

Pro-Set ™ 700 Co-injection Software

(Cat. No. 6500-PS7COINJ)

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. "Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls" (Publication SGI-1.1) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will the Allen-Bradley Company be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, the Allen-Bradley Company cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of the Allen-Bradley Company is prohibited.

Throughout this manual we use notes to make you aware of safety considerations.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.

Attentions help you

- identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is especially important for successful application and understanding of the product.

PLC, PLC–5, Pro-Set 700 and ControlView are trademarks of Allen-Bradley Company, Inc. Windows is a trademark of Microsoft.

Using This Manual	<u>P-1</u>
What's in This Preface?	<u>P-1</u>
Who Should Use This Manual?	<u>P-1</u>
What Should I Already Know?	<u>P-1</u>
How Do I Use This Manual?	<u>P-2</u>
What Conventions Are Used in This Manual?	<u>P-3</u>
What Other Publications Are Available?	<u>P-3</u>
What Is the Pro-Set 700 Co-injection Software Directory Structure?	<u>P-4</u>
What 's Next?	<u>P-5</u>
Understanding Co-injection Sequences	<u>1-1</u>
What's in This Chapter?	1-1
What Are the Injection Sequences?	1-1
What's Next?	1-2
Installing Co-injection Modules	<u>2-1</u>
What's in This Chapter?	2-1
Step 1. Choose the Correct Power Supply	<u>2-1</u>
Step 2: Determine I/O Chassis Addressing Mode	<u>2-2</u>
Step 3: Determine the Modules' Position in the Chassis	<u>2-2</u>
Step 4: Key the I/O Chassis for the Co-injection Modules	<u>2-3</u>
Step 5: Determine and Record I/O Ranges	<u>2-4</u>
Step 6: Make Jumper Connections on the Modules' Circuit Boards	2-6
Step 7: Install the Modules into the Chassis	<u>2-9</u>
Step 8: Ground and Shield I/O Devices	2-11
Step 9: Make a Proper Ground Connection	2-12
Step 10: Familiarize Yourself With the PLC Processor Power	0 12
Sten 11: Wire the Modules	2-10
Step 12: Power up the Modules	2_16
Step 13: Read Module Indicator Lights	2_16
Step 14: Enter I/O Banges on the Module Configuration Screen	2-19
Step 15: Use the Rack Configuration Screen to Select	
Operating Mode	2-20
What's Next?	2-21

Setting up Inputs to the Modules	<u>3-1</u>
What's in This Chapter?	3-1
Before You Begin	<u>3-2</u>
Setting up Screw Position A and B	<u>3–3</u>
Setting up Screw Pressure A and B	<u>3-4</u>
Setting up Screw RPM A and B	<u>3–5</u>
What 's Next?	<u>3-6</u>
Setting up Profiles	<u>4-1</u>
What's in This Chapter?	<u>4–1</u>
Setting Up Injection Profiles	<u>4-2</u>
Setting Up Pack Profiles	4-4
Setting up Plastication Profiles	<u>4-6</u>
What's Next?	4-7
Reference Information	<u>A-1</u>
What's in This Appendix?	A-1
Alarms Supplied with Pro-Set 700 Co-injection Software	A-1
QI Module Download Bits	A-4
QI Module Error Codes	A-4
Diagnostics Screen Task Definition Files	<u>A-5</u>
Diagnostics Screen Tag Names and PLC Processor Addresses	<u>A-6</u>
Setup Screen Task Definition Files	<u>A-9</u>
Setup Screen Tag Names and PLC Processor Addresses	<u>A-12</u>
Rack Configuration Setup Screen	<u>A-12</u>
Plastic Molding Module(s) Setup Screen	<u>A-13</u>
Screw Position Setup Screen	<u>A-14</u>
Screw Pressure Setup Screen	<u>A-15</u>
Screw RPM Setup Screen	<u>A-16</u>
Screw Jogs Setup Screen	<u>A-17</u>
Injection Valves Setup Screens	<u> </u>
Tag Names and PLC Processor Addresses for	A 10
% Output Commands	<u>A-19</u>
Tack valves Selup Screens	<u>A-20</u>
% Output Commands	A-21
Hold Valves Setup Screens	A-22
Tag Names and PLC Processor Addresses for	
% Output Commands	<u>A-23</u>
Pre-decompress Valves Setup Screen	<u>A-24</u>
Plastication Valves Setup Screen	<u>A-25</u>
Tag Names and PLC Processor Addresses for	
% Output Commands	<u>A-26</u>
Post-decompress Valves Setup Screen	<u>A-27</u>
Injection Ramp Rates Setup Screen	<u>A-28</u>

Pack Ramp Rates Setup Screen	. <u>A-29</u>
Hold Ramp Rates Setup Screen	. <u>A-30</u>
Pre-decompress Ramp Rates Setup Screen	. <u>A-31</u>
Plastication Ramp Rates Setup Screen	. <u>A-32</u>
Post-decompress Ramp Rates Setup Screen	. <u>A-33</u>
Injection Profile Setup Screen	. <u>A-34</u>
Pack Profile Setup Screen	. <u>A-37</u>
Hold Profile Setup Screen	. <u>A-39</u>
Plastication Profile Setup Screen	. <u>A-42</u>
Process Screen Task Definition Files	. <u>A-45</u>
Process Screen Tag Names and PLC Processor Addrsses	. <u>A-46</u>
Injection Profile Process Screen	. <u>A-46</u>
Injection Transition Parameters Profile Process Screen	. <u>A-49</u>
Pack/Hold Profile Process Screen	. <u>A-51</u>
Pack/Hold Transition Parameters Profile Process Screen	. <u>A-55</u>
Plastication Profile Process Screen	. <u>A-56</u>
Plastication Transition Parameters Profile Process Screen	. <u>A-59</u>
Quick Start for the Experienced User	5.1
	·· <u> </u>
What's in This Chapter?	. <u>5-1</u>
Understanding the Tasks You Will Perform	. <u>5-2</u>
Performing Setup Tasks	. <u>5–3</u>
Finding Reference Information	. <u>5-4</u>
Performing Other Tasks	. <u>5-4</u>
Installing Co-injection Software	. <u>5–5</u>
Exporting a Current Database	. <u>5–5</u>
Making File Backups	. <u>5–7</u>
Installing the Software onto the Operator Interface	. <u>5–8</u>
Running the Alarm Conversion Utility	. <u>5-9</u>
Merging the Exported and Co-injection Databases	. <u>5–10</u>
Importing the Merged Database	. <u>5–11</u>
What 's Next?	5-14

Using This Manual

package, you must first install the basic Pro-Set 700 system (catalog number 6500-PS700). Contact your Allen-Bradley sales representative for more information.

How Do I Use This Manual?

We designed this manual according to the tasks you perform to install and use co-injection modules and software.

What Conventions Are Used in This Manual?

In this manual, we use these conventions:

This symbol calls your attention to helpful information.

Example:

This convention presents an example.

We show pathnames, commands and filenames like this:

/ABPS700/CTK/TSK

We show variable text that you type like this:

filename.tdb or FILENAME.TDB

What Other Publications Are Available?

This table shows you some other publications you might need if you have other questions about Pro-Set 700 software.

Publication	Publication Number	
Pro-Set 700 Jobsetting Guide	6500-6.9.3	-
Pro-Set 700 Operator Interface Installation Manual	6500-6.2.1	
Pro-Set 700 Reference Manual	6500-6.4.3	
Pro-Set 700 User Manual	6500-6.5.18	
ControlView Runtime Reference Manual	6195-6.5.4	
ControlView Statistical Process Control User Manual	6190-6.5.20	
Plastic Molding Module Reference Manual	1771-6.6.88	

To install Pro-Set 700 co-injection software, refer to the Pro-Set 700 Co-injection Software Release Note, Pub. 6500-

What Is the Pro-Set 700 Co-injection Software Directory Structure?

Here is a visual directory tree for all the files in the $\verb+ABPS700+$ directory.

Important: Files highligted with a gray bar have been added to the core Pro-Set 700 software package.

C:\ABPS700	
ALARM	Alarm message files
CFG	ControlView/Pro-Set 700 configuration files
——СТК	Pro-Set 700 tasks
TSK	Pro-Set 700 tasks
DB	Pro-Set 700 database
PS700 ALM DAT	Pro-Set 700 application database Alarm files Data files
LST	Temporary files
	Temporary files
ERR	Error message files
INI	Initialization files
KEY	Key definition files
LOG	Activity and alarm logger
MACHINE	Machine setups
MCR	Pro-Set 700/ControlView macros
MENU	ControlView menu files
MGX	Mouse GRAFIX files
└── MGX	Mouse GRAFIX files
WORK	Mouse GRAFIX files
MOLDPART PART	Mold/part configuration files Part setups
	Screen Text files
USER	User-created or modified Screen Text files
SECURITY	Security and password files
SPC	Statistical Process Control configuration files
SPI	SPI device definition text and binary fles
ТD	Task Definiton files
BITMAPS USER	Bitmap graphic files for Task Definition screens User-created or modified Task Definition files
UTIL	Utility programs

What 's Next?

 In Chapter 1, you see at a glance how to set up your system.

Understanding Co-injection Sequences

What Are the Injection Sequences?

In this chapter, we describe the modules' various operation sequences. You will learn about

- how the module coordinates co-injection sequences
- typical applications for each operation sequences

Important: This chapter describes only the sequences the co-injection modules control. For setup information, read the chapters that follow.

Co-injection modules are used in molding machines with two injection heads. One module controls each head. You can coordinate the injection cycles of the two heads to do the following:

- inject two colors of material in the same part, keeping the colors separate
- begin injecting material that will form the skin of a part, maintain low flow on that injection head, begin filling the core of the part, then finish injecting the skin (for example, injecting unused [virgin] and regrind material in the same part, keeping the two materials separate)
- inject two different material types

We show you the co-injection sequences in the table on the following page.

Important: We refer to the co-injection modules as modules A and B.

In This Sequence	The Co-injection Module Does This
A only	Commands the machine to inject a single material from injection head A
B only	Commands the machine to inject a single material from injection head B
A then B	Module A completely injects all material. Then module B completely injects all material.
A and B	Both modules begin the cycle at the same time.
ABA	Module A begins the cycle, moving screw A to a pre-determined position, then holding the screw in position. Module B begins moving screw B to its setpoint. Then module A starts again at some pre-determined position of screw B and continues until screw A reaches its end-of-profile setpoint.
B then A	Module B completely injects all material. Then module A completely injects all material.
BAB	Module B begins the cycle, moving screw B to a pre-determined position, then holding the screw in position. Module A begins moving screw A to its setpoint. Then module B starts again at some pre-determined position of screw A and continues until screw B reaches its end-of-profile setpoint.

Table 1.ATable	1.B	Co-in	jection	Sequences
----------------	-----	-------	---------	-----------

What's Next?

We tell you how to install the modules in Chapter 3.

Installing Co-injection Modules

 What's in This Chapter?
 This chapter describes how to to install and configure co-injection modules as an addition to the basic Pro-Set 700 package. When you complete this chapter, you will be able to

- choose the correct power supply
- determine I/O chassis addressing mode
- determine the modules' position in the I/O chassis
- key chassis slots for the modules
- determine and record I/O ranges
- make jumper connections on the modules' circuit boards
- install the modules
- ground and shield I/O devices
- make a proper ground connection
- understand the PLC processor power distribution circuit
- wire the modules
- power up the modules
- read module indicator lights
- enter I/O ranges on the Module Configuration screen
- use the Rack Configuration screen to select operating mode

Step 1. Choose the Correct Power Supply

The modules are powered through the chassis backplane with a power supply. To select the correct power supply for the system, ensure that the total current load for all modules does not exceed the power supply's maximum load specification.

To calculate the total current load,

1. Add both co-injection modules' current load to the loads of all other modules in the chassis.

Important: The co-injection module is rated at 1.2A. Check specifications for all other modules in the I/O chassis.

- **2.** Compare your total with the power supply's maximum load rating.
- **3.** If the total voltage exceeds the power supply's maximum load rating, select a larger power supply. See your Allen-Bradley representative for more information.

Important: We recommend a standalone power supply, such as catalog number 1771-P1. This power supply is mounted beside the I/O chassis and provides an output of up to 16A.

Step 2: Determine I/O Chassis Addressing Mode

Each QI module has 4 inputs and 4 outputs and is compatible with single-slot addressing.

Step 3: Determine the Modules' Position in the Chassis

Here is the module layout for the co-injection system.

1771-P7 Power Supply	PLC 1771 Processor QI Modu A	e Module B	1771- 1771- TCM SPI Module Module	1771 QDC Module	dules ired
----------------------------	---------------------------------------	------------	---	-----------------------	---------------

I/O Chassis

1771-P7 Power Supply: Provides power to the chassis backplane

PLC Processor: Provides communication to and from the modules and the host computer

- 1771-QI Co-injection Modules: Control Inject functions
- 1771-TCM Temperature Control Modules: Monitor setpoint and actual machine temperatures
- 1771-SPI Module: Provides SPI-approved communication protocol to and from remote devices
- 1771-QDC Plastic Molding Module: Controls Clamp and Eject functions

I/O Modules (as required): Provide additional functions as required by your application

Step 4: Key the I/O Chassis for the Co-injection Modules

Use the plastic keying clips shipped with each I/O chassis to key the appropriate I/O slots to accept only the Co-injection modules.

I/O modules are slotted in two places on the rear edge of the circuit board. The keying clips you install must correspond to these slots to allow the module to be inserted only in the designated slot.

ATTENTION: Use your fingers to insert the keying clips, and ensure you've placed the clips correctly. Using a tool or incorrectly keying the module may damage the backplane connector and may cause system faults.

To key the chassis for the module,

- **1.** Place keying clips between these numbers (as labeled on the upper backplane connector):
 - 20 and 22
 - 26 and 28
- **2.** Use your fingers to insert the keying bands.
- To change the position of the keys, remove the bands with your fingers. Then re-install the bands in a different position.

Step 5: Determine and Record I/O Ranges

You must determine module I/O ranges before you can make jumper selections. To determine I/O ranges, define and record the following information about your control system. We provide an example worksheet and a blank worksheet that you can complete.

- co-injection module operating modes
- signal ranges of the I/O devices connected to the modules
- outputs to the selected control valve and other valves

Follow these steps to determine I/O ranges. Complete one worksheet for each module.

- **1.** Determine whether the module will control injection unit A or B.
 - module A controls injection unit A
 - module B controls injection unit B
- **2.** Select the inputs you want the modules to monitor from the four options on the worksheet.
- **3.** Select screw A or B for inputs 1 through 4. Your screw selections must match your module selections.
- **4.** Refer to the specifications that accompanied your sensors to determine the operating range.
- **5.** Select the outputs you want to assign from the four options on the worksheet.
- **6.** Determine the sensors and valves that the injection molding machine will use to monitor and control system operation.
- 7. Circle the I/O ranges for each sensor and valve used.

