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Abstract. The main idea behind this work is to find a way to simplify the 
microprocessor based systems. Our solution is to replace all input/output chips (like serial, 
parallel, timers, etc.) with a single microcontroller that can have more interconnectivity 
capabilities. We can imagine a new kind of virtual I/O devices implemented in 
microcontroller by software. This combination of modern microcontroller technology 
with old standard microprocessor systems can be effective and powerful for many low 
cost industrial control systems. The proposed configuration can offer a new perspective 
over the actual research in microprocessor systems which are oriented to industrial control 
applications. 
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1. Introduction 
 

Very simple microprocessor based systems have a memory block, an 
I/O block, a logic part for memory & I/O selection and of course a 
microprocessor [1]. The problem to solve is to reduce the complexity, because if 
we want a system with serous interconnectivity capabilities we must add some 
I/O controllers. That means problems in routing, some problems in 
programming, and some problems linked to the dimension of the board. So we 
must adopt a new configuration in order to obtain what we want. The main idea 
is to remove all I/O hardware controllers, and replacing them with a 
microcontroller. 

The research started with a simple application for this configuration. 
The application is in fact Z80 based micro system [2] with 64Ko+32Ko SRAM 
and for I/O part we used a PIC16F877 [3] because this microcontroller is very 
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easy to connect to a data bus. Even if Z80 is at least 30 years old, it has a very 
smart way to solve the interrupts and ZILOG has new versions for this 
microprocessor, with capabilities that can be compared with newer devices. 
Initially it was intended just to use all on-chip interfaces that PC16F877 had to 
replace all hardware I/O controllers (SIO = Serial I/O, PIO = Parallel I/O, CTC 
= Counter/Timer Controller) from a classical Z80 system [1], in order to have a 
very compact board. When the hardware configuration was defined, it was clear 
that the PIC microcontroller can do much more. Because the microprocessor has 
a powerful instruction set with sophisticated addressing modes for the large 
external memory and because the microcontroller has an internal processing 
unit with less capability, but a comprehensive range of peripheral circuits, the 
resulted combination can be very useful and effective in a low cost system. All 
capabilities will be discussed later, but some hardware issues must be first 
understood. 
 

2. Hardware Configuration 
 

The goal beyond the chosen hardware configuration was to build a 
modular electronic schematic. So, the whole project was divided in two parts: 
the Z80 microprocessor with its own SRAM memory module and a “multi I/O” 
interface based on PIC16F877. 

The Z80 module contains the following three sub-blocks: 

a) The main memory block with the first 32 Kbytes FLASH shadowed 
by 32 Kbytes SRAM and the second 32 Kbytes SRAM that can be switched 
with another 32 Kbytes SRAM; 

b) The logic part that consists in small J-K flip-flops based automaton 
with a very simple state machine used for memory blocks paging; 

c) The combinational part for decoding I/O ports, because in this 
present configuration we can connect a LCD and a tweeter without using the 
PIC part. 

Even if the Z80 can access only a window of 64 Kbytes at the same 
moment [2], we can improvise a method to add more memory. The whole effort 
can be explained if we consider that the Z80 has special instructions to 
manipulate memory areas. Just because it is an old microprocessor, the number 
of instructions that interact with memory is not limited (if we want to create a 
very rapid processor we must limit the number of instructions that use memory 
or I/O) and, for the Z80 in particular, the instruction set is very powerful [6]. 
For this project, the solution was to shadow the FLASH memory and to add two 
blocks of memory that can be switched by software. 

After the system RESET, the memory map looks like in the Fig. 1. 
The method that can be used to switch memory configurations after the 

next instruction was fetched form the old memory map is very well known by 
the old Z80 specialists [2]: the refresh address is a 7 bit value from R (Refresh) 
register. This register has 8 bit width so, what about the last bit 7 ? This bit can 
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(and will) be used for memory switching, because the content of the R register 
will appear on the address bus only at the end of the fetch memory cycle, after 
the next instruction was already extracted from the old configuration. 
 

 

Fig. 1 – Memory map after RESET (a) and after the whole program 
from FLASH was moved to first  block of SRAM (b). 

