
API Reference
Document Number: DA00074903
Release Date: 13 April 2006

For customers in the U.S.A.

This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed and used
in accordance with the instruction manual, may cause harmful interference to radio communica-
tions. Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.

You are cautioned that any changes or modifications not expressly approved in this manual could
void your authority to operate this equipment.

The shielded interface cable recommended in this manual must be used with this equipment in
order to comply with the limits for a computing device pursuant to Subpart J of Part 15 of FCC
Rules.

For customers in Canada
This apparatus complies with the Class A limits for radio noise emissions set out in Radio Inter-
ference Regulations.

Pour utilisateurs au Canada
Cet appareil est conforme aux normes Classe A pour bruits radioélectriques, spécifiées dans le
Règlement sur le brouillage radioélectrique.

Life Support Applications
These products are not designed for use in life support appliances, devices, or systems where
malfunction of these products can reasonably be expected to result in personal injury. Basler cus-
tomers using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify Basler for any damages resulting from such improper use or sale.

Warranty Note
Do not open the housing of the camera. The warranty becomes void if the housing is opened.

All material in this publication is subject to change without notice and is copyright Basler
Vision Technologies.

Contacting Basler Support Worldwide

Europe:

Basler AG
Ander Strusbek 60 - 62
22926 Ahrensburg
Germany

Tel.: +49-4102-463-500
Fax.: +49-4102-463-599

vc.support.europe@baslerweb.com

Americas:

Basler, Inc.
740 Springdale Drive, Suite 100
Exton, PA 19341
U.S.A.

Tel.: +1-877-934-8472
Fax.: +1-877-934-7608

vc.support.usa@baslerweb.com

Asia:

Basler Asia Pte Ltd
8 Boon Lay Way,
#03-03 Tradehub 21
Singapore 609964

Tel.: +65-6425-0472
Fax.: +65-6425-0473

vc.support.asia@baslerweb.com

www.basler-vc.com

Contents

1 API Overview 1

1.1 Introduction . 1

1.2 Aspects Common to all Classes . 3

1.3 Controlling the eXcite from a Local Program . 4

1.4 Transferring Images From an eXcite to the Outside . 13

1.5 Library Files . 25

2 Module Documentation 27

2.1 Exceptions . 27

2.2 Device Manager . 28

2.3 Camera . 29

2.4 CamT . 30

2.5 CXCamInterface . 31

2.6 Types for the data members of ’Camera’ . 32

2.7 Non-enum types for the data members of ’Camera’ . 33

2.8 Enum types for the data members of ’Camera’ . 34

2.9 Image transfer from an eXcite to a PC . 36

3 Namespace Documentation 37

3.1 BaslerCamera Namespace Reference . 37

3.2 BaslerCamera::StreamServer Namespace Reference . 39

3.3 GxClientInterface Namespace Reference . 40

3.4 XCamInterface Namespace Reference . 41

4 Class Documentation 43

4.1 BaslerCamera::CamT< TliDelegate, ApiImpl > Class Template Reference 43

4.2 XCamInterface::CEnumeration_ColorCodingEnums Class Reference 47

4.3 XCamInterface::CEnumeration_PioOut0MonitorEnums Class Reference 49

4.4 XCamInterface::CEnumeration_PioOut0SettingEnums Class Reference 50

i

API Reference

Basler eXcite

usoeffle
Textfeld
II

4.5 XCamInterface::CEnumeration_PioOut0SrcEnums Class Reference 51

4.6 XCamInterface::CEnumeration_PioOut1MonitorEnums Class Reference 52

4.7 XCamInterface::CEnumeration_PioOut1SettingEnums Class Reference 53

4.8 XCamInterface::CEnumeration_PioOut1SrcEnums Class Reference 54

4.9 XCamInterface::CEnumeration_PioOut2MonitorEnums Class Reference 55

4.10 XCamInterface::CEnumeration_PioOut2SettingEnums Class Reference 56

4.11 XCamInterface::CEnumeration_PioOut2SrcEnums Class Reference 57

4.12 XCamInterface::CEnumeration_PioOut3MonitorEnums Class Reference 58

4.13 XCamInterface::CEnumeration_PioOut3SettingEnums Class Reference 59

4.14 XCamInterface::CEnumeration_PioOut3SrcEnums Class Reference 60

4.15 XCamInterface::CEnumeration_Strobe0PolarityEnums Class Reference 61

4.16 XCamInterface::CEnumeration_Strobe1PolarityEnums Class Reference 62

4.17 XCamInterface::CEnumeration_Strobe2PolarityEnums Class Reference 63

4.18 XCamInterface::CEnumeration_Strobe3PolarityEnums Class Reference 64

4.19 XCamInterface::CEnumeration_TestImageEnums Class Reference 65

4.20 XCamInterface::CEnumeration_TriggerModeEnums Class Reference 66

4.21 XCamInterface::CEnumeration_TriggerPolarityEnums Class Reference 67

4.22 XCamInterface::CEnumeration_TriggerSourceEnums Class Reference 68

4.23 XCamInterface::CEnumeration_VideoModeEnums Class Reference 69

4.24 GxClientInterface::CGxClientInterface Class Reference . 70

4.25 XCamInterface::CXCamInterface Class Reference . 71

4.26 BaslerCamera::DeviceInfo Class Reference . 77

4.27 BaslerCamera::DeviceIoException Class Reference . 79

4.28 BaslerCamera::DeviceManager Class Reference . 80

4.29 GenApi::GenericException Class Reference . 82

4.30 BaslerCamera::GxStreamServer Class Reference . 83

4.31 GenApi::IBoolean Struct Reference . 87

4.32 BaslerCamera::IDevice Struct Reference . 88

4.33 GenApi::IFloat Struct Reference . 89

4.34 BaslerCamera::IInDataStream Struct Reference . 90

4.35 GenApi::IInteger Struct Reference . 92

4.36 GenApi::InvalidArgumentException Class Reference . 93

4.37 BaslerCamera::IOutDataStream Struct Reference . 94

4.38 BaslerCamera::StreamServer::IRegisterSet Struct Reference 96

4.39 GenApi::IString Struct Reference . 97

4.40 GenApi::LogicalErrorException Class Reference . 98

ii

API Reference

Basler eXcite

usoeffle
Textfeld
III

4.41 GenApi::OutOfRangeException Class Reference . 99

4.42 GenApi::PropertyException Class Reference . 100

4.43 BaslerCamera::PropertySet Class Reference . 101

4.44 GenApi::RuntimeException Class Reference . 102

5 File Documentation 103

5.1 BaslerCam.h File Reference . 103

5.2 CamT.h File Reference . 104

5.3 DataStream.h File Reference . 105

5.4 Device.h File Reference . 106

5.5 Exception.h File Reference . 107

5.6 GxClient.h File Reference . 109

5.7 GxClientInterface.h File Reference . 110

5.8 GxStreamServer.h File Reference . 111

5.9 IBoolean.h File Reference . 112

5.10 IFloat.h File Reference . 113

5.11 IInteger.h File Reference . 114

5.12 IString.h File Reference . 115

5.13 XCam.h File Reference . 116

5.14 XCamInterface.h File Reference . 117

iii

API Reference

Basler eXcite

usoeffle
Textfeld
IIII

iv

API Reference

Basler eXcite

usoeffle
Textfeld
IIV

Chapter 1

API Overview

Please Note

The eXcite API is designed to comply with the GenICam interface standard for industrial digital
cameras. The GenICam standard is near completion, but the final form has not yet been released. Any
changes made to the standard between now and when it is finally released should have only a minimal
impact on the eXcite API. You should be aware, however, that once the GenICam standard is released,
there may be some small changes to the names of the method calls in the eXcite API. This may require
you to make some changes to any code that you have written to run on the eXcite.

1.1 Introduction

The Overview section of the API Reference gives a top level view of the classes provided to the application
programmer by the eXcite library and outlines how to use these classes in application programs.

The exact details of each API class (and its public member variables and functions) are separately doc-
umented for each class in the following chapters of the API Reference. Clicking on a class, function, or
variable name in the Overview section will take you to the page in the Reference that documents your
selection in detail.

Use Cases Overview

The eXcite library provides classes for the following two use cases:

• Controlling the camera section of the eXcite from an application program that runs "locally" on the
processor of the eXcite.

• Transferring image data from an eXcite to a PC (or to another eXcite) over an Ethernet network.

The second of these involves two distinct kinds of application programs: a server program running on the
eXcite and a client program running on the PC. In total, the eXcite library thus provides classes for the
following three kinds of application programs:

1

API Reference

Basler eXcite

• For controlling the eXcite from a local program:

– 1. A program running on the processor of the eXcite

• For transferring images from eXcite to outside:

– 2a. A server program running on the processor of the eXcite

– 2b. A client program running on the PC

The set of features (classes, include files, library files) from the eXcite library used for each of these three
kinds of application programs is different. The relevant features of the eXcite library to use in each case is
discussed, in order, in the API Overview below. At the end of the overview, the Library Files section lists
all of the library files included in the Basler eXcite Library and the dependencies among the libraries are
illustrated.

Terminology

data type - The overview uses the term "data type" in its broad, general sense. That is, the term "data type"
(or "type" for short) is used to refer to any kind of data type in C++, whether it is a built-in type in C (such as
int or double); a C/C++ struct; a C/C++ enum; or a C++ class.

library, API, eXcite library, library file - The term "software library", or "library" for short, is used in the
overview in an abstract sense to denote a collection of software functionality (classes, functions, macros)
made available to an application programmer. The "API" of the library is the interface that the library makes
public to the application programmers, through which they can access the functionality in the library.

The software library delivered by Basler with the eXcite device is called the "eXcite library".

The concrete physical representation of the eXcite library consists of (1) a set of ".h" include files, plus (2)
a set of "library files", which contain the compiled source code of the library in an archived form. Note that
the term "library file" has a more specific meaning than the term "library". Note also that the "eXcite library"
includes more than one library file.

camera section - As shown in the diagram at the beginning of the "Operation and Features" section of the
User’s Manual, the eXcite device consists of a camera and a PC-like processor connected to each other.
We use the terms "camera section" and "processor section" to refer to the camera and PC-like components
separately. To be specific, the "camera section" of the eXcite includes the image sensor, its micro-controller
and connected clock electronics, the image buffer, and the digital I/O lines. The "processor section" of the
eXcite includes the MIPS processor, the Flash memory, the SDRAM working memory, and the GigE, USB,
and RS-232 interfaces.

2

API Reference

Basler eXcite

1.2 Aspects Common to all Classes

1.2.1 Namespaces

To avoid possible name conflicts with other classes in your code, everything in the eXcite library sits inside
namespaces. The API of the eXcite library makes use of the following namespaces:

BaslerCamera - This namespace contains all of the important "top level" classes of the eXcite library for
all types of application programs. For example, this namespace contains the DeviceManager , Camera ,
and GxClient classes, as well as the GxStreamServer class. Thus, this namespace is used by all of the
different kinds of application programs that use the eXcite library.

GenApi - This namespace contains "helper" types that are used by all types of application programs.

The GenApi namespace contains the Exception classes used by the eXcite library (see Exceptions). In
addition, this namespace contains the IBoolean, IInteger, IFloat, and IString data types, which are used by
many of the member objects of the Camera class (see The Member Objects of Camera) and which are also
used by many of the member objects of the GxClient class (see Transferring Images From an eXcite to the
Outside).

CAMERANAMESPACE - This namespace is only used for application programs that control the camera
section of an eXcite device. That is, this namespace is not used for application programs (either server or
client) used for transferring image data from the eXcite to a PC.

This namespace contains the xxxEnums enum types used for many of the member objects (data members)
of the Camera class (see The member objects of Camera).

[Note: CAMERANAMESPACE is actually a #define for the namespace name XCamInterface used internally
in the eXcite library. Unfortunately, the tools used to generate the API Reference don’t see that #define
and as a result, the API Reference refers to CAMERANAMESPACE as XCamInterface. However, application
programmers using the eXcite library should use CAMERANAMESPACE in their code, not XCamInterface.]

We recommend putting the following using statements at the head of any of your source files that use the
eXcite library:

using namespace BaslerCamera;
using namespace GenApi;
using namespace CAMERANAMESPACE;

1.2.2 Exceptions

Any of the member functions in any of the classes in the eXcite library, including constructors and destruc-
tors, can throw exceptions. Therefore, most application programs would want to put all places where they
use or instantate any of the eXcite library classes inside try...catch constructs, like this:

try
{

... use eXcite library class(es) ...

}
catch (GenApi::GenericException & e)
{

cerr << "Error occurred: " << e.GetDescription() << endl;
cerr << "(" << e.GetSourceFileName()

<< ":" << e.GetSourceLine() << endl;
}

3

API Reference

Basler eXcite

Each exception thrown by the eXcite library is a subclass of:

GenApi::GenericException

which, in turn, is a publicly inherited subclass of std::exception.

See the Exceptions section in the API Reference for a description of all exception classes and of their
member functions.

1.3 Controlling the eXcite from a Local Program

This section outlines how to use the eXcite library to control the camera section of the eXcite from an
application program that runs on the eXcite’s processor.

1.3.1 Include File

To make all of the necessary features from the API of the eXcite library available to a program running on
the eXcite for controlling the camera section of the eXcite, the only .h file you need to include is <Basler-
Cam.h>.

Before the #include <BaslerCam.h> preprocessor statement, you must set the #define USE_XCAM.
Thus, at the beginning of all of your source files that use the eXcite library, you must include the following
two lines:

#define USE_XCAM
#include <BaslerCam.h>

When compiling your application, pass the

-I/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/include

switch to the compiler.

Example:

mips-linux-gnu-g++ -c -I/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/include
-o Simplegrab.o simplegrab.cpp

1.3.2 Library Files

The objects described in this section are implemented in the libxcam and libbaslercam library files.

When linking your application dynamically, use the -lxcam compiler switch. Example:

mips-linux-gnu-g++ -L/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/lib
-o Simplegrab -lxcam simplegrab.o

When linking your appliction statically, several libraries must be linked to your application. Example:

mips-linux-gnu-g++ -static -L/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/lib
-o Simplegrab simplegrab.o -lxcam -lbaslercam -lpthread

4

API Reference

Basler eXcite

1.3.3 Using the DeviceManager Object

The purpose of the DeviceManager object is to create a Camera object.

This Camera object is of central importance to application programs, i.e., the application program operates
the camera section of the eXcite device through the Camera object. In this subsection, we describe how to
create (instantiate) a Camera object. The Using the Camera Object subsection describes how to actually
use the Camera object.

Open-Camera and Close-Camera Blocks

Using the following block of code will cause the DeviceManager to create a Camera object through which
you can operate the camera:

// (1) Get the device manager
DeviceManager & dm = DeviceManager::GetInstance();

// (2) Let the device manager enumerate all devices
DeviceManager::DeviceInfoList_t lstDevices(

dm.EnumerateDevices(Camera::DeviceTypeId));

// (3) Check if we found any devices
if (lstDevices.size() == 0)

throw RUNTIME_EXCEPTION("No devices found");

// (4) Let the device manager create the first device
Camera* pCamera;
pCamera = dynamic_cast<Camera*>(
dm.CreateDevice(*lstDevices.begin()));

// (5) Check if we got what we expected
if (NULL == pCamera)

throw RUNTIME_EXCEPTION("Device isn’t a camera device");

// (6) Open device
pCamera->Open();

This is a standard block of code that most application programs would include as shown. We will refer to the
above block of code as the "open Camera" block.

There is also a corresponding "close Camera" block. This is another standard block of code that most
application programs would include as shown to close the Camera object once they are done with it. The
"close Camera" block is the following two-line block of code:

// close the device
pCamera->Close();

// let the device manager destroy the device
dm.DestroyDevice(pCamera);

To see these standard code blocks used in context in an actual application program, please take a look at the
Simplegrab code sample (see the Simplegrab/simplegrab.cpp source file in the set of code samples).

The Return List of EnumerateDevices()

The eXcite library features that you see used internally in the "open Camera" and "close Camera" code
blocks do have other uses. However, these other uses of the features that we see at work inside the "open
Camera" and "close Camera" blocks really only apply to the use case discussed in the Transferring Images
From an eXcite to the Outside section. In that section, we will discuss these features as needed.

At this point, we only explain the basics about the internals of the "open Camera" block.

5

API Reference

Basler eXcite

The DeviceManager::EnumerateDevices() function actually returns a list, namely a list of objects
of the DeviceInfo type. (The DeviceManager::DeviceInfoList_t type is simply a typedef for
std::list<DeviceInfo>.)

If USE_XCAM is defined (conforms to the Include File subsection), then the list returned by the Device-
Manager::EnumerateDevices() function always contains exactly one item. Passing this list item to the
DeviceManager::CreateDevice() function will create a Camera object through which to access and
operate the camera section of the eXcite on which the application program is running.

[Note: The API is organized this way, with EnumerateDevices() returning a list instead of simply one
single item, to allow the same API to be used for cases where the EnumerateDevices() function will
return more than one item. These cases are described in the Transferring Images From an eXcite to the
Outside section.]

Exceptions

Note that both the "open Camera" block and the "close Camera" block can throw exceptions, so that most
application programs would want to put these blocks inside try...catch constructs (as explained in the
Exceptions section).

In the "open Camera" block, we see two exceptions being thrown explicitly from the code block, namely
by the two lines in which the RUNTIME_EXCEPTION() macro is used. This macro instantiates a Gen-
Api::RuntimeException object with the macro parameter as its "Description."

[Application programmers can, if desired, also use any of the other similar xyz_EXCEPTION() macros
defined by the eXcite library to instantiate and throw any of the exceptions from the eXcite library.]

The two exception-throws explicitly coded (by means of the RUNTIME_EXCEPTION macro) in the "open Cam-
era" block are not the only exceptions that may be thrown by executing the code block. Any of the member
functions (including constructors and destructors) of any of the classes from the eXcite library may throw
exceptions.

1.3.4 Using the Camera Object

The camera section of a physical eXcite device is represented in application code by an object of the Camera
type. A Camera object is used as a "handle" through which to operate one physical eXcite device. From

an abstract point of view, this is similar to the way that a C program using the <stdio.h> standard library
uses a FILE ∗ pointer as a handle through which to operate on a file.

The camera is operated by application programs through:

• Member functions (= methods) of the Camera object

Example:

pCamera->PrepareGrab();

The The Member Functions of Camera subsection below gives an overview of the member functions
and how to use them.

• Member objects of the Camera object. These member objects also each have their own methods (=
member functions).

Example:

pCamera->Shutter.SetValue(...);

6

API Reference

Basler eXcite

The The Member Objects of Camera subsection below gives an overview of the member objects and
their methods and how to use them.

The collection of code samples supplied with the eXcite includes complete example application programs
that illustrate how the various member functions and member objects of Camera are typically used, includ-
ing all initialization steps that may be necessary (such as opening the Camera object and setting camera
parameters).

1.3.4.1 Where to Find the Camera Members in the API Reference

Your application code should use the Camera object to operate the eXcite device as described in this
overview and as illustrated by the code samples. Internally, via one or more typedefs, the Camera ob-
ject is implemented as an instantiation of a template class named CamT. The CXCamInterface class is one
of the most important base classes from which this CamT template class inherits.

In the API Reference, the member functions and member objects of the Camera class are presented as
follows:

• The member functions of Camera, as briefly described in the The Member Functions of Camera
section of this overview, are presented as the members of the BaslerCamera::CamT template class.

• The member objects of Camera, as briefly described in the The Member Objects of Camera section
of this overview, are presented as the members of the CXCamInterface class.

The reader should bear in mind that the BaslerCamera::CamT template class and the CXCamInterface
class are internals to the eXcite library. The members of these internal (template) classes appear as direct
members in the user Camera object and should be accessed by application code through the Camera object
only.

1.3.4.2 The Member Functions of Camera

The member functions of Camera conceptually fall into two kinds of functions:

1) Functions to open/close the Camera object:

Function call Purpose
pCamera-> Open(); Open Camera object
pCamera-> Close(); Close Camera object
bool myBool = pCamera-> IsOpen(); Query whether Camera object is open

The purpose and usage of these functions is described in the Using the DeviceManager Object section (see
the "open/close Camera" code blocks).

2) Functions to grab images:

7

API Reference

Basler eXcite

Function call Purpose
pCamera-> PrepareGrab(); Initialize for grabbing images
pCamera-> FinishGrab(); De-initialize image grabbing
bool myBool = pCamera->
IsReadyForGrab();

Query whether device is ready for grab

pCamera-> QueueBuffer(nBytes,
pBuffer, pUser);

Pass to the API the address of a user buffer(s) for
the result image(s) to be written

IInDataStream::BufferStatus bs =
pCamera-> WaitForBuffer(ppBuffer,
ppUser, timeout_ms);

Wait for an image grab to complete and retrieve
the grabbed image

For a description of how to use this set of functions, see the SimpleGrab/simplegrab.cpp and Multi-
Grab/multigrab.cpp sample code source files and the description of the SimpleGrab and MultiGrab sam-
ples in the eXcite User’s Manual. The BaslerCamera::CamT page in the API Reference contains a full
description of the arguments and return values for these functions.

