
32 | Third Quarter 2011 | ODTUG Technical Journal

MANAGING UNSTRUCTURED DATA:
LOBS, SECUREFILES, BASICFILES

By Michael Rosenblum, Grigoriy Novikov, Dulcian, Inc

If you start learning about databases, 99% of
time the focus is on the three core datatypes (DATE,

NUMBER, VARCHAR2). However, in reality, the media (pic-
tures, movies, documents, and sounds) represent the largest
and the fastest growing part of any contemporary IT system.
As a result, correct handling of such data is as critical to the
overall project success as the effective manipulation of finan-
cial information or number-crunching. Also, since the total vol-
ume of media content is usually distributed across a reasonably
small number of attributes, the cost of mishandling of each of
them is much higher.

It is common for all database solutions (not only Oracle) to
utilize a class of datatypes designed to work with large objects
called LOBs. For each version of the Oracle RDBMS, the maxi-
mum size may differ (currently, the limit is 8-128TB depending
upon the configuration). These LOBs can be divided into two
groups based on the way in which the data is stored:

• Internal large objects are stored within the database itself
and are being accessed by special mechanisms (described
below), which are separate from regular table data access.
There are three datatypes of internal LOBs (all supported
by multiple platforms):
 » BLOBs are used to store binary information (usually

multimedia).
 » CLOBs are used for textual information.
 » NCLOB is used to store information in the National Char-

acter Set (similar to CLOB).
• External large objects are stored in the file system and only

the pointer is stored in the database. This pointer is repre-
sented via the Oracle-proprietary BFILE datatype. BFILE is
used to point to files stored in the operating system and
provides read-only access to these files. If you need to write
to operating system files, you should either use the UTL_
FILE package or custom-built Java procedures.

This article describes some important factors to keep in
mind when working with large objects in a system. Before
jumping into the details, it is worthwhile to mention that in
version 11gR1, Oracle introduced an extended internal storage
mechanism for handling CLOB/BLOB called SecureFile (in beta-
releases and in some early papers it was also called FastFile) to
differentiate it from a traditional BasicFile implementation.

• BasicFile:
 » Exactly the same implementation as in 9i/10g
 » Kept for backward compatibility
 » No extra licenses required

• SecureFile:
 » Introduced in 11gR1
 » Already extended in 11gR2
 » May be extended even further (a number of SecureFile-

related errors mention “unimplemented feature,”
which suggests that some modifications are expected
in future releases)

 » Many interesting features, but some require additional
licenses

Since many organizations are still using 10g or 11g but have
not yet switched to SecureFile solutions, this paper will explic-
itly outline behavior differences (if any exist).

UNDERLYING CONCEPTS
There are some issues specific to large objects that you

should understand before viewing the actual code syntax asso-
ciated with them. From the average developer’s point of view,
such low-level details may seem irrelevant (or DBA’s business
at all), but at Dulcian we strongly believe that the implications
of any advanced feature should be clear to all involved parties.
We also believe that the “black box” approach to Oracle inter-
nals by development teams is completely unproductive and
leads to significant problems later in the project lifecycle. That
is why, please, do not be surprised if in this article we will be
crossing department boundaries (and, yes, you may really talk
to your DBA afterwards).

Data Access
Since you may have gigabytes of data in each field of a

column in your system, the problem of accessing the data be-
comes the focus of the whole architecture. Oracle has a fairly
elegant solution, namely to separate the content itself from
the mechanism of its accessing. This results in two separate
entities: LOB data and an LOB locator that points to LOB data
and allows communication with it.

To understand this data structure, imagine a huge set of
barrels with water and a pipe that can take water from the
barrel, do something with it, and put it back. The following
analogy makes the whole picture clear. If you want to make
a barrel (LOB) accessible by a different person (sub-routine),
you don’t need to extract and pass the whole amount of water
(LOB data); you just need to pass the pipe (locator) pointing to
the right barrel. But if you need to pour water from one barrel
to the other, the same pipe can be used as a tunnel. Using this
analogy is helpful when examining the two types of LOB opera-
tions:

1. Copy semantics are used when the data alone is copied
from the source to the destination and a new locator is
created for the new LOB.

2. reference semantics are used when only the locator is
copied without any changes to the underlying data.

Data States
Any attribute may have either a NULL or NOT NULL value

by the nature of relational database theory. Because of the ex-
istence of locators, from the practical point of view, LOBs have
three possible data states:

• Null – The variable or column in the row exists, but is not
initialized.

• Empty – The variable or column in the row exists and has
a locator, but that locator does not point to any data. IS
NULL check will return FALSE for an Empty state.

• Populated –The variable or column in the row exists, has

33Third Quarter 2011 | ODTUG Technical Journal |

M
an

ag
in

g
 U

n
stru

ctu
red

 D
ata. . . (C

o
n

tin
u

ed
)

a locator, and contains data of non-zero length.
The Empty state is very important. Because you can access

LOBs only via locators, you must first create them. In some
environments, you must have an initial NULL value, but for PL/
SQL activities it makes sense to immediately initialize any LOB
column as Empty to save extra steps.

