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II Abstract 
 

Detecting the frequency of the mains supply is a crucial component of maintaining the grid 
frequency at its nominal level. Most frequency counters enable the user to monitor frequencies but 
monitoring frequency variations at a high resolution is often expensive. Electronic systems that 
measure frequency also have to generate a local time base to calculate the frequency upon. All time 
bases suffer from the effect of frequency jitter, which makes the timing source deviate from the 
nominal second by a quantified amount. Modern systems have improved drastically and have 
relatively insignificant jitter for most timing applications, but high-precision applications require a 
quantification of this source of timing error. 

The purpose of this thesis is to document the background, implementation, testing, results and 
identified future improvements for a frequency meter that can record minor fluctuations of the grid 
frequency. By achieving this objective, the grid supply and demand data can be logged and used for 
several applications, such as network forecasting or maintaining nominal grid frequency. 

An extensive research period was required to determine key design facets pertaining to the 
frequency meter. Key identified tasks included choosing a timing source, finding a suitable software 
development platform and associated hardware, developing a graphical software implementation 
that displays real-time frequency fluctuations, contingency alarming for nominal frequency deviation 
events, communications design between the frequency meter and the PC, quantifying clock 
precision and evaluating the performance of the final frequency meter. 

A GPS time source was chosen to provide an accurate source of 1 second pulses. An Arduino Due 
microcontroller used a KX-7 quartz crystal oscillator to maintain its time base and the accuracy of the 
KX-7’s time base was analysed against the Trimble Copernicus II and GlobalSat EM406-A GPS 
receivers’ time base. When analysed relative to the GPS receivers’ accurate time base, the KX-7 
maintained a low time base variation, well within it’s data sheet specifications. 

The Arduino Due microcontroller was programmed and provided relevant frequency data to a 
LabVIEW PC terminal, which allowed frequency visualisation, data storage, grid frequency 
contingency detection, recovery time logging, GPS initialisation data and cross-platform 
communication protocols. 

Frequency data was logged on the frequency meter and was able to provide a microHertz resolution. 
The primary limitation of the design was low-level noise on the mains supply line as this affected the 
designed electronics when logging frequency measurements below the milliHertz range. Multiple 
recommendations for future work have been identified and included in this report. 
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1 Introduction 
 

1.1 Measurement Uncertainty 
 

This thesis involves analysis of the performance of multiple hardware components. It is necessary to 
define the terminology that will be used in the results in order to create a common understanding 
between the reader and the author, primarily to avoid misunderstanding and/or vagueness of 
terminology. ISO 5725-1 - Accuracy (trueness and precision) of measurement methods [1] is the 
international standard used in this study to define the terminology associated with measurements.  

All measurements that are made have an associated uncertainty to them. As a general concept, the 
uncertainty specifies validity of the result of a measurement [2]. Quantitative measures of 
uncertainty may be specified such as variance, standard deviation and range [2].  

The precision of measured data relates to how close together the measured values are [1]. Precision 
can also be broken down to two components: 

• Repeatability – How closely the measurements agree under specified conditions that the 
measurement was originally taken under over a short time interval [3]. 

• Reproducibility – How closely the measurements agree with the original set of data under 
the same process but different instruments, over a longer time interval [3]. 

The trueness of a measurement specifies how far the expected measurand is from the reference 
value [1]. The data sheets used throughout this thesis will define trueness of a component’s 
specification, such as jitter from the nominal operating frequency.  

Accuracy is an umbrella term that specifies the overall trueness and precision of measured data. It is 
defined as the “closeness of agreement between a test result or measurement result and the true 
value” [1]. This is depicted in figure 1. 

 

Figure 1. Measurement precision and trueness relative to a referenced standard [1] [3]. 
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Bias is not defined in ISO 5725-1 [3] because it carries a different meaning across different scientific 
disciplines. Bias will be defined for the purpose of this thesis as the difference between the expected 
measurement and the reference measurement value, which is useful for calibrating instruments [3]. 

Measurement error is the result of a difference between the obtained measurement and the true 
measurement [1] [4]. The measurement error can be broken down into two components, random 
error and systematic error. Random error is the unpredictable error detected over a course of 
measurements [4]. Systematic error is the quantifiable error that can be predicted over a course of 
measurements [4]. 

 

1.2 Frequency Detection 
 

Many modern systems rely on frequency detection for standard operation. Quality control of mains 
frequency, variable-frequency drives, frequency modulating systems in communications and a 
multitude of other electrical systems all use a form of frequency detection to maintain correct 
operation. There are many systems available both commercially and for home use to detect the 
frequency of various periodic waveforms. 

1.2.1 Measurement Error Sources 
 

Frequency measurement can be performed in several ways, depending on the frequency range that 
has to be measured and the shape of the waveform. Modern forms of frequency detection include 
counting (involving a “gating period”) [5], frequency counters and heterodyning [5] (frequency 
conversion). Each method is subject to several issues that affect the accuracy, precision and 
measurement error of a measurand. In modern systems, timing source jitter is an issue that creates 
measurement error and contributes to the cumulative time interval error. Jitter (shown as the 
interval ‘j’ in figure 2), is the periodic deviation from the nominal period of the source waveform. It is 
usually expressed in parts-per-million (PPM), as expressed in equation 1. A ppm specification defines 
how many microseconds the signal may be off the nominal value. For example, a 1 part in 20 million 
(0.05 ppm) specification will correspond to a ±50ns jitter at a frequency of 1 Hz, whereas a 30 parts 
per million jitter specification will correspond to ±30µs from the nominal signal period. Because jitter 
is often quantified on the order of micro-seconds or less, this specification becomes useful. 

Frequency Source Jitter (𝑝𝑝𝑚) = ± 106×∆𝑓
𝑓

  (1) 
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Figure 2. Illustration of jitter on a periodic waveform. 

 

The cumulative time interval error (TIE) is depicted in figure 3. If the cumulative TIE reaches over 
±50% of the nominal period, the error will not be recognisable (i.e. a +51% error will be taken as -
49%). To ensure the cumulative TIE doesn’t reach this threshold, a clock source with a quantified 
jitter should be used and periodically calibrated to a more precise source if required. 

 

Figure 3. TIE generated by the real-waveforms jitter relative to the ideal waveform. 
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1.2.2 Counting Method 
 

Counting is a method for frequency detection and involves recording the number of waveform 
periods during a set “gating period”, which is simply a chosen constant time interval [5]. By counting 
the number of input signal cycles over a gating period, it is possible to determine the frequency by 
dividing the number of counted cycles over the gating period, as shown in equation 2. The fractional 
error associated with this is given in equation 3 and is inversely proportional to the sampled 
waveforms frequency, as shown in figure 4. 

𝑓 = 𝐶𝑦𝑐𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡𝑒𝑑
𝐺𝑎𝑡𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑 (𝑠𝑒𝑐)

 (𝐻𝑧)                         (2) 

 

∆𝑓
𝑓

= 1
2∙𝑓∙𝑇𝑚 

                       (3) 

 

Figure 4. Gating error magnitude increase due to lower sampled waveform frequency. 
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1.2.3 Frequency Counters 
 

High frequencies can be measured through frequency counters and several modern technologies 
allow this, such as data acquisition cards and microcontrollers. Most frequency counters derive their 
time-base from a crystal oscillator (XO) which oscillates at a known frequency [5]. The measured 
input frequency is then ascertained by counting the number of periods in a time period generated by 
local frequency counter’s XO. The frequency counter method is generally very precise in the short-
term but long-term measurements will be affected by the jitter of the instrument’s time-base 
source. Modern frequency counters can currently cover up to a range of 100GHz [5] but are typically 
expensive for high-range frequency measurements. 

1.2.4 Heterodyning 
 

Heterodyning is the process of mixing two different frequencies to produce a frequency that can be 
used in signal processing [6]. The output frequency that is produced is called the heterodyne. 
Historically, heterodyning was used to process high frequency signals by mixing them into a 
heterodyne that could be processed by the technology that was available. Heterodyning is still used 
in RF applications [6], but as frequency counter technology keeps improving to provide higher 
sampling rates and costs go down, heterodyning is more suited to fill very high frequency detection 
applications. 

1.2.5 Aliasing 
 

No matter which method is chosen to detect the frequency, the sampling period must be considered 
carefully to avoid aliasing. Aliasing is an undesirable effect caused by sampling a periodic waveform 
below the Nyquist sampling rate [7]. The Nyquist theorem states that the sampling frequency should 
be at least twice the sampled signals frequency [8]. By sampling at less than twice the input 
frequency, a false frequency may be sampled. In practical applications, this value should be 5-10 
times higher than the sampled frequency as a minimum so that the reconstructed signal is more 
defined and less prone to noise. Figure 5 illustrates an aliased sinusoid due to an under-sampled 
signal. 

 

Figure 5. Aliased sinusoidal waveform due to an under-sampled signal [5]. 
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1.2.6 Accuracy of Modern Systems 
 

Many electronic systems rely on a XO which has a known internal oscillation frequency to provide a 
continuous time-base. XOs are relatively cheap and effective but are subject to frequency stability 
variations, especially in long-term use and environments with significant temperature variation [9]. 
The electronics that rely on XOs for a stable time-base are usually precise in the short term. Long 
term stability may be significantly affected depending on the crystal’s cut, temperature and material 
[9]. 

To compensate for the frequency instability in electronics that rely on XOs, a more precise timing 
signal could be used to either steer the electronic clock to the more precise time source or simply 
quantify the error associated with the XO and compensate for this error respectively. 

1.3 Thesis Purpose 
 

This project envisages building a precise metering device to monitor small mains supply frequency 
fluctuations (on the order of mHz or better). While power utility companies internationally choose to 
keep the mains supply frequency at either 50Hz or 60Hz, they have no control over the time at which 
customers may connect or disconnect loads. As loads are connected and disconnected from the grid, 
the generators that provide power to the grid are adjusted to either slow down or speed up to 
maintain the nominal grid frequency. There is a delay involved in the generator’s corrective response 
actions and this delay period gives way to typically minor frequency fluctuations on the mains 
supply. 

A frequency meter has been designed that has a quantified timing precision. The developed meter is 
based upon an open-source electronics prototyping board, the Arduino Due [10]. Appropriate 
electronics have been developed that connect to this MCU and various methods of keeping an 
accurate time-base have been considered such as GPS [11] [12], NTP and PTP [13] [14], atomic clocks 
[15], radio clocks [16] and crystal oscillators [9]. The frequency metering unit is able to store grid 
frequency data in real-time and transmit this data to a computer for analysis of the supply and 
demand ratio on the grid. This high-precision meter has applications in the analysis of load 
management, network forecasting, generator response to load variation and contingency analysis. 
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1.4 Thesis Outline 
 

In addition to the abstract, introduction, background and conclusion, the thesis has five key 
chapters: 

• Hardware Implementation – This section discusses the hardware chosen for the project, the 
specifications that are relevant to each component, how it will contribute to reaching the 
project’s goals and how the hardware is connected for various analysis purposes. 
 

