
ProVHDL
Rule Specifier
LEDA 3.0

Tutorial

Copyright © 2001 by Synopsys, Inc. All rights reserved.

SYNOPSYS, Inc
700 East Middlefield Road
Mountain View, CA 94043, USA

E-mail:leda-support@synopsys.com
Web: http://www.synopsys.com

This software and manual are furnished under a license agreement and may not be used or copied except in accordance
with the terms of the agreement.
No part of this publication may be reproduced, transmitted, or translated, in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without prior written consent of Synopsys.

The information in this manual is subject to change without notice and does not represent a commitment on the part
of Synopsys.

Even though Synopsys has taken every effort in the preparation of this manual and the test of the software, Synopsys
makes no warranty of any kind, either express or implied, with regards to this software and documentation, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Synopsys acknowledge trademarks or registered trademarks of other organizations for their respective products and
services.

Contents
 Preface... 1
1. Introduction.. 2
2. Overview... 3
3. First Exercise ... 4

3.1 Creating a VRSL Ruleset file and Policy... 5
3.2 Creating a Verilog file... 7
3.3 Creating a Project file.. 8
3.4 Running the Checker .. 9

4. Rule Creation Wizard... 11
4.1 Using the Wizard... 12

5. Basics of Rule Creation... 14
5.1 The Six LEDA Commands (ProVHDL).. 15
5.2 Commands and General Rule Writing Guidelines .. 16
5.3 FORCE Command.. 17

 Example 1: FORCE command (rule basics) ...17
 Example 2: HTML error reporting ..18
 Example 3: hardware rule..19
 Example 4: VHDL template basics ...19

5.3.1 Templates...19
5.4 NO Command ... 22

 Example 5: NO command without context ...22
 Example 6: VHDL NO command with context ..22
 Example 7: NO inferring a hardware rule ...24
 Example 8: NO command used with a template ...24
 Example 9: expressions in attribute names ...25

5.5 LIMIT Command ... 26
 Example 10: clock naming (basic LIMIT command) ...26
 Example 11: VHDL LIMIT command and combinatorial logic ...26
 Example 12: VHDL full LIMIT command ...28
 Example 13: LIMIT command with multiple templates ...28
 Example 14: LIMIT command and conditionals...29

5.5.1 BETTER Rule Writing Paradigm ..30
5.6 SET Command.. 34

 Example 15: full SET command ...34
 Example 16: SET command with template ...34

5.7 MAX/MIN Command ... 36
 Example 17: VHDL clock expressions ...36
 Example 18: duplicate rule labels and messages...37
 Example 19: template inheritance ...37
 Example 20: multiple MAX/MIN commands...38

6. Appendix... 39
6.1 Definition of Command Terminology... 39

6.1.1 Commonly-used Primary Templates (primary_template) ...40
6.1.2 Commonly-used Secondary Templates (secondary_template)..41
6.1.3 Commonly-used Local Attributes (local_attribute) ...42
1

2

©
Preface
Welcome to the LEDA ProVHDL Rule Specifier Tutorial for the VHDL lan-
guage. This tutorial is an example-based introduction to writing rules for
checking VHDL code. The rules are written in the VHDL Rule Specification
Language (VRSL).

If you have used VHDL before, the concepts in this tutorial will be familiar to
you. Even if you are not familiar with VHDL, this tutorial is designed so you
can get a basic understanding of VRSL's capabilities.
 1Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Introduction Rule Specifier Tutorial
1. Introduction
The LEDA checkers come prepackaged with different rulesets and policies that check VHDL code for
synthesizability, simulatability and portability, along with additional policies that check code for opti-
mum performance.

Since ProVHDL is programmable, proprietary coding standards can also be readily created and/or mod-
ified to accommodate the unique requirements of design flows containing both commercially available
and internally developed design tools.

ProVHDL consists of two tools: a rule specification tool and a rule checking tool. The specification tool
uses a simple command set for creating and compiling custom rules. The Rule Specifier also features a
user-friendly GUI for managing rulesets and coding standards.

The Rule Checker accepts VHDL code along with compiled rulesets and policies and outputs error
messages, indicating which lines in the code violate different rules. The compiled rulesets either come
pre-installed or are created using the Rule Specifer.

This tutorial will teach you to use the Rule Specifier to create and compile custom rules.
 2© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Overview Rule Specifier Tutorial
2. Overview
ProVHDL works by enabling the designer to define "templates" and "rules" that jointly describe exactly
what the input VHDL code should look like. Templates define "snapshots" of how the VHDL code
should appear (e.g., what VHDL constructs should or should not be present, in what order, and so
forth).

Rules constrain different VHDL constructs by ensuring that they correspond to acceptable values,
ranges, or templates. The designer is thus able to define a syntactic/semantic "subset" of the overall
VHDL code that is uniquely targeted to the design flow and methodology.

Rules can also be written to control the "hardware semantics" of VHDL. This means certain VHDL
constructs infer specific hardware features if the description is synthesized (e.g., ck='1' and ck'event
represent a clock active on the rising edge). These hardware features can be constrained through VRSL.

To implement checks for different coding style rules, the designer uses a simple yet powerful set of
commands. Sequences of these commands (i.e., source code) are programmed using the ProVHDL
Rule Specifier. This Rule Specifier then compiles the source code into object files used to configure one
or multiple ProVHDL rule checkers.

Finally, the Rule Checker compares the input VHDL code to the templates and rules contained within
the object files, and outputs error messages depending on whether the comparisons passed or failed.