The application programmer should pay special attention to how the user buffer(s) are passed into and
retrieved from the functions "QueueBuffer()" and "WaitForBuffer()".

In the case where you want to quickly grab a sequence of images, the application program should use
multiple user buffers. Before the image grabbing begins, all of the buffers should be "queued in" (by calls to
the "QueueBuffer()" function), that is: registered to the eXcite library. Once image grabbing is started, the
user buffers are then filled with image data as soon as possible and as long as the eXcite library has unused
user buffers available.

The SimpleGrab and MultiGrab samples, along with their description texts in the User’s Manual, show and
explain how this buffer queueing and retrieving should be done. The use of multiple user buffers is shown
(and explained in) the MultiGrab sample.

Note that apart from the above member functions of Camera, the OneShot, ContinuousShot, and
SoftwareTrigger member objects of Camera are also directly concerned with the control of image grab-
bing. These are explained in the next section.

1.3.4.3 The Member Objects of Camera

The purpose of the member objects of Camera is twofold:

• To set and read camera parameters

• To command image capture (grabbing) to start or stop

For a full discussion of the purpose and function of the camera’s parameters, see the "Operation and Fea-
tures" section of the eXcite User’s Manual.

Each camera parameter is represented in the Camera object as a member object (data member) of the
Camera class.

[Note: The members of Camera described in this section are actually references to objects elsewhere that
are managed internally in the eXcite library. These references are initialized for the API user by the "open
Camera" block described in Using the Device Manager object. The application programmer can use these
members as if they were simply objects. Accordingly, we will refer to them in this overview as the "member
objects" (or, synonymously, the "data members") of the Camera class.]

The member objects of Camera, in turn, have member functions (= methods) through which the value of the
parameters represented by the member objects can be accessed. The precise set of methods for a member
object depends on the type (data type) of the member object. However, the most basic methods are present
in all member objects.

8

API Reference

Basler eXcite

In the text below, we first present an overview of the data types that are used for the member objects,
followed by an overview of the most important methods of the member objects. Next, we explain where to
find more information about each member object. The section is concluded by a few remarks about some
of the more important subsets of member objects.

Data Types of the Member Objects

The data types used for the member objects of Camera are:

• IBoolean, IInteger, IFloat, IString

[Note: These data types sit in the GenApi namespace, that is, refer to them in your code by
GenApi::IBoolean, GenApi::IInteger, GenApi::IFloat, GenApi::IString unless you use a
using statement as described in the Namespaces section.]

These data types are similar to the C++ bool, int, double, and std::string data types, respec-
tively. But because The "IInteger" parameter has some additional features compared to a normal "int",
it needs some additional remarks.

In the context of Basler cameras, "IInteger" parameters are also called scalar parameters. The fea-
tures or characteristics that the "IInteger" data type has in addition to the behavior normally expected
of an "int" type, are as follows: in general, the value i of an "IInteger" parameter is limited to a specific
interval, and within this interval, its value is limited to only every Nth integer number. More exactly
described, its possible values i are:

i = imin + N k

imin <= i <= imax

where k is any integer, N is called the "increment", and imin and imax are called the interval bounds.
The increment and interval bounds are fixed, read-only properties of the "IInteger" member object.
The values of the increment and interval bounds for each "IInteger" member object can be queried by
the application program, as described below under the Methods of the Member Objects heading.

• xxxEnums types

where the xxx in the name is a short designation of the camera parameter.

[Note: These data types sit in the CAMERANAMESPACE = XCamInterface namespace. That is, refer to
them in your code by CAMERANAMESPACE::xxxEnum unless you use a using statement as described
in the Namespaces section.]

These data types are similar to enum types in C/C++ in that a member object of one of the xxxEnums
data types can only have one of a specific set of values.

All the xxxEnums types are listed on the Enum types for the data members of ’Camera’ page in the
API Reference. Clicking on any of the types takes you to a page that documents the set of values a
member object of that type can have.

Usage example for these xxxEnums values:

pCamera->TriggerMode =
CEnumeration_TriggerModeEnums::TriggerMode_TriggerMode0;

Methods of the Member Objects

This subsection provides an an overview of the most important methods. Not all of the available methods
are mentioned below. Those that are not mentioned here are either of lesser importance to the application
programmer or are intended only for internal use within Basler. (The full set of methods for any of the
member objects can be found on the page for that member object in the API Reference.)

9

API Reference

Basler eXcite

The following four methods are present in all of the member objects of Camera:

TYPE GetValue(void);

TYPE operator()(void);

(These two methods operate identically and return the valueof the camera parameter.)

void SetValue(TYPE arg1);

TYPE & operator=(TYPE arg1);

(Either of these two methods can be used, depending on your personal preference, to set the camera
parameter to the value arg1.)

[Note: For read-only parameters, these two methods are present, but are implemented so that calling them
causes an exception to be thrown.]

The following two methods are present only in the member objects of Camera that are of one of the xxxEnum
data types:

std::string ToString(void);

void FromString(const std::string & ValueStr);

These functions are alternatives to the GetValue() and SetValue() members, respectively. The differ-
ence is that they read and set the value of the "enum" member object as a string value.

The FromString() method converts a string to one of the possible enum values of the member object and
sets the member object to that value. The ToString() method returns the enum value of the member
object represented as a human-readable string value.

The following three methods are only implemented for "IInteger" parameters ("IInteger" parameters are also
called scalar parameters):

TYPE GetMin(void);

TYPE GetMax(void);

(These methods return the interval bounds, imin and imax , respectively.)

TYPE GetInc(void);

(This method returns the increment N.)

Where to Find More Information About Each Member Object

More information about each of the individual member objects of "Camera" can be found at the following
two places:

• For a full list of all the member objects, please see the CXCamInterface page in the API Reference.
That page in the API Reference is the central "hub" for detailed information about each of the member
objects. The page briefly describes the function of each member object, and states the data type for
each member object.

For each member object, clicking on the data type of the member object takes you to a page that lists
and describes the specific set of methods available for that member object. For member objects of
one of the xxxEnums types, the page also documents all the valid values for the member object.

10

API Reference

Basler eXcite

• For a full description of the function and purpose of each member object, please refer to the Operation
and Features section of the User’s Manual. That section in the User’s Manual describes and explains
the usage of the member objects from a conceptual point of view.

Member Objects Used to Control the Start of Exposure and Image Transfer

The member objects of Camera that are used to control the start of exposure and image transfer are as
follows:

• pCamera->OneShot

• pCamera->ContinuousShot

• pCamera->SoftwareTrigger

pCamera->OneShot operates the camera in "one-shot" mode, i.e.,

pCamera->OneShot = true;

is used to start exposure and transfer of a single image. If the camera is configured in "shot only" mode
(i.e., triggering is disabled), setting OneShot to true will immediately start an exposure. When the camera is
configured to use a software trigger or an external trigger, setting OneShot to true will prepare the camera to
start exposure and image transfer. Exposure and transfer of image start when the appropriate trigger signal
arrives. The OneShot parameter resets itself to false when the exposure has finished.

pCamera->ContinuousShot operates the camera in "continuous-shot" mode, i.e.,

pCamera->ContinusShot = true;

lets the camera continuously expose and transfer images. If the camera is configured in "shot only" mode
(i.e., triggering is disabled), the exposure of the first image begins when ContinuousShot is set to true and
subsequent exposures begin automatically. If software triggering or external triggering is enabled, a new
image is exposed and transferred each time the appropriate trigger signal arrives. Image exposure and
transfer are stopped by setting ContinuousShot to false. For example:

pCamera->ContinuousShot = false;

If the software trigger feature is enabled as described in the User’s Manual and if ContinuousShot is set to
true, The SoftwareTrigger member object is used to issue a software trigger. An eXcite configured this way
will expose and transfer an image each time SoftwareTrigger is set to true.

Member Objects for I/O Control

The member objects of "Camera" for controlling the eXcite’s four digital input ports (= physical input ports)
and the four digital output ports (= physical output ports) are:

PioInput (read only) – Reads the state of all four of the digital inputs simultaneously

PioOutput – Reads or sets the state of all four of the digital outputs simultaneously

PioOut$Monitor – Reads the currrent state of one digital output port

PioOut$Setting – Sets the state of one digital output port

PioOut$Src – Selects the source signal for one digital output port

11

API Reference

Basler eXcite

PioOut$Invert – Sets the invert function for one digital output port

where $ = 0, 1, 2, 3.

The "PioInput" and "PioOutput" member objects access (read and/or write) all four input or all four output
ports simultaneously. These two member object are of the "IInteger" data type. The value (state) of the four
ports is represented in this integer as the four least-significant bits. The "Operation and Features" section
of the User’s Manual explains the correspondence (mapping) between the integer value and the individual
ports in detail.

Each of the other digital I/O control member objects accesses or controls only one specific individual digital
output port. [Note: Only the digital output ports can be accessed individually. There are no member objects
for reading the state of only one individual digital input port.]

Each member object for individually accessing/controlling a single output port has a numeral in its name.
This number corresponds to the number of the output port that is operated by that member object. For
example, the "PioOut0Setting" member object sets the state of output port 0, the "PioOut1Setting" member
object sets the state of output port 1, and so on. Since there are four output ports, the member objects
for operating one individual output port thus come in sets of four. Each such set of four related output
control member objects is represented in the brief listing above with the numeral in the member object
name replaced by a $ sign.

Each of the output ports has two kinds of configuration information attached to it:

• The port can be assigned to take its value from one of the following sources:

– The internally generated "Trigger Ready" signal.

– The internally generated "Integrate Enable" signal.

– Internally generated strobe control signals.

Digital output line "N" can be tied to internal strobe control signal "N" (N = 0, 1, 2, 3) only.

– User settable. This means that the value of the output port can be set by an application program,
by means of the "PioOutput" or "PioOut$Setting" member objects.

Note carefully that the "SetValue()" method of these member objects only has effect on those
output lines that are in "user settable" mode.

In the above, the phrasing "assigned" means that the that the output port is connected to an internally
generated signal, and takes the value of this internal signal. That is, any state change in the internal
signal is transferred immediately to the output port.

Changing the association of output port to one of these sources is done through the "PioOut$Src"
member objects.

• The port can be configured as inverting or non-inverting.

By default, each port is in non-inverting mode. The inversion mode can be changed through the
"PioOut$Invert" member objects.

Inversion is done as the last step during the transfer of the signal to the output port. That is, when a
port is in inverting mode and is assigned as "user settable", writing a "1" to the port will make the port
low. When the port is in inverting mode and tied to one of the other internal signals, when the internal
signal goes high, the output port value will go low.

More detailed information about I/O port control can be found in the "Operation and Features" section of the
User’s Manual.

The "SimpleDio" code sample included with the eXcite illustrates the use of most of the digital I/O features
in an actual application program.

12

API Reference

Basler eXcite

1.4 Transferring Images From an eXcite to the Outside

1.4.1 Overview

The eXcite library contains classes to build application programs for transferring images from an eXcite
device to a PC via an Ethernet network connection.

[Note: The "PC" that the image data is transferred to can be any computer, including another eXcite. The
eXcite library classes described in this section are usable for transferring image data not only to a normal
PC but also to another eXcite.]

The image transfer classes in the eXcite library are intended to be used where the eXcite and the receiving
PC are connected by Ethernet network. The simplest use case is with a single eXcite in the network:

It’s also possible to connect two or more eXcite devices to a PC via an Ethernet network and to transfer
image data from any of the eXcite devices, or from two or more of them simultaneously, to the PC:

The image transfer mechanism built using the eXcite library classes is always client-server based, and is
organized as follows:

On the PC, an application program runs that gets (receives) the image data. On the eXcite, an application
program runs that acts as a data source for the image data and that sends the image data.

The data-sourcing program on the eXcite is called the server and the data-getting program on the PC is

13

API Reference

Basler eXcite

called the client.

The server program on the eXcite is the passive component. It is started first, then waits for incoming
requests from a client and starts sending image data when such a client request is received.

The client program is the active component. It looks for an image-sourcing server in the network, then opens
a connection to it and requests the server to start sending it image data.

The image-transfer classes in the eXcite library provide full functionality for all these tasks. When using
these classes, the application programmer doesn’t have to deal with (or know of) the underlying network
layers used for communication over the Ethernet network.

The image-transfer classes provided by the eXcite library are:

Class For use in
GxClient the client program on the PC
GxStreamServer the server program on the eXcite

1.4.2 Include Files

For applications implementing the server part, add the following include statement to your source file(s):

#include <gxdevice/GxStreamServer.h>

For applications implementing the client part, add the following include statements to your source file(s):

#include <device/DeviceManager.h>
#include <gxdevice/GxClient.h>

When compiling your application for the MIPS processor, pass the

-I/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/include

switch to the compiler.

Example:

mips-linux-gnu-g++ -c -I/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/include
-o StreamingServer.o StreamingServer.cpp

To compile your client application for a Linux PC, pass the

-I/opt/excite-tools/host/include

switch to the compiler.

Example:

g++ -c -I/opt/excite-tools/host/include -o StreamingClient.o StreamingClient.cpp

1.4.3 Library Files

Applications using the GxClient and GxServer classes must be linked against the libgxdevice library file.

14

API Reference

Basler eXcite

The library files used for applications running on the MIPS processor can be found at: /opt/excite-tools/mips-
linux-gnu/sys-root/opt/excite/lib. The library files used for applications running on a Linux PC are located at:
/opt/excite-tools/host/lib.

When linking your application dynamically, use the -lgxdevice compiler switch.

Examples:

mips-linux-gnu-g++ -L/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/lib
-o StreamingServer StreamingServer.o -lgxdevice

g++ -L/opt/excite-tools/host/lib -o StreamingClient StreamingClient.o -lgxdevice

When linking your application statically, several other libraries must also be linked.

Examples:

mips-linux-gnu-g++ -static -L/opt/excite-tools/mips-linux-gnu/sys-root/opt/excite/lib
-o StreamingServer StreamingServer.o -lgxdevice -lbaslercam -lgxpp -lgx -lpthread

g++ -static -L/opt/excite-tools/host/lib -o StreamingClient StreamingClient.o
-lgxdevice -lbaslercam -lgxpp -lgx -lpthread

[Note: When running an application linked dynamically against the libgxdevice library on a Linux PC, the
runtime linker must know where to find the Basler eXcite library files. For example, use the LD_LIBRARY_-
PATH environment variable.]

Example:

export LD_LIBRARY_PATH=/opt/excite-tools/host/lib:$LD_LIBRARY_PATH
./StreamingClient

1.4.4 Samples

We recommend that you take a look at the two sample programs included with the eXcite that illustrate
image transfer from eXcite to PC. These two sample programs, "StreamingServer" and "StreamingClient"
are located in the samples directory on a CD included with the eXcite. Each of the programs consists of
only one source file. These are:

• StreamingServer.cpp = the sample server program (to be compiled for running on the eXcite)

• StreamingClient.cpp = the sample client program (to be compiled for running on the PC)

1.4.5 Server Port Number is Configurable

As with many other examples of network communication, the GxClient/GxStreamServer communication
makes use of a "port number" for the server. The purpose of the server port number is to allow multiple
GxStreamServer-based servers to run simultaneously on the same eXcite.

For example, each of the eXcite devices in a network might run one image-sourcing server for images of type
"A" and another image-sourcing server for images of type "B". Each type of server must have a different,
distinct port number associated with it. In our example, for instance, the type "A" servers might have a port
number of 3219 and the type "B" servers might have a 7212 port number.

Each request sent from client to server incorporates, as a part of the message, the port number of the
type of server with which the client wishes to communicate. At the server side, each server "listens" and
responds only to incoming client requests targeted to "its" port number.

15

API Reference

Basler eXcite

The server port number that a GxStreamServer-based server listens to, and the server port number that a
GxClient-based client program connects to, both have the same default value (which is fixed in the eXcite
library).

In the case where there is only one GxStreamServer-based server program running on the eXcite, the
application programmer can simply use this default server port number. The server and client will then find
each other and communicate with each other.

The port number used can be set to something other than the default value as follows:

• To specify a non-default server port number to the GxStreamServer class, we pass this server port
number as the last argument to the "GxStreamServer::Open()" method. This argument has as its
default value the default server port number. The "StreamingServer/StreamingServer.cpp" sample
illustrates this.

• To specify a non-default server port number to the GxClient class, the application programmer must
use a "PropertySet" object passed to the "DeviceManager::EnumerateDevices()" call. Before pass-
ing the "PropertySet" to the "EnumerateDevices()" function, the "PropertySet" object is initialized to
contain the port number information. The "StreamingClient/StreamingClient.cpp" sample illustrates
this.

1.4.6 Application-level Protocol

Every type of communication needs a "communications protocol", i.e., a set of conventions about how the
communication is structured that is adhered to by both of the communicating parties.

Everything in the lower-level layers of the communication between the GxStreamServer-based server and
the GxClient-based client is hidden from the application programmer by the eXcite library. Only the highest
level of the control and (time)sequencing of the communication remains visible to the application program-
mer. This highest level consists of the calls to the member functions of GxStreamServer and GxClient in the
application code.

Inherent in the design of the GxStreamServer/GxClient classes is that, for image transmission to work
properly, the server and client application programs must call the member functions of GxStreamServer
and GxClient in a certain way, especially with regard to the order (in time) of the function calls. The way in
which the client and server application programs, through calls to the member functions of GxStreamServer
and GxClient, control the communication so that client and server program interact usefully is called the
"application-level protocol".

First, we present a diagram that summarizes this application-level protocol. The diagram maps the flow,
over time, of the communication process between server and client. (In the diagram, time increases as you
move from top to bottom.)

After the diagram, we describe in more detail the application-level protocol that client and server program
must follow. The desription, like the diagram, simply tracks the flow of the communication process between
server and client over time, as seen by the client and server application programs.

In the diagram starting on the next page, the arrows indicate the period of time during which a function call
is executing.

16

API Reference

Basler eXcite

17

API Reference

Basler eXcite

Since the server is the passive party and the client the active party, the server program must be "on line"
first. Thus, the first act of the process is to start the server program. As soon as it is started, the server
program instantiates a "GxStreamServer" object, calls its "Open()" function (which initializes the object), and
then calls its "WaitForStreamOpen()" function. This last function call puts the GxStreamServer object in the
state of listening for, and waiting for, a client that wants to establish a connection with the server.

The client establishes the connection by calling its "Open()" method.

After the "connection" between the GxStreamServer object on the eXcite and the GxClient object on the
PC is established, the GxStreamServer and GxClient objects create an additional communication channel
between them. This is called the "streaming channel". The actual image data is transferred from server
to client via this streaming channel. The client opens the streaming channel by calling its "PrepareGrab()"

18

API Reference

Basler eXcite

method.

Both the "connection" and the "streaming channel" are communication channels between two parties only:
namely between (on one side) one specific GxStreamServer object on one specific eXcite, and (on the other
side) one specific GxClient object on the PC.

The GxStreamServer::WaitForStreamOpen() function blocks communication until either a GxClient object
has connected to the GxStreamServer and has opened the streaming channel, or until the specified time-
out expires. When the GxStreamServer::WaitForStreamOpen() function returns successfully, the server
program knows that a client has connected and has successfully established a streaming channel.

[Note: Every GxStreamServer::Wait...() call must be checked in the server program on its return value.
If a return value indicating failure is returned on any of these calls, this means that the client has not
properly followed the communiation protocol, e.g., the client may have simply hung up the connection.
Whenever a GxStreamServer::Wait...() call returns unsuccessfully, the server can break off the protocol and
can terminate the connection. The server program can terminate the connection at any point, regardless of
the state of the connection, by simply calling the "GxStreamServer::Close()" function.]

Apart from the image data itself, there is another kind of information that must be transferred from the server
to the client, i.e., information about the size of the images.

With respect to image size, it is important to note that the GxStreamServer/GxClient-based communication
is organized in such a way that:

• It is always the server, and not the client, that determines the dimensions (width, height, data depth
per pixel) of the transferred images.

• All the images transferred from one "GxStreamServer" instance, during the whole of its lifetime, have
the same dimensions (width, height, data depth per pixel). Note that as a consequence, all the
images transferred via a streaming channel must have the same dimensions as long as that streaming
channel is up and running,.

The image dimensions (width, height, data depth per pixel) are specified by the server program to the
"GxStreamServer" object by means of arguments to the "GxStreamServer" constructor.

The image size information must be transferred from server to client first, before the actual images are
transferred. This image size information is needed by the client program to instantiate buffers into which the
received image data can be written.