Data Storage
LOBs can be tricky from the DBA’s point of view. If external

LOBs (BFILE) are simply pointers to files stored in the operat-
ing system, internal LOBs leave a lot of space for configuration.
There are two different types of internal LOBs:

1. Persistent LOBs are represented as values in the column
of a table. As a result, they participate in the transaction
(changes could be committed/rolled back) and generate
logs (if configured to do so).

2. Temporary LOBs are created when you instantiate the LOB
variable, but when you insert the temporary LOB into the
table, it becomes a persistent LOB.
Since, by design, LOBs are created to support large vol-

umes of data, it is completely logical that these datatypes also
include extended methods of handling UNDO retention. These
methods became even more critical since the introduction of
FLASHBACK functionality, because inappropriate generation of
UNDO for LOB columns can significantly increase the space re-
quirements in order to guarantee the required retention period.
Currently, the following options are available:

1. BasicFile
a. Disabled (default) – only support consistent reads and

do not participate in the FLASHBACK logic
b. Enabled – the same UNDO_RETENTION parameter

should be applied to the LOB column as to regular data
2. SecureFile

a. Auto (default) – only support consistent reads and do
not participate in the FLASHBACK logic

b. None – do not generate UNDO at all
c. mAX <N> – keep up to N megabytes of UNDO
d. mIN <N> – guarantee up to N seconds of retention. This

allows setting a different value from an overall UNDO_
RETENTION setting.

The major difference between LOBs and other datatypes
is that even variables are not created in memory. Everything is
happening via physical storage. Temporary LOBs are created
in the temporary tablespace and released when they are not
needed any longer. With persistent LOBs, each LOB attribute
has its own storage structure separate from the table in which
it is located. As usual in Oracle, each storage structure is repre-
sented as a separate segment.

If regular table data is stored in blocks, LOB data is stored
in chunks. Each chunk may consist of one or more database
blocks (up to 32KB). Setting the chunk size may have significant
performance impacts since Oracle reads/writes one chunk at
a time. The wrong chunk size can significantly increase the
number of I/O operations. In SecureFile implementation chunks
are dynamic (in an attempt to allocate as much continuous
space as possible) and cannot be managed manually (at least
for now).

To navigate chunks, Oracle uses a special LOB index (also
physically represented as a separate segment). As a result, each
LOB column has two associated segments: one to store data

and one to store the index. These segments have the same
properties as regular tables: tablespace, initial extend, next
extend, etc. The ability to articulate the physical storage prop-
erties for each internal LOB column can come in handy for mak-
ing the database structure more manageable. You can locate a
tablespace on a separate drive, set different block size, etc. In
some versions of Oracle you can even specify different proper-
ties for the index and data segments. Currently, they must be
the same, and there are restrictions on what you can do with
LOB indexes. For example, you cannot drop or rebuild them.

Performance Considerations
Each operation with an LOB chunk requires physical I/O. As

a result, you may end up with a high number of I/O-related wait
events in the system. But it is reasonable to ask the following
question: Why place data in the special storage structure if
you only have a small amount of data in some rows? Using an
online ordering system as an example, you might have remarks
about some goods that only require between 1KB and 1MB of
space. To handle such cases, Oracle allows you to store data
in the row (instead of outside of the row) if you have less than
3964 bytes. This causes all small remarks to be processed as if
they are regular VARCHAR2(4000) columns. When their size
exceeds this limit, the data will be moved to LOB storage. In
some cases, you might consider disabling this feature since, but
in almost all cases this is the best option.

Another critical performance question is to figure out how
all operations with such large data volumes would impact the
buffer cache. Oracle provides enough flexibility to adjust the
caching option in a number of ways:
• NOCACHE is the default value. It is designed to be used only

if you are rarely accessing the LOBs or the LOBs are extreme-
ly large. From a physical standpoint, existing implementa-
tions are completely different:

 » BasicFile – Use DirectRead/DirectWrite. Even these mech-
anisms allow tunneling to the storage of a lot of data. In
the I/O-active system (especially OLTP) they could cause
significant “hiccups”.

 » SecureFile – Utilize a special shared pool area (managed
by SHARED_IO_POOL).

• CACHE is the best option for LOBs requiring a lot of read/
write activity.

• CACHE READS help when you create the LOB once, read data
from it, and the size of LOBs to be read in the system at any
time does not take too much space out of the buffer pool.
“Write” processes are implemented in the same was as the
NOCACHE option.

If your database is running in ARCHIVELOG mode (as the
majority of databases are), the problem of generating too
many logs becomes a real headache for DBAs. Since LOBs have
their own storage segments, from the very beginning it was
possible to set up its logging option which may be different
from the table owning the LOB column. Unfortunately, having
NOLOGGING for a column in case of a catastrophic crash meant
that whole rows would not be accessible until LOB columns
were reset to a stable state. To solve this problem the “Secure-
File” mechanism introduced the FILESYSTEM_LIKE_LOGGING
option, which preserved all metadata while not logging any
changes to the LOB itself. This makes the whole table acces-

34 | Third Quarter 2011 | ODTUG Technical Journal

M
an

ag
in

g
 U

n
st

ru
ct

u
re

d
 D

at
a.

