

Secure Key Box 4.20
User Guide

Secure Key Box User Guide Last updated: March 9, 2015

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 2 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The software referenced herein, this User Guide, and any associated documentation is provided to you

pursuant to the agreement between your company, governmental body or other entity (“you”) and

whiteCryption Corporation (“whiteCryption”) under which you have received a copy of Secure Key Box Licensed

Technology and various related documentation, including this User Guide (such agreement, the “Agreement”).

Defined terms not defined herein shall have the meanings ascribed to them in the Agreement. In the event of

conflict between the terms of this User Guide and the terms of the Agreement, the terms of the Agreement

shall prevail. Without limiting the generality of the remainder of this paragraph, (a) this User Guide is provided

to you for informational purposes only, (b) your right to access, view, use, and copy this User Guide is limited to

the rights and subject to the applicable requirements and limitations set forth in the Agreement, and (c) all of

the content of this User Guide constitutes “Confidential Information” of whiteCryption (or the equivalent term

used in the Agreement) and is subject to all of the limitations and requirements pertinent to the use, disclosure

and safeguarding of such information. Permitting anyone who is not directly involved in the authorized use of

Secure Key Box Licensed Technology by your company or other entity to gain any access to this User Guide

shall violate the Agreement and subject your company or other entity to liability therefor.

Copyright and Trademark Information

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved.

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

whiteCryption® and Cryptanium™ are either registered trademarks or trademarks of whiteCryption

Corporation in the United States and/or other countries.

Microsoft®, Visual Studio®, and Windows® are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

OS X® and Xcode® are trademarks of Apple Inc., registered in the United States and other countries.

IOS® is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

Google is a registered trademark of Google Inc., used with permission.

Android™ is a trademark of Google Inc., registered in the United States and other countries.

PlayStation is a trademark or registered trademark of Sony Computer Entertainment Inc.

Sourcery™ CodeBench is a trademark of Mentor Graphics Corporation.

Broadcom® is a registered trademark of Broadcom Corporation.

Disclaimer

The remainder of this User Guide notwithstanding, this User Guide is provided “as is”, without any warranty

whatsoever (including that it is error-free or complete). This User Guide contains no express or implied

warranties, covenants or grants of rights or licenses, and does not modify or supplement any express warranty,

covenant or grant of rights or licenses that is set forth in the Agreement. This User Guide is current as of the

date set forth in the header that appears above on this page, but may be modified at any time without prior

notice. Future revisions and updates of this User Guide shall be distributed as part of Secure Key Box new

releases. whiteCryption shall under no circumstances bear any responsibility for your failure to operate Secure

Key Box Licensed Technology in compliance with the then-current version of this User Guide. Your remedies

with respect to your use of this User Guide, and whiteCryption’s liability for your use of this User Guide

Secure Key Box User Guide Last updated: March 9, 2015

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 3 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

(including for any errors or inaccuracies that appear in this User Guide) are limited to those remedies expressly

authorized by the Agreement (if any).

Notice to U.S. Government End Users

This User Manual is a “Commercial Item,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial

Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as

applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the

Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S.

Government end users (a) only as Commercial Items and (b) with only those rights as are granted to all other

end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws

of the United States.

Contact Information

whiteCryption Corporation, 920 Stewart Drive, Suite #100, Sunnyvale, California 94085, USA

contact@whitecryption.com

www.whitecryption.com

mailto:contact@whitecryption.com
http://www.whitecryption.com/

Secure Key Box User Guide

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 4 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Table of Contents

1 Introduction .. 9

1.1 General Concepts ... 9

1.1.1 What Is SKB? ... 9

1.1.2 Nomenclature .. 10

1.1.3 Purpose of SKB .. 10

1.1.4 White-Box Cryptography ... 10

1.1.5 Secure Data Objects... 11

1.1.6 Export Key... 11

1.1.7 Loading the First Key .. 12

1.1.8 Diversification .. 13

1.1.9 Tamper Resistance ... 13

1.1.10 Evaluation and Production Packages ... 16

1.2 Supported Algorithms ... 16

1.3 Supported ECC Curves .. 19

1.4 Supported Target Platforms .. 20

1.5 Directory Structure and Contents .. 21

1.6 Limitations and Known Problems ... 23

2 Building Applications Protected by SKB.. 24

2.1 Building a Protected Application .. 24

2.2 Distributing a Protected Application .. 25

2.3 Building Examples, Tests, and Platform-Specific Library ... 25

2.3.1 Building for Windows API .. 26

2.3.2 Building for Windows Runtime and Windows Phone ... 26

2.3.3 Building for Linux .. 27

2.3.4 Building for Android ... 28

2.3.5 Building for OS X and iOS .. 29

2.3.6 Building for Google Native Client (NaCl) .. 30

2.3.7 Building for PlayStation 3 .. 31

3 Cryptographic Operations ... 32

3.1 Loading Wrapped Keys ... 32

3.1.1 Unwrapping Keys Wrapped with the ElGamal ECC Algorithm ... 33

3.2 Loading Plain Keys ... 34

3.3 Wrapping Keys .. 34

3.4 Wrapping Plain Data .. 35

3.5 Exporting Keys... 35

3.6 Importing Keys .. 36

3.7 Upgrading Exported Keys ... 36

3.8 Generating Keys .. 38

3.9 Deriving a Public Key from a Private Key... 38

3.10 Deriving Keys ... 38

Secure Key Box User Guide

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 5 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3.10.1 Deriving a Key as a Substring of Bytes of Another Key .. 38

3.10.2 Deriving a Key as Odd or Even Bytes of Another Key .. 39

3.10.3 Deriving a Key by Encrypting or Decrypting an Existing Key .. 39

3.10.4 Deriving a Key as a Protected Hash Value of Another Key ... 39

3.10.5 Reversing the Order of Bytes of a Key ... 41

3.10.6 Using the NIST 800-108 Key Derivation Function ... 41

3.10.7 Using KDF2 of the RSAES-KEM-KWS Scheme Defined in the OMA DRM Specification 42

3.10.8 Deriving a Key as Raw Bytes from a Private ECC Key ... 42

3.10.9 Deriving a Key Using the CMLA Key Derivation Function .. 42

3.10.10 Deriving a Key By Encrypting Data Using 128-bit AES With a Concatenated Key 42

3.11 Encrypting and Decrypting Data ... 44

3.11.1 Encrypting Data ... 44

3.11.2 Decrypting Data .. 45

3.11.3 Using the High-Speed AES ... 45

3.12 Calculating a Digest ... 45

3.13 Creating a Signature .. 46

3.14 Verifying a Signature.. 46

3.15 Executing a Key Agreement Algorithm .. 47

3.16 Binding Keys to a Specific Device ... 48

3.17 Decrypting Encrypted PDF Documents .. 48

4 Supporting Libraries .. 49

4.1 Sensitive Operations Library .. 49

4.1.1 Overview ... 49

4.1.2 Library Functions .. 49

4.2 Platform-Specific Library ... 55

4.2.1 Overview ... 55

4.2.2 Library Functions .. 55

4.2.3 Key Caching .. 57

5 Utilities .. 60

5.1 Custom ECC Tool .. 60

5.1.1 Custom ECC Tool Overview .. 60

5.1.2 Parameter Size and Value Restrictions .. 61

5.1.3 Running Custom ECC Tool .. 61

5.2 Diffie-Hellman Tool... 62

5.2.1 Diffie-Hellman Tool Overview ... 62

5.2.2 Running Diffie-Hellman Tool .. 62

5.3 Key Export Tool ... 64

5.3.1 Key Export Tool Overview ... 64

5.3.2 Running Key Export Tool ... 64

5.4 Binary Update Tool .. 65

5.4.1 Binary Update Tool Overview ... 66

5.4.2 Running the Binary Update Tool ... 66

6 Decrypting PDF Files .. 68

Secure Key Box User Guide

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 6 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

6.1 PDF Encryption Overview ... 68

6.2 PDF Requirements ... 68

6.3 Decrypting a PDF Document Using SKB ... 69

6.3.1 SKB_Pdf_AuthenticateUserPassword ... 69

6.3.2 SKB_Pdf_ComputeEncryptionKey .. 70

6.3.3 SKB_Pdf_CreateDecryptionContext .. 71

6.3.4 SKB_Pdf_DecryptionContext_ProcessBuffer ... 72

6.3.5 SKB_Pdf_DecryptionContext_Release .. 74

7 API Reference .. 75

7.1 API Overview .. 75

7.2 Obtaining Class Instances .. 75

7.3 Making Method Calls ... 75

7.4 Method Return Values .. 76

7.5 Object Lifecycle ... 77

7.6 Restrictions of Multithreading ... 77

7.7 Overriding Memory Allocation Operators .. 78

7.8 Classes .. 79

7.8.1 SKB_Engine ... 79

7.8.2 SKB_SecureData .. 79

7.8.3 SKB_Cipher ... 79

7.8.4 SKB_Transform .. 79

7.8.5 SKB_KeyAgreement .. 79

7.9 Methods ... 80

7.9.1 SKB_Engine_GetInstance ... 80

7.9.2 SKB_Engine_Release ... 80

7.9.3 SKB_Engine_SetDeviceId ... 80

7.9.4 SKB_Engine_GetInfo ... 81

7.9.5 SKB_Engine_CreateDataFromWrapped ... 82

7.9.6 SKB_Engine_CreateDataFromExported ... 84

7.9.7 SKB_Engine_WrapDataFromPlain .. 85

7.9.8 SKB_Engine_GenerateSecureData .. 86

7.9.9 SKB_Engine_CreateTransform ... 87

7.9.10 SKB_Engine_CreateCipher .. 88

7.9.11 SKB_Engine_CreateKeyAgreement ... 90

7.9.12 SKB_Engine_UpgradeExportedData ... 90

7.9.13 SKB_SecureData_Release ... 91

7.9.14 SKB_SecureData_GetInfo .. 92

7.9.15 SKB_SecureData_Export ... 92

7.9.16 SKB_SecureData_Wrap .. 93

7.9.17 SKB_SecureData_Derive .. 95

7.9.18 SKB_SecureData_GetPublicKey ... 97

7.9.19 SKB_Transform_Release .. 98

7.9.20 SKB_Transform_AddBytes .. 98

Secure Key Box User Guide

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 7 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.9.21 SKB_Transform_AddSecureData ... 99

7.9.22 SKB_Transform_GetOutput .. 99

7.9.23 SKB_Cipher_ProcessBuffer ...100

7.9.24 SKB_Cipher_Release ...102

7.9.25 SKB_KeyAgreement_GetPublicKey ..102

7.9.26 SKB_KeyAgreement_ComputeSecret ...103

7.9.27 SKB_KeyAgreement_Release ..104

7.10 Supporting Structures ..104

7.10.1 SKB_EngineProperty ..105

7.10.2 SKB_EngineInfo ...105

7.10.3 SKB_DataInfo ...106

7.10.4 SKB_CtrModeCipherParameters ...107

7.10.5 SKB_DigestTransformParameters ..107

7.10.6 SKB_SignTransformParameters ..107

7.10.7 SKB_SignTransformParametersEx ..108

7.10.8 SKB_VerifyTransformParameters ..109

7.10.9 SKB_SelectBytesDerivationParameters ...110

7.10.10 SKB_CipherDerivationParameters ..110

7.10.11 SKB_Sha1DerivationParameters ...111

7.10.12 SKB_Sha256DerivationParameters ..112

7.10.13 SKB_Nist800108CounterCmacAes128Parameters ..113

7.10.14 SKB_RawBytesFromEccPrivateDerivationParameters ...114

7.10.15 SKB_ShaAesDerivationParameters ..114

7.10.16 SKB_OmaDrmKdf2DerivationParameters ..115

7.10.17 SKB_SliceDerivationParameters ...115

7.10.18 SKB_EccDomainParameters ..116

7.10.19 SKB_AesWrapParameters ..117

7.10.20 SKB_AesUnwrapParameters ..117

7.10.21 SKB_RsaPssParameters ..117

7.10.22 SKB_EccParameters ...118

7.10.23 SKB_PrimeDhParameters ...119

7.10.24 SKB_RawBytesParameters ...120

7.11 Enumerations ...120

7.11.1 SKB_DataType..120

7.11.2 SKB_DigestAlgorithm ...120

7.11.3 SKB_CipherAlgorithm ...120

7.11.4 SKB_SignatureAlgorithm ...123

7.11.5 SKB_DerivationAlgorithm ..124

7.11.6 SKB_CipherDirection ..126

7.11.7 SKB_DataFormat ...126

7.11.8 SKB_TransformType ...127

7.11.9 SKB_ExportTarget ...127

7.11.10 SKB_EccCurve ..128

Secure Key Box User Guide

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 8 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.11.11 SKB_KeyAgreementAlgorithm ...129

7.11.12 SKB_PrimeDhLength ...129

7.11.13 SKB_CbcPadding...129

7.11.14 SKB_SelectBytesDerivationVariant ...130

8 Data Formats ..131

8.1 Export Data Format ...131

8.2 AES-Wrapped Data Buffer ..132

8.2.1 ECB Mode ...132

8.2.2 CTR Mode ...132

8.2.3 CBC Mode ...133

8.3 Key Format for the Triple DES Cipher ..134

8.4 Input Buffer for the ElGamal ECC Cipher ..135

8.5 Public ECC Key ...135

8.6 Private ECC Key ...136

8.7 AES-Wrapped Private ECC Key ..136

8.8 ECDSA Output ...137

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 9 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

1 Introduction

This chapter provides a general overview of the Secure Key Box (SKB) technology.

1.1 General Concepts

This section describes the general concepts that you should know before working with SKB.

1.1.1 What Is SKB?

SKB is a library that provides a set of high-level classes and methods for working with common

cryptographic algorithms. The library’s white-box implementation hides and protects cryptographic

keys. In SKB, keys are encrypted and cryptographic algorithms operate directly with encrypted keys.

SKB exposes an API that provides access to a set of functions, which the calling application uses to

implement various cryptographic operations.

SKB overview

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 10 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

1.1.2 Nomenclature

This User Guide uses the terms “secure”, “protect”, ”white-box protected”, “safe”, “tamper resistance”

and variations of each to convey very specific concepts — indeed, concepts that are far more specific

and limited in their meanings than many meanings often associated with such terms in everyday

usage. At the risk of stating the obvious, as used herein, none of these terms describe an absolute

condition. Use of SKB in compliance with this User Guide will not render any application or data

absolutely secure, absolutely protected or absolutely safe from unauthorized accessing, use or

manipulation. Nor will it render any application or data absolutely tamper resistant. In addition, use

of these terms is not intended to convey a promise or warranty that SKB will never contain a bug or

error, or that SKB will always operate without error.

As used in this User Guide:

 “secure” and variations of “secure” refer to data objects, the values of which reside in a

cryptographic container and are white-box protected, and that can be operated on by SKB

functions despite the fact that they are not revealed in plain form.

 “protected”, “white-box protected” and variations of these terms mean that a value has been

subjected to some cryptographic processing that has resulted in it being placed in a container

that seeks to render the value inaccessible in plain form to the outside world.

 “safe”, “safely”, “safer” and variations of these terms refer to actions or objects that when

processed in accordance with this User Guide will not compromise the security protections

provided by SKB.

 “tamper resistance” and variations of this term refer to the application of whiteCryption’s Code

Protection product to render it more difficult for unauthorized parties to engage in reverse

engineering and code modification.

1.1.3 Purpose of SKB

Cryptographic algorithms and keys are used to protect sensitive data, authenticate communication

partners, verify signatures, and implement various other security schemes. A common weak point of

cryptographic algorithms in today’s open architectures, such as smartphones, tablets, and desktops,

is that the cryptographic keys are revealed in the code or memory at some point. Hackers can

monitor such devices with special tools and extract the secret cryptographic keys. Without an

efficient protection of cryptographic keys, security features may be compromised.

SKB is designed to prevent such attacks by encrypting and hiding cryptographic keys in the code and

memory.

1.1.4 White-Box Cryptography

The term “white-box cryptography” is used to describe a secure implementation of cryptographic

algorithms in an execution environment that is fully observable and modifiable by an attacker, such

as a desktop computer or a mobile device. It is different from black-box cryptography where the

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 11 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

algorithm’s internal processing data is unavailable to the attacker. The white-box environment puts

certain restrictions on implementations of the cryptographic algorithms. For instance, an encryption

key may never appear in plain text; otherwise it can be retrieved by an attacker.

1.1.5 Secure Data Objects

A secure data object (represented by the SKB_SecureData class in the API) is one of the basic

concepts in the SKB protection scheme. It is a container of any sensitive data whose value is white-

box protected and hidden from the outside world. Secure data objects can be operated on by SKB

functions even though the contents of secure data objects are not revealed in plain form.

Because secure data objects usually hold cryptographic keys, in this document the terms “secure

data object” and “cryptographic key” are used interchangeably.

1.1.6 Export Key

Secure data objects (cryptographic keys) are operated on in the device memory. Because the

memory is not persistent, there needs to be a mechanism for safely storing secure data objects.

Each SKB package contains an embedded key called the export key. This export key is used for

encrypting other cryptographic keys exported from the protected SKB domain into the unprotected

outside world. The same export key is used for importing and decrypting the exported data back into

SKB.

Using an export key

The export key is embedded inside the SKB package and is white-box protected, which means that it

is not revealed in plain form in the program code or memory. Exported data can only be imported

into an SKB instance that has the same export key.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 12 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

1.1.7 Loading the First Key

Typically, if you need to load a new key, you encrypt it with another key, pass it to SKB, and then

internally decrypt it as a new secure data object. However, at some point the first key needs to be

loaded into SKB. The challenge is to safely deliver this key into SKB without revealing it in plain form.

The following diagram shows four ways how the first key can be obtained.

Four ways of loading the first cryptographic key into SKB

The diagram features two environments. The unsafe environment (on the left) is where potentially

anyone can gain access to the hardware, code, and memory of the device (such as a desktop

computer or mobile device). This is the environment where SKB is primarily intended to be used.

 As a general rule, secret cryptographic keys should never appear in unsafe environments in

plain form.

The safe environment (on the right) is a place where cryptographic keys will be exposed in plain form

and that you must maintain as safe as possible in terms of potential risks of breaking in, reverse

engineering, and exposure to unwelcome parties (such as a closed-off facility or encrypted server

with controlled access).

The following table explains the four methods of loading the first key into SKB, highlighted in the

diagram.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 13 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Method Description Reference

1. Import from plain SKB directly loads a plain key within an insecure environment.

 This is an insecure approach for loading keys and should

be avoided if possible. In normal circumstances,

importing of plain keys is disabled in SKB.

§3.2

2. Import SKB loads a key in protected form (encrypted with the export

key as described in §1.1.6).

The protected form of a key can be obtained using either Key

Export Tool (see §5.3) or Sensitive Operations Library (see

§4.1).

 Key Export Tool and Sensitive Operations Library must

never be delivered with the final protected application

(see §2.2).

Note: The same protected form is used when SKB exports a key (see §3.5).

§3.6

3. Key agreement SKB exchanges public keys with another party and then

internally generates a secret key.

§3.15

4. Key generation SKB internally generates a new key. §3.8

1.1.8 Diversification

A significant feature of SKB is code diversification. It means that each customer receives one or

several packages whose binary code differs from other packages. SKB achieves this by generating

unique representations of white-box algorithms individually for each customer. Although the API

provided by each SKB instance is the same, the way the operations are physically implemented in the

program code varies.

This feature improves security. For example, if an adversary manages to compromise a particular

system that uses SKB, systems of other customers would not be directly affected.

1.1.9 Tamper Resistance

Tamper resistance is an optional feature that you can request for the SKB library delivered to you.

Tamper resistance guards the library code against analysis and modification. Although this feature

slightly reduces performance of the protected application, it significantly increases security against

hacker attacks.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 14 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Note: SKB tamper resistance is implemented using Code Protection, a comprehensive tool for hardening software

applications on multiple platforms. For information on Code Protection, see www.whitecryption.com/code-protection.

 If your SKB package has tamper resistance applied, you have to run the Binary Update Tool on

your final application executable every time it is built. Otherwise, the application will crash at

run time. For more information on running the Binary Update Tool, see §5.4.

1.1.9.1 Security Features

SKB’s implementation of tamper resistance consists of a combination of the following security

features:

Security feature Description

Integrity protection Hundreds of embedded overlapping checksums can prevent

modifications of the binary code of the entire executable (not just SKB).

Code obfuscation Library code is transformed to make it difficult to analyze and reverse

engineer.

Anti-debug protection Platform-specific anti-debug code adds protection against main-stream

debuggers providing another barrier to code analysis.

iOS jailbreak detection Normally, a cracked or modified iOS application can be run only on

jailbroken iOS devices. iOS jailbreak detection protects the application

from being executed on a jailbroken device.

Android rooting

detection

Rooting is a security risk to Android applications that deal with

sensitive data or enforce certain usage restrictions. Rooting detection

will protect the application if a rooted device is detected.

Inlining of static void

functions

Static void functions with simple declarations are inlined into the calling

functions. Such operation increases the obfuscation level of the final

protected code and makes it more difficult to trace.

String literal obfuscation Large portion of string literals, or string constants, are encrypted in the

code and are decrypted only before they are actually used. The

purpose of this feature is to hide useful and sensitive information from

potential attackers.

http://www.whitecryption.com/code-protection

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 15 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Security feature Description

Customizable defense

action

Optionally, you can request a tamper resistance SKB library that is

configured to execute specific callback functions depending on the

type of attack it detects. Additionally, when requesting the SKB library,

you can choose whether the program state should be corrupted or the

application should be left running after a callback function is invoked.

For more information on this feature, see §1.1.9.3.

1.1.9.2 Supported Platforms

Tamper resistant SKB libraries are currently available only for the following target platforms:

 Windows for Visual Studio 2010, 2012, and 2013 (x86 and x86_64 architectures)

 GNU/Linux (x86 and x86_64 architectures)

 OS X (x86 and x86_64 architectures)

 iOS (ARMv7, ARMv7s, and ARMv8 architectures)

 Android (ARM and x86 architectures)

1.1.9.3 Callback Functions

When you request a tamper resistant edition of SKB, you may optionally specify whether you want

SKB to invoke specific callback functions when threats are detected.

If you do not choose to use callback functions, SKB will corrupt the application state (typically,

resulting in a crash) whenever it detects a threat. Callback functions allow you to implement custom

response to attacks. Additionally, when requesting an SKB library that uses callback functions, you

may also specify if you want the attacked application to continue execution after a callback function is

invoked.

If the SKB library that you received is configured to use callbacks, you have to provide

implementation for the callback functions in the source code. The following table describes the

attack types for which callback functions are supported:

Attack Callback function Description

Debugger void SKB_Callback_AntiDebug() This function is called by SKB when it detects

that the application is run under a debugger.

Rooting void SKB_Callback_Root() This function is called by SKB when it detects

that the application is run on a rooted

Android device.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 16 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Attack Callback function Description

Jailbreak void SKB_Callback_Jailbreak() This function is called by SKB when it detects

that the application is run on a jailbroken iOS

device.

Please note that you have to provide implementations for the above functions only if you specifically

requested an SKB library that uses them.

1.1.10 Evaluation and Production Packages

Two editions of the SKB package are available to customers:

Edition Description

Evaluation The evaluation package is free and is typically given to new customers who want

to try out SKB before purchasing a license. You should not use an evaluation

edition in a production environment for two reasons. Firstly, you do not have

the right to do so. Secondly, all evaluation packages have the same export key

(see §1.1.6). This means that all encrypted data that you export from SKB can

be decrypted by other evaluation packages.

Additionally, evaluation packages have an expiration date set. Once the date is

reached, SKB will no longer be usable.

Production The production package is given to customers who have licensed SKB. Each

production package has a unique export key and no expiration date.

1.2 Supported Algorithms

This section lists algorithms supported by SKB.

Note: Not all distributions of SKB include all the algorithms listed below.

Function Algorithms

Encryption DES in ECB mode (no padding)

 Triple DES in ECB mode (no padding) with two keying options:

 All three keys are distinct.

 Key 1 is the same as key 3.

 128-bit, 196-bit, and 256-bit AES in ECB mode (no padding), CBC mode

(no padding), and CTR mode

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 17 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Function Algorithms

Decryption DES in ECB mode (no padding)

 Triple DES in ECB mode (no padding) with two keying options:

 All three keys are distinct.

 Key 1 is the same as key 3.

