JetWeb

JX2-SV1

Operator's Manual

March 2002 / Printed in Germany

Edition 1.1

JETTER AG reserves the right to make alterations to its products in the interest of technical progress. These alterations need not to be documented in every single case.

This manual and the information contained herein have been compiled with due diligence. However, Jetter AG assumes no liability for printing errors or damages arising from such errors.

The brand names and product names used in this manual are trade marks or registered trade marks of the respective title owner.

How to Contact us:

Jetter AG Gräterstraße 2 D-71642 Ludwigsburg Germany

Phone - Switchboard: Phone - Sales: Phone - Technical Hotline:

Telefax: E-Mail - Sales: E-Mail - Technical Hotline: URL: +49 7141 2550-444 +49 7141 2550-425 sales@jetter.de

hotline@jetter.de

http://www.jetter.de

+49 7141 2550-530

+49 7141 2550-0

This Operator's Manual is an Integral Part of the JetWeb Module JX2-SV1:

Туре:	
Serial #:	
Year of construction:	
Order #:	
CE	
To be entered by the custom	er:
Inventory #:	
Place of operation:	
© Copyright 2002 by Jetter A	G. All rights reserved.

Significance of this user's manual

This manual forms part of the JX2-SV1 module

- and must be kept in a way that it is always at hand until the module will be disposed of.
- If the module is sold, transferred or lent, this manual must be handed over.

In any case you encounter difficulties to clearly understand the manual, please contact the manufacturer.

We would appreciate any kind of suggestions and contributions on your part. This will help us to produce manuals that are more user-friendly and to address your wishes and requirements.

From this JX2-SV1 module may result inherent residual risks to persons and physical assets. For this reason, any person who has to deal with the operation, transport, installation, maintenance and repair of the JX2-SV1 module must have been familiarised with it and must be aware of these dangers.

Therefore, this person must carefully read, understand and observe this manual, and especially the safety instructions.

Missing or inadequate knowledge of the manual results in the loss of any claim of liability on part of Jetter AG. Therefore, the operating company is recommended to have the instruction of the persons concerned confirmed in writing.

Table of Contents

1	Safety Instructions	7		
2	Operating Conditions	12		
3	Servo Controller Module JX2-SV1	13		
3.1	Mounting Dimensions	13		
3.1.1 3.1.2 3.1.3	Front View Side View Top View	13 14 14		
3.2	Technical Data	15		
3.3	Connection Diagram	17		
3.4	Description of LEDs	21		
3.5	Software Description	22		
3.5.1 3.5.2 3.5.3	Axis Numbering Register Numbering Position Control Modes: Mode 0, 1, 2, 3	22 23 24		
3.6	Register Overview - JX2-SV1 Module	25		
3.7	Registers of the JX2-SV1 Module	28		
3.7.1 Full Po 3.7.2 Digital	Registers for Mode 2: osition Control 42 Registers for Mode 1 and 3: Speed Control 47			
4	Putting a servo controller axis into operation	55		
4.1	Putting the speed control loop into operation	55		
4.2 loop ir	Putting the position control nto operation 56			
4.3	Position Controller Mode 2: Complete Position Control	57		
5 Differences Between Modules JX2-SV1C and JX2-SV1 59				
List	of Appendices			
Арре Арре Арре Арре	ndix A: Glossary ndix B: List of abbreviations ndix C: Index of Illustrations ndix D: Index	64 66 67 68		

1 Safety Instructions

The JX2-SV1 module reflects the present state of the art. The JX2-SV1 and JX2-SV1C modules fulfill the applicable safety regulations and standards. Special emphasis was given to the safety of the users. Only the term JX2-SV1 module will be used below for the modules JX2-SV1 and JX2-SV1C. Differences will be explicitly described.

Of course, the following regulations apply to the user:

- · relevant accident prevention regulations;
- the generally recognised technical safety regulations,
- EC guidelines and other country-specific regulations.

Usage as agreed upon

Usage as agreed upon includes operation in accordance with the operating instructions.

The JX2-SV1 module is used to control machinery, such as conveyors, production machines, and handling machines. The JX2-SV1 module can logically be operated and controlled only with the basic modules of the NANO control system. Power supply of the JX2-SV1 module must be made through the SELV module exclusively.

The use of other power supply modules is not admissible.

Usage other than agreed upon

The JX2-SV1 module must not be used in technical systems which to a high degree have to be fail-save, e.g. ropeways and aeroplanes.

If the N-SV1 module is to be operated under ambient conditions which differ from those stated in chapter 2: "Operating Conditions", page 11, consult the manufacturer first.

Who is permitted to operate the JX2-SV1 module?

Only instructed, trained and authorised persons are permitted to operate the JX2-SV1 module.

Mounting and backfitting may only be carried out by specially trained personnel, as specific know-how will be required.

Maintenance of the JX2-SV1 module

The JX2-SV1 module is maintenance-free. Therefore, for the operation of the module no inspection or maintenance are required.

Shutting down and disposing of the JX2-SV1 module

Decommissioning and disposal of the JX2-SV1 module are subject to the environmental legislation of the respective country in effect for the operator's premises.

Descriptions of symbols

or death.

Danger

This sign is to indicate a possible impending danger of light physical damage. This sign is also to warn you of material damage.

