
Checkpoint and Restore for SystemC Models

Màrius Montón§ Jakob Engblom Mark Burton

GreenSocs Virtutech GreenSocs

marius.monton@greensocs.com jakob@virtutech.com mark.burton@greensocs.com

Abstract

We present preliminary work in the field of saving and
restoring model state within a SystemC simulation
environment. Save and Restore (or checkpointing) is a
useful technique that can greatly assist target software and
simulation model development and debug. In contrast to
other approaches that aim at saving and restoring the state
of an entire simulation process, we investigate mechanisms
by which only the essential simulation state is saved. This
makes the checkpoints far more compact, and saved
simulation states can be moved between host machines,
and be used with updated or completely different
simulation models.

Our results indicate that SystemC models written to
certain coding guidelines can be saved and restored
reliably. As a result, virtual platforms and platform
components written in SystemC can be made more useful to
software developers, and support smarter workflows.

1. Introduction

Checkpoint save and restore (usually known as
“checkpointing”) is a process by which a simulator stores
the state of the simulated system to disk, and later loads it
back into the simulator, resulting in the exact same
simulated system state. For virtual platforms, checkpoints
have to include the contents of memories and disks, the
state of processors, peripheral devices, and network
connections in the virtual system, as well as the state of the
simulation kernel including current time and any event
queues and simulation scheduler state.

Checkpointing is a key workflow enabler for systems
and software development using a virtual platform. With
checkpointing, a software developer can save and restore
their work at any point and resume it later without having
to keep the simulator running. A repetitive simulation
procedure such as booting an operating system and loading
a set of software applications onto the system can be done
once, saved, and then used may times, saving time and
ensuring multiple developers have identical system setups.
This is getting more and more important as simulated
systems increase in complexity and workload size. We
have seen cases where a system bringup takes hours, as it
involves the simulation of many billions of instructions

across hundreds of processors, including reboots and
software. Needless to say, in these cases checkpointing is
necessary to avoid repeating this [1]. Checkpointing also
makes it possible to store a library of booted and
configured systems of various forms, for use in regression
testing or to try various alternative microarchitectures on
the same booted software load.

To be truly useful in a software development context, a
checkpoint has to be portable across hosts and simulator
versions. As checkpoints are exchanged between different
user groups and different companies, it is impossible to
know where they might end up. As an example, it must be
possible to use the same checkpoint on a 32-bit x86 Linux
host and on an UltraSPARC Solaris host. It must also be
possible open a checkpoint taken in an earlier version of a
virtual platform in a later version.

During simulator development, checkpoints make it easy
for customers of a modeling service to report bugs and test
the fixes provided. By using a checkpoint of a situation
where the model fails to execute correctly, it is very easy
for the modeling service to reproduce and locate an error.

In a similar vein, checkpoints are useful during iterative
model development where most parts of a model are
marked as “unimplemented”. As soon as software actually
accesses unimplemented features, a checkpoint is taken, the
model is updated and simulation restarted from the
checkpoint to see that the software reacts correctly to the
now implemented register or feature. This enables very
rapid development of virtual platforms, especially for
existing hardware systems [1][2].

Checkpointing was originally developed in the mid-
1990s to support changing the level of abstraction in a
simulation model, from a fast approximative (CPU) model
to a detailed microarchitecture model [3, 13]. The
methodology is to use a fast simulation to position a
workload at an interesting point (after booting, loading
target software, etc.) and taking a checkpoint (they call it a
"snapshot") of the state at that point (or multiple points) of
interest. The checkpoint is then used to start a number of
differently configured detailed simulations, allowing
efficient parallel exploration of the architecture space.
Compared to switching a model between abstraction levels
during a simulation run, this offers a simpler, more robust
and more efficient mechanism.

§ Also PhD student at the Dpt. Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona, Barcelona. Spain.

1.1. Checkpointing Implementation Issues

To support checkpointing in SystemC (and indeed in any
simulator system), there are three problems that have to be
solved:

1. Saving and restoring the simulation state of all
models in a simulation. Model properties like
register contents, current states of state machines,
and similar, must all be saved.

2. Saving and restoring the simulation kernel state,
such as event queues and the current simulation
time.

3. Saving and restoring the simulation configuration
in terms of which simulation models form part of a
virtual platform, and how they are connected.

