given by theMJ program. User-provided
code is enclosed in methods of that subclass and invoked
as needed. The translatedMJ program uses the underlying
JOEQ infrastructure.

Using JOEQ benefits us in several ways: first, it per-
forms the mundane task of Java class loading, including
the resolution of link-time references. More importantly,
it allows us to make seamless use of other analysis com-
ponents, such as class hierarchy analysis, that have been
implemented within or for theJOEQ framework.

4.2. Dataflow Formulation

MJ’s dataflow analysis computes dataflow facts for each
quad instruction inJOEQ’s IR. Quads are a form of four-
address-code; operands are registers, constants, or types.
Quad IR uses a similar instruction set as Java bytecode:
for instance, agetfield (read from instance field) byte-
code instruction is translated into aGETFIELD quad. The
main difference between bytecode and quad IR is that the
bytecode-to-quad translation replaces Java’s stack-based
execution model with a more convenient to use register-
based model. Every local variable, incoming parameter, and
stack location is assigned a register.

MJ patterns match individual quad instructions in
JOEQ’s IR. Because the Java source-to-bytecode transla-
tion preserves most of a program’s semantics, we can easily
identify most source patterns in the quad representation. We
use the line number information and local variable tables (if
available) to map quads and registers back to source code
lines and local variables.

We implement the dataflow analysis using a traditional
worklist algorithm. Each quad has an associated state
cache, which includes global states and those bound to a
state variable. Global states are represented as integers. A
variable state is a tuple(v.i, def, set)wherev represents
the state variable in theMJ program,v.i the integer rep-
resenting the statev is in, anddef represents the source lo-
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cation where the variable was bound. A definition is a pair
(quad, reg), meaning that this variable was bound to regis-
ter reg at quadquad. regset represents the set of registers
that the so-defined register can reach.

The set of states held in a quad’s state cache represents
the in set for that quad in the dataflow analysis. Our gen-
erated code computes the transfer function for a quad as
follows. For each global state in itsin set, we examine if
any of the patterns guarded by that state match this quad.
If the quad does not match the pattern, the global state is
propagated to all successor quads. If there is a match, the
action associated with the match dictates what function is
to be executed. If the action describes a new global state
other than thestop state as its target, a new global state is
created and propagated to all or some successors.

If the action targets a state variable, a new variable state
is created that is bound to the registers that contained the
operands that matched the position of the state variable in
the MJ program. For instance, consider theo != null

pattern shown in Figure 3 in conjunction with the following
quad with quad id#2. This quad is a conditional branch
that jumps to labelBB7 if registerR2 is not equal tonull :

#2 IFCMP_A R2 Object, AConst: null, NE, BB7

In the null checker, the transfer function for this quad
will propagate variable state(o.isnotnull, (#2, R2), R2)
to the quad at labelBB7, and it will propagate variable
state(o.isnull, (#2, R2), R2) to the fallthrough quad of
the branch.

Variable states that are in thein set of a quad require
additional handling: first, when deciding whether a quad
matches the pattern guarded by such a state, we need to also
check whether any of the registers in the variable state’s reg-
ister regset may reach the register that is used in place of
the bound variablev. Second, even if there is no match,
we need to compute reaching definitions in parallel by
adding copied registers to a state’sregset and by remov-
ing a quad’s killset from the state’sregset. If the regset
becomes empty (that is, if the definition to which the vari-
able was bound is dead), the state is killed.

The confluence operator for our dataflow analysis is the
union of theregsets computed individually for each(v.i,
def) pair. In other words, we merge register sets at join
points if they represent the same variable state and if they
were bound at the same location in the quad code.

4.3. User-Defined States

For cases where the provided state model is too restric-
tive, we provide a way for users to extend and customize
how MJ creates and propagates states. For instance, a
user may wish to track additional, dependent definitions
along with a state variable. By adding ause clause to a

state variable declaration, the user tells the runtime sys-
tem to use instances of a user-provided class to represent
states instead of the default, system-provided implemen-
tation. For instance,state decl { int } typeflag

use DependentStateVariable; tells the MJ runtime
to instantiate objects of the user classDependentState-

Variable when tracking instances oftypeflag . The
user-provided class is responsible for implementing the
dataflow analysis methods that implement the transfer func-
tion across a quad and the confluence function that is used
when merging successor states.

4.4. Limitations

Instead of basing our pattern matching on the quad IR,
we could have modified a Java source frontend to match
source code directly. Aside from the obvious advantage
that working with compiled code enables analyses in the ab-
sence of source code, using quads also simplifies the match-
ing of patterns that may occur in different variations. For
instance, a pattern such asa < b will also match if the
source code contained a negated pattern such asb >= a ,
because their representations at the IR level are identical.