Important: The following worksheets shows an example of a module configuration. Input 3 is selectable between screw RPM and cavity pressure.

Module A	\mathbf{V}
Module B	

Module Operating Modes: (Select A or B)	Signal Ranges:
Input 1: screw position	0 to 10V dc 1 to 5V dc 4 to 20 mA
Input 2: screw pressure	0 to 10V dc 1 to 5V dc 4 to 20 mA
Input 3 :screw RPM or cavity pressure	0 to 10V dc 1 to 5V dc 4 to 20 mA
Input 4: other screw position	0 to 10V dc 1 to 5V dc 4 to 20 mA
Outputs:	Signal Ranges:
Output 1: injection pressure	-10 to 10V dc 0 to 10V dc 4 to 20 mA
Output 2: injection flow	-10 to 10V dc 0 to 10V dc 4 to 20 mA
Output 3: screw RPM	-10 to 10V do 0 to 10V dc 4 to 20 mA
Output 4: not connected	-10 to 10V dc 0 to 10V dc 4 to 20 mA

Here is a blank worksheet you can photocopy and use to record your own I/O ranges.

Module A	1
Module B	

Module Operating Modes: (Select A or B)		Signal Ranges	:
Input 1: screw position	0 to 10V dc	1 to 5V dc	4 to 20 mA
Input 2: screw pressure	0 to 10V dc	1 to 5V dc	4 to 20 mA
Input 3: screw RPM or cavity pressure	0 to 10V dc	1 to 5V dc	4 to 20 mA
Input 4: other screw position (select A or B)	0 to 10V dc	1 to 5V dc	4 to 20 mA
Outputs:	Signal Ranges:		
Output 1: injection pressure	-10 to 10V dc	0 to 10V dc	4 to 20 mA
Output 2: injection flow	-10 to 10V dc	0 to 10V dc	4 to 20 mA
Output 3: screw RPM	-10 to 10V dc	0 to 10V dc	4 to 20 mA
Output 4: not connected	-10 to 10V dc	0 to 10V dc	4 to 20 mA

Step 6: Make Jumper Connections on the Modules' Circuit Boards

After determining I/O operating ranges (see the worksheet in this chapter) you make jumper connections on the module circuit board to select the ranges. We show you how to make the jumper connections in this section.

Important: Handle the circuit board by the edges to avoid touching conductive surfaces or components.

1. Remove the module cover plate (on the label side) by removing the four screws holding it in place. See the figure below.

2. Remove the circuit board from the module housing.

3. Orient the circuit board as shown in the figure below.

4. Locate the jumper plugs.as shown in the figure below.

5. Use a pair of small needle-nose pliers to pick up and place the jumper plugs. Refer to the table below for the correct settings.

Important: If you select current output with jumper plugs E10, E14, E13, and/or E17, you must select the 4 to 20 mA position with E11, E12, E15, and/or E16.

ATTENTION: If an output is unconnected, set the jumper (E11, E12, E15, and/or E16) for that output to 0 to 10 V dc (bottom position). This sets the valve for bi-directional valve operation. Setting the jumpers for -10 to +10 V dc and later configuring the output as unconnected causes the modules to output -10 V dc when stopped, or when a system reset occurs, and all outputs are forced to 0% (i.e. 0 % output equals -10 V dc).

Jumper	Function	Setting
E1	Run/calibrate	Calibrate = right Run = left (default)
E5	I/O density	Standard = top (default) Do not use bottom position
E6 E7 E8 E9	Input 1 (Screw A position) Input 2 (Screw pressure) Input 3 (Screw RPM or cavity pressure) Input 4 (Screw B position)	Voltage = right (default) Current = left
E10 E14 E13 E17	Output 1 (Valve 1) Output 2 (Valve 2) Output 3 (Valve 3) Output 4 (Valve 4)	Current = top Voltage = bottom (default)
E11 E12 E15 E16	Output 1 (Valve 1) Output 2 (Valve 2) Output 3 (Valve 3) Output 4 (Valve 4)	-10 to +10 Vdc = top 0 to +10 V dc or 4 to 20 mA = bottom (default)

Important: Be careful not to over-tighten the screws when re-assembling the module. Over-tightening can damage the module cover.

6. Re-assemble the module.

Step 7: Install the Modules into the Chassis

Follow these steps to install the Co-injection module:

ATTENTION: Remove power from the chassis backplane and disconnect the cable from the module before installing or removing a module. Failure to remove power may cause injury, damage, or loss of performance.

- **1.** Turn off power to the I/O chassis.
- **2.** Place the module in the plastic tracks (on the top and bottom of the slot) that guide the module into position.

3. Slide the module into the chassis. Apply firm, even pressure on the module to seat it against the backplane connector.

ATTENTION: Do not force the module into the backplane connector. Doing so may damage the module or the connector.

- **4.** Snap the chassis latch over the top of the module to secure it in the chassis.
- 5. Attach the wiring arm (1771-WF) to the rack.

Step 8: Ground and Shield I/O Devices

Analog inputs and outputs are sensitive to electrical noise. Be sure to properly shield all devices. Follow these guidelines:

- Use 22-gauge (or larger) twisted-pair cable, 100% shielded with drain wire. For distances greater than 50 ft. (15.3 m), use 18-gauge cable.
- Ground the cable shield at one end only, generally at the sensor or amplifier end. Do not shield the cable at the I/O chassis end. See the figures that follow.

- Ground the cable shields to a low-impedance earth ground of less than 1/8 Ω .
- Do not connect any ground to input common (terminal 14), unless you experience unacceptable electrical noise interference.
- Place high-voltage Class A wiring and low-voltage Class B wiring in separate grounded conduits.

- In parallel runs, separate the Class A and Class B conduit by at least 1 ft. (0.92 m).
- Where conduit runs must cross, cross them at right angles.

Important: If you experience unacceptable electrical interference,

- Disconnect the shield from the input sensor. Then connect the input cable shield to input common (terminal 14).
- Disconnect the output cable from the valve amplifier. Then connect the output cable shield to output common (terminals 8, 6, 4, and/or 2).

Step 9: Make a Proper Ground Connection

ATTENTION: Electrostatic discharge can damage semiconductor devices inside the module if you do not handle the module properly. Follow the guidelines below.

- 1. Wear a wrist-strap grounding device.
- 2. Attach the free end to a good earth ground.
- **3.** Touch a grounded object (such as a metal enclosure) to rid yourself of electrostatic discharge before you handle the module.
- 4. Do not touch the module backplane connector or pins.
- **5.** Store the module in an anti-static bag when you are not using it or during shipment.

2–13

Step 10: Familiarize Yourself With the PLC Processor Power Distribution Circuit

Here is a typical grounded power distribution circuit for PLC processors. For ungrounded systems, or for more information on grounding and wiring, refer to Allen-Bradley Programmable Controller Wiring and Grounding Guidelines, Pub. 1770-4.1,.

- To minimize EMI generation, you should connect a suppression network: for 120 V ac, use Allen-Bradley cat. no. 700-N24; for 220/240 V ac, use cat. no. 599-KA04.
- To minimize EMI generation, you should connect a suppression network: for 120 V ac, use Allen-Bradley cat. no. 599-K04; for 220/240 V ac, use cat. no. 599-KA04.
- For a power supply with a groundable chassis, this represents connection to the chassis only. For a power supply without a groundable chassis, this represents connection to both the chassis and the GND terminal.
- In many applications, a second transformer provides power to the input circuits and power supplies for isolation from the output circuits.
- Reference the current NEC code and ANSI B151.1-1984 for wiring guidelines.
 - To minimize EMI generation, suppression network should be connected across coils of electromagnetic devices.

10907-l

Step 11: Wire the Modules

Use the wiring arms (provided with the modules) to wire the modules. The wiring arm lets you install or remove the modules from the chassis without rewiring. Wiring arm terminals are numbered in descending order from the top down, starting with terminal 18.

Important: Use shielded cable between the modules.

- See the figure below to wire module A.
- See the figure on the next page to wire module B

Important: You can wire input 3 for screw RPM or cavity pressure signals. Screw RPM is the default.

Step 12: Power up the Modules

- **1.** Make all power connections from the I/O chassis to the in-plant power source.
- 2. Apply power to the chassis power supply.

Step 13: Read Module Indicator Lights

The module front panel contains three indicators that you use to troubleshoot the module during integration or operation. Check the lights to ensure that no fault conditions are present.

This LED	ls
ACTIVE	green
FAULT	red
COMM	yellow

ACTIVE indicator	FAULT indicator	COMM indicator	means	so you should
flashing	off	off	The module has completed power-up diagnostics. Hard- ware and firmware OK, await- ing download of MCC block.	Download the MCC block by using the keyswitch to place the PLC-5 processor in run mode from program mode.
flashing	red	yellow	programming error in the last MCC the module received	1. Find and correct the MCC programming error.
				Download the MCC to the module.
flashing	red	off	• the last BTW the module received did not have a recognizable block ID, and	1. Find and correct the MCC programming error.
			 the last command block the module received had a programming error 	2. Download the MCC to the module.
			programming or or	3. Verify block IDs in your BTW data files.
flashing	flashing	flashing	you put the run/calibrate jumper (E1) in the Calibrate position	1. Remove jumper E1 from the Calibrate position.
				2. Place jumper E1 in the Run position.
green	off	yellow	normal operation	do nothing
green	off	off	the last command block the module received did not have a recognizable block ID	Verify block IDs in your BTW data files
green	red	yellow	programming error	1. Find and correct the MCC programming error.
				2. Download corrected data to the module.
green	red	off	 the last BTW the module received did not have a recognizable block ID, and 	1. Find and correct the MCC programming error.
			• the last command block the module received had a	2. Download the MCC to the module.
			programming error	3. Verify block IDs in your BTW data files.

In the following table, we list the operating conditions reported by the modules and how to correct them.

2–18

ACTIVE indicator	EALU Tindicator	COMM indicator		
ACTIVE Indicator	FAULT Indicator	COMM Indicator	means	so you snould
off	off	flashing	Communications error. The module does not complete continuous transmission of	1. Verify that the PLC-5 processor is in Run mode.
			status blocks to the PLC-5 processor. The module will not operate until continuous	2. Re-seat the co-injection module in the I/O chassis.
			BTR communication is re-es- tablished with the processor.	Check your ladder logic for problems.
off	red	yellow or off	Hardware fault. The module is inoperable.	1. Cycle power to the module.
				2. Remove the existing module from the I/O chassis and replace it with a new one.
				3. Return the bad module to the factory for repair.

Step 14: Enter I/O Ranges on the Module Configuration Screen

Enter the information you recorded on the worksheet in this chapter on the Plastic Molding Module(s) Configuration screen.

	Plastic	: Molding	Module(s	;)
	Input Range Se	lections	Output Range	Selections
[Screw A Position	0 to 10 VDC	Output #1	-10 to 10 VDC
01/0	Screw A Pressure	0 to 10 VDC	Output #2	0 to 10 VDC
41/6	Screw A RPM	0 to 10 VDC	Output #3	-10 to 10 VDC
[Cavity Pressure	0 to 10 VDC	Output #4	0 to 10 VDC
Г	0 B B	0 4- 10 100	A	10 4- 10 100
	SCREW B POSITION	0 to 10 VDC	Output #1	-10 to 10 VDC
01/1	Screw B Pressure	0 to 10 VDC	Output #2	-10 to 10 VDC
41/1	Screw B RPM	0 to 10 VDC	Output #3	-10 to 10 VDC
	Cavity Pressure	0 to 10 VDC	Output #4	-10 to 10 VDC
-				
	Clamp Position	0 to 10 VDC	Output #1	-10 to 10 VDC
000/5	Clamp Pressure	0 to 10 VDC	Output #2	0 to 10 VDC
40075	Ejector Position	0 to 10 VDC	Output #3	-10 to 10 VDC
[Ejector Pressure	0 to 10 VDC	Output #4	0 to 10 VDC
[Screw RPM A/Cavity	Pressure Switch (Over Delay 0.00	
[Screw RPM B/Cavity	Pressure Switch (Over Delay 0.00	Min Max

Security Level: 3 Jul 24, 1995 1:00:00 pm

- 1. If you have not already done so, attach the PLC to the OI. Refer to the Pro-Set 700 Operator Interface Installation Manual, Pub. 6500-6.2.1).
- **2.** From the Hardware Setup menu, select the Configure Plastic Molding Module(s) screen.
- 3. Move the cursor to the appropriate field on the screen .

4. Press . You see a pop-up menu.

5. Place the cursor on the selection you want to make and press

. You can select input and output voltages for the QI and QDC modules.

- **6.** Press [k-] to confirm your selections.
- 7. Press to download your selections to the PLC-5 processor.

Step 15: Use the Rack Configuration Screen to Select Operating Mode

Use the Pro-Set 700 Co-injection Rack Configuration screen to select operating modes for each module.

- 1. Attach the PLC to the OI. Refer to the Pro-Set 700 Operator Interface Installation Manual (Pub. 6500-6.2.1).
- 2. From the Setup menu, select the Rack Configuration screen.
- 3. Move the cursor to the appropriate field on the screen .
- **4.** Press . You see a pop-up menu.
- 5. Place the cursor on the selection you want to make and press

- PLC type
- machine type
- mode of operation

6. Press [n] to confirm your selections.

7. Press to download your selections to the PLC-5 processor.

Security Level: 3 Jul 24, 1995 1:00:00 pm

What's Next?

 In Chapter 4, we tall you how to get up inputs to the module
 In Chapter 4, we ten you now to set up inputs to the module.

Setting up Inputs to the Modules

What's in This Chapter?

The co-injection modules need to know the characteristics of the valves and sensors you use to position and control your co-injection heads. In this chapter, we tell you how to enter inputs to control

- screw position A and B
- screw pressure A and B
- screw RPM A and B, and/or
- cavity pressure

In this section you first enter inputs so that you can run the machine. Then you must jog the machine to span the sensors and valves. Once you have jogged the machine, you will know the exact values you must enter to run the machine to make parts.

Important: Two screens are provided to set up inputs to modules A and B. One screen lets you set up module A, and the other lets you set up module B. We typically show only the screen for module B, because the module B screen is the same as the module A screen.

Before You Begin

After you have selected an operating range for your sensors, you must select the initial values you use to configure the modules. For example, we show you how to determine these values:

- minimum position
- maximum position
- analog signal at minimum position
- analog signal at maximum position
- minimum pressure
- maximum pressure
- **1.** Use the table below as a guideline when determining initial values.