We have addressed these problems for hardware device
models written in SystemC™, using the OSCI reference
SystemC simulator version 2.2.0. To create a complete
system involving processors, memories, and software, we
used Virtutech Simics [4] to provide us with the rest of the
platform, as well as a proven checkpointing infrastructure.
That let us focus on the core technology issues rather than
checkpoint file structure and disk I/O.

2. Simics Checkpointing Basics

To understand our implementation, some background on
Simics is needed. Virtutech Simics [4] has implemented
checkpointing for about ten years, based on a simple but
powerful mechanism called attributes [2].

Each simulation model in Simics defines its own set of
attributes, which are expected to define the entire model
state needed to continue the simulation from a particular
point.

The attributes are registered with the Simics kernel by
the model source code at simulation startup, and have a
name and a type. The attributes are set and retrieved from
the simulation kernel using an interface distinct from the
transaction-level interfaces used for memory accesses and
device-device communication. Figure 1 shows a simplified
view of device models and connections between them in
Simics.

Attributes do not have a one-to-one correspondence with
the implementation of the state of the model. Internal
caches and data structures are often used for efficient
simulation, but they are normally represented as simple
values in a checkpoint. An important point to note is that
since this makes the model state indirect with respect to the
implementation, different implementations of a model can
load the same set of attribute values. This makes
checkpoints independent of model implementations, and it
is quite common for model implementations to change
while attribute sets and checkpoints remain constant.

Simics also represents the configuration of a system by
means of attributes, converting pointers between simulation
models into names, and storing names and types of model
instances in checkpoints.

By using the Simics platform, we have been able to
focus on the particulars of how to save and restore the state
of SystemC device models, and not deal with how to put
information in a file or the complexities of checkpointing
the state of a processor model (as we use Simics existing
processors and system models as the framework to run
target software interacting with our SystemC models).

When an attribute is accessed in Simics, the simulation
module gets a call to a special attribute getter and setter
functions. We used this mechanism to export the state of
our SystemC models to Simics, and later get the saved
values back. Thus, all our SystemC models need to do is
provide a means to expose the state of models and the
SystemC kernel to Simics.

Initially, we have considered the entire SystemC
simulation setup as a single Simics “model”, with a fixed
internal configuration. Thus, we do not attempt to convey
the SystemC simulation configuration in checkpoints, but
rather consider that a fixed property of our simulation
implementation.

3. SystemC in Simics

To run SystemC models in Simics, we made the
SystemC kernel a slave system to the main Simics kernel,
as shown in Figure 2. This system is called the Simics-
SystemC Bridge.

The key problem in integrating two simulators is how to
synchronize the time and execution of code in the two
simulation worlds. In order to maintain simulation speed,
we cannot synchronize SystemC with Simics on every
target system clock cycle. Instead, we have designed a lazy
scheme that only synchronizes when necessary.

When a transaction is sent into the SystemC part of the
combined system (it could be a memory operation, reset,
input, etc.), we call SystemC and lets the SystemC kernel
and models process the transaction to completion. If
SystemC has then progressed ahead of Simics time, we stall
the Simics processor initiating the transaction to account
for the time taken to complete the request.

Simics

Target Machine

Target operating system

Target hardware drivers

User program Middleware

Target boot code

User program

Simics Core

Configuration and
checkpoint handling

Device Device

Processor
core

Memory transaction interface

device-
device
transactions

Attribute
access

Figure 1: Simics back-door attribute system

After each transaction has completed, we check when
the next event in the SystemC kernel is scheduled. If there
is such an event, we post an event in the Simics event
queue at a corresponding point in time. When the Simics
event is triggered, the SystemC kernel is invoked so that
time can catch up with Simics time and the event be
processed. Thus, SystemC models can perform actions
asynchronous to the Simics world, like serial console
output or sending completion interrupts.

The Simics-SystemC bridge also has to convert
transactions between their Simics and SystemC types. This
is a reusable feature for simple standard interfaces such as
TLM-2.0 [6] or GreenBus [7], but for other interfaces you
need a case-by-case conversion.

