Code Interface Reference
Manual

‘i NATIONAL January 1998 Edition
INSTRUMENTS
’ The Software is the Instrument™ Part Number 320539D-01

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1992, 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.
A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.
National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.
EXCEPT AS SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY ORFITNESSFORA PARTICULAR PURPOSE CUSTOMER S
RIGHT TO RECOVERDAMAGES CAUSED BY FAULT OR NEGLIGENCEON THE PART OF NATIONAL INSTRUMENTSSHALL BE
LIMITED TO THE AMOUNT THERETOFOREPAID BY THE CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIALDAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of National Instruments will apply
regardless of the form of action, whether in contract or tort, including negligence. Any action against National
Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for
any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments
installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or
negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable
control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks

LabVIEW™, natinst.com', National Instruments are trademarks of National Instruments Corporation.
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Contents

About This Manual
Organization of ThisS Manual...........cccuuuiiiiiirii e Xi
Conventions Used in This Manual............cccuuviiiiiiiee e e e Xii
(R T=1F= 1= To I Lo Yol ¥ {a 1T o] = L1 o] o SRR Xiii
(O101S (o] 4o =T @ @] 1 a1 ¢ 1¥] T o1 1 o o SRS Xiv
Chapter 1
CIN Overview
[a1 foTo [UTox 1 o] o FS OO UPPUPR PR 1-1...
Classes Of EXtErNal COOE........coiiiiiiiiie et 1-2
YU o] ole] g (=To [=T g To [0 T= Vo =SS TP PRPRPPR 1-3
Y= Yod T (1= o TP 1-3
MiICrosoft WINAOWS 3.1... ..ot 1-4
Microsoft Windows 95 and Windows NTcccoeeeeieiiiiiiiiieeeeeeeene, 1-4
Y] F= 11T O UTORRN 1-4
HP-UX and CONCUITENL.......ciiiiiieiieeeeeeeece e 1-5
Steps fOr Creating @ CIN e e 1-5
Place the CIN on a BIOCK DIiagramcueeeeeiiiiieeiiiieee st 1-6
Add Input and Output Terminals to the CIN.........c.cceeiiiiiieiiiii e 1-6
INPUE-OULPUL TEIMINAIS.eeiiiiiiiiie e 1-7
Output-ONnly TermMINAIS.......ccoiiiiiiiieiiiiiee e 1-8
Wire the Inputs and Outputs t0 the CIN.........cceiiiiiiiiiie e 1-8
Create .C FilB. ittt e e aees 1-9
Special Macintosh Considerations...........ccoccveeiriiieeee e 1-11
Compile the CIN SOUICE COUEuuiiiiiiiiiie ittt 1-12
Y=o [] 01 o R 1-13
THINK C for 68K (Version 7)cccoviievieiiiiiiee i 1-13
Symantec C++ 8.0 for Power Macintosh.............ccccccceeene 1-16
Metrowerks CodeWarrior for 68Kcceeeeiiiiiiiiiiiiinnn, 1-18
Metrowerks CodeWarrior for Power Macintosh.................. 1-20
Macintosh Programmer’s Workshop for 68K
and Power Macintoshcccoooevivviiiieeieee e, 1-22
MiICroSOft WINAOWS 3K ..cooeviiiiiieeeeeee et 1-26
Watcom C COMPIIETccuviiiiiiiiiiii e 1-26
Microsoft Windows 95 and WIiNndows NTccoceveiiiiiiiiiiiiinieeeeeeeee, 1-28
Visual C++ Command LiN€...........cuveveeiiiiviiiieieeeeeeiieee e, 1-28
Visual CH+ IDE ... 1-30
SYMANTEC C oo 1-30

© National Instruments Corporation v LabVIEW Code Interface Reference Manual

Contents

Watcom C Compiler for Windows 3.1 under

Windows 95 or Windows NT.........oooiiiiiiienieeniiiiiiee 1-31
o] b= 1S3 b G PRI 1-31
SOIAIIS 2X . 1-31
HP-UX and Concurrent POWEIMAXcccuaiiaaiiiiiiiiiiieeiea e 1-32
Unbundled Sun ANSI C Compiler, HP-UX C/ANSI C Compiler,
and Concurrent C COMPIIEToiiiiiie e 1-32
Load the CIN ODJECE COUE.......ccoiiiiieeeiiiiee ettt 1-33
LabVIEW Manager ROULINEScoiuiiiiiiiiiie ettt ettt 1-34
ONIINE RETEIEINCE.eiiiiiiieee et 1-34
POINtErs as Parameterscoo ittt 1-34
Debugging EXLErNal COUEcccoiiiiiiiiiiiiie ettt 1-36
D)o Ts | o] 011 P PO P T PPPPPR TN 1-37
Debugging CINs Under Windows 95/NTcccoiiiiiiiiiniiiieiiee e 1-37
Debugging CINS Under SUN OF SOIArS.........uvieiiiiiiiiiieeee e 1-39
Debugging CINS Under HP-UXccuoiiiiiiiiiice et 1-39
Chapter 2
CIN Parameter Passing
INEFOTUCTION ...t e e e e e e e et e e e e e e e e e e e 2:1.....
CIN L€ FIB ettt ettt e et e e e e e e e sabe e e 2:1...
How LabVIEW Passes Fixed Sized Data to CINS ... 2-2
SCAIAN NUMIBTICS ...ttt e e et e e e e e e e e e e en e e eeaeas 2-2
SCalar BOOIEANSttt e e e et e e e e e e 2-2
RETNUMS <.ttt e e e e e e e e bene e 2-3
ClUSLEIS Of SCAIAIS.....eeeeiiiiiie e e e e e 2-3
Return Value for CIN ROULINEScooiiiiiiiiii ettt e e e e 2-3
EXamPpPIes With SCAIAIS.ciuiiiiiiiii e 2-4
Creating a CIN That Multiplies TWo NUMDEISccoeiviiiiieiiiiiie e 2-4
Comparing Two Numbers, Producing a Boolean Scalar..............cccccvvvveeeenennnn. 2-7
How LabVIEW Passes Variably Sized Data to CINScoveiiiiiieiiiiiiee i 2-8
AlIgNMeENt CONSIAEIALIONS.ciiiiiiiiiie ettt e e 2-9
AITAYS BN SINGS . .eci ittt e e e e sb e e e s s sneeeeeaees 2-10
PathS (Path) ..ccooiieeieie e 2-10
Clusters Containing Variably Sized Datacoovieiieiiiiiieeieeeeee e 2-10
ReSIZING Arrays @nd STHNGScoooiuiiiieeiiiiie et 2-11
SEICINAITAYSIZE ...ttt e e st et be e e e s abbneee s 2...2-1
NUMETICAITAYRESIZEceiiiitieie ettt e e rab e e ab e e e nnnneee s 2-13
Examples with Variably Sized Data............ccuueeiiiiiiiiiiiiiie e 2-15
Concatenating TWO SENGSueeiiiiiiieie ittt sreeee e 2-15
Computing the Cross Product of Two Two-Dimensional Arrays..................... 2-17
WOTKIiNG With CIUSTETSeiiiiiiiiiiii e 2-20

LabVIEW Code Interface Reference Manual vi © National Instruments Corporation

Contents

Chapter 3
CIN Advanced Topics
CIN ROULINES ...ttt e e et e e e e e e e e e s s bb bbb aeeeaeaaeeeaan 3:-1.......
Data Spaces and Code RESOUICES..........uuuuiiiiiiiieeai et 3-1
CIN RoULINES: The BASIC CASE ..cciiiiiiiiiiiiiiiiiieie ettt e e 3-3
LOBAING 8 VI et e e 3-3
UNIOAAING @ V..o 3-4
Loading a New Resource into the CINcccccooiiiiiiiiiiiiieeeees 3-4
ComMPIlING 8 V..o 3-4
RUNNING 8 V.o 3-5
SAVING @ Vit 3-5
ADOIING 8 V1 .o 3-5
Multiple References to the Same CIN ina Single VI ..., 3-5
Multiple Reference to the same CIN in different VISccocvieeeiiiiiiiicninnnn. 3-6
Single Threaded Operating SYStEMSccooiiiiiiieiiiiiiieeniee e 3-7
Multithreaded Operating SYSIEMS...........eviiiiiiiiiiiiieeeeee e 3-8
Code Globals and CIN Data Space GIlobals............ccooeeriiiiiiiiiiiiieeeeieee e 3-8
EXAMPIES ... 3-9
Using Code GIobals...........coiiiiiiiiiiiiiiieeeeee e 3-10
Using CIN Data Space Globalscccccovniiiiiiniiiiiennnn. 3-11
Calling a Windows 95 or Windows NT Dynamic Link Libraryccccooceeiiiiiieenennns 3-12
Calling a Windows 3.1 Dynamic Link LIDraryccccoiiiiiiiieceiiece e 3-12
Calling @ 16-Bit DLL....coooiiiiiiieiiiiee e 3-13
1. L0AA the DLL..ciiiiiiiiiiieiiite et 3-13
2. Get the address of the desired function.............ccccceeiiiiiiiiiiecns 3-14
3. Describe the fuNCHIONcooiiiiii e 3-14
4. Call the TUNCHIONeeiiiiiiie e 3-15
Example: A CIN that Displays a Dialog BOX.........cc.cueeiriiiieiiiiiiiee e 3-15
THE DLLttttiiiiiiie et e e e e e e e e 3-15
THE CIN COUE ...t 3-17
Compiling the CIN.......eiiii e 3-20
OPLIMIZALION......eeeiii it 3-20
Chapter 4
External Subroutines
INEFOAUCTION ...ttt e e e n e e e 4-1....
Creating Shared External SUDIOULINEScooiiiiiiiiiiiicie e e e 4-2
EXternal SUDIOULINEScooiiiiiiic et 4-3
MACINTOSN ..ot 4-3
Microsoft Windows 3.1, Windows 95, and Windows NT................. 4-3
Solaris 1x, Solaris 2, HP-UX, and Concurrent PowerMAX 4-4

© National Instruments Corporation vii LabVIEW Code Interface Reference Manual

Contents

CallING COUB.....eeeieieiiee ettt et e e e e e e s e e bbb s e eaaaaaa e 4-4......
Y= Tor T] (0 1< o [T URUURT 4-5
Microsoft Windows 3.1, Windows 95, and Windows NT 4-6
Solaris 1x, Solaris 2, HP-UX, and Concurrent PowerMAX........... 4-6
External Subrouting EXample ... 4-7
Compiling the External Subroutine ... 4-7
MACINTOSN ..o 4-7
Microsoft WINdOWS 3.1......ccooiiiiiiiiiieiiee e 4-8
Microsoft Windows 95 and Windows NTcccccvvinnneen. 4-9
Solaris 1x, Solaris 2, HP-UX, and
Concurrent POWEIMAX ..o 4-9
Calling Code EXAMPIEccoouiiiiiiiiiiieee ettt 4-10
Compiling the Calling Codeoeviiiiiiiiiiiee e 4-11
MACINTOSN ..o 4-11
Microsoft WIndoWS 3.1.......ccoooiiiiieiiiiiie e 4-12
Microsoft Windows 95 and Windows NTccccccvninneeen. 4-13
Solaris 1x, Solaris 2, HP-UX, and
Concurrent POWEIMAX ... 4-13
Chapter 5
Manager Overview
INEFOTUCTION ...t e e e e e e e et e e e e e e e e e e e 5:1.....
2 F Y (ol D= L= T Y o 1= TR PRRRURR 2. 5-
SCAIAN DALA TYPES - .ueetteieieiiaee ettt e e e e e e e e ettt eeaaa e e s e e e aanbbsreeeeaaaeeeaaaaannneees 5-2
BOOIBANS ...t a e 5-2
N TU] =T 4ol RO PRPRTR 5-3
ComplexX NUMDEIS. ... 5-4
(o g T= Tl D= 1= T Y o= TS PPPRRPT 5-4
DYNamMIC DAL TYPES .. .eeieiitiieieiiitie ettt ettt ettt e e e 5-4
ATTAYS oo 5-4
SIINGS ¢ttt 5-5
C-Style StriNgS (CSHI) .ot 5-5
Pascal-Style Strings (PStr)coovieiieiniiieeeeiee e 5-5
LabVIEW Strings (LSTr) ..ocoovveeeeeiiiiiee et 5-5
Concatenated Pascal String (CPStr)c.cccvveeiiiiieeeiniiieeen, 5-6
Paths (Path).......c.veeiiiiiiee e 5-6
MeMOry-Related TYPES.uiiiiiiiiiie ittt 5-6
(O70] 05121 | KT PP PP PR 5-7

LabVIEW Code Interface Reference Manual viii © National Instruments Corporation

Contents

MEMOTY IMBINAGET ...ceeieiiitiiiitieet e r e e e e e e e e e e et e e et et et e eeaeeeeseeeeebebnbsba b e e e e e e e e e e e e e aeaaaas 5-7
MEMOIY AlIOCALION ...ceiiiiiiie it e e e e 5-7
Static Memory AllOCAtIONooiiiii e 5-7
Dynamic Memory Allocation: Pointers and Handles.......................... 5-8
IMEMIOTY ZONES. ...ttt e e e e e e e e e e e ee e e e et et e eaeeeeseeesbaenbannnaanns 5-9
Using Pointers and Handles.oooio e 5-9
SIMPIE EXAMPIE ... 5-10
Reference to the Memory Manager..........occuuviiiiiieiie i 5-12
Memory Manager Data StrUCtUIeS............eeevvivieiiiiiiiiieeeeee e 5-12
Fle IMBINAGET ...ttt e e e annnnan 5:12.....
Identifying Files and Dir€CONEScceiiiiiiiieiiiiie e 5-13
Path SPeCifiCatiONSoooiiiiiiiii e 5-13
Conventional Path Specifications ... 5-13
Empty Path SpecifiCations ... 5-15
LabVIEW Path Specificationcccccveiiiiiieiiiiieec e 5-16
FIle DESCIIPLIOIS .ottt nnnee s 5-16
File RENUMS e 5-16
SUPPOI MABNAGETccii ittt e e e e e e e e e s s e e e e e e e e s s 17...... 5-
Appendix A
CIN Common Questions
Appendix B
Customer Communication
Glossary
Figures
Figure 3-1. Data Storage Spaces for One CIN, Simple Case......ccccccceevviiiiiiiiiieennnnnn. 3-2
Figure 3-2. Three CINs Referencing the Same Code ReSOUICe.........ccccceeeeviiiuvrinnnnn. 3-6
Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN 3-7
Tables
Table 1-1. Functions with Parameters Needing Pre-allocated Memory................... 1-35

© National Instruments Corporation ix LabVIEW Code Interface Reference Manual

About This Manual

TheLabVIEW Code Interface Reference Manddcribes Code Interface
Nodes and external subroutines for users who need to use code written in
conventional programming languages. The manual includes information
about shared external subroutines, libraries of functions, memory and file
manipulation routines, and diagnostic routines. Additional information not
included in this manual is also available by seledfn¢jne Reference

from LabVIEW's Help menu.

Organization of This Manual

This manual is organized as follows:

e Chapter 1CIN Overviewintroduces the LabVIEW Code Interface
Node (CIN), a node that links external code written in a conventional
programming language to LabVIEW.

« Chapter 2CIN Parameter Passinglescribes the data structures that
LabVIEW uses when passing data to a CIN.

» Chapter 3CIN Advanced Topi¢govers several topics that are needed
only in advanced applications, including how to usecingnit
CINDispose , CINAbort , CINLoad , CINUnload , CINSave , and
CINProperties routines. The chapter also discusses how global
data works within CIN source code, and how users of Windows 3.1,
Windows 95, and Windows NT can call a DLL from a CIN.

« Chapter 4External Subroutineglescribes how to create and call
shared external subroutines from other external code modules.

e Chapter 5Manager Overviewgives an overview of the function
libraries, callednanagerswhich you can use in external code
modules. These include the memory manager, the file manager, and
the support manager. The chapter also introduces many of the basic
constants, data types, and globals contained in the LabVIEW libraries.

* Appendix A,CIN Common Questiopanswers some of the questions
commonly asked by LabVIEW CIN users.

» Appendix B,Customer Communicatipnontains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

© National Instruments Corporation Xi LabVIEW Code Interface Reference Manual

About This Manual

« TheGlossarycontains an alphabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

Conventions Used in This Manual

bold

italic

bold italic

monospace

monospace italic

<>

paths

The following conventions are used in this manual:

Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Bold italic text denotes an activity objective, note, caution, or warning.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

Italic text in this font denotes that you must enter the appropriate words or
values in the place of these items.

Angle brackets enclose the name of a key on the keyboard—for example,
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name—for
example, DBIO<3..0>.

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

LabVIEW Code Interface Reference Manual Xii © National Instruments Corporation

About This Manual

ﬁ This icon to the left of bold italicized text denotes a caution, which advises
you of precautions to take to avoid injury, data loss, or a system crash.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms
are listed in thé&lossary

Related Documentation

The following documents contain information that you might find helpful
as you read this manual:

* G Programming Reference Manual
 LabVIEW User Manual
* LabVIEW Function and VI Reference Manual

* LabVIEW Online Referenceavailable by selecting
Help»Online Reference

Sun users might also find the following document useful:
e Sun WorkshoCD-ROM, Sun Microsystems, Inc., U.S.A., 1997

Windows users might also find the following documents useful:

» Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

* Microsoft Windows Programmer’s Referenkticrosoft Corporation,
Redmond, WA, 1992-1995

* Win32 Programmer’s Referenddicrosoft Corporation,
Redmond, WA, 1992-1995

» Watcom C/C++ User’s Guid€D-ROM, Watcom Publications
Limited, Waterloo, Ontario, Canada, 1995; Help file: “The
Watcom C/C++ Compilers”

* Microsoft Visual C++ CD-ROM, Microsoft Corporation,
Redmond, WA, 1997

© National Instruments Corporation Xiii LabVIEW Code Interface Reference Manual

About This Manual

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in AppendigBstomer
Communicatiopat the end of this manual.

LabVIEW Code Interface Reference Manual Xiv © National Instruments Corporation

CIN Overview

This chapter introduces the LabVIEW Code Interface Node (CIN), a node
that links external code written in a conventional programming language
to LabVIEW.

Introduction

A CIN is a block diagram node associated with a section of source
code written in a conventional programming language. You compile the
source code first and link it to form executable code. LabVIEW calls the
executable code when the node executes, passing input data from the
block diagram to the executable code, and returning data from the
executable code to the block diagram.

The LabVIEW compiler can usually generate code fast enough for most
of your programming tasks. However, you can use CINs for tasks a
conventional language can accomplish more easily, such as tasks that are
time-critical or require a great deal of data manipulation. CINs are also
useful for tasks you cannot perform directly from the diagram, such as
calling system routines for which no corresponding LabVIEW functions
exist. CINs can also link existing code to LabVIEW, although you may
need to modify the code so it uses the correct LabVIEW data types.

CINs execute synchronously, which means LabVIEW cannot use the
execution thread used by the CIN for any other purpose. When a VI
executes, LabVIEW monitors menus and the keyboard. When running
multi-threaded, there is a separate thread for these tasks. When running
single-threaded, the VI returns to LabVIEW to allow it time to scan menus
and the keyboard, and run other Vls.

When CIN object code executes, it takes control of its execution thread.
If LabVIEW has only a single thread of control, then all of LabVIEW is
stopped until the CIN object code returns. On single-threaded operation
systems such as Macintosh and Windows 3.1, CINs even prevent other
applications from running. In multi-threaded operating systems such as
Windows 95/NT, only the execution thread running the CIN is locked up.
However, if there is only one execution thread, other VIs are prevented
from running.

© National Instruments Corporation 1-1 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

A VI executing a CIN can not be reset until the CIN completes—the
executing CIN object code cannot be interrupted by LabVIEW. Although
you can create VIs that use CINs and behave in a more asynchronous
fashion, be aware of this potential problem if you intend to write a CIN that
executes a long task and you need LabVIEW to multitask in the interim.

A CIN appears on the diagram as an icon with input and output terminals.
You associate this node with a section of code you want LabVIEW to call.

When itis time for the node to execute, LabVIEW calls the code associated
with the CIN, passing it the specified data.

In some cases, you may want a CIN to perform additional actions at
certain execution times. For example, you might want to initialize data
structures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines LabVIEW calls at predefined times or when the node executes.
Specifically, LabVIEW calls certain routines when the VI containing the
CIN is loaded, saved, closed, aborted, or compiled. You generally use
these routines in CINs that perform an on-going action, such as
accumulating results from call to call, so you can allocate, initialize,
and deallocate resources at the correct time. Most CINs perform a
specific action at run time only.

After you have written your first CIN as described in this manual, writing
new CINs is relatively easy. The work involved in writing new CINs is
mostly in coding the algorithm, because the interface to LabVIEW remains
the same, no matter what the development system.

Classes of External Code

LabVIEW supports code resources for CINs and external subroutines.

An external subroutine is a section of code you can call from other external
code. If you write multiple CINs that call the same subroutine, you may
want to make the shared subroutine an external subroutine. The code for
an external subroutine is a separate file; when LabVIEW loads a section

of external code that references an external subroutine, it also loads the
appropriate external subroutine into memory. Using an external subroutine
makes each section of calling code smaller, because the external subroutine
does not require embedded code. Further, you need to make changes only
once if you want to modify the subroutine.

Note LabVIEW does not support code resources for external subroutines on the Power
Macintosh. If you are working with a Power Macintosh, you should use shared
libraries instead of external subroutines. For information on building shared
libraries, consult your development environment documentation.

LabVIEW Code Interface Reference Manual 1-2 © National Instruments Corporation

Chapter 1 CIN Overview

Although LabVIEW for Solaris 2.x, HP-UX, and Concurrent PowerMAX support
external routines, it is recommended you use UNIX shared libraries instead,
because they are a more standard library format.

Supported Languages

The interface for CINs and external subroutines supports a variety of
compilers, although not all compilers can create code in the correct
executable format.

External code must be compiled as a form of executable appropriate for a
specific platform. The code must be relocatable, because LabVIEW loads
external code into the same memory space as the main application.

Macintosh

LabVIEW for the Macintosh uses external code as a customized code
resource (for 68K) or shared library (for Power Macintosh) that is prepared
for LabVIEW using the separate utilitiegsbutil.app for THINK C

and Metrowerks CodeWarrior, ahdbutil.tool for the Macintosh
Programmer’s Workshop. These utilities are included with LabVIEW.

The LabVIEW utilities and object files are compatible with the three major
C development environments for the Power Macintosh:

e THINK C, version 7 for Macintosh and Symantec C++ version 8 for
Power Macintosh, from Symantec Corporation of Cupertino, CA

* Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, Texas

e Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

LabVIEW header files are compatible with these three environments.
Header files may need modification for other environments.

CINs compiled for the 68K Macintosh will not be recognized by LabVIEW
for the Power Macintosh, and vice versa.

LabVIEW does not currently work with fat binaries (a format including
multiple executables in one file, in this case both 68K and Power
Macintosh executables).

© National Instruments Corporation 1-3 LabVIEW Code Interface Reference Manual

Chapter 1

Note

CIN Overview

Microsoft Windows 3.1

LabVIEW for Windows supports external code compiled a&£x file

and prepared for LabVIEW using an application included with LabVIEW.
This application requiregos4gw.exe , which comes with Watcom C.
LabVIEW is a 32-bit, flat memory-model application, so you must
compile external code for a 32-bit memory model when you install the
Watcom C compiler.

Watcom C is the only LabVIEW-supported compiler that can create 32-bit
code of the correct format.

Microsoft Windows 95 and Windows NT

You can use CINs in LabVIEW for Windows 95/NT created with any of
the following compilers.

e The Microsoft Visual C++ compiler.
¢ Symantec C Compiler.

See theMicrosoft Windows 95 and Windows Nibsection of the
Compile the CIN Source Codection of this chapter for information
on how to create a CIN using these compilers.

e The Watcom C/386 compiler for Windows 3.1.

In most cases, you can use CINs created using the Watcom C compiler
for Windows 3.1 with LabVIEW for Windows 95/NT. See the

Microsoft Windows 3.gubsection of th€ompile the CIN Source
Codesection of this chapter for more information on using the
Watcom C compiler for Windows 3.1.

Under Windows 95 and Windows NT, do not call CINs created using the
Watcom C compiler that call DLLs and system functions or that access hardware
directly. The technique Watcom uses to call such code under Windows 3.1 does
not work under Windows 95 or Windows NT.

Solaris

LabVIEW for Sun supports external code compiled.aut format under
Solaris Ix and a shared library format under Solans Phese formats are
prepared for LabVIEW using a LabVIEW utility.

The unbundled Sun ANSI C compiler is the only compiler tested
thoroughly with LabVIEW. The header files are compatible with

the unbundled Sun ANSI C Compiler and may need modification for
other compilers.

LabVIEW Code Interface Reference Manual 1-4 © National Instruments Corporation

Chapter 1 CIN Overview

HP-UX and Concurrent

LabVIEW for HP-UX and Concurrent support external code compiled
as a shared library. This library is prepared for LabVIEW using a
LabVIEW utility.

The HP-UX C/ANSI C compiler and Concurrent C Compiler are the only
compilers tested thoroughly with LabVIEW.

Steps for Creating a CIN

You create a CIN by first describing in LabVIEW the data you want to
pass to the CIN. You then write the code for the CIN using one of the
supported programming languages. After you compile the code, you run
a utility that puts the compiled code into a format LabVIEW can use.
You then instruct LabVIEW to load the CIN.

