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Abstract

We present preliminary work in the field of saving and 
restoring  model  state  within  a  SystemC  simulation  
environment.  Save  and  Restore  (or  checkpointing)  is  a  
useful technique that can greatly assist target software and  
simulation model  development  and  debug.  In  contrast  to  
other approaches that aim at saving and restoring the state  
of an entire simulation process, we investigate mechanisms  
by which only the essential simulation state is saved. This  
makes  the  checkpoints  far  more  compact,  and  saved 
simulation  states  can  be  moved  between  host  machines,  
and  be  used  with  updated  or  completely  different  
simulation models.

Our  results  indicate  that  SystemC  models  written  to  
certain  coding  guidelines  can  be  saved  and  restored  
reliably.  As  a  result,  virtual  platforms  and  platform 
components written in SystemC can be made more useful to  
software developers, and support smarter workflows.

1. Introduction

Checkpoint  save  and  restore  (usually  known  as 
“checkpointing”) is a process by which a simulator stores 
the state of the simulated system to disk, and later loads it 
back  into  the  simulator,  resulting  in  the  exact  same 
simulated system state. For virtual platforms, checkpoints 
have  to  include  the contents  of  memories  and  disks,  the 
state  of  processors,  peripheral  devices,  and  network 
connections in the virtual system, as well as the state of the 
simulation  kernel  including  current  time  and  any  event 
queues and simulation scheduler state.  

Checkpointing  is  a  key workflow enabler  for  systems 
and software development  using a virtual  platform.  With 
checkpointing, a software developer  can save and restore 
their work at any point and resume it later without having 
to  keep  the  simulator  running.  A  repetitive  simulation 
procedure such as booting an operating system and loading 
a set of software applications onto the system can be done 
once,  saved,  and  then  used  may times,  saving  time and 
ensuring multiple developers have identical system setups. 
This  is  getting  more  and  more  important  as  simulated 
systems  increase  in  complexity  and  workload  size.  We 
have seen cases where a system bringup takes hours, as it 
involves  the  simulation  of  many  billions  of  instructions 

across  hundreds  of  processors,  including  reboots  and 
software. Needless to say, in these cases checkpointing is 
necessary to avoid repeating this [1].  Checkpointing also 
makes  it  possible  to  store  a  library  of  booted  and 
configured systems of various forms, for use in regression 
testing or to try various  alternative microarchitectures  on 
the same booted software load.

To be truly useful in a software development context, a 
checkpoint  has  to be portable  across  hosts and simulator 
versions. As checkpoints are exchanged between different 
user  groups  and  different  companies,  it  is  impossible  to 
know where they might end up. As an example, it must be 
possible to use the same checkpoint on a 32-bit x86 Linux 
host and on an UltraSPARC Solaris host. It  must also be 
possible open a checkpoint taken in an earlier version of a 
virtual platform in a later version.

During simulator development, checkpoints make it easy 
for customers of a modeling service to report bugs and test 
the  fixes  provided.  By using a  checkpoint  of  a  situation 
where the model fails to execute correctly,  it is very easy 
for the modeling service to reproduce and locate an error.

In a similar vein, checkpoints are useful during iterative 
model  development  where  most  parts  of  a  model  are 
marked as “unimplemented”. As soon as software actually 
accesses unimplemented features, a checkpoint is taken, the 
model  is  updated  and  simulation  restarted  from  the 
checkpoint to see that the software reacts correctly to the 
now  implemented  register  or  feature.  This  enables  very 
rapid  development  of  virtual  platforms,  especially  for 
existing hardware systems [1][2]. 

Checkpointing  was  originally  developed  in  the  mid-
1990s  to  support  changing  the  level  of  abstraction  in  a 
simulation model, from a fast approximative (CPU) model 
to  a  detailed  microarchitecture  model  [3,  13].  The 
methodology  is  to  use  a  fast  simulation  to  position  a 
workload  at  an  interesting  point  (after  booting,  loading 
target software, etc.) and taking a checkpoint (they call it a 
"snapshot") of the state at that point (or multiple points) of 
interest.  The checkpoint is then used to start a number of 
differently  configured  detailed  simulations,  allowing 
efficient  parallel  exploration  of  the  architecture  space. 
Compared to switching a model between abstraction levels 
during a simulation run, this offers a simpler, more robust 
and more efficient mechanism.
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1.1. Checkpointing Implementation Issues

To support checkpointing in SystemC (and indeed in any 
simulator system), there are three problems that have to be 
solved:

1. Saving  and  restoring  the  simulation  state  of  all 
models  in  a  simulation.  Model  properties  like 
register contents, current states of state machines, 
and similar, must all be saved.