 
The logic that selects memory blocks was implemented using old style 

methods (JK flip-flops and decoders). This logic part can be further 
implemented in CPLD (Complex Programmable Logic Devices) but for 
“educational” reasons we wanted to be with standard ports and flip-flops [4]. 
The logic part works like a very small finite automaton with a “state machine” 
which tells what memory block is selected. 

After system RESET (Fig. 2), the first flip-flop (U2A) is cleared using 
the CLR input. Because its QA output also controls the CLR input from the 
second flip-flop (U2B), in this way both flip-flops will be cleared to “00”. This 
is the initial state, when a EPROM/FLASH memory circuit is selected in the 
lower half of memory map and a SRAM0 memory circuit is selected in the 
higher half (Fig. 1). 

A refresh cycle is initiated when the MREQ (Memory REQuest) signal 
becomes low, but only after the RFSH (ReFreSH) signal was already asserted 
low [2]. In this moment, the content of the R register will appear on the lower 
half of the address bus and the last bit 7 from R will be visible on the A7 
address line. 

The deactivation of both signals at the end of the refresh cycle will 
trigger the flip-flops clock input to allow extra time for address bus 
stabilization. 

The “00” initial state will remain unchanged how long the A7 bit is still 
logical “0” during all refresh cycles. When the A7 bit is changed to logical “1”, 
both flip-flops will be set to “11” state, which selects a new memory 
configuration: the SRAM0 window will become visible at the lower addresses 
and another SRAM1 block will be selected in the higher half of memory map, 
instead of SRAM0. The EPROM/FLASH memory cannot be addressed in this 
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configuration, but its content was already copied to SRAM0 in the initial 
configuration. 

 

 
 

Fig. 2 – Using two JK flip-flops to control the memory decoder. 

 

If the software then clears the bit 7 from R register, the first flip-flop 
will remain “1” because the K input is not used, but the second one will be 
cleared because it was connected to function as a “D” flip-flop. The third “10” 
state will now select another SRAM2 instead of SRAM1, for further memory 
expansion. How long the system will not be reseted, the initial “00” state cannot 
be reached anymore. The “10” and “11” states can be interchanged under 
software control, to allow memory page switching between SRAM2 and 
SRAM1. 

The input/output module contains just the PIC16F877 and a flip flop, to 
generate WAIT states if necessary, when the Z80 module wants to communicate 
with the I/O part. Even if we add some wait states, because there are 
instructions which send data blocks (not just a byte), we can generate a burst 
data transfer in this configuration. This is a good reason for the old Z80 
microprocessor usage, because most of today microprocessors have just two 
instructions for I/O transfer (like “in” or “out”). Usually, the microprocessor is 
more rapid than the I/O and, to obtain a good computational speed, the memory 
and I/O instructions in newer devices were limited to a small number. But the 
old known Z80 is an exception to this rule and is well suited for I/O transfer. 
More than that, the Z80 has some complex instructions that can compensate the 
speed issue [6]. 

The I/O module can generate interrupts. It is a simple way to interact 
with a microprocessor, but more than an “expected” construction can be used 
due to the Z80, which has a simpler (let say “unusual”) method to resolve the 
interrupts. The use of this “unusual” way to solve the requests can generate a 
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very flexible unit. 

The Z80 microprocessor has 3 modes to manage the interrupts [2]. In 
mode 0, the device which generates the interrupt can put on data bus any 
instruction for the processor to execute. Usually this instruction is a JUMP 
(relative or absolute). But we can generate with the PIC 16F877 any instruction 
(it can be a jump to any location, or we can transmit a code to execute without 
storing the instruction in the memory). 

The interrupt is considered “solved” when IRET instruction is executed. 
This means that we can send the instruction, or the microprocessor can read it 
from memory. Two small issues should be discussed in the following. 

In an interrupt cycle, there are at least two hardware WAIT states 
implemented for each interrupt cycle [6]. That means that if we send 
instructions in this mode, the whole system will be slowed down. But in some 
moments, when the system could be slowed down, we can load some interrupts 
routines. If the application permits, a whole new interrupt vector with all 
interrupts routines can be loaded. In this way, the code will be dynamically 
allocated on-the-fly, without stopping the system and without rewriting the 
EPROM or the FLASH memory. 