 128-bit, 196-bit, and 256-bit AES in ECB mode (no padding), CBC mode

(no padding), and CTR mode

 1024-bit and 2048-bit RSA (no padding, PKCS#1 version 1.5 padding,

and OAEP padding)

 ElGamal ECC (for supported curve types, see §1.3)

Signing 128-bit AES-CMAC (based on OMAC1)

 HMAC with up to 64-byte keys using SHA-1, SHA-256, SHA-384, or SHA-

512 as the hash function

 1024-bit and 2048-bit RSA signature algorithms standardized in version

1.5 of PKCS#1 without a hash function

 1024-bit and 2048-bit RSA signature algorithms standardized in version

1.5 of PKCS#1 using SHA-1 or SHA-256 as the hash function

 1024-bit and 2048-bit RSA signature algorithms based on the

Probabilistic Signature Scheme using SHA-1 or SHA-256 as the hash

function

 ECDSA without a hash function (for supported curve types, see §1.3)

 ECDSA using SHA-1 or SHA-256 as the hash function (for supported

curve types, see §1.3)

Verification 128-bit AES-CMAC (based on OMAC1)

 HMAC with up to 64-byte keys using SHA-1, SHA-256, SHA-384, or SHA-

512 as the hash function

Key importing plain bytes (for example, DES and AES keys)

 plain RSA private keys

 plain ECC private keys

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 18 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Function Algorithms

Unwrapping unwrapping raw bytes (for example, DES and AES keys) using 128-bit,

192-bit, and 256-bit AES in ECB mode (no padding), CBC mode (no

padding or XML encryption padding), and CTR mode

 unwrapping RSA keys using 128-bit, 192-bit, and 256-bit AES in CBC

mode (XML encryption padding) and CTR mode

 unwrapping ECC keys using 128-bit, 192-bit, and 256-bit AES in CBC

mode (no padding or XML encryption padding) and CTR mode

 unwrapping raw bytes (for example, DES and AES keys) using 1024-bit

and 2048-bit RSA (no padding, PKCS#1 version 1.5 padding, or OAEP

padding)

 unwrapping raw bytes (for example, DES and AES keys) using ElGamal

ECC (for supported curve types, see §1.3)

 AES key unwrapping defined by NIST with 128-bit, 192-bit, and 256-bit

AES keys

 CMLA AES unwrapping defined by the CMLA Technical Specification

 CMLA RSA unwrapping defined by the CMLA Technical Specification

 unwrapping using XOR

Wrapping wrapping raw bytes (for example, DES and AES keys) using 128-bit, 192-

bit, and 256-bit AES in CBC mode (XML encryption padding)

 wrapping ECC keys using 128-bit, 192-bit, and 256-bit AES in CBC mode

(XML encryption padding)

 wrapping plain data using 128-bit, 192-bit, and 256-bit AES in ECB mode

(no padding) and CBC mode (no padding)

 wrapping using XOR

Digests SHA-1

 SHA-256

 SHA-384

 SHA-512

Key agreement Classical Diffie-Hellman (DH) with up to 1024-bit prime P

 Elliptic curve Diffie-Hellman (ECDH) (for supported curve types, see §1.3)

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 19 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Function Algorithms

Key generation random buffer of bytes (for example, DES and AES keys)

 ECC key pairs (for supported curve types, see §1.3)

 Key derivation slicing (selecting a substring of bytes from another key)

 selecting odd or even bytes

 encrypting/decrypting raw bytes (for example, DES and AES keys) using

128-bit, 192-bit, and 256-bit AES in ECB mode (no padding) and CBC

mode (no padding)

 iterated SHA-1

 SHA-256 with plain prefix and suffix

 SHA-384

 byte reversing

 NIST 800-108 key derivation with 128-bit AES-CMAC in counter mode

 KDF2 used in the RSAES-KEM-KWS scheme of the Open Mobile Alliance

(OMA) DRM specification

 deriving raw bytes (for example, DES and AES keys) from an ECC private

key

 CMLA key derivation defined by the CMLA Technical Specification

 128-bit AES encryption in ECB mode (no padding) with a concatenated

key and optional SHA-1 function

Miscellaneous device binding

 decryption of PDF files of version 1.6 and 1.7 using 128-bit AES in CBC

mode

1.3 Supported ECC Curves

SKB supports the following ECC curve types:

 160-bit prime curve recommended by SECG, SECP R1

 192-bit prime curve recommended by NIST (same as 192-bit SECG, SECP R1)

 224-bit prime curve recommended by NIST (same as 224-bit SECG, SECP R1)

 256-bit prime curve recommended by NIST (same as 256-bit SECG, SECP R1)

 384-bit prime curve recommended by NIST (same as 384-bit SECG, SECP R1)

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 20 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 521-bit prime curve recommended by NIST (same as 521-bit SECG, SECP R1)

 150-bit to 521-bit prime ECC curves with custom domain parameters

 ElGamal ECC decryption and ElGamal ECC key unwrapping support only 160-bit, 192-bit, 224-

bit, and 256-bit prime curves. ECC key generation, ECDSA, and ECDH support all the listed ECC

curve types, including ECC curves with custom domain parameters.

1.4 Supported Target Platforms

The following table lists operating systems and architectures supported by SKB, and build systems

used to build and test the SKB library. Use of other platforms may require additional support from

us.

Platform Architectures Build systems

Windows Vista/7/8/8.1 (Windows API) x86, x86_64 Visual Studio 2010, 2012, and 2013

Windows 8/8.1 (Windows Runtime) x86, x86_64 Visual Studio 2012 and 2013

OS X x86, x86_64 Xcode 5.0

GNU/Linux x86, x86_64 GCC 4.4.3

GNU/Linux ARM Sourcery CodeBench Lite 2012.03-57

GNU/Linux MIPS Sourcery CodeBench Lite 2014.05-27

Android x86, x86_64,

ARM (32-bit and

64-bit), MIPS (32-

bit and 64-bit)

Android NDK r10d

iOS ARM (32-bit and

64-bit)

Xcode 5.0

Windows Phone 8 ARM Visual Studio 2012

Windows Phone 8.1 ARM Visual Studio 2013

Google Native Client (NaCl) X86, x86_64, ARM,

PNaCl

Native Client SDK Pepper 39

PlayStation 3 Cell (PPU) PlayStation 3 Programmer Tool

Runtime Library 460.001

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 21 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Platform Architectures Build systems

uClibc/Linux MIPSel Broadcom CrossTools, GCC 4.2

1.5 Directory Structure and Contents

The following table describes the directory structure of the SKB package:

Directory or file Description

/Build/ Contains the files needed to build SKB examples, tests, and Platform-

Specific Library for various target operating systems. For information

on building these files, see §2.3.

/Build/Targets Contains several subdirectories for supported target operating

systems and architectures. Each subdirectory contains build files

required for building SKB examples, tests, and Platform-Specific

Library.

For information on building SKB examples, tests, and Platform-

Specific Library, see §2.3.

/Documents/ Contains SKB documentation.

/Examples/ Contains SKB examples. For information on building the examples,

see §2.3.

/Include/ Contains the following header files:

 SkbConfiguration.h: Tells which features are enabled and

disabled in the current SKB package.

 SkbExtensions.h: Interface to functions that are considered to

be an extension to the main SKB API. Currently, this interface only

contains the functions for PDF file decryption (see §6).

 SkbInternalExposed.h: Interface that is internally used by unit

tests and speed tests.

 SkbInternalHelpers.h: Interface of Sensitive Operations Library

(see §4.1).

 SkbPlatform.h: Interface of Platform-Specific Library (see §4.2).

 SkbSecureKeyBox.h: Entire public interface of SKB (see §7). This

is the main API that you use with SKB.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 22 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Directory or file Description

/Libraries/ Contains the following binaries for different target platforms:

 SKB static library

 Sensitive Operations Library (see §4.1)

 Platform-Specific Library (see §4.2)

 Custom ECC Tool (see §5.1)

 Diffie-Hellman Tool (see §5.2)

 Key Export Tool (see §5.3)

 SQLite library (see §4.2.3)

 Binary Update Tool (see §5.4)

 If you have ordered a tamper resistant SKB library (see

§1.1.9), you always have to run the Binary Update Tool on

the final protected application once it is built as described

in §5.4. Otherwise, the protected application will crash at

run time.

/Source/ Contains the source files and configuration files used by SKB

examples and tests.

/SpeedTests/ Contains speed tests for measuring the performance of various

cryptographic algorithms. For information on building tests, see §2.3.

/Test/ Contains unit tests. You can compile and run them to verify that SKB

is running correctly. For information on building tests, see §2.3.

/ThirdParty/ Contains third-party files needed to compile the source files delivered

along with SKB.

/Tools/SkbPlatform Contains source code for Platform-Specific Library. This library is also

available in a binary format, in the Libraries directory.

For more information on Platform-Specific Library, see §4.2.

/Tools/SkbUtils Contains source code for several functions and variables used by the

SKB tests.

Secure Key Box User Guide 1 Introduction

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 23 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Directory or file Description

/export.id Text file containing the identifier of the export key (see §1.1.6)

included in this SKB instance, as well as identifiers of all export keys

whose exported data this SKB instance is capable of upgrading (see

§3.7).

The file structure is as follows:

Legacy key 0 ID: «export key identifier»

Legacy key 1 ID: «export key identifier»

Legacy key 2 ID: «export key identifier»

...

Current key version «N» ID: «export key identifier»

Legacy key specifies identifiers of export keys whose exported data

can be upgraded by this SKB instance. Current key specifies the

identifier of the export key that is used by this SKB instance to

encrypt exported data.

To find out which export key was used to export particular data, you

can compare export key identifiers in this file to the export key

identifier in the header of exported data as described in §8.1.

/SConstruct This file is used by SCons to build the source files delivered along

with SKB. For information on using SCons for building the files, see

§2.3.

1.6 Limitations and Known Problems

Please carefully review the following list of limitations and known problems before including SKB into

your applications:

 Features utilizing RSA or ECC custom curve algorithms do not work on PlayStation 3.

 Before running SKB examples, speed tests, and unit tests on PlayStation 3, the make_fself tool

included in the PS3 SDK has to be run on the executables.

 When unwrapping raw bytes with RSA using OAEP padding, only the SHA-1 variant of OAEP

padding is supported. SHA-256 is not supported.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 24 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

2 Building Applications Protected by SKB

This chapter describes the recommended manner to build and deploy an application that is

integrated with SKB. Following these steps is important to achieve the maximum security provided by

SKB. It also provides instructions for building SKB examples, tests, and Platform-Specific Library (see

§4.2) for different target platforms.

2.1 Building a Protected Application

SKB is delivered as a precompiled static library. The public interface to this library is described in the

SkbSecureKeyBox.h file, which is located in the Include directory.

To build an application protected by SKB, you must perform the following main steps:

1. Link your application with the following libraries:

 appropriate SecureKeyBox library from the Libraries directory, depending on the target

platform

 Platform-Specific Library, which provides certain functions that have different

implementations for different operating systems (see §4.2)

 SQLite library if you are using SQLite-based key caching (see §4.2.3)

 Make sure you are not linking or distributing any of the unsafe SKB components listed in

§2.2.

2. Build your application and make sure you use the following compiler and linker settings

depending on your build system:

Build system Settings to use

Visual Studio enable references to remove unnecessary code (/OPT:REF)

 enable COMDAT folding to remove duplicated code (/OPT:ICF)

GCC if compiling for OS X via the command line, use the -Wl,-dead_strip

option to remove unnecessary code sections

 if compiling for Linux, use the -Wl,-gc-sections option to remove

unnecessary code sections

Xcode enable Deployment Postprocessing to remove information that can be

used to reverse engineer the code

 enable Strip Linked Product to remove information that can be used to

reverse engineer the code

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 25 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3. To ensure that symbol information is correctly stripped from the executable, open the executable

in a binary editor and search for a string “whitebox”.

The string should not be present in the code. If it is, ensure you have completed the items in step

2.

4. If the SKB package delivered to you has tamper resistance applied (see §1.1.9), run the Binary

Update Tool on the final built application as described in §5.4.

2.2 Distributing a Protected Application

SKB consists of a number of binary libraries and supporting files. Some of these components are

secure and can be safely included in the final protected application. However, some components

expose sensitive operations that can lead to key exposure and therefore should be considered

insecure. These components serve a specific purpose and are usually not required in the final

deliverable that is delivered to end users.

The following table shows groups of safe and unsafe SKB components.

Safe components Unsafe components

 SKB library (SecureKeyBox)

 Platform-Specific Library (SkbPlatform)

 examples

 SQLite library

 Key Export Tool

 Custom ECC Tool

 Diffie-Hellman Tool

 unit tests and speed tests

 Sensitive Operations Library

(InternalHelpers)

 utilities (SkbUtils)

 LibTomCrypt and LibTomMath libraries (only

required by tests)

Components in the left-hand column are self-sufficient and can be considered safe. Including these

components in your application will not compromise the security provided by SKB. Components in

the right-hand column, however, should be considered unsafe and must never be included in an

application that is deployed in an open environment. They can only be used on a protected

computer that is not accessible to end users.

2.3 Building Examples, Tests, and Platform-Specific Library

A number of additional C++ source files are delivered together with SKB. These files include

examples, tests, and Platform-Specific Library (see §4.2). Platform-Specific Library is a mandatory

component that is necessary for the execution of SKB. Other components are optional.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 26 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The following subsections describe the recommended and supported way of building these files for

different targets.

2.3.1 Building for Windows API

Visual Studio is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment and compile the source files.

2.3.1.1 Prerequisites

To compile the source files, you will need a computer with the Windows operating system that has

Visual Studio installed. For information on supported Visual Studio versions, see §1.4.

2.3.1.2 Compiling

To compile the source files, proceed as follows:

1. Open the Visual Studio solution named SecureKeyBox.sln in one of the following directories,

depending on your needs:

 Build/Targets/all-microsoft-win32-vs2010: Visual Studio 2010 solution for Windows

API.

 Build/Targets/all-microsoft-win32-vs2012: Visual Studio 2012 solution for Windows

API.

 Build/Targets/all-microsoft-win32-vs2013: Visual Studio 2013 solution for Windows

API.

This solution contains the following specific projects:

Project Description

SkbExamples Runs SKB examples

SkbSpeedTests Runs SKB speed tests

SkbTestSuite Runs SKB unit tests

2. Compile the solution.

2.3.2 Building for Windows Runtime and Windows Phone

Visual Studio is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment and compile the source files.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 27 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

2.3.2.1 Prerequisites

To compile the source files, you will need a computer with the Windows operating system that has

Visual Studio installed. For information on supported Visual Studio versions, see §1.4.

2.3.2.2 Compiling

To compile the source files, proceed as follows:

1. Open the Visual Studio solution named SecureKeyBox.sln in one of the following directories,

depending on your needs:

 Build/Targets/all-microsoft-winrt-vs2012: Visual Studio 2012 solution for Windows

Runtime

 Build/Targets/all-microsoft-winrt-vs2013: Visual Studio 2013 solution for Windows

Runtime

 Build/Targets/arm-windows-phone-vs2012: Visual Studio 2012 solution for Windows

Phone 8.0

 Build/Targets/arm-windows-phone-vs2013: Visual Studio 2013 solution for Windows

Phone 8.1

The solution contains the following specific projects:

Project Description

SkbExamplesApp Runs SKB examples as a Microsoft design language app.

SkbExamplesUnitTest Runs SKB examples as a Visual Studio unit test.

SkbSpeedTestsApp Runs SKB speed tests as a Microsoft design language app.

SkbSpeedTestsUnitTest Runs SKB speed tests as Visual Studio unit tests.

SkbTestSuiteUnitTest Runs SKB unit tests as Visual Studio unit tests.

2. Compile the solution.

2.3.3 Building for Linux

The SCons build tool is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment and compile the source code.

2.3.3.1 Prerequisites

The following prerequisites must be met before building the source files:

1. Download and install SCons 2.3.0.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 28 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

2. Depending on your target architecture, download and install the necessary build system as listed

in §1.4.

2.3.3.2 Compiling

To compile the source files, go to the root directory of the SKB package and execute the following

command:

scons target=«your_target» build_config=«Debug|Release»

The following table describes parameters used in this command:

Parameter Description

target Specifies the target platform, corresponding to an appropriate subdirectory in

the Build/Targets directory:

 arm-unknown-linux: GNU/Linux edition for the ARM architecture

 x86-unknown-linux: GNU/Linux edition for the x86 architecture

 x86_64-unknown-linux: GNU/Linux edition for the x86_64 architecture

 mips-unknown-linux: GNU/Linux edition for the MIPS architecture

 mipsel-broadcom-linux: GNU/Linux edition for the MIPSel architecture

If the target is not specified, the source files will be built for the default target,

which is your build machine.

build_config Specifies whether the binaries should be compiled in release or debug mode.

The following values can be set:

 Debug: Produces binary files in debug mode and places them in the

Build/Targets/«your_target»/Debug directory. This is the default

value.

 Release: Produces binary files in release mode and places them in the

Build/Targets/«your_target»/Release directory.

2.3.4 Building for Android

Android NDK is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment, compile the source code, and run the compiled

examples.

2.3.4.1 Prerequisites

To build the source files for Android, you will need a computer with Android NDK installed. For

information on Android NDK requirements, see §1.4.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 29 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 Make sure the Android NDK root directory is added to the system’s PATH variable.

2.3.4.2 Compiling

To compile the source files, proceed as follows:

1. Go to one of the following directories, depending on the architecture used:

 Build/Targets/arm64-google-android

 Build/Targets/arm-google-android

 Build/Targets/mips64-google-android

 Build/Targets/mips-google-android

 Build/Targets/x86_64-google-android

 Build/Targets/x86-google-android

2. Execute the following command:

ndk-build APP_OPTIM=«release|debug»

APP_OPTIM specifies whether the binaries should be compiled in release or debug mode. The

following values can be set:

 release (default value)

 debug

The compiled binary files will be placed in the libs directory.

2.3.4.3 Running

Once the files are compiled, you can transfer the files to the Android device via the Android Debug

Bridge (ADB) tool, which is included in the Android SDK.

The following is a sample ADB script that copies compiled SKB examples to the /data/local

directory on the connected Android device (this directory always allows executing files), makes them

executable, and runs them:

adb shell rm /data/local/SkbExamples

adb push SkbExamples /data/local

adb shell chmod 777 /data/local/SkbExamples

adb shell "cd /data/local/ && ./SkbExamples"

2.3.5 Building for OS X and iOS

Xcode is used to build SKB examples, tests, and Platform-Specific Library. This section describes how

to set up the build environment and compile the source code.

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 30 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

2.3.5.1 Prerequisites

To compile the source files, you will need a computer with the OS X system that has Xcode installed.

For information on the supported Xcode version, see §1.4.

2.3.5.2 Compiling

To compile the source files, proceed as follows:

1. Go to the Build/Targets/«your_target» directory.

2. Open the Xcode project.

3. Select the required scheme.

4. Compile the project.

The location, where compiled files are placed, depends on the system:

System Location of compiled files

OS X One of the following directories depending on the compilation mode:

 Build/Targets/universal-apple-macosx/build/Debug

 Build/Targets/universal-apple-macosx/build/Release

iOS One of the following directories depending on the compilation mode:

 Build/Targets/arm-apple-ios/build/Debug-iphoneos

 Build/Targets/arm-apple-ios/build/Release-iphoneos

2.3.6 Building for Google Native Client (NaCl)

The SCons build tool is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment and compile the source code.

2.3.6.1 Prerequisites

The following prerequisites must be met before building the source files:

1. Download and install SCons 2.3.0.

2. Download and install Native Client SDK.

2.3.6.2 Compiling

Compiling for Google Native Client is performed the same way as described in §2.3.3.2, with the

target parameter set to one of the following, depending on the necessary architecture:

 nacl/arm

 nacl/pnacl

Secure Key Box User Guide 2 Building Applications Protected by SKB

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 31 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 nacl/x86_32

 nacl/x86_64

 If your application is using SKB algorithms that depend on random generation, you must use

the SKB_InitRng and SKB_DestroyRng functions of Platform-Specific Library as described in

§4.2.2.

2.3.7 Building for PlayStation 3

The SCons build tool is used to build SKB examples, tests, and Platform-Specific Library. This section

describes how to set up the build environment and compile the source code.

2.3.7.1 Prerequisites

The following prerequisites must be met before building the source files:

1. Download and install SCons 2.3.0.

2. Download and install PlayStation 3 Programmer Tool Runtime Library 460.001.

2.3.7.2 Compiling

Compiling for PlayStation 3 is performed the same way as described in §2.3.3.2, with the target

parameter set to ppu-playstation3.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 32 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3 Cryptographic Operations

This chapter provides high-level task-based information about the main cryptographic operations

that can be performed with SKB.

3.1 Loading Wrapped Keys

A wrapped key is a cryptographic key encrypted with another key. Loading wrapped keys

(unwrapping) is a more secure way for importing keys into SKB. SKB loads a wrapped key and

internally decrypts it using a pre-loaded unwrapping key.

Loading a wrapped key

Unwrapping is not the same operation as regular decryption, because regular decryption provides

the output in plain form (see §3.11.2). The unwrapped key is directly transformed into a secure data

object and is never exposed in plain form.

To unwrap a key, call the SKB_Engine_CreateDataFromWrapped method (see §7.9.5) and provide the

necessary parameters, such as the following:

 wrapped key

 type of the wrapped key

 format of the wrapped key

 algorithm for unwrapping the data (for the special case of using the ElGamal ECC unwrapping

algorithm, see §3.1.1)

 additional parameters for the unwrapping algorithm

 unwrapping key

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 33 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3.1.1 Unwrapping Keys Wrapped with the ElGamal ECC Algorithm

Since there are no widely accepted standards for storing the output of ElGamal ECC decryption, this

section describes the format used by SKB. In connection with this, you may have to perform

additional steps to extract the actual unwrapped key from the output as described below.

In the case of the ElGamal ECC unwrapping algorithm, the wrapped buffer of the

SKB_Engine_CreateDataFromWrapped method (see §7.9.5) should contain two points on an ECC

curve as described in §8.4.

After the unwrapping method is successfully executed, the data variable will point to a buffer that

contains the X coordinate of the decrypted point on the ECC curve. The actual unwrapped key is

stored within the X coordinate using the big-endian notation. You must then extract the unwrapped

key bytes from the X coordinate using the SKB_SecureData_Derive method and the

SKB_DERIVATION_ALGORITHM_SLICE algorithm (see §7.9.17) according to your ElGamal ECC

encryption padding scheme used. With this approach, you can use any padding scheme for

encryption.

For example, assume you use ElGamal ECC with the NIST-256 curve to wrap a secret 16-byte AES key

by adding 4 bytes to its beginning to map it to a point on an ECC curve. Then the unwrapping code

should resemble the following:

SKB_SecureData* secret_key; // This will contain the unwrapped AES key

SKB_SecureData* temp_data;

SKB_SecureData* ecc_key = ...; // Previously obtained ECC private key

SKB_Byte wrapped_buffer[256/8 * 4] = { ... };

SKB_Size wrapped_buffer_size = sizeof(wrapped_buffer);

// ECC parameters

SKB_EccParameters params = {};

params.curve = SKB_ECC_CURVE_NIST_256;

params.domain_parameters = NULL;

params.random_value = NULL;

SKB_Engine_CreateDataFromWrapped(engine,

 wrapped_buffer,

 wrapped_buffer_size,

 SKB_DATA_TYPE_BYTES,

 SKB_DATA_FORMAT_RAW,

 SKB_CIPHER_ALGORITHM_ECC_ELGAMAL,

 ¶ms,

 ecc_key,

 &temp_data);

// Now temp_data contains 256/8 = 32 bytes. The secret AES key is stored in

// bytes with indices 12 to 27. Remember that data is in big-endian, so when

// you add 4 bytes before the 16-byte AES key in encryption process, the

// whole 20 bytes go to bytes with indices 12 to 31 (the 4 added bytes are

// stored in bytes with indices 28 to 31).

// Extract the AES key from bytes 12 to 27

SKB_SliceDerivationParameters params = { 12, 16 }; // from, size

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 34 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_SecureData_Derive(temp_data,

 SKB_DERIVATION_ALGORITHM_SLICE,

 ¶ms,

 &secret_key);

// Release temporary data

SKB_SecureData_Release(temp_data);

// Now use secret_key that contains the 16-byte AES key

// ...

// Release the secret key when it is no longer needed

SKB_SecureData_Release(secret_key);

3.2 Loading Plain Keys

SKB is designed to always work with keys in protected form. If a key needs to be loaded into SKB,

normally you should delivered and load it in encrypted form. However, for very rare cases, SKB does

support direct loading of plain keys.

 Loading a plain key is a very insecure operation and should be avoided if possible. There are

better alternatives for achieving this as described in §1.1.7. Normally, importing of plain keys is

disabled in SKB.

To directly load a plain key as a secure data object, call the SKB_Engine_CreateDataFromWrapped

method (see §7.9.5) and specify the unwrapping algorithm SKB_CIPHER_ALGORITHM_NULL.

