Blackfin BF533 EZ-KIT

Putting the O In
(JITK = Just In Time Knowle

Activating a FLASH memory “outputl
Part 2

The ROW and RAW ideas are the same as in Lab. 0,
Assignment 1, Lab. 2, Lab. 3 and Lab. 4

—

Agenda

e Processors need to send out cont
signals (high /low 1/0 true/fals

— General purpose input / output GPI
processor chip (16)

— FLASH memory chip has additional/oO
ports connected to Ez-Lite KITLED’s

« Making the FLASH memory /O port
control the Ez-KIT LED’s

 The new Blackfin assembly language
instructions needed

[ 2

Blackfin 1/O pins -- REVIEWITD)
1 2

EVENT

CONTROLLER! WATCHDOG TIMER
EMULATION CORE TIMER |
VOLTAGE ). REAL TIME CLOCK
—>|RecULATOR[ m”"ffm ::j
I UART PORT
IDA®
TIMERO, TIMERY,

TIMER2

CORE/SYSTEM BUS INTERFACE K——
PPIGPIO |<:m

DMA
[ | CONTROLLER ]
E ’% SERIAL PORTS (2) |<::>

U EXTERNAL PORT
FLASH, SORAM K—>
CONTROL

Figure 1-1. Processor Block Diagram 5

— BOOT ROM

Radio controlled car --R

“IN PRINCIPLE”, we could

* Connect LED1 control signal to turn rig
signal line of radio transmitter

* Connect LED2 control signal to forwar
signal line of radio transmitter

* Connect LED3 control signal to left signal
line of radio transmitter

“IN PRINCIPLE” means —we might start off this way while we
initially explore ideas to control the car.
However we may (or may not) finish the project a different way.

— In actually fact we will use both PF1, PF5, PF6, PF7 as output to control
car during the labs. IN PRINCIPLE — During Lab 4 we could use SPI

interface so we can contr and put out messages to operator on
LCD screen. (Sal ing TV flashing ship lab.)
4




LEDS connected to memory

VPO

RIGHT
FORWARD
LEFT

BACK / DONE
POWER ON

These pins
might be
connected to

= other things

DON'T CHANGE
THEIR

O — BEHAVIOUR

REVIEML,; e
K x 18 P e n—aa
f 1 I
i = 1 ILED1 f Ir El
[CIADY D-aes——— |, =
=
IIIGEEEGOm st 2]
En - g B
rw o - By |
rEn T I [
oz . B
r= ege oy WO\ PR emmmmmsses
ras ! R0\ ks  TEDE |
TE g, 51 § | PRBA————
= o, | Bl - L
T pogit B |
[ come o, =TI
| o, pip_p! |
roma o DR . ______
[akrsr ST Y pags BRI el
T AE e Pt =il % :_ __________
T o b i} !
e e R IGE
T el .
[ cooe o [ T—
eI . s E g
T mE———8 P il \FDO_A
______ pd LI i=
.
.

Activating LEDs -- REVIE

» Get the FLASH to work correctly
— Performed by InitFlash_CPP( ) function
e Get the Port to work correctly as outputsor
pins PB5 - PBO, leaving other pins -
unchanged in behaviour
— Performed by InitFlashPort_CPP( ) function
» Write the value we want to LEDS
— WriteFlashLED_ASM(int value) or
— WriteFlashLED_CPP( int value) or both
* Read back the value the LEDs show
— int ReadFlashLED_ASM(void) or
— int ReadFlashLED_CPP(void) or both

T

"EBIUT EXternal Bus Interrac

Unit -- REVIEW

How does EBIU “know” whether to execute your co

by writing the data to FLASH (LEDs live there) or

SDRAM memory (Large arrays live there)?

e J.I.T.K .-- Just-In-Time-Knowledge — Need to W.A.I.N. rather than W.A.L.L.

EBIU

EAB

DEB

ﬂ

™| ASYNCHRONOUS

MEMORY
CONTROLLER
(AMC)

|

1?

|-— DAT.