To get the image size information from the GxStreamServer object into the client program, the client program
uses the following read-only member objects of the "GxClient" object:

19

API Reference

Basler eXcite

• Width = image width (in pixels)

• Height = image height (in pixels)

• DataDepth = data depth (in bytes) of each pixel

• TotalBytes = total size (in bytes) of one image

The API for these GxClient member objects is similar to that of the member objects of "Camera" as discussed
in the The Member Objects of Camera section. All "GxClient" member objects are of the "IInteger" data type.
The "GetValue()" method (like its equivalent "operator()") of the GxClient member objects is implemented
as the action of getting the relevant value from the server.

[Note: We recommend that the client application program uses the "TotalBytes" value to determine the size
of the buffers instead of computing the buffer size from "Width∗Heigth∗DataDepth".]

As soon as the client program has allocated the buffers to be used to receive the data sent by the server, it
"queues in" these buffers into the GxClient object by means of calls to the GxClient::QueueBuffer() function.
This makes the addresses of the user buffers known to the GxClient object. The GxClient object will start
receiving image data and writing the received data into the available user buffers as soon as possible.

At this point, we have the client in a state where it is trying to receive image data from the server and at this
point, the server could in principle start sending image data. In addition to the GxClient member objects
already described above, the GxClient class has one more member object named EnableStreaming. The
purpose of this member object is to allow the client to tell the server to start and stop sending data.

On the server side, there are two functions that inspect the value of "EnableStreaming", namely:

bool GxStreamServer::isStreamingEnabled() - Returns the current value of StreamingEnabled.

GxStreamServer::WaitForStreamingEnabled() - Blocks (waits) until StreamingEnabled is "true".

Using these functions, the image-sending loop in the server can now be coded as:

if (pServer->WaitForStreamingEnabled(TIMEOUT))
while (pServer->isStreamingEnabled())
{

send the next image frame
}

Now, the server can be stopped by the client program, simply by the client program setting GxClient::Enable-
Stream to "false".

The member functions of GxStreamServer and GxClient that carry out the transfer of images are "Queue-
Buffer()" and "WaitForBuffer()". Each of these functions is present in both the GxStreamServer and GxClient
classes and each has a similar function in both classes.

The "QueueBuffer()" function "enqueues" a user buffer into the GxStreamServer or GxClient object. Gx-
StreamServer::QueueBuffer() tells the server the address of the buffer to be sent. GxClient::QueueBuffer()
passes the buffer used to receive the data to the GxClient object.

The "WaitForBuffer()" function completes the sending or receiving of one image. The function is blocked
(wait) until the next image has been fully sent (for GxStreamServer) or received (for "GxClient").

For both the GxStreamServer and GxClient objects, whenever a "WaitForBuffer()" call returns successfully,
it means that the GxStreamServer or GxClient object is done with the buffer. That is, the successful return
from a WaitForBuffer() call "de-queues" one user buffer (removes one user buffer from the set of buffers
known to and being operated on by the GxStreamServer or GxClient object). After a successful return from
WaitForBuffer(), the application program can re-queue the buffer (by means of a new "QueueBuffer()" call).

20

API Reference

Basler eXcite

1.4.7 The Server Program

To make all the necessary features from the API of the eXcite library visible to the server program, the
application programmer need only include the following line at the head of the source file(s):

#include <gxdevice/GxStreamServer.h>

The server functionality provided by the eXcite library all sits in one class: GxStreamServer.

The "GxStreamServer" class does have the two "QueueBuffer()" and "WaitForBuffer()" member functions
that are roughly similar to the member functions of the same name in the "Camera" and "GxClient" classes.
The main difference is, of course, that in the "GxStreamServer" class, these functions send data, whereas
the "Camera" and "GxClient" member functions receive. A more minor difference is that the API (the function
prototype) of these two functions in "GxStreamServer" is similar, but not identical to, that of the correspond-
ing functions of "Camera" and "GxClient".

A server program will normally instantiate just one instance of "GxStreamServer". This GxStreamServer
instance incarnates the server process.

Overview of Member functions of GxStreamServer:

1) Methods to initialize and de-initialize GxStreamServer object:

• Open()

• Close()

Also closes any client connection that is still open

2) Methods for the detect-that-stream-opened part of the communication:

• WaitForStreamOpen()

• bool WaitForStreamClose()

• bool IsStreamOpen()

3) Methods for the StreamingEnable part of the communication:

• WaitForStreamingEnabled()

• bool IsStreamingEnabled()

4) methods for the send-individual-images part of the communication:

• QueueBuffer()

Passes a buffer containing one image to the GxStreamServer object, and starts sending the image
data

• WaitForBuffer()

Completes sending the buffer and blocks until the send is complete)

For more info on each of these functions, see the GxStreamServer page in the API Reference.

For an example of all these functions in the context of a realistic full-server program, Please take a look at
the "StreamingServer/StreamingServer.cpp" sample.

Note that all of the classes in the eXcite library may throw exceptions (see Exceptions), so that most appli-
cation programs would want to put every use (or instantiation) of any of the classes from the eXcite library
inside "try ... catch" constructs.

21

API Reference

Basler eXcite

1.4.8 The Client Program

To make all of the necessary features from the API of the eXcite library visible to the client program, include
the following lines at the head of the source file(s):

#include <device/DeviceManager.h>
#include <gxdevice/GxClient.h>

It is not necessary to set any define.

The purpose of the client program is to download (to "get") images. The eXcite library has made use of the
parallel between this function and the grabbing of images done by the part of the eXcite library described
in the Controlling the eXcite from a Local Program section. While in the Controlling the eXcite from a Local
Program section the application program running on the eXcite is grabbing images from the camera section
of the eXcite, the client program running on the PC is "grabbing" images from a remote eXcite device over
a network.

The most important object in the client program is the "GxClient" object. The API for the GxClient object is
similar to the "Camera" object described in the Controlling the eXcite from a Local Program section.

The Member Functions of GxClient

The GxClient object has the same set of member functions as the "Camera" object (the member functions
of "Camera" were described in the The Member Functions of Camera section). In the case of "GxClient",
the member functions execute the following actions:

1) Functions to open/close the connection to a GxStreamServer object:

• pClient->Open();

Open a connection to the GxStreamServer object

• pClient->Close();

Close a connection to the GxStreamServer object

• bool myBool = pClient->IsOpen() ;

Queries whether a connection to the server is open

2) Functions to open/close a "streaming channel" to GxStreamServer object:

• pClient->PrepareGrab();

Open a "streaming channel"

• pClient->FinishGrab();

Close a "streaming channel"

• bool myBool = pClient->IsReadyForGrab():

Query whether a "stream" is in an open state

3) Functions for the part of the application-level communication protocol in which individual images are
transferred:

• pClient->QueueBuffer(nBytes, pBuffer, pUser);

Pass the API the address of a user buffer where the result image(s) (received from server) should be
written

22

API Reference

Basler eXcite

• IInDataStream::BufferStatus bs = pClient->WaitForBuffer(ppBuffer, ppUser,
timeout_ms);

Download (receive) one image from the server and wait for this image download to complete

The EnableStreaming part of the application level protocol is done on the client side by means of the "Enable-
Streaming" member object of "GxClient".

The Member Objects of GxClient

The GxClient and Camera objects are also similar in that, apart from member function, they each have
a set of member objects. In both, these member objects constitute an important part of the API. The
application program accesses the member objects of "GxClient" in the same way as the member objects of
"Camera" are accessed. Therefore, the discussion in the The Member Objects of Camera section for the
IInteger/IBoolean/IFloat/IString types of the member objects, and on how to use the set of methods for each
of these types to access the member object, is also valid for the member objects of "GxClient".

The complete set of member objects of "GxClient" is:

• EnableStreaming

• Width = Width of frame in pixels

• Height = Height of frame in pixels

• DataDepth = Number of bytes per pixel

• TotalBytes = Number of bytes in one frame

EnableStreaming is a read-write parameter, and the other parameters are read-only.

"EnableStreaming" is provided as a facility for the client program to pass a command to the server to start
or stop the sending of image data. Setting

pClient->EnableStreaming = true;

tells the server (that the GxClient object is connected to) that it should start sending image data.

Setting

pClient->EnableStreaming = false;

tells the server (that the GxClient object is connected to) that the server should stop sending image data.
How "EnableStreaming" is intended to be used is discussed in some detail in the Application-level Protocol
section above.

The purpose of the other member objects, as discussed in the Application-level Protocol section, is to
transfer image size and image dimension data from server to client. Recall that the server is the party that
determines the values of these quantities.

After the connection between GxClient and GxStreamServer is established, the client application program
can query these member objects as to the image dimensions. This image dimension information is needed
on the client side for the client to be able to interpret the received image data. In addition, the image size
information is needed by the client program so that the client program can initialize buffer(s) into which to
receive the image data.

The "TotalBytes" member object is provided specifically for the purpose of informing the client about the size
of the buffer (in bytes) needed for one image. The client program should use

23

API Reference

Basler eXcite

buffersize = pClient->TotalBytes()

rather than calculating the buffer size from the values of Width, Height, and DataDepth.

For more information about how to use the member functions and member objects of the GxClient object
to receive ("download") image data from an eXcite running a GxStreamServer-based server program, see
the GxClient page in the API Reference.

The DeviceManager and Its Return List

The "GxClient" object is created by the "DeviceManager" in a similar fashion to the way the "Camera"
object is created in the Controlling the eXcite from a Local Program section. The only difference is that
in our present "GxClient" case, the parameter passed to DeviceManager::EnumerateDevices() is now "Gx-
Client::DeviceTypeId", instead of "Camera::DeviceTypeId".

When passing "GxClient::DeviceTypeId" as the argument value, "EnumerateDevices()" will look for all Gx-
StreamServer objects (= servers) that are up and running in the network.

As explained in the Server Port Number is Configurable subsection, the port number that the "Enumerate-
Devices()" functions uses to discover GxStreamServer instances can be specified by passing the port num-
ber in the form of a "PropertySet" object as an extra parameter into the "EnumerateDevices()" function. If
no port number is specified, the default port number is used.

The DeviceManager::EnumerateDevices() returns a list containing all of the "devices" of the desired type
(i.e., listening on the specified port) that are reachable. In the Controlling the eXcite from a Local Pro-
gram use case, the list always contains exactly one element (namely, the local eXcite device). In the
case of the enumeration of GxStreamServer instances in the network, the list returned by the Device-
Manager::EnumerateDevices() call can contain zero, one, or more entries, depending on how many Gx-
StreamServer objects are running on the eXcite devices connected to the network. Each entry in the list
refers to exactly one of these "remote" GxStreamServer objects.

The DeviceManager::EnumerateDevices() method returns an iterator type

DeviceManager::DeviceInfoList_t::iterator

which is defined by the include files of the eXcite library as

std::list<DeviceInfo>::iterator

and can therefore be used in the familiar C++ STL <list> way. The application program (= client program)
must now iterate through the list returned by EnumerateDevices(), in order to select the remote Gx-
StreamServer object that it wants to contact.

The list element for the selected remote GxStreamServer object is then passed to the "Device-
Manager::CreateDevice()" function. This function creates a "GxClient" object "bound" to that remote Gx-
StreamServer object and returns a pointer to this newly created "GxClient" object.

Note carefully that the "GxClient" object is "bound" to one specific remote GxStreamServer object from the
moment it was created. In other words, the "GxClient" is created in a form that is configured for connecting to
one specific remote GxStreamServer object. Note, however, that the actual connection to that server object
is not yet in existence. The remote GxStreamServer is connected when the GxClient::Open() function is
called. The "GxClient" object created in this way is then further used in the client program as described in
the earlier subsections.

For an example of all the DeviceManager functions and GxClient API features used in the context of a
complete client program, we recommend that you look at the "StreamingClient/StreamingClient.cpp" sample
code.

24

API Reference

Basler eXcite

Note that all the classes in the eXcite library may throw exceptions (see Exceptions), so that most application
programs would want to put every use (or instantiation) of any of the classes from the eXcite library inside
"try ... catch" constructs.

1.5 Library Files

The library files included with the eXcite library are:

Name of Library File Contains
libbaslercam General infrastructure: DeviceManager, GenApi
libxcam Camera class, for the use case of controlling

eXcite from a local program
libgxdevice GxClient and GxStreamServer classes, for both

the server and client programs for image transfer
from an eXcite to a PC

libgx Underlying library used by libgxdevice
libgxpp Underlying library used by libgxdevice

Apart from these library files created by Basler, the application programmer also needs the general Linux
"pthread" library "libpthread".

The dependencies between these library files are diagrammed below. An "A" item above a "B", item con-
nected to it by a vertical line, means that "A" uses (depends on) "B".

25

API Reference

Basler eXcite

26

API Reference

Basler eXcite

Chapter 2

Module Documentation

2.1 Exceptions

Exceptions.

Classes

• class BaslerCamera::DeviceIoException

Exception class thrown to indicate device I/O related errors.

• class GenApi::GenericException

Base class for all exceptions thrown by the library.

• class GenApi::InvalidArgumentException

Exception fired when an argument is invalid.

• class GenApi::OutOfRangeException

Exception fired if an argument is out of range.

• class GenApi::PropertyException

Exception fired if a property access fails.

• class GenApi::RuntimeException

Runtime exception.

• class GenApi::LogicalErrorException

Exception thrown to indicate logical errors in the program flow.

2.1.1 Detailed Description

This group contains the Exception classes that can be thrown by the functions (including constructor func-
tions) in the eXcite library.

The Exceptions section in the API Overview briefly explains how the eXcite library is organized with respect
to Exceptions.

27

API Reference

Basler eXcite

2.2 Device Manager

The DeviceManager class and related classes.

Classes

• class BaslerCamera::DeviceInfo

Stores information used to open a device.

• class BaslerCamera::DeviceManager

Enumerates, creates, and destroys devices.

• class BaslerCamera::PropertySet

2.2.1 Detailed Description

The DeviceManager class and its related classes are used to create the ’Camera’ object through which an
eXcite camera is operated from your application code.

The Using the DeviceManager Object section in the API Overview explains how to use these classes.

28

API Reference

Basler eXcite

2.3 Camera

Components related to the ’Camera’ class.

Modules

• CamT

CamT class template.

• CXCamInterface

The camera control interface.

• Types for the data members of ’Camera’

Types for the data members of ’Camera’.

Typedefs

• typedef CamT< XCamDelegateT< XCamInterface::CXCamInterface >, XCamInterface::CXCam-
Interface > BaslerCamera::XCam

The eXcite camera device.

2.3.1 Detailed Description

This module contains all components related to the ’Camera’ class used by the application code.

29

API Reference

Basler eXcite

2.4 CamT

CamT class template.

Classes

• class BaslerCamera::CamT< TliDelegate, ApiImpl >

Class template used to implement a camera device.

2.4.1 Detailed Description

The CamT class template implements the member functions of the ’Camera’ class used by the application
code.

30

API Reference

Basler eXcite

2.5 CXCamInterface

The camera control interface.

Classes

• class XCamInterface::CXCamInterface

The device’s control interface.

2.5.1 Detailed Description

Contains the member objects of the ’Camera’ class used by the application code. These member objects
form the "camera control interface" used to set and get camera parameters.

31

API Reference

Basler eXcite

2.6 Types for the data members of ’Camera’

Types for the data members of ’Camera’.

Modules

• Non-enum types for the data members of ’Camera’

Non-enum types for the data members of ’Camera’.

• Enum types for the data members of ’Camera’

Enum types for the data members of ’Camera’.

2.6.1 Detailed Description

This group contains the data types for the member objects (or synonyously "data members") of the ’Camera’
class used by the application code.

32

API Reference

Basler eXcite

2.7 Non-enum types for the data members of ’Camera’

Non-enum types for the data members of ’Camera’.

Classes

• struct GenApi::IBoolean

Interface for Boolean properties.

• struct GenApi::IFloat

Interface for float properties.

• struct GenApi::IInteger

Interface for integer properties.

• struct GenApi::IString

Interface for string properties.

2.7.1 Detailed Description

This group contains the non-enum data types for the member objects of the ’Camera’ class used by the
application code.

33

API Reference

Basler eXcite

2.8 Enum types for the data members of ’Camera’

Enum types for the data members of ’Camera’.

Classes

• class XCamInterface::CEnumeration_ColorCodingEnums

Enumeration class used for the ColorCoding parameter.

• class XCamInterface::CEnumeration_TriggerModeEnums

Enumeration class used for the TriggerMode parameter.

• class XCamInterface::CEnumeration_TriggerPolarityEnums

Enumeration class used for the TriggerPolarity parameter.

• class XCamInterface::CEnumeration_TriggerSourceEnums

Enumeration class used for the TriggerSource parameter.

• class XCamInterface::CEnumeration_TestImageEnums

Enumeration class used for the TestImage parameter.

• class XCamInterface::CEnumeration_PioOut0SrcEnums

Enumeration class used for the PioOut0Src parameter.

• class XCamInterface::CEnumeration_PioOut0MonitorEnums

Enumeration class used for the PioOut0Monitor parameter.

• class XCamInterface::CEnumeration_PioOut0SettingEnums

Enumeration class used for the PioOut0Setting parameter.

• class XCamInterface::CEnumeration_PioOut1SrcEnums

Enumeration class used for the PioOut1Src parameter.

• class XCamInterface::CEnumeration_PioOut1MonitorEnums

Enumeration class used for the PioOut1Monitor parameter.

• class XCamInterface::CEnumeration_PioOut1SettingEnums

Enumeration class used for the PioOut1Setting parameter.

• class XCamInterface::CEnumeration_PioOut2SrcEnums

Enumeration class used for the PioOut2Src parameter.

• class XCamInterface::CEnumeration_PioOut2MonitorEnums

Enumeration class used for the PioOut2Monitor parameter.

• class XCamInterface::CEnumeration_PioOut2SettingEnums

Enumeration class used for the PioOut2Setting parameter.

• class XCamInterface::CEnumeration_PioOut3SrcEnums

34

API Reference

Basler eXcite

Enumeration class used for the PioOut3Src parameter.

• class XCamInterface::CEnumeration_PioOut3MonitorEnums

Enumeration class used for the PioOut3Monitor parameter.

• class XCamInterface::CEnumeration_PioOut3SettingEnums

Enumeration class used for the PioOut3Setting parameter.

• class XCamInterface::CEnumeration_Strobe0PolarityEnums

Enumeration class used for the Strobe0Polarity parameter.

• class XCamInterface::CEnumeration_Strobe1PolarityEnums

Enumeration class used for the Strobe1Polarity parameter.

• class XCamInterface::CEnumeration_Strobe2PolarityEnums

Enumeration class used for the Strobe2Polarity parameter.

• class XCamInterface::CEnumeration_Strobe3PolarityEnums

Enumeration class used for the Strobe3Polarity parameter.

• class XCamInterface::CEnumeration_VideoModeEnums

Enumeration class used for the VideoMode parameter.

2.8.1 Detailed Description

This group contains the enum data types for the member objects of the ’Camera’ class used by the applica-
tion code.

35

API Reference

Basler eXcite

2.9 Image transfer from an eXcite to a PC

Classes for image transfer from an eXcite to a PC.

Namespaces

• namespace BaslerCamera::StreamServer

Contains interfaces and classes used to implement a stream server.

Classes

• struct BaslerCamera::StreamServer::IRegisterSet

Interface to be implemented by classes implementing a register set.

• class BaslerCamera::GxStreamServer

A customizable stream server class that allows sending a stream consisting of fixed size image data frames.

Typedefs

• typedef CamT< GxDelegateT< GxClientInterface::CGxClientInterface >, GxClientInterface::CGx-
ClientInterface > BaslerCamera::GxClient

A device class used to connect to a BaslerCamera::GxStreamServer.

2.9.1 Detailed Description

This group contains the classes for image transfer from an eXcite to a PC for both client and server applica-
tion programs.

2.9.2 Typedef Documentation

2.9.2.1 typedef CamT<GxDelegateT<GxClientInterface::CGxClientInterface>,
GxClientInterface::CGxClientInterface> BaslerCamera::GxClient

Use a GxClient object to grab data from an application implementing a BaslerCamera::GxStreamServer.

36

API Reference

Basler eXcite

Chapter 3

Namespace Documentation

3.1 BaslerCamera Namespace Reference

The namespace containing most of the components of the BaslerCam library.

Classes

• class CamT

Class template used to implement a camera device.

• struct IInDataStream

Interface to be implemented by devices grabbing frames from an (image) data stream.

• struct IOutDataStream

Interface to be implemented by classes providing an (image) data stream.

• class DeviceIoException

Exception class thrown to indicate device I/O related errors.

• struct IDevice

Interface to be implemented by devices.

• class DeviceInfo

Stores information used to open a device.

• class DeviceManager

Enumerates, creates, and destroys devices.

• class PropertySet

• class GxStreamServer

A customizable stream server class that allows sending a stream consisting of fixed size image data frames.