In this case, the unwrapping key and parameters do not have to be provided.

This operation will work only if importing of plain keys is enabled in SKB.

3.3 Wrapping Keys

A cryptographic key that is stored within a secure data object can be encrypted with another key. This

process is called wrapping. The wrapped key can then be passed to any other cryptographic library

(not necessarily SKB) where it can be unwrapped and used.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 35 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Wrapping a key

Wrapping is not the same operation as regular encryption, because regular encryption requires plain

data as input (see §3.11.1). The wrapping operation takes a secure data object as an input, and

therefore the wrapped key is never exposed in plain form.

Wrapping is also not the same operation as secure data exporting, because exporting encrypts keys

with a hidden export key that is unique to the particular SKB instance (see §3.5). Wrapping allows

using any arbitrary key as a wrapping key, provided that it is supported by the wrapping algorithm.

To wrap a key contained within a secure data object, call the SKB_SecureData_Wrap method, specify

the secure data object, specify the wrapping algorithm and key, and provide the necessary

parameters (see §7.9.16).

3.4 Wrapping Plain Data

In some cases, you may want to take a plain input buffer, encrypt it with a key, and store the output

as a new secure data object. For example, this operation is suitable for deriving new keys from some

input seed and a specific key.

To wrap plain data, call the SKB_Engine_WrapDataFromPlain method (see §7.9.7). The input is plain

data, but the encryption key and the output of the method are secure data objects.

3.5 Exporting Keys

SKB operates on keys in memory. If you need some key to be persistent or if you want it to be

available to multiple engines, you can request SKB to provide a protected form of the key, which can

then be securely exported and stored.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 36 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

When the exported key is needed again later, you can request SKB to import it as a new secure data

object similar to the one whose data was initially exported. For information on importing exported

keys, see §3.6.

When SKB is asked to export a key, it encrypts the actual contents of the referenced secure data

object (not its binary representation) with the embedded export key (see §1.1.6). The export key of

the exporting instance must match the export key of the importing instance.

To export a key, call the SKB_SecureData_Export method, specify the secure data object to be

exported, and provide a memory buffer where the exported data should be written (see §7.9.15). For

information on the format used to store exported keys, see §8.1.

3.6 Importing Keys

If you have a protected buffer of data containing a key previously exported from SKB (or obtained

using Key Export Tool or Sensitive Operations Library), you can import it into SKB. The export key of

the exporting instance must match the export key of the importing instance.

To import a key, call the SKB_Engine_CreateDataFromExported method and provide the exported

data buffer (see §7.9.6). This method will create a new secure data object containing the imported

key.

3.7 Upgrading Exported Keys

SKB supports one-way data upgrade deployments. This means that you have an option to request

multiple SKB packages, where each package is assigned a version number, starting with version 1.

These packages are configured so that an SKB instance with a greater version number can upgrade

and import keys exported by all SKB instances with a smaller version number, but not the other way

round.

The practical application of this is that older versions of your protected application will not be able to

read data exported by newer versions of that application. For example, if someone successfully

cracks your application, the attack will not be directly applicable to newer releases of that application.

The one-way data key upgrade mechanism is implemented by embedding into each SKB package all

export keys of its previous versions as shown in the following diagram.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 37 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

One-way data upgrading

To implement the one-way data upgrading process, proceed as follows:

1. Order multiple versioned SKB packages.

2. Integrate SKB package with version 1 into your application.

3. When creating an updated version of your application, execute the following steps:

 In the application code, replace the SKB library with the subsequent version.

 In the process of upgrading your application, execute the

SKB_Engine_UpgradeExportedData method on each key exported by the previous SKB

version as described in §7.9.12.

This function will upgrade the exported keys so that they are no longer readable by the

previous SKB version. With this approach, you can even upgrade keys exported by older SKB

releases.

Note: Alternatively, you can upgrade exported keys with Key Export Tool as described in §5.3.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 38 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 Key upgrading should be performed only once. To avoid security risks, do not perform key

upgrading and importing every time SKB is run. After the upgrade, make sure all keys of

previous versions are permanently deleted.

3.8 Generating Keys

SKB provides a way for generating new symmetric and private keys. The generated keys will contain

random content based on the native system’s random generator (for Windows, the CryptoAPI is

used; for other systems, the /dev/random device is used). If necessary, you can create a custom

implementation for the random generator function as described in §4.

To generate a new random key, call the SKB_Engine_GenerateSecureData method, specify what

type of key you want to generate, and provide the necessary parameters (see §7.9.8).

With the help of this method, you can generate:

 random buffer of bytes (for example, a DES or AES key)

 private ECC keys

Currently, SKB does not support generating private RSA keys.

3.9 Deriving a Public Key from a Private Key

As described in §3.8, SKB can generate new random private ECC keys. In connection with this, it may

be necessary to get the corresponding public keys as well. A public key can be derived from a private

key.

To derive a public key from a private key, call the SKB_SecureData_GetPublicKey method, provide

the secure data object containing the private key, and supply the necessary parameters (see §7.9.18).

This method will return a buffer of bytes containing the corresponding public key.

Currently, this operation is supported only for ECC keys, but not for RSA keys.

3.10 Deriving Keys

This section describes several operations that can be used to derive one cryptographic key from

another.

3.10.1 Deriving a Key as a Substring of Bytes of Another Key

In some cases, it is necessary to securely derive a new key as a substring of bytes of another key. To

do this, call the SKB_SecureData_Derive method, select either the

SKB_DERIVATION_ALGORITHM_SLICE or SKB_DERIVATION_ALGORITHM_BLOCK_SLICE algorithm, and

specify the range of bytes to be derived as a new key (see §7.9.17).

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 39 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The only difference between the SKB_DERIVATION_ALGORITHM_SLICE and

SKB_DERIVATION_ALGORITHM_BLOCK_SLICE algorithms is that the latter requires the index of the

first byte and the number of bytes in the substring to be multiples of 16.

You can use the SKB_DERIVATION_ALGORITHM_SLICE algorithm to extract the unwrapped key from

the output of the ElGamal ECC unwrapping algorithm, as described in §3.1.1.

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), not an RSA or ECC private key.

3.10.2 Deriving a Key as Odd or Even Bytes of Another Key

SKB allows you to derive new keys from an existing key by selecting a number of its odd or even

bytes. For example, if you have a 256-byte key, you can derive two 128-byte keys from it (the size of

the derived keys can be smaller). One key would have the bytes of the input key with indices 0, 2, 4, 6,

and so on (odd bytes). The other key would have the bytes of the input key with indices 1, 3, 5, 7, and

so on (even bytes).

To create a new key as odd or even bytes of another key, call the SKB_SecureData_Derive method,

select the SKB_DERIVATION_ALGORITHM_SELECT_BYTES algorithm, and specify the necessary

parameters (see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.3 Deriving a Key by Encrypting or Decrypting an Existing Key

One way of obtaining a new key is by taking an existing key and encrypting or decrypting it with

another key. Since keys cannot appear in plain form, the input key, the encrypting/decrypting key,

and the output key have to be secure data objects. SKB supplies a special derivation algorithm for

this purpose.

To create a new key as a result of encrypting another key, call the SKB_SecureData_Derive method,

select the SKB_DERIVATION_ALGORITHM_CIPHER algorithm, and specify the necessary parameters

(see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.4 Deriving a Key as a Protected Hash Value of Another Key

SKB provides two special key derivation algorithms that allow obtaining a new key from a hash value

calculated from another key:

 iterated SHA-1 derivation (see §3.10.4.1)

 SHA-256 derivation with plain prefix and suffix (see §3.10.4.2)

 SHA-384 derivation (see §3.10.4.3)

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 40 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The main difference from the standard SHA operations (provided by the SKB_Transform class) is that

the output of these special algorithms is a secure data object, whereas the SKB_Transform class

provides the hash value in plain form. This feature makes these algorithms suitable for deriving new

keys.

3.10.4.1 Iterated SHA-1 Derivation

The iterated SHA-1 derivation algorithm creates a new key as a substring of bytes from a SHA-1 hash

value obtained from another key.

This algorithm functions as follows:

1. The SHA-1 hash value is calculated from the contents of the provided secure data object (key).

The result is 20 bytes containing the hash value.

2. Optionally, if requested by the caller (number of rounds is greater than 1), the specified number

of bytes is taken from the beginning of the 20-byte hash value and passed to the SHA-1 algorithm

again one or several times.

Each time, the result again is 20 bytes containing the hash value.

3. Finally, the specified number of bytes is taken from the beginning of the 20-byte hash value and

returned as a new secure data object.

To create a new key as a substring of bytes of a SHA-1 hash value of another key, call the

SKB_SecureData_Derive method, select the SKB_DERIVATION_ALGORITHM_SHA_1 algorithm, and

specify the necessary parameters (see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.4.2 SHA-256 Derivation with Plain Prefix and Suffix

This derivation algorithm creates a hash value of a buffer that contains three parts in the following

sequence:

1. plain data of arbitrary size

2. secure data object (key)

3. plain data of arbitrary size

The output is stored as a new secure data object, which can serve as a new key.

To create a new key using this SHA-256 derivation, call the SKB_SecureData_Derive method, select

the SKB_DERIVATION_ALGORITHM_SHA_256 algorithm, and specify the plain prefix and suffix buffers

(see §7.9.17).

This operation can only be performed with secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 41 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3.10.4.3 SHA-384 Derivation

The SHA-384 derivation algorithm applies SHA-384 to the input secure data object (key) and stores

the output as a new secure data object (key). Unlike the SHA-1 derivation algorithm, this operation is

executed only once and the entire 48-byte hash value is returned as an output.

To create a new key as a SHA-384 hash value of another key, call the SKB_SecureData_Derive

method and select the SKB_DERIVATION_ALGORITHM_SHA_384 algorithm (see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.5 Reversing the Order of Bytes of a Key

SKB provides a simple derivation algorithm that allows you to reverse the order of bytes within a

secure data object. With this method, you can not only derive new keys but also convert a little-

endian data buffer to big-endian and vice versa.

To create a new secure data object with a reversed order of bytes, call the SKB_SecureData_Derive

method and select the SKB_DERIVATION_ALGORITHM_REVERSE_BYTES algorithm (see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.6 Using the NIST 800-108 Key Derivation Function

SKB provides a derivation algorithm that is based on the NIST Special Publication 800-108, which is

available here:

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

The following special notes apply to the SKB implementation:

 128-bit AES-CMAC is used as the pseudorandom function.

 The key derivation function works in counter mode.

 The size of the iteration counter and its binary representation (parameters “i” and “r”) is 8 bits.

 The size of the integer specifying the length of the derived key (parameter “L”) is 32 bits and is

encoded using the big-endian notation.

To execute this derivation algorithm, call the SKB_SecureData_Derive method, select the

SKB_DERIVATION_ALGORITHM_NIST_800_108_COUNTER_CMAC_AES128 algorithm, and specify the

necessary parameters (see §7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 42 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3.10.7 Using KDF2 of the RSAES-KEM-KWS Scheme Defined in the OMA DRM

Specification

SKB provides a derivation algorithm that is based on KDF2 used in the RSAES-KEM-KWS scheme of

the OMA DRM specification.

To execute this derivation algorithm, call the SKB_SecureData_Derive method, select the

SKB_DERIVATION_ALGORITHM_OMA_DRM_KDF2 algorithm, and specify the necessary parameters (see

§7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.8 Deriving a Key as Raw Bytes from a Private ECC Key

In some scenarios, you may want to derive a new key as raw bytes (for example, a DES or AES key)

from an ECC private key.

To execute this derivation algorithm, call the SKB_SecureData_Derive method, select the

SKB_DERIVATION_ALGORITHM_RAW_BYTES_FROM_ECC_PRIVATE algorithm, and specify the necessary

parameters (see §7.9.17).

The derived data buffer will contain the ECC private key in little-endian or big-endian encoding

(depending on the provided parameters), and its size will be the same as the size of the ECC private

key rounded up to whole bytes. You can then use other derivation algorithms to obtain new keys.

This operation can only be performed on secure data objects that contain an ECC private key.

3.10.9 Deriving a Key Using the CMLA Key Derivation Function

SKB provides a derivation algorithm that is based on the key derivation function specified in the

CMLA Technical Specification.

To execute this derivation algorithm, call the SKB_SecureData_Derive method, select the

SKB_DERIVATION_ALGORITHM_CMLA_KDF algorithm, and specify the necessary parameters (see

§7.9.17).

This operation can only be performed on secure data objects that contain raw bytes (for example, a

DES or AES key), but not an RSA or ECC private key.

3.10.10 Deriving a Key By Encrypting Data Using 128-bit AES With a

Concatenated Key

This derivation algorithm consists of several steps executed one after another as shown in the

following diagram:

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 43 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Key derivation based on 128-bit AES encryption with a concatenated key and SHA-1

The diagram contains the following elements:

 ORIGINAL KEY is the secure data object used as an input of the derivation algorithm (must be 12

bytes long).

 plain_1 and plain_2 are plain data buffers provided as input parameters to the algorithm. plain_2

must be 16 bytes long.

 secure_p is a secure data object provided as an input parameter to the algorithm (must be 4

bytes long).

 DERIVED KEY is a new secure data object provided in the output.

Additionally, this derivation algorithm supports a simplified mode of operation when plain_1 is not

provided (is NULL). Then the algorithm is executed as follows:

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 44 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Key derivation based on 128-bit AES encryption with a concatenated key without SHA-1

As can be seen, this algorithm is similar to the first one, except the SHA-1 step involving the plain_1

parameter is omitted.

To execute this derivation algorithm, call the SKB_SecureData_Derive method (see §7.9.17), select

the SKB_DERIVATION_ALGORITHM_SHA_AES algorithm, and supply

SKB_ShaAesDerivationParameters as the parameters structure (see §7.10.15).

This operation can only be performed on secure data objects that contain raw bytes and are 12

bytes long.

3.11 Encrypting and Decrypting Data

This section describes operations related to encrypting and decrypting data.

3.11.1 Encrypting Data

Encryption is a process where a cryptographic cipher and a cryptographic key are applied to plain

data to produce encrypted data.

DES, Triple DES, and AES are the only supported encryption ciphers. The main reason for this is that

encryption for asymmetric key ciphers (RSA and ElGamal ECC) require a public key, which is usually

known and therefore does not require protection.

To encrypt data, proceed as follows:

1. Create a cipher object using the SKB_Engine_CreateCipher method, specify the encryption

algorithm and key, specify the direction SKB_CIPHER_DIRECTION_ENCRYPT, and provide the

necessary parameters as described in §7.9.10.

2. Encrypt the input buffer by calling the SKB_Cipher_ProcessBuffer method as described in

§7.9.23.

This method returns a byte buffer containing the encrypted data.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 45 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

3. When no longer needed, release the cipher object by calling the SKB_Cipher_Release method

as described in §7.9.24.

3.11.2 Decrypting Data

Decryption is a process where a cryptographic cipher and a cryptographic key are applied to

encrypted data to produce plain data.

To decrypt data, proceed as follows:

1. Create a cipher object by calling the SKB_Engine_CreateCipher method, specify the decryption

algorithm and key, specify the direction SKB_CIPHER_DIRECTION_DECRYPT, and provide the

necessary parameters as described in §7.9.10.

2. Decrypt the input buffer by calling the SKB_Cipher_ProcessBuffer method as described in

§7.9.23.

This method returns a byte buffer containing the decrypted data.

3. When no longer needed, release the cipher object by calling the SKB_Cipher_Release method as

described in §7.9.24.

3.11.3 Using the High-Speed AES

SKB provides an alternative high-speed implementation of AES, which is intended for encrypting and

decrypting high-volume data, such as a video stream. High-speed AES performance is very close to

the performance of unprotected AES.

To use high-speed AES, specify the SKB_CIPHER_FLAG_HIGH_SPEED flag when creating the

SKB_Cipher object as described in §7.9.10.

3.12 Calculating a Digest

Calculating a digest involves taking a buffer of plain or secure data and calculating the hash value.

The output is a plain buffer of bytes.

To calculate a digest, proceed as follows:

1. Create a transform object by calling the SKB_Engine_CreateTransform method, select the

SKB_TRANSFORM_TYPE_DIGEST type, and specify the necessary parameters as described in §7.9.9.

2. Supply a buffer of plain or secure data as an input to the transform object by calling the

SKB_Transform_AddBytes method (§7.9.20) and SKB_Transform_AddSecureData method

(§7.9.21).

You can call these methods more than once to pass a large buffer of input data consisting of

several smaller data chunks.

3. To calculate the digest, call the SKB_Transform_GetOutput function as described in §7.9.22.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 46 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4. Release the transform object when it is no longer needed by calling the SKB_Transform_Release

method as described in §7.9.19.

3.13 Creating a Signature

Calculating a signature involves executing the signing algorithm on a buffer of plain or secure data

using a particular signing key. The output is a plain buffer of bytes containing the signature.

To calculate a signature, proceed as follows:

1. Obtain a secure data object containing the signing key.

2. Create a transform object by calling the SKB_Engine_CreateTransform method, select the

SKB_TRANSFORM_TYPE_SIGN type, and specify the necessary parameters as described in §7.9.9.

3. Supply a buffer of plain or secure data as an input to the transform object by calling the

SKB_Transform_AddBytes method (§7.9.20) and SKB_Transform_AddSecureData method

(§7.9.21).

You can call these methods more than once to pass a large buffer of input data consisting of

several smaller data chunks. An exception is those signing algorithms that do not have their own

hash functions (SKB_SIGNATURE_ALGORITHM_RSA and SKB_SIGNATURE_ALGORITHM_ECDSA). These

algorithms assume that the input is already a message digest calculated using an arbitrary hash

function. Therefore, these algorithms will accept only one data buffer of plain data as an input.

This means that only the SKB_Transform_AddBytes method can be used (not

SKB_Transform_AddSecureData), and only once. Since these signing algorithms operate only on

plain data, they are significantly faster than other algorithms that employ a hash function.

4. To calculate the signature, call the SKB_Transform_GetOutput function as described in §7.9.22.

5. Release the transform object when it is no longer needed by calling the SKB_Transform_Release

method as described in §7.9.19.

3.14 Verifying a Signature

Verifying a signature involves executing the verification algorithm on a signature buffer using a

particular verification key. The output is 1 if the signature is verified and 0 if it is not.

To verify a signature, proceed as follows:

1. Obtain a secure data object containing the verification key.

2. Create a transform object by calling the SKB_Engine_CreateTransform method, select the

SKB_TRANSFORM_TYPE_VERIFY type, and specify the necessary parameters including the

verification key, as described in §7.9.9.

3. Supply a buffer of plain or secure data as an input to the transform object by calling the

SKB_Transform_AddBytes method (§7.9.20) and SKB_Transform_AddSecureData method

(§7.9.21).

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 47 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

You can call these methods more than once to pass a large buffer of input data consisting of

several smaller data chunks.

4. To verify the signature against the supplied data buffer, call the SKB_Transform_GetOutput

function as described in §7.9.22.

5. Release the transform object when it is no longer needed by calling the SKB_Transform_Release

method as described in §7.9.19.

3.15 Executing a Key Agreement Algorithm

The key agreement algorithm involves two parties that want to obtain a shared secret (usually a

cryptographic key) that is known only to them.

First, both parties each generate a public value or key that is given to the other party. Then each

party takes the other party’s public key and generates a shared secret. The shared secret is identical

to both parties. This algorithm is shown in the following diagram:

Key agreement algorithm

To perform the key agreement algorithm using SKB, proceed as follows:

1. Create a key agreement object by calling the SKB_Engine_CreateKeyAgreement method and

specify the necessary parameters as described in §7.9.11.

2. Generate a public key by calling the SKB_KeyAgreement_GetPublicKey method as described in

§7.9.25.

3. Exchange the public keys with the other party.

Secure Key Box User Guide 3 Cryptographic Operations

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 48 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4. With the other party’s public key on hand, compute the shared secret by calling the

SKB_KeyAgreement_ComputeSecret method as described in §7.9.26.

5. Release the key agreement object when it is no longer needed by calling the

SKB_KeyAgreement_Release method as described in §7.9.27.

3.16 Binding Keys to a Specific Device

Normally, keys exported by SKB can be imported by any other SKB instance that has the same export

key (see §1.1.6), regardless of the device it is run on. In some cases, you may want to bind exported

keys to a specific device, so that they cannot be imported on any other device.

SKB provides device binding via the method SKB_Engine_SetDeviceId (see §7.9.3), which can be

called after initializing the engine. By calling this method, you set the device ID, which is a byte array

of arbitrary length, typically derived from the hardware details or other environment-specific

parameters. This ID is combined with SKB export key to create a unique format for exported keys.

The SKB instance that imports keys must have the same export key and same device ID set as the

instance that exports the keys.

When the device ID is no longer needed, you can restore the default export format that depends

only on the export key.

3.17 Decrypting Encrypted PDF Documents

SKB provides several functions for safely decrypting contents of encrypted PDF files without revealing

the user password and the derived encryption key. A typical PDF decryption process involves the

following steps:

1. Obtain a user password.

2. Authenticate the user password to verify that the password is valid.

3. Derive the encryption key from the user password, which is then used in the actual decryption

process.

4. Decrypt parts of encrypted PDF objects with the derived encryption key.

For detailed instructions on how to perform PDF decryption using SKB, see §6.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 49 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4 Supporting Libraries

The core of SKB is delivered as a single binary library. However, for several reasons certain functions

are externalized as separate libraries that are delivered together with SKB.

The following supporting libraries are available:

Library Description

Sensitive Operations Library Contains functions for importing plain keys into SKB.

For information on this library, see §4.1.

Platform-Specific Library Contains functions that may be implemented differently on the

same architecture.

For information on this library, see §4.2.

4.1 Sensitive Operations Library

This section describes Sensitive Operations Library, internally called SkbInternalHelpers.

4.1.1 Overview

Sensitive Operations Library is used to perform the following operations:

 load plain keys as secure data objects

 export secure data objects as plain keys

Since importing and exporting plain keys are very insecure operations, this library is separated from

the main API and there is no dependency from one to another. For example, you may want to use

Sensitive Operations Library on a secure server that operates with plain keys, but you will definitely

want to exclude this library from a client application that is exposed to attacks (see 1.1.7).

If importing of plain data is disabled in SKB, the SKB_Engine_CreateDataFromWrapped method will

not allow loading plain keys (see §7.9.5). This however will not affect how Sensitive Operations Library

works.

Note: Sensitive Operations Library is required to run unit tests and Key Export Tool.

4.1.2 Library Functions

Sensitive Operations Library has its own interface defined in the Include/SkbInternalHelpers.h

file. This section describes the functions declared in this interface.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 50 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4.1.2.1 SKB_CreateRawBytesFromPlain

This function creates an SKB_SecureData object from a plain data buffer.

The function is declared as follows:

SKB_Result SKB_CreateRawBytesFromPlain(const SKB_Engine* engine,

 const SKB_Byte* plain,

 SKB_Size plain_size,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

engine Pointer to the pre-initialized engine.

plain Pointer to the data buffer containing the plain key.

plain_size Size of the buffer in bytes.

data Address of a pointer to the SKB_SecureData that will contain the loaded key

after this function is executed.

4.1.2.2 SKB_CreatePlainFromRawBytes

This function returns a plain data buffer from an SKB_SecureData object.

The function is declared as follows:

SKB_Result SKB_CreatePlainFromRawBytes(const SKB_SecureData* data,

 SKB_Byte* plain,

 SKB_Size* plain_size);

The following table explains the parameters:

Parameter Description

data Pointer to the SKB_SecureData from which the plain data buffer must be

created.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 51 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

plain This parameter is either NULL or a pointer to the memory buffer where the plain

key is to be written.

If this parameter is NULL, the method simply returns, in plain_size, a number of

bytes that would be sufficient to hold the plain key, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size is

large enough to hold the plain key, the method stores the plain key there, sets

plain_size to the exact number of bytes stored, and returns SKB_SUCCESS. If

the buffer is not large enough, then the method sets plain_size to a number of

bytes that would be sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

plain_size Pointer to the size of the plain data buffer in bytes.

4.1.2.3 SKB_CreateEccPrivateFromPlain

This function creates an SKB_SecureData object from a plain ECC private key.

The function is declared as follows:

SKB_Result SKB_CreateEccPrivateFromPlain(const SKB_Engine* engine,

 const SKB_Byte* plain,

 SKB_Size plain_size,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

engine Pointer to the pre-initialized engine.

plain Pointer to the data buffer containing the ECC private key. For information on

the ECC key format, see §7.11.7.

 The data must be provided in big-endian encoding.

plain_size Size of the buffer in bytes.

data Address of a pointer to the SKB_SecureData that will contain the loaded key

after this function is executed.