• Software – The libraries used in the software implementation, their purpose in the project 
and any additional libraries developed are discussed in this section to detail the approach 
taken to meet the project’s goals. The two primary programming languages used are G 
(LabVIEW’s graphical programming language) and the Arduino programming language (a 
Wiring language derivative). 
 
 

• Timing Precision – One of the primary goals of the project was to quantify the precision of 
the frequency meter. This is done in this section by analysing the relative clock drift data 
between several implementations such as the Arduino Due’s XO, the Trimble Copernicus II 
GPS receiver and the EM406-A GPS receiver. 
 

• Frequency Meter – The frequency metering system is described in the final chapter in the 
main body including its overall performance and limitations. 
 

• Recommendations and Future Improvements – This chapter ties into the conclusion chapter 
heavily as the recommendations are drawn from the concluded findings. It outlines future 
improvements that may not have been able to be implemented in this project due to various 
factors but would be viable in further studies. 
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2 Background 
 

2.1 Timing Methods 
 

Timing is of crucial importance in many applications and time tracking has numerous methods. 
Modern systems can derive their time from various sources, such as computer network protocols, 
GPS signals, radio transmissions, the known period of the mains power supply signal or various types 
of crystal oscillators. In frequency measurement systems, the ability to specify measurement 
precision, accuracy and error comes by relating the systems performance to a standard with known 
timing characteristics, such as an atomic clock. No perfect system exists to keep track of time but the 
“clock drift” (clock deviation from the perfect time model) of all systems is able to be quantified 
relative to very accurate and precise timing standards. 

With the advent of atomic clocks, many technologies have been developed that synchronise their 
timers to rubidium or caesium standards. More recently, ytterbium clocks have been developed that 
outperform previous clock standards [17]. While caesium clocks take five days to reach peak 
performance, ytterbium clocks can achieve this in one second [17]. Precise timing technology has 
drastically changed over the recent years and further improvements are continually being made. 

2.1.1 Atomic Clocks 
 

Atomic clocks are the highest standard of clock precision available today. Atomic clock standards are 
expensive, often costing tens of thousands of dollars or more, thereby making them a difficult 
standard to use outside of expensive projects and experiments. Time synchronisation on computers 
and electronics is often done by polling time from an accurate source. To synchronise to this 
accurate source, several implementations exist such as: 

• Radio clock broadcasting stations; 
• Stratum 1 NTP servers; 
• GPS Satellites that broadcast a PPS signal. 

Radio clocks [16] have a local atomic clock reference that generates time data for radio 
broadcasting. In Network Time Protocol (NTP) implementations [14], an atomic clock is considered a 
“stratum 0” device. Stratum 0 devices provide a very accurate timing signal and are used as 
reference clocks. Stratum 1 servers are synchronised within microseconds to their respective 
stratum 0 device and may broadcast NTP time packets. GPS satellites each have an atomic clock on-
board the space vehicle. The instrumentation on-board the space vehicle allows a very accurate PPS 
signal to be generated and broadcast to GPS receivers through radio frequencies.  

Atomic clocks function by locking an electronic oscillator to the frequency of an atomic transition 
[15]. Two well-known and often used standards are caesium-133 (which transitions at 9,192,631,770 
Hz [15]) and rubidium-87 (which transitions at 6,834,682,610.904324 Hz [18]). Both NIST and BIPM 
have defined the “standard second” based on the caesium-133 standard, as “the 9,192,631,770 
periods of the radiation corresponding to the transition between two hyperfine levels of the ground 
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state of  the caesium 133 atom” [19]. This means that atomic clocks can achieve accuracy on the 
order of parts-per-billion, which translates to better performance than any other available timing 
source. 

 

2.1.2 Radio Clocks 
Radio clocks are synchronised by the RF signal containing time data that timing signal stations send. 
The list of broadcasting stations is maintained by the BIPM [19]. The broadcasting stations are 
spread internationally. A limitation of radio clocks is that many locations have poor signal reception 
or no reception at all. 

Radio clock stations all vary in the frequency bands they may output their timing signals [20]. 
Antennas vary proportionally in size to their output frequency, which affects the length of the 
propagated RF signal. Stations also vary in their transmission times, where some stations may 
transmit the time signal continuously and others have downtime. The length of the pulse-per-second 
signals can also vary between stations [20]. The lack of a standardised timing signal format and time 
interval between signals may potentially make radio clocks unsuitable for some applications. 

Radio clock stations are primarily connected to atomic clocks such as caesium standards, which 
provide an excellent timing reference [16]. The main issue that arises with time synchronisation at 
the receiving end is radio signal transfer. Due to the nature of RF wave propagation, significant jitter, 
delays and signal loss may be encountered when transmitting the signal over long distances. 
Broadcasting stations transmit at a frequency range of 25kHz to 25MHz [21], with the exception of 
radio station STFS, which transmits at approximately 2.6GHz [21]. Between 25kHz and 25MHz, 
signals fall into the Low (3-30kHz), Medium (0.3-3MHz) and High (3-30MHz) frequency categories 
[22]. 

Low frequency transmissions primarily travel over surface waves, which travel slightly further than 
the visible horizon [22]. Past the radio horizon, the signals may reflect off the sky. Medium frequency 
transmissions are primarily surface waves during the day with some sky wave reflection during the 
night [22]. High frequency signals propagate as sky waves over long ranges using ionospheric returns 
[22]. 

Radio clock technology was chosen to not be relied upon for the purpose of this project due to the 
propagation distance from the nearest radio clock station to Perth, Western Australia. While in 
principle this technology can be used to synchronise clocks with an accurate reference, the location 
this study was conducted at had highly unreliable reception. The nearest radio time signal station to 
Perth is call sign JJY, located at Mount Otadakoya, Fukushima, Japan at a distance of 5033km. Under 
the assumption of reception being available in Perth, a latency of 16.78ms would be observed due to 
a transit delay of approximately 1ms for every 300km the signal has to traverse [16]. Surface wave 
signals paths typically propagate up to 1500km [23]. At distances greater than this, the signal 
becomes a sky wave signal and refracts off the ionosphere. At distances of 5000km or greater, the 
signal’s reliability becomes extremely poor and unusable due to the signal’s irregular pathways [23]. 
Due to the lack of signal integrity in Perth, alternate technologies were considered.  
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2.1.3 Crystal Oscillators 
 

Crystal oscillators (XOs) have been used in many electronic devices to keep track of time. The quartz 
crystal oscillator has the property of piezoelectricity, which provides a link between electronics and 
mechanical distortion of the crystal lattice. The XO has stiffness and some elasticity in its bonds, 
which allow the crystal to resonate like a tuning fork. The frequency at which the crystal oscillates is 
determined by the size, shape and cut of the crystal and the frequency drift that the crystal may 
experience with temperature is determined by the size of the cut.  

 

Figure 6. XO circuit model (a) and passive-element equivalent model (b). 

The equivalent model in Figure 6 has four parameters, where C1 is the capacitance due to the 
electrode, holder and leads, C2 is the notional capacitance, the inductance L1 is related to the 
oscillator’s mass and the resistance R1 is due to bulk losses. The XO is typically inserted into an 
electronic feedback loop where it oscillates at it’s resonant frequency and is amplified at the output. 

The XO model in figure 6 demonstrates that the XO behaves like a band-pass filter, so when coupled 
to an external amplifier, it is possible to create a system with gain and positive feedback.  Because 
C2 and L1 behave like a second order electronic system, they will have a defined resonance 
frequency fo: 

𝑓𝑜 = 1
2𝜋√𝐿1∙𝐶2

                    (4) 

XO frequency stability can be reduced due to the effects of aging, varying power quality, 
gravitational force, vibrations, electromagnetic interference, retrace (essentially a cold start), 
temperature and pressure [9]. The temperature of a crystal is of greatest importance as it has the 
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greatest effect on oscillator stability [9]. Three commonly used variations of XOs are affected by 
temperature in different lengths. The room temperature XO (RTXO) has no method of temperature 
compensation, the temperature compensated XO (TCXO) is cut in a way to minimise changes to its 
frequency stability due to temperature changes and is encased to minimise abrupt ambient 
temperature changes. The oven controlled XO (OCXO) has the most precise method of oscillatory 
frequency stability control [9]. OCXOs control the temperature variation the crystal is exposed to 
through a feedback temperature control system, which allows the crystal to perform with 
significantly less variation in operating frequency. Most consumer electronics utilise RTXOs due to 
their very low cost and ability to keep a timing accuracy within the order of parts-per-million. [24] 

 

2.1.4 Time Protocols 
 

NTP and PTP are protocols designed to synchronise computers over a general purpose computer 
network to a high-precision clock standard. Both protocols use a server-client architecture to 
transmit UTC time over packet-switched networks. As with any networking protocol, packet errors, 
throughput size, latency variation and packet loss can cause the performance of the system to drop 
[25]. Applications that require reliable, precise timing will be affected by this performance drop. 

NTP is the most common time synchronisation standard in computers today. The IETF maintains 
NTPv3, the most common implementation of NTP. RFC 1305 [13] provides the specification, 
implementation and analysis of NTPv3. The newest implementation of NTP is NTPv4 [14]. NTP has 
several topologies including server-client (where the client periodically polls the server for the time 
and calculates its own clock offset), symmetric active-passive mode (NTP data is polled via peers on 
the network), broadcast/multicast mode (a server sending NTP packets periodically to a group of 
clients or the entire networks) and manycast mode (a client polls several NTP servers to determine 
the server with least latency to connect to, then establishes a connection) [26].  

PTP is a more recent timing protocol implementation, designed to provide a higher standard of 
precision than NTP. PTP is specified under IEEE1588-2008. PTP is primarily intended to provide a 
time-base more accurate than NTP in areas where GPS signals are either inaccessible or too costly. 
PTP works on a similar principle to NTP but has additional protocol provisions for estimating 
propagation and synchronisation delay between the server and the client. Hardware provisions 
however must be made to provide this and can be costly for simple applications. 

Both protocols are susceptible to the same transmission related delays like any other networking 
protocol. Latency is the measure of transmitted signal’s delay and is typically quantified using 
algorithms that compute the delay [25]. The number of hops is a significant contributor to the effect 
of latency as it reduces end-to-end synchronisation performance [27]. The data rate limit is another 
factor that may limit the transmission of the NTP packet, but in most modern networks is not an 
issue. Line coding delay [25] comes from both the client and server and is the time that the sender 
and receiver take to compute and assemble an outgoing packet as well as the time taken to decode, 
generate checksums and error check an incoming packet. Precision on the order parts-per-million is 
typical of NTP but the jitter may vary on the order of tens of thousands of ppm. 
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2.1.5 Global Positioning System 
 

The Global Positioning Network had its inception in 1973 to replace the Navy Navigation Satellite 
Systems [22]. The GPS satellite network was operational on 27 April 1995 with 24 satellites orbiting 
the globe twice a day.  