2. Saving and  restoring  the simulation kernel  state, 
such as  event  queues and the current  simulation 
time.

3. Saving and restoring the simulation configuration 
in terms of which simulation models form part of a 
virtual platform, and how they are connected.

We have addressed these problems for hardware device 
models  written  in  SystemC™, using  the  OSCI reference 
SystemC  simulator  version  2.2.0.  To  create  a  complete 
system involving processors,  memories, and software,  we 
used Virtutech Simics [4] to provide us with the rest of the 
platform, as well as a proven checkpointing infrastructure. 
That let us focus on the core technology issues rather than 
checkpoint file structure and disk I/O.

2. Simics Checkpointing Basics

To understand our implementation, some background on 
Simics  is  needed.  Virtutech  Simics  [4]  has  implemented 
checkpointing for about ten years,  based on a simple but 
powerful mechanism called attributes [2]. 

Each simulation model in Simics defines its own set of 
attributes,  which  are  expected  to  define  the entire  model 
state needed  to continue  the simulation from a particular 
point. 

The attributes are registered with the Simics kernel  by 
the  model  source  code  at  simulation  startup,  and  have  a 
name and a type. The attributes are set and retrieved from 
the simulation kernel  using an interface distinct from the 
transaction-level interfaces used for memory accesses and 
device-device communication. Figure 1 shows a simplified 
view of  device models and connections  between them in 
Simics.

Attributes do not have a one-to-one correspondence with 
the  implementation  of  the  state  of  the  model.  Internal 
caches  and  data  structures  are  often  used  for  efficient 
simulation,  but  they  are  normally  represented  as  simple 
values in a checkpoint. An important point to note is that 
since this makes the model state indirect with respect to the 
implementation, different implementations of a model can 
load  the  same  set  of  attribute  values.  This  makes 
checkpoints independent of model implementations, and it 
is  quite  common  for  model  implementations  to  change 
while attribute sets and checkpoints remain constant.

Simics also represents the configuration of a system by 
means of attributes, converting pointers between simulation 
models into names, and storing names and types of model 
instances in checkpoints. 

By  using  the  Simics  platform,  we  have  been  able  to 
focus on the particulars of how to save and restore the state 
of SystemC device models, and not deal with how to put 
information in a file or the complexities of checkpointing 
the state of a processor model (as we use Simics existing 
processors  and  system  models  as  the  framework  to  run 
target software interacting with our SystemC models).

When an attribute is accessed in Simics, the simulation 
module gets  a call  to a special  attribute getter  and setter 
functions. We used this mechanism to export the state of 
our  SystemC models  to  Simics,  and  later  get  the  saved 
values back. Thus, all our SystemC models need to do is 
provide  a  means  to  expose  the  state  of  models  and  the 
SystemC kernel to Simics. 

Initially,  we  have  considered  the  entire  SystemC 
simulation setup as a single Simics “model”, with a fixed 
internal configuration. Thus, we do not attempt to convey 
the SystemC simulation configuration in checkpoints,  but 
rather  consider  that  a  fixed  property  of  our  simulation 
implementation.

3. SystemC in Simics

To  run  SystemC  models  in  Simics,  we  made  the 
SystemC kernel a slave system to the main Simics kernel, 
as  shown  in  Figure  2.  This  system is  called the  Simics-
SystemC Bridge.

The key problem in integrating two simulators is how to 
synchronize  the  time  and  execution  of  code  in  the  two 
simulation worlds.  In  order to maintain simulation speed, 
we  cannot  synchronize  SystemC  with  Simics  on  every 
target system clock cycle. Instead, we have designed a lazy 
scheme that only synchronizes when necessary. 

When a transaction is sent into the SystemC part of the 
combined system (it  could be a memory operation, reset, 
input, etc.), we call SystemC and lets the SystemC kernel 
and  models  process  the  transaction  to  completion.  If 
SystemC has then progressed ahead of Simics time, we stall 
the Simics processor  initiating the transaction  to account 
for the time taken to complete the request. 
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After  each  transaction  has  completed,  we check  when 
the next event in the SystemC kernel is scheduled. If there 
is  such  an  event,  we  post  an  event  in  the  Simics  event 
queue at a corresponding point in time. When the Simics 
event is triggered,  the SystemC kernel  is invoked so that 
time  can  catch  up  with  Simics  time  and  the  event  be 
processed.  Thus,  SystemC  models  can  perform  actions 
asynchronous  to  the  Simics  world,  like  serial  console 
output or sending completion interrupts.  