This tutorial will lead you through a series of examples where you will learn how to use VRSL to pro-
gram custom coding guidelines. After completing all the examples, you will have a basic understanding
of all the VRSL commands, keywords, and attributes. This will then enable you to independently
develop and implement your own coding style rules.
 3© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
3. First Exercise
The purpose of this first exercise is to familiarize you with the basic functions of the Rule Specifier and
to create a rule in the VHDL Rule Specification Language (VRSL). The rule will then be used to check
some simple VHDL code. You should be running the LEDA ProVHDL Rule Specifier which is
invoked from a terminal window using the following UNIX command:

> provhdl_spec

The following screen should be showing:

In this exercise, we are first going to write a rule in VRSL. We will then write some VHDL code which
the rule will check. Finally, we will use the LEDA tool to check the rule.

Before starting this tutorial, however, it is important to understand the distinction between VRSL and
the VHDL language. VRSL is a macro-based language that is used to write rules that constrain the
VHDL language. The VHDL language is one of two standard electronics industry hardware description
languages. The other standard language is Verilog. This tutorial will teach you how to write rules in
VRSL to constrain VHDL.
 4© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
3.1 Creating a VRSL Ruleset file and Policy
Before we create the rule, some basic terminology will be helpful. The terms policy, ruleset, and rule
are often used interchangeably. A policy can contain any number of rulesets. A ruleset can contain any
number of rules.

To begin our exercise, we will create a policy with one ruleset file that will contain a single rule. This
rule will constrain bidirectional ports in the VHDL code.

1 Using a text editor, type in the following text exactly as it is shown. You can use the text editor in the
Specifier by choosing File > New. (Note that two dashes “--” at the beginning of a line designates a
comment.)

ruleset RULESET_1 is

 -- Template Section

template PORT_DEC is port_declaration

no inout

end

 -- Command section

RULE1:

limit port_declaration in entity_declaration to PORT_DEC

message "Bi-directional ports are not allowed in the design"

severity WARNING

end ruleset

2 Save this file as “ruleset.rl” making sure the file is in a convenient folder. Note that RULE1 (a single
rule) is a subset of RULESET_1. Also note the “.rl” file extension which is the standard naming con-
vention for VRSL ruleset files.

3 From the Specifier main window choose Specifier > Specify Policies.

4 Click in the Set of Policies pane then click on New. Type in a name for the new policy (e.g.,
“my_policy”) and press Enter.

5 When the new policy appears in the left pane, click on it then click in the Set of Rules pane. Click on
Add.

6 Click on the File Name (“ruleset.rl”) for the ruleset you just created. Click on Add then
close the open windows.

You have now created a policy (“my_policy”) containing one ruleset. The ruleset contains
one rule which will be used to check the VHDL code. You should see a *** Compile suc-
Creating a VRSL Ruleset file and Policy 5© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
cessfully *** message in the Result Frame of the main window. This message indicates that
the rule is valid according to ProVHDL conventions.
Creating a VRSL Ruleset file and Policy 6© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
3.2 Creating a Verilog file
To test this rule, we need to create some VHDL code to check it against. Since we just created a rule
stating that bidirectional ports are not allowed in the design, we are going to purposely add bidirectional
ports in our VHDL code (bolded below). When we check the code with our rule, we should see an error.

Using a text editor, type in the following text. Save it as "test.vhd" making sure the file is in a conve-
nient folder. (Note the ".vhd" file extension for VHDL files and the two dash "--" comment line desig-
nation.)

-- VHDL test code

entity MUX is

 port (a,b,sel: in bit;

 z: out bit := '1';

 k: inout bit);

end MUX;

architecture describe of MUX is begin

 process begin

 if sel = '1' then

 z <= a;

 else

 z <=b;

 end if;

 end process;

end describe;
Creating a Verilog file 7© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
3.3 Creating a Project file
Before we can use the LEDA tool, we must first create a project file. A project file organizes the VHDL
file(s) into easily managed units.

1 From the Specifier choose Project > New > From Source Files.

2 Enter the Project Name (e.g., “my_project”). A Create Project from source files window will appear.

3 Click on Specify Source Files. A Specify Directories and/or Files window will appear.

4 Click on Add.

5 Change the filter to *.

6 Select the “test.vhd” file. Click on Add.

7 Click on Close. The window will close.

8 Click on Build and Compile. You should see a “Building the Project” message and then another
message ending with *** compilation end ***. This indicates the project is built. You should
have the following screen.
Creating a Project file 8© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
3.4 Running the Checker
With the project built, we will now set up and run the Checker which will check the VHDL code against
the rule in our policy.

1 From the Specifier choose Checkers > Select rules.

2 Deselect all policies except “my_policy” by clicking any green boxes to gray. All boxes associated
with “my_policy” should be green.

3 Click on OK.

4 From the Specifier choose Checkers > Execute checkers. You should see an hourglass icon on
screen, indicating the files are being processed.

After execution, you should now see crossed-out (False) icons in the right pane beside WORK and
MODULES which indicate the rule (no inout_declaration in module_declaration)was violated.

5 With the mouse pointer over one of the crossed-out icons, double-click to view the error results
(image below).
Running the Checker 9© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

First Exercise Rule Specifier Tutorial
6 Left click on the blue text to view or edit the VHDL file (“test.vhd”). Right click on the blue text to
view or edit the ruleset file (“ruleset.rl”). You can also use choose View > Show HDL information to
see the errors listed with VHDL information. Left and right clicking the mouse over the question
marks will give the same results as in the other view mode (Show only checker errors). To success-
fully compile the ruleset, you can delete the offending line of code in the VHDL file:

k: inout bit);

Exercise: Try deleting the line above and recompiling. Experiment with different modifications
to both the VRSL and VHDL code and look at the results after compilation.
Running the Checker 10© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Rule Creation Wizard Rule Specifier Tutorial
4. Rule Creation Wizard
We have just learned how to create a simple rule using a text editor. Some rules, however, are used fre-
quently even though they may be configured differently depending upon company coding standards.

Rather than obliging rule-writers to write VRSL code to implement these common rules, a Rule Cre-
ation Wizard has been provided to allow these rules to be configured through a GUI. The code repre-
senting the rules is then automatically generated.

