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The Verilog Hardware Definition Language (Verilog HDL) was originally developed as a tool 
for the simulation and testing of digital systems. At the time digital design was moving to systems 
having 100,000+ gates and the existing methods for such design were becoming impractical. Verilog 
was quickly adopted by many designers and soon used also for synthesis. 

Verilog was based on the syntax of the C programming language and shares many of its 
operators and constructions. If you are familiar with C, learning Verilog should be pretty easy. The 
most significant difference is that C is a procedural language used to implement sequential algorithms 
while Verilog is used to model hardware which operates concurrently.

A Short History

Verilog was originally developed at Gateway Design Automation in 1985. Phil Moorby 
developed it as as a proprietary Hardware Description Language (HDL) for the Gateway Verilog-XL 
digital logic simulator. Cadence Design Systems became the owner of Verilog when they acquired 
Gateway Design Automation in 1989. 

In 1990, as a response to the growing popularity of VHDL, Cadence put Verilog in the public 
domain. At the same time Open Verilog International (OVI) was formed to manage the Verilog HDL. 
The Verilog-XL user manual was the main reference for Verilog and served as its standard, the  Verilog 
1.0 Reference Manual. Some minor changes to Verilog were reflected in Verilog 2.0 a few years later.

In 1993 OVI submitted a request to the IEEE to make Verilog an IEEE Standard. In 1995 this 
process produced IEEE 1364-1995, the first official Verilog standard based on Verilog 2.0. This version
of Verilog was popularly known as Verilog-95. In 1997 work began on an updated standard which 
addressed short-comings in Verilog-95 and incorporated significant enhancements. In 2001 this effort 
resulted in IEEE 1364-2001 with this version of Verilog known as Verilog-2001. 

One of the traditional shortcomings of Verilog has been the lack of constructions that are useful 
for systems level. Verilog has always been strong for modeling at the gate and Register Transfer Level 
(RTL) but weaker than VHDL in modeling at a system level. To address these short-comings 
SystemVerilog was developed. SystemVerilog was originally developed on top of Verilog under the 
auspices of Accellera starting about 2002. It became IEEE Standard 1800-2005 in 2005. 

 SystemVerilog was combined with the Verilog standard as IEEE 1800-2009. This standard is 
known as SystemVerilog. The most recent version of this standard is EEE 1800-2012, published in 
February, 2013.
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Introduction to Verilog

1.1 Modeling Combinational Logic with Verilog

Combinational logic uses the current value of the inputs to determine the value of the outputs. Unlike 
sequential logic, combinational logic lacks memory. Combinational logic can be modeled in Verilog 
using gate primitives, Boolean expressions, or procedural descriptions. These correspond to structural, 
dataflow, and behavioral descriptions. We will first discuss modeling with structural and dataflow 
descriptions of logic circutis. Behavioral modeling is deferred until the end of the section. 

The schematic symbol for an AND gate is shown in figure 1.1

Figure 1.1. An AND gate

The AND gate has two inputs, a and b, and one output c. The relationship between the two inputs and 
the output can be described in several ways. We could use a truth table and list, for all possible inputs, 
the corresponding output. Or, we could more compactly describe the relationship between inputs and 
outputs by means of a Boolean equation.

In Verilog a Boolean equation describing the relationship between the inputs and output can be 
written as a continuous assignment statement,

assign c = a&b;

Here a, b, and c are Verilog nets. In Verilog the net data type is used to model a logic signal much like 
the voltage on a physical wire. A net has the value with which it is driven, if a net is undriven it floats. 
In Verilog a scalar net is the default data type. Verilog also has a second type of data, a variable, which 
holds the value it is assigned until a new value is assigned. A variable is similar in this regard to a 
switch, it has memory; set it to a value and it retains that value until it is set to a new value.