4.1.2.4 SKB_CreatePlainFromEccPrivate

This function derives a plain ECC private key from an SKB_SecureData object.

The function is declared as follows:

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 52 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_Result SKB_CreatePlainFromEccPrivate(const SKB_SecureData* data,

 SKB_Byte* plain,

 SKB_Size* plain_size);

The following table explains the parameters:

Parameter Description

data Pointer to the SKB_SecureData from which the plain ECC private key must be

created.

plain This parameter is either NULL or a pointer to the memory buffer where the

plain key is to be written.

If this parameter is NULL, the method simply returns, in plain_size, a number

of bytes that would be sufficient to hold the plain key, and returns

SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size

is large enough to hold the plain key, the method stores the plain key there,

sets plain_size to the exact number of bytes stored, and returns

SKB_SUCCESS. If the buffer is not large enough, then the method sets

plain_size to a number of bytes that would be sufficient, and returns

SKB_ERROR_BUFFER_TOO_SMALL.

 The data will be provided in big-endian encoding.

plain_size Pointer to the size of the plain data buffer in bytes.

4.1.2.5 SKB_CreateRsaPrivateFromPlainPKCS8

This function creates an SKB_SecureData object from a plain RSA private key stored according to the

PKCS#8 standard.

The function is declared as follows:

SKB_Result SKB_CreateRsaPrivateFromPlainPKCS8(const SKB_Engine* engine,

 const SKB_Byte* plain,

 SKB_Size plain_size,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

engine Pointer to the pre-initialized engine.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 53 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

plain Pointer to the data buffer containing the RSA private key stored according to the

PKCS#8 standard.

plain_size Size of the buffer in bytes.

data Address of a pointer to the SKB_SecureData that will contain the loaded key

after this function is executed.

4.1.2.6 SKB_CreateRsaPrivateFromPlain

This function creates an SKB_SecureData object from a plain RSA private key defined as a set of key

components.

 The input parameters must be provided in big-endian encoding.

The function is declared as follows:

SKB_Result SKB_CreateRsaPrivateFromPlain(const SKB_Engine* engine,

 void* plain_p,

 void* plain_q,

 void* plain_d,

 void* plain_n,

 SKB_Size key_size,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

engine Pointer to the pre-initialized engine.

plain_p Pointer to the prime number “p”.

plain_q Pointer to the prime number “q”.

plain_d Pointer to the decryption exponent “d”.

plain_n Pointer to the modulus “n”.

key_size Size of the key in bytes.

data Address of a pointer to the SKB_SecureData that will contain the loaded key

after this function is executed.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 54 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4.1.2.7 SKB_CreatePlainFromRsaPrivate

This function derives plain RSA private key components from an SKB_SecureData object.

 The output data buffers will be provided in big-endian encoding.

The function is declared as follows:

SKB_Result SKB_CreatePlainFromRsaPrivate(const SKB_SecureData* data,

 SKB_Byte* p,

 SKB_Byte* q,

 SKB_Byte* d,

 SKB_Byte* n,

 SKB_Size* key_size);

The following table explains the parameters:

Parameter Description

data Pointer to the SKB_SecureData from which the plain RSA private key components

must be derived.

plain_p This parameter is either NULL or a pointer to the memory buffer where the prime

number “p” is to be written.

If this parameter is NULL, the method simply returns, in key_size, a number of

bytes that would be sufficient to hold the prime number “p”, and returns

SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size is

large enough to hold the prime number “p”, the method stores the value there,

sets key_size to the exact number of bytes stored, and returns SKB_SUCCESS. If

the buffer is not large enough, then the method sets key_size to a number of

bytes that would be sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

plain_q Pointer to the prime number “q”.

This parameter works similar to plain_p and will have the same size.

plain_d Pointer to the decryption exponent “d”.

This parameter works similar to plain_p and will have the same size.

plain_n Pointer to the modulus “n”.

This parameter works similar to plain_p and will have the same size.

key_size Pointer to the size of the prime number “p”, prime number “q”, decryption

exponent “d”, and modulus “n”.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 55 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4.2 Platform-Specific Library

This section describes the purpose and details of Platform-Specific Library delivered together with

SKB.

4.2.1 Overview

Although the largest part of SKB is delivered as a single library, a small subset of functions used by

SKB depends on the target operating system and may be implemented differently on the same

architecture. Therefore, these functions are externalized as a separate module called Platform-

Specific Library. This library is available as source code in the Tools/SkbPlatform directory, and as a

precompiled binary in the Libraries directory.

Platform-Specific Library has its own interface defined in the Include/SkbPlatform.h file. You can

use the provided implementation as is or create your own custom implementation of library

functions to suit your specific needs, for example to run SKB on an operating system that is not

directly supported. All the necessary implementation information is provided in the comments of the

SkbPlatform.h file.

For information on compiling Platform-Specific Library, see §2.3.

4.2.2 Library Functions

The functions in Platform-Specific Library can be grouped according to their logical purpose:

Purpose Description

Key caching Key caching speeds up operations with RSA keys. For details on this

component, see §4.2.3.

The following functions are related to key caching:

 SKB_KeyCache_Create

 SKB_KeyCache_Destroy

 SKB_KeyCache_GetInfo

 SKB_KeyCache_SetGUID

 SKB_KeyCache_GetGUID

 SKB_KeyCache_ClearData

 SKB_KeyCache_SetData

 SKB_KeyCache_GetData

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 56 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Purpose Description

Random generation The function SKB_GetRandomBytes is used to generate a buffer of

random bytes of a specific size.

There are two additional random generator related functions that are

intended for the Google Native Client (NaCl) target only:

 SKB_InitRng

 SKB_DestroyRng

If you are building an application for the Google Native Client target, and

this application uses SKB algorithms that depend on random generation

(including but not limited to key generation, key exporting, ECDSA, and

ECDH), you must call the SKB_InitRng function before the first instance

of random generation. Otherwise, SKB will return the

SKB_ERROR_INVALID_STATE (-80008) error code. The SKB_DestroyRng

function must be called after the last instance of random generation. We

recommend calling the SKB_InitRng function before the first invocation

of the SKB_Engine_GetInstance function (see §7.9.1). In a similar

manner, we recommend calling the SKB_DestroyRng function after the

last invocation of the SKB_Engine_Release function (see §7.9.2).

For details on these functions, see the comments in the SkbPlatform.h

file.

Mutex handling The purpose of mutexes is to avoid the simultaneous use of common

resources. SKB uses mutex functions to ensure the correct use of

threads.

The following functions are related to mutex handling:

 SKB_Mutex_Create

 SKB_Mutex_LockAutoCreate

 SKB_Mutex_Lock

 SKB_Mutex_Unlock

 SKB_Mutex_Destroy

Logging SKB uses the function SKB_LogMessage to write log messages to a

particular output. Logging is only used in the debug mode.

Debugging SKB calls the function SKB_StopInDebugger when an exception occurs at

run time. It is only used in the debug mode.

For details on each function, see the comments in the SkbPlatform.h file.

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 57 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

4.2.3 Key Caching

In SKB, RSA operations might take a significant amount of time. To address this problem, SKB

provides functionality called RSA key caching. It speeds up operations with RSA keys by caching them

after their initialization. RSA-related algorithms are the only ones that use key caching.

Before compiling Platform-Specific Library, you can set a particular key caching mode as described in

the following table:

Mode Description

SQLite The SQLite implementation of key caching is used. If the SKB library delivered to

you includes any RSA features, this is the default mode for all targets, except

Google Native Client (NaCl) and PlayStation 3.

In this mode, the key caching data is stored in an SQLite database named skb.db

in protected form. The implementation of this key caching mode is defined in the

SkbProtectedKeyCacheSQLite.cpp file, which is located in the

Tools/SkbPlatform/KeyCacheImpl directory.

You can either use this implementation in your application as is or treat it as an

example implementation for key caching. If you use this implementation without

modification, make sure that different applications are not accessing the same

skb.db file. The path to this file varies for different operating systems. You can

adjust the path by modifying the Skb«target»KeyCacheFilePath.cpp file,

located in the Tools/SkbPlatform/«target» directory. For instance, if you are

protecting an Android application, the file name is

SkbAndroidKeyCacheFilePath.cpp, and it is located in the

Tools/SkbPlatform/Android directory.

To use SQLite-based key caching, you will need an SQLite static library (version

3.7.14 or later) to be included in your project. You can obtain the library in the

Libraries directory.

In-memory An internal in-memory map-like data structure is used for key caching. If the SKB

library delivered to you includes any RSA features, this is the default mode for the

Google Native Client and PlayStation 3 targets.

The implementation of this key caching mode is defined in the

SkbProtectedKeyCacheInMemory.cpp file, which is located in the

Tools/SkbPlatform/KeyCacheImpl directory.

By default, only the last 10 keys are cached. If you want to change the number of

cached keys, define the SKB_KEY_CACHE_MAX_IN_MEMORY_ITEMS preprocessor

definition as the required number, for example as follows:

#define SKB_KEY_CACHE_MAX_IN_MEMORY_ITEMS 20

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 58 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Mode Description

Custom SKB uses your own custom implementation of key caching.

For information on creating your own implementation, see §4.2.3.5.

None Key caching is not used at all. This is the default mode if there are no RSA features

included in the SKB library delivered to you.

4.2.3.1 Configuring Key Caching Using Visual Studio

In Visual Studio, the key caching mode to be used is set using a specific preprocessor definition in the

SkbPlatform project properties. The following preprocessor definitions can be set, each

corresponding to a particular key caching mode:

 SKB_USE_KEY_CACHE_SQLITE

 SKB_USE_KEY_CACHE_IN_MEMORY

 SKB_USE_KEY_CACHE_CUSTOM

 SKB_USE_KEY_CACHE_NONE

4.2.3.2 Configuring Key Caching Using SCons

For SCons, the key caching mode is set by passing the input parameter skb_key_cache to the SCons

script. The input parameter can have the following values, each corresponding to a particular key

caching mode:

 sqlite

 inmem

 custom

 none

For more information on running the SCons build script, see §2.3.3.2.

4.2.3.3 Configuring Key Caching Using Android NDK

For Android NDK, the key caching mode is set by passing the input parameter SKB_KEY_CACHE to the

ndk-build command. The input parameter can have the following values, each corresponding to a

particular key caching mode:

 SKB_USE_KEY_CACHE_SQLITE

 SKB_USE_KEY_CACHE_IN_MEMORY

 SKB_USE_KEY_CACHE_CUSTOM

 SKB_USE_KEY_CACHE_NONE

4.2.3.4 Configuring Key Caching Using Xcode

In Xcode, the key caching mode to be used is set using a specific preprocessor macro:

Secure Key Box User Guide 4 Supporting Libraries

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 59 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 For OS X, the macro is set in the SecureKeyBox project properties.

 For iOS, the macro is set in the SkbPlatform target properties.

The following preprocessor macros can be set, each corresponding to a particular key caching mode:

 SKB_USE_KEY_CACHE_SQLITE

 SKB_USE_KEY_CACHE_IN_MEMORY

 SKB_USE_KEY_CACHE_CUSTOM

 SKB_USE_KEY_CACHE_NONE

4.2.3.5 Creating a Custom Key Caching Implementation

In some cases, you might want to create your own implementation of key caching, for example to

avoid including the additional SQLite code in your application. In such cases, the key cache API must

be reimplemented according to the API description in the SkbPlatform.h file.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 60 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

5 Utilities

This chapter describes the command-line utilities provided together with the SKB package.

The following utilities are available:

Utility Description Section

Custom ECC Tool Generates protected forms of ECC domain parameters, which

are used for defining custom curves.

§5.1

Diffie-Hellman Tool Generates protected forms of parameters for the DH key

agreement algorithm.

§5.2

Key Export Tool Creates a white-box protected exported form of an

SKB_SecureData object from plain input data, and upgrades

previously exported data.

§5.3

Binary Update Tool Adjusts the final application executable if the tamper-resistant

SKB library is used.

§5.4

5.1 Custom ECC Tool

Custom ECC Tool generates protected forms of ECC domain parameters, which are used for defining

custom curves. The generated protected forms of custom ECC domain parameters must then be

specified in the SKB_EccDomainParameters structure (see §7.10.18) when you use custom ECC

curves.

5.1.1 Custom ECC Tool Overview

Custom ECC Tool can generate protected forms for the following ECC domain parameters:

 constant “a” in the curve equation

 prime “p” of the elliptic curve

 order “n” of the base point

 X coordinate of the base point

 Y coordinate of the base point

 fixed random value to be passed to the ECDSA and ECDH algorithms (see §7.10.22)

To generate a protected form of any of these parameters, simply run Custom ECC Tool at command

prompt and specify the type of the parameter and the input value. The utility will write the protected

binary form of the input parameter to the standard output.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 61 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Custom ECC Tool generates only one parameter at a time. To generate multiple parameters, run the

utility multiple times, specifying a different parameter each time.

5.1.2 Parameter Size and Value Restrictions

The size of all input parameters must be between 150 and 521 bits, and none of the parameters

should have an equal or greater value than the order of the base point.

Note that SKB contains two run-time instances of ECC. One instance corresponds to 150 to 256 bit

curves, and the other corresponds to 257 to 521 bit curves. The 150 to 256 bit ECC instance is faster

than the 257 to 521 bit ECC instance. If the size of the order of the base point is greater than 256

bits, at run time, SKB will use the 257 to 521 bit ECC instance, which is slower.

5.1.3 Running Custom ECC Tool

Custom ECC Tool is located in the Libraries directory along with the precompiled SKB library. You

can run the utility by simply executing it at the command line and passing several parameters to it.

The following is the pattern to be used to run Custom ECC Tool:

CustomEccTool «parameter_type» «parameter_value»

The following table explains the input parameters:

Parameter Description

«parameter_type» Type of the ECC domain parameter for which the protected form must be

generated. The following types are available:

 -a: constant “a” in the curve equation

 -p: prime “p” of the elliptic curve

 -n: order “n” of the base point

 -x: X coordinate of the base point

 -y: Y coordinate of the base point

 -r: fixed random value to be passed to the ECDSA and ECDH

algorithms

«parameter_value» Plain parameter value, which must be specified as an unsigned integer.

If you are passing the parameter “a” and it is a negative number, it must

be provided as “p-a” where “p” is the prime of the elliptic curve.

You can see the list of all available parameters by running Custom ECC Tool with the --help

parameter.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 62 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The SkbEccCustomDomainParameters.h file, located in the Examples directory, contains examples of

protected ECC domain parameters for different curve types.

5.2 Diffie-Hellman Tool

The SKB implementation of DH key agreement algorithm operates on encrypted parameters. Diffie-

Hellman Tool is used to generate the protected forms of these parameters, which must then be

provided to the SKB_PrimeDhParameters structure (see §7.10.23) when you use DH key agreement.

5.2.1 Diffie-Hellman Tool Overview

The DH algorithm requires the following basic input parameters:

 prime P

 generator G

 random value X

By design, these parameters are used in plain form, but for increased security, the SKB

implementation requires that they are operated on in protected form.

To generate a protected form of any of these parameters, simply run Diffie-Hellman Tool at

command prompt and specify the type of the parameter and the input value. The utility will write the

protected form of the input parameter either to the standard output or to a binary file, depending on

your choice.

Diffie-Hellman Tool generates only one output value at a time. To generate multiple values, run the

utility multiple times, specifying a different parameter each time.

5.2.2 Running Diffie-Hellman Tool

Diffie-Hellman Tool is located in the Libraries directory along with the precompiled SKB library. You

can run the utility by simply executing it at the command line and passing several parameters to it.

The following is the pattern to be used to run Diffie-Hellman Tool:

PrimeDHTool «arguments»

The following table explains the input arguments:

Argument Description

-s «value» Maximum bit-length of P. This argument is mandatory.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 63 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Argument Description

-p «value» Prime P as an unsigned integer.

If this parameter is specified, the generator G (argument -g) must

also be provided. The output will be a single protected buffer

containing both the P and G parameters.

The greatest common divisor of P and G must be 1.

-g «value» Generator G as an unsigned integer.

If this parameter is specified, the prime P (argument -p) must also

be provided. The output will be a single protected buffer containing

both the P and G parameters.

The value of this parameter must be less than P, and the greatest

common divisor of P and G must be 1.

-x «value» Random value X as an unsigned integer.

The output of this parameter can be used to provide a fixed

random value to the DH algorithm as described in §7.10.23.

If this parameter is provided, the parameters -p and -g must not be

supplied.

The output will be a buffer containing the protected random value.

--output_format «value» Specifies the format of the output. Possible values are the following:

 binary: Output is a binary file containing a buffer of bytes.

 source: Output is a definition of a C array, which you can then

copy directly into your source code.

Optionally, you can use the command-line argument

–i «value» to specify how many elements should be displayed

on each line. The default value is 8.

 hex: Output is a string containing the exported data in

hexadecimal format.

--output «value» File name of the output file generated by Diffie-Hellman Tool.

If this argument is not provided, Diffie-Hellman Tool writes the

result to the standard output.

--help Displays the help.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 64 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

5.3 Key Export Tool

Key Export Tool is used for the following purposes:

 creating a protected exported form of an SKB_SecureData object from plain input data

The input data can be raw bytes (for example, a DES or AES key), an RSA private key, or an ECC

private key.

 upgrading previously exported data to the current version in the one-way data upgrade scheme

(see §3.7)

 Key Export Tool must always be used in a secure environment (see §1.1.7).

5.3.1 Key Export Tool Overview

Key Export Tool performs the following actions:

1. Depending on the input file format, do one the following:

 If the input file is in plain form, import it as an SKB_SecureData object.

 If the input file is previously exported data containing an old key version, upgrade the data.

2. Export the output to a file in protected format.

The output format can be either binary data or C code, in which the exported data is defined as

an array of bytes.

Once the output is created, you can import it into SKB using the

SKB_Engine_CreateDataFromExported method (see §7.9.6). This operation can be performed only

if the importing SKB instance has the same export key as the one that exported the data.

5.3.2 Running Key Export Tool

Key Export Tool is located in the Libraries directory along with the precompiled SKB library.

To run the utility, simply execute it at the command line and pass several parameters to it as follows:

KeyExportTool --input-format «input_format» --output-format «output_format» --

input «input_file» --output «output_file» [--device-id «file_with_device_id»]

The following table explains the input parameters:

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 65 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

--input-format Specifies the format of the input file. Possible values are the following:

 bytes: raw bytes in plain (for example, a DES or AES key)

If you are importing a key for the Triple DES algorithm, make sure the

input corresponds to the format described in §8.3.

 rsa: plain RSA private key in the PKCS#8 format

 ecc: plain ECC private key in the format that corresponds to the format

described in §8.6

 upgrade: previously exported data that needs to be upgraded to the

current version (see §3.7)

--output-format Specifies the format of the output file. Possible values are the following:

 binary: Output is a binary file containing a buffer of bytes.

 source: Output is a definition of a C array, which you can then copy

directly into your source code.

--input File name of the input file.

--output File name of the output file generated by Key Export Tool.

--device-id Optional parameter that allows you to set the device ID. Device ID is

combined with the export key to create a unique format for exported keys

as described in §3.16. If this parameter is not specified, the export format

depends only on the export key.

If you want to set the device ID, this parameter must contain a path to a

binary file that contains the device ID.

Note: This parameter is available only if the SKB package you requested has the device

binding feature enabled.

You can see the list of all available parameters by running Key Export Tool with the --help

parameter.

5.4 Binary Update Tool

If the SKB library that you link with your application has tamper resistance applied (see §1.1.9), you

have to run the final built application executable through a binary update process to correctly adjust

the embedded integrity protection checksums. Adjustment of the binary code is done using a

command-line utility called Binary Update Tool, which is included in the SKB package.

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 66 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 If the binary update process is not executed on a tamper resistant SKB library, the built

application will crash at run time.

5.4.1 Binary Update Tool Overview

The binary code must be adjusted using the Binary Update Tool after every build of the final

application. As an input, the Binary Update Tool requires the binary executable of the protected

application and the «target».nwdb file that is delivered together with SKB.

Building an application that uses a tamper-resistant SKB library

 OS X and iOS applications must be re-signed after running the Binary Update Tool, because the

binary footprint will be modified. You can perform signing using the codesign tool from the

command line as described here:

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/

codesign.1.html

5.4.2 Running the Binary Update Tool

To process an executable with the Binary Update Tool, execute the following command:

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/codesign.1.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/codesign.1.html

Secure Key Box User Guide 5 Utilities

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 67 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

scp-update-binary --binary=«compiled executable» «"*.nwdb" file»

The scp-update-binary file and the .nwdb file are located in the Libraries directory. Each target

platform, for which tamper resistance is supported, has a separate .nwdb file.

The --binary parameter specifies a path to the application executable that contains the SKB library.

As the final parameter, you must provide the .nwdb file of the particular target platform.

After the application executable is successfully processed by the Binary Update Tool, you can safely

distribute the application to customers.

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 68 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

6 Decrypting PDF Files

SKB provides functions specifically dedicated to decrypting encrypted PDF files without revealing the

user password and the derived encryption key. This chapter describes how to use these functions.

6.1 PDF Encryption Overview

A PDF document can be encrypted to protect its contents from unauthorized access. Encryption

applies only to string and stream objects in the PDF file. Other objects, such as integers and Boolean

values, which are used primarily to convey information about the document’s structure rather than

its content, are left unencrypted. In an encrypted PDF file, every string and stream object is encrypted

with a different key. All these keys are derived from one primary encryption key, which in turn is

derived from the user password.

Encryption-related information is stored in the document’s encryption dictionary, which itself is

stored in the Encrypt entry of the document’s trailer dictionary. The trailer dictionary is a collection of

key and value pairs in the very end of the PDF file. The absence of the Encrypt entry means that the

document is not encrypted.

The encryption dictionary is also a collection of key and value pairs describing all necessary

parameters of the particular encryption used.

6.2 PDF Requirements

SKB supports only encrypted PDF files that match the following criteria:

 PDF version is either 1.6 or 1.7.

 The following values are set in the encryption dictionary:

Key Value

Filter Standard

Length 128

R 3

V 2

These restrictions ensure that 128-bit AES in CBC mode is used for content encryption and that

the proper key handling algorithms are chosen. Optionally, the R and V values can both be set to

4, but then the following additional rules must be met:

 All crypt filters in the crypt filter dictionary must use AESV2 as the value for the CFM

parameter, and 16 for the Length parameter.

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 69 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 The EncryptMetadata parameter in the encryption dictionary must be absent or set to true.

Note: PDF versions 1.5 and earlier use RC4 for content decryption. PDF versions above 1.7 use AES-256. These encryption

algorithms are currently not supported by SKB.

6.3 Decrypting a PDF Document Using SKB

SKB provides the necessary algorithms to perform the following typical PDF decryption process:

1. Obtain the user password in secure format.

To ensure security, SKB requires that the user password is delivered as an SKB_SecureData

object containing the password as raw bytes (data type is SKB_DATA_TYPE_BYTES). It is up to you

to decide how to import the user password as an SKB_SecureData object. For information on

SKB_SecureData objects and how they can be obtained, see §7.8.2.

2. Authenticate the user password using the SKB_Pdf_AuthenticateUserPassword function (see

§6.3.1).

This algorithm verifies that the user password can actually decrypt the document. Authentication

is done only once, typically when the PDF document is opened. The user password is always

handled as a secure data object in protected form.

3. Derive the encryption key from the user password using the SKB_Pdf_ComputeEncryptionKey

function (see §6.3.2).

Since the user password is not directly used for data decryption, an encryption key needs to be

derived. This is done only once before any decryption is performed.

4. Prepare a PDF decryption context (represented by the SKB_Pdf_DecryptionContext object)

using the SKB_Pdf_CreateDecryptionContext function (see §6.3.3).

A PDF decryption context must be created for every PDF object whose data you want to decrypt.

The context is passed to the decryption function. The context holds a PDF object decryption key

and optionally the initialization vector.

5. Decrypt a buffer from a PDF object using the SKB_Pdf_DecryptionContext_ProcessBuffer

function (see §6.3.4).

You can call this function as many times as necessary to decrypt the required parts of a PDF

object for which the PDF decryption context was created.

6. When the PDF decryption context is no longer needed, release it from the memory using the

SKB_Pdf_DecryptionContext_Release function (see §6.3.5).

The functions mentioned above are not considered part of the main SKB API. Therefore, they are

defined in a separate header file SkbExtensions.h, which is located in the Include directory.

6.3.1 SKB_Pdf_AuthenticateUserPassword

This function verifies if the provided user password is valid.