To Set Up This Input	lf Your	Then Use A Value Equal To
minimum position	-	zero
maximum position	screw is fully extended at the mold end	full travel of the sensor
analog signal at minimum position	sensor is forward-acting sensor is reverse-acting	low end of the selected range high end of the selected range
analog signal at maximum position	sensor is forward-acting sensor is reverse-acting	high end of the selected range low end of the selected range
minimum pressure	-	minimum range value specified by the manufacturer
maximum pressure	-	maximum range value specified by the manufacturer

2. Make a note of the initial values you have selected by writing them down here. You will enter these values on the co-injection screens in the next step.

For This Input	Write The Values You Have Selected in This Column
minimum position	
maximum position	
analog signal at minimum position	
analog signal at maximum position	
minimum pressure	
maximum pressure	

Setting up Screw Position A and B

Follow this procedure to set up screw position A and B.

Security Level: 3 Jul 24, 1995 1:00:00 рм

- 1. If you have not already done so, attach the PLC-5 processor to the operator interface. Refer to the Pro-Set 700 Operator Interface Installation Manual, pub. 6500-6.2.1.
- 2. From the Inputs Setup menu, select the Screw Position B screen.
- **3.** Move the cursor to the appropriate field on the screen.
- **4.** Enter a number between the minimum and maximum in the data entry box.
- **5.** Press [1] to confirm your selections.
- 6. Press to download your selections to the PLC-5 processor.
Setting up Screw Pressure A and B

Follow this procedure to set up screw pressure A and B.

Security Level: 3 Jul 24, 1995 1:00:00 рм

- 1. If you have not already done so, attach the PLC-5 processor to the operator interface. Refer to the Pro-Set 700 Operator Interface Installation Manual, pub. 6500-6.2.1.
- 2. From the Inputs Setup menu, select the Screw Pressure B screen.
- 3. Move the cursor to the appropriate field on the screen.
- **4.** Enter a number between the minimum and maximum in the data entry box.
- **5.** Press [k] to confirm your selections.
- 6. Press 🐨 to download your selections to the PLC-5 processor.

Setting up Screw RPM A and B

Follow this procedure to set up screw RPM A and B.

Important: You can choose either screw RPM and/or cavity pressure for this input. RPM is the default. For information on setting up Cavity Pressure screens, refer to the Pro-Set 700 User Manual, Pub. 6500-6.5.18. For wiring information, see Chapter 4 of this manual.

Security Level: 3 Jul 24, 1995 1:00:00 pm

- 1. If you have not already done so, attach the PLC-5 processor to the operator interface. Refer to the Pro-Set 700 Operator Interface Installation Manual, pub. 6500-6.2.1.
- 2. From the Inputs Setup menu, select the Screw RPM B screen.
- 3. Move the cursor to the appropriate field on the screen .
- **4.** Enter a number between the minimum and maximum in the data entry box.
- **5.** Press [k-] to confirm your selections.
- 6. Press to download your selections to the PLC-5 processor.

What 's Next?

In Chapter 5, we tell you how to set up profiles.

Setting up Profiles

What's in This Chapter?

Now you are ready to set up profiles to control the molding machine's operation. To create profiles, you enter setpoints and values for machine operation. This chapter helps you set up profiles with machine-specific parameters.

To set up Profile screens, you enter machine-specific parameters, such as

- the number of segments in the profile
- gain constants for PID and velocity feedforward
- high-pressure alarm setpoints
- Expert Response Compensation (ERC) setpoints

You enter these parameters on Profile screens.

Important: This chapter tells you how to set up co-injection profiles only. To set up profiles for the clamp and ejector, refer to the Pro-Set 700 Software User Manual, Pub. 6500-6.5.18.

Setting Up Injection Profiles

From the Setup Profiles menu, select the Injection Profile screen.

Security Level: 3 Jul 25, 1995 1:00:00 pm

1. Move the cursor to the data entry fields on the left side of the screen and enter these values:

In This Data Entry Field	Enter This Value	
Number of Segments	about 5 segments, depending on the application	
Proportional Gain for Pressure/Velocity	a value between the min. and max.	
Integral Gain for Pressure	a value betweeen the min. and max.	
Derivative Gain for Pressure/Velocity	leave at default	
Feedforward Gain for Velocity	use only if profile is velocity vs. position	
Pressure Limiting Time Delay	zero (to disable) $^{\textcircled{1}}$	
High Screw Pressure Alarm	zero (to disable) $^{ extsf{(1)}}$	
High Cavity Pressure Alarm	zero (to disable) $^{\textcircled{1}}$	
Minimum ERC % for Pressure/Velocity	leave at default	

 $^{(1)}$ You may want to disable alarms for spanning.

2. Move the cursor to the selection fields on the right side of the screen and enter these values:

In This Selection Field	Select From These Choices
Profile Control Mode	Velocity vs. Position (for spanning)
PID Algorithm	Independent Gains (AB)
Velocity Units % Velocity Or Inches/Second	
Suspended State	Pressure Control or Set Output
Open/Closed Loop Selected for:	Open Loop for all selections (required for spanning)
Open Loop to Shot Size for:	Yes for all selections (required for spanning)
ERC Enable/Disable for:	select Disable for all selections (required for spanning)

Setting Up Pack Profiles

From the Setup Profiles menu, select the Pack Profile screen.

- Security Level: 3 Jul 25, 1995 1:00:00 рм
- **1.** Move the cursor to the data entry fields on the left side of the screen and enter these values:

In This Data Entry Field	Enter This Value	
Number of Segments	one segment, minimum	
Proportional Gain for Screw/Cavity Pressure	a value betwenn the min. and max.	
Integral Gain for Screw/Cavity Pressure	leave at default	
Derivative Gain for Screw/Cavity Pressure	a value beween the min. and the max.	
High Screw/Cavity Pressure Alarm	zero (to disable) $^{ extsf{(1)}}$	
Minimum ERC % for Screw/Cavity Pressure	leave at default	
Pre-decompress Watchdog Timer (Hold)	a value greater than expected for the movement	
Pre-decompress High Pressure Alarm (Hold)	zero (to disable) $^{(1)}$	

 $^{\textcircled{1}}$ You may want to disable alarms for spanning.

2. Move the cursor to the selection fields on the right side of the screen and enter these values:

In This Selection Field	Select From These Choices	
Profile Control Mode	Screw Pressure vs. Time	
Screw PID Algorithm	Independent Gains (AB)	
Cavity PID Algorithm	Independent Gains (AB)	
Action at End of Profile (Hold)	Bridge to next movement $^{(1)}$	
Action at End of Pre-decompress (Hold)	Bridge to next profile $^{ extsf{(1)}}$	
Open/Closed Loop Selected for:	Open Loop (required for spanning)	
ERC Enable/Disable for:	Disabled (required for spanning)	

^① If not bridging, write corresponding ladder logic. See the Pro-Set 700 Reference Manual, Pub. 6500-6.4.3.

Setting up Plastication Profiles

From the Setup Profiles menu, select the Plastication Profile screen.

Security Level: 3 Jul 25, 1995 1:00:00 рм

1. Move the cursor to the data entry fields on the left side of the screen and enter these values:

In This Data Entry Field	Enter This Value	
Number of Segments	about 5 segments, depending on the application	
Proportional Gain for Pressure/RPM	a value between the min. and max.	
Integral Gain for Pressure/RPM	leave at default	
Derivative Gain for Pressure/RPM	a value between the min. and max.	
Plastication Watchdog Timer	a value greater than expected for the profile	
Plastication High Pressure Alarm (for Profile)	zero (for spanning)	
Minimum ERC % for Pressure/RPM	leave at default	
Post-decompress Watchdog Timer (Hold)	a value greater than expected for the movement	
Post-decompress High Pressure Alarm (Hold)	zero (to disable spanning)	

2. Move the cursor to the selection fields on the right side of the screen and enter these values:

In This Selection Field	select From These Choices	
Profile Control Mode	Pressure vs. Position	
Pressure PID Algorithm	Independent Gains (AB)	
RPM PID Algorithm	Independent Gains (AB)	
Action at End of Plastication Profile	Bridge ^①	
Open/Closed Loop Selected for:	Open Loop (required for spanning)	
ERC Enable/Disable for:	Disabled (required for spanning)	

^① If not bridging, write corresponding ladder logic. See the Pro-Set 700 Reference Manual, Pub. 6500-6.4.3.

What's Next?

The appendix that follows contains reference information.

Reference Information

What's in This Appendix?

This appendix contains

- codes for alarms supplied with co-injection software
- co-injection (QI) module download bits
- co-injection (QI) module error codes
- Task Definition files for Setup and Process screens
- database tag names and PLC processor addresses

These alarm messages are supplied with Pro-Set 700 Co-injection software. For other alarm messages specific to the Pro-Set 700 core software package, refer to the Pro-Set 700 Reference Manual (Pub. 6500-6.4.3).

These alarm conditions are automatically displayed on the OI when your ladder logic sets corresponding bits in file B46. For information on writing ladder logic for alarms, refer to the Pro-Set 700 Reference Manual.

Alarm Status				
TIME	DATE	ALARM	DESC	RIPTION
221211513111W 12:58:17	<u>37724795</u> 07/24/95	<u>316251</u> 0107	QDC/5 Block Transfer Hold Algorithm Limited	ailure Ka
Alarm Desc			Top Page Page	ACK Alarm Page
Alm# 0045 12	:58:17 07/	24/95	QDC/5 Block Transfer F	ailure Alm Count:000
			Security Level: 0	Jul 24, 1995 01:00:00 p

Alarms Supplied with Pro-Set 700 Co-injection Software

B46/xxx	Description
40	QI/0 Block Transfer Failure
41	QI/1 Block Transfer Failure
42	Screw A Position Deviation Between QI/0 and QI/1
43	Screw B Position Deviation Between QI/0 and QI/1
45	QDC/5 Block Transfer failure
46	Screw A Positon Sensor Failure
47	Screw B Position Sensor failure
192	MCCB Programming Error
193	JGCB Programming Error
194	INCB Programming Error
195	IPCB Programming Error
196	PKCB Programming Error
197	HDCB Programming Error
198	HPCB Programming Error
199	PRCB Programming Error
200	PLCB Programming Error
201	PPCB Programming Error
202	PSCB Programming Error
203	DYCB Programming Error
204	RLCB Pprogramming Error
205	Double Command Error
206	Screw B Over-travel at Mold End
207	Screw B Over-travel at Top
208	Screw B Position Sensor Failure
209	Screw B Pressure Sensor Failure
210	Screw B RPM Sensor Failure
211	Cavity B Pressure Sensor Failure
212	Jog B Command Error
213	Injection B Command Error
214	Pack B Command Error
215	Hold B Command Error
216	Pre-decompress B Command Error
217	Plastication B Command Error
218	Post-decompression Command Error
219	Maximum Screw B Over-pressure
220	Maximum Screw B Over-speed
221	Maximum Cavity B Over-pressure
222	High RPM During Screw B Rotate Jog
223	High Pressure During Screw B Jog
224	High Screw B Pressure at Inject
225	High Cavity Pressure B During Inject

B46/xxx	Description	
226	High Screw B Pressure During Pack	
227	High Screw B Pressure During Pack	
228	High Screw B Pressure During Hold	
229	High Cavity Pressure During Hold	
230	High Pressure During Pre-decompression B	
231	High Pressure During Plasticate B	
232	High Pressure During Post-decompress B	
233	Watchdog Timeout at Pre-decompress B	
234	Watchdog Timeout at Plasticate B	
235	Watchdog Timeout at Post-decompress B	
236	Injection B Algorithm Limited	
237	Pack B Algorithm Limited	
238	Hold B Algorithm Limited	
239	Plastication B Algorithm Limited	
240	Velocity Injection B Pressure Limited	

QI Module Download Bits

If you download co-injection (QI) module B tags from a screen, these bits are set.

Tag Name	QI Block	PLC Processor Address (by bit)	PLC Processor Address (by word)	
DOWNLOADB.WORD1	MCCB	B21:16/0	B21/256	
	JGCB	B21:16/1	B21/257	
	FCCB	B21:16/2	B21/258	
	SCCB	B21:16/3	B21/259	
	TCCB	B21:16/4	B21/260	
	LPCB	B21:16/5	B21/261	
	CPCB	B21:16/6	B21/262	
	INCB	B21:16/7	B21/263	
	IPCB	B21:16/8	B21/264	
	PKCB	B21:16/9	B21/265	
	HDCB	B21:16/10	B21/266	
	HPCB	B21:16/11	B21/267	
	PRCB	B21:16/12	B21/268	

QI Module Error Codes

Here are the co-injection error codes and their description.

QI Block	Word	Means
MCC	602	Word 2 is not configured for co-injection
	507	Input 4 is not configured
	263	Word 63 is out of range (0000 - 0099)
IPC	207	Word 7 is out of range (0000 – 0099)
	408	Word 8 is out of range (Word 23 \leq Word 8 \leq Word 24
	455	Word 55 is out of range (Word 9 \leq Word 55 \leq Word 10)
	456	Word 56 is out of range (Word 41 \leq Word 56 \leq Word 42)
INC	261	Word 61 is out of range (0000 - 9999)
	262	Word 62 is out of range (0000 - 9999)
	263	Word 63 is out of range (0000 - 9999)
	264	Word 64 is out of range (0000 - 9999)
DYC	503	DYC03.B05 is selecting an invalid cavity input
	569	DYC03.B05 was switched before a time interval or during a profile

Diagnostics Screen Task Definition Files

Here is a listing of the Task Definition files for the Pro-Set 700 Co-injection Diagnostics screen. You must have this information to execute the screens or make changes to it.

Screen	.TSK File	.TDT/.TDB File	.TXT File
Diagnostics	RUNTD	ADDIAGCI	ADBIAGCI

Diagnostics Screen Tag Names and PLC Processor Addresses

The Pro-Set 700 Co-injection database tag names and corresponding PLC processor addresses for the Diagnostics screen fields are listed here. You need to know these tag names and PLC processor addresses to create and modify ladder logic code.

