
A tiny manual for the GRID superscalar monitor

Rosa M. Badia, Raul Sirvent, Josep M. Perez, Vasilis Dialinos, Pieter Bellens,
and Jorge Ejarque

Barcelona Supercomputing Center and UPC, Barcelona, Spain
{rosa.m.badia|pieter.bellens}@bsc.es

Abstract. The GRID superscalar (GS) internally constructs a DAG,
referred to as the task dependency graph (TDG). The node set of this
graph corresponds to the GS tasks, while an edge establishes a true data
dependency between the nodes involved. Tasks without unresolved de-
pendencies can be scheduled to run in parallel, hereby producing output
data that resolves pending dependencies for other tasks. This cycle es-
sentially repeats itself until all tasks have been computed. The GRID
superscalar monitor (GSM) visualizes the (TDG) at runtime, so the user
can study the structure of his parallel application and track the progress
of execution. The GSM’s visualization of the (TDG) will be referred to
as the GSM graph.

1 What kind of information can I derive from the GSM
graph?

Every update of the TDG in the GS runtime is contained in an update to the
GSM graph. Conversely, not every update to the GSM graph can be mapped
to a single update of GS’ TDG. In the current version, there are two composed
events in the internals of the GS that initiate an update to the GSM graph:

– The addition of a new node to the TDG, including all its edges to already
existing nodes.

– The state change of a node in the TDG.

The TDG can (for the time being) only grow. There are no provisions to cut
branches or hide nodes. The colour of the nodes is an indication of the current
state of the task, as well as of the machine that computes the task. Nodes at
least start off white, and pass on to grey. These two states represent a state
with unresolved dependencies, and a state with all dependencies resolved, but
not yet scheduled to run on a machine, respectively. In both cases, there’s not
an association to a machine yet. The rest of the state sequence depends on the
specific version of the GS on your machine. Although it’s safe to assume that the
state evolves from a light shade, to a darker state, as the task nears the end of
its computation. For the current implementation of the GS, only a single chain
of states makes sense (figure 1). That is, the state sequence can’t be an arbitrary
graph, with loops or multi-degree nodes. Tasks are identified by an integer that
denotes the order in which these tasks are created by the user program. State,



state 1 state 2 state 3 state 4

Fig. 1. A directed graph with single-degree nodes and no loops.

task number, and machine (if any) of a task can be found out by hoovering over
the node in question. This should open a popup window. Hoovering doesn’t mean
clicking. As a matter of fact, there shouldn’t be any clicking at all in the portion
of the GSM window that depicts the GSM graph. At least I can’t remember any
functionality associated with this action. The actual popping up of the popup
window may lag as compared to the hoovering. Whenever the GSM updates
the GSM graph, it closes open popup windows. This statement holds for the
entire application: every time the GSM updates the GSM graph, functionality
is temporarily disabled.

2 GSM implementation.

The GSM is implemented using UDrawGraph (UDG), an interactive graph vi-
sualization package from the University of Bremen
(http://www.informatik.uni-bremen.de/uDrawGraph/en/uDrawGraph/uDrawGraph.html).
Just as the GS, the GSM assumes that the Grid consists of a master machine,
and worker machines. Additionally, for monitoring purposes, we identify an-
other machine, which doesn’t belong to either of the aforementioned groups,
the monitoring machine. By design, the GSM should be run in the monitoring
machine, as not to disturb or influence the Grid computation. Although this is
not mandatory: the GSM can also be located on the master or on one of the
worker machines, if desired. The GSM sets up an SSH-tunnel between the mas-
ter machine, and the monitoring machine. Given that the master machine and
the monitoring machine or not one and the same. SSH-tunneling to and from
the same machine would be just plain silly. Via that SSH-tunnel (and if not,
directly), the GS master library (as defined in the GS User’s Manual) sends over
updates to the GSM. The GSM buffers and processes these messages, and paints
the GSM graph via UDG.

3 GSM window

The GSM window consists of a GSM graph area, and a control area. The former
has been adequately described in section 1, the latter, being fairly intuitive, is
dealt with here. The control area is located in the extreme left part of the GSM
window. There’s an exit-button (X). Clicking the double-bar-button once pauses
the generation of the GSM graph, clicking it again resumes the generation. The
buttons labeled AUTO-something function in the same way. The first click starts
the automatic graph improvement feature, resp. the automatic resize feature,
the second click turns it off again. Beware of the automatic graph improvement



feature. When generating big GSM graphs, this feature may severely slow down
the GSM. Another useful button is the magnifying-glass-button, which allows
you to scale the graph to your likings. The function of the rest of the buttons
should be obvious.