The  Simics-SystemC  bridge  also  has  to  convert 
transactions between their Simics and SystemC types. This 
is a reusable feature for simple standard interfaces such as 
TLM-2.0 [6] or GreenBus [7], but for other interfaces you 
need a case-by-case conversion. 

The  performance  of  the  integration  is  very  good,  as 
SystemC does not impose any slowdown on Simics when 
SystemC device models are not being activated. Also, the 
overhead of translating transactions is minor compared to 
the cost of actually computing the result of a transaction in 
a device model. 

To handle checkpointing, the Simics-SystemC Bridge is 
extended  to  provide  transactions  corresponding  to 
checkpoint save and restore. It also needs to convert from 
the  state  representation  in  SystemC to  Simics  attributes, 
and register attributes with Simics. 

4. Checkpointing SystemC Model State

4.1. Model Requirements

Checkpointing requires a model to explicitly define the 
state that will be saved and restored. In our implementation, 
we have used the GreenControl [8] parameter mechanism 
to simplify the implementation in SystemC and make the 
changes to the SystemC code as small as possible. 

GreenControl  lets  us  mark  variables  in  a  SystemC 
module  as  managed  parameters  using  the  gs_param<> 
template. From SystemC code point of view, such variables 
can  be used  just  like any other  variable,  with the added 
benefit that its value can be accessed and changed from the 
GreenControl  system.  The  GreenControl  system  allows 

access to parameters from outside the module that declares 
them, and even when the simulation is not running. Figure
3 shows  a  short  example  of  the  use  of  parameters. 
Essentially, this provides the back-door access we need to 
get and set the simulation state. 

When  a  gs_param<> is  declared,  it  is  given  a 
parameter name, which is used to access it along with an 
automatic  hierarchical  naming  scheme  that  mirrors  the 
structure of the SystemC simulation setup. 

4.2. SystemC Parameters to Simics Attributes

There are two ways to connect the parameter handling in 
GreenConfig to the Simics attribute system, and we tried 
both. 

Variant  one  is  to  create  a  Simics  attribute  for  each 
parameter  in  the  SystemC  device.  This  makes  the 
checkpoint  very  readable,  and  has  the  side  benefit  of 
exposing  the  state  of  the  SystemC  devices  for  easy 
modification and inspection from the Simics user interface. 
It suffers from the need to add code to define one attribute 
per parameter, however. 

Variant two is to use the GreenControl feature of getting 
all parameters in a simulation as a list, and then convert that 
to  a  list  attribute  in  Simics.  This  solution  makes  it 
somewhat more cumbersome to access the state from the 
Simics user  interface as you  have to parse a list  of key-
value pairs, but it also means that a single attribute is all 
that needs to be defined, reducing the amount of code in the 
integration. 

Both solutions work equally well for checkpointing. The 
user-perceived difference is shown in  Figure 4. We have 
used the list variant, as it is more flexible.

4.3. Limitations

The main limitation to the system proposed above is that 
only  SystemC  module  data  members  using  the 
gs_param<> mechanism are checkpointed. In particular, 
signals  and  ports  are  not  currently  covered  by  our 
implementation. This limitation means that signals and port 
values  are  not  saved,  and  SystemC modules  have  to  be 
written with this in mind. For modules written in a TLM 
style, this is not a big issue since communication between 
modules  is  based  on  function  calls  that  finish  each 
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Figure 2: SystemC Encapsulated within Simics

class example : public sc_module {
 public:
  SC_CTOR( example ) : 
    scparam ("scparam",  0xdeadbeef)
    {
      // ...
    }
  //...

private:
    gs_param<uint32_t> scparam;
}

Figure 3: Example use of gs_param<>
 



transaction as a unit  and that  naturally store  the updated 
module state in parameters marked with gs_param<>. 

Another  limitation  is  that  we  currently  assume  the 
SystemC  setup  to  be  a  fixed  subsystem  in  the  Simics 
system. The entire SystemC subsystem is represented as a 
single  Simics simulation model,  with attributes  reflecting 
the  state  of  the SystemC kernel  as  well  as  the  SystemC 
device  models  and  the  SystemC bridge  itself.  Since  the 
names  of  parameters  come from the  SystemC hierarchy, 
this is also necessary to make parameter names meaningful. 