The Boolean operator used in the continuous assignment statement should be familiar to anyone
familiar with the C programming language. Most operators in Verilog are borrowed from C. The 
operator & indicates a bitwise AND operation on a and b. Other common operators include |, which 
indicates a bitwise OR operation, and ^ which indicates and XOR operation. A bit value can be 
complemented with ~.  The Verilog keyword assign indicates that this is a continuous assignment 
statement. Unlike a procedural language such as C, this expression is evaluated continuously in 
simulation time. If there are any other continuous assignment statements in the model they will also be 
continuously evaluated at the same time, or concurrently. This concurrency is a basic difference 
between Verilog and procedural programming languages.  
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Introduction to Verilog

To complete our Verilog model of the AND gate in figure 1, we put the continuous assignment 
statement inside a Verilog module. You can think of a Verilog module as the package that contains the 
logic circuit, in this case for the AND gate. A Verilog module is similar to a C function but is used to 
model a hardware component. A Verilog module modeling the 2-input AND gate in figure 1.1 is the 
following

module and2 (c, b, a);
output c; // module outputs
input a,b; // module inputs
assign c = a&b; // continuous assignment

endmodule

The module begins with the module keyword followed by the name of the module, and2, and 
then the port list. The nets in the port list connect the module to the rest of the world much like the 
“wires” on the AND gate in a schematic or the pins of an integrated circuit. Inside the module we need 
to declare them as input or output using the corresponding Verilog keywords. The continuous 
assignment statement is then used to implement the AND function in this module and we use the 
endmodule keyword to indicate the end of the module. Comments are placed, as in C, between /* and 
*/ or after //. Like C, Verilog is case sensitive so that And2 and AND2 are not the same as and2. 

Verilog also allows an ANSI-C style port list so that this 2-input model of the AND gate could 
also be written as

module and2 (output c, // ANSI-C style 
   input a,b); // port list

assign c = a&b;
endmodule

The AND operation is used frequently enough that Verilog includes an AND gate primitive as 
part of its built in component library. Instead of having to define the module and2 as shown above we 
could use for the 2-input AND gate

and (c, a, b); 

The AND gate primitive, like all Verilog primitives, lists the scaler output on the left of the port 
list and the scalar inputs on the right. It also allows for an arbitrary number of inputs which we could 
add to the right side of the port list. The Verilog primitives, or, xor, nand, and nor work similarly. The 
primitive not is used for an inverter, although in this case there is a single input on the right and an 
arbitrary number of outputs on the left, buf works similarly but does not invert the input. This output 
and input ordering is easy to remember since assigment statements also have inputs on the right and 
output on the left. (Note that port lists for modules in these notes use the same convention, outputs on 
the left of the port list and inputs on the right.) 
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A Multiplexer

Now that we have seen how we can use Verilog to model basic logic components we can 
proceed to construct more interesting logic elements. We first consider the 2-to-1 multiplexer shown in 
figure 1.2 and a realization in terms of simple gates in figure 1.3. 

Figure 1.2. A multiplexer Figure 1.3. A realization of the multiplexer

Using continuous assignment statements the multiplexer can be implemented directly from the 
schematic in figure 1.3 using Verilog primitives. The Verilog module in this case is 

module mux2(c,a,b,s);
output c;     // data outputs
input a,b;    // data inputs
input s;      // select input

wire snot;    // complement of s 
wire w0,w1;   // internal connections

not G0 (snot,s);
and G1 (w0,a,snot);
and G2 (w1,b,s);
or  G3 (c,w0,w1);

endmodule

This is a Verilog structural model since we have constructed the model of the multiplexer by 
using components, in this case Verilog primitives. Verilog primitives have been instantiated to model 
the inverter, the two AND gates, and the OR gate. The associated names, G0 to G3,  are optional but 
help to identify individual components. The circuit has one output, c, and three inputs a, b, and s. In 
our code we have chosen to separate the data inputs, a and b, from the select input s by using two 
separate input statements.  All the inputs and outputs appear in the port list. While the order of variables
appearing in the port list is arbitrary we have chosen to follow the same order as used with Verilog 
primitives putting the output on the left and the inputs on the right. Three internal nets, snot, w0, and 
w1, declared with the wire keyword, connect the Verilog primitives inside the module. Note that the 
ordering of the four gate instantiations does not matter since they operate concurrently. 
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Instead of using Verilog primitives we could model the gates in figure 1.3 using continuous 
assignment statements. The corresponding Verilog module is then

module mux2(c,a,b,s);
output c;     // data outputs
input a,b;    // data inputs
input s;      // select input

wire snot;    // complement of s 
wire w0,w1;   // internal connections

assign snot = ~s;
assign w0 = a&snot;
assign w1 = b&s;
assign c = w0|w1;

endmodule

This is an example of a Verilog dataflow model. Generally dataflow models describe how data 
is transformed as it moves between registers. Each of the gates in this module is modeled in a 
continuous assignment statement with the corresponding Boolean expression. Alternatively, instead of 
the four continuous assignment statements, we could use a single continuous assignment statement,

assign c = (a&(~s))|(b&s);