37

API Reference

Basler eXcite

Namespaces

• namespace StreamServer

Contains interfaces and classes used to implement a stream server.

Typedefs

• typedef XCam Camera

The Camera object used to parameterize the camera and to capture images.

• typedef CamT< XCamDelegateT< XCamInterface::CXCamInterface >, XCamInterface::CXCam-
Interface > XCam

The eXcite camera device.

• typedef CamT< GxDelegateT< GxClientInterface::CGxClientInterface >, GxClientInterface::CGx-
ClientInterface > GxClient

A device class used to connect to a BaslerCamera::GxStreamServer.

38

API Reference

Basler eXcite

3.2 BaslerCamera::StreamServer Namespace Reference

Contains interfaces and classes used to implement a stream server.

Classes

• struct IRegisterSet

Interface to be implemented by classes implementing a register set.

39

API Reference

Basler eXcite

3.3 GxClientInterface Namespace Reference

The namespace containing the device’s control interface and related enumeration types.

Classes

• class CGxClientInterface

The device’s control interface.

40

API Reference

Basler eXcite

3.4 XCamInterface Namespace Reference

The namespace containing the device’s control interface and related enumeration types.

Classes

• class CEnumeration_ColorCodingEnums

Enumeration class used for the ColorCoding parameter.

• class CEnumeration_TriggerModeEnums

Enumeration class used for the TriggerMode parameter.

• class CEnumeration_TriggerPolarityEnums

Enumeration class used for the TriggerPolarity parameter.

• class CEnumeration_TriggerSourceEnums

Enumeration class used for the TriggerSource parameter.

• class CEnumeration_TestImageEnums

Enumeration class used for the TestImage parameter.

• class CEnumeration_PioOut0SrcEnums

Enumeration class used for the PioOut0Src parameter.

• class CEnumeration_PioOut0MonitorEnums

Enumeration class used for the PioOut0Monitor parameter.

• class CEnumeration_PioOut0SettingEnums

Enumeration class used for the PioOut0Setting parameter.

• class CEnumeration_PioOut1SrcEnums

Enumeration class used for the PioOut1Src parameter.

• class CEnumeration_PioOut1MonitorEnums

Enumeration class used for the PioOut1Monitor parameter.

• class CEnumeration_PioOut1SettingEnums

Enumeration class used for the PioOut1Setting parameter.

• class CEnumeration_PioOut2SrcEnums

Enumeration class used for the PioOut2Src parameter.

• class CEnumeration_PioOut2MonitorEnums

Enumeration class used for the PioOut2Monitor parameter.

• class CEnumeration_PioOut2SettingEnums

Enumeration class used for the PioOut2Setting parameter.

• class CEnumeration_PioOut3SrcEnums

41

API Reference

Basler eXcite

Enumeration class used for the PioOut3Src parameter.

• class CEnumeration_PioOut3MonitorEnums

Enumeration class used for the PioOut3Monitor parameter.

• class CEnumeration_PioOut3SettingEnums

Enumeration class used for the PioOut3Setting parameter.

• class CEnumeration_Strobe0PolarityEnums

Enumeration class used for the Strobe0Polarity parameter.

• class CEnumeration_Strobe1PolarityEnums

Enumeration class used for the Strobe1Polarity parameter.

• class CEnumeration_Strobe2PolarityEnums

Enumeration class used for the Strobe2Polarity parameter.

• class CEnumeration_Strobe3PolarityEnums

Enumeration class used for the Strobe3Polarity parameter.

• class CEnumeration_VideoModeEnums

Enumeration class used for the VideoMode parameter.

• class CXCamInterface

The device’s control interface.

42

API Reference

Basler eXcite

Chapter 4

Class Documentation

4.1 BaslerCamera::CamT< TliDelegate, ApiImpl > Class Template
Reference

Class template used to implement a camera device.

Inherits BaslerCamera::DeviceImpl, ApiImpl, and BaslerCamera::IInDataStream.

Public Types

• enum BufferStatus { bsOk = 0, bsTimeOut = 1, bsCancelled = 2, bsError = 3 }

result type of WaitForBuffer()

Public Member Functions

Construction/Destruction

Although the constructor is declared as public, you must not use the constructor to create a device.
Always use the BaslerCamera::DeviceManager to create devices!

• CamT (TliDelegate ∗pDelegate, const DeviceInfo &deviceInfo)
• virtual ∼CamT ()

implementation of BaslerCamera::IDevice

• virtual void Open ()
Open the device.

• virtual bool IsOpen () const
Check if a device has been opened.

• virtual void Close ()
Close the device.

implementation of BaslerCamera::IInDataStream

43

API Reference

Basler eXcite

• virtual void PrepareGrab ()
Prepare data acquisition.

• virtual void QueueBuffer (size_t nBytes, void ∗pBuffer, void ∗pUser)
Pass a buffer to be filled with data.

• virtual void FlushBuffers ()
Cancel all pending buffers.

• virtual IInDataStream::BufferStatus WaitForBuffer (void ∗∗ppBuffer, void ∗∗ppUser, unsigned long
timeout_ms)

Wait for the next buffer.

• virtual void FinishGrab ()
Finish image acquisition.

• virtual bool IsReadyForGrab () const

Are we prepared for grabbing?

Static Public Attributes

• static const DeviceInfo::DeviceTypeId_t DeviceTypeId

Identifier used by the DeviceManager to enumerate and create the device.

4.1.1 Detailed Description

template<class TliDelegate, class ApiImpl> class BaslerCamera::CamT< TliDelegate, ApiImpl >

The CamT class combines the camera control interface (i.e., setting of camera parameters) and the interface
used for grabbing images (IInDataStream).

Template parameters:

• TliDelegate: Class wrapping the transport layer interface

• ApiImpl Class providing the API for the camera control interface (typically generated from XML)

4.1.2 Member Enumeration Documentation

4.1.2.1 enum BaslerCamera::IInDataStream::BufferStatus [inherited]

Enumerator:
bsOk success

bsTimeOut timeout occurred

bsCancelled buffer has been cancelled by calling IInDataStream::FlushBuffers

bsError error occurred

44

API Reference

Basler eXcite

4.1.3 Member Function Documentation

4.1.3.1 template<class TliDelegate, class ApiImpl> virtual void BaslerCamera::CamT<
TliDelegate, ApiImpl >::PrepareGrab () [virtual]

Necessary resource allocation will be performed within this function. PrepareGrab() must be called before
calling QueueBuffer(), FlushBuffers(), and WaitForBuffer().

Implements BaslerCamera::IInDataStream.

4.1.3.2 template<class TliDelegate, class ApiImpl> virtual void BaslerCamera::CamT<
TliDelegate, ApiImpl >::QueueBuffer (size_t nBytes, void ∗ pBuffer, void ∗ pUser)
[virtual]

QueueBuffer() enqueues the buffer into the input queue. For each buffer enqueued into the input queue by
calling QueueBuffer(), one call to WaitForBuffer() should be issued to get the processed buffer back from
the output queue.

When grabbing data from a camera, QueueBuffer() doesn’t trigger the camera device to send images. Use
device dependent functions like OneShot() or ContinuousShot() to cause the camera to send data. Normally
one or more buffers should be enqueued in the input queue before triggering the camera.

Parameters:
← nBytes size of the buffer in bytes

← pBuffer pointer to the data buffer

← pUser additional context information that will be passed back to WaitForBuffer() when the buffer is
filled

Implements BaslerCamera::IInDataStream.

4.1.3.3 template<class TliDelegate, class ApiImpl> virtual void BaslerCamera::CamT<
TliDelegate, ApiImpl >::FlushBuffers () [virtual]

All buffers enqueued with QueueBuffer() will be cancelled and enqueued to the output queue. The cancelled
buffers can be retrieved from the output queue by calling WaitForBuffer().

Implements BaslerCamera::IInDataStream.

4.1.3.4 template<class TliDelegate, class ApiImpl> virtual IInDataStream::BufferStatus
BaslerCamera::CamT< TliDelegate, ApiImpl >::WaitForBuffer (void ∗∗ ppBuffer, void ∗∗
ppUser, unsigned long timeout_ms) [virtual]

WaitForBuffer() retrieves the next buffer from the output queue. If there is no buffer available, WaitForBuffer()
blocks until the specified timeout expires or a buffer becomes available.

Parameters:
↔ ppBuffer stores the buffer containing the (image-)data

↔ ppUser stores the user provided context pointer

← timeout_ms Maximum period to wait for the buffer [in ms]

Implements BaslerCamera::IInDataStream.

45

API Reference

Basler eXcite

4.1.3.5 template<class TliDelegate, class ApiImpl> virtual void BaslerCamera::CamT<
TliDelegate, ApiImpl >::FinishGrab () [virtual]

All allocated resources will be freed. There shouldn’t be any buffers enqueued when calling FinishGrab().
The implementation of FinishGrab() will cancel all pending buffers and removes them from the output queue.

Ensure, that all buffers enqueued per QueueBuffer() have been retrieved by calling WaitForBuffer() before
FinishGrab() is called. Otherwise, FinishGrab() will remove buffers from the output queue. These buffers
are not passed to the client.

Don’t call the WaitForBuffer(), QueueBuffer(), or FlushBuffers() methods after calling FinishGrab()!

Implements BaslerCamera::IInDataStream.

46

API Reference

Basler eXcite

4.2 XCamInterface::CEnumeration_ColorCodingEnums Class Ref-
erence

Enumeration class used for the ColorCoding parameter.

Inherits CEnumerationBase.

Public Types

• enum ColorCodingEnums {

ColorCoding_Mono8 = 0, ColorCoding_YUV8_4_1_1 = 1, ColorCoding_YUV8_4_2_2 = 2, Color-
Coding_YUV8_4_4_4 = 3,

ColorCoding_RGB8 = 4, ColorCoding_Mono16 = 5, ColorCoding_RGB16 = 6, ColorCoding_-
SMono16 = 7,

ColorCoding_SRGB16 = 8, ColorCoding_Raw8 = 9, ColorCoding_Raw16 = 10, ColorCoding_Vendor-
Specific0 = 128,

ColorCoding_VendorSpecific1 = 129, ColorCoding_VendorSpecific2 = 130, ColorCoding_Vendor-
Specific3 = 131, ColorCoding_VendorSpecific4 = 132,

ColorCoding_VendorSpecific5 = 133, ColorCoding_VendorSpecific6 = 134 }

Valid values for ColorCoding.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.2.1 Member Enumeration Documentation

4.2.1.1 enum XCamInterface::CEnumeration_ColorCodingEnums::ColorCodingEnums

Enumerator:
ColorCoding_Mono8 Y component has 8bit data .

ColorCoding_YUV8_4_1_1 4:1:1 YUV 8 format, each component has 8bit data .

ColorCoding_YUV8_4_2_2 4:2:2 YUV 8 format, each component has 8bit data .

ColorCoding_YUV8_4_4_4 4:4:4 YUV 8 format, each component has 8bit data .

ColorCoding_RGB8 RGB 8 format, each component has 8bit data .

ColorCoding_Mono16 Y component has 16bit unsigned data .

ColorCoding_RGB16 RGB 16 format, each component has 16bit unsigned data .

ColorCoding_SMono16 Y component has 16bit signed data .

ColorCoding_SRGB16 RGB 16 format, each component has 16bit signed data .

ColorCoding_Raw8 Raw data output of color filter sensor, 8bit data .

ColorCoding_Raw16 Raw data output of color filter sensor, 16bit data .

ColorCoding_VendorSpecific0 First of 128 vendor specific color codes .

47

API Reference

Basler eXcite

ColorCoding_VendorSpecific1 VendorSpecific 1.

ColorCoding_VendorSpecific2 VendorSpecific 2.

ColorCoding_VendorSpecific3 VendorSpecific 3.

ColorCoding_VendorSpecific4 VendorSpecific 4.

ColorCoding_VendorSpecific5 VendorSpecific 5.

ColorCoding_VendorSpecific6 VendorSpecific 6.

48

API Reference

Basler eXcite

4.3 XCamInterface::CEnumeration_PioOut0MonitorEnums Class
Reference

Enumeration class used for the PioOut0Monitor parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut0MonitorEnums { PioOut0Monitor_Low = 0, PioOut0Monitor_High = 1 }

Valid values for PioOut0Monitor.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.3.1 Member Enumeration Documentation

4.3.1.1 enum XCamInterface::CEnumeration_PioOut0MonitorEnums::PioOut0MonitorEnums

Enumerator:
PioOut0Monitor_Low Low.

PioOut0Monitor_High High .

49

API Reference

Basler eXcite

4.4 XCamInterface::CEnumeration_PioOut0SettingEnums Class
Reference

Enumeration class used for the PioOut0Setting parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut0SettingEnums { PioOut0Setting_Low = 0, PioOut0Setting_High = 1 }

Valid values for PioOut0Setting.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.4.1 Member Enumeration Documentation

4.4.1.1 enum XCamInterface::CEnumeration_PioOut0SettingEnums::PioOut0SettingEnums

Enumerator:
PioOut0Setting_Low Low.

PioOut0Setting_High High .

50

API Reference

Basler eXcite

4.5 XCamInterface::CEnumeration_PioOut0SrcEnums Class Refer-
ence

Enumeration class used for the PioOut0Src parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut0SrcEnums {

PioOut0Src_IntegrationEnable = 0, PioOut0Src_ReadyforTrigger = 1, PioOut0Src_SerialTx = 2, Pio-
Out0Src_UserSet = 3,

PioOut0Src_Strobe0 = 4 }

Valid values for PioOut0Src.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.5.1 Member Enumeration Documentation

4.5.1.1 enum XCamInterface::CEnumeration_PioOut0SrcEnums::PioOut0SrcEnums

Enumerator:
PioOut0Src_IntegrationEnable Integration Enable.

PioOut0Src_ReadyforTrigger Ready for Trigger .

PioOut0Src_SerialTx Serial Tx.

PioOut0Src_UserSet User Set .

PioOut0Src_Strobe0 Strobe0.

51

API Reference

Basler eXcite

4.6 XCamInterface::CEnumeration_PioOut1MonitorEnums Class
Reference

Enumeration class used for the PioOut1Monitor parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut1MonitorEnums { PioOut1Monitor_Low = 0, PioOut1Monitor_High = 1 }

Valid values for PioOut1Monitor.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.6.1 Member Enumeration Documentation

4.6.1.1 enum XCamInterface::CEnumeration_PioOut1MonitorEnums::PioOut1MonitorEnums

Enumerator:
PioOut1Monitor_Low Low.

PioOut1Monitor_High High .

52

API Reference

Basler eXcite

4.7 XCamInterface::CEnumeration_PioOut1SettingEnums Class
Reference

Enumeration class used for the PioOut1Setting parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut1SettingEnums { PioOut1Setting_Low = 0, PioOut1Setting_High = 1 }

Valid values for PioOut1Setting.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.7.1 Member Enumeration Documentation

4.7.1.1 enum XCamInterface::CEnumeration_PioOut1SettingEnums::PioOut1SettingEnums

Enumerator:
PioOut1Setting_Low Low.

PioOut1Setting_High High .

53

API Reference

Basler eXcite

4.8 XCamInterface::CEnumeration_PioOut1SrcEnums Class Refer-
ence

Enumeration class used for the PioOut1Src parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut1SrcEnums {

PioOut1Src_IntegrationEnable = 0, PioOut1Src_ReadyforTrigger = 1, PioOut1Src_SerialTx = 2, Pio-
Out1Src_UserSet = 3,

PioOut1Src_Strobe1 = 4 }

Valid values for PioOut1Src.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.8.1 Member Enumeration Documentation

4.8.1.1 enum XCamInterface::CEnumeration_PioOut1SrcEnums::PioOut1SrcEnums

Enumerator:
PioOut1Src_IntegrationEnable Integration Enable.

PioOut1Src_ReadyforTrigger Ready for Trigger .

PioOut1Src_SerialTx Serial Tx.

PioOut1Src_UserSet User Set .

PioOut1Src_Strobe1 Strobe1.

54

API Reference

Basler eXcite

4.9 XCamInterface::CEnumeration_PioOut2MonitorEnums Class
Reference

Enumeration class used for the PioOut2Monitor parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut2MonitorEnums { PioOut2Monitor_Low = 0, PioOut2Monitor_High = 1 }

Valid values for PioOut2Monitor.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.9.1 Member Enumeration Documentation

4.9.1.1 enum XCamInterface::CEnumeration_PioOut2MonitorEnums::PioOut2MonitorEnums

Enumerator:
PioOut2Monitor_Low Low.

PioOut2Monitor_High High .

55

API Reference

Basler eXcite

4.10 XCamInterface::CEnumeration_PioOut2SettingEnums Class
Reference

Enumeration class used for the PioOut2Setting parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut2SettingEnums { PioOut2Setting_Low = 0, PioOut2Setting_High = 1 }

Valid values for PioOut2Setting.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.10.1 Member Enumeration Documentation

4.10.1.1 enum XCamInterface::CEnumeration_PioOut2SettingEnums::PioOut2SettingEnums

Enumerator:
PioOut2Setting_Low Low.

PioOut2Setting_High High .

56

API Reference

Basler eXcite

4.11 XCamInterface::CEnumeration_PioOut2SrcEnums Class Refer-
ence

Enumeration class used for the PioOut2Src parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut2SrcEnums {

PioOut2Src_IntegrationEnable = 0, PioOut2Src_ReadyforTrigger = 1, PioOut2Src_SerialTx = 2, Pio-
Out2Src_UserSet = 3,

PioOut2Src_Strobe2 = 4 }

Valid values for PioOut2Src.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.11.1 Member Enumeration Documentation

4.11.1.1 enum XCamInterface::CEnumeration_PioOut2SrcEnums::PioOut2SrcEnums

Enumerator:
PioOut2Src_IntegrationEnable Integration Enable.

PioOut2Src_ReadyforTrigger Ready for Trigger .

PioOut2Src_SerialTx Serial Tx.

PioOut2Src_UserSet User Set .

PioOut2Src_Strobe2 Strobe2.

57

API Reference

Basler eXcite

4.12 XCamInterface::CEnumeration_PioOut3MonitorEnums Class
Reference

Enumeration class used for the PioOut3Monitor parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut3MonitorEnums { PioOut3Monitor_Low = 0, PioOut3Monitor_High = 1 }

Valid values for PioOut3Monitor.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.12.1 Member Enumeration Documentation

4.12.1.1 enum XCamInterface::CEnumeration_PioOut3MonitorEnums::PioOut3MonitorEnums

Enumerator:
PioOut3Monitor_Low Low.

PioOut3Monitor_High High .

58

API Reference

Basler eXcite

4.13 XCamInterface::CEnumeration_PioOut3SettingEnums Class
Reference

Enumeration class used for the PioOut3Setting parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut3SettingEnums { PioOut3Setting_Low = 0, PioOut3Setting_High = 1 }

Valid values for PioOut3Setting.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.13.1 Member Enumeration Documentation

4.13.1.1 enum XCamInterface::CEnumeration_PioOut3SettingEnums::PioOut3SettingEnums

Enumerator:
PioOut3Setting_Low Low.

PioOut3Setting_High High .

59

API Reference

Basler eXcite

4.14 XCamInterface::CEnumeration_PioOut3SrcEnums Class Refer-
ence

Enumeration class used for the PioOut3Src parameter.

Inherits CEnumerationBase.

Public Types

• enum PioOut3SrcEnums {

PioOut3Src_IntegrationEnable = 0, PioOut3Src_ReadyforTrigger = 1, PioOut3Src_SerialTx = 2, Pio-
Out3Src_UserSet = 3,

PioOut3Src_Strobe3 = 4 }

Valid values for PioOut3Src.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.14.1 Member Enumeration Documentation

4.14.1.1 enum XCamInterface::CEnumeration_PioOut3SrcEnums::PioOut3SrcEnums

Enumerator:
PioOut3Src_IntegrationEnable Integration Enable.

PioOut3Src_ReadyforTrigger Ready for Trigger .

PioOut3Src_SerialTx Serial Tx.

PioOut3Src_UserSet User Set .

PioOut3Src_Strobe3 Strobe3.

60

API Reference

Basler eXcite

4.15 XCamInterface::CEnumeration_Strobe0PolarityEnums Class
Reference

Enumeration class used for the Strobe0Polarity parameter.

Inherits CEnumerationBase.

Public Types

• enum Strobe0PolarityEnums { Strobe0Polarity_LowActiveOutput = 0, Strobe0Polarity_HighActive-
Output = 1 }

Valid values for Strobe0Polarity.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.15.1 Member Enumeration Documentation

4.15.1.1 enum XCamInterface::CEnumeration_Strobe0PolarityEnums::Strobe0PolarityEnums

Enumerator:
Strobe0Polarity_LowActiveOutput Low Active Output.

Strobe0Polarity_HighActiveOutput High Active Output.

