

Sensor Integration for Autonomous

Robotic Watercraft

Bruce White
Master of Science in Electrical Engineering

Applied Research Project
San Francisco State University

May 2006

 2

Table of Contents

1. Background

• General Description of Autonomous Operations
• General Description of Project

2. Logistics

• Navigation System Description
• Lake Bottom Depth
• Water Quality

3. Sensors

• Humminbird Matrix 55
o Capabilities
o Power
o Communication

• Hach Environmental MiniSonde MS 4a
o Capabilities
o Power
o Communication

4. Sensor Computer

• Hardware
o Microcontroller
o Power
o Main board
o Interface Board
o Boat Mounting

• Software
o Depth
o Water Quality
o Data Transfer

5. Troubleshooting

• System Clock
• Stop Bits & Frame Length
• Initial Byte Capture

6. Operation

• Lake Bottom Depth
• Water Quality
• Data Transfer

7. Results

• Boat Route
• Result Reliability
• Anomaly

8. Conclusion

• Lessons Learned
• Future Work

9. References

10. Appendix

• Test Run Examples
• ATmega32 C Code
• Initialization Program Flowchart
• Interrupt Program Flowchart
• Sonde Program Flowchart
• Matrix Program Flowchart
• Sensor Computer Schematic

 3

1. Background

In today’s world, many tasks considered dull, dirty, or dangerous are

increasingly performed by robotic and autonomous systems. Such is
the case with the collection of scientific data. Exhibiting superior

efficiency, precision, reliability and repeatability, autonomous systems
allow measurement without human oversight or intervention. This

streamlines the scientific process, allowing resources once required for
data collection to be reallocated to data analysis, facilitating faster

interpretation and hastening breakthroughs.

The goal of this project was to investigate sensor integration
possibilities for an autonomous boat created in the San Francisco State

University Autonomous Vehicle Lab1. Built by Mechanical & Electrical
Engineering students and overseen by Dr Michael Holden, PhD,

Assistant Professor of Mechanical Engineering, the boat was intended

for use by students in San Francisco State’s Civil Engineering program
to autonomously describe lake bottom contours and monitor water

quality in Lake Merced1, a reservoir in San Francisco.

2. Logistics

The boat was to be driven by a navigation computer attached to a

Global Positioning System (GPS)2. The minutia of this system will not
be discussed here, but a brief overview is necessary for full

comprehension of navigation and sensor system linkages. A
predetermined course would be entered into the navigation computer

with specific waypoints along the route2, and the boat would be placed
in the water and activated. The navigation computer would then use

the real-time data from the GPS to determine the boat’s current

location, and steer and throttle accordingly to reach the next
waypoint2. These waypoints would be ideal locations to take sensor

readings, as any data would be meaningless without an associated
location.

The purpose of the boat was to describe lake bottom contours and

monitor water quality, and each of these tasks would require its own
dedicated sensor. In the early planning stages it was noted that the

water quality sensor likely to be used would be bulky and require a
deeper submersion than the hull of the boat itself, whereas the depth

sensor would not have the same constraints. As such, it was decided
the boat would set out initially with only the depth sensor. One course

 4

would be completed by the boat, with a depth measurement taken at

each waypoint along the route.

Once the course was completed, the boat would return to shore and
the sensor computer would be connected to a laptop for transfer of

depth results. Based on this, the water quality sensor tow cable length
would then be changed to prevent the sensor from being accidentally

dragged on the bottom of the lake and damaged. Assuming a safe
depth at each waypoint, the boat would then be sent back out with

only the water quality sensor, to repeat the same course. Upon
completion of the course, the boat would return to shore and the

results would be transferred to the laptop for later analysis.

3. Sensors

Lake Bottom Depth: To map lake bottom contours, a depth sensor
was required. Humminbird fish finders was contacted, and they

graciously donated one of their Matrix 55 depth finders. To detect lake
bottom depth, the Matrix uses a transom-mount sonar transducer

coupled with a transceiver/central processing unit.

Figure 1 – Humminbird Matrix 55 Transceiver and Sonar Transducer3

Between 10-20Vdc is required to power the sensor4, and as such it had

to be wired directly to the boat power supply, a 12V sealed lead-acid
battery.

 5

The Matrix transducer is connected to a transceiver, which performs

analog-to-digital conversion of the sonar signal. Digital data are sent
from the transceiver via RS-232 serial communication protocol at 4800

baud, 8 data bits, no parity, and 1 stop bit5. Only a passive mode of
operation is available, so the Matrix cannot be externally triggered to

take a reading. A string of 8-bit ASCII characters is output once per
second from the device, each “sentence” adhering to the NMEA 0183

standard5, and reading the data is a matter of recognizing and storing
the desired parameters within the string. The depth reading is output

only in meters.

Water Quality: To adequately monitor water quality, the obvious first
choice of instrument was an integrated device with multiple sensors.

Selection was left to students in the San Francisco State University
Civil Engineering Department, who would be doing the analysis of any

water quality data. The final choice was the Hach Hydrolab MS4a

MiniSonde. Measuring water temperature [C, F, K], pH [pH Units],
sensor depth [m, f, psi], dissolved oxygen [%sat, mg/L], and specific

conductivity [mS, µS]6, it was an appropriate choice.

Figure 2 – Hach Hydrolab MS4a MiniSonde7

The Sonde runs on 12Vdc supplied by 8 internal AA batteries6. This
simplified power requirements for the boat, as it was not necessary to

connect the instrument to the boat’s internal battery.

The Sonde communicates digitally via RS-232 serial communication
protocol at 9600 baud, 8 data bits, even parity, and 1 stop bit8. It

features Modbus 3 and TTY modes of operation8 that allow for both

 6

active and passive communication, respectively. In Modbus mode, the

Sonde is idle until a specific 8-byte hexadecimal string is sent to wake
it up8. Once awake, further 8-byte hex strings can be sent to activate

one or more of its internal sensors8. Once a sensor reading is taken,
the result is returned as a 9-byte hex string8. In TTY mode, the Sonde

outputs a string of 8-bit ASCII characters once per second6, and
reading the data is a matter of recognizing and storing the desired

parameters within the string.

4. Sensor Computer

Hardware: To take water-quality measurements, the most flexible

option was to use the Sonde’s Modbus 3 mode, which required active
triggering and detection of a reading. Conversely, the Matrix’s

effectively constant data stream only required passive detection. Either

way, the results had to be received and stored by an outside system.
Moreover, a low-power, small-form factor solution was also desired

since space and battery life were at a premium. These constraints
were met by using an Atmel ATmega32 microcontroller as the heart of

the sensor computer.