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 70 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The function is declared as follows:

SKB_Result

SKB_Pdf_AuthenticateUserPassword(const SKB_SecureData* password,

 const SKB_Byte* o,

 SKB_Size o_size,

 int p,

 const SKB_Byte* file_id,

 SKB_Size file_id_size,

 const SKB_Byte* u,

 SKB_Size u_size,

 SKB_Byte* is_user_password_valid);

The following table describes the parameters:

Parameter Description

password Pointer to an SKB_SecureData object containing the user password.

o Pointer to the value of parameter O in the encryption dictionary of

the PDF file.

o_size Size of the o value.

p Value of parameter P in the encryption dictionary of the PDF file.

file_id Pointer to the first element of the file identifier array. This array is

the value of the ID entry in the document’s trailer dictionary.

file_id_size Size of the file_id value.

u Pointer to the value of parameter U in the encryption dictionary of

the PDF file.

u_size Size of the u value.

is_user_password_valid Pointer to an SKB_Byte variable that will be set to 1 if the user

password is correct and 0 otherwise.

6.3.2 SKB_Pdf_ComputeEncryptionKey

This function derives the encryption key from the user password.

The function is declared as follows:

SKB_Result

SKB_Pdf_ComputeEncryptionKey(const SKB_SecureData* password,

 const SKB_Byte* o,

 SKB_Size o_size,

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 71 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 int p,

 const SKB_Byte* file_id,

 SKB_Size file_id_size,

 SKB_SecureData** encryption_key);

The following table describes the parameters:

Parameter Description

password Pointer to an SKB_SecureData object containing the user password.

o Pointer to the value of parameter O in the encryption dictionary of the

PDF file.

o_size Size of the o value.

p Value of parameter P in the encryption dictionary of the PDF file.

file_id Pointer to the first element of the file identifier array. This array is the

value of the ID entry in the document’s trailer dictionary.

file_id_size Size of the file_id value.

encryption_key Address of a pointer to the SKB_SecureData that will contain the derived

encryption key after this function is executed.

6.3.3 SKB_Pdf_CreateDecryptionContext

This function prepares a PDF decryption context object that is later used in the

SKB_Pdf_DecryptionContext_ProcessBuffer function (see §6.3.4).

The function is declared as follows:

SKB_Result

SKB_Pdf_CreateDecryptionContext(const SKB_SecureData* encryption_key,

 int object_number,

 int generation_number,

 const SKB_Byte* iv

 SKB_Pdf_DecryptionContext** ctx);

The following table describes the parameters:

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 72 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

encryption_key Pointer to an SKB_SecureData object containing the encryption key,

which you can obtain using the SKB_Pdf_ComputeEncryptionKey

function (see §6.3.2).

The encryption key is combined with metadata of the particular PDF

object to calculate a decryption key, which is then stored in the PDF

decryption context object.

object_number Object number in the PDF file.

generation_number Generation number of the object.

iv Pointer to an initialization vector to be stored in the PDF decryption

context.

You can set this parameter to NULL, in which case the initialization vector

must be passed in the first call of the

SKB_Pdf_DecryptionContext_ProcessBuffer function (see §6.3.4).

ctx Address of a pointer to the SKB_Pdf_DecryptionContext object that

will contain the PDF decryption context after this function is executed.

6.3.4 SKB_Pdf_DecryptionContext_ProcessBuffer

This function decrypts a part of a particular encrypted object in the PDF file.

The function is declared as follows:

SKB_Result

SKB_Pdf_DecryptionContext_ProcessBuffer(

 SKB_Pdf_DecryptionContext* ctx,

 const SKB_Byte* in_buffer,

 SKB_Size in_buffer_size,

 const SKB_Byte* iv,

 SKB_Byte is_last_chunk,

 SKB_Byte* out_buffer,

 SKB_Size* out_buffer_size);

The following table describes the parameters:

Parameter Description

ctx Pointer to the SKB_Pdf_DecryptionContext object, which you prepared

before using the SKB_Pdf_CreateDecryptionContext function (see

§6.3.3).

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 73 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

in_buffer Pointer to an input buffer containing a part of the encrypted PDF object

data to be decrypted.

in_buffer_size Size of the input buffer.

iv Pointer to the initialization vector.

This parameter may be NULL in which case the initialization vector will be

taken from the PDF decryption context. The last block of the processed

buffer will be stored as the initialization vector in the PDF decryption

context after this function is executed.

is_last_chunk Parameter that should be set to 1 if this is the last part of the encrypted

object data, and 0 otherwise.

This information is used to process the CBC mode padding in the

encrypted data and calculate the precise decrypted content length.

If this parameter is 1 then the PDF decryption context will no longer

contain an initialization vector after the function is executed, and the

next call of the SKB_Pdf_DecryptionContext_ProcessBuffer function

using the same PDF decryption context has to provide an initialization

vector.

out_buffer This parameter is either NULL or a pointer to the memory buffer where

the decrypted content is to be written.

If this parameter is NULL, the function simply returns, in

out_buffer_size, a number of bytes that would be sufficient to hold

the output, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the

buffer size is large enough to hold the output, the method stores the

output there, sets out_buffer_size to the exact number of bytes

stored, and returns SKB_SUCCESS. If the buffer is not large enough, then

the method sets out_buffer_size to a number of bytes that would be

sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

out_buffer_size Pointer to a variable that holds the size of the memory buffer in bytes

where the output is to be stored. For more details, see the description of

the out_buffer parameter.

You can actually point the in_buffer and out_buffer to the same memory buffer, in which case the

encrypted input data will be overwritten with the decrypted content.

Secure Key Box User Guide 6 Decrypting PDF Files

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 74 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

6.3.5 SKB_Pdf_DecryptionContext_Release

This function releases a PDF decryption context object from the memory.

 You must always call this function when you have completed decrypting PDF object data and no

longer need the PDF decryption context.

The function is declared as follows:

SKB_Result

SKB_Pdf_DecryptionContext_Release(SKB_Pdf_DecryptionContext* ctx);

ctx is a pointer to the SKB_Pdf_DecryptionContext object to be released.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 75 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7 API Reference

This chapter provides full reference information about the SKB API.

7.1 API Overview

The SKB API is a C interface, composed of a number of object classes. Even though the interface is an

ANSI C interface, it adopts an object-oriented style. The header file declares a set of classes and class

methods. Each method of a class interface is a function whose first argument is a reference to an

instance of the same class. The data type that represents references to object instances is a pointer

to an opaque C structure. It may be considered as analogous to a pointer to a C++ object.

A concrete example is that for the class named SKB_Cipher, the data type SKB_Cipher is the name

of a C structure. The function name for one of the methods of SKB_Cipher is

SKB_Cipher_ProcessBuffer(), and the function takes SKB_Cipher* as its first parameter.

7.2 Obtaining Class Instances

An instance of a class is obtained by declaring a pointer to an object for the class and passing the

address of that pointer to a particular method. The method creates the instance and sets the pointer

to refer to it.

For example, the first object you need to create is SKB_Engine, which represents an instance of an

engine that can initialize other API objects. SKB_Engine is obtained by calling the method

SKB_Engine_GetInstance, which is declared as follows:

SKB_Result SKB_Engine_GetInstance(SKB_Engine** engine);

The parameter is the address of a pointer to an SKB_Engine object. This method creates an

SKB_Engine instance and sets the pointer to refer to the new instance. Here is a sample call:

SKB_Engine* engine = NULL;

SKB_Result result;

result = SKB_Engine_GetInstance(&engine);

7.3 Making Method Calls

A call to a method of a particular instance is done by calling a function and passing a pointer to the

instance as the first parameter.

For example, once an SKB_Engine instance is created, as shown in the previous section, all the

SKB_Engine methods can be called to operate on that instance. One such method is

SKB_Engine_GetInfo, which is used to obtain information about the engine (version number,

properties, and so on). This method is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 76 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_Result SKB_Engine_GetInfo(const SKB_Engine* self, SKB_EngineInfo* info);

It stores the engine information in the SKB_EngineInfo structure pointed to by the info parameter.

Assuming engine is a pointer previously set by SKB_Engine_GetInstance to refer to the

SKB_Engine instance it created, SKB_Engine_GetInfo can be invoked as follows:

SKB_Result result;

SKB_EngineInfo engineInfo;

result = SKB_Engine_GetInfo(engine, &engineInfo);

7.4 Method Return Values

All methods return an integer value of type SKB_Result. When a method call succeeds, the return

value is SKB_SUCCESS. Otherwise, it is a negative number, as defined by constants in the header file.

The following table lists the defined return value constants:

Constant Value Description

SKB_SUCCESS 0 The called method was successfully executed.

SKB_FAILURE -1 The method failed to perform the requested

operation.

SKB_ERROR_INTERNAL -80001 An internal SKB error occurred.

SKB_ERROR_INVALID_PARAMETERS -80002 Invalid parameters were supplied to the method.

SKB_ERROR_NOT_SUPPORTED -80003 The configuration provided to the method is not

supported by SKB.

SKB_ERROR_OUT_OF_RESOURCES -80004 The method failed to allocate the required amount

of memory on the heap.

SKB_ERROR_BUFFER_TOO_SMALL -80005 The provided memory buffer was not large enough

to contain the output.

SKB_ERROR_INVALID_FORMAT -80006 The format of the input buffer is invalid.

SKB_ERROR_ILLEGAL_OPERATION -80007 The method was requested to perform an

operation that it cannot.

SKB_ERROR_INVALID_STATE -80008 You are trying to release the SKB_Engine object

while it is still being referenced from other SKB

objects.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 77 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Constant Value Description

SKB_ERROR_OUT_OF_RANGE -80009 The specified offset or index of the input buffer is

out of range.

SKB_ERROR_EVALUATION_EXPIRED -80101 The evaluation period of the current SKB package

has expired.

SKB_ERROR_KEY_CACHE_FAILED -80102 A key cache operation failed. Typically this occurs

when the key cache database is not available or is

write-protected.

SKB_ERROR_INVALID_EXPORT_KEY

_VERSION
-80103 Either you are trying to upgrade a key whose

version number is equal or greater than that of the

current SKB instance (see §3.7), or you are trying

to import a key whose version is not equal to that

of the current SKB instance.

SKB_ERROR_INVALID_EXPORT_KEY -80104 The export key of the current SKB instance does

not match the export key that was used for

exporting the data that you are trying to import or

upgrade.

7.5 Object Lifecycle

To avoid exceptions and correctly release memory, you have to follow certain rules regarding the

lifecycle of SKB objects:

 All SKB objects must be released when they are no longer needed by calling the corresponding

release methods.

 SKB_Engine (see §7.8.1) is the first SKB object to be created and the last one to be released. All

other objects created via the SKB_Engine object must be released before it.

 SKB_SecureData (see §7.8.2) cannot be released while it is being used as a key in other objects,

such as SKB_Cipher, SKB_Transform, and SKB_KeyAgreement.

7.6 Restrictions of Multithreading

As a general rule, SKB methods and objects are not synchronized and therefore they should not be

shared between multiple threads. However, there are two exceptions to this rule:

 The SKB_Engine object is thread-safe and can be shared between multiple threads using the

SKB_Engine_GetInstance method (see §7.9.1). This method will always return the same

SKB_Engine instance.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 78 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 Since the SKB_SecureData object is immutable, it can also be shared between multiple threads.

7.7 Overriding Memory Allocation Operators

You may want to override the new and delete operators to implement custom memory allocation for

your application. To successfully achieve this, you must take into account that SKB uses the non-

throwing new operator for memory allocation.

Assume you have the following code for overriding the new and delete operators:

void* operator new (size_t size)

{

 // your implementation

}

void* operator new[] (size_t size)

{

 // your implementation

}

void operator delete (void* ptr)

{

 // your implementation

}

void operator delete[] (void* ptr)

{

 // your implementation

}

SKB requires that you also provide the following implementations for the non-throwing operators:

void* operator new (size_t size, const std::nothrow_t&)

{

 return operator new (size);

}

void* operator new[] (size_t size, const std::nothrow_t&)

{

 return operator new[] (size);

}

void operator delete (void* ptr, const std::nothrow_t&)

{

 return operator delete (ptr);

}

void operator delete[] (void* ptr, const std::nothrow_t&)

{

 return operator delete[] (ptr);

}

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 79 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.8 Classes

This section describes the classes of the API. Most operations are performed via these classes and

their related methods.

7.8.1 SKB_Engine

SKB_Engine is the first object that you create before using the API. It is used to initialize other API

objects.

7.8.2 SKB_SecureData

SKB_SecureData contains any data whose value is white-box protected and hidden from the outside

world but can be internally operated on by SKB. Usually, the SKB_SecureData object is the container

for cryptographic keys protected by SKB. Secure data objects can be operated by SKB cryptographic

functions but their contents cannot be accessed.

There are several ways how SKB_SecureData objects are obtained:

 loading encrypted or plain keys

 importing previously exported keys

 obtaining as a shared secret via a key agreement algorithm

 generating a new random SKB_SecureData object to be used as a cryptographic key

 deriving an SKB_SecureData object from another SKB_SecureData object using the

SKB_SecureData_Derive method

 wrapping plain keys

7.8.3 SKB_Cipher

SKB_Cipher is an object that can encrypt or decrypt data. It encapsulates the attributes and

parameters necessary to perform cryptographic operations on data buffers.

7.8.4 SKB_Transform

SKB_Transform is an object that can calculate a digest, sign data, or verify a signature. This object

can operate both on plain data and secure data. The output is always a plain buffer of data.

7.8.5 SKB_KeyAgreement

SKB_KeyAgreement is an object used to perform the key agreement algorithm.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 80 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.9 Methods

This section describes all the methods provided by the API.

7.9.1 SKB_Engine_GetInstance

This method creates an SKB_Engine instance (see §7.8.1). This instance is the first object that you

must obtain before using the API.

 Make sure that every SKB_Engine_GetInstance call has a corresponding

SKB_Engine_Release call to correctly release the memory.

The method is declared as follows:

SKB_Result

SKB_Engine_GetInstance(SKB_Engine** engine);

The parameter engine is an address of a pointer to the SKB_Engine object. After execution, this

method creates an SKB_Engine instance and sets the pointer to refer to the new instance. Every

subsequent call of the SKB_Engine_GetInstance method will return the same SKB_Engine object

until this object is released.

7.9.2 SKB_Engine_Release

This method releases an SKB_Engine instance once it is no longer needed.

 Make sure that every SKB_Engine_GetInstance call has a corresponding

SKB_Engine_Release call to correctly release the memory.

 All other SKB objects created via the SKB_Engine object must be released before you call the

SKB_Engine_Release method.

The method is declared as follows:

SKB_Result

SKB_Engine_Release(SKB_Engine* self)

The parameter self is a pointer to the engine instance that should be released.

7.9.3 SKB_Engine_SetDeviceId

This method sets the device ID, which is a byte array of arbitrary length that will be combined with

the export key to form a unique format for exported keys. This method enables you to bind exported

keys to a specific device (see §3.16). By default, when an engine is initialized, there is no device ID set

and the export format depends only on the export key.

The method is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 81 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_Result

SKB_Engine_SetDeviceId(SKB_Engine* self, const SKB_Byte* id, SKB_Size size);

The following table describes the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

id Pointer to the byte array containing the device ID.

You have to generate this byte array yourself based on some hardware details or

other environment-specific parameters.

size Number of bytes in the id parameter. The device ID can be of arbitrary length.

If the size is 0, SKB will remove the previously set device ID. This can be useful when

the device ID is no longer needed and the default export format (based only on the

export key) needs to be restored.

7.9.4 SKB_Engine_GetInfo

This method populates an SKB_EngineInfo structure (see §7.10.2) with the generic information

about an initialized engine.

 The contents of a populated SKB_EngineInfo structure will not be valid after the

corresponding SKB_Engine object is released from memory. During examination of the

SKB_EngineInfo object, the SKB_Engine object must exist.

The method is declared as follows:

SKB_Result

SKB_Engine_GetInfo(const SKB_Engine* self, SKB_EngineInfo* info);

The following table describes the parameters:

Parameter Description

self Pointer to the pre-initialized engine that you want to get the information about.

info Pointer to the SKB_EngineInfo structure to be populated with the engine

information (see §7.10.2).

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 82 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.9.5 SKB_Engine_CreateDataFromWrapped

This method creates a new SKB_SecureData object from a wrapped buffer of data (usually a

cryptographic key) by unwrapping it with a previously loaded key. The unwrapped data is never

exposed in plain form. For more information on using this method, see §3.1.

As a special case of calling this method, you can also load a plain buffer of data as an

SKB_SecureData object (see §3.2). In this case, the unwrapping algorithm and the decryption key are

not specified. This operation should be used with extreme care because you are providing the key in

plain form. Use this approach only in a highly protected environment. The loading of plain keys can

be executed only if loading of plain data is enabled in SKB (see §4.1).

The SKB_Engine_CreateDataFromWrapped method is declared as follows:

SKB_Result

SKB_Engine_CreateDataFromWrapped(SKB_Engine* self,

 const SKB_Byte* wrapped,

 SKB_Size wrapped_size,

 SKB_DataType wrapped_type,

 SKB_DataFormat wrapped_format,

 SKB_CipherAlgorithm wrapping_algorithm,

 const void* wrapping_parameters,

 const SKB_SecureData* unwrapping_key,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

wrapped Pointer to the buffer of encrypted data (cryptographic key) to be

unwrapped.

If you are unwrapping a key for the Triple DES algorithm, make sure

the input corresponds to the format described in §8.3.

If you are unwrapping an AES-wrapped ECC private key, for information

on how the input buffer must be formatted, see §8.7.

For other cases of AES-wrapped data, see §8.2.

wrapped_size Size of the buffer of encrypted data in bytes.

wrapped_type Type of the wrapped key. The available types are defined in the

SKB_DataType enumeration (see §7.11.1).

wrapped_format Format how the wrapped key is stored in the input data buffer. The

available formats are defined in the SKB_DataFormat enumeration

(see §7.11.7).

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 83 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

wrapping_algorithm Cryptographic algorithm to be used for decrypting the data. The

available algorithms are defined in the SKB_CipherAlgorithm

enumeration (see §7.11.3). For information on algorithms that support

key unwrapping, see §1.2.

The following algorithms only support unwrapping of raw bytes,

meaning that the wrapped_type parameter should always be

SKB_DATA_TYPE_BYTES, and wrapped_format should always be

SKB_DATA_FORMAT_RAW:

 SKB_CIPHER_ALGORITHM_ECC_ELGAMAL

 SKB_CIPHER_ALGORITHM_RSA

 SKB_CIPHER_ALGORITHM_RSA_1_5

 SKB_CIPHER_ALGORITHM_RSA_OAEP

 SKB_CIPHER_ALGORITHM_NIST_AES

 SKB_CIPHER_ALGORITHM_AES_CMLA

 SKB_CIPHER_ALGORITHM_RSA_CMLA

 SKB_CIPHER_ALGORITHM_XOR

If the SKB_CIPHER_ALGORITHM_NIST_AES algorithm is used, in the case

of integrity check failure this method will return the

SKB_ERROR_INVALID_FORMAT error.

If the SKB_CIPHER_ALGORITHM_NULL algorithm is used, the method

assumes that the key in the input buffer is in plain form. Then you do

not have to provide the unwrapping key or unwrapping parameters.

If the SKB_CIPHER_ALGORITHM_ECC_ELGAMAL algorithm is used, see the

special instructions described in §3.1.1.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 84 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

wrapping_parameters Additional parameters for the unwrapping algorithm.

You can optionally point this parameter to the

SKB_AesUnwrapParameters structure (see §7.10.20) to specify the CBC

padding type, if you are using one of the following algorithms:

 SKB_CIPHER_ALGORITHM_AES_128_CBC

 SKB_CIPHER_ALGORITHM_AES_192_CBC

 SKB_CIPHER_ALGORITHM_AES_256_CBC

If you use any of the algorithms above and set the

wrapping_parameters value to NULL, CBC mode with the XML

encryption padding will be used by default, which is the equivalent of

the SKB_CBC_PADDING_TYPE_XMLENC value of the SKB_CbcPadding

enumeration (see §7.11.13).

If you are using the SKB_CIPHER_ALGORITHM_ECC_ELGAMAL algorithm,

this parameter must be a pointer to the SKB_EccParameters structure

(see §7.10.22). For special instructions for using the ElGamal ECC

unwrapping algorithm, see §3.1.1.

For all other cases, set this parameter to NULL.

unwrapping_key SKB_SecureData object containing the key needed to decrypt the data.

data Address of a pointer to the SKB_SecureData that will contain the

unwrapped key after this method is executed.

7.9.6 SKB_Engine_CreateDataFromExported

This method imports data that was previously exported using the SKB_SecureData_Export method

(see §7.9.15). This operation can be performed only if the importing SKB instance has the same

export key as the one that exported the data (see §1.1.6).

The method is declared as follows:

SKB_Result

SKB_Engine_CreateDataFromExported(SKB_Engine* self,

 const SKB_Byte* exported,

 SKB_Size exported_size,

 SKB_SecureData** data);

The following table explains the parameters:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 85 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the pre-initialized engine.

exported Pointer to the memory buffer containing the exported data.

exported_size Size of the memory buffer.

data Address of a pointer to the SKB_SecureData object that will be created by this

method. This object will contain the imported data.

7.9.7 SKB_Engine_WrapDataFromPlain

This method takes a plain data buffer, encrypts it with a key stored in an SKB_SecureData object, and

stores the output as a new SKB_SecureData object. For more information on this method, see §3.4.

The method is declared as follows:

SKB_Result

SKB_Engine_WrapDataFromPlain(

 SKB_Engine* self,

 const SKB_Byte* plain,

 SKB_Size* plain_size,

 SKB_DataType data_type,

 SKB_DataFormat plain_format,

 SKB_CipherAlgorithm algorithm,

 const void* encryption_parameters,

 const SKB_SecureData* encryption_key,

 const SKB_Byte* iv,

 SKB_Size iv_size,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

plain Pointer to the memory buffer where the plain input data is stored.

plain_size Pointer to a variable that holds the size of the input data in bytes.

data_type Type of data stored in the input buffer. The available types are defined

in the SKB_DataType enumeration (see §7.11.1).

Currently, this method supports only the SKB_DATA_TYPE_BYTES data

type.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 86 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

plain_format Format how the plain data is stored in the input buffer. The available

formats are defined in the SKB_DataFormat enumeration (see §7.11.7).

Currently, this method supports only the SKB_DATA_FORMAT_RAW data

type.

algorithm Algorithm to be used for encrypting the input data. Available

algorithms are defined in the SKB_CipherAlgorithm enumeration (see

§7.11.3).

Currently, this method supports only the following algorithms:

 SKB_CIPHER_ALGORITHM_AES_128_ECB

 SKB_CIPHER_ALGORITHM_AES_128_CBC

 SKB_CIPHER_ALGORITHM_AES_192_ECB

 SKB_CIPHER_ALGORITHM_AES_192_CBC

 SKB_CIPHER_ALGORITHM_AES_256_ECB

 SKB_CIPHER_ALGORITHM_AES_256_CBC

encryption_parameters Pointer to a structure that provides additional parameters for the

cipher.

Currently, this parameter must always be NULL.

encryption_key Pointer to the SKB_SecureData object containing the encryption key.

iv Pointer to the initialization vector if the encryption algorithm used is

AES in CBC mode.

If the initialization vector is not used or if it is all zeros the value of this

parameter should be NULL.

iv_size Size of the initialization vector in bytes.

If the value of the iv parameter is NULL, this parameter should be 0.

data Address of a pointer to the SKB_SecureData object that will contain

the output when this method is executed.

7.9.8 SKB_Engine_GenerateSecureData

This method creates a new random SKB_SecureData object based on the provided parameters. This

operation is typically used for generating new random keys.

The method is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 87 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_Result

SKB_Engine_GenerateSecureData(SKB_Engine* self,

 SKB_DataType data_type,

 const void* generate_parameters,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

data_type Type of data to be generated. The available types are defined in the

SKB_DataType enumeration (see §7.11.1).

Currently, the SKB_DATA_TYPE_RSA_PRIVATE_KEY type is not supported

for generating secure data, meaning that SKB cannot generate private

RSA keys.

generate_parameters Pointer to a structure that specifies the necessary parameters for

generating the secure data object.

For different secure data types, different structures must be provided as

follows:

 For SKB_DATA_TYPE_BYTES, this parameter must point to the

SKB_RawBytesParameters structure (see §7.10.24), which specifies

the number of bytes to be generated.

 For SKB_DATA_TYPE_ECC_PRIVATE_KEY, this parameter must point

to the SKB_EccParameters structure (see §7.10.22), which specifies

the ECC curve type to be used.

data Address of a pointer to the SKB_SecureData object that will be created

by this method. This object will contain the generated data.

