
Code Interface Reference
Manual

LabVIEW Code Interface Reference Manual
January 1998 Edition
Part Number 320539D-01

725 11,
91,
4 00,
7 1200,
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1992, 1998 National Instruments Corporation. All rights reserved.

 Important Information

enced
do not
riod.

ide
 costs

viewed
right to
 should
ages

able for
over

or
sonable

nical,
hout

ility
edical
 of the
inical
uards,
 always
ntended
n health
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully re
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any dam
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S
RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE
LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply
regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be li
any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not c
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments
installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse,
negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside rea
control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW™, natinst.com™, National Instruments™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliab
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving m
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part
user or application designer. Any use or application of National Instruments products for or involving medical or cl
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeg
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should
continue to be used when National Instruments products are being used. National Instruments products are NOT i
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard huma
and safety in medical or clinical treatment.

Contents
xi
xii
.xiii
xiv

1-2
1-3
-3
4

-4
-5
.1-5
-6
-6
7
8
-8
1-9
-11
-12

-13

6
8
0

22
6
6
8
8
0
30
About This Manual
Organization of This Manual ...
Conventions Used in This Manual...
Related Documentation...
Customer Communication ...

Chapter 1
CIN Overview

Introduction..1-1
Classes of External Code...
Supported Languages ..

Macintosh..1
Microsoft Windows 3.1...1-
Microsoft Windows 95 and Windows NT ..1-4
Solaris..1
HP-UX and Concurrent...1

Steps for Creating a CIN...
Place the CIN on a Block Diagram ...1
Add Input and Output Terminals to the CIN...1

Input-Output Terminals...1-
Output-Only Terminals ...1-

Wire the Inputs and Outputs to the CIN..1
Create .c File..

Special Macintosh Considerations ..1
Compile the CIN Source Code..1

Macintosh..1
THINK C for 68K (Version 7) ...1-13
Symantec C++ 8.0 for Power Macintosh..............................1-1
Metrowerks CodeWarrior for 68K1-1
Metrowerks CodeWarrior for Power Macintosh1-2
Macintosh Programmer’s Workshop for 68K

and Power Macintosh ..1-
Microsoft Windows 3.x...1-2

Watcom C Compiler ...1-2
Microsoft Windows 95 and Windows NT ..1-2

Visual C++ Command Line..1-2
Visual C++ IDE..1-3
Symantec C...1-
© National Instruments Corporation v LabVIEW Code Interface Reference Manual

Contents

1
31
31
2

-32
-33

1-34
1-34
. 1-34
1-36
-37

-37
-39

-39

2-2
2-2
2-2
2-3
2-3
2-3
. 2-4
4
-7

2-8
-9

2-10
2-10
-10
2-11
2-1
2-13
2-15
2-15
17
-20
Watcom C Compiler for Windows 3.1 under
Windows 95 or Windows NT.. 1-3

Solaris 1.x ... 1-
Solaris 2.x ... 1-
HP-UX and Concurrent PowerMAX.. 1-3
Unbundled Sun ANSI C Compiler, HP-UX C/ANSI C Compiler,

and Concurrent C Compiler... 1
Load the CIN Object Code.. 1

LabVIEW Manager Routines ..
Online Reference...
Pointers as Parameters ...

Debugging External Code ...
DbgPrintf... 1
Debugging CINs Under Windows 95/NT... 1
Debugging CINs Under Sun or Solaris... 1
Debugging CINs Under HP-UX ... 1

Chapter 2
CIN Parameter Passing

Introduction ... 2-1
CIN .c File ... 2-1
How LabVIEW Passes Fixed Sized Data to CINs ..

Scalar Numerics ..
Scalar Booleans...
Refnums ..
Clusters of Scalars...

Return Value for CIN Routines...
Examples with Scalars..

Creating a CIN That Multiplies Two Numbers .. 2-
Comparing Two Numbers, Producing a Boolean Scalar 2

How LabVIEW Passes Variably Sized Data to CINs ...
Alignment Considerations... 2
Arrays and Strings...
Paths (Path) ...
Clusters Containing Variably Sized Data ... 2

Resizing Arrays and Strings ..
SetCINArraySize...2
NumericArrayResize ...
Examples with Variably Sized Data..

Concatenating Two Strings...
Computing the Cross Product of Two Two-Dimensional Arrays..................... 2-
Working with Clusters .. 2
LabVIEW Code Interface Reference Manual vi © National Instruments Corporation

Contents

.
..3-1
3-3
-3
4

-4
4
-5
-5
5
-5
6
-7
-8
3-8
-9
10
11
2

-12
-13
13
-14
-14
-15
15

-15
-17
20
-20

.4-2
4-3
-3
Chapter 3
CIN Advanced Topics

CIN Routines ..3-1
Data Spaces and Code Resources..
CIN Routines: The Basic Case ..

Loading a VI ...3
Unloading a VI..3-
Loading a New Resource into the CIN ...3
Compiling a VI..3-
Running a VI...3
Saving a VI..3
Aborting a VI ..3-

Multiple References to the Same CIN in a Single VI3
Multiple Reference to the same CIN in different VIs3-

Single Threaded Operating Systems ...3
Multithreaded Operating Systems...3

Code Globals and CIN Data Space Globals ..
Examples...3

Using Code Globals..3-
Using CIN Data Space Globals ..3-

Calling a Windows 95 or Windows NT Dynamic Link Library3-1
Calling a Windows 3.1 Dynamic Link Library ...3

Calling a 16-Bit DLL...3
1. Load the DLL..3-
2. Get the address of the desired function...3
3. Describe the function ..3
4. Call the function..3

Example: A CIN that Displays a Dialog Box..3-
The DLL..3
The CIN Code ...3
Compiling the CIN..3-
Optimization..3

Chapter 4
External Subroutines

Introduction..4-1
Creating Shared External Subroutines..

External Subroutines ...
Macintosh..4
Microsoft Windows 3.1, Windows 95, and Windows NT..................4-3
Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX4-4
© National Instruments Corporation vii LabVIEW Code Interface Reference Manual

Contents

-5

-7
7
7

-10
11
11
2

3

. 5-
5-2
-2
-3
4
5-4
5-4
-4
-5

5

-6
-6
-6
5-7
Calling Code.. 4-4
Macintosh ... 4
Microsoft Windows 3.1, Windows 95, and Windows NT 4-6
Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX........... 4-6

External Subroutine Example ... 4
Compiling the External Subroutine .. 4-

Macintosh... 4-
Microsoft Windows 3.1.. 4-8
Microsoft Windows 95 and Windows NT 4-9
Solaris 1.x, Solaris 2.x, HP-UX, and

Concurrent PowerMAX .. 4-9
Calling Code Example .. 4

Compiling the Calling Code ... 4-
Macintosh... 4-
Microsoft Windows 3.1.. 4-1
Microsoft Windows 95 and Windows NT 4-13
Solaris 1.x, Solaris 2.x, HP-UX, and

Concurrent PowerMAX .. 4-1

Chapter 5
Manager Overview

Introduction ... 5-1
Basic Data Types..2

Scalar Data Types ...
Booleans ... 5
Numerics... 5

Complex Numbers.. 5-
char Data Type ..
Dynamic Data Types...

Arrays ... 5
Strings ... 5

C-Style Strings (CStr) .. 5-5
Pascal-Style Strings (PStr) ... 5-
LabVIEW Strings (LStr) .. 5-5
Concatenated Pascal String (CPStr)..................................... 5

Paths (Path)... 5
Memory-Related Types... 5
Constants...
LabVIEW Code Interface Reference Manual viii © National Instruments Corporation

Contents

5-7
-7
7
8
5-9
5-9
-10
5-12
-12

-13
5-13
-13
-15
16
-16

5-16
.5-

.3-2

.3-6
-7

1-35
Memory Manager ..
Memory Allocation ...5

Static Memory Allocation...5-
Dynamic Memory Allocation: Pointers and Handles5-

Memory Zones...
Using Pointers and Handles...

Simple Example ..5
Reference to the Memory Manager...

Memory Manager Data Structures..5
File Manager ..5-12

Identifying Files and Directories ...5
Path Specifications ..

Conventional Path Specifications ...5
Empty Path Specifications ..5
LabVIEW Path Specification..5-

File Descriptors ...5
File Refnums ...

Support Manager...17

Appendix A
CIN Common Questions

Appendix B
Customer Communication

Glossary

Figures
Figure 3-1. Data Storage Spaces for One CIN, Simple Case....................................
Figure 3-2. Three CINs Referencing the Same Code Resource................................
Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN3

Tables
Table 1-1. Functions with Parameters Needing Pre-allocated Memory...................
© National Instruments Corporation ix LabVIEW Code Interface Reference Manual

About This Manual

n in
n

 file
ot

al

t

d

1,

nd
sic
ries.

s

cts
The LabVIEW Code Interface Reference Manual describes Code Interface
Nodes and external subroutines for users who need to use code writte
conventional programming languages. The manual includes informatio
about shared external subroutines, libraries of functions, memory and
manipulation routines, and diagnostic routines. Additional information n
included in this manual is also available by selecting Online Reference
from LabVIEW’s Help menu.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, CIN Overview, introduces the LabVIEW Code Interface
Node (CIN), a node that links external code written in a convention
programming language to LabVIEW.

• Chapter 2, CIN Parameter Passing, describes the data structures tha
LabVIEW uses when passing data to a CIN.

• Chapter 3, CIN Advanced Topics, covers several topics that are neede
only in advanced applications, including how to use the CINInit ,
CINDispose , CINAbort , CINLoad , CINUnload , CINSave , and
CINProperties routines. The chapter also discusses how global
data works within CIN source code, and how users of Windows 3.
Windows 95, and Windows NT can call a DLL from a CIN.

• Chapter 4, External Subroutines, describes how to create and call
shared external subroutines from other external code modules.

• Chapter 5, Manager Overview, gives an overview of the function
libraries, called managers, which you can use in external code
modules. These include the memory manager, the file manager, a
the support manager. The chapter also introduces many of the ba
constants, data types, and globals contained in the LabVIEW libra

• Appendix A, CIN Common Questions, answers some of the question
commonly asked by LabVIEW CIN users.

• Appendix B, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our produ
and manuals.
© National Instruments Corporation xi LabVIEW Code Interface Reference Manual

About This Manual

g
s,

ction
e

er
tax
ths,

ions,
nd

s or

ple,

rive

ou
• The Glossary contains an alphabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes the names of menus, menu items, parameters, dialo
boxes, dialog box buttons or options, icons, windows, Windows 95 tab
or LEDs.

italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text from which you supply th
appropriate word or value, as in Windows 3.x.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally ent
from the keyboard, sections of code, programming examples, and syn
examples. This font is also used for the proper names of disk drives, pa
directories, programs, subprograms, subroutines, device names, funct
operations, variables, filenames and extensions, and for statements a
comments taken from programs.

monospace italic Italic text in this font denotes that you must enter the appropriate word
values in the place of these items.

<> Angle brackets enclose the name of a key on the keyboard—for exam
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name—for
example, DBIO<3..0>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

paths Paths in this manual are denoted using backslashes (\) to separate d
names, directories, folders, and files.

This icon to the left of bold italicized text denotes a note, which alerts y
to important information.
LabVIEW Code Interface Reference Manual xii © National Instruments Corporation

About This Manual

es
.

rms

ul
This icon to the left of bold italicized text denotes a caution, which advis
you of precautions to take to avoid injury, data loss, or a system crash

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and te
are listed in the Glossary.

Related Documentation
The following documents contain information that you might find helpf
as you read this manual:

• G Programming Reference Manual

• LabVIEW User Manual

• LabVIEW Function and VI Reference Manual

• LabVIEW Online Reference, available by selecting
Help»Online Reference

Sun users might also find the following document useful:

• Sun Workshop CD-ROM, Sun Microsystems, Inc., U.S.A., 1997

Windows users might also find the following documents useful:

• Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

• Microsoft Windows Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

• Win32 Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992-1995

• Watcom C/C++ User’s Guide CD-ROM, Watcom Publications
Limited, Waterloo, Ontario, Canada, 1995; Help file: “The
Watcom C/C++ Compilers”

• Microsoft Visual C++ CD-ROM, Microsoft Corporation,
Redmond, WA, 1997

!

© National Instruments Corporation xiii LabVIEW Code Interface Reference Manual

About This Manual

 and

e it
tion
Customer Communication
National Instruments wants to receive your comments on our products
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To mak
easy for you to contact us, this manual contains comment and configura
forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.
LabVIEW Code Interface Reference Manual xiv © National Instruments Corporation

© National Instruments Corporation 1-1 LabVIEW Code Interface
1

de

ge

e
e

st

t are

s

ng
us

d.

n
r
s
p.

CIN Overview

This chapter introduces the LabVIEW Code Interface Node (CIN), a no
that links external code written in a conventional programming langua
to LabVIEW.

Introduction
A CIN is a block diagram node associated with a section of source
code written in a conventional programming language. You compile th
source code first and link it to form executable code. LabVIEW calls th
executable code when the node executes, passing input data from the
block diagram to the executable code, and returning data from the
executable code to the block diagram.

The LabVIEW compiler can usually generate code fast enough for mo
of your programming tasks. However, you can use CINs for tasks a
conventional language can accomplish more easily, such as tasks tha
time-critical or require a great deal of data manipulation. CINs are also
useful for tasks you cannot perform directly from the diagram, such as
calling system routines for which no corresponding LabVIEW function
exist. CINs can also link existing code to LabVIEW, although you may
need to modify the code so it uses the correct LabVIEW data types.

CINs execute synchronously, which means LabVIEW cannot use the
execution thread used by the CIN for any other purpose. When a VI
executes, LabVIEW monitors menus and the keyboard. When running
multi-threaded, there is a separate thread for these tasks. When runni
single-threaded, the VI returns to LabVIEW to allow it time to scan men
and the keyboard, and run other VIs.

When CIN object code executes, it takes control of its execution threa
If LabVIEW has only a single thread of control, then all of LabVIEW is
stopped until the CIN object code returns. On single-threaded operatio
systems such as Macintosh and Windows 3.1, CINs even prevent othe
applications from running. In multi-threaded operating systems such a
Windows 95/NT, only the execution thread running the CIN is locked u
However, if there is only one execution thread, other VIs are prevented
from running.
Reference Manual

Chapter 1 CIN Overview

h

at
.

als.
all.
ated

s.

g

ins

.
rnal
y
 for
on
he
tine
utine
 only

er

A VI executing a CIN can not be reset until the CIN completes—the
executing CIN object code cannot be interrupted by LabVIEW. Althoug
you can create VIs that use CINs and behave in a more asynchronous
fashion, be aware of this potential problem if you intend to write a CIN th
executes a long task and you need LabVIEW to multitask in the interim

A CIN appears on the diagram as an icon with input and output termin
You associate this node with a section of code you want LabVIEW to c
When it is time for the node to execute, LabVIEW calls the code associ
with the CIN, passing it the specified data.

In some cases, you may want a CIN to perform additional actions at
certain execution times. For example, you might want to initialize data
structures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines LabVIEW calls at predefined times or when the node execute
Specifically, LabVIEW calls certain routines when the VI containing the
CIN is loaded, saved, closed, aborted, or compiled. You generally use
these routines in CINs that perform an on-going action, such as
accumulating results from call to call, so you can allocate, initialize,
and deallocate resources at the correct time. Most CINs perform a
specific action at run time only.

After you have written your first CIN as described in this manual, writin
new CINs is relatively easy. The work involved in writing new CINs is
mostly in coding the algorithm, because the interface to LabVIEW rema
the same, no matter what the development system.

Classes of External Code
LabVIEW supports code resources for CINs and external subroutines
An external subroutine is a section of code you can call from other exte
code. If you write multiple CINs that call the same subroutine, you ma
want to make the shared subroutine an external subroutine. The code
an external subroutine is a separate file; when LabVIEW loads a secti
of external code that references an external subroutine, it also loads t
appropriate external subroutine into memory. Using an external subrou
makes each section of calling code smaller, because the external subro
does not require embedded code. Further, you need to make changes
once if you want to modify the subroutine.

Note LabVIEW does not support code resources for external subroutines on the Pow
Macintosh. If you are working with a Power Macintosh, you should use shared
libraries instead of external subroutines. For information on building shared
libraries, consult your development environment documentation.
LabVIEW Code Interface Reference Manual 1-2 © National Instruments Corporation

Chapter 1 CIN Overview

or a
ads

red

jor

r

,

Although LabVIEW for Solaris 2.x, HP-UX, and Concurrent PowerMAX support
external routines, it is recommended you use UNIX shared libraries instead,
because they are a more standard library format.

Supported Languages
The interface for CINs and external subroutines supports a variety of
compilers, although not all compilers can create code in the correct
executable format.

External code must be compiled as a form of executable appropriate f
specific platform. The code must be relocatable, because LabVIEW lo
external code into the same memory space as the main application.

Macintosh
LabVIEW for the Macintosh uses external code as a customized code
resource (for 68K) or shared library (for Power Macintosh) that is prepa
for LabVIEW using the separate utilities lvsbutil.app for THINK C
and Metrowerks CodeWarrior, and lvsbutil.tool for the Macintosh
Programmer’s Workshop. These utilities are included with LabVIEW.

The LabVIEW utilities and object files are compatible with the three ma
C development environments for the Power Macintosh:

• THINK C, version 7 for Macintosh and Symantec C++ version 8 fo
Power Macintosh, from Symantec Corporation of Cupertino, CA

• Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, Texas

• Macintosh Programmer’s Workshop (MPW) from Apple Computer
Inc. of Cupertino, CA

LabVIEW header files are compatible with these three environments.
Header files may need modification for other environments.

CINs compiled for the 68K Macintosh will not be recognized by LabVIEW
for the Power Macintosh, and vice versa.

LabVIEW does not currently work with fat binaries (a format including
multiple executables in one file, in this case both 68K and Power
Macintosh executables).
© National Instruments Corporation 1-3 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

.

-bit

f

piler

re
s
Microsoft Windows 3.1
LabVIEW for Windows supports external code compiled as a .REX file
and prepared for LabVIEW using an application included with LabVIEW
This application requires dos4gw.exe , which comes with Watcom C.
LabVIEW is a 32-bit, flat memory-model application, so you must
compile external code for a 32-bit memory model when you install the
Watcom C compiler.

Watcom C is the only LabVIEW-supported compiler that can create 32
code of the correct format.

Microsoft Windows 95 and Windows NT
You can use CINs in LabVIEW for Windows 95/NT created with any o
the following compilers.

• The Microsoft Visual C++ compiler.

• Symantec C Compiler.

See the Microsoft Windows 95 and Windows NT subsection of the
Compile the CIN Source Code section of this chapter for information
on how to create a CIN using these compilers.

• The Watcom C/386 compiler for Windows 3.1.

In most cases, you can use CINs created using the Watcom C com
for Windows 3.1 with LabVIEW for Windows 95/NT. See the
Microsoft Windows 3.x subsection of the Compile the CIN Source
Code section of this chapter for more information on using the
Watcom C compiler for Windows 3.1.

Note Under Windows 95 and Windows NT, do not call CINs created using the
Watcom C compiler that call DLLs and system functions or that access hardwa
directly. The technique Watcom uses to call such code under Windows 3.1 doe
not work under Windows 95 or Windows NT.

Solaris
LabVIEW for Sun supports external code compiled in a.out format under
Solaris 1.x and a shared library format under Solaris 2.x. These formats are
prepared for LabVIEW using a LabVIEW utility.

The unbundled Sun ANSI C compiler is the only compiler tested
thoroughly with LabVIEW. The header files are compatible with
the unbundled Sun ANSI C Compiler and may need modification for
other compilers.
LabVIEW Code Interface Reference Manual 1-4 © National Instruments Corporation

Chapter 1 CIN Overview

ly

un

cute
d to
IN
l

ew
HP-UX and Concurrent
LabVIEW for HP-UX and Concurrent support external code compiled
as a shared library. This library is prepared for LabVIEW using a
LabVIEW utility.

The HP-UX C/ANSI C compiler and Concurrent C Compiler are the on
compilers tested thoroughly with LabVIEW.

Steps for Creating a CIN
You create a CIN by first describing in LabVIEW the data you want to
pass to the CIN. You then write the code for the CIN using one of the
supported programming languages. After you compile the code, you r
a utility that puts the compiled code into a format LabVIEW can use.
You then instruct LabVIEW to load the CIN.

If you execute the VI at this point, and the block diagram needs to exe
the CIN, LabVIEW calls the CIN object code and passes any data wire
the CIN. If you save the VI after loading the code, LabVIEW saves the C
object code along with the VI so LabVIEW no longer needs the origina
code to execute the CIN. You can update your CIN object code with n
versions at any time.

The examples directory contains a cins directory that includes all of the
examples given in this manual. The names of the directories in the cins
directory correspond to the CIN name given in the examples.

The following steps explain how to create a CIN.
© National Instruments Corporation 1-5 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

and
s a

ing
Place the CIN on a Block Diagram
Select the Code Interface Node function from the Advanced palette of the
Functions palette, as shown in the following illustration.

Add Input and Output Terminals to the CIN
A CIN has terminals with which you can indicate which data passes to
from a CIN. Initially, the CIN has one set of terminals, and you can pas
single value to and from the CIN. You add additional terminals by resiz
the node or by selecting Add Parameter from the CIN terminal pop-up
menu. Both methods are shown in the following illustration.

You can resize the node to add parameters,
LabVIEW Code Interface Reference Manual 1-6 © National Instruments Corporation

Chapter 1 CIN Overview

 the

r

IN
he
inter
the
e

re

s
or use the pop-up menu to add a parameter.

Each pair of terminals corresponds to a parameter LabVIEW passes to
CIN. The two types of terminal pairs are input-output and output-only.

Input-Output Terminals
By default, a terminal pair is input-output; the left terminal is the input
terminal, and the right terminal is the output terminal. As an example,
consider a CIN that has a single terminal pair. Assume a 32-bit intege
control is wired to the input terminal, and a 32-bit integer indicator is
wired to the output terminal, as shown in the following illustration.

When the VI calls the CIN, the only argument LabVIEW passes to the C
object code is a pointer to the value of the 32-bit integer input. When t
CIN completes, LabVIEW then passes the value referenced by the po
to the 32-bit integer indicator. When you wire controls and indicators to
input and the output terminals of a terminal pair, LabVIEW assumes th
CIN can modify the data passed. If another node on the block diagram
needs the input value, LabVIEW may have to copy the input data befo
passing it to the CIN.

Now consider the same CIN, but with no indicator wired to the output
terminal, as shown in the following illustration.

If you do not wire an indicator to the output terminal of a terminal pair,
LabVIEW assumes the CIN will not modify the value you pass to it. If
another node on the block diagram uses the input data, LabVIEW doe
© National Instruments Corporation 1-7 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

 into
al.

asses
e

n
ent
ft
n
inal.

tput

cted
nals

e

ly
rs
r 2,
not copy the data. The source code should not modify the value passed
the input terminal of a terminal pair if you do not wire the output termin
If the CIN does modify the input value, nodes connected to the input
terminal wire may receive the modified data.

Output-Only Terminals
If you use a terminal pair only to return a value, make it an output-only
terminal pair by selecting Output Only from the terminal pair pop-up
menu. If a terminal pair is output-only, the input terminal is gray, as
shown in the following illustration.

For output-only terminals, LabVIEW creates storage space for a return
value and passes the value by reference to the CIN the same way it p
values for input-output terminal pairs. If you do not wire a control to th
left terminal, LabVIEW determines the type of the output parameter by
checking the type of the indicator wired to the output terminal. This ca
be ambiguous if you wire the output to two destinations that have differ
data types. You can remove this ambiguity by wiring a control to the le
(input) terminal of the terminal pair as shown in the preceding figure. I
this case, output terminal takes on the same data type as the input term
LabVIEW uses the input type only to determine the data type for the ou
terminal; the CIN does not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, pop up on the terminal you
want to remove and choose Remove Terminal from the menu. LabVIEW
disconnects wires connected to the deleted terminal pair. Wires conne
to terminal pairs below the deleted pair remain attached to those termi
and stretch to adjust to the terminals’ new positions.