Power to all boat hardware, with the exception of the Sonde, is
provided by a 12V 7Ah sealed lead-acid battery. From this battery, an

LM7805 voltage regulator provides 5Vdc to the Atmega32 and other
peripherals that comprise the sensor computer. Peak power usage for

the entire sensing system is approximately 4.265W (figure 3).

Component Power

ATmega32 35mW9

Power Indicator LED 160mW

MAX232 696mW10

Matrix 55 1.344W

LM7805 2.03W

Total 4.265W

Figure 3 – Sensing System Component Power Usage

To facilitate asynchronous serial communication, the ATmega line of

chips is commonly used in conjunction with a MAX232 RS-232 driver
integrated circuit to convert between the RS-232 (±3-25V) logic of a

PC or other peripherals, and the TTL (0-5V) logic of the microcontroller
itself. Dr Michael Holden already had a printed circuit board laid out for

general Atmel ATmega usage with a MAX232. This board is widely

 7

used by students in the SFSU Autonomous Vehicle Lab, and was an

appropriate choice for the main board of this project. The sensor
computer was assembled on one of these using mostly surface-mount

parts.

Components include one Atmel ATmega32L, one MAX232, five 1µF
ceramic capacitors required for MAX232 operation10, and various

header pins for outside connections to pins on the ATmega32. Serial
communication is achieved via the T1OUT (transmit) and R1IN

(receive) pins of the MAX23210, connected to pins 3 and 2 of a DB-9
connector, respectively. Pin 5 of the connector is wired to ground. See

figure 4 for the full schematic.

Figure 4 – Sensor Computer Schematic

An interface had to be created for the sensor computer to facilitate

sensor selection, chip reset, and data transfer. A small square of
prototyping PCB serves as the base for this interface board. For sensor

selection, one terminal of a single-pole single-throw switch connects to
pin 4 of port A (PA4) on the ATmega32, and the other terminal to

5Vdc. When the switch is open (0Vdc at PA4), the ATmega32 goes into
water-quality measurement mode. When the switch is closed (5Vdc at

PA4), lake bottom depth measurement mode is selected. A 10kΩ pull-
down resistor is also connected between PA4 and ground, to assure

0Vdc at the pin when the switch is in the open state.

 8

For chip reset, one terminal of a normally-closed momentary switch is
connected to the VCC pin of the ATmega32, and the other terminal to

5Vdc. The switch normally allows power to flow to the ATmega32 and
MAX232 chips for standard operation. When pressed, power to both

devices is cut until the switch is released, at which time any data
stored in the ATmega32 are erased and the program reloaded.

Figure 5 – Fully Assembled Sensor Computer

For data transfer, one terminal of a normally-open momentary switch
is connected to pin 2 of port D (PD2) on the ATmega32, and the other

terminal to 5Vdc. When the switch is pressed, the voltage of PD2 goes
from 0 to 5V, triggering an interrupt in the software that dumps all

stored data to the serial port. A 0.1µF capacitor is connected in parallel
with the switch to prevent any bounces from registering as multiple

presses in the software11. A 10kΩ pull-down resistor is connected
between PD2 and ground, to assure 0Vdc at the pin when the switch is

in the open state.

 9

The final interface connection is a simple wire from pin 5 of port A

(PA5) on the ATmega32 to pin 2 of port D (PD2) on the navigation
computer. When the boat reaches a waypoint, software in the

navigation computer sets its PD2 to 5V which is registered at PA5 of
the ATmega32, triggering the software to take a reading. A 10kΩ pull-

down resistor is connected between PA5 and ground, to assure 0Vdc at
the wire when not at a waypoint.

Between 5V and ground, an LED is wired in series with a 100Ω resistor

to serve as a power indicator light. The LM7805 voltage regulator
mentioned earlier is also contained on this board, as well as an input

for 12V from the boat battery and a 12V output to power the Matrix.

A 5” x 5.5” piece of tinted lexan with strategically drilled holes serves
as a panel for the reset button, data dump button, sensor select

switch, and DB-9 connector. The main board, interface board, and

lexan piece are all mounted on standoffs of varying heights, which are
screwed onto a small piece of plywood. The result is an organized and

compact user interface (figure 5).

Figure 6 – Sensor Mount Configurations

Two strips of velcro, adhered to the inside of the boat hull just inside

of the front access hatch, secure the sensor computer in place. A
similar system is used to secure the Matrix transceiver just aft of that.

The Matrix’ sonar transducer is screw-mounted to the transom at the
aft end of the boat. An aluminum plate is bolted to the fore deck, and

 10

a carabiner is threaded through a hole drilled in the end of it. The

Sonde is then secured in place by clipping it to the carabiner via a
screw eye on the Sonde collar (figure 6).

Software: The ATmega32 can be programmed using assembly or C

languages9. For this project, C was used exclusively. The full code can
be found in the appendix, and specific line numbers will be used in this

section for reference to it. Upon power-up, the software in the
ATmega32 enters an initialization process (1-35). All program

variables are defined, including characters, arrays, floating point
numbers, and counters. In any C code written for a PC, getchar and

putchar routines retrieve characters from the keyboard and send
characters to the screen respectively. In an embedded system such as

this one that has no keyboard or monitor, the getchar and putchar
routines use the serial port to retrieve and send characters. At this

point in the software, these routines are redefined to check for even

parity with every character transmitted or received in even parity
mode, as communication with the Sonde requires this (38-82). Next

comes the data transfer interrupt code, which will be discussed later.
Various ports and timers are then initialized, and the ATmega32’s

USART (serial port) and interrupts are enabled (138-238).

The program then checks PINA.4 of the ATmega32 to see whether 5V
is present. This pin is connected to the sensor select switch on the

interface panel. If the pin is at 5V, the program enters Matrix (lake
bottom depth) mode (247). Otherwise, Sonde (water quality) mode is

selected (473). See Initialization Program Flowchart in the appendix
for a visual representation of initialization program flow.