This replaces the four continuous assignment statements and also eliminates the need for the 
internal connections. However, we can do better. Verilog borrows from C the conditional operator 
which is very useful in modeling this type of construction. Using the conditional operator we can 
replace the previous continuous assignment statement with

assign c=s?a:b;
 
This conditional operator works as follows: If the conditional variable s = 0 then the statement 

will assign to c the value of the first variable while if the conditional value s = 1 then the statement will 
assign to c the value of the second variable b. Using the conditional operator a Verilog module which 
models the 2-to-1 multiplexer is the following

module mux2(c,a,b,s);
output c;     // data outputs
input a,b;    // data inputs
input s;      // select input

assign c = s?a:b;

endmodule
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Let's get physical

The Verilog modules so far model functional behavior. Physical hardware however is more 
complex, in particular, in a physical system it takes time to move charge. Consequently, the 
propagation of signals through real hardware is subject to delays. To model delays when simulating 
hardware Verilog includes several constructions.

In the dynamic behavior of electrical circuits the physics of a device typically requires that a 
signal be applied to an input for a certain amount of time before it propagates to the output. Modeling 
such delays is an important part of Verilog coding for simulation. On the other hand Verilog coding for 
synthesis does not require delay modeling as the delays are due to the hardware.

Using delays we can model the Verilog circuit of the multiplexer. The logic circuit for a 2-to-1  
muliplexer is shown in figure 1.4

Figure 1.4. Logic circuit of a 2-to-1 multiplexer

Assume that all the gates and inverters have a delay of 2 ns. These delays can be implemented 
in the Verilog structural model of the muliplexer as shown in the following code

// structural model of a 2-input muliplexer 
`timescale 1 ns / 100 ps 

module mux2(c,a,b,s); 

   output c;    // data output 
   input  a,b;  // data inputs 
   input  s;    // select input 

   wire snot,w0,w1;  // internal wires 

   not #2 G0(snot,s); 
   and #2 G1(w0,a,snot); 
   and #2 G2(w1,b,s); 
   or  #2 G3(c,w0,w1); 

endmodule
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Here the 2 time unit delays are indicated by #2 in the instantiation of the inverter, and, and or 
gates. This operator will impose a 2 time unit delay before changes to any of the inputs appears in the 
output. In addition, we have used the `timescale compiler directive to indicates that in simulation 
the time unit is 1 ns and any delays will be rounded to the nearest 100 ps. Thus, for this Verilog module
there is a 2 ns delay for each of the inverter and gates. Note that in this model the actual output delay 
depends on the signal path. 

If we were to set both a and b to 1 and change the value of s from 1 to 0 we get the following 
timing diagram. 

Figure 1.5. Timing for the 2-input Multiplexer

Note that the timing shows there is a glitch (due to a static 1-hazard) in the output

This code shows the simplest implementation of delays in a Verilog model. The # operator is 
used for delays. In actual hardware there is a time after a signal changes during which the signal must 
persist for any switching to take place, during this time the circuit needs sufficient time to move the 
output to a new value. The delays model this effect, if an input signal is applied to one of the gates for a
period less than the indicated delay, in this case, 3 time units, then the gate output doesn't change. This 
effect can be seen by making the delay on the inverter 2 time units and looking at the response. 

Delays can also be used with the dataflow description of the multiplexer. Consider the following

module mux2(c,a,b,s);
output c;     // data outputs
input a,b;    // data inputs
input s;      // select input

assign #5 c = s?a:b;

endmodule

In the continuous assignment statement the Verilog simulator will evaluate the right hand side of the 
expression whenever one of the variables, a, b or s, changes. The delay operator will cause the 
variable c  to be updated 5 time units later. The single delay in this dataflow model does not depend on 
the path. It's an example of a lumped delay. 
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1.2 Verilog Values

The logic values 0 and 1 typically correspond to voltages in hardware. Such logic values are 
more complicated than simple binary values since the technology and implementation may lead to 
more complicated situations. For simulating hardware the use of only 0 and 1 is too restrictive.