Wire the Inputs and Outputs to the CIN
Connect wires to all the terminal pairs on the CIN to specify the data
you want to pass to the CIN, and the data you want to receive from th
CIN. The order of terminal pairs on the CIN corresponds to the order
in which parameters are passed to the code. Notice you can use any
LabVIEW data types as CIN parameters. Thus, you can pass arbitrari
complex hierarchical data structures, such as arrays containing cluste
which may in turn contain other arrays or clusters to a CIN. See Chapte
CIN Parameter Passing, for a description of how LabVIEW passes
parameters of specific data types to CINs.
LabVIEW Code Interface Reference Manual 1-8 © National Instruments Corporation

Chapter 1 CIN Overview

ied

he
 at
Create .c File
If you select Create .c File... from the CIN pop-up menu, as shown in
the following illustration, LabVIEW creates a .c file in the style of the
C programming language. The .c file describes the routines you must
write and the data types for parameters that pass to the CIN.

For example, consider the following call to a CIN, which takes a 32-bit
integer as an input and returns a 32-bit integer as an output.

The following code excerpt is the initial .c file for this node. Eight routines
may be written for the CIN. The CINRun routine is required—the others are
optional. If an optional routine is not present, a default routine is suppl
when the CIN is built.

These eight routines are discussed in detail in subsequent chapters. T
.c file is presented here to give you an idea of what LabVIEW creates
this stage in building a CIN.

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(int32 *num_in, int32 *num_out);

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

/* ENTER YOUR CODE HERE */

return noErr;

}

© National Instruments Corporation 1-9 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

l

he

t
sks

ed,

such
ou

.

This .c file is a template in which you must write C code. Notice
extcode.h is automatically included; it is a file that defines basic data
types and a number of routines that can be used by CINs and externa
subroutines. extcode.h defines some constants and types whose
definitions may conflict with the definitions of system header files.
The LabVIEW cintools directory also contains a file, hosttype.h ,
that resolves these differences. This header file also includes many of
the common header files for a given platform.

Always use #include "extcode.h" at the beginning of your source
code. If your code needs to make system calls, also use #include

"hosttype.h" immediately after #include "extcode.h" , and then
include your system header files. hosttype.h includes only a subset of
the .h files for a given operating system. If the .h file you need is not
included by hosttype.h , you can include it in the .c file for your CIN
just after you include hosttype.h .

LabVIEW calls the CINRun routine when it is time for the node to
execute.CINRun receives the input and output values as parameters. T
other routines (CINLoad , CINSave , CINUnload , CINAbort , CINInit ,
CINDispose , and CINProperties) are housekeeping routines, called a
specific times to give you the opportunity to take care of specialized ta
with your CIN. For instance, CINLoad is called when a VI is first loaded.
If you need to accomplish some special task when your VI is first load
put the code for that task in the CINLoad routine. To do this, write your
CINLoad routine as follows:

CIN MgErr CINLoad(RsrcFile reserved) {

Unused (reserved);

/* ENTER YOUR CODE HERE */

return noErr;

}

In general, you only need to write the CINRun routine. The other routines
are supplied for instances when you have special initialization needs,
as when your CIN must maintain some information across calls, and y
want to preallocate or initialize global state information. The following
code shows how to fill out the CINRun routine from the previously shown
LabVIEW-generated .c file to multiply a number by two. This code is
included for illustrative purposes. Chapter 2, CIN Parameter Passing,
discusses how LabVIEW passes data to a CIN, with several examples

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

*num_out = *num_in * 2;

return noErr;

}

LabVIEW Code Interface Reference Manual 1-10 © National Instruments Corporation

Chapter 1 CIN Overview

 the

n,
 to

ints

er
ode

 the
Special Macintosh Considerations
If you compile your code for a 68K Macintosh, there are certain
circumstances under which you must use the ENTERLVSB and LEAVELVSB
macros at the entry and exit of some functions. These macros ensure
global context register (A5 for MPW builds, A4 for Symantec/THINK
and Metrowerks builds) for your CIN is established during your functio
and the caller's is saved and restored. This is necessary to enable you
reference global variables, call external subroutines, and call LabVIEW
routines such as those described in subsequent chapters.

You need not use these macros in any of the eight predefined entry po
(CINRun, CINLoad , CINUnload , CINSave , CINInit , CINDispose ,
CINAbort , and CINProperties), because the CIN libraries already
establish and restore the global context before and after calling these
routines. Using them here would be harmless, but unnecessary.

However, if you create any other entry points to your CIN, you should
use these macros. You create another entry point to your CIN whenev
you pass the address of one of your functions to some other piece of c
that may call your function later. An example of this is the use of the
QSort routine in the LabVIEW support manager (described in the CIN
Function Overview section of the LabVIEW Online Reference). You must
pass a comparison routine to QSort . This routine gets called directly by
QSort , without going through the CIN library. Therefore it is your
responsibility to set up your global context with ENTERLVSB and
LEAVELVSB.

To use these macros properly, place the ENTERLVSB macro at the beginning
of your function between your local variables and the first statement of
function. Place the LEAVELVSB macro at the end of your function just
before returning, as in the following example.

CStr gNameTable[kNNames];

int32 MyComparisonProc(int32 *pa, int32 * pb)

{

int32 comparisonResult;

ENTERLVSB

comparisonResult = StrCmp(gNameTable[*pa],

gNameTable[*pb]);

LEAVELVSB

return comparisonResult;

}

© National Instruments Corporation 1-11 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

gs

an
ing a
y

ion
ols

g
The function MyComparisonProc is an example of a routine that might
be passed to the QSort routine. Because it explicitly references a global
variable (gNameTable), it must use the ENTERLVSB and LEAVELVSB
macros. There are other things that can implicitly reference globals.
Depending on the compiler and settings of various options, literal strin
may also be referenced as globals.

It is best to always use the ENTERLVSB and LEAVELVSB macros whenever
you create a new entry point to your CIN.

When you use these macros, be sure your function does not return
before calling the LEAVELVSB macro. One technique is to use a goto

endOfFunction statement (where endOfFunction is a label just before
the LEAVELVSB macro at the end of your function) in place of any return
statements you may place in your function.

Compile the CIN Source Code
You must compile the source code for the CIN in a format LabVIEW c
use. There are two steps to this process. First you compile the code us
compiler LabVIEW supports. Then you use a LabVIEW utility to modif
the object code, putting it into a format LabVIEW can use.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple specificat
for a CIN and create object code you can load into LabVIEW. These to
vary depending on the platform and compiler you use. The following
sections summarize the steps for each platform.

Note Compiling the source code is different for each platform. Look under the headin
for your platform and compiler in the following sections to find the instructions
for your system.

Every source code file for a CIN should list #include "extcode.h" before any
other code. If your code needs to make system calls, you should also use #include

"hosttype.h" immediately after #include "extcode.h" .
LabVIEW Code Interface Reference Manual 1-12 © National Instruments Corporation

Chapter 1 CIN Overview

ree
s’

rs

e
ns
r,
ns

not
ays,

alls
de

st

 of
ot

e
Macintosh
LabVIEW for the Macintosh uses external code as a customized code
resource (on a 68K Macintosh) or as a shared library (on a Power
Macintosh) prepared for LabVIEW using the separate utilities
lvsbutil.app for THINK and Metrowerks or lvsbutil.tool for
MPW. Both these utilities are included with LabVIEW.

You can create CINs on the Macintosh with compilers from any of the th
major C compiler vendors: Symantec’s THINK environment, Metrowerk
CodeWarrior environment, and Apple’s Macintosh Programmer’s
Workshop (MPW) environment. Always use the latest Universal heade
containing definitions for both 68K and Power Macintosh compilers.

The LabVIEW utilities for building Power Macintosh CINs are the sam
ones used for the 68K Macintosh and can be used to build both versio
of a CIN. If you want to place both versions in the same folder, howeve
some development conflicts may arise. Because the naming conventio
for object files and.lsb files are the same, make sure one version does
replace the other. These kinds of issues can be handled in different w
depending on your development environment.

Some CIN code that compiles and works on the 68K Macintosh and c
Macintosh OS or Toolbox functions requires changes to the source co
before it will work on the Power Macintosh. Any code that passes a
function pointer to a Mac OS or Toolbox function must be modified to
pass a Routine Descriptor (see Apple’s Inside Macintosh chapter on the
Mixed Mode Manager, available in the Macintosh on RISC SDK from
APDA). Also, if you use any 68K assembly language in your CIN, it mu
be ported to either C or Power Macintosh assembly language.

THINK C for 68K (Version 7)
To create a THINK C CIN project, make a new folder for the project.
Launch THINK C and create a new project in the new folder. The name
your THINK C project must match your CIN name exactly, and must n
use any of the conventional project suffixes, such as . π or .proj . If you
name your CIN test , your THINK C project must also be named test , so
it produces a link map file named test.map . You should keep the new
project and the CIN files associated with it within the same folder.

With THINK C 7, an easy way to set up your CIN project is to make us
of the project stationery in the cintools:Symantec-THINK Files:

Project Stationery folder. For THINK C 7 projects, the project
stationery is a folder called LabVIEW CIN TC7 . It provides a template
© National Instruments Corporation 1-13 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

cific

ings
nt

e
for new CINs with most of the settings you need. See the Read Me file in
the Project Stationery folder for details.

When building a CIN using THINK C for 68K, many of the preferences
can be set to whatever you wish. Others, however, must be set to spe
values to correctly create a CIN. If for some reason you do not use the
CIN project stationery, you will need to ensure the following settings in
the THINK C Preferences dialog box are made:

• Pull down the THINK C Edit menu and pop up on the Options item;
select THINK Project Manager... . Under Preferences, check the
Generate link map box, and then click on the OK button. Now go
back to the Options item under the Edit menu and select THINK C... .

• To complete the project set-up process, select the Require prototypes
button under Language Settings and then check the Check Pointer
Types box. Under Prefix, delete the line #include <MacHeaders>
if it is present. Finally, under Compiler Settings, check the Generate
68881 instructions box, the Native floating-point format box, and
the Generate 68020 instructions box. You can use the Copy button
at the top of the dialog box to make these settings the default sett
for new projects, which will make the set-up process for subseque
CINs simpler.

• When you have finished selecting the options in the Edit menu, turn
to the THINK C Project menu; select Set Project Type.... First, set
the type to Code Resource. From the new options that appear, set th
File Type to .tmp , the Creator to LVsb , the Name to the name of the
CIN plus the extension .tmp , the Type to CUST, the ID to 128 , and
check the Custom Header box. If you are creating a CIN called
test , you must name the resource test.tmp , as shown in the
following illustration.
LabVIEW Code Interface Reference Manual 1-14 © National Instruments Corporation

Chapter 1 CIN Overview

e

pts

sh,
After these parameters are set, add the libraries CINLib.TC7 and
LabVIEWLib.TC7 , found in cintools:Symantic-THINK Files:

Think C 7 Libraries , to the project. You must also add the default
version of each standard CIN procedure not defined by your code.
Each default procedure is in its own correspondingly named library,
located in cintools:Symantic-THINK Files:THINK C 7

Libraries . These libraries are CINLoad.TC7 , CINUnload.TC7 ,
CINInit.TC7 , CINDispose.TC7 , CINAbort.TC7 , CINSave.TC7 ,
andCINProperties.TC7 . Then add your .c files.

You are now ready to build the code resource. Go to the Project menu
and select Build Code Resource.... A dialog box will appear, allowing
you to save the code resource. The name of the code resource must b
the same as the name of the CIN plus the extension .tmp .

After you build a code resource and give it a .tmp extension, you must run
the application lvsbutil.app , also included with LabVIEW, to prepare
external code for use as a CIN or external subroutine. This utility prom
you to select your .tmp file. The utility also uses the THINK C link map
file, which carries a .map extension and must be in the folder with your
.tmp file. The application lvsbutil.app uses the .tmp and the .map
files to produce a .lsb file that can be loaded into a VI.

If you are making a CIN, select the CIN option in the dialog box, as shown
in the above illustration. If you are making a CIN for the Power Macinto
also check the For Power PC box. If you are making an external
subroutine, select the Subroutine option.
© National Instruments Corporation 1-15 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

e

ck

.
d
Advanced programmers can check the Add separate resource file box to
add additional resources to their CINs or the Put directly into VI box to
put the .lsb code into a VI without opening it or launching LabVIEW.
Remember the VI designated to receive the .lsb code must already
contain .lsb code with the same name. Notice you cannot put the cod
directly into a library.

If your .tmp code resource file does not show up in the dialog box, che
its file type. When building the .tmp file, specify the file type as .tmp ,
which is under the Set Project Type... menu item of the Project menu in
THINK C. The .lsb file this application produces is what the LabVIEW
CIN node should load.

Note The THINK C compiler will only find extcode.h if the file extcode.h is located
on the THINK C search path. You can place the cintools folder in the same
folder as your THINK C application, or you can make sure the line #include

"extcode.h" is a full pathname to extcode.h under THINK C. For example:
#include "harddrive:cintools:extcode.h"

If you are using System 7.0 or later, you can extend the THINK C search path
To do so, first create a new folder in the same folder as your THINK C project an
name it Aliases . Then make an alias for the cintools folder, and drag this alias
into your newly created Aliases folder. This technique enables the include line
to read #include "extcode.h" ; therefore, it is not necessary to type the full
pathname.

Symantec C++ 8.0 for Power Macintosh
To create CINs using this environment, you will need to install the
ToolServer application from the Symantec C++ 8.0 distribution disks.
ToolServer is an Apple tool that performs the final linking steps in
creating your CIN. It can be found in the Apple Software:Tools folder.
Copy the ToolServer 1.1.1 folder to your hard drive and place an
alias to ToolServer in the (Tools) folder in your Symantec C++ for

PowerMac folder.
LabVIEW Code Interface Reference Manual 1-16 © National Instruments Corporation

Chapter 1 CIN Overview

ce

 be
IN
tec
You need the following files in your project to create a CIN for Power
Macintosh.

• ~CINLib.ppc . This file is shipped with LabVIEW and can be found
in the cintools:Symantic-THINK Files:Symantic C 8 folder.

• Your source files

You might also need the LabVIEW.xcoff file. This file is shipped with
LabVIEW and can be found in the cintools:PowerPC Libraries
folder. It is needed if you call any routines within LabVIEW, such as
DSSetHandleSize() or SetCINArraySize() .

An easy way to set up your CIN project is to make use of the CIN
project stationery in the cintools:Symantec-THINK Files:Project

Stationery folder. For Symantec C version 8 projects the project
stationery is a folder called LabVIEW CIN SC8PPC . The folder provides
a template for new CINs containing almost all of the files and preferen
settings you need. See the Read Me file in the Project Stationery
folder for details.

When building a CIN using Symantec C++ for PowerMac, you can set
many of the preferences to whatever you wish. Others, however, must
set to specific values to correctly create a CIN. If you do not use the C
project stationery, you need to make the following settings in the Syman
Project Manager Options dialog box (accessed from the Project menu):

• Project Type—Set the Project Type pop-up menu to Shared Library.
Set the File Type text field to .tmp . Set the Destination text field to
cinName.tmp , where cinName is the name of your CIN. Set the
Creator to LVsb.

• Linker—Set the Linker pop-up menu to PPCLink & MakePEF .
Set the PPCLink settings text field to -export
© National Instruments Corporation 1-17 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

ery

gLVExtCodeDispatchTable, LVSBhead . Set the MakePEF
settings text field to have -librename

LabVIEW.xcoff.o=LabVIEW in addition to the factory setting.

• Extensions—Set the File Extension text field to .ppc , the Translator
pop-up menu to XCOFF convertor, and press the Add button.

• PowerPC C—In the Compiler Settings sub-page, select the
Align to 2 byte boundary radio button. In the Prefix sub-page,
remove the line that reads #include <PPCMacheaders> .

Build the CIN by selecting Build Library from the Build menu. Then
convert the .tmp file with lvsbutil.app (with For PowerPC checked).

Metrowerks CodeWarrior for 68K
You need the following files in your project to be able to create a
Metrowerks 68K CIN.

• CustHdr.68k.mwerks (This file must be the first file in the project.)

• CINLib.68k.mwerks

• LabVIEW.68k.mwerks

• Your source files

Note All of your files must be in a single segment. LabVIEW does not support
multi-segment CINs.

An easy way to set up your CIN project is to use the CIN project station
in the cintools:Metrowerks Files:Project Stationery folder.
For CodeWarrior 68K projects the project stationery is a file called
LabVIEW CIN MW68K . The file provides a template for CINs containing
almost all of the settings you need. See the Read Me file in the Project

Stationery folder for details.
LabVIEW Code Interface Reference Manual 1-18 © National Instruments Corporation

Chapter 1 CIN Overview

ject

.

g

our
When building a CIN using CodeWarrior for 68K, you can set many of
the preferences to whatever you wish. Others, however, must be set to
specific values to correctly create a CIN. If you do not use the CIN pro
stationery, you need to make the following settings in the CodeWarrior
Preferences dialog box:

• Language—Set the Source Model pop-up menu to Apple C.
Empty the Prefix File text field.

• Processor—Check the 68881 Codegen and MPW C Calling
Conventions checkboxes. Leave the 4-Byte Ints and 8-Byte Doubles
checkboxes unchecked.

• Linker—Check the Generate Link Map checkbox.

• Project—Set the Project Type pop-up menu to Code Resource.
Set the File Name text field to cinName .tmp , where cinName is the
name of your CIN. Set the Resource Name text field to the same text
as in the File Name text field. Set the Type text field to .tmp and the
ResType text field to CUST. Set the ResID text field to 128 . Set the
Header Type pop-up menu to Custom. Set the Creator to LVsb.

• Access Paths—Add your cintools folder to the list of access paths

Build the CIN by selecting Make from the CodeWarrior Project menu.

Caution This operation will destroy the contents of any other file named cinName .tmp
in that folder. This could easily be the case if this is the same folder in which
you build a Power Macintosh version of your CIN. If you are building for both
platforms, you should keep separate directories for each. The convention used
by the MPW CIN tools is to have two subdirectories named PPCObj and M68Obj
where all platform-specific files reside.

Note If you have both a ThinkC68K and a MetrowerksC68K map file, lvbutil cannot
know in advance which compiler your .tmp file came from. It will first look for a
ThinkC .map file, then for a Metrowerks .map file. To avoid any conflict, remove
the unnecessary .map file before using lvsbutil.app .

When you have successfully built the cinName .tmp file, you must then
use the lvsbutil.app application to create the cinName .lsb file.

The lvsbutil.app application has a checkbox in the file selection dialo
box labelled For Power PC. This checkbox must not be checked for 68K
CINs. Select any other options you want for your CIN, and then select y
cinName .tmp file. cinName .lsb will be created in the same folder as
cinName .tmp .

!

© National Instruments Corporation 1-19 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

u

IN

dd
Caution This operation will destroy the contents of any previous file named cinName .lsb
in that folder. This could easily be the case if this is the same folder in which yo
build a 68K Macintosh version of your CIN.

Metrowerks CodeWarrior for Power Macintosh
You need the following files in your CodeWarrior project to create a C
for Power Macintosh.

• CINLib.ppc.mwerks is shipped with LabVIEW and is found in the
cintools:Metrowerks Files:PPC Libraries folder.

• Your source files

You may also need the LabVIEW.xcoff file. This file is shipped with
LabVIEW and is found in the cintools:PowerPC Libraries folder.
It is needed if you call any routines within LabVIEW e.g.,
DSSetHandleSize() , or SetCINArraySize() .

Finally, if you call any routines from a system shared library, you must a
the appropriate shared library interface file to your project's file list.

An easy way to set up your CIN project is to make use of the CIN
project stationery in the cintools:Metrowerks Files:Project

Stationery folder. For CodeWarrior PowerPC projects the project
stationery is a file called LabVIEW CIN MWPPC. This file provides a
template for CINs containing almost all of the settings you need. See
theRead Me file in the Project Stationery folder for details.

!

LabVIEW Code Interface Reference Manual 1-20 © National Instruments Corporation

Chapter 1 CIN Overview

f

ject

.

IN

u
When building a CIN using CodeWarrior for PPC, you can set many o
the preferences to whatever you wish. Others, however, must be set to
specific values to correctly create a CIN. If you do not use the CIN pro
stationery, you need to make the following settings in the CodeWarrior
Preferences dialog box:

• Language—Set the Source Model pop-up menu to Apple C. Empty
out the Prefix File text field (using MacHeaders will not work).

• Processor—Set the Struct Alignment pop-up menu to 68K.

• Linker—Empty all of the Entry Point fields.

• PEF—Set the Export Symbols pop-up menu to Use .exp file
and place a copy of the file projectName.exp (found in your
cintools:Metrowerks Files:PPC Libraries folder) in the
same folder as your CodeWarrior project. Rename this file to
projectName.exp , where projectName is the name of the project
file. CodeWarrior will look in this file to determine what symbols
your CIN exports. LabVIEW needs these to link to your CIN.

• Project—Set the Project Type pop-up menu to Shared Library.
Set the file name to be cinName .tmp , where cinName is the name of
your CIN. Set the Type field to .tmp . Set the Creator to LVsb.

• Access Paths—Add your cintools folder to the list of access paths

Build the CIN by selecting Make from the CodeWarrior Project menu.

Caution This operation will destroy the contents of any other file named cinName .tmp in
that folder. This could easily be the case if this is the same folder in which you
build a 68K Macintosh version of your CIN. If you are building for both platforms,
you should keep separate folders for each. The convention used by the MPW C
tools is to have two subdirectories named PPCObj and M68Obj where all
platform-specific files reside.

When you have successfully built the cinName .tmp file, you must then
use the lvsbutil.app application to create the cinName .lsb file.

The lvsbutil.app application has a checkbox in the file selection
dialog box labelled For Power PC. Check this box, along with any other
options necessary for your CIN, and then select your cinName .tmp file.
cinName .lsb will be created in the same folder as cinName .tmp .

Caution This operation will destroy the contents of any previous file named cinName .lsb
in that folder. This could easily be the case if this is the same folder in which yo
build a 68K Macintosh version of your CIN.

!

!

© National Instruments Corporation 1-21 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

ild
s,
lder,
t

w

.
Macintosh Programmer’s Workshop for 68K
and Power Macintosh
You can use Macintosh Programmer’s Workshop (MPW) to build CINs
for either the Motorola 680x0 (68K) Macintosh or the Power Macintosh.
Several scripts are available for the MPW environment to help you bu
CINs. To deal with the problem of building CINs for two different CPU
these new scripts are designed to use two subdirectories in your CIN fo
PPCObj and M68Obj . The platform-specific object and CIN files are kep
in these subdirectories. The scripts make use of the MrC compiler on
PowerPC and the SC compiler on 68K Macintosh. Older compilers, PPCC
and C, may also be used. The scripts are:

• CINMake—A script capable of building both Power Macintosh and
68K Macintosh CINs. It uses a simplified form of a makefile you
provide. It can be run every time you need to rebuild your CIN.

• LVMakeMake—A script similar to the lvmkmf (LabVIEW Make
Makefile) script available for building CINs under the Solaris
operating system. It builds a skeletal but complete makefile you
can then customize and use with the MPW make tool.

CINMake can be used for building both Power Macintosh and 68K
Macintosh versions of your CINs. By default, the CINMake script
builds 68K Macintosh CINs and puts the resulting cinName .lsb into
theM68Obj folder.

You must have one makefile for each CIN. Name the makefile by
appending .lvm to the CIN name. This indicates this is a LabVIEW
makefile. The makefile should resemble the following pseudocode.
Be sure each Dir command ends with the colon character (:).

name = name Name for the code; indicates the base
name for your CIN. The source code for
your CIN should be in name.c . The code
created by the makefile is placed in a ne
file, name.lsb (.lsb is a mnemonic for
LabVIEW subroutine).

type = type Type of external code you want to create
For CINs, you should use a type of CIN.

codeDir = codeDir: Complete pathname to the folder
containing the .c file used for the CIN.
LabVIEW Code Interface Reference Manual 1-22 © National Instruments Corporation

Chapter 1 CIN Overview

cinToolsDir = cinToolsDir:
Complete pathname to the LabVIEW
cintools:MPW folder, which is located
in the LabVIEW folder.

LVMVers = 2 Version of CINMake script reading this
.lvm file.

inclDir = -i inclDir: (optional) Complete or partial pathname
to a folder containing any additional
.h files.

otherM68ObjFiles = otherM68ObjFiles
(optional) For 68K Macintosh only,
list of additional object files (files with
a .o extension) your code needs to
compile. Separate the names of files
with spaces.

otherPPCObjFiles = otherPPCObjFiles
(optional) For Power Macintosh only,
list of additional object files (files with
a .o extension) your code needs to
compile. Separate the names of files
with spaces.

subrNames = subrNames (optional) For 68K Macintosh only, list
of external subroutines the CIN calls.
You need subrNames only if the CIN
calls external subroutines. Separate the
names of subroutines with spaces.