To activate the Rule Creation Wizard, choose Specifier > Specify Policies. The Policy Manager win-
dow will open. Click on Wizard. The following window will appear:
Running the Checker 11© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Rule Creation Wizard Rule Specifier Tutorial
4.1 Using the Wizard
By clicking each of the yellow folders under the RULESET GENERATION tree, you can open up a
ruleset and make appropriate selections for your policy. As an exercise, we will create a policy with a
Set clock edge rule.

1 From the Wizard menu bar, choose File > New ruleset.

2 In the appropriate fields, enter the Policy name (e.g., "clock_policy") and the Ruleset name (e.g.,
“clock_rules”). The Ruleset filename will automatically be filled in with the Ruleset name prefix and
the .rl extension. Click on OK.

3 Double-click on the RTL HARDWARE RULES folder .

4 Click on the gray icon beside Set clock edge. The icon should turn to red indicating the ruleset has
been activated. Gray indicates the rule is deactivated.

5 Click on the + beside the Set clock edge icon to view the arguments for this rule.

Rules can have the following arguments:

 Label: represents the label of the rule. To edit this label, click on the blue text.

 Message: Message associated with the rule. To edit the message, click on blue text.

 Severity: Severity of the rule (note, warning, error, and fatal). To change the severity, press right but-
ton on blue text to make severity menu appear and change the severity.

 Html: Html address of html document associated to the rule. To edit the address, click on blue text.

 Value: Some rules have may have a fixed value. To edit the value, click on blue text or press right
button, depending on the rule.

6 For our example, we are going to change Severity to Warning (amber). Right-click over the blue text
beside Severity, move the cursor down, and change error to warning. The Set clock edge icon should
change from red to amber.

7 From the menu bar, select Build > Build and Compile. After a few moments, you should see the fol-
lowing message in the Result Frame of the main window:
*** 1 VHDL rule created.

8 The Policy Manager window will appear and the new policy will be present in the Set of Policies
pane.
Using the Wizard 12© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Rule Creation Wizard Rule Specifier Tutorial
Exercise: Try adding more rules to your policy. Edit the rules with the text editor and with the
mouse-click feature then recompile to see the results.
Using the Wizard 13© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5. Basics of Rule Creation
VRSL can be thought of as a meta or macro language with only six commands: FORCE, NO, LIMIT,
SET, MAX, and MIN. Each command has a precise syntax with allowed keywords.

Two terms have specific definitions in VRSL: template and attribute. A template defines a "snapshot"
of how the VHDL code should appear. An attribute represents the VHDL construct that is to be con-
strained.
Using the Wizard 14© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.1 The Six LEDA Commands (ProVHDL)
The following table lists the syntax for the LEDA commands in abbreviated form. There are exceptions
to this syntax that will be discussed throughout the tutorial.

where
A = primary template or secondary template | A’ = A, local attribute, or aggregate attribute

A’’ = A or all | A’’’ = list of templates
L = limit list | X = set_attribute| Y = STRING, number, or Enumerated type value
M = max_min_attribute | N = a number | [] denotes optional parameters

For an explanation of these terms, see the Appendix.

Command Syntax Description

FORCE
force A’ [in A’’] Reports error if VHDL construct is absent.

force default in constant_declaration

NO
(two versions)

no A’ [in A’’]
no A’’’ in A [of A]

Reports error if VHDL construct is present.

no process_statement in entity_declaration

LIMIT limit A [in A’’] to L Reports error if VHDL construct does not match
one of a given set.

limit clock to CLOCK_WITH_ID

SET set X [in A’’] to Y Reports error if VHDL construct does not match
fixed value.

set edge in clock to rising

MIN min M [in A] is N Constrains the number of occurrences of VHDL
construct to a minimum value.

min low_bound is -2147483647

MAX max M [in A] is N Constrains the number of occurrences of VHDL
construct to a maximum value.

max dimension_count in unconstrained_array_definition is 1
The Six LEDA Commands (ProVHDL) 15© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.2 Commands and General Rule Writing Guidelines
The remainder of this tutorial is divided into the following command sections:

FORCE Command
NO Command
LIMIT Command
SET Command
MAX/MIN Command

Each section contains examples designed to give you an introduction to the basics of rule writing. The
examples are chosen to give you a feel for VRSL’s capabilities (what it can do) and the syntax of writ-
ing rules (how to do it). Examples denoted by a VHDL(e.g., Example 12: VHDL) include VHDL code to fur-
ther demonstrate the use of the rule.

All terminology used for writing rules comes from either the IEEE Standard 1076-1993 VHDL Lan-
guage Reference Manual (LRM) or the LEDA ProVHDL Rule Specificier User Manual (User Manual).
The LRM is the basis upon which the User Manual was created. The User Manual also contains a dou-
ble cross-referenced index of templates and attributes called the SpecDex which is designed to be used
as an “online” reference (PDF format).

While a few of the terms used by LEDA are unique to LEDA, nearly all of the terms can be found in the
LRM. If you have a User Manual or LRM available, try to look up these terms and become more famil-
iar with them. This will help in your understanding of VRSL. The appendix in this tutorial has exam-
ples of some frequently-used templates and attributes taken from the User Manual.

Note: Note that carriage returns have been inserted in the tutorial example messages to facilitate reading.
When writing code, do not use carriage returns for messages; all message code lines must be continuous
(i.e., no carriage returns inserted before the end).

Code as it is shown in this tutorial:

 message "Only Flip-flops with synchronous resets are allowed

 in the design according to current specs"

Code as it should be written in VRSL:

 message "Only Flip-flops with synchronous resets are allowed in the
design according to current specs"
Commands and General Rule Writing© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.3 FORCE Command

force A’ [in A’’]

where
A = primary template or secondary template
A’ = A, local attribute, or aggregate attribute

A’’ = A or all

The FORCE command can be thought of as a requirement that at least one occurrence of a particular
construct be present in the VHDL code.