RF waves propagate at the speed of light (299 793 077 ms-1). The GPS signals are sent from space at 
a height of 20 200 km, but this distance varies as the satellites follow an elliptical path [22]. GPS 
satellites have an orbital period of 11 hours and 58 minutes [22]. Each GPS SV is equipped with four 
atomic clocks – two rubidium and two caesium [22]. The initial generation of GPS SVs was Block II, 
with the first satellite launched into orbit in February 1989 and final on October 1990. Since then, 
several other satellites were launched to provide improvements to the existing infrastructure: 

• Block IIA – 13 satellites of this series still orbit the Earth with the final satellite being 
launched on November 1997. This block was designed to allow a longer period of 
independent operation with control segment contact (180 days) [28]. Satellites in this block 
only operated on the L1 frequency [29]. 

• Block IIR – 12 satellites from this series were launched since July 1997 as “replenishment” 
satellites, to replace older satellites that were about to fail or already failed. 

• Block IIR-M – 8 satellites were launched in this series, with the final being launched in August 
2009. These satellites included the L2C signal for more robust civilian use [30].  

• Block IIF – 12 satellites are due to launch in this series with the second being sent in July 
2011. IIF has all of IIR-M’s capabilities introduces a 3rd Civilian Signal (L5). [29] 

In May 2012, the contract for the next generation of satellites has been awarded to Lockheed Martin 
to provide Block IIIA satellites [29]. The primary benefits of the new generation are higher accuracy, 
improved anti-jamming, increased lifetime and backward compatibility with older systems [30]. The 
first satellite in this generation is due to launch in 2014 [29] and will also introduce 4th civilian signal, 
L1C [30]. 

In the past, civilian use of GPS suffered from “selective availability”, which was discontinued on May 
2, 2000 [31]. Selective availability affected all non-military GPS receivers by increasing the location 
error up to 100m away from the true position. This error was unacceptable for high precision 
location and timing applications. In timing applications that rely on a GPS receiver’s PPS, this error 
caused significant additional timing jitter. A 100m location error generated by selective availability is 
equivalent to ±333.6 nanoseconds PPS jitter. Fortunately, this is no longer an issue. 

GPS satellites typically transmit at two frequencies- the L1 frequency band (1575.42 MHz) and the L2 
frequency band (1227.6 MHz). These frequencies are in the ultra-high frequency band (300-3000 
MHz). Radio waves in this frequency band primarily propagate as space waves, which require a 
direct line of sight. 

GPS broadcasts a Pulse-Per-Second signal to GPS receivers. This signal is generated by an atomic 
clock on-board each GPS satellite and is subject to transmission jitter and processing jitter. 

Transmission jitter comes from several sources, the largest being from the space wave propagating 
through space and Earth’s atmosphere. As an RF wave passes through the troposphere and 
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ionosphere, its speed is reduced. At a height of 80-400km, the RF waves pass through the 
ionosphere, which refracts the GPS satellites signals [32]. Because the velocity variations through the 
ionosphere are known at GPS transmission frequencies, GPS receivers mostly correct the error 
associated with ionospheric delays [32]. Tropospheric delays are caused by refraction and a further 
change in the propagation medium. WAAS enabled receivers may receive atmospheric condition 
data over different regions which allows the receiver to operate at a much greater accuracy in its 
atmospheric delay calculations [32].  

 

Figure 7. GPS Satellite signal transmission path diagram. 

Figure 7 depicts the orbital path of a single GPS space-vehicle on a fixed axis. As the satellites 
traverses its orbital path between the apogee and perigee, the signal that travels to the receiver will 
undertake a non-linear path due to the refractive index changes between atmospheric layers. This 
results in a variation of the signal’s transmission path length to the receiver, which proportionally 
creates a variation in timing signal jitter. 
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Error Source Error Variance 
Ionospheric effects ± 5 meters 
Satellite orbital shifts ± 2.5 meters 
Satellite clock errors ± 2 meters 
Multipath effects ± 1 meter 
Tropospheric effects ± 0.5 meters 
Calculation and rounding error ± 1 meter 
Table 1. GPS system error source table [32]. 

Table 1 explains the variation in GPS signal error due to multiple sources. Variations in the 
ionosphere and orbital altitude of the GPS space vehicle account for the largest component of the 
GPS error. Modern GPS receivers, especially those with WAAS enabled correction, can account for 
most of these errors to improve the accuracy of the received signal data. 

These GPS error sources contribute to ± 15 meters of dilution of precision. In WAAS corrected GPS 
receivers, if a WAAS correction is able to be obtained, this error goes down to ± 3-5 meters [32]. This 
enables GPS receivers to have PPS accuracy on the order of parts-per-billion [33]. 
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2.2 Grid Parameters 
 

It is important to know the frequency of the grid as all electronic equipment that is connected to it 
has a certain operating frequency requirement. The frequency may dictate the electronics efficiency, 
operating limits or it may provide an alternate use, such as providing a time-base in digital timers. 
While generally the mains frequency is not used to provide a time-base due to the low cost and high 
availability of XOs, it’s nonetheless important for many applications. To measure the frequency of 
the grid, the parameters of the grid must be known. In order to design a metering system that will 
not damage itself due to fluctuations in the grid, information was taken from Western Power’s 
website and the SAIGlobal Standard Voltages document [34]. Western Power is the power utility 
company operating in the SWIS region of Western Australia. While Standards Australia defines the 
nominal voltage and frequency values for all of Australia [34] in AS60038, Western Power specifies 
it’s own operating standards in the Technical Rules document [35]. 

Tolerance Nominal Value Min (%) Max (%) Min Max Mode 
Voltage 240V RMS -10 +6 226 V 254.4 V - 
Frequency 50 Hz - - 49.8 Hz 50.2 Hz SWIS 
Frequency 50 Hz - - 49.5 Hz 50.5 Hz Islanded 
Table 2. SWIS grid operational parameters. [35] 

Table 2 shows the operating frequencies for standard and islanded grid connections and the 
operating limits for the grid voltage. 

The accumulated synchronous time error is defined as “the difference between Western Australian 
Standard Time and the time measured by integrating the instantaneous operating frequency of the 
power system” [35]. In the SWIS region, this value must be less than 10 seconds for 99% of the time. 

Event Frequency Band (Hz) Target Recovery Time 
Single Contingency 48.75 – 51.00 Normal range: <15 mins 

Over-frequency events: 
<50.5Hz within 2 mins 

Multiple Contingencies 47.00 – 52.00 Normal range: <15 mins 
 
Under-frequency events: 

1. Above 47.5Hz within 10 secs 
2. Above 48.0Hz within 5 mins 
3. Above 48.5Hz within 15 mins 

 
Over-frequency events: 

1. Below 51.5Hz within 1 min 
2. Below 51.0Hz within 2 mins 
3. Below 50.5Hz within 5 mins 

 
Table 3. SWIS target recovery times for grid frequency variations due to contingencies. [35] 

The parameters in table 3 are primarily used to compare contingencies detected on the frequency 
meter against the specified standard to assure the recovery times are within the specified range. 
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3 Hardware Implementation 
 

3.1 Micro-Controller Unit 
 

 

Figure 8. Arduino Due MCU [10]. 

The Arduino Due [10] (seen in Figure 8) was chosen as the prototyping Microcontroller Unit (MCU) 
for the project amongst other MCUs due to its hardware specifications, cost, large collection of 
open-source libraries, instant availability and its ability to meet the requirements of the project. 
Murdoch University’s Engineering & Information Technology department provided an Arduino Due 
for prototyping the metering unit. The Arduino website and Atmel datasheet list the following 
specifications for the Arduino Due [10], summarised in table 4. 

CPU Atmel AT91 SAM3X8E 
CPU Clock 84 MHz 
Static RAM 96 kB 
Core Resolution 32 bit 
Flash Memory 512 kB 
DMA Availability Yes 
Operating Voltage Range 7-12V 
Digital I/O Pins 54 
Analog Input Pins 12 
Analog Output Pins 2 
Analog Input Range 0 – 3.3V 
Analog Output Range 0 – 3.3V 
Analog I/O Resolution 10-12 bit (1028 – 4096 values) 
Sampling Rate 1 MS/s 
Table 4. Arduino Due specifications [36] [10]. 
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Most MCUs available on the market are either 8 bit or 16 bit, typically produced by Arduino [37], 
Freescale [38] or Microchip [39]. A Motorola 68HC11/68HC12 [40] was also considered for the 
project. Due to the simplicity, availability of support and extensive libraries available on the Arduino 
platform, the Arduino Due was a more suitable development platform. The Arduino Due is a low-
cost MCU which can perform 32-bit operations at a clock rate of 84 MHz. No other MCU with these 
specifications or better could be found at a reasonable cost. These specifications outperformed most 
competitors on the market and greatly outperformed all considered competition for its cost. 

The Arduino Due is an open source electronics prototyping platform released under the Creative 
Commons Attribution Share-Alike license and its public libraries fall under the GNU Lesser General 
Public License [41] [42] [43]. Under the share-alike license, all work created upon the Arduino 
platform must be distributed under the same license. 

In a conference paper by Ibrahim [44], a method for metering the mains frequency is proposed that 
utilises a near-zero detector, PIC18F4520 MCU and PC link to acquire periodic pulses, compute the 
period between them and log the mains frequency. The design utilised an 8MHz XO on-board the PIC 
MCU. This design was considered in the planning stage for the mains frequency meter in order to 
choose the hardware components that will meet the project’s goals. It is unclear whether the XO on-
board the PIC MCU is temperature compensated in any form. Given that most RTXOs are mounted 
onto the MCUs PCB, it was assumed to be an RTXO. This is not an issue in short-term frequency 
measurements but does pose an issue long-term. Clock stability is able to be quantified by 
examining the on-board MCU drift relative to a more precise timing source, such as GPS PPS or an 
atomic standard. 

The Arduino Due EAGLE [45] schematic file specifies the on-board 12MHz XO as a KX-7 quartz crystal 
with a ±30ppm frequency tolerance at 25°C [24]. The aging specification is rated at ±2ppm/year [24], 
but the manufacturing date of the KX-7 crystal was not able to be ascertained. Given that the 
Arduino Due is less than 2 years old however, an upper limit was set, giving at most 4ppm additional 
jitter. 
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The Arduino Due pins were assigned as outlined in table 5 for all performed experiments and 
standard frequency metering operation. 