ShLibs = sharedLibraryNames
(optional) For Power Macintosh only,
a space-separated list of the link-time
copies of import libraries with which
the CIN must be linked. Each should be
a complete path to the file.
© National Instruments Corporation 1-23 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

t

y.
ShLibMaps = sharedLibMappings
(optional) For Power Macintosh only, the
command-line arguments to the MakePEF
tool that indicate the mapping between
the name of each link-time import library
and the run-time name of that import
library. These will usually look
something like the following:
-librename libA.xcoff=libA

-librename libB.xcoff=libB

Notice only the file names are needed, no
entire paths.

You must adjust the —Dir names to reflect your own file system hierarch

Modify your MPW command search path by appending the
cintools:MPW folder to the default search path. This search path is
defined by the MPW Shell variable commands.

set commands "{commands}","< pathname to directory of
cinToolsDir >"

Go to the MPW Worksheet and enter the following commands.
First, set your current folder to the CIN folder using the MPW
Directory command:

Directory < pathname to directory of your CIN >

Next, run the LabVIEW CINMake script:

CINMake < name of your CIN >

If CINMake does not find a .lvm file in the current folder, it builds a
file named cinName .lvm , and prompts you for necessary information.
This file, cinName .lvm , is in a format compatible with building both
Power Macintosh and 68K Macintosh CINs in the same folder. IfCINMake
finds a cinName .lvm but it does not have the line LVMVers = 2 , saves the
.lvm file in cinName .lvm.old and update thecinName .lvm file to be
compatible with the new version of CINMake.
LabVIEW Code Interface Reference Manual 1-24 © National Instruments Corporation

Chapter 1 CIN Overview

le
ect
The format of the CINMake command follows, with the optional
parameters listed in brackets.

CINMake [-MakeOpts “opts”] [-RShell] [-PPC/-MrC/-SC/-C]

[-dbg] [-noDelete] <name of your CIN>

-MakeOpts opts specifies extra options to pass
to make.

-Rshell

-PPC/-MrC/-SC/-C Use one of these options to specify the
compiler to use.

-dbg If this argument is specified, CINMake
prints out statements describing what it
is doing.

-noDelete If this argument is specified, CINMake
will not delete temporary files used when
making the CIN.

You can use LVMakeMake to build an MPW makefile you can then
customize for your own purposes. You should only have to run
LVMakeMake once for a given CIN. You can modify the resulting makefi
by adding the proper header file dependencies, or by adding other obj
files to be linked into your CIN. The format of a LVMakeMake command
follows, with optional parameters listed in brackets.

LVMakeMake [-o makeFile] [-PPC] <name of your CIN>.make

-o makeFile specifies the name of the
output makefile. If this argument is not
specified, LVMakeMake writes to
standard output.

-PPC If this argument is specified, a makefile
suitable for building a Power Macintosh
CIN is created. By default, a 68K
Macintosh makefile is created.

For example, to build a Power Macintosh makefile for a CIN named
myCIN, execute the following command:

LVMakeMake -PPC myCIN > myCIN.ppc.make

creates the makefile
© National Instruments Corporation 1-25 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

on,
ry.

s
s,
.
ork

les
ith

the
nal
You can then use the MPW make tool to build your CIN, as shown in the
following commands.

make -f myCIN.ppc.make> myCIN.makeout

creates the build commands

myCIN.makeout

executes the build commands

You should load the .lsb file this application produces into your
LabVIEW CIN node.

Microsoft Windows 3.x
Microsoft Windows 3.x is a 16-bit operating system. A 16-bit application
faces several obstacles when working with large amounts of informati
such as manipulating arrays requiring more than 64 kilobytes of memo

LabVIEW is a 32-bit application without most of the inherent limitation
found in 16-bit applications. Because of the way CINs are linked to VI
however, LabVIEW can use only code compiled for 32-bit applications
This is because CINs reside in the same memory space as VIs and w
with LabVIEW data. To create CINs, a compiler must be able to create
32-bit relocatable object code.

The only compiler that currently supports the correct format of executab
is Watcom C. The following section lists the steps for compiling a CIN w
the Watcom compiler.

Watcom C Compiler
With the Watcom C compiler, you create a specification that includes
name of the file you want to create, relevant directories, and any exter
subroutines or object files the CIN needs. (External subroutines are
described in Chapter 4, External Subroutines.) You then use the wmake
utility included with Watcom to compile the CIN.

In addition to compiling the CIN, the makefile directs wmake to put the CIN
in the appropriate form for LabVIEW.
LabVIEW Code Interface Reference Manual 1-26 © National Instruments Corporation

Chapter 1 CIN Overview

w

.

f

The makefile should look like the following pseudocode. Append .lvm to
the makefile name to indicate this is a LabVIEW makefile.

name = name Name for the code; indicates the base
name for your CIN. The source code for
your CIN should be in name.c . The code
created by the makefile is placed in a ne
file, name.lsb (.lsb is a mnemonic for
LabVIEW subroutine).

type = type Type of external code you want to create
For CINs, you should use a type of CIN.

codeDir = codeDir Complete or partial pathname to the
directory containing the .c file used for
the CIN.

wcDir = wcDir Complete or partial pathname to the
overall Watcom directory

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory, which is
located in the LabVIEW directory. This
directory contains header files you can
use for creating CINs, and tools the
wmake utility uses to create the CIN.

inclDir = inclDir (optional) Complete or partial pathname
to a directory containing any additional
.h files.

objFiles = objFiles (optional) List of additional object files
(files with an .obj extension) your code
needs to compile. Separate the names o
files with spaces.

subrNames = subrNames (optional) List of external subroutines
the CIN calls. You need subrNames
only if the CIN calls external subroutines.
Separate the names of subroutines
with spaces.

!include $(CinToolsDir)\generic.mak
© National Instruments Corporation 1-27 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

d

d
s

l.

iler
,
1.

s
Execute the wmake command by entering the following in DOS.

wmake /f <name of your CIN>.lvm

Note The wmake utility sometimes erroneously stops a make with an incorrectly
reported error when it is run in the DOS shell within Windows. If this happens,
run it in normal DOS.

The wmake utility scans the specified LabVIEW makefile and
remembers the defined values. The last line of the makefile, !include

$(CinToolsDir)\generic.mak , instructs wmake to compile the code
resource based on instructions in the generic.mak file, which is stored
in the cintools directory. The wmake utility compiles the code and then
transforms it into a form LabVIEW can use. The resulting code is store
in a name.lsb file, where name is the CIN name given in the name line
of the makefile.

Note You cannot link most of the Watcom C libraries to your CIN because precompile
libraries contain code that cannot be properly resolved by LabVIEW when it link
a VI to a CIN. If you try to call those functions, your CIN may crash.

LabVIEW provides functions that correspond to many of the functions in these
libraries. These functions are described in subsequent chapters of this manua
If you need to call a function not supplied by LabVIEW, you can access
the function from a dynamic link library (DLL). A CIN can call a DLL using
the techniques described in the Watcom C manuals. A DLL can call any
function from the C libraries. See Chapter 3, CIN Advanced Topics, for
information on calling a DLL.

Microsoft Windows 95 and Windows NT
You can use the Microsoft Visual C++ compiler and Symantec C comp
to build CINs for LabVIEW for Windows 95/NT. With some restrictions
you can also use some CINs created using Watcom C for Windows 3.

Visual C++ Command Line
The method for building CINs using command line tools under
Windows 95 and Windows NT is similar to the method for building CIN
under Windows 3.1 using the Watcom C compiler.

1. Add a CINTOOLSDIR definition to your list of user environment
variables.

Under Windows NT, you can edit this list with the System control
panel accessory. For example, if you installed LabVIEW for
Windows 95/NT in c:\lv50nt , the CIN tools directory should be
LabVIEW Code Interface Reference Manual 1-28 © National Instruments Corporation

Chapter 1 CIN Overview

nel.

W

 be
the
n of

re

s,

c:\lv50nt\cintools . In this instance, you would add the following
line to the user environment variables using the System control pa

CINTOOLSDIR = c:\lv50nt\cintools

Under Windows 95, you must modify your AUTOEXEC.BAT, to set
CINTOOLSDIR to the correct value.

2. Build a .lvm file (LabVIEW Makefile) for your CIN. LabVIEW for
Windows 95/NT requires you to define fewer variables than LabVIE
for Windows 3.1. You must specify the following items:

• name = name of CIN or external subroutine (mult , for example)

• type = CIN or LVSB (depending on whether it is a CIN or an
external subroutine)

• !include $(CINTOOLSDIR)\ntlvsb.mak

If your CIN uses extra object files or external subroutines, you can
specify the objFiles and subrNames options. You do not need to
specify the codeDir parameter, because the code for the CIN must
in the same directory as the makefile. You do not need to specify
wcDir parameter, because the CIN tools can determine the locatio
the compiler.

You can compile the CIN code using the following command, whe
mult is the makefile name.

nmake /f mult.lvm

If you want to use standard C or Windows 95 or Windows NT librarie
define the symbol cinLibraries . For example, to use standard
C functions in the preceding example, you could use the following
.lvm file.

name = mult

type = CIN

cinLibraries=libc.lib

!include $(CINTOOLSDIR)\ntlvsb.mak

To include multiple libraries, separate the list of library names
using spaces.
© National Instruments Corporation 1-29 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

nt,
Visual C++ IDE
To build CINs using the Visual C++ Integrated Development Environme
complete the following steps:

• Create a new DLL project. Select File»New… and select Win32

Dynamic-Link Library as the project type. You can name your
project whatever you like.

• Add CIN objects and libraries to the project. Select Project»Add To
Project»Files… and select cin.obj , labview.lib , lvsb.lib , and
lvsbmain.def from the Cintools\Win32 subdirectory. These files
are needed to build a CIN.

• Add Cintools to the include path. Select Project»Settings… and
change Settings for: to All Configurations . Select the C/C++ tab
and set the category to Preprocessor . Add the path to your cintools
directory in the Additional include directories: field.

• Set alignment to 1 byte . Select Project»Settings… and change
Settings For: to All Configurations . Select the C/C++ tab and
set the category to Code Generation . Choose 1 Byte from the
Struct member alignment: tab.

• Choose run-time library. Select Project»Settings… and change
Settings for: to All Configurations . Select the C/C++ tab and set
the category to Code Generation . Choose Multithreaded DLL
from the Use run-time library: tab.

• Make a custom build command to run lvsbutil . Select
Project»Settings… and change Settings for: to All

configurations . Select the Custom Build tab and change the
Build commands field to <your path to cintools >\win32\

lvsbutil $(TargetName) -d $(WkspDir)\$(OutDir) and
the Output file fields to $(OutDir)$(TargetName).lsb .

Symantec C
The process for creating CINs using Symantec C is similar to the
process for Visual C++ Command Line. Use smake instead of nmake
on your .lvm file.

Note You cannot currently create external subroutines using Symantec C.
LabVIEW Code Interface Reference Manual 1-30 © National Instruments Corporation

Chapter 1 CIN Overview

er
T
re

de

es
int

ace

Watcom C Compiler for Windows 3.1 under Windows 95 or
Windows NT
CINs you have created using the Watcom C compiler for Windows 3.1
should work under Windows 95 or Windows NT. However, your CIN
may not work without modification if it makes calls to communicate
with hardware drivers, performs register or memory mapped I/O, or
calls Windows 3.1 functions. Windows 3.1 drivers do not run under
Windows 95 or Windows NT, so you must port any drivers you may
have written for Windows 3.1 to Windows 95 or Windows NT. In
addition, CINs cannot manipulate hardware directly. To perform regist
or memory-mapped I/O, you need to write a Windows 95 or Windows N
driver. If you call Windows 3.1 functions, you should check to make su
those functions are still valid under Windows 95 and Windows NT.

To create CINs using Watcom C for Windows 3.1, follow the Watcom C
instructions given in the Watcom C Compiler subsection of the Compile the
CIN Source Code section of this chapter. You must compile the source co
for the CINs under Windows 3.1. Use the LabVIEW for Windows 3.1
CIN libraries to compile the CINs.

Solaris 1.x
LabVIEW for Sun can use external code compiled in a.out format
and prepared for LabVIEW using a LabVIEW utility. The unbundled
Sun C compiler is the only compiler tested thoroughly with LabVIEW.
Other compilers that can generate code in a.out format might also work
with LabVIEW, but this has not been verified. The C compiler that com
with the operating system does not use extended-precision floating-po
numbers; code using this numeric type will not compile. However, the
unbundled C compiler does use them.

Solaris 2.x
The preceding information for Solaris 1.x is true for Solaris 2.x, with one
exception—LabVIEW 3.1 and higher for Solaris 2.x uses code compiled in
a shared library format, rather than the a.out format previously specified.

Note LabVIEW 3.0 for Solaris 2.x supported external code compiled in ELF format.

Existing Solaris 1.x and Solaris 2.x (for LabVIEW 3.0) CINs will not
operate correctly if they reference functions not in the System V Interf
Definition (SVID) for libc , libsys , and libnsl . Recompiling your
existing CINs using the shared library format should ensure your CINs
function as expected.
© National Instruments Corporation 1-31 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

ld,

te.

es
t

HP-UX and Concurrent PowerMAX
As previously stated, the HP-UX C/ANSI C compiler and Concurrent
C Compiler are the only compilers tested with LabVIEW.

Unbundled Sun ANSI C Compiler, HP-UX C/ANSI
C Compiler, and Concurrent C Compiler
With these compilers, you create a makefile using the shell script lvmkmf
(LabVIEW Make Makefile), which creates a makefile for a given CIN.
You then use the standard make command to make the CIN code. In
addition to compiling the CIN, the makefile puts the code in a form
LabVIEW can use.

The format for the lvmkmf command follows, with optional parameters
listed in brackets.

lvmkmf [-o Makefile] [-t CIN] [-ext Gluefile] LVSBName

LVSBName, the name of the CIN or external subroutine you want to bui
is required. If LVSBName is foo , the compiler assumes the source is foo.c ,
and the compiler names the output file foo.lsb .

-o is optional and supplies the name of the makefile lvmkmf creates. If you
do not use this option, the makefile name defaults to Makefile .

-t is optional and indicates the type of external code you want to crea
For CINs, you should use CIN, which is the default.

-ext is needed only if this external code calls external subroutines.
The argument to this directive is the name of a file containing the nam
of all subroutines this code calls, with one name per line. The file is no
necessary to run the lvmkmf script, but it must be present before you can
successfully make the CIN. If you do not specify a -ext option, lvmkmf
assumes the CIN does not reference any external subroutines.

The makefile produced assumes the cin.o , libcin.a ,
makeglue XXX.awk , and lvsbutil files are in certain locations,
whereXXX is BSD on Solaris 1.x, SVR4 or Solaris 2.x, HP on HP-UX,
andConcurrent on Concurrent PowerMAX. If these assumptions are
incorrect, you can edit the makefile to correct the pathnames.
LabVIEW Code Interface Reference Manual 1-32 © National Instruments Corporation

Chapter 1 CIN Overview

file

h

ter
If you specify the -ext argument to the lvmkmf script, the makefile creates
temporary files. For example, if the gluefile name is bar , the makefile
creates files bar.s and bar.o . Neither the CIN nor the makefile needs
these files after the CIN has been created.

If you make external subroutines, you need to create a separate make
for them. The lvmkmf script creates a file called Makefile unless you use
the-o option. For this reason, you may want to place the code for eac
subroutine in separate directories to avoid writing over one Makefile
with the other. If you want to place the code in the same directory, you
need either to combine the two makefiles manually, or to create two
separate makefiles (using the -o option to the lvmkmf script) and use
make -f <makefile> to create the CIN or external subroutine.

Load the CIN Object Code
Load the code resource by choosing Load Code Resource from the
CIN pop-up menu. Select the .lsb file you created in Compile the CIN
Source Code.

This command loads your object code into memory and links the code
to the current front panel/block diagram. After you save the VI, the file
containing the object code does not need to be resident on the compu
running LabVIEW for the VI to execute.

If you make modifications to the source code, you can load the new
version of the object code using the Load Code Resource option. The file
containing the object code for the CIN must have an extension of .lsb .

There is no limit to the number of CINs per block diagram.
© National Instruments Corporation 1-33 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

rnal
ing
h

er.

le

on
ode
om

 and

he
LabVIEW Manager Routines
LabVIEW has a suite of routines that can be called from CINs and exte
subroutines. This suite of routines performs user-specified routines us
the appropriate instructions for a given platform. These routines, whic
manage the functions of a specific operating system, are grouped into
three categories: memory manager, file manager, and support manag

External code written using the managers is portable—you can compi
it without modification on any platform that supports LabVIEW. This
portability has two advantages. First, the LabVIEW application is built
top of the managers—except for the managers, the LabVIEW source c
is identical across platforms. Second, the analysis VIs are built mainly fr
CINs; the source code for these CINs is the same for all platforms.

For general information about the memory manager, the file manager,
the support manager, see Chapter 5, Manager Overview.

Online Reference
For descriptions of functions or file manager data structures, refer to t
CIN Function Overview section of the LabVIEW Online Reference,
available by selecting Help»Online Reference.

Pointers as Parameters
Some manager functions have a parameter that is a pointer.
These parameter type descriptions are identified by a trailing asterisk
(such as thehp parameter of the AZHandToHand memory manager
function documented in the CIN Function Overview section of the
LabVIEW Online Reference) or are type defined as such (such as
thenameparameter of the FNamePtr function documented in the
CIN Function Overview section of the LabVIEW Online Reference).
In most cases, this means the manager function will write a value to
pre-allocated memory. In some cases, such as FStrFitsPath or
GetALong , the function reads a value from the memory location,
so you don’t have to pre-allocate memory for a return value.
LabVIEW Code Interface Reference Manual 1-34 © National Instruments Corporation

Chapter 1 CIN Overview

ich

ions
Table 1-1 lists the functions with parameters that return a value for wh
you must pre-allocate memory.

It is important to allocate space for this return value. The following
examples illustrate correct and incorrect ways to call one of these funct
from within a generic function foo :

Correct example:

foo(Path path) {

Str255 buf; /* allocated buffer of 256 chars */

File fd;

MgErr err;

err = FNamePtr(path, buf);

err = FMOpen(&fd, path, openReadOnly,

denyWriteOnly);

}

Table 1-1. Functions with Parameters Needing Pre-allocated Memory

AZHandToHand FGetInfo FPathToDString

AZMemStats FGetPathType FPathToPath

AZPtrToHand FGetVolInfo FRefNumToFD

DateToSecs FMOpen FStringToPath

DSHandToHand FMRead FTextToPath

DSMemStats FMTell FUnflattenPath

DSPtrToHand FMWrite GetAlong

FCreate FNamePtr NumericArrayResize

FCreateAlways FNewRefNum RandomGen

FFlattenPath FPathToArr SecsToDate

FGetAccessRights FPathToAZString SetALong

FGetEOF
© National Instruments Corporation 1-35 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

al

is

ay
nal

t

e
Incorrect example:

foo(Path path) {

PStr p; /* an uninitialized pointer */

File *fd; /* an uninitialized pointer */

MgErr err;

err = FNamePtr(path, p);

err = FMOpen(fd, path, openReadOnly

denyWriteOnly);

}

In the correct example, buf contains space for the maximum-sized Pasc
string (whose address is passed to FNamePtr), and fd is a local variable
(allocated space) for a file descriptor.

In the incorrect example, p is a pointer to a Pascal string, but the pointer
not initialized to point to any allocated buffer. FNamePtr expects its caller
to pass a pointer to an allocated space, and writes the name of the file
referred to by path into that space. Even if the pointer does not point to
a valid place, FNamePtr will write its results there, with unpredictable
consequences. Similarly, FMOpen will write its results to the space to
which fd points, which is not a valid place because fd is uninitialized.

Debugging External Code
LabVIEW has a debugging window you can use with external code to
display information at execution time. You can open the window, displ
arbitrary print statements, and close the window from any CIN or exter
subroutine.

Use the DbgPrintf function to create this debugging window. The forma
for DbgPrintf is similar to the format of the SPrintf function, which is
described in the CIN Function Overview section of the LabVIEW Online
Reference. DbgPrintf takes a variable number of arguments, where th
first argument is a C format string.
LabVIEW Code Interface Reference Manual 1-36 © National Instruments Corporation

Chapter 1 CIN Overview

ew

ace
ed,
 a
e
DbgPrintf
syntax int32 DbgPrintf(CStr cfmt, ..);

The first time you call DbgPrintf , LabVIEW opens a window to display
the text you pass to the function. Subsequent calls to DbgPrintf append
new data as new lines in the window (you do not need to pass in the n
line character to the function). If you call DbgPrintf with NULL instead of
a format string, LabVIEW closes the debugging window. You cannot
position or change the size of the window.

The following examples show how to use DbgPrintf .

DbgPrintf(""); /* print an empty line, opening
the window if necessary */

DbgPrintf("%H", var1); /* print the contents of an
LStrHandle (LabVIEW string),
opening the window if necessary
*/

DbgPrintf(NULL); /* close the debugging window
*/

Debugging CINs Under Windows 95/NT
Windows 95 and Windows NT support source level debugging of
CINs using Microsoft’s Visual C environment. To debug CINs under
Windows 95/NT, complete the following steps.

1. Modify your CIN to set a debugger trap. You must do this to force
Visual C to load your debugging symbols. The trap call must be
done after the CIN is in memory. The easiest way to do this is to pl
it in the CINLoad procedure. Once the debugging symbols are load
you can set normal debug points inside Visual C. Windows 95 has
single method of setting a debugger trap, Windows NT can use th
Windows 95 method or another.
© National Instruments Corporation 1-37 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

 a

s

.
The method common to Windows 95 and Windows NT is to insert
debugger break using an in-line assembly command:

_asm int 3;

Adding this to CINLoad gives you the following:

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

_asm int 3;

return noErr;

}

When the debugger trap is hit, Visual C pops up a debug window
highlighting that line.

Under Windows NT, you may use the DebugBreak function.
This function exists under Windows 95, but does not produce
suitable results for debugging CINs. To use DebugBreak , include
<windows.h> at the top of your file and place the call where you
want to break:

#include <windows.h>

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

DebugBreak();

return noErr;

}

When that line executes, you will be in assembly. Step out of that
function to get to the point of the DebugBreak call.

2. Rebuild your CIN with debugging symbols.

If you built your CIN from the command line, add the following line
to the .lvm file of your CIN to add debug information to the CIN:

DEGUG = 1

cinLibraries = Kernel32.lib

If you built your CIN using the IDE, build a debug version of the DLL
In Projects»Settings…, go to the Debug tab and select the General
category. Enter your LabVIEW executable in the Executable for
debug session box.
LabVIEW Code Interface Reference Manual 1-38 © National Instruments Corporation

Chapter 1 CIN Overview

ed

k

re

e

ies
ear

ak
3. Run LabVIEW.

If you built your CIN from the command line, start LabVIEW
normally. When the debugger trap is run, a dialog box appears:

A Breakpoint has been reached. Click OK to terminate

application. Click CANCEL to debug the application.

Click CANCEL . This launches the debugger, which attaches to
LabVIEW, searches for the DLLs, then asks for the source file of
your CIN. Point it to your source file, and the debugger loads the
CIN source code. You can then debug your code.

If you built your CIN using the IDE, open your CIN project and
click the GO button. LabVIEW will be launched by Visual C.

Debugging CINs Under Sun or Solaris
It is not currently possible to use Sun’s debugger, dbx , to debug CINs.
The best you can do is use standard C printf calls or the DbgPrintf
function mentioned earlier.

Debugging CINs Under HP-UX
You can debug CINs built on the HP-UX platform using xdb , the HP
source level debugger. To do so, compile the CIN with debugging turn
on. You must also enable shared library debugging with the -s flag and
direct xdb to the source files for your CIN. For example, if your CIN
source code is in the tests/first directory, you could invoke xdb
with the following command:

xdb -s -d tests/first labview

See the xdb manual for more information. Once the CIN is loaded, brea
into the debugger and set your breakpoints. You may need to qualify
function names with the name of the shared library. Qualified names a
in the form function_name@library_name . The name of the shared
library will not be what it was when compiled. Instead, it will be a uniqu
name generated by the C library function tmpnam. The name will always
begin with the string LV. Use the debugger command mm to display the
memory map of all currently loaded shared libraries. CIN shared librar
are ordered by load time on the name space, so CINs loaded later app
in the memory map before CINs loaded earlier. As an example, to bre
at CINRun for the library /usr/tmp/LVAAAa17732 , set the breakpoint
as follows:

>b CINRun@LVAAAa17732
© National Instruments Corporation 1-39 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

n
 to
If you reload a CIN that is already loaded, the debugger will not functio
properly. If you change a CIN, you must quit and restart the debugger
enable it to work as desired.
LabVIEW Code Interface Reference Manual 1-40 © National Instruments Corporation

© National Instruments Corporation 2-1 LabVIEW Code Interface
2

ng

ny
he

 being
he
s

ta

pe

 files
CIN Parameter Passing

This chapter describes the data structures LabVIEW uses when passi
data to a CIN.