However,  note  that  this  approach  also  means  that  the 
SystemC model implementation is separated out, and that 
different  models  can  thus  implement  the  same  set  of 
parameters.  This supports such use-cases as changing the 
level of abstraction in a simulation and updating a model 
while reusing the same checkpoint. 

5. Checkpointing SystemC Kernel State

SystemC is an event-based simulator that maintains the 
simulation state storing pending events for  SC_METHODs 
and  SC_THREADs  in  separate  priority  lists.  When 
simulation begins, the kernel finds the top event of each list 
and executes or resumes the process sensible to that event.

In case of SC_METHODs, the sensitive “process”, which 
is  essentially  a  function  call  into  the  device  model,  is 
executed. Once the function call returns and the execution 
of the sensitive process ends, the  SC_METHOD module is 
suspended until another event that it is sensitive to occurs.

A more complicated mechanism is used when managing 
SC_THREADs  because  a  process  can  be  suspended  in 
middle  of  its  execution  (when  wait()  is  called).  This 
requires  the use of a user-level  threading system to store 
the execution state of the model, including local variables 
on the stack. Execution is later resumed at the point where 
it  was  suspended,  when  an  appropriate  wake-up  event 
happens.

The strategy we had taken in our initial work is to save 
and restore all information that kernel needs to continue a 
simulation. For this, we need to save the actual simulation 
time and  the  event  queues.  This  option  will  allow us  to 
work  with  SC_METHODs  only,  because  we  cannot  store 
and resume execution of  SC_THREADs in middle of their 
execution. 

The  problem  with  SC_THREAD is  not  so  much  the 
SystemC  kernel  itself,  as  the  fact  that  the  kernel 

implementation  uses  a  threading  library  that  maintains  a 
separate stack for each thread. It is infeasible to access, not 
to  mention  restore,  the  stack-based  state  of  an 
SC_THREAD. 

Fundamentally,  the  use  of  suspendable  threads  is 
inappropriate  for  checkpoint  and  restore.  It  puts  state  in 
stack-allocated local variables, as an implicit part of the call 
stack, and into processor registers. This means that state is 
not  explicit  and  not  available  for  manipulation  from the 
outside. 

The  resume  operation  consists  of  constructing  the 
SystemC subsystem again (as  it  would be starting a new 
simulation),  and  once  the  elaboration  and  initialization 
phases  are  done,  we  update  the  kernel  state  to  the  state 
saved in the checkpoint. In particular, the simulation time is 
changed,  and  pending  events  are  reposted  to  the  event 
queues. Thus, the SystemC kernel will run the simulation 
as  if  it  were  just  continuing the checkpointed  simulation 
without any interruption.

We access the event queue through the OSCI SystemC 
kernel  class  sc_simcontext.  This  class  encapsulates 
SystemC  kernel  and  it  is  in  charge  of  managing  the 
simulation. The list of events is communicated to Simics as 
a Simics attribute of the SystemC bridge module (Simics 
supports arbitrarily nested lists as an attribute type, which 
makes it  easy to represent the event queue as a variable-
length list).  In order to access the list of active events and 
methods,  we had to add  some non-destructive inspection 
code to the OSCI SystemC 2.2.0 kernel.

When a checkpoint is taken in Simics, the event queue 
attribute is read and stored using the Simics checkpointing 
mechanism. When resuming, the Simics attribute is written 
with the value (old event queue state) stored in the Simics 
checkpoint  file,  and  our  SystemC bridge  extensions  then 
repost  the  events  into  the  new  SystemC  simulation, 
recreating the state at the point when the checkpoint  was 
taken. 

6. Related Work and Alternatives

SimOS and IBM Mambo full-system simulator [3,  13] 
uses a checkpointing mechanism very similar to what we 
propose,  with  explicit  model  state  separate  from  the 
implementation  state.  Typical  uses  for  checkpoints  in 
Mambo is  to  save  complex  system setups  and  to  switch 
between different implementations and different abstraction 
levels. 

The Boost C++ serialization library can save and restore 
the  state  of  C++  objects  in  a  program  [9].  It  provides 
portability and upgradability to new versions of the code. 
However,  using  this  library  with  SystemC  would  have 
required a rewrite of the SystemC kernel to use serialized 
objects to store all state, and it is not clear how this would 
work  with  the  cooperative  multitasking  nature  of  the 
SystemC kernel. The Boost library takes the same view as 
our  solution on the state: only data stored in C++ object 
members are serialized, not temporary values on the stack, 
nor  the state of threads in the system. Also,  using Boost 

simics> ckpt0->gs_all_param_value 
"systemc_greencheckpoint_test.otherparm=42
;systemc_greencheckpoint_test.scparam=66;s
ystemc_greencheckpoint_test.scparam_two=47
11;"
simics> ckpt0->scparam
66
simics> ckpt0->scparam_two 
4711

Figure 4: Simics CLI session with the two styles



would  require  larger  modifications  to  existing  device 
models than our solution.