To better model actual hardware Verilog uses a four valued logic system. In addition to 0 and 1 
a logic signals can be unknown, represented by an “x” or high impedance, represented by a “z”. A 
signal represented by an “x” corresponds to a signal whose value is unknown, typically such values are 
undefined or may require more information to specify. Verilog sets any variables which are not 
initialized to this value. A high impedance value, “z” is typically associated with three-state devices. An
undriven net, corresponding to an open circuit, defaults to z. 

One consequence of having a four valued logic system is that the truth tables for the basic logic 
functions become more complicated. Consider for example a 2-input AND gate shown in figure 1.6 
below. With the four valued logic system the truth table of this 2-input AND gate is that shown in 
figure 1.7. 

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Figure 1.6. AND gate       Figure 1.7. Truth table for AND gate

For the truth table in figure 1.7 the topmost row and the leftmost column represent the possible 
values of the respective inputs, a and b. The entries represent the output, c. The upper 2 by 2 block 
represent the outputs we would expect for an AND gate with the binary inputs, 0 and 1. The remaining 
entries represent the output when the inputs is x or z. The outputs are what we might expect. The output
of the AND gate is always 0 if one of the inputs is 0. In the remaining cases we don't know what the 
output will be so we assign it a value of x. For an AND gate with more than 2 inputs the truth table is 
similar.

A 2-input OR gate, shown in figure 1.8, with four valued logic behaves similarly. When both 
inputs are 0 the output is 0. If one or both of the inputs is a 1 then the output of the OR gate is always 1.
For all remaining possibilities the output is x. The truth table for the OR gate is shown in figure 1.9.  
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or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Figure 1.8. OR gate Figure 1.9. Truth table for OR gate

The primitive gate functions, and and or, defined in Verilog have truth tables corresponding 
respectively to those shown above.

The high impedance value, z,  allows the modeling of three-state devices in Verilog. As an 
example consider and inverter and a three-state inverter. The Verilog not primitive models an inverter. 
Figure 1.10 shows the truth table of the not gate in the four valued logic system and figure 1.11 shows 
the primitive, notif0, of the not gate as a three-state device.

not

0 1

1 0

x x

z x

notif0 0 1 x z

0 1 z 1 or z 1or z

1 0 z 0 or z 0 or z

x x z x x

z x z x x

Figure 1.10. A not gate Figure 1.11. A notif0 gate

In both these tables the lefthand column, immediately under the gate name, correspond to the data input
to the gate. The top row, to the right of the gate name for the notif0 gate, indicates the control input to 
the gate. 

Three-state buffers can be used in Verilog to connect a module to a bus. These have the truth 
tables shown in figures 1.12 and 1.13.

buf

0 0

1 1

x x

z x

bufif0 0 1 x z

0 0 z 0 or z 0 or z

1 1 z 1 or z 1or z

x x z x x

z x z x x

Figure 1.12. A buf gate Figure 1.13. A bufif0 gate
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As an example of using three-state buffers consider the logic circuit for a 2-input multiplexer 
shown in figure 1.14

Figure 1.14. A muliplexer constructed with two three-state buffers. 

A Verilog structural model of this circuit is the following module

module mux2tristate (c,a,b,s);

output c; // data output
input a,b; // data inputs
input s; // control input

tri c;

bufif0(c, a, s);
bufif1(c, b, s);

endmodule

Note that bufif1 is similar to bufif0 but inverts the select signal. Also note the use of the 
keyword tri. This keyword is used to indicate a net with multiple drivers, in this example each of the 
buffer outputs. It works the same as wire but is used to indicate signals on a net can have different 
strengths, as for example in the case of wired logic. 

Verilog Numbers

Verilog represents constants by default as decimals. Signed constants are in two's complement 
representation. Thus, the constant 1 is one in decimal, corresponding to the binary value 1. However, 
10 corresponds to the the 4-bit unsigned binary value 1010 while – 10 corresponds to the 5-bit two's 
complement binary number 10110. Variables can be declared as signed by using the signed keyword.