If Matrix mode is selected, the program initializes the ATmega32 to

4800 baud, 8 data bits, no parity, & 1 stop bit; required parameters

for communicating with the Matrix (475-477). This is followed by an
indefinite idle period until 5V is seen at PINA.5 (482-489). This pin is

connected to the navigation computer, and a 5V signal indicates that
the boat has reached a waypoint. Once PINA.5 returns to 0V, the

program analyzes each incoming character at the serial port until hex
0x50 (ASCII letter P) is detected (494-497). The only time the Matrix

outputs P is just before a depth reading, which can be viewed in a
terminal window as DPT,X.X, where the X’s are depth digits5. Once P is

detected, the next five characters are temporarily stored (498-502).
The fourth character, which is the first digit of the depth reading, is

reassigned to a slot in an array via a digit counter. The digit counter is
then incremented, and the sixth character, which is the second digit of

the depth reading, is stored in a similar manner. The digit counter is

 11

then incremented again (503-506). At this point a variable, cntstop, is

assigned the number in the master counter, and the master counter
incremented (508,509). The ATmega32 has 1000 bytes of storage9,

and each Matrix reading is 2 bytes, so no more than 500 depth
readings may be taken. Using the number assigned to the variable

cntstop from the master counter, a while loop stops depth operations if
500 readings have been taken (510-513). At this point the program

again idles indefinitely until 5V is seen at PINA.5, when the loop
resumes again for another reading. See Matrix Program Flowchart in

the appendix for a visual representation of Matrix program flow. In this
configuration the sensor computer cannot measure lake depths greater

than 9.9 meters. However, this is still greater than the deepest water
level recorded at Lake Merced since at least the mid-1960’s13, so it is

more than adequate.

If Sonde mode is selected, the program initializes the ATmega32 to

9600 baud, 8 data bits, even parity, & two stop bits; required
parameters for communicating with the Sonde (249-251). The Sonde

specification stipulates only one stop bit, but this proved problematic
(see Troubleshooting). The program then waits for the Sonde’s plug-in

string. When the Sonde is plugged into any active serial port, it
automatically sends an initial hexadecimal string of 0x3F3F3F3FFB.

The ATmega32 software gets each of these characters at the serial
port until 0xFB is detected (253-256). After waiting for one second, an

8-byte hex string is sent to the Sonde three times, with a one second
delay between each query, to wake the Sonde from sleep mode

permanently8 (257-288). This is followed by an indefinite idle period
until 5V is seen at PINA.5 (295-302). This pin is connected to the

navigation computer, and a 5V signal indicates that the boat has
reached a waypoint. Once PINA.5 returns to 0V, a round of sensor

readings begins. Each of the five sensors in the Sonde can be triggered

by a specific 8-byte hex string (figure 7)8.

Sensor Hex Activation String

Sensor Depth [m] 01 03 00 30 00 02 C4 04

Temperature [C] 01 03 00 00 00 02 C4 0B

pH [pH Units] 01 03 00 06 00 02 24 0A

Dissolved Oxygen [mg/L] 01 03 00 16 00 02 25 CF

Conductivity [mS] 01 03 00 0A 00 02 E4 09

Figure 7 – Hex Activation String for Each Sonde Sensor8

Each byte of a given activation string is critical to commanding the

specified reading from the Sonde (figure 8). If any byte is incorrect,
the sensor will not function. The ATmega32 queries the Sonde for a

 12

sensor depth reading by sending the string 0x010300300002C404

(307-314). The Sonde responds immediately with a result in the form
of a 9-byte hex string (figure 9)8.

Byte Hex Number Assignment

1 01 Slave Address

2 03 Modbus Command 3 – Read Holding Registers

3 Varies Address of First Register – High Byte

4 Varies Address of First Register – Low Byte

5 Varies Number of Registers to Read – High Byte

6 Varies Number of Registers to Read – Low Byte

7 Varies Cyclic Redundancy Check – High Byte

8 Varies Cyclic Redundancy Check – Low Byte

Figure 8 – Byte Designations of a Sonde Activation String8

The first two bytes of the response string are ignored. The ATmega32

proceeds to take in the result once the third byte, 0x04, is detected.
The four bytes of data following contain the sensor result, and are

stored in a dummy array. The final two cyclic redundancy check bytes
are ignored (316-325).

Byte Hex Number Assignment

1 01 Slave address

2 03 Modbus Command 3 – Read Holding Registers

3 04 Number of Registers Read x 2

4 Varies Sensor Reading – Low Word, High Byte

5 Varies Sensor Reading – Low Word, Low Byte

6 Varies Sensor Reading - High Word, High Byte

7 Varies Sensor Reading - high Word, Low Byte

8 Varies Cyclic Redundancy Check – High Byte

9 Varies Cyclic Redundancy Check – Low Byte

Figure 9 – Byte Designations of a Sonde Response String8

For correct display later, the sensor result must be converted to a

floating point number. The 4-byte IEEE floating point number format12,
readable by C, stipulates a byte order of high word/high byte, high

word/low byte, low word/high byte, low word/low byte. The four
stored bytes containing the sensor reading, as received from the

Sonde, are not in this order. The issue is resolved by taking the four
bytes from the dummy array and rearranging them into a second array

in the correct order. At this point they are copied sequentially into the
memory location of a float variable and are ready for later output in

the correct format (327-332).

The program waits one second before proceeding to repeat the same

query, response, and rearrangement process for temperature, pH,

 13

dissolved oxygen, and conductivity (338-456). Then a variable,

cntstop, is assigned the number in the master counter, and the master
counter incremented (461,462). The ATmega32 has 1000 bytes of

storage, and each Sonde reading is 4 bytes x 5 sensors, so no more
than 50 readings may be taken. Using the number assigned to the

cntstop variable from the master counter, a while loop stops depth
operations if 50 readings have been taken (463-466). At this point the

program again idles indefinitely until 5V is seen at PINA.5, when the
loop resumes again for another reading. See Sonde Program Flowchart

in the appendix for a visual representation of Sonde program flow.

Once all the required Matrix or Sonde readings are recorded, the user
must be able to access the data. This is done by pressing the DATA

button on the interface panel, which briefly sends 5V to pin 2 of port D
(PD2) on the ATmega32, which is also the chip’s external interrupt

pin9. Once an external interrupt is detected, the software breaks from

whatever it is doing and executes the interrupt code. If the button is
pressed and the cntstop variable is 0 (no readings taken), “No sensor

readings taken!” is printed to the serial port (93-96). Otherwise the
program looks to see which sensor is currently selected by detecting

the voltage at PINA.4 of the ATmega32 (99).