Pin Description 
D0 (RX0) LabVIEW TX (via USB) 
D1 (TX0) LabVIEW RX (via USB) 
D7 GPS PPS Signal 
D9 Mains Pulses (Frequency Measurement) 
D10 SD card (Power) 
D11 SD card (MOSI) 
D12  SD card (MISO) 
D13 SD card (SCK) 
D14 (TX3) EM406A RX 
D15 (RX3) EM406A TX 
D16 (TX2) MAX232 Shield 
D17 (RX2) MAX232 Shield 
D18 (TX1) COPERNICUS 2 
D19 (RX1) COPERNICUS 2 
SPI See Pins D11, D12, D13 

Table 5. Arduino Due pin connections. 
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3.2 Frequency Detection Shield 

 

Figure 9. TI AC-9131 AC-AC step-down conversion adapter. 

A TI AC-9131 adapter, seen in Figure 9, was utilised to step-down the voltage from the mains 
supply’s 240V AC to 3.3V AC. A datasheet was not available for the component. The product label 
stated a 240V-3.3V AC-AC step-down conversion.  

 

Figure 10. Stepped-down AC waveform oscilloscope screenshot. 

Figure 10 displays the observed stepped down no-load voltage of the adapter. 
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The stepped-down waveform was observed at 7.64 VRMS. This waveform appeared to be at the grid 
standard frequency of 50Hz [34]. The Johnson noise due to the impedance of the output windings is 
unknown due to no datasheet specification and no shielding is provided, hence the noise that may 
be potentially introduced to the 50Hz waveform is unknown, and this is a possible source of error in 
the final design’s metering precision. 

Several designs were considered for the pulse generation circuitry that would be attached to the 
MCU input, such as zero-crossing detectors [44], a window-comparator circuit and a BJT [46] pulse 
generation circuit. A zero-crossing detector generates a pulse every time a periodic signal crosses 
the zero-volt mark. Many “zero-crossing detectors” were in fact “near-zero crossing detectors” that 
generated a pulse at a similar input voltage to the developed transistor amplifier circuit. Several 
considered circuits involving operational amplifiers required voltages that the Arduino could not 
provide. When analysed for the benefit the operational amplifiers would bring over their complexity 
and limitations, they were not necessary in the design of this project. 

Variation from Nominal Voltage  Offset (µs) Variation from Nominal Voltage Offset (µs) 

+1% 3.21 -1% 3.28 

+2% 6.36 -2% 6.62 

+5% 15.46 -5% 17.08 

+10% 29.51 -10% 36.07 

Table 6. Pulse generation circuit’s frequency tracking offset with variations in mains supply power 
quality.  

The power quality variations in table 6 are given as a percentage offset from the nominal 240V in the 
SWIS region. The given offsets are valid for the respective power quality variation over 1 second.  
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Figure 11. Frequency tracking pulse generation circuit (Eagle schematic). 

The frequency tracking circuit is designed to periodically generate digital pulses that are at the same 
frequency as the incoming 50Hz sinusoidal waveform. A low-pass filter attenuates the incoming 
signal’s frequency past the cut-off point of 500Hz in order to reduce high frequency noise while 
minimising attenuation at the 50Hz frequency. A 1N4148 diode is connected with the anode to 
ground and the cathode connected to the T1 transistor’s base. This diode allows current to flow 
through the capacitor C1 and resistor R4 during the negative cycle of the input waveform. The 
diode’s action prevents damage to Transistor T1 as the Emitter-Base voltage cannot exceed more 
than 6V [46]. T1 switches on when the base-emitter voltage is above 0.7V [46]. Due to the positive, 
non-zero voltage that the transistor turns on at, the square wave that is produced has a mark/space 
ratio that is slightly less than 50%, but still easily long enough (on the order of milliseconds) to be 
measured by the Arduino, which can measure on the order of microseconds [36]. Figure 12 displays 
the transistor’s pulse triggering but it appears that the square wave’s positive and negative edges is 
very close to zero due to the larger AC signal voltage. 
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Figure 12. Oscilloscope output of frequency tracking pulse generator. 

3.3 Trimble Copernicus II 

  

Figure 13. Trimble Copernicus II DIP module [12]. 

The Trimble Copernicus II is a GPS receiver module. The Copernicus II used in this project came 
factory mounted to a DIP module. A 3V magnetic-mount SMA antenna was purchased to connect to 
the Copernicus II. The SMA antenna boosts the receivers gain by 26dB. 

Specification Value Mode 
PPS Accuracy ±60 ns RMS Static 
“ ±350 ns RMS Stationary Mode 
Warm Start Time 35 secs - 
Cold Start 38 secs - 
Hot Start 3 secs No Battery Backup 
Tracking Sensitivity -160 dBm  
Acquisition Sensitivity -142 dBm Standard 
“ -148 dBm High Sensitivity 
Table 7. Trimble Copernicus II GPS receiver specifications. [33] 
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The Copernicus II was chosen due to its specifications which are shown in table 7. The cost and high 
level of configurability made the receiver suitable for this project. Several other Arduino shield based 
GPS receivers were considered but either lacked features, precision, specifications or were not easily 
adaptable for use with the Arduino Due. An older revision of the Copernicus was also considered due 
to the price but lacked the precision and functionality the Copernicus II provided. 

The stock module allows TTL-level serial communications on 6 ports (3xTX and 3xRX) and allows 
communicating in three different formats: 

• TSIP – Trimble Standard Interface Protocol, this interface is Trimble’s primary packet 
transmission standard in their GPS receivers.   

• TAIP – Trimble ASCII Interface Protocol, primarily suited to vehicle tracking applications. 
Considerably powerful in networked environments due to the ability of communicating 
through a unique ID in packet based communication. 

• NMEA – National Marine Electronics Association, this packet standard is supported by the 
TinyGPS library and can easily be parsed to the LabVIEW program for packet analysis. 

The chosen protocol for this project was NMEA due to its simplicity and to favour a set standard 
between the Trimble Copernicus II and the GlobalSat EM406-A modules. The configured messages 
used by the receiver can be seen below in table 8. Some of these messages are fixed while others 
vary as time changes. 

 

Packet Sentence Description 
Automatic Message 
Output 

$PTNLSNM,0021,01*54 Configures receiver to output GGA 
messages every second. 

Receiver 
Configuration 

$PTNLSCR,,15,,,,0,1,,1*5C 15° elevation mask, Stationary 
mode, WAAS enabled 

PPS Configuration $PTNLSPS,2,5000000,1,0000010*51 Fix-Based PPS, 500ms pulse, Active 
HIGH, 10ns cable delay 
compensation 

Acquisition 
Sensitivity 

$PTNLSFS,S,0*23 Standard sensitivity mode 

Serial 
Communications 

$PTNLSPT,019200,8,N,1,4,4*1C 19200 Baud, 8 data bits, No parity 
check, 1 Stop bit, NMEA in and 
NMEA out 

Initial Position $PTNLSKG,GPSW,GPSWMS, 
3203.96635, 
S,11550.22761,E,00010*FF 

GPSW = GPS Week since first epoch 
GPSWMS = Milliseconds 
accumulated since 00:00 UTC 
Sunday 

Reset Configuration $PTNLSRT,H,2,2,0000000000*1B Hot Start, Store User-Config to Flash 
on reset, Wake on NMEA port 
activity 

Table 8. Copernicus II project default NMEA packet configuration with checksums. Implementation 
appropriate carriage return and line-feed delimiters should follow all packet checksums [33]. 

The automatic message output was configured to display GGA messages. GGA messages display GPS 
Fix data which allows PPS integrity monitoring based on the number of active satellites.  
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Figure 14. Various elevation mask angles of GPS Satellites referenced to a North Pole positioned 
receiver. 

 

The receiver’s configuration had the elevation mask set at 15°. The elevation mask is the minimum 
elevation angle between the horizon and the satellite, relative to the receiver (as shown in Figure 
14). At 10° elevations and higher, ionospheric and tropospheric signal corruption is reduced as the 
atmospheric effects begin to become more predictable for the receiver. The possible limitation of 
this approach is exclusion of any satellite signals below the set angle. 

PPS was configured to output a 1Hz pulse with a 50% duty cycle only when the receiver has a fix. 
Because the Copernicus II uses a 2m SMA connected RG-174 type antenna [47], it’s propagation 
delay is equivalent to 10.12ns (based on GPS source coaxial cable propagation delay data sheet [48]), 
hence the receiver was configured to output it’s PPS 10ns earlier. However, this effect can be 
effectively ignored as the transmission delay will stay the same and have no significant change at 
room temperature. 

In standard acquisition mode, the receiver has an acquisition sensitivity of -148dBm and -160dBm 
once the receiver has a fix [33]. High sensitivity mode should only be used under obscured signal 
conditions but at the cost of an increased time to first-fix. 

The only parameters that can be changed in the serial communications packet are the Baud rate, 
input protocol and output protocol. A baud rate of 19200 bps with NMEA in/out was set as they 
were suitable for communications with the Arduino Due. This communication had no effect on the 
PPS signal as they were wired to separate pins, hence this baud rate could freely be changed as the 
data that’s sent through the GGA message to the LabVIEW terminal is well within 4800 bps. 
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The initial position packet is configured to decrease the time to first-fix by providing ephemeris 
(location) data to the receiver, which includes latitude, longitude and altitude above sea-level. 

 

Reset packet data provides a configuration package that allows the receiver to enter stand-by mode 
when the GPS receiver is not required. If the ephemeris data is less than 4 hours old, a system hot-
start is possible and the receiver will find a fix within 3 seconds [33]. The system will activate from 
stand-by mode through activity on the NMEA-IN port (RX-B). 

The LabVIEW NMEA_Configuration program has been designed to automatically calculate, modify 
and append checksums to each packet required for the Copernicus II. 
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3.4 GlobalSat EM406-A 
 

 

Figure 15. EM406-A GPS receiver module [11]. 

The GlobalSat EM406-A (shown in Figure 15) is a GPS receiver with the specifications listed in table 
9. The receiver was provided by Murdoch University’s Engineering & Information Technology 
department for PPS jitter analysis in this project. 

Chipset SiRF Star III 
Input Voltage 4.5V – 6.5V DC 
Communication Protocols SiRF, NMEA, USER1 
Channels 20 (All-in-view tracking) 
Sensitivity -159dBm 
Logic Level 0V (Low) – 3.3V(High) 
Table 9. EM-406A GPS receiver specifications [11]. 

The EM406-A GPS receiver was communicated to through a TTL serial connection from the Arduino 
Due. The chosen communication protocol was NMEA to maintain a set standard among the GPS 
receivers. It was however discovered that while the automated output messages of the EM406-A are 
the same as the Trimble Copernicus II, the configuration packets were slightly different and had to 
be adjusted. These packets are visible under table 10 below. 