Verilog numbers can also be represented as based constants which explicitly indicate the radix 
of the representation. This representation uses the b, o, d, and h to indicate respectively binary, octal, 
decimal, and hexidecimal. This representation is case insensitive so B, O, D, and H can also be used. 

10

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Introduction to Verilog

Sized constant numbers also indicated the number of bits used to represent the number. Using this 
representation the decimal number 255 can be represented as

8'b11111111
8'o377
8'd255
8'hff

Note that these define bit patterns, for example if a is defined as a signed integer, then 8'b11111111 
represents –1. To make this more readable Verilog allows underscores to be inserted without affecting 
the value. So we can write, for example,  8'b11111111 as  8'b1111_1111. Unsized constant 
numbers omit the explicit size, for the above

'b11111111
'o377
'd255
'hff

Signed numbers can be represented by using – before the constant, alternatively an s in the expression 
indicates that the bit pattern should be interpreted as a signed, two's complement number. The constant 
– 5 decimal for example can be represented as –8'd5 which will put the two's complement of 5 in the 
8 bits or as 8'hsfb which will interpret the 8-bit hex number fb as a two's complement number.

Since Verilog has a four valued logic system we can also use x and z in constants. A 6-bit 
number, with the three least significant bits unknown, can be written

6'b101_xxx
6'o5x

The value 1 defaults to 32'b0000_0000_0000_0000_0000_0000_0000_0001, a 32-
bit value; if it is instead specified as 1'b1, then it is a 1-bit value. 

Frequently we would like to use multibit values, for example, a byte in memory of 8-bits or an 
instruction of 32-bits. In Verilog 8-bit signals, a and b,  might be defined as

wire [7:0] a, b;

Here [7:0] indicates a vector that a consists of 8-bits, indexed from 7 to 0. Indexing them 7 to
0 is arbitrary, we could just as well have specified them as [0:7] or [3:10]. Our choice reflected 
the usual way to index bits in a byte. To select an individual bit, say bit 5 of a, we use a[5]. Braces 
can be used to concatenate and form larger objects. We could, for example, create a 16-bit vector with 
a the high byte and b the low byte as {b,a}. We can use this to easily create a 4-bit adder as follows:
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module FourBitAdder (sum, carry_out, aop, bop);

output [3:0] sum;
output carry_out;
input [3:0] aop, bop;

wire [4:0] temp;

assign temp = aop + bop;
assign sum = temp[3:0];
assign carry_out = temp[4];

endmodule

or more succinctly  by 

module FourBitAdder (sum, carry_out, aop, bop);

output [3:0] sum;
output carry_out;
input [3:0] aop, bop;

assign {carry_out, sum} = aop + bop;

endmodule

Arrays

In Verilog indexes are placed after the definition of the net or variable. For example, to define a 
1KB memory we can do the following:

reg [7:0] memloc [0:1023];

Individual elements are then accessed by this index, for example the n-th byte in the array would be 
accessed as memloc[n]. It is important to distingush between the bits in the variable and the elements
in the array. In this example each of the 1024 array elements is an 8-bit variable. 

Elements in arrays are referenced by the index, for example, assume data is an 8-bit  net type 
variable, then

assign data = memloc [476];

will drive the net variable data with the contents of value at location 476 in memloc.
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Verilog Operators

Many of the operators used in Verilog expressions will be familiar to anyone who has used C or 
a related programming language. Additional operators have been introduced in Verilog to further 
facilitate the modeling and simulation of digital systems. There is a defined hierarchy for these 
operators which determine the order in which they are evaluated. Parenthesis can always be used to 
force evaluation. The following is brief discussion of some of the operators we use in these notes. For a
complete discussion see section 5 of the Verilog standard. 

We have already seen several of the bitwise operators. These include the bitwise operators for 
and, &, for or, |, and for exclusive-or, ^. These are binary operators which perform their respective 
operations on corresponding operand bits of two operands. If the operands are different sized, the 
shorted is first filled with 0s to the left of the most significant bit. Negation, ~, is a unary operation 
which performs a bitwise complement of a single operand. 

The bitwise operators can also be used as reduction operators. These operate on all bits in a 
single operand and produce a 1 bit result. 