 .
.

(C
o

n
ti

n
u

ed
)

sible even in the case of a major failure or switchover to a
standby. This option may be viable if the data in CLOB could
be easily retrieved from other sources or of a temporal nature.
CACHE/CACHE READS options always imply LOGGING option
(for all implementations).

Enabling SecureFile
It must be mentioned that Oracle also introduced a special

parameter to handle usage of the SecureFile storage mecha-
nism – DB_SECUREFILE. This parameter has one of the follow-
ing values:

• Permitted (Default) – BasicFile is created unless SecureFile
is explicitly specified

• Always – SecureFile is created unless BasicFile is explicitly
specified

• Force – always create SecureFile
• Ignore – allow creation of SecureFile attributes, but treat

them as BasicFile (all SecureFile features are disabled)
• Never – raise exceptions if SecureFile storage mechanism

is selected
Selection of the appropriate parameter should be driven

by your system policies, but we recommend to use either
FORCE or NEVER to preserve code consistency.

STANDARD USE OF LOBS
The following code assumes the example of an online

shopping catalog of electronic goods where each record con-
tains the name of the item, user manual text, front page im-
age, and a link to the original text file, with the manual stored
on the server. Because of the nature of the required data, LOB
datatypes are clearly unavoidable so, the table code might look
like the following:

CREATE TABLE goods_tab
 (item_id NUMBER PRIMARY KEY,
 name_tx VARCHAR2(256),
 remarks_cl CLOB DEFAULT EMPTY_CLOB(),
 manual_cl CLOB DEFAULT EMPTY_CLOB(),
 firstpage_bl BLOB DEFAULT EMPTY_BLOB(),
 mastertxt_bf BFILE)
LOB(remarks_cl) STORE AS SecureFile remarks_seg(
 TABLESPACE USERS
 ENABLE STORAGE IN ROW
 CACHE)
LOB(manual_cl) STORE AS SecureFile manual_seg(
 TABLESPACE LOBS_BIG
 DISABLE STORAGE IN ROW
 NOCACHE
 FILESYSTEM_LIKE_LOGGING)
LOB(firstpage_bl) STORE AS BasicFile firstpage_seg(
 TABLESPACE LOBS_BIG
 DISABLE STORAGE IN ROW
 CHUNK 32768
 CACHE READS)

This example includes all three datatypes: CLOB, BLOB,

BFILE and two implementations (BasicFile, SecureFile). Also,
each internal LOB has its own storage block at the end of the
table definition. There are a number of factors to consider
when using this approach:

1. Each internal LOB has explicit segment names (REMARKS_
SEG, MANUAL_SEG, FIRSTPAGE_SEG) instead of system-
generated ones. This is done for the convenience of working
with the USER_SEGMENTS dictionary view.

2. Since we are planning to work with LOBs in PL/SQL, all
internal LOBs are initialized to empty values (so they now
contain a locator that could be retrieved) via special func-
tions - EMPTY_CLOB() and EMPTY_BLOB().

3. The column REMARK_CL is accessed and modified very of-
ten, but the amount of data is not very large. Therefore, the
best option is to place the column in the same tablespace as
the main data and enable storage “in row” since a signifi-
cant number of values could be less than 4000 characters.
The cache option should also be enabled for performance
optimization. Since a lot of people will be working with that
column, you do not want to generate extra wait events
because of direct read/direct write operations.

4. The column MANUAL_CL is accessed not very often and
always can be reloaded from master files. That’s why the in-
dependent tablespace, no storage “in row,” and no caching
options are appropriate here. FILESYSTEM_LIKE_LOGGING is
also safe to use because the data could be easily reproduced.

5. The difference between FIRSTPAGE_BL and MANUAL_CL is
that although this column will never be updated, it could be
read by different users often enough. This is the reason why
you should enable caching on reads.

This table also illustrates that both BasicFile and SecureFile
storage mechanisms can be used in the same table simultane-
ously, although, for the sake of code maintenance, this situa-
tion should be avoided unless there are good reasons.

NOTE: As of version 11.2.0.2, Oracle Datapump utility has
issues with tables containing LOB columns with different types
of CACHE setting (bug #1313537.1). The data load crashes with
ORA-07445 on the kernel level. It should be fixed in 11.2.0.3,
but currently the only workaround is to use EXP/IMP for such
tables.