 Example 1: FORCE command (rule basics)

As our first example of the FORCE command, we are going to create a rule that makes deferred con-
stant declarations illegal. The following code shows how we can write this rule.

Example_1:

 force default in constant_declaration

 message "Deferred constant declarations are illegal"

 severity ERROR

In this example, default is an attribute within the context of constant_declaration. The
attribute represents the VHDL clause that is to be constrained. The context indicates the circumstances
under which the command (constraint) is to be applied.

Notice the message and severity lines in the code. The message line contains the text that will be dis-
played when the rule is violated. The severity line indicates the level of the violation (note, warning,
error, and fatal). If these lines of code are not present, the rule will not be flagged and you will have no
way of knowing that the rule has been violated. Therefore, omit the message and severity lines only
under special circumstances.

Regarding terminology, the LRM defines constant declaration (LRM §4.3.1.1) as follows:

constant_declaration ::=

constant identifier_list : subtype_indication [:= expression] ;

If you look in the User Manual, you will see the following definition for
constant_declaration:

Primary template belonging to classes: OBJECT_ITEM

Attribute Kind Limit_Kind

identifier template ID
FORCE Command 17© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
subtype_indication template subtype_indication

default template EXPRESSION

declarative_region template REGION

deferred local

Notice the occurrence of default (in bold) in the definition. Also notice that
constant_declaration is a primary template in the User Manual.

Note: Reference information will be provided for the first three examples in this tutorial. It is left as an exercise
for you to use the LRM and the User Manual to find information for the remaining examples. The User
Manual has a double cross-referenced index of templates and attributes called the SpecDex. Many
novice users find this index, particularly the Attribute x Template index, helpful in understanding VRSL.

 Example 2: HTML error reporting

For our second example, we are going to write a rule requiring that process sensitivity lists be complete.
Additionally, we will include some HTML code that will provide additional information about errors.
The following code shows how we can write this rule.

Example_2:

 force complete_sensitivity in process_statement

 message "Missing or redundant signals in sensitivity list"

 severity ERROR

Sometimes we may need more explanation of a rule violation than the single-line error message that
pops up on screen. This can be accomplished by inserting an HTML reference document below the
message line.

force complete_sensitivity in process_statement

 message "Missing or redundant signals in sensitivity list"

 html_document "rmm_rtl_coding_guidelines.html#G_5_5_5_1"

 severity ERROR

When the rule is violated, the user is directed to the HTML document where more information is avail-
able. Notice that the format includes an optional link within the HTML document (#G_5_5_1_1) to the
specific location of the reference.
FORCE Command 18© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
Exercise: Using the very first exercise in this tutorial, add an html_document reference line
of code and recompile. For the reference document, either create a simple HTML
document or just reference a known HTML address.

The terms complete_sensivity and process_statement can be found in the User Manual
as a local attribute and a primary template, respectively. Although process_statement is defined
in the LRM, complete_sensivity is not found in the LRM.

 Example 3: hardware rule

For our third example, we are going to write a hardware rule requiring that synchronous resets be
present in all flip-flops. A hardware rule controls the “hardware semantics” of VHDL. This means cer-
tain VHDL constructs infer specific hardware features if the description is synthesized. The following
code shows how we can write this rule.

Example_3:

 force synchronous_reset in flipflop

 message "Flip-flops with synchronous resets only"

 severity ERROR

Both synchronous_reset and flipflop can be found in the User Manual as primary tem-
plates, however neither term is found in the LRM. Be aware that some terms may be found in the User
Manual and not in the LRM. Conversely, some terms may be found in the LRM and not in the User
Manual.

 Example 4: VHDL template basics

We are now going to write a rule that will formally introduce the concept of templates. Understanding
templates is one of the keys to learning VRSL.

5.3.1 Templates

A template defines a snapshot of how the VHDL code should appear. Templates can also be thought of
as basic elements of VRSL code that are used to build a rule or even another template. Templates can be
either pre-packaged (primary template or secondary template) or user-defined. The template always
precedes the code that calls it.

For our example, we want to write a rule requiring that signal declarations in packages have default val-
ues. For this rule, we will first create a template named PKG_SIG_DECL. Note that the name of the
template is our choice, however upper-case lettering is a convention that helps identify templates in the
VRSL code.
FORCE Command 19© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 template PKG_SIG_DECL is signal_declaration

 force default

 end

VHDL Code

The following VHDL code demonstrates the use of this rule to flag an error.

PACKAGE example4_pkg IS

 -- Program memory:

 CONSTANT sg1 : NATURAL ; -- Will fire, because there is no

 default value

 CONSTANT sg2 : NATURAL := 16; -- OK, default value is 16

 CONSTANT sg3 : NATURAL ; -- Will fire, because there is no

 default value

 CONSTANT sg4 : NATURAL := 2* sg2; -- OK, default value is 2*sg2

END example4_pkg

Regarding the VRSL code we just wrote, note the similarity of the template syntax to that of the six
basic LEDA commands:

template C is A

where

C = the name of the template
A = primary template or secondary template

All templates have this general form with the template description (code) falling between the tem-
plate and end statements. The template description can contain multiple lines of code.

Getting back to the function of our code, the force default line requires (forces) this template to
be default with regard to signal declarations. In effect, this template is only looking for VHDL code that
deals with default signal declarations.