	Dia	gnostics	Mode: Set-up
	Part Name: Pro-S	et 700 Co-Injection	Phase: Idle
Pro-Se QI/ QI/ QDC/	t 700 CI Rev 1.00 0 Series/Rev 1 Series/Rev 5 Series/Rev	Q1/0 & QDC/5 STATUS Prog Error Block Ø Prog Error Code Ø Send Block Ø Q1/1 STATUS Ø Prog Error Block Ø	SPI STATUS Error Block Error Device Ø Error Code Ø PLC Mode Prog Test Run
		Prog Error Block 0	Total Hours 0.0
	INPUTS	Send Block Ø	Total Cycles Ø
QI/0 QI/1	# DESCRIPTION 1 Injection Position 2 Injection Pressure 3 Cawity Pressure 4 Injection Position 1 Injection Position 2 Injection Pressure 3 Cavity Pressure 3 Screw RPM B 3 Cavity Pressure	ACTUAL SIGNAL A 0.00 0.00 A 0.00 0.00 0.0 0.00 B 0.00 0.00 B 0.00 0.00 B 0.00 0.00 B 0.00 0.00 B 0.00 0.00 C 0.00 0.00 C 0.00 0.00	OUTPUTS <u># 2</u> 1 0.00 2 0.00 3 0.00 4 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00
QDC/5	4 Injection Position 1 Clamp Position 2 Clamp Pressure 3 Ejector Position 4 Ejector Pressure	A 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00	4 0.00 1 0.00 2 0.00 3 0.00 4 0.00 Min 0 Max 27

Security Level: 3

Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Pro-Set 700 CI Rev	GENERAL.PS7_REV	None
QI/0 Series/Rev	PLCMODE.REV_QI0	A25:15
QI/1 Series/Rev	PLCMODE.REV_QI1	A25:16
QDC/5 Series/Rev	PLCMODE.REV_QDC5	A25:17
QI/0 & QDC/5 Prog Error Block	SYS61	N40:213
QI/0 & QDC/5 Prog Error Code	SYS62	N40:214
QI/0 & QDC/5 Send Block	DYC61	N40:173
QI/1 Prog Error Block	SYSB61	N127:213
QI/1 Prog Error Code	SYSB62	N127:214
QI/1 Send Block	DYCB61	N127:173
SPI Error Block	None	B23:6/4-6
SPI Error Device	SPI.ERR_DEV	N24:6
SPI Error Code	SPI.ERR_CODE	N24:7
PLC Mode-Program	PLCMODE.PROGRAM	S:1/3
PLC Mode-Test	PLCMODE.TEST	S:1/2

Field	Tag Name	PLC Processor Address
PLC Mode-Run	PLCMODE.RUN	S:1/1
Total Hours	GENERAL.TOTAL_HRS	F36:4
Total Cycles	GENERAL.TOTAL_CYC_1 GENERAL.TOTAL_CYC_2	N24:32 N24:33
QI/0-Injection Position A (actual)	SYS25	N40:177
QI/0-Injection Position A (signal)	SYS33	N40:185
QI/0-Injection Pressure A (actual)	SYS26	N40:178
QI/0 Injection Pressure A (signal)	SYS34	N40:186
QI/0-Screw RPM A (actual)	SYS31	N40:183
QI/0-Screw RPM A (signal)	SYS39	N40:191
QI/0-Cavity Pressure (actual)	SYS32	N40:184
QI/0-Cavity Pressure (signal)	SYS40	N40:192
QI/0-Injection Position B (actual)	SYSB29	N127:181
QI/0-Injection Position B (signal)	SYSB37	N127:189
QI/1-Injection Position B (actual)	SYSB25	N127:177
QI/1-Injection Position B (signal)	SYSB33	N127:185
QI/1-Injection Pressure B (actual)	SYSB26	N127:178
QI/1–Injection Pressure B (signal)	SYSB34	N127:186
QI/1-Screw RPM B (actual)	SYSB31	N127:183
QI/1-Screw RPM B (signal)	SYSB39	N127:191
QI/1-Cavity Pressure (actual)	SYSB32	N127:184
QI/1-Cavity Pressure (signal)	SYSB40	N127:192
QI/1-Injection Position A (actual)	SYSB30	N127:182
QI/1-Injection Position A (signal)	SYSB38	N127:190
QDC/5-Clamp Position (actual)	SYS27	N40:179
QDC/5–Clamp Position (signal)	SYS35	N40:187

Field	Tag Name	PLC Processor Address
QDC/5-Clamp Pressure (actual)	SYS28	N40:180
QDC/5-Clamp Pressure (signal)	SYS36	N40:188
QDC/5-Ejector Position (actual)	SYS29	N40:181
QDC/5-Ejector Position (signal)	SYS37	N40:189
QDC/5-Ejector Pressure (actual)	SYS30	N40:182
QDC/5-Ejector Pressure (signal)	SYS38	N40:190
QI/0-Output #1	SYS41	N40:193
QI/0-Output #2	SYS42	N40:194
QI/0-Output #3	SYS43	N40:195
QI/0-Output #4	SYS44	N40:196
QI/1-Output #1	SYSB41	N127:193
QI/1-Output #2	SYSB42	N127:194
QI/1-Output #3	SYSB43	N127:195
QI/1-Output #4	SYSB44	N127:196
QDC/5-Output #1	SYS45	N40:197
QDC/5-Output #2	SYS46	N40:198
QDC/5-Output #3	SYS47	N40:199
QDC/5-Output #4	SYS48	N40:200

Setup Screen Task Definition Files

Here is a listing of the Task Definition files for Pro-Set 700 Co-injection Setup screens, as well as other screens you can change with .TDT files. You must have this information to execute the screens or make changes to them.

Setup Screen	.TSK File	.TDT/.TDB File	.TXT File(s)	/P1 Value
Rack Configuration	RUNTD	RACKC_CI	RACKC_CI	
PMM Configuration	PMMC_CI	PMMC_CI	PMMC_CI	
TCM #1 First Setup	RUNTD	TCMC1	TCMC11	TCM2
TCM #2 First Setup	RUNTD	TCMC1	TCMC21	TCM3
TCM #1 Second Setup	RUNTD	TCMC2	TCMC12	TCM2
TCM #2 Second Setup	RUNTD	TCMC2	TCMC22	TCM3
TCM #1 Third Setup	RUNTD	TCMC3	TCMC13	TCM2
TCM #2 Third Setup	RUNTD	TCMC3	TCMC23	TCM3
TCM #1 Tuning Assist	RUNTD	TCMT	TCMT1	TCM2
TCM #2 Tuning Assist	RUNTD	TCMT	TCMT2	TCM3
TCM #1 Alarm Status	RUNTD	ТСМА	TCMA1	TCM2
TCM #2 Alarm Status	RUNTD	ТСМА	TCMA2	TCM3
Screw Position A	HWINPUTS	INJPO_A	INJPO_A	
Screw Position B	HWINPUTS	INJPO_B	INJPO_B	
Screw Pressure A	HWINPUTS	INJPR_A	INJPR_A	
Screw Pressure B	HWINPUTS	INJPR_B	INJPR_B	
Clamp Position	HWINPUTS	CLAPO	CLAPO	
Clamp Pressure	HWINPUTS	CLAPR	CLAPR	
Ejector Position	HWINPUTS	EJEPO	EJEPO	
Ejector Pressure	HWINPUTS	EJEPR	EJEPR	
Screw RPM A	HWINPUTS	SRPM_A	SRPM_A	
Screw RPM B	HWINPUTS	SRPM_B	SRPM_B	
Cavity Pressure	HWINPUTS	CAVPR_CI	CAVPR_CI	
Cavity Pressure A	HWINPUTS	CAVPR_A	CAVPR_A	
Cavity Pressure B	HWINPUTS	CAVPR_B	CAVPR_B	
Inject Jogs A	RUNTD	SJOGS_A	SJOGS_A	
Inject Jogs B	RUNTD	SJOGS_B	SJOGS_B	
Clamp/Eject Jogs	RUNTD	CEJOGS	CEJOGS	
1 st Close Valves	RUNTD	FCCV	FCCV	
2 nd Close Valves	RUNTD	SCCV	SCCV	
3 rd Close Valves	RUNTD	TCCV	TCCV	
LP Close Valves	RUNTD	LPCV	LPCV	
Tonnage Valves	RUNTD	TONV	TONV	
Injection Valves A	RUNTD	INJV_A	INJV_A	
Injection Valves B	RUNTD	INJV_B	INJV_B	
Pack Valves A	RUNTD	PKCV_A	PKCV_A	
Pack Valves B	RUNTD	PKCV_B	PKCV_B	
Hold Valves A	RUNTD	HDCV_A	HDCV_A	
Hold Valves B	RUNTD	HDCV_B	HDCV_B	
Pre-Decompress Valves A	RUNTD	PRCSCV_A	PRCV_A	PRC
Pre-Decompress Valves B	RUNTD	PRCSCV_B	PRCV_B	PRCB

Setup Screen	.TSK File	.TDT/.TDB File	.TXT File(s)	/P1 Value
Plastication Valves A	RUNTD	PLCV_A	PLCV_A	
Plastication Valves B	RUNTD	PLCV_B	PLCV_B	
Post-Decompress Valves A	RUNTD	PRCSCV_A	PSCV_A	PSC
Post-Decompress Valves B	RUNTD	PRCSCV_B	PSCV_B	PSCB
1 st Open Valves	RUNTD	FOCV	FOCV	
2 nd Open Valves	RUNTD	SOCV	SOCV	
3 rd Open Valves	RUNTD	TOCV	TOCV	
Open Slow Valves	RUNTD	OSCV	OSCV	
Ejector Advance Valves	RUNTD	EACV	EACV	
Ejector Retract Valves	RUNTD	ERCV	ERCV	
Dynamic Command Ramp Rates	RUNTD	RAMPS	DYCRR	DYC
1 st Close Ramp Rates	RUNTD	RAMPS	FCCRR	FCC
2 nd Close Ramp Rates	RUNTD	RAMPS	SCCRR	SCC
3 rd Close Ramp Rates	RUNTD	RAMPS	TCCRR	TCC
LP Close Ramp Rates	RUNTD	RAMPS	LPCRR	LPC
Injection Ramp Rates A	RUNTD	RAMPS_A	INJRR_A	INC
Injection Ramp Rates B	RUNTD	RAMPS_B	INJRR_B	INCB
Pack Ramp Rates A	RUNTD	RAMPS_A	PKCRR_A	РКС
Pack Ramp Rates B	RUNTD	RAMPS_B	PKCRR_B	РКСВ
Hold Ramp Rates A	RUNTD	RAMPS_A	HDCRR_A	HDC
Hold Ramp Rates B	RUNTD	RAMPS_B	HDCRR_B	HDCB
Pre-decompress Ramp Rates A	RUNTD	RAMPS_A	PRCRR_A	PRC
Pre-decompress Ramp Rates B	RUNTD	RAMPS_B	PRCRR_B	PRCB
Plastication Ramp Rates A	RUNTD	RAMPS_A	PLCRR_A	PLC
Plastication Ramp Rates B	RUNTD	RAMPS_B	PLCRR_B	PLCB
Post-decompress Ramp Rates A	RUNTD	RAMPS_A	PSCRR_A	PSC
Post-decompress Ramp Rates B	RUNTD	RAMPS_B	PSCRR_B	PSCB
1 st Open Ramp Rates	RUNTD	RAMPS	FOCRR	FOC
2 nd Open Ramp Rates	RUNTD	RAMPS	SOCRR	SOC
3 rd Open Ramp Rates	RUNTD	RAMPS	TOCRR	TOC
Open Slow Ramp Rates	RUNTD	RAMPS	OSCRR	OSC
Ejector Advance Ramp Rates	RUNTD	RAMPS	EACRR	EAC
Ejector Retract Ramp Rates	RUNTD	RAMPS	ERCRR	ERC
1 st Close Profile	RUNTD	FCCP	FCCP	
2 nd Close Profile	RUNTD	SCCP	SCCP	
3 rd Close Profile	RUNTD	TCCP	ТССР	
LP Close Profile	RUNTD	LPCP	LPCP	
Injection Profile A	INJP	INJP_A	INJP_A	
Injection Profile B	INJP	INJP_B	INJP_B	
Pack Profile A	RUNTD	PKCP_A	PKCP_A	
Pack Profile B	RUNTD	PKCP_B	PKCP_B	
Hold Profile A	RUNTD	HDCP_A	HDCP_A	

Setup Screen	.TSK File	.TDT/.TDB File	.TXT File(s)	/P1 Value
Hold Profile B	RUNTD	HDCP_B	HDCP_B	
Plastication Profile A	RUNTD	PLCP_A	PLCP_A	
Plastication Profile B	RUNTD	PLCP_B	PLCP_B	
1 st Open Profile	RUNTD	FOCP	FOCP	
2 nd Open Profile	RUNTD	SOCP	SOCP	
3 rd Open Profile	RUNTD	TOCP	TOCP	
Open Slow Profile	RUNTD	OSCP	OSCP	
Ejector Advance Profile	RUNTD	EACP	EACP	
Ejector Retract Profile	RUNTD	ERCP	ERCP	
Ejector General Profile	RUNTD	EGCP	EGCP	

Setup Screen Tag Names and PLC Processor Addresses

All Pro-Set 700 Co-injection database tag names and corresponding PLC processor addresses for co-injection Setup screen fields are listed here. You need to know these tag names and PLC processor addresses to create and modify ladder logic code.

Rack Configuration Setup Screen

Here are the tag names and PLC processor addresses for the Rack Configuration screen. All of the tags referenced on this screen are in the MCC group except one (GENERAL.CLAMP).

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
PLC Type	MCC.PLC_TYPE	N24:54
Clamp Type	GENERAL.CLAMP	B23/3
QI Module (Screw A)	MCC.QI_0.CONFIG	B23/8
QI Module (Screw B)	MCC.QI_1.CONFIG	B23/10
Temperature Control Module #1	MCC.TCM.SUPPORT8 MCC.TCM2.CONFIG	B23/21 B51/0
Temperature Control Module #2	MCC.TCM.SUPPORT8 MCC.TCM3.CONFIG	B23/21 B51/1
SPI Module	MCC.SPI.SUPPORTED MCC.SPI.CONFIG	B23/20 B23/12
QDC Module	MCC.QDC_5.CONFIG	B23/9

Plastic Molding Module(s) Setup Screen

Here are the tag names and PLC processoraddresses for the Plastic Molding Module(s) screen.

Important: If you use both the Screw RPM and the Cavity Pressure, you must have the same input range selected for both.

	Plastic Molding	ſ Module(s)
	Input Range Selections	Output Range Selections
	Screw A Position 0 to 10 VDC	Output #1 -10 to 10 VDC
01/0	Screw A Pressure 0 to 10 VDC	Output #2 0 to 10 VDC
4170	Screw A RPM 0 to 10 VDC	Output #3 -10 to 10 VDC
	Cavity Pressure 0 to 10 VDC	Output #4 0 to 10 VDC
	Screw B Position 0 to 10 VDC	Output #1 -10 to 10 VDC
	Screw B Pressure 0 to 10 VDC	Output #2 -10 to 10 VDC
Q1/1	Screw B RPM 0 to 10 VDC	Output #3 -10 to 10 VDC
	Cavity Pressure 0 to 10 VDC	Output #4 -10 to 10 VDC
	Clamp Position 0 to 10 VDC	Output #1 -10 to 10 VDC
0.00	Clamp Pressure 0 to 10 VDC	Output #2 0 to 10 VDC
40075	Ejector Position 0 to 10 VDC	Output #3 -10 to 10 VDC
	Ejector Pressure 0 to 10 VDC	Output #4 0 to 10 VDC
	Screw RPM A/Cavity Pressure Switch	Over Delay 0.00
[Screw RPM B/Cavity Pressure Switch	Over Delay 0.00 Min Max

Security Level: 3 Jul 24, 1995 1:00:00 рм

Field	Tag Name	PLC Processor Address
QI/0 and QDC/5 Input Range Selections	MCC03.WORD	B34:34
QI/1 Input Range Selections	MCCB03.WORD	B124:34
QI/0 and QDC/5 Output Range Selections	MCC04.WORD	B34:35
QI/1 Output Range Selections	MCCB04.WORD	B124:35
Screw RPM A/Cavity Pressure Switch Over Delay	MCC63	N40:59
Screw RPM B/Cavity Pressure Switch Over Delay	MCCB63	N127:59

Screw Position Setup Screen

Here are the tag names and PLC processor addresses for the Screw Position Setup screen. All fields on these screens are numeric entry type.