61

API Reference

Basler eXcite

4.16 XCamInterface::CEnumeration_Strobe1PolarityEnums Class
Reference

Enumeration class used for the Strobe1Polarity parameter.

Inherits CEnumerationBase.

Public Types

• enum Strobe1PolarityEnums { Strobe1Polarity_LowActiveOutput = 0, Strobe1Polarity_HighActive-
Output = 1 }

Valid values for Strobe1Polarity.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.16.1 Member Enumeration Documentation

4.16.1.1 enum XCamInterface::CEnumeration_Strobe1PolarityEnums::Strobe1PolarityEnums

Enumerator:
Strobe1Polarity_LowActiveOutput Low Active Output.

Strobe1Polarity_HighActiveOutput High Active Output.

62

API Reference

Basler eXcite

4.17 XCamInterface::CEnumeration_Strobe2PolarityEnums Class
Reference

Enumeration class used for the Strobe2Polarity parameter.

Inherits CEnumerationBase.

Public Types

• enum Strobe2PolarityEnums { Strobe2Polarity_LowActiveOutput = 0, Strobe2Polarity_HighActive-
Output = 1 }

Valid values for Strobe2Polarity.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.17.1 Member Enumeration Documentation

4.17.1.1 enum XCamInterface::CEnumeration_Strobe2PolarityEnums::Strobe2PolarityEnums

Enumerator:
Strobe2Polarity_LowActiveOutput Low Active Output.

Strobe2Polarity_HighActiveOutput High Active Output.

63

API Reference

Basler eXcite

4.18 XCamInterface::CEnumeration_Strobe3PolarityEnums Class
Reference

Enumeration class used for the Strobe3Polarity parameter.

Inherits CEnumerationBase.

Public Types

• enum Strobe3PolarityEnums { Strobe3Polarity_LowActiveOutput = 0, Strobe3Polarity_HighActive-
Output = 1 }

Valid values for Strobe3Polarity.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.18.1 Member Enumeration Documentation

4.18.1.1 enum XCamInterface::CEnumeration_Strobe3PolarityEnums::Strobe3PolarityEnums

Enumerator:
Strobe3Polarity_LowActiveOutput Low Active Output.

Strobe3Polarity_HighActiveOutput High Active Output.

64

API Reference

Basler eXcite

4.19 XCamInterface::CEnumeration_TestImageEnums Class Refer-
ence

Enumeration class used for the TestImage parameter.

Inherits CEnumerationBase.

Public Types

• enum TestImageEnums {

TestImage_Disabled = 0, TestImage_TestImage1 = 1, TestImage_TestImage2 = 2, TestImage_Test-
Image3 = 3,

TestImage_TestImage4 = 4, TestImage_TestImage5 = 5, TestImage_TestImage6 = 6, TestImage_-
TestImage7 = 7 }

Valid values for TestImage.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.19.1 Member Enumeration Documentation

4.19.1.1 enum XCamInterface::CEnumeration_TestImageEnums::TestImageEnums

Enumerator:
TestImage_Disabled Disabled.

TestImage_TestImage1 Test Image 1.

TestImage_TestImage2 Test Image 2.

TestImage_TestImage3 Test Image 3.

TestImage_TestImage4 Test Image 4.

TestImage_TestImage5 Test Image 5.

TestImage_TestImage6 Test Image 6.

TestImage_TestImage7 Test Image 7.

65

API Reference

Basler eXcite

4.20 XCamInterface::CEnumeration_TriggerModeEnums Class Ref-
erence

Enumeration class used for the TriggerMode parameter.

Inherits CEnumerationBase.

Public Types

• enum TriggerModeEnums { TriggerMode_TriggerMode0 = 0, TriggerMode_TriggerMode1 = 1, Trigger-
Mode_TriggerMode2 = 2, TriggerMode_TriggerMode3 = 3 }

Valid values for TriggerMode.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.20.1 Member Enumeration Documentation

4.20.1.1 enum XCamInterface::CEnumeration_TriggerModeEnums::TriggerModeEnums

Enumerator:
TriggerMode_TriggerMode0 Trigger Mode 0.

TriggerMode_TriggerMode1 Trigger Mode 1.

TriggerMode_TriggerMode2 Trigger Mode 2.

TriggerMode_TriggerMode3 Trigger Mode 3.

66

API Reference

Basler eXcite

4.21 XCamInterface::CEnumeration_TriggerPolarityEnums Class
Reference

Enumeration class used for the TriggerPolarity parameter.

Inherits CEnumerationBase.

Public Types

• enum TriggerPolarityEnums { TriggerPolarity_LowActive = 0, TriggerPolarity_HighActive = 1 }

Valid values for TriggerPolarity.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.21.1 Member Enumeration Documentation

4.21.1.1 enum XCamInterface::CEnumeration_TriggerPolarityEnums::TriggerPolarityEnums

Enumerator:
TriggerPolarity_LowActive Low Active.

TriggerPolarity_HighActive HighActive.

67

API Reference

Basler eXcite

4.22 XCamInterface::CEnumeration_TriggerSourceEnums Class
Reference

Enumeration class used for the TriggerSource parameter.

Inherits CEnumerationBase.

Public Types

• enum TriggerSourceEnums {

TriggerSource_ExTrigPort0 = 0, TriggerSource_ExTrigPort1 = 1, TriggerSource_ExTrigPort2 = 2,
TriggerSource_ExTrigPort3 = 3,

TriggerSource_SoftTrig = 7 }

Valid values for TriggerSource.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.22.1 Member Enumeration Documentation

4.22.1.1 enum XCamInterface::CEnumeration_TriggerSourceEnums::TriggerSourceEnums

Enumerator:
TriggerSource_ExTrigPort0 Physical input port 0.

TriggerSource_ExTrigPort1 Physical input port 1.

TriggerSource_ExTrigPort2 Physical input port 2.

TriggerSource_ExTrigPort3 Physical input port 3.

TriggerSource_SoftTrig Software trigger.

68

API Reference

Basler eXcite

4.23 XCamInterface::CEnumeration_VideoModeEnums Class Refer-
ence

Enumeration class used for the VideoMode parameter.

Inherits CEnumerationBase.

Public Types

• enum VideoModeEnums {

VideoMode_VideoMode0 = 0, VideoMode_VideoMode1 = 1, VideoMode_VideoMode2 = 2, Video-
Mode_VideoMode3 = 3,

VideoMode_VideoMode4 = 4, VideoMode_VideoMode5 = 5, VideoMode_VideoMode6 = 6, Video-
Mode_VideoMode7 = 7 }

Valid values for VideoMode.

Public Member Functions

• virtual void GetEntries (GenApi::NodeList_t &Entries)

Get list of entry nodes.

4.23.1 Member Enumeration Documentation

4.23.1.1 enum XCamInterface::CEnumeration_VideoModeEnums::VideoModeEnums

Enumerator:
VideoMode_VideoMode0 Video Mode 0.

VideoMode_VideoMode1 Video Mode 1.

VideoMode_VideoMode2 Video Mode 2.

VideoMode_VideoMode3 Video Mode 3.

VideoMode_VideoMode4 Video Mode 4.

VideoMode_VideoMode5 Video Mode 5.

VideoMode_VideoMode6 Video Mode 6.

VideoMode_VideoMode7 Video Mode 7.

69

API Reference

Basler eXcite

4.24 GxClientInterface::CGxClientInterface Class Reference

The device’s control interface.

Public Member Functions

• CGxClientInterface (GenApi::IPort ∗pCameraPortImpl=NULL, GenApi::IPort ∗pGrabberPort-
Impl=NULL)

Constructor.

• GenApi::INode ∗ GetFeature (const char ∗name)

Gets a feature by name.

Public Attributes

• GenApi::IBoolean & EnableStreaming

Tells the server to start/stop sending of streaming data.

• GenApi::IInteger & TotalBytes

Number of bytes per frame (RO).

• GenApi::IInteger & Width

Width of the frame in pixels (RO).

• GenApi::IInteger & Height

Height of the frame in pixels (RO).

• GenApi::IInteger & DataDepth

Number of bytes per pixel (RO).

70

API Reference

Basler eXcite

4.25 XCamInterface::CXCamInterface Class Reference

The device’s control interface.

Public Member Functions

• CXCamInterface (GenApi::IPort ∗pCameraPortImpl=NULL, GenApi::IPort ∗pGrabberPortImpl=NULL)

Constructor.

• GenApi::INode ∗ GetFeature (const char ∗name)

Gets a feature by name.

Public Attributes

• GenApi::IInteger & AdvFeature

Locks the advanced features.

• GenApi::IBoolean & OneShot

Used to grab a single image.

• GenApi::IBoolean & ContinuousShot

Used to start continuous image grabbing.

• GenApi::IInteger & ErrorFlag1

Error in AOI Position, AOI Size, ColorID.

• GenApi::IInteger & ErrorFlag2

Error in BytesPerPacket.

• GenApi::IBoolean & ErrorShutter

Shutter control error.

• GenApi::IBoolean & ErrorGain

Gain control error.

• GenApi::IBoolean & ErrorBrightness

Brightness control error.

• GenApi::IBoolean & ErrorTrigger

Trigger control error.

• GenApi::IBoolean & ErrorWhiteBalance

White balance control error.

• GenApi::IFloat & FrameInterval

Indicates the current frame period in seconds.

71

API Reference

Basler eXcite

• GenApi::IInteger & XPosition

Sets the x position for the area of interest.

• GenApi::IInteger & YPosition

Sets the y position for the area of interest.

• GenApi::IInteger & Width

Sets the width for the area of interest.

• GenApi::IInteger & Height

Sets the height for the area of interest.

• GenApi::IInteger & Shutter

Sets the exposure time.

• GenApi::IInteger & Brightness

Sets the image brightness.

• GenApi::IInteger & Gain

Sets the camera’s gain.

• GenApi::IInteger & WhiteBalanceUB

Sets the blue level on color cameras.

• GenApi::IInteger & WhiteBalanceVR

Sets the red level on color cameras.

• GenApi::IBoolean & TriggerEnable

Enables the trigger feature.

• XCamInterface::CEnumeration_TriggerModeEnums & TriggerMode

Sets the trigger mode.

• XCamInterface::CEnumeration_TriggerPolarityEnums & TriggerPolarity

Sets the trigger polarity.

• XCamInterface::CEnumeration_TriggerSourceEnums & TriggerSource

Selects an input port or a software signal as the source for triggering.

• GenApi::IBoolean & SoftwareTrigger

Triggers an image grab with minimal latency.

• GenApi::IBoolean & TriggerFlag

Indicates whether a trigger has occurred.

• GenApi::IInteger & TriggerCounter

Current value of the trigger counter.

• XCamInterface::CEnumeration_TestImageEnums & TestImage

Enables the test image feature and selects a test image.

72

API Reference

Basler eXcite

• GenApi::IBoolean & ShutterTimeBaseEnable

Enables the Shutter Base feature.

• GenApi::IFloat & ShutterTimeBase

Sets the time base for the Shutter feature in seconds.

• GenApi::IString & ExtVerInfo

Gets the version numbers for the camera’s internal software.

• GenApi::IInteger & PioOutput

Parallel Output Control.

• GenApi::IInteger & PioInput

Reads the state of the four digital inputs.

• XCamInterface::CEnumeration_PioOut0SrcEnums & PioOut0Src

Selects the source signal for physical output port 0.

• XCamInterface::CEnumeration_PioOut0MonitorEnums & PioOut0Monitor

Reads the currrent state of physical output port 0.

• GenApi::IBoolean & PioOut0Invert

Sets the invert function on physical output port 0.

• XCamInterface::CEnumeration_PioOut0SettingEnums & PioOut0Setting

Sets the state of physical output port 0 (if the source selection is set to user settable).

• XCamInterface::CEnumeration_PioOut1SrcEnums & PioOut1Src

Selects the source signal for physical output port 1.

• XCamInterface::CEnumeration_PioOut1MonitorEnums & PioOut1Monitor

Reads the currrent state of physical output port 1.

• GenApi::IBoolean & PioOut1Invert

Sets the invert function on physical output port 1.

• XCamInterface::CEnumeration_PioOut1SettingEnums & PioOut1Setting

Sets the state of physical output port 1 (if the source selection is set to user settable).

• XCamInterface::CEnumeration_PioOut2SrcEnums & PioOut2Src

Selects the source signal for physical output port 2.

• XCamInterface::CEnumeration_PioOut2MonitorEnums & PioOut2Monitor

Reads the currrent state of physical output port 2.

• GenApi::IBoolean & PioOut2Invert

Sets the invert function on physical output port 2.

• XCamInterface::CEnumeration_PioOut2SettingEnums & PioOut2Setting

73

API Reference

Basler eXcite

Sets the state of physical output port 2 (if the source selection is set to user settable).

• XCamInterface::CEnumeration_PioOut3SrcEnums & PioOut3Src

Selects the source signal for physical output port 3.

• XCamInterface::CEnumeration_PioOut3MonitorEnums & PioOut3Monitor

Reads the currrent state of physical output port 3.

• GenApi::IBoolean & PioOut3Invert

Sets the invert function on physical output port 3.

• XCamInterface::CEnumeration_PioOut3SettingEnums & PioOut3Setting

Sets the state of physical output port 3 (if the source selection is set to user settable).

• GenApi::IBoolean & Strobe0Enable

Enables the strobe 0 output signal.

• XCamInterface::CEnumeration_Strobe0PolarityEnums & Strobe0Polarity

Sets the strobe 0 output signal polarity.

• GenApi::IInteger & Strobe0Delay

Sets the strobe 0 output signal delay.

• GenApi::IInteger & Strobe0Duration

Sets the strobe 0 output signal duration.

• GenApi::IBoolean & Strobe1Enable

Enables the strobe 1 output signal.

• XCamInterface::CEnumeration_Strobe1PolarityEnums & Strobe1Polarity

Sets the strobe 1 output signal polarity.

• GenApi::IInteger & Strobe1Delay

Sets the strobe 1 output signal delay.

• GenApi::IInteger & Strobe1Duration

Sets the strobe 1 output signal duration.

• GenApi::IBoolean & Strobe2Enable

Enables the strobe 2 output signal.

• XCamInterface::CEnumeration_Strobe2PolarityEnums & Strobe2Polarity

Sets the strobe 2 output signal polarity.

• GenApi::IInteger & Strobe2Delay

Sets the strobe 2 output signal delay.

• GenApi::IInteger & Strobe2Duration

Sets the strobe 2 output signal duration.

74

API Reference

Basler eXcite

• GenApi::IBoolean & Strobe3Enable

Enables the strobe 3 output signal.

• XCamInterface::CEnumeration_Strobe3PolarityEnums & Strobe3Polarity

Sets the strobe 3 output signal polarity.

• GenApi::IInteger & Strobe3Delay

Sets the strobe 3 output signal delay.

• GenApi::IInteger & Strobe3Duration

Sets the strobe 3 output signal duration.

• GenApi::IInteger & StrobeDurationTimeBase

Sets the duration time base for the strobe output signal feature.

• GenApi::IFloat & Strobe0Duration_s

Indicates the duration for strobe 0 output signal in seconds.

• GenApi::IFloat & Strobe1Duration_s

Indicates the duration for strobe 1 output signal in seconds.

• GenApi::IFloat & Strobe2Duration_s

Indicates the duration for strobe 2 output signal in seconds.

• GenApi::IFloat & Strobe3Duration_s

Indicates the duration for strobe 3 output signal in seconds.

• GenApi::IInteger & StrobeDelayTimeBase

Sets the delay time base for the strobe output signal feature.

• GenApi::IFloat & Strobe0Delay_s

Indicates the delay for strobe 0 output signal in seconds.

• GenApi::IFloat & Strobe1Delay_s

Indicates the delay for strobe 1 output signal in seconds.

• GenApi::IFloat & Strobe2Delay_s

Indicates the delay for strobe 2 output signal in seconds.

• GenApi::IFloat & Strobe3Delay_s

Indicates the delay for strobe 3 output signal in seconds.

• XCamInterface::CEnumeration_VideoModeEnums & VideoMode

Video Modes.

• XCamInterface::CEnumeration_ColorCodingEnums & ColorCoding

Controls the color mode.

• GenApi::IInteger & Bandwidth

75

API Reference

Basler eXcite

Sets the data rate (in bytes per packet) for transferring captured images from the camera section to the
processor section.

• GenApi::IInteger & DataDepth

Indicates the effective data depth.

• GenApi::IInteger & PixelNumber

Indicates the number of pixels per frame in the captured images.

• GenApi::IInteger & PacketNumber

Indicates the number of packets per frame for the captured images.

• GenApi::IInteger & TotalBytes

Indicates the number of bytes per frame in the captured images.

• GenApi::IBoolean & SaveMemory

Used to save current status.

• GenApi::IInteger & SaveMemoryCh

Save settings to this channel.

• GenApi::IInteger & StartupMemoryCh

Used to set the startup memory channel.

• GenApi::IInteger & CpuTemperature

Indicates the current CPU temperature in degrees C.

• GenApi::IInteger & BoardTemperature

Indicates the current board temperature in degrees C.

76

API Reference

Basler eXcite

4.26 BaslerCamera::DeviceInfo Class Reference

Stores information used to open a device.

Inherits BaslerCamera::PropertySet.

Public Member Functions

• DeviceInfo (const std::string &fullDeviceName, const std::string &friendlyDeviceName, const Device-
TypeId_t &deviceTypeId)

Constructor.

• std::string GetFullDeviceName () const throw ()

Returns the full device name.

• std::string GetFriendlyDeviceName () const throw ()

Returns the friendly device name.

• DeviceTypeId_t GetDeviceTypeId () const throw ()

Returns the device type ID.

• std::string GetProperty (const std::string &key) const

Returns a property.

• void AddProperty (const std::string &key, const std::string &value)

Adds a property.

• bool HasProperty (const std::string &key) const

Checks if the container contains a property.

4.26.1 Detailed Description

A device info object must contain all necessary information used to open a device. We are assuming that a
device info object at least contains a friendly device name (e.g., to be displayed in device selection combo
boxes) and a full device name (e.g., used by the OS to identify the device). Friendly and full device names
don’t need to be different.

4.26.2 Member Function Documentation

4.26.2.1 std::string BaslerCamera::PropertySet::GetProperty (const std::string & key) const
[inherited]

Parameters:
key The name of the property

Returns:
the value of the property If the property set doesn’t contain a value for the specified key, a Basler-
Camera::RuntimeException will be thrown.

77

API Reference

Basler eXcite

4.26.2.2 void BaslerCamera::PropertySet::AddProperty (const std::string & key, const std::string
& value) [inherited]

Parameters:
key Name of the property

value The value of the property

4.26.2.3 bool BaslerCamera::PropertySet::HasProperty (const std::string & key) const
[inherited]

Parameters:
key The name of the property to check

Returns:
true when the property exists, false otherwise.

78

API Reference

Basler eXcite

4.27 BaslerCamera::DeviceIoException Class Reference

Exception class thrown to indicate device I/O related errors.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

79

API Reference

Basler eXcite

4.28 BaslerCamera::DeviceManager Class Reference

Enumerates, creates, and destroys devices.

Public Types

• typedef std::list< DeviceInfo > DeviceInfoList_t

list of device info objects

Public Member Functions

• IDevice ∗ CreateDevice (const DeviceInfo &deviceInfo)

Create a device.

• void DestroyDevice (IDevice ∗pDevice)

Destroy a device.

• DeviceInfoList_t EnumerateDevices (const DeviceInfo::DeviceTypeId_t &id, const PropertySet ∗p-
EnumerationProps=NULL)

Enumerate devices.

Static Public Member Functions

• static DeviceManager & GetInstance ()

Returns the one and only Device Manager (singleton pattern).

4.28.1 Member Function Documentation

4.28.1.1 IDevice∗ BaslerCamera::DeviceManager::CreateDevice (const DeviceInfo & deviceInfo)

Parameters:
← deviceInfo device info object carrying all information needed for device creation

4.28.1.2 void BaslerCamera::DeviceManager::DestroyDevice (IDevice ∗ pDevice)

Parameters:
← pDevice pointer to the device

4.28.1.3 DeviceInfoList_t BaslerCamera::DeviceManager::EnumerateDevices (const
DeviceInfo::DeviceTypeId_t & id, const PropertySet ∗ pEnumerationProps = NULL)

Devices of a given type will be enumerated. Each device type is associated with a unique device type
identifier.

80

API Reference

Basler eXcite

Parameters:
← id device type identifier

← pEnumerationProps (optional) For some device types, additional parameters can be specified for
the enumeration process. These parameters are given in the form of a pointer to PropertySet.

81

API Reference

Basler eXcite

4.29 GenApi::GenericException Class Reference

Base class for all exceptions thrown by the library.

Inherits exception.