Introduction
LabVIEW passes parameters to the CINRun routine. These parameters
correspond to each of the wires connected to the CIN. You can pass a
data type to a CIN you can construct in LabVIEW; there is no limit to t
number of parameters you can pass to and from the CIN.

CIN .c File
When you select the Create .c File... option, LabVIEW creates a .c file in
which you can enter your CIN code. The CINRun function and its prototype
are given, and its parameters are typed to correspond to the data types
passed to the CIN in the block diagram. If you want to refer to any of t
other CIN routines (CINInit , CINLoad , and so on), see their description
in Chapter 1, CIN Overview.

The .c file created is a standard C file, except LabVIEW gives the data
types unambiguous names. C does not define the size of low-level da
types—the int data type might correspond to a 16-bit integer for one
compiler and a 32-bit integer for another compiler. The .c file uses names
explicit about data type size, such as int16 , int32 , float32 , and so on.
LabVIEW comes with a header file, extcode.h , that contains typedefs
associating these LabVIEW data types with the corresponding data ty
for the supported compilers of each platform.

extcode.h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW
cintools directory also contains a file, hosttype.h , that resolves these
differences. This header file also includes many of the common header
for a given platform.
Reference Manual

Chapter 2 CIN Parameter Passing

ut
y

o
ed

the
he
ibed

Note You should always use #include "extcode.h" at the beginning of your source
code. If your code needs to include system header files, you should include
"extcode.h" , "hosttype.h" , and then any system header files, in that order.

If you write a CIN that accepts a single 32-bit signed integer, the .c file
indicates the CINRun routine is passed an int32 by reference. extcode.h
typedefs an int32 to the appropriate data type for the compiler you use
(if it is a supported compiler); therefore, you can use the int32 data type
in external code you write.

How LabVIEW Passes Fixed Sized Data to CINs
As described in the Steps for Creating a CIN section of Chapter 1, CIN
Overview, you can designate terminals on the CIN as either input-outp
or output-only. Regardless of the designation, LabVIEW passes data b
reference to the CIN. When modifying a parameter value, be careful to
follow the rules described for each kind of terminal in the Steps for
Creating a CIN section of Chapter 1, CIN Overview. LabVIEW passes
parameters to the CINRun routines in the same order as you wire data to
the CIN—the first terminal pair corresponds to the first parameter, and
the last terminal pair corresponds to the last parameter.

The following section describes how LabVIEW passes fixed sized
parameters to CINs. See the How LabVIEW Passes Variably Sized Data t
CINs section of this chapter for information on manipulating variably siz
data such as arrays and strings.

Scalar Numerics
LabVIEW passes numeric data types to CINs by passing a pointer to
data as an argument. In C, this means LabVIEW passes a pointer to t
numeric data as an argument to the CIN. Arrays of numerics are descr
in the subsequent Arrays and Strings section of this chapter.

Scalar Booleans
LabVIEW stores Booleans in memory as 8-bit integers. If any bit of the
integer is 1, the Boolean is TRUE; otherwise the Boolean is FALSE.
LabVIEW passes Booleans to CINs with the same conventions as for
numerics.

Note In LabVIEW 4.x and earlier, Booleans were stored as 16-bit integers. If the
high bit of the integer was 1, the Boolean was TRUE; otherwise the Boolean
was FALSE.
LabVIEW Code Interface Reference Manual 2-2 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

nd

.

 the
ns

ling
t to

es
IN

r so

tly.
Refnums
LabVIEW treats a refnum the same way as it treats a scalar number a
passes refnums with the same conventions it uses for numbers.

Clusters of Scalars
For a cluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster

Return Value for CIN Routines
The names of the CIN routines are prefaced in the header file with the
words CIN MgErr , as shown in the following example.

CIN MgErr CINRun(...);

The LabVIEW header file extcode.h , defines the word CIN to be either
Pascal or nothing, depending on the platform. Prefacing a function with
word Pascal causes some C compilers to use Pascal calling conventio
instead of C calling conventions to generate the code for the routine.
LabVIEW uses Pascal calling conventions on the Macintosh when cal
CIN routines, so the header file declares the word CIN to be equivalen
Pascal on the Macintosh. On the PC and Unix, however, LabVIEW us
standard C calling conventions, so the header file declares the word C
to be equivalent to nothing.

The MgErr data type is a LabVIEW data type corresponding to a set of
error codes the manager routines return. If you call a manager routine
that returns an error, you can either handle the error or return the erro
LabVIEW can handle it. If you can handle the errors that occur, return
the error code noErr .

After calling a CIN routine, LabVIEW checks the MgErr value to
determine whether an error occurred. If an error occurs, LabVIEW
aborts the VI containing the CIN. If the VI is a subVI, LabVIEW aborts
the VI containing the subVI. This behavior enables LabVIEW to handle
conditions when a VI runs out of memory. By aborting the running VI,
LabVIEW can possibly free enough memory to continue running correc
© National Instruments Corporation 2-3 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

ork

nd

ion
Examples with Scalars
The following examples show the steps for creating CINs and how to w
with scalar data types. Chapter 5, Manager Overview, contains more
examples.

Creating a CIN That Multiplies Two Numbers
Consider a CIN that takes two single-precision floating-point numbers a
returns their product.

1. Place the CIN on the block diagram.

2. Add two input and output terminals to the CIN.

3. Place two single-precision numeric controls and one single-precis
numeric indicator on a front panel. Wire the node as shown in the
following illustration. Notice A*B is wired to an output-only
terminal pair.

Save the VI as mult.vi .

4. Select Create .c File... from the CIN node pop-up menu. LabVIEW
prompts you to select a name and a storage location for a .c file.
Name the file mult.c . LabVIEW creates a .c file shown in the
following listing.

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B) {

/* ENTER YOUR CODE HERE */

return noErr;

}

LabVIEW Code Interface Reference Manual 2-4 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

t in
,

ers,

efine
data

. In

 are

de.

ny
This .c file contains a prototype and a template for the CIN’s CINRun
routine. LabVIEW calls the CINRun routine when the CIN executes.
In this example, LabVIEW passes CINRun the addresses of the three
32-bit floating-point numbers. The parameters are listed left to righ
the same order as you wired them (top to bottom) to the CIN. ThusA,
B, and A_B are pointers to A, B, and A*B , respectively.

As described in the CIN .c File section of this chapter, the float32
data type is not a standard C data type. When LabVIEW creates a.c
file, it gives unambiguous names for data types. For most C compil
the float32 data type corresponds to the float data type. However,
this may not be true in all cases, because the C standard does not d
the sizes for the various data types. You can use these LabVIEW
types in your code because extcode.h associates these data types
with the corresponding C data type for the compiler you are using
addition to defining LabVIEW data types, extcode.h also prototypes
LabVIEW routines you can access. These data types and routines
described in Chapter 5, Manager Overview, of this manual and in the
CIN Function Overview section of the LabVIEW Online Reference.

Note The line #include "extcode.h" must be a full pathname toextcode.h under
THINK C. For example: #include "harddrive:cintools:extcode.h"

Optionally, System 7.x users can use the Aliases folder technique described in
the THINK C for 68K (Version 7) subsection of Chapter 1, CIN Overview, to enable
the include line to read #include "extcode.h" .

For this multiplication example, fill in the code for the CINRun routine.
You do not have to use the variable names LabVIEW gives you in
CINRun; you can change them to increase the readability of the co

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

{

*A_B = *A * *B;

return noErr;

}

CINRun multiplies the values to which A and B refer and stores the
results in the location to which A_B refers. It is important CIN routines
return an error code, so LabVIEW knows if the CIN encountered a
fatal problems and handles the error correctly.

If you return a value other than noErr , LabVIEW stops the execution
of the VI.
© National Instruments Corporation 2-5 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

t it
he

5. After creating the source code, you need to compile it and conver
into a form LabVIEW can use. The following sections summarize t
steps for each of the supported compilers.

Note Step 5 is different for each platform. Look under the heading for your platform
and compiler in the following sections to find the instructions for your system.
For details, refer to the relevant subsection within the Compile the CIN Source
Code section in Chapter 1, CIN Overview.

(THINK C for 68K and Symantec C++) Create a new project and place
mult.c in it. Build mult.lsb according to the instructions in the
THINK C for 68K (Version 7) or the Symantec C++ 8.0 for Power
Macintosh of the Compile the CIN Source Code section of Chapter 1.

(Macintosh Programmer’s Workshop for 68K and Power Macintosh) Create
a file named mult.lvm . Make sure the name variable is set to mult .
Build mult.lvm according to the instructions in the Macintosh
Programmer’s Workshop for 68K and Power Macintosh subsection
of the Compile the CIN Source Code section of Chapter 1.

(Metrowerks CodeWarrior for Power Macintosh and 68K) Create a new
project and place mult.c in it. Build mult.lsb according to the
instructions in the Metrowerks CodeWarrior for 68K subsection of
theCompile the CIN Source Code section of Chapter 1.

(Watcom C Compiler for Window 3.x) Create a file named mult.lvm .
Make sure the name variable is set to mult . Build mult.lvm
according to the instructions in the Watcom C Compiler subsection
of the Compile the CIN Source Code section of Chapter 1.

(Microsoft Visual C++ Compiler Command Line and Symantec C for
Windows 95 and Windows NT) Create a file named mult.lvm . Make
sure the name variable is set to mult . Build mult.lvm according to
the instructions in the Visual C++ IDE subsection of the Compile the
CIN Source Code section of Chapter 1.

(Microsoft Visual C++ Compiler IDE for Windows 95 and Windows NT) Create
a project according to the instructions in the Visual C++ IDE
subsection of the Compile the CIN Source Code section of Chapter 1.

(All Unix Compilers) As described in the Steps for Creating a CIN
section of Chapter 1, CIN Overview, you can create a makefile using
the shell script lvmkmf . For this example, you should first enter the
following command.

lvmkmf mult
LabVIEW Code Interface Reference Manual 2-6 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

ng

d
his
ions

VI
This creates a file called Makefile . After executing lvmkmf ,
you should enter the standard make command, which uses Makefile
to create a file called mult.lsb , which you can load into the CIN
in LabVIEW.

6. Select Load Code Resource from the CIN pop-up menu and select
mult.lsb , the object code file you created.

If you followed the preceding steps correctly, you should be able to run
the VI at this point. If you save the VI, the CIN object code is saved alo
with the VI.

Comparing Two Numbers, Producing a Boolean Scalar
The following example shows how to create a CIN that compares two
single-precision numbers. If the first number is greater than the secon
one, the return value is TRUE; otherwise, the return value is FALSE. T
example gives only the block diagram and the code. Follow the instruct
in the Steps for Creating a CIN section of Chapter 1 to create the CIN.

The diagram for this CIN is shown in the following illustration. Save the
as aequalb.vi .
© National Instruments Corporation 2-7 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

ray.
fers

er
ple

Create a .c file for the CIN, and name it aequalb.c . The .c file
LabVIEW creates is as follows.

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(float32 *ap, float32 *bp,

LVBoolean *aequalbp);

CIN MgErr CINRun(float32 *ap, float32 *bp,

LVBoolean *aequalbp) {

if (*ap == *bp)

*aequalbp= LVTRUE;

else

*aequalbp= LVFALSE;

return noErr;

}

How LabVIEW Passes Variably Sized Data to CINs
LabVIEW allocates memory for arrays and strings dynamically. If a
string or array needs more space to hold new data, its current location
may not offer enough contiguous space to hold the resulting string or ar
In this case, LabVIEW may have to move the data to a location that of
more space.

To accommodate this relocation of memory, LabVIEW uses handles to
refer to the storage location of variably sized data. A handle is a point
to a pointer to the desired data. LabVIEW uses handles instead of sim
pointers because handles allow LabVIEW to move the data without
invalidating references from your code to the data. If LabVIEW moves
the data, LabVIEW updates the intermediate pointer to reflect the new
location. If you use the handle, references to the data go through the
intermediate pointer, which always reflects the correct location of the
data. Handles are described in detail in Chapter 5, Manager Overview.
Information about specific handle functions is available in the CIN
Function Overview section of the LabVIEW Online Reference.
LabVIEW Code Interface Reference Manual 2-8 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

f
dle

ey

he
a

PC,
le,

hese
 On
yte

f
int
s this
, and
 of

e
Alignment Considerations
When a CIN returns variably sized data, you need to adjust the size o
the handle that references the array. One method of adjusting the han
size is to use the memory manager routine DSSetHandleSize or, if the
data is stored in the application zone, the AZSetHandleSize routine, to
adjust the size of the return data handle. Both techniques work, but th
are trouble-prone because you have to calculate the size of the new
handle correctly. It is difficult to calculate the size correctly in a
platform-independent manner, however, because some platforms
have special requirements about how you align and pad memory.

Instead of using XXSetHandleSize , use the LabVIEW routines that
take this alignment into account when resizing handles. You can use t
SetCINArraySize routine to resize a string or an array of arbitrary dat
type. This function is described in the Resizing Arrays and Strings section
of this chapter.

If you are not familiar with alignment differences for various
platforms, the following examples highlight the problem. Keep in mind
SetCINArraySize and NumericArrayResize take care of these issues
for you.

Consider the case of a 1D array of double-precision numbers. On the
an array of double-precision floating-point numbers is stored in a hand
and the first four bytes describe the number of elements in the array. T
four bytes are followed by the 8-byte elements that make up the array.
the Sun, double-precision floating-point numbers must be aligned to 8-b
boundaries—the 4-byte value is followed by four bytes of padding. This
padding ensures the array data falls on eight-byte boundaries.

As a more complicated example, consider a three-dimensional array o
clusters, in which each cluster contains a double-precision floating-po
number and a 4-byte integer. As in the previous example, the Sun store
array in a handle. The first 12 bytes contain the number of pages, rows
columns in the array. These dimension fields are followed by four bytes
filler (which ensures the first double-precision number is on an 8-byte
boundary) and then the data. Each element contains eight bytes for th
double-precision number, followed by four bytes for the integer. Each
cluster is followed by four bytes of padding, which ensures the next
element is properly aligned.
© National Instruments Corporation 2-9 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

ray,

,

.

onal

s

Arrays and Strings
LabVIEW passes arrays by handle, as described in the Alignment
Considerations section of this chapter. For an n-dimensional array, the
handle begins with n 4-byte values describing the number of values
stored in a given dimension of the array. Thus, for a one-dimensional ar
the first four bytes indicate the number of elements in the array. For a
two-dimensional array, the first four bytes indicate the number of rows
and the second four bytes indicate the number of columns. These
dimension fields can be followed by filler and then the actual data.
Each element can also have padding to meet alignment requirements

LabVIEW stores strings and Boolean arrays in memory as one-dimensi
arrays of unsigned 8-bit integers.

Note LabVIEW 4.x stored Boolean arrays in memory as a series of bits packed to
the nearest 16-bit word. LabVIEW 4.x ignored unused bits in the last word.
LabVIEW 4.x ordered the bits from left to right; that is, the most significant
bit (MSB) is index 0. As with other arrays, a 4-byte dimension size preceded
Boolean arrays. The dimension size for LabVIEW 4.x Boolean arrays
indicates the number of valid bits contained in the array.

Paths (Path)
The exact structure for Path data types is subject to change in future
versions of LabVIEW. A Path is a dynamic data structure LabVIEW
passes the same way it passes arrays. LabVIEW stores the data for Paths
in an application zone handle. For more information about the function
that manipulate Paths , refer to the CIN Function Overview section of the
LabVIEW Online Reference.

Clusters Containing Variably Sized Data
For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If a component is an array or string, LabVIEW stores a handle
to the array or string component in the structure.
LabVIEW Code Interface Reference Manual 2-10 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

dle

y
 not,

 the

 is
ent.

nts.
Resizing Arrays and Strings
You can use the LabVIEW SetCINArraySize routine to resize return
arrays and strings you pass to a CIN. You pass to the function the han
you want to resize, information describing the data structure, and the
desired size of the array or handle. The function takes into account an
padding and alignment needed for the data structure. The function does
however, update the dimension fields in the array. If you successfully
resize the array, you need to update the dimension fields to correctly
reflect the number of elements in the array.

You can resize numeric arrays more easily with NumericArrayResize .
You pass to this function the array you want to resize, a description of
data structure, and information about the new size of the array.

When you resize arrays of variably-sized data (for example, arrays of
strings) with the SetCINArraySize or NumericArrayResize routines,
you should be aware of the following facts. If the new size of the array
smaller, LabVIEW disposes of the handles used by the disposed elem
Neither function sets the dimension field of the array. You must do this
in your code after the function call. If the new size is larger, however,
LabVIEW does not automatically create the handles for the new eleme
You have to create these handles after the function returns.

The SetCINArraySize and NumericArrayResize functions are
described in the following sections.
© National Instruments Corporation 2-11 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

u pass

SetCINArraySize

syntax MgErr SetCINArraySize (UHandle dataH, int32

paramNum, int32 newNumElmts);

SetCINArraySize resizes a data handle based on the data structure of an argument yo
to the CIN. It does not set the array dimension field.

returns MgErr , which can contain the errors in the following list. MgErrs are
discussed in Chapter 5, Manager Overview.

Parameter Type Description

dataH UHandle The handle you want to resize.

paramNum int32 The number for this parameter in the
argument list to the CIN. The leftmost
parameter has a parameter number of 0,
and the rightmost has a parameter number
of n – 1, where n is the total number of
parameters

newNumElmts int32 The new number of elements to which the
handle should refer. For a one-dimensional
array of five values, you pass a value of 5 for
this argument. For a two-dimensional array
of two rows by three columns, you pass a
value of 6 for this argument.

Error Description

noErr No error.

mFullErr Not enough memory to perform operation

mZoneErr Handle is not in specified zone.
LabVIEW Code Interface Reference Manual 2-12 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

lso

.

NumericArrayResize

syntax MgErr NumericArrayResize(int32 typeCode, int32

numDims, UHandle *dataHP, int32

totalNewSize);

NumericArrayResize resizes a data handle referring to a numeric array. This routine a
accounts for alignment issues. It does not set the array dimension field. If *dataHP is NULL,
LabVIEW allocates a new array handle in *dataHP.

Parameter Type Description

typeCode int32 Describes the data type for the array you want to resize.
The header file extcode.h defines the following constants
for this argument

iB Data is an array of signed 8-bit integers.

iW is an array of signed 16-bit integers.

iL Data is an array of signed 32-bit integers.

uB Data is an array of unsigned 8-bit integers.

uW Data is an array of unsigned 16-bit integers.

uL Data is an array of unsigned 32-bit integers.

fS Data is an array of single-precision (32-bit) numbers.

fD Data is an array of double-precision (64-bit) numbers.

fX Data is an array of extended- precision numbers.

cS Data is an array of single-precision complex numbers.

cD Data is an array of double-precision complex numbers.

cX Data is an array of extended-precision complex numbers
© National Instruments Corporation 2-13 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

returns MgErr , which can contain the errors in the following list.

Parameter Type Description

numDims int32 The number of dimensions in the data
structure to which the handle refers. Thus, if
the handle refers to a two-dimensional array,
you pass a value of 2 for numDims.

*dataHP UHandle A pointer to the handle you want to resize. If
this is a pointer to NULL, LabVIEW allocates
and sizes a new handle appropriately and
returns the handle in *dataHP.

totalNewSize int32 The new number of elements to which the
handle should refer. For a unidimensional
array of five values, you pass a value of 5 for
this argument. For a two-dimensional array
of two rows by three columns, you pass a
value of 6 for this argument.

Error Description

noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle is not in specified zone.
LabVIEW Code Interface Reference Manual 2-14 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

ork

two

p

ons

VI
Examples with Variably Sized Data
The following examples show the steps for creating CINs and how to w
with variably-sized data types.

Concatenating Two Strings
The following example shows how to create a CIN that concatenates
strings. This example also shows how to use input-output terminals by
passing the first string as an input-output parameter to the CIN. The to
right terminal of the CIN returns the result of the concatenation.

This example gives only the diagram and the code. Follow the instructi
in Chapter 1, CIN Overview, to create this CIN.

The diagram for this CIN is shown in the following illustration. Save the
as lstrcat.vi .

Create a .c file for the CIN, and name it lstrcat.c . The .c file
LabVIEW creates is as follows.

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2);

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

© National Instruments Corporation 2-15 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

 the

f the
Now fill in the CINRun function as follows:

CIN MgErr CINRun(

LStrHandle strh1,

LStrHandle strh2) {

int32 size1, size2, newSize;

MgErr err;

size1 = LStrLen(*strh1);

size2 = LStrLen(*strh2);

newSize = size1 + size2;

if(err = NumericArrayResize(uB, 1L,

(UHandle*)&strh1, newSize))

goto out;

/* append the data from the second string to

first string */

MoveBlock(LStrBuf(*strh2),

LStrBuf(*strh1)+size1, size2);

/* update the dimension (length) of the

first string */

LStrLen(*strh1) = newSize;

out:

return err;

}

In this example, CINRun is the only routine that performs substantial
operations. CINRun concatenates the contents of strh2 to the end of
strh1 , with the resulting string stored in strh1 . Before performing
the concatenation, you need to resize strh1 with the LabVIEW routine
NumericArrayResize to hold the additional data.

If NumericArrayResize fails, it returns a non-zero value of type MgErr .
In this case, NumericArrayResize could fail if LabVIEW does not have
enough memory to resize the string. Returning the error code gives
LabVIEW a chance to handle the error. If CINRun reports an error,
LabVIEW aborts the calling VIs. Aborting the VIs may free up enough
memory so LabVIEW can continue running.

After resizing the string handle, this example copies the second string to
end of the first string using MoveBlock . MoveBlock is a support manager
routine that moves blocks of data. Finally, this example sets the size o
first string to the length of the concatenated string.
LabVIEW Code Interface Reference Manual 2-16 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

rays.
alue
s in
.

ode.

e

Computing the Cross Product of Two Two-Dimensional Arrays
The following example shows how to create a CIN that accepts two
two-dimensional arrays and then computes the cross product of the ar
The CIN returns the cross product in a third parameter and a Boolean v
as a fourth parameter. This Boolean is TRUE if the number of column
the first matrix is not equal to the number of rows in the second matrix

This example shows only the front panel, block diagram, and source c
Follow the instructions in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.

The front panel for this VI is shown in the following illustration. Save th
VI as cross.vi .

The block diagram for this VI is shown in the following illustration.

Save the .c file for the CIN as cross.c . Following is the source code for
cross.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 2

/* The return parameter is parameter 2 */
© National Instruments Corporation 2-17 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
#define NumDimensions 2

/* 2D Array */

/*

 * typedefs

 */

typedef struct {

int32 dimSizes[2];

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(TD1Hdl ah, TD1Hdl bh, TD1Hdl

resulth, LVBoolean *errorp);

CIN MgErr CINRun(TD1Hdl ah, TD1Hdl bh, TD1Hdl

resulth, LVBoolean *errorp) {

int32 i,j,k,l;

int32 rows, cols;

float64 *aElmtp, *bElmtp, *resultElmtp;

MgErr err=noErr;

int32 newNumElmts;

if ((k = (*ah)–>dimSizes[1]) !=

(*bh)–>dimSizes[0]) {

*errorp = LVTRUE;

goto out;

}

*errorp = LVFALSE;

rows = (*ah)–>dimSizes[0];

/* number of rows in a and result */

cols = (*bh)–>dimSizes[1];

/* number of cols in b and result */

newNumElmts = rows * cols;

if (err = SetCINArraySize((UHandle)resulth,

ParamNumber, newNumElmts))

goto out;

(*resulth)–>dimSizes[0] = rows;

(*resulth)–>dimSizes[1] = cols;

aElmtp = (*ah)–>arg1;

bElmtp = (*bh)–>arg1;

resultElmtp = (*resulth)–>arg1;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++) {

*resultElmtp = 0;
LabVIEW Code Interface Reference Manual 2-18 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

d
rray
,

 the
rray.
.

for (l=0; l<k; l++)

*resultElmtp += aElmtp[i*k + l] *

bElmtp[l*cos + j];

resultElmtp++;

}

out:

return err;

}

In this example, CINRun is the only routine performing substantial
operations. CINRun cross multiplies the two-dimensional arrays ah and bh.
LabVIEW stores the resulting array in resulth . If the number of columns
in ah is not equal to the number of rows in bh, CINRun sets *errorp to
LVTRUE to inform the calling diagram of invalid data.