If you execute the VI at this point, and the block diagram needs to execute
the CIN, LabVIEW calls the CIN object code and passes any data wired to
the CIN. If you save the VI after loading the code, LabVIEW saves the CIN
object code along with the VI so LabVIEW no longer needs the original
code to execute the CIN. You can update your CIN object code with new
versions at any time.

Theexamples directory contains eins directory that includes all of the
examples given in this manual. The names of the directories tinthe
directory correspond to the CIN name given in the examples.

The following steps explain how to create a CIN.

© National Instruments Corporation 1-5 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Place the CIN on a Block Diagram

Select the Code Interface Node function fromAlgancedpalette of the
Functions palette, as shown in the following illustration.

B+ Functions X |

Application Control
3

el

E=
k B e 3
| abc |
-
L HE 3
e i |
NEG r
e
ol P S
1T 1 .
lhaa il B} 5> Advanced |
Instr Likp » | —————————
: 'E.SH- Code Interface Hode

Bl ?3.%‘?3 .p
e ¢

Add Input and Qutput Terminals to the CIN

A CIN has terminals with which you can indicate which data passes to and
from a CIN. Initially, the CIN has one set of terminals, and you can pass a
single value to and from the CIN. You add additional terminals by resizing
the node or by selectingdd Parameter from the CIN terminal pop-up
menu. Both methods are shown in the following illustration.

You can resize the node to add parameters,

2
= =
=T
22
22

LabVIEW Code Interface Reference Manual 1-6 © National Instruments Corporation

Chapter 1 CIN Overview

or use the pop-up menu to add a parameter.

]
Show »
Description...

Replace [4

Add Parameter

Remove Parameter
Output Only

Load Code Resource...
Create .c File...

Each pair of terminals corresponds to a parameter LabVIEW passes to the
CIN. The two types of terminal pairs are input-output and output-only.

Input-Output Terminals

By default, a terminal pair is input-output; the left terminal is the input
terminal, and the right terminal is the output terminal. As an example,
consider a CIN that has a single terminal pair. Assume a 32-bit integer
control is wired to the input terminal, and a 32-bit integer indicator is
wired to the output terminal, as shown in the following illustration.

When the VI calls the CIN, the only argument LabVIEW passes to the CIN
object code is a pointer to the value of the 32-bit integer input. When the
CIN completes, LabVIEW then passes the value referenced by the pointer
to the 32-bit integer indicator. When you wire controls and indicators to the
input and the output terminals of a terminal pair, LabVIEW assumes the
CIN can modify the data passed. If another node on the block diagram
needs the input value, LabVIEW may have to copy the input data before
passing it to the CIN.

Now consider the same CIN, but with no indicator wired to the output
terminal, as shown in the following illustration.

If you do not wire an indicator to the output terminal of a terminal pair,
LabVIEW assumes the CIN will not modify the value you pass to it. If
another node on the block diagram uses the input data, LabVIEW does

© National Instruments Corporation 1-7 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

not copy the data. The source code should not modify the value passed into
the input terminal of a terminal pair if you do not wire the output terminal.

If the CIN does modify the input value, nodes connected to the input
terminal wire may receive the modified data.

Output-Only Terminals

If you use a terminal pair only to return a value, make it an output-only
terminal pair by selectin@utput Only from the terminal pair pop-up
menu. If a terminal pair is output-only, the input terminal is gray, as
shown in the following illustration.

For output-only terminals, LabVIEW creates storage space for a return
value and passes the value by reference to the CIN the same way it passes
values for input-output terminal pairs. If you do not wire a control to the

left terminal, LabVIEW determines the type of the output parameter by
checking the type of the indicator wired to the output terminal. This can

be ambiguous if you wire the output to two destinations that have different
data types. You can remove this ambiguity by wiring a control to the left
(input) terminal of the terminal pair as shown in the preceding figure. In
this case, output terminal takes on the same data type as the input terminal.
LabVIEW uses the input type only to determine the data type for the output
terminal; the CIN does not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, pop up on the terminal you
want to remove and chooBemove Terminalfrom the menu. LabVIEW
disconnects wires connected to the deleted terminal pair. Wires connected
to terminal pairs below the deleted pair remain attached to those terminals
and stretch to adjust to the terminals’ new positions.

Wire the Inputs and Outputs to the CIN

Connect wires to all the terminal pairs on the CIN to specify the data

you want to pass to the CIN, and the data you want to receive from the
CIN. The order of terminal pairs on the CIN corresponds to the order

in which parameters are passed to the code. Notice you can use any
LabVIEW data types as CIN parameters. Thus, you can pass arbitrarily
complex hierarchical data structures, such as arrays containing clusters
which may in turn contain other arrays or clusters to a CIN. See Chapter 2,
CIN Parameter Passindor a description of how LabVIEW passes
parameters of specific data types to CINs.

LabVIEW Code Interface Reference Manual 1-8 © National Instruments Corporation

Create .c File

Chapter 1 CIN Overview

If you selectCreate .c File...from the CIN pop-up menu, as shown in
the following illustration, LabVIEW creates.a file in the style of the
C programming language. The file describes the routines you must
write and the data types for parameters that pass to the CIN.

Show »
Description...
Replace »

Add Parameter
Remove Parameter
OQutput Only

Load Code Resource...
Create .c File...

For example, consider the following call to a CIN, which takes a 32-bit
integer as an input and returns a 32-bit integer as an output.

The following code excerpt is the initial file for this node. Eight routines
may be written for the CIN. TH&INRun routine is required—the others are
optional. If an optional routine is not present, a default routine is supplied
when the CIN is built.

These eight routines are discussed in detail in subsequent chapters. The
.c file is presented here to give you an idea of what LabVIEW creates at
this stage in building a CIN.

/*

* CIN source file

*/

#include "extcode.h"

CIN MgErr CINRun(int32 *num_in, int32 *num_out);

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

/* ENTER YOUR CODE HERE */
return nokErr;

}

© National Instruments Corporation 1-9 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

This.c file is a template in which you must write C code. Notice
extcode.h is automatically included; it is a file that defines basic data
types and a number of routines that can be used by CINs and external
subroutinesextcode.h defines some constants and types whose
definitions may conflict with the definitions of system header files.

The LabVIEWecintools directory also contains a filepsttype.h

that resolves these differences. This header file also includes many of
the common header files for a given platform.

Always use#include "extcode.h" at the beginning of your source
code. If your code needs to make system calls, als#insede
"hosttype.h" immediately afte#tinclude "extcode.h" , and then
include your system header filémsttype.n includes only a subset of
the.h files for a given operating system. If the file you need is not
included byhosttype.h , you can include it in the file for your CIN
just after you includéosttype.h

LabVIEW calls theCINRun routine when it is time for the node to
executeCINRun receives the input and output values as parameters. The
other routines@INLoad , CINSave , CINUnload , CINAbort , CINInit
CINDispose , andCINProperties) are housekeeping routines, called at
specific times to give you the opportunity to take care of specialized tasks
with your CIN. For instanceGINLoad is called when a Vl is first loaded.

If you need to accomplish some special task when your VI is first loaded,
put the code for that task in t#éNLoad routine. To do this, write your
CINLoad routine as follows:

CIN MgErr CINLoad(RsrcFile reserved) {
Unused (reserved);
/* ENTER YOUR CODE HERE */
return noErr;

}

In general, you only need to write tB&NRun routine. The other routines
are supplied for instances when you have special initialization needs, such
as when your CIN must maintain some information across calls, and you
want to preallocate or initialize global state information. The following
code shows how to fill out theINRun routine from the previously shown
LabVIEW-generated: file to multiply a number by two. This code is
included for illustrative purposes. ChapteC2IN Parameter Passing
discusses how LabVIEW passes data to a CIN, with several examples.
CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

*num_out = *num_in * 2;

return nokErr;

}

LabVIEW Code Interface Reference Manual 1-10 © National Instruments Corporation

Chapter 1 CIN Overview

Special Macintosh Considerations

If you compile your code for a 68K Macintosh, there are certain
circumstances under which you must useER€ERLVSBANALEAVELVSB
macros at the entry and exit of some functions. These macros ensure the
global context register (A5 for MPW builds, A4 for Symantec/THINK

and Metrowerks builds) for your CIN is established during your function,
and the caller's is saved and restored. This is necessary to enable you to
reference global variables, call external subroutines, and call LabVIEW
routines such as those described in subsequent chapters.

You need not use these macros in any of the eight predefined entry points
(CINRun, CINLoad , CINUnload , CINSave, CINInit , CINDispose ,

CINAbort , andCINProperties), because the CIN libraries already
establish and restore the global context before and after calling these
routines. Using them here would be harmless, but unnecessary.

However, if you create any other entry points to your CIN, you should

use these macros. You create another entry point to your CIN whenever
you pass the address of one of your functions to some other piece of code
that may call your function later. An example of this is the use of the

QSort routine in the LabVIEW support manager (described irCiine
Function Overvievsection of the LabVIEVWDnline Referenge You must

pass a comparison routine@sort . This routine gets called directly by

QSort , without going through the CIN library. Therefore it is your
responsibility to set up your global context WRTERLVSBEand

LEAVELVSB

To use these macros properly, placeBR@ERLVSBnacro at the beginning

of your function between your local variables and the first statement of the
function. Place theEAVELVSBmacro at the end of your function just
before returning, as in the following example.

CStr gNameTable[kNNames];

int32 MyComparisonProc(int32 *pa, int32 * pb)
{

int32 comparisonResult;
ENTERLVSB

comparisonResult = StrCmp(gNameTable[*pa],
gNameTable[*pb]);

LEAVELVSB
return comparisonResult;

}

© National Instruments Corporation 1-11 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

The functionMyComparisonProc is an example of a routine that might

be passed to th@Sort routine. Because it explicitly references a global
variable NameTable), it must use thENTERLVSBandLEAVELVSB
macros. There are other things that can implicitly reference globals.
Depending on the compiler and settings of various options, literal strings
may also be referenced as globals.

It is best to always use tiENTERLVSBandLEAVELVSBmacros whenever
you create a new entry point to your CIN.

When you use these macros, be sure your function does not return
before calling the. EAVELVSBmacro. One technique is to usgoto
endOfFunction statement (wherendOfFunction s a label just before
theLEAVELVSBmMacro at the end of your function) in place of any return
statements you may place in your function.

Compile the CIN Source Code

You must compile the source code for the CIN in a format LabVIEW can
use. There are two steps to this process. First you compile the code using a
compiler LabVIEW supports. Then you use a LabVIEW utility to modify

the object code, putting it into a format LabVIEW can use.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple specification
for a CIN and create object code you can load into LabVIEW. These tools
vary depending on the platform and compiler you use. The following
sections summarize the steps for each platform.

Note Compiling the source code is different for each platform. Look under the heading
for your platform and compiler in the following sections to find the instructions
for your system.

Every source code file for a CIN should liginclude "extcode.h” before any
other code. If your code needs to make system calls, you should alsingkele
"hosttype.h" immediately aftestinclude "extcode.h”

LabVIEW Code Interface Reference Manual 1-12 © National Instruments Corporation

Chapter 1 CIN Overview

Macintosh

LabVIEW for the Macintosh uses external code as a customized code
resource (on a 68K Macintosh) or as a shared library (on a Power
Macintosh) prepared for LabVIEW using the separate utilities
Ivsbutil.app for THINK and Metrowerks olvsbutil.tool for

MPW. Both these utilities are included with LabVIEW.

You can create CINs on the Macintosh with compilers from any of the three
major C compiler vendors: Symantec’s THINK environment, Metrowerks'’
CodeWarrior environment, and Apple’'s Macintosh Programmer’s
Workshop (MPW) environment. Always use the latest Universal headers
containing definitions for both 68K and Power Macintosh compilers.

The LabVIEW utilities for building Power Macintosh CINs are the same
ones used for the 68K Macintosh and can be used to build both versions
of a CIN. If you want to place both versions in the same folder, however,
some development conflicts may arise. Because the naming conventions
for object files andsb files are the same, make sure one version does not
replace the other. These kinds of issues can be handled in different ways,
depending on your development environment.

Some CIN code that compiles and works on the 68K Macintosh and calls
Macintosh OS or Toolbox functions requires changes to the source code
before it will work on the Power Macintosh. Any code that passes a
function pointer to a Mac OS or Toolbox function must be modified to
pass a Routine Descriptor (see Appleside Macintostthapter on the
Mixed Mode Manager, available in the Macintosh on RISC SDK from
APDA). Also, if you use any 68K assembly language in your CIN, it must
be ported to either C or Power Macintosh assembly language.

THINK C for 68K (Version 7)

To create a THINK C CIN project, make a new folder for the project.
Launch THINK C and create a new project in the new folder. The name of
your THINK C project must match your CIN name exactly, and must not
use any of the conventional project suffixes, suchresr .proj . If you

name your CINest , your THINK C project must also be nantest , so

it produces a link map file namesst.map . You should keep the new
project and the CIN files associated with it within the same folder.

With THINK C 7, an easy way to set up your CIN project is to make use
of the project stationery in thintools:Symantec-THINK Files:

Project Stationery folder. For THINK C 7 projects, the project
stationery is a folder callachbVIEW CIN TC7 . It provides a template

© National Instruments Corporation 1-13 LabVIEW Code Interface Reference Manual

Chapter 1

LabVIEW Code Interface Reference Manual 1-14

CIN Overview

for new CINs with most of the settings you need. Se®#ag Me file in
the Project Stationery folder for details.

When building a CIN using THINK C for 68K, many of the preferences
can be set to whatever you wish. Others, however, must be set to specific
values to correctly create a CIN. If for some reason you do not use the
CIN project stationery, you will need to ensure the following settings in
the THINK C Preferences dialog box are made:

Pull down the THINK CEdit menu and pop up on ti@ptions item;
selectTHINK Project Manager.... UnderPreferences check the
Generate link mapbox, and then click on tHeK button. Now go
back to théDptions item under th&dit menu and seledHINK C... .

To complete the project set-up process, seled®#ugiire prototypes
button undet.anguage Settingsand then check théheck Pointer
Typesbox. UnderPrefix, delete the ling¢include <MacHeaders>

if it is present. Finally, undeEompiler Settings check the&Generate
68881 instructionsbox, theNative floating-point format box, and
theGenerate 68020 instruction$ox. You can use th@opy button

at the top of the dialog box to make these settings the default settings
for new projects, which will make the set-up process for subsequent
CINs simpler.

When you have finished selecting the options inBt& menu, turn

to the THINK CProject menu; selecBet Project Type... First, set

the type taCode ResourceFrom the new options that appear, set the
File Typeto.tmp , theCreator toLVsb, theNameto the name of the
CIN plus the extensionmp , theType to CUST thelD to 128, and
check theCustom Headerbox. If you are creating a CIN called

test , you must name the resoutest.tmp , as shown in the
following illustration.

) Application

) Desk Accessory
) Device Driver
@ Code Resource

Name |m.tmp
~

[<] Custom Header

File Type

Creator |LU'sh

[Multi-Segment

© MNational Instruments Corporation

Chapter 1 CIN Overview

After these parameters are set, add the libratigsib. TC7 and
LabVIEWLib.TC7 , found incintools:Symantic-THINK Files:

Think C 7 Libraries , to the project. You must also add the default
version of each standard CIN procedure not defined by your code.
Each default procedure is in its own correspondingly named library,
located incintools:Symantic-THINK Files: THINK C 7

Libraries . These libraries ar@INLoad.TC7 , CINUnload.TC7
CINInit.TC7 , CINDispose.TC7 , CINAbort.TC7 , CINSave.TC7 ,
andCINProperties.TC7 . Then add yourc files.

You are now ready to build the code resource. Go t@thgct menu

and selecBuild Code Resource...A dialog box will appear, allowing

you to save the code resource. The name of the code resource must be
the same as the name of the CIN plus the extensipn.

After you build a code resource and give.ing extension, you must run

the applicatiorvsbutil.app , also included with LabVIEW, to prepare
external code for use as a CIN or external subroutine. This utility prompts
you to select youtmp file. The utility also uses the THINK C link map

file, which carries amap extension and must be in the folder with your
tmp file. The applicatiornvsbutil.app uses thetmp and themap

files to produce dsb file that can be loaded into a VI.

Select code resource (.tmp file):

EXCCT | — horddrive
Desktop

[Setect]

=

[] Add separate resource file @ CIN
[Put directly into DI) Subroutine
[J For Power PC

If you are making a CIN, select tk@N option in the dialog box, as shown

in the above illustration. If you are making a CIN for the Power Macintosh,
also check th&or Power PChox. If you are making an external
subroutine, select tHgubroutine option.

© National Instruments Corporation 1-15 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Advanced programmers can check At separate resource filebox to
add additional resources to their CINs or Fh directly into VI box to

put thelsb code into a VI without opening it or launching LabVIEW.
Remember the VI designated to receive.ie code must already
contain.Isb code with the same name. Notice you cannot put the code
directly into a library.

If your .tmp code resource file does not show up in the dialog box, check
its file type. When building themp file, specify the file type asmp ,

which is under th&et Project Type.. menu item of théroject menu in
THINK C. The.lsb file this application produces is what the LabVIEW
CIN node should load.

Note The THINK C compiler will only findextcode.h if the file extcode.h is located
on the THINK C search path. You can place thimtools folder in the same
folder as your THINK C application, or you can make sure the litieclude
"extcode.h” is a full pathname taextcode.h under THINK C. For example:
#include "harddrive:cintools:extcode.h"

If you are using System 7.0 or later, you can extend the THINK C search path.
To do so, first create a new folder in the same folder as your THINK C project and
name itAliases . Then make an alias for theintools ~ folder, and drag this alias
into your newly createdliases folder. This technique enables the include line
to read#include "extcode.h” ; therefore, it is not necessary to type the full
pathname.

Symantec C++ 8.0 for Power Macintosh

To create CINs using this environment, you will need to install the
ToolServer application from the Symantec C++ 8.0 distribution disks.
ToolServer is an Apple tool that performs the final linking steps in
creating your CIN. It can be found in thpple Software:Tools folder.
Copy theToolServer 1.1.1 folder to your hard drive and place an
alias to ToolServer in thGools) folder in yourSymantec C++ for
PowerMac folder.

LabVIEW Code Interface Reference Manual 1-16 © National Instruments Corporation

Chapter 1 CIN Overview

You need the following files in your project to create a CIN for Power

Macintosh.
e ~CINLib.ppc . This file is shipped with LabVIEW and can be found
in thecintools:Symantic-THINK Files:Symantic C 8 folder.

* Your source files

f——7——7—7 . avgvlin=—"—— =
dptions:

o & Name

+* awgwl .o

* LabV IEW xcoff
+ “CINLib.ppo

Totals 3 (2 <7) o

o o o |6
1
|

i

You might also need theabVIEW.xcoff file. This file is shipped with
LabVIEW and can be found in thntools:PowerPC Libraries

folder. It is needed if you call any routines within LabVIEW, such as
DSSetHandleSize() or SetCINArraySize()

An easy way to set up your CIN project is to make use of the CIN
project stationery in thentools:Symantec-THINK Files:Project

Stationery folder. For Symantec C version 8 projects the project
stationery is a folder calladcibVIEW CIN SC8PPC . The folder provides

a template for new CINs containing almost all of the files and preference
settings you need. See tRead Me file in theProject Stationery

folder for details.

When building a CIN using Symantec C++ for PowerMac, you can set
many of the preferences to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If you do not use the CIN
project stationery, you need to make the following settings in the Symantec
Project ManageDptions dialog box (accessed from tReoject menu):

* Project Type—Set theroject Type pop-up menu t&hared Library.
Set theFile Type text field to.tmp . Set theDestination text field to
cinName.tmp , wherecinName is the name of your CIN. Set the
Creator to LVsb.

e Linker—Set thd.inker pop-up menu t®PCLink & MakePEF.
Set thePPCLink settingstext field to-export

© National Instruments Corporation 1-17 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

gLVExtCodeDispatchTable, LVSBhead . Set theMakePEF
settingstext field to havelibrename
LabVIEW.xcoff.o=LabVIEW in addition to the factory setting.

* Extensions—Set tHeile Extensiontext field to.ppc , theTranslator
pop-up menu tXCOFF convertor, and press thadd button.

e PowerPC C—In th€ompiler Settingssub-page, select the
Align to 2 byte boundary radio button. In th@refix sub-page,
remove the line that readclude <PPCMacheaders>

Build the CIN by selectin®uild Library from theBuild menu. Then
convert thetmp file with Ivsbutil.app (with For PowerPC checked).

Metrowerks CodeWarrior for 68K

You need the following files in your project to be able to create a
Metrowerks 68K CIN.

e CustHdr.68k.mwerks (This file mustbe the first file in the project.)
¢ CINLib.68k.mwerks

* LabVIEW.68k.mwerks

e Your source files

EDE ﬂl.lgl.ll N1 EEEI
B File | Code| Data| 3¢ |
- Segment 1 8K 119 = |4
CustHdr 68k mwerks 478 o = |
avgv 1. 276 12; « [H]
CINLib 6Bk .mwerks 1018 s [}
Lab¥IEW 68k mwerks 5824 19 [}
7
4 file(s) 8K 119 [

Note All of your files must be in a single segment. LabVIEW does not support
multi-segment CINSs.

An easy way to set up your CIN project is to use the CIN project stationery
in thecintools:Metrowerks Files:Project Stationery folder.

For CodeWarrior 68K projects the project stationery is a file called
LabVIEW CIN MW68K . The file provides a template for CINs containing
almost all of the settings you need. SeeRbad Me file in theProject
Stationery folder for details.

LabVIEW Code Interface Reference Manual 1-18 © National Instruments Corporation

Chapter 1 CIN Overview

When building a CIN using CodeWarrior for 68K, you can set many of
the preferences to whatever you wish. Others, however, must be set to
specific values to correctly create a CIN. If you do not use the CIN project
stationery, you need to make the following settings in the CodeWarrior
Preferences dialog box:

* Language—Set th8ource Modelpop-up menu té\pple C.
Empty thePrefix File text field.

e Processor—Check th&8881 CodegemndMPW C Calling
Conventionscheckboxes. Leave tleByte Ints and8-Byte Doubles
checkboxes unchecked.

* Linker—Check the&Generate Link Map checkbox.

* Project—Set th€roject Type pop-up menu t&€ode Resource
Set theFile Nametext field tocinName .tmp , wherecinName is the
name of your CIN. Set thiResource Namdext field to the same text
as in theFile Nametext field. Set th@ype text field to.tmp and the
ResTypetext field toCUST Set theResID text field to128. Set the
Header Typepop-up menu t€ustom. Set theCreator to LVsb.

» Access Paths—Add yougintools folder to the list of access paths.
Build the CIN by selectiniylake from the CodeWarrioProject menu.

A Caution This operation will destroy the contents of any other file nanwdvame .tmp
in that folder. This could easily be the case if this is the same folder in which
you build a Power Macintosh version of your CIN. If you are building for both
platforms, you should keep separate directories for each. The convention used
by the MPW CIN tools is to have two subdirectories nan&CObj and M68Obj
where all platform-specific files reside.

Note If you have both a ThinkC68K and a MetrowerksC68K map flidutii cannot
know in advance which compiler youtmp file came from. It will first look for a
ThinkC .map file, then for a Metrowerksmap file. To avoid any conflict, remove
the unnecessarymap file before usingvsbutil.app

When you have successfully built theName .tmp file, you must then
use thavsbutil.app application to create th@nName .Isb file.

Thelvsbutil.app application has a checkbox in the file selection dialog
box labelled~or Power PC. This checkboxnust notbe checked for 68K
CINs. Select any other options you want for your CIN, and then select your
cinName .tmp file. cinName .Isb will be created in the same folder as
cinName .tmp .

© National Instruments Corporation 1-19 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

ﬁ Caution This operation will destroy the contents of any previous file namad/ame .Isb
in that folder. This could easily be the case if this is the same folder in which you

build a 68K Macintosh version of your CIN.

Metrowerks CodeWarrior for Power Macintosh
You need the following files in your CodeWarrior project to create a CIN
for Power Macintosh.

e CINLib.ppc.mwerks is shipped with LabVIEW and is found in the
cintools:Metrowerks Files:PPC Libraries folder.

* Your source files

[N="——i——awvlg=———————FH 8
B File | Code | Datal i
= & Lab¥IEY Libraries 1]} L1} | =
% CINLib_ppec.mwerks nia nia A
W Lab¥IEW xcoff nia nia o)
= & Source Files o 1] =
W avgel e nia nia [
3 file(s) 0 0 [

You may also need theabVIEW .xcoff file. This file is shipped with
LabVIEW and is found in theintools:PowerPC Libraries folder.
It is needed if you call any routines within LabVIEW e.g.,
DSSetHandleSize() , or SetCINArraySize()

Finally, if you call any routines from a system shared library, you must add
the appropriate shared library interface file to your project's file list.

An easy way to set up your CIN project is to make use of the CIN
project stationery in theintools:Metrowerks Files:Project

Stationery folder. For CodeWarrior PowerPC projects the project
stationery is a file calledabVIEW CIN MWPPC. This file provides a
template for CINs containing almost all of the settings you need. See
theRead Me file in theProject Stationery folder for details.

LabVIEW Code Interface Reference Manual 1-20 © National Instruments Corporation

Chapter 1 CIN Overview

When building a CIN using CodeWarrior for PPC, you can set many of
the preferences to whatever you wish. Others, however, must be set to
specific values to correctly create a CIN. If you do not use the CIN project
stationery, you need to make the following settings in the CodeWarrior
Preferences dialog box:

* Language—Set th8ource Modelpop-up menu té\pple C. Empty
out thePrefix File text field (usingMacHeaderswill not work).