Security Level: 3 Jul 31, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Screw Minimum Position	MCCB09 ZEROAXISB.SCREW.EMIN	N127:5 N24:56
Analog Signal At Minimum Position	MCCB11 ZEROAXISB.SCREWB.SMIN	N127:7 N24:57
Screw Maximum Position	MCCB10 ZEROAXISB.SCREW.EMAX	N127:6 N24:58
Analog Signal At Maximum Position	MCCB12 ZEROAXISB.SCREW.SMAX	N127:8 N24:59
Position Deviation Between QI/0 and QI/1 Alarm Setpoint	MCCB.POSDEVALM	N24:68

Screw Pressure Setup Screen

Here are the tag names and PLC processoraddresses for the Screw Pressure Setup screen. All fields on these screens are numeric entry type.

Security Level: 3 Jul 24

Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Minimum Pressure	MCCB17	N127:13
Analog Signal At Minimum Pressure	MCCB19	N127:15
Maximum Pressure	MCCB18	N127:14
Analog Signal At Maximum Pressure	MCCB20	N127:16
High Pressure Alarm Setpoint	MCCB21	N127:17
Pressure Alarm Time Delay	MCCB22	N127:18

Screw RPM Setup Screen

Here are the tag names and PLC processoraddresses for the Screw RPM Setup screen. All fields on this screen are numeric entry items.

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Minimum RPM	MCCB51	N127:47
Analog Signal At Minimum RPM	MCCB53	N127:49
Maximum RPM	MCCB52	N127:48
Analog Signal At Maximum RPM	MCCB54	N127:50
High RPM Alarm Setpoint	MCCB55	N127:51
RPM Alarm Time Delay	MCCB56	N127:52

Screw Jogs Setup Screen

Screw Jogs B % Output Command V1 V2 ٧3 ₹4 0.00 0.00 0.00 Screw Rotate 0.00 Screw Forward 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Screw Reverse Screw Jog RPM Alarm Setpoint 0.0 Screw Jog Pressure Alarm Setpoint 0 % Output Clamp/ Eject Jogs Screw A Min 0.00 Max 99.99

Here are the tag names and PLC processoraddresses for the fields on the Screw Jogs Setup screen. All the fields are numeric entry items.

Security Level: 3 Jul 25, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address	
Screw Rotate (V1-V4)	JGCB09-JGCB_12	N127:65-N127:68	
Screw Forward (V1–V4)	JGCB17-JGCB20	N127:73-N127:76	
Screw Reverse (V1-V4)	JGCB25-JGCB28	N127:81-N127:84	
Screw Jog RPM Alarm Setpoint	JGCB05	N127:61	
Screw Jog Pressure Alarm Setpoint	JGCB06	N127:62	

Injection Valves Setup Screens

Injection Values B Minimum Maximum Control Valve % Output % Output Limit Limit 0.00 Pressure 1 Ø PSI Ø PSI 0.00 Velocity 1 0.00 in/s 0.00 0.00 in/s 0.00 % Output Command V4 V1 V2 V3 During Profile 0.00 0.00 0.00 0.00 % Output During Suspend % Output 0.00 0.00 0.00 0.00 End of Profile % Output 0.00 0.00 0.00 0.00 Profile Tonnage Pack B Screw A Min Мах

Here are the tag names and PLC processoraddresses for the Injection Valves screen.

Security Level: 3

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Pressure Control Valve	Pop-up selection	1 through 4	INCB02.WORD	B126:1
Pressure Minimum Control Limit	Numeric entry	0 to INCB42. psi	INCB41	N128:37
Pressure Minimum % Output	Numeric entry	0 – 99.99 %	INCB43	N128:39
Pressure Maximum Control Limit	Numeric entry	INCB41 to 9999 psi	INCB42	N128:38
Pressure Maximum % Output	Numeric entry	0 – 99.99 %	INCB44	N128:40
Velocity Control Valve	Pop-up selection	1 through 4	INCB02.WORD	B126:1
Veleocity Minimum Control Limit	Numeric entry	0 to INCB41 in./ sec.	INCB45	N128:41
Velocity Minimum % Output	Numeric entry	0 – 99.99 %	INCB47	N128:43

A–18

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Velocity Maximum Control Limit	Numeric entry	INCB45 to 9999 psi	INCB46	N128:42
Velocity Maximum % Output	Numeric entry	0 – 99.99 %	INCB48	N128:44

Tag Names and PLC Processor Addresses for % Output Commands

This table lists tag names and PLC addresses for the % Output Command on the Injection Valves screen.

During Profile % Output	V1	V2	V3	V4
	INCB09	INCB10	INCB11	INCB12
	N128:5	N128:6	N128:7	N128:8
During Suspend % Output	V1	V2	V3	V4
	INCB61	INCB62	INCB63	INCB64
	N128:57	N128:58	N128:59	N128:60
End of Profile % Output	V1	V2	V3	V4
	INCB33	INCB34	INCB35	INCB36
	N128:29	N128:30	N128:31	N128:32

Pack Valves Setup Screens

Pack Valves B /MAX MIN Minimum Махімим Control Valve Limit % Output Limit % Output 1 Screw Pressure Ø PSI 0.00 Ø PSI 0.00 Cavity Pressure 1 Ø PSI 0.00 Ø PSI 0.00 % Output Command **Ų**4 V1 V2 ¥3 During Profile % Output 0.00 0.00 0.00 0.00 Inject B Profile Hold B Screw A Min Max

Here are the tag names and PLC processor addresses for the Pack Valves screen.

Security Level: 3

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Screw Pressure Control Valve	Pop-up selection	1 through 4	PKCB02.WORD	B126:9
Screw Pressure Minimum Control Limit	Numeric entry	0 to PKCB42 psi	PKCB41	N128:159
Screw Pressure Minimum % Output	Numeric entry	0 – 99.99%	РКСВ43	N128:157
Screw Pressure Maximum Control Limit	Numeric entry	PKCB41 to 9999 psi	PKCB42	N128:158
Screw Pressure Maximum % Output	Numeric entry	0 – 99.99%	РКСВ44	N128:160
Cavity Pressure Control Valve	Pop-up selection	1 through 4	PKCB02.WORD	B126:9
Cavity Pressure Minimum Control Limit	Numeric entry	0 to PKCB46 psi	PKCB45	N128:161

A-20

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Cavity Pressure Minimum % Output	Numeric entry	0 – 99.99%	PKCB47	N128:163
Cavity Pressure Maximum Control Limit	Numeric entry	PKCB45 to 9999 psi	PKCB46	N128:162
Cavity Pressure Maximum % Output	Numeric entry	0 – 99.99%	PKCB48	N128:164

Tag Names and PLC Processor Addresses for % Output Commands

This table lists tag names and PLC processor addresses for the % Output Command on the Pack Valves screen.

During Profile % Output	V1	V2	V3	V4
	PKCB09	PKCB10	PKCB11	PKCB12
	N128:125	N128:126	N128:127	N128:128

Hold Valves Setup Screens

Hold Valves B 1 MAX MIN Minimum Махімим Control Valve Limit % Output Limit % Output Screw Pressure 1 Ø PSI 0.00 Ø PSI 0.00 Cavity Pressure 1 Ø PSI 0.00 Ø PSI 0.00 % Output Command V4 V1 V2 V3 During Profile % Output 0.00 0.00 0.00 0.00 End of Profile 0.00 0.00 0.00 0.00 % Output Pre-Profile Pack B Decomp Screw A Min press B Мах

Here are the tag names and PLC processor addresses for the Hold Valves screen.

Security Level: 3 Jul 2

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Screw Pressure Control Valve	Pop-up selection	1 through 4	HDCB02.WORD	B126:13
Screw Pressure Minimum Control Limit	Numeric entry	0 to HDCB42 psi	HDCB41	N128:217
Screw Pressure Minimum % Output	Numeric entry	0 – 99.99%	HDCB43	N128:219
Screw Pressure Maximum Control Limit	Numeric entry	HDCB41 to 9999 psi	HDCB42	N128:218
Screw Pressure Maximum % Output	Numeric entry	0 – 99.99%	HDCB44	N128:220
Cavity Pressure Control Valve	Pop-up selection	1 through 4	HDCB02.WORD	B126:13

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Cavity Pressure Minimum Control Limit	Numeric entry	0 to HDCB46 psi	HDCB45	N128:221
Cavity Pressure Minimum % Output	Numeric entry	0 - 99.99%	HDCB47	N128:223
Cavity Pressure Maximum Control Limit	Numeric entry	HDCB45 to 9999 psi	HDCB46	N128:222
Cavity Pressure Maximum % Output	Numeric entry	0 – 99.99%	HDCB48	N128:224

Tag Names and PLC Processor Addresses for % Output Commands

This table lists tag names and PLC processor addresses for the % Output Command on the Pack Valves screen.

During Profile % Output	V1	V2	V3	V4
	HDCB09 N128:185	HDCB10 N128:186	HDCB11 N128:187	HDCB12 N128:188
End of Profile % Output	V1	V2	V3	V4
	INCB33 N128:29	INCB34 N128:30	INCB35 N128:31	INCB36 N128:32

Pre-decompress Valves Setup Screen

This table lists tag names and PLC processor addresses for the % Output Command on the Pre-decompress Valves screen.

Important: The valid range for each field is 0 to 99.99%.

During Profile % Output	V1	V2	V3	V4
	PRCB09 N128:305	PRCB10 N128:306	PRCB11 N128:307	PRCB12 N128:308
				PRCB13 N128:309

Plastication Valves Setup Screen

Here are tag names and PLC processor addresses for the Plastication Valves screen.

Security Level: 3

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Pressure Control Valve	Pop-up selection	1 through 4	PLCB02.WORD	B126:25
Pressure Minimum Control Limit	Numeric entry	0 to PLCB42 psi	PLCB41	N128:397
Pressure Minimum % Output	Numeric entry	0 – 99.99%	PLCB43	N128:399
Pressure Maximum Control Limit	Numeric entry	PLCB41 to 9999 psi	PLCB42	N128:398
Pressure Maximum % Output	Numeric entry	0 – 99.99%	PLCB44	N128:400
RPM Control Valve	Pop-up selection	1 through 4	PLCB02.WORD	B126:25
RPM Minimum Control Limit	Numeric entry	0 to PLCB46 rpm	PLCB45	N128:401
RPM Minimum % Output	Numeric entry	0 – 99.99%	PLCB47	N128:403

Field name	Field Type	Selection	Tag Name	PLC Processor Address
RPM Maximum Control Limit	Numeric entry	PLCB45 to 9999 rpm	PLCB46	N128:402
RPM Maximum % Output	Numeric entry	0 - 99.99%	PLCB48	N128:404

Tag Names and PLC Processor Addresses for % Output Commands

This table lists tag names and PLC processor addresses for the % Output Command on the Plastication Valves screen.

During Profile % Output	V1	V2	V3	V4
	PLCB09 N128:365	PLCB10 N128:366	PLCB11 N128:367	PLCB12 N128:368
				PLCB13 N128:369
End-of-Profile % Output	V1	V2	V3	V4
	PLCB33 N128:389	PLCB34 N128:390	PLCB35 N128:391	PLCB36 N128:392
Post-decompress Valves Setup Screen

This table lists tag names and PLC processor addresses for the % Output Command on the Post-decompress Valves screen.

Security Level: 3 Jul 25, 1995 1:00:00 рм

Important: The valid range for each field is 0 to 99.99%.

During Profile % Output	V1	V2	V3	V4
	PSCB09 N128:485	PSCB10 N128:486	PSCB11 N128:487	PSCB12 N128:488
End-of-Profile % Output	V1	V2	V3	V4
	PSCB33 N128:509	PSCB34 N128:510	PSCB35 N128:511	PSCB36 N128:512

Injection Ramp Rates Setup Screen

Injection Ramp Rates B % Output per Second V1 V2 V3 V4 Acceleration Rate During Profile 0 0 0 0 Deceleration Rate During Profile 0 0 0 0 % Out/\$ LP Close Pack B Screw A Min 0 9999 Max

Here are the tag names and PLC processor addresses for the Injection Ramp Rates screen.

Jul 25, 1995 1:01:55 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	INCB17-INCB24	N128:13-N128:20
Deceleration (V1-V8)	INCB25-INCB32	N128:21-N128:28

Pack Ramp Rates Setup Screen

Here are the tag names and PLC processor addresses for the Pack Ramp Rates screen.

Jul 25, 1995 1:02:04 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	PKCB17-PKCB24	N128:133-N128:140
Deceleration (V1-V8)	PKCB25-PKCB32	N128:141-N128:148

Hold Ramp Rates Setup Screen

Here are the tag names and PLC processor addressses for the Hold Ramp Rates screen.

Jul 25, 1995 1:02:11 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	HDCB17-HDCB24	N128:193-N128:200
Deceleration (V1-V8)	HDCB25-HDCB32	N128:201-N128:208

Pre-decompress Ramp Rates Setup Screen

Here are the tag names and PLC processor addresses for the Pre-Decompress Ramp Rates screen.

Jul 25, 1995 1:02:18 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	PRCB17-PRCB24	N128:313-N128:320
Deceleration (V1-V8)	PRCB25-PRCB32	N128:321-N128:328

Plastication Ramp Rates Setup Screen

Here are the tag names and PLC processor addresses for the Plastication Ramp Rates screen.

Jul 25, 1995 1:02:24 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	PLCB17-PLCB24	N128:373-N128:380
Deceleration (V1-V8)	PLCB25-PLCB32	N128:381-N128:388

Post-decompress Ramp Rates Setup Screen

Here are the tag names and PLC processor addresses for the Post-decompress Ramp Rates screen.

Jul 25, 1995 1:02:29 pm

Field	Tag Name	PLC Processor Address
Acceleration (V1-V8)	PSCB17-PSCB24	N128:493-N128:500
Deceleration (V1-V8)	PSCB25-PSCB32	N128:501-N128:508

Injection Profile Setup Screen

Here are the tag names and PLC processor addressses for the Injection Profile screen.

Important: If the profile control mode is Velocity vs. Pressure or Position, the velocity and position of unused setpoints are set to 0 (zero). If the profile control mode is Pressure vs. Pressure or Position, the pressure and position of unused setpoints are set to 0 (zero).