Operation                        Result       Operation                        Result  
0110&0111 0110 ~011010 100101
0110|0111 0111 &011010 0
0110^0111 0001 |011010 1
0xx0|0111 01x0 ^011010 1

Arithmetic operators are the same as in C. Binary arithmetic operators support the basic 
operations of addition, +, subtraction, -, multiplication, *, division, /, and modulus, %. For arithmetic 
operations, if any bit in an operand is x, the result is x. Integer division will truncate the fractional part 
of a result and division by 0 produces the result of x. Arithmetic operations on a reg value or net are 
treated as unsigned unless they have been declared as signed. 

Values of expressions are compared with relational and equality operators. These include less 
than, <, less than or equal, <=, greater than, >, and greater than or equal, >=. The logical equality 
operators are equal, ==, and not equal, !=. If the values being compared contain x or z these may 
produce an unknown. The case equal operator, ===, and the case not equal operator, !==, will also 
compare x and z bit values. Both relational and equality operators produce 1 when a comparison is a 
success and 0 when it fails. An ambiguous result returns x. 

             Operation                                     Result  
x0110001 == x0110001 x
x0110001 === x0110001 1

Verilog includes the logical shift operators, logical shift left, <<, and logical shift right, >>, as 
well as the arithmetic shift operators, arithmetic shift left, <<<, and arithmetic shift right, >>>. The 
logic shift operators fill in bit positions with 0 for both right and left shifts. The arithmetic shift right 
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operator will fill in bit positions with the value of the leftmost bit.

   Operation                                    Result       
10100011<<3 00011000
10100011>>5 00000101
10100011<<<3 00011000
10100011>>>5 11111101

Two useful operators are the conditional and concatenation operators. The conditional operator, 
which we saw in the multiplexer model, has three operands which are Verilog expressions. The first 
expression represents a condition which is evaluated and compared to 0 or 1. If the expression 
evaluates to 1 the result is assigned the value of the second expression, if 0 then it is assigned the value 
of the third expression. Otherwise the result is x. Both the second and third expressions can be multi-bit
vectors. For example,

wire [7:0] OpA, OpB, OpC

assign OpC = select?OpA:OpB 

will update OpC with the 8-bits of OpA if select is 1 or OpB if select is 0. The concatenation 
operator will combine the bits of one or more expressions. It consists of two braces with arguments 
separated by commas. For example, the sum output of a 4-bit adder, can be combined with the 
carryout, and padded with zeros to create an 8-bit result,

{ 3'b000, carryout, sum[3:0]}
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A Verilog Ripple Carry Adder

As another example we will look at the Verilog modeling of a ripple carry adder. The ripple 
carry adder is constructed from multiple full-adder circuits. The basic full adder can be implemented 
any number of ways; one method would be to implement a dataflow model based on the Boolean 
expressions for sum and carry. The corresponding Verilog module is 

module FullAdder (carryout, sum, a, b, carryin);

output carryout, sum;
input a,b,carryin;

assign sum = a^b^carryin;
assign carryout = (a&b)|(carryin&a)|(carryin&b);

endmodule

This full adder will add the a, b, and carryin bits. The sum bit outputs the sum and if a carry
is generated the carryout bit outputs this carry. 

Suppose we wanted to add two 4-bit binary numbers, say A=(a3, a2, a1, a0) and B=(b3, b2, b1, b0), 
to produce a 4-bit sum, S=(s3, s2, s1, s0) and 1-bit carry out.  To add flexibility to this 4-bit adder we will
include a carry in. The full-adder module shown above is used as a component in this 4-bit ripple carry 
adder, as shown in figure 1.15. 

Figure 1.15. A 4-bit ripple carry adder

In the figure each full adder is represented as a box with three inputs, the two bits to be added 
and a carry in, and two outputs, the sum and carry. Figure 1.15. can be used as a guide to constructing 
the 4-bit adder. Each box corresponds to an instantiation of the full-adder module and the connections 
between these modules will correspond to those shown in figure 1.15. A Verilog module we will call  
RippleCarryAdder4, based on figure 1.15,  is the following:
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module RippleCarryAdder4 (s, cout, a, b, cin);

output [3:0] s; // vector output
output cout; // scalar output
input  [3:0] a, b; // vector inputs
input  cin; // vector input