The next step in writing our rule is to implement a LIMIT command that will actually be our rule. The
next section of the code looks like this:

 limit signal_declaration in package_declaration to PKG_SIG_DECL

 message "Signal declarations in packages must have default value"

 severity ERROR

When we assemble the two parts, the code looks like this:
FORCE Command 20© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 template PKG_SIG_DECL is signal_declaration

 force default

 end

Example_4:

 limit signal_declaration in package_declaration to PKG_SIG_DECL

 message "Signal declarations in packages must have default value"

 severity ERROR

This example introduces you to the basics of templates. As a short exercise, look up the
signal_declaration in both the LRM and the User Manual. Try and understand the similarities
and differences between the terminology used in each manual. Also study the syntax and structure of
the basic template used in this example. Remember that understanding templates is one of the keys to
learning VRSL.
FORCE Command 21© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.4 NO Command

Two versions:

no A’ [in A’’]
no A’’’ in A [of A]

where
A = primary template or secondary template
A’ = A, local attribute, or aggregate attribute

A’’ = A or all
A’’’ = list of templates

The NO command can be thought of as a requirement that a particular construct be absent in the VHDL
code.

 Example 5: NO command without context

In this first example of the NO command, we will write a simple rule without context. The rule requires
that alias declarations be ignored. The following code shows how we can write this rule.

Example_5:

 no alias_declaration

 message "Alias declarations are ignored"

 severity WARNING

 Example 6: VHDL NO command with context

In our next example of the NO command, we will add context to the command. This first rule we are
writing requires that process statements be ignored in (the context of) entity declarations. The following
code shows how we can write this rule.

Example_6a:

 no process_statement in entity_declaration

 message "Process statements are ignored in entities"

 severity WARNING

VHDL Code

The following VHDL code demonstrates the use of this rule to flag an error.
NO Command 22© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
--

-- ENTITY DECLARATION --

--

-- LIBRARY DEFINITIONS

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY example_6a_en IS

 GENERIC (

 width : NATURAL := 16

);

 PORT (

 clk : IN STD_LOGIC; -- clock

 reset_n : IN STD_LOGIC; -- reset, active low

 en : IN STD_LOGIC; -- enable, active high

 d : IN STD_LOGIC_VECTOR(width -1 DOWNTO 0); -- data in

 q : OUT STD_LOGIC_VECTOR(width -1 DOWNTO 0) -- data out

);

 reg: PROCESS (clk) <===== Will fire

 BEGIN

 IF RISING_EDGE(clk) THEN

 IF reset_n = '0' THEN

 q <= (OTHERS => '0');

 ELSE

 IF en = '1' THEN

 q <= d;

 END IF;

 END IF;

 EN IF;

 END PROCESS reg;

END example_6a_en;

The second rule for this example is left as an exercise for you. See if you can complete the rule in the
following exercise.

Exercise: Write a rule that requires that port default values be ignored. Hint: The context for
this rule is a primary template that can be found in the User Manual and also in the
very first exercise in this tutorial. Fill in your answer below.
NO Command 23© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
no default in _______________________
message "Port default values are ignored"
severity WARNING

Example_6b:

 no default in port_declaration

 message "Port default values are ignored"

 severity warning

 Example 7: NO inferring a hardware rule

The use of latches is generally considered poor coding practice. We will use this example to write a rule
that globally prohibits latches in VHDL code. Since a latch is hardware, this is another example of a
hardware inference rule similar to the one we saw in Example3.

Example_7:

 no latch

 message "Avoid using latches in design"

 html_document "rmm_rtl_coding_guidelines.html#G_5_5_2_1"

 severity ERROR

 Example 8: NO command used with a template

In this example, we introduce the use of a NO command with a template. The rule we are writing pro-
hibits the use of an XNOR binary operator.

 template NO_XNOR is binary_operation

 limit operator_symbol to "STD.STANDARD.XNOR"

 end

Example_8:

 no NO_XNOR in binary_operation

 message "STD.STANDARD.XNOR operator not allowed"

 severity ERROR

Pay particular attention to how the NO command calls the template in this example.
NO Command 24© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
Exercise: Try to write a rule that prohibits the use of the XOR binary operator.

 Example 9: expressions in attribute names

In this example, we want write a rule to prohibit the use of expressions in attribute names. First, we cre-
ate a template using a NO command without context in which expressions are prohibited in attribute
names. Next, we use the LIMIT command to constrain the VHDL code according to the template.

 template ATTR_NAME is attribute_name

 no expression

 end

Example_9:

 limit attribute_name to ATTR_NAME

 message "Expressions in attribute names are illegal"

 severity ERROR
NO Command 25© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.5 LIMIT Command

limit A [in A’’] to L*

where
A = primary template or secondary template
A’’ = A or all
L = limit list

Whereas the FORCE and NO commands represent two extremes, the LIMIT command allows VHDL
constructs to fall within a prescribed legal set.

 Example 10: clock naming (basic LIMIT command)

Since we have already seen the LIMIT command used with other commands, it will be helpful to look
at a standalone LIMIT command. Suppose we want to limit all clocks to one name (e.g., “clk”). We can
do this with the following code.

template CLOCK_WITH_ID is clock

 limit identifier to "^clk"

end

Example_10:

 limit clock to CLOCK_WITH_ID

 message "A clock signal should be called 'clk'"

 severity ERROR

Pay particular attention to the overall structure of the code. We first create the CLOCK_WITH_ID tem-
plate to describe the clock by limiting the clock name to “clk.” We then write the rule that limits all
clocks to the name (“clk”) as described in the template.

 Example 11: VHDL LIMIT command and combinatorial logic

In this example, we will use the LIMIT command to write a rule that prohibits combinatorial processes
from inferring registers or latches. The following code shows how we can write this rule.

 template PSS_COMBINATIONAL is process_statement

 force combinatorial

 end

Example_11:
LIMIT Command 26© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 limit process_statement to PSS_COMBINATIONAL

 message "Only combinatorial process statements allowed"

 severity WARNING

The template section of code constrains for combinatorial (combinational) logic while the LIMIT com-
mand enforces the rule by limiting process statements to combinational logic only.