The PIC based system can be a debugger and a multi I/O at the very 
same time. Practically all the code from the memory can be modified remotely, 
without any physical intervention. This is the reason why a method to 
interchange between the FLASH memory and a SRAM, with the possibility to 
copy all the FLASH into the SRAM, was implemented using a J-K flip-flop that 
can be set only one time. The flip-flop is first cleared at system RESET. So, 
when we start the system, we can copy the FLASH into the SRAM and after 
that we can modify all functions that were written by default. 

One more issue is that the M1 signal must be considered at decoding. 
Most Z80 projects were built around Z80 family (PIO – the parallel interface, 
SIO – the serial interface and CTC – the timing interface). All interfaces from 
this family internally decode the M1 signal by construction [7]. The content of 
program counter will appear on the address bus at interrupt acknowledge, which 
means that if only IORQ (Input/Output ReQuest) signal would be used at 
decoding (together with some addresses, of course) then another interface could 
be selected simultaneously within the interrupt acknowledge cycle. 

Another way to manage the interrupts is to jump to a specific address 
(mode 1). The technique isn’t so good to use when we have more I/O devices. A 
specific way to solve the interrupt requests is the mode 2. This is the Z80 native 
response to interrupts, but in this dual system it can be used well in combination 
with mode 0. 

The PIC16F877 microcontroller can be also interrupted by the Z80. The 
biggest advantage of this proposed system configuration is that we can make 
benefit of the “parallel slave port” (PSP) facility of this microcontroller [5]. 
This means that we can connect the PIC directly to the main processor bus, 
using hardware strobes for data transfer, without the need of software control. 
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For this feature we must sacrifice two ports: PORTD and PORTE. The PORTD 
contains all the eight data bits required for the transfer and the PORTE contains 
RD (ReaD), WR (WRite) and CS (Chip Select) hardware strobes [8]. 

Every time when the main processor reads or writes data from or to this 
PSP port, an interrupt is automatically generated to the microcontroller central 
processing unit. So, it is very easy to interface one of these microcontrollers to a 
system with main Z80 microprocessor. Well programmed this device can be 
used like a timer, serial port, parallel port, I2C port, SPI port, or we can make 
use of the 10 bit integrated ADC or other peripherals that are in this particular 
PIC microcontroller (like the EEPROM nonvolatile memory block) [9]. It 
should be noted that the Z80 family of peripherals does not contain I2C or 
newer standards! 

Is obvious that is simpler to interface only one I/O chip instead of three 
or four old chips, and more than that, we can set a specific ISR (Interrupt 
Service Routine) for each virtual software device. The PIC can transmit any 
instruction to the Z80 using mode 0 interrupt response and a newer ISR routine 
could be loaded at any time. Using PIC generated instructions, we can change 
the position of such routines in the memory and we can make live updates for 
them. 

The interrupt mode 1 or 2 can be also used. In this case, any ISR could 
be loaded with a little help from a boot-loader or an operating system. More 
than that, we can create “virtual devices”, because the input and output is in fact 
a software function which is called by an ISR when an event appears. In this 
way some calculation can be done in parallel. 
 

3. Practical New Multi-Controller Topology 

 

Usually, when we think about a multiprocessor system, most of the time 
we have in mind a processor matrix. But we are used to solve problems in a 
“divide et impera” algorithm. This kind of algorithm is hard to implement on a 
processor matrix and even if implemented, it cannot use all the computational 
power. Sometimes, maybe is a better solution to have another structure instead 
of connecting some processors to the same bus and try to make it work together. 

The main idea behind this “multi-controller” topology is to use the same 
functional module connected to a single main master processor which manages 
all functions that are implemented in all such functional modules (Fig. 3). 

From the hardware point of view, any function or sub-function has the 
same structure. That means that behind each block, only one microcontroller 
exists and this is linked to another microcontroller with an independent bus. 
Only the main processor bus is shared. 