Number of Segments	1	Profile Control Mode Velocity vs. Position
Pronontional Cain for Pressure	0 00	PID Algorithm Dependent Gains (ISA)
Internal Gain for Pressure	0.00	Velocity Units % Velocity
Designation Color Con Designation	0.00	Suspended State Pressure Contro
perivative Gain for Pressure	0.00	Open/Closed Loop Selected for:
Proportional Gain for Velocity	0.00	Pressure vs. Position Closed
Feedforward Gain for Velocity	0.00	Pressure vs. Time Closed
Pressure Limiting Time Delay	0.00	Open Loop to Shot Size for: Notesities and the second second
High Screw Pressure Alarm	0	Pressure vs. Position No
High Cavity Pressure Alarm	0	FRC Fnable/Disable for
Minimum ERC % for Pressure	0.00	Velocity vs. Position Enabled
Minimum ERC % for Velocity	0.00	Pressure vs. Position Enabled Pressure vs. Time Enabled
	_	

Jul 25, 1995 1:00:00 pm Security Level: 3

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Number of Segments	Pop-up selection	1 through 11	INCB.SEG_NUM	N24:44
Proportional Gain for Pressure	Numeric entry	0 - 99.99	INCB49	N128:45
Integral Gain for Pressure	Numeric entry	0 - 99.99	INCB50	N128:46
Derivative Gain for pressure	Numeric entry	0 – 99.99	INCB51	N128:47
Proportional Gain for Velocity	Numeric entry	0 – 99.99	INCB52	N128:48
Feedforward Gain for Velocity	Numeric entry	0 - 99.99	INCB53	N128:49
Pressure Limiting Time Delay	Numeric entry	0 – 99.99 seconds	IPCB59	N128:115

Field name	Field Type	Selection	Tag Name	PLC Processo Address
High Screw Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	INCB57	N128:53
High Cavity Pressure Alarm	Numeric entry	0 or MCCB57 to MCCB58 psi	INCB58	N128:54
Minimum ERC % for Pressure	Numeric entry	0 – 99.99%	INCB06	N128:2
Minimum ERC % for Velocity	Numeric entry	0 - 99.99%	INCB05	N128:1
Profile Control Mode	Pop-up selection	Velocity vs. Position or Pressure vs. Position or Pressure vs. Time	IPCB03.WORD	B126:6
PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	INCB02.B07	B126/23
Suspend State Pressure Control	Pop-up selection	Set Output Pressure Control or Velocity Con- trol	IPC02.B11 (A) IPCB02.B11 (B)	B38/91 (A) B126/91 (B)
Velocity Units	Pop-up selection	% Velocity or in./sec.	IPCB03.B14	B126/110
Open/Closed Loop Se- lected for Ve- locity vs. Position	Pop-up selection	Closed Open	IPCB04.B00	B126/112
Open/Closed Loop Se- lected for Pressure vs. Position	Pop-up selection	Closed Open	IPCB04.B02	B126/114
Open/Closed Loop Se- lected for Pressure vs. Time	Pop-up selection	Closed Open	IPCB04.B03	B126/115

A-36

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Open Loop to Shot Size for Velocity vs. Position	Pop-up selection	No Yes	IPCB04.B04	B126/116
Open Loop to Shot Size for Pressure vs. Position	Pop-up selection	No Yes	IPCB04.B06	B126/118
Open Loop to Shot Size for Pressure vs. Time	Pop-up selection	No Yes	IPCB04.B07	B126/119
ERC Enable/ Disable for Velocity vs. Position	Pop-up selection	Enabled Disabled	IPCB04.B08	B126/120
ERC Enable/ Disable for Pressure vs. Position	Pop-up selection	Enabled Disabled	IPCB04.B10	B126/122
ERC Enable/ Disable for Pressure vs. Time	Pop-up selection	Enabled Disabled	IPCB04.B11	B126/123

Pack Profile Setup Screen

Here are the tag names and PLC processor addresses for the Pack Profile screen.

Important: If the profile control mode is Screw Pressure vs. Time, the screw pressure and time setpoints of the unused segments are set to 0 (zero). If the profile control mode is Cavity Pressure vs. Time, the cavity pressure and time setpoints of the unused segments are set to 0 (zero).

Security Level: 3

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Number of Segments	Pop-up selection	0 through 5	PKCB.SEG_NUM	N24:45
Proportional Gain for Screw Pressure	Numeric entry	0 - 99.99	РКСВ49	N128:165
Integral Gain for Screw Pressure	Numeric entry	0 - 99.99	PKCB50	N128:166
Derivative Gain for Screw Pressure	Numeric entry	0 - 99.99	PKCB51	N128:167
Proportional Gain for Cav- ity Pressure	Numeric entry	0 – 99.99	PKCB52	N128:168

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Integral Gain for Cavity Pressure	Numeric entry	0 - 99.99	PKCB53	N128:169
Derivative Gain for Cav- ity Pressure	Numeric entry	0 – 99.99	РКСВ54	N128:170
High Screw Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	РКСВ57	N128:173
High Cavity Pressure Alarm	Numeric entry	0 or MCCB57 to MCCB.58 psi	РКСВ58	N128:174
Minimum ERC % for Screw Pressure	Numeric entry	0 – 99.99%	РКСВ06	N128:122
Minimum ERC% for Cavity Pressure	Numeric entry	0 – 99.99%	PKCB05	N128:121
Profile Control Mode	Pop-up selection	Screw Pressure vs. Time or Cavity Pressure vs. Time	HPCB03.B00	B126/288
Screw PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	PKCB02.B07	B126/151
Cavity PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	PKCB02.B03	B126/147
Open/Closed Loop Se- lected for Screw	Pop-up selection	Closed Open	HPCB04.B00	B126/304
Open/Closed Loop Se- lected for Cavity	Pop-up selection	Closed Open	HPCB04.B01	B126/305
ERC Enable/ Disable for Screw	Pop-up selection	Enabled Disabled	HPCB04.B08	B126/312
ERC Enable/ Disable for Cavity	Pop-up selection	Enabled Disabled	HPCB04.B09	B126/313

Hold Profile Setup Screen

Here are the tag names and PLC processor addresses for the Hold Profile screen.

Important: If the profile control mode is Screw Pressure vs. Time, the screw pressure and time setpoints of the unused segments are set to 0 (zero). If the profile control mode is Cavity Pressure vs. Time, the cavity pressure and time setpoints of the unused segments are set to 0 (zero).

Security Level: 3 Jul 25, 1995 1:00:00 рм

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Number of Segments	Pop-up selection	1 through 5	HDCB.SEG_NUM	N24:46
Proportional Gain for Screw Pressure	Numeric entry	0 – 99.99	HDCB49	N128:225
Integral Gain for Screw Pressure	Numeric entry	0 – 99.99	HDCB50	N128:226
Derivative Gain for Screw Pressure	Numeric entry	0 – 99.99	HDCB51	N128:227
Proportional Gain for Cavity Pressure	Numeric entry	0 – 99.99	HDCB52	N128:228

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Integral Gain for Cavity Pressure	Numeric entry	0 - 99.99	HDCB53	N128:229
Derivative Gain for Cavity Pressure	Numeric entry	0 - 99.99	HDCB54	N128:230
High Screw Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	HDCB57	N128:233
High Cavity Pressure Alarm	Numeric entry	0 or MCCB57 to MCCB58 psi	HDCB58	N128:234
Mininmum ERC % for Screw Pressure	Numeric entry	0 – 99.99%	HDCB06	N128:182
Minimum ERC % for Cavity Pressure	Numeric entry	0 -99.99%	HDCB05	N128:181
Pre-decom- press Watch- dog Timer	Numeric entry	0 – 99.99 se- conds	PRCB08	N128:304
Pre-decom- press High Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	PRCB57	N128:353
Profile Control Mode	Pop-up selection	Screw Pressure vs. Time or Cavity Pressure vs. Time	HPCB03.B02	B126/290
Screw PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	HDCB02.B07	B126/215
Cavity PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	HDCB02.B03	B126/211
Action at End of Hold Pro- file	Pop-up selection	Bridge Set Output	HPCB03.B08	B126/296
Action at End of Pre-de- compress	Pop-up selection	Bridge Set Output	HPCB03.B09	B126/297

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Open/Closed Loop Se- lected for Screw	Pop-up selection	Closed Open	HPCB04.B02	B126/306
Open/Closed Loop Se- lected for Cavity	Pop-up selection	Closed Open	HPCB04.B03	B126/307
ERC Enable/ Disable for Screw	Pop-up selection	Enabled Disabled	HPCB04.B10	B126/314
ERC Enable/ Disable for Cavity	Pop-up selection	Enabled Disabled	HPCB04.B11	B126/315

Plastication Profile Setup Screen

Here are the tag names and PLC processor addresses for the Plastication Profile screen.

Important: If the profile control mode is Pressure vs. Velocity or Position, the pressure and position or time setpoints of unused segements are set to 0 (zero). If the profile control mode is RPM vs. Velocity or Position, the RPM and position or time setpoints of unused segments are set to 0 (zero).

Security Level: 3

Jul 25, 1995 1:00:00 pm

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Number of Segments	Pop-up selection	1 through 10	PLCB.SEG_NUM	N24:47
Proportional Gain for Pressure	Numeric entry	0 - 99.99	PLCB49	N128:405
Integral Gain for Pressure	Numeric entry	0 - 99.99	PLCB50	N128:406
Derivative Gain for Pressure	Numeric entry	0 – 99.99	PLCB51	N128:407
Proportional Gain for RPM	Numeric entry	0 – 99.99	PLCB52	N128:408
Integral Gain for RPM	Numeric entry	0 - 99.99	PLCB53	N128:409
Derivative Gain for RPM	Numeric entry	0 -99.99	PLCB54	N128:410

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Plastication Watchdog Timer	Numeric entry	0 – 99.99 se- conds	PLCB08	N128:364
Plastication High Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	PLCB57	N128:413
Minimum ERC % for Pressure	Numeric entry	0 – 99.99%	PLCB06	N128:362
Minimum ERC % for Velocity	Numeric entry	0 – 99.99%	PLCB05	N128:361
Post-decom- press Watch- dog Timer	Numeric entry	0 – 99.99 se- conds	PSCB08	N128:484
Post-decom- press High Pressure Alarm	Numeric entry	0 or MCCB17 to MCCB18 psi	PSCB57	N128:533
Profile Control Mode	Pop-up selection	Pressure vs. Position or Pressure vs. Time or RPM vs. Position or RPM vs. Time	PPCB03.WORD	B126:30
Pressure PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	PLCB02.B07	B126/407
RPM PID Algorithm	Pop-up selection	Dependent Gains (ISA) or Independent Gains (AB)	PLCB02.B03	B126/403
Action at End of Plastication	Pop-up selection	Bridge Set Output	PPCB03.B08	B126/488
Open/Closed Loop Se- lected for Pressure vs. Position	Pop-up selection	Closed Open	PPCB04.B00	B126/496
Open/ Closed Loop Selected for Pressure vs. Time	Pop-up selecrion	Closed Open	PPCB04.B01	B126:497

Field name	Field Type	Selection	Tag Name	PLC Processor Address
Open/Closed Loop Se- lected for RPM vs. Position	Pop-up selection	Closed Open	PPCB04.B02	B126/498
Open/ Closed Loop Selected for RPM vs. Time	Pop-up selection	Closed Open	PPCB04.B03	B126/499
ERC Enable/ Disable for Pressure vs. Position	Pop-up selection	Enabled Disabled	PPCB04.B08	B126/504
ERC Enable/ Disable for Pressure vs. Time	Pop-up selection	Enabled Disabled	PPCB04.B09	B126/505
ERC Enable/ Disable for RPM vs. Position	Pop-up selection	Enabled Disabled	PPCB04.B10	B126/506
ERC Enable/ Disable for RPM vs. Time	Pop-up selection	Enabled Disabled	PPCB04.B11	B126/507

Process Screen Task Definition Files

Here is a listing of the Task Definition files for the Pro-Set 700 Co-injection Setup screens as well as other screens you can change with .TDT files. You must have this information to execute the screens or make changes to them.

Process Screen	.TSK File	.TDT/.TDB File	.TXT File(s)	/P1 Value
Clamp Close Profile	CC	CC	CC	
Injection Profiles	IJ_AB	IJ_AB	IJ_AB	
Injection Profile A	IJ	IJ_A	IJ_A	
Injection Profile B	IJ_B	IJ_B	IJ_B	
Pack/Hold Profile A	PH	PH_A	PH_A	
Pack/Hold Profile B	PH_B	PH_B	PH_B	
Plastication Profile A	PL	PL_A	PL_A	
Plastication Profile B	PL_B	PL_B	PL_B	
Clamp Open Profile	CO	CO	CO	
TCM #1	RUNTD	ТСМ	TCM1	TCM2
TCM #2	RUNTD	ТСМ	TCM2	TCM3

Process Screen Tag Names and PLC Processor Addrsses

All Pro-Set 700 co-injection database tag names and corresponding PLC processor addresses for co-injection Process screen fields are listed here. You need to know these tag names and PLC processor addresses to create and modify ladder logic code.

Injection Profile Process Screen

Here are the tag names and PLC processor addresses for the Injection Profile Task screen.