The performance of the integration is very good, as
SystemC does not impose any slowdown on Simics when
SystemC device models are not being activated. Also, the
overhead of translating transactions is minor compared to
the cost of actually computing the result of a transaction in
a device model.

To handle checkpointing, the Simics-SystemC Bridge is
extended to provide transactions corresponding to
checkpoint save and restore. It also needs to convert from
the state representation in SystemC to Simics attributes,
and register attributes with Simics.

4. Checkpointing SystemC Model State

4.1. Model Requirements

Checkpointing requires a model to explicitly define the
state that will be saved and restored. In our implementation,
we have used the GreenControl [8] parameter mechanism
to simplify the implementation in SystemC and make the
changes to the SystemC code as small as possible.

GreenControl lets us mark variables in a SystemC
module as managed parameters using the gs_param<>
template. From SystemC code point of view, such variables
can be used just like any other variable, with the added
benefit that its value can be accessed and changed from the
GreenControl system. The GreenControl system allows

access to parameters from outside the module that declares
them, and even when the simulation is not running. Figure
3 shows a short example of the use of parameters.
Essentially, this provides the back-door access we need to
get and set the simulation state.

When a gs_param<> is declared, it is given a
parameter name, which is used to access it along with an
automatic hierarchical naming scheme that mirrors the
structure of the SystemC simulation setup.

4.2. SystemC Parameters to Simics Attributes

There are two ways to connect the parameter handling in
GreenConfig to the Simics attribute system, and we tried
both.

Variant one is to create a Simics attribute for each
parameter in the SystemC device. This makes the
checkpoint very readable, and has the side benefit of
exposing the state of the SystemC devices for easy
modification and inspection from the Simics user interface.
It suffers from the need to add code to define one attribute
per parameter, however.

Variant two is to use the GreenControl feature of getting
all parameters in a simulation as a list, and then convert that
to a list attribute in Simics. This solution makes it
somewhat more cumbersome to access the state from the
Simics user interface as you have to parse a list of key-
value pairs, but it also means that a single attribute is all
that needs to be defined, reducing the amount of code in the
integration.

Both solutions work equally well for checkpointing. The
user-perceived difference is shown in Figure 4. We have
used the list variant, as it is more flexible.

4.3. Limitations

The main limitation to the system proposed above is that
only SystemC module data members using the
gs_param<> mechanism are checkpointed. In particular,
signals and ports are not currently covered by our
implementation. This limitation means that signals and port
values are not saved, and SystemC modules have to be
written with this in mind. For modules written in a TLM
style, this is not a big issue since communication between
modules is based on function calls that finish each

Simics

Target Machine

Standard Simics Models

Simics SystemC Bridge

Target operating system

Target hardware drivers

User program Middleware

Target boot code

User program

Simics Core

Simulation event
queue and kernel

Inspection
Control
Features

GUI

Scripting

Built-in
Debugger

External
world

connections

SystemC

Simics C API

Memory

Processor
core

Devices

Networks
and

I/O links

SystemC
device
models

Standard
SystemC

kernel

MemoryMemory

Networks
and

I/O links

Networks
and

I/O links

DevicesDevices
Processor

core
Processor

core

Figure 2: SystemC Encapsulated within Simics

class example : public sc_module {
 public:
 SC_CTOR(example) :
 scparam ("scparam", 0xdeadbeef)
 {
 // ...
 }
 //...

private:
 gs_param<uint32_t> scparam;
}

Figure 3: Example use of gs_param<>

transaction as a unit and that naturally store the updated
module state in parameters marked with gs_param<>.

Another limitation is that we currently assume the
SystemC setup to be a fixed subsystem in the Simics
system. The entire SystemC subsystem is represented as a
single Simics simulation model, with attributes reflecting
the state of the SystemC kernel as well as the SystemC
device models and the SystemC bridge itself. Since the
names of parameters come from the SystemC hierarchy,
this is also necessary to make parameter names meaningful.

However, note that this approach also means that the
SystemC model implementation is separated out, and that
different models can thus implement the same set of
parameters. This supports such use-cases as changing the
level of abstraction in a simulation and updating a model
while reusing the same checkpoint.

5. Checkpointing SystemC Kernel State

SystemC is an event-based simulator that maintains the
simulation state storing pending events for SC_METHODs
and SC_THREADs in separate priority lists. When
simulation begins, the kernel finds the top event of each list
and executes or resumes the process sensible to that event.