If the Sonde is selected (PINA.4 is 0V), one waypoint number and its
associated sensor depth, temperature, pH, dissolved oxygen, and

conductivity readings are all printed to the serial port (figure 10). The
master counter, set to zero at the start of the interrupt code,

increments and prints the next reading in the same fashion (104-111).
The process ends when the number in the master counter is greater

than the number of total readings saved in the cntstop variable (102).

Figure 10 – Data Transfer Screenshots from Both Sensors

If the Matrix is selected (PINA.4 is 5V), one waypoint number and its

associated lake bottom depth reading are printed to the serial port

(figure 10). The master and digit counters, set to zero at the start of

 14

the interrupt code, increment once and twice respectively in the course

of printing one reading (120-129). The process ends when the number
in the master counter is greater than the number of total readings

saved in the cntstop variable (118). See Interrupt Program Flowchart
in the appendix for a visual representation of interrupt program flow.

5. Troubleshooting

A number of problems were encountered during the course of this
project. The Sonde communicates at 9600 baud, so the ATmega32 had

to be set to this baud rate as well. ATmega32s come with their system
clock set to a default frequency of 1 MHz. At this clock rate, at 9600

baud, an error was introduced which made communication impossible.
Transmissions from the Sonde were seemingly random strings of

strange characters, a far cry from the specific 9-byte string expected.

The baud rate of an ATmega32 is set via its USART Baud Rate Register
(UBBR) which can only contain integers9. Communication at 9600 baud

using a 1MHz system clock requires that UBBR be set to 5.51, which is
not possible. The closest settings of 5 or 6 allow for baud rates of

10417 or 8929, errors of 8.5 and 6.9% respectively. These errors are
too large for effective communication. The solution was to set the

system clock to 4MHz. At this frequency UBBR can be set to 25, which
allows for a baud rate of 9615. The resulting error was only 0.15% off

of the desired baud rate of 9600, well within reasonable limits. This
also required modifying all baud rate initializations in the code to

comply with the new system clock frequency.

By far the most perplexing problem encountered was an anomaly
where the Sonde would readily respond to an 8-byte hex string sent

from a terminal program on a PC, but would ignore the exact same

string sent from the ATmega32. Cables and adaptors that allowed for
viewing of transmissions between the Sonde and ATmega32 were

purchased and soldered together, verifying that the hex strings sent
from the terminal window and the ATmega32 were seemingly

identical. Finally, an oscilloscope was used to analyze the outputs of
both devices, and the results were telling. At 9600 baud, one bit

should be 104 µS long. Since one frame from each device contained
one start bit, 8 data bits, one parity bit, and one stop bit for a total of

11 bits of data, the total frame length should have been 1144 µS.
However, in this case the stop bit had to be discounted; it could not be

seen since it was a 0V bit that blended seamlessly into the 0V idle
signal that followed it. So the lengths of the frames were considered

using only the visible bits, which now should have been 1040 µS long.

 15

The oscilloscope showed that the frame length of the terminal was

longer than 1040 µS, approximately 1175 µS, and that the frame
length of the ATmega32 was shorter, approximately 1000 µS (figure

11). It was immediately evident from this that the Sonde prefers a
too-long frame to a too-short one. The most probable explanation is

that while the frame from the terminal was too long, the excess length
of the stop bit easily allowed the Sonde to see the end of the string

and ready itself for the next one. Conversely, the Sonde did not
register the shortened stop bit of the ATmega32 as a full stop bit, so

was never able to recognize the end of the string. The problem was
entirely resolved by modifying the ATmega32 code to send two stop

bits with every frame, which the Sonde could easily recognize as the
end of the string.

Figure 11 – Terminal Frame Length (Top) & ATmega32 Frame Length

(Bottom) @ 250µS/Div

The final problem encountered involved the ATmega32’s inability to

recognize the first incoming byte of a response just after sending out a
string to the Sonde. Each Sonde reading was triggered by an 8-byte

hex string sent by the ATmega32, and the Sonde immediately
responded at a rate seemingly too quick for the ATmega32. Many

different code tricks were tried, without success, to obtain the first
byte of the response string. The string could not be delayed because

the Sonde itself could not be reprogrammed. The first three bytes of
any Sonde response do not vary, so the problem was resolved by

looking for the third byte (0x04) of the response string instead of the
first one.

6. Operation

Lake Bottom Depth: To prepare for a lake bottom contour course,

 16

open the fore deck hatch on the boat. Be sure that power is not

connected to the sensor computer. Check to see that the sonar
transducer, serial and power cables are all plugged into their

respective sockets on the Matrix. Each socket is specific to its plug, so
there should be no confusion (figure 12).

Figure 12 – Matrix Sensor Connections: (Right to Left) Power, Serial Cable &

Sonar Transducer

Connect the red & black power connector from the Matrix into either

red & black power connector on the interface board, it does not matter

which (figure 13).

Figure 13 – Connecting Power to the Matrix

 17

Connect power from the battery to the interface board on the sensor

computer via the remaining red & black connector; the power LED
should light up. Connect the red waypoint indicator cable from the

navigation computer to the same on the sensor computer (figure 14).

Figure 14 – Connecting the Navigation Computer Waypoint Indicator Cable

Press the POWER button on the Matrix 55. The device will turn on and

eventually stop at a government warning screen. Press the EXIT
button one time to exit this screen; the Matrix will automatically go

into depth mode.

Figure 15 – Connecting The Matrix Serial Cable

 18

Connect the serial cable from the Matrix to the DB-9 connector on the

sensor computer (figure 15), and close the fore deck hatch.
The boat is now ready for a lake bottom depth course, and the sensor

computer will proceed to take a reading when alerted by the
navigation computer that the boat has reached a waypoint.

Water Quality: With the boat on land, clip the Sonde into the

carabiner at the front of the boat via either screw eye on the Sonde
collar. Be sure that the cable is plugged into the Sonde, and the cable

collar tightly screwed down to prevent water from entering. Check that
the other end of the cable runs through the cable-stays on the deck

and into the entry notch on the aft deck hatch, with no slack cable on
the deck. Thread the Sonde cable through the hull until it is reachable

at the fore deck hatch. Flip the sensor select switch on the sensor
computer to WATER. Connect power from the battery to the interface

board on the sensor computer via either red & black connector; It does

not matter which (figure 16). The power LED should light up.