* Processor—Set tHatruct Alignment pop-up menu t68K.
* Linker—Empty all of theEntry Point fields.

* PEF—Set th&xport Symbols pop-up menu ttJse .exp file
and place a copy of the filgojectName.exp (found in your
cintools:Metrowerks Files:PPC Libraries folder) in the
same folder as your CodeWarrior project. Rename this file to
projectName.exp , whereprojectName is the name of the project
file. CodeWarrior will look in this file to determine what symbols
your CIN exports. LabVIEW needs these to link to your CIN.

» Project—Set th@roject Type pop-up menu t&hared Library.
Set the file name to he@nName .tmp , wherecinName is the name of
your CIN. Set th@ype field to.tmp . Set theCreator to LVsb.

» Access Paths—Add youintools folder to the list of access paths.
Build the CIN by selectiniylake from the CodeWarrioProject menu.

A Caution This operation will destroy the contents of any other file nanwdvame .tmp in
that folder. This could easily be the case if this is the same folder in which you
build a 68K Macintosh version of your CIN. If you are building for both platforms,
you should keep separate folders for each. The convention used by the MPW CIN
tools is to have two subdirectories nameeCObj and M680bj where all
platform-specific files reside.

When you have successfully built theName .tmp file, you must then
use thavsbutil.app application to create th@nName .Isb file.

Thelvsbutil.app application has a checkbox in the file selection
dialog box labelled~or Power PC. Check this box, along with any other
options necessary for your CIN, and then select yiomitame .tmp file.
cinName .Isb ~ will be created in the same folder@sName .tmp .

ii Caution This operation will destroy the contents of any previous file namadiame .Isb
in that folder. This could easily be the case if this is the same folder in which you
build a 68K Macintosh version of your CIN.

© National Instruments Corporation 1-21 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Macintosh Programmer’s Workshop for 68K
and Power Macintosh

You can use Macintosh Programmer’s Workshop (MPW) to build CINs
for either the Motorola 68® (68K) Macintosh or the Power Macintosh.
Several scripts are available for the MPW environment to help you build
CINs. To deal with the problem of building CINs for two different CPUs,
these new scripts are designed to use two subdirectories in your CIN folder,
PPCObj andM680bj. The platform-specific object and CIN files are kept

in these subdirectories. The scripts make use dfithecompiler on

PowerPC and theC compiler on 68K Macintosh. Older compilePRCC

andC, may also be used. The scripts are:

¢ CINMake—A script capable of building both Power Macintosh and
68K Macintosh CINs. It uses a simplified form of a makefile you
provide. It can be run every time you need to rebuild your CIN.

e LVMakeMake—A script similar to thévmkmf (LabVIEW Make
Makefile) script available for building CINs under the Solaris
operating system. It builds a skeletal but complete makefile you
can then customize and use with the MR¥ake tool.

CINMake can be used for building both Power Macintosh and 68K
Macintosh versions of your CINs. By default, thiéiMake script
builds 68K Macintosh CINs and puts the resultifigvame .Isb into
the M680Dbj folder.

You must have one makefile for each CIN. Name the makefile by
appendinglvm to the CIN name. This indicates this is a LabVIEW
makefile. The makefile should resemble the following pseudocode.
Be sure eachir command ends with the colon charactér (

name = name Name for the code; indicates the base
name for your CIN. The source code for
your CIN should be imamec . The code
created by the makefile is placed in a new
file, namelsb (Isb is a mnemonic for
LabVIEW subroutine).

type= type Type of external code you want to create.
For CINs, you should use a type@hN.

codeDir= codeDir: Complete pathname to the folder
containing thec file used for the CIN.

LabVIEW Code Interface Reference Manual 1-22 © National Instruments Corporation

Chapter 1 CIN Overview

cinToolsDir = cinToolsDir:
Complete pathname to the LabVIEW
cintools:MPW folder, which is located
in the LabVIEW folder.

LVMVers = 2 Version ofCINMake script reading this
Ivm file.

incIDir = -i incIDir: (optional) Complete or partial pathname
to a folder containing any additional
h files.

otherM680ODbjFiles = otherM680bjFiles
(optional) For 68K Macintosh only,
list of additional object files (files with
a.o extension) your code needs to
compile. Separate the names of files
with spaces.

otherPPCODbjFiles = otherPPCObjFiles
(optional) For Power Macintosh only,
list of additional object files (files with
a.o extension) your code needs to
compile. Separate the names of files
with spaces.

subrNames = subrNames (optional) For 68K Macintosh only, list
of external subroutines the CIN calls.
You needsubrNames only if the CIN
calls external subroutines. Separate the
names of subroutines with spaces.

ShLibs = sharedLibraryNames
(optional) For Power Macintosh only,
a space-separated list of the link-time
copies of import libraries with which
the CIN must be linked. Each should be
a complete path to the file.

© National Instruments Corporation 1-23 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

ShLibMaps = sharedLibMappings
(optional) For Power Macintosh only, the
command-line arguments to thiekePEF
tool that indicate the mapping between
the name of each link-time import library
and the run-time name of that import
library. These will usually look
something like the following:
-librename libA.xcoff=libA
-librename libB.xcoff=libB

Notice only the file names are needed, not
entire paths.

You must adjust the-Dir names to reflect your own file system hierarchy.

Modify your MPW command search path by appending the
cintools:MPW folder to the default search path. This search path is
defined by the MPW Shell variabtemmands.

set commands "{commands}","< pathname to directory of
cinToolsDir ~ >"

Go to the MPW Worksheet and enter the following commands.
First, set your current folder to the CIN folder using the MPW
Directory command:

Directory < pathname to directory of your CIN >

Next, run the LabVIEWCINMake script:
CINMake < name of your CIN >

If CINMake does not find avm file in the current folder, it builds a

file namedcinName .lvm , and prompts you for necessary information.
This file, cinName .lvm , is in a format compatible with building both
Power Macintosh and 68K Macintosh CINs in the same foldemiflake
finds acinName .lvm but it does not have the lihneMVers = 2, saves the
Ivm file in cinName .lvm.old and update theinName .lvm file to be
compatible with the new version GfNMake.

LabVIEW Code Interface Reference Manual 1-24 © National Instruments Corporation

Chapter 1 CIN Overview

The format of theCINMake command follows, with the optional
parameters listed in brackets.

CINMake [-MakeOpts “opts”] [-RShell] [-PPC/-MrC/-SC/-C]
[-dbg] [-noDelete] <name of your CIN>

-MakeOpts opts specifies extra options to pass
to make.

-Rshell

-PPC/-MrC/-SC/-C Use one of these options to specify the
compiler to use.

-dbg If this argument is specified;INMake
prints out statements describing what it
is doing.

-noDelete If this argument is specified;INMake

will not delete temporary files used when
making the CIN.

You can usé&VMakeMake to build an MPW makefile you can then
customize for your own purposes. You should only have to run
LVMakeMake once for a given CIN. You can modify the resulting makefile
by adding the proper header file dependencies, or by adding other object
files to be linked into your CIN. The format of. #§MakeMake command
follows, with optional parameters listed in brackets.

LVMakeMake [-0 makeFile] [-PPC] <name of your CIN>.make

-0 makeFile specifies the name of the
output makefile. If this argument is not
specified LVMakeMake writes to
standard output.

-PPC If this argument is specified, a makefile
suitable for building a Power Macintosh
CIN is created. By default, a 68K
Macintosh makefile is created.

For example, to build a Power Macintosh makefile for a CIN named
myCIN, execute the following command:

LVMakeMake -PPC myCIN > myCIN.ppc.make
creates the makefile

© National Instruments Corporation 1-25 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

You can then use the MPWake tool to build your CIN, as shown in the
following commands.

make -f myCIN.ppc.make> myCIN.makeout
creates the build commands
myCIN.makeout

executes the build commands

You should load thdsb file this application produces into your
LabVIEW CIN node.

Microsoft Windows 3.x

Microsoft Windows 3X is a 16-bit operating system. A 16-bit application
faces several obstacles when working with large amounts of information,
such as manipulating arrays requiring more than 64 kilobytes of memory.

LabVIEW is a 32-bit application without most of the inherent limitations
found in 16-bit applications. Because of the way CINs are linked to Vs,
however, LabVIEW can use only code compiled for 32-bit applications.
This is because CINs reside in the same memory space as VlIs and work
with LabVIEW data. To create CINs, a compiler must be able to create
32-bit relocatable object code.

The only compiler that currently supports the correct format of executables
is Watcom C. The following section lists the steps for compiling a CIN with
the Watcom compiler.

Watcom C Compiler

With the Watcom C compiler, you create a specification that includes the
name of the file you want to create, relevant directories, and any external
subroutines or object files the CIN needs. (External subroutines are
described in Chapter &xternal Subroutine} You then use th@make

utility included with Watcom to compile the CIN.

In addition to compiling the CIN, the makefile diregtaaketo put the CIN
in the appropriate form for LabVIEW.

LabVIEW Code Interface Reference Manual 1-26 © National Instruments Corporation

Chapter 1 CIN Overview

The makefile should look like the following pseudocode. Appkend to
the makefile name to indicate this is a LabVIEW makefile.

name = name Name for the code; indicates the base
name for your CIN. The source code for
your CIN should be iname.c . The code
created by the makefile is placed in a new
file, name.Isb (Isb is a mnemonic for
LabVIEW subroutine).

type = type Type of external code you want to create.
For CINs, you should use a type@.

codeDir = codeDir Complete or partial pathname to the
directory containing the file used for
the CIN.

wcDir = weDir Complete or partial pathname to the

overall Watcom directory

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory, which is
located in the LabVIEW directory. This
directory contains header files you can
use for creating CINs, and tools the
wmake utility uses to create the CIN.

incIDir = inclDir (optional) Complete or partial pathname
to a directory containing any additional
h files.

objFiles = objFiles (optional) List of additional object files
(files with an.obj extension) your code
needs to compile. Separate the names of
files with spaces.

subrNames = subrNames (optional) List of external subroutines
the CIN calls. You neeslubrNames
only if the CIN calls external subroutines.
Separate the names of subroutines
with spaces.

linclude $(CinToolsDir)\generic.mak

© National Instruments Corporation 1-27 LabVIEW Code Interface Reference Manual

Chapter 1

Note

Note

Execute thevmake command by entering the following in DOS.

wmake /f <name of your CIN>.lvm

The wmake utility sometimes erroneously stops a make with an incorrectly
reported error when it is run in the DOS shell within Windows. If this happens,
run it in normal DOS.

Thewmake utility scans the specified LabVIEW makefile and

remembers the defined values. The last line of the makigfiiide
$(CinToolsDir)\generic.mak , instructsvmake to compile the code
resource based on instructions in gkeeeric.mak file, which is stored

in thecintools directory. Thevmake utility compiles the code and then
transforms it into a form LabVIEW can use. The resulting code is stored
in anamelsb file, wherenameis the CIN name given in theame line

of the makefile.

You cannot link most of the Watcom C libraries to your CIN because precompiled
libraries contain code that cannot be properly resolved by LabVIEW when it links
a VI to a CIN. If you try to call those functions, your CIN may crash.

LabVIEW provides functions that correspond to many of the functions in these
libraries. These functions are described in subsequent chapters of this manual.
If you need to call a function not supplied by LabVIEW, you can access

the function from a dynamic link library (DLL). A CIN can call a DLL using

the techniques described in the Watcom C manuals. A DLL can call any
function from the C libraries. See Chapter &IN Advanced Topi¢gor

information on calling a DLL.

Microsoft Windows 95 and Windows NT

You can use the Microsoft Visual C++ compiler and Symantec C compiler
to build CINs for LabVIEW for Windows 95/NT. With some restrictions,
you can also use some CINs created using Watcom C for Windows 3.1.

Visual C++ Command Line

The method for building CINs using command line tools under
Windows 95 and Windows NT is similar to the method for building CINs
under Windows 3.1 using the Watcom C compiler.

1. Add aCINTOOLSDIRdefinition to your list of user environment
variables.

Under Windows NT, you can edit this list with tBgstem control
panel accessory. For example, if you installed LabVIEW for
Windows 95/NT inc:\v50nt ~ , the CIN tools directory should be

LabVIEW Code Interface Reference Manual 1-28 © National Instruments Corporation

Chapter 1 CIN Overview

c:\lv50nt\cintools . In this instance, you would add the following
line to the user environment variables using the System control panel.

CINTOOLSDIR = c:\lv50nt\cintools
Under Windows 95, you must modify yoMUTOEXEC.BATto set
CINTOOLSDIRto the correct value.

2. Build a.lvm file (LabVIEW Makefile) for your CIN. LabVIEW for
Windows 95/NT requires you to define fewer variables than LabVIEW
for Windows 3.1. You must specify the following items:

* name = name of CIN or external subroutimailf , for example)

» type = CIN or LVSB (depending on whether it is a CIN or an
external subroutine)

e linclude $(CINTOOLSDIR)\ntlvsb.mak

If your CIN uses extra object files or external subroutines, you can
specify theobjFiles andsubrNames options. You do not need to
specify thecodeDir parameter, because the code for the CIN must be
in the same directory as the makefile. You do not need to specify the
wcDir parameter, because the CIN tools can determine the location of
the compiler.

You can compile the CIN code using the following command, where
mult is the makefile name.

nmake /f mult.lvm

If you want to use standard C or Windows 95 or Windows NT libraries,

define the symbaddinLibraries . For example, to use standard

C functions in the preceding example, you could use the following
Ivm file.

name = mult

type = CIN

cinLibraries=libc.lib
linclude $(CINTOOLSDIR)\ntlvsh.mak

To include multiple libraries, separate the list of library names
using spaces.

© National Instruments Corporation 1-29 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Visual C++ IDE

To build CINs using the Visual C++ Integrated Development Environment,
complete the following steps:

e Create a new DLL project. Seldeéite»New... and selecivin32
Dynamic-Link Library as the project type. You can nhame your
project whatever you like.

« Add CIN objects and libraries to the project. SeRrctect»Add To
Project»Files...and seleatin.obj , labview.lib ,Ivsbllib ,and
Ilvsbmain.def ~ from theCintools\Win32 subdirectory. These files
are needed to build a CIN.

¢ Add Cintools to the include path. Sel&rbject»Settings...and
changeSettings for: to All Configurations . Select th&€/C++tab
and set the category Boeprocessor . Add the path to your cintools
directory in theAdditional include directories: field.

e Setalignment ta byte . SelectProject»Settings...and change
Settings For:to All Configurations . Select theC/C++ tab and
set the category tOode Generation . Choosel Byte from the
Struct member alignment: tab.

e Choose run-time library. Seletoject»Settings...and change
Settings for: to All Configurations . Select th€€/C++tab and set
the category t@€ode Generation . ChooseMultithreaded DLL
from theUse run-time library: tab.

e Make a custom build command to rusbutii . Select
Project»Settings...and chang&ettings for: to All
configurations . Select theCustom Build tab and change the
Build commandsfield to <your path to cintools >\win32\
Ivsbutil $(TargetName) -d $(WkspDir)\$(OutDir) and
the Output file fields t&(OutDir)$(TargetName).Ishb

Symantec C

The process for creating CINs using Symantec C is similar to the
process for Visual C++ Command Line. Useake instead ohmake
on your.lvm file.

Note You cannot currently create external subroutines using Symantec C.

LabVIEW Code Interface Reference Manual 1-30 © National Instruments Corporation

Chapter 1 CIN Overview

Watcom C Compiler for Windows 3.1 under Windows 95 or
Windows NT

CINs you have created using the Watcom C compiler for Windows 3.1
should work under Windows 95 or Windows NT. However, your CIN
may not work without modification if it makes calls to communicate

with hardware drivers, performs register or memory mapped I/O, or
calls Windows 3.1 functions. Windows 3.1 drivers do not run under
Windows 95 or Windows NT, so you must port any drivers you may
have written for Windows 3.1 to Windows 95 or Windows NT. In
addition, CINs cannot manipulate hardware directly. To perform register
or memory-mapped I/O, you need to write a Windows 95 or Windows NT
driver. If you call Windows 3.1 functions, you should check to make sure
those functions are still valid under Windows 95 and Windows NT.

To create CINs using Watcom C for Windows 3.1, follow the Watcom C
instructions given in th&/atcom C Compilesubsection of th€ompile the

CIN Source Codsection of this chapter. You must compile the source code
for the CINs under Windows 3.1. Use the LabVIEW for Windows 3.1

CIN libraries to compile the CINs.

Solaris 1.x

LabVIEW for Sun can use external code compiled.aut format

and prepared for LabVIEW using a LabVIEW utility. The unbundled

Sun C compiler is the only compiler tested thoroughly with LabVIEW.
Other compilers that can generate codedat format might also work
with LabVIEW, but this has not been verified. The C compiler that comes
with the operating system does not use extended-precision floating-point
numbers; code using this numeric type will not compile. However, the
unbundled C compiler does use them.

Solaris 2.x

The preceding information for Solaris<is true for Solaris &, with one
exception—LabVIEW 3.1 and higher for Solarig @ses code compiled in
a shared library format, rather than theut format previously specified.

Note LabVIEW 3.0 for Solaris 2.x supported external code compiledirF format.

Existing Solaris X and Solaris Z.(for LabVIEW 3.0) CINs will not

operate correctly if they reference functions not in the System V Interface
Definition (SVID) forlibc , libsys , andlibnsl . Recompiling your
existing CINs using the shared library format should ensure your CINs
function as expected.

© National Instruments Corporation 1-31 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

HP-UX and Concurrent PowerMAX

As previously stated, the HP-UX C/ANSI C compiler and Concurrent
C Compiler are the only compilers tested with LabVIEW.

Unbundled Sun ANSI C Compiler, HP-UX C/ANSI
C Compiler, and Concurrent C Compiler

With these compilers, you create a makefile using the shell seniphf
(LabVIEW Make Makefile), which creates a makefile for a given CIN.
You then use the standarthke command to make the CIN code. In
addition to compiling the CIN, the makefile puts the code in a form
LabVIEW can use.

The format for thevmkmf command follows, with optional parameters
listed in brackets.

Ivmkmf [-o Makefile] [-t CIN] [-ext Gluefile] LVSBName

LVSBName the name of the CIN or external subroutine you want to build,
is required. ILVSBNamadsfoo , the compiler assumes the sourdeds:
and the compiler names the output fide.Isb

-0 is optional and supplies the name of the makiefilemf creates. If you
do not use this option, the makefile name defaultsaicefile

-t is optional and indicates the type of external code you want to create.
For CINs, you should useIN, which is the default.

-ext is needed only if this external code calls external subroutines.

The argument to this directive is the name of a file containing the names
of all subroutines this code calls, with one name per line. The file is not
necessary to run themkmf script, but it must be present before you can
successfully make the CIN. If you do not specifgxa option,lvmkmf
assumes the CIN does not reference any external subroutines.

The makefile produced assumesdimeo |, libcin.a

makeglue XXXawk , andlvsbutil files are in certain locations,
whereXXXis BSDon Solaris 1.xSVR4or Solaris 2.xHPon HP-UX,
andConcurrent on Concurrent PowerMAX. If these assumptions are
incorrect, you can edit the makefile to correct the pathnames.

LabVIEW Code Interface Reference Manual 1-32 © National Instruments Corporation

Chapter 1 CIN Overview

If you specify theext argument to thlemkmf script, the makefile creates
temporary files. For example, if the gluefile nameds, the makefile
creates filebar.s andbar.o . Neither the CIN nor the makefile needs
these files after the CIN has been created.

If you make external subroutines, you need to create a separate makefile
for them. Thavmkmf script creates a file callégakefile unless you use
the-o option. For this reason, you may want to place the code for each
subroutine in separate directories to avoid writing overtsaiefile

with the other. If you want to place the code in the same directory, you
need either to combine the two makefiles manually, or to create two
separate makefiles (using tlee option to thdvmkmf script) and use

make -f <makefile> to create the CIN or external subroutine.

Load the CIN Object Code

Load the code resource by choosiimgd Code Resourcdrom the
CIN pop-up menu. Select thisb file you created itCompile the CIN
Source Code

=-
Show]
Description...
Replace]

Add Parameter
Remove Parameter
Qutput Onl

Load Code Resource...,.
Create .c File...

This command loads your object code into memory and links the code
to the current front panel/block diagram. After you save the VI, the file
containing the object code does not need to be resident on the computer
running LabVIEW for the VI to execute.

If you make modifications to the source code, you can load the new
version of the object code using thead Code Resourception. The file
containing the object code for the CIN must have an extensig of

There is no limit to the number of CINs per block diagram.

© National Instruments Corporation 1-33 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

LabVIEW Manager Routines

LabVIEW has a suite of routines that can be called from CINs and external
subroutines. This suite of routines performs user-specified routines using
the appropriate instructions for a given platform. These routines, which
manage the functions of a specific operating system, are grouped into
three categories: memory manager, file manager, and support manager.

External code written using the managers is portable—you can compile

it without modification on any platform that supports LabVIEW. This
portability has two advantages. First, the LabVIEW application is built on
top of the managers—except for the managers, the LabVIEW source code
is identical across platforms. Second, the analysis VIs are built mainly from
CINs; the source code for these CINs is the same for all platforms.

For general information about the memory manager, the file manager, and
the support manager, see Chaptévianager Overview

Online Reference

For descriptions of functions or file manager data structures, refer to the
CIN Function Overvievgection of the LabVIEWDnline Reference
available by selectingelp»Online Reference

Pointers as Parameters

Some manager functions have a parameter thgioméer.

These parameter type descriptions are identified by a trailing asterisk
(such as thép parameter of thazHandToHand memory manager
function documented in tHeIN Function Overvievgection of the
LabVIEW Online Referengeor are type defined as such (such as
thenameparameter of thENamePtr function documented in the

CIN Function Overvievsection of the LabVIEV®Dnline Referenge

In most cases, this means the manager function will write a value to
pre-allocated memory. In some cases, sudtsasitsPath or
GetALong , the function reads a value from the memory location,

so you don't have to pre-allocate memory for a return value.

LabVIEW Code Interface Reference Manual 1-34 © National Instruments Corporation

Chapter 1 CIN Overview

Table 1-1 lists the functions with parameters that return a value for which
you must pre-allocate memory.

Table 1-1. Functions with Parameters Needing Pre-allocated Memory

AZHandToHand FGetlnfo FPathToDString
AZMemStats FGetPathType FPathToPath
AZPtrToHand FGetVolinfo FRefNumToFD
DateToSecs FMOpen FStringToPath
DSHandToHand FMRead FTextToPath
DSMemStats FMTell FUnflattenPath
DSPtrToHand FMWrite GetAlong
FCreate FNamePtr NumericArrayResize
FCreateAlways FNewRefNum RandomGen
FFlattenPath FPathToArr SecsToDate
FGetAccessRights FPathToAZString SetALong
FGetEOF

It is important to allocate space for this return value. The following
examples illustrate correct and incorrect ways to call one of these functions
from within a generic functiofvo :

Correct example:

foo(Path path) {
Str255 buf; /* allocated buffer of 256 chars */
File fd;
MgErr err;

err = FNamePtr(path, buf);
err = FMOpen(&fd, path, openReadOnly,
denyWriteOnly);

}

© National Instruments Corporation 1-35 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Incorrect example:
foo(Path path) {

PStr p; /* an uninitialized pointer */
File *fd; /* an uninitialized pointer */
MQgErr err;

err = FNamePtr(path, p);
err = FMOpen(fd, path, openReadOnly
denyWriteOnly);

}

In the correct exampléuf contains space for the maximum-sized Pascal
string (whose address is passe&NamePtr), andfd is a local variable
(allocated space) for a file descriptor.

In the incorrect example,is a pointer to a Pascal string, but the pointer is
not initialized to point to any allocated buffENamePtr expects its caller

to pass a pointer to an allocated space, and writes the name of the file
referred to bypath into that space. Even if the pointer does not point to
a valid placeFNamePtr will write its results there, with unpredictable
consequences. SimilarlyMOpenwill write its results to the space to
whichfd points, which is not a valid place becatsds uninitialized.

Debugging External Code

LabVIEW has a debugging window you can use with external code to
display information at execution time. You can open the window, display
arbitrary print statements, and close the window from any CIN or external
subroutine.

Use theDbgPrintf ~ function to create this debugging window. The format
for DbgPrintf s similar to the format of th&Printf function, which is
described in th€IN Function Overvievgection of the LabVIEVDnline
ReferenceDbgPrintf takes a variable number of arguments, where the
first argument is a C format string.

LabVIEW Code Interface Reference Manual 1-36 © National Instruments Corporation

DbgPrintf

syntax

Chapter 1 CIN Overview

int32 DbgPrintf(CStr cfmt, ..);

The first time you calbbgPrintf , LabVIEW opens a window to display
the text you pass to the function. Subsequent caltbgerintt append

new data as new lines in the window (you do not need to pass in the new
line character to the function). If you cBlbgPrintf ~ with NULLinstead of

a format string, LabVIEW closes the debugging window. You cannot
position or change the size of the window.

The following examples show how to uskgPrintf

DbgPrintf(""); [*printan empty line, opening
the window if necessary */

DbgPrintf("%H", varl); /* print the contents of an
LStrHandle (LabVIEW string),
openingthe window ifnecessary
*/

DbgPrintf(NULL); /* close the debugging window
*/

Debugging CINs Under Windows 95/NT

Windows 95 and Windows NT support source level debugging of
CINs using Microsoft’s Visual C environment. To debug CINs under
Windows 95/NT, complete the following steps.