EXTERNAL BUS CONTROLLER
EBC)

SDRAM
CONTROLLER
(sbc)

DEVICE
PADS

PAB

t

— CLK

4—@
—=EG

N

FLASH

A[15:0]

— ADDR [19:1]
I ABE
—— ANS [3:0]
«—— ARDY

[1:0/SDQM [1:0]

— AOE
| ARE
[——s AWE
SMS

ouT

—— SCKE
— SA10
— SRA

S

— SCAS
> SWE

— BGH

SDRAM 7

ANSWER -- Blackfin Memory Map l

¢« McVASH and COFFEE ADSP-BF533 MEMORY MAP 5
control logic ideas again! e o000 —» CORE R _ ] og
* LDF file controlled e [ REsERVED <o
q SCRATCHPAD SRAM ©
o If PO ointer OxFFED 0000 RESERVED =
r‘e Ist(epr) I S S et to OxFFA1 4000 INSTRUCTION SRAM/CACHE % mw
g gﬁii; 2:‘3?}: INSTRUCTION SRAM < ;
address 0x20001000 INSTRUCTION SRAM
then OxFFAD 8000 INSTRUCTION SRAM INTERNAL
gﬁi::f:f: RESERVED |~ MEMORY
RO = W[ PO] (Z) ’ DATA BANK B SRAM/ICACHE
reads a 32-bit value o A — o BANK B A
from FLASH BANK 0O 0xFF80 2000 RESERVED
DATA BANK A SRAMICACHE
) gii :ﬁ :zgg DATA BANK A SRAM
e |[fROIs 6 and OxEFO0 0000 RESERVED _|
PO is 0x0000 1000 0x2040 0000 P
ASYNC BANK 3
0x2030 0000 ASYNC BANK 2
t h e n 12020 0000 ASYNC BANK 1 | EXTERNAL
B[PO] = et 00000 — o vk
places an 8-bit value INtON oxosoo 000 —»|RESERVED
0x0000 0000 SDRAM —




FLASH registers -- REVIE

How does Blackfin “match” itself fOf
fastest FLASH operation

» Depends on which FLASH is used in thes
EZ-Lite KIT from a specific manufacturp‘"

|
EBIU Programming Model

This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers used to program the EBIU.

There are six control registers and one status register in the EBIU. They
are:

¢ Asynchronous Memory Global Control register (EBIU_AMGCTL)
¢ Asynchronous Memory Bank Control 0 register (EBIU_AMBCTLO)
*  Asynchronous Memory Bank Control 1 register (EBIU_AMBCTLL)

¢ SDRAM Memory Global Control register (EBIU_SDGCTL)

Bank control register -- REVI

Reset value will probably work “as is® bt
not efficient — “slow reads”
— Efficiency not normally a problem —if op not done Ofi€

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTLO)
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

0xFFCO DAO4 11|t [o|ofofofr|o Reset = DxFFC2 FFC2
Il | I

B1WAT[3:0] 4‘ L B1RDYEI

Bank 1 write access time (number of Bank 1 ARDY enable

cycles AWE is held asserted) 0- Ignore ARDY for accesses to
0000 - Not supported this memory bank

000110 1111 - 1 10 15 cflies 1- After access time countdown,
B1RAT[3:0] d use state of A_HDY o deter-
Bank 1_read access time (number of mine completion of access
cycles ARE is held asserted! B1RDYPOL

0000 - Mot supported Bank 1 ARDY polarity

000110 1111 - 1 to 15 cycles 0 - Transaction completes if
B1HT[1:0] ARDY sampled low

Bank 1 hold time (number of cycles between AWE or 1 - Transition completes if ARDY
ARE deasserted, and AOE deasserted) sampled high

00 - 0 cycles BATT[1:0]

01- 1 cycle Bank 1 memaory transition time
10 - 2 cycles (number of cycles inserted after a

“ 11- 3 cycles read access to this bank, and
B1ST[1:0] = before a write access to this bank
Bank 1 setup time (number of cycles after AOE \ or a read access to another bank)
\} asserted, before AWE or ARE asserted) 00 - 4 cycles for bank transition

00 - 4 cycles 01 -1 cycle for bank transition

01 - 1 cycle 10 - 2 cycles for bank transition
10 - 2 cycles 11 - 3 cycles for bank transition
11 - 3 cycles 15 14 1312 11 10 @ 8 7 6 5 4 8 2 1 0

!w [ T |1‘|1 [ENERE !w [t I|o B CREAENEN |
: | I |

BOWAT[3:0] L 11 | BoRDYEN

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank 10

cycles AWE is held asserted)
0000 - Not supported

=
Bank 0 write access time (number of ‘ ‘
0001 te 1111 - 1 to 15 cveles

General Control Register -- R

» Reset value leaves “CLKOUT”
disabled —is that important?