When the problem is separated in sub-problems using a “divide at 
impera” algorithm, a specific topology will be generated. So, the very same 
problem can have two or more specific hardware solutions. In this way, some 
production costs can be avoided. Because one microcontroller implements only 
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one function and in the most of the time will be “idle”, something like cross-
check between controllers could be built. The common problem found in 
microprocessor systems is higher rate of failure due to the presence of busses. 
The solution is to use a “single-pack” system that is encapsulated on the very 
same silicon chip. 
 

 
 

Fig. 3 – Basic multi-controller topology. 

 
The discussed configuration can be extended to another level, where 4 

or more processors can be interconnected together. The controllers from a near 
level of a processor can become the controllers from a distant layer of another 
processor (Fig. 4). 
 
 

 
 

Fig. 4 – Shared virtual device. 
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In conclusion, we can imagine any construction based on these basic 
ideas. More than that, such structures are easy to program, are very intuitive and 
very object oriented. Because the construction has more layers, this reduces the 
traffic and the possibility of deadlock on the main bus. Because on the CPU bus 
we have microcontrollers, we can implement an adaptive algorithm to be sure 
that the bus is free when it is needed. If the software architecture is well done, 
after releasing a version we can easily improve any module, because the 
interaction between modules is very weak and a good interface can reduce all 
integration problems. This is a more practical configuration instead of any 
parallel configuration, because in a parallel configuration we have a big number 
of shared resources. 

 
4. RISC Versus CISC Competition 

 
It is very unusual to have one CISC (Z80) and one RISC (PIC) 

processor on the same board. Further more, it is possible to want more 
interfaces and that means 2 or more I/O controllers. Then, what should we do 
with the time available between two consecutive data frames sent to the ports? 
In this time, the controllers are idle and they are waiting new data. So, it is 
possible to have one or more controllers that just wait. The appropriate question 
is: can the RISC controller process some operations more rapidly than the main 
CISC processor? If we know the answer, we can implement something like a 
coprocessor and move some of the calculations to the RISC controller. 

It is very hard to estimate the results, because it is possible that we 
cannot compare the controllers and the main CPU. The proposed idea is to let 
the main processor to compete with one or more controllers, to find out who is 
the best. This is a very competitive way to find out if the microprocessor can 
manage all functions that are integrated in the actual configuration. The 
mechanism is simple: call a virtual device to solve a certain problem and in the 
same time try to solve it. If the device wins, the microcontroller can interrupt 
the processor and deliver the results. If the results are computed quicker by the 
main CISC processor, it can mask that interrupt, so, if the controller does not 
receive any response, it means that the microprocessor had a result. Next, the 
results can be compared for a cross-check. 

 
5. Experimental Results  

 
To test some aspects of virtual devices, we have designed and built a 

PCB (Printed Circuit Board), with main processor, memory and only one PIC 
microcontroller. The first attempt to emulate a serial RS232 compatible 
connection by PIC software and hardware resources, without using interrupt 
driven transfer, was well successful. Without any complication, we could send 
and receive data via the PIC16F877 to see if the communication is possible. 
This first test worked smoothly and after that we tried to make a similar 
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connection, but interrupt driven. 
The second test was more difficult to be done. The PIC16F877 was 

initially programmed in C language, but a compiled C code is too slow for the 
tested configuration (interrupt vector placed in an interrupt acknowledge cycle 
without inserting any WAIT states). Only after the function which sends the 
interrupt vector to the main processor was rewritten from C to assembler 
language, we succeeded to send and receive data using the PIC “virtual” serial 
RS232 port. 

The Fig. 5 shows how a small text typed on the PC using the Windows 
“HyperTerminal” program is sent over RS232 connection to the tested system 
and it is displayed exactly on the LCD after it was received using the PIC 
internal USART (Universal Synchronous/Asynchronous Receiver/Transmitter) 
virtualized by PIC software. 
 

 
 

Fig. 5 – Interrupt driven RS232 serial comunication. 

 
In the third test, we tried to virtualize a timer too. We chose the 

TIMER1 from PIC: the main processor sends a time constant knowing the PIC 
frequency and the virtual controller sends back an interrupt when the timer 
overflows. The Fig. 6 shows the waveform of a sound generated by a beeper 
connected directly as classic bit I/O to the Z80 main processor. Every change in 
the waveform was dictated by the virtual timer overflow. 