1. Modify your CIN to set a debugger trap. You must do this to force
Visual C to load your debugging symbols. The trap call must be
done after the CIN is in memory. The easiest way to do this is to place
it in the CINLoad procedure. Once the debugging symbols are loaded,
you can set normal debug points inside Visual C. Windows 95 has a
single method of setting a debugger trap, Windows NT can use the
Windows 95 method or another.

© National Instruments Corporation 1-37 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

The method common to Windows 95 and Windows NT is to insert a
debugger break using an in-line assembly command:

_asmint 3;
Adding this to CINLoad gives you the following:
CIN MgErr CINLoad(RsrcFile reserved)

{
Unused(reserved);
_asmint 3;
return nokErr;

}

When the debugger trap is hit, Visual C pops up a debug window
highlighting that line.

Under Windows NT, you may use tbebugBreak function.

This function exists under Windows 95, but does not produce
suitable results for debugging CINs. To WssbugBreak , include
<windows.h> at the top of your file and place the call where you
want to break:

#include <windows.h>
CIN MgErr CINLoad(RsrcFile reserved)

{
Unused(reserved);
DebugBreak();
return noErr;

}

When that line executes, you will be in assembly. Step out of that
function to get to the point of theebugBreak call.

2. Rebuild your CIN with debugging symbols.

If you built your CIN from the command line, add the following lines
to the.lvm file of your CIN to add debug information to the CIN:

DEGUG =1
cinLibraries = Kernel32.lib

If you built your CIN using the IDE, build a debug version of the DLL.
In Projects»Settings.., go to theDebugtab and select th@eneral
category. Enter your LabVIEW executable in fheecutable for

debug sessiomox.

LabVIEW Code Interface Reference Manual 1-38 © National Instruments Corporation

Chapter 1 CIN Overview

3. Run LabVIEW.

If you built your CIN from the command line, start LabVIEW
normally. When the debugger trap is run, a dialog box appears:

A Breakpoint has been reached. Click OK to terminate
application. Click CANCEL to debug the application.

Click CANCEL . This launches the debugger, which attaches to
LabVIEW, searches for the DLLs, then asks for the source file of
your CIN. Point it to your source file, and the debugger loads the
CIN source code. You can then debug your code.

If you built your CIN using the IDE, open your CIN project and
click the GO button. LabVIEW will be launched by Visual C.

Debugging CINs Under Sun or Solaris

It is not currently possible to use Sun’s debugdex, to debug CINs.
The best you can do is use standargtiif calls or theDbgPrintf
function mentioned earlier.

Debugging CINs Under HP-UX

You can debug CINs built on the HP-UX platform usidg , the HP

source level debugger. To do so, compile the CIN with debugging turned
on. You must also enable shared library debugging witkstHag and
directxdb to the source files for your CIN. For example, if your CIN
source code is in thests/first directory, you could invokedb

with the following command:

xdb -s -d testsf/first labview

See thexdb manual for more information. Once the CIN is loaded, break
into the debugger and set your breakpoints. You may need to qualify
function names with the name of the shared library. Qualified names are
in the formfunction_name@library_name . The name of the shared
library will not be what it was when compiled. Instead, it will be a unique
name generated by the C library functiopnam. The name will always
begin with the stringV. Use the debugger commamdto display the
memory map of all currently loaded shared libraries. CIN shared libraries
are ordered by load time on the name space, so CINs loaded later appear
in the memory map before CINs loaded earlier. As an example, to break
at CINRun for the library/usritmp/LVAAAa17732 , set the breakpoint

as follows:

>b CINRUn@LVAAAal7732

© National Instruments Corporation 1-39 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

If you reload a CIN that is already loaded, the debugger will not function
properly. If you change a CIN, you must quit and restart the debugger to
enable it to work as desired.

LabVIEW Code Interface Reference Manual 1-40 © National Instruments Corporation

CIN Parameter Passing

This chapter describes the data structures LabVIEW uses when passing
data to a CIN.

Introduction

LabVIEW passes parameters to ¢i8Run routine. These parameters
correspond to each of the wires connected to the CIN. You can pass any
data type to a CIN you can construct in LabVIEW; there is no limit to the
number of parameters you can pass to and from the CIN.

CIN .c File

When you select th@éreate .c File...option, LabVIEW creates.a file in

which you can enter your CIN code. T&@Run function and its prototype

are given, and its parameters are typed to correspond to the data types being
passed to the CIN in the block diagram. If you want to refer to any of the
other CIN routines@INInit , CINLoad , and so on), see their descriptions

in Chapter 1CIN Overview

The.c file created is a standard C file, except LabVIEW gives the data
types unambiguous names. C does not define the size of low-level data
types—thdnt data type might correspond to a 16-bit integer for one
compiler and a 32-bit integer for another compiler. Ehdile uses names
explicit about data type size, suchra$6 ,int32 ,float32 , and so on.
LabVIEW comes with a header filextcode.h , that contains typedefs
associating these LabVIEW data types with the corresponding data type
for the supported compilers of each platform.

extcode.h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW

cintools directory also contains a filepsttype.h , that resolves these
differences. This header file also includes many of the common header files
for a given platform.

© National Instruments Corporation 2-1 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Note You should always usginclude "extcode.h" at the beginning of your source
code. If your code needs to include system header files, you should include
"extcode.h" , "hosttype.h" , and then any system header files, in that order.

How LabVIEW

If you write a CIN that accepts a single 32-bit signed integercttie
indicates th&€INRun routine is passed &m32 by referenceextcode.h
typedefs ant32 to the appropriate data type for the compiler you use
(if it is a supported compiler); therefore, you can userti3e data type

in external code you write.

Passes Fixed Sized Data to CINs

Scalar Numerics

Scalar Booleans

As described in th&teps for Creating a ClBection of Chapter T7IN
Overview you can designate terminals on the CIN as either input-output
or output-only. Regardless of the designation, LabVIEW passes data by
reference to the CIN. When modifying a parameter value, be careful to
follow the rules described for each kind of terminal inSkeps for

Creating a CINsection of Chapter TTIN Overview LabVIEW passes
parameters to theINRun routines in the same order as you wire data to
the CIN—the first terminal pair corresponds to the first parameter, and
the last terminal pair corresponds to the last parameter.

The following section describes how LabVIEW passes fixed sized
parameters to CINs. See tHew LabVIEW Passes Variably Sized Data to
CINssection of this chapter for information on manipulating variably sized
data such as arrays and strings.

LabVIEW passes numeric data types to CINs by passing a pointer to the
data as an argument. In C, this means LabVIEW passes a pointer to the
numeric data as an argument to the CIN. Arrays of numerics are described
in the subsequeritrrays and Stringsection of this chapter.

LabVIEW stores Booleans in memory as 8-bit integers. If any bit of the
integer is 1, the Boolean is TRUE; otherwise the Boolean is FALSE.
LabVIEW passes Booleans to CINs with the same conventions as for
numerics.

Note In LabVIEW 4.x and earlier, Booleans were stored as 16-bit integers. If the
high bit of the integer was 1, the Boolean was TRUE; otherwise the Boolean
was FALSE.

LabVIEW Code Interface Reference Manual 2-2 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Refnums

LabVIEW treats a refnum the same way as it treats a scalar number and
passes refnums with the same conventions it uses for numbers.

Clusters of Scalars

For a cluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster.

Return Value for CIN Routines

The names of the CIN routines are prefaced in the header file with the
wordsCIN MgErr , as shown in the following example.

CIN MgErr CINRun(...);

The LabVIEW header filextcode.h , defines the word CIN to be either
Pascal or nothing, depending on the platform. Prefacing a function with the
word Pascal causes some C compilers to use Pascal calling conventions
instead of C calling conventions to generate the code for the routine.
LabVIEW uses Pascal calling conventions on the Macintosh when calling
CIN routines, so the header file declares the word CIN to be equivalent to
Pascal on the Macintosh. On the PC and Unix, however, LabVIEW uses
standard C calling conventions, so the header file declares the word CIN
to be equivalent to nothing.

TheMgErr data type is a LabVIEW data type corresponding to a set of
error codes the manager routines return. If you call a manager routine
that returns an error, you can either handle the error or return the error so
LabVIEW can handle it. If you can handle the errors that occur, return
the error cod@oErr .

After calling a CIN routine, LabVIEW checks tiMygErr value to

determine whether an error occurred. If an error occurs, LabVIEW
aborts the VI containing the CIN. If the VI is a subVI, LabVIEW aborts
the VI containing the subVI. This behavior enables LabVIEW to handle
conditions when a VI runs out of memory. By aborting the running VI,
LabVIEW can possibly free enough memory to continue running correctly.

© National Instruments Corporation 2-3 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Examples with Scalars

The following examples show the steps for creating CINs and how to work
with scalar data types. Chaptesanager Overviewcontains more
examples.

Creating a CIN That Multiplies Two Numbers

Consider a CIN that takes two single-precision floating-point numbers and
returns their product.

1. Place the CIN on the block diagram.
2. Add two input and output terminals to the CIN.

3. Place two single-precision numeric controls and one single-precision
numeric indicator on a front panel. Wire the node as shown in the
following illustration. NoticeA*B is wired to an output-only

terminal pair.
i)
aTeita
= i
cegeol [[SEL]
o

Save the VI asult.vi

4. SelecCreate .c File...from the CIN node pop-up menu. LabVIEW
prompts you to select a name and a storage locationdofike.
Name the filemult.c . LabVIEW creates & file shown in the
following listing.

/*
* CIN source file
*/
#include "extcode.h"
CIN MgErr CINRun (float32 *A, float32 *B,
float32 *A_B);
CIN MgErr CINRun (float32 *A, float32 *B,
float32 *A_B) {
/* ENTER YOUR CODE HERE */

return noErr;

}

LabVIEW Code Interface Reference Manual 24 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

This.c file contains a prototype and a template for the CIN’Run
routine. LabVIEW calls th€INRun routine when the CIN executes.

In this example, LabVIEW passe&&NRun the addresses of the three
32-bit floating-point numbers. The parameters are listed left to right in
the same order as you wired them (top to bottom) to the CIN. Ahus,
B, andA_B are pointers té\, B, andA*B , respectively.

As described in th€IN .c Filesection of this chapter, tlieat32

data type is not a standard C data type. When LabVIEW creates a
file, it gives unambiguous names for data types. For most C compilers,
thefloat32 data type corresponds to theat data type. However,

this may not be true in all cases, because the C standard does not define
the sizes for the various data types. You can use these LabVIEW data
types in your code becausgtcode.h associates these data types

with the corresponding C data type for the compiler you are using. In
addition to defining LabVIEW data typesctcode.h also prototypes
LabVIEW routines you can access. These data types and routines are
described in Chapter Bjanager Overviewof this manual and in the

CIN Function Overvievsection of the LabVIEVDnline Reference

Note The line#include "extcode.h” must be a full pathname textcode.h under
THINK C. For example:#include "harddrive:cintools:extcode.h"

Optionally, System 7.x users can use thiases folder technique described in
the THINK C for 68K (Version Rubsection of Chapter LLIN Overviewto enable
the include line to readtinclude "extcode.h"

© National Instruments Corporation

For this multiplication example, fill in the code for th&Run routine.
You do not have to use the variable names LabVIEW gives you in
CINRun; you can change them to increase the readability of the code.

CIN MgErr CINRun (float32 *A, float32 *B,
float32 *A_B);

{

*A_B = *A * *B’

return nokErr;

}

CINRun multiplies the values to whichandB refer and stores the
results in the location to which Brefers. It is important CIN routines
return an error code, so LabVIEW knows if the CIN encountered any
fatal problems and handles the error correctly.

If you return a value other thawoErr , LabVIEW stops the execution
of the VI.

2-5 LabVIEW Code Interface Reference Manual

Chapter 2

Note

CIN Parameter Passing

5.

After creating the source code, you need to compile it and convert it
into a form LabVIEW can use. The following sections summarize the
steps for each of the supported compilers.

Step 5 is different for each platform. Look under the heading for your platform
and compiler in the following sections to find the instructions for your system.
For details, refer to the relevant subsection within tB®mpile the CIN Source
Codesection in Chapter 1CIN Overview

(THINK C for 68K and Symantec C++) Create a new project and place
mult.c init. Build multlsb according to the instructions in the
THINK C for 68K (Version 7pr theSymantec C++ 8.0 for Power
Macintoshof theCompile the CIN Source Codection of Chapter 1.

(Macintosh Programmer’s Workshop for 68K and Power Macintosh) Create
a file namedmult.lvm . Make sure the name variable is sehtdt .
Build multlvm according to the instructions in tMacintosh
Programmer’s Workshop for 68K and Power Macinteshsection
of the Compile the CIN Source Codection of Chapter 1.

(Metrowerks CodeWarrior for Power Macintosh and 68K) Create a new
project and placenult.c in it. Build mult.Isb according to the
instructions in thé/letrowerks CodeWarrior for 68Kubsection of
the Compile the CIN Source Codection of Chapter 1.

(Watcom C Compiler for Window 3.x) Create a file namedult.lvm
Make sure the name variable is setntgt . Build mult.lvm
according to the instructions in tiidgatcom C Compilesubsection
of the Compile the CIN Source Codection of Chapter 1.

(Microsoft Visual C++ Compiler Command Line and Symantec C for
Windows 95 and Windows NT) Create a file namedult.lvm . Make
sure the name variable is setolt . Build multlvm according to
the instructions in th¥isual C++ IDE subsection of th€ompile the
CIN Source Codsection of Chapter 1.

(Microsoft Visual C++ Compiler IDE for Windows 95 and Windows NT) Create
a project according to the instructions in tfisual C++ IDE
subsection of th€ompile the CIN Source Codection of Chapter 1.

(All Unix Compilers) As described in th&teps for Creating a CIN
section of Chapter LIN Overviewyou can create a makefile using
the shell scriptvmkmf . For this example, you should first enter the
following command.

lvmkmf mult

LabVIEW Code Interface Reference Manual 2-6 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

This creates a file calledakefile . After executingvmkmf ,

you should enter the standandke command, which uségakefile
to create a file callenhult.Isb , which you can load into the CIN
in LabVIEW.

6. Select.oad Code Resourcdrom the CIN pop-up menu and select
multlsb , the object code file you created.

—
Show »
Description...
Replace]

Add Parameter
Remove Parameter
Output Onl

Load Code Resource... .
Create .c File...

If you followed the preceding steps correctly, you should be able to run
the VI at this point. If you save the VI, the CIN object code is saved along
with the VI.

Comparing Two Numbers, Producing a Boolean Scalar

The following example shows how to create a CIN that compares two
single-precision numbers. If the first number is greater than the second
one, the return value is TRUE; otherwise, the return value is FALSE. This
example gives only the block diagram and the code. Follow the instructions
in the Steps for Creating a CINection of Chapter 1 to create the CIN.

The diagram for this CIN is shown in the following illustration. Save the VI

asaequalb.vi
iThein
[A=E7
S i -

© National Instruments Corporation 2-7 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

How LabVIEW

Create ac file for the CIN, and name itequalb.c . The.c file
LabVIEW creates is as follows.

/*

* CIN source file

*/

#include "extcode.h"

CIN MgErr CINRun(float32 *ap, float32 *bp,
LVBoolean *aequalbp);

CIN MgErr CINRun(float32 *ap, float32 *bp,
LVBoolean *aequalbp) {
if (*ap == *bp)
*aequalbp= LVTRUE;
else
*aequalbp= LVFALSE;
return nokErr;

}

Passes Variably Sized Data to CINs

LabVIEW allocates memory for arrays and strings dynamically. If a

string or array needs more space to hold new data, its current location
may not offer enough contiguous space to hold the resulting string or array.
In this case, LabVIEW may have to move the data to a location that offers
more space.

To accommodate this relocation of memory, LabVIEW uses handles to
refer to the storage location of variably sized data. A handle is a pointer
to a pointer to the desired data. LabVIEW uses handles instead of simple
pointers because handles allow LabVIEW to move the data without
invalidating references from your code to the data. If LabVIEW moves
the data, LabVIEW updates the intermediate pointer to reflect the new
location. If you use the handle, references to the data go through the
intermediate pointer, which always reflects the correct location of the
data. Handles are described in detail in Chaptktéhager Overview
Information about specific handle functions is available inGhe

Function Overvievgection of the LabVIEWDnline Reference

LabVIEW Code Interface Reference Manual 2-8 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Alignment Considerations

When a CIN returns variably sized data, you need to adjust the size of
the handle that references the array. One method of adjusting the handle
size is to use the memory manager roufisSetHandleSize or, if the

data is stored in the application zone, AlZSetHandleSize routine, to
adjust the size of the return data handle. Both techniques work, but they
are trouble-prone because you have to calculate the size of the new
handle correctly. It is difficult to calculate the size correctly in a
platform-independent manner, however, because some platforms

have special requirements about how you align and pad memory.

Instead of using(xSetHandleSize , use the LabVIEW routines that

take this alignment into account when resizing handles. You can use the
SetCINArraySize routine to resize a string or an array of arbitrary data
type. This function is described in tResizing Arrays and Stringection

of this chapter.

If you are not familiar with alignment differences for various

platforms, the following examples highlight the problem. Keep in mind
SetCINArraySize andNumericArrayResize take care of these issues
for you.

Consider the case of a 1D array of double-precision numbers. On the PC,
an array of double-precision floating-point numbers is stored in a handle,
and the first four bytes describe the number of elements in the array. These
four bytes are followed by the 8-byte elements that make up the array. On
the Sun, double-precision floating-point numbers must be aligned to 8-byte
boundaries—the 4-byte value is followed by four bytegaafding This

padding ensures the array data falls on eight-byte boundaries.

As a more complicated example, consider a three-dimensional array of
clusters, in which each cluster contains a double-precision floating-point
number and a 4-byte integer. As in the previous example, the Sun stores this
array in a handle. The first 12 bytes contain the number of pages, rows, and
columns in the array. These dimension fields are followed by four bytes of
filler (which ensures the first double-precision number is on an 8-byte
boundary) and then the data. Each element contains eight bytes for the
double-precision number, followed by four bytes for the integer. Each
cluster is followed by four bytes pfadding which ensures the next

element is properly aligned.

© National Instruments Corporation 2-9 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Arrays and Strings

LabVIEW passes arrays by handle, as described iAlipement
Considerationssection of this chapter. For ardimensional array, the

handle begins with 4-byte values describing the number of values

stored in a given dimension of the array. Thus, for a one-dimensional array,
the first four bytes indicate the number of elements in the array. For a
two-dimensional array, the first four bytes indicate the number of rows,
and the second four bytes indicate the number of columns. These
dimension fields can be followed by filler and then the actual data.

Each element can also have padding to meet alignment requirements.

LabVIEW stores strings and Boolean arrays in memory as one-dimensional
arrays of unsigned 8-bit integers.

Note LabVIEW 4.x stored Boolean arrays in memory as a series of bits packed to
the nearest 16-bit word. LabVIEW 4.x ignored unused bits in the last word.
LabVIEW 4.x ordered the bits from left to right; that is, the most significant
bit (MSB) is index 0. As with other arrays, a 4-byte dimension size preceded
Boolean arrays. The dimension size for LabVIEW 4.x Boolean arrays
indicates the number of valid bits contained in the array.

Paths (Path)

The exact structure férath data types is subject to change in future
versions of LabVIEW. APath is a dynamic data structure LabVIEW
passes the same way it passes arrays. LabVIEW stores the dratdgor

in an application zone handle. For more information about the functions
that manipulat®aths , refer to theCIN Function Overviewection of the
LabVIEW Online Reference

Clusters Containing Variably Sized Data

For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If a component is an array or string, LabVIEW stores a handle
to the array or string component in the structure.

LabVIEW Code Interface Reference Manual 2-10 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Resizing Arrays and Strings

You can use the LabVIEBetCINArraySize routine to resize return

arrays and strings you pass to a CIN. You pass to the function the handle
you want to resize, information describing the data structure, and the
desired size of the array or handle. The function takes into account any
padding and alignment needed for the data structure. The function does not,
however, update the dimension fields in the array. If you successfully
resize the array, you need to update the dimension fields to correctly
reflect the number of elements in the array.

You can resize numeric arrays more easily WitlnericArrayResize
You pass to this function the array you want to resize, a description of the
data structure, and information about the new size of the array.

When you resize arrays of variably-sized data (for example, arrays of
strings) with thesetCINArraySize ~ or NumericArrayResize routines,

you should be aware of the following facts. If the new size of the array is
smaller, LabVIEW disposes of the handles used by the disposed element.
Neither function sets the dimension field of the array. You must do this

in your code after the function call. If the new size is larger, however,
LabVIEW does not automatically create the handles for the new elements.
You have to create these handles after the function returns.

TheSetCINArraySize andNumericArrayResize functions are
described in the following sections.

© National Instruments Corporation 2-11 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

SetCINArraySize

syntax MgErr SetCINArraySize (UHandle dataH, int32
paramNum, int32 newNumEImts);

SetCINArraySize resizes a data handle based on the data structure of an argument you pass
to the CIN. It does not set the array dimension field.

Parameter Type Description
dataH UHandle The handle you want to resize.
paramNum int32 The number for this parameter in the

argument list to the CIN. The leftmost
parameter has a parameter number of 0,
and the rightmost has a parameter numbg
of n — 1, where n is the total number of
parameters

=

newNumEImts int32 The new number of elements to which the
handle should refer. For a one-dimensiona
array of five values, you pass a value of 5 for
this argument. For a two-dimensional array
of two rows by three columns, you pass a
value of 6 for this argument.

returns MgErr , which can contain the errors in the following lMtErrs are
discussed in Chapter Blanager Overview

Error Description
noErr No error.
mFullErr Not enough memory to perform operation
mZoneErr Handle is not in specified zone.

LabVIEW Code Interface Reference Manual 2-12 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

NumericArrayResize

syntax MgErr NumericArrayResize(int32 typeCode, int32
numDims, UHandle *dataHP, int32
totalNewSize);

NumericArrayResize resizes a data handle referring to a numeric array. This routine also
accounts for alignment issues. It does not set the array dimension fielatdHP is NULL,
LabVIEW allocates a new array handlesdataHP.

Parameter Type Description

typeCode int32 Describes the data type for the array you want to resize.
The header filextcode.h defines the following constants
for this argument

iB Data is an array of signed 8-bit integers.

iW is an array of signed 16-bit integers.

iL Datais an array of signed 32-bit integers.

uB Data is an array of unsigned 8-bit integers.

uw Data is an array of unsigned 16-bit integers.

uL Data is an array of unsigned 32-bit integers.

fS Data is an array of single-precision (32-bit) numbers.

fD Data is an array of double-precision (64-bit) numbers.
fX Data is an array of extended- precision numbers.

cS Data is an array of single-precision complex numbers

cD Data is an array of double-precision complex numbers.

cX Data is an array of extended-precision complex numbers.

© National Instruments Corporation 2-13 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

if
ay,

f

or

Parameter Type Description

numDims int32 The number of dimensions in the data
structure to which the handle refers. Thus
the handle refers to a two-dimensional arr
you pass a value of 2 foumDims.

*dataHP UHandle A pointer to the handle you want to resize.
this is a pointer tolULL, LabVIEW allocates
and sizes a new handle appropriately and
returns the handle irdataHP.

totalNewSize int32 The new number of elements to which the
handle should refer. For a unidimensional
array of five values, you pass a value of 5 {
this argument. For a two-dimensional arrg
of two rows by three columns, you pass a
value of 6 for this argument.
returns MgErr , which can contain the errors in the following list.
Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle is not in specified zone.

LabVIEW Code Interface Reference Manual

2-14

© MNational Instruments Corporation

Chapter 2 CIN Parameter Passing

Examples with Variably Sized Data

The following examples show the steps for creating CINs and how to work
with variably-sized data types.

Concatenating Two Strings

The following example shows how to create a CIN that concatenates two
strings. This example also shows how to use input-output terminals by
passing the first string as an input-output parameter to the CIN. The top
right terminal of the CIN returns the result of the concatenation.

This example gives only the diagram and the code. Follow the instructions
in Chapter 1CIN Overviewto create this CIN.

The diagram for this CIN is shown in the following illustration. Save the VI

aslstrcat.vi
Linbia
E [A fh=E7
e B
=
T
Create ac file for the CIN, and name ligtrcat.c . The.c file

LabVIEW creates is as follows.
/*

* CIN source file

*/

#include "extcode.h"

CIN MgErr CINRun(

LStrHandle varl,
LStrHandle var2);

CIN MgErr CINRun(
LStrHandle varl,
LStrHandle var2) {

/* ENTER YOUR CODE HERE */

return nokErr;

}

© National Instruments Corporation 2-15 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Now fill in the CINRun function as follows:

CIN MgErr CINRun(
LStrHandle strh1,
LStrHandle strh2) {
int32 sizel, size2, newSize;
MQgErr err;

sizel = LStrLen(*strh1);
size2 = LStrLen(*strh2);
newSize = sizel + size2;
if(err = NumericArrayResize(uB, 1L,
(UHandle*)&strh1, newsSize))
goto out;

[* append the data from the second string to
first string */
MoveBlock(LStrBuf(*strh2),
LStrBuf(*strh1)+sizel, size2);

[* update the dimension (length) of the
first string */
LStrLen(*strh1) = newSize;
out:
return err;

}

In this exampleCINRun is the only routine that performs substantial
operationsCINRun concatenates the contentswoh2 to the end of
strhl , with the resulting string stored strh1 . Before performing
the concatenation, you need to resizbl with the LabVIEW routine
NumericArrayResize to hold the additional data.