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

1514 1312 1110 0 8 7 6 5 4 3 2 1 0
oxFFc0 0400 o Jo Jo o fofo Jo [ofi[i [ [1]ofo 1 [o] Reset=0xo0F2

1
CDPRIO MCKEN
0 - Gore has pricrity over DMA 0 - Disable CLKQUT for
for external accesses §—> asynchronous memaory
1 - DMA has priority over core region accesses
for external accesses 1 - Enable CLKOUT for
For more information, please see asynchronous memaory
Chapter 7, "Chip Bus Hierarchy.” region accesses
AMBEN[2:0]
Enable asynchronous memory
banks

000 - All banks disabled
—. 001 - Banko enabled
010 - Banko and Bank1 enabled
011 - Banko, Bank1, and Bankz
enabled
1xx - All banks (Banko, Banki,
Bank2, Bank3) enablad

Figure 17-3. Asynchronous Memory Global Control Register

11

InitFlashCPP( ) -- REVIEW

* Get the FLASH to work correctly

 May be “many” processes running on the
Blackfin. All these processes may want to use
InitFlashCPP()

7

InitFlashCPP(){ // Design ideas by pseudo code

If FLASH memory is already configured
—return without re-initializing
to avoid destroying existing code

Else {
configure Memory Bank control register

THEN configure Global control
(turns on the FLASH)

Y




| looked in EZ-Kit online documen

» Don’t start from scratch — Look foF
recommended settings

 These settings are specific for FLASH
memory used on the EZ-Kit Lite 8

Table 2-4. Asynchronous Memory Control Registers Settings Example

Register Value Function

EBIU_AMBCTLO 0x7BEOTEED Timing control for Banks 1 and 0

EBIU_AMBCTLY bits 15-0 | 0x7BBO Timing control for Bank 2 (Bank 3 is not used)

Enable all banks Turns on clock

EBIU_AMGCTL bits 3-0 0xF

Each Flash chip is initially configured with the memory sectors mapped
into the processor’s address space as shown in Table 2-5.

13

Set the Bank control regis

e Kit documentation recommends 0x/
P.L1.Q -- What does this setting mean®

PERIPHERAL REGISTER ADDRESS _PERIPHERAL REGISTER RESET VALUE

Asynchronous Memory Bank Control 0 Reglster (EBIU_AMBCTLO)
31 30 20 28 27 26 25 24 23 22 2120 19 18 17 19
xFFCO DAO04 1ttt fefe)efr e

Reset = 0xFFC2 FFC2

Il | I ‘
BIWAT[3:0] 1 B1RDYE
7 CyCIeS Bank 1 write access time (number of Bank 1 ARDY enable
cycles Q\g{E is "EIr[t‘ gSSSREdJ IGNO Eﬂ - Ignore ARDY for accesses to
0000 - supporte this memory bank
not 15 0001 to 1111 -1 o 16 cycles 1- After access time countdown,
B1RAT[3:0] —— | use state of ARD'Y to deter-
Bank 1 read access time (number of mine completion of access
ll n Ot 15 (ﬂ:gx‘:’\ﬂas QR‘E " he\g adssaned) Bégrﬁcvaglé[lv polarity
- Not supporte
000110 1111 - 110 15 cycles 4] 'T’F?S?fm'”” ‘ctanlmletss it
BAHT[1:0] A sampled low
B = 1011 Bank 1 hold time {number of cycles between AWE or 1 - Transition completes if ARDY
- ARE deasserted, and AOE deasserted) mT.I?[&;ng;\ed high
00 - 0 cycles B
01- 1 cycle Bank 1 memory transition time
10 - 2 cycles (number of cycles inserted after a
2 CyC | es 11 - 3 cycles read access to this bank, and
B1ST[1:0] before a write access to this bank
Bank 1 setup time (number of cycles after ACE or a read access to another bank)
| asserted, before AWE or ARE asserted) 4 g? - ;\ wc}esmforbbaakttranstltmn
00 - 4 cycles -1 cycle for bank transition
3 CyC es 01 -1 cycle 10 - 2 cycles for bank transition
10 - 2 cycles CyCleS 11 - 3 cycles for bank transition
11 - 3 cycles 1514 1212 1110 @ 8 7 6 5 4 °3 2 1 0
| KN ENNERN O KN ENEN ENENENEN CNERENE
BOWAT[3:0] L I'L Il 11 | |

———
Bank 0 write access time (number of BORDYEN

cycles AWE is held asserted) ‘ ‘ Bank 0 ARDY enabls

0 - Ignore ARDY for accesses to

0000 - Not supported
Pe this memory bank 14

0001101111 - 1 10 15 cvelas

Control access speed -- REVI

DATA LATCHED

J, TRANSITION
SETUP  READACCEss ' HoLD TIME
T 2cYclEs | 2CYCLES  |1CYCLE 1CYCLE!