7.9.9 SKB_Engine_CreateTransform

This method creates a new SKB_Transform object based on the provided parameters. The

SKB_Transform object is used to calculate a digest, sign data, or verify a signature.

The method is declared as follows:

SKB_Result

SKB_Engine_CreateTransform(SKB_Engine* self,

 SKB_TransformType transform_type,

 const void* transform_parameters,

 SKB_Transform** transform);

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 88 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

transform_type Transform type to be created. Available transform types are defined

in the SKB_TransformType enumeration (see §7.11.8).

transform_parameters Pointer to a structure that provides the necessary parameters for the

transform. For different transform types, a different structure must

be provided:

For the SKB_TRANSFORM_TYPE_DIGEST transform, this parameter

must point to the SKB_DigestTransformParameters structure (see

§7.10.5).

For the SKB_TRANSFORM_TYPE_SIGN transform, this parameter must

point to one of the following structures:

 If one of the following algorithms is to be used, this parameter

must point to the SKB_SignTransformParametersEx structure

(see §7.10.7):

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX

 SKB_SIGNATURE_ALGORITHM_ECDSA

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA1

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA256

 For all other algorithms, this parameter must point to the

SKB_SignTransformParameters structure (see §7.10.6).

For the SKB_TRANSFORM_TYPE_VERIFY transform, this parameter

must point to the SKB_VerifyTransformParameters structure (see

§7.10.8).

transform Address of a pointer to the SKB_Transform object that will be created

by this method.

7.9.10 SKB_Engine_CreateCipher

This method creates a new SKB_Cipher object based on the provided parameters. The SKB_Cipher

object is used to encrypt or decrypt data.

The method is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 89 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_Result

SKB_Engine_CreateCipher(SKB_Engine* self,

 SKB_CipherAlgorithm cipher_algorithm,

 SKB_CipherDirection cipher_direction,

 unsigned int cipher_flags,

 const void* cipher_parameters,

 const SKB_SecureData* cipher_key,

 SKB_Cipher** cipher);

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

cipher_algorithm Algorithm to be used for encrypting or decrypting data. Available

algorithms are defined in the SKB_CipherAlgorithm enumeration (see

§7.11.3).

cipher_direction Parameter that specifies whether the provided data should be encrypted

or decrypted. Available directions are defined in the

SKB_CipherDirection enumeration (see §7.11.6).

Encryption is supported only for the DES, Triple DES, and AES ciphers.

cipher_flags Optional flags for the cipher.

Currently, the only defined flag is SKB_CIPHER_FLAG_HIGH_SPEED. This

flag can be used only for the AES cipher when it is intended to be used

with high throughput, for example when used for media content

decryption.

cipher_parameters Pointer to a structure that provides additional parameters for the cipher.

For the SKB_CIPHER_ALGORITHM_AES_128_CTR,

SKB_CIPHER_ALGORITHM_AES_192_CTR, and

SKB_CIPHER_ALGORITHM_AES_256_CTR ciphers, it must point to the

SKB_CtrModeCipherParameters structure (see §7.10.4), or NULL for the

default counter size of 16.

For the SKB_CIPHER_ALGORITHM_ECC_ELGAMAL cipher, it must point to the

SKB_EccParameters structure, which specifies the curve type (see

§7.10.22).

For all other ciphers, this parameter must be NULL.

cipher_key Pointer to the SKB_SecureData object containing the encryption or

decryption key.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 90 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

cipher Address of a pointer to the SKB_Cipher object which will be created by

this method.

7.9.11 SKB_Engine_CreateKeyAgreement

This method creates a new SKB_KeyAgreement object based on the provided parameters. The

SKB_KeyAgreement object is used to calculate a shared secret based on the key agreement

algorithm.

The method is declared as follows:

SKB_Result

SKB_Engine_CreateKeyAgreement(

 SKB_Engine* self,

 SKB_KeyAgreementAlgorithm key_agreement_algorithm,

 const void* key_agreement_parameters,

 SKB_KeyAgreement** key_agreement);

The following table explains the parameters:

Parameter Description

self Pointer to the pre-initialized engine.

key_agreement_algorithm Key agreement algorithm to be used. Available algorithms are

defined in the SKB_KeyAgreementAlgorithm enumeration (see

§7.11.11).

key_agreement_parameters Pointer to a structure providing the necessary parameters for the

key agreement algorithm.

For the SKB_KEY_AGREEMENT_ALGORITHM_ECDH algorithm, this

parameter must point to an SKB_EccParameters structure (see

§7.10.22).

For the SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH algorithm,

this parameter must point to an SKB_PrimeDhParameters

structure (see §7.10.23).

key_agreement Address of a pointer to the SKB_KeyAgreement object which will

be created by this method.

7.9.12 SKB_Engine_UpgradeExportedData

This method upgrades an exported SKB_SecureData object to the latest version as described in §3.7.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 91 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The method is declared as follows:

SKB_Result

SKB_Engine_UpgradeExportedData(SKB_Engine* engine,

 const SKB_Byte* input,

 SKB_Size input_size,

 SKB_Byte* buffer,

 SKB_Size* buffer_size);

The following table explains the parameters:

Parameter Description

engine Pointer to the pre-initialized engine.

input Input data buffer containing the previously exported SKB_SecureData object

that needs to be upgraded to the latest export format.

input_size Size of the input data buffer in bytes.

buffer This parameter is either NULL or a pointer to the memory buffer where the

upgraded data is to be written.

If this parameter is NULL, the method simply returns, in buffer_size, a

number of bytes that would be sufficient to hold the output, and returns

SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size

is large enough to hold the output, the method stores the output there, sets

buffer_size to the exact number of bytes stored, and returns SKB_SUCCESS.

If the buffer is not large enough, then the method sets buffer_size to a

number of bytes that would be sufficient, and returns

SKB_ERROR_BUFFER_TOO_SMALL.

buffer_size Pointer to a variable that holds the size of the memory buffer in bytes where

the output is to be stored. For more details, see the description of the buffer

parameter.

7.9.13 SKB_SecureData_Release

This method releases an SKB_SecureData object. It should always be called when the object is no

longer needed.

The method is declared as follows:

SKB_Result

SKB_SecureData_Release(SKB_SecureData* self);

The parameter self is a pointer to the SKB_SecureData object that should be released.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 92 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.9.14 SKB_SecureData_GetInfo

This method provides the size and type of contents stored within a particular SKB_SecureData

object.

The method is declared as follows:

SKB_Result

SKB_SecureData_GetInfo(const SKB_SecureData* self, SKB_DataInfo* info);

The following table explains the parameters:

Parameter Description

self Pointer to the SKB_SecureData object whose size and type you want to know.

info Pointer to the SKB_DataInfo structure, which will be populated by this method to

return the characteristics of the SKB_SecureData object (see §7.10.3).

7.9.15 SKB_SecureData_Export

This method returns a protected form of the contents of a particular SKB_SecureData object. This

protected data is intended for exporting to a persistent storage. Later the exported data can be

imported back into the same SKB instance (with the same export key) using the

SKB_Engine_CreateDataFromExported method (see §7.9.6).

The method is declared as follows:

SKB_Result

SKB_SecureData_Export(const SKB_SecureData* self,

 SKB_ExportTarget target,

 const void* target_parameters,

 SKB_Byte* buffer,

 SKB_Size* buffer_size);

The following table explains the parameters:

Parameter Description

self Pointer to the SKB_SecureData object to be exported.

target Export type to be used. Available export types are defined in the

SKB_ExportTarget enumeration (see §7.11.9).

target_parameters Currently, this parameter is not used.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 93 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

buffer This parameter is either NULL or a pointer to the memory buffer where

the exported data is to be written.

If this parameter is NULL, the method simply returns, in buffer_size, a

number of bytes that would be sufficient to hold the exported data, and

returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer

size is large enough to hold the exported data, the method stores the

exported data there, sets buffer_size to the exact number of bytes

stored, and returns SKB_SUCCESS. If the buffer is not large enough, then

the method sets buffer_size to a number of bytes that would be

sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

For information on the exported data format, see §8.1.

buffer_size Pointer to a variable that holds the size of the memory buffer in bytes

where the exported data is to be stored. For more details, see the

description of the buffer parameter.

7.9.16 SKB_SecureData_Wrap

This method wraps (encrypts) the contents of a particular SKB_SecureData object using a specified

cipher and wrapping key. For more information on wrapping secure data, see §3.3.

The method is declared as follows:

SKB_Result

SKB_SecureData_Wrap(const SKB_SecureData* self,

 SKB_CipherAlgorithm wrapping_algorithm,

 const void* wrapping_parameters,

 const SKB_SecureData* wrapping_key,

 SKB_Byte* buffer,

 SKB_Size* buffer_size);

The following table explains the parameters:

Parameter Description

self Pointer to the SKB_SecureData object whose contents need to be

wrapped.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 94 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

wrapping_algorithm Wrapping algorithm to be used. The available algorithms are defined in

the SKB_CipherAlgorithm enumeration (see §7.11.3).

Currently, only the following algorithms are supported for wrapping:

 SKB_CIPHER_ALGORITHM_AES_128_CBC

 SKB_CIPHER_ALGORITHM_AES_192_CBC

 SKB_CIPHER_ALGORITHM_AES_256_CBC

 SKB_CIPHER_ALGORITHM_XOR

The AES-based algorithms can only be used on SKB_SecureData

objects whose data type is SKB_DATA_TYPE_BYTES or

SKB_DATA_TYPE_ECC_PRIVATE_KEY (see §7.11.1).

The SKB_CIPHER_ALGORITHM_XOR algorithm can only be used on

SKB_SecureData objects whose data type is SKB_DATA_TYPE_BYTES.

wrapping_parameters Pointer to a structure that provides additional parameters for the

wrapping algorithm.

This parameter is applicable only if you use one of the following

algorithms:

 SKB_CIPHER_ALGORITHM_AES_128_CBC

 SKB_CIPHER_ALGORITHM_AES_192_CBC

 SKB_CIPHER_ALGORITHM_AES_256_CBC

Then this parameter can be used to provide a specific initialization

vector to the AES wrapping algorithm. In that case, you should point

this parameter to the SKB_AesWrapParameters structure (see

§7.10.19) where the initialization vector is specified. If this structure is

not provided (wrapping_parameters is NULL), the AES algorithm

generates a random initialization vector.

wrapping_key Pointer to the SKB_SecureData object containing the wrapping key.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 95 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

buffer This parameter is either NULL or a pointer to the memory buffer where

the output is to be stored.

If this parameter is NULL, the call is simply a request to find out how

many bytes are needed to store the output, so the method returns, in

buffer_size, a number indicating how many bytes would be sufficient

to hold the output, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and

buffer_size is large enough to hold the output, the method places

the output there and sets buffer_size to the exact number of bytes

stored. If the buffer is not large enough, then the method sets

buffer_size to a number of bytes that would be sufficient, and

returns SKB_ERROR_BUFFER_TOO_SMALL.

For information on the way the output buffer is formatted in case you

use the AES-based algorithms, see §8.2.3.

buffer_size Pointer to a variable that holds the size of the memory buffer in bytes

where the output data is to be stored. For more details, see the

description of the buffer parameter.

7.9.17 SKB_SecureData_Derive

This method creates a new SKB_SecureData object from another SKB_SecureData object using a

particular derivation algorithm. This method can only be used on SKB_SecureData objects whose

data type is SKB_DATA_TYPE_BYTES (see §7.11.1).

The method is declared as follows:

SKB_Result

SKB_SecureData_Derive(const SKB_SecureData* self,

 SKB_DerivationAlgorithm algorithm,

 const void* parameters,

 SKB_SecureData** data);

The following table explains the parameters:

Parameter Description

self Pointer to the SKB_SecureData object from which a new SKB_SecureData object

needs to be derived.

algorithm Derivation algorithm to be used. The available algorithms are defined in the

SKB_DerivationAlgorithm enumeration (see §7.11.5).

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 96 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

parameters Pointer to a structure containing parameters for the derivation algorithm. For

different algorithms, a different structure must be provided:

 If the SKB_DERIVATION_ALGORITHM_SLICE or

SKB_DERIVATION_ALGORITHM_BLOCK_SLICE algorithm is used, this parameter

must point to the SKB_SliceDerivationParameters structure, which defines

the range of bytes to be derived as a new SKB_SecureData object (see

§7.10.17).

 If the SKB_DERIVATION_ALGORITHM_SELECT_BYTES algorithm is used, this

parameter must point to the SKB_SelectBytesDerivationParameters

structure, which provides the necessary input parameters (see §7.10.9).

 If the SKB_DERIVATION_ALGORITHM_CIPHER algorithm is used, this parameter

must point to the SKB_CipherDerivationParameters object (see §7.10.10).

 If the SKB_DERIVATION_ALGORITHM_SHA_1 algorithm is used, this parameter

may point to the SKB_Sha1DerivationParameters structure, which specifies

how many times the SHA-1 algorithm should be executed and how many bytes

from the result should be derived (see §7.10.11). If the parameter is NULL, the

SHA-1 algorithm will be executed once and the whole output of 20 bytes will

be returned as a new SKB_SecureData object.

 If the SKB_DERIVATION_ALGORITHM_SHA_256 algorithm is used, this parameter

may point to the SKB_Sha256DerivationParameters structure, which

provides the plain buffers that should be prepended and appended to the

SKB_SecureData object processed (see §7.10.12). If the parameter is NULL,

SKB will assume that there are no plain data buffers to be prepended or

appended.

 If the SKB_DERIVATION_ALGORITHM_NIST_800_108_COUNTER_CMAC_AES128

algorithm is used, this parameter must point to the

SKB_Nist800108CounterCmacAes128Parameters structure, which provides

the necessary input parameters (see §7.10.13).

 If the SKB_DERIVATION_ALGORITHM_OMA_DRM_KDF2 algorithm is used, this

parameter must point to the SKB_OmaDrmKdf2DerivationParameters

structure, which provides the necessary input parameters (see §7.10.16).

 If the SKB_DERIVATION_ALGORITHM_RAW_BYTES_FROM_ECC_PRIVATE algorithm

is used, this parameter may point to the

SKB_RawBytesFromEccPrivateDerivationParameters structure, which

specifies whether the output should be encoded in little-endian or big-endian

(see §7.10.14). If the parameter is NULL, the output will be encoded in little-

endian.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 97 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

 If the SKB_DERIVATION_ALGORITHM_SHA_AES algorithm is used, this parameter

must point to the SKB_ShaAesDerivationParameters structure, which

provides the necessary input parameters (see §7.10.15).

 For all other key derivation algorithms, this parameter is not used and

therefore should be NULL.

data Address of a pointer that will point to the new derived SKB_SecureData object

when this method is executed.

7.9.18 SKB_SecureData_GetPublicKey

This method returns a public key that corresponds to the supplied private key.

Currently, this method supports only ECC keys, but not RSA.

The method is declared as follows:

SKB_Result

SKB_SecureData_GetPublicKey(const SKB_SecureData* self,

 SKB_DataFormat format,

 const void* parameters,

 SKB_Byte* output,

 SKB_Size* output_size);

The following table explains the parameters:

Parameter Description

self Pointer to the SKB_SecureData object containing the private key. From this key,

the public key will be derived.

format Format in which the derived public key should be stored in the returned buffer of

bytes. The available formats are defined in the SKB_DataFormat enumeration

(see §7.11.7).

Currently, the only valid value is SKB_DATA_FORMAT_ECC_BINARY.

parameters Pointer to a structure containing parameters necessary for the deriving of the

public key.

Since SKB supports only ECC key generation, this parameter should point to the

SKB_EccParameters structure, which specifies the ECC curve type (see §7.10.22).

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 98 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

output If this parameter is NULL, the call is simply a request to find out how many bytes

are needed to store the public key. Then the method returns, in output_size, a

number indicating how many bytes would be sufficient to hold the output, and

returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size

(output_size) is large enough to hold the public key output, the method places

the output there and sets output_size to the exact number of bytes stored. If

the buffer is not large enough, then the method sets output_size to a number

of bytes that would be sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

After successfully executing the method, the content of the output parameter

will be a pointer to a buffer of bytes containing the public key. For information on

the format used, see §8.5.

output_size Pointer to a variable that holds the size of the memory buffer in bytes where the

public key is to be stored. For more details, see the description of the output

parameter.

7.9.19 SKB_Transform_Release

This method releases the specified SKB_Transform object.

The method is declared as follows:

SKB_Result

SKB_Transform_Release(SKB_Transform* self);

The parameter self is a pointer to the SKB_Transform object to be released.

7.9.20 SKB_Transform_AddBytes

This method appends a plain buffer of bytes to a previously created SKB_Transform object. Data

must be added to an SKB_Transform object before the actual transform algorithm (digest, signing, or

verifying) can be executed.

The method is declared as follows:

SKB_Result

SKB_Transform_AddBytes(SKB_Transform* self,

 const SKB_Byte* data,

 SKB_Size data_size);

The following table explains the parameters:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 99 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the previously created SKB_Transform object.

data Pointer to the buffer of data to be appended to the SKB_Transform object.

data_size Size of the data buffer in bytes.

7.9.21 SKB_Transform_AddSecureData

This method appends the contents of an SKB_SecureData object to a previously created

SKB_Transform object. Data must be added to an SKB_Transform object before the actual

transform algorithm (digest, signing, or verifying) can be executed.

 This method cannot be used for the SKB_SIGNATURE_ALGORITHM_RSA and

SKB_SIGNATURE_ALGORITHM_ECDSA signing algorithms because they can operate only on plain

input.

The method is declared as follows:

SKB_Result

SKB_Transform_AddSecureData(SKB_Transform* self,

 const SKB_SecureData* data);

The following table explains the parameters:

Parameter Description

self Pointer to the previously created SKB_Transform object.

data Pointer to the SKB_SecureData object whose contents must be appended to the

SKB_Transform object.

7.9.22 SKB_Transform_GetOutput

This method executes a transform algorithm on a particular SKB_Transform object. The transform

algorithm is specified during the creation of the SKB_Transform object, and the input data is then

provided using the SKB_Transform_AddBytes and SKB_Transform_AddSecureData methods.

The SKB_Transform_GetOutput method is declared as follows:

SKB_Result

SKB_Transform_GetOutput(SKB_Transform* self,

 SKB_Byte* output,

 SKB_Size* output_size);

The following table explains the parameters:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 100 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the SKB_Transform object on which the transform algorithm must be

executed.

output This parameter is either NULL or a pointer to the memory buffer where the

transform output will be stored.

If this parameter is NULL, the method returns, in output_size, a number of bytes

sufficient to hold the output, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer size

(output_size) is large enough to hold the output, the method stores the output

there and sets output_size to the exact number of bytes stored. If the buffer is

not large enough, then the method sets output_size to a number of bytes that

would be sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

In the case of the SKB_TRANSFORM_TYPE_VERIFY transform, the output will be a

single byte with the value 1 if the signature is verified and 0 if it is not.

In the case of the ECDSA signature algorithm, the output will be a pointer to a

buffer with a format described in §8.8.

output_size Pointer to a variable that holds the size of the memory buffer in bytes where the

transform output data is to be stored. For more details, see the description of

the output parameter.

7.9.23 SKB_Cipher_ProcessBuffer

This method performs either data encryption or decryption depending on the previously created

SKB_Cipher object (see §7.8.3).

The method is declared as follows:

SKB_Result

SKB_Cipher_ProcessBuffer(SKB_Cipher* self,

 const SKB_Byte* in_buffer,

 SKB_Size in_buffer_size,

 SKB_Byte* out_buffer,

 SKB_Size* out_buffer_size,

 const SKB_Byte* iv,

 SKB_Size iv_size);

The following table explains the parameters:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 101 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the previously created SKB_Cipher object, which contains all the

necessary parameters.

in_buffer Pointer to a buffer of data to be encrypted or decrypted.

For block ciphers, this parameter must point to the beginning of a cipher

block.

For the ElGamal ECC cipher, this parameter must be a pointer to a buffer of

bytes described in §8.4.

in_buffer_size Size in bytes of the data buffer to be encrypted or decrypted.

For the DES and Triple DES cipher in the ECB mode, this parameter must be

a multiple of the cipher block size, which is 8 bytes.

For the AES cipher in the ECB or CBC mode, this parameter must be a

multiple of the cipher block size, which is 16 bytes.

For the RSA cipher, this parameter must be the size of the entire encrypted

message, but no more than the length of the RSA key.

out_buffer This parameter is either NULL or a pointer to the memory buffer where the

output is to be stored.

If this parameter is NULL, the call is simply a request to find out how many

bytes are needed for the cipher output, so the method returns, in

out_buffer_size, a number indicating how many bytes would be sufficient

to hold the output, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the buffer

size (out_buffer_size) is large enough to hold the cipher output, the

method places the output there and sets out_buffer_size to the exact

number of bytes stored. If the buffer is not large enough, then the method

sets out_buffer_size to a number of bytes that would be sufficient, and

returns SKB_ERROR_BUFFER_TOO_SMALL.

For the ElGamal ECC cipher, the output buffer contains the X coordinate of

the decrypted point in big-endian notation. It is caller’s responsibility to

extract the decrypted message from this output according to the way the

message was encrypted.

SKB supports in-place encryption and decryption, which means that the

out_buffer parameter may be the same as the in_buffer parameter.

Then, the output of this method will overwrite the input.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 102 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

out_buffer_size Pointer to a variable that holds the size of the memory buffer in bytes where

the output data is to be stored. For more details, see the description of the

out_buffer parameter.

iv Pointer to the initialization vector if you use the AES cipher in the CBC or CTR

mode, or NULL in other cases.

The initialization vector must be provided in the first call of this method. In

subsequent calls, you may set the iv parameter to NULL, in which case, SKB

will interpret the provided input buffer as continuation of the same message

and will use the initialization vector that is internally preserved from the last

method call (this approach is useful for processing very large data buffers

that may not fit in the memory). In other words, if you provide the

initialization vector, SKB interprets the input buffer as a new message.

iv_size Size in bytes of the initialization vector. It should be 0 if the iv parameter is

NULL.

7.9.24 SKB_Cipher_Release

This method releases an SKB_Cipher object. It should always be called when the object is no longer

needed.

The method is declared as follows:

SKB_Result

SKB_Cipher_Release(SKB_Cipher* self);

The parameter self is a pointer to the SKB_Cipher object that should be released.

7.9.25 SKB_KeyAgreement_GetPublicKey

This method creates a new public key that should be sent to the other party of the key agreement

algorithm.

The method is declared as follows:

SKB_Result

SKB_KeyAgreement_GetPublicKey(SKB_KeyAgreement* self,

 SKB_Byte* public_key_buffer,

 SKB_Size* public_key_buffer_size);

The following table explains the parameters:

Parameter Description

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 103 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the previously created SKB_KeyAgreement object, which

contains all the necessary parameters.

public_key_buffer This parameter is either NULL or a pointer to the memory buffer

where the public key will be stored.

If this parameter is NULL, the method returns, in

public_key_buffer_size, a number of bytes sufficient to hold the

public key, and returns SKB_SUCCESS.

If this parameter points to a memory buffer (it is not NULL), and the

buffer size public_key_buffer_size is large enough to hold the

public key, the method stores the output there and sets

public_key_buffer_size to the exact number of bytes stored. If

the buffer is not large enough, the method sets

public_key_buffer_size to a number of bytes that would be

sufficient, and returns SKB_ERROR_BUFFER_TOO_SMALL.

For the SKB_KEY_AGREEMENT_ALGORITHM_ECDH algorithm, the public

key is stored using the format described in §8.5.

For the SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH algorithm, the

buffer size is 128 bytes, and it stores the public value encoded in

big-endian.

public_key_buffer_size Pointer to a variable that holds the size of the memory buffer in

bytes where the public key is to be stored. For more details, see the

description of the public_key_buffer parameter.

7.9.26 SKB_KeyAgreement_ComputeSecret

This method takes the public key received from the other party of the key agreement algorithm and

computes the shared secret.

The method is declared as follows:

SKB_Result

SKB_KeyAgreement_ComputeSecret(SKB_KeyAgreement* self,

 const SKB_Byte* peer_public_key,

 SKB_Size peer_public_key_size,

 SKB_Size secret_size,

 SKB_SecureData** secret);

The following table explains the parameters:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 104 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Parameter Description

self Pointer to the previously created SKB_KeyAgreement object, which

contains all the necessary parameters.

peer_public_key Pointer to the memory buffer where the public key received from

the other party is stored.

For the SKB_KEY_AGREEMENT_ALGORITHM_ECDH algorithm, the public

key is expected to be stored using the format described in §8.5.

For the SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH algorithm, the

buffer has to be 128 bytes long, and it should store the public value

encoded in big-endian.

peer_public_key_size Size of the peer_public_key parameter in bytes. This size must be

equal to the value returned by the

SKB_KeyAgreement_GetPublicKey method used by the other key

agreement party.

secret_size Size of the desired shared secret data output.