4 Installation and use

– Unpack and unzip the GSM package in the monitoring machine.

pbellens@dragcity:/tmp$ tar xzvf monitor_v2.0.tar.gz

– The directory tree looks a-something like this:

./uDrawGraph-3.1

./uDrawGraph-3.1/bin

./uDrawGraph-3.1/lib

./uDrawGraph-3.1/lib/uDrawGraph

./uDrawGraph-3.1/lib/tcl8.4

./uDrawGraph-3.1/lib/tcl8.4/http2.5

./uDrawGraph-3.1/lib/tcl8.4/http1.0

./uDrawGraph-3.1/lib/tcl8.4/opt0.4

./uDrawGraph-3.1/lib/tcl8.4/encoding

./uDrawGraph-3.1/lib/tcl8.4/msgcat1.3

./uDrawGraph-3.1/lib/tcl8.4/tcltest2.2

./uDrawGraph-3.1/lib/tk8.4

./uDrawGraph-3.1/lib/tk8.4/images

./uDrawGraph-3.1/lib/tk8.4/msgs

./uDrawGraph-3.1/lib/tk8.4/demos

./uDrawGraph-3.1/lib/tk8.4/demos/images

./uDrawGraph-3.1/lib/BWidget-1.7.0

./uDrawGraph-3.1/lib/BWidget-1.7.0/demo

./uDrawGraph-3.1/lib/BWidget-1.7.0/lang

./uDrawGraph-3.1/lib/BWidget-1.7.0/BWman

./uDrawGraph-3.1/lib/BWidget-1.7.0/tests

./uDrawGraph-3.1/lib/BWidget-1.7.0/images

./uDrawGraph-3.1/lib/Img1.3

./uDrawGraph-3.1/docs

./uDrawGraph-3.1/icons

./uDrawGraph-3.1/samples

./uDrawGraph-3.1/samples/api

./uDrawGraph-3.1/samples/graphs

./uDrawGraph-3.1/samples/simpleclient

./uDrawGraph-3.1/Grid_Superscalar_monitor <--------------------

./uDrawGraph-3.1/Grid_Superscalar_monitor/bitmaps

./uDrawGraph-3.1/stuff_for_your_gs_libs

We see some graphical libraries, some UDG samples, our patches for our GS
master library, and finally (marked by the arrow above), the GSM directory.



– Compile the GSM in the Grid_Superscalar_monitor-directory.

pbellens@dragcity:Grid_Superscalar_monitor/$ make

To start visualizing the TDG, before running your gridified application, do the
following:

– Add the UDG_HOME environment variable to your environment with the value
of the uDrawGraph-3.1-directory.

– Go to the Grid_Superscalar_monitor-directory, and start up the monitor:

pbellens@dragcity:Grid_Superscalar_monitor$./gs_monitor_start.sh khafre.es

If your GS master library happens to be on another machine than Khafre, try
substituting khafre.es with the correct address. More advanced arguments
to the gs_monitor_start-script are discussed in section 5.

– Start up your GS application in the master machine. The GSM wakes up at
the arrival of the first update from the GS master library.

5 More options for the monitor shellscript

usage: ./gs_monitor_start.sh [-l local_port] [-r remote_port] machine_name

-r remoteport specifies the remote port in the master machine whose traffic
gets forwarded to the local port in the monitoring machine
-l localport specifies the local port in the monitoring machine that accepts
the traffic from the master machine

Check your GS distribution to check which ports it uses. If you wish to launch
the GSM in the master machine (i.e master machine equals monitoring machine),
use localhost as machine_name. If you wish to connect to the master machine
using another username than your current one, replace machine_name) with
another_username@machine_name.

6 Troubleshooting

Although the GSM code is pretty immature, it should be stable enough for
normal use (i.e. use that is covered by the description in this document). There’s
one exception however. If the GS exits with an error, and the shutdown procedure
breaks off, sometimes some orphan processess have to be killed manually. If this
is the case, you can do the following to restart the GSM with a clean slate:

– In the master machine, locate all processes that are trying to cat a file, as
well as all the SSH-connections to your monitoring machine. Kill them all.

– In the worker machine, locate all uDrawGraph-processes and all Graph_Vis_Agent-
processes. Kill them all.

After cleaning up this mess, you shouldn’t experience any more problems restart-
ing the GSM. Agreed, this hardly qualifies as high-quality coding. Although it
really is an artefact of our use of an SSH-tunnel, and there doesn’t seem to be
a really clean way to deal with this problem.