VHDL Code

The following VHDL code demonstrates the use of this rule to flag an error.

library IEEE;

use IEEE.std_logic_1164.all;

entity example_11_en is

 port (clk : in std_logic;

 data_in : in std_logic_vector(63 downto 0);

data_out : out std_logic_vector(63 downto 0)

);

end example_11_en;

architecture RTL of example_11_arch is

 signal ff_in : std_logic;

 signal ff_out : std_logic;

 signal comb : std_logic;

begin

 Data_input: process -- <==== Will fire here

 begin

 wait until clk'event and clk = '1';

ff_in <= data_in(55);

 end process Data_input;

 comb <= not ff_in;

 Data_output : process -- <==== Will fire here

 begin

 wait until clk'event and clk = '0';

 ff_out <= comb;

 end process Data_output;

 data_out(63) <= ff_out;

 data_out(62 downto 0) <= (others => '0');
LIMIT Command 27© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
end RTL;

 Example 12: VHDL full LIMIT command

This example demonstrates the use of the full LIMIT command. The rule requires entities be named
according to a particular format.

Example_12:

 limit file_name in entity_declaration to "<entity>.vhd"

 message "Entities should be limited to files named <entity_name>.vhd"

 severity WARNING

VHDL Code

The following VHDL code demonstrates the use of this rule to flag an error.

library IEEE;

use IEEE.std_logic_1164.all;

entity example_18_en is

 port (clk : in std_logic;

 clk1 : in std_logic;

 data_in : in std_logic_vector(63 downto 0);

 data_out : out std_logic_vector(63 downto 0)

);

end example_18_en;

 Example 13: LIMIT command with multiple templates

This example demonstrates the use of the LIMIT command with multiple templates. It also introduces
the use of the SET command. We are writing a rule that prohibits the use of literals in signal assignment
statements.

 template LOGIC_1 is literal

 limit value to "1"

 set value_type to enumerated_literal_type

 end
LIMIT Command 28© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 template LOGIC_0 is literal

 limit value to "0"

 set value_type to enumerated_literal_type

 end

 template LOGIC_Z is literal

 limit value to "Z"

 set value_type to enumerated_literal_type

 end

 template INTEGER_0 is literal

 limit value to 0

 set value_type to integer_literal_type

 end

 template INTEGER_1 is literal

 limit value to 1

 set value_type to integer_literal_type

 end

Example_13:

 limit literal in signal_assignment_statement to LOGIC_1,

 LOGIC_0,

 LOGIC_Z,

 INTEGER_0,

 INTEGER_1

 message "No literals in signal assign. statements-- use constants"

 html_document "rmm_rtl_coding_guidelines.html#G_5_3_2_1"

 severity WARNING

Note how all the templates are called from a single LIMIT command (bolded).

 Example 14: LIMIT command and conditionals

In this example, we formally introduce the use of conditionals (if... then) with LIMIT commands. It is
important to understand that LIMIT commands are the only LEDA commands that use conditional
statements.

The rule we are writing constrains the prefix of active low and high resets. To write this rule, we first
write four templates that do the following: 1) define high asynchronous reset edges, 2) define high
asynchronous names, 3) define low asynchronous reset edges, and 4) define low asynchronous names.
We then test for the conditions we have defined in the templates and if met, the rule is implemented
with the appropriate LIMIT command. Before we write the rule, however, let’s look at an important
concept.
LIMIT Command 29© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.5.1 BETTER Rule Writing Paradigm

At this point, you should notice a pattern emerging when writing rules in VRSL: the basic elements of
the rule description become templates which then become rules. We now introduce the concept of add-
ing conditional logic statements in our code to translate these template elements into complex rules.
This BETTER rule writing paradigm is summarized as follows:

Basic rule descriptive Elements become
Templates which using logic TranslatE into Rules.

Using the BETTER paradigm, you should be able to sketch out the basic structure of complex rules
even though you may not be able to fill in all the keywords. Let’s try to apply BETTER to our rule for
this example (constraining the prefix of active low and high resets).

According to the first part of BETTER, we know the Basic rule Elements will become Templates. The
second part of BETTER tells us we will then use these templates with conditional logic (LIMIT com-
mands) to TranslatE into our Rule.

First, we will set up the templates. We know we need at least two templates for this rule since we are
dealing with high and low resets. Recalling our template syntax (template C is A), we can easily
sketch in the basic template structure as follows:

template (high asynch reset) is A

 LEDA command

 end

 template (low asynch reset) is A

 LEDA command

 end

Recalling the second paragraph at the beginning of this example, we will actually need four templates
to get the job done. Try the following exercise before you see how the template code is written.

Exercise: Since four templates are needed, we know that each reset (high or low) will have
two templates. For each reset, we will need to define the edge type and naming
convention. See if you can sketch out the four templates using the User Manual.
Hint: Substitute asynchronous_reset for A in the code above.

Hopefully, you got something similar to the following for the templates:

template HIGH_ASYNCH_RESET is asynchronous_reset

 set edge to High_Level

 end

 template HIGH_ASYNCH_RESET_NAME is asynchronous_reset

 limit identifier to "^rst","^rst$"
LIMIT Command 30© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 end

 template LOW_ASYNCH_RESET is asynchronous_reset

 set edge to Low_Level

 end

 template LOW_ASYNCH_RESET_NAME is asynchronous_reset

 limit identifier to "^rst_n$"

 end

Now, let’s finish up the rule using the last part of the BETTER paradigm (i.e., use conditional logic to
TranslatE into our Rule). This means we need conditional LIMIT commands (if… then) to test for con-
ditions and implement rules.
LIMIT Command 31© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
The overall structure of the code should look like the following:

(Note that the templates are symbolic for instructional purposes)

 template xyz-high1 is A

 template xyz-high2 is A

 template xyz-low1 is A

 template xyz-low2 is A

 limit A to (xyz-high1, xyz-low1) severity NOTE

 if (xyz-high1) then

 limit A to (xyz-high2)

 message "message text goes here"

 severity ERROR

 end if

 if (xyz-low1) then

 limit A to (xyz-low2)

 message "message text goes here"

 severity ERROR

 end if

The difficulty now is determining A. If you did the previous exercise, you would know that A
for the templates and the LIMIT commands is asynchronous_reset. Filling in the
LEDA commands are now all we have left to complete our code.