Inherited by BaslerCamera::DeviceIoException, GenApi::InvalidArgumentException, GenApi::LogicalError-
Exception, GenApi::OutOfRangeException, GenApi::PropertyException, and GenApi::RuntimeException.

Public Member Functions

• GenericException (const char ∗description, const char ∗sourceFileName, unsigned int sourceLine)

Constructor.

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

• virtual ∼GenericException () throw ()

Destructor.

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

82

API Reference

Basler eXcite

4.30 BaslerCamera::GxStreamServer Class Reference

A customizable stream server class that allows sending a stream consisting of fixed size image data frames.

Inherits BaslerCamera::StreamServer::RegisterSet< Impl >, and BaslerCamera::GxStreamServerBase.

Public Types

• typedef IRegisterSet::Result(Impl::∗ ReadHandler_t)(uint32_t ∗pData)

ReadHandler_t: The type of handler functions called when registers are to be read.

• typedef IRegisterSet::Result(Impl::∗WriteHandler_t)(uint32_t Data)

WriteHandler_t: The type of handler functions called when registers are to be written.

• typedef uint32_t Address_t

Type used for addresses.

• enum Result

Result type of IRegisterSet’s methods.

• enum BufferStatus { bsOk = 0, bsStreamClosed = 1 , bsError = 3 }

result type of WaitForBuffer()

Public Member Functions

• virtual unsigned long GetTotalBytes () const

Returns the number of bytes a frame must contain.

• GxStreamServer (unsigned long width, unsigned long height, unsigned long datadepth, Stream-
Server::IRegisterSet ∗pCustomRegisterSet=NULL)

Create a stream server.

• void Register (Address_t addr, ReadHandler_t rh, WriteHandler_t wh)

Register handler functions for a specific register.

• virtual Result DoReadRegister (Address_t address, uint32_t ∗pData)=0

Called when a register is to be read.

• virtual Result DoWriteRegister (Address_t address, uint32_t Data)=0
• void Open (const std::string &serverName, unsigned long portNr=s_defaultPort)

Creates the server.

• void Close ()

Terminates the server.

• virtual bool IsStreamOpen ()

Has the client opened the stream?

83

API Reference

Basler eXcite

• virtual bool WaitForStreamOpen (unsigned long timeout_ms)

Wait until the client has opened the stream.

• virtual bool IsStreamingEnabled ()

Has the client enabled streaming?

• virtual bool WaitForStreamingEnabled (unsigned long timeout_ms)

Wait until the client has enabled streaming.

• virtual bool WaitForStreamClose (unsigned long timeout_ms)

Wait until the client has closed streaming.

Implementation of BaslerCamera::IOutDataStream

Implementation of BaslerCamera::IOutDataStream

4.30.1 Detailed Description

A stream server accepts connections from GxClient devices via (Gigabit-)Ethernet and sends (image-)data
to a connected client. A stream server can also implement a register set.

The client establishes the connection to the stream server by calling the GxClient::Open() method. When
the connection has been established, the Client can access the registers implemented by the stream server.

The client must open the data stream by calling the GxClient::PrepareGrab() function. When the data stream
has been opened, the client can provide data buffers by calling the GxClient::QueueBuffer() method. When
the buffers are queued in, streaming must be enabled. The server implements a StreamingEnable register,
which can be accessed by the GxClient::EnableStreaming member object.

The server should not send any data before streaming has been enabled.

The client closes the stream by calling the GxClient::FinishGrab() method.

4.30.2 Member Typedef Documentation

4.30.2.1 template<class Impl> typedef IRegisterSet::Result(Impl::∗ Basler-
Camera::StreamServer::RegisterSet< Impl >::ReadHandler_t)(uint32_t ∗pData)
[inherited]

It’s a pointer to a member function of the Impl class

4.30.2.2 template<class Impl> typedef IRegisterSet::Result(Impl::∗ Basler-
Camera::StreamServer::RegisterSet< Impl >::WriteHandler_t)(uint32_t Data)
[inherited]

It’s a pointer to a member function of the Impl class

84

API Reference

Basler eXcite

4.30.3 Member Enumeration Documentation

4.30.3.1 enum BaslerCamera::IOutDataStream::BufferStatus [inherited]

Enumerator:
bsOk success

bsStreamClosed stream has been closed by the client

bsError buffer has been cancelled

4.30.4 Constructor & Destructor Documentation

4.30.4.1 BaslerCamera::GxStreamServer::GxStreamServer (unsigned long width, unsigned long
height, unsigned long datadepth, StreamServer::IRegisterSet ∗ pCustomRegisterSet =
NULL)

Parameters:
← width The width of one image frame [pixels]

← height The height of one image frame [pixels]

← datadepth Number of bytes per pixel

← pCustomRegisterSet An "additional" register set can be passed to the stream server. The stream
server dispatches register read and write requests to the pCustomRegisterSet when the server
itself isn’t implementing the requested registers.

4.30.5 Member Function Documentation

4.30.5.1 virtual Result BaslerCamera::StreamServer::IRegisterSet::DoReadRegister (Address_t
address, uint32_t ∗ pData) [pure virtual, inherited]

Parameters:
← address Address to read from

→ pData The register content will be written to this pointer

Returns:
IRegisterSet::rrOk on success

4.30.5.2 virtual Result BaslerCamera::StreamServer::IRegisterSet::DoWriteRegister (Address_t
address, uint32_t Data) [pure virtual, inherited]

Parameters:
← address Address to write to

← Data Data to be written

Returns:
IRegisterSet::rrOk on success

85

API Reference

Basler eXcite

4.30.5.3 void BaslerCamera::GxStreamServerBase::Open (const std::string & serverName,
unsigned long portNr = s_defaultPort) [inherited]

Parameters:
← serverName The server’s name

← portNr The number of the port to which the server is bound

4.30.5.4 virtual bool BaslerCamera::GxStreamServerBase::WaitForStreamOpen (unsigned long
timeout_ms) [virtual, inherited]

The client opens the stream by calling the GxClient::PrepareGrab() function.

Parameters:
← timeout_ms Specify a timeout in ms. When the timeout expires, the function returns false.

Returns:
true when a client has opened the stream within the specified period, false otherwise

4.30.5.5 virtual bool BaslerCamera::GxStreamServerBase::WaitForStreamingEnabled (unsigned
long timeout_ms) [virtual, inherited]

The server should not send any data before the client has enabled streaming. The server should implement
a register where the client can write to enable streaming.

Parameters:
← timeout_ms Specify a timeout in ms. When the timeout expires, the function returns false

Returns:
true when a client has opened the stream within the specified period, false otherwise

4.30.5.6 virtual bool BaslerCamera::GxStreamServerBase::WaitForStreamClose (unsigned long
timeout_ms) [virtual, inherited]

The client closes the stream by calling GxClient::FinishGrab()

86

API Reference

Basler eXcite

4.31 GenApi::IBoolean Struct Reference

Interface for Boolean properties.

Inherits VirtualDestructable.

Public Member Functions

• virtual void SetValue (bool Value)=0

Set node value.

• virtual void operator= (bool Value)

Set node value.

• virtual bool GetValue () const =0

Get node value.

• virtual bool operator() () const

Get node value.

87

API Reference

Basler eXcite

4.32 BaslerCamera::IDevice Struct Reference

Interface to be implemented by devices.

Inherited by BaslerCamera::DeviceImpl.

Public Member Functions

• virtual ∼IDevice ()

Ensure that destructors are virtual.

• virtual void Open ()=0

Open the device.

• virtual bool IsOpen () const =0

Check if a device has been opened.

• virtual void Close ()=0

Close the device.

• virtual const DeviceInfo & GetDeviceInfo () const =0 throw ()

Retrieve the DeviceInfo object used to create the device.

4.32.1 Member Function Documentation

4.32.1.1 virtual const DeviceInfo& BaslerCamera::IDevice::GetDeviceInfo () const throw () [pure
virtual]

For example, to ask the device for its friendly device name, get its DeviceInfo object and query the DeviceInfo
object for the friendly device name.

88

API Reference

Basler eXcite

4.33 GenApi::IFloat Struct Reference

Interface for float properties.

Inherits VirtualDestructable.

Public Member Functions

• virtual void SetValue (double Value)=0

Set node value.

• virtual IFloat & operator= (double Value)=0

Set node value.

• virtual double GetValue ()=0

Get node value.

• virtual double operator() ()=0

Get node value.

• virtual double GetMin ()=0

Get minimum value allowed.

• virtual double GetMax ()=0

Get maximum value allowed.

• virtual ERepresentation GetRepresentation ()=0

Get recommended representation.

89

API Reference

Basler eXcite

4.34 BaslerCamera::IInDataStream Struct Reference

Interface to be implemented by devices grabbing frames from an (image) data stream.

Inherited by BaslerCamera::CamT< TliDelegate, ApiImpl >.

Public Types

• enum BufferStatus { bsOk = 0, bsTimeOut = 1, bsCancelled = 2, bsError = 3 }

result type of WaitForBuffer()

Public Member Functions

• virtual void PrepareGrab ()=0

Prepare data acquisition.

• virtual bool IsReadyForGrab () const =0

Are we prepared for grabbing?

• virtual void QueueBuffer (size_t nBytes, void ∗pBuffer, void ∗pUser)=0

Pass a buffer to be filled with data.

• virtual void FlushBuffers ()=0

Cancel all pending buffers.

• virtual BufferStatus WaitForBuffer (void ∗∗ppBuffer, void ∗∗ppUser, unsigned long timeout_ms)=0

Wait for the next buffer.

• virtual void FinishGrab ()=0

Finish image acquisition.

4.34.1 Member Enumeration Documentation

4.34.1.1 enum BaslerCamera::IInDataStream::BufferStatus

Enumerator:
bsOk success

bsTimeOut timeout occurred

bsCancelled buffer has been cancelled by calling IInDataStream::FlushBuffers

bsError error occurred

4.34.2 Member Function Documentation

4.34.2.1 virtual void BaslerCamera::IInDataStream::PrepareGrab () [pure virtual]

Necessary resource allocation will be performed within this function. PrepareGrab() must be called before
calling QueueBuffer(), FlushBuffers(), and WaitForBuffer().

90

API Reference

Basler eXcite

Implemented in BaslerCamera::CamT< TliDelegate, ApiImpl >.

4.34.2.2 virtual void BaslerCamera::IInDataStream::QueueBuffer (size_t nBytes, void ∗ pBuffer,
void ∗ pUser) [pure virtual]

QueueBuffer() enqueues the buffer into the input queue. For each buffer enqueued into the input queue by
calling QueueBuffer(), one call to WaitForBuffer() should be issued to get the processed buffer back from
the output queue.

When grabbing data from a camera, QueueBuffer() doesn’t trigger the camera device to send images. Use
device dependent functions like OneShot() or ContinuousShot() to cause the camera to send data. Normally
one or more buffers should be enqueued in the input queue before triggering the camera.

Parameters:
← nBytes size of the buffer in bytes

← pBuffer pointer to the data buffer

← pUser additional context information that will be passed back to WaitForBuffer() when the buffer is
filled

Implemented in BaslerCamera::CamT< TliDelegate, ApiImpl >.

4.34.2.3 virtual void BaslerCamera::IInDataStream::FlushBuffers () [pure virtual]

All buffers enqueued with QueueBuffer() will be cancelled and enqueued to the output queue. The cancelled
buffers can be retrieved from the output queue by calling WaitForBuffer().

Implemented in BaslerCamera::CamT< TliDelegate, ApiImpl >.

4.34.2.4 virtual BufferStatus BaslerCamera::IInDataStream::WaitForBuffer (void ∗∗ ppBuffer, void
∗∗ ppUser, unsigned long timeout_ms) [pure virtual]

WaitForBuffer() retrieves the next buffer from the output queue. If there is no buffer available, WaitForBuffer()
blocks until the specified timeout expires or a buffer becomes available.

Parameters:
↔ ppBuffer stores the buffer containing the (image-)data

↔ ppUser stores the user provided context pointer

← timeout_ms Maximum period to wait for the buffer [in ms]

Implemented in BaslerCamera::CamT< TliDelegate, ApiImpl >.

4.34.2.5 virtual void BaslerCamera::IInDataStream::FinishGrab () [pure virtual]

All allocated resources will be freed. There shouldn’t be any buffers enqueued when calling FinishGrab().
The implementation of FinishGrab() will cancel all pending buffers and removes them from the output queue.

Ensure, that all buffers enqueued per QueueBuffer() have been retrieved by calling WaitForBuffer() before
FinishGrab() is called. Otherwise, FinishGrab() will remove buffers from the output queue. These buffers
are not passed to the client.

Don’t call the WaitForBuffer(), QueueBuffer(), or FlushBuffers() methods after calling FinishGrab()!

Implemented in BaslerCamera::CamT< TliDelegate, ApiImpl >.

91

API Reference

Basler eXcite

4.35 GenApi::IInteger Struct Reference

Interface for integer properties.

Inherits VirtualDestructable.

Public Member Functions

• virtual void SetValue (int64_t Value)=0

Set node value.

• virtual IInteger & operator= (int64_t Value)=0

Set node value.

• virtual int64_t GetValue ()=0

Get node value.

• virtual int64_t operator() ()=0

Get node value.

• virtual int64_t GetMin ()=0

Get minimum value allowed.

• virtual int64_t GetMax ()=0

Get maximum value allowed.

• virtual int64_t GetInc ()=0

Get increment.

• virtual ERepresentation GetRepresentation ()=0

Get recommended representation.

92

API Reference

Basler eXcite

4.36 GenApi::InvalidArgumentException Class Reference

Exception fired when an argument is invalid.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

93

API Reference

Basler eXcite

4.37 BaslerCamera::IOutDataStream Struct Reference

Interface to be implemented by classes providing an (image) data stream.

Inherited by BaslerCamera::GxStreamServerBase.

Public Types

• enum BufferStatus { bsOk = 0, bsStreamClosed = 1 , bsError = 3 }

result type of WaitForBuffer()

Public Member Functions

• virtual void QueueBuffer (size_t nBytes, void ∗pBuffer, void ∗pUser)=0

Initiate the transmission of a buffer.

• virtual void FlushBuffers ()=0

Cancel transmission of all buffers enqueued by QueueBuffer().

• virtual BufferStatus WaitForBuffer (void ∗∗ppUser)=0

Waits until the transmission of a buffer has been finished.

4.37.1 Member Enumeration Documentation

4.37.1.1 enum BaslerCamera::IOutDataStream::BufferStatus

Enumerator:
bsOk success

bsStreamClosed stream has been closed by the client

bsError buffer has been cancelled

4.37.2 Member Function Documentation

4.37.2.1 virtual void BaslerCamera::IOutDataStream::QueueBuffer (size_t nBytes, void ∗ pBuffer,
void ∗ pUser) [pure virtual]

QueueBuffer() accepts a buffer and initiates the transmission of the buffer. QueueBuffer() doesn’t block until
the transmission has been completed. When the transmission of a buffer has been completed, the context
pointer associated with the buffer can be retrieved by calling WaitForBuffer(). Don’t touch a buffer enqueued
by calling QueueBuffer() before retrieving it’s associated context pointer by calling WaitForBuffer(). You are
allowed to use the buffer pointer itself as context information, for example,

Server.QueuBuffer(bsize, pBuffer, pBuffer)

To ensure a continuous stream of transferred buffers, you can enqueue several buffers in advance. The
transmission is performed in the order the buffers are enqueued.

94

API Reference

Basler eXcite

Parameters:
← nBytes size of the buffer in bytes

← pBuffer pointer to the data buffer

← pUser additional context information that will be returned when the transmission of the buffer has
been finished

4.37.2.2 virtual void BaslerCamera::IOutDataStream::FlushBuffers () [pure virtual]

All buffers enqueued by calling QueueBuffer() are cancelled when calling FlushBuffers(). For each cancelled
buffer, the associated context pointer can be retrieved by calling WaitForBuffer().

4.37.2.3 virtual BufferStatus BaslerCamera::IOutDataStream::WaitForBuffer (void ∗∗ ppUser)
[pure virtual]

The context pointer, passed in together with a buffer, will be returned.

Returns:
IOutDataStream::bsOk when the transmission was successfull. Otherwise one of the other IOutData-
Stream::BufferStatus values is returned.

Parameters:
↔ ppUser points to a pointer to the user provided context pointer

95

API Reference

Basler eXcite

4.38 BaslerCamera::StreamServer::IRegisterSet Struct Reference

Interface to be implemented by classes implementing a register set.

Inherited by BaslerCamera::GxStreamServerBase[virtual], and BaslerCamera::Stream-
Server::RegisterSet< Impl >[virtual].

Public Types

• typedef uint32_t Address_t

Type used for addresses.

• enum Result

Result type of IRegisterSet’s methods.

Public Member Functions

• virtual Result DoReadRegister (Address_t address, uint32_t ∗pData)=0

Called when a register is to be read.

• virtual Result DoWriteRegister (Address_t address, uint32_t Data)=0

4.38.1 Member Function Documentation

4.38.1.1 virtual Result BaslerCamera::StreamServer::IRegisterSet::DoReadRegister (Address_t
address, uint32_t ∗ pData) [pure virtual]

Parameters:
← address Address to read from

→ pData The register content will be written to this pointer

Returns:
IRegisterSet::rrOk on success

4.38.1.2 virtual Result BaslerCamera::StreamServer::IRegisterSet::DoWriteRegister (Address_t
address, uint32_t Data) [pure virtual]

Parameters:
← address Address to write to

← Data Data to be written

Returns:
IRegisterSet::rrOk on success

96

API Reference

Basler eXcite

4.39 GenApi::IString Struct Reference

Interface for string properties.

Inherits VirtualDestructable.

Public Member Functions

• virtual void SetValue (const std::string &Value)=0

Set node value.

• virtual const std::string & operator= (const std::string &Value)=0

Set node value.

• virtual std::string GetValue ()=0

Get node value.

• virtual std::string operator() ()=0

Get node value.

97

API Reference

Basler eXcite

4.40 GenApi::LogicalErrorException Class Reference

Exception thrown to indicate logical errors in the program flow.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

98

API Reference

Basler eXcite

4.41 GenApi::OutOfRangeException Class Reference

Exception fired if an argument is out of range.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

99

API Reference

Basler eXcite

4.42 GenApi::PropertyException Class Reference

Exception fired if a property access fails.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

100

API Reference

Basler eXcite

4.43 BaslerCamera::PropertySet Class Reference

Inherited by BaslerCamera::DeviceInfo.

Public Member Functions

• std::string GetProperty (const std::string &key) const

Returns a property.

• void AddProperty (const std::string &key, const std::string &value)

Adds a property.

• bool HasProperty (const std::string &key) const

Checks if the container contains a property.

4.43.1 Detailed Description

Container for key-value pairs

4.43.2 Member Function Documentation

4.43.2.1 std::string BaslerCamera::PropertySet::GetProperty (const std::string & key) const

Parameters:
key The name of the property

Returns:
the value of the property If the property set doesn’t contain a value for the specified key, a Basler-
Camera::RuntimeException will be thrown.

4.43.2.2 void BaslerCamera::PropertySet::AddProperty (const std::string & key, const std::string
& value)

Parameters:
key Name of the property

value The value of the property

4.43.2.3 bool BaslerCamera::PropertySet::HasProperty (const std::string & key) const

Parameters:
key The name of the property to check

Returns:
true when the property exists, false otherwise.

101

API Reference

Basler eXcite

4.44 GenApi::RuntimeException Class Reference

Runtime exception.

Inherits GenApi::GenericException.

Public Member Functions

• const char ∗ GetDescription () const throw ()

Get error description.

• const char ∗ GetSourceFileName () const throw ()

Get filename in which the error occurred.

• unsigned int GetSourceLine () const throw ()

Get line number at which the error occurred.

• virtual const char ∗ what () const throw ()

Get error description (overwrite from std:exception).

Protected Attributes

• unsigned int m_SourceLine

Line number at which the error occurred.

• std::string m_SourceFileName

Filename in which the error occurred.

• std::string m_Description

Error description.

• std::string m_What

Complete error message, including file name and line number.

102

API Reference

Basler eXcite

Chapter 5

File Documentation

5.1 BaslerCam.h File Reference

The main include file to be included for the use of the Basler XCam library.

Namespaces

• namespace BaslerCamera

Defines

• #define CAMERANAMESPACE XCamInterface

The namespace containing the camera control interface and related enumeration types.

Typedefs

• typedef XCam BaslerCamera::Camera

The Camera object used to parameterize the camera and to capture images.

5.1.1 Detailed Description

Before including BaslerCam.h, the define USE_XCAM or USE_GXCAM must be defined to ensure that the
Camera typedef is available.

USE_XCAM should be defined when Camera should refer to the XCam device running on the eXcite cam-
era.

USE_GXCAM should be defined when Camera should refer to the GxCam device used for remote access
of an eXcite camera. On the eXcite, the gxbaslercam server application must be running.