SetCINArraySize , the LabVIEW routine that accounts for alignment an
padding requirements, resizes the array. Notice the two-dimensional a
data structure is the same as the one-dimensional array data structure
except the 2D array has two dimension fields instead of one. The two
dimensions indicate the number of rows and the number of columns in
array, respectively. The data is declared as a one-dimensional C-style a
LabVIEW stores data row by row, as shown in the following illustration

For an array with r rows and c columns, you can access the element at
row i and column j as shown in the following code fragment.

value = (*arrayh)–>arg1[i*c + j];
© National Instruments Corporation 2-19 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

.
 to
ger.

sets
y of
nt,

urns

ode.

e
Working with Clusters
The following example takes an array of clusters and a single cluster
as inputs, and the clusters contain a signed 16-bit integer and a string
The input for the array of clusters is an input-output terminal. In addition
the array of clusters, the CIN returns a Boolean and a signed 32-bit inte
If the cluster value is already present in the array of clusters, the CIN
the Boolean to TRUE and returns the position of the cluster in the arra
clusters using the 32-bit integer output. If the cluster value is not prese
the CIN adds it to the array, sets the Boolean output to FALSE, and ret
the new position of the cluster in the array of clusters.

This example shows only the front panel, block diagram, and source c
Follow the instructions in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.

The front panel for this VI is shown in the following illustration. Save th
VI as tblsrch.vi .

The block diagram for this VI is shown in the following illustration:
LabVIEW Code Interface Reference Manual 2-20 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
Save the .c file for the CIN as tblsrch.c . Following is the source code
for tblsrch.c with the CINRun routine added:

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 0

/* The array parameter is parameter 0 */

/*

 * typedefs

 */

typedef struct {

int16 number;

LStrHandle string;

} TD2;

typedef struct {

int32 dimSize;

TD2 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp);

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp) {

int32 size,i;

MgErr err=noErr;

TD2 *tmpp;

LStrHandle newStringh;

TD2 *newElementp;

int32 newNumElements;

size = (*clusterTableh)–>dimSize;

tmpp = (*clusterTableh)–>arg1;

*positionp = –1;

*presentp = LVFALSE;
© National Instruments Corporation 2-21 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

for(i=0; i<size; i++) {

if(tmpp–>number == elementp–>number)

if(LStrCmp(*(tmpp–>string),

*(elementp–>string)) == 0)

break;

tmpp++;

}

if(i<size) {

*positionp = i;

*presentp = LVTRUE;

goto out;

}

newStringh = elementp–>string;

if(err = DSHandToHand((UHandle *)

&newStringh))

goto out;

newNumElements = size+1;

if(err =

SetCINArraySize((UHandle)clusterTableh,

ParamNumber,

newNumElements)) {

DSDisposeHandle(newStringh);

goto out;

}

(*clusterTableh)–>dimSize = size+1;

newElementp = &((*clusterTableh)

–>arg1[size]);

newElementp–>number = elementp–>number;

newElementp–>string = newStringh;

*positionp = size;

out:

return err;

}

In this example, CINRun is the only routine performing substantial
operations. CINRun first searches through the table to see if the
element is present. CINRun then compares string components using the
LabVIEW routine LStrCmp , which is described in the CIN Function
Overview section of the LabVIEW Online Reference. If CINRun finds the
element, the routine returns the position of the element in the array.
LabVIEW Code Interface Reference Manual 2-22 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

t

ent

d
ses
If the routine does not find the element, you have to add a new elemen
to the array. Use the memory manager routine DSHandToHand to create
a new handle containing the same string as the one in the cluster elem
you passed to the CIN. CINRun then increases the size of the array using
SetCINArraySize and fills the last position with a copy of the element
you passed to the CIN.

If the SetCINArraySize call fails, the CIN returns the error code returne
by the manager. If the CIN is unable to resize the array, LabVIEW dispo
of the duplicate string handle.
© National Instruments Corporation 2-23 LabVIEW Code Interface Reference Manual

© National Instruments Corporation 3-1 LabVIEW Code Interface
3

ns,

rs of
N.

s

file
of
ode.
s an

tore
tes
CIN Advanced Topics

This chapter covers several topics needed only in advanced applicatio
including how to use the CINInit , CINDispose , CINAbort , CINLoad ,
CINUnload , CINSave , and CINProperties routines. The chapter also
discusses how global data works within CIN source code, and how use
Windows 3.1, Windows 95, and Windows NT can call a DLL from a CI

CIN Routines
A CIN consists of several routines, as described by the .c file LabVIEW
creates when you select Create .c File... from the CIN pop-up menu.
The previous chapters have discussed only the CINRun routine. The
other routines are CINLoad , CINInit , CINAbort , CINSave ,
CINDispose , CINUnload , and CINProperties .

It is important to understand that for most CINs, you need to write only
theCINRun routine. The other routines are supplied mainly for the case
in which you have special initialization needs, such as when your CIN
is going to maintain some information across calls, and you want to
preallocate or initialize global state information.

In the case where you want to preallocate/initialize global state
information, you first need to understand more of how LabVIEW
manages data and CINs.

Data Spaces and Code Resources
When you create a CIN, you compile your source into an object code
and load the code into the node. At that point, LabVIEW loads a copy
the code (called a code resource) into memory and attaches it to the n
When you save the VI, this code resource is saved along with the VI a
attached component; the original object code file is no longer needed.

When LabVIEW loads a VI, it allocates a data space, a block of data
storage memory, for that VI. This data space is used, for instance, to s
the values in shift registers. If the VI is reentrant, then LabVIEW alloca
a data space for each usage of the VI. See Chapter 26, Understanding the
Reference Manual

Chapter 3 CIN Advanced Topics

s
al
e

re is
tent.

rved
or
 on

I

Execution System, in your G Programming Reference Manual for more
information on reentrancy.

Within your CIN code resource, you may have declared global data.
Global data includes variables declared outside of the scope of all
routines, and, for the purposes of this discussion, variables declared a
static variables within routines. LabVIEW allocates space for this glob
data. As with the code itself, there is always only one instance of thes
globals in memory. Regardless of how many nodes reference the code
resource and regardless of whether the surrounding VI is reentrant, the
only one copy of these globals in memory, and their values are consis

When you create a CIN node, LabVIEW allocates a CIN data space,
a 4-byte storage location in the VI data space(s), strictly for the use of
the CIN node. Each CIN may have one or more CIN data spaces rese
for the node, depending on how many times the node appears in a VI
collection of VIs. You can use this CIN data space to store global data
a per data space basis, as described in the Code Globals and CIN Data
Space Globals section later in this chapter.

Figure 3-1. Data Storage Spaces for One CIN, Simple Case

A CIN node references the code resource by name, using the name
you specified when you created the code resource. When you load a V
containing a CIN, LabVIEW looks in memory to see if a code resource
with the desired name is already loaded. If so, LabVIEW links the CIN
to the code resource for execution purposes.

VI data space code resource

global storage

(code globals)

(data space globals)

4-byte CIN
data space

VI
LabVIEW Code Interface Reference Manual 3-2 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

hen
dy
ead
 two
rce is
de.
VI

e, in
 VI
re

ed
 the

he
urce.

This linking behaves the same way as links between VIs and subVIs. W
you try to reference a subVI and another VI with the same name alrea
exists in memory, LabVIEW references the one already in memory inst
of the one you selected. In the same way, if you try to load references to
different code resources having the same name, only one code resou
actually loaded into memory, and both references point to the same co
The difference is that LabVIEW can verify a subVI call matches the sub
connector pane terminal, but LabVIEW cannot verify your source code
matches the CIN call.

CIN Routines: The Basic Case
The following discussion describes what happens in the standard cas
which you have a code resource referenced by only one CIN, and the
containing the CIN is non-reentrant. The other cases have slightly mo
complicated behavior, described in later sections of this chapter.

Loading a VI
When you first load a VI, LabVIEW calls the CINLoad routines for any
CINs contained in that VI. This gives you a chance to load any file-bas
resources at load time, because LabVIEW calls this routine only when
VI is first loaded (see the Loading a New Resource into the CIN section that
follows for an exception to this rule). After LabVIEW calls the CINLoad
routine, it calls CINInit . Together, these two routines perform any
initialization you need before the VI runs.

LabVIEW calls CINLoad once for a given code resource, regardless of t
number of data spaces and the number of references to that code reso
This is why you should initialize code globals in CINLoad .

LabVIEW calls CINInit for a given code resource a total of one time
for each CIN data space multiplied by the number of references to the
code resource in the VI corresponding to that data space. If you want
to use CIN data space globals, you should initialize them in CINInit .
See theCode Globals and CIN Data Space Globals, the Loading a New
Resource into the CIN, and the Compiling a VI sections of this chapter
for related information.
© National Instruments Corporation 3-3 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

any
e
ory,

ce.

irst
EW
ode

o

nce

ng
e

age
 the

 any
 a
any
e
Unloading a VI
When you close a VI front panel, LabVIEW checks to see if there are
references to that VI in memory. If so, then the VI code and data spac
remain in memory. When all references to a VI are removed from mem
and its front panel is not open, that VI is unloaded from memory.

When a VI is unloaded from memory, LabVIEW calls the
CINDispose routine, giving you a chance to dispose of anything
you allocated earlier. CINDispose is called for each CINInit call. For
instance, if you used XXNewHandle in your CINInit routine, you should
use XXDisposeHandle in your CINDispose routine. LabVIEW calls
CINDispose for a code resource once for each individual CIN data spa

As the last reference to the code resource is removed from memory,
LabVIEW calls the CINUnload routine for that code resource once,
giving you the chance to dispose of anything allocated in CINLoad .
As with CINDispose/CINInit , a CINUnload is called for each
CINLoad . For example, if you loaded some resources from a file
in CINLoad , you can free the memory those resources are using in
CINUnload . After LabVIEW calls CINUnload , the code resource
itself is unloaded from memory.

Loading a New Resource into the CIN
If you load a new code resource into a CIN, the old code resource is f
given a chance to dispose of anything it needs to dispose. First, LabVI
calls CINDispose for each CIN data space and each reference to the c
resource, followed by the CINUnload for the old resource. The new code
resource is then given a chance to perform any initialization it needs t
perform: LabVIEW calls the CINLoad for the new code resource, followed
by the CINInit routine, called once for each data space and each refere
to the code resource.

Compiling a VI
When you compile a VI, LabVIEW recreates the VI data space, resetti
all uninitialized shift registers, for instance, to their default values. In th
same way, your CIN is given a chance to dispose or initialize any stor
it manages. Before disposing of the current data space, LabVIEW calls
CINDispose routine for each reference to the code resource within the
VI(s) being compiled to give the code resource a chance to dispose of
old results it is managing. LabVIEW then compiles the VI and creates
new data space for the VI(s) being compiled (multiple data spaces for
reentrant VI). The CINInit routine is then called for each reference to th
LabVIEW Code Interface Reference Manual 3-4 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

nce

 you
w
the
 file
ad

s
Is

.

ort
an

a

 if
code resource within the compiled VI(s) to give the code resource a cha
to create or initialize any data it wants to manage.

Running a VI
When you press the Run button of a VI, the VI begins to execute.
When LabVIEW encounters a code interface node, it calls the CINRun
routine for that node.

Saving a VI
When you save a VI, LabVIEW calls the CINSave routine for that VI,
giving you the chance to save any resources (for example, something
loaded in CINLoad). Notice when you save a VI, LabVIEW creates a ne
version of the file, even if you are saving the VI with the same name. If
save is successful, LabVIEW deletes the old file and renames the new
with the original name. Therefore, anything you expect to be able to lo
in CINLoad needs to be saved in CINSave .

Aborting a VI
When you abort a VI, LabVIEW calls the CINAbort routine for every
reference to a code resource contained in the VI being aborted. The
CINAbort routine of all actively running subVIs is also called. If a CIN i
in a reentrant VI, it is called for each CIN data space as well. CINs in V
not currently executing are not notified by LabVIEW of the abort event

CINs are synchronous. When a CIN begins execution, it takes over
control of its thread until the CIN completes. If your version of LabVIEW
is single-threaded, LabVIEW is not notified if the user clicks on the ab
button and therefore cannot abort the CIN. No other LabVIEW tasks c
execute while a CIN executes.

Multiple References to the Same CIN in a Single VI
If you have loaded the same code resource into multiple CINs, or you
have duplicated a given code interface node, LabVIEW gives each
reference to the code resource a chance to perform initialization or
deallocation. No matter how many references you have in memory to
given code resource, the LabVIEW calls the CINLoad routine only once
when the resource is first loaded into memory (though it is also called
you load a new version of the resource, as described in the previous
section). When you unload the VI, LabVIEW calls CINUnload once.
© National Instruments Corporation 3-5 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

 you
 the

EW

t

After LabVIEW calls CINLoad , it calls CINInit once for each reference
to the CIN, because its CIN data space may need initialization. Thus, if
have two nodes in the same VI, where both reference the same code,
LabVIEW calls the CINLoad routine once, and the CINInit twice. If you
later load another VI referencing the same code resource, then LabVI
calls CINInit again for the new version. LabVIEW has already called
CINLoad once, and does not call it again for this new reference.

Figure 3-2. Three CINs Referencing the Same Code Resource

LabVIEW calls CINDispose and CINAbort for each individual CIN data
space. LabVIEW calls CINSave only once, regardless of the number of
references to a given code resource within the VI you are saving.

Multiple Reference to the same CIN in different VIs
Making multiple references to the same CIN in different VIs is differen
for single threaded operating systems than it is for mutlithreaded
operating systems. To take advantage of multithreading, you must use
LabVIEW 5.x on an operating system supporting it: Windows 95,
Windows NT, Solaris 2.x, and Concurrent PowerMAX.

global storage

(code globals)

VI data space

4-byte CIN
data space

4-byte CIN
data space

4-byte CIN
data space

(data space globals)

code resource

VI
LabVIEW Code Interface Reference Manual 3-6 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

e for
and
ven

.

f

he
Single Threaded Operating Systems
When you make a VI reentrant, LabVIEW creates a separate data spac
each usage of that VI. If you have a CIN data space in a reentrant VI
you call that VI in seven places, LabVIEW allocates memory to store se
CIN data spaces for that VI, each of which contains a unique storage
location for the CIN data space for that calling instance.

As with multiple instances of the same node, LabVIEW calls the CINInit ,
CINDispose , and CINAbort routines for each individual CIN data space

In the case where you have a reentrant VI containing multiple copies o
the same code resource, LabVIEW calls the CINInit , CINDispose , and
CINAbort routines once for each use of the reentrant VI, multiplied by t
number of references to the code resource within that VI.

Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN

global storage

(code globals)

code resource

My VI
data space 1

4-byte CIN
data space

(data space globals)

My VI
data space 3

4-byte CIN
data space

(data space globals)

My VI
data space 2

4-byte CIN
data space

(data space globals)

caller 1 caller 2

My VI

caller 3
© National Instruments Corporation 3-7 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

e
te in
the

at
d

 one

e,
als

is
Multithreaded Operating Systems
By default, CINs written before LabVIEW 5.0 run in a single thread, th
user interface thread. When you change a CIN to be reentrant (execu
multiple threads), more than one execution thread can call the CIN at
same time. If you want a CIN to run in the diagram’s current execution
thread, add the following code to your .c file:

CIN MgErr CINProperties(int32 mode, void *data)

{

switch (mode) {

case kCINIsReentrant:

*(Bool32 *)data = TRUE;

return noErr;

break;

}

return mgNotSupported;

}

If you read and write a global or static variable or call a non-reentrant
function within your CINs, keep the execution of those CINs in a single
thread. Even if a CIN is marked reentrant, the CIN functions other than
CINRun are called from the user interface thread. This means CINInit and
CINDispose , for example, are never called from two different threads
the same time, but CINRun might be running when the user interface threa
is calling CINInit , CINAbort , or any of the other functions.

To be reentrant, the CIN must be safe to call CINRun from multiple
threads, and safe to call any of the other CIN… procedures and CINRun at
the same time. Other than CINRun, you do not need to protect any of the
CIN… procedures from each other, because calls to them are always in
thread.

Code Globals and CIN Data Space Globals
When you declare global or static local data within a CIN code resourc
LabVIEW allocates storage for that data. LabVIEW maintains your glob
across calls to various routines.

When you allocate a global in a CIN code resource, LabVIEW creates
storage for only one instance of it, regardless of whether the CIN’s VI
reentrant or whether you have multiple references to the same code
resource in memory.
LabVIEW Code Interface Reference Manual 3-8 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

tes

he

t to
 four

ese

a
 use

ace
ses
e

als
r and
 to it.

de
 code
me
In some cases, you may want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW alloca
the CIN data space for the use of the code interface node. Within the
CINInit , CINDispose , CINAbort , and CINRun routines you can call the
GetDSStorage routine to retrieve the value of the CIN data space for t
current instance. You can also call SetDSStorage to set the value of the
CIN data space for this instance.

You can use this storage location to store any 4-byte quantity you wan
have for each instance of one of these globals. If you need more than
bytes of global data, you can store a handle or pointer to a structure
containing your globals.

The following two lines of code are examples of the exact syntax of th
two routines, defined in extcode.h .

int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN dat
space LabVIEW allocates for each CIN code resource, or for each
of the surrounding VI (if the VI is reentrant). You should call this
routine only from CINInit , CINDispose , CINAbort , or CINRun.

int32 SetDSStorage(int32 newVal);

This routine sets the value of the 4-byte quantity in the CIN data sp
LabVIEW allocates for each CIN use of that code resource, or the u
of the surrounding VI, (if the VI is reentrant). It returns the old valu
of the 4-byte quantity in that CIN data space. Call this routine only
from CINInit , CINDispose , CINAbort , or CINRun.

Examples
The following two examples illustrate the differences between code glob
and CIN data space globals. In both examples, the CIN takes a numbe
returns the average of that number and the previous numbers passed

When you design your code, decide whether it is appropriate to use co
globals or data space globals. If you use code globals, calling the same
resource from multiple nodes or different reentrant VIs will affect the sa
set of globals. In the code globals averaging example, the result will
indicate the average of all values passed to the CIN.
© National Instruments Corporation 3-9 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

urce
e
rage

 for

data

If you use CIN data space globals, each CIN calling the same code reso
and each VI can have its own set of globals, if the VI is reentrant. In th
CIN data space averaging example, the results would indicate the ave
of values passed to a specific node for a specific data space.

If you have only one CIN referencing the code resource, and the VI
containing that CIN is not reentrant, it does not matter which method
you choose.

Using Code Globals
The following code implements averaging using code globals. Notice
the variables are initialized in CINLoad . If the variables are dynamically
created (if they are pointers or handles), you can allocate the memory
the pointer or handle in CINLoad , and deallocate it in CINUnload . You can
do this because CINLoad and CINUnload are called only once, regardless
of the number of references to the code resources and the number of
spaces. Notice the UseDefaultCINLoad macro is not used, because this
.c file has a CINLoad function.

/*

 * CIN source file

 */

#include "extcode.h"

float64 gTotal;

int32 gNumElements;

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

gTotal += *new_num;

gNumElements++;

*avg = gTotal / gNumElements;

return noErr;

}

CIN MgErr CINLoad(RsrcFile rf)

{

gTotal=0;

gNumElements=0;

return noErr;

}

LabVIEW Code Interface Reference Manual 3-10 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

Using CIN Data Space Globals
The following is an alternative implementation of averaging using CIN
data space globals. A handle for the global data is allocated in CINInit ,
and stored in the CIN data space storage using SetDSStorage . When
LabVIEW calls the CINInit , CINDispose , CINAbort , or CINRun
routines, it ensures GetDSStorage and SetDSStorage will return the
4 byte CIN data space value for that node or CIN data space.

When you want to access that data, use GetDSStorage to retrieve the
handle and then dereference the appropriate fields (see the code for
CINRun in the following example). Finally, in your CINDispose routine
you need to dispose of the handle.

/*

 * CIN source file

 */

#include "extcode.h"

typedef struct {

float64 total;

int32 numElements;

} dsGlobalStruct;

CIN MgErr CINInit() {

dsGlobalStruct **dsGlobals;

MgErr err = noErr;

if (!(dsGlobals = (dsGlobalStruct **)

DSNewHandle(sizeof(dsGlobalStruct))))

{

/* if 0, ran out of memory */

err = mFullErr;

goto out;

}

(*dsGlobals)–>numElements=0;

(*dsGlobals)–>total=0;

SetDSStorage((int32) dsGlobals);

out:

return noErr;

}

CIN MgErr CINDispose()

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();
© National Instruments Corporation 3-11 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

 NT

tion
ot

a
,

the
if (dsGlobals)

DSDisposeHandle(dsGlobals);

return noErr;

}

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals) {

(*dsGlobals)–>total += *new_num;

(*dsGlobals)–>numElements++;

*avg = (*dsGlobals)–>total /

(*dsGlobals)–>numElements;

}

return noErr;

}

Calling a Windows 95 or
Windows NT Dynamic Link Library

No special techniques are necessary to call a Windows 95 or Windows
DLL. Call DLLs the way you ordinarily would in a Windows 95 or
Windows NT program.

Calling a Windows 3.1 Dynamic Link Library
Although dynamic link libraries (DLLs) can be called from a CIN, the
method for doing so is somewhat cumbersome. The Call Library Func
is a more convenient way to call a DLL, and the Watcom compiler is n
required. For more information on the Call Library Function, see
Chapter 13, Advanced Functions, in the LabVIEW Function and VI
Reference Manual, and Chapter 25, Calling Code from Other Languages,
in your G Programming Reference Manual.

Before you attempt to link a dynamic link library with a CIN, first write
C program calling it. Do this to ensure you are calling the DLL properly
and the DLL behaves as expected. You can test the C program using
debugging tools supplied by your compiler.
LabVIEW Code Interface Reference Manual 3-12 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

.

m
ou

d
After you are sure the DLL works and you are calling it correctly, write
the 32-bit CIN that LabVIEW can call. The main purpose of this CIN is
to act as a go-between, translating LabVIEW 32-bit data to 16-bit data
This CIN will take 32-bit pointers from LabVIEW and then call the DLL
with the appropriate arguments.

See the Calling 16-bit DLLs section of Chapter 37, Programming
Overview, in the Windows 32-bit Programming Guide section of the
Watcom C/386 User’s Guide for a detailed discussion of how to call
a 16-bit DLL.

No special techniques are necessary to call a Windows 95 or
Windows NT DLL.

Calling a 16-Bit DLL
The following steps are a brief summary of how to call a 16-bit DLL fro
a CIN. If you are not familiar with the functions used in this example, y
should refer to Microsoft Windows Programmer’s Reference or the
Watcom C/386 User’s Guide.

1. Load the DLL
Load the DLL by calling the function LoadLibrary() with the name
of the DLL. For example, the following code returns a handle to a
specified library.

HANDLE hDLL;

hDLL = LoadLibrary("library name");

This is a standard Windows function, and is documented in the Microsoft
Windows Programmer’s Reference.

Note If you do not specify a full path, Windows searches the Windows directory,
the Windows system directory, the LabVIEW directory, and the directories liste
in the Path variable.
© National Instruments Corporation 3-13 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

.
tion.
DLL
as

d

mat.

2. Get the address of the desired function
Call GetProcAddress() with the name of the function you want to call
For example, the following code returns the address of a specified func
This address is a 16-bit pointer, and cannot be called using standard
call methods. Instead you have to use the Watcom C method, shown
follows.

FARPROC lpfn;

lpfn = GetProcAddress(hDLL, "function name");

As with LoadLibrary , this function is a standard Windows function, an
is documented in the Microsoft Windows Programmer’s Reference.

3. Describe the function
Use GetIndirectFunctionHandle() to describe the function and the
types of each parameter it accepts. This function uses the following for

HINDIR GetIndirectFunctionHandle(FARPROC proc

[, long param1type,long param2type,

...,] long terminator);

proc is the address of the function returned in step 2.

The paramXtype values should be one of the following five constants
describing the parameters for the call to the function.

INDIR_DWORD The parameter will be a long word value
(a 32-bit integer).