wire [3:1] c; // internal carries

// instantiate the full adders
FullAdder FA0 (c[1], s[0], a[0], b[0], cin);
FullAdder FA1 (c[2], s[1], a[1], b[1], c[1]);
FullAdder FA2 (c[3], s[2], a[2], b[2], c[2]);
FullAdder FA3 (cout, s[3], a[3], b[3], c[3]);

endmodule

The structure of the Verilog code in  RippleCarryAdder4 is straight forward. The first part of the 
code, the port list and declarations, define the interface to this module. In the remaining part the full-
adder module, FullAdder, has been instantiated four times. All the nets in the port lists for the full-
adder instantiations correspond directly to the labels and connections shown in figure 1.15. 

Suppose instead of a 4-bit adder we wanted RippleCarryAdder4 to code a module for an 
8-bit adder. This would involve a straight-forward but tedious modification of 
RippleCarryAdder4. Each of the vectors would now have an upper range value of 7, moreover we
would need to instantiate another 4 full adders with the indexes in each successive full adder increasing
by one, the resulting 8-bit adder would be 

module RippleCarryAdder8 (s, cout, a, b, cin);

output [7:0] s; // vector output
output cout; // scalar output
input  [7:0] a, b; // vector inputs
input  cin; // vector input

wire [7:1] c; // internal carries

// instantiate the full adders
FullAdder FA0 (c[1], s[0], a[0], b[0], cin);
FullAdder FA1 (c[2], s[1], a[1], b[1], c[1]);
FullAdder FA2 (c[3], s[2], a[2], b[2], c[2]);
FullAdder FA3 (c[4], s[3], a[3], b[3], c[3]);
FullAdder FA4 (c[5], s[4], a[4], b[4], c[4]);
FullAdder FA5 (c[6], s[5], a[5], b[5], c[5]);
FullAdder FA6 (c[7], s[6], a[6], b[6], c[6]);
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FullAdder FA7 (cout, s[7], a[7], b[7], c[7]);

endmodule

If we wanted a 16-bit adder (or 32-bit, or 64-bit, etc.) we could proceed in a similar fashion. As 
we increase the number of bits to be added the task becomes more tedious and the possibility of 
introducing and error increases. However, we can use Verilog to simplify our task and automate the 
code. In fact, we can easily construct a Verilog module for the general N-bit adder shown in figure1.16

Figure 1.16. N-bit ripple carry adder

module RippleCarryAdderN (s, cout, a, b, cin);

parameter N=8; // default size of adder

output [N-1:0] s; // vector output
output cout; // scalar output
input  [N-1:0] a, b; // vector inputs
input  cin; // vector input

wire [N:0] c; // internal carries

genvar i; // used only in generate

// instantiate N full adders
generate
for (i=0; i<N; i=i+1)

FullAdder FA (c[i+1], s[i], a[i], b[i], c[i]);
endgenerate

// cin and cout
assign c[0] = cin;
assign cout = c[N];

endmodule
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This module exploits the regularity of instantiating additional bits in the adder by using a for 
loop and defining the number of loops by means of parameter. In this code genvar  is used to declare 
the index variable used in the for loop. The syntax of the for loop is the same as that used in C. It will 
instantiate the full adders

FullAdder FA (c[1], s[0], a[0], b[0], c[0]);
FullAdder FA (c[2], s[1], a[1], b[1], c[1]);

·
·
·

FullAdder FA (c[N], s[N-1], a[N-1], b[N-1], c[N-1]);

The parameter value can be over ridden when this module is instantiated in a higher level 
module. Suppose for example we want to instantiate a 16-bit adder. We would then instantiate this 
module as

RippleCarryAdderN #(16) (s, cout, a, b, cin);

 

1.3 Behavioral Modeling

Verilog behavioral models use procedural statements to determine activity. Behavioral models 
allow the implementation of procedural algorithms and more like coding in C than either structural or 
dataflow modeling. There are two types of constructions used with procedural modeling. 

An initial construction is used for a one-pass activity flow. The activity flow for an initial 
construction is a sequence of procedural statements which begin activity at the start of the simulation 
and do not repeat. An always construction is used for cyclic behavior. The activity flow starts at the 
beginning of the simulation and repeats until the simulation ends. Data elements which are updated in 
procedural blocks must be defined as variable type data. 