In case of SC_METHODs, the sensitive “process”, which
is essentially a function call into the device model, is
executed. Once the function call returns and the execution
of the sensitive process ends, the SC_METHOD module is
suspended until another event that it is sensitive to occurs.

A more complicated mechanism is used when managing
SC_THREADs because a process can be suspended in
middle of its execution (when wait() is called). This
requires the use of a user-level threading system to store
the execution state of the model, including local variables
on the stack. Execution is later resumed at the point where
it was suspended, when an appropriate wake-up event
happens.

The strategy we had taken in our initial work is to save
and restore all information that kernel needs to continue a
simulation. For this, we need to save the actual simulation
time and the event queues. This option will allow us to
work with SC_METHODs only, because we cannot store
and resume execution of SC_THREADs in middle of their
execution.

The problem with SC_THREAD is not so much the
SystemC kernel itself, as the fact that the kernel

implementation uses a threading library that maintains a
separate stack for each thread. It is infeasible to access, not
to mention restore, the stack-based state of an
SC_THREAD.

Fundamentally, the use of suspendable threads is
inappropriate for checkpoint and restore. It puts state in
stack-allocated local variables, as an implicit part of the call
stack, and into processor registers. This means that state is
not explicit and not available for manipulation from the
outside.

The resume operation consists of constructing the
SystemC subsystem again (as it would be starting a new
simulation), and once the elaboration and initialization
phases are done, we update the kernel state to the state
saved in the checkpoint. In particular, the simulation time is
changed, and pending events are reposted to the event
queues. Thus, the SystemC kernel will run the simulation
as if it were just continuing the checkpointed simulation
without any interruption.

We access the event queue through the OSCI SystemC
kernel class sc_simcontext. This class encapsulates
SystemC kernel and it is in charge of managing the
simulation. The list of events is communicated to Simics as
a Simics attribute of the SystemC bridge module (Simics
supports arbitrarily nested lists as an attribute type, which
makes it easy to represent the event queue as a variable-
length list). In order to access the list of active events and
methods, we had to add some non-destructive inspection
code to the OSCI SystemC 2.2.0 kernel.

When a checkpoint is taken in Simics, the event queue
attribute is read and stored using the Simics checkpointing
mechanism. When resuming, the Simics attribute is written
with the value (old event queue state) stored in the Simics
checkpoint file, and our SystemC bridge extensions then
repost the events into the new SystemC simulation,
recreating the state at the point when the checkpoint was
taken.

6. Related Work and Alternatives

SimOS and IBM Mambo full-system simulator [3, 13]
uses a checkpointing mechanism very similar to what we
propose, with explicit model state separate from the
implementation state. Typical uses for checkpoints in
Mambo is to save complex system setups and to switch
between different implementations and different abstraction
levels.

The Boost C++ serialization library can save and restore
the state of C++ objects in a program [9]. It provides
portability and upgradability to new versions of the code.
However, using this library with SystemC would have
required a rewrite of the SystemC kernel to use serialized
objects to store all state, and it is not clear how this would
work with the cooperative multitasking nature of the
SystemC kernel. The Boost library takes the same view as
our solution on the state: only data stored in C++ object
members are serialized, not temporary values on the stack,
nor the state of threads in the system. Also, using Boost

simics> ckpt0->gs_all_param_value
"systemc_greencheckpoint_test.otherparm=42
;systemc_greencheckpoint_test.scparam=66;s
ystemc_greencheckpoint_test.scparam_two=47
11;"
simics> ckpt0->scparam
66
simics> ckpt0->scparam_two
4711

Figure 4: Simics CLI session with the two styles

would require larger modifications to existing device
models than our solution.

Another alternative solution that has been proposed is to
save the entire contents of the memory of a running
simulation process. At least in theory, this should work for
any code, without modification, and including thread state.
This is what it appears that CoWare and Cadence are doing
in their recently announced of checkpoint support for
SystemC, even if public details are quite scarce [10, 11].
The memory-dump solution has several limitations
compared to our approach. As a checkpoint contains the
state of the stack and heap, it is tied to the particular data
layout and stack-frame layout of the code the simulation
started with. Thus, it cannot be restored on a different
machine (even a minor change such as a Linux kernel
version or different set of system libraries can break it), nor
can it be used with an updated or different ,model code.