103

API Reference

Basler eXcite

5.2 CamT.h File Reference

Namespaces

• namespace BaslerCamera
• namespace BaslerCameraPrivate

Classes

• class BaslerCamera::CamT< TliDelegate, ApiImpl >

Class template used to implement a camera device.

5.2.1 Detailed Description

104

API Reference

Basler eXcite

5.3 DataStream.h File Reference

Definition of interfaces IInDataStream & IOutDataStream.

Namespaces

• namespace BaslerCamera

Classes

• struct BaslerCamera::IInDataStream

Interface to be implemented by devices grabbing frames from an (image) data stream.

• struct BaslerCamera::IOutDataStream

Interface to be implemented by classes providing an (image) data stream.

5.3.1 Detailed Description

105

API Reference

Basler eXcite

5.4 Device.h File Reference

Declaration of the IDevice interface.

Namespaces

• namespace BaslerCamera

Classes

• class BaslerCamera::DeviceIoException

Exception class thrown to indicate device I/O related errors.

• struct BaslerCamera::IDevice

Interface to be implemented by devices.

Defines

• #define DEVICE_IO_EXCEPTION GenApi::ExceptionReporter<BaslerCamera::DeviceIo-
Exception>(__FILE__, __LINE__).Report

Fires an DeviceIoException.

5.4.1 Detailed Description

5.4.2 Define Documentation

5.4.2.1 #define DEVICE_IO_EXCEPTION GenApi::ExceptionReporter<BaslerCamera::DeviceIo-
Exception>(__FILE__, __LINE__).Report

Example:

throw DEVICE_IO_EXCEPTION("Failed to open device %s", deviceName)

106

API Reference

Basler eXcite

5.5 Exception.h File Reference

Exception classes and helper macros.

Namespaces

• namespace GenApi

Classes

• class GenApi::GenericException

Base class for all exceptions thrown by the library.

• class GenApi::InvalidArgumentException

Exception fired when an argument is invalid.

• class GenApi::OutOfRangeException

Exception fired if an argument is out of range.

• class GenApi::PropertyException

Exception fired if a property access fails.

• class GenApi::RuntimeException

Runtime exception.

• class GenApi::LogicalErrorException

Exception thrown to indicate logical errors in the program flow.

Defines

• #define GENERIC_EXCEPTION GenApi::ExceptionReporter<GenApi::GenericException>(__-
FILE__, __LINE__).Report

Fires an exception, e.g., throw EXCEPTION("%ld too large", Value);.

• #define INVALID_ARGUMENT_EXCEPTION GenApi::ExceptionReporter<GenApi::Invalid-
ArgumentException>(__FILE__, __LINE__).Report

Fires an invalid argument exception, e.g., throw INVALID_ARGUMENT("%ld too large", Value);.

• #define OUT_OF_RANGE_EXCEPTION GenApi::ExceptionReporter<GenApi::OutOfRange-
Exception>(__FILE__, __LINE__).Report

Fires an out of range exception, e.g., throw OUT_OF_RANGE_EXCEPTION("%ld too large", Value);.

• #define PROPERTY_EXCEPTION GenApi::ExceptionReporter<GenApi::PropertyException>(__-
FILE__, __LINE__).Report

Fires an property exception, e.g., throw PROPERTY_EXCEPTION("%ld too large", Value);.

• #define RUNTIME_EXCEPTION GenApi::ExceptionReporter<GenApi::RuntimeException>(__-
FILE__, __LINE__).Report

107

API Reference

Basler eXcite

Fires a runtime exception, e.g., throw RUNTIME_EXCEPTION("buh!").

• #define LOGICAL_ERROR_EXCEPTION GenApi::ExceptionReporter<GenApi::LogicalError-
Exception>(__FILE__, __LINE__).Report

Fires a logical error exception, e.g., throw LOGICAL_ERROR_EXCEPTION("Should never reach this point").

• #define CHECK_RANGE_I64(_Value, _Min, _Max)

Checks for range violations, e.g., throw CHECK_RANGE_I64(Value, 0, 100);.

5.5.1 Detailed Description

108

API Reference

Basler eXcite

5.6 GxClient.h File Reference

Instantiation of the GxClient device, a device receiving streaming data from a GxStreamServer application.

Namespaces

• namespace BaslerCamera

Typedefs

• typedef CamT< GxDelegateT< GxClientInterface::CGxClientInterface >, GxClientInterface::CGx-
ClientInterface > BaslerCamera::GxClient

A device class used to connect to a BaslerCamera::GxStreamServer.

5.6.1 Detailed Description

109

API Reference

Basler eXcite

5.7 GxClientInterface.h File Reference

Namespaces

• namespace GxClientInterface

Classes

• class GxClientInterface::CGxClientInterface

The device’s control interface.

5.7.1 Detailed Description

110

API Reference

Basler eXcite

5.8 GxStreamServer.h File Reference

Definition of the GxStreamServer related classes.

Namespaces

• namespace BaslerCameraPrivate
• namespace BaslerCamera
• namespace BaslerCamera::StreamServer

Classes

• struct BaslerCamera::StreamServer::IRegisterSet

Interface to be implemented by classes implementing a register set.

• class BaslerCamera::GxStreamServer

A customizable stream server class that allows sending a stream consisting of fixed size image data frames.

5.8.1 Detailed Description

111

API Reference

Basler eXcite

5.9 IBoolean.h File Reference

Definition of the IBoolean interface.

Namespaces

• namespace GenApi

Classes

• struct GenApi::IBoolean

Interface for Boolean properties.

5.9.1 Detailed Description

112

API Reference

Basler eXcite

5.10 IFloat.h File Reference

Definition of the IFloat interface.

Namespaces

• namespace GenApi

Classes

• struct GenApi::IFloat

Interface for float properties.

5.10.1 Detailed Description

113

API Reference

Basler eXcite

5.11 IInteger.h File Reference

Definition of the IInteger interface.

Namespaces

• namespace GenApi

Classes

• struct GenApi::IInteger

Interface for integer properties.

Typedefs

• typedef std::list< IInteger ∗ > GenApi::IntegerList_t

List of Integer-node references.

5.11.1 Detailed Description

114

API Reference

Basler eXcite

5.12 IString.h File Reference

Definition of the IString interface.

Namespaces

• namespace GenApi

Classes

• struct GenApi::IString

Interface for string properties.

5.12.1 Detailed Description

115

API Reference

Basler eXcite

5.13 XCam.h File Reference

Declares the XCam typedef library as transport layer.

Namespaces

• namespace BaslerCamera

Typedefs

• typedef CamT< XCamDelegateT< XCamInterface::CXCamInterface >, XCamInterface::CXCam-
Interface > BaslerCamera::XCam

The eXcite camera device.

5.13.1 Detailed Description

116

API Reference

Basler eXcite

5.14 XCamInterface.h File Reference

Namespaces

• namespace XCamInterface

Classes

• class XCamInterface::CEnumeration_ColorCodingEnums

Enumeration class used for the ColorCoding parameter.

• class XCamInterface::CEnumeration_TriggerModeEnums

Enumeration class used for the TriggerMode parameter.

• class XCamInterface::CEnumeration_TriggerPolarityEnums

Enumeration class used for the TriggerPolarity parameter.

• class XCamInterface::CEnumeration_TriggerSourceEnums

Enumeration class used for the TriggerSource parameter.

• class XCamInterface::CEnumeration_TestImageEnums

Enumeration class used for the TestImage parameter.

• class XCamInterface::CEnumeration_PioOut0SrcEnums

Enumeration class used for the PioOut0Src parameter.

• class XCamInterface::CEnumeration_PioOut0MonitorEnums

Enumeration class used for the PioOut0Monitor parameter.

• class XCamInterface::CEnumeration_PioOut0SettingEnums

Enumeration class used for the PioOut0Setting parameter.

• class XCamInterface::CEnumeration_PioOut1SrcEnums

Enumeration class used for the PioOut1Src parameter.

• class XCamInterface::CEnumeration_PioOut1MonitorEnums

Enumeration class used for the PioOut1Monitor parameter.

• class XCamInterface::CEnumeration_PioOut1SettingEnums

Enumeration class used for the PioOut1Setting parameter.

• class XCamInterface::CEnumeration_PioOut2SrcEnums

Enumeration class used for the PioOut2Src parameter.

• class XCamInterface::CEnumeration_PioOut2MonitorEnums

Enumeration class used for the PioOut2Monitor parameter.

• class XCamInterface::CEnumeration_PioOut2SettingEnums

Enumeration class used for the PioOut2Setting parameter.

117

API Reference

Basler eXcite

• class XCamInterface::CEnumeration_PioOut3SrcEnums

Enumeration class used for the PioOut3Src parameter.

• class XCamInterface::CEnumeration_PioOut3MonitorEnums

Enumeration class used for the PioOut3Monitor parameter.

• class XCamInterface::CEnumeration_PioOut3SettingEnums

Enumeration class used for the PioOut3Setting parameter.

• class XCamInterface::CEnumeration_Strobe0PolarityEnums

Enumeration class used for the Strobe0Polarity parameter.

• class XCamInterface::CEnumeration_Strobe1PolarityEnums

Enumeration class used for the Strobe1Polarity parameter.

• class XCamInterface::CEnumeration_Strobe2PolarityEnums

Enumeration class used for the Strobe2Polarity parameter.

• class XCamInterface::CEnumeration_Strobe3PolarityEnums

Enumeration class used for the Strobe3Polarity parameter.

• class XCamInterface::CEnumeration_VideoModeEnums

Enumeration class used for the VideoMode parameter.

• class XCamInterface::CXCamInterface

The device’s control interface.

5.14.1 Detailed Description

118

API Reference

Basler eXcite

Preliminary
Revision History

Doc. ID Number Date Changes

DA00074901 21 June 2005 Initial release of the eXcite API Reference (for prototype
cameras only).

DA00074902 30 Sept 2005 Initial release of the eXcite API reference for production
cameras.

DA00074903 13 April 2006 Changed address in Singapore.

Replaced “include“ by “lib“ in sample source code in
Section 1.3.2 “Library Files“.

Removed the following: IBoolean & ExtDataStream,
IBoolean & FrameCounter, IBoolean & CrcChecksum,
IBoolean & DcamValues.

Made minor changes to PioOut0Src_SerialTx.

Added the following: IBoolean & ShutterTimeBase En-
able, IFloat & ShutterTimeBase.

API Reference

Basler eXcite

usoeffle
Textfeld

usoeffle
Textfeld
i

Preliminary
Feedback

Your feedback will help us improve our documentation. Please click the link below to access an
online feedback form. Your input is greatly appreciated.

http://www.baslerweb.com/umfrage/survey.html

API Reference

Basler eXcite

http://www.baslerweb.com/umfrage/survey.html
usoeffle
Textfeld
ii

usoeffle
Textfeld

usoeffle
Textfeld

Index

AddProperty
BaslerCamera::DeviceInfo, 77
BaslerCamera::PropertySet, 101

BaslerCam.h, 103
BaslerCamera, 37
BaslerCamera::CamT, 43

bsCancelled, 44
bsError, 44
bsOk, 44
bsTimeOut, 44

BaslerCamera::CamT
BufferStatus, 44
FinishGrab, 45
FlushBuffers, 45
PrepareGrab, 45
QueueBuffer, 45
WaitForBuffer, 45

BaslerCamera::DeviceInfo, 77
BaslerCamera::DeviceInfo

AddProperty, 77
GetProperty, 77
HasProperty, 78

BaslerCamera::DeviceIoException, 79
BaslerCamera::DeviceManager, 80
BaslerCamera::DeviceManager

CreateDevice, 80
DestroyDevice, 80
EnumerateDevices, 80

BaslerCamera::GxStreamServer, 83
bsError, 85
bsOk, 85
bsStreamClosed, 85

BaslerCamera::GxStreamServer
BufferStatus, 85
DoReadRegister, 85
DoWriteRegister, 85
GxStreamServer, 85
Open, 85
ReadHandler_t, 84
WaitForStreamClose, 86
WaitForStreamingEnabled, 86
WaitForStreamOpen, 86
WriteHandler_t, 84

BaslerCamera::IDevice, 88

BaslerCamera::IDevice
GetDeviceInfo, 88

BaslerCamera::IInDataStream, 90
bsCancelled, 90
bsError, 90
bsOk, 90
bsTimeOut, 90

BaslerCamera::IInDataStream
BufferStatus, 90
FinishGrab, 91
FlushBuffers, 91
PrepareGrab, 90
QueueBuffer, 91
WaitForBuffer, 91

BaslerCamera::IOutDataStream, 94
bsError, 94
bsOk, 94
bsStreamClosed, 94

BaslerCamera::IOutDataStream
BufferStatus, 94
FlushBuffers, 95
QueueBuffer, 94
WaitForBuffer, 95

BaslerCamera::PropertySet, 101
BaslerCamera::PropertySet

AddProperty, 101
GetProperty, 101
HasProperty, 101

BaslerCamera::StreamServer, 39
BaslerCamera::StreamServer::IRegisterSet, 96
BaslerCamera::StreamServer::IRegisterSet

DoReadRegister, 96
DoWriteRegister, 96

bsCancelled
BaslerCamera::CamT, 44
BaslerCamera::IInDataStream, 90

bsError
BaslerCamera::CamT, 44
BaslerCamera::GxStreamServer, 85
BaslerCamera::IInDataStream, 90
BaslerCamera::IOutDataStream, 94

bsOk
BaslerCamera::CamT, 44
BaslerCamera::GxStreamServer, 85
BaslerCamera::IInDataStream, 90

119

API Reference

Basler eXcite

usoeffle
Textfeld
iii

usoeffle
Textfeld

usoeffle
Textfeld

BaslerCamera::IOutDataStream, 94
bsStreamClosed

BaslerCamera::GxStreamServer, 85
BaslerCamera::IOutDataStream, 94

bsTimeOut
BaslerCamera::CamT, 44
BaslerCamera::IInDataStream, 90

BufferStatus
BaslerCamera::CamT, 44
BaslerCamera::GxStreamServer, 85
BaslerCamera::IInDataStream, 90
BaslerCamera::IOutDataStream, 94

Camera, 29
CamT, 30
CamT.h, 104
ColorCoding_Mono16

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_Mono8
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_Raw16

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_Raw8
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_RGB16

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_RGB8
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_SMono16

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_SRGB16
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_VendorSpecific0

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_VendorSpecific1
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_VendorSpecific2

XCamInterface::CEnumeration_-
ColorCodingEnums, 48

ColorCoding_VendorSpecific3
XCamInterface::CEnumeration_-

ColorCodingEnums, 48
ColorCoding_VendorSpecific4

XCamInterface::CEnumeration_-
ColorCodingEnums, 48

ColorCoding_VendorSpecific5
XCamInterface::CEnumeration_-

ColorCodingEnums, 48
ColorCoding_VendorSpecific6

XCamInterface::CEnumeration_-
ColorCodingEnums, 48

ColorCoding_YUV8_4_1_1
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCoding_YUV8_4_2_2

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

ColorCoding_YUV8_4_4_4
XCamInterface::CEnumeration_-

ColorCodingEnums, 47
ColorCodingEnums

XCamInterface::CEnumeration_ColorCoding-
Enums, 47

CreateDevice
BaslerCamera::DeviceManager, 80

CXCamInterface, 31

DataStream.h, 105
DestroyDevice

BaslerCamera::DeviceManager, 80
Device Manager, 28
Device.h, 106

DEVICE_IO_EXCEPTION, 106
DEVICE_IO_EXCEPTION

Device.h, 106
DoReadRegister

BaslerCamera::GxStreamServer, 85
BaslerCamera::StreamServer::IRegisterSet,

96
DoWriteRegister

BaslerCamera::GxStreamServer, 85
BaslerCamera::StreamServer::IRegisterSet,

96

Enum types for the data members of ’Camera’, 34
EnumerateDevices

BaslerCamera::DeviceManager, 80
Exception.h, 107
Exceptions, 27

FinishGrab
BaslerCamera::CamT, 45
BaslerCamera::IInDataStream, 91

FlushBuffers
BaslerCamera::CamT, 45
BaslerCamera::IInDataStream, 91
BaslerCamera::IOutDataStream, 95

120

API Reference

Basler eXcite

usoeffle
Textfeld
iv

GenApi::GenericException, 82
GenApi::IBoolean, 87
GenApi::IFloat, 89
GenApi::IInteger, 92
GenApi::InvalidArgumentException, 93
GenApi::IString, 97
GenApi::LogicalErrorException, 98
GenApi::OutOfRangeException, 99
GenApi::PropertyException, 100
GenApi::RuntimeException, 102
GetDeviceInfo

BaslerCamera::IDevice, 88
GetProperty

BaslerCamera::DeviceInfo, 77
BaslerCamera::PropertySet, 101

GxClient
imgxfer_group, 36

GxClient.h, 109
GxClientInterface, 40
GxClientInterface.h, 110
GxClientInterface::CGxClientInterface, 70
GxStreamServer

BaslerCamera::GxStreamServer, 85
GxStreamServer.h, 111

HasProperty
BaslerCamera::DeviceInfo, 78
BaslerCamera::PropertySet, 101

IBoolean.h, 112
IFloat.h, 113
IInteger.h, 114
Image transfer from an eXcite to a PC, 36
imgxfer_group

GxClient, 36
IString.h, 115

Non-enum types for the data members of ’Camera’,
33

Open
BaslerCamera::GxStreamServer, 85

PioOut0Monitor_High
XCamInterface::CEnumeration_-

PioOut0MonitorEnums, 49
PioOut0Monitor_Low

XCamInterface::CEnumeration_-
PioOut0MonitorEnums, 49

PioOut0MonitorEnums
XCamInterface::CEnumeration_Pio-

Out0MonitorEnums, 49
PioOut0Setting_High

XCamInterface::CEnumeration_-
PioOut0SettingEnums, 50

PioOut0Setting_Low
XCamInterface::CEnumeration_-

PioOut0SettingEnums, 50
PioOut0SettingEnums

XCamInterface::CEnumeration_Pio-
Out0SettingEnums, 50

PioOut0Src_IntegrationEnable
XCamInterface::CEnumeration_-

PioOut0SrcEnums, 51
PioOut0Src_ReadyforTrigger

XCamInterface::CEnumeration_-
PioOut0SrcEnums, 51

PioOut0Src_SerialTx
XCamInterface::CEnumeration_-

PioOut0SrcEnums, 51
PioOut0Src_Strobe0

XCamInterface::CEnumeration_-
PioOut0SrcEnums, 51

PioOut0Src_UserSet
XCamInterface::CEnumeration_-

PioOut0SrcEnums, 51
PioOut0SrcEnums

XCamInterface::CEnumeration_PioOut0Src-
Enums, 51

PioOut1Monitor_High
XCamInterface::CEnumeration_-

PioOut1MonitorEnums, 52
PioOut1Monitor_Low

XCamInterface::CEnumeration_-
PioOut1MonitorEnums, 52

PioOut1MonitorEnums
XCamInterface::CEnumeration_Pio-

Out1MonitorEnums, 52
PioOut1Setting_High

XCamInterface::CEnumeration_-
PioOut1SettingEnums, 53

PioOut1Setting_Low
XCamInterface::CEnumeration_-

PioOut1SettingEnums, 53
PioOut1SettingEnums

XCamInterface::CEnumeration_Pio-
Out1SettingEnums, 53

PioOut1Src_IntegrationEnable
XCamInterface::CEnumeration_-

PioOut1SrcEnums, 54
PioOut1Src_ReadyforTrigger

XCamInterface::CEnumeration_-
PioOut1SrcEnums, 54

PioOut1Src_SerialTx
XCamInterface::CEnumeration_-

PioOut1SrcEnums, 54
PioOut1Src_Strobe1

XCamInterface::CEnumeration_-
PioOut1SrcEnums, 54

121

API Reference

Basler eXcite

usoeffle
Textfeld
v

PioOut1Src_UserSet
XCamInterface::CEnumeration_-

PioOut1SrcEnums, 54
PioOut1SrcEnums

XCamInterface::CEnumeration_PioOut1Src-
Enums, 54

PioOut2Monitor_High
XCamInterface::CEnumeration_-

PioOut2MonitorEnums, 55
PioOut2Monitor_Low

XCamInterface::CEnumeration_-
PioOut2MonitorEnums, 55

PioOut2MonitorEnums
XCamInterface::CEnumeration_Pio-

Out2MonitorEnums, 55
PioOut2Setting_High

XCamInterface::CEnumeration_-
PioOut2SettingEnums, 56

PioOut2Setting_Low
XCamInterface::CEnumeration_-

PioOut2SettingEnums, 56
PioOut2SettingEnums

XCamInterface::CEnumeration_Pio-
Out2SettingEnums, 56

PioOut2Src_IntegrationEnable
XCamInterface::CEnumeration_-

PioOut2SrcEnums, 57
PioOut2Src_ReadyforTrigger

XCamInterface::CEnumeration_-
PioOut2SrcEnums, 57

PioOut2Src_SerialTx
XCamInterface::CEnumeration_-

PioOut2SrcEnums, 57
PioOut2Src_Strobe2

XCamInterface::CEnumeration_-
PioOut2SrcEnums, 57

PioOut2Src_UserSet
XCamInterface::CEnumeration_-

PioOut2SrcEnums, 57
PioOut2SrcEnums

XCamInterface::CEnumeration_PioOut2Src-
Enums, 57

PioOut3Monitor_High
XCamInterface::CEnumeration_-

PioOut3MonitorEnums, 58
PioOut3Monitor_Low

XCamInterface::CEnumeration_-
PioOut3MonitorEnums, 58

PioOut3MonitorEnums
XCamInterface::CEnumeration_Pio-

Out3MonitorEnums, 58
PioOut3Setting_High

XCamInterface::CEnumeration_-
PioOut3SettingEnums, 59

PioOut3Setting_Low
XCamInterface::CEnumeration_-

PioOut3SettingEnums, 59
PioOut3SettingEnums

XCamInterface::CEnumeration_Pio-
Out3SettingEnums, 59

PioOut3Src_IntegrationEnable
XCamInterface::CEnumeration_-

PioOut3SrcEnums, 60
PioOut3Src_ReadyforTrigger

XCamInterface::CEnumeration_-
PioOut3SrcEnums, 60

PioOut3Src_SerialTx
XCamInterface::CEnumeration_-

PioOut3SrcEnums, 60
PioOut3Src_Strobe3

XCamInterface::CEnumeration_-
PioOut3SrcEnums, 60

PioOut3Src_UserSet
XCamInterface::CEnumeration_-

PioOut3SrcEnums, 60
PioOut3SrcEnums

XCamInterface::CEnumeration_PioOut3Src-
Enums, 60

PrepareGrab
BaslerCamera::CamT, 45
BaslerCamera::IInDataStream, 90

QueueBuffer
BaslerCamera::CamT, 45
BaslerCamera::IInDataStream, 91
BaslerCamera::IOutDataStream, 94