Figure 16 – Connecting Power to the Sensor Computer

If the sensor computer is already connected to power from a previous

depth reading, press the RESET button before proceeding. Otherwise,
connect the red waypoint indicator cable from the navigation computer

to the same on the sensor computer. Plug the Sonde cable into the
DB-9 connector on the sensor computer. The Sonde should emit an

audible beep. Wait three seconds for the Sonde to wake up. The boat
is now ready for a water quality course, and the sensor computer will

proceed to take a reading when alerted by the navigation computer
that the boat has reached a waypoint.

 19

Data Transfer: Once a sensor course is complete and the boat has

returned to shore, open the fore deck hatch and unplug the sensor’s
serial cable from the sensor computer. Take care not to bump the

RESET button as this will erase any stored readings. Connect a null
modem serial cable to the DB-9 connector on the sensor computer. If

a null modem cable is not used, the transfer will not work! Connect the
other end of the null modem cable to the serial port of any laptop

running a terminal program, such as Hyperterminal. The terminal
connection should have the following properties: 4800 baud, no parity,

1 stop bit, no flow control. Once connected to an active terminal
window, press the DATA button on the sensor computer one time

(figure 17).

Figure 17 – Sensor Computer Data Transfer Configuration

Assuming the boat passed through at least one waypoint, data should

appear in the terminal window. If no waypoints were reached, “No
sensor readings taken!” will appear.

7. Results

Test runs were carried out on South Lake, the largest body of water in

the Lake Merced complex, and meaningful data was successfully
gathered. The course consisted of four waypoints in a roughly

rectangular shape (figure 18).

 20

4175420

4175430

4175440

4175450

4175460

4175470

4175480

4175490

4175500

54396

0

54397

0

54398

0

54399

0

54400

0

54401

0

54402

0

54403

0

54404

0

54405

0

East (m, utm grid 10)

N
o

rt
h

 (
m

,
u

tm
 g

ri
d
 1

0
)

Boat Route

Waypoints

Figure 18 – Test Run Boat Route and Waypoints

Examples of captured test run data can be found in the appendix. To

verify validity of results, comparisons were made between the data

from the boat’s first waypoint and past data taken by outside parties.
Where possible, data from approximately the same time of year (late

May) was used. Although deviations were to be expected because of
temperature, rainfall, and pollution variation between samples, the

results compared well (figure 19). All indications are that the boat and
its sensing capabilities are a viable method of scientific data collection.

Measurement Autonomous Boat

(Waypoint 1)

Outside Party Results

Depth [ft] 13.4 13.014

Temperature [degrees C] 19.6 19.115

pH [pH units] 9.3 8.615

Dissolved Oxygen [mg/L] 11.9 10.016

Conductivity [mS] 0.51 0.6516

Figure 19 – Autonomous Boat & Outside Party Data Comparison

 21

8. Conclusion

This project was a success. The sensor computer, on cue from the

navigation computer, was able to activate the sensors and record their
returning data. Once sensing was finished, the sensor computer

successfully transmitted the data to a terminal program on a PC.
Without question it is ready for future use by students looking to

investigate lake bottom depth and water quality, as well as scientists
looking to gather large amounts of data with few logistics.

This project was subjected to just about every asynchronous serial

communications setback possible. Many lessons were learned. Some of
the more significant examples include:

• How to deal with multiple devices communicating at different baud

rates and parities within a single program.

• How to compensate for devices that are not communicating at
exactly their specified baud rates.

• How to construct a single floating point number from four 8-bit
hex characters in C.

• Baud rate errors can be corrected by adjusting system clock
frequency.

• Occasionally a device may not be able to react quickly enough to
another device to carry out a given command.

Future Work: There is room for much future work on this platform,

including but not limited to the following:

• Currently the data obtained from the sensor computer must be
cross-referenced to a separate list of waypoints reached by the

boat during its water course, to determine which waypoint the

data came from. One possible solution would be to implement
serial communication from the navigation computer to the sensor

computer via their respective SPI ports, allowing latitude &
longitude to be appended to associated sensor data.

• The Matrix also outputs water temperature. This could be used to
cross-check temperature readings taken by the Sonde.

• Code to calculate a checksum or cyclic redundancy check could be
implemented to reduce errors.

 22

9. References

1 – Holden, M. “Autonomous Water Quality Measurements”

2 – Holden, M. “Low-Cost Autonomous Vehicles Using Just GPS”, American Society

of Engineering Education general conference, Salt Lake City, Utah, June 2004

3 - Image taken from www.humminbird.com

4 – Humminbird, “Matrix 55 & 65 Operations Manual”

5 – Humminbird, "Outputting Digital Depth from a Matrix Product to a PC"

6 – Hach Environmental, "DataSonde 4 and MiniSonde Water Quality Multiprobes

User's Manual"

7 - Image taken from www.hachenvironmental.com

8 – Hach Environmental, "Modbus - Function 3 - READ Holding Register"

9 – Atmel Corp, "8-bit AVR Microcontroller with 32K Bytes In-System Programmable

Flash - ATmega32/ATmega32L"

10 – Maxim Integrated Products, "+5V-Powered, Multichannel RS-232

Drivers/Receivers"

11 - "http://www.ece.utep.edu/courses/web3376/concepts/debounce.html"

12 – “http://en.wikipedia.org/wiki/IEEE_floating-point_standard”

13 - “http://www.lakemerced.org/Data/data.html#water”

14 – “http://sfwater.org/Files/Statistics/LakeLevelManagementPlanReport_Dec.pdf”

15 – “http://sfwater.org/Files/Statistics/LLMPApp%20Bpart_2.pdf”

16 - “http://bss.sfsu.edu/holzman/lakemerced/water.htm”

 23

10. Appendix

Test Run Examples:

Waypoint 1

Sensor Depth = 2.18455 meters

Temperature = 19.55774 degrees C

pH = 9.31965 pH units

Dissolved Oxygen = 11.89111 mg/l

Conductivity = 0.51776 mS

Waypoint 2

Sensor Depth = 2.09320 meters

Temperature = 19.49988 degrees C

pH = 9.32011 pH units

Dissolved Oxygen = 11.89142 mg/l

Conductivity = 0.51667 mS

Waypoint 3

Sensor Depth = 2.13870 meters

Temperature = 19.46908 degrees C

pH = 9.32028 pH units

Dissolved Oxygen = 12.02866 mg/l

Conductivity = 0.51805 mS

Waypoint 4

Sensor Depth = 2.07160 meters

Temperature = 19.53631 degrees C

pH = 9.32753 pH units

Dissolved Oxygen = 12.03609 mg/l

Conductivity = 0.51494 mS

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Waypoint 1

Sensor Depth = 2.24751 meters

Temperature = 20.01107 degrees C

pH = 8.89823 pH units

Dissolved Oxygen = 10.61682 mg/l

Conductivity = 0.53149 mS

Waypoint 2

Sensor Depth = 2.15318 meters

Temperature = 20.18652 degrees C

pH = 8.94813 pH units

Dissolved Oxygen = 10.66874 mg/l

Conductivity = 0.53187 mS

Waypoint 3

Sensor Depth = 2.14175 meters

Temperature = 20.15548 degrees C

pH = 8.97146 pH units

Dissolved Oxygen = 10.70356 mg/l

Conductivity = 0.53068 mS

Waypoint 4

Sensor Depth = 2.16265 meters

Temperature = 20.07570 degrees C

pH = 8.96583 pH units

Dissolved Oxygen = 10.76794 mg/l

Conductivity = 0.53322 mS

Waypoint 1

Lakebottom Depth = 4.1 meters

Waypoint 2

Lakebottom Depth = 4.1 meters

Waypoint 3

Lakebottom Depth = 4.1 meters

Waypoint 4

Lakebottom Depth = 4.2 meters

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Waypoint 1

Lakebottom Depth = 4.2 meters

Waypoint 2

Lakebottom Depth = 4.2 meters

Waypoint 3

Lakebottom Depth = 4.2 meters

Waypoint 4

Lakebottom Depth = 4.3 meters

 24

ATmega32 C Code:

1 /***
2

3 Project : Autonomous Boat Sensor Code

4 Date : Spring 2006 (Finished on 17May2006)

5 Author : Bruce White
6 Company : San Francisco State University

7

8 Chip type : ATmega32

9 Clock frequency : 4.000000 MHz
10

11 ***/

12

13 #include <mega32.h>

14 #include <mega32.h>
15 #include <stdio.h>

16 #include <string.h>

17 #include <delay.h>

18
19 char wakeup=0xFF;

20 char plugin;

21 char data[4];

22 char ignore=0xFF;
23 char dummy[6];

24 char fake[4];

25 char dpt[75];

26 char cntstop=0;

27
28 int counter=1;

29 int counter2=1;

30

31 float depth[20];
32 float temp[20];

33 float ph[20];

34 float ldo[20];

35 float cond[20];
36

37

38 // PARITY CHECK---

39
40 #define RXB8 1

41 #define TXB8 0

42 #define UPE 2

43 #define OVR 3

44 #define FE 4
45 #define UDRE 5

46 #define RXC 7

47

48 #define FRAMING_ERROR (1<<FE)
49 #define PARITY_ERROR (1<<UPE)

50 #define DATA_OVERRUN (1<<OVR)

51 #define DATA_REGISTER_EMPTY (1<<UDRE)

52 #define RX_COMPLETE (1<<RXC)
53

54 // Get a character from the USART Receiver

55 #ifndef _DEBUG_TERMINAL_IO_

56 #define _ALTERNATE_GETCHAR_

57 #pragma used+
58 char getchar(void)

59 {

60 char status,data;

61 while (1)
62 {

63 while (((status=UCSRA) & RX_COMPLETE)==0);

64 data=UDR;

65 if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
66 return data;

67 };

68 }

69 #pragma used-
70 #endif

71

72 // Write a character to the USART Transmitter

73 #ifndef _DEBUG_TERMINAL_IO_

74 #define _ALTERNATE_PUTCHAR_
75 #pragma used+

76 void putchar(char c)

77 {

78 while ((UCSRA & DATA_REGISTER_EMPTY)==0);
79 UDR=c;

80 }

81 #pragma used-

82 #endif

 25

83

84

85 // INTERRUPT---
86

87 interrupt [EXT_INT0] void ext_int0_isr(void)

88 {

89 UCSRC=0x86; // 4800 baud, 8 data bits, no parity, 1 stop bit
90 UBRRH=0x00;

91 UBRRL=0x33;

92

93 if(cntstop==0)
94 {

95 printf("No sensor readings taken!\n\r");

96 }

97 else
98 {

99 if(PINA.4==0)

100 {

101 counter=1;

102 while(counter<=cntstop) // max 50 readings printed
103 {

104 printf("Waypoint %d\n\r", counter); // print waypoint number

105 printf("------------------------------\n\r"); // print separator

106 printf("Sensor Depth = %f meters\n\r", depth[counter]); // print depth value
107 printf("Temperature = %f degrees C\n\r", temp[counter]); // print temperature value

108 printf("pH = %f pH units\n\r", ph[counter]); // print ph value

109 printf("Dissolved Oxygen = %f mg/l\n\r", ldo[counter]); // print dissolved oxygen value

110 printf("Conductivity = %f mS\n\r\n\r\n\r", cond[counter]); // print conductivity value
111 counter++;

112 }

113 }

114 else

115 {
116 counter=1;

117 counter2=1;

118 while(counter<=cntstop) // max 500 readings printed

119 {
120 printf("Waypoint %d\n\r", counter); // print waypoint number

121 printf("------------------------------\n\r"); // print separator

122 printf("Lakebottom Depth = "); // print "Lakebottom Depth = X.X"

123 putchar(dpt[counter2]);
124 counter2++;

125 printf(".");

126 putchar(dpt[counter2]);

127 printf(" meters\n\r\n\r\n\r");
128 counter++;

129 counter2++;

130 }

131 counter=1;

132 counter2=1;
133 }

134 }

135 }

136
137

138 // INITIALIZATIONS---

139

140 void main(void)
141 {

142 // Declare your local variables here

143

144 // Input/Output Ports initialization

145 // Port A initialization
146 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

147 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

148 PORTA=0x00;

149 DDRA=0x00;
150

151 // Port B initialization

152 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

153 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
154 PORTB=0x00;

155 DDRB=0x00;

156

157 // Port C initialization
158 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

159 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

160 PORTC=0x00;

161 DDRC=0x00;

162
163 // Port D initialization

164 // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

165 // State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

166 PORTD=0x00;
167 DDRD=0x00;

168

169 // Timer/Counter 0 initialization

170 // Clock source: System Clock

 26

171 // Clock value: Timer 0 Stopped

172 // Mode: Normal top=FFh

173 // OC0 output: Disconnected
174 TCCR0=0x00;

175 TCNT0=0x00;

176 OCR0=0x00;

177
178 // Timer/Counter 1 initialization

179 // Clock source: System Clock

180 // Clock value: Timer 1 Stopped

181 // Mode: Normal top=FFFFh
182 // OC1A output: Discon.