SAMPLE BASIC LOB OPERATION
For the sake of saving the space this article does not in-

clude a lot of basic LOB examples since it was not designed to
be a complete reference, although, the most popular one will
be used, because many developers eventually think about a
way of loading a binary file in the database. Here is a code snip-
pet that loads a picture frontPage_PLSQL_Exper.jpg (stored in
the directory I/O) into a BLOB column of the table GOODS_TAB

DECLARE
 v_file_bf BFILE:= BFILENAME (‘IO’,’frontpage_PLSQL_

Expert.jpg’);
 v_firstpage_bl BLOB;
 src_offset NUMBER := 1;
 dst_offset NUMBER := 1;
BEGIN
 SELECT firstpage_bl
 INTO v_firstpage_bl
 FROM goods_tab
 WHERE item_id = 1
 FOR UPDATE OF firstpage_bl;

35Third Quarter 2011 | ODTUG Technical Journal |

M
an

ag
in

g
 U

n
stru

ctu
red

 D
ata. . . (C

o
n

tin
u

ed
)

 DBMS_LOB.FILEOPEN (v_file_bf, DBMS_LOB.FILE_RE-
ADONLY);

 DBMS_LOB.LOADBLOBFROMFILE (v_firstpage_bl,
 v_file_bf,
 DBMS_LOB.GETLENGTH (v_file_bf),
 dst_offset, src_offset);
 DBMS_LOB.FILECLOSE (v_file_bf);
END;

This code illustrates the real meaning of locators. There
is no UPDATE in the block, but the value in the table will be
changed. Using SELECT…INTO…FOR UPDATE locks the record
and returns the locator back to the LOBs. Because of the lock,
this locator contains the ID of the current transaction (more
about transaction issues a bit later). This means that you can-
not only read data from the LOB, but also write to the LOB.
Using the “barrel and pipe” analogy, you have your own tube
and your own barrel to do whatever you want. The way to read
data is very straightforward: open the file via locator, read the
data, close the file. Source and destination offset parameters
are also very interesting. They are of type IN/OUT and originally
specify the starting points for reading and writing. But when
the procedure call is completed, they are set to the ending
points. That way you always know how many bytes (for BLOB)
and characters (for CLOB) were read, and how many of them
were written.

Another useful thing to notice is a BFILENAME construc-
tor. It takes a directory and file name as input and generates
a BFILE pointer. Be careful with this feature since this con-
structor does NOT check whether the file really exists. In the
example, the real check would happen only when DBMS_LOB.
FILEOPEN is called.

SECurEFIlES EXtrAS (FOr EXtrA mONEy)
Since different production companies have different IT

budgets, this article focuses on the “common denominator”
(features available in all editions and for all possible installa-
tion types). But it is worth mentioning a number of advanced
options introduced with SecureFile storage implementation
despite the additional licensing fees involved:

• “Oracle Advanced Compression Option” gives you access
to:

 » De-duplication – preservation of only one copy of LOB in
the same table if values match exactly

 » Compression (High/Medium/Low) – built-in basic archive
utility to compress the data – technically, a trade-off
between CPU and extra storage

• “Oracle Advanced Security Option” gives you access to:
 » Encryption – direct implementation of Transparent Data

Encryption per LOB column
Of course, results may vary, but our opinion about these

extra options is as follows:
• De-duplication – useless for smaller systems. Could save

some space for a large system where the same file could
be sent to hundreds of people.

• Encryption – it is always nice to have higher granularity of
what you can and what you cannot encrypt.

• Compression – definitely makes sense in a lot of cases, but
should not be applied blindly because of CPU cost.

The following example illustrates the impact of both
compression and de-duplication on the space allocation. First,
it is necessary to set up the test case and populate it with
data. Note that sample data is generated by DBMS_RANDOM.
STRING and may be too chaotic compared with the real docu-
ments, but as a worst case scenario, it should work just fine.

-- create empty table with one CLOB column
CREATE TABLE secure_tab (demo_cl CLOB)
LOB(demo_cl) STORE AS SecureFile demo_seg(
 COMPRESS HIGH
 DEDUPLICATE)
-- load 20 exactly the same CLOB (each has 1MB of data)
DECLARE
 v_cl CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(v_cl,true,dbms_lob.

call);
 FOR i IN 1..250 LOOP
 DBMS_LOB.WRITEAPPEND(v_cl,4000,DBMS_RAN-

DOM.STRING(‘x’,4000));
 END LOOP;

 FOR i IN 1..20 LOOP
 INSERT INTO secure_tab VALUES (v_cl);
 END LOOP;

 COMMIT;
END;

The test itself will gradually decrease the compression
level and finally disable de-duplication.

SQL> DECLARE
 2 v_tx VARCHAR2(99):=’ALTER TABLE secure_tab’||
 3 ‘ MODIFY LOB(demo_cl) ‘;
 4 PROCEDURE p_print (pi_type_tx VARCHAR2) IS
 5 v_seg_blocks_nr NUMBER;
 6 v_seg_bytes_nr NUMBER;
 7 v_used_blocks_nr NUMBER;
 8 v_used_bytes_nr NUMBER;
 9 v_expired_blocks_nr NUMBER;
10 v_expired_bytes_nr NUMBER;
11 v_unexpired_blocks_nr NUMBER;
12 v_unexpired_bytes_nr NUMBER;
13 BEGIN
14 DBMS_SPACE.SPACE_USAGE(
15 user,’DEMO_SEG’,’LOB’,
16 partition_name => NULL,
17 segment_size_blocks=> v_seg_blocks_nr,
18 segment_size_bytes => v_seg_bytes_nr,
19 used_blocks => v_used_blocks_nr,
20 used_bytes => v_used_bytes_nr,
21 expired_blocks => v_expired_blocks_nr,
22 expired_bytes => v_expired_bytes_nr,
23 unexpired_blocks => v_unexpired_blocks_nr,
24 unexpired_bytes => v_unexpired_bytes_nr);
25 DBMS_OUTPUT.PUTLINE (pi_type_tx||’:seg-’||
26 v_seg_bytes_nr||’/used-’|| v_used_bytes_nr);