Exercise: Try to fill in the rest of the code for this rule using the BETTER paradigm. Remember
to use the reference manual.

When we put everything together, the complete code looks like the following:

 template HIGH_ASYNCH_RESET is asynchronous_reset

 set edge to High_Level

 end

 template HIGH_ASYNCH_RESET_NAME is asynchronous_reset

 limit identifier to "^rst","^rst$"

 end

 template LOW_ASYNCH_RESET is asynchronous_reset

 set edge to Low_Level

 end
LIMIT Command 32© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 template LOW_ASYNCH_RESET_NAME is asynchronous_reset

 limit identifier to "^rst_n$"

 end

-- Use ^rst for active high reset signals, rst_n for active low

 limit asynchronous_reset to HIGH_ASYNCH_RESET,LOW_ASYNCH_RESET severity NOTE

 if HIGH_ASYNCH_RESET then

 Example_14:

 limit asynchronous_reset to HIGH_ASYNCH_RESET_NAME

 message "Active high resets should be prefixed with rst"

 html_document "rmm_rtl_coding_guidelines.html#G_5_2_1_9"

 severity WARNING

 end if

 if LOW_ASYNCH_RESET then

 Example_14:

 limit asynchronous_reset to LOW_ASYNCH_RESET_NAME

 message "Active low resets should be called rst_n"

 html_document "rmm_rtl_coding_guidelines.html#G_5_2_1_9"

 severity WARNING

 end if

You should review this example, paying particular attention to the application of the BETTER
paradigm and the overall structure of the code. Conditional LIMIT commands are one of the
most powerful tools in VRSL.
LIMIT Command 33© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.6 SET Command

set X [in A’’] to Y

where
A = primary template or secondary template
A’’ = A or all
X = set_attribute
Y = STRING, number, or Enumerated type value

The SET command sets an attribute to a certain value.

 Example 15: full SET command

We have already seen a SET command used in a previous example with a LIMIT command.

 set value_type to enumerated_literal_type

It should be obvious that the SET command is setting an attribute to a value. In our first example of the
SET command, we will use the full SET command to write a rule to make sure that for loops have glo-
bally static bounds. The following code shows how we can write this rule.

Example_15:
 set evaluation_time in for_loop_statement to Globally_Static_Evaluation

 message "For loops must have globally static bounds"

 severity ERROR

 Example 16: SET command with template

In this example, we demonstrate the use of a template with a SET command. The rule we are writing
prohibits real literals.

 template BAD_LIT is literal

 set value_type to real_literal_type

 end

Example_16:

 no BAD_LIT in literal
SET Command 34© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 message "Real literals are not allowed"

 severity ERROR
SET Command 35© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
5.7 MAX/MIN Command

max M [in A] is N
min M [in A] is N

where
A = primary template or secondary template
M = max_min_attribute
N = a number

The MAX/MIN command is used to establish maximum/minimum values for certain attributes. Note
that you can only set maximum and minimum values for certain templates.

 Example 17: VHDL clock expressions

In this example of a MAX command, we establish a maximum of one clock expression per process.

Example_17:

 max clock_expression_count in process_statement is 1

 message "Only one clock expression per process is allowed"

 severity ERROR

VHDL Code

The following VHDL code demonstrates the use of this rule to flag an error.

architecture RTL of example_18_en is

 signal ff_in : std_logic;

 signal ff_out : std_logic;

 signal comb : std_logic;

begin

 Data_input: process (clk) -- <==== Will NOT fire here

 begin

 if (clk'event) and clk = '1' then

 ff_in <= data_in(55);

 end if;

 end process Data_input;

 comb <= not ff_in;
MAX/MIN Command 36© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial

 Data_output : process (clk, clk1) -- <==== Will fire here

 begin

 if (clk'event) and clk = '0'then

 ff_out <= comb;

 end if;

 if (clk1'event) and clk1 = '0' then

 ff_out <= comb;

 end if;

 end process Data_output;

 data_out(63) <= ff_out;

 data_out(62 downto 0) <= (others => '0');

end RTL;

 Example 18: duplicate rule labels and messages

This example shows the use of a common label and message with multiple rules. Notice the duplicate
rule labels and messages. Since the rule we are writing prohibits multi-dimensional arrays, we must
establish the maximum dimension (1) for both unconstrained and constrained arrays. Thus, we are able
to use the same rule label and error message.

Example_18:

 max dimension_count in unconstrained_array_definition is 1

 message "Multi-dimension arrays are illegal"

 severity ERROR

Example_18:

 max dimension_count in constrained_array_definition is 1

 message "Multi-dimension arrays are illegal"

 severity ERROR

At first glance the MAX commands look identical, but if you look closer you

will see that their context (bolded) is different.

 Example 19: template inheritance

In this example, we use a MAX command to show how one template can inherit another. The rule is
limiting the entity name to 20 characters.
MAX/MIN Command 37© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Basics of Rule Creation Rule Specifier Tutorial
 template SHORT_ENTITY_ID is identifier

 max character_count is 20

 end

 template SHORT_NAMED_ENTITY is entity_declaration

 limit identifier to SHORT_ENTITY_ID

 end

Example_19:

 limit entity_declaration to SHORT_NAMED_ENTITY

 message "Name of entity is too long - Max 20 characters"

 html_document "rmm_rtl_coding_guidelines.html#G_5_2_1_4"

 severity ERROR

Notice how the second template inherits from the first template. This inheritance process is valid for
any of the LEDA commands.