Another alternative solution that has been proposed is to 
save  the  entire  contents  of  the  memory  of  a  running 
simulation process. At least in theory, this should work for 
any code, without modification, and including thread state. 
This is what it appears that CoWare and Cadence are doing 
in  their  recently  announced  of  checkpoint  support  for 
SystemC, even if public details are quite scarce [10, 11]. 
The  memory-dump  solution  has  several  limitations 
compared to our  approach.  As a checkpoint  contains  the 
state of the stack and heap, it is tied to the particular data 
layout  and stack-frame layout  of  the code the simulation 
started  with.  Thus,  it  cannot  be  restored  on  a  different 
machine  (even  a  minor  change  such  as  a  Linux  kernel 
version or different set of system libraries can break it), nor 
can it be used with an updated or different ,model code.

An  even  more  heavy-weight  solution  is  to  place  the 
simulation inside a VMWare virtual machine, and use the 
whole-machine snapshot function of VMWare to save and 
restore the simulation. This works, but you cannot change 
the code, and the size of the snapshot is the size of the total 
memory  of  the  virtual  machine,  which  is  usually  on  the 
order of 1 GB (or more). 

7. Experiments

In our experiments with checkpointing, we have used a 
simple PowerPC-based virtual board containing a PPC603e 
processor,  serial  port,  RAM,  and  a  memory-mapped 
SystemC  device.  This  system  is  sufficient  to  run  code 
cross-compiled  for  a  bare-metal  target,  and  provide  a 
focused  platform  for  detailed  experiments.  A  primary 
benefit of this simple system is that the target software can 
address the SystemC device directly as it has direct access 
to the entire memory of the target machine, which is much 
simpler than writing device drivers  for  a target  operating 
system. 

7.1. Simics-SystemC Bridge Performance 

We  tested  the  performance  of  the  basic  bridge  itself 
using some by integrating an NS16550 serial port modeled 
in SystemC in a virtual development board based around a 
PowerPC  440GP  SoC  (an  AMCC  “ebony”  board).  The 
ebony board runs a full Linux kernel and U-Boot, and the 
performance impact of using the fairly complex SystemC 
model  compared  to  the  Simics  standard  NS16550 model 
was  imperceptible  in  normal  use.  When  using  a 
microbenchmark program that pushed characters onto the 
serial  port  as  quickly  as  possible,  the  performance  was 
reduced by about five percent. Thus, we conclude that the 
SystemC bridge does not present a significant performance 
problem. 

7.2. SystemC Checkpoint Support Overhead

In our SystemC implementation of checkpointing, there 
is a potential additional performance impact from the use of 
gs_param<>, since using the GreenControl mechanisms.

Preliminary tests on the performance of gs_param show 
results  with about  a  2% penalty  against  the  same model 
without using internal variables modeled with gs_param.

7.3. Checkpoint size

Since the checkpoint system that we use here only stores 
the essential data for a simulated system, it will generate 
very  compact  checkpoints  in  general.  For  our  running 
example, the checkpoint was about 88 kB in size – most of 
which is the contents of the RAM of the simulated machine 
containing code. 

That can be compared to the overall process size of the 
simulation,  at  263688  kB,  which  also  includes  overhead 
such  as  the  simulation  core,  simulation  code,  and  user 
interface  system.  Using  the  “store  memory  contents  to 
disk” approach to checkpointing gets you to that size. 

If  the  simulation  system  is  placed  inside  a  VMWare 
virtual  machine,  and VMWare snapshotting used to save 
the  state,  the  size  of  that  snapshot  is  the  size  of  virtual 
RAM, which is at least 1GB for any reasonable simulation-
hosting setup.  

7.4. Validating Checkpointing

To validate that we can indeed save and restore a Simics 
simulation including a SystemC subsystem we used a fairly 
simple example device as shown in  Figure 5. This device 
exhibits  all  essential  problems for  checkpointing,  namely 
state  in  memory-mapped registers  and  an  SC_METHOD 
sensitive to  an event  that  is  posted  at  some point  in  the 
future using sc_notify.