An even more heavy-weight solution is to place the
simulation inside a VMWare virtual machine, and use the
whole-machine snapshot function of VMWare to save and
restore the simulation. This works, but you cannot change
the code, and the size of the snapshot is the size of the total
memory of the virtual machine, which is usually on the
order of 1 GB (or more).

7. Experiments

In our experiments with checkpointing, we have used a
simple PowerPC-based virtual board containing a PPC603e
processor, serial port, RAM, and a memory-mapped
SystemC device. This system is sufficient to run code
cross-compiled for a bare-metal target, and provide a
focused platform for detailed experiments. A primary
benefit of this simple system is that the target software can
address the SystemC device directly as it has direct access
to the entire memory of the target machine, which is much
simpler than writing device drivers for a target operating
system.

7.1. Simics-SystemC Bridge Performance

We tested the performance of the basic bridge itself
using some by integrating an NS16550 serial port modeled
in SystemC in a virtual development board based around a
PowerPC 440GP SoC (an AMCC “ebony” board). The
ebony board runs a full Linux kernel and U-Boot, and the
performance impact of using the fairly complex SystemC
model compared to the Simics standard NS16550 model
was imperceptible in normal use. When using a
microbenchmark program that pushed characters onto the
serial port as quickly as possible, the performance was
reduced by about five percent. Thus, we conclude that the
SystemC bridge does not present a significant performance
problem.

7.2. SystemC Checkpoint Support Overhead

In our SystemC implementation of checkpointing, there
is a potential additional performance impact from the use of
gs_param<>, since using the GreenControl mechanisms.

Preliminary tests on the performance of gs_param show
results with about a 2% penalty against the same model
without using internal variables modeled with gs_param.

7.3. Checkpoint size

Since the checkpoint system that we use here only stores
the essential data for a simulated system, it will generate
very compact checkpoints in general. For our running
example, the checkpoint was about 88 kB in size – most of
which is the contents of the RAM of the simulated machine
containing code.

That can be compared to the overall process size of the
simulation, at 263688 kB, which also includes overhead
such as the simulation core, simulation code, and user
interface system. Using the “store memory contents to
disk” approach to checkpointing gets you to that size.

If the simulation system is placed inside a VMWare
virtual machine, and VMWare snapshotting used to save
the state, the size of that snapshot is the size of virtual
RAM, which is at least 1GB for any reasonable simulation-
hosting setup.

7.4. Validating Checkpointing

To validate that we can indeed save and restore a Simics
simulation including a SystemC subsystem we used a fairly
simple example device as shown in Figure 5. This device
exhibits all essential problems for checkpointing, namely
state in memory-mapped registers and an SC_METHOD
sensitive to an event that is posted at some point in the
future using sc_notify.

Or test devices consists of a single memory-mapped
register and a function sensible to a event. When the
register is written, a periodic event is triggered at each
fixed time (1 μs).

Our test consists of start the simulation and do a write to
the register to start the periodic event. Then, do a
checkpoint and quit simics. Then, we start simics again and

class systemc_greencheckpoint_test:
 public sc_module,
...
 SC_METHOD(function);
 sensitive << my_event;
...

void
systemc_greencheckpoint_test::function()
{
 cout << "(SC code) function called at "
<< sc_time_stamp() << endl;
 my_event.notify(1, SC_US);
}

Figure 5: Code example

we resume the simulation from the checkpoint. We could
observe that the periodic event is triggering again as
expected. With this test we validated that the SystemC
kernel event list for SC_METHODs is properly saved and
restored, and the simulation can be restored using our
strategy.

7.5. Validating Model Updates

To validate the updatability of a model with new
features using a checkpoint for an older version, we created
a simple SystemC device model containing a single
memory-mapped register. We then wrote a driver program
for this device, executed the program to change the value
of the register, and took a checkpoint. At this point, we
exited the simulation, and changed the source code of the
model to include an extra register. After recompiling, we
started the simulation from the checkpoint without
problems. The new register took on its default value as set
in the SystemC source code, while the old register used the
value provided in the checkpoint. We then executed the
simulation for some more time, and took a new checkpoint.
This checkpoint correctly contained the state of both
registers, as affected by the software driver program (the
driver knew about both registers from the start). Thus, we
show that we can update models and use old checkpoints.