36 | Third Quarter 2011 | ODTUG Technical Journal

27 END;
28 BEGIN
29 p_print(‘High Compress’);
30 EXECUTE IMMEDIATE v_tx||’(COMPRESS MEDIUM)’;
31 p_print(‘Medium Compress’);
32 EXECUTE IMMEDIATE v_tx||’(COMPRESS LOW)’;
33 p_print(‘Low Compress’);
34 EXECUTE IMMEDIATE v_tx||’(NOCOMPRESS)’;
35 p_print(‘No Compress’);
36 EXECUTE IMMEDIATE v_tx||’(KEEP_DUPLICATES)’;
37 p_print(‘Keep dups’);
38 END;
39 /
High Compress: seg-1245184/used-688128
Medium Compress: seg-2293760/used-712704
Low Compress: seg-3342336/used-1024000
No Compress: seg-3342336/used-1032192
Keep dups: seg-22216704/used-20488192

The results of the test clearly show that both of Oracle’s
new features work exactly as specified:

• The highest level of compression provides the most
space saving (688,128 bytes vs 1,032,192 bytes) while
lower levels are less efficient.

• De-duplication keeps only one copy of the data.
Although, it should be mentioned that segment alloca-

tion patterns may differ from space usage patterns (as shown
in the example), on average, they are closely related. This is a
topic for a much more detailed discussion and outside of the
scope of this article.

SPECIAL CASES AND PROBLEMS
The level of complexity introduced by LOBs requires a

number of restrictions to be placed on their use, even though
later versions of Oracle attempt to remove as many of them
as possible. There are three major areas of concern: generic
restrictions, string processing problems, and transaction limita-
tions which are discussed here.

Generic Restrictions
From Oracle 10g onwards, there are things that just can-

not be done with LOB datatypes at all:
1. SQL activity restrictions:

a. You cannot have LOB columns in ORDER BY or GROUP BY
clauses or any aggregate functions.

b. You cannot have an LOB column in a SELECT DISTINCT
statement.

c. You cannot join two tables using LOB columns.
d. Direct binding of string variables is limited to 4000 charac-

ters if you are passing a string into the CLOB column. This
restriction is a bit tricky and requires an example. In the
following code, the first output will return 4000 (because
string was directly passed into the UPDATE statement),
but in the second case, the output will be 6000 (because
the string was passed via PL/SQL variable).

DECLARE
 v_tx VARCHAR2(6000):=LPAD(‘*’,6000,’*’);
 v_count_nr NUMBER;
BEGIN

 UPDATE goods_tab
 SET remarks_cl =LAPD(‘*’,6000,’*’)
 WHERE item_id = 1
 RETURNING LENGTH(remarks_cl) INTO v_count_nr;
 DBMS_OUTPUT.PUT_LINE(‘Length:’||v_count_nr);

 UPDATE goods_tab
 SET remarks_cl =v_tx
 WHERE item_id = 1
 RETURNING LENGTH(remarks_cl) INTO v_count_nr;
 DBMS_OUTPUT.PUT_LINE(‘Length:’||v_count_nr);
END;

2. DDL restrictions:
a. LOB columns cannot be a part of a primary key.
b. LOB columns cannot be a part of an index (unless you

are using a domain index, Oracle Text or Function-Based
index).

c. You cannot specify an LOB column in the trigger clause
FOR UPDATE OF.

d. If you change LOBs using the locator with the DBML_LOB
package, no update trigger is fired on the table. This is
extremely critical to know if your system audit is based on
triggers. Although this practice is not considered very ef-
ficient, it seems to be in use quite often. Be sure that your
DBAs and management are aware of it.

3. DBLink restrictions:
a. You can only use CREATE TABLE AS SELECT and INSERT AS

SELECT if the remote table contains LOBs. No other activ-
ity is permitted.

4. Administration restrictions:
a. Only a limited number of BFILEs can be opened at the

same time. The maximum number is set up by the ini-
tialization parameter SESSION_MAX_OPEN_FILES. The
default value is 10, but it can be modified by the DBA.

b. Once a table with an internal LOB is created, only some
LOB parameters can be modified. You can change the
tablespace, storage properties, caching options, but you
cannot modify the chunk size, or storage-in-the-row op-
tion.

String Restrictions
Oracle tries to simplify string activities for CLOBs by includ-

ing overloads of standard built-in functions to support larger
amounts of data. You can now also use explicit conversions
of datatypes. For example, you can assign a CLOB column to a
VARCHAR2 PL/SQL variable as long as it can hold all of the data
from the CLOB. Conversely, you can initialize a CLOB variable
with a VARCHAR2 value. As a result, there are some activities
that could be done using SQL semantics (built-in functions) or
API semantics (DBMS_LOB package).