To select the largest possible shared secret size, the value

SKB_KEY_AGREEMENT_MAXIMAL_SECRET_SIZE should be passed as

an input for this parameter.

secret Address of a pointer to the SKB_SecureData object containing the

shared secret data that will be created by this method. The bytes

are ordered using the big-endian notation.

7.9.27 SKB_KeyAgreement_Release

This method releases an SKB_KeyAgreement object. It should always be called when the object is no

longer needed.

The method is declared as follows:

SKB_Result

SKB_KeyAgreement_Release(SKB_KeyAgreement* self);

The parameter self is a pointer to the SKB_KeyAgreement object that should be released.

7.10 Supporting Structures

This section describes various supporting structures used by the API.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 105 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.10.1 SKB_EngineProperty

SKB_EngineProperty is a name-value pair representing a particular SKB_Engine property in the

SKB_EngineInfo structure (see §7.10.2).

The SKB_EngineProperty structure is declared as follows:

typedef struct {

 const char* name;

 const char* value;

} SKB_EngineProperty;

For information on available properties, see §7.10.2.

7.10.2 SKB_EngineInfo

SKB_EngineInfo is a structure that is populated by the SKB_Engine_GetInfo method (see §7.9.4) to

provide information about a particular SKB_Engine instance.

 The contents of a populated SKB_EngineInfo structure will not be valid after the

corresponding SKB_Engine object is released from memory. During examination of the

SKB_EngineInfo object, the SKB_Engine object must exist.

The SKB_EngineInfo structure is declared as follows:

typedef struct {

 struct {

 unsigned int major;

 unsigned int minor;

 unsigned int revision;

 } api_version;

 unsigned int flags;

 unsigned int property_count;

 SKB_EngineProperty* properties;

} SKB_EngineInfo;

The following table describes the properties:

Property Description

major, minor,

revision
Version numbers specified in the API header file.

flags Currently, this property is not used because there are no engine-specific

flags defined.

property_count Number of elements in the properties array.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 106 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

properties Array of engine properties with property_count elements, where each

property specified is an SKB_EngineProperty structure (see §7.10.1).

The following properties are used:

 implementation: Cryptographic technique used by SKB. Available values

are the following:

 U: identifies an implementation based on composite automata

 P: identifies an implementation based on polynomial encryption

 key_cache: Key caching mechanism used by SKB. Available values are

sqlite, memory, and custom. For information on key caching and its

modes, see §4.2.3.

 key_cache_max_items: Maximum number of keys that can be cached in

the memory. This property is available only if the memory key caching

mechanism is used.

 diversification_guid: Unique diversification identifier consisting of 16

bytes in the hexadecimal format. SKB packages with the same binary

implementation will have the same identifier.

 export_guid: Export key identifier consisting of 16 bytes in the

hexadecimal format. SKB packages with the same export key will have

the same identifier.

 export_key_version: Current export key version in the one-way data

upgrade scheme (see §3.7).

7.10.3 SKB_DataInfo

This structure is used by the SKB_SecureData_GetInfo method to return the size and type of a

particular SKB_SecureData object (see §7.9.14).

The structure is declared as follows:

typedef struct {

 SKB_DataType type;

 SKB_Size size;

} SKB_DataInfo;

The following table explains the properties:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 107 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

type Type of the data stored within the SKB_SecureData object. Available types are

defined in the SKB_DataType enumeration (see §7.11.1).

size Size of the contents in bytes.

Value 0 means that the information is not available.

For the data type SKB_DATA_TYPE_RSA_PRIVATE_KEY, this value is the modulus in

bytes.

7.10.4 SKB_CtrModeCipherParameters

This structure provides an additional parameter for the SKB_Engine_CreateCipher method when

the SKB_CIPHER_ALGORITHM_AES_128_CTR, SKB_CIPHER_ALGORITHM_AES_192_CTR, and

SKB_CIPHER_ALGORITHM_AES_256_CTR algorithms are used (see §7.9.10).

The structure is declared as follows:

typedef struct {

 SKB_Size counter_size;

} SKB_CtrModeCipherParameters;

The property counter_size specifies the counter size in bytes.

7.10.5 SKB_DigestTransformParameters

This structure is used by the SKB_Engine_CreateTransform method if the

SKB_TRANSFORM_TYPE_DIGEST transform is used (see §7.9.9). The purpose of this structure is to

specify the digest algorithm.

The structure is declared as follows:

typedef struct {

 SKB_DigestAlgorithm algorithm;

} SKB_DigestTransformParameters;

The property algorithm specifies the digest algorithm to be used. The available algorithms are

defined in the SKB_DigestAlgorithm enumeration (see §7.11.2).

7.10.6 SKB_SignTransformParameters

This structure is used by the SKB_Engine_CreateTransform method if the

SKB_TRANSFORM_TYPE_SIGN transform is used (see §7.9.9). The purpose of this structure is to specify

the signing algorithm and the signing key.

The structure is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 108 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

typedef struct {

 SKB_SignatureAlgorithm algorithm;

 const SKB_SecureData* key;

} SKB_SignTransformParameters;

The following table explains the properties:

Property Description

algorithm Signing algorithm to be used. The available signing algorithms are defined in the

SKB_SignatureAlgorithm enumeration (see §7.11.4).

key Pointer to the SKB_SecureData object, which contains the signing key.

This key must not be released before the SKB_Transform object that uses it is

released.

7.10.7 SKB_SignTransformParametersEx

This structure is an extension to the SKB_SignTransformParameters structure. It provides the

additional ability to specify the ECC curve type in case the ECDSA signature algorithm is used, or salt

and salt length in case the RSA signature algorithm based on the Probabilistic Signature Scheme is

used.

The structure is declared as follows:

typedef struct {

 SKB_SignTransformParameters base;

 const void* extension;

} SKB_SignTransformParametersEx;

The following table explains the properties:

Property Description

base SKB_SignTransformParameters structure that specifies the signature algorithm

and the key to be used (see §7.10.6).

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 109 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

extension If one of the following signature algorithms is used, this pointer must point to the

SKB_EccParameters structure, which specifies the ECC curve type to be used

(see §7.10.22):

 SKB_SIGNATURE_ALGORITHM_ECDSA

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA1

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA256

If the SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX or

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX signature algorithm is used,

this pointer must point to the SKB_RsaPssParameters structure, which specifies

the salt and salt length (see §7.10.21).

7.10.8 SKB_VerifyTransformParameters

This structure is used by the SKB_Engine_CreateTransform method if the

SKB_TRANSFORM_TYPE_VERIFY transform is used (see §7.9.9). The purpose of this structure is to

specify the verification algorithm, verification key, and the signature.

The structure is declared as follows:

typedef struct {

 SKB_SignatureAlgorithm algorithm;

 const SKB_SecureData* key;

 const SKB_Byte* signature;

 SKB_Size signature_size;

} SKB_VerifyTransformParameters;

The following table explains the properties:

Property Description

algorithm Verification algorithm to be used. The available verification algorithms are

defined in the SKB_SignatureAlgorithm enumeration (see §7.11.4).

Only the following algorithms are supported for verification:

 SKB_SIGNATURE_ALGORITHM_AES_128_CMAC

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA1

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA256

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA384

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA512

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 110 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

key Pointer to the SKB_SecureData object, which contains the verification key.

This key must not be released before the SKB_Transform object that uses it is

released.

signature Pointer to the data buffer containing the signature to be verified.

signature_size Size of the signature in bytes.

7.10.9 SKB_SelectBytesDerivationParameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_SELECT_BYTES algorithm is used (see §7.9.17). It specifies whether odd

or even bytes should be copied from the input, and how many bytes to copy.

The structure is declared as follows:

typedef struct {

 SKB_SelectBytesDerivationVariant variant;

 unsigned int output_size;

} SKB_SelectBytesDerivationParameters;

The following table explains the properties:

Property Description

variant Reference to a value of the SKB_SelectBytesDerivationVariant enumeration

(see §7.11.14), which tells whether odd or even bytes should be selected.

output_size Size of the output in bytes, which is the number of bytes copied from the input.

7.10.10 SKB_CipherDerivationParameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_CIPHER algorithm is used (see §7.9.17). The purpose of this structure is

to specify all the necessary parameters to execute the derivation.

The structure is declared as follows:

typedef struct {

 SKB_CipherAlgorithm cipher_algorithm;

 SKB_CipherDirection cipher_direction;

 unsigned int cipher_flags;

 const void* cipher_parameters;

 const SKB_SecureData* cipher_key;

 const SKB_Byte* iv;

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 111 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 SKB_Size iv_size;

} SKB_CipherDerivationParameters;

The following table explains the properties:

Property Description

cipher_algorithm Cipher algorithm to be executed on the input data. This is a reference to the

SKB_CipherAlgorithm enumeration (see §7.11.3).

Currently, the SKB_DERIVATION_ALGORITHM_CIPHER algorithm supports only

the following ciphers:

 SKB_CIPHER_ALGORITHM_AES_128_ECB

 SKB_CIPHER_ALGORITHM_AES_128_CBC

 SKB_CIPHER_ALGORITHM_AES_192_ECB

 SKB_CIPHER_ALGORITHM_AES_192_CBC

 SKB_CIPHER_ALGORITHM_AES_256_ECB

 SKB_CIPHER_ALGORITHM_AES_256_CBC

cipher_direction Parameter that specifies whether the input data should be encrypted or

decrypted. Available directions are defined in the SKB_CipherDirection

enumeration (see §7.11.6).

cipher_flags Optional flags for the cipher.

Currently, the only defined flag is SKB_CIPHER_FLAG_HIGH_SPEED. This flag

can be used only for the AES cipher when it is intended to be used with high

throughput, for example when used for media content decryption.

cipher_parameters Pointer to a structure that provides additional parameters for the cipher.

Currently, this parameter must always be NULL.

cipher_key Pointer to the SKB_SecureData object containing the encryption or

decryption key.

iv Pointer to the initialization vector.

iv_size Size in bytes of the initialization vector.

7.10.11 SKB_Sha1DerivationParameters

This structure is used by the SKB_SecureData_Derive method (see §7.9.17) if the

SKB_DERIVATION_ALGORITHM_SHA_1 algorithm is used (see §3.10.4.1). The purpose of this structure

is to specify how many times the SHA-1 algorithm should be executed on the source

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 112 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

SKB_SecureData object and how many bytes should be derived from the final hash value as a new

SKB_SecureData object.

The structure is declared as follows:

typedef struct {

 unsigned int round_count;

 unsigned int output_size;

} SKB_Sha1DerivationParameters;

The following table explains the properties:

Property Description

round_count How many times the SHA-1 algorithm should be executed in a sequence.

0 is also a valid value. In this case, the SHA-1 value will not be calculated; the

derived SKB_SecureData object will simply contain the first output_size bytes

of the source SKB_SecureData object.

output_size Number of bytes to be derived from the final output of the SHA-1 algorithm. For

example, if output_size is 4, the first four bytes of the hash value will be derived

as a new SKB_SecureData object.

The standard size of the SHA-1 output is 20 bytes. Hence, output_size cannot

exceed 20.

7.10.12 SKB_Sha256DerivationParameters

This structure is used by the SKB_SecureData_Derive method (see §7.9.17) if the

SKB_DERIVATION_ALGORITHM_SHA_256 algorithm is used (see §3.10.4.2). The purpose of this

structure is to provide the two plain data buffers that should be prepended and appended to the

source SKB_SecureData object before the SHA-256 algorithm is executed.

This structure may be omitted (provided as NULL). In that case, SKB will assume that there are no

plain data buffers prepended or appended to the source SKB_SecureData object.

The structure is declared as follows:

typedef struct {

 const SKB_Byte* plain1;

 SKB_Size plain1_size;

 const SKB_Byte* plain2;

 SKB_Size plain2_size;

} SKB_Sha256DerivationParameters;

The following table explains the properties:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 113 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

plain1 Pointer to a buffer of bytes that should be prepended to the source

SKB_SecureData object before calculating the SHA-256 hash value.

This property can be NULL, in which case there will be no plain data prepended

to the SKB_SecureData object.

plain1_size Number of bytes in the plain1 buffer.

plain2 Pointer to a buffer of bytes that should be appended to the source

SKB_SecureData object before calculating the SHA-256 hash value.

This property can be NULL, in which case there will be no plain data appended to

the SKB_SecureData object.

plain2_size Number of bytes in the plain2 buffer.

7.10.13 SKB_Nist800108CounterCmacAes128Parameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_NIST_800_108_COUNTER_CMAC_AES128 derivation algorithm is used

(see §7.9.17). The purpose of this structure is to specify the necessary input parameters. For more

information on this derivation algorithm, see §3.10.6.

The structure is declared as follows:

typedef struct {

 const SKB_Byte* label;

 SKB_Size label_size;

 const SKB_Byte* context;

 SKB_Size context_size;

 SKB_Size output_size;

} SKB_Nist800108CounterCmacAes128Parameters;

The following table explains the properties:

Property Description

label Pointer to the label, a binary buffer that identifies the purpose for the derived key,

as defined by the NIST Special Publication 800-108.

label_size Size of the label in bytes.

context Pointer to the context, a binary buffer containing the information related to the

derived key, as defined by the NIST Special Publication 800-108.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 114 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

context_size Size of the context in bytes.

output_size Size of the derivation output in bytes. It cannot exceed 4096 bytes and must be a

multiple of 16.

7.10.14 SKB_RawBytesFromEccPrivateDerivationParameters

This structure may be used by the SKB_SecureData_Derive method to specify the endianness of the

output if the SKB_DERIVATION_ALGORITHM_RAW_BYTES_FROM_ECC_PRIVATE derivation algorithm is

used (see §7.9.17). The purpose of this structure is to specify whether the output should be encoded

in little-endian or big-endian. For more information on this derivation algorithm, see §3.10.8.

The structure is declared as follows:

typedef struct {

 unsigned int derivation_flags;

} SKB_RawBytesFromEccPrivateDerivationParameters;

If derivation_flags includes the SKB_DERIVATION_FLAG_OUTPUT_IN_BIG_ENDIAN flag, the output

will be encoded in big-endian. Otherwise, the output will be encoded in little-endian.

7.10.15 SKB_ShaAesDerivationParameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_SHA_AES derivation algorithm is used (see §7.9.17). The purpose of this

structure is to specify the necessary input parameters. For more information on this derivation

algorithm, see §3.10.10.

The structure is declared as follows:

typedef struct {

 const SKB_SecureData* secure_p;

 const SKB_Byte* plain_1;

 SKB_Size plain_1_size;

 const SKB_Byte* plain_2;

} SKB_ShaAesDerivationParameters;

The following table explains the properties:

Property Description

secure_p Pointer to the SKB_SecureData object containing the secure_p value.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 115 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

plain_1 Pointer to the plain_1 buffer.

This property may be set to NULL. In that case, the simplified version of the

derivation algorithm will be executed (see §3.10.10).

plain_1_size Size of the plain_1 buffer. It must be 0 if plain_1 is set to NULL.

plain_2 Pointer to the plain_2 buffer, which must be 16 bytes long.

7.10.16 SKB_OmaDrmKdf2DerivationParameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_OMA_DRM_KDF2 derivation algorithm is used (see §7.9.17). The purpose

of this structure is to specify the necessary input parameters. For more information on this

derivation algorithm, see §3.10.7.

The structure is declared as follows:

typedef struct {

 const SKB_Byte* label;

 SKB_Size label_size;

 SKB_Size output_size;

} SKB_OmaDrmKdf2DerivationParameters;

The following table explains the properties:

Property Description

label Pointer to the buffer containing the otherInfo parameter as defined in the OMA

DRM specification.

label_size Size of the label buffer in bytes.

output_size Size of the derivation output in bytes.

7.10.17 SKB_SliceDerivationParameters

This structure is used by the SKB_SecureData_Derive method if the

SKB_DERIVATION_ALGORITHM_SLICE or SKB_DERIVATION_ALGORITHM_BLOCK_SLICE derivation

algorithm is used (see §7.9.17). The purpose of this structure is to specify the range of bytes (first

byte and the number of bytes) that should be derived from one SKB_SecureData object into another

SKB_SecureData object.

The structure is declared as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 116 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

typedef struct {

 unsigned int first;

 unsigned int size;

} SKB_SliceDerivationParameters;

The following table explains the properties:

Property Description

first Index of the first byte of the source SKB_SecureData object where the derived range

starts. Bytes are numbered starting with 0.

If you are using the SKB_DERIVATION_ALGORITHM_BLOCK_SLICE algorithm, the value

must be a multiple of 16.

size Number of bytes to derive starting with the byte with offset first.

If you are using the SKB_DERIVATION_ALGORITHM_BLOCK_SLICE algorithm, the value

must be a multiple of 16.

7.10.18 SKB_EccDomainParameters

This structure defines domain parameters for a custom ECC curve, and therefore should be

employed only when the SKB_ECC_CURVE_CUSTOM curve type of the SKB_EccCurve enumeration is

used (see §7.11.10). Currently, custom ECC curves are supported only for the ECDSA, ECDH, and ECC

key generation algorithms. For all other cases, this structure is not used.

The structure is declared as follows:

typedef struct {

 SKB_Size prime_bit_length;

 SKB_Size order_bit_length;

 const unsigned int* prime;

 const unsigned int* a;

 const unsigned int* gx;

 const unsigned int* gy;

 const unsigned int* order;

} SKB_EccDomainParameters;

The following table explains the properties:

Property Description

prime_bit_length Bit-length of the prime, a, gx, and gy domain parameters.

order_bit_length Bit-length of the order domain parameter.

prime Pointer to the prime modulo of the field.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 117 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

a Pointer to the constant from the equation y2 = x3 + ax + b.

gx Pointer to the X coordinate of the base point.

gy Pointer to the Y coordinate of the base point.

order Pointer to the order of the base point.

All domain parameters, except for prime_bit_length and order_bit_length, must be provided in

protected form. To obtain the protected form of custom ECC domain parameters, use Custom ECC

Tool as described in §5.1.

7.10.19 SKB_AesWrapParameters

This structure provides a specific initialization vector to the AES algorithm when the

SKB_SecureData_Wrap method is used (see §7.9.16). If this structure is not provided, the AES

wrapping algorithm generates a random initialization vector.

The structure is declared as follows:

typedef struct {

 const SKB_Byte* iv;

} SKB_AesWrapParameters;

iv is a pointer to the byte buffer containing the initialization vector.

7.10.20 SKB_AesUnwrapParameters

A pointer to this structure can be passed to the SKB_Engine_CreateDataFromWrapped method (see

§7.9.5) in case the CBC mode of the AES algorithm is used. This structure specifies the CBC padding

type to be used. For information on available CBC padding types, see §8.2.3.

The structure is declared as follows:

typedef struct {

 SKB_CbcPadding padding;

} SKB_AesUnwrapParameters;

padding specifies the CBC padding type to be used. The available padding types are defined in the

SKB_CbcPadding enumeration (see §7.11.13).

7.10.21 SKB_RsaPssParameters

This structure provides additional parameters when the

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX or SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX

signature algorithm is used.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 118 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The structure is declared as follows:

typedef struct {

 const SKB_Byte* salt;

 SKB_Size salt_length;

} SKB_RsaPssParameters;

The following table describes the properties:

Property Description

salt Pointer to a byte buffer containing the salt value to be used.

If this parameter is NULL, a random salt value with the length specified in

the salt_length parameter will be generated.

salt_length Length of the salt value in bytes.

It must be equal or greater than 0 and must not exceed the hash

function block size.

7.10.22 SKB_EccParameters

This structure provides additional parameters when the ECC functions are used.

The structure is declared as follows:

typedef struct {

 SKB_EccCurve curve;

 SKB_EccDomainParameters* domain_parameters;

 const unsigned int* random_value;

} SKB_EccParameters;

The following table describes the properties:

Property Description

curve Specifies the ECC curve type to be used. The available curve types are

defined in the SKB_EccCurve enumeration (see §7.11.10).

domain_parameters Pointer to the SKB_EccDomainParameters structure, which provides

domain parameters for a custom ECC curve (see §7.10.18).

This parameter should be set only when the SKB_ECC_CURVE_CUSTOM

curve type is used.

Currently, custom ECC curves are supported only for the ECDSA, ECDH,

and ECC key generation algorithms. For all other cases, there is no point

setting this parameter.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 119 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Property Description

random_value Property that allows you to provide a fixed random value to the ECDSA

and ECDH algorithms.

Typically, the value of this property should be NULL, in which case SKB

uses an internally generated random value.

However, you can also pass a fixed number to be used as the random

value. The fixed number must be passed as an integer array containing

the value in protected form. To obtain the protected form of a fixed

random value, use Custom ECC Tool as described in §5.1.

7.10.23 SKB_PrimeDhParameters

This structure is required by the SKB_Engine_CreateKeyAgreement method when the classical DH

algorithm (SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH) is selected. The structure supplies

parameters necessary to execute the DH key agreement operation.

The structure is declared as follows:

typedef struct {

 SKB_PrimeDhLength length;

 const SKB_Byte* data;

 const unsigned int* random_value;

} SKB_PrimeDhParameters;

The following table describes the properties:

Property Description

length Maximum bit-length of the DH prime P. The available values are defined in the

SKB_PrimeDhLength enumeration (see §7.11.12).

data Pointer to an integer array containing a combination of the prime P and

generator G in protected form to be used by the DH algorithm. To obtain this

protected data buffer, use Diffie-Hellman Tool as described in §5.2.

random_value Property that allows you to provide a fixed random value to the DH algorithm.

Typically, the value of this property should be NULL, in which case SKB uses an

internally generated random value.

However, you can also pass a fixed number to be used as the random value.

The fixed number must be passed as an integer array containing the value in

protected form. To obtain the protected form of a fixed random value, use

Diffie-Hellman Tool as described in §5.2.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 120 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.10.24 SKB_RawBytesParameters

This structure is required by the SKB_Engine_GenerateSecureData method (see §7.9.8) to generate

an SKB_SecureData object containing a protected buffer of random raw bytes. The only purpose of

this structure is to specify the number of bytes to generate.

The structure is declared as follows:

typedef struct {

 SKB_Size byte_count;

} SKB_RawBytesParameters;

The byte_count is the number of bytes to be generated.

7.11 Enumerations

This section describes various enumerations defined in the API.

7.11.1 SKB_DataType

This enumeration specifies the possible data types of the content encapsulated by an

SKB_SecureData object.

The enumeration is defined as follows:

typedef enum {

 SKB_DATA_TYPE_BYTES,

 SKB_DATA_TYPE_RSA_PRIVATE_KEY,

 SKB_DATA_TYPE_ECC_PRIVATE_KEY

} SKB_DataType;

As shown, an SKB_SecureData object can contain raw bytes (for example, a DES or AES key), an RSA

private key, or an ECC private key.

7.11.2 SKB_DigestAlgorithm

This enumeration specifies the available digest algorithms, and is defined as follows:

typedef enum {

 SKB_DIGEST_ALGORITHM_SHA1,

 SKB_DIGEST_ALGORITHM_SHA256,

 SKB_DIGEST_ALGORITHM_SHA384,

 SKB_DIGEST_ALGORITHM_SHA512

} SKB_DigestAlgorithm;

7.11.3 SKB_CipherAlgorithm

This enumeration specifies cryptographic algorithms that are used for encrypting and decrypting

data.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 121 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

The enumeration is defined as follows:

typedef enum {

 SKB_CIPHER_ALGORITHM_NULL,

 SKB_CIPHER_ALGORITHM_AES_128_ECB,

 SKB_CIPHER_ALGORITHM_AES_128_CBC,

 SKB_CIPHER_ALGORITHM_AES_128_CTR,

 SKB_CIPHER_ALGORITHM_RSA,

 SKB_CIPHER_ALGORITHM_RSA_1_5,

 SKB_CIPHER_ALGORITHM_RSA_OAEP,

 SKB_CIPHER_ALGORITHM_ECC_ELGAMAL,

 SKB_CIPHER_ALGORITHM_AES_192_ECB,

 SKB_CIPHER_ALGORITHM_AES_192_CBC,

 SKB_CIPHER_ALGORITHM_AES_192_CTR,

 SKB_CIPHER_ALGORITHM_AES_256_ECB,

 SKB_CIPHER_ALGORITHM_AES_256_CBC,

 SKB_CIPHER_ALGORITHM_AES_256_CTR,

 SKB_CIPHER_ALGORITHM_DES_ECB,

 SKB_CIPHER_ALGORITHM_TRIPLE_DES_ECB,

 SKB_CIPHER_ALGORITHM_NIST_AES,

 SKB_CIPHER_ALGORITHM_AES_CMLA,

 SKB_CIPHER_ALGORITHM_RSA_CMLA,

 SKB_CIPHER_ALGORITHM_XOR,

} SKB_CipherAlgorithm;

The following table explains the values:

Value Description

SKB_CIPHER_ALGORITHM_NULL Value that identifies that no algorithm was used,

meaning that the corresponding data is not encrypted.