Or  test  devices  consists  of  a  single  memory-mapped 
register  and  a  function  sensible  to  a  event.  When  the 
register  is  written,  a  periodic  event  is  triggered  at  each 
fixed time (1 μs). 

Our test consists of start the simulation and do a write to 
the  register  to  start  the  periodic  event.  Then,  do  a 
checkpoint and quit simics. Then, we start simics again and 

class systemc_greencheckpoint_test:
  public sc_module,
...
  SC_METHOD(function);
  sensitive << my_event;
...

void 
systemc_greencheckpoint_test::function()
{
  cout << "(SC code) function called at " 
<< sc_time_stamp() << endl;
  my_event.notify(1, SC_US);
}

Figure 5: Code example



we resume the simulation from the  checkpoint. We could 
observe  that  the  periodic  event  is  triggering  again  as 
expected.  With  this  test  we  validated  that  the  SystemC 
kernel event list for SC_METHODs is properly saved and 
restored,  and  the  simulation  can  be  restored  using  our 
strategy.

7.5. Validating Model Updates

To  validate  the  updatability  of  a  model  with  new 
features using a checkpoint for an older version, we created 
a  simple  SystemC  device  model  containing  a  single 
memory-mapped register. We then wrote a driver program 
for this device, executed the program to change the value 
of  the register,  and  took  a checkpoint.  At  this point,  we 
exited the simulation, and changed the source code of the 
model to include an extra register.  After recompiling, we 
started  the  simulation  from  the  checkpoint  without 
problems. The new register took on its default value as set 
in the SystemC source code, while the old register used the 
value  provided  in  the  checkpoint.  We then  executed  the 
simulation for some more time, and took a new checkpoint. 
This  checkpoint  correctly  contained  the  state  of  both 
registers,  as affected by the software driver  program (the 
driver knew about both registers from the start). Thus, we 
show that we can update models and use old checkpoints. 

8. Discussion

This  work  has  proved  that  it  is  possible  to  do 
checkpointing  in  SystemC,  with  a  moderate  effort  and 
building  upon  existing  frameworks.  It  has  also  exposed 
some issues in the SystemC design. The key problem is the 
provision  of  a  Unix-style  threaded  execution  model  in 
SystemC,  rather  than  an  event-driven  run-to-completion 
model.  The  threaded  style  encourages  storing  essential 
simulation state on the stack and as the location in the code, 
which  is  very  hard  to  explicitly  save  and  restore  in  a 
portable manner. Thank to the existence of  SC_METHOD, a 
sound  style  can  be  implemented  in  the  current  SystemC 
framework.

SystemC would have to be refined to make model state a 
first-class aspect  of the language,  and not just  something 
implemented in arbitrary ways using C++ mechanisms as it 
is  today.  The  connections  between  modules  and  the 
modules present in a simulation would also have to be first-
class  items.  Finally,  the  kernel  would  need  a  host-
independent representation of the state. Especially if state is 
to be exchanged between different SystemC kernels from 
different vendors, such standardization is needed. 

An  alternative  model  to  enable  checkpointing  is  to 
define a SystemC Virtual Machine that compiles models to 
byte codes rather than native code, thus providing a layer 
of  indirection  that  can  be  used  to  dump and  restore  the 
system state without change to models. Such work has been 
done for Java, for example.

9. Conclusions

We have discussed the need and utility of checkpointing. 
It is an enabler for software development, and if it can be 
achieved in such a way as to allow the result to be made 
use  of  on  different  host  platforms,  it  can  be  used  in  a 
number of ways.

In the past, checkpointing has been achieved by saving 
the  complete  process  state  of  the  process  running  the 
simulation.  This  limits  the  ability  to  distribute  the 
simulation, and also is expensive in terms of disk and time.

Our aim has been to investigate the possibility of saving 
and restoring the SystemC kernel and model state itself. 

In order to achieve this ambitious aim, we have had to 
limit  ourselves  in  terms  of  what  models  we  support. 
However, we have found, even with those limitations, that 
the results are helpful.

We are  able to save and  restore the state of  SystemC 
methods, and the events which trigger them. We are also 
able  to  save  and  restore  the  states  of  models  that  are 
running on the SystemC simulator.

In the future we will be investigating other approaches 
to  checkpointing,  and  dealing  with  the  case  of  SystemC 
threads.  For  example,  it  could  be  possible  to  converting 
threads to methods using automatic tools [12].
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