INDIR_WORD The parameter will be a word value
(a 16-bit integer).

INDIR_CHAR The parameter will be a byte value
(an 8-bit integer).

INDIR_PTR The parameter is a pointer. Watcom will
automatically convert the 32-bit address
to a 16-bit far pointer before calling the
code. Notice this 16-bit pointer is good
only for the duration of the call; after the
function returns, the 16-bit reference to
the data is no longer valid.
LabVIEW Code Interface Reference Manual 3-14 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

t

t

IN.

 the

,

tton

r
he
, the
L

e
.
INDIR_CDECL Make the call using Microsoft C calling
conventions. This keyword can be presen
anywhere in the parameter list.

For terminator , pass a value of INDIR_ENDLIST , which marks the end of
the parameter list.

GetIndirectFunctionHandle() returns a handle used when you wan
to call the function.

4. Call the function
Use InvokeIndirectFunction() to call the function. Pass it the handle
returned in step 3, along with the arguments you want to pass to the C
This function uses the following format.

long InvokeIndirectFunction(HINDIR proc

[, param1, param2, ...]);

proc is the address of the function returned in step 3. Following that are
parameters you want to pass to the DLL.

Example: A CIN that Displays a Dialog Box
You cannot call most Windows functions directly from a CIN. You can
however, call a DLL, which in turn can call Windows functions. The
following example shows how to call a DLL from a CIN. The DLL calls
the Windows MessageBox function, which displays a window containing
a specified message. This function returns after the user presses a bu
in the window.

The DLL
Most Windows compilers can create a DLL. Regardless of the compile
you use to create a DLL, the way you call it from a CIN will be roughly t
same. Because you must have Watcom C/386 to write a Windows CIN
following example is for a Watcom DLL. The process for creating a DL
using the Watcom compiler is described in Chapter 38, Windows 32-Bit
Dynamic Link Libraries, of the Watcom C/386 User's Guide.

The following code is for a Watcom C/386 32-bit DLL that calls the
MessageBox function. The _16MessageBox function calls the Windows
MessageBox function; the only difference between these functions is th
former takes far 16-bit pointers, which are pointers passed to the DLL
In this 32-bit environment, MessageBox expects near 32-bit pointers.
© National Instruments Corporation 3-15 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

.

bit
se

 to

cters
 a
Passing pointers to 32-bit DLLs is inherently tricky. In this example, a
32-bit near pointer is converted to a 16-bit far pointer and passed to
MessageBox via _16MessageBox. You cannot dereference a 16-bit
pointer directly in this DL—it must first be converted to a 32-bit pointer
These pointer issues are not related to LabVIEW, but are unique to the
Windows 3.1 environment. It may be helpful to build a rudimentary 32-
Windows application (in place of LabVIEW) calling the DLL to test the u
of pointers.

The DLL function will accept two parameters. The first is the message
display in the window. The second is the title to display in the window.
Both parameters are C strings, meaning they are pointers to the chara
of the string, followed by a terminating null character. Save the code in
file called MSGBXDLL.C.

/*

 * MSGBXDLL.C

 */

#include <windows.h>

#include <dos.h>

void FAR PASCAL Lib1(LPSTR message,

LPSTR winTitle)

{

_16MessageBox(NULL,

message,

winTitle,

MB_OK | MB_TASKMODAL);

}

int PASCAL WinMain(HANDLE hInstance,

HANDLE x1,

LPSTR lpCmdLine,

int x2)

{

DefineDLLEntry(1,

(void *) Lib1,

DLL_PTR,

DLL_PTR,

DLL_ENDLIST);

return(1);

}

LabVIEW Code Interface Reference Manual 3-16 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

s
N,

y.
In addition to the C file, you also need to create the following
MSGBXDLL.LNK file.

system win386

file msgbxdll

option map

option stack=12K

option maxdata=8K

option mindata=4K

Enter the following commands at the DOS prompt to create the DLL.

C>wcc386 msgbxdll /zw

C>wlink @msgbxdll

C>wbind msgbxdll –d –n

Following is the LabVIEW block diagram for a VI calling a CIN that call
the previously described DLL. It passes two LabVIEW strings to the CI
and the CIN returns an error code.

The CIN Code
The following C code is for a CIN calling the DLL you created previousl
This code assumes the .h file created by LabVIEW is named msgbox.h .

This example does not pass a full path to LoadLibrary . You should move
the DLL to the top level of your LabVIEW directory so it will be found.
See the note in the section 1. Load the DLL, earlier in this chapter for
more information.

/*

 * CIN source file

 */

#include "extcode.h"

#include "hosttype.h"

#include <windows.h>

CIN MgErr CINRun(LStrHandle message,

LStrHandle winTitle,
© National Instruments Corporation 3-17 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
int32 *err)

{

HANDLE hDLL = NULL;

FARPROC addr = NULL;

HINDIR hMessageBox;

int cb;

char *messageCStr = NULL,

*winTitleCStr = NULL;

MgErr cinErr = noErr;

*err=0;

hDLL = LoadLibrary("msgbxdll.dll");

if (hDLL < HINSTANCE_ERROR) {

err = 1;/ LoadLibrary failed */

goto out;

}

addr = GetProcAddress(hDLL, "Win386LibEntry");

if (!addr) {

err = 2;/ GetProcAddress failed */

goto out;

}

hMessageBox = GetIndirectFunctionHandle(

addr,

INDIR_PTR,

INDIR_PTR,

INDIR_WORD,

INDIR_ENDLIST);

if (!hMessageBox) {

err = 3; / GetIndirectFunctionHandle

failed */

goto out;

}

if (!(messageCStr =

DSNewPtr(LStrLen(*message)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

if (!(winTitleCStr =

DSNewPtr(LStrLen(*winTitle)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;
LabVIEW Code Interface Reference Manual 3-18 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

try

ed
ss

s

the

L
ber,

st

d
}

SPrintf(messageCStr, (CStr) "%P", *message);

SPrintf(winTitleCStr, (CStr) "%P", *winTitle);

cb = (WORD)InvokeIndirectFunction(

hMessageBox,

messageCStr,

winTitleCStr,

0x1);

out:

if (messageCStr)

DSDisposePtr(messageCStr);

if (winTitleCStr)

DSDisposePtr(winTitleCStr);

if (hDLL)

FreeLibrary(hDLL);

return cinErr;

}

The CIN first loads the library, and then gets the address of the DLL en
point. As described in the Watcom C/386 User’s Guide, a Watcom DLL has
only one entry point, Win386LibEntry . Calling GetProcAddress for a
Watcom DLL requests the address of this entry point. For a DLL creat
using a compiler other than the Watcom C compiler, request the addre
of the function you want to call.

To prepare for the DLL call after getting the address, the example call
GetIndirectFunctionHandle . Use this function to specify the data
types for the parameters you want to pass. The list is terminated with
INDIR_ENDLIST value. Because there is only one entry point with a
Watcom DLL, pass an additional parameter (the INDIR_WORD parameter)
that is the number of the routine you want to call in the DLL. With a DL
created using another compiler, you do not need to pass a function num
because GetProcAddress returns the address of the desired function.

This example uses InvokeIndirectFunction to call the desired DLL
function, passing the number of the routine the example calls as the la
parameter. With a DLL made by a compiler other than the Watcom C
compiler, you don’t need to pass the function number, because
GetProcAddress returns the address of the desired function.

Notice at each stage of calling the DLL, the code checks for errors an
returns an error code if it fails.
© National Instruments Corporation 3-19 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

d;

ing.
ffers

g
 no

ing
s
Notice also LabVIEW strings are different from C strings. C strings are
terminated with a null character. LabVIEW strings are not null-terminate
instead, they begin with a four byte value indicating the length of the str
Because the DLL expects C strings, this example creates temporary bu
for the C strings using DSNewPtr, and then uses SPrintf to copy the
LabVIEW string into the temporary buffers. You might consider modifyin
the DLL to accept LabVIEW strings instead, because that would require
temporary copies of the strings.

Compiling the CIN
Following is the LabVIEW makefile for this CIN. It assumes the .c file
is named msgbox.c , the makefile is named msgbox.lvm , and the three
pathnames for the directives codeDir , cinToolsDir , and wcDir are
set correctly.

name=msgbox

type=CIN

codeDir=c:\labview\examples\cins\dll

cinToolsDir=c:\labview\cintools

wcDir=c:\wc

!include $(cinToolsDir)\generic.mak

The following command line prompt compiles the CIN.

c:> wmake /f msgbox.lvm

Optimization
To optimize the performance of this CIN call LoadLibrary during the
CINLoad routine, and call FreeLibrary during the CINUnload routine.
This keeps the overhead of loading and unloading the DLL from affect
your run-time performance. The following code shows the modification
you need to make to CINRun, CINLoad , and CINUnload to implement
this optimization.

HANDLE hDLL = NULL;

CIN MgErr CINLoad(RsrcFile rf)

{

hDLL = LoadLibrary("msgbxdll.dll");

return noErr;

}

CIN MgErr CINRun(LStrHandle message,

LStrHandle winTitle,

int32 *err)

{

LabVIEW Code Interface Reference Manual 3-20 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
FARPROC addr = NULL;

HINDIR hMessageBox;

int cb;

char *messageCStr = NULL,

*winTitleCStr = NULL;

MgErr cinErr = noErr;

*err=0;

if (hDLL < HINSTANCE_ERROR) {

err = 1;/ LoadLibrary failed */

goto out;

}

addr = GetProcAddress(hDLL,"Win386LibEntry");

if (!addr) {

err = 2;/ GetProcAddress failed */

goto out;

}

hMessageBox = GetIndirectFunctionHandle(

addr,

INDIR_PTR,

INDIR_PTR,

INDIR_WORD,

INDIR_ENDLIST);

if (!hMessageBox) {

/* GetIndirectFunctionHandle failed */

*err = 3;

goto out;

}

if (!(messageCStr =

DSNewPtr(LStrLen(*message)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

if (!(winTitleCStr =

DSNewPtr(LStrLen(*winTitle)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

SPrintf(messageCStr, (CStr) "%P", *message);

SPrintf(winTitleCStr, (CStr) "%P", *winTitle);
© National Instruments Corporation 3-21 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
cb = (WORD)InvokeIndirectFunction(

hMessageBox,

messageCStr,

winTitleCStr,

0x1);

out:

if (messageCStr)

DSDisposePtr(messageCStr);

if (winTitleCStr)

DSDisposePtr(winTitleCStr);

return cinErr;

}

CIN MgErr CINUnload(void)

{

if (hDLL)

FreeLibrary(hDLL);

return noErr;

}

LabVIEW Code Interface Reference Manual 3-22 © National Instruments Corporation

© National Instruments Corporation 4-1 LabVIEW Code Interface
4

ines

 in
rnal

ion

s

es

y

te

se

led,
her
rieve
External Subroutines

This chapter describes how to create and call shared external subrout
from other external code modules.

Introduction
An external subroutine (or shared external subroutine) is a function you
can call from multiple external code modules. By placing common code
an external subroutine, you can avoid duplicating the code in each exte
code module. You can also use external subroutines to store informat
that must be accessible to multiple external code modules.

External subroutines are different from CINs in that LabVIEW diagram
do not call them directly. Instead, an external subroutine is a function
CINs and other external subroutines call. You store external subroutin
in separate files, not in VIs.

When you load a VI containing a CIN, LabVIEW determines whether
the CIN references external subroutines. If it does, LabVIEW loads the
external subroutines into memory and modifies the calling code so it
can call the subroutine. LabVIEW modifies any additional subroutines
referencing the same external subroutine to reference the code alread
in memory. When you remove the last code referencing the external
subroutine from memory (when you close the VI containing the CIN),
LabVIEW also unloads the external subroutine.

Placing code in external subroutines is helpful for several reasons.

• A single subroutine is easier to maintain, because you need upda
only a single file to affect all calls on the subroutine.

• A single subroutine can also reduce memory requirements, becau
only a single instance of the code is in memory, regardless of the
number of calls to the subroutine.

• An external subroutine can maintain information used by multiple
external code modules. The first time the external subroutine is cal
it can store data in a variable global to the external subroutine. Ot
external code modules can call the same external subroutine to ret
the common data.
Reference Manual

Chapter 4 External Subroutines

he

g
t

t
ng
e the
al
ory,

 not
n
 the
ge

e
ory
ions
You store external subroutines as files, so you have to give each one a
unique name. When LabVIEW searches for a subroutine file, it loads t
first file it finds with the correct name.

Note External subroutines are not supported on the Power Macintosh. The
Macintosh OS on the Power Macintosh uses shared libraries, which provide
a much cleaner mechanism for sharing code. If you need to share code amon
multiple CINs on the Power Macintosh, consult your development environmen
documentation to learn how to build a shared library.

Although external subroutines are supported on Solaris 2, HP-UX, and
Concurrent PowerMAX, it is suggested you use shared libraries instead.

Shared library mechanisms compatible with LabVIEW are available on all
platforms. Under Microsoft Windows 3.1, Windows 95, and Windows NT, they
are referred to as DLLs (dynamic link libraries). Under UNIX they are referred
to as shared libraries or dynamic libraries.

Creating Shared External Subroutines
Normally, when you use a compiler to create a program, the compiler
includes the code for all subroutines in a single file called the executable.
External subroutines differ from standard subroutines in that you do no
compile the code for the external subroutine with the code for the calli
subroutine. Instead, your makefile, and consequently the code, indicat
calling code references an external subroutine. LabVIEW loads extern
subroutines based on this information and links the calling code in mem
so the calling code points correctly to the external subroutine.

You need to compile the calling code, even though its subroutines are
all present. LabVIEW must be able to determine that your code calls a
external subroutine, find the subroutine, and load it into memory. When
subroutine is loaded, LabVIEW must be able to modify the memory ima
of the calling code so it correctly references the memory location of th
external code. Finally, LabVIEW may need to create and initialize mem
space the external subroutine uses for global data. The following sect
describe how to make this work.
LabVIEW Code Interface Reference Manual 4-2 © National Instruments Corporation

Chapter 4 External Subroutines

,
rn

istent

 a
nal
d,
e

s

 is
External Subroutines
LabVIEW calls CINs, but only your code calls external subroutines.
Instead of creating seven routines (CINRun, CINSave , and so on), you
create only one entry point (LVSBMain) for an external subroutine. When
another external code module calls this external subroutine, the LVSBMain
subroutine executes.

LVSBMain is similar to CINRun. You can have an arbitrary number
of parameters, and each parameter can be of arbitrary data type. Also
because only your code calls the subroutine, you can declare any retu
data type, and you do not need to place the word CIN in front of the function
prototype. You must ensure the parameters and return value are cons
between the calling and called code.

You compile an external subroutine almost the same way you compile
CIN. Because multiple external code modules can call the same exter
subroutine, LabVIEW does not load the code into a specific VI. Instea
LabVIEW loads the code from the file created by the makefile when th
code is needed.

Macintosh
(THINK C Compiler and CodeWarrior 68K Compiler) To make a subroutine
using the THINK or CodeWarrior 68K C Compiler, build the code
resource (the .tmp file) as discussed in the Steps for Creating a CIN
section of Chapter 1, CIN Overview, but replace the CINLib library with
the appropriate LVSBLib library and select the subroutine option when
running lvsbutil.app .

(MPW Compiler) The only difference between the makefiles of subroutine
and of CINs is that for a subroutine you specify a type of LVSB in your .lvm
file instead of CIN. See the Steps for Creating a CIN section of Chapter 1,
CIN Overview, for a discussion of the makefile contents.

Microsoft Windows 3.1, Windows 95, and
Windows NT

The only difference between the makefiles of subroutines and of CINs
that for a subroutine you specify a type of LVSB in your .lvm file instead
of CIN. See the Steps for Creating a CIN section of Chapter 1, CIN
Overview, for a discussion of the makefile contents.
© National Instruments Corporation 4-3 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

is

rnal

l

uld

s

al
ds
ot

ry
Solaris 1.x, Solaris 2.x, HP-UX, and
Concurrent PowerMAX
(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C
Compiler) The lvmkmf command for a CIN calling an external subroutine
the same as described in the Steps for Creating a CIN section of Chapter 1,
CIN Overview, except you use the -t option with the type LVSB to indicate
you are creating a LabVIEW subroutine instead of a CIN.

For example, if you want to create an external subroutine called find ,
you could use the following command:

lvmkmf -t LVSB find

This command creates a makefile you could use to create the
external subroutine.

Calling Code
You call external subroutines the same way you call standard
C subroutines. LabVIEW modifies the code at load time to ensure
the calling code passes control to the subroutine correctly.

When you call the external subroutine, do not use the function name
LVSBMain to call the function. Instead, use the name you gave the exte
subroutine. If you created an external subroutine called fact.lsb , which
in turn contained an LVSBMain() subroutine, for example, you should cal
the function as though it were named fact() . The argument list and return
type should be the same as the argument and return type for the
LVSBMain() subroutine.

You should also create a prototype for the function. This prototype sho
have the keyword extern so the compiler will compile the CIN, even
though the subroutine is not present.

When you create the makefile for the CIN, you identify the names of
the external subroutines the CIN calls. The LabVIEW makefile embed
information in your code LabVIEW uses to determine your code calls
external subroutines. When you load external code referencing extern
subroutines into a VI, LabVIEW searches for the subroutine files. If it fin
the subroutines, LabVIEW performs the appropriate linking. If a file is n
found, LabVIEW displays a dialog box prompting you to find it. If you
dismiss the dialog box without selecting the file, the VI loads into memo
with a broken run arrow, indicating the VI is not executable.
LabVIEW Code Interface Reference Manual 4-4 © National Instruments Corporation

Chapter 4 External Subroutines

rnal

e
e to

One way to ensure LabVIEW can find external subroutines is to place
them in the directories you defined in the search path section of the
LabVIEW defaults file. See the Configuring LabVIEW section of
Chapter 8, Customizing Your LabVIEW Environment, of your LabVIEW
User Manual for more information on setting path preferences.

Macintosh
(THINK C Compiler) The THINK C project must have an extra file named
glue.c specifying each external subroutine. Each reference to the exte
subroutine should have an entry as follows in the glue.c file:

long gLVSB< external subroutine name > = 'LVSB';

void < external subroutine name >(void);

void < external subroutine name >(void) {

asm {

move.l gLVSB< external subroutine name >, a0

jmp (a0)

}

}

(CodeWarrior 68K Compiler) The CodeWarrior project must have an extra fil
called glue.c , which specifies each external subroutine. Each referenc
the external subroutine should have an entry as follows in the glue.c file:

long gLVSB< external subroutine name > = 'LVSB';

void < external subroutine name >(void);

asm void < external subroutine name >(void) {

move.l gLVSB< external subroutine name >, a0

jmp (a0)

}

(MPW Compiler) The makefile for a calling CIN is the same as described
in the Steps for Creating a CIN section of Chapter 1, CIN Overview,
except you use the optional subrNames directive to identify the
subroutines the CIN references. Specifically, if your code calls two
external subroutines, A and B, you need to have the following line in
the makefile code:

subrNames = A B
© National Instruments Corporation 4-5 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

ed

s

Microsoft Windows 3.1,
Windows 95, and Windows NT
The makefile for a calling CIN is the same as described in the Steps for
Creating a CIN section of Chapter 1, CIN Overview, except you use
the optional subrNames directive to identify the subroutines the CIN
references. Specifically, if your code calls two external subroutines,
A andB, you need to have the following line in the code makefile, prior
to the !include statement.

subrNames = A B

If you are using the Visual C IDE, follow the steps described in Steps for
Creating a CIN section of Chapter 1, CIN Overview, with the exception of
adding lvsb.obj instead of cin.obj to your project.

Solaris 1.x, Solaris 2.x, HP-UX, and
Concurrent PowerMAX
(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C
Compiler) The lvmkmf command for a calling CIN is the same as describ
in the Steps for Creating a CIN section of Chapter 1, CIN Overview, except
you use the optional -ext option with the name of a file listing the name
of the subroutines called by the CIN, one name per line. The makefile
lvmkmf creates uses this file to append linkage information to the CIN
object file.

For example, if your code calls two external subroutines, A and B,
you create a new text file with the name A on the first line and B on the
second. If the list of subroutines is in a file called subrs , and you want
to call the calling CIN lookup, you can use the following command to
create a makefile.

lvmkmf -ext subrs lookup

This command creates a makefile you can use to create the CIN.
LabVIEW Code Interface Reference Manual 4-6 © National Instruments Corporation

Chapter 4 External Subroutines

 can
utes

e

pon
External Subroutine Example
The following example illustrates the process of building an external
subroutine that sums the elements of an array. This external subroutine
be used by a CIN that computes the mean and also by a CIN that comp
the definite integral.

As described in the External Subroutines section of this chapter, you
must write a function called LVSBMain() . When you call the external
subroutine from your CIN or another external subroutine, LabVIEW
passes control to the LVSBMain() function. When you call the external
subroutine, the arguments to it and to its return type should be the sam
as in the definition of LVSBMain() .

The following is the C code for this external subroutine. Name it sum.c .

/*

 * sum.c

 */

#include "extcode.h"

float64 LVSBMain(float64 *x, int32 n);

float64 LVSBMain(float64 *x, int32 n)

{

int32 i;

float64 sum;

sum = 0.0;

for (i=0; i<n; i++)

sum += *x++;

return sum;

}

Compiling the External Subroutine
The procedure you use in compiling the external subroutine depends u
the platform and programming environment you are using.

Macintosh
(THINK C Compiler and CodeWarrior 68K Compiler) To make a subroutine
using the THINK or CodeWarrior 68K C Compiler, create a project
namedsum or sum.µ , respectively, and add sum.c and LVSBLib to the
project. Do not include the CINLib file in your project. Set the options
in the Options... and Set Project Type dialog boxes as described in the
Steps for Creating a CIN section of Chapter 1, CIN Overview. After you
create sum.tmp , run lvsbutil.app and select the Subroutine option.
© National Instruments Corporation 4-7 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

le a
he

pile
 the
(MPW Compiler) As described in the External Subroutines section of this
chapter, you compile an external subroutine the same way you compi
CIN. The first step is to create a makefile specification. Following are t
contents of the makefile specification for this example. Notice all Dir
commands must end with a colon (:). Name the file sum.lvm .

name = name sum

type = type LVSB

codeDir = codeDir : Complete pathname to the folder
containing the .c file.

cinToolsDir = cinToolsDir :
Complete or partial pathname to the
LabVIEW cintools folder.

inclDir = inclDir : (optional) Complete or partial
pathname to a folder containing
additional .h files.

Create the subroutine using the following command.

Directory < full pathname to CIN directory >

cinmake sum

Microsoft Windows 3.1
(Watcom C Compiler) As described in the External Subroutines section of
this chapter, you compile an external subroutine the same way you com
a CIN. The first step is to create a makefile specification. Following are
contents of the makefile specification for this example. Notice all Dir
commands must end without a backslash(\). Name the file sum.lvm .

name = name sum

type = type LVSB

codeDir = codeDir Complete pathname to the directory
containing the .c file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.
LabVIEW Code Interface Reference Manual 4-8 © National Instruments Corporation

Chapter 4 External Subroutines

ts

ll
inclDir = inclDir (optional) Complete or partial
pathname to a directory containing
any additional .h files.

wcDir = wcDir Complete pathname to the directory
containing the Watcom C compiler.

!include $(cinToolsDir)\generic.mak

Create the subroutine using the following command.

wmake /f sum.lvm

Microsoft Windows 95 and Windows NT
As described in the External Subroutines section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create a makefile specification. Following are the conten
of the makefile specification for this example. Name the file sum.lvm .

name = name sum

type = type LVSB

!include $(CINTOOLSDIR)\ntlvsb.mak

Create the subroutine using the following command.

nmake /f sum.lvm

Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX
(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C
Compiler) As described in the External Subroutines section of this chapter,
you compile an external subroutine the same way you compile a CIN.
The first step is to create the makefile for the subroutine using the she
script lvmkmf . You can then use the standard make command to make
the subroutine code. For this example, enter the following command.

lvmkmf -t LVSB sum

This creates a file called Makefile . After executing lvmkmf , enter make,
which uses the makefile to create a file called sum.lsb . CINs and other
external subroutines can call this sum.lsb file.
© National Instruments Corporation 4-9 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
Calling Code Example
The following example shows how to call an external subroutine.
In this example, a CIN uses the external subroutine to calculate the
mean of an array.

The diagram for the VI is shown in the following illustration. To avoid
confusion, create the calling source code and makefiles in a directory
separate from the external subroutine. Save the VI as calcmean.vi .