This value is used by the

SKB_Engine_CreateDataFromWrapped method to

specify that the data to be loaded is in plain form (see

§3.2).

SKB_CIPHER_ALGORITHM_AES_128_ECB 128-bit AES in the ECB mode

SKB_CIPHER_ALGORITHM_AES_128_CBC 128-bit AES in the CBC mode

SKB_CIPHER_ALGORITHM_AES_128_CTR 128-bit AES in the CTR mode

SKB_CIPHER_ALGORITHM_RSA 1024-bit and 2048-bit RSA with no padding

SKB_CIPHER_ALGORITHM_RSA_1_5 1024-bit and 2048-bit RSA with PKCS#1 version 1.5

padding

SKB_CIPHER_ALGORITHM_RSA_OAEP 1024-bit and 2048-bit RSA with OAEP padding

SKB_CIPHER_ALGORITHM_ECC_ELGAMAL ElGamal ECC

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 122 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Value Description

SKB_CIPHER_ALGORITHM_AES_192_ECB 192-bit AES in the ECB mode

SKB_CIPHER_ALGORITHM_AES_192_CBC 192-bit AES in the CBC mode

SKB_CIPHER_ALGORITHM_AES_192_CTR 192-bit AES in the CTR mode

SKB_CIPHER_ALGORITHM_AES_256_ECB 256-bit AES in the ECB mode

SKB_CIPHER_ALGORITHM_AES_256_CBC 256-bit AES in the CBC mode

SKB_CIPHER_ALGORITHM_AES_256_CTR 256-bit AES in the CTR mode

SKB_CIPHER_ALGORITHM_DES_ECB DES in the ECB mode

SKB_CIPHER_ALGORITHM_TRIPLE_DES_ECB Triple DES in the ECB mode

SKB_CIPHER_ALGORITHM_NIST_AES AES key unwrapping algorithm defined by NIST. This

cipher is supported only by the

SKB_Engine_CreateDataFromWrapped method (see

§7.9.5).

SKB_CIPHER_ALGORITHM_AES_CMLA CMLA AES unwrapping defined by the CMLA Technical

Specification

SKB_CIPHER_ALGORITHM_RSA_CMLA CMLA RSA unwrapping defined by the CMLA Technical

Specification

SKB_CIPHER_ALGORITHM_XOR Wrapping and unwrapping using XOR:

 If the SKB_SecureData_Wrap function is used (see

§7.9.16), the key to be wrapped is XOR-ed with the

wrapping key.

 If the SKB_Engine_CreateDataFromWrapped

function is used (see §7.9.5), the wrapped buffer is

XOR-ed with the unwrapping key.

 In both cases, the two XOR-ed buffers must be of

equal size.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 123 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.11.4 SKB_SignatureAlgorithm

This enumeration specifies the possible signing and verifying algorithms for the SKB_Transform

object.

The enumeration is defined as follows:

typedef enum {

 SKB_SIGNATURE_ALGORITHM_AES_128_CMAC,

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA1,

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA256,

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA384,

 SKB_SIGNATURE_ALGORITHM_HMAC_SHA512,

 SKB_SIGNATURE_ALGORITHM_RSA,

 SKB_SIGNATURE_ALGORITHM_RSA_SHA1,

 SKB_SIGNATURE_ALGORITHM_RSA_SHA256,

 SKB_SIGNATURE_ALGORITHM_ECDSA,

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA1,

 SKB_SIGNATURE_ALGORITHM_ECDSA_SHA256,

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1,

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX,

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256,

 SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX,

} SKB_SignatureAlgorithm;

The following table explains the values:

Value Description

SKB_SIGNATURE_ALGORITHM_AES_128_CMAC 128-bit AES-CMAC (based on OMAC1)

SKB_SIGNATURE_ALGORITHM_HMAC_SHA1 HMAC using SHA-1 with up to 64-byte keys

SKB_SIGNATURE_ALGORITHM_HMAC_SHA256 HMAC using SHA-256 with up to 64-byte keys

SKB_SIGNATURE_ALGORITHM_HMAC_SHA384 HMAC using SHA-384 with up to 64-byte keys

SKB_SIGNATURE_ALGORITHM_HMAC_SHA512 HMAC using SHA-512 with up to 64-byte keys

SKB_SIGNATURE_ALGORITHM_RSA 1024-bit and 2048-bit RSA signature algorithms

standardized in version 1.5 of PKCS#1 without

a hash function (can only be executed on plain

input, which is a digest of some hash function)

SKB_SIGNATURE_ALGORITHM_RSA_SHA1 1024-bit and 2048-bit RSA signature algorithms

standardized in version 1.5 of PKCS#1 using

SHA-1 as the hash function

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 124 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Value Description

SKB_SIGNATURE_ALGORITHM_RSA_SHA256 1024-bit and 2048-bit RSA signature algorithms

standardized in version 1.5 of PKCS#1 using

SHA-256 as the hash function

SKB_SIGNATURE_ALGORITHM_ECDSA ECDSA with either standard or custom curves

(can only be executed on plain input, which is a

digest of some hash function)

SKB_SIGNATURE_ALGORITHM_ECDSA_SHA1 ECDSA with either standard or custom curves

using SHA-1 as the hash function

SKB_SIGNATURE_ALGORITHM_ECDSA_SHA256 ECDSA with either standard or custom curves

using SHA-256 as the hash function

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1 1024-bit and 2048-bit RSA signature algorithms

based on the Probabilistic Signature Scheme

using SHA-1 as the hash function.

Salt length is fixed at 20 bytes. The mask

generation function is using SHA-1.

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX Same as

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1 but

allows specifying the salt value and length.

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256 1024-bit and 2048-bit RSA signature algorithms

based on the Probabilistic Signature Scheme

using SHA-256 as the hash function.

Salt length is fixed at 32 bytes. The mask

generation function is using SHA-256.

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX Same as
SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256

but allows specifying the salt value and length.

7.11.5 SKB_DerivationAlgorithm

This enumeration specifies the possible algorithms that can be used for deriving one

SKB_SecureData object from another using the SKB_SecureData_Derive method (see §7.9.17).

The enumeration is defined as follows:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 125 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

typedef enum {

 SKB_DERIVATION_ALGORITHM_SLICE,

 SKB_DERIVATION_ALGORITHM_BLOCK_SLICE,

 SKB_DERIVATION_ALGORITHM_SELECT_BYTES,

 SKB_DERIVATION_ALGORITHM_CIPHER,

 SKB_DERIVATION_ALGORITHM_SHA_1,

 SKB_DERIVATION_ALGORITHM_SHA_256,

 SKB_DERIVATION_ALGORITHM_SHA_384,

 SKB_DERIVATION_ALGORITHM_REVERSE_BYTES,

 SKB_DERIVATION_ALGORITHM_NIST_800_108_COUNTER_CMAC_AES128,

 SKB_DERIVATION_ALGORITHM_OMA_DRM_KDF2,

 SKB_DERIVATION_ALGORITHM_RAW_BYTES_FROM_ECC_PRIVATE,

 SKB_DERIVATION_ALGORITHM_CMLA_KDF,

 SKB_DERIVATION_ALGORITHM_SHA_AES,

} SKB_DerivationAlgorithm;

The following list explains the values:

 SKB_DERIVATION_ALGORITHM_SLICE: Derives a new SKB_SecureData object as a substring of

bytes of another SKB_SecureData object. For more information, see §3.10.1.

 SKB_DERIVATION_ALGORITHM_BLOCK_SLICE: Same as the SKB_DERIVATION_ALGORITHM_SLICE

algorithm, but it requires the index of the first byte and the number of bytes in the substring to

be multiples of 16. For more information, see §3.10.1.

 SKB_DERIVATION_ALGORITHM_SELECT_BYTES: Derives a new SKB_SecureData object from the

input SKB_SecureData object by copying only odd or even bytes from it. For more information,

see §3.10.2.

 SKB_DERIVATION_ALGORITHM_CIPHER: Derives a new SKB_SecureData object from the input

SKB_SecureData object by encrypting or decrypting it with another key. For more information,

see §3.10.3.

 SKB_DERIVATION_ALGORITHM_SHA_1: Obtains a hash value from the referenced SKB_SecureData

object by executing SHA-1 one or several times and stores the specified substring of bytes from

the output as a new SKB_SecureData object. For more information, see §3.10.4.1.

 SKB_DERIVATION_ALGORITHM_SHA_256: Obtains a SHA-256 hash value from a buffer that

contains a SKB_SecureData object, prefixed and suffixed with plain data, and stores the output

as a new SKB_SecureData object. For more information, see §3.10.4.2.

 SKB_DERIVATION_ALGORITHM_SHA_384: Obtains a hash value from the referenced

SKB_SecureData object by executing SHA-384 one time and stores the entire 48-byte output as a

new SKB_SecureData object. For more information, see §3.10.4.3.

 SKB_DERIVATION_ALGORITHM_REVERSE_BYTES: Derives a new SKB_SecureData object where the

order of bytes is reversed. You can use this derivation type to convert little-endian data buffers to

big-endian and vice versa. For more information, see §3.10.5.

 SKB_DERIVATION_ALGORITHM_NIST_800_108_COUNTER_CMAC_AES128: Derives a new

SKB_SecureData object according to the key derivation function specified in the NIST Special

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 126 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Publication 800-108, using 128-bit AES-CMAC as the pseudorandom function in counter mode.

For more information, see §3.10.6.

 SKB_DERIVATION_ALGORITHM_OMA_DRM_KDF2: Derives a new SKB_SecureData object according to

KDF2 used in the RSAES-KEM-KWS scheme of the OMA DRM specification. For more information,

see §3.10.7.

 SKB_DERIVATION_ALGORITHM_RAW_BYTES_FROM_ECC_PRIVATE: Derives a new SKB_SecureData

object with the type SKB_DATA_TYPE_BYTES from another SKB_SecureData object with the type

SKB_DATA_TYPE_ECC_PRIVATE_KEY. For more information, see §3.10.8.

 SKB_DERIVATION_ALGORITHM_CMLA_KDF: Derives a new SKB_SecureData object according to the

key derivation function defined in the CMLA Technical Specification. For more information, see

§3.10.9.

 SKB_DERIVATION_ALGORITHM_SHA_AES: Derives a new SKB_SecureData object using an

algorithm described in 3.10.10.

7.11.6 SKB_CipherDirection

This enumeration specifies the possible directions (encryption or decryption) for the SKB_Cipher

object.

Encryption is supported only for the DES, Triple DES, and AES ciphers.

The enumeration is defined as follows:

typedef enum {

 SKB_CIPHER_DIRECTION_ENCRYPT,

 SKB_CIPHER_DIRECTION_DECRYPT

} SKB_CipherDirection;

7.11.7 SKB_DataFormat

This enumeration specifies the possible formats how a cryptographic key can be stored in a data

buffer.

The enumeration is defined as follows:

typedef enum {

 SKB_DATA_FORMAT_RAW,

 SKB_DATA_FORMAT_PKCS8,

 SKB_DATA_FORMAT_ECC_BINARY

} SKB_DataFormat;

The following table explains the values:

Value Description

SKB_DATA_FORMAT_RAW Buffer of raw bytes (for example, a DES or AES key)

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 127 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Value Description

SKB_DATA_FORMAT_PKCS8 RSA private key stored according to the PKCS#8 standard

SKB_DATA_FORMAT_ECC_BINARY ECC private key stored in the format described in §8.6

7.11.8 SKB_TransformType

This enumeration specifies the available transform types used by the SKB_Engine_CreateTransform

method to create SKB_Transform objects (see §7.9.9).

The enumeration is defined as follows:

typedef enum {

 SKB_TRANSFORM_TYPE_DIGEST,

 SKB_TRANSFORM_TYPE_SIGN,

 SKB_TRANSFORM_TYPE_VERIFY

} SKB_TransformType;

The following table explains the values:

Value Description

SKB_TRANSFORM_TYPE_DIGEST Transform for calculating a digest (hash value).

SKB_TRANSFORM_TYPE_SIGN Transform for creating a signature.

SKB_TRANSFORM_TYPE_VERIFY Transform for verifying a signature.

7.11.9 SKB_ExportTarget

This enumeration specifies the various export types used by the SKB_SecureData_Export method

(see §7.9.15).

The enumeration is defined as follows:

typedef enum {

 SKB_EXPORT_TARGET_CLEARTEXT,

 SKB_EXPORT_TARGET_PERSISTENT,

 SKB_EXPORT_TARGET_CROSS_ENGINE,

 SKB_EXPORT_TARGET_CUSTOM

} SKB_ExportTarget;

Currently, only the SKB_EXPORT_TARGET_PERSISTENT type is supported. With this type, the exported

data can be reloaded in an engine even after a complete reboot of the system hosting the engine.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 128 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.11.10 SKB_EccCurve

This enumeration specifies the available ECC curve types. These values must be provided when the

ElGamal ECC algorithms are used.

This enumeration is defined as follows:

typedef enum {

 SKB_ECC_CURVE_SECP_R1_160,

 SKB_ECC_CURVE_NIST_192,

 SKB_ECC_CURVE_NIST_224,

 SKB_ECC_CURVE_NIST_256,

 SKB_ECC_CURVE_NIST_384,

 SKB_ECC_CURVE_NIST_521,

 SKB_ECC_CURVE_CUSTOM

} SKB_EccCurve;

The following table explains the values:

Value Description

SKB_ECC_CURVE_SECP_R1_160 160-bit prime curve recommended by SECG, SECP R1

SKB_ECC_CURVE_NIST_192 192-bit prime curve recommended by NIST (same as 192-bit

SECG, SECP R1)

SKB_ECC_CURVE_NIST_224 224-bit prime curve recommended by NIST (same as 224-bit

SECG, SECP R1)

SKB_ECC_CURVE_NIST_256 256-bit prime curve recommended by NIST (same as 256-bit

SECG, SECP R1)

SKB_ECC_CURVE_NIST_384 384-bit prime curve recommended by NIST (same as 384-bit

SECG, SECP R1).

Currently, this curve type is supported only for ECDSA, ECDH,

and key generation, but not for decrypting and unwrapping.

SKB_ECC_CURVE_NIST_521 521-bit prime curve recommended by NIST (same as 521-bit

SECG, SECP R1).

Currently, this curve type is supported only for ECDSA, ECDH,

and key generation, but not for decrypting and unwrapping.

SKB_ECC_CURVE_CUSTOM Prime ECC curve with custom domain parameters.

Currently, this curve type is supported only for ECDSA, ECDH,

and key generation, but not for decrypting and unwrapping.

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 129 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

7.11.11 SKB_KeyAgreementAlgorithm

This enumeration specifies the available key agreement algorithms used by the

SKB_Engine_CreateKeyAgreement method to create SKB_KeyAgreement objects (see §7.9.11).

The enumeration is defined as follows:

typedef enum {

 SKB_KEY_AGREEMENT_ALGORITHM_ECDH,

 SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH

} SKB_KeyAgreementAlgorithm;

The following table explains the values:

Value Description

SKB_KEY_AGREEMENT_ALGORITHM_ECDH Elliptic curve Diffie-Hellman

SKB_KEY_AGREEMENT_ALGORITHM_PRIME_DH Classical Diffie-Hellman with protected prime P

and generator G

7.11.12 SKB_PrimeDhLength

This enumeration specifies the available maximum bit-lengths of prime P for the classical DH key

agreement algorithm. The values of this enumeration are referenced by the length parameter of the

SKB_PrimeDhParameters structure (see §7.10.23).

The enumeration is defined as follows:

typedef enum {

 SKB_PRIME_DH_LENGTH_1024

} SKB_PrimeDhLength;

The value SKB_PRIME_DH_LENGTH_1024 specifies that the maximum bit-length of prime P is 1024

bits.

7.11.13 SKB_CbcPadding

This enumeration specifies the CBC mode types that can be referenced by the

SKB_AesUnwrapParameters structure (see §7.10.20).

The enumeration is defined as follows:

typedef enum {

 SKB_CBC_PADDING_TYPE_NONE,

 SKB_CBC_PADDING_TYPE_XMLENC

} SKB_CbcPadding;

The following table explains the values:

Secure Key Box User Guide 7 API Reference

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 130 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Value Description

SKB_CBC_PADDING_TYPE_NONE CBC mode with no padding (see §8.2.3.1)

SKB_CBC_PADDING_TYPE_XMLENC CBC mode with the XML encryption padding (§8.2.3.2)

7.11.14 SKB_SelectBytesDerivationVariant

This enumeration is used by the SKB_SelectBytesDerivationParameters structure (see §7.10.9) to

specify whether odd or even bytes should be selected.

The enumeration is defined as follows:

typedef enum {

 SKB_SELECT_BYTES_DERIVATION_ODD_BYTES,

 SKB_SELECT_BYTES_DERIVATION_EVEN_BYTES,

} SKB_SelectBytesDerivationVariant;

The following table explains the values:

Value Description

SKB_SELECT_BYTES_DERIVATION_ODD_BYTES Odd bytes should be selected.

SKB_SELECT_BYTES_DERIVATION_EVEN_BYTES Even bytes should be selected.

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 131 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

8 Data Formats

This is a reference chapter describing various data formats used in SKB.

8.1 Export Data Format

Data exported from SKB is a binary buffer that consists of a header and an encrypted content. The

header can provide valuable information, especially if you are dealing with several SKB packages with

different export keys, or if you are employing the one-way data upgrade deployment (see §3.7).

The following diagram shows the format of exported data.

Export data format

The following table explains the components of the header:

Component Description

Control bytes Random bytes with specific properties that identify data exported by SKB.

Format version Version of the export format. Currently, it is always 02.

Key type Type of the exported key. The following values are used:

 00 identifies raw bytes (for example, an AES or DES key).

 01 identifies an ECC key.

 02 identifies an RSA key.

Key size Size of the exported key.

Key version Key version in the one-way data upgrade scheme described in §3.7.

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 132 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Component Description

Export key ID Identifier of the export key that was used in exporting the data. An SKB

instance that needs to import this data has to have the same export key (with

the same identifier).

You can find out the identifier of the export key of the current SKB instance

using one of the following approaches:

 Look into the export.id file delivered with the SKB package (see §1.5).

 Call the SKB_Engine_GetInfo method and read the value of the

export_guid property (see §7.9.4).

8.2 AES-Wrapped Data Buffer

This section describes the format of an encrypted data buffer (raw bytes or RSA private key) that is

either to be passed to the AES unwrapping algorithm (§3.1), or is the output of the AES wrapping

algorithm (§3.3). Different modes of operation are described in separate subsections. In all modes,

big-endian encoding is used.

8.2.1 ECB Mode

In ECB mode, the size of the wrapped data buffer is an exact multiple of 16 bytes (block size for AES).

AES-wrapped buffer in the ECB mode

8.2.2 CTR Mode

In CTR mode, the wrapped data buffer begins with the initialization vector, which is 16 bytes, followed

by a data buffer of N bytes. N is an arbitrary number, not necessarily a multiple of 16 (block size for

AES).

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 133 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

AES-wrapped buffer in the CTR mode

8.2.3 CBC Mode

In SKB, two CBC types are used — with no padding, and with XML encryption padding. In both cases,

the wrapped data buffer begins with the initialization vector, which is 16 bytes, followed by a data

buffer that is a multiple of 16 bytes (block size for AES).

The following subsections describe the two CBC mode types available.

8.2.3.1 No Padding

If no CBC padding is used, it is assumed that the size of the encrypted data buffer is an exact multiple

of 16 bytes, and nothing is suffixed to the end of the buffer.

AES-wrapped buffer in the CBC mode with no padding

 This CBC type cannot be used to unwrap RSA keys. If you are unwrapping ECC keys, this CBC

type can only unwrap keys of the 256-bit and 384-bit curves recommended by NIST. Other ECC

curve types are not supported.

8.2.3.2 XML Encryption Padding

SKB supports the CBC mode with padding conventions of the standard XML encryption, which is

described in http://www.w3.org/TR/xmlenc-core/. This means that if the size of the encrypted

message within the data buffer is not an exact multiple of the block size, the last block must be

padded by suffixing additional bytes to the data buffer to reach a multiple of the block size. The last

byte in the last block must contain a number that specifies how many bytes must be stripped from

the end of the decrypted data. Other added bytes are arbitrary.

http://www.w3.org/TR/xmlenc-core/

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 134 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

AES-wrapped buffer in the CBC mode with XML encryption padding

In the preceding diagram, N is the number of bytes added to the last block. If the message size

happens to be an exact multiple of 16 bytes, an additional block is added, in which the contents are

arbitrary, but the last byte must contain the number 16.

8.3 Key Format for the Triple DES Cipher

SKB supports two keying options for the Triple DES cipher:

 All three keys are distinct.

 Key 1 and key 2 are distinct, and key 3 is identical to key 1.

In both cases, keys have to be provided as one buffer of bytes. SKB determines the keying option to

be used based on the buffer size.

If the buffer is 192 bits long, SKB assumes the keys are provided in the following format.

Triple DES key buffer containing three distinct keys

If the buffer is 128 bits long, SKB assumes the keys are provided in the following format.

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 135 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Triple DES key buffer containing only the first two keys

In the latter case, it is assumed that key 3 is identical to key 1.

8.4 Input Buffer for the ElGamal ECC Cipher

The buffer that is passed as an input to the ElGamal ECC decryption and unwrapping algorithms

must contain two points on an ECC curve using the following format:

Input buffer for the ElGamal ECC algorithm

C1 X and C1 Y are the X and Y coordinates of the encrypted ciphertext 1, and C2 X and C2 Y are the X

and Y coordinates of ciphertext 2 using the big-endian notation. N is the number of bytes used to

store each coordinate, calculated as follows:

N = (L+7) / 8

where L is the length of the curve in bits.

8.5 Public ECC Key

SKB stores public ECC keys using the following format:

Public ECC key format

X and Y are the coordinates of the public key encoded using the big-endian notation, and N is the

number of bytes used to store each coordinate. N depends on the ECC curve used as follows:

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 136 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

 SKB_ECC_CURVE_SECP_R1_160: 20 bytes

 SKB_ECC_CURVE_NIST_192: 24 bytes

 SKB_ECC_CURVE_NIST_224: 28 bytes

 SKB_ECC_CURVE_NIST_256: 32 bytes

 SKB_ECC_CURVE_NIST_384: 48 bytes

 SKB_ECC_CURVE_NIST_521: 66 bytes

 SKB_ECC_CURVE_CUSTOM: Specified bit-length of the prime domain parameter plus 7 divided by 8

8.6 Private ECC Key

SKB stores private ECC keys using the following format (this corresponds to the

SKB_DATA_FORMAT_ECC_BINARY value of the SKB_DataFormat structure):

ECC private key format

N is the bit-length of the ECC curve. X is an X coordinate containing the ECC key. Both parameters are

encoded in big-endian.

8.7 AES-Wrapped Private ECC Key

If you are unwrapping an AES-wrapped ECC private key, the input buffer to the unwrapping algorithm

must have the following format (all data must be encoded in big-endian):

AES-wrapped ECC private key

The first 4 bytes must contain the number N in plain, which is the bit-length of the ECC curve used.

The rest of the buffer is AES-wrapped data, containing the wrapped ECC private key and possibly

some padding bytes. The AES-wrapped portion of the buffer must be formatted as described in §8.2.

Secure Key Box User Guide 8 Data Formats

Copyright © 2000-2015, whiteCryption Corporation. All rights reserved. Page 137 of 137

Copyright © 2004-2015, Intertrust Technologies Corporation. All rights reserved.

Once the AES-wrapped content is decrypted, the first (N+7)/8 bytes are taken as the actual

unwrapped ECC private key.

8.8 ECDSA Output

The output of the ECDSA algorithm is the following buffer of bytes:

ECDSA output format

R and S are the two parameters of a signature used in the ECDSA algorithm encoded using the big-

endian notation, and N depends on the ECC curve used as follows:

 SKB_ECC_CURVE_SECP_R1_160: 21 bytes

 SKB_ECC_CURVE_NIST_192: 24 bytes

 SKB_ECC_CURVE_NIST_224: 28 bytes

 SKB_ECC_CURVE_NIST_256: 32 bytes

 SKB_ECC_CURVE_NIST_384: 48 bytes

 SKB_ECC_CURVE_NIST_521: 66 bytes

 SKB_ECC_CURVE_CUSTOM: specified bit-length of the order domain parameter plus 7 divided by 8