A disadvantage of quad matching is that a few source
constructs generate multiple quads. For instance, an object
allocation using thenew operator is translated into aNEW

quad instruction, followed by anINVOKESPECIAL instruc-
tion to call the respective constructor. AMJ programmer
may decide to match on either instruction, depending on
the analysis.

A second example of more complex matching arein-

stanceof type inclusion tests. These are not directly trans-
lated into a branch instruction: instead, the result of the
test is stored in a register, which is subsequently tested in
a branch. In this case, a state variable needs to keep track of
two registers: the register that holds the reference to the ob-
ject to which the type test was applied, and the register that
holds the boolean result of the test. We use a user-defined
state variable as described in Section 4.3 to implement this.

5. Applications

This section presents a suite of checkers written using
MJ. These checkers give a feel for the variety of checks
that can be expressed in theMJ framework.

5.1. Checking Language-specific Properties

MJ extensions do not have be involved to be useful.
Some language-specific rules can be expressed very suc-
cinctly. For instance, in Java, while all objects can be com-
pared usingObject.equals() , typically the comparison
make only sense if the compile-time type of the objects are
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Bug caused by usingequals() on incompatible types

boolean filterComment()
{

User user = User.getUser();
Document d = getContainingDocument();
return !user.equals(d.getAuthor());

}

Short checker that found this bug:

sm applesandoranges {
decl anyobject objl, objr;

start:
{ objl.equals(objr) } ==> {

// warn if !objl.type.isCompatible(objr.type);
}

}

Figure 6. Bug caused by using equal() on
incompatible types, resulting in loss of confi-
dentiality in a commercial system.

related; otherwise, the implementation of equals() may ei-
ther crash or, worse, silently returnfalse , leaving a possi-
ble error untrapped.

Figure 6 shows a security hole caused by violating this
rule and a checker that found it. The shownfilterCom-

ment() method is part of a code base of a leading enter-
prise software system. The method’s purpose is to deter-
mine whether a user requesting a document is authorized
to see comments that should be visible only to the author.
In this case, the consequence of this bug was a breach of
confidentiality, exposing these comments to all viewers.

5.2. Checking Interface Properties

Many APIs have the property that a call toA must be fol-
lowed by a call toB. For instance, calls tolock() must be
paired with calls tounlock() . Java provides the try/finally
construct to reduce the likelihood that such properties are

Jigsaw org/w3c/jigsaw/proxy/ProxyFrame.java:

try {
DirectoryResource dir =

(DirectoryResource)root.lock();
...

} catch (InvalidResourceException ex) {
root.unlock();

}

Figure 7. Mismatched pairing: the program-
mer placed the call to unlock() in the catch

instead of a finally block.

sm lockunlock {
state decl anyobject v;

start:
{ v."lock"(...) } ==> v.locked;

v.locked:
{ v."unlock"(...) } ==> v.stop
| $end_of_path$ ==> {

/* flag error */ };
}

Figure 8. Lock checker: flags where intrapro-
cedural lock/unlock pairing is violated

violated: by placing the call to B into the finally clause, the
programmer ensures that B is called no matter which path
is taken to leave the try block.

Nevertheless, the compiler cannot enforce proper use of
try/finally. Figure 7 shows a bug in Jigsaw 2.2.2 where the
programmer mistakenly placed the required call to unlock
in a catch instead of a finally clause.

Figure 8 shows a simpleMJ program that detected this
bug: this checker matches invocations ofv.lock() and
tracks the locked instancev . If a call to unlock() is en-
countered that is invoked on the same object, we stop track-
ing the object. If a tracked object reaches$endof path$,
i.e., an edge in the control flow graph that leaves the current
function, a potential error is signaled.

This error occurred despite a comment by the imple-
menter of theResourceReference interface that explic-
itly recommends the use of the try/finally pattern when us-
ing this interface. The length of that comment is about the
same as the length of checker; we conclude that analysis
tools such asMJ could be used as enforceable documenta-
tion. It is also possible to develop checkers in conjunction
with the use of automatic interface extraction tools, such
as [21].

5.3. Redundant Operations

Redundancies, such as redundant assignments, have
been shown to be correlated with actual bugs in C code [22].
To test whether this holds true for Java code as well, we
implemented anMJ extension,neverused , that identifies
such redundancies.