|

| | | |
mh
Erto) W BE X
X
>_i_
|
|

=

ADDR[19:1] X ADDRESS

|
DATA[15:0] ——+—( YW reap [X
|

Figure 17-6. Asynchronous Read Bus Cycles

15

Set General Control Regis

 Documentation says set to “Ox000F*
for this particular FLASH chip

Asynchronous Memory Global Control Regi

PERIPHER DDRESS

15141312 1110 © 8 7 6 5 4 3 2 1 0
xFFC00A00 o o fo [o oo Jo[o it [1 [1]efo]1 o] Reset=oxo0r2

0000 00000000 1111

CDPRIO — AmcKEN
0 - Core has pricrity over DMA 0 - Disable CLKQUT for
for external accesses asynchronous memaory
1 - DMA has priority over core ENABLE region accesses
for external accesses - Enable CLKOUT for
For more information, please see asynchronous memaory

(EBIU_AMGCTL)
PERIPHERAL REGISTE‘I?SE VALUE a

Chapter 7, "Chip Bus Hierarchy.” region accesses
- ; - AMBEN[2:0]
Note: We don’t access this memory Enable asynchronous memory
location using an pointer register (P0O) banks  banks disabled
B 000 - All ban Isables
with value OxFFCO 0A00 001 - Banko enabled
. 010 - Banko and Bank1 enabled
Instead we #include <blackfin.h> in USE ALL o11-Banko. Bank1, and Bank2
our code and use a pointer value 1xx - All banks (Banko, Bank1,
EBIU_AMGTCL (Software engineering / Bank2, Banka) enabled

abstraction concept)
Figure 17-3. Asynchronous Memory Global Control Register

CODING BIT VALUE 001 IS EASY 0x01 -
ASK ME -- HOW DO YOU CODE 1XX?
WHILE X MEANS ‘DON'T CARE — THE

PROCESSOR CARES — WHICH
REQUIRES YOU MAKE A DECISION!!




Key issues -- REVIEW

InitFlashCPP()

Register WValue Function

Timing control for Banks 1 and 0

EBIU_AMECTLD 0x7EEOTERD

EBIU_AMBCTLL bits 15-0 | 0x7RED Timing control for Bank 2 (Bank 3 is not used)

EBTU_AMGCTL birs 3-0 | OxF Enable all banks

Does not sound too big a deal (IN PRINCIPLE)
1. Set pointer to EBIU_AMBCTLO address
2. Then set value = 0x7BB07BBO
3. Then store value at EBIU_AMBCTLO
*pt =value (Real C++ code or ASM design comment)
4. Then make sure “write occurs” NOW as this processor ¢
delay doing writes “until convenient”.
This processor is DESIGNED to do “writes” when
“itis not busy” giving highest priority to MANY read
operations. This priority scheme is useful when
developing processing algorithms for video or audio.

* Do the sa_ﬁ;@ASH registers

Build and Test Stub -- REVV

## What we want to do —— pzeudo—code

. woid TnitFlashaS(void) { CHANGED TO use uTTCOS_InitLED()
o If FLASH memory already configured

e return without initializing

e El=e { s Drder is important

e configure Memory Bank control register

e THEN configure Global control

e (turns on the FLASH)

ks 1

ks 1

<4 woid InitFlashASHivoid) {

.section program;
.global _InitFlashASH:
M:

ke =d

o initializing

e El=e { <4 Drder is important
e emory Bank control register

o Global control

e rns on the FLASH)

e

FlashASH END:
i é fow and tell —y(l)u are not actually going to

Call uTTCOS utility instead -- uTTCOS_InitLED();
Asking you about the ideas or doing some of the code
makes a good quiz or exam gquestion

this for Lab. 1

When stub is tested as a stub (Lin
Run) then add ASM code to learn

The System Synchronize (SSYNC) instruction forces all speculative, tran- |t | asked in
sient states in the core and system to complete before processing quiz — Circle
continues. Until SSYNC completes, no furcher instructions can be issued tc gnd explain

the defects

the pipeline.