If NumericArrayResize fails, it returns a non-zero value of ty{dgErr .

In this caselNumericArrayResize could fail if LabVIEW does not have
enough memory to resize the string. Returning the error code gives
LabVIEW a chance to handle the errorCINRun reports an error,
LabVIEW aborts the calling VIs. Aborting the VIs may free up enough
memory so LabVIEW can continue running.

After resizing the string handle, this example copies the second string to the
end of the first string usingoveBlock . MoveBlock is a support manager
routine that moves blocks of data. Finally, this example sets the size of the
first string to the length of the concatenated string.

LabVIEW Code Interface Reference Manual 2-16 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Computing the Cross Product of Two Two-Dimensional Arrays

The following example shows how to create a CIN that accepts two
two-dimensional arrays and then computes the cross product of the arrays.
The CIN returns the cross product in a third parameter and a Boolean value
as a fourth parameter. This Boolean is TRUE if the number of columns in
the first matrix is not equal to the number of rows in the second matrix.

This example shows only the front panel, block diagram, and source code.
Follow the instructions in th8teps for Creating a Clsection of
Chapter 1CIN Overviewto create the CIN.

The front panel for this VI is shown in the following illustration. Save the
VI ascross.vi

The block diagram for this VI is shown in the following illustration.

L

[pBL]

E HAHENE
ra]ra

[oBL] [¥1 [F]

— 1 ¥
TEITF

Save thec file for the CIN agross.c . Following is the source code for
cross.c with theCINRun routine added.
/*
* CIN source file
*
#include "extcode.h"
#define ParamNumber 2
/* The return parameter is parameter 2 */

© National Instruments Corporation 2-17 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

#define NumDimensions 2
[* 2D Array */

/*

* typedefs

*/

typedef struct {
int32 dimSizes[2];
float64 arg1[1];
}TD1;

typedef TD1 *TD1HdI;

CIN MgErr CINRun(TD1HdI ah, TD1HdI bh, TD1HdI

resulth, LVBoolean *errorp);

CIN MgErr CINRun(TD1HdI ah, TD1HdI bh, TD1HdI
resulth, LVBoolean *errorp) {

int32 iJ,K,l;

int32 rows, cols;

float64 *aElmtp, *bElmtp, *resultElmtp;
MgErr err=nokErr;

int32 newNumEImts;

if (k = (*ah)—>dimSizes[1]) !=
(*bh)—>dimSizes[0]) {

*errorp = LVTRUE;

goto out;

}
*errorp = LVFALSE;
rows = (*ah)—>dimSizes|[0];

[* number of rows in a and result */
cols = (*bh)—>dimSizes[1];

[* number of cols in b and result */
newNumEImts = rows * cols;
if (err = SetCINArraySize((UHandle)resulth,

ParamNumber, newNumEImts))

goto out;
(*resulth)—>dimSizes[0] = rows;
(*resulth)—>dimSizes[1] = cols;
aElmtp = (*ah)—>arg1;
bEImtp = (*bh)—>arg1;
resultElmtp = (*resulth)—>argl;
for (i=0; i<rows; i++)

for (j=0; j<cols; j++) {

*resultElmtp = 0O;

LabVIEW Code Interface Reference Manual 2-18 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

for (I=0; I<k; I++)
*resultElmtp += aElmtp[i*k + 1] *
bEImtp[l*cos + j];
resultElmtp++;
}
out:
return err;

}

In this exampleCINRun is the only routine performing substantial
operationsCINRun cross multiplies the two-dimensional arrayisandbh.
LabVIEW stores the resulting arrayrsulth . If the number of columns
in ah is not equal to the number of rowshim, CINRun sets*errorp to
LVTRUEto inform the calling diagram of invalid data.

SetCINArraySize , the LabVIEW routine that accounts for alignment and
padding requirements, resizes the array. Notice the two-dimensional array
data structure is the same as the one-dimensional array data structure,
except the 2D array has two dimension fields instead of one. The two
dimensions indicate the number of rows and the number of columns in the
array, respectively. The data is declared as a one-dimensional C-style array.
LabVIEW stores data row by row, as shown in the following illustration.

¢ columns

0,0 0,1 0,1
1,0 1.1 1,0-1
Frows
r-1,0 r-1,1 r=-1,0-1
in mernary

dimSizes argl
[0 (11 [011 .. [e=1] [e] [e+1] .. [r+e-1]

Foeo 00 00 . 0e1 1,0 1,0 -1,

For an array with rows anct columns, you can access the element at
rowi and columr as shown in the following code fragment.

value = (*arrayh)—>argl[i*c + j;

© National Instruments Corporation 2-19 LabVIEW Code Interface Reference Manual

Chapter 2

CIN Parameter Passing

Working with Clusters

The following example takes an array of clusters and a single cluster

as inputs, and the clusters contain a signed 16-bit integer and a string.
The input for the array of clusters is an input-output terminal. In addition to
the array of clusters, the CIN returns a Boolean and a signed 32-bit integer.
If the cluster value is already present in the array of clusters, the CIN sets
the Boolean to TRUE and returns the position of the cluster in the array of
clusters using the 32-bit integer output. If the cluster value is not present,
the CIN adds it to the array, sets the Boolean output to FALSE, and returns
the new position of the cluster in the array of clusters.

This example shows only the front panel, block diagram, and source code.
Follow the instructions in th8teps for Creating a Clection of
Chapter 1CIN Overviewto create the CIN.

The front panel for this VI is shown in the following illustration. Save the
VI astblsrch.vi

|
[etring [l]

already present?

nurnber ED m -
|

|string|| |

The block diagram for this VI is shown in the following illustration:

new array of clusters]

= 151

ca]
cluster elerment e already present?

1 -
osition

LabVIEW Code Interface Reference Manual 2-20 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Save thec file for the CIN agbisrch.c . Following is the source code
for thisrch.c ~ with theCINRun routine added:

/*

* CIN source file

*/

#include "extcode.h"

#define ParamNumber 0
/* The array parameter is parameter 0 */

/*
* typedefs
*/
typedef struct {
int16 number;
LStrHandle string;
} TD2;
typedef struct {
int32 dimSize;
TD2 arg1[1];
} TD1;
typedef TD1 *TD1HdI;
CIN MgErr CINRun(
TD1HdI clusterTableh,
TD2 *elementp,
LVBoolean *presentp,
int32 *positionp);
CIN MgErr CINRun(
TD1HdI clusterTableh,
TD2 *elementp,
LVBoolean *presentp,
int32 *positionp) {
int32 size,i;
MgErr err=nokErr;
TD2 *tmpp;
LStrHandle newsStringh;
TD2 *newElementp;
int32 newNumElements;

size = (*clusterTableh)->dimSize;
tmpp = (*clusterTableh)—>arg1;

*positionp = —1;
*presentp = LVFALSE;

© National Instruments Corporation 2-21 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

for(i=0; i<size; i++) {
if(tmpp—>number == elementp—>number)
if(LStrCmp(*(tmpp—>string),
*(elementp—>string)) == 0)
break;
tmpp++;
}
if(i<size) {
*positionp = i;
*presentp = LVTRUE;
goto out;
}
newStringh = elementp—>string;
if(err = DSHandToHand((UHandle *)
&newsStringh))
goto out;

newNumElements = size+1;

if(err =
SetCINArraySize((UHandle)clusterTableh,
ParamNumber,
newNumElements)) {
DSDisposeHandle(newsStringh);
goto out;

}

(*clusterTableh)—>dimSize = size+1;

newElementp = &((*clusterTableh)
—>argl[size]);
newElementp—>number = elementp—>number;
newElementp—>string = newStringh;
*positionp = size;

out:
return err;

}

In this exampleCINRun is the only routine performing substantial
operationsCINRun first searches through the table to see if the
element is presen€INRun then compares string components using the
LabVIEW routineLStrCmp , which is described in theIN Function
Overviewsection of the LabVIEVOnline Referencdf CINRun finds the
element, the routine returns the position of the element in the array.

LabVIEW Code Interface Reference Manual 2-22 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

If the routine does not find the element, you have to add a new element
to the array. Use the memory manager routi8elandToHand to create

a new handle containing the same string as the one in the cluster element
you passed to the CINLINRun then increases the size of the array using
SetCINArraySize and fills the last position with a copy of the element
you passed to the CIN.

If the SetCINArraySize call fails, the CIN returns the error code returned

by the manager. If the CIN is unable to resize the array, LabVIEW disposes
of the duplicate string handle.

© National Instruments Corporation 2-23 LabVIEW Code Interface Reference Manual

CIN Advanced Topics

CIN Routines

This chapter covers several topics needed only in advanced applications,
including how to use th€INInit , CINDispose , CINAbort , CINLoad ,
CINUnload , CINSave, andCINProperties routines. The chapter also
discusses how global data works within CIN source code, and how users of
Windows 3.1, Windows 95, and Windows NT can call a DLL from a CIN.

A CIN consists of several routines, as described bycthde LabVIEW
creates when you seleCteate .c File...from the CIN pop-up menu.
The previous chapters have discussed onlYCtN&un routine. The
other routines ar€INLoad , CINInit , CINAbort , CINSave,
CINDispose , CINUnload , andCINProperties

It is important to understand that for most CINs, you need to write only
the CINRun routine. The other routines are supplied mainly for the cases
in which you have special initialization needs, such as when your CIN

is going to maintain some information across calls, and you want to
preallocate or initialize global state information.

In the case where you want to preallocate/initialize global state
information, you first need to understand more of how LabVIEW
manages data and CINs.

Data Spaces and Code Resources

When you create a CIN, you compile your source into an object code file
and load the code into the node. At that point, LabVIEW loads a copy of
the code (called a code resource) into memory and attaches it to the node.
When you save the VI, this code resource is saved along with the VI as an
attached component; the original object code file is no longer needed.

When LabVIEW loads a VI, it allocateddata spacgea block of data

storage memory, for that VI. This data space is used, for instance, to store
the values in shift registers. If the VI is reentrant, then LabVIEW allocates
a data space for each usage of the VI. See Chaptgn@érstanding the

© National Instruments Corporation 3-1 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Execution Systenmn yourG Programming Reference Manudalr more
information on reentrancy.

Within your CIN code resource, you may have declared global data.
Global data includes variables declared outside of the scope of all
routines, and, for the purposes of this discussion, variables declared as
static variables within routines. LabVIEW allocates space for this global
data. As with the code itself, there is always only one instance of these
globals in memory. Regardless of how many nodes reference the code
resource and regardless of whether the surrounding VI is reentrant, there is
only one copy of these globals in memory, and their values are consistent.

When you create a CIN node, LabVIEW allocat€dlid data space

a 4-byte storage location in the VI data space(s), strictly for the use of

the CIN node. Each CIN may have one or more CIN data spaces reserved
for the node, depending on how many times the node appears in a VI or
collection of VIs. You can use this CIN data space to store global data on
a per data space basis, as described i@dlde Globals and CIN Data

Space Globalsection later in this chapter.

VI
1 My ¥I Diagram
| — CIN
o | |
— LU
[T3z] T3¢ global storage
V| data space code resource
4-byte CIN (code globals)
data space
(data space globals)

Figure 3-1. Data Storage Spaces for One CIN, Simple Case

A CIN node references the code resource by name, using the name
you specified when you created the code resource. When you load a VI
containing a CIN, LabVIEW looks in memory to see if a code resource
with the desired name is already loaded. If so, LabVIEW links the CIN
to the code resource for execution purposes.

LabVIEW Code Interface Reference Manual 3-2 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

This linking behaves the same way as links between VlIs and subVIs. When
you try to reference a subVI and another VI with the same name already
exists in memory, LabVIEW references the one already in memory instead
of the one you selected. In the same way, if you try to load references to two
different code resources having the same name, only one code resource is
actually loaded into memory, and both references point to the same code.
The difference is that LabVIEW can verify a subVI call matches the subVI
connector pane terminal, but LabVIEW cannot verify your source code
matches the CIN call.

CIN Routines: The Basic Case

The following discussion describes what happens in the standard case, in
which you have a code resource referenced by only one CIN, and the VI
containing the CIN is non-reentrant. The other cases have slightly more
complicated behavior, described in later sections of this chapter.

Loading a VI

When you first load a VI, LabVIEW calls tif@NLoad routines for any

CINs contained in that VI. This gives you a chance to load any file-based
resources at load time, because LabVIEW calls this routine only when the
Vlis first loaded (see theoading a New Resource into the Giéttion that
follows for an exception to this rule). After LabVIEW calls thiélLoad
routine, it callsCINInit . Together, these two routines perform any
initialization you need before the VI runs.

LabVIEW callsCINLoad once for a given code resource, regardless of the
number of data spaces and the number of references to that code resource.
This is why you should initialize code globalsdmLoad .

LabVIEW callsCINInit ~ for a given code resource a total of one time
for each CIN data space multiplied by the number of references to the
code resource in the VI corresponding to that data space. If you want
to use CIN data space globals, you should initialize the@iNimit

See theCode Globals and CIN Data Space GlobalelLoading a New
Resource into the CINind theCompiling a Visections of this chapter

for related information.

© National Instruments Corporation 3-3 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Unloading a VI

When you close a VI front panel, LabVIEW checks to see if there are any
references to that VI in memory. If so, then the VI code and data space
remain in memory. When all references to a VI are removed from memory,
and its front panel is not open, that VI is unloaded from memory.

When a VI is unloaded from memory, LabVIEW calls the

CINDispose routine, giving you a chance to dispose of anything

you allocated earlieCINDispose is called for eac®INInit call. For
instance, if you use®XNewHandle in yourCINInit routine, you should
usexXXDisposeHandle in yourCINDispose routine. LabVIEW calls
CINDispose for a code resource once for each individual CIN data space.

As the last reference to the code resource is removed from memory,
LabVIEW calls theCINUnload routine for that code resource once,
giving you the chance to dispose of anything allocatezinihoad .

As with CINDispose/CINInit , aCINUnload is called for each
CINLoad . For example, if you loaded some resources from a file

in CINLoad , you can free the memory those resources are using in
CINUnload . After LabVIEW callsCINUnload , the code resource
itself is unloaded from memory.

Loading a New Resource into the CIN

If you load a new code resource into a CIN, the old code resource is first
given a chance to dispose of anything it needs to dispose. First, LabVIEW
callsCINDispose for each CIN data space and each reference to the code
resource, followed by thelNUnload for the old resource. The new code
resource is then given a chance to perform any initialization it needs to
perform: LabVIEW calls th€INLoad for the new code resource, followed

by theCINInit routine, called once for each data space and each reference
to the code resource.

Compiling a VI

When you compile a VI, LabVIEW recreates the VI data space, resetting
all uninitialized shift registers, for instance, to their default values. In the
same way, your CIN is given a chance to dispose or initialize any storage
it manages. Before disposing of the current data space, LabVIEW calls the
CINDispose routine for each reference to the code resource within the
VI(s) being compiled to give the code resource a chance to dispose of any
old results it is managing. LabVIEW then compiles the VI and creates a
new data space for the VI(s) being compiled (multiple data spaces for any
reentrant VI). Th&INInit routine is then called for each reference to the

LabVIEW Code Interface Reference Manual 3-4 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

code resource within the compiled VI(s) to give the code resource a chance
to create or initialize any data it wants to manage.

Running a Vi

When you press the Run button of a VI, the VI begins to execute.
When LabVIEW encounters a code interface node, it callSithRun
routine for that node.

Saving a VI

When you save a VI, LabVIEW calls tli#NSave routine for that VI,

giving you the chance to save any resources (for example, something you
loaded inCINLoad). Notice when you save a VI, LabVIEW creates a new
version of the file, even if you are saving the VI with the same name. If the
save is successful, LabVIEW deletes the old file and renames the new file
with the original name. Therefore, anything you expect to be able to load
in CINLoad needs to be saved @iNSave .

Aborting a Vi

When you abort a VI, LabVIEW calls tt@NAbort routine for every
reference to a code resource contained in the VI being aborted. The
CINAbort routine of all actively running subViIs is also called. If a CIN is
in a reentrant VI, it is called for each CIN data space as well. CINs in Vs
not currently executing are not notified by LabVIEW of the abort event.

CINs are synchronous. When a CIN begins execution, it takes over
control of its thread until the CIN completes. If your version of LabVIEW
is single-threaded, LabVIEW is not notified if the user clicks on the abort
button and therefore cannot abort the CIN. No other LabVIEW tasks can
execute while a CIN executes.

Multiple References to the Same CIN in a Single VI

If you have loaded the same code resource into multiple CINs, or you
have duplicated a given code interface node, LabVIEW gives each
reference to the code resource a chance to perform initialization or
deallocation. No matter how many references you have in memory to a
given code resource, the LabVIEW calls @isLoad routine only once
when the resource is first loaded into memory (though it is also called if
you load a new version of the resource, as described in the previous
section). When you unload the VI, LabVIEW calitNUnload once.

© National Instruments Corporation 3-5 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

After LabVIEW callsCINLoad , it callsCINInit once for each reference

to the CIN, because its CIN data space may need initialization. Thus, if you
have two nodes in the same VI, where both reference the same code, the
LabVIEW calls theCINLoad routine once, and th&Ninit twice. If you

later load another VI referencing the same code resource, then LabVIEW
callsCINInit again for the new version. LabVIEW has already called
CINLoad once, and does not call it again for this new reference.

\

Mu Wi Panal | 1
My ¥I Dlagram |

global storage

2
=

1 CINZ CIN3
H

(LT
0

=
=

H
L

EEE] E¥T] W F¥T] FEF T

\ \ (code globals)
VI data space code resource

4-byte CIN »
data space
4-byte CIN
data space

4-byte CIN
data space

(data space globals)

Figure 3-2. Three CINs Referencing the Same Code Resource

LabVIEW callsCINDispose andCINAbort for each individual CIN data
space. LabVIEW call€INSave only once, regardless of the number of
references to a given code resource within the VI you are saving.

Multiple Reference to the same CIN in different Vis

Making multiple references to the same CIN in different Vls is different
for single threaded operating systems than it is for mutlithreaded
operating systems. To take advantage of multithreading, you must use
LabVIEW 5x on an operating system supporting it: Windows 95,
Windows NT, Solaris &, and Concurrent PowerMAX.

LabVIEW Code Interface Reference Manual 3-6 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

Single Threaded Operating Systems

When you make a VI reentrant, LabVIEW creates a separate data space for
each usage of that VI. If you have a CIN data space in a reentrant VI and
you call that VI in seven places, LabVIEW allocates memory to store seven
CIN data spaces for that VI, each of which contains a unique storage
location for the CIN data space for that calling instance.

As with multiple instances of the same node, LabVIEW callStReit
CINDispose , andCINAbort routines for each individual CIN data space.

In the case where you have a reentrant VI containing multiple copies of
the same code resource, LabVIEW calls@iiginit , CINDispose , and
CINAbort routines once for each use of the reentrant VI, multiplied by the
number of references to the code resource within that VI.

caller 1 caller 2 caller 3
Callarl Panall 1 ii[Callar? Panall 1 i CallarX Ponall |
Caller1 Diag | | {i] CallerZ Diag | Caller3 Diag |

/A

My VI | V ¥ My VI / : My VI

data space 1 data space 3

Mo Wi Panal [1
My ¥I Magram |
4-byte CIN 4-byte CIN
data space CIN data space
A

(data space globals) (data space globals)

=]
=

I32

My VI
data space 2 code resource global storage
4-byte CIN >
data space
(data space globals) (code globals)

Figure 3-3. Three VIs Referencing a Reentrant VI Containing One GIN

© National Instruments Corporation 3-7 LabVIEW Code Interface Reference Manual

Chapter 3

CIN Advanced Topics

Multithreaded Operating Systems

By default, CINs written before LabVIEW 5.0 run in a single thread, the
user interface thread. When you change a CIN to be reentrant (execute in
multiple threads), more than one execution thread can call the CIN at the
same time. If you want a CIN to run in the diagram’s current execution
thread, add the following code to your .c file:

CIN MgErr CINProperties(int32 mode, void *data)
{

switch (mode) {
case kCINIsReentrant:
*(Bool32 *)data = TRUE;
return nokErr;
break;

}

return mgNotSupported,;
}

If you read and write a global or static variable or call a non-reentrant
function within your CINs, keep the execution of those CINs in a single
thread. Even if a CIN is marked reentrant, the CIN functions other than
CINRun are called from the user interface thread. This meayisit and
CINDispose , for example, are never called from two different threads at
the same time, b@tINRun might be running when the user interface thread
is callingCINInit , CINAbort , or any of the other functions.

To be reentrant, the CIN must be safe to C&liRun from multiple

threads, and safe to call any of the otbi...procedures andINRun at

the same time. Other th@iNRun, you do not need to protect any of the
CIN...procedures from each other, because calls to them are always in one
thread.

Code Globals and CIN Data Space Globals

When you declare global or static local data within a CIN code resource,
LabVIEW allocates storage for that data. LabVIEW maintains your globals
across calls to various routines.

When you allocate a global in a CIN code resource, LabVIEW creates
storage for only one instance of it, regardless of whether the CIN’s VI is
reentrant or whether you have multiple references to the same code
resource in memory.

LabVIEW Code Interface Reference Manual 3-8 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

In some cases, you may want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW allocates
the CIN data space for the use of the code interface node. Within the
CINInit , CINDispose , CINAbort , andCINRun routines you can call the
GetDSStorage routine to retrieve the value of the CIN data space for the
current instance. You can also catDSStorage to set the value of the
CIN data space for this instance.

You can use this storage location to store any 4-byte quantity you want to
have for each instance of one of these globals. If you need more than four
bytes of global data, you can store a handle or pointer to a structure
containing your globals.

The following two lines of code are examples of the exact syntax of these
two routines, defined iaxtcode.h

int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN data
space LabVIEW allocates for each CIN code resource, or for each use
of the surrounding VI (if the VI is reentrant). You should call this
routine only fromCINInit , CINDispose , CINAbort , or CINRun.

int32 SetDSStorage(int32 newVal);

This routine sets the value of the 4-byte quantity in the CIN data space
LabVIEW allocates for each CIN use of that code resource, or the uses
of the surrounding VI, (if the VI is reentrant). It returns the old value

of the 4-byte quantity in that CIN data space. Call this routine only
from CINInit , CINDispose , CINAbort , or CINRun.

Examples

The following two examples illustrate the differences between code globals
and CIN data space globals. In both examples, the CIN takes a number and
returns the average of that number and the previous numbers passed to it.

ord

When you design your code, decide whether it is appropriate to use code
globals or data space globals. If you use code globals, calling the same code
resource from multiple nodes or different reentrant Vis will affect the same
set of globals. In the code globals averaging example, the result will
indicate the average of all values passed to the CIN.

© National Instruments Corporation 3-9 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

If you use CIN data space globals, each CIN calling the same code resource
and each VI can have its own set of globals, if the VI is reentrant. In the
CIN data space averaging example, the results would indicate the average
of values passed to a specific node for a specific data space.

If you have only one CIN referencing the code resource, and the VI
containing that CIN is not reentrant, it does not matter which method
you choose.

Using Code Globals

The following code implements averaging using code globals. Notice

the variables are initialized @@INLoad . If the variables are dynamically
created (if they are pointers or handles), you can allocate the memory for
the pointer or handle iBINLoad , and deallocate it i@INUnload . You can

do this becauseéINLoad andCINUnload are called only once, regardless

of the number of references to the code resources and the number of data
spaces. Notice thgseDefaultCINLoad macro is not used, because this

.c file has aCINLoad function.

/*

* CIN source file

*/

#include "extcode.h”

float64 gTotal;
int32 gNumElements;

CIN MgErr CINRun(float64 *new_num, float64 *avg);
CIN MgErr CINRun(float64 *new_num, float64 *avg)
{

gTotal += *new_num;
gNumElements++;
*avg = gTotal / gNumElements;

return nokErr;
}

CIN MgErr CINLoad(RstrcFile rf)
{
gTotal=0;
gNumElements=0;

return nokErr;

}

LabVIEW Code Interface Reference Manual 3-10 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

Using CIN Data Space Globals

The following is an alternative implementation of averaging using CIN
data space globals. A handle for the global data is allocat@linit
and stored in the CIN data space storage u&it@SStorage . When
LabVIEW calls theCINInit , CINDispose , CINAbort , or CINRun
routines, it ensureGetDSStorage andSetDSStorage will return the

4 byte CIN data space value for that node or CIN data space.

When you want to access that data, @GstdSStorage to retrieve the
handle and then dereference the appropriate fields (see the code for
CINRun in the following example). Finally, in yo@INDispose routine
you need to dispose of the handle.

/*
* CIN source file
*/
#include "extcode.h"
typedef struct {
float64 total;
int32 numElements;

} dsGlobalStruct;

CIN MgErr CINInit() {
dsGlobalStruct **dsGlobals;
MQgErr err = noErr;

if (!(dsGlobals = (dsGlobalStruct **)
DSNewHandle(sizeof(dsGlobalStruct))))
{

[*if 0, ran out of memory */
err = mFullErr;
goto out;

}

(*dsGlobals)—>numElements=0;
(*dsGlobals)—>total=0;

SetDSStorage((int32) dsGlobals);
out:
return nokErr;

}
CIN MgErr CINDispose()

{
dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

© National Instruments Corporation 3-11 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

if (dsGlobals)
DSDisposeHandle(dsGlobals);

return nokErr;
}
CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{
dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals) {
(*dsGlobals)—>total += *new_num;
(*dsGlobals)->numElements++;
*avg = (*dsGlobals)—>total /
(*dsGlobals)->numElements;

}

return noErr;

}

Calling a Windows 95 or
Windows NT Dynamic Link Library

No special techniques are necessary to call a Windows 95 or Windows NT
DLL. Call DLLs the way you ordinarily would in a Windows 95 or
Windows NT program.