183 // OC1B output: Discon.

184 // Noise Canceler: Off

185 // Input Capture on Falling Edge
186 // Timer 1 Overflow Interrupt: Off

187 // Input Capture Interrupt: Off

188 // Compare A Match Interrupt: Off

189 // Compare B Match Interrupt: Off

190 TCCR1A=0x00;
191 TCCR1B=0x00;

192 TCNT1H=0x00;

193 TCNT1L=0x00;

194 ICR1H=0x00;
195 ICR1L=0x00;

196 OCR1AH=0x00;

197 OCR1AL=0x00;

198 OCR1BH=0x00;
199 OCR1BL=0x00;

200

201 // Timer/Counter 2 initialization

202 // Clock source: System Clock

203 // Clock value: Timer 2 Stopped
204 // Mode: Normal top=FFh

205 // OC2 output: Disconnected

206 ASSR=0x00;

207 TCCR2=0x00;
208 TCNT2=0x00;

209 OCR2=0x00;

210

211 // External Interrupt(s) initialization
212 // INT0: On

213 // INT0 Mode: Falling Edge

214 // INT1: Off

215 // INT2: Off
216 GICR|=0x40;

217 MCUCR=0x02;

218 MCUCSR=0x00;

219 GIFR=0x40;

220
221 // Timer(s)/Counter(s) Interrupt(s) initialization

222 TIMSK=0x00;

223

224 // USART initialization
225 // USART Receiver: On

226 // USART Transmitter: On

227 // USART Mode: Asynchronous

228 UCSRA=0x00;
229 UCSRB=0x18;

230

231 // Analog Comparator initialization

232 // Analog Comparator: Off

233 // Analog Comparator Input Capture by Timer/Counter 1: Off
234 ACSR=0x80;

235 SFIOR=0x00;

236

237 // Global enable interrupts
238 #asm("sei")

239

240

241 while(1)
242 {

243

244

245 // SENSOR SELECTION--
246

247 while(PINA.4==0) // if PINA.6 is low, sonde is selected sensor

248 { // otherwise depth sensor selected

249 UCSRC=0xAE; // 9600 baud, 8 data bits, even parity, 2 stop bits

250 UBRRH=0x00;
251 UBRRL=0x19;

252

253 while(plugin!=0xFB) // look for sonde plugin string ending in FB

254 {
255 plugin=getchar();

256 }

257 delay_ms(1000); // wait 1 second for sonde to go into modbus/even parity

mode

 27

258

259 putchar(0x01); // send modbus string to wake sonde up

260 putchar(0x03);
261 putchar(0x00);

262 putchar(0x30);

263 putchar(0x00);

264 putchar(0x02);
265 putchar(0xC4);

266 putchar(0x04);

267

268 delay_ms(1000); // wait 1 second
269

270 putchar(0x01); // send modbus string to wake sonde up

271 putchar(0x03);

272 putchar(0x00);
273 putchar(0x06);

274 putchar(0x00);

275 putchar(0x02);

276 putchar(0x24);

277 putchar(0x0A);
278

279 delay_ms(1000); // wait 1 second

280

281 putchar(0x01); // send modbus string to be sure sonde is awake
282 putchar(0x03);

283 putchar(0x00);

284 putchar(0x30);

285 putchar(0x00);
286 putchar(0x02);

287 putchar(0xC4);

288 putchar(0x04);

289

290
291 // WAIT FOR WAYPOINT---

292

293 while(1)

294 {
295 while(PINA.5==0) // PINA.5 is guidance computer waypoint indicator

296 {

297 ; // do nothing when not at a waypoint

298 }
299 while(PINA.5!=0) // when PINA.5 is 5V, waypoint reached

300 {

301 ; // do nothing until PINA.5 returns to 0

302 }
303

304

305 // DEPTH READING---

306

307 putchar(0x01); // query for depth reading
308 putchar(0x03);

309 putchar(0x00);

310 putchar(0x30);

311 putchar(0x00);
312 putchar(0x02);

313 putchar(0xC4);

314 putchar(0x04);

315
316 while(ignore!=0x04)

317 {

318 ignore=getchar(); // ignore first three bytes of response

319 }

320 fake[0]=getchar(); // last four bytes are relevant data
321 fake[1]=getchar();

322 fake[2]=getchar();

323 fake[3]=getchar();

324 ignore=getchar();
325 ignore=getchar();

326

327 data[3]=fake[2]; // number rearrangement for float calculation

328 data[2]=fake[3];
329 data[1]=fake[0];

330 data[0]=fake[1];

331

332 memcpy(&depth[counter], data, sizeof data); // copy four chars into a single floating point number
333 delay_ms(1000);

334

335

336 // TEMPERATURE READING---

337
338 putchar(0x01); // query for temperature reading

339 putchar(0x03);

340 putchar(0x00);

341 putchar(0x00);
342 putchar(0x00);

343 putchar(0x02);

344 putchar(0xC4);

345 putchar(0x0B);

 28

346

347 while(ignore!=0x04)

348 {
349 ignore=getchar(); // ignore first three bytes of response

350 }

351 fake[0]=getchar(); // last four bytes are relevant data

352 fake[1]=getchar();
353 fake[2]=getchar();

354 fake[3]=getchar();

355 ignore=getchar();

356 ignore=getchar();
357

358 data[3]=fake[2]; // number rearrangement for float calculation

359 data[2]=fake[3];

360 data[1]=fake[0];
361 data[0]=fake[1];

362

363 memcpy(&temp[counter], data, sizeof data); // copy four chars into a single floating point number

364 delay_ms(1000);

365
366

367 // PH READING--

368

369 putchar(0x01); // query for ph reading
370 putchar(0x03);

371 putchar(0x00);

372 putchar(0x06);

373 putchar(0x00);
374 putchar(0x02);

375 putchar(0x24);

376 putchar(0x0A);

377

378 while(ignore!=0x04)
379 {

380 ignore=getchar(); // ignore first three bytes of response

381 }

382 fake[0]=getchar(); // last four bytes are relevant data
383 fake[1]=getchar();

384 fake[2]=getchar();

385 fake[3]=getchar();

386 ignore=getchar();
387 ignore=getchar();