An example of an initial statement used to initialize three variables

reg a, b, c;

initial
begin
   a = 1'b0; 
   b = 1'b1; 
   c = 1'b0;
end

This initializes a, b, and c at the beginning of the simulation. 

18

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Introduction to Verilog

An example of an always statement used to create a clock signal,

reg clock;

always
   #5 clock = ~clock;

This always statement will execute the single statement used to update the variable clock repeatedly. 
The 5 unit time delay will cause it to wait 5 time units each time it updates clock with its complement. 
The effect is to toggle the value of clock every 5 time units which creates a 10 time unit period for 
clock. 

A behavioral model of the 2-input multiplexer using an always statement is the 

module mux2 (c, a, b, s);
   output c
   input a, b;
   input s;

   reg c;

   always @(a, b, s)
   if (s == 0) 
      c = a;
   else
      c = b;

endmodule

Here the always construction is used for a behavioral model, execution of activity, in this case 
the if-else statement, is controlled by a sensitivity list. We indicate the sensitivity list by the @ symbol, 
when the value of an element in the sensitivity list changes the always construction proceeds to execute
the if-else statement. Note that this always statement implements the Boolean function for the 2-input 
multiplexer. 

More generally we can use an always construction to create a model of combinational logic; 
such behavioral models will put the inputs to the logic in the sensitivity list and use procedural 
statements to determine the outputs. Note that the elements in the sensitivity list may be either nets or 
variables. The outputs of the logic which are updated in the always construction must be declared as 
variables.

As another example consider a behavioral model of a full adder. Using an always construction  
with procedural statements we might have the following,

module FullAdder (carryout, sum, a, b, carryin);
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output carryout, sum;
input a,b,carryin;

reg carryout, sum;

always @(a, b, carryin)
begin
   sum = a^b^carryin;
   carryout = (a&b)|(carryin&a)|(carryin&b);
end

endmodule

Procedural constuctions are usually used in the verification of Verilog modules. A testbench is a 
Verilog code which is used to test a Verilog module. You can think of a testbench as analogous to the 
electronic test instruments you use in the lab. In a testbench the module to be tested is instantiated, a set
of test inputs, or stimulus is then applied to this instantiated module and the outputs, or response, are 
monitored and compared to expected results. Whenever you code a module it is a good idea to 
construct a testbench. 

An example of a testbench which could be used to functionally test the 2-input multiplexer is 
the following

// Test Bench for the mux2 
// 
   `include "mux2s.v" 
// 
module mux2_test; 

   reg in0,in1,sel; 
   wire out; 

// instantiate 2-to-1 multiplexer

   mux2 MUX(out,in0,in1,sel); 

// generate test signals 

   initial 
   begin 
      {in1,in0,sel}=3'b000; 
      #80 $finish; 
   end 
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   always 
      #10 {in1,in0,sel}={in1,in0,sel}+1; 

// output result 
 
   initial 
      $monitor($time, " out = %b", out, " in1 in0 sel = %b", 

in1, in0, sel); 

endmodule 

For this testbench note that there is no port list, all I/O is done within the module. The module 
has three main parts. The first part is the instantiation of the component module to be tested. This is 
sometimes referred to as the unit under test. The second part is the input to the module. In this example 
all the possible combinations of inputs are generated and applied in turn to the module being tested. 
Another method we could have used would be to create a file with all possible inputs, read these into 
the module, and then use them as stimulus for the instantiated module. Finally output and save the 
response of the tests. 

At the beginning of the module we use the `input compiler directive. This will read in Verilog 
module with the model of the multiplexer. Our testbench has no need for a port list so it is omitted. All 
the nets and variables used in the testbench are then declared and the multiplexer is instantiated. Two 
procedural constructions are used to generate the test data. The first initial construction is used to 
initialize the three variables, in0, in2, and sel, which are to be input to the multiplexer, and uses the 
system task $finish to terminate the simulation. The always construction is used to change the values 
of the variables every 10 time units. This is done by counting through the possible input values and 
then waiting 10 time units to let the output settle. A $monitor system task in the second initial 
statement outputs the values of simulation time, the inputs, and the corresponding output, whenever 
any of them change. 
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