Save the .c file for the CIN as calcmean.c . The following is a listing of
calcmean.c , with its CINRun routine filled in and the prototype for the
sum external routine added.

/*

 * CIN source file

 */

#include "extcode.h"

/*

 * typedefs

 */

typedef struct {

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

extern float64 sum(float64 *x, int32 n);

CIN MgErr CINRun(TD1Hdl xArray, float64 *mean);

CIN MgErr CINRun(TD1Hdl xArray, float64 *mean)

{

float64 *x, total;

int32 n;

x = (*xArray)–>arg1;

n = (*xArray)–>dimSize;

total = sum(x, n);

*mean = total/(float64)n;

return noErr;

}

LabVIEW Code Interface Reference Manual 4-10 © National Instruments Corporation

Chapter 4 External Subroutines

ord
nt.

hich

you

file
CINRun calculates the mean using the external subroutine sum to calculate
the sum of the array. The external subroutine is declared with the keyw
extern so the code compiles even though the subroutine is not prese

Compiling the Calling Code
The procedure you use for compiling the calling code depends upon w
platform and programming environment you are using.

Macintosh
(THINK C Compiler) The THINK C project must have an extra file called
glue.c which specifies each external subroutine. The reference to the
external subroutine sum should have an entry as follows in the glue.c file:

long gLVSBsum = 'LVSB';

void sum(void);

void sum(void) {

asm {

move.l gLVSBsum, a0

jmp(a0)

}

}

(CodeWarrior 68K Compiler) The CodeWarrior project must have an
extra file called glue.c , which specifies each external subroutine. Each
reference to the external subroutine sum should have an entry as follows
in the glue.c file:

long gLVSBsum = 'LVSB';

void sum(void);

asm void sum(void){

move.l gLVSBsum, a0

jmp (a0)

}

(MPW Compiler) As described in the Calling Code Example section of this
chapter, when you compile a CIN referencing an external subroutine,
use the same makefile as described in the Steps for Creating a CIN section
of the Chapter 1, CIN Overview, with the addition of a directive identifying
the subroutines this CIN uses. Following are the contents of the make
specification for this example. Notice the Dir command must end in a
colon (:). Name the makefile calcmean.lvm .
© National Instruments Corporation 4-11 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

you

file
name = name calcmean

type = type CIN

codeDir = codeDir : Complete pathname to the folder
containing the .c file.

cinToolsDir = cinToolsDir :
Complete or partial pathname to the
LabVIEW cintools folder.

inclDir = inclDir : (optional) Complete or partial
pathname to a folder containing
additional .h files.

subrNames = subrNames sum

Create the CIN using the following command:

Directory < full pathname to CIN directory >

cinmake sum

Microsoft Windows 3.1
(Watcom C Compiler) As described in the Calling Code section of this
chapter, when you compile a CIN referencing an external subroutine,
use the same makefile as described in the Steps for Creating a CIN section
of the Chapter 1, CIN Overview, with the addition of a directive identifying
the subroutines this CIN uses. Following are the contents of the make
specification for this example. Notice the Dir command must end without
a backslash (\). Name the makefile calcmean.lvm .

name = name calcmean

type = type CIN

codeDir = codeDir Complete pathname to the directory
containing the .c file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.

inclDir = inclDir (optional) Complete or partial
pathname to a directory containing
additional .h files.
LabVIEW Code Interface Reference Manual 4-12 © National Instruments Corporation

Chapter 4 External Subroutines

al

e

he
s
wcDir = wcDir Complete pathname to the directory
containing the Watcom C compiler.

subrNames = subrNames sum

!include $(cinToolsDir)\generic.mak

Create the CIN using the following command:

wmake /f calcmean.lvm

Microsoft Windows 95 and Windows NT
(Microsoft Visual C Command Line) As described in the Calling Code
section of this chapter, when you compile a CIN referencing an extern
subroutine, you use the same makefile as described in the Steps for
Creating a CIN section of the Chapter 1, CIN Overview, with the addition
of a directive identifying the subroutines this CIN uses. Following are
the contents of the makefile specification for this example. Name the
makefilecalcmean.lvm .

name = name calcmean

type = type CIN

subrNames = subrNames sum

!include $(CINTOOLSDIR)\ntlvsb.mak

Create the CIN using the following command:

nmake /f calcmean.lvm

(Microsoft Visual C IDE) Building CINs that use external subroutines is not
supported using Microsoft Visual C IDE. A possible alternative would b
to use a DLL instead of an external subroutine.

Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX
(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C
Compiler) As described in the Calling Code section of this chapter,
when you compile a CIN referencing an external subroutine, you use t
lvmkmf script with an addition directive identifying a file with the name
of all subroutines the CIN calls.

For this example, create a text file with the name meansubs . It should
contain a single line with the word sum.
© National Instruments Corporation 4-13 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

:
You then create the makefile for this CIN using the following command

lvmkmf -ext meansubs calcmean

This creates a file called Makefile . After executing lvmkmf , enter make,
which uses the makefile to create a file called calcmean.lsb . You can
load the calcmean.lsb file into the CIN.
LabVIEW Code Interface Reference Manual 4-14 © National Instruments Corporation

© National Instruments Corporation 5-1 LabVIEW Code Interface
5

ry

o
ined

form
ies
r

 this
reate
ts.

at
ge,

e

s
, the

r data
.

ry
Manager Overview

This chapter gives an overview of the function libraries, called managers,
which you can use in external code modules. These include the memo
manager, the file manager, and the support manager. The chapter als
introduces many of the basic constants, data types, and globals conta
in the LabVIEW libraries.

Note For descriptions of specific manager functions, see the CIN Function Overview
section of the LabVIEW Online Reference, available by selecting Help»Online
Reference.

Introduction
External code modules have a large set of functions you can use to per
simple and complex operations. These functions, organized into librar
called managers, range from low-level byte manipulation to routines fo
sorting data and managing memory. All manager routines described in
chapter are platform-independent. If you use these routines, you can c
external code modules that will work on all platforms LabVIEW suppor

A fundamental component of platform independence are data types th
do not depend on the peculiarities of various compilers. The C langua
for example, does not define the size of an integer. Without an explicit
definition of the size of each data type, it is almost impossible to creat
code that works identically across multiple compilers.

LabVIEW managers use data types that explicitly indicate their size.
For example, if a routine requires a 4-byte integer as a parameter, you
define the parameter as an int32 . The managers define data types in term
of the fundamental data types for each compiler. Thus, on one compiler
managers might define an int32 as an int , while on another compiler, the
managers might define an int32 as a long int . When writing external
code modules, use the manager data types instead of the host compute
types, because your code will be more portable and have fewer errors

Most applications need routines for allocating and deallocating memo
on request. You can use the memory manager to dynamically allocate,
manipulate, and release memory. The LabVIEW memory manager
Reference Manual

Chapter 5 Manager Overview

ning,

ne
ines

n

on,
ent

g

here

lue
of
supports dynamic allocation of both non-relocatable and relocatable
blocks, using pointers and handles. For more information, see the Memory
Manager section of the LabVIEW Online Reference for more information.

Applications that manipulate files can use the functions in the file manager.
This set of routines supports basic file operations such as creating, ope
and closing files, writing data to files, and reading data from files. In
addition, file manager routines allow you to create directories, determi
characteristics of files and directories, and copy files. File manager rout
use a LabVIEW data type for file pathnames (Path s) that provides a
platform-independent way of specifying a file or directory path. You ca
translate a Path to and from a host platform’s conventional format for
describing a file pathname. See the File Manager section of the LabVIEW
Online Reference for more information.

The support manager contains a collection of generally useful functions,
such as functions for bit or byte manipulation of data, string manipulati
mathematical operations, sorting, searching, and determining the curr
time and date. See the Support Manager section of the LabVIEW Online
Reference for more information.

Basic Data Types
There are five basic data types: scalar, the char data type, dynamic,
memory-related, and constants.

Scalar Data Types
The two kinds of scalar data types are Booleans and numerics,
described below.

Booleans
External code modules work with two kinds of Booleans—those existin
in LabVIEW block diagrams and those passing to and from manager
routines. The manager routines use a conventional form of Boolean, w
0 is FALSE and 1 is TRUE. This form of Boolean is called a Bool32 , and
it is stored as a 32-bit value.

LabVIEW block diagrams store Boolean scalars as 8-bit values. The va
is 1 if the Boolean is TRUE, and 0 if the Boolean is FALSE. This form
Boolean is called an LVBoolean .
LabVIEW Code Interface Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Manager Overview

rs.
le
W

h
es.

ture
The two forms of Booleans are summarized in the following table.

Numerics
The managers support 8-, 16-, and 32-bit signed and unsigned intege
For floating-point numbers, LabVIEW supports the single (32-bit), doub
(64-bit), and extended floating-point (at least 80-bit) data types. LabVIE
supports complex numbers containing two floating-point numbers, wit
different complex numeric types for each of the floating-point data typ
The following lists show the basic LabVIEW data types for numbers.

• Signed Integers

– int8 8-bit integer

– int16 16-bit integer

– int32 32-bit integer

• Unsigned Integers

– uInt8 8-bit unsigned integer

– uInt16 16-bit unsigned integer

– uInt32 32-bit unsigned integer

• Floating-Point Numbers

– float32 32-bit floating-point number

– float64 64-bit floating-point number

– floatExt extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit struc
with two int32 components, mhi and mlo , and an int16 component, e.
On the Sun, extended-precision numbers are stored as 128-bit
floating-point numbers. On the 68K Macintosh, extended-precision
numbers are stored in the 96-bit MC68881 format. On the Power
Macintosh, extended-precision numbers are stored in the 128-bit
double-double format. On HP and Concurrent, extended precision
numbers are the same as float64.

Name Description

Bool32 32-bit integer, 1 if TRUE, 0 if FALSE

LVBoolean 8-bit integer, 1 if TRUE, 0 if FALSE
© National Instruments Corporation 5-3 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

nts,

cate

rs,

ts
2,
Complex Numbers
The complex data types are structures with two floating-point compone
re and im . As with floating-point numbers, complex numbers can have
32-bit, 64-bit, and extended-precision components. The following
segments of code give the type definitions for each of these complex
data types.

typedef struct {

float32 re, im;

} cmplx64;

typedef struct {

float64 re, im;

} cmplx128;

typedef struct {

floatExt re, im;

} cmplxExt;

char Data Type
The char data type is defined by C to be a signed byte value. LabVIEW
defines an unsigned char data type, with the following type definition.

typedef uInt8 uChar;

Dynamic Data Types
LabVIEW defines a number of data types you must allocate and deallo
dynamically. Arrays, strings, and paths have data types you must allocate
using memory manager and file manager routines.

Arrays
LabVIEW supports arrays of any of the basic data types described in
theScalar Data Types section of this chapter. You can construct more
complicated data types using clusters, which can in turn contain scala
arrays, and other clusters.

The first four bytes of a LabVIEW array indicate the number of elemen
in the array. The elements of the array follow the length field. Chapter
CIN Parameter Passing, gives examples of how to manipulate arrays.
LabVIEW Code Interface Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Manager Overview

s
s

he
 to

ata
the
Strings
LabVIEW supports C-style strings and Pascal-style strings, a special
string data type you use for string parameters to external code module
called LStr , and lists of strings. The support manager contains routine
for manipulating strings and converting them among the different
types of strings.

C-Style Strings (CStr)
A C string (CStr) is a series of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit.
Most manager routines use C strings, unless you specify otherwise.
The following code segment is the type definition for a C-style string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)
A Pascal string (PStr) is a series of unsigned characters. The value of t
first character indicates the length of the string. This gives a range of 0
255 characters. The following code segment is the type definition for a
Pascal-style string.

typedef uChar Str255[256], Str31[32],

*StringPtr,

**StringHandle;

typedef uChar *PStr;

LabVIEW Strings (LStr)
The first four bytes of a LabVIEW string (LStr) indicate the length of the
string, and the specified number of characters follow. This is the string d
type used by LabVIEW block diagrams. The following code segment is
type definition for an LStr string.

typedef struct {

int32 cnt;

/* number of bytes that follow */

uChar str[1];

/* cnt bytes */

} LStr, *LStrPtr, **LStrHandle;
© National Instruments Corporation 5-5 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

gs
tion

 large
ith

o a
ate

r

te

d
Concatenated Pascal String (CPStr)
Many algorithms require manipulation of lists of strings. Arrays of strin
are usually the most convenient representation for lists. This representa
can place a burden on the memory manager, however, because of the
number of dynamic objects that must be managed. To make working w
lists more efficient, LabVIEW supports the concatenated Pascal string
(CPStr) data type that is a list of Pascal-style strings concatenated int
single block of memory. You can use support manager routines to cre
and manipulate lists using this data structure.

This data type is defined as follows.

typedef struct {

int32 cnt;

/* number of pascal strings that follow */

uChar str[1];

/* cnt concatenated pascal strings */

} CPStr, *CPStrPtr, **CPStrHandle;

Paths (Path)
A path (short for pathname) specifies the location of a file or directory
in a computer’s file system. There is a separate LabVIEW data type fo
a path (represented as Path), which the file manager defines in a
platform-independent manner. The actual data type for a path is priva
to the file manager and subject to change. You create and manipulate
Path s using file manager routines.

Memory-Related Types
LabVIEW uses pointers and handles to reference dynamically allocate
memory. These data types are described in detail in the CIN Function
Overview section of the LabVIEW Online Reference and have the
following type definitions.

typedef uChar *UPtr;

typedef uChar **UHandle;
LabVIEW Code Interface Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Manager Overview

dent

r
tes
W

hen
es
.

r
Constants
The managers define the following constant for use with external
code modules.

NULL 0(uInt32)

The following constants define the possible values of the Bool32 data type.

FALSE 0 (int32)

TRUE 1 (int32)

The following constants define the possible values of the LVBoolean
data type.

LVFALSE 0 (uInt8)

LVTRUE 1 (uInt8)

Memory Manager
This section describes the memory manager, a set of platform-indepen
routines for allocating, manipulating, and deallocating memory from
external code modules.

Read this section if you need to perform dynamic memory allocation o
manipulation from external code modules. If your external code opera
on data types other than scalars, you need to understand how LabVIE
manages memory and know the utilities that manipulate data.

Note For descriptions of specific memory manager functions, see the Memory
Managersection of the LabVIEW Online Reference, available by selecting
Help»Online Reference.

Memory Allocation
Applications use two types of memory allocation: static and dynamic.

Static Memory Allocation
With static allocation, the compiler determines memory requirements w
you create a program. When you launch the program, LabVIEW creat
memory for the known global memory requirements of the application
This memory remains allocated while the program runs. This form of
memory management is very simple to work with because the compile
handles all the details.
© National Instruments Corporation 5-7 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

,

 it,

se
ate

.
ee
ence
eated
le

r
s

 to
ore

 data.

lem.
st

ress,
ress.
ss
Static memory allocation cannot address the memory management
requirements of most real-world applications, however, because you
cannot determine most memory requirements until run-time. Also,
statically declared memory may result in larger memory requirements
because the memory is allocated for the life of the program.

Dynamic Memory Allocation: Pointers and Handles
With dynamic memory allocation, you reserve memory when you need
and free memory when you are no longer using it. Dynamic allocation
requires more work on your part than static memory allocation, becau
you have to determine memory requirements and allocate and dealloc
memory as necessary.

The LabVIEW memory manager supports two kinds of dynamic
memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request a block of memory of a
given size, and the routine returns the address of the block to your CIN
When you no longer need the block of memory, you call a routine to fr
the block. You can use the block of memory to store data, and you refer
that data using the address the manager routine returned when you cr
the pointer. You can make copies of the pointer and use them in multip
places in your program to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which
means the manager never moves the memory block to which a pointe
refers while that memory is allocated for a pointer. This avoids problem
that occur when you need to change the amount of memory allocated
a pointer because other references would be out of date. If you need m
memory, there might not be sufficient memory to expand the pointer's
memory space without moving the memory block to a new location.
This causes problems if an application had multiple references to the
pointer, because each pointer refers to the old memory address of the
Using invalid pointers can cause severe problems.

A second form of memory allocation uses handles to address this prob
As with pointers, when you allocate memory using handles, you reque
a block of memory of a given size. The memory manager allocates the
memory and adds the address of the memory block to a list of master
pointers. The memory manager returns a handle that is a pointer to the
master pointer. If you reallocate a handle and it moves to another add
the memory manager updates the master pointer to refer to the new add
As long as you look up the correct address using the handle, you acce
the correct data.
LabVIEW Code Interface Reference Manual 5-8 © National Instruments Corporation

Chapter 5 Manager Overview

ers
nt and

pace
on
e
hat

y.

r
ns

ers
dles

.

You use handles to perform most memory allocation in LabVIEW. Point
are available, however, because in some cases they are more convenie
simpler to use.

Memory Zones
LabVIEW's memory manager interface has the ability to distinguish
between two distinct sections, called zones. LabVIEW uses the data s
(DS) zone only to hold VI execution data. LabVIEW uses the applicati
zone (AZ) to hold all other data. Most memory manager functions hav
two corresponding routines, one for each of the two zones. Routines t
operate on the data space zone begin with DS and routines for the
application zone begin with AZ.

Currently, the two zones are actually one zone, but this may change in
future releases of LabVIEW; therefore, a CIN programmer should write
programs as if the two zones actually exist.

External code modules work almost exclusively with data created in
the DS zone, although exceptions exist. In most cases, you use the
DS routines when you need to work with dynamically allocated memor

All data passed to or from a CIN is allocated in the DS zone except fo
Path s, which use AZ handles. You should only use file manager functio
(not the AZ memory manager routines) to manipulate Path s. Thus, your
CINs should use the DS memory routines when working with paramet
passed from the block diagram. The only exceptions to this rule are han
created using the SizeHandle function, which allocates handles in the
application zone. If you pass one of these handles to a CIN, your CIN
should use AZ routines to work with the handle.

Using Pointers and Handles
Most memory manager functions have a DS routine and an AZ routine
In the following discussion, XXFunctionName refers to a function in
a general context. In these situations, XX can be either DS or AZ. When
a difference exists between the two zones, the specific function name
is given.

You create a handle using XXNewHandle , with which you specify the
size of the memory block. You create a pointer using XXNewPtr .
XXNewHandleClr and XXNewPClr are variations that create the
memory block and set it to all zeros.
© National Instruments Corporation 5-9 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

t

ss
ich
ort
ndle,
cond

ed

s
the
When you are finished with the handle or pointer, release it using
XXDisposeHandle or XXDisposePtr .

If you need to resize an existing handle, you can use the
XXSetHandleSize routine. XXGetHandleSize determines the size
of an existing handle. Because pointers are not relocatable, you canno
resize them.

A handle is a pointer to a pointer. In other words, a handle is the addre
of an address. The second pointer, or address, is a master pointer, wh
means it is maintained by the memory manager. Languages that supp
pointers provide operators for accessing data by its address. With a ha
you use this operator twice; once to get to the master pointer, and a se
time to get to the actual data. A simple example of how to work with
pointers and handles in C is shown in the following section.

While operating within a single call of a CIN node, an AZ handle will
not move unless you specifically resize it. In this context there is no ne
to lock or unlock handles. If your CIN maintains an AZ handle across
different calls of the same CIN (an asynchronous CIN), the AZ handle
may be relocated between calls. In this case, AZHLock and AZHUnlock
may be useful if you do not want the handle to relocate. A DS handle
will never move unless you resize it.

Additional routines make it easy to copy and concatenate handles and
pointers to other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example
The following example code shows how you work with a pointer
to anint32 .

int32 *myInt32P;

myInt32P = (int32 *)DSNewPtr(sizeof(int32));

*myInt32P = 5;

x = *myInt32P + 7;

...

DSDisposePtr(myInt32P);

The first line declares the variable myInt32P as a pointer to, or the addres
of, a signed 32-bit integer. This does not actually allocate memory for
int32 ; it creates memory for an address and associates the name
myInt32P with that address. The P at the end of the variable name is a
convention used in this example to indicate the variable is a pointer.
LabVIEW Code Interface Reference Manual 5-10 © National Instruments Corporation

Chapter 5 Manager Overview

ough

n.

ters.

ress

ters
nt
ther
The second line creates a block of memory in the data space large en
to hold a single signed 32-bit integer and sets myInt32P to refer to this
memory block.

The third line places the value 5 in the memory location to which
myInt32P refers. The * operator refers to the value in the address locatio

The fourth line sets x equal to the value at address myInt32P plus 7.

The last line frees the pointer.

The following code is the same example using handles instead of poin

int32 **myInt32H;

myInt32H =(int32**)DSNewHandle(sizeof(int32));

**myInt32H = 5;

x = **myInt32H + 7;

...

DSDisposeHandle(myInt32H);

The first line declares the variable myInt32H as a handle to an a signed
32-bit integer. Strictly speaking, this line declares myInt32H as a pointer
to a pointer to an int32 . As with the previous example, this declaration
does not allocate memory for the int32 ; it creates memory for an address
and associates the name myInt32H with that address. The H at the end of
the variable name is a convention used in this example to indicate the
variable is a handle.

The second line creates a block of memory in the data space large
enough to hold a single int32 . DSNewHandle places the address of the
memory block as an entry in the master pointer list and returns the add
of the master pointer entry. Finally, this line sets myInt32H to refer to the
master pointer.

The third line places the value 5 in the memory location to which
myInt32H refers. Because myInt32H is a handle, you use the * operator
twice to get to the data.

The fourth line sets x equal to the value referenced by myInt32H plus 7.

The last line frees the handle.

This example shows only the simplest aspects of how to work with poin
and handles in C. Other examples throughout this manual show differe
aspects of using pointers and handles. Refer to a C manual for a list of o
© National Instruments Corporation 5-11 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

 how

ode

e

ing
se
the
ile

ese
 and

e a
a
ten
ure

s
ger

a
operators you can use with pointers and a more detailed discussion of
to work with pointers.

Reference to the Memory Manager
See the CIN Function Overview section of the LabVIEW Online Reference
for descriptions of the routines used for managing memory in external c
segments of LabVIEW. For every function, if XX is AZ, the referenced
handle, pointer, or block of memory is in the application zone. If XX is DS,
the referenced handle, pointer, or block of memory is in the data spac
zone.

Memory Manager Data Structures
The memory manager defines generic handle and pointer data types
as follows.

typedef uChar *Ptr;

typedef uChar **UHandle;

File Manager
The file manager supports routines for opening and creating files, read
data from and writing data to files, and closing files. In addition, with the
routines you can manipulate the end-of-file mark of a file and position
current read or write mark to an arbitrary position in the file. With other f
routines you can move, copy, and rename files, determine and set file
characteristics and delete files.

Note For descriptions of specific file manager functions, see the File Manager section
of the LabVIEW Online Reference, available by selecting Help»Online Reference.

The file manager contains a number of routines for directories. With th
routines you can create and delete directories. You can also determine
set directory characteristics and obtain a list of a directory's contents.

LabVIEW supports concurrent access to the same file, so you can hav
file open for both reading and writing simultaneously. When you open
file, you can indicate whether you want the file to be read from and writ
to concurrently. You can also lock a range of the file, if you need to ens
a range is nonvolatile at a given time.

Finally, the file manager provides many routines for manipulating path
(short for pathnames) in a platform-independent manner. The file mana
supports the creation of path descriptions, which are either relative to
LabVIEW Code Interface Reference Manual 5-12 © National Instruments Corporation

Chapter 5 Manager Overview

ou
d

se
ibly
 of
sed

hese
 the
the
is

 or
et
et,
me.

r

 first
he
specific location or absolute (the full path). With file manager routines y
can create and compare paths, determine characteristics of paths, an
convert a path between platform-specific descriptions and the
platform-independent form.

Identifying Files and Directories
When you perform operations on files and directories, you need to
identify the target of the operation. The platforms LabVIEW supports u
a hierarchical file system, meaning files are stored in directories, poss
nested several levels deep. These file systems support the connection
multiple discrete storage media, called volumes. For example, DOS-ba
systems support multiple drives connected to the system. For most of t
file systems, you must include the volume name to completely specify
location of a file. On other systems, such as UNIX, you do not specify
volume name because the physical implementation of the file system
hidden from the user.

How you identify a target depends upon whether the target is an open
closed file. If a target is a closed file or a directory, you specify the targ
using the target’s path. The path describes the volume containing the targ
the directories between the top level and the target, and the target’s na
If the target is an open file, you use a file descriptor to specify LabVIEW
should perform an operation on the open file. The file descriptor is an
identifier the file manager associates with the file when you open it.
When you close the file, the file manager dissociates the file descripto
from the file.