Another small problem was in witch way we should manage the 
interrupts? So, the first test implements a simple software daisy chain but we 
realized that any algorithm can be implemented to manage the interrupts. This 
feature is very important because we can imagine new, more “adaptive” 
algorithms, very hard to implement in other situations.  
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 Now, a “virtual device” can be easy implemented as a software 
application. Any function that generates an interrupt to the main processor is a 
virtual device. We chose to send request by using normal IO instructions, but 
the response is always an interrupt. When the PSP port is read in the main 
program, we get only a status word (a result from the PIC can be read only 
inside the interrupt service routines). 

For the future projects we want to add more controllers to see in which 
conditions the system can get into a deadlock and how to manage the interrupts 
to avoid these situations. 

 

 
 

Fig. 6 – Sound played by a beeper using software timers from PIC. 

 

6. Conclusions 
 

In conclusion, this paper contains some practical ideas that can be used 
in future microprocessor systems design. In the first place, is easier to put a 
microcontroller instead of four or five integrated I/O devices. This can be done 
in any microprocessor/microcontroller based system. If this is done, then very 
modular software can be implemented, with a lot of virtual I/O devices that can 
help the main processor to finish his job faster. 

By using a microcontroller instead of more standard I/O devices, a 
simple single core system is transform in a dual core system. This means that 
we can make a cross-check between calculations and see if an error was 
generated. This feature transforms a simple system in a redundant system that is 
able to himself diagnose. 

We can make a multiprocessor system using modules that are 
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equivalent from the hardware point of view, but every module can have a 
distinctive task to do. For a relative small number of controllers, we can create a 
layered structure that can make the integration of all modules in a project much 
easier. In this way, we can save time and cost in developing new products. 

In the final, a very important aspect must be highlight: the Z80 
microprocessor was only a testing choice and any other processor can be used. 
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MICROCONTROLERE MODERNE UTILIZATE CA DISPOZITIVE VIRTUALE 
PENTRU VECHILE SISTEME CU MICROPROCESOR 

 
(Rezumat) 

 
Ideea acestei lucrări este găsirea unei metode de simplificare a sistemelor cu 

microprocesor. SoluŃia prezentată ar fi înlocuirea tuturor circuitelor de intrare/ieşire 
dintr-un sistem clasic cu microprocesor printr-un singur microcontroler modern, care 
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include deja pe cip o serie întreagă de circuite periferice. Prin implementarea pe 
microcontroler a unui software de acces extern la resursele hardware interne, acesta 
devine de fapt un circuit virtual de intrare/ieşire pe care microprocesorul principal poate 
să-l acceseze în mod transparent, ca şi cum ar fi un set întreg de circuite periferice 
hardware văzute printr-un singur port. Un sistem cu microprocesor astfel construit va 
avea o structură considerabil simplificată: mai rămân de conectat doar memoriile 
principlale şi circuitele de selecŃie ale acestora. Deoarece microprocesorul are un set 
puternic de instrucŃiuni cu moduri de adresare sofisticate ale memoriei externe de mari 
dimensiuni iar microcontrolerul are o unitate internă de procesare cu capabilităŃi mai 
reduse dar o gamă performantă de circuite periferice, combinaŃia rezultată poate fi 
foarte utilă şi eficientă în cadrul unor sisteme cu costuri reduse. Ideea lucrării merge mai 
departe, considerându-se conectarea mai multor microcontrolere la acelaşi 
microprocesor, fiecare implementând o anumită funcŃie de intrare/ieşire sau chiar de 
calcul. Mergând în continuare pe această cale, se poate crea chiar un nou tip de 
dispozitiv (un dispozitiv virtual), care să fie modelat de o funcŃie dată: se pot diviza şi 
împărŃi sarcinile între procesorul principal şi microcontrolere, sistemul căpătând astfel 
serioase proprietăŃi de paralelism. ConfiguraŃia hardware propusă poate oferi o 
perspectivă nouă asupra cercetărilor legate de sistemele cu microprocesoare orientate cu 
precădere spre operaŃii de supervizare şi control industrial. 
 
 