ReadHandler_t
BaslerCamera::GxStreamServer, 84

Strobe0Polarity_HighActiveOutput
XCamInterface::CEnumeration_-

Strobe0PolarityEnums, 61
Strobe0Polarity_LowActiveOutput

XCamInterface::CEnumeration_-
Strobe0PolarityEnums, 61

Strobe0PolarityEnums
XCamInterface::CEnumeration_-

Strobe0PolarityEnums, 61
Strobe1Polarity_HighActiveOutput

XCamInterface::CEnumeration_-
Strobe1PolarityEnums, 62

Strobe1Polarity_LowActiveOutput
XCamInterface::CEnumeration_-

Strobe1PolarityEnums, 62
Strobe1PolarityEnums

XCamInterface::CEnumeration_-
Strobe1PolarityEnums, 62

122

API Reference

Basler eXcite

usoeffle
Textfeld
vi

Strobe2Polarity_HighActiveOutput
XCamInterface::CEnumeration_-

Strobe2PolarityEnums, 63
Strobe2Polarity_LowActiveOutput

XCamInterface::CEnumeration_-
Strobe2PolarityEnums, 63

Strobe2PolarityEnums
XCamInterface::CEnumeration_-

Strobe2PolarityEnums, 63
Strobe3Polarity_HighActiveOutput

XCamInterface::CEnumeration_-
Strobe3PolarityEnums, 64

Strobe3Polarity_LowActiveOutput
XCamInterface::CEnumeration_-

Strobe3PolarityEnums, 64
Strobe3PolarityEnums

XCamInterface::CEnumeration_-
Strobe3PolarityEnums, 64

TestImage_Disabled
XCamInterface::CEnumeration_-

TestImageEnums, 65
TestImage_TestImage1

XCamInterface::CEnumeration_-
TestImageEnums, 65

TestImage_TestImage2
XCamInterface::CEnumeration_-

TestImageEnums, 65
TestImage_TestImage3

XCamInterface::CEnumeration_-
TestImageEnums, 65

TestImage_TestImage4
XCamInterface::CEnumeration_-

TestImageEnums, 65
TestImage_TestImage5

XCamInterface::CEnumeration_-
TestImageEnums, 65

TestImage_TestImage6
XCamInterface::CEnumeration_-

TestImageEnums, 65
TestImage_TestImage7

XCamInterface::CEnumeration_-
TestImageEnums, 65

TestImageEnums
XCamInterface::CEnumeration_TestImage-

Enums, 65
TriggerMode_TriggerMode0

XCamInterface::CEnumeration_-
TriggerModeEnums, 66

TriggerMode_TriggerMode1
XCamInterface::CEnumeration_-

TriggerModeEnums, 66
TriggerMode_TriggerMode2

XCamInterface::CEnumeration_-
TriggerModeEnums, 66

TriggerMode_TriggerMode3
XCamInterface::CEnumeration_-

TriggerModeEnums, 66
TriggerModeEnums

XCamInterface::CEnumeration_TriggerMode-
Enums, 66

TriggerPolarity_HighActive
XCamInterface::CEnumeration_-

TriggerPolarityEnums, 67
TriggerPolarity_LowActive

XCamInterface::CEnumeration_-
TriggerPolarityEnums, 67

TriggerPolarityEnums
XCamInterface::CEnumeration_Trigger-

PolarityEnums, 67
TriggerSource_ExTrigPort0

XCamInterface::CEnumeration_-
TriggerSourceEnums, 68

TriggerSource_ExTrigPort1
XCamInterface::CEnumeration_-

TriggerSourceEnums, 68
TriggerSource_ExTrigPort2

XCamInterface::CEnumeration_-
TriggerSourceEnums, 68

TriggerSource_ExTrigPort3
XCamInterface::CEnumeration_-

TriggerSourceEnums, 68
TriggerSource_SoftTrig

XCamInterface::CEnumeration_-
TriggerSourceEnums, 68

TriggerSourceEnums
XCamInterface::CEnumeration_TriggerSource-

Enums, 68
Types for the data members of ’Camera’, 32

VideoMode_VideoMode0
XCamInterface::CEnumeration_-

VideoModeEnums, 69
VideoMode_VideoMode1

XCamInterface::CEnumeration_-
VideoModeEnums, 69

VideoMode_VideoMode2
XCamInterface::CEnumeration_-

VideoModeEnums, 69
VideoMode_VideoMode3

XCamInterface::CEnumeration_-
VideoModeEnums, 69

VideoMode_VideoMode4
XCamInterface::CEnumeration_-

VideoModeEnums, 69
VideoMode_VideoMode5

123

API Reference

Basler eXcite

usoeffle
Textfeld
vii

XCamInterface::CEnumeration_-
VideoModeEnums, 69

VideoMode_VideoMode6
XCamInterface::CEnumeration_-

VideoModeEnums, 69
VideoMode_VideoMode7

XCamInterface::CEnumeration_-
VideoModeEnums, 69

VideoModeEnums
XCamInterface::CEnumeration_VideoMode-

Enums, 69

WaitForBuffer
BaslerCamera::CamT, 45
BaslerCamera::IInDataStream, 91
BaslerCamera::IOutDataStream, 95

WaitForStreamClose
BaslerCamera::GxStreamServer, 86

WaitForStreamingEnabled
BaslerCamera::GxStreamServer, 86

WaitForStreamOpen
BaslerCamera::GxStreamServer, 86

WriteHandler_t
BaslerCamera::GxStreamServer, 84

XCam.h, 116
XCamInterface, 41
XCamInterface.h, 117
XCamInterface::CEnumeration_ColorCodingEnums

ColorCoding_Mono16, 47
ColorCoding_Mono8, 47
ColorCoding_Raw16, 47
ColorCoding_Raw8, 47
ColorCoding_RGB16, 47
ColorCoding_RGB8, 47
ColorCoding_SMono16, 47
ColorCoding_SRGB16, 47
ColorCoding_VendorSpecific0, 47
ColorCoding_VendorSpecific1, 47
ColorCoding_VendorSpecific2, 48
ColorCoding_VendorSpecific3, 48
ColorCoding_VendorSpecific4, 48
ColorCoding_VendorSpecific5, 48
ColorCoding_VendorSpecific6, 48
ColorCoding_YUV8_4_1_1, 47
ColorCoding_YUV8_4_2_2, 47
ColorCoding_YUV8_4_4_4, 47

XCamInterface::CEnumeration_-
ColorCodingEnums, 47

XCamInterface::CEnumeration_ColorCodingEnums
ColorCodingEnums, 47

XCamInterface::CEnumeration_-
PioOut0MonitorEnums

PioOut0Monitor_High, 49

PioOut0Monitor_Low, 49
XCamInterface::CEnumeration_-

PioOut0MonitorEnums, 49
XCamInterface::CEnumeration_PioOut0Monitor-

Enums
PioOut0MonitorEnums, 49

XCamInterface::CEnumeration_-
PioOut0SettingEnums

PioOut0Setting_High, 50
PioOut0Setting_Low, 50

XCamInterface::CEnumeration_-
PioOut0SettingEnums, 50

XCamInterface::CEnumeration_PioOut0Setting-
Enums

PioOut0SettingEnums, 50
XCamInterface::CEnumeration_PioOut0SrcEnums

PioOut0Src_IntegrationEnable, 51
PioOut0Src_ReadyforTrigger, 51
PioOut0Src_SerialTx, 51
PioOut0Src_Strobe0, 51
PioOut0Src_UserSet, 51

XCamInterface::CEnumeration_PioOut0SrcEnums,
51

XCamInterface::CEnumeration_PioOut0SrcEnums
PioOut0SrcEnums, 51

XCamInterface::CEnumeration_-
PioOut1MonitorEnums

PioOut1Monitor_High, 52
PioOut1Monitor_Low, 52

XCamInterface::CEnumeration_-
PioOut1MonitorEnums, 52

XCamInterface::CEnumeration_PioOut1Monitor-
Enums

PioOut1MonitorEnums, 52
XCamInterface::CEnumeration_-

PioOut1SettingEnums
PioOut1Setting_High, 53
PioOut1Setting_Low, 53

XCamInterface::CEnumeration_-
PioOut1SettingEnums, 53

XCamInterface::CEnumeration_PioOut1Setting-
Enums

PioOut1SettingEnums, 53
XCamInterface::CEnumeration_PioOut1SrcEnums

PioOut1Src_IntegrationEnable, 54
PioOut1Src_ReadyforTrigger, 54
PioOut1Src_SerialTx, 54
PioOut1Src_Strobe1, 54
PioOut1Src_UserSet, 54

XCamInterface::CEnumeration_PioOut1SrcEnums,
54

XCamInterface::CEnumeration_PioOut1SrcEnums
PioOut1SrcEnums, 54

124

API Reference

Basler eXcite

usoeffle
Textfeld
viii

XCamInterface::CEnumeration_-
PioOut2MonitorEnums

PioOut2Monitor_High, 55
PioOut2Monitor_Low, 55

XCamInterface::CEnumeration_-
PioOut2MonitorEnums, 55

XCamInterface::CEnumeration_PioOut2Monitor-
Enums

PioOut2MonitorEnums, 55
XCamInterface::CEnumeration_-

PioOut2SettingEnums
PioOut2Setting_High, 56
PioOut2Setting_Low, 56

XCamInterface::CEnumeration_-
PioOut2SettingEnums, 56

XCamInterface::CEnumeration_PioOut2Setting-
Enums

PioOut2SettingEnums, 56
XCamInterface::CEnumeration_PioOut2SrcEnums

PioOut2Src_IntegrationEnable, 57
PioOut2Src_ReadyforTrigger, 57
PioOut2Src_SerialTx, 57
PioOut2Src_Strobe2, 57
PioOut2Src_UserSet, 57

XCamInterface::CEnumeration_PioOut2SrcEnums,
57

XCamInterface::CEnumeration_PioOut2SrcEnums
PioOut2SrcEnums, 57

XCamInterface::CEnumeration_-
PioOut3MonitorEnums

PioOut3Monitor_High, 58
PioOut3Monitor_Low, 58

XCamInterface::CEnumeration_-
PioOut3MonitorEnums, 58

XCamInterface::CEnumeration_PioOut3Monitor-
Enums

PioOut3MonitorEnums, 58
XCamInterface::CEnumeration_-

PioOut3SettingEnums
PioOut3Setting_High, 59
PioOut3Setting_Low, 59

XCamInterface::CEnumeration_-
PioOut3SettingEnums, 59

XCamInterface::CEnumeration_PioOut3Setting-
Enums

PioOut3SettingEnums, 59
XCamInterface::CEnumeration_PioOut3SrcEnums

PioOut3Src_IntegrationEnable, 60
PioOut3Src_ReadyforTrigger, 60
PioOut3Src_SerialTx, 60
PioOut3Src_Strobe3, 60
PioOut3Src_UserSet, 60

XCamInterface::CEnumeration_PioOut3SrcEnums,
60

XCamInterface::CEnumeration_PioOut3SrcEnums
PioOut3SrcEnums, 60

XCamInterface::CEnumeration_-
Strobe0PolarityEnums

Strobe0Polarity_HighActiveOutput, 61
Strobe0Polarity_LowActiveOutput, 61

XCamInterface::CEnumeration_-
Strobe0PolarityEnums, 61

XCamInterface::CEnumeration_Strobe0Polarity-
Enums

Strobe0PolarityEnums, 61
XCamInterface::CEnumeration_-

Strobe1PolarityEnums
Strobe1Polarity_HighActiveOutput, 62
Strobe1Polarity_LowActiveOutput, 62

XCamInterface::CEnumeration_-
Strobe1PolarityEnums, 62

XCamInterface::CEnumeration_Strobe1Polarity-
Enums

Strobe1PolarityEnums, 62
XCamInterface::CEnumeration_-

Strobe2PolarityEnums
Strobe2Polarity_HighActiveOutput, 63
Strobe2Polarity_LowActiveOutput, 63

XCamInterface::CEnumeration_-
Strobe2PolarityEnums, 63

XCamInterface::CEnumeration_Strobe2Polarity-
Enums

Strobe2PolarityEnums, 63
XCamInterface::CEnumeration_-

Strobe3PolarityEnums
Strobe3Polarity_HighActiveOutput, 64
Strobe3Polarity_LowActiveOutput, 64

XCamInterface::CEnumeration_-
Strobe3PolarityEnums, 64

XCamInterface::CEnumeration_Strobe3Polarity-
Enums

Strobe3PolarityEnums, 64
XCamInterface::CEnumeration_TestImageEnums

TestImage_Disabled, 65
TestImage_TestImage1, 65
TestImage_TestImage2, 65
TestImage_TestImage3, 65
TestImage_TestImage4, 65
TestImage_TestImage5, 65
TestImage_TestImage6, 65
TestImage_TestImage7, 65

XCamInterface::CEnumeration_TestImageEnums,
65

XCamInterface::CEnumeration_TestImageEnums
TestImageEnums, 65

XCamInterface::CEnumeration_TriggerModeEnums
TriggerMode_TriggerMode0, 66
TriggerMode_TriggerMode1, 66

125

API Reference

Basler eXcite

usoeffle
Textfeld
ix

TriggerMode_TriggerMode2, 66
TriggerMode_TriggerMode3, 66

XCamInterface::CEnumeration_-
TriggerModeEnums, 66

XCamInterface::CEnumeration_TriggerModeEnums
TriggerModeEnums, 66

XCamInterface::CEnumeration_-
TriggerPolarityEnums

TriggerPolarity_HighActive, 67
TriggerPolarity_LowActive, 67

XCamInterface::CEnumeration_-
TriggerPolarityEnums, 67

XCamInterface::CEnumeration_TriggerPolarity-
Enums

TriggerPolarityEnums, 67
XCamInterface::CEnumeration_-

TriggerSourceEnums
TriggerSource_ExTrigPort0, 68
TriggerSource_ExTrigPort1, 68
TriggerSource_ExTrigPort2, 68
TriggerSource_ExTrigPort3, 68
TriggerSource_SoftTrig, 68

XCamInterface::CEnumeration_-
TriggerSourceEnums, 68

XCamInterface::CEnumeration_TriggerSource-
Enums

TriggerSourceEnums, 68
XCamInterface::CEnumeration_VideoModeEnums

VideoMode_VideoMode0, 69
VideoMode_VideoMode1, 69
VideoMode_VideoMode2, 69
VideoMode_VideoMode3, 69
VideoMode_VideoMode4, 69
VideoMode_VideoMode5, 69
VideoMode_VideoMode6, 69
VideoMode_VideoMode7, 69

XCamInterface::CEnumeration_VideoModeEnums,
69

XCamInterface::CEnumeration_VideoModeEnums
VideoModeEnums, 69

XCamInterface::CXCamInterface, 71

126

API Reference

Basler eXcite

usoeffle
Textfeld
vii

	Contacting Basler Support
	API Overview
	Introduction
	Aspects Common to all Classes
	Controlling the eXcite from a Local Program
	Transferring Images From an eXcite to the Outside
	Library Files

	Module Documentation
	Exceptions
	Device Manager
	Camera
	CamT
	CXCamInterface
	Class Reference

	Types for the data members of 'Camera'
	Enum types for the data members of 'Camera'
	Non-enum types for the data members of 'Camera'

	Image transfer from an eXcite to a PC

	Namespace Documentation
	BaslerCamera Namespace Reference
	BaslerCamera::StreamServer Namespace Reference
	GxClientInterface Namespace Reference
	XCamInterface Namespace Reference

	Class Documentation
	BaslerCamera::CamT< TliDelegate, ApiImpl > Class Template Reference
	XCamInterface::CEnumeration_ColorCodingEnums Class Reference
	XCamInterface::CEnumeration_PioOut0MonitorEnums Class Reference
	XCamInterface::CEnumeration_PioOut0SettingEnums Class Reference
	XCamInterface::CEnumeration_PioOut0SrcEnums Class Reference
	XCamInterface::CEnumeration_PioOut1MonitorEnums Class Reference
	XCamInterface::CEnumeration_PioOut1SettingEnums Class Reference
	XCamInterface::CEnumeration_PioOut1SrcEnums Class Reference
	XCamInterface::CEnumeration_PioOut2MonitorEnums Class Reference
	XCamInterface::CEnumeration_PioOut2SettingEnums Class Reference
	XCamInterface::CEnumeration_PioOut2SrcEnums Class Reference
	XCamInterface::CEnumeration_PioOut3MonitorEnums Class Reference
	XCamInterface::CEnumeration_PioOut3SettingEnums Class Reference
	XCamInterface::CEnumeration_PioOut3SrcEnums Class Reference
	XCamInterface::CEnumeration_Strobe0PolarityEnums Class Reference
	XCamInterface::CEnumeration_Strobe1PolarityEnums Class Reference
	XCamInterface::CEnumeration_Strobe2PolarityEnums Class Reference
	XCamInterface::CEnumeration_Strobe3PolarityEnums Class Reference
	XCamInterface::CEnumeration_TestImageEnums Class Reference
	XCamInterface::CEnumeration_TriggerModeEnums Class Reference
	XCamInterface::CEnumeration_TriggerPolarityEnums Class Reference
	XCamInterface::CEnumeration_TriggerSourceEnums Class Reference
	XCamInterface::CEnumeration_VideoModeEnums Class Reference
	GxClientInterface::CGxClientInterface Class Reference
	XCamInterface::CXCamInterface Class Reference
	BaslerCamera::DeviceInfo Class Reference
	BaslerCamera::DeviceIoException Class Reference
	BaslerCamera::DeviceManager Class Reference
	GenApi::GenericException Class Reference
	BaslerCamera::GxStreamServer Class Reference
	GenApi::IBoolean Struct Reference
	BaslerCamera::IDevice Struct Reference
	GenApi::IFloat Struct Reference
	BaslerCamera::IInDataStream Struct Reference
	GenApi::IInteger Struct Reference
	GenApi::InvalidArgumentException Class Reference
	BaslerCamera::IOutDataStream Struct Reference
	BaslerCamera::StreamServer::IRegisterSet Struct Reference
	GenApi::IString Struct Reference
	GenApi::LogicalErrorException Class Reference
	GenApi::OutOfRangeException Class Reference
	GenApi::PropertyException Class Reference
	BaslerCamera::PropertySet Class Reference
	GenApi::RuntimeException Class Reference

	File Documentation
	BaslerCam.h File Reference
	CamT.h File Reference
	DataStream.h File Reference
	Device.h File Reference
	Exception.h File Reference
	GxClient.h File Reference
	GxClientInterface.h File Reference
	GxStreamServer.h File Reference
	IBoolean.h File Reference
	IFloat.h File Reference
	IInteger.h File Reference
	IString.h File Reference
	XCam.h File Reference
	XCamInterface.h File Reference

	Revision History
	Feedback
	Index