388

389 data[3]=fake[2]; // number rearrangement for float calculation

390 data[2]=fake[3];
391 data[1]=fake[0];

392 data[0]=fake[1];

393

394 memcpy(&ph[counter], data, sizeof data); // copy four chars into a single floating point number

395 delay_ms(1000);
396

397

398 // DO READING---

399
400 putchar(0x01); // query for dissolved oxygen reading

401 putchar(0x03);

402 putchar(0x00);

403 putchar(0x16);
404 putchar(0x00);

405 putchar(0x02);

406 putchar(0x25);

407 putchar(0xCF);

408
409 while(ignore!=0x04)

410 {

411 ignore=getchar(); // ignore first three bytes of response

412 }
413 fake[0]=getchar(); // last four bytes are relevant data

414 fake[1]=getchar();

415 fake[2]=getchar();

416 fake[3]=getchar();
417 ignore=getchar();

418 ignore=getchar();

419

420 data[3]=fake[2]; // number rearrangement for float calculation
421 data[2]=fake[3];

422 data[1]=fake[0];

423 data[0]=fake[1];

424

425 memcpy(&ldo[counter], data, sizeof data); // copy four chars into a single floating point number
426 delay_ms(1000);

427

428

429 // CONDUCTIVITY READING--
430

431 putchar(0x01); // query for conductivity reading

432 putchar(0x03);

433 putchar(0x00);

 29

434 putchar(0x0A);

435 putchar(0x00);

436 putchar(0x02);
437 putchar(0xE4);

438 putchar(0x09);

439

440 while(ignore!=0x04)
441 {

442 ignore=getchar(); // ignore first three bytes of response

443 }

444 fake[0]=getchar(); // last four bytes are relevant data
445 fake[1]=getchar();

446 fake[2]=getchar();

447 fake[3]=getchar();

448 ignore=getchar();
449 ignore=getchar();

450

451 data[3]=fake[2]; // number rearrangement for float calculation

452 data[2]=fake[3];

453 data[1]=fake[0];
454 data[0]=fake[1];

455

456 memcpy(&cond[counter], data, sizeof data); // copy four chars into a single floating point number

457
458

459 // ADVANCE COUNTER & RESET FOR NEXT WAYPOINT---

460

461 cntstop=counter;
462 counter++; // advance counter for next waypoint

463 while(cntstop>=50)

464 {

465 ; // prevent more than 50 readings

466 }
467 } // end while loop inside water sensor loop

468 } // end water sensor loop

469

470
471 // DEPTH SENSOR--

472

473 while(PINA.4!=0) // depth sensor selected

474 {
475 UCSRC=0x86; // 4800 baud, 8 data bits, no parity, 1 stop bit

476 UBRRH=0x00;

477 UBRRL=0x33;

478
479

480 // WAIT FOR WAYPOINT---

481

482 while(PINA.5==0) // PINA.5 is guidance computer waypoint indicator

483 {
484 ; // do nothing when not at a waypoint

485 }

486 while(PINA.5!=0) // when PINA.5 is 5V, waypoint reached

487 {
488 ; // do nothing until PINA.5 returns to 0

489 }

490

491
492 // DEPTH READING---

493

494 while(dummy[0]!=0x50) // look for letter P at serial port

495 {

496 dummy[0]=getchar();
497 }

498 dummy[1]=getchar(); // ignore letter T

499 dummy[2]=getchar(); // ignore comma

500 dummy[3]=getchar(); // store first digit of depth reading
501 dummy[4]=getchar(); // ignore period

502 dummy[5]=getchar(); // store second digit of depth reading

503 dpt[counter2]=dummy[3]; // rearrange depth reading numbers for later output

504 counter2++;
505 dpt[counter2]=dummy[5];

506 counter2++;

507 dummy[0]=0;

508 cntstop=counter;
509 counter++;

510 while(cntstop>=500)

511 {

512 ; // prevent more than 500 readings

513 }
514 } // end depth sensor loop

515

516 } // end program while loop

517 } // end main loop
518

 30

Initialization Program Flowchart:

Redefine getchar and
putchar commands to
check for even parity

Define data transfer
interrupt

Initialize registers

Is PINA.4
5V?

No

Yes

Define libraries &
variables

Matrix is selected –

see Matrix program
flowchart

Sonde is selected –

see Sonde program
flowchart

Interrupt Program Flowchart:

Switch to 4800 baud,
no parity, 1 stop bit

Is PINA.4
5V?

No

Yes

Master counter
reset to 1

Master counter reset to 1

Digit counter reset to 1

Print waypoint number,
depth, temperature, pH,
dissolved oxygen, and
conductivity reading to

serial port

Master counter >
max number of
readings taken?

Do nothing – all data
sent

Increment master
counter

No

Print waypoint number & depth
reading to serial port, incrementing

digit counter between digits

Master counter >
max number of
readings taken?

Increment master counter

No

Increment digit counter

Yes

Yes

 31

No

Is 5V signal from

nav computer
present at PINA.5?

Yes

Has PINA.5
returned to 0V?

Yes

No

No

Look for Sonde
plugin string – has

0xFB been
detected?

Yes

Send 8-byte hex
wakeup string to
Sonde 3x, wait 1s
between each

Send 8-byte hex string to
request Sonde single-sensor

reading

No

Look for Sonde
response string –
has 0x04 been
detected?

Yes

Store next 4 returned
characters

Rearrange characters
for storage as floating

point number

Store rearranged
characters sequentially

in float memory
location

Wait 1 second

Increment counter

Repeat 5x for depth,
temperature, pH, dissolved
oxygen & conductivity

No

Has counter
reached 50?

Yes

Sonde Program Flowchart:

Sonde is selected -
Switch to 9600 baud,
even parity, two stop

bits

Do nothing –

memory full, wait for
data dump interrupt

 32

Is 5V signal from
nav computer

present at PINA.5?

Yes

Has PINA.5
returned to 0V?

Yes

No

No

Look for Matrix
depth string – has

0x50 been
detected?

Yes

Ignore next 2 returned
characters

Store first digit of
depth reading

No

Has master counter
reached 500?

Yes

Matrix Program Flowchart:

Ignore next returned
character

Store second digit
of depth reading

Increment digit counter

Increment master counter

No

Matrix is selected -
Switch to 4800 baud,
no parity, one stop

bit

Do nothing –
memory full, wait for
data dump interrupt

Increment digit counter

 33