8. Discussion

This work has proved that it is possible to do
checkpointing in SystemC, with a moderate effort and
building upon existing frameworks. It has also exposed
some issues in the SystemC design. The key problem is the
provision of a Unix-style threaded execution model in
SystemC, rather than an event-driven run-to-completion
model. The threaded style encourages storing essential
simulation state on the stack and as the location in the code,
which is very hard to explicitly save and restore in a
portable manner. Thank to the existence of SC_METHOD, a
sound style can be implemented in the current SystemC
framework.

SystemC would have to be refined to make model state a
first-class aspect of the language, and not just something
implemented in arbitrary ways using C++ mechanisms as it
is today. The connections between modules and the
modules present in a simulation would also have to be first-
class items. Finally, the kernel would need a host-
independent representation of the state. Especially if state is
to be exchanged between different SystemC kernels from
different vendors, such standardization is needed.

An alternative model to enable checkpointing is to
define a SystemC Virtual Machine that compiles models to
byte codes rather than native code, thus providing a layer
of indirection that can be used to dump and restore the
system state without change to models. Such work has been
done for Java, for example.

9. Conclusions

We have discussed the need and utility of checkpointing.
It is an enabler for software development, and if it can be
achieved in such a way as to allow the result to be made
use of on different host platforms, it can be used in a
number of ways.

In the past, checkpointing has been achieved by saving
the complete process state of the process running the
simulation. This limits the ability to distribute the
simulation, and also is expensive in terms of disk and time.

Our aim has been to investigate the possibility of saving
and restoring the SystemC kernel and model state itself.

In order to achieve this ambitious aim, we have had to
limit ourselves in terms of what models we support.
However, we have found, even with those limitations, that
the results are helpful.

We are able to save and restore the state of SystemC
methods, and the events which trigger them. We are also
able to save and restore the states of models that are
running on the SystemC simulator.

In the future we will be investigating other approaches
to checkpointing, and dealing with the case of SystemC
threads. For example, it could be possible to converting
threads to methods using automatic tools [12].

10. References

[1] M. Bergqvist, J. Engblom, M. Patel, and L. Lundegård,
“Some Experience from the Development of a Simulator for a
Telecom Cluster (CPPemu)”, Proc. 10th IASTED November,
2006
[2] Jakob Engblom: Simics System Modeling. Virtutech
Whitepaper, May 2008.
[3] J.L. Peterson et al: " Application of full-system simulation in
exploratory system design and development", IBM Journal of
Research and Development, Vol 50, no 2/3, March/May 2006.
[4] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, B. Werner.
“Simics: A Full System Simulation Platform”, IEEE Computer,
Feb 2002.
[5] Jakob Engblom, “Modeling Language Produces TLM for
Virtual Platforms”, SCDSource.com, Apr 9, 2008.
[6] OSCI TLM-2.0 User Manual, June 2008.
[7] Wolfgang Klingauf: Systematic Transaction Level
Communication Modeling with SystemC, PhD Thesis, TU
Braunschweig, Dept. of IC Design, 2008.
[8] Christian Schroeder, Wolfgang Klingauf, GreenControl.
http://www.greensocs.com/en/projects/GreenControl
[9] R. Ramey: Boost Serialization v.1.36. http://www.boost.org.
[10] CoWare Introduces First Ever Checkpoint/Restart
Capability for Native SystemC Virtual Platforms, April 14, 2008.
[11] Cadence. SystemC Save and Restore Part 2 - Advanced
Usage. http://www.cadence.com/Community/blogs/sd/
[12] Robert Gunzel SCThreadConverter,
http://www.greensocs.com/en/projects/SCThreadConverter
[13] Mendel Rosenblum and Mani Varadarajan, SimOS: A Fast
Operating System Simulation Environment, Stanford University
technical report CSL-TR-94-631, July 1994.

http://www.greensocs.com/en/projects/GreenControl
http://www.greensocs.com/en/projects/SCThreadConverter