Calling a Windows 3.1 Dynamic Link Library

Although dynamic link libraries (DLLs) can be called from a CIN, the
method for doing so is somewhat cumbersome. The Call Library Function
is a more convenient way to call a DLL, and the Watcom compiler is not
required. For more information on the Call Library Function, see

Chapter 13Advanced Functionsn theLabVIEW Function and VI
Reference Manuaand Chapter 2%;alling Code from Other Languages

in your G Programming Reference Manual

Before you attempt to link a dynamic link library with a CIN, first write a
C program calling it. Do this to ensure you are calling the DLL properly,
and the DLL behaves as expected. You can test the C program using the
debugging tools supplied by your compiler.

LabVIEW Code Interface Reference Manual 3-12 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

After you are sure the DLL works and you are calling it correctly, write
the 32-bit CIN that LabVIEW can call. The main purpose of this CIN is
to act as a go-between, translating LabVIEW 32-bit data to 16-bit data.
This CIN will take 32-bit pointers from LabVIEW and then call the DLL
with the appropriate arguments.

See theCalling 16-bit DLLssection of Chapter 3Programming
Overview in theWindows 32-bit Programming Guidection of the
Watcom C/386 User’s Guider a detailed discussion of how to call
a 16-bit DLL.

No special techniques are necessary to call a Windows 95 or
Windows NT DLL.

Calling a 16-Bit DLL

The following steps are a brief summary of how to call a 16-bit DLL from
a CIN. If you are not familiar with the functions used in this example, you
should refer tdMicrosoft Windows Programmer’s Refererarehe

Watcom C/386 User’s Guide

1. Load the DLL

Load the DLL by calling the functioloadLibrary() with the name
of the DLL. For example, the following code returns a handle to a
specified library.

HANDLE hDLL;
hDLL = LoadLibrary("library name");

This is a standard Windows function, and is documented iNlit®soft
Windows Programmer’s Reference

Note If you do not specify a full path, Windows searches the Windows directory,

the Windows system directory, the LabVIEW directory, and the directories listed
in the Path variable.

© National Instruments Corporation 3-13 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

2. Get the address of the desired function

Call GetProcAddress() with the name of the function you want to call.
For example, the following code returns the address of a specified function.
This address is a 16-bit pointer, and cannot be called using standard DLL
call methods. Instead you have to use the Watcom C method, shown as
follows.

FARPROC Ipfn;
Ipfn = GetProcAddress(hDLL, "function name");

As with LoadLibrary , this function is a standard Windows function, and
is documented in thilicrosoft Windows Programmer’s Reference

3. Describe the function

UseGetindirectFunctionHandle() to describe the function and the
types of each parameter it accepts. This function uses the following format.

HINDIR GetIndirectFunctionHandle(FARPROC proc
[, long paramltype,long param2type,

...,] long terminator);
proc is the address of the function returned in step 2.

The paramXtype values should be one of the following five constants
describing the parameters for the call to the function.

INDIR_DWORD The parameter will be a long word value
(a 32-bit integer).

INDIR_WORD The parameter will be a word value
(a 16-bit integer).

INDIR_CHAR The parameter will be a byte value
(an 8-bit integer).

INDIR_PTR The parameter is a pointer. Watcom will
automatically convert the 32-bit address
to a 16-bit far pointer before calling the
code. Notice this 16-bit pointer is good
only for the duration of the call; after the
function returns, the 16-bit reference to
the data is no longer valid.

LabVIEW Code Interface Reference Manual 3-14 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

INDIR_CDECL Make the call using Microsoft C calling
conventions. This keyword can be present
anywhere in the parameter list.

Forterminator, pass a value oRDIR_ENDLIST , which marks the end of
the parameter list.

GetIndirectFunctionHandle() returns a handle used when you want
to call the function.

4. Call the function

UselnvokelndirectFunction() to call the function. Pass it the handle
returned in step 3, along with the arguments you want to pass to the CIN.
This function uses the following format.

long InvokelndirectFunction(HINDIR proc

[, paraml, param2, ...]);

proc is the address of the function returned in step 3. Following that are the
parameters you want to pass to the DLL.

Example: A CIN that Displays a Dialog Box

You cannot call most Windows functions directly from a CIN. You can,
however, call a DLL, which in turn can call Windows functions. The
following example shows how to call a DLL from a CIN. The DLL calls

the WindowsaMessageBox function, which displays a window containing

a specified message. This function returns after the user presses a button
in the window.

The DLL

Most Windows compilers can create a DLL. Regardless of the compiler
you use to create a DLL, the way you call it from a CIN will be roughly the
same. Because you must have Watcom C/386 to write a Windows CIN, the
following example is for a Watcom DLL. The process for creating a DLL
using the Watcom compiler is described in Chaptek\88dows 32-Bit
Dynamic Link Librariesof theWatcom C/386 User's Guide

The following code is for a Watcom C/386 32-bit DLL that calls the
MessageBox function. The 16MessageBox function calls the Windows
MessageBox function; the only difference between these functions is the
former takes far 16-bit pointers, which are pointers passed to the DLL.
In this 32-bit environmentylessageBox expects near 32-bit pointers.

© National Instruments Corporation 3-15 LabVIEW Code Interface Reference Manual

Chapter 3

CIN Advanced Topics

Passing pointers to 32-bit DLLs is inherently tricky. In this example, a
32-bit near pointer is converted to a 16-bit far pointer and passed to
MessageBox via _16MessageBox. You cannot dereference a 16-bit
pointer directly in this DL—it must first be converted to a 32-bit pointer.
These pointer issues are not related to LabVIEW, but are unique to the
Windows 3.1 environment. It may be helpful to build a rudimentary 32-bit
Windows application (in place of LabVIEW) calling the DLL to test the use
of pointers.

The DLL function will accept two parameters. The first is the message to
display in the window. The second is the title to display in the window.
Both parameters are C strings, meaning they are pointers to the characters
of the string, followed by a terminating null character. Save the code in a
file calledMSGBXDLL.C
/*
* MSGBXDLL.C
*/
#include <windows.h>
#include <dos.h>
void FAR PASCAL Lib1(LPSTR message,

LPSTR winTitle)

{
_16MessageBox(NULL,
message,
winTitle,
MB_OK | MB_TASKMODAL);
}
int PASCAL WinMain(HANDLE hinstance,
HANDLE x1,
LPSTR IpCmdLine,
int x2)
{
DefineDLLEntry(1,
(void *) Lib1,
DLL_PTR,
DLL_PTR,
DLL_ENDLIST);
return(1);
}

LabVIEW Code Interface Reference Manual 3-16 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

In addition to the C file, you also need to create the following
MSGBXDLL.LNKfile.

system win386

file msgbxdll

option map

option stack=12K
option maxdata=8K
option mindata=4K

Enter the following commands at the DOS prompt to create the DLL.
C>wcc386 msgbxdll /zw

C>wlink @msgbxdll
C>wbind msgbxdll —d —n

Following is the LabVIEW block diagram for a VI calling a CIN that calls
the previously described DLL. It passes two LabVIEW strings to the CIN,
and the CIN returns an error code.

The CIN Code

The following C code is for a CIN calling the DLL you created previously.
This code assumes the file created by LabVIEW is nhamenisgbox.h .

This example does not pass a full pathdadLibrary . You should move
the DLL to the top level of your LabVIEW directory so it will be found.
See the note in the sectitnLoad the DL earlier in this chapter for
more information.

/*

* CIN source file

*/

#include "extcode.h"

#include "hosttype.h"

#include <windows.h>

CIN MgErr CINRun(LStrHandle message,
LStrHandle winTitle,

© National Instruments Corporation 3-17 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

int32 *err)

{

HANDLE hDLL = NULL;

FARPROC addr = NULL;

HINDIR hMessageBox;

int cb;

char *messageCStr = NULL,
*winTitleCStr = NULL;

MgErr cinErr = noErr;

*err=0;

hDLL = LoadLibrary("msgbxdll.dll");
if (hDLL < HINSTANCE_ERROR) {
err = 1;/ LoadLibrary failed */

goto out;
}
addr = GetProcAddress(hDLL, "Win386LibEntry");
if (faddr) {
err = 2;/ GetProcAddress failed */
goto out;
}
hMessageBox = GetlndirectFunctionHandle(
addr,
INDIR_PTR,
INDIR_PTR,
INDIR_WORD,

INDIR_ENDLIST);

if ((hMessageBox) {
err = 3; / GetIndirectFunctionHandle
failed */
goto out;
}
if ({(messageCStr =
DSNewPtr(LStrLen(*message)+1))) {
/* mem errs are serious-stop execution */
cinErr=mFullErr;
goto out;
}
if ((winTitleCStr =
DSNewPtr(LStrLen(*winTitle)+1))) {
/* mem errs are serious-stop execution */
cinErr=mFullErr;
goto out;

LabVIEW Code Interface Reference Manual 3-18 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

}
SPrintf(messageCStr, (CStr) "%P", *message);

SPrintf(winTitleCStr, (CStr) "%P", *winTitle);

cb = (WORD)InvokelndirectFunction(
hMessageBox,
messageCStr,
winTitleCStr,
0x1);

out:
if (messageCStr)
DSDisposePtr(messageCStr);
if (winTitleCStr)
DSDisposePtr(winTitleCStr);
if (hDLL)
FreeLibrary(hDLL);

return cinErr;

}

The CIN first loads the library, and then gets the address of the DLL entry
point. As described in th&atcom C/386 User’'s Guida Watcom DLL has
only one entry poin\Wwin386LibEntry . CallingGetProcAddress for a
Watcom DLL requests the address of this entry point. For a DLL created
using a compiler other than the Watcom C compiler, request the address
of the function you want to call.

To prepare for the DLL call after getting the address, the example calls
GetindirectFunctionHandle . Use this function to specify the data

types for the parameters you want to pass. The list is terminated with the
INDIR_ENDLIST value. Because there is only one entry point with a
Watcom DLL, pass an additional parameter (f@R_WORDparameter)

that is the number of the routine you want to call in the DLL. With a DLL
created using another compiler, you do not need to pass a function number,
because&etProcAddress returns the address of the desired function.

This example usdavokelndirectFunction to call the desired DLL
function, passing the number of the routine the example calls as the last
parameter. With a DLL made by a compiler other than the Watcom C
compiler, you don't need to pass the function number, because
GetProcAddress returns the address of the desired function.

Notice at each stage of calling the DLL, the code checks for errors and
returns an error code if it fails.

© National Instruments Corporation 3-19 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Notice also LabVIEW strings are different from C strings. C strings are
terminated with a null character. LabVIEW strings are not null-terminated;
instead, they begin with a four byte value indicating the length of the string.
Because the DLL expects C strings, this example creates temporary buffers
for the C strings usinpSNewPtr, and then use3Printf to copy the
LabVIEW string into the temporary buffers. You might consider modifying
the DLL to accept LabVIEW strings instead, because that would require no
temporary copies of the strings.

Compiling the CIN

Following is the LabVIEW makefile for this CIN. It assumes thdfile
is namednsgbox.c , the makefile is namedsgbox.lvm , and the three
pathnames for the directivesdeDir , cinToolsDir , andwcDir are
set correctly.

name=msgbox

type=CIN
codeDir=c:\labview\examples\cins\dll
cinToolsDir=c:\labview\cintools
wcDir=c:\wc

linclude $(cinToolsDir)\generic.mak

The following command line prompt compiles the CIN.

c:>wmake /f msgbox.lvm

Optimization

To optimize the performance of this CIN datladLibrary during the
CINLoad routine, and calfreeLibrary during theCINUnload routine.

This keeps the overhead of loading and unloading the DLL from affecting
your run-time performance. The following code shows the modifications
you need to make ©INRun, CINLoad , andCINUnload to implement

this optimization.

HANDLE hDLL = NULL;

CIN MgErr CINLoad(RsrcFile rf)

{
hDLL = LoadLibrary("msgbxdll.dll");

return nokErr;
}
CIN MgErr CINRun(LStrHandle message,
LStrHandle winTitle,
int32 *err)
{

LabVIEW Code Interface Reference Manual 3-20 © National Instruments Corporation

© National Instruments Corporation

Chapter 3 CIN Advanced Topics
FARPROC addr = NULL;
HINDIR hMessageBox;
int cb;
char *messageCStr = NULL,
*winTitleCStr = NULL;
MgErr cinErr = noErr;
*err=0;
if (hDLL < HINSTANCE_ERROR) {
err = 1;/ LoadLibrary failed */
goto out;
}
addr = GetProcAddress(hDLL,"Win386LibEntry");
if (laddr) {
err = 2;/ GetProcAddress failed */
goto out;
}
hMessageBox = GetIndirectFunctionHandle(
addr,
INDIR_PTR,
INDIR_PTR,
INDIR_WORD,
INDIR_ENDLIST);
if ((hMessageBox) {
[* GetlIndirectFunctionHandle failed */
*err = 3;
goto out;
}
if ({(messageCStr =
DSNewPtr(LStrLen(*message)+1))) {
/* mem errs are serious-stop execution */
cinErr=mFullErr;
goto out;
}
if ({(winTitleCStr =
DSNewPtr(LStrLen(*winTitle)+1))) {
/* mem errs are serious-stop execution */
cinErr=mFullErr;
goto out;
}
SPrintf(messageCStr, (CStr) "%P", *message);
SPrintf(winTitleCStr, (CStr) "%P", *winTitle);
3-21 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

cb = (WORD)InvokelndirectFunction(
hMessageBox,
messageCStr,
winTitleCStr,
0x1);
out:
if (messageCStr)
DSDisposePtr(messageCStr);
if (winTitleCStr)
DSDisposePtr(winTitleCStr);

return cinErr;
}
CIN MgErr CINUnload(void)

{
if (hDLL)
FreeLibrary(hDLL);

return nokErr;

}

LabVIEW Code Interface Reference Manual 3-22

© MNational Instruments Corporation

External Subroutines

This chapter describes how to create and call shared external subroutines
from other external code modules.

Introduction

An external subroutine (@haredexternal subroutine) is a function you

can call from multiple external code modules. By placing common code in
an external subroutine, you can avoid duplicating the code in each external
code module. You can also use external subroutines to store information
that must be accessible to multiple external code modules.

External subroutines are different from CINs in that LabVIEW diagrams
do not call them directly. Instead, an external subroutine is a function
CINs and other external subroutines call. You store external subroutines
in separate files, not in Vls.

When you load a VI containing a CIN, LabVIEW determines whether
the CIN references external subroutines. If it does, LabVIEW loads the
external subroutines into memory and modifies the calling code so it
can call the subroutine. LabVIEW modifies any additional subroutines
referencing the same external subroutine to reference the code already
in memory. When you remove the last code referencing the external
subroutine from memory (when you close the VI containing the CIN),
LabVIEW also unloads the external subroutine.

Placing code in external subroutines is helpful for several reasons.

e Asingle subroutine is easier to maintain, because you need update
only a single file to affect all calls on the subroutine.

» Asingle subroutine can also reduce memory requirements, because
only a single instance of the code is in memory, regardless of the
number of calls to the subroutine.

» An external subroutine can maintain information used by multiple
external code modules. The first time the external subroutine is called,
it can store data in a variable global to the external subroutine. Other
external code modules can call the same external subroutine to retrieve
the common data.

© National Instruments Corporation 4-1 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

You store external subroutines as files, so you have to give each one a
unique name. When LabVIEW searches for a subroutine file, it loads the
first file it finds with the correct name.

Note External subroutines are not supported on the Power Macintosh. The
Macintosh OS on the Power Macintosh uses shared libraries, which provide
a much cleaner mechanism for sharing code. If you need to share code among
multiple CINs on the Power Macintosh, consult your development environment
documentation to learn how to build a shared library.

Although external subroutines are supported on Solaris 2, HP-UX, and
Concurrent PowerMAX, it is suggested you use shared libraries instead.

Shared library mechanisms compatible with LabVIEW are available on all
platforms. Under Microsoft Windows 3.1, Windows 95, and Windows NT, they
are referred to as DLLs (dynamic link libraries). Under UNIX they are referred
to as shared libraries or dynamic libraries.

Creating Shared External Subroutines

Normally, when you use a compiler to create a program, the compiler
includes the code for all subroutines in a single file calleéxeeutable
External subroutines differ from standard subroutines in that you do not
compile the code for the external subroutine with the code for the calling
subroutine. Instead, your makefile, and consequently the code, indicate the
calling code references an external subroutine. LabVIEW loads external
subroutines based on this information and links the calling code in memory,
so the calling code points correctly to the external subroutine.

You need to compile the calling code, even though its subroutines are not
all present. LabVIEW must be able to determine that your code calls an
external subroutine, find the subroutine, and load it into memory. When the
subroutine is loaded, LabVIEW must be able to modify the memory image
of the calling code so it correctly references the memory location of the
external code. Finally, LabVIEW may need to create and initialize memory
space the external subroutine uses for global data. The following sections
describe how to make this work.

LabVIEW Code Interface Reference Manual 4-2 © National Instruments Corporation

Chapter 4 External Subroutines

External Subroutines

LabVIEW calls CINs, but only your code calls external subroutines.
Instead of creating seven routin€NRun, CINSave, and so on), you
create only one entry point\(SBMain) for an external subroutine. When
another external code module calls this external subroutiney#8Main
subroutine executes.

LVSBMain is similar toCINRun. You can have an arbitrary number

of parameters, and each parameter can be of arbitrary data type. Also,
because only your code calls the subroutine, you can declare any return
data type, and you do not need to place the @idn front of the function
prototype. You must ensure the parameters and return value are consistent
between the calling and called code.

You compile an external subroutine almost the same way you compile a
CIN. Because multiple external code modules can call the same external
subroutine, LabVIEW does not load the code into a specific VI. Instead,
LabVIEW loads the code from the file created by the makefile when the
code is needed.

Macintosh

(THINK C Compiler and CodeWarrior 68K Compiler) To make a subroutine
using the THINK or CodeWarrior 68K C Compiler, build the code
resource (thamp file) as discussed in tHateps for Creating a CIN
section of Chapter LLIN Overview but replace th€INLib library with
the appropriate LVSBLIb library and select téroutine option when
runninglvsbutil.app

(MPW Compiler) The only difference between the makefiles of subroutines
and of CINs is that for a subroutine you specify a typé&/&Bin your.lvm

file instead ofCIN. See thé&teps for Creating a Clsection of Chapter 1,
CIN Overview for a discussion of the makefile contents.

Microsoft Windows 3.1, Windows 95, and
Windows NT

The only difference between the makefiles of subroutines and of CINs is
that for a subroutine you specify a type ¥6Bin your.lvm file instead

of CIN. See thesteps for Creating a ClNection of Chapter TTIN

Overview for a discussion of the makefile contents.

© National Instruments Corporation 4-3 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

Calling Code

Solaris 1.x, Solaris 2.x, HP-UX, and
Concurrent PowerMAX

(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C

Compiler) Thelvmkmf command for a CIN calling an external subroutine is
the same as described in Bteps for Creating a ClBection of Chapter 1,
CIN Overviewexcept you use the option with the typ&VSBto indicate
you are creating a LabVIEW subroutine instead of a CIN.

For example, if you want to create an external subroutine dalted,
you could use the following command:

lvmkmf -t LVSB find

This command creates a makefile you could use to create the
external subroutine.

You call external subroutines the same way you call standard
C subroutines. LabVIEW modifies the code at load time to ensure
the calling code passes control to the subroutine correctly.

When you call the external subroutine, do not use the function name
LVSBMain to call the function. Instead, use the name you gave the external
subroutine. If you created an external subroutine cédtedsb , which

in turn contained ahvSBMain() subroutine, for example, you should call
the function as though it were nanfect() . The argument list and return
type should be the same as the argument and return type for the
LVSBMain() subroutine.

You should also create a prototype for the function. This prototype should
have the keywordxtern so the compiler will compile the CIN, even
though the subroutine is not present.

When you create the makefile for the CIN, you identify the names of

the external subroutines the CIN calls. The LabVIEW makefile embeds
information in your code LabVIEW uses to determine your code calls
external subroutines. When you load external code referencing external
subroutines into a VI, LabVIEW searches for the subroutine files. If it finds
the subroutines, LabVIEW performs the appropriate linking. If a file is not
found, LabVIEW displays a dialog box prompting you to find it. If you
dismiss the dialog box without selecting the file, the VI loads into memory
with a broken run arrow, indicating the VI is not executable.

LabVIEW Code Interface Reference Manual 4-4 © National Instruments Corporation

Chapter 4 External Subroutines

One way to ensure LabVIEW can find external subroutines is to place
them in the directories you defined in the search path section of the
LabVIEW defaults file. See th@onfiguring LabVIEWsection of

Chapter 8Customizing Your LabVIEW Environmeat yourLabVIEW
User Manualfor more information on setting path preferences.

Macintosh

(THINK C Compiler) The THINK C project must have an extra file named
glue.c specifying each external subroutine. Each reference to the external
subroutine should have an entry as follows ingtbe.c file:

long gLVSB< external subroutine name >="LVSB
void < external subroutine name >(void);
void < external subroutine name >(void) {
asm {
move.l gLVSB< external subroutine name >, a0
jmp (a0)
}
}

(CodeWarrior 68K Compiler) The CodeWarrior project must have an extra file
calledglue.c , which specifies each external subroutine. Each reference to
the external subroutine should have an entry as follows igitae file:

long gLVSB< external subroutine name >="LVSB

void < external subroutine name >(void);

asm void < external subroutine name >(void) {
move.l gLVSB< external subroutine name > a0
imp (a0)
}

(MPW Compiler) The makefile for a calling CIN is the same as described
in the Steps for Creating a CINection of Chapter LZIN Overview
except you use the optionalbrNames directive to identify the
subroutines the CIN references. Specifically, if your code calls two
external subroutineg, andB, you need to have the following line in

the makefile code:

subrNames = A B

© National Instruments Corporation 4-5 LabVIEW Code Interface Reference Manual

Chapter 4

External Subroutines

Microsoft Windows 3.1,
Windows 95, and Windows NT

The makefile for a calling CIN is the same as described iBtigs for
Creating a CINsection of Chapter LIN Overview except you use

the optionakubrNames directive to identify the subroutines the CIN
references. Specifically, if your code calls two external subroutines,
AandB, you need to have the following line in the code makefile, prior
to the include statement.

subrNames = A B

If you are using the Visual C IDE, follow the steps describestéps for
Creating a CINsection of Chapter LLIN Overviewwith the exception of
addinglvsb.obj instead otin.obj to your project.

Solaris 1.x, Solaris 2.x, HP-UX, and
Concurrent PowerMAX

(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C

Compiler) Thelvmkmf command for a calling CIN is the same as described
in theSteps for Creating a Clblection of Chapter TIN Overviewexcept
you use the optionaéxt option with the name of a file listing the names
of the subroutines called by the CIN, one name per line. The makefile
Ivmkmf creates uses this file to append linkage information to the CIN
object file.

For example, if your code calls two external subroutines)dB,

you create a new text file with the namen the first line an@ on the
second. If the list of subroutines is in a file caketrs , and you want
to call the calling CIN lookup, you can use the following command to
create a makefile.

Ivmkmf -ext subrs lookup

This command creates a makefile you can use to create the CIN.

LabVIEW Code Interface Reference Manual 4-6 © National Instruments Corporation

Chapter 4 External Subroutines

External Subroutine Example

The following example illustrates the process of building an external
subroutine that sums the elements of an array. This external subroutine can
be used by a CIN that computes the mean and also by a CIN that computes
the definite integral.

As described in thExternal Subroutinesection of this chapter, you

must write a function calledvSBMain() . When you call the external
subroutine from your CIN or another external subroutine, LabVIEW
passes control to the/SBMain() function. When you call the external
subroutine, the arguments to it and to its return type should be the same
as in the definition oEvVSBMain() .

The following is the C code for this external subroutine. Narsanitc .
/*
*sum.c
*/
#include "extcode.h"
float64 LVSBMain(float64 *x, int32 n);
float64 LVSBMain(float64 *x, int32 n)
{
int32 i;
float64 sum;
sum = 0.0;
for (i=0; i<n; i++)
sSum += *X++;

return sum,;

}

Compiling the External Subroutine

The procedure you use in compiling the external subroutine depends upon
the platform and programming environment you are using.

Macintosh

(THINK C Compiler and CodeWarrior 68K Compiler) To make a subroutine
using the THINK or CodeWarrior 68K C Compiler, create a project
namedsum or sum.u , respectively, and adadim.c andLVSBLib to the
project. Do not include th€INLib file in your project. Set the options
in the Options... andSet Project Typedialog boxes as described in the
Steps for Creating a Clsection of Chapter IIN Overview After you
createsum.tmp , runlvsbutil.app and select th8ubroutine option.

© National Instruments Corporation 4-7 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

(MPW Compiler) As described in thExternal Subroutinesection of this
chapter, you compile an external subroutine the same way you compile a
CIN. The first step is to create a makefile specification. Following are the
contents of the makefile specification for this example. Notideirall
commands must end with a color).(Name the filesum.lvm .

name =name sum
type =type LVSB
codeDir= codeDir : Complete pathname to the folder

containing thec file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools folder.

incIDir = inclDir - (optional) Complete or partial

pathname to a folder containing
additional.h files.