Although SQL semantics are much easier to work with,
there are still some issues with such overloads. Recently we
discovered the following bug with the specified set of actions:

• REPLACE command is fired against a CLOB variable when
trying to change ‘T_’ to ‘ZZ’.

• In the CLOB, there is a part of text that looks like ‘TA’
Surprisingly, Oracle replaces both ‘T_’ and ‘TA’ with ‘ZZ’: it ap-
pears that the underscore is being interpreted as a wild-card!
Eventually we discovered that it is a known bug #4598943 first

M
an

ag
in

g
 U

n
st

ru
ct

u
re

d
 D

at
a.

 .
.

(C
o

n
ti

n
u

ed
)

37Third Quarter 2011 | ODTUG Technical Journal |

M
an

ag
in

g
 U

n
stru

ctu
red

 D
ata. . . (C

o
n

tin
u

ed
)

detected in 9.2.0.6 and only fixed in 11g:

DECLARE
 v1_cl CLOB := ‘T_TABLE(a NUMBER)’;
BEGIN
 v1_cl := replace (v1_cl, ‘T_’, ‘ZZ’);
 DBMS_OUTPUT.PUT_LINE(v1_cl);
END;

Received result: ZZZZBLE(a NUMBER)
Expected result: ZZTABLE(a NUMBER)

There are also some differences between PL/SQL code
and SQL statements (even inside of PL/SQL routines) from the
perspective of what you can and cannot do with LOBs. You
can compare LOBs (>,!=, between) only as a part of a PL/SQL
routine as shown here:

DECLARE
 v_remarks_cl CLOB;
 v_manual_cl CLOB;
BEGIN
 SELECT remarks_cl, manual_cl
 INTO v_remarks_cl, v_manual_cl
 FROM goods_tab
 WHERE item_id = 1;
 --AND remarks_cl!=manual_cl -- INVALID

 IF v_remarks_cl!=v_manual_cl THEN -- VALID
 DBMS_OUTPUT.PUT_LINE(‘Compared’);
 END IF;
END;

Using SQL semantics could get you into a lot of trouble
with some built-in functions. INITCAP, SOUNDEX, TRANSLATE,
DECODE and some other functions will process only the first
4K of your data if used in embedded sQL. In the following ex-
ample, the second statement will raise the exception because
TRANSLATE could not process 6000 characters:

DECLARE
 v_tx VARCHAR2(6000):=LPAD(‘a’,6000,’a’);
 v_count_nr NUMBER;
BEGIN
 UPDATE goods_tab
 SET remarks_cl =v_tx
 WHERE item_id = 1
 RETURNING LENGTH (remarks_cl) INTO v_count_nr;
 DBMS_OUTPUT.PUT_LINE(‘Length:’||v_count_nr);
 -- this will fail!
 UPDATE goods_tab
 SET remarks_cl = TRANSLATE (remarks_cl,’a’,’A’)
 WHERE item_id = 1
 RETURNING LENGTH(remarks_cl) INTO v_count_nr;
 DBMS_OUTPUT.PUT_LINE(‘Length:’||v_count_nr);
END;

Transaction Restrictions
There are a number of restrictions when using LOBs for

transaction control:

1. Each locator may or may not contain a transaction ID.
• If you already started a new transaction (SELECT FOR

UPDATE, INSERT/UPDATE/DELETE, PRAGMA AUTONO-
MOUS TRANSACTION), your locator will contain the
transaction ID.

• If you use SELECT FOR UPDATE of an LOB column, the
transaction is started implicitly and your locator will
contain the transaction ID.

2. You cannot read using the locator when it contains an old
transaction ID (for example, you made a number of data
changes and committed them) and your session param-
eter TRANSACTION LEVEL is set to SERIALIZABLE. This is a
very rare case.

3. First write using the locator:
• You need to have a lock on the record containing the

LOB that you are updating at the point when you are
trying to perform the update (not necessarily at the
point of acquiring of the locator). That lock could be the
result of SELECT FOR UPDATE, INSERT, or UPDATE. (It
is enough to update any column in the record to create
the lock.)

DECLARE
 v_manual_cl CLOB;
 v_add_tx VARCHAR2(2000) :=
 ‘Loaded: ‘||TO_CHAR(SYSDATE,’mm/dd/yyyy’);
BEGIN
 SELECT manual_cl
 INTO v_manual_cl
 FROM goods_tab
 WHERE item_id = 1;

 UPDATE goods_tab
 SET name_tx = ‘<’||name_tx||’>’
 WHERE item_id = 1;

 DBMS_LOB.WRITEAPPEND (v_manual_cl,
 LENGTH (v_add_tx), v_add_tx);
END;

• If your locator did not contain the transaction ID, but
was used to update the LOB, now it will contain the
transaction ID (as in the previous example). But if your
locator already contained the transaction ID, nothing
will change.