Figure 9 shows an example of a bug this checker found
in the OceanStore system: a function that needs to up-
date a value in a hashtable did not, presumably because
the programmer mistakenly assumed that an assignment
to a reference that was obtained from the hashtable via
get() would affect the value stored in the hashtable. Our
checker flags this example because the result of the call to
msg.getMsgs() is never used.
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OceanStore ostore/apps/visdemo/Visdemo.java:

public void registerReqMsg(SonarReqMessage msg) {
SecureHash treeId = ... /* ... */
QSVector network_msg =

(QSVector)_network_msgs.get(treeId);

if(msg.getType() == SonarReqMessage.NETWORK &&
network_msg != null)
network_msg = msg.getMsgs();

/* network_msg is dead here, needed was:
_network_msgs.put(treeId, network_msg) */

}

Figure 9. A bug from a redundancy: a return
result is never used

Our checker looks for instance and static field reads, ob-
ject allocations, and instance and static method invocations
whose results are never used. We ran this checker over our
codebases; we found that reads from static fields that are
unused are often the result of defensive programming: a
programmer might initialize a local variable to some safe
value. We found numerous instances of unused reads of in-
stance fields; in some cases one field is read but a different
field is used.

To determine whether a method call or object alloca-
tion whose return value is discarded is a bug or not, we
attempted to use statistical ranking [15]. We compared the
number of sitesn where a given method or constructor was
invoked to the number of sitese where the return value of
the invocation was used. The underlying assumption is that
if a method’s result is used almost all of the time, then the
instances in which it is discarded are likely errors. We found
that using statistical ranking in this way worked well in that
it pushed redundant calls to the top. We were surprised by
the sheer number of redundant calls that can be found in
mature Java code. However, statistical ranking did not push
the most serious bugs to the top; most top-ranked redun-
dant calls were simply inefficiencies: a programmer would
ignore and then repeat the call. Still, we believe that a dili-
gent programmer would want to inspect all such instances
and clean them up.

To our surprise, we found that a particular class of bugs
showed up at the top of the ranking for unused objects:
namely exceptions. Unused exceptions typically occur if a
programmer forgets a precedingthrow keyword. For in-
stance, in Ptolemy, objects of typeptolemy.kernel.-

util.IllegalActionException are used 838 out of
839 times, ranking the one occurrence where a program-
mer erroneously omitted the throw at the top. After hav-
ing the obvious-in-hindsight realization that exceptions are
practically never constructed for side-effect, we wrote a
smaller checker that identifies this very case. TheMJ

pattern{anynew java.lang.Throwable() } allowed for
easy identification of allocation sites of all throwables. This
example demonstrates a strength ofMJ: it makes it easy to
create checkers tailored to specific bug patterns that emerge
while analyzing actual code.

5.4. Inferring Application-specific Properties

MJ also allows the construction of analyses that infer
programming rules from programmer behavior. For in-
stance, different implementations of a virtual method of a
class or interface are expected to abide by the same contract.
Most implementations are error-free and will exhibit similar
behavior. Implementations that deviate from the dominant
behavior are likely bugs.

As an example of such an analysis, we analyzed how
methods treated object references they received as argu-
ments. We modified our nullchecker to track incoming
parameters and recorded if a parameter was checked and
dereferenced (C), or dereferenced unchecked (U ), or not
dereferenced at all. We only included virtual and interface
methods with more than one implementation and grouped
methods by their shared supermethod. We expect that if
a parameter is almost always checked before being deref-
erenced, then dereferencing it without checking is a bug.
Conversely, if it is almost always accessed without a check,
the check might be redundant.

For instance, in OpenMap we identified 5 methods for
which C 6= 0 and U 6= 0. We used statistical analysis
to sort the results based on the ratio ofC/(C + U), ad-
justed for total number. The three top-ranked entries had
C1 = 23, U1 = 1, C2 = 23, U2 = 1, C3 = 17, U3 = 2.
The developers of OpenMap confirmed that all 4 unchecked
accesses were indeed bugs. For the other packages we ana-
lyzed, the analysis failed to find obvious bugs that we could
confirm without deeper knowledge of the system.

5.5. Generalizing Identified Bugs

Easy-to-use tools such asMJ can change the way pro-
grammers write test cases for bugs they encounter and fix.

boolean checkIPRange(Request r, User u) {
byte abyte0[] = ... get IP address
/* ... */
long l = 0L;
for(int i = 0; i < 4; i++)

l = l << 8 | abyte0[i];
/* ... */

}

Figure 10. Bug caused by Java’s automatic
sign extension
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sm badbyteor {
state decl { int } x;
state decl { long } lx;

start:
{ x = byte [ int ] } ==> x.castfrombyte;

x.castfrombyte:
{ lx = (long)x } ==> lx.castfrombyte
| { x | int } ==> {

/* possible error */ }, x.stop;

lx.castfrombyte:
{ lx | long } ==> {

/* possible error */ }, lx.stop;
}

Figure 11. Checker that flags if a value read
from a byte array is ORed with an int or long

An anecdote illustrates this conviction. A colleague work-
ing for an ecommerce company asked the first author for
help with a problem in a third-party library used to im-
plement IP-address based access control. Figure 10 shows
a decompiled picture of the relevant code portion. Their
code worked fine on the company’s internal (10.0.0.x) net-
work, but failed for a customer who used IP addresses in
the range 160.x.x.x, whose representation in a byte array
contains negative values (160 = -96). The bug was caused
because a programmer disregarded Java’s rules for sign ex-
pansion: all scalars, including bytes, in Java are signed, and
promotion toint or long extends the sign, which flooded
the higher-order bits of the IP address with 1s.