Packet Sentence Description 
Baud Rate $PSRF100,1,19200,8,1,0*38 NMEA protocol at 

19200 Baud 
Debug $PSRF105,1*3E Development  

Data ON 
Message 
Output 

$PSRF103,00,00,01,01*25 GGA Message 
output every 
second 

Navigation 
Initialisation 

$PSRF104,-
32.066142,115.837122,10,96000,GPSTOW,WEEKNO,12,1*34 

GPSTOW = GPS 
Time of Week 
(seconds) 
WEEKNO = GPS 
Week since first 
Epoch 

Table 10. EM406-A project default NMEA packet configuration with checksums. Implementation 
appropriate carriage return and line-feed delimiters should follow all packet checksums [11]. 
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The EM406-A had no ability to obtain a GPS satellite fix inside the Murdoch University Engineering  
building but was able to easily obtain a fix inside a residential house. The results were the same for 
the Trimble Copernicus II except when the Copernicus II had an SMA antenna attached. In a 
residential setting, the EM406-A had an average time to first fix of 62 seconds from a cold start, 
while it’s data sheet specification states 42 seconds [11]. 

 

Figure 16. EM406-A connector cable. 

Figure 16 displays the EM406-A connector cable, which was attached to a pinless header for easier 
connection to the Arduino via interconnecting wires. The connections used by the GPS receiver are 
shown in Figure 17. The top numbers display the pin number associated with the functions listed at 
the bottom while the letters B and W correspond to the cable colours “black” and “white”. 

 

Figure 17. EM406-A cable connection diagram. 
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While the EM406-A GPS receiver was suitable for testing relative timing against the Arduino Due, it 
did not provide a datasheet PPS jitter specification, lacked an antenna port, performed poorly in 
low-signal environments and did not allow the level of functionality the Copernicus II GPS receiver 
provided so it was not chosen as the primary timing standard in this project. 

3.5 MAX232 Communications Shield 
 

The MAX232C IC-based communications shield was primarily added to provide an alternate 
communication method to computers. While the Arduino Due provides communication through 
either the Native/Programming USB ports or TTL-serial [10], the RS232 communication method has 
no need for drivers and can support older machines attempting to run the metering module. 

 

Figure 18. Arduino Due / RS232 communication compatibility shield (EAGLE schematic). 

The circuit designed in figure 18 utilises a MAX232N chip which is a 16-pin DIP module. The 
MAX232N can convert up to two RS232 signals to TTL level and vice versa. The module requires 5V 
DC to power it and will convert RS232 signals between +3 to +15V for false logic and -3 to -15V for 
true logic. The output TTL signal is 0-5V. To prevent damage to the Arduino Due, the 5V TTL OUT 
(signal coming from the MAX232N to the Arduino Due) is reduced to 3.33V through a voltage 
divider. To ensure the input is registered on the MAX232N, a transistor amplifier circuit takes the 
3.3V serial output from the Arduino Due and converts it to a 5V logic level. 
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3.6 GPS Jitter Analysis Circuit 
 

In the analysis of the timing jitter on the Arduino Due, it was also considered important to test the 
relative jitter between the two GPS receivers’ PPS outputs. 

 

Figure 19. GPS relative frequency stability analysis circuit (Eagle Schematic). 

This design incorporated a transistor NAND gate. The Copernicus II was to generated a 500ms length 
PPS signal. The EM406-A was to create a 1µs length PPS signal that’s fed into a monostable 555 
timer that generates a ~500ms signal. The theory was to use two similar length, out of phase signals, 
feed their outputs through the inputs of a NAND gate, invert this output and produce a signal who’s 
length may vary over a long period of time with variance in PPS jitter. 

The performance of this design was tested in both ICAPS and physically. 
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Figure 20. Inverted NAND gate voltage output. 

This design however had the major limitation of requiring both signals being in-phase with each 
other, which would give only the most narrow signal as the output. It’s proposed that this design 
may still be able to work if it is modified in future works to delay the phase of one signal by 180°. 

 

Figure 21. GPS receivers’ in-phase (default 1µs and 4µs length) PPS signals. 
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4 Software 
 

4.1 NI LabVIEW 2013 
 

National Instruments LabVIEW [49] is a dataflow programming environment based on the G 
programming language. LabVIEW [49] offers the standard functionality of most programming 
languages and incorporates a graphical design environment, making it ideal for visual debugging and 
graphical user interface design. Real-time data acquisition and analysis can to be displayed visually 
with minimal effort by the programmer due to LabVIEW’s extensive libraries. With an emphasis on 
minimising processing cycles on the Arduino so as to avoid unknown variations in processing time 
contributing as a source of error, project relevant information can be passed to LabVIEW for analysis 
and storage to the PC from the Arduino through a USB/MicroUSB, RS232/TTL or USB/TTL 
connection. 

The project relevant LabVIEW files are all clustered into the MFFM_Thesis.lvproj project file, where 
MFFM is an abbreviation for Mains Frequency Fluctuation Metering. The VI files in this project are 
listed as: 

• Control_Panel.vi 
• GPS_Week_and_Seconds.vi 
• GPS_Fix.vi 
• PadZeroes.vi 
• NMEA_Configuration.vi 
• NMEA_Checksum.vi 
• NMEA_Packet_Decoder.vi 

The graphical user interface for frequency metering is available through the Control_Panel VI. The 
other VI files are primarily designed for use as supporting functions. 
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4.1.1 Control Panel VI 
 

The Control Panel VI is the primary graphical interface for use in metering frequency fluctuations.  

 

Figure 22. Control Panel VI user interface. 

As seen in the main project GUI in figure 22, the user can select which serial port to connect on, 
corresponding to the port they connected to the Arduino (either via mini-USB or RS232 connection). 
Baud rate is set to 115200 as default and will cause errors if it is changed. The LabVIEW program 
expects 1 byte to be read at a time and hence the data read rate has been set to 5ms so that it can 
collect all the data at the port in time. 

The data that is sent to the Arduino is shown in the ‘Sent Serial Message’ string indicator and the 
data that are received back, including all handshake characters are displayed in the ‘Input from 
Arduino Due’ string indicator. 

Frequency data is displayed in real-time as it is collected from the Arduino and is plotted on the 
Real-Time Frequency Value graph. The user may alter the time period they wish to display by 
modifying the Time axis values. The Frequency axis scales itself proportionally to the input 
information but this may be altered by the user. 

The frequency change threshold input allows the user to select how much the frequency is allowed 
to change from second to second in order to attempt to delete all outlier data that may be 
generated due to multiple Arduino ISR’s running consecutively.  
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The user may select either Drift Logging Mode to log the Arduino clock jitter to a CSV file or 
Frequency Logging Mode. Over and under frequency data is logged, maximum durations are stored 
and a Boolean display lights up to indicate these conditions. 

4.1.2 Supporting Functions 
 

While these files are documented within their respective VI programs, this section attempts to give a 
brief description of the purpose of each VI file that supports the Control Panel VI at run-time. 

GPS_Week_and_Seconds.vi 

This file provides the functionality of generating the GPS time in seconds since the start of the week 
(Sunday 0000 24-Hour Time). The default parameters are UTC+8 (Perth Time), UTC Offset off. The 
output type is a 32-bit signed integer. 

GPS_Fix.vi 

The GPS_Fix VI provides a GPS fix determination based on the GPGGA message output by the 
Copernicus II module. The VI expects a GPGGA string message including both the ‘$’ start character 
and the checksum at the end. The LabVIEW string library finds the separation index of the commas 
located throughout the message and dissects the message based on these string index values into its 
various components, such as UTC Time, GPS Fix Status, Latitude/Longitude and more. Output types 
are dissected message strings and a Boolean value that determines whether the GPS has obtained a 
satellite fix. 

PadZeroes.vi 

The PadZeroes VI takes a string input and replaces all spaces with a string value of 0. This VI is 
primarily used to support the NMEA_Configuration VI file. The output type is a string. 

NMEA_Configuration.vi 

 

Figure 23. NMEA Configuration VI user interface. 

The configuration VI shown in figure 23 allows the user to configure the NMEA packets for the 
Trimble Copernicus II, prior to run-time on the Control Panel VI. All of the sentences listed in table 8 
are able to be configured through this VI with practical defaults already set such as: 
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Receiver Configuration: 15° elevation mask to reduce ionospheric jitter, Land dynamics, WAAS 
enabled (Even though WAAS corrections are not available in Australia [50], future implementations 
of WAAS will allow the frequency meter to perform with even less jitter on the PPS output). 

PPS Configuration: Only generate outputs if a GPS fix is available, 500ms pulse length, active HIGH, 
10ns cable delay compensation due to standard SMA connector antenna. 

Acquisition Sensitivity: Standard (lowest PPS jitter setting). 

Serial Communications: 19200 Baud (Already the default for NMEA in the Arduino program). 

Initial Position: GPS week and time are automatically generated by LabVIEW based on the system 
time. Latitude and Longitude are set to the Engineering and Energy building location at Murdoch 
University and altitude 10m above sea level. This location has to be within 100km of the true 
location and within 5 minutes of the specified UTC time to allow the receiver to lock on as fast as 
possible. 

Reset Configuration: Hot Start, store user configuration to flash memory on reset/stand-by request, 
wake up on activity on Port-B (NMEA IN). 

Each of these sentences can be modified with minimal work by the user and the VI details any 
comments relating to expected input format. The output type of all sentences is a string. 

NMEA_Checksum.vi 

This VI performs an 8-bit exclusive OR on all the ASCII byte value components of the literal string 
input. The output type is string, created by taking the final exclusively OR-ed byte and converting it 
to a string representation of the hexadecimal byte equivalent. 

 

Figure 24. NMEA checksum generation illustration. 

Figure 24 displays how a string called “Example” may be broken into its individual characters and 
each character has a decimal or base-2 binary representation. When each of these binary values are 
exclusively ORed together, another binary value is output, and this can be represented as a 
hexadecimal value that is finally represented as a string in NMEA messages. This string is used for 
error checking from and to the GPS receiver. 
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NMEA_Packet_Decoder.vi 

 

Figure 25. NMEA Packet Decoder VI user interface. 

The VI shown in figure 25 is similar to the NMEA_Configuration VI in it’s function because it is in 
charge of generating an NMEA message. However this VI is separate because it is not focused on 
initialisation sentences but instead is focused on allowing the user to select from an array of 
message instruct the GPS module choices to generate the appropriate automated message at the 
chosen rate. The receiver can configure all of the messages in figure 25, a number of chosen 
messages or none. 
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4.2 Arduino 
 

Two program files were created for use with the Arduino Due: 

1. MFFM_Arduino.ino 
2. QuantifyClockCycles.ino 

Logging the Arduino’s clock drift can be done through the MFFM_Arduino program in addition to the 
ability to modify this program to alternately send frequency data. The relevant LabVIEW 
configurations have already been made, so choosing the right main loop function and relevant ISRs is 
simple. 