4. Consecutive write using the locator:
• If your locator contains a transaction ID that differs from

the current one, the update will always fail because loca-
tors cannot span transactions as shown here:

DECLARE
 v_manual_cl CLOB;
 v_add_tx VARCHAR2(2000):=
 ‘Loaded: ‘||TO_CHAR(SYSDATE,’mm/dd/yyyy’);
BEGIN
 SELECT manual_cl
 INTO v_manual_cl
 FROM goods_tab
 WHERE item_id = 1;

38 | Third Quarter 2011 | ODTUG Technical Journal

 UPDATE goods_tab
 SET name_tx = name_tx||’>’
 WHERE item_id = 1;

 DBMS_LOB.WRITEAPPEND
 (v_manual_cl,LENGTH(v_add_tx),v_add_tx);--OK
 ROLLBACK; -- end of transaction
 DBMS_LOB.WRITEAPPEND
 (v_manual_cl,LENGTH(v_add_tx),v_add_tx);--FAIL!
END;

This information can be simplified into three rules:
1. You can perform read operations using locators as much

as you want unless your TRANSACTION LEVEL is set to
SERIALIZABLE.

2. If you want to write using a locator, you need to have a
lock on the record.

3. If you want to write using the same locator multiple times,
it must be done within the same transaction.

11g Additions (SecureFiles only)
In terms of pure PL/SQL, SecureFile storage implementa-

tion included a number of interesting features. The first one
continues the recent thread of providing extra granularity for
the developer. Now you can set advanced parameters not only
per column, but also per instance (LOB object in every row).
The following example illustrates the rule that the compression
should be disabled for all LOBs below 100,000 KB of size:

PROCEDURE p_loadLob(i_id NUMBER, i_cl CLOB)IS
 v_cl CLOB;
BEGIN
 INSERT INTO goods_tab (item_id, manual_cl)
 VALUES (i_id, i_cl)
 RETURNING manual_cl into v_cl;

 IF LENGTH(v_cl)<100000 THEN
 DBMS_LOB.SETOPTIONS
 (v_cl,DBMS_LOB.OPT_COMPRESS,0);
 END IF;
END;

The other set of new tools is the result of advanced
automatic control of data chunks written to the tablespace.
Since Oracle manages chunks on the fly, it seems logical, that
it should be possible to directly access and modify any data up
to the highest valid size (32K). Indeed, the DBMS_LOB package
now includes the following functions – FRAGMENT_INSERT,
FRAGMENT_DELETE, FRAGMENT_MOVE, FRAGMENT_RE-
PLACE with the logic as described here:

DECLARE
 v_cl CLOB;
BEGIN
 SELECT manual_cl
 INTO v_cl
 FROM goods_tab
 WHERE item_id = pkg_global.gv_current_id
 FOR UPDATE;

 DBMS_OUTPUT.PUT_LINE(v_cl);

 DBMS_LOB.FRAGMENT_INSERT(v_cl, 5, 4, ‘[111]’);
 DBMS_OUTPUT.PUT_LINE (v_cl);

 DBMS_LOB_FRAGMENT_MOVE(v_cl, 5, 4, 2);
 DBMS_OUTPUT.PUT_LINE (v_cl);

 DBMS_LOB.FRAGMENT_REPLACE(v_cl,5,6,2,’[9999]’);
 DBMS_OUTPUT.PUT_LINE (v_cl);

 DBMS_LOB.FRAGMENT_DELETE(v_cl,6,2);
 DBMS_OUTPUT.PUT_LINE (v_cl);
END;

NOTE: As of 11.2.0.2 all FRAGMENT_* operations are not
available for SecureFile LOBs with de-duplication turned on.

rEAl-WOrlD EXAmPlES
There are dozens of “war-stories,” but we decided to

select one developer-oriented and one DBA-oriented case. One
thing both cases had in common was the fact that the resulting
impact was very significant.

HTML on the Fly
Since most modern front-end development environments

now support CLOBs, this datatype is very useful as a way of
communicating large amounts of read-only information to the
client via manually generated HTML page. Here is an outline for
such a module:

FUNCTION f_getEmp_CL (...) RETURN CLOB IS
 v_out_cl CLOB;
 v_break_tx VARCHAR2(4):=’
’;
 v_hasErrors_yn VARCHAR2(1):=’N’;
 v_buffer_tx VARCHAR2(32767);

 PROCEDURE p_flush IS
 BEGIN
 DBMS_LOB.WRITEAPPEND(v_out_cl,
 LENGTH(v_buffer_tx), v_buffer_tx);
 v_buffer_tx:=NULL;
 END;

 PROCEDURE p_addToClob (in_tx VARCHAR2) IS
 BEGIN
 IF LENGTH(in_tx)+length(v_buffer_tx)>32767 THEN
 p_flush;
 END IF;
 v_buffer_tx:= v_buffer_tx||in_tx;
 END;
BEGIN
 DBMS_LOB.CREATETEMPORARY
 (v_out_cl,true,DBMS_LOB.CALL);

 p_addToClob(‘--Employee review--’||v_break_tx);
 FOR rec_emp IN (SELECT * FROM emp) LOOP
 IF emp_rec.bonus IS NULL THEN
 p_addToClob(‘ * ‘||rec_emp.ename||
 ‘ has no bonuses!’||v_break_tx);

M
an

ag
in

g
 U

n
st

ru
ct

u
re

d
 D

at
a.