The SSYNC instruction performs the same function as Core Synchronize ?ggeelgyATe the
(cs¥nc). In addition, SSYNC flushes any write buffers (between the L1 com '”er y
memory and the system interface] and generates a synch request signal tc . P ’

. S, linker, loader
the external system. The operation requires an acknowledgement or run
Synch_Ack signal by the system before completing the instruction. defects?

| InitFlashaSH:

s If FLASH menory alrsady configured

” Teturn witheut initializiang AVOID SAME PROBLEM |
L El=s s Order is important

s configure Memory Bank control register |

B

## woid InitFlashASH{wvoid) {

section progran;
global _InitFlashaSH:

ERROR WHEN WRITING A

~~ Set PO_to point to EBIU_AMBCTLO
PO = BIU_AMBCTLO:

NEW VIP BLACKFIN
INSTRUCTION SSYNC,;

Finish all pipelined operations
/7 as thiz processor can delay doing writss "until convenisnt" befOI‘e Continuing
SEYNC: ~/ SS¥NC Programnming manual page 16.4

~+ Then RO = 0x7EB07EED
RO = 0=7BBOVEED:

#¢ Thea [FO] = RO
[FO] = RO:

~+ Then make sure write occurs NOW

id 9
1 _'J 19

FlashlltilitiesAS. .

Opvious proplem - value need

EBIU_AMBCTLO = ?
* LOOK IN THE MANUAL — CHAPTER

_Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTLO)
31 30 29 253 27 26 25 24 2322 21 20 19 18 17

/ 0xFFCO DAD4 \1 ENENEN SRENERED ERE |0 [oJo[o]1]o] Reset=oxFFc2FFc2

O BIWAT[E:0] — B4 FlDYE N

ool 4 ceoibe momonn bieao £ me ot o e

“able
7 woid InitFlashaSHivoid) { for accessss Lo
.Eection program;

global _InitFlashaSH:

InltFlashASM

If FLASH memory already configured
// return without initializing
s Elzse { < Qrder
s configure Hemory Bank control

< Set PO to point to EBIU_AMBCTLO
#define EBIU_AMBCTLO =0x=FFCO 0404
PO = BIU_AMECTLO;

Is the following the equivalent define to use in C++

7 Then RO - Ux7EBO7EED : '
R0 = 0x7BEO7EED: obvious

#define pBIU_AMBCTLO = (int *) OxFFCO 0A04 errors

s Then [FO] = RO (If use #include

[FO] = RO:

- Then make sure write occurs NOW FIND AND
.\« a=z thiz proceszor can delay doing writes "until convenient”
SEVHC; s SBETHC Programming manual page 16.8 EXPLAIN
4| THEM




Corrected code - still fail

(Get equivalent errors in

-+

roject Group [1 project]
4 FlashMemory
/23 Source Files
~[E] FlashlUtiiiests&M. asm

.section program;
.global _InitFlashASH:
| InitFlashASH:
td If FLASH memory already configured

77 void ImitFlashaci(voidy NO “=" In a define

statement

-
o return without initializi
(22 Linker Files s El=e { s T is
-.[[] Header Files s configure Memory Bank o 1 regist No L
0 "spaces’ In
~# Set PO to point to EBIU_AMBCTLO p

PSP Don't make #deflijxﬂmiEg}Ia%fﬁgggu?xFFcuDAM \ number

the same errors | then 7o - 0x7BRO7EED
When you COde RO = 0x7EE07EED;

. Then [FO] - RO
in Lab. 1 or when | "5, 5% Spell check
ou write /7 Thi T it HOW «w w A"
y a < asaleh]i“: grig;ngilc:an;‘i‘;E doing writes "until con O nOt O
Quiz 1 SSYNC 7 SSYHC Programming menual page 1 )
L DEFECTS in code
Project " Rlsshbiitiests.. | process

———————————————— Configuration: FlashMemocry - Debug———————————————
~FlashUtilitiesASH. asn

[Error =ab003] " ~FlashUtilitie=iSH a=n": 25 Semantic Error in instruction
PO = 0xFFCO0AOZ:

Operands don't fit instruction template 'REG ASSIGH expr’

Check for an out of range immediate walue or an illegal register

[Exrror eahk003] " “FlashUtilitiesASH asmn" 28 Semantic Error in instruction
R0 = 0x7EE07EED:

Operands don't fit instruction template 'REG ASSIGH expr'.

Check for an out of range immediate walus or sn illegsl register.