Path Specifications
LabVIEW uses three different kinds of filepath specifications:
conventional, empty, and LabVIEW specifications, described below.

Conventional Path Specifications
All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. You usually specify a path
as a series of names separated by separator characters. Typically, the
name is the top level of the hierarchical specification of the path, and t
last name is the file or directory the path identifies.

There are two types of paths—relative paths and absolute paths.
A relative path describes the location of a file or directory relative to
© National Instruments Corporation 5-13 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

.

he
at

ory
 is

.).

cter.

an
.).
an arbitrary location in the file system. An absolute path describes the
location of a file or directory starting from the top level of the file system

A path does not necessarily go from the top of the hierarchy down to t
target. You can often use a platform-specific tag in place of a name th
indicates the path should go up a level from the current location.

For instance, on a UNIX system, you specify the path of a file or direct
as a series of names separated by the slash (/) character. If the path
an absolute path, you begin the specification with a slash. You can
indicate the path should move up a level using two periods in a row (.
Thus, the following path specifies a file README relative to the top level
of the file system.

/usr/home/gregg/myapps/README

Two relative paths to the same file are as follows.

gregg/myapps/README relative to /usr/ home

../myapps/README relative to a directory inside of the gregg
directory

On the PC, you separate names in a path with a backslash (\) chara
If the path is an absolute path, you begin the specification with a drive
designation, followed by a colon (:), followed by the backslash. You c
indicate the path should move up a level using two periods in a row (.
Thus, the following path specifies a file README relative to the top level of
the file system, on a drive named C.

C:\HOME\GREGG\MYAPPS\README

Two relative paths to the same file are as follows.

GREGG\MYAPPS\README relative to the HOME directory

..\MYAPPS\README relative to a directory inside of the GREGG
directory
LabVIEW Code Interface Reference Manual 5-14 © National Instruments Corporation

Chapter 5 Manager Overview

lon.
al
ath
ng

 the
ath

ts

.
nts

ty
On the Macintosh, you separate names in a path with the colon (:)
character. If the path is an absolute path, you begin the specification
with the name of the volume containing the file. If an absolute path
consists of only one name (it specifies a volume), it must end with a co
If the path is a relative path, it begins with a colon. This colon is option
for a relative path consisting of only one name. You can indicate the p
should move up a level using two colons in a row (::). Thus, the followi
path specifies a file README relative to the top level of the file system, on
a drive named Hard Drive .

Hard Drive:Home:Gregg:MyApps:README

Two relative paths to the same file are as follows.

:Gregg:MyApps:README relative to the Home directory

::MyApps:README relative to a directory inside of the
Gregg directory

Empty Path Specifications
In LabVIEW you can define a path with no names, called an empty path.
An empty path is either absolute or relative. The empty absolute path is
highest point you can specify in the file hierarchy. The empty relative p
is a path relative to an arbitrary location in the file system to itself.

On a UNIX system, a slash (/) represents the empty absolute path.
The slash specifies the root of the file hierarchy. A period (.) represen
the empty relative path.

On the PC, you represent the empty absolute path as an empty string
It specifies the set of all volumes on the system. A period (.) represe
the empty relative path.

On the Macintosh, the empty absolute path is represented as an emp
string. It specifies the set of all volumes on the system. A colon (:)
represents the empty relative path.
© National Instruments Corporation 5-15 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

r

ntly
e

rs.
pen
e

the

s.
LabVIEW Path Specification
In LabVIEW, you specify a path using a special LabVIEW data type,
represented as Path . The exact structure of the Path data type is private to
the file manager. You create and manipulate the Path data type using file
manager routines.

A Path is a dynamic data structure. Just as you use memory manage
routines to allocate and deallocate handles and pointers, you use file
manager routines to create and deallocate Path s. Just as with handles,
declaring a Path variable does not actually create a Path . Before you
can use the Path to manipulate a file, you must dynamically allocate
thePath using file manager routines. When you are finished using the
Path variable, you should release the Path using file manager routines.

In addition to providing routines for the creation and elimination of Path s,
the file manager provides routines for comparing Path s, duplicating
Path s, determining characteristics of Path s, and converting Path s to
and from other formats, such as the platform-specific format for the
system on which LabVIEW is running.

File Descriptors
When you open a file, LabVIEW returns a file descriptor associated
with the file. A file descriptor is a data type LabVIEW uses to identify
open files. All operations performed on an open file use the file
descriptor to identify the file.

A file descriptor is valid only while the file is open. If you close the file,
the file descriptor is no longer associated with the file. If you subseque
open the file, the new file descriptor will most likely be different from th
file descriptor LabVIEW used previously.

File Refnums
In the file manager, LabVIEW accesses open files using file descripto
On the front panel and block diagram, however, LabVIEW accesses o
files through file refnums. A file refnum contains a file descriptor for us
by the file manager, and additional information used by LabVIEW.

LabVIEW specifies file refnums using the LVRefNum data type, the
exact structure of which is private to the file manager. If you want to
pass references to open files into or out of a CIN, use the functions in
File Refnums, Manipulating topic of the Online Reference to convert file
refnums to file descriptors, and to convert file descriptors to file refnum
LabVIEW Code Interface Reference Manual 5-16 © National Instruments Corporation

Chapter 5 Manager Overview
Support Manager
The support manager is a collection of constants, macros, basic data
types, and functions that perform operations on strings and numbers.
The support manager also has functions for determining the current time
in a variety of formats.

Note This section gives only a brief overview of the support manager. For descriptions
of specific support manager functions, see the Support Manager section of the
LabVIEW Online Reference, available by selecting Help»Online Reference.

The support manager’s string functions contain much of the functionality
of the string libraries supplied with standard C compilers, such as string
concatenation and formatting. You can use variations of many of these
functions with LabVIEW strings (4-byte length field followed by data,
generally stored in a handle), Pascal strings (1-byte length field followed
by data), and C strings (data terminated by a null character).

With the utility functions you can sort and search on arbitrary data types,
using quicksort and binary search algorithms.

The support manager contains transcendental functions for many complex
and extended floating-point operations.

Certain routines specify time as a data structure with the following form.

typ edef struct {

int 32 sec; / * 0:59 */

int 32 min; / * 0:59 */

int 32 hour ; /* 0:23 */

int 32 mday; /* day of the m onth, 1:31 */

int 32 mon; / * month of the year, 1:12 */

int 32 year ; /* year, 1904:2 040 */

int 32 wday; /* day o f the week , 1:7 for S un:Sat */

int 32 yday ; /* day o f year (jul i an date) , 1:366 */

int 32 isds t ;/* 1 if daylig ht savings time * /

} D ateRec;
© National Instruments Corporation 5-17 LabVIEW Code Interface Reference Manual

© National Instruments Corporation A-1 LabVIEW Code Interface Reference Manual

A
CIN Common Questions

This appendix answers some of the questions commonly asked by
LabVIEW CIN users.

What compilers can be used to write CINs for LabVIEW?

(Microsoft Windows 3.1, Windows 95, and Windows NT) You can use
the Watcom C/386 compiler, version 9.0 or later, to write CINs
for LabVIEW for Windows 3.1. Other compilers for Windows 3.1
(including the Microsoft C compiler) do not generate the proper
code for LabVIEW to operate as a 32-bit application. For a compiler
to work with LabVIEW, it must generate a file in the .REX format
(a 32-bit Phar Lap relocatable executable).

LabVIEW for Windows 95/NT supports additional compilers, including
Microsoft Visual C++ and Symantec C.

(Macintosh) You can use the following compilers to compile your CIN
source code: THINK C, version 7, for 68K (from Symantec Corporation of
Cupertino, CA); Symantec C++, version 8, for PowerPC (from Symantec
Corporation of Cupertino, CA); Metrowerks CodeWarrior for 68K
(from Metrowerks Corporation of Austin, TX); Metrowerks CodeWarrior
for Power Macintosh (from Metrowerks Corporation of Austin, TX);
Macintosh Programmer’s Workshop (MPW) for 68K and PowerPC
(from Apple Computer, Inc. of Cupertino, CA).

(Sun) You can use the Sun ANSI-compatible compiler and the gcc
compiler. The only officially supported compiler is the ANSI C compiler,
also known as the unbundled C compiler or SPARCompiler C, which
can be purchased from Sun. On Solaris 1.x machines, this compiler is
commonly referred to as acc (ANSI C compiler); on Solaris 2.x
machines, the compiler is called cc . The Gnu C compiler (gcc) is also
ANSI-compatible and can be used to create CINs for LabVIEW for Sun.
The only known limitation of the gcc compiler is it does not support
extended-precision floating point numbers under Solaris 1.x. Source
code for the gcc compiler is available for both Solaris 1.x and 2.x
through anonymous ftp to prep.ai.mit.edu.

Appendix A CIN Common Questions

LabVIEW Code Interface Reference Manual A-2 © National Instruments Corporation

SPARCstations with Solaris 1.x come with the bundled C compiler (cc)
that is not ANSI-compliant. Because the cc compiler requires substantial
modification to the header files included with LabVIEW, National
Instruments does not recommend using this compiler for CIN development.

Please note LabVIEW for Solaris 1.x does not accept object files created
with the -g debugging flag turned on during compilation.

(HP and Concurrent) You can use the vendor-supplied compilers on
these platforms.

My VI, which contains a CIN, crashes LabVIEW or gives a memory.c
error.

In almost all cases this indicates an error in the C code of the CIN.
Make sure the CIN code properly allocates or deallocates memory as
necessary. See the section entitled How LabVIEW Passes Variably Sized
Data to CINs in Chapter 2, CIN Parameter Passing, of this manual for
further details and examples.

How do I debug my CIN?

You have several debugging options, depending upon the platform you use.
The following list gives descriptions of some of the available methods.

• Use the DbgPrintf function, which creates a debugging window.
Although the position and size of the window cannot be controlled,
information can be posted to the window as the CIN code executes.
Notice the window does not contain a scrollbar. DbgPrintf is
described in the section entitled Debugging External Code in
Chapter 1, CIN Overview, of this manual.

• If you are using a Macintosh and have Macsbug , you can use the
Debugger and DebugStr statements to set breakpoints in the code.

• If you suspect your CIN is corrupting memory, use
DSHeapCheck(FALSE) to test for integrity. Observe the heap integrity
when you enter and again when you exit the CIN code to determine if
your code is corrupting the heap.

• Use the File Manager functions to write your debugging information
to a file. If you are observing this file while the CIN is running, do not
forget to flush the file before the information gets to the disk.

• If the VI containing the CIN executes without crashing, but you do
not have an external window and decide not to use DbgPrintf , then
a) determine what information is pertinent to your problem, and
b) return the information from one of the parameters of the CIN to
the block diagram of the VI.

Appendix A CIN Common Questions

© National Instruments Corporation A-3 LabVIEW Code Interface Reference Manual

Is there any sort of scanf function in the LabVIEW
manager routines?

No. National Instruments is investigating this functionality for a future
version of LabVIEW. CINs with LabVIEW for Sun can call the standard
scanf and related functions.

I can’t seem to link to any of the globals mentioned in the LabVIEW
Code Interface Reference Manual.

Examples of these globals include: decimalPt , CrgRtnChar ,
LnFeedChar , EOLChar, TabChar , EmptyStrChar , SInfinity ,
SNegInfinity , DInfinity , DNegInfinity , EMaxW, EMaxL,
EInfinity , ENegInfinity , DPi , DHalfPi , DThreeHalvesPi ,
DTwoPi , DRad2Deg, DTwo, DNan, EPi , EHalfPi , ETwoPi , EE, Eln10 ,
Eln2 , Elog10e , ELog2e , EHalf , EOne, ETwo, ETen, EZero , ERecipPi ,
ERecipE , EPlanck , EElemChg, ESpeedLt , EGravity , EAvgdro ,
ERydbrg , EMlrGas , ELnOfPi , ELogOfE , ELnOfTwo, and ENan.

Although mentioned in the documentation, these globals are not exported
for use in CINs. To get these values into your CIN code, pass them in as
parameters to the CIN.

Can LabVIEW be used to call a DLL in Windows?

Yes. The Call Library Function calls a DLL function directly. The function
is located in the Advanced palette of the Functions palette. Refer to
Chapter 13 of the LabVIEW Function and VI Reference Manual for more
details on this feature.

I get an error linking to a function when I build my CIN using the
Windows platform.

The Watcom linker usually does not allow you to link with the Watcom
library function modules when making a stand-alone module. If it does
allow you to link, the code should work properly. Unfortunately, there is no
clearly defined way to determine which functions will link and which will
not; it is trial and error.

If this error occurs, the only way to work through the problem is to write a
DLL that calls the library functions.

Why do I get garbage back from math functions such as atan2 , pow,
ceil , floor , ldexp , frexp , modf , and fmod when using MPW C?

Include "Math.h" at the top of your .c file.

Appendix A CIN Common Questions

LabVIEW Code Interface Reference Manual A-4 © National Instruments Corporation

Why can't I link to the math functions (sin, cos, and so on) when
using THINK C?

Find the math.c and error.c functions that came with THINK C and
include them in the project. Be sure to also include "Math.h" in the .c file.
Then enable the 68881 options under THINK C preferences.

© National Instruments Corporation B-1 LabVIEW Code Interface
B

ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use
u can

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
Reference Manual

 wide
t

l at the
 we can

al
act
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678
LabVIEW Code Interface Reference Manual B-2 © National Instruments Corporation

nd use
orm

,

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) ______________________________________

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed ___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

ducts.

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: LabVIEW™ Code Interface Reference Manual

Edition Date: January 1998

Part Number: 320539D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

Glossary
ting

 data.

d
e for
 of
Prefix Meanings Value

m- milli- 10–3

µ- micro- 10– 6

n- nano- 10–9

Numbers/Symbols

1D One-dimensional.

2D Two-dimensional.

A

ANSI American National Standards Institute.

application zone See AZ.

array An ordered, indexed set of data elements of the same type.

asynchronous execution Mode in which multiple processes share processor time, one execu
while the others, for example, wait for interrupts, as while performing
device I/O or waiting for a clock tick.

AZ (application zone) Memory allocation section that holds all data in a VI except execution

B

block diagram Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram, which consists of executable icons calle
nodes and wires that carry data between the nodes, is the source cod
the virtual instrument. The block diagram resides in the block diagram
the VI.
© National Instruments Corporation G-1 LabVIEW Code Interface Reference Manual

Glossary

t
ches,

nt by

en

sed in

y one
EN

l,

rces to

ry.
Boolean controls and
indicators

Front panel objects used to manipulate and display or input and outpu
Boolean (True or False) data. Several styles are available, such as swit
buttons and LEDs.

breakpoint Mode that halts execution when a subVI is called. You set a breakpoi
clicking on the toolbar and then on a node.

broken VI VI that cannot be compiled or run; signified by a run button with a brok
arrow.

Bundle node Function that creates clusters from various types of elements.

C

C string (CStr) A series of zero or more unsigned characters, terminated by a zero, u
the C programming language.

Case Structure Conditional branching control structure, which executes one and onl
of its subdiagrams based on its input. It is the combination of the IF TH
ELSE and CASE statements in control flow languages.

cast To change the type descriptor of a data element without altering the
memory image of the data.

chart See scope chart, strip chart, and sweep chart.

CIN source code Original, uncompiled text code. See object code.

cluster A set of ordered, unindexed data elements of any data type including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

Code Interface Node Special block diagram node through which you can link conventiona
text-based code to a VI.

code resource Resource containing executable machine code. You link code resou
LabVIEW through a CIN.

compile Process that converts high-level code to machine-executable code.
LabVIEW automatically compiles VIs before they run for the first time
after creation or alteration.

concatenated Pascal
string (CPStr)

A list of Pascal-type strings concatenated into a single block of memo
LabVIEW Code Interface Reference Manual G-2 © National Instruments Corporation

Glossary

ls,

g
.

not

uce

tion.

le,
connector Part of the VI or function node containing its input and output termina
through which data passes to and from the node.

control Front panel object for entering data to a VI interactively or to a subVI
programmatically.

control flow Programming system in which the sequential order of instructions
determines execution order. Most conventional text-based programmin
languages, such as C, Pascal, and BASIC, are control flow languages

conversion Changing the type of a data element.

CPStr See concatenated Pascal string.

D

data acquisition Process of acquiring data, typically from A/D or digital input plug-in
boards.

data dependency Condition in a dataflow programming language in which a node can
execute until it receives data from another node. See also artificial data
dependency.

data flow Programming system consisting of executable nodes in which nodes
execute only when they have received all required input data and prod
output automatically when they have executed. LabVIEW is a dataflow
system.

data space zone See DS zone.

data type descriptor Code that identifies data types, used in data storage and representa

diagram window VI window containing the VI’s block diagram code.

dimension Size and structure attribute of an array.

DS (data space) zone Memory allocation section that holds VI execution data.

E

empty array Array that has zero elements, but has a defined data type. For examp
an array that has a numeric control in its data display window but has
no defined values for any element is an empty numeric array.
© National Instruments Corporation G-3 LabVIEW Code Interface Reference Manual

Glossary

of

ng it

ngthy

nd

ram
EOF End-of-file. Character offset of the end of file relative to the beginning
the file (the EOF is the size of the file).

executable A stand-alone piece of code that will run, or execute.

external routine See shared external routine.

F

flattened data Data of any type that has been converted to a string, usually for writi
to a file.

Formula Node Node that executes formulas you enter as text. Especially useful for le
formulas too cumbersome to build in block diagram form.

function Built-in execution element, comparable to an operator, function, or
statement in a conventional language.

G

G LabVIEW graphical programming language.

H

handle Pointer to a pointer to a block of memory; handles reference arrays a
strings. An array of strings is a handle to a block of memory containing
handles to strings.

I

icon Graphical representation of a node on a block diagram.

icon pane Region in the upper right-hand corner of the front panel and block diag
windows that displays the VI icon.

IEEE Institute of Electrical and Electronic Engineers.

indicator Front panel object that displays output.

Inf Digital display value for a floating point representation of infinity.
LabVIEW Code Interface Reference Manual G-4 © National Instruments Corporation

Glossary

 same

res,

g

ause

inplace Characteristic of an operation whose input and output data can use the
memory space.

L

LabVIEW string (LStr) The string data type used by LabVIEW block diagrams.

M

matrix Two-dimensional array.

MB Megabytes of memory.

MPW Macintosh Programmer’s Workshop.

MSB Most significant bit.

N

NaN Digital display value for a floating-point representation of not-a-number,
typically the result of an undefined operation, such as log(–1).

nodes Execution elements of a block diagram consisting of functions, structu
and subVIs.

O

object Generic term for any item on the front panel or block diagram, includin
controls, nodes, wires, and imported pictures.

object code Compiled version of source code. Object code is not stand-alone bec
you must load it into LabVIEW to run it.

P

Pascal string (PStr) A series of unsigned characters, with the value of the first character
indicating the length of the string. Used in the Pascal programming
language.
© National Instruments Corporation G-5 LabVIEW Code Interface Reference Manual

Glossary

ion,

e

to that

subject

rallel

.

igned

value
licitly
pointer Variable containing an address. Commonly this address refers to a
dynamically-allocated block of memory.

polymorphism Ability of a node to automatically adjust to data of different representat
type, or structure.

pop up To call up a special menu by clicking on an object with the right mous
button (Windows, Sun and HP-UX) or holding down the <command> key
while clicking (Macintosh).

pop-up menus Menus accessed by popping up on an object. Menu options pertain
object specifically.

portable Able to compile on any platform that supports LabVIEW.

private data structures Data structures whose exact format is not described and is usually
to change.

R

RAM Random Access Memory.

reentrant execution Mode in which calls to multiple instances of a subVI can execute in pa
with distinct and separate data storage.

reference See pointer.

relocatable Able to be moved by the memory manager to a new memory location

representation Subtype of the numeric data type, of which there are signed and uns
byte, word, and long integers, as well as single-, double-, and
extended-precision floating-point numbers both real and complex.

S

scalar Number capable of being represented by a point on a scale. A single
as opposed to an array. Scalar Booleans, strings and clusters are exp
singular instances of their respective data types.

shared external routine Subroutine that can be shared by several CIN code resources.
LabVIEW Code Interface Reference Manual G-6 © National Instruments Corporation

Glossary

e.

I
sink terminal Terminal that absorbs data. Also called a destination terminal.

source code Original, uncompiled text code.

source terminal Terminal that emits data.

subVI VI used in the block diagram of another VI; comparable to a subroutin

T

terminal Object or region on a node through which data passes.

top-level VI VI at the top of the VI hierarchy. This term is used to distinguish the V
from its subVIs.

type descriptor See data type descriptor.

V

vector One-dimensional array.

virtual instrument (VI) LabVIEW program; so called because it models the appearance of a
physical instrument.

W

wire Data path between nodes.
© National Instruments Corporation G-7 LabVIEW Code Interface Reference Manual

	Code Interface Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 CIN Overview
	Introduction
	Classes of External Code
	Supported Languages
	Macintosh
	Microsoft Windows 3.1
	Microsoft Windows 95 and Windows NT
	Solaris
	HP-UX and Concurrent

	Steps for Creating a CIN
	Place the CIN on a Block Diagram
	Add Input and Output Terminals to the CIN
	Input-Output Terminals
	Output-Only Terminals

	Wire the Inputs and Outputs to the CIN
	Create .c File
	Special Macintosh Considerations

	Compile the CIN Source Code
	Macintosh
	Microsoft Windows 3.x
	Microsoft Windows 95 and Windows NT
	Solaris 1.x
	Solaris 2.x
	HP-UX and Concurrent PowerMAX
	Unbundled Sun ANSI C Compiler, HP-UX C/ANSI C�Comp...

	Load the CIN Object Code

	LabVIEW Manager Routines
	Online Reference
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Debugging CINs Under Windows 95/NT
	Debugging CINs Under Sun or Solaris
	Debugging CINs Under HP-UX

	Chapter 2 CIN Parameter Passing
	Introduction
	CIN .c File
	How LabVIEW Passes Fixed Sized Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Creating a CIN That Multiplies Two Numbers
	Comparing Two Numbers, Producing a Boolean Scalar

	How LabVIEW Passes Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths (Path)
	Clusters Containing Variably Sized Data

	Resizing Arrays and Strings
	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional...
	Working with Clusters

	Chapter 3 CIN Advanced Topics
	CIN Routines
	Data Spaces and Code Resources
	CIN Routines: The Basic Case
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN in a Single VI...
	Multiple Reference to the same CIN in different VI...
	Single Threaded Operating Systems
	Multithreaded Operating Systems

	Code Globals and CIN Data Space Globals
	Examples

	Calling a Windows 95 or Windows�NT�Dynamic�Link�Li...
	Calling a Windows 3.1 Dynamic Link Library
	Calling a 16-Bit DLL
	1. Load the DLL
	2. Get the address of the desired function
	3. Describe the function
	4. Call the function

	Example: A CIN that Displays a Dialog Box
	The DLL
	The CIN Code
	Compiling the CIN
	Optimization

	Chapter 4 External Subroutines
	Introduction
	Creating Shared External Subroutines
	External Subroutines
	Macintosh
	Microsoft Windows 3.1, Windows 95, and Windows�NT
	Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent�Po...

	Calling Code
	Macintosh
	Microsoft Windows 3.1, Windows�95,�and�Windows�NT
	Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent�Po...
	External Subroutine Example
	Compiling the External Subroutine

	Calling Code Example
	Compiling the Calling Code

	Chapter 5 Manager Overview
	Introduction
	Basic Data Types
	Scalar Data Types
	Booleans
	Numerics

	char Data Type
	Dynamic Data Types
	Arrays
	Strings
	Paths (Path)

	Memory-Related Types
	Constants

	Memory Manager
	Memory Allocation
	Static Memory Allocation
	Dynamic Memory Allocation: Pointers and Handles

	Memory Zones
	Using Pointers and Handles
	Simple Example

	Reference to the Memory Manager
	Memory Manager Data Structures

	File Manager
	Identifying Files and Directories
	Path Specifications
	Conventional Path Specifications
	Empty Path Specifications
	LabVIEW Path Specification

	File Descriptors
	File Refnums

	Support Manager

	 Appendix A CIN Common Questions
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

	Figures
	Figure 3-1. Data Storage Spaces for One CIN, Simpl...
	Figure 3-2. Three CINs Referencing the Same Code R...
	Figure 3-3. Three VIs Referencing a Reentrant VI C...

	Tables
	Table 1-1. Functions with Parameters Needing Pre-a...