The QuantifyClockCycles program is detailed in the “PPS ISR Processing Time” sub-section below and 
its primary purpose is to ascertain the number of clock cycles that elapse during ISR calls in order to 
offset collected data values and bring the measurement trueness closer to the actual value. 

4.2.1 PPS ISR Processing Time 
 

The PPS time-collection is an ISR that is triggered by the rising edge of a digital pin connected to the 
PPS output of a GPS receiver. The purpose of the ISR is to quantify the ISR’s processing  time in order 
to offset clock jitter data from the Arduino Due. The code for this can be seen in appendix A and a 
structured flow-chart of the program is given: 

 

Figure 26. ISR clock-cycle quantifying program. 
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The mean processing time for the SysTick->VAL storage call and the PPS GetRisingEdge() ISR were 7 
clock cycles and 194.97 clock cycles respectively, with a standard deviation of ~0 on both. This time 
corresponds to the execution cycles undertaken when a rising edge has occurred. 

This translates to an offset of 2.321 µs for the PPS ISR and a final adjusted offset of 2.238 µs when 
the clock cycles that SysTick->VAL calls require are factored in. 

 

4.2.2 Alternate Microsecond Function Implementation 
 

One significant factor in the design of the Arduino programs was the calls to the micros() function. 
Micros() returns an unsigned 32-bit integer ‘time’ value upon each call equal to the number of 
microseconds that have elapsed since the Arduino Due was turned on. This function had the issue of 
gaining a millisecond during some ISR calls because the system timing ISR was not able to be called. 

 

Figure 27. Previous Arduino library implementation of micros() [10]. 

The code in figure 27 was unsuitable for use in interrupts due to relatively frequent error of 1ms. 
The user “stimmer” [51] submitted a more suitable micros function that does not suffer from the 
SysTick register rollover issue, and this was implemented within the ISRs generated in the code. 

Figure 28 provides the code submitted by stimmer and did not have any observed millisecond sized 
fluctuations during any logging periods, thereby relieving the initially detected issue. 

uint32_t micros( void ) 
{ 
    uint32_t ticks ; 
    uint32_t count ; 
 
    SysTick->CTRL; 
    do { 
        ticks = SysTick->VAL; 
        count = GetTickCount(); 
    } while (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk); 
 
    return count * 1000 + (SysTick->LOAD + 1 - ticks) / 
(SystemCoreClock/1000000) ; 
} 
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Figure 28. New interrupt functioning implementation of micros() [51]. 

 

4.2.3 Frequency Metering 
 

The metering program on the Arduino is configured to allow either manual or automatic setup. In 
addition to this, the program only needs two minor modifications to run in jitter logging mode, 
where the Arduino will log time based on an external interrupt trigger such as a GPS PPS signal. After 
the Arduino finishes setup, the output is periodic, based on the PPS generated ISR. 

Figure 29 displays the routine the Arduino undertakes for normal frequency metering operation. The 
stages are segmented and interdependent with LabVIEW to progress to the next stage if a LabVIEW 
connection is detected. 

uint32_t micros( void ) 
{ 
    uint32_t ticks, ticks2; 
    uint32_t pend, pend2; 
    uint32_t count, count2; 
 
    ticks2  = SysTick->VAL; 
    pend2   = !!((SCB->ICSR & SCB_ICSR_PENDSTSET_Msk)| 
((SCB->SHCSR & SCB_SHCSR_SYSTICKACT_Msk)))  ; 
    count2  = GetTickCount(); 
 
    do { 
        ticks=ticks2; 
        pend=pend2; 
        count=count2; 
        ticks2  = SysTick->VAL; 
        pend2   = !!((SCB->ICSR & SCB_ICSR_PENDSTSET_Msk)| 
((SCB->SHCSR & SCB_SHCSR_SYSTICKACT_Msk)))  ; 
        count2  = GetTickCount(); 
    } while ((pend != pend2) || (count != count2) || (ticks < ticks2)); 
 
    return ((count+pend) * 1000) +  
(((SysTick->LOAD  - ticks)*(1048576/(F_CPU/1000000)))>>20) ;  
    /* this is an optimization to turn a runtime division into two 
compile-time divisions and a runtime multiplication and shift, saving a 
few cycles */ 
} 
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Figure 29. Arduino frequency metering program flow-chart. 

In the declaration and initialisation of variables, all the variables that are used throughout the 
program (including in ISRs) are specified. Variables that may have their value changed within an ISR 
are set as volatile. This is done by writing the volatile keyword before the variables data type is 
declared. The advantage of this is that the correct value will be brought up when the variable is 
called as it is stored in RAM memory rather than a storage register. 

Functions were developed within the program to both reduce the overhead with re-writing the same 
code and to make the code more readable. In a brief summary, the functions perform the following 
tasks: 
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• HWCDelay() – void type, returns nothing. Executes delay() function for a specified 
millisecond value. Used to allow HardWare Configuration packets to take place in the 
Trimble Copernicus II GPS receiver. 

• NMEA_Packet_Checker() – void type, returns nothing. Primarily used for debugging, allows 
manual input of NMEA packet strings through Serial0 to verify the reply packet is received 
and valid. 

• GetRisingEdge() – void type, returns nothing. ISR function. Generated when a PPS rising edge 
is detected on digital pin 8. Holds value from micros() function when the interrupt is 
generated. 

• ClearSerial#() – void type, returns nothing. There are 4 ClearSerial#() functions, where # is 
replaced by 0, 1, 2 and 3, corresponding to the 4 Serial UARTs on the Arduino. This function 
wipes all buffered data on the UARTs. 

• NMEA_Response() – short int type, returns -1, 0, 1 or 2. Verifies the NMEA packet that was 
sent to the Copernicus II was correct. Returns -1 for unknown message, returns 0 for invalid 
packet, returns 1 for valid packet and returns 2 for response time-out. 

• GetNMEA() – void type, returns nothing. Gets an NMEA message from LabVIEW and stores it 
in a buffer. 

• SendNMEA() – void type, returns nothing. Sends the buffered NMEA message to the 
Copernicus II and appends the carriage return and line feed characters. 

• Serial#_Protocol_Request() – void type, returns nothing. # is replaced by 0 or 2, 
corresponding to the active Arduino to LabVIEW serial line. Requests the NMEA packets 
from LabVIEW sequentially and communicates in a custom protocol. 

• Reset_Copernicus_Comms() – void type, returns nothing. Changes the Copernicus II baud 
rate to the original 4800bps. 

• GetFrequency() – void type, returns nothing. ISR function. Generated when a pulse is 
generated on digital pin 9 by the periodic pulse generator that has the same frequency as 
the mains supply. 

The Arduino will wait for 10 seconds to elapse before it enters manual configuration mode. In 
automatic setup mode, a protocol has been developed to allow the Arduino and LabVIEW programs 
to communicate NMEA packet data for initialisation of the Trimble Copernicus II GPS receiver. The 
Arduino will poll LabVIEW for the NMEA packets it requires. The NMEA packets for the EM406-A 
however will always need to be manually entered if it is chosen as the PPS ISR generating GPS 
receiver, as the Trimble Copernicus II GPS receiver is configured for default settings. 

The program will wait for the periodic output GGA message to confirm the GPS has a fix. The 
number of satellites required to make the GPS fix valid will depend on whether the Copernicus II is 
operating in stationary mode or an alternative dynamic, such as Land, Sea or Air. In stationary mode, 
only one satellite is required to get a time signal fix but the jitter increases from ±60ns to ±350ns 
[33]. In all other modes the jitter is at the nominal ±60ns data sheet specified value [33]. As soon as 
the GPS fix is valid, the appropriate interrupts are attached and the main loop is run. 

The main loop is fairly simple, comma separated data (Pulses Counted, Gating Error at Start, Gating 
Error at End) is printed to the active serial line and stored to the SD card as backup. 
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5 Timing Precision 
 

Timing precision results were generated over 48 hours to ensure the data could be analysed over a 
cyclical period to determine if the KX-7 crystal’s timing jitter varied periodically. 

Date Temperature (°C) 
Min Max Mean 

29/10/2013 13 31 22 
30/10/2013 18 37 28 
31/10/2013 14 26 20 
01/11/2013 14 27 20 
02/11/2013 16 29 22 
Table 11. Temperature data for the jitter logging time interval. 

The temperature data in table 11 is of importance because it can be compared to the variations in 
jitter on the KX-7 crystal, since temperature will have the greatest effect. 

5.1 Arduino Frequency Stability Data 
 

Performance tests were created to quantify the clock drift of the Arduino Due’s 12MHz KX-7 Quartz 
Crystal. 

𝑝𝑝𝑚 = 106×∆𝑓
𝑓

                (4) 

To attempt to correlate the logged data to a similar standard, the EM406-A and the Trimble 
Copernicus II GPS receivers both provided a PPS signal as a reference timer on the Arduino Due. 
Deviation from this PPS signal would come from the crystal oscillator’s frequency jitter and a 
significantly smaller portion of this deviation is quantified as the PPS signal jitter itself. 

 

5.1.1 Clock Drift Relative to Trimble Copernicus II 
 

The clock drift of the Arduino was logged through a 48 hour PuTTY session into a comma separated 
value file. It’s also possible to log the clock drift of the Arduino now with the latest implementation 
of the LabVIEW programs. 

 

 

 

Table 12. PPS triggered Arduino 1-second timing interval data (Copernicus II PPS source). 

From the mean value in table 12, the mean jitter can be calculated on the Arduino for the 48 hour 
period. The mean error value is calculated at -6.7805 ppm with a standard deviation of ±0.613 

Mean (µs) Max Value  Mean (µs) Min Value  Mean (µs) Standard Deviation  Mean (µs) 

999993.2195 999995 999990 0.613217 
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around the mean value, corresponding to the crystal’s jitter. By accounting for the ISR processing 
time in the Arduino code, this mean error is reduced to -4.5425ppm. No compensation is made for 
the jitter contribution made by the Copernicus II as it is assumed that while the PPS jitter is ±60ns, its 
mean value is sufficiently close to 0 to make it negligible. 

The Copernicus II GPS receiver exhibited a 100% up-time during the data logging session with only 4 
successive timing outliers that had to be removed due to incorrect timing values being recorded. 
Appendix 4 lists the data collection dates and times and what packets were used to initialise each 
GPS receiver. 

 

Figure 30. Histogram of PPS generated time intervals on the Arduino Due (Copernicus II PPS source). 