 Example 20: multiple MAX/MIN commands

This example shows how MAX and MIN commands can be combined in a single template. The rule
sets the range for integer values.

 template MAX_INTEGER_RANGE is range

 max high_bound is 2147483647

 min low_bound is -2147483647

 end

Example_20:

 limit range in integer_type_definition to MAX_INTEGER_RANGE

 message "Integer value must be in range -(2**31-1) to (2**31-1)"

 severity ERROR

 end
MAX/MIN Command 38© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
6. Appendix

6.1 Definition of Command Terminology
Following is a partial listing of keywords, templates, and attributes used in VRSL. This information
comes from the ProVHDL Rule Specificier User Manual. The User Manual also contains a double
cross-referenced index of templates and attributes called the SpecDex which is designed to be used as
an “online” reference (PDF format).
Definition of Command Terminology 39© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
6.1.1 Commonly-used Primary Templates (primary_template)

Access_type_definition aggregate alias_declaration

Architecture_body assertion_statement Association_list

Asynchronous_reset attribute_declaration attribute_name

Attribute_specification binary_operation binding_indication

Block_configuration block_specification block_statement

Case_statement clock Component_configuration

Component_declaration component_instantiation_statement Component_specification

Concurrent_procedure_call_statement conditional_signal_assignment Configuration_declaration

configuration_specification constant_declaration Constrained_array_definition

disconnection_specification entity_declaration Enumeration_type_definition

exit_statement file_declaration file_layout

file_type_definition for_loop_statement formal_parameter

Flipflop floating_type_definition function_call

generate_statement group_declaration group_template_declaration

Identifier if_statement integer_type_definition

interface_constant_declaration interface_file_declaration interface_signal_declaration

interface_variable_declaration latch Literal

loop_statement next_statement package_body

package_declaration physical_type_definition procedure_call_statement

process_statement range record_type_definition

report_statement return_statement selected_signal_assignment

shared_variable_declaration signal_assignment_statement signal_declaration

subprogram_body subprogram_declaration subtype_declaration

subtype_indication synchronous_reset type_declaration

unconstrained_array_definition use_clause Unconstrained_array_definition

variable_assignment_statement variable_declaration wait_statement

|while_loop_statement
Definition of Command Terminology 40© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
6.1.2 Commonly-used Secondary Templates (secondary_template)

allocator association_element conditional_waveforms

element_association header_comment indexed_name

selected_name selected_waveforms simple_name

slice_name statement_format Waveform

waveform_element
Definition of Command Terminology 41© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
6.1.3 Commonly-used Local Attributes (local_attribute)

actual_designator actual_function actual_parameter_part

actual_type_mark after_expression Architecture

architecture_name attribute_designator block_statement_label

buffer bus character_literal

choice combinatorial complete_sensitivity

component condition Configuration

constant declarative_region Default

deferred design_library discrete_range

downto else Entity

entity_designator error_id Expression

file file_name formal_function

formal_type_mark function generate_statement_label

generic_map_aspect group guard_expression

guarded impure In

incomplete_type_declaration index_specification Inertial

initialize_signals initialize_variables Inout

input label left_expression

library_clause limit_id linkage

logical_name maximum_variable_usage multiple_choices

name name_prefix named_association

null null_range null_statement

object_definition open open_kind

operator_symbol others out

output out_params_fully_assigned package

port_map_aspect positional_association postponed

procedure pure qualified

range_attribute read_write record_aggregate

register reject_expression report_expression

resolution_function return return_last
Definition of Command Terminology 42© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
Commonly-used Aggregate Attributes (aggregate_attribute)

limit_list

one_of_limit_list, allof_id_list, allof_template_list

set_attribute
base, base_specifier, evaluation_time, value_type

max_min_attribute

right_expression sensitivity severity_expression

signal subtype target

timeout to top_architecture

top_configuration top_entity transport

tristate type type_conversion

type_mark unaffected units

use_exponent value variable

waveform_expression

association_element_s condition_ s conditional_waveforms

declaration_profile_s element_association_s index_constraint_s

selected_waveforms statement_profile_s subtype_definition_s

waveform_element

asynchronous_reset_signal character_count clock_expression_count

clock_signal connections dimension_count

element_count file_length high_bound

line_count low_bound object_count

parameter_count unit_count waveform_count
Definition of Command Terminology 43© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Appendix Rule Specifier Tutorial
Definition of Command Terminology 44© Synopsys, Inc. 2001

LEDA 3.0 - ProVHDL

Index
B
BETTER Rule Writing Paradigm 30

C
Checker

running 9
creating a Policy 5
creating a project file 8
creating a Verilog file 7
creating a VRSL Ruleset file 5

F
first exercise 4

L
LEDA Commands 15
limit list 43

N
NO Command 22

P
policy

creating 5
project file

creating 8

R
Rule Creation basics 14
Rule Creation Wizard 11
ruleset file

creating 5

T
template
i-1

defined 20
i-2

V
Verilog file

creating 7
VRSL and VHDL

difference 4
VRSL defined 4
i-3

	Preface
	1. Introduction
	2. Overview
	3. First Exercise
	3.1 Creating a VRSL Ruleset file and Policy
	3.2 Creating a Verilog file
	3.3 Creating a Project file
	3.4 Running the Checker

	4. Rule Creation Wizard
	4.1 Using the Wizard

	5. Basics of Rule Creation
	5.1 The Six LEDA Commands (ProVHDL)
	5.2 Commands and General Rule Writing Guidelines
	5.3 FORCE Command
	5.4 NO Command
	5.5 LIMIT Command
	5.6 SET Command
	5.7 MAX/MIN Command

	6. Appendix
	6.1 Definition of Command Terminology