Create the subroutine using the following command.

Directory < full pathname to CIN directory >
cinmake sum

Microsoft Windows 3.1

(Watcom C Compiler) As described in thExternal Subroutinesection of

this chapter, you compile an external subroutine the same way you compile
a CIN. The first step is to create a makefile specification. Following are the
contents of the makefile specification for this example. Noticeiall
commands must endithouta backslash(). Name the filesum.lvm .

name = name sum
type = type LVSB
codeDir= codeDir Complete pathname to the directory

containing thec file.

cinToolsDir =cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.

LabVIEW Code Interface Reference Manual 4-8 © National Instruments Corporation

Chapter 4 External Subroutines

incIDir = inclDir (optional) Complete or partial
pathname to a directory containing
any additionalh files.

wcDir = weDir Complete pathname to the directory
containing the Watcom C compiler.

linclude $(cinToolsDir)\generic.mak

Create the subroutine using the following command.

wmake /f sum.lvm

Microsoft Windows 95 and Windows NT

As described in thExternal Subroutinesection of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create a makefile specification. Following are the contents
of the makefile specification for this example. Name thesfite.lvm .

name = name sum

type = type LVSB
linclude $(CINTOOLSDIR)\ntlvsb.mak

Create the subroutine using the following command.

nmake /f sum.lvm

Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX

(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C

Compiler) As described in thExternal Subroutinesection of this chapter,
you compile an external subroutine the same way you compile a CIN.
The first step is to create the makefile for the subroutine using the shell
scriptlvmkmf . You can then use the standardke command to make

the subroutine code. For this example, enter the following command.

Ivmkmf -t LVSB sum
This creates a file calledakefile . After executingvmkmf , entemmake,

which uses the makefile to create a file cafled.Isb . CINs and other
external subroutines can call tisisn.Isb file.

© National Instruments Corporation 4-9 LabVIEW Code Interface Reference Manual

Chapter 4

External Subroutines

Calling Code Example

The following example shows how to call an external subroutine.
In this example, a CIN uses the external subroutine to calculate the
mean of an array.

The diagram for the VI is shown in the following illustration. To avoid
confusion, create the calling source code and makefiles in a directory
separate from the external subroutine. Save the Ylasean.vi

rmean|

Save thec file for the CIN asalcmean.c . The following is a listing of
calcmean.c , with its CINRun routine filled in and the prototype for the
sum external routine added.
/*
* CIN source file
*/
#include "extcode.h"
/*
* typedefs
*/
typedef struct {
int32 dimSize;
float64 arg1[1];
} TD1;
typedef TD1 **TD1HdI;

extern float64 sum(float64 *x, int32 n);
CIN MgErr CINRun(TD1HdI xArray, float64 *mean);

CIN MgErr CINRun(TD1HdI xArray, float64 *mean)
{
float64 *x, total;
int32 n;

X = (*xArray)—>arg1;

n = (*xArray)—>dimSize;
total = sum(x, n);

*mean = total/(float64)n;
return noErr;

}

LabVIEW Code Interface Reference Manual 4-10 © National Instruments Corporation

Chapter 4 External Subroutines

CINRun calculates the mean using the external subrositimeo calculate
the sum of the array. The external subroutine is declared with the keyword
extern so the code compiles even though the subroutine is not present.

Compiling the Calling Code

The procedure you use for compiling the calling code depends upon which
platform and programming environment you are using.

Macintosh

(THINK C Compiler) The THINK C project must have an extra file called
glue.c which specifies each external subroutine. The reference to the
external subroutinsum should have an entry as follows in tiige.c file:

long gLVSBsum = 'LVSB';
void sum(void);
void sum(void) {

asm {
move.l gLVSBsum, a0
jmp(a0)
}

}

(CodeWarrior 68K Compiler) The CodeWarrior project must have an

extra file calledglue.c , which specifies each external subroutine. Each
reference to the external subroutinen should have an entry as follows
in theglue.c file:

long gLVSBsum = 'LVSB';

void sum(void);

asm void sum(void){
move.l gLVSBsum, a0
jmp (a0)
}

(MPW Compiler) As described in th€alling Code Examplsection of this
chapter, when you compile a CIN referencing an external subroutine, you
use the same makefile as described irStle@s for Creating a Clsection

of the Chapter 1ICIN Overviewwith the addition of a directive identifying
the subroutines this CIN uses. Following are the contents of the makefile
specification for this example. Notice thé& command must end in a

colon ¢). Name the makefilealcmean.lvm

© National Instruments Corporation 4-11 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

name = name calcmean
type = type CIN
codeDir= codeDir : Complete pathname to the folder

containing thec file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools folder.

inclDir = inclDir (optional) Complete or partial
pathname to a folder containing
additional.h files.

subrNames subrNames sum

Create the CIN using the following command:

Directory < full pathname to CIN directory >
cinmake sum

Microsoft Windows 3.1

(Watcom C Compiler) As described in th€alling Codesection of this

chapter, when you compile a CIN referencing an external subroutine, you
use the same makefile as described irStfeps for Creating a Clisection

of the Chapter 1CIN Overviewwith the addition of a directive identifying

the subroutines this CIN uses. Following are the contents of the makefile
specification for this example. Notice theé command must engithout

a backslash (). Name the makefilealcmean.lvm

name = name calcmean
type = type CIN
codeDir = codeDir Complete pathname to the directory

containing thec file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.
incIDir = incIDir (optional) Complete or partial

pathname to a directory containing
additional.h files.

LabVIEW Code Interface Reference Manual 4-12 © National Instruments Corporation

Chapter 4 External Subroutines

wcDir = weDir Complete pathname to the directory
containing the Watcom C compiler.

subrNames = subrNames sum

linclude $(cinToolsDir)\generic.mak

Create the CIN using the following command:

wmake /f calcmean.lvm

Microsoft Windows 95 and Windows NT

(Microsoft Visual C Command Line) As described in th€alling Code

section of this chapter, when you compile a CIN referencing an external
subroutine, you use the same makefile as described Bteips for

Creating a CINsection of the Chapter CIN Overviewwith the addition

of a directive identifying the subroutines this CIN uses. Following are
the contents of the makefile specification for this example. Name the
makefilecalcmean.lvm

name = name calcmean
type = type CIN
subrNames = subrNames sum

linclude $(CINTOOLSDIR)\ntlvsb.mak

Create the CIN using the following command:
nmake /f calcmean.lvm

(Microsoft Visual C IDE) Building CINs that use external subroutines is not
supported using Microsoft Visual C IDE. A possible alternative would be
to use a DLL instead of an external subroutine.

Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent PowerMAX

(Unbundled Sun C Compiler, HP-UX C/ANSI C Compiler, and Concurrent C

Compiler) As described in th€alling Codesection of this chapter,

when you compile a CIN referencing an external subroutine, you use the
lvmkmf script with an addition directive identifying a file with the names
of all subroutines the CIN calls.

For this example, create a text file with the naneansubs . It should
contain a single line with the wostim.

© National Instruments Corporation 4-13 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

You then create the makefile for this CIN using the following command:

lvmkmf -ext meansubs calcmean
This creates a file calledakefile . After executingvmkmf , entemmake,

which uses the makefile to create a file catl@dmean.Isb . You can
load thecalcmean.Isb file into the CIN.

LabVIEW Code Interface Reference Manual 4-14 © National Instruments Corporation

Manager Overview

This chapter gives an overview of the function libraries, cafladagers

which you can use in external code modules. These include the memory
manager, the file manager, and the support manager. The chapter also
introduces many of the basic constants, data types, and globals contained
in the LabVIEW libraries.

Note For descriptions of specific manager functions, see BN Function Overview
section of the LabVIEWOnline Referenceavailable by selectinglelp»Online
Reference

Introduction

External code modules have a large set of functions you can use to perform
simple and complex operations. These functions, organized into libraries
called managers, range from low-level byte manipulation to routines for
sorting data and managing memory. All manager routines described in this
chapter are platform-independent. If you use these routines, you can create
external code modules that will work on all platforms LabVIEW supports.

A fundamental component of platform independence are data types that
do not depend on the peculiarities of various compilers. The C language,
for example, does not define the size of an integer. Without an explicit
definition of the size of each data type, it is almost impossible to create
code that works identically across multiple compilers.

LabVIEW managers use data types that explicitly indicate their size.

For example, if a routine requires a 4-byte integer as a parameter, you
define the parameter asiatd32 . The managers define data types in terms

of the fundamental data types for each compiler. Thus, on one compiler, the
managers might define &an32 as arint , while on another compiler, the
managers might define &m32 as dongint . When writing external

code modules, use the manager data types instead of the host computer data
types, because your code will be more portable and have fewer errors.

Most applications need routines for allocating and deallocating memory
on request. You can use tmemory manageo dynamically allocate,
manipulate, and release memory. The LabVIEW memory manager

© National Instruments Corporation 5-1 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

supports dynamic allocation of both non-relocatable and relocatable
blocks, using pointers and handles. For more information, sééetimory
Managersection of the LabVIEWDnline Referencéor more information.

Applications that manipulate files can use the functions ifilthmanager

This set of routines supports basic file operations such as creating, opening,
and closing files, writing data to files, and reading data from files. In
addition, file manager routines allow you to create directories, determine
characteristics of files and directories, and copy files. File manager routines
use a LabVIEW data type for file pathnameatf s) that provides a
platform-independent way of specifying a file or directory path. You can
translate @ath to and from a host platform’s conventional format for
describing a file pathname. See Hile Managersection of the LabVIEW
Online Referencéor more information.

The support managecontains a collection of generally useful functions,
such as functions for bit or byte manipulation of data, string manipulation,
mathematical operations, sorting, searching, and determining the current
time and date. See tisipport Managesection of the LabVIEWDnline
Referencdor more information.

Basic Data Types

Scalar Data Types

There are five basic data types: scalar, the char data type, dynamic,
memory-related, and constants.

The two kinds of scalar data types are Booleans and numerics,
described below.

Booleans

External code modules work with two kinds of Booleans—those existing
in LabVIEW block diagrams and those passing to and from manager
routines. The manager routines use a conventional form of Boolean, where
0is FALSE and 1 is TRUE. This form of Boolean is call&bal32 , and

it is stored as a 32-bit value.

LabVIEW block diagrams store Boolean scalars as 8-bit values. The value
is 1 if the Boolean is TRUE, and 0 if the Boolean is FALSE. This form of
Boolean is called anvBoolean .

LabVIEW Code Interface Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Manager Overview

The two forms of Booleans are summarized in the following table.

Name Description

Bool32 32-bit integer, 1 if TRUE, O if FALSE

LVBoolean 8-bit integer, 1 if TRUE, 0 if FALSE

Numerics

The managers support 8-, 16-, and 32-bit signed and unsigned integers.
For floating-point numbers, LabVIEW supports the single (32-bit), double
(64-bit), and extended floating-point (at least 80-bit) data types. LabVIEW
supports complex numbers containing two floating-point numbers, with
different complex numeric types for each of the floating-point data types.
The following lists show the basic LabVIEW data types for numbers.

* Signed Integers

— int8 8-bit integer
— intl6 16-bit integer
— int32 32-bit integer
« Unsigned Integers
— ulnt8 8-bit unsigned integer
— ulntl6 16-bit unsigned integer
— ulnt32 32-bit unsigned integer
* Floating-Point Numbers
— float32 32-bit floating-point number
— float64 64-bit floating-point number
— floatExt extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit structure
with twoint32 componentanhi andmlo, and arintl6 componente.

On the Sun, extended-precision numbers are stored as 128-bit
floating-point numbers. On the 68K Macintosh, extended-precision
numbers are stored in the 96-bit MC68881 format. On the Power
Macintosh, extended-precision numbers are stored in the 128-bit
double-double format. On HP and Concurrent, extended precision
numbers are the same as float64.

© National Instruments Corporation 5-3 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

char Data Type

Complex Numbers

The complex data types are structures with two floating-point components,
re andim. As with floating-point numbers, complex numbers can have
32-bit, 64-bit, and extended-precision components. The following
segments of code give the type definitions for each of these complex
data types.

typedef struct {
float32 re, im;
} cmplx64;

typedef struct {
float64 re, im;
} cmplx128;

typedef struct {
floatExt re, im;
} cmplxExt;

Thechar data type is defined by C to be a signed byte value. LabVIEW
defines an unsignethar data type, with the following type definition.

typedef uint8 uChar;

Dynamic Data Types

LabVIEW defines a number of data types you must allocate and deallocate
dynamically.Arrays strings andpathshave data types you must allocate
using memory manager and file manager routines.

Arrays

LabVIEW supports arrays of any of the basic data types described in
theScalar Data Typesection of this chapter. You can construct more
complicated data types using clusters, which can in turn contain scalars,
arrays, and other clusters.

The first four bytes of a LabVIEW array indicate the number of elements
in the array. The elements of the array follow the length field. Chapter 2,
CIN Parameter Passingjives examples of how to manipulate arrays.

LabVIEW Code Interface Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Manager Overview

Strings

LabVIEW supports C-style strings and Pascal-style strings, a special
string data type you use for string parameters to external code modules
calledLStr , and lists of strings. The support manager contains routines
for manipulating strings and converting them among the different

types of strings.

C-Style Strings (CStr)

A C string €Str) is a series of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit.

Most manager routines use C strings, unless you specify otherwise.
The following code segment is the type definition for a C-style string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)

A Pascal stringRStr) is a series of unsigned characters. The value of the
first character indicates the length of the string. This gives a range of 0 to
255 characters. The following code segment is the type definition for a
Pascal-style string.

typedef uChar Str255[256], Str31[32],
*StringPtr,
**StringHandle;
typedef uChar *PStr;

LabVIEW Strings (LStr)

The first four bytes of a LabVIEW string$tr) indicate the length of the
string, and the specified number of characters follow. This is the string data
type used by LabVIEW block diagrams. The following code segment is the
type definition for an.Str string.

typedef struct {
int32 cnt;
/* number of bytes that follow */
uChar str[1];
/* cnt bytes */
} LStr, *LStrPtr, **LStrHandle;

© National Instruments Corporation 5-5 LabVIEW Code Interface Reference Manual

Chapter 5

Manager Overview

Concatenated Pascal String (CPStr)

Many algorithms require manipulation of lists of strings. Arrays of strings
are usually the most convenient representation for lists. This representation
can place a burden on the memory manager, however, because of the large
number of dynamic objects that must be managed. To make working with
lists more efficient, LabVIEW supports the concatenated Pascal string
(CPpstr) data type that is a list of Pascal-style strings concatenated into a
single block of memory. You can use support manager routines to create
and manipulate lists using this data structure.

This data type is defined as follows.

typedef struct {
int32 cnt;
/* number of pascal strings that follow */
uChar str[1];
/* cnt concatenated pascal strings */
} CPStr, *CPStrPtr, *CPStrHandle;

Paths (Path)

A path (short for pathname) specifies the location of a file or directory
in a computer’s file system. There is a separate LabVIEW data type for
a path (represented Rath), which the file manager defines in a
platform-independent manner. The actual data type for a path is private
to the file manager and subject to change. You create and manipulate
Path s using file manager routines.

Memory-Related Types

LabVIEW uses pointers and handles to reference dynamically allocated
memory. These data types are described in detail iGltid-unction
Overviewsection of the LabVIEVOnline Referencand have the

following type definitions.

typedef uChar *UPtr;
typedef uChar *UHandle;

LabVIEW Code Interface Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Manager Overview

Constants
The managers define the following constant for use with external
code modules.
NULL 0(uInt32)

The following constants define the possible values oBthws2 data type.

FALSE 0 (int32)
TRUE 1 (int32)

The following constants define the possible values of WEoolean
data type.

LVFALSE 0 (uInt8)
LVTRUE 1 (unt8)

Memory Manager

This section describes the memory manager, a set of platform-independent
routines for allocating, manipulating, and deallocating memory from
external code modules.

Read this section if you need to perform dynamic memory allocation or
manipulation from external code modules. If your external code operates
on data types other than scalars, you need to understand how LabVIEW
manages memory and know the utilities that manipulate data.

Note For descriptions of specific memory manager functions, seeteamory
Managersection ofthe LabVIEW Online Referengeavailable by selecting
Help»Online Reference

Memory Allocation

Applications use two types of memory allocation: static and dynamic.

Static Memory Allocation

With static allocation, the compiler determines memory requirements when
you create a program. When you launch the program, LabVIEW creates
memory for the known global memaory requirements of the application.
This memory remains allocated while the program runs. This form of
memory management is very simple to work with because the compiler
handles all the details.

© National Instruments Corporation 5-7 LabVIEW Code Interface Reference Manual

Chapter 5

Manager Overview

Static memory allocation cannot address the memory management
requirements of most real-world applications, however, because you
cannot determine most memory requirements until run-time. Also,
statically declared memory may result in larger memory requirements,
because the memory is allocated for the life of the program.

Dynamic Memory Allocation: Pointers and Handles

With dynamic memory allocation, you reserve memory when you need it,
and free memory when you are no longer using it. Dynamic allocation
requires more work on your part than static memory allocation, because
you have to determine memory requirements and allocate and deallocate
memory as necessary.

The LabVIEW memory manager supports two kinds of dynamic

memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request a block of memory of a

given size, and the routine returns the address of the block to your CIN.
When you no longer need the block of memory, you call a routine to free
the block. You can use the block of memory to store data, and you reference
that data using the address the manager routine returned when you created
the pointer. You can make copies of the pointer and use them in multiple
places in your program to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which
means the manager never moves the memory block to which a pointer
refers while that memory is allocated for a pointer. This avoids problems
that occur when you need to change the amount of memory allocated to

a pointer because other references would be out of date. If you need more
memory, there might not be sufficient memory to expand the pointer's
memory space without moving the memory block to a new location.

This causes problems if an application had multiple references to the
pointer, because each pointer refers to the old memory address of the data.
Using invalid pointers can cause severe problems.

A second form of memory allocation uses handles to address this problem.
As with pointers, when you allocate memory using handles, you request

a block of memory of a given size. The memory manager allocates the
memory and adds the address of the memory block to a tisaster

pointers The memory manager returns a handle that is a pointer to the
master pointer. If you reallocate a handle and it moves to another address,
the memory manager updates the master pointer to refer to the new address.
As long as you look up the correct address using the handle, you access
the correct data.

LabVIEW Code Interface Reference Manual 5-8 © National Instruments Corporation

Chapter 5 Manager Overview

You use handles to perform most memory allocation in LabVIEW. Pointers
are available, however, because in some cases they are more convenient and
simpler to use.

Memory Zones

LabVIEW's memory manager interface has the ability to distinguish
between two distinct sections, called zones. LabVIEW uses the data space
(DS) zone only to hold VI execution data. LabVIEW uses the application
zone (AZ) to hold all other data. Most memory manager functions have
two corresponding routines, one for each of the two zones. Routines that
operate on the data space zone begin with DS and routines for the
application zone begin with AZ.

Currently, the two zones are actually one zone, but this may change in
future releases of LabVIEW; therefore, a CIN programmer should write
programs as if the two zones actually exist.

External code modules work almost exclusively with data created in
the DS zone, although exceptions exist. In most cases, you use the
DS routines when you need to work with dynamically allocated memory.

All data passed to or from a CIN is allocated in the DS zone except for
Path s, which use AZ handles. You should only use file manager functions
(not the AZ memory manager routines) to maniputatix s. Thus, your

CINs should use the DS memory routines when working with parameters
passed from the block diagram. The only exceptions to this rule are handles
created using thgizeHandle function, which allocates handles in the
application zone. If you pass one of these handles to a CIN, your CIN
should use AZ routines to work with the handle.

Using Pointers and Handles

Most memory manager functions have a DS routine and an AZ routine.
In the following discussionXXFunctionName refers to a function in

a general context. In these situatioxi®,can be eithebSor AZ When

a difference exists between the two zones, the specific function name
is given.

You create a handle usidgtNewHandle, with which you specify the
size of the memory block. You create a pointer uxixiyewPtr.
XXNewHandleClr andXXNewPClr are variations that create the
memory block and set it to all zeros.

© National Instruments Corporation 5-9 LabVIEW Code Interface Reference Manual

Chapter 5

Manager Overview

When you are finished with the handle or pointer, release it using
XXDisposeHandle or XXDisposePtr

If you need to resize an existing handle, you can use the
XXSetHandleSize routine. XXGetHandleSize determines the size

of an existing handle. Because pointers are not relocatable, you cannot
resize them.

A handle is a pointer to a pointer. In other words, a handle is the address
of an address. The second pointer, or address, is a master pointer, which
means it is maintained by the memory manager. Languages that support
pointers provide operators for accessing data by its address. With a handle,
you use this operator twice; once to get to the master pointer, and a second
time to get to the actual data. A simple example of how to work with
pointers and handles in C is shown in the following section.

While operating within a single call of a CIN node, an AZ handle will

not move unless you specifically resize it. In this context there is no need
to lock or unlock handles. If your CIN maintains an AZ handle across
different calls of the same CIN (an asynchronous CIN), the AZ handle
may be relocated between calls. In this caZélLock andAZHUnlock

may be useful if you do not want the handle to relocate. A DS handle
will never move unless you resize it.

Additional routines make it easy to copy and concatenate handles and
pointers to other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example

The following example code shows how you work with a pointer
to anint32

int32 *myInt32P;

myInt32P = (int32 *)DSNewPtr(sizeof(int32));
*myInt32P = 5;
X =*myInt32P + 7;

DSDisposePtr(myInt32P);

The first line declares the variablgInt32P as a pointer to, or the address
of, a signed 32-bit integer. This does not actually allocate memory for the
int32 ; it creates memory for an address and associates the name
myInt32P with that address. Theat the end of the variable name is a
convention used in this example to indicate the variable is a pointer.

LabVIEW Code Interface Reference Manual 5-10 © National Instruments Corporation

Chapter 5 Manager Overview

The second line creates a block of memory in the data space large enough
to hold a single signed 32-bit integer and sstst32P to refer to this
memory block.

The third line places the value 5 in the memory location to which
myInt32P refers. The operator refers to the value in the address location.

The fourth line setg equal to the value at addresgint32P plus 7.
The last line frees the pointer.

The following code is the same example using handles instead of pointers.
int32 *myInt32H;

myInt32H =(int32**)DSNewHandle(sizeof(int32));
**myInt32H = 5;
X =**myInt32H + 7;

DSDisposeHandle(myInt32H);

The first line declares the variabtgInt32H as a handle to an a signed
32-bit integer. Strictly speaking, this line declaregnt32H as a pointer
to a pointer to amt32 . As with the previous example, this declaration
does not allocate memory for ti32 ; it creates memory for an address
and associates the namgint32H with that address. Theat the end of
the variable name is a convention used in this example to indicate the
variable is a handle.

The second line creates a block of memory in the data space large
enough to hold a singliet32 . DSNewHandle places the address of the
memory block as an entry in the master pointer list and returns the address
of the master pointer entry. Finally, this line seynt32H to refer to the
master pointer.

The third line places the value 5 in the memory location to which
myInt32H refers. BecausayInt32H is a handle, you use theoperator
twice to get to the data.

The fourth line setg equal to the value referencedryint32H plus 7.
The last line frees the handle.

This example shows only the simplest aspects of how to work with pointers
and handles in C. Other examples throughout this manual show different
aspects of using pointers and handles. Refer to a C manual for a list of other

© National Instruments Corporation 5-11 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

operators you can use with pointers and a more detailed discussion of how
to work with pointers.

Reference to the Memory Manager

File Manager

See theCIN Function Overviewgection of the LabVIEVDnline Reference

for descriptions of the routines used for managing memory in external code
segments of LabVIEW. For every function XiKis Az, the referenced

handle, pointer, or block of memory is in the application zonexI§ DS

the referenced handle, pointer, or block of memory is in the data space
zone.

Memory Manager Data Structures

The memory manager defines generic handle and pointer data types
as follows.

typedef uChar *Ptr;
typedef uChar **UHandle;

The file manager supports routines for opening and creating files, reading
data from and writing data to files, and closing files. In addition, with these
routines you can manipulate the end-of-file mark of a file and position the
current read or write mark to an arbitrary position in the file. With other file
routines you can move, copy, and rename files, determine and set file
characteristics and delete files.

Note For descriptions of specific file manager functions, see tfik= Managersection
of the LabVIEWOnline Referencevailable by selectinglelp»Online Reference

The file manager contains a number of routines for directories. With these
routines you can create and delete directories. You can also determine and
set directory characteristics and obtain a list of a directory's contents.

LabVIEW supports concurrent access to the same file, so you can have a
file open for both reading and writing simultaneously. When you open a
file, you can indicate whether you want the file to be read from and written
to concurrently. You can also lock a range of the file, if you need to ensure
a range is nonvolatile at a given time.

Finally, the file manager provides many routines for manipulating paths
(short for pathnames) in a platform-independent manner. The file manager
supports the creation of path descriptions, which are either relative to a

LabVIEW Code Interface Reference Manual 5-12 © National Instruments Corporation

Chapter 5 Manager Overview

specific location or absolute (the full path). With file manager routines you
can create and compare paths, determine characteristics of paths, and
convert a path between platform-specific descriptions and the
platform-independent form.