Previous errors prevent assenbly

Pair programming
cost if not caught

by partner

MIPS and Blackfin behave same

putting 32 bit numbers into 32 bi

registers

* You can't load a 32-bit register with a 32=
bit immediate value using one instructi

« WRONG RO = 0x7BB07BBO; >
* Must load low 16-bit of data register
RO.L = 0x7BBO;

* Then load high 16-bits of data register
RO.H = 0x7B00;

¢ You must load addresses into pointer register PO the same
way. YOU write the code to replace PO = OxFFCO0A04

In C++ code, a similar error is coding
unsigned int value (32 bits)
when you meant to use unsigned short value (16 bits)

T

More readable and reliable
ASM code example

3*$5

#include "macros h"

Praoject Group 1 project]
E\@ FlashMemory

E\ ‘23 Source Files

i -2 FlashUtitieshSM. asm
[0 Linker Files rr
{20 Header Files e Else {

.section program:

.global _InitFlashASH:
| InitFlashaSH:
rZ I

<+ Set PO_to point to ERIT_AMECTLO
PSP from Carpentrv xdEf%EE=EE§,¥§A§§§E%%D?XFFCDDAM
<« Then RO = 0x7BE07EED
1y RO.L = 0x7EB0:

RO.H = 0=VBEO:

#define ONCE corrje

Jo

readable code

RO.L = lo(FLASH CONTROLO_RESET_VALUE):
RO H = hi(FLASH_CONTROLO_RESET_VALUE):

Use twice

(with no defects) . Then [PO] - RO

#7 void TnitFlashASH(waid) {

f FLASH memory already configured
return without initializing

e configure Hemory Bank control register

YOU FIX THIS CODE

g
#define FLASH CONTROLO_RESET VALUE 0x7BED7EBEO

[BO] = RO:
4
N ¥ Project FlashUtiitiesAS I
= | i —— Configuration: FlashMemory - Debug—m———————-——
| “FlashUtilitiesASH.asn
[Error eab003] " . ~FlashlUtilitiesASH asn" 26 Semantic Error in instruc

PO = 0xFFCO0AD4;
Operands don't fit instruction template 'REG ASSIGH sxpr'
Check for an out of range immediate value or an illegal register.

Frevious errors prevent assembly
A=senbler totals: 1 error(s) and 0 warningis)

Tool failed with exit-ezception code:
Build was unsuccessful.

s# QOrder i1z important

Self documenting
code

| do “define”

and then use
(double-click)
cut-and-paste

the label

(AMA -- double-clic

What to look for in the following

Detailed look at the WriteLED( ) and
ReadLED( ) code you will USE
(rather than write) during the
familiarization laboratory and Lab. 1 /

* Look at how the Blackfin assembly
language syntax is used.

« KEY ELEMENT TO USE IN LABS AND
QUIZZES.

— Must do our coding without destroying the
operation of existing code functionality.

— When using hardware, this normally means the
extensive use of bitwise AND and OR
operations. Those RAW's and ROW'’s again

T 2




WriteFlashLEDASM(long inV

USER CASE STUDY — TASK -- Write *
(on) or ‘0’ (off) to the Port to activate
LEDs connected to pins PB5 > PBO
leaving other pins unchanged.
Table 2-9. Flash A Port B Controls

Bit # User 1O Bit Value

S LEDY 0= LED OFF; 1= LED ON
4 LEDS 0= LED OFF; 1= LED ON
3 LED7 0= LED OFF; 1= LED ON
2 LED6 0= LED OFF; 1= LED ON
1 LEDS 0= LED OFF; 1= LED ON
0 LED4 0= LED OFF; 1= LED ON

WriteFlashLEDASM(long in_V

1. Read “8-bit LED data register” into 32-bit processor
register R1 (makes a copy)

2. Keep “top” 2 bits (AND operation on bits 7 and 6) of
value in R1 as they have been made 1 or O for a re

3. Keep “bottom” 6 bits of “in-par” 32-bit in_value (RO}
4. OR the two processor data registers )
5. Write “modified copy” back into 8-bit “LED data reg|ster
» PROBLEM *“byte” read and writes — how do we do
those?

Table 2-6. Flash A Configuration Registers for port A, B

Register Name Port A Address Port B Address

Data In (Read-only) 0x2027 0000 0x2027 0001

Data Out (Read-Write) | 0x2027 0004 ey | 0X2027 0005

Direction (Read-Write) 0x2027 0006 0Ox2027 0007

26

The following way of writing assem@l
codeis frommy P. S. P. }

| find it speeds coding up as | make
less mistakes

Standard ENCM3069 assembDbly

problem, but using different s
 Start with the stub and pseudo-code of%
user-case study

— Use the ‘real C++" as psuedo-code when wess
know what to. Use a description otherwise i

.section program;

global _WriteFlashLEDASH: #< woid UriteFlashLEDASH{long in_walus)
s “" in RO
| WriteFlashLEDASM:
-7 PROBLEM "byte" read and writes

< unzigned long ledDataCopy:

#7 Read LED data reg1ster into Processor data register (makes a copy)
< Convert "byte" into "unsigned long" =o we can do the math

<7 Keep "top" 2 bitz (AND operation) of copy
<+ #define TOPZBITS_MASKVALUE 0xC
## unzigned long top2BitHask = TOPZBITS_MASKVALUE:
## ledDataCopy = ledDataCopy & topZBitHask:

</ Keep "bottom" 6 bits of "in-par" 3Z2-bit in_valuw
<4 fdefine EOTTOMGEITS MASKVALUE 0x3F
## unzigned long bottomZBitMask = BOTTOMGBITS_HASKWVALIE:
< in walue = invalue & bottomZBitMask

#7 OR the two processor data registers
#~ ledDataCopy = ledDataCopy | in_walus:

7 Write "modified copy" back into "LED data register”

7 A11717777 Typo bottom6bitmask
| WriteFlashLEDASH . END. RIS,

28




Now identify the registers to

* Input value (In_par) come in RO

We can use R1, R2 and R3 without savin

(Follows C++/ ASM coding convention)®
y a

section progr
.global UrltEFlashlEDASM <7 woid WriteFlashLEDASM{long in_value):
L’ "7 in RO

#dsfins in_walus_RO RO

| WritsFlashLEDASH:
7/ PROBLEK ‘"byte' read and writss

~/ unsigned long ledDataCopy,
#dsfins ledDataCopy_R1 Rl

s Read "LED data register" into procsssor data register (makes a copy)
## Comwert "byte” into ”unslgned lnng” so we can do the math

#/ Heep "top" 2 bits (AND operation) of copy

~/ #detine TOPZEITS_MASKVALUE 0xC

## unsigned long top2BitMask = TOP2BITS MASKVALUE:
#define top2BitHask_R2 R2

s ledDataCopy = lsdDataCopy & top2Bithask:
'/ R2 is now dead —— could re-uss

s Kesp "botton® 6 bits of 'in-par’ 32-bit in_valu

<7 #define BOTTOMSEITS MASEVALUE 0x3F
<7 unsigned long bottom2BitHask = BOTTOMeBITS_MASKVALUE:
#define bottomZBitMask R3 R3

77 in_value = inwvalue & bottomZBitHask:
“# R3 is nov dead -- could reuss
~/ OR the two processor data registers
<7 ledDataCopy = ledDataCopy | in_value:

<7 Write "modified copy" back 1nto "LED data register'

IV Typo bottom6bitmask
(defect if not snotted)

| WriteFlashIEDASH.END: RTS:

Add in the code we understal_\

section progran;
global _WriteFlashLEDASH; # yoid WriteFlashLEDASH{long in_walue) |
o “" in RO

#define in_wvalus RO RO

Look for hidden defects where code does not match comments

WriteFlashLEDASH:

[~ FROELEM "byte" read and writes

#7 unsigned long ledDataCopy;
#define ledDataCopy_R1 R1

< Read "LED data register" into processor dats register (makes a copy)
< Conwert "byte" into "unsigned long" =0 we can do the math
L A

< Hesp "top" 2 bitz (AHD operation) of copy
< #define TOPZBITS_MASKVALUE 0OxC
#define TOP2EITS MASKVALUE 0xC
#define topZBitHask RZ R2
top?BitMa=sk_RZ = TOFZBITS_HASKVALUE.
#7 ledDataCopy = ledDataCopy & topZBitMask:
ledDataCopy_ER1 = LedDataCopy_R1 & top2BitMask _R2:
.~ R? i= now dead — could re-use

< Kesp "bottom" B bits of "in-par" 32-bit in_walues
#define BOTTOMEEITS MASKVALUE 0x3F /7 #define BOTTOMEBITS MASKVALUE 0x3F

## unsigned long bottom6BitMask = BOTTOMGBITS_MASEVALUE:

#define bottombBitMask R3I R3
bottoméBitHask R3 = BOTTOMEBITS_MASKEVALUE

in_walue RO = in_ walue RO & bottom6BitMask R3

<+ R3 iz now dead — could reuse
<7 OR the two processor data registers H
<+ ledDataCopy = ledDataCopy | in_walue: Stl” anOther
ledDataCopy_R1 = ledDataCopy Rl || in_walue_R0O: Syntax
# Write "modified copy" back into "LED data register”
S 7PN problem

| WriteFlashLEDASH END: RTS:
'

#7 unzigned long top2BitMask = TOPZBITS HASEVALUE:

I in;value = invalues & botton2BET =k .
: Fixed typo

8 bit and 32 bit writes

(Chapter 6 of instruction user manual?)
[PO] = RO;  32-bit write (4 bytes)
— Places all 32-bits of processor data

register into “long word” (32 bit)
address starting at memory Iocation,w

— If PO = 0x1000 — then place “32-bit*™wvalue
at memory location 0x1000

« B[PO] = RO; 8-bit write
— Places “bottom” 8-bits of 32-bit
processor data register into “byte” (8

bit) address starting at memory location
pointed to by pointer register PO

YT

COMMON MIS-UNDERSTANDING

8 bit and 32 bit reads
« RO =[PO0O]; 32-bitread (4 bytes)
— Places all 32-bits of “long word” (32'0i

address starting at memory location
into processor data register

— If PO = 0x1000 — then place “32-bit* \rﬁje

at memory location 0x1000
« RO =B[PO0] (2); 8-bit read
— Places “byte” (8 bit) address starting at
memory location PO into “bottom” 8-bits

of processor data register and puts “0”
into the “top” 24 bits of register

— Must convert “8-bit” read operation into
a “32” bit “storein register” operation

T

COMMON MIS-UNDERSTANDING




Add byte read and write oper-\_

.s=ection progran;
.global _WriteFlashLEDASH;

<4 yoid WriteFlashLEDASH(long in value)
» long in DO CODE

#define in walus RO RO REVlEW
| WriteFlashLEDASH Is this correct

.« FROBLEM "byte" read and writes .
¢ unsigned long ledDataCopy: fOI’ keeplng tOp

#define ledDataCopy_R1 R1

2 bits of an 8-
< Read "LED data register" into processor data register (makes a copy) .
/7 Convert "byte" into "unsigned long" =o we can do the math blt Valuef)
#define LED _DATA_REGISTER_ADDRESS 0=2027 0009

F0.T - 1o(LED DATA REGISTER ADDRESS). PO H = hi(LED DATA REGISTER_ADDRESS
ledDataCopy_RE1 = EB[PO] (Z): “DEFECT” |f
< Heep "top" 2 bits (AND operation) of copy

77 #define TOPZBITS_MASKVALUE 0xC not corrected

#define TOPZEITS MASKVALUE 0xC ugzigned long top2BitMask = TOPZEITS M s« AMW **
#define top2BitHask RZ R2
top2BitMask R2 = TOPZBITS MASKVALUE:
<+ ledDataCopy = ledDataCopy & top2BitMas
ledDataCopy_El = LedDataCopy Rl & top2BitMaslk R2: S“” SyntaX

Voo B2 iz now dead —— could re-use bl
< Keep "bottom" & bits of "in-par" 32-bit in_wvalus pro ems

#define BOTTOMGBITS_MASKEVALUE O=x3F s #define BOTTOMRBITS_MASKVALUE Ox3F "ERRORS”
<< unsigned long bottombBitMask = BOTTOME

#define bottomb6BitHask_R3 R3
bottombBitMask_R3 = BOTTOMGBITS _MASKVALUE: - .
/7 in_valus = invalue & bottom?BitMask: FIX WriteASM
in_walue R0 = in_walue R0 & bottom6BitHaslk_E3. .
“# R3 iz now dead —— could reuse as exercise.

< OR the two processor dats registers TeSt by
77 ledDataCopy = ledDataCopy | in_walue; replaCIng

ledDataCopy_R1 = ledDataCopy_R1 | in_walus_ RO
<4 Write "modified copy" back into "LED data register” UTTCOS_W”te
B[P0] = ledDataCopy R1; LED()in Lab
| WriteFlashLEDASH END: RTS: code
I

My InitLEDASM() to complet

» Set direction to 1 on lower pins leaving other
direction values unchanged

— Read “direction” byte register into process
data register (makes a copy)

— Set another processor data register to 0x3 '
— OR the two data registers (HOW?)

— Write “modified copy” back into “direction byte
register”

Table 2-6. Flash A Configuration Registers for port A, B

Register Name Port A Address Port B Address
Data In (Read-only) 0x2027 0000 Oxz2027 0001
Data Out (Read-Write) 0x2027 0004 0x2027 0005
Direction (Read-Write) 0x2027 0006 ———)() X 2027 0007

Agenda

e Processors need to send out contre
signals (high /low 1/0 true/false

— General purpose input / output GPIOIoRn
processor chip (16) '

— FLASH memory chip has additional/O
ports connected to Ez-Lite KIT'LED’s
 Making the FLASH memory |/O port
control the Ez-KIT LED’s

 The new Blackfin assembly language
instructions needed

35