Figure 11 shows aMJ program that captures the essence
of this bug. In the start state, it matches all reads from byte
arrays. The integer value read from the array is tracked in
a state variable. The program flags if that value is used in a
bitwise OR. (If the programmer means to treat the value as
an unsigned value, it would likely be used in a bitwise AND
with constant 0xff.) To account for the situation shown in
the example, we also match the case where the value is cast
to a 64-bit long, track the resulting long value and flag if
that long value is used in a bitwise OR comparison. Hav-
ing written this checker, we tested it against our other code
bases. Indeed, in Jigsaw classorg.w3c.www.mux.Mux-

Reader , we found this statement

a[i] = (buffer[bufptr] |
(buffer[bufptr+1] << 8)) & 0xffff;

in methodmsgShortArrayToIntArray() .

This example shows thatMJ programs can in some cases
take the place of unit tests: a programmer who finds and
fixes an unexpected bug can generalize the underlying root
cause of the bug in a checker.

5.6. Summary of Results

Figure 12 summarizes the number of bugs that were
found by four of our checkers that check language-specific
properties. We only counted those bugs that were either
confirmed by the developers or that we could verify with-
out knowledge of the system in question. For the A&O
and the nullchecker, we also list the number of false pos-
itives (FPs), and potential bugs or redundant checks (la-
beled “Bugs?”). A major cause of false positives for the
nullchecker are false paths, which we expect to rectify by
including path-sensitivity to our analysis. The table does
not include the bugs we found with more specialized analy-
ses, and it does not include the many anomalies found by the
neverused checker, which included several confirmed bugs.
It also does not include the bugs found in the commercial
closed-source codebase.

6. Related Work

A variety of bug detection and checking tools have
been developed for unsafe languages such as C and C++.
These include annotation-based approaches [9, 11], tools
that cover a specific set of error types [4, 19], such as buffer
overrun errors, and to tools that allow users to extend them
to check new properties [2, 5, 7, 8]. In the remainder of this
section, we focus on the work that has been done in the Java
context.

The most closely related project to ours is the Find-
Bugs [14] system. FindBugs is a framework for writing
bug detectors for Java code. It provides an API to plugins
that check for particular bug patterns, and likeMJ provides
support for presenting bugs to the user. UnlikeMJ, Find-
Bugs does not provide language support for writing bug
detectors. All bug detector plugins have to be written in
Java and must interact with FindBugs’s API. Another dif-
ference is that FindBugs is based on a bytecode-engineering
library [6] and does not have the support of an underlying
compiler infrastructure likeJOEQ.

Jlint and Jlint2 [1] are other examples of tools that sup-
port a fixed set of analyses. Jlint2 has been used success-
fully to find concurrency-related and other bugs in Java code
using global static analysis.

ESC/Java and Houdini [10, 17] are annotation-based
tools that use a theorem prover to check invariants in Java
code. While ESC/Java is able to prove much stronger prop-
erties, requiring annotations limits its scalability.

7. Conclusion

Static analysis is a promising method for finding and
eliminating bugs at compile time in Java. Key for making
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Package LoC stringchecker dropped- apples&oranges nullchecker Total Bugs
exceptions Bugs FP Bugs Bugs? FP

OceanStore 166K 5 0 2 0 5 5 13 12
JDK 1.4 javax 132K 1 0 0 2 9 2 22 10
Ptolemy 87K 4 1 0 0 1 1 1 6
Jigsaw 68K 4 0 0 1 1 13 13 5
OpenMap 124K 4 19 0 0 8 4 0 31
Mozilla Rhino 31K 0 0 0 0 1 4 3 1
Netbeans 217K 4 2 0 3 3 5 18 9
Total 825K 22 22 2 6 28 34 70 74

Figure 12. Bugs and false positives from four of our generic checkers.

static analysis work is the availability of flexible tools that
allow developers to devise specific analyses for the specific
sources of problems that exist within their application or
system. MJ allows the construction of such analyses; we
have demonstrated its flexibility by applying it to a variety
of bug-finding analyses.
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