Figure 30 displays the recorded timing distribution in a histogram. The time interval data appears to 
largely be centered around 999,993µs, with mostly ±1µs sway to each side. The initial assumption 
was that the timing jitter would be largely erratic given the nature of the ppm specifications found in 
literature, however this data implies otherwise. 
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Figure 31. Arduino 48 hour mean-centered jitter graph (Copernicus II PPS source). 

Figure 31 above displays how the Arduino’s jitter changes over the 48 hour logging period relative to 
the PPS signal the Copernicus II GPS receiver provides. The initial aim was to allow the ambient 
temperature to naturally change and directly affect the Arduino’s timing jitter. Unfortunately, while 
the location where this data was collected was suitable for frequency logging due to excellent GPS 
signal reception and  the ability to leave the laptop running for 48 hours to collect the data, air-
conditioning was turned on at 9AM each day and skewed the results. This is displayed by the fact 
that the jitter is primarily positive around the mean value, indicating a cooler environment when 
compared to the data collected in 5.1.2. 
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Figure 32. Arduino 48 hour TIE graph (Copernicus II PPS source). 

The TIE graph in figure 32 attempts to illustrate the low long-term effect that the temperature had 
on timing jitter of the Arduino was negligible with relatively small temperature variations. The R2 
value is very high, indicating a high data correlation to the linearly fit trend-line. After 172,800 
seconds (48 hours), the TIE accumulated to 799.08ms, or an average of 399.54ms lost to the 
Arduino’s timing offset per day. This value is largely based on the mean error from the PPS signal 
time and is minimally affected by the clock’s jitter. 
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5.1.2 Clock Drift Relative to GlobalSat EM406-A 
 

The EM406-A provided a PPS timing source for the Arduino in an ambient temperature affected 
environment. Air-conditioning was kept off to prevent artificial modification to the jitter logging 
data. A PuTTY client recorded the 48 hour session, similarly to section 5.1.1. 

 
Mean (µs) Max Value (µs) Min Value (µs) Standard Deviation (µs) 

 
999993.8166 999995 999992 0.540911 

Table 13. PPS triggered Arduino 1-second timing interval data (EM406-A PPS source). 

The mean error value was logged at -6.1834 ppm over the 48 hour logging session with jitter 
analysed from the standard deviation value of ±0.541ppm around the mean error. The PPS ISR 
compensated mean error was -3.9454ppm.  

 

Figure 33. Histogram of PPS generated time intervals on the Arduino Due (EM406-A PPS source). 

The histogram data in figure 33 displayed a similar result to section 5.1.1 with a large distribution 
being centered around one value (999,994) and mostly a ±1µs jitter long-term about this value. 
Similarly, no erratic variations in Arduino timing jitter were detected. 
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Figure 34. Arduino 48 hour mean-centered jitter graph (EM406-A PPS source). 

In an ambient temperature affected environment, the Arduino’s jtter around its mean timing value 
displayed a very similar start to the data in 5.1.1 but was dissimilar in the fact that it appeared 
similar to a sinusoidal waveform, indicating a periodically repeating nature. The temperature data in 
the start of section 5 indicates that over the 48 hour period, a repeating set of data should appear 
over the first 48 hours and a larger trough should be displayed due to the highest temperature data 
being on the final day of the recording. This can be seen by the trough around the 138381 second 
mark dipping lower than the previous trough. While observations can be made upon this data, 
improvements could be made in the future to simulatenously log ambient temperature and attempt 
to correlate the two sets of data. Overall, a cyclical nature in the Arduino crystal jitter is observed 
when ambient temperature is not affected by household climate control systems such as air-
conditioning. 
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Figure 35. Arduino 48 hour TIE graph (EM406-A PPS source). 

A final TIE for the EM406-A based set of data is generated and can be seen in figure 35. The TIE is 
accumulated to 672.64ms over the 48 hour period. The data set again gives a linear trend with a very 
high R2 value, indicating the data in the trend-line fit correlates highly. 336.32ms are lost by the 
Arduino on average in this set of data per day, 15.04% less than the time lost in the Copernicus II 
data set.  This corresponds to and average of -3.89ppm, well within the ±30ppm specification given 
by the KX-7 crystal’s manual [24]. 
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6 Frequency Meter 
 

With a quantified Arduino timing bias, frequency metering was able to be performed. Similar to 
section 5, a 48-hour set of data was obtained on the mains supply’s frequency to determine if the 
data was cyclical and whether the frequency varied as expected. 

6.1 Setup 
 

Prior to logging the frequency data, setup needed to be performed in the LabVIEW program settings, 
the Arduino program MFFM_Arduino.ino and the physical connections needed to be created, as 
shown in figure 36. 

 

Figure 36. Physical frequency meter setup. 
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6.1.1 Hardware Components 
 

A 3V SMA-connect antenna was connected to the SMA male connector on the Trimble Copernicus II 
to increase signal reception. A 3.3V and GND rail were connected on the breadboard to provide 
power to the Copernicus II module. The connections for the Copernicus II are shown in figure 32, 
with the active connections bolded. 

LNA                SMA Connector 
 
 

Trimble 
Copernicus II 

63530-00  GPS 
 
 

Reserved 7 
Reserved 1 Reserved 6 
OPEN TX-B (NMEA) 
SHORT TX-A (TSIP) 
Reserved 2 Reserved 5 
VBATT – 3.3V RX-A (TSIP) 
XRST – 3.3V RX-B (NMEA) 
VCC – 3.3V PPS 
GND – 0V Reserved 4 
XSTBY – 3.3V Reserved 3 
Figure 37. Trimble Copernicus II connected pins diagram. 

The RS232 shield has digital pin 16 and 17 connected to the Arduino as soon as the shield is 
connected, allowing communication instantly. The Arduino’s 5V rail powers the MAX232N DIP 
module. The mains supply can be connected in any manner to the green screw terminal on the pulse 
generation shield and is not polarity sensitive. The shield stacking hierarchy is as follows: 

Arduino Due (bottom) -> RS232 Shield -> Pulse Generation Shield -> SD Card Shield (top) 

The SD card shield connections are as outlined in table 5. 

6.1.2 Program Parameters 
 

To run the frequency metering correctly, several program files must be configured properly. 

In the Arduino environment’s MFFM_Arduino program there exist two interrupt functions named 
GetRisingEdge(). One is used for logging relative clock jitter on the Arduino, as outlined by the results 
in section 5. The alternative is used for frequency metering which is relevant to this section. Figures 
38 and 39 display the GetRisingEdge() ISR function code. The code in figure 38 is used for timing 
precision analysis while the code in figure 39 has been adapted for use in metering the mains 
frequency. 
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Figure 38. PPS ISR for timing precision analysis. 

 

 

Figure 39. PPS ISR for frequency metering. 

To change between the two functions, simply comment out the function that is redundant by 
wrapping the start with the /* characters and the end of the redundant function with the */ 
characters. This approach will be also used in the main loop 

Two sets of if statements exist within the main body, as shown in figure 40. 

 

Figure 40. Statements given in main Arduino loop. 

void GetRisingEdge() { 
  PrevMicros = NewMicros; 
  NewMicros = micros(); 
  EdgeChanged = true; 
  ++countedges; 
} 

void GetRisingEdge() { 
  PPS_Micros = micros(); 
  Final_Gap = PPS_Micros - PulseTime; 
  PPS_Started = true; 
  EdgeChanged = true; 
  PulsesCounted = PulseCount; 
  PulseCount = 0; 
  return; 
} 

/*if ( EdgeChanged == true ) { 
      EdgeChanged = false; 

Serial.print(NewMicros); 
      Serial.print(","); 
      Serial.print(PrevMicros); 
      Serial.print(","); 
      Serial.println(countedges); 
} */ 
 
if (EdgeChanged == true) { 
    EdgeChanged = false; 
    Serial.print(PulsesCounted); 
    Serial.print(","); 
    Serial.print(Initial_Gap); 
    Serial.print(","); 
    Serial.print(Final_Gap); 
} 
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The commented out code in the main loop pertains to the jitter analysis variables. The rest of the 
code is used in frequency metering. Further comments pertaining to this are available within the 
program’s comments, found in Appendix A. 

The LabVIEW setup involves setting up three VI files – Control Panel, NMEA_Configuration and 
NMEA_Packet_Decoder. The rest of the project library will provide support functions and must not 
be modified. 

The Control Panel is relatively simple to set up, simply select the ‘Frequency Logging Mode’ button. 
If the ‘Drift Logging Mode’ button is concurrently selected, Frequency Logging will take precedence. 
The operator must specify the location of where you want to save the data set and append the file 
name with the ‘.csv’ extension. The frequency change threshold value on the Control Panel is 
recommended to be set at 0.2Hz but this may be changed depending on the range of outlier data 
the user may experience. Results on the Arduino indicated that any change over ±0.2Hz tends to be 
an outlier with typical values averaging around ±1Hz. 

The NMEA_Configuration file allows the user to change the NMEA packets in order to speed up the 
Copernicus II initialisation time and modify its functionality. It is recommended that the values be 
left as default for the most part. The user should primarily use this VI to insert their GPS coordinates 
in order to obtain a GPS fix faster. As long as the coordinates are within 100km of the correct 
location, they will be valid. If poor signal reception is experienced, it is possible to change the 
receiver to High Sensitivity Mode. If a lock onto less than 4 satellites is established for a long period, 
the NMEA configuration can be changed to ‘Stationary’ dynamic rather than Land, Sea or Air. This 
provides a PPS time base from 1 satellite but at the cost of increased PPS jitter. 

The NMEA_Packet_Decoder may provide more automated GPS messages than the GGA message 
that is typically used. The user will have to modify the LabVIEW or Arduino program(s) to parse this 
data, depending on it’s intended use. It is recommended that the default settings are used and the 
GGA message is always selected for output. 

Following these setup steps, the programs are ready to run if a physical connection to the Arduino is 
established. 
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6.2 Performance Results 

 

Figure 41. 48 Hour frequency log graph. 

Figure 41 demonstrates the overall 48 hour mains supply frequency data set that the Arduino 
logged. The mean data set value was 50.0001Hz with a standard deviation of 0.0263Hz. This is as 
expected as the grid frequency should not vary greatly in order to maintain nominal values. 

Contingency Day Start Time Finish Time Total Duration 
Under-frequency  
(Event 1) 

Sunday 02:44:44 AM 02:46:39 AM 1 min, 55 
seconds 

Under-frequency 
(Event 2) 

Monday 05:29:11 PM 05:32:45 PM 3 min, 34 
seconds 

Table 14. Under-frequency events detected during frequency meter performance tests. 

Two under-frequency events were detected on the grid. The first under-frequency event lasted a 
short duration at the times given in table 14. It is likely that the grid had very few loads connected at 
this time compared to the amount connected during the day and a large number of loads connecting 
to the grid at this early hour affected the grid in an unexpected way, but this could only be 
confirmed by obtaining frequency data from a more accurate and verified source. 