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Part Name	PARTNAME	A25:0 - A25:34
Mode	MODE	B23:6
Phase	PHASE SYSB03.B03	B124:20 B124/35
Injection Profile Mode	IPCB03.WORD	B126:6
Screw Position Bar Graph	SYSB25	N127:177
Cavity Pressure	SYSB32	N127:184
Screw Pressure	SYSB26	N127:178
Screw Position	SYSB25	N127:177
Start Position	Sum of: PPCB61 PPCB62 PSCB05	N128:477 N128:478 N128:481

Field	Tag Name	PLC Processor Address
Pressure Setpoints		
Segment 11	IPCB50	N128:106
Segment 10	IPCB46	N128:102
Segment 9	IPCB42	N128:98
Segment 8	IPCB38	N128:94
Segment 7	IPCB34	N128:90
Segment 6	IPCB30	N128:86
Segment 5	IPCB26	N128:82
Segment 4	IPCB22	N128:78
Segment 3	IPCB18	N128:74
Segment 2	IPCB14	N128:70
Segment 1	IPCB10	N128:66
Velocity Setpoints		
Segment 11	IPCB49	N128:105
Segment 10	IPCB45	N128:101
Segment 9	IPCB41	N128:97
Segment 8	IPCB37	N128:93
Segment 7	IPCB33	N128:89
Segment 6	IPCB29	N128:85
Segment 5	IPCB25	N128:81
Segment 4	IPCB21	N128:77
Segment 3	IPCB17	N128:73
Segment 2	IPCB13	N128:69
Segment 1	IPCB09	N128:65
Pressure Actuals		
Segment 11	IPSB50	N128:642
Segment 10	IPSB46	N128:638
Segment 9	IPSB42	N128:634
Segment 8	IPSB38	N128:630
Segment 7	IPSB34	N128:626
Segment 6	IPSB30	N128:622
Segment 5	IPSB26	N128:618
Segment 4	IPSB22	N128:614
Segment 3	IPSB18	N128:610
Segment 2	IPSB14	N128:606
Segment 1	IPSB10	N128:602

Field	Tag Name	PLC Processor Address
Velocity Actuals		
Segment 11	IPSB49	N128:641
Segment 10	IPSB45	N128:637
Segment 9	IPSB41	N128:633
Segment 8	IPSB37	N128:629
Segment 7	IPSB33	N128:625
Segment 6	IPSB29	N128:621
Segment 5	IPSB25	N128:617
Segment 4	IPSB21	N128:613
Segment 3	IPSB17	N128:609
Segment 2	IPSB13	N128:605
Segment 1	IPSB09	N128:601
End Position Setpoints		
Segment 11	N/A	N/A
Segment 10	IPCB47	N128:103
Segment 9	IPCB43	N128:99
Segment 8	IPCB39	N128:95
Segment 7	IPCB35	N128:91
Segment 6	IPCB31	N128:87
Segment 5	IPCB27	N128:83
Segment 4	IPCB23	N128:79
Segment 3	IPCB19	N128:75
Segment 2	IPCB15	N128:71
Segment 1	IPCB11	N128:67
Time Setpoints		
Segment 11	N/A	N/A
Segment 10	IPCB48	N128:104
Segment 9	IPCB44	N128:100
Segment 8	IPCB40	N128:96
Segment 7	IPCB36	N128:92
Segment 6	IPCB32	N128:88
Segment 5	IPCB28	N128:84
Segment 4	IPCB24	N128:80
Segment 3	IPCB20	N128:76
Segment 2	IPCB16	N128:72
Segment 1	IPCB12	N128:68

Injection Transition Parameters Profile Process Screen

When you press the Edit X-tions key, the lower portion of the screen changes to show the transition parameters for Injection. The upper section of the screen remains the same as described previously. Here are the tag names and PLC processor addresses of each transition parameter.

Security Level: 3 Jul 24, 1995 1:00:00 рм

Field	Tag Name	PLC Processor Address
End-Of Hold Position	HPSB63	N128:711
Transition Time Limit	IPCB60	N128:116
Transition Position Limit	IPCB61	N128:117
Transition Screw Pressure Limit	IPCB62	N128:118
Transition Cavity Pressure Limit	IPCB63	N128:119
Limiting Screw Pressure	IPCB57	N128:113
Transition Time Actual	IPSB61	N128:653
Transition Position Actual	IPSB62	N128:654
Transition Screw Pressure Actual	IPSB63	N128:655
Transition Cavity Pressure Actual	IPSB64	N128:656

Field	Tag Name	PLC Processor Address
Transition Pressure Mask Position	IPCB64	N128:120
Pressure Limiting Inhibit Position	IPCB58	N128:114
Injection Pressure if velocity vs. position, or velocity vs. position (pressure-limited)	INCB09 INCB10 INCB11 INCB12	N128:5 N128:6 N128:7 N128:8
Injection Flow if pressure vs. position or time	INCB09 INCB10 INCB11 INCB12	N128:5 N128:6 N128:7 N128:8
Zero Axis Function		
Eng. Min	ZEROAXISB.SCREW.EMIN MCCB09	N24:56 N127:5
Eng. Max.	ZEROAXISB.SCREW.EMAX MCCB10	N24:57 N127:6
Signal Min.	ZEROAXISB.SCREW.SMIN MCCB11	N24:58 N127:7
Signal Max.	ZEROAXISB.SCREW.SMAX MCCB12	N24:59 N127:8
Inject Input Signal	SYSB33	N127:185

Pack/Hold Profile Process Screen

Here are the tag names and PLC processor addresses for the Pack/Hold Profile screen.

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Part Name	PARTNAME	A25:20 - A25:34
Mode	MODE	B23:6
Phase	PHASE SYSB03.B03	B124:20 B124:35
Pack Profile Mode	HPCB03.B00	B126/288
Hold Profile Mode	HPCB03.B02	B126/290
Actual Transition Position	IPSB62	N128:654
Cushion Setpoint	PPCB61	N128:477
End-Of Hold Position	HPSB63	N128:711
Screw Position	SYSB25	N127:177
Cavity Pressure	SYSB32	N127:184
Screw Pressure	SYSB26	N127:178
Cavity Pressure Setpoints-Pack		
Segment 5	HPCB21	N128:257
Segment 4	HPCB18	N128:254
Segment 3	HPCB15	N128:251
Segment 2	HPCB12	N128:248
Segment 1	HPCB09	N128:245

Field	Tag Name	PLC Processor Address
Cavity Pressure Setpoints-Hold		
Segment 5	HPCB38	N128:274
Segment 4	HPCB35	N128:271
Segment 3	HPCB32	N128:268
Segment 2	HPCB29	N128:265
Segment 1	HPCB26	N128:262
Screw Pressure Setpoints-Pack		
Segment 5	HPCB22	N128:258
Segment 4	HPCB19	N128:255
Segment 3	HPCB16	N128:252
Segment 2	HPCB13	N128:249
Segment 1	HPCB10	N128:246
Screw Pressure Setpoints-Hold		
Segment 5	HPCB39	N128:275
Segment 4	HPCB36	N128:272
Segment 3	HPCB33	N128:269
Segment 2	HPCB30	N128:266
Segment 1	HPCB27	N128:263
Cavity Pressure Actuals-Pack		
Segment 5	HPSB21	N128:669
Segment 4	HPSB18	N128:666
Segment 3	HPSB15	N128:663
Segment 2	HPSB12	N128:660
Segment 1	HPSB09	N128:657
Cavity Pressure Actuals-Hold		
Segment 5	HPSB38	N128:686
Segment 4	HPSB35	N128:683
Segment 3	HPSB32	N128:680
Segment 2	HPSB29	N128:677
Segment 1	HPSB26	N128:674

Field	Tag Name	PLC Processor Address
Screw Pressure		
Actuals-Pack		
Segment 5	HPSB22	N128:670
Segment 4	HPSB19	N128:667
Segment 3	HPSB16	N128:664
Segment 2	HPSB13	N128:661
Segment 1	HPSB10	N128:658
Screw Pressure Actuals-Hold		
Segment 5	HPSB39	N128:687
Segment 4	HPSB36	N128:684
Segment 3	HPSB33	N128:681
Segment 2	HPSB30	N128:678
Segment 1	HPSB27	N128:675
Time Setpoints-Pack		
Segment 5	HPCB23	N128:259
Segment 4	HPCB20	N128:256
Segment 3	HPCB17	N128:253
Segment 2	HPCB14	N128:250
Segment 1	HPCB11	N128:247
Time Setpoints-Hold		
Segment 5	HPCB40	N128:276
Segment 4	HPCB37	N128:273
Segment 3	HPCB34	N128:270
Segment 2	HPCB31	N128:267
Segment 1	HPCB28	N128:264
End Position Actuals-Hold		
Segment 5	HPSB40	N128:688
Segment 4	HPSB37	N128:685
Segment 3	HPSB34	N128:682
Segment 2	HPSB31	N128:679
Segment 1	HPSB28	N128:676

Field	Tag Name	PLC Processor Address
End Position Actuals-Pack		
Segment 5	HPSB23	N128:671
Segment 4	HPSB20	N128:668
Segment 3	HPSB17	N128:665
Segment 2	HPSB14	N128:662
Segment 1	HPSB11	N128:659

Pack/Hold Transition Parameters Profile Process Screen

When you press the Edit X-tions key, the lower portion of the screen changes to show the transition parameters for Pack and Hold. The upper section of the screen does not change. Here are the tag names and PLC processor addresses for the transition parameters.

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Cure Timer	HPCB61	N128:297
Cushion Length	PPCB61	N128:477
Pre-decompress Length	PRCB05	N128:301
Pack Flow Setpoint	PKCB09 PKCB10 PKCB11 or PKCB12	N128:125 N128:126 N128:127 N128:128
Hold Flow Setpoint	HDCB09 HDCB10 HDCB11 or HDCB12	N128:185 N128:186 N128:187 N128:188

Plastication Profile Process Screen

Plastication Profile B Mode: Set-up Part Name: Pro-Set 700 Co-Injection Phase: Idle Pressure vs. Position Pressure Screw Pressure Ø Screw RPM Ø Start Position Ø.25 100% Shot Size 2.15 Screw Position 0.00 3 4 5 6 7 8 9 10 11 Segment 2 1 Segment1Pressure SP150Pressure Act0End Posn SP1.00RPM Act0.0 150 0 50 0 2.15 0.0 1.80 0.0 PS I Edit Shot Set-up Screw Ĥ Min 50 Max 200

Here are the tag names and PLC processor addresses for the Plastication Profile screen.

1:00:00 pm Security Level: 3 Jul 24, 1995

Field	Tag Name	PLC Processor Address
Part Name	PARTNAME	A25:20 - A25:34
Mode	MODE	B23:6
Phase	PHASE SYSB03.B03	B124:20 B124/35
Plastication Profile Mode	PPCB03.WORD	B126:30
Screw Position Bar Graph	SYSB25	N127:177
Screw Pressure	SYSB26	N127:178
Start Position	Sum of: PPCB61 PRCB05	N128:477 N128:301
Screw Position	SYSB25	N127:177
Screw RPM	SYSB31	N127:183
100% Shot Size	Sum of: PPCB61 PPCB62	N128:477 N128:478

Field	Tag Name	PLC Processor Address
Pressure Setpoints		
Segment 1	PPCB10	N128:426
Segment 2	PPCB14	N128:430
Segment 3	PPCB18	N128:434
Segment 4	PPCB22	N128:438
Segment 5	PPCB26	N128:442
Segment 6	PPCB30	N128:446
Segment 7	PPCB34	N128:450
Segment 8	PPCB38	N128:454
Segment 9	PPCB42	N128:458
Segment 10	PPCB46	N128:462
Segment 11	PPCB50	N128:466
RPM Setpoints		
Segment 1	PPCB09	N128:425
Segment 2	PPCB13	N128:429
Segment 3	PPCB17	N128:433
Segment 4	PPCB21	N128:437
Segment 5	PPCB25	N128:441
Segment 6	PPCB29	N128:445
Segment 7	PPCB33	N128:449
Segment 8	PPCB37	N128:453
Segment 9	PPCB41	N128:457
Segment 10	PPCB45	N128:461
Segment 11	PPCB49	N128:465
Pressure Actuals		
Segment 1	PPSB10	N128:714
Segment 2	PPSB14	N128:718
Segment 3	PPSB18	N128:722
Segment 4	PPSB22	N128:726
Segment 5	PPSB26	N128:730
Segment 6	PPSB30	N128:734
Segment 7	PPSB34	N128:738
Segment 8	PPSB38	N128:742
Segment 9	PPSB42	N128:746
Segment 10	PPSB46	N128:750
Segment 11	PPSB50	N128:754

Field	Tag Name	PLC Processor Address
RPM Actuals		
Segment 1	PPSB09	N128:713
Segment 2	PPSB13	N128:717
Segment 3	PPSB17	N128:721
Segment 4	PPSB21	N128:725
Segment 5	PPSB25	N128:729
Segment 6	PPSB29	N128:733
Segment 7	PPSB33	N128:737
Segment 8	PPSB37	N128:741
Segment 9	PPSB41	N128:745
Segment 10	PPSB45	N128:749
Segment 11	PPSB49	N128:753
End Position Setpoints		
Segment 1	PPCB11	N128:427
Segment 2	PPCB15	N128:431
Segment 3	PPCB19	N128:435
Segment 4	PPCB23	N128:439
Segment 5	PPCB27	N128:443
Segment 6	PPCB31	N128:447
Segment 7	PPCB35	N128:451
Segment 8	PPCB39	N128:455
Segment 9	PPCB43	N128:459
Segment 10	PPCB47	N128:463
Segment 11	N/A	N/A
Time Setpoints		
Segment 1	PPCB12	N128:428
Segment 2	PPCB16	N128:432
Segment 3	PPCB20	N128:436
Segment 4	PPCB24	N128:440
Segment 5	PPCB28	N128:444
Segment 6	PPCB32	N128:448
Segment 7	PPCB36	N128:452
Segment 8	PPCB40	N128:456
Segment 9	PPCB44	N128:460
Segment 10	PPCB48	N128:464
Segment 11	N/A	N/A

Plastication Transition Parameters Profile Process Screen

When you press the Edit Shot key, the lower portion of the screen changes to show the transition (shot) parameters for Plastication, The upper section of the screen does not change. Here are the tag names and PLC processor addresses for each of the shot parameters.

Security Level: 3 Jul 24, 1995 1:00:00 pm

Field	Tag Name	PLC Processor Address
Pre-decompress Length	PRCB05	N128:301
Cushion	PPCB61	N128:477
Shot Size	PPCB62	N128:478
Post-decompress Length	PSCB05	N128:481
Cushion Actual	HPSB63	N128:711
Shot Size Actual	PPSB63	N128:767
Plastication RPM (Pressure vs. Position or Time)	PLCB09 PLCB10 PLCB11 or PLCB12	N128:365 N128:366 N128:367 N128:368
Plastication Backpressure	PLCB09 PLCB10 PLCB11 or PLCB12	N128:365 N128:366 N128:367 N128:368

Quick Start for the Experienced User

What's in This Chapter?

This chapter contains an overview of the procedures you must follow to install and use the co-injection modules and the software that comes with them.

Use the flowchart and charts to help you determine which tasks to perform.

Understanding the Tasks You Will Perform

The flowchart shows you everything you need to do to make your modules operational.

Performing Setup Tasks

The tasks on the chart that follows help you set up your modules for operation. Follow the tasks in the order they are listed on the chart.

To Do This Task	Go to	And Do This
Understand the machine phases that the co-injection modules control	Chapter 2	Determine how you want the modules to control your process
Install the modules	Chapter 3	 Ground the modules. Choose the correct power supply.
		 Determine where the modules should be placed in the I/O chassis.
		4. Key chassis slots for the modules.
		5. Jumper the modules.
		6. Install the modules in the chassis.
		7. Wire the modules.
		8. Ground and shield I/O devices.
		9. Plan for E-stops and interlocks.
		10. Understand the PLC power distribution circuit.
		11. Read module indicator lights.
Set up inputs to the modules	Chapter 4	Set up inputs for • screw position for A and B • screw pressure for A and B • screw RPM for A and B, or • cavity pressure
Set up profiles to control machine operation	Chapter 5	Enter information such as the number of segments and gain constants for PID loops for these machine phases: Inject Pack Hold Plastication
Finding Reference Information

When you perform tasks such as creating screens or setting up alarms you need reference information (download bits and alarm codes, for example). Refer to the table below.