 .
.

(C
o

n
ti

n
u

ed
)

39Third Quarter 2011 | ODTUG Technical Journal |

M
an

ag
in

g
 U

n
stru

ctu
red

 D
ata. . . (C

o
n

tin
u

ed
)

 v_hasErrors_yn:=’Y’;
 END IF;
 END LOOP;
 ...
 IF v_hasErrors_yn=’Y’ THEN
 p_addToClob(v_break_tx||
 ‘***Errors!***’);
 END IF;

 p_flush; -- write leftovers
 RETURN v_out_cl;
EXCEPTION
WHEN OTHERS THEN
 RETURN ‘***Errors!***’
 ||v_break_tx||SQLERRM;
END;

The code is very straightforward. First, you create a tem-
porary CLOB. Because the resulting size is not very large, you
can make it cached (second Boolean parameter set to TRUE).
The third parameter is set to DBMS_LOB.CALL (another option
is DBMS_LOB.SESSION or DBMS_LOB.TRANSACTION in 11gR2).
Since you are not planning to reuse the LOB, it makes sense
to mark it ready to be released immediately after the function
finishes its execution. Now you have initialized the CLOB so you
can start writing error messages, remarks, headers, etc. This
example only includes two HTML tags
 and , but
the idea is clear.

What may not be clear is why we use a PL/SQL variable V_
BUFFER_TX instead of directly writing to the CLOB. The answer
is very simple – performance considerations! As mentioned pre-
viously, temporary CLOBs do not reside in memory; they have
allocated space in the temporary tablespace. That is why any
DBMS_LOB.WRITEAPPEND call causes a physical I/O operation,
which is expensive. By introducing a buffer, the total number of
such calls could be decreased up to 100 times writing an aver-
age of 32 bytes per request.

CLOBs and XML
One of the most critical lessons learned over years of

working with Oracle’s XMLTYPE is that internally (unless you
specify otherwise – you could use object-relational of binary
XML) it contains a CLOB column, created with the default
settings. As already described, the default setting may or may
not be the best option, depending upon your implementation.
For example, if the column is very actively accessed, having
NOCACHE is a really bad idea. This is exactly what happened to
one of our production environments. At one point, the system
started to register an abnormally high number of wait events
related to Direct I/O operations, and the suspect was obvious.
What was not obvious was how to correctly adjust the param-
eters, because we needed to adjust an internal part of Oracle’s
own datatype. The good news is that data dictionary views are
rich enough to solve this problem. The bad news is that some
guessing is required. The following example illustrates the
whole chain of events:

CREATE TABLE goods_xml(id NUMBER, a_xml XMLTYPE)
-- find a column, internally created for XMLTYPE
SELECT column_name -- will look like SYS_***

FROM user_lobs
WHERE table_name = ‘GOODS_XML’
-- Alter the column
ALTER TABLE goods_xml MODIFY LOB(<column>)

(CACHE);

The reason why guessing is required is that if you have
multiple XMLTYPE columns in the same table there is no clean
way of identifying what CLOB segment belongs to what col-
umn. It looks like the order of these SYS_*** names matches
the order of columns in the table, but there is no guarantee.
Our suggestion would be to add all XMLTYPE columns one by
one using the following statement and explicitly name the stor-
age segment (to solve the identification problem):

-- Explicitly specify CLOB storage parameters
ALTER TABLE goods_xml ADD review_xml XMLTYPE
XMLTYPE COLUMN review_xml
STORE AS SecureFile CLOB review_seg(
 ENABLE STORAGE IN ROW
 CACHE)

SUMMARY
Large objects can be very useful in current system devel-

opment environments because most information can now be
stored in the database. But, as with any advanced feature, you
need a thorough understanding of the core mechanisms, asso-
ciated ideas, and principles; otherwise you can do more harm
than good to your system. Don’t ever try to use new features
in production systems before they have gone through a full
testing cycle. Also, don’t believe everything you read without
testing it for yourself (not even this article)!

About The Authors
 Michael Rosenblum is a software archi-
tect/development DBA at Dulcian, Inc. He supports Dulcian
developers by writing complex PL/SQL routines and research-
ing new features. He is the co-author of PL/SQL for Dummies,
contributing author of Expert PL/SQL Practices, and author
of a number of database-related articles. Michael is an Oracle
ACE, a frequent presenter at various regional and national
Oracle user group conferences, and winner of the ODTUG
Kaleidoscope 2009 Best Speaker Award.

Memb
er

Grigoriy Novikov is a senior developer
at Dulcian, Inc. He specializes in the
development of information systems
for federal and state government
organizations as well as private
industry clients. He is also responsible
for database design, data modeling,
researching new features and tuning.