The second under-frequency event was after typical working day hours on a Monday and is likely 
caused by a very large number of loads connecting to the grid suddenly, thereby slowing down the 
large generators that maintain the grid frequency. The recovery times on both under-frequency 
events were well within the 15 minute specification for return to nominal grid frequency. 
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Figure 42. Under-frequency Event 1 graph. 

The first under-frequency event can be seen in figure 42. The data seems to dip and rise over the 
course of 12 seconds from 50Hz to below 49.8Hz and then to 49.85Hz. Successive dips in the grid 
frequency are minor and end 1 minute, 55 seconds after the initial dip below the grid frequency. 

 

Figure 43. Under-frequency Event 2 graph. 

The under-frequency event displayed in figure 43 dips very quickly (over the course of seconds), 
similar to the under-frequency event in figure 42. The initial dip similarly experiences slight swing 
back closer to nominal frequency and then gradually recovers to the nominal value. The data in 
event 2 was expected at the time it was recorded and the waveform, while slightly noisy, 
demonstrates that minor frequency fluctuations are be detected on the mains supply line. 
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7 Recommendations and Future Improvements 
 

The timing source jitter analysis for the KX-7 quartz crystal was performed on two GPS receivers that 
induced their own jitter into the measurements as well, thereby reducing the precision of the 
analysis. To improve this, a higher standard of timing such as an atomic standard could be used to 
analyse the timing jitter directly against. As atomic standards have very low jitter (on the order of 
parts per billion), they would be a suitable candidate. 

Data collected on the Arduino for timing jitter analysis was not monitored closely with respect to 
temperature variations. While it can be inferred that temperature had an effect on the frequency 
stability of the Arduino’s crystal oscillator based on theory, quantifying the scale of change in jitter 
across different temperature ranges would allow a temperature dependent model to be developed 
for the crystal, therefore allowing the crystal to be used without an external standard providing a 
time-base for the MCU as its jitter could be quantified at any time based on a temperature sample. 
External effects such as pressure, aging and other effects defined in section 2.1.3 could also be 
considered. 

The GPS pulse-per-second signal was considered in the jitter analysis of this project but was not able 
to be quantified due to the length of time required to log the signal jitter, the very low short-term 
jitter (order of nanoseconds) and the shared phase relationship between the two GPS receivers. By 
quantifying the actual jitter of both GPS receivers’ PPS outputs, experimentally derived corrections 
can be made to the measurements made on the Arduino’s jitter instead of relying upon data sheet 
specifications. 

The Arduino Due is an excellent MCU in today’s market, offering an excellent sampling speed, low 
cost, excellent clock rate and considerably large amount of SRAM/Flash memory. In the future 
however, improved MCU models will be released that operate at the same clock rate or higher with 
even more powerful specifications. The main improvement of a new MCU would be a faster 
sampling rate, as right now the resolution is set at a maximum of 1µs. This is effective for long-term 
jitter logging but for analysing very small short-term changes in clock jitter such as that claimed by 
GPS receivers, this is much too high. Hence it is recommended that hardware improvements are 
performed when a cost effective upgrade is available. 

Among other hardware upgrades, improved filtering could be designed to replace the first-order 
low-pass filter on the Arduino frequency detection shield. A second-order or better band-pass filter 
could be created to attenuate signals outside the nominal range, but generally an improved low-pass 
filter design should be just as good as the mains frequency is relatively low. The transistor amplifier 
circuit on the frequency detection shield performs well and detects the frequency of the mains 
supply but could also be improved by designing a zero-crossing detector circuit that performs with 
minimal propagation delay and is reliable. 

Lastly, the data is currently transmitted either only to an SD card or directly to a PC terminal. A GSM 
shield would add wireless data collection capability and could send data periodically to a database to 
remove the need for a physical connection to log the data. This would enable the user to simply 
attach the instrument to a power socket, let it record for as long as is needed and return to obtain 
the frequency meter when the measurement point is no longer required. 
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8 Conclusion 
 

The developed frequency meter achieved all the primary objectives and all set minor objectives. The 
Arduino Due MCU crystal oscillator was found to be performing well within it’s data sheet timing 
jitter specification, allowing it to perform well in most applications where a stable time base is 
critical. The GPS timing implementations did not vary greatly in the resultant Arduino timing jitter 
data sets, inferring the GPS signal jitter is negligible at the Arduino Due’s sampling rate specification.  

The studies undertaken in this thesis were broad and developed necessary engineering skills. A 
broad range of learning outcomes were gained such as time management, task prioritisation, 
physical and theoretical electronic design implementations and their respective limitations, 
hardware cost-benefit margin analysis, awareness of available software implementations, project 
schedule management and the ability to work independently to a stakeholder’s project 
specifications. 

The frequency meter was able to detect the mains frequency at a specification higher than the set 
objective of metering mHz-level fluctuations on the grid. By utilising an MCU with a high sampling 
rate, frequency changes were detectable on the order of µHz based on the timing jitter results found 
in section 5. The system had the limitation of noisy frequency readings at the µHz resolution 
however. This may be due to mains supply noise triggering the pulse generation shield at slightly 
incorrect times due either to mV-level variations on the grid or noise induced by the mains adapter. 
Future improvements in regards to this and other recommendations have been outlined in section 7.  
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Appendices 
 

Appendix A – Arduino Program 
 

See attached folder named MFFM_Arduino 

 

Appendix B – LabVIEW Program 
 

See attached folder named MFFM_LabVIEW 

 

Appendix C – Referenced Material 
 

See attached folder named MFFM_References 

 

Appendix D –Logging Session Data 
 

Session Data for Jitter Logging 

Trimble vs Arduino 

29/10/2013 – 7:08 PM Logging Started 

29/10/2013 – 7:08 PM First Fix 

31/10/2013 – 7:10 PM Finish 

Used NMEA Packets: 

$PTNLSPS,2,5000000,0,0000000*51 

$PTNLSFS,S,0*23 

$PTNLSPT,019200,8,N,1,4,4*1C 

$PTNLSKG,1764,241680000,3203.96635,S,11550.22761,E,00010*52 

$PTNLSCR,,15,,,,0,1,,1*5C 
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Session Data for Jitter Logging 

EM406A vs Arduino 

31/10/2013 – 7:16 PM Logging Started 

31/10/2013 – 7:17 PM First Fix 

02/11/2013 – 7:20 PM Finish 

Used NMEA Packets: 

$PSRF100,1,19200,8,1,0*38 

$PSRF105,1*3E 

$PSRF103,00,00,01,01*25 

$PSRF104,-32.066142,115.837122,10,96000,142774,2787,12,1*34 
 

Session Data for Frequency Logging 

Trimble Copernicus II PPS source on Arduino Due MCU 

Start: 12:19PM 10/11/2013 

Finish: 1:00pm 12/11/2013 

Initialisation and PPS Packets: 

$PTNLSKG,1766,087588000,3203.96635,S,11550.22761,E,00010*53 

$PTNLSPS,2,5000000,1,10*51 

All other packets were LabVIEW default settings. 

 

All logged data can be found in the folder MFFM_Logged_Data 
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Appendix E – Annotated Bibliography 
 

Fundamentals of Quartz Oscillators [9] 
 

This document covers the natural and induced effects of clock sway in crystal oscillators. The varying 
effects of time, temperature, natural forces (gravity, pressure), voltage and other factors are 
analysed on three types of crystal oscillators – Room Temperature, Temperature Controlled and 
Oven Controlled. The analysis provides a useful measure of the time interval at which the clocks 
should be disciplined to stay true to a more precise time source. This study is directly applicable to 
the measuring MCU (Arduino Due) as it uses an on-board crystal oscillator to keep track of time 
which is subject unwanted clock sway effects over longer periods of time. 

Relative timing characteristics of the one pulse per second (1PPS) output 
pulse of three GPS receivers [52] 
 

Three GPS receivers are analysed to determine the confidence associated with the precision of the 
Pulse-Per-Second output of each. As atomic clocks are extremely expensive and difficult to obtain, 
the author used a scientific-grade GPS as the reference clock which specified a much more precise 
PPS deviation compared to the other two GPS receiver units. The clock deviation of the other two 
GPS units was measured relative to the reference clock. Statistical analysis must be performed to 
determine the trueness of the “disciplined clock” in this thesis. This paper provides an understanding 
of what type of analyses must be performed (Allan Deviation excluded). 

Accurate measurement of the mains electricity frequency [44] 
 

The author presents a cost-effective solution to metering the grid frequency. This paper presents a 
similar methodology wherein a PIC MCU is fed a digital pulse generated by a zero-crossing detector 
circuit and counts the time between the pulses to determine the frequency. It also discusses 
methodology to increase accuracy in obtaining the correct frequency and is highlights the drawbacks 
of particular solutions such as counting the number of pulses in a second window. However this 
method is not clock-disciplined but does give insight into the type of electronics that require 
development. 

Electronic Navigation Systems [22] 
 

This book covers the different factors that affect radio signals at various frequencies and while 
providing an introductory chapter to radio signalling, it also covers Satellite Navigation systems like 
GPS [16]. Excellent explanations are given for the various effects that affect GPS such as atmospheric 
effects, noise, operating frequency and others. This allows quantification of the effects that generate 
systematic error in clock synchronisation. 
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Trimble Copernicus II GPS Receiver - Reference Manual [33] 
 

This document contains all the data specifications for the Copernicus II GPS module except the clock 
accuracy when a PPS fix is not obtained. NMEA packet configuration is given for this particular unit 
[10] as a certain configuration must be running for both demonstration purposes and setup/testing. 
Additionally this manual provides all the technical specifications and while lacking a set-up diagram 
relevant to the Copernicus II DIP module, it infers enough to be able to connect it safely and for 
reliable operation. 

Indoor positioning based on global positioning system signals [53] 
 

This paper analyses the issues with indoor placement of GPS receivers and inability for signals to 
propagate well through solid walls. The author proposes a repeater-based indoors GPS system 
where the repeaters are placed outside and carry the signal indoors via a cable. This document is 
significant as it covers the primary issues of signal propagation to indoors systems and analyses the 
GPS error, ability to capture signals, clock bias and positioning accuracy when the GPS is placed 
indoors. 

ISO 5725-1 [44] 
 

This document is an international standard. It provides set definitions on accuracy, precision, 
trueness, bias and other key terms relevant to scientifically accurate measurements. The terms used 
in the project that are listed in this standard will carry the same meaning to avoid confusion in terms 
such as accuracy and precision. It will also serve as an excellent point of note for defining errors as 
they are measured, establishing resolution uncertainty and commenting on the differences between 
measured values and expected values. 
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