To do this task	go to	and do this
Understand where to find information on download bits, errors, tag names, PLC processor addresses, and alarms supplied with the software	Appendix A	Use this chapter as a reference.

Performing Other Tasks

When you integrate the co-injection modules into your system, you need to perform other tasks on your injection molding machine. These tasks could include spanning valves and sensors across their linear operating range and entering that information on screens.

Because injection molding machines vary widely, we do not tell you how to perform these additional tasks in this manual. Consult the specifications shipped with your machine, sensors, or valves for more information on operating ranges and limits.

To set up outputs and enter spanning valves on screens, refer to the Pro-Set 700 Software User Manual, pub. 6500-6.5.18.

Installing Co-injection Software

To install the co-injection software, you must perform the following tasks:

- 1. Export a current database.
- 2. Make backups of any files that are overwritten.
- 3. Install the software onto the operator interface.
- 4. Run the alarm conversion utility.
- 5. Merge the exported database with the co-injection database.
- **6.** Import the merged database.

The following sections explain each of these steps.

Exporting a Current Database

Before you actually install the co-injection software onto your operator interface, you must have a current exported database. If you do not already have one, then you need to export the database. Use the following instructions to export your database:

- **1.** Back up your current database. See the Pro-Set 700 Operator Interface Installation Manual, pub. 6500-6.2.1.
- 2. At the operator interface command prompt, type

3. Select option 1) Run Pro-Set 700.

4. Log on to security level 3. Refer to the Pro-Set 700 Software Reference Manual, Pub. 6500-6.4.3, for more information on security levels.

5.	Press the button.
6.	Select the General menu.
7.	Select Toggle CV Command Line
8.	Type Att c on the host computer keyboard.
9.	Choose a unique name for your exported database. examples, we use EXAMPLE.DBS.

10. At the ControlView command line, type

DBexp PS700 database_name

where *database_name* is the name of the exported database you chose earlier. For example, in this instance you would type

DBexp PS700 example.dbs

The database file is exported in ASCII format to the $\ACCESS\UTIL\$ directory on the OI for editing. A .DBS extension is automatically added to the filename.

11. From the **General** menu, select

Exit Pro-Set 700

to exit from the software.

In our

Making File Backups

Important: When you install the co-injection software, it copies some of the current Pro-Set 700 files to .oLD files and then overwrites the existing files. If you have modified these files in any way, you should still make backups of them before you install the co-injection software. Then, when you are finished installing the co-injection software, you can add the changes you made in the Pro-Set 700 files to the co-injection files.

The following Pro-Set 700 files are overwritten when you install co-injection software:

File name and location	File description
\ABPS700\PS700.DEF	key definitions
\ABPS700\MCR\STARTUP	STARTUP macro
\ABPS700\MCR\TOPLEVEL	TOPLEVEL macro
\ABPS700\MOLDPART\MACHMASK	Mold/part machine mask file
\ABPS700\MOLDPART\PARTMASK	Mold/part part mask file
\ABPS700\SCRNTEXT\ALLTAGS	ALLTAGS file

If you customized your setup menu file (PS700.MNU), you should also make a backup of this file and add its changes to the co-injection setup menu file, PS700CI.MNU.

Installing the Software onto the Operator Interface

To install the co-injection software onto your operator interface, follow these instructions:

1. Exit Pro-Set 700 by touching 2) Enter MS-DOS Environment.

- **2.** Make sure the floppy drive is enabled in the Operator Interface Setup menu. For more information about enabling the floppy drive, refer to the Pro-Set 700 Operator Interface Installation Manual, pub. 6500-6.2.1.
- **3.** Insert disk #1 into the floppy drive.
- 4. At the DOS command line prompt, type

a:\install c

5. When the installation program displays the copyright message, press any key.

The installation program then installs the co-injection software for you. It displays status messages throughout the installation process.

Running the Alarm Conversion Utility

To run the alarm conversion utility, use the following instructions:

1. Go to the \ACCESS\UTIL directory. You can do this by typing the following command at the MS-DOS prompt:

cd \access\util

2. Run the alarm conversion utility. You can do this by typing the following command at the MS-DOS prompt:

ALMCNVT database_name switches

For example, if you named your database EXAMPLE.DBS, you would use the following command:

ALMCNVT example /m

This tells the utility to convert the alarm information and modify the original database.

The alarm conversion utility modifies the existing database file by removing all of the ControlView alarming information. It also generates two new files:

- USER_1.ALM
- PS7_1.ALM

These two files must be copied from the \ACCESS\UTIL directory to the \ABPS700\ALARM directory. You can do this by typing the following commands at the DOS prompt:

copy \access\util\USER_1.ALM \abps700\alarm\

and

copy \access\util\PS7_1.ALM \abps700\alarm\

Merging the Exported and Co-injection Databases

After the co-injection software is installed, you need to merge the database you exported with the co-injection database (\ACCESS\UTIL\CI.DBS). To merge these databases, follow these instructions:

1. Change to the \ACCESS\UTIL directory by typing

cd \access\util

at the DOS prompt.

2. At the MS-DOS prompt, type

copy database_name.dbs+ci.dbs ps700ci.dbs

This merges the two databases and copies them into \ACCESS\UTIL\PS700CI.DBS.

For example, if you named your database EXAMPLE.DBS, you would type the following command:

copy example.dbs+ci.dbs ps700ci.dbs

The name of the Pro-Set 700 Co-injection database is PS700CI.DBS.

Importing the Merged Database

The last step in installing the co-injection software is importing the merged database (PS700CI.DBS) into Pro-Set 700 software. To import the database, follow these instructions:

1. Re-start the operator interface. You see

2. Touch option 1) Run Pro-Set 700.

at the MS-DOS prompt.

at the operator interface command prompt.

You see

14.Select option 1) Run Pro-Set 700.

What 's Next?

In Chapter 2, we explain co-injection sequences.

Symbols

Empty, <u>5–5</u>

Α

Addressing Mode, I/O Chassis, Choosing the Correct, <u>2-2</u> Alarms, <u>A-1</u>

C

Circuit, Power Distribution, PLC Processor, 2–13 Conventions, Used in This Manual, <u>P-3</u>

D

Diagnostics Screen, <u>A-6</u>
Directories, Pro-Set 700 Co-injection Software, <u>P-4</u>
Directory Structure, Pro-Set 700 Co-injection Software, <u>P-4</u>
Download Bits, QI Module, <u>A-4</u>

Ε

Error Codes, QI Module, <u>A-4</u>

G

Grounding I/O Devices, <u>2–11</u> Making Proper Connection, <u>2–12</u>

Η

Hold Profile Setup Screen, <u>A-39</u> Hold Ramp Rates Setup Screen, <u>A-30</u> Hold Valves Setup Screen, <u>A-22</u>

 I/O Devices, Grounding and Shielding, <u>2-11</u>
 I/O Ranges, Entering on Screens, <u>2-19</u>
 Indicator Lights, Module, <u>2-16</u>
 Injection Profile Process Screen, <u>A-46</u> Injection Profile Setup Screen, <u>A-34</u> Injection Profiles, <u>4-2</u> Injection Ramp Rates Setup Screen, <u>A-28</u> Injection Transition Parameters Profile Process Screen, <u>A-49</u> Injection Valves Setup Screen, <u>A-18</u> Inputs, Setting Up Screw Position A and B, <u>3-3</u> Screw Pressure A and B, <u>3-4</u> Screw RPM A and B, <u>3-5</u>

J

Jumpers, Setting, <u>2-6</u>

Μ

Modules Determining Correct Position in Chassis, <u>2-2</u> I/O Range, Determining and Recording, <u>2-4</u> Indicator Lights, <u>2-16</u> Inserting into Chassis, <u>2-9</u> Keying I/O Chassis for, <u>2-3</u> Powering Up, <u>2-16</u> Wiring, <u>2-14</u>

Ρ

Pack Profile Setup Screen, <u>A-37</u> Pack Profiles, <u>4-4</u> Pack Ramp Rates Setup Screen, <u>A-29</u> Pack Valves Setup Screen, <u>A-20</u> Pack/Hold Transition Parameters Profile Process Screen, <u>A-55</u> Plastic Molding Module Setup Screen, <u>A-13</u> Plastication Profile Setup Screen, <u>A-42</u> Plastication Profiles, <u>4-6</u> Plastication Ramp Rates Setup Screen, <u>A-3</u>2 Plastication Transition Parameters Profile Process Screen, <u>A-59</u> Plastication Valves Setup Screen, <u>A-25</u> PLC Processor Addresses Diagnostics Screen, <u>A-6</u>

I-2

Hold Profile Setup Screen, <u>A-39</u> Hold Ramp Rates Setup Screen, A-30 Hold Valves Setup Screen, <u>A-22</u> Injection Profile Process Screen, A–46 Injection Profile Ramp Rates Setup Screen, <u>A-34</u> Injection Ramp Rates Setup Screen, A-28 Injection Transition Parameters Profile Process Screen, <u>A-49</u> Injection Valves Setup Screen, A-18 Pack Profile Ramp Rates Setup Screen, A-37 Pack Ramp Rates Setup Screen, A-29 Pack Valves Setup Screen, <u>A-20</u> Pack/Hold Process Screen. A-51 Pack/Hold Transition Parameters Profile Process Screen, <u>A-55</u> Plastic Molding Module Setup Screen, <u>A-13</u> Plastication Profile Process Screen, A-56 Plastication Profile Ramp Rates Setup Screen, <u>A-42</u> Plastication Ramp Rates Setup Screen, A-32 Plastication Transition Parameters Profile Process Screen. A-59 Plastication Valves Setup Screen, A-25 Post-decompress Ramp Rates Setup Screen, A-33 Post-decompress Valves Setup Screen, <u>A-27</u> Pre-decompress Ramp Rates Setup Screen, A-31 Pre-decompress Valves Setup Screen, <u>A-24</u> Process Screens, <u>A-46</u> Rack Configuration Setup Screen, A-12 Screw Jogs Setup Screen, A-17 Screw Position Setup Screen, A-14 Screw Pressure Setup Screen, <u>A-15</u> Screw RPM Setup Screen, _A-16 Setup Screens, A-12 Post-decompress Ramp Rates Setup Screen, A-33 Post-decompress Valves Setup Screen, A-27 Power Supply, Choosing the Correct, <u>2–1</u> Pre-decompress Ramp Rates Setup Screen, <u>A-31</u> Pre-decompress Valves Setup Screen, <u>A-24</u> Process Screens, <u>A-46</u>

Pack/Hold, A-51

Plastication Profile, <u>A-56</u> Profiles Setting Up Injection, <u>4-2</u> Setting Up Pack, <u>4-4</u> Setting Up Plastication, <u>4-6</u> Publications, Related, <u>P-3</u>

R

Rack Configuration Screen, Using, <u>2-20</u> Rack Configuration Setup Screen, <u>A-12</u> Reference Information, <u>A-1</u>

S

Screen Diagnostics, <u>A-6</u> Injection Profile Process, <u>A-46</u> **Injection Transition Parameters Profile** Process, A-49 Pack/Hold Transition Parameters Profile Process, A-55 Plastication Transition Parameters Profile Process, A-59 Rack Configuration Setup Screen, A-12 Screens Hold Profile Setup, <u>A-39</u> Hold Ramp Rates Setup, <u>A-30</u> Hold Valves Setup, A-22 Injection Profile Ramp Rates Setup, A-34 Injection Ramp Rates Setup, <u>A-28</u> Injection Valves Setup, <u>A-18</u> Pack Profile Ramp Rates Setup, <u>A-37</u> Pack Ramp Rates Setup, <u>A-29</u> Pack Valves Setup, <u>A-20</u> Pack/Hold Process, A-51 Plastic Molding Module Setup, <u>A-13</u> Plastication Profile Process, <u>A-56</u> Plastication Profile Ramp Rates Setup, A-42 Plastication Ramp Rates Setup, A-32 Plastication Valves Setup. A-25 Post-decompress Ramp Rates Setup, A-33 Post-decompress Valves Setup. A-27 Pre-decompress Ramp Rates Setup, A-31 Pre-decompress Valves Setup, <u>A-24</u> Process, A-46 Screw Jogs Setup, A-17 Screw Position Setup, <u>A-14</u> Screw Pressure Setup, A-15

Screw RPM Setup, <u>A-16</u> Setup, <u>A-12</u> Screw Jogs Setup Screen, <u>A-17</u> Screw Position A and B, Setting Up, <u>3-3</u> Screw Position Setup Screen, <u>A-14</u> Screw Pressure A and B, Setting Up, <u>3-4</u> Screw Pressure Setup Screen, <u>A-15</u> Screw RPM A and B, Setting Up, <u>3-5</u> Screw RPM Setup Screen, <u>A-16</u> Setup Screens, <u>A-12</u> Shielding, I/O Devices, <u>2-11</u>

Т

Tag Names Diagnostics Screen, <u>A-6</u> Hold Profile Setup Screen, <u>A-39</u> Hold Ramp Rates Setup Screen, <u>A-30</u> Hold Valves Setup Screen, <u>A-22</u> Injection Profile Process Screen, <u>A-46</u> Injection Profile Setup Screen, <u>A-34</u> Injection Ramp Rates Setup Screen, <u>A-28</u> Injection Transition Parameters Profile Process Screen, <u>A-49</u> Injection Valves Setup Screen, <u>A-18</u> Pack Profile Setup Screen, <u>A-37</u> Pack Ramp Rates Setup Screen, <u>A-29</u> Pack Valves Setup Screen, <u>A-20</u>

Pack/Hold Process Screen, A-51 Pack/Hold Transition Parameters Profile Process Screen, <u>A-55</u> Plastic Molding Module Setup Screen, A-13 Plastication Profile Process Screen, <u>A-56</u> Plastication Profile Setup Screen, A-42 Plastication Ramp Rates Setup Screen, A-32 **Plastication Transition Parameters Profile** Process Screen, A-59 Plastication Valves Setup Screen, A-25 Post-decompress Ramp Rates Setup Screen, <u>A-33</u> Post-decompress Valves Setup Screen, A-27 Pre-decompress Ramp Rates Setup Screen, A-31 Pre-decompress Valves Setup Screen, <u>A-24</u> Process Screens, A-46 Rack Configuration Setup Screen, <u>A-12</u> Screw Jogs Setup Screen, <u>A-17</u> Screw Position Setup Screen, <u>A-14</u> Screw Pressure Setup Screen, <u>A-15</u> Screw RPM Setup Screen, A-16 Setup Screens, <u>A-12</u> Task Definition Files Diagnostics Screen, <u>A-5</u>

Process Screen, <u>A-45</u>

Setup Screen, <u>A-9</u>

Rockwell Automation Allen-Bradley

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation.

Argentina • Australia • Austral • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444