Identifying Files and Directories

When you perform operations on files and directories, you need to

identify the target of the operation. The platforms LabVIEW supports use
a hierarchical file system, meaning files are stored in directories, possibly
nested several levels deep. These file systems support the connection of
multiple discrete storage media, called volumes. For example, DOS-based
systems support multiple drives connected to the system. For most of these
file systems, you must include the volume name to completely specify the
location of a file. On other systems, such as UNIX, you do not specify the
volume name because the physical implementation of the file system is
hidden from the user.

How you identify a target depends upon whether the target is an open or
closed file. If a target is a closed file or a directory, you specify the target
using the targetpath The path describes the volume containing the target,
the directories between the top level and the target, and the target's name.
If the target is an open file, you use a file descriptor to specify LabVIEW
should perform an operation on the open file. The file descriptor is an
identifier the file manager associates with the file when you open it.

When you close the file, the file manager dissociates the file descriptor
from the file.

Path Specifications

LabVIEW uses three different kinds of filepath specifications:
conventional, empty, and LabVIEW specifications, described below.

Conventional Path Specifications

All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. You usually specify a path

as a series of names separated by separator characters. Typically, the first
name is the top level of the hierarchical specification of the path, and the
last name is the file or directory the path identifies.

There are two types of pathselative pathsandabsolute paths
A relative path describes the location of a file or directory relative to

© National Instruments Corporation 5-13 LabVIEW Code Interface Reference Manual

Chapter 5

Manager Overview

an arbitrary location in the file system. An absolute path describes the
location of a file or directory starting from the top level of the file system.

A path does not necessarily go from the top of the hierarchy down to the
target. You can often use a platform-specific tag in place of a name that
indicates the path should go up a level from the current location.

For instance, on a UNIX system, you specify the path of a file or directory
as a series of names separated by the slash (/) character. If the path is
an absolute path, you begin the specification with a slash. You can
indicate the path should move up a level using two periods in a row (..).
Thus, the following path specifies a fiREADMEelative to the top level

of the file system.

/usr’lhome/gregg/myapps/README

Two relative paths to the same file are as follows.

gregg/myapps/README relative to/usr/ home
..Imyapps/README relative to a directory inside of tigeegg
directory

On the PC, you separate names in a path with a backslash (\) character.
If the path is an absolute path, you begin the specification with a drive
designation, followed by a colon (:), followed by the backslash. You can
indicate the path should move up a level using two periods in a row (..).
Thus, the following path specifies a fleADMEelative to the top level of

the file system, on a drive named

C:\HOME\GREGG\MYAPPS\README
Two relative paths to the same file are as follows.
GREGG\MYAPPS\README relative to theHOMHirectory

.\MYAPPS\README relative to a directory inside of tIBREGG
directory

LabVIEW Code Interface Reference Manual 5-14 © National Instruments Corporation

Chapter 5 Manager Overview

On the Macintosh, you separate names in a path with the colon (:)
character. If the path is an absolute path, you begin the specification

with the name of the volume containing the file. If an absolute path
consists of only one name (it specifies a volume), it must end with a colon.
If the path is a relative path, it begins with a colon. This colon is optional
for a relative path consisting of only one name. You can indicate the path
should move up a level using two colons in a row (::). Thus, the following
path specifies a filREADMEelative to the top level of the file system, on

a drive namedHard Drive

Hard Drive:Home:Gregg:MyApps:README
Two relative paths to the same file are as follows.
:Gregg:MyApps:README relative to theHomedirectory

::MyApps:README relative to a directory inside of the
Gregg directory

Empty Path Specifications

In LabVIEW you can define a path with no names, calledrapty path

An empty path is either absolute or relative. The empty absolute path is the
highest point you can specify in the file hierarchy. The empty relative path
is a path relative to an arbitrary location in the file system to itself.

On a UNIX system, a slash (/) represents the empty absolute path.
The slash specifies the root of the file hierarchy. A period (.) represents
the empty relative path.

On the PC, you represent the empty absolute path as an empty string.
It specifies the set of all volumes on the system. A period (.) represents
the empty relative path.

On the Macintosh, the empty absolute path is represented as an empty
string. It specifies the set of all volumes on the system. A colon (:)
represents the empty relative path.

© National Instruments Corporation 5-15 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

LabVIEW Path Specification

In LabVIEW, you specify a path using a special LabVIEW data type,

represented @ath . The exact structure of tirath data type is private to
the file manager. You create and manipulatertite data type using file
manager routines.

A Path is a dynamic data structure. Just as you use memory manager
routines to allocate and deallocate handles and pointers, you use file
manager routines to create and dealloPatk s. Just as with handles,
declaring &Path variable does not actually createath . Before you

can use th@ath to manipulate a file, you must dynamically allocate
thePath using file manager routines. When you are finished using the
Path variable, you should release theth using file manager routines.

In addition to providing routines for the creation and eliminatioPati s,
the file manager provides routines for compafath s, duplicating
Path s, determining characteristicsdth s, and convertin@ath s to
and from other formats, such as the platform-specific format for the
system on which LabVIEW is running.

File Descriptors

When you open a file, LabVIEW returns a file descriptor associated
with the file. A file descriptor is a data type LabVIEW uses to identify
open files. All operations performed on an open file use the file
descriptor to identify the file.

A file descriptor is valid only while the file is open. If you close the file,
the file descriptor is no longer associated with the file. If you subsequently
open the file, the new file descriptor will most likely be different from the
file descriptor LabVIEW used previously.

File Refnums

In the file manager, LabVIEW accesses open files using file descriptors.
On the front panel and block diagram, however, LabVIEW accesses open
files through file refnums. A file refnum contains a file descriptor for use
by the file manager, and additional information used by LabVIEW.

LabVIEW specifies file refnums using th&RefNum data type, the

exact structure of which is private to the file manager. If you want to

pass references to open files into or out of a CIN, use the functions in the
File Refnums, Manipulatinppic of theOnline Reference convert file
refnums to file descriptors, and to convert file descriptors to file refnums.

LabVIEW Code Interface Reference Manual 5-16 © National Instruments Corporation

Support Manager

Chapter 5 Manager Overview

The support manageés a collection of constants,asros, basic data
types ard functions that pgform operationson strings ad numbes.

The support managelsohas fundtons for determininghe current time
in a variety é formats.

Note

This sction gives only a brief overview é the support manager. For descrptions

of specific support manager functions, see tBapport Managersection of the
LabVIEW Online Referenceavailabk by selectig Help»Online Reference

© National Instruments Corporation 5-17

The support managerstringfunctions contairmuch ofthe functionality
of the string libraries sup@il with standard C compilersuch as string
concatenation and formattingou can useariations ® many of these
functions withLabVIEW strings (4-byte lengtfield followedby daa,
generaly stored h a handle)Pascal strings (1-byte lengtield followed
by data), and C strings (determinatedoy a null character).

With the utility functions you can sort and search on arbitdata types,
using quicksort and binary search algons.

The suppd manage contains transcendenfahctionsfor many complex
and extendel floating-point operations.

Certain routines specify time agdata structure with the foling form.
typ edef struct {

int 32 sec; /*0:59 *

int 32 min; /* 0:59 */

int 32 hour ; /* 0:23 */

int 32 mday; /* day of the m onth, 1:31 */

int 32 mon;/ * month of the year, 1:12 */

int 32 year ; [* year, 1904:2 040 */

int 32 wday; *dayo f theweek , 1:7forS un:Sat*
int 32 yday ; /*dayo f year (jul i andate) , 1:366*
int 32 isds t;/* 1if daylig ht savings time */

} D ateRec;

LabVIEW Code Interface Reference Manual

CIN Common Questions

This appendix answers some of the questions commonly asked by
LabVIEW CIN users.

What compilers can be used to write CINs for LabVIEW?

(Microsoft Windows 3.1, Windows 95, and Windows NT) You can use

the Watcom C/386 compiler, version 9.0 or later, to write CINs

for LabVIEW for Windows 3.1. Other compilers for Windows 3.1
(including the Microsoft C compiler) do not generate the proper
code for LabVIEW to operate as a 32-bit application. For a compiler
to work with LabVIEW, it must generate a file in tHREX format

(a 32-bit Phar Lap relocatable executable).

LabVIEW for Windows 95/NT supports additional compilers, including
Microsoft Visual C++ and Symantec C.

(Macintosh) You can use the following compilers to compile your CIN
source code: THINK C, version 7, for 68K (from Symantec Corporation of
Cupertino, CA); Symantec C++, version 8, for PowerPC (from Symantec
Corporation of Cupertino, CA); Metrowerks CodeWarrior for 68K

(from Metrowerks Corporation of Austin, TX); Metrowerks CodeWarrior
for Power Macintosh (from Metrowerks Corporation of Austin, TX);
Macintosh Programmer’s Workshop (MPW) for 68K and PowerPC

(from Apple Computer, Inc. of Cupertino, CA).

(Sun) You can use the Sun ANSI-compatible compiler andytiee

compiler. The only officially supported compiler is the ANSI C compiler,
also known as the unbundled C compiler or SPARCompiler C, which
can be purchased from Sun. On Solansmachines, this compiler is
commonly referred to axc (ANSI C compiler); on Solaris 2.

machines, the compiler is called. The Gnu C compilemgc) is also
ANSI-compatible and can be used to create CINs for LabVIEW for Sun.
The only known limitation of thgcc compiler is it does not support
extended-precision floating point numbers under SolaxisSburce

code for thegcc compiler is available for both Solariscand 2x

through anonymous ftp f@rep.ai.mit.edu.

© National Instruments Corporation A-1 LabVIEW Code Interface Reference Manual

Appendix A CIN Common Questions

SPARCstations with Solarisxicome with the bundled C compilex()

that is not ANSI-compliant. Because ttte compiler requires substantial
modification to the header files included with LabVIEW, National
Instruments does not recommend using this compiler for CIN development.

Please note LabVIEW for Solarisxidoes not accept object files created
with the-g debugging flag turned on during compilation.

(HP and Concurrent) You can use the vendor-supplied compilers on
these platforms.

My VI, which contains a CIN, crashes LabVIEW or gives a memory.c
error.

In almost all cases this indicates an error in the C code of the CIN.
Make sure the CIN code properly allocates or deallocates memory as
necessary. See the section entittelv LabVIEW Passes Variably Sized
Data to CINsin Chapter 2CIN Parameter Passingf this manual for
further details and examples.

How do | debug my CIN?

You have several debugging options, depending upon the platform you use.
The following list gives descriptions of some of the available methods.

e Use theDbgPrintf function, which creates a debugging window.
Although the position and size of the window cannot be controlled,
information can be posted to the window as the CIN code executes.
Notice the window does not contain a scrollipugPrintf is
described in the section entitlBdbugging External Codi@

Chapter 1CIN Overview of this manual.

e If you are using a Macintosh and haweacsbug, you can use the
Debugger andDebugStr statements to set breakpoints in the code.

e If you suspect your CIN is corrupting memory, use
DSHeapCheck(FALSE) to test for integrity. Observe the heap integrity
when you enter and again when you exit the CIN code to determine if
your code is corrupting the heap.

« Use the File Manager functions to write your debugging information
to afile. If you are observing this file while the CIN is running, do not
forget to flush the file before the information gets to the disk.

e If the VI containing the CIN executes without crashing, but you do
not have an external window and decide not toRusgPrintf , then
a) determine what information is pertinent to your problem, and
b) return the information from one of the parameters of the CIN to
the block diagram of the VI.

LabVIEW Code Interface Reference Manual A-2 © National Instruments Corporation

Appendix A CIN Common Questions

Is there any sort ofscanf function in the LabVIEW
manager routines?

No. National Instruments is investigating this functionality for a future
version of LabVIEW. CINs with LabVIEW for Sun can call the standard
scanf and related functions.

| can’t seem to link to any of the globals mentioned in theabVIEW
Code Interface Reference Manual

Examples of these globals includecimalPt , CrgRtnChar
LnFeedChar , EOLChar, TabChar , EmptyStrChar , Sinfinity ,
SNeglnfinity , DInfinity , DNeglnfinity , EMaxWEMaxL,

Elnfinity , ENeglInfinity , DPi, DHalfPi , DThreeHalvesPi
DTwoPi, DRad2Deg, DTwg DNan, EPi , EHalfPi , ETwoPi, EE, EIn10 ,
EIn2 , Elogl0e , ELog2e, EHalf , EOne ETwo, ETen, EZero , ERecipPi ,
ERecipE , EPlanck , EElemChg, ESpeedLt , EGravity , EAvgdro ,
ERydbrg , EMIrGas , ELnOfPi , ELogOfE, ELnOfTwo, andENan.

Although mentioned in the documentation, these globals are not exported
for use in CINs. To get these values into your CIN code, pass them in as
parameters to the CIN.

Can LabVIEW be used to call a DLL in Windows?

Yes. The Call Library Function calls a DLL function directly. The function
is located in thédvancedpalette of thd-unctions palette. Refer to
Chapter 13 of theabVIEW Function and VI Reference Mant@l more
details on this feature.

| get an error linking to a function when | build my CIN using the
Windows platform.

The Watcom linker usually does not allow you to link with the Watcom
library function modules when making a stand-alone module. If it does
allow you to link, the code should work properly. Unfortunately, there is no
clearly defined way to determine which functions will link and which will
not; it is trial and error.

If this error occurs, the only way to work through the problem is to write a
DLL that calls the library functions.

Why do | get garbage back from math functions such astan2 , pow,
ceil ,floor ,ldexp ,frexp , modf, andfmod when using MPW C?

Include"Math.h" at the top of yourc file.

© National Instruments Corporation A-3 LabVIEW Code Interface Reference Manual

Appendix A CIN Common Questions

Why can't | link to the math functions (sin, cos, and so on) when
using THINK C?

Find themath.c anderror.c functions that came with THINK C and
include them in the project. Be sure to also inclitieh.h" inthe.c file.
Then enable the 68881 options under THINK C preferences.

LabVIEW Code Interface Reference Manual A4 © National Instruments Corporation

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet lipsiatinst.com , asanonymous and use
your Internet address, suchjessmith@anywhere.com , as your password. The support files and
documents are located in tlapport directories.

© National Instruments Corporation B-1 LabVIEW Code Interface Reference Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 039879 6277
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 4576 26 02
Finland 09 725725 11 09 725 725 55
France 01481424 24 01481424 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 08 7304970 087304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

01635 523545
512 795 8248

LabVIEW Code Interface Reference Manual B-2

01635 523154
512 794 5678

© National Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax(___) Phone (__)

Computer brand Model Processor
Operating system (include version number)

Clock speed MHz RAM__ MB Display adapter

Mouse ___yes __ no Other adapters installed

Hard disk capacity _ MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: LabVIEW" Code Interface Reference Manual
Edition Date: January 1998
Part Number: 320539D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name

Title
Company
Address

E-Mail Address

Phone (__) Fax(___)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678

Austin, Texas 78730-5039

Glossary

Prefix Meanings Value

m- milli- 10-3

- micro- 166

n- nano- 169
Numbers/Symbols
1D One-dimensional.
2D Two-dimensional.
A
ANSI American National Standards Institute.
application zone SeeAZ.
array An ordered, indexed set of data elements of the same type.

asynchronous execution Mode in which multiple processes share processor time, one executing
while the others, for example, wait for interrupts, as while performing
device /0O or waiting for a clock tick.

AZ (application zone) Memory allocation section that holds all data in a VI except execution data.

block diagram Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram, which consists of executable icons called
nodes and wires that carry data between the nodes, is the source code for
the virtual instrument. The block diagram resides in the block diagram of
the VI.

© National Instruments Corporation G-1 LabVIEW Code Interface Reference Manual

Glossary

Boolean controls and
indicators

breakpoint

broken VI

Bundle node

C

C string (CStr)

Case Structure

cast

chart

CIN source code
cluster

Code Interface Node

code resource

compile

concatenated Pascal
string (CPStr)

LabVIEW Code Interface Reference Manual

Front panel objects used to manipulate and display or input and output
Boolean (True or False) data. Several styles are available, such as switches,
buttons and LEDs.

Mode that halts execution when a subVI is called. You set a breakpoint by
clicking on the toolbar and then on a node.

VI that cannot be compiled or run; signified by a run button with a broken
arrow.

Function that creates clusters from various types of elements.

A series of zero or more unsigned characters, terminated by a zero, used in
the C programming language.

Conditional branching control structure, which executes one and only one
of its subdiagrams based on its input. It is the combination of the IF THEN
ELSE and CASE statements in control flow languages.

To change the type descriptor of a data element without altering the
memory image of the data.

Seescope chart, strip chart, and sweep chart.
Original, uncompiled text co8eeobject code.

A set of ordered, unindexed data elements of any data type including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

Special block diagram node through which you can link conventional,
text-based code to a VI.

Resource containing executable machine code. You link code resources to
LabVIEW through a CIN.

Process that converts high-level code to machine-executable code.
LabVIEW automatically compiles VIs before they run for the first time
after creation or alteration.

A list of Pascal-type strings concatenated into a single block of memory.

G-2 © National Instruments Corporation

Glossary

connector Part of the VI or function node containing its input and output terminals,
through which data passes to and from the node.

control Front panel object for entering data to a VI interactively or to a subVI
programmatically.

control flow Programming system in which the sequential order of instructions
determines execution order. Most conventional text-based programming
languages, such as C, Pascal, and BASIC, are control flow languages.

conversion Changing the type of a data element.

CPstr Seeconcatenated Pascal string.

D

data acquisition Process of acquiring data, typically from A/D or digital input plug-in
boards.

data dependency Condition in a dataflow programming language in which a node cannot
execute until it receives data from another n&# alsartificial data
dependency.

data flow Programming system consisting of executable nodes in which nodes

execute only when they have received all required input data and produce
output automatically when they have executed. LabVIEW is a dataflow

system.
data space zone SeeDS zone.
data type descriptor Code that identifies data types, used in data storage and representation.
diagram window VI window containing the VI's block diagram code.
dimension Size and structure attribute of an array.
DS (data space) zone Memory allocation section that holds VI execution data.
E
empty array Array that has zero elements, but has a defined data type. For example,

an array that has a numeric control in its data display window but has
no defined values for any element is an empty numeric array.

© National Instruments Corporation G-3 LabVIEW Code Interface Reference Manual

Glossary

EOF

executable

external routine

F

flattened data

Formula Node

End-of-file. Character offset of the end of file relative to the beginning of
the file (the EOF is the size of the file).

A stand-alone piece of code that will run, or execute.

Seeshared external routine.

Data of any type that has been converted to a string, usually for writing it
to afile.

Node that executes formulas you enter as text. Especially useful for lengthy
formulas too cumbersome to build in block diagram form.

function Built-in execution element, comparable to an operator, function, or
statement in a conventional language.

G LabVIEW graphical programming language.

H

handle Pointer to a pointer to a block of memory; handles reference arrays and
strings. An array of strings is a handle to a block of memory containing
handles to strings.

I

icon Graphical representation of a node on a block diagram.

icon pane Region in the upper right-hand corner of the front panel and block diagram
windows that displays the VI icon.

IEEE Institute of Electrical and Electronic Engineers.

indicator Front panel object that displays output.

Inf Digital display value for a floating point representation of infinity.

LabVIEW Code Interface Reference Manual G4 © National Instruments Corporation

inplace

L

LabVIEW string (LStr)

matrix
MB
MPW

MSB

NaN

nodes

0

object

object code

P

Pascal string (PStr)

Glossary

Characteristic of an operation whose input and output data can use the same
memory space.

The string data type used by LabVIEW block diagrams.

Two-dimensional array.
Megabytes of memory.
Macintosh Programmer’s Workshop.

Most significant bit.

Digital display value for a floating-point representatiomatfa-number
typically the result of an undefined operation, such as log(-1).

Execution elements of a block diagram consisting of functions, structures,
and subViIs.

Generic term for any item on the front panel or block diagram, including
controls, nodes, wires, and imported pictures.

Compiled version of source code. Object code is not stand-alone because
you must load it into LabVIEW to run it.

A series of unsigned characters, with the value of the first character
indicating the length of the string. Used in the Pascal programming
language.

© National Instruments Corporation G-5 LabVIEW Code Interface Reference Manual

Glossary

pointer

polymorphism

pop up

pop-up menus

portable

private data structures

R

RAM

reentrant execution

reference

relocatable

representation

scalar

shared external routine

Variable containing an address. Commonly this address refers to a
dynamically-allocated block of memory.

Ability of a node to automatically adjust to data of different representation,
type, or structure.

To call up a special menu by clicking on an object with the right mouse
button(Windows, Sun and HP-UX) or holding down th&command> key
while clicking (Macintosh).

Menus accessed by popping up on an object. Menu options pertain to that
object specifically.

Able to compile on any platform that supports LabVIEW.

Data structures whose exact format is not described and is usually subject
to change.

Random Access Memory.

Mode in which calls to multiple instances of a subVI can execute in parallel
with distinct and separate data storage.

Seepointer.

Able to be moved by the memory manager to a new memory location.

Subtype of the numeric data type, of which there are signed and unsigned
byte, word, and long integers, as well as single-, double-, and
extended-precision floating-point numbers both real and complex.

Number capable of being represented by a point on a scale. A single value
as opposed to an array. Scalar Booleans, strings and clusters are explicitly
singular instances of their respective data types.

Subroutine that can be shared by several CIN code resources.

LabVIEW Code Interface Reference Manual G-6 © National Instruments Corporation

sink terminal
source code
source terminal

subViI

T

terminal

top-level VI

type descriptor

v

vector

virtual instrument (V1)

W

wire

Glossary

Terminal that absorbs data. Also called a destination terminal.
Original, uncompiled text code.
Terminal that emits data.

VI used in the block diagram of another VI; comparable to a subroutine.

Object or region on a node through which data passes.

VI at the top of the VI hierarchy. This term is used to distinguish the VI
from its subVIs.

Seedata type descriptor.

One-dimensional array.

LabVIEW program; so called because it models the appearance of a
physical instrument.

Data path between nodes.

© National Instruments Corporation G-7 LabVIEW Code Interface Reference Manual

	Code Interface Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 CIN Overview
	Introduction
	Classes of External Code
	Supported Languages
	Macintosh
	Microsoft Windows 3.1
	Microsoft Windows 95 and Windows NT
	Solaris
	HP-UX and Concurrent

	Steps for Creating a CIN
	Place the CIN on a Block Diagram
	Add Input and Output Terminals to the CIN
	Input-Output Terminals
	Output-Only Terminals

	Wire the Inputs and Outputs to the CIN
	Create .c File
	Special Macintosh Considerations

	Compile the CIN Source Code
	Macintosh
	Microsoft Windows 3.x
	Microsoft Windows 95 and Windows NT
	Solaris 1.x
	Solaris 2.x
	HP-UX and Concurrent PowerMAX
	Unbundled Sun ANSI C Compiler, HP-UX C/ANSI C�Comp...

	Load the CIN Object Code

	LabVIEW Manager Routines
	Online Reference
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Debugging CINs Under Windows 95/NT
	Debugging CINs Under Sun or Solaris
	Debugging CINs Under HP-UX

	Chapter 2 CIN Parameter Passing
	Introduction
	CIN .c File
	How LabVIEW Passes Fixed Sized Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Creating a CIN That Multiplies Two Numbers
	Comparing Two Numbers, Producing a Boolean Scalar

	How LabVIEW Passes Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths (Path)
	Clusters Containing Variably Sized Data

	Resizing Arrays and Strings
	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional...
	Working with Clusters

	Chapter 3 CIN Advanced Topics
	CIN Routines
	Data Spaces and Code Resources
	CIN Routines: The Basic Case
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN in a Single VI...
	Multiple Reference to the same CIN in different VI...
	Single Threaded Operating Systems
	Multithreaded Operating Systems

	Code Globals and CIN Data Space Globals
	Examples

	Calling a Windows 95 or Windows�NT�Dynamic�Link�Li...
	Calling a Windows 3.1 Dynamic Link Library
	Calling a 16-Bit DLL
	1. Load the DLL
	2. Get the address of the desired function
	3. Describe the function
	4. Call the function

	Example: A CIN that Displays a Dialog Box
	The DLL
	The CIN Code
	Compiling the CIN
	Optimization

	Chapter 4 External Subroutines
	Introduction
	Creating Shared External Subroutines
	External Subroutines
	Macintosh
	Microsoft Windows 3.1, Windows 95, and Windows�NT
	Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent�Po...

	Calling Code
	Macintosh
	Microsoft Windows 3.1, Windows�95,�and�Windows�NT
	Solaris 1.x, Solaris 2.x, HP-UX, and Concurrent�Po...
	External Subroutine Example
	Compiling the External Subroutine

	Calling Code Example
	Compiling the Calling Code

	Chapter 5 Manager Overview
	Introduction
	Basic Data Types
	Scalar Data Types
	Booleans
	Numerics

	char Data Type
	Dynamic Data Types
	Arrays
	Strings
	Paths (Path)

	Memory-Related Types
	Constants

	Memory Manager
	Memory Allocation
	Static Memory Allocation
	Dynamic Memory Allocation: Pointers and Handles

	Memory Zones
	Using Pointers and Handles
	Simple Example

	Reference to the Memory Manager
	Memory Manager Data Structures

	File Manager
	Identifying Files and Directories
	Path Specifications
	Conventional Path Specifications
	Empty Path Specifications
	LabVIEW Path Specification

	File Descriptors
	File Refnums

	Support Manager

	 Appendix A CIN Common Questions
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

	Figures
	Figure 3-1. Data Storage Spaces for One CIN, Simpl...
	Figure 3-2. Three CINs Referencing the Same Code R...
	Figure 3-3. Three VIs Referencing a Reentrant VI C...

	Tables
	Table 1-1. Functions with Parameters Needing Pre-a...