This sign is to indicate a possible impending danger of serious physical damage

Caution

Important!

This sign is to indicate a possible impending situation which might bring damage to the product or to its surroundings.

Note!

You will be informed of various possible applications and will receive further useful suggestions.

Enumerations are marked by full stops, strokes or scores.

Operating instructions are marked by this arrow.

Automatically running processes or results to be achieved are marked by this arrow.

Illustration of PC and user interface keys.

Ensure your own safety

Isolate the JX2-SV1 module from the mains if maintenance works have to be carried out. By doing so, you will prevent accidents resulting from electric voltage and moving parts.

Instructions on EMI

The noise immunity of a system corresponds to the weakest component of the system. For this reason, correct wiring and shielding of the cables is important.

Important!

Measures for increasing immunity to interfering:

The shielding must be fitted on both sides.

- When the signal is connected to terminal screws: The strain relief must be directly and extensively connected to an earthed surface.
- When male connectors are used: Only use metallised connectors, e.g. SUB-D with metallised housing. Please take care of direct connection here as well.

Male/female SUB-D connectors (9, 15 or 25 pins) with metallised housing.

Fig. 1: Shielding in conformity with the EMC standards

Important!

To avoid malfunctions the following must be ensured:

- The shielding must be extensively clamped under a strain relief.
 - The connection between the housing and the shielding must be electrically conductive.
- The distance between unshielded conductor ends must be as short as possible.

Modifications and alterations to the module

Due to safety reasons, no modifications and alterations to the JX2-SV1 module and its functions are allowed. Any modifications to the module JX2-SV1 not expressly authorised by the manufacturer will result in a loss of any liability claims to Jetter AG.

The original parts are specifically designed for the JX2-SV1 module. Parts and equipment of other manufacturers are not tested on our part, and are, therefore, not released by us. The installation of such parts may impair the safety and the proper functioning of the JX2-SV1 module.

For any damages resulting from the use of non original parts and equipment any claims with respect to liability of Jetter AG are excluded.

Malfunctions

Malfunctions or other damages are to be reported to an authorised person at once. Safeguard the JX2-SV1 module against misuse or accidental use. Only qualified experts are allowed to carry out repairs.

Safety and protective devices, e.g. the barrier and cover of the terminal box must not in any case be shunted or by-passed.

Dismantled protective equipment must be reattached prior to commissioning and checked for proper functioning.

Information signs and labels

Writings, information signs, and labels always have to be observed and kept readable.

Damaged or unreadable information signs and labels are to be exchanged.

Residual dangers

Danger resulting from electric shock!

If the JX2-SV1 module is not isolated from the mains, for example during maintenance and repair works, you can suffer from an electric shock. Please, observe the following measures in order to avoid injuries, muscle cramps, burns, as well as possibly unconsciousness and respiratory standstill:

Disconnect the JX2-SV1 module from the power mains (pull out the mains plug) when working on the controller.

Have works on the electric and electronic system performed by qualified personnel only.

2 **Operating Conditions**

Operating conditions			
Condition		Comment	
Ambient Temperature	0 50 °C		
Storing temperature	-10 70 °C		
Air humidity	5% - 95%	RH-2 acc. to IEC 61131-2	
Contamination level	11	acc. to IEC 61131-2	
Oscillation fatigue limit	IEC 61131-2		
Protective system	IP20		
Category of protection	111	acc. to IEC 61131-2	
ESD	Level ESD-4	acc. to IEC 61131-2	

Important!

Measures to avoid damages in transit and storage:

The packaging material and the storage location must be selected so that the values in the table above are maintained.

3 Servo Controller Module JX2-SV1

The intelligent extension module JX2-SV1 is designed for the control systems NANO, JetControl and JetNode. It is used to control external servo axes. A \pm 10 V analog signal is provided as the output. Incremental or absolute value encoder signals (SSI) can be evaluated as the feedback value.

3.1 Mounting Dimensions

3.1.1 Front View

3.1.2 Side View

3.1.3 Top View

3.2 Technical Data

Technical data - JX2-SV1 module		
Positioning range	-8388608 +8388607	
Max. encoder frequency K1, K2:	100 kHz*)	
Resolution	12 Bit	
Positioning accuracy	± 1 increment	
Acceleration / Deceleration ramp	sine square, steepness programmable	
Interface to the servo controller	Speed setpoint value analog -10V +10V	
Inputs	Limit switch left / right (24V, NC or NO contact)	
	Reference switch (24V, NC or NO contact)	
Outputs	2 digital outputs	
Housing	Aluminium, powder coated, black	

*) see Section 5: "Differences Between Modules JX2-SV1C and JX2-SV1", page 59.

Connection of the servo controller (X1, X2, X3)		
0 V (X10)	Gnd	
24 V (X10)	Voltage supply, logic	
24 V (X31)	Power supply Output 1and output 2	
1 (X31)	Digital output, positive direction	
2 (X31)	Digital output, negative direction	
Li+ (X21)	Positive limit switch	
Li- (X21)	Negative limit switch	
Ref (X21)	Reference switch	

Technical data	- Digital outputs
Type of outputs	Transistor, pnp
Nominal voltage	DC 24 V
Voltage range	20 30 V
Load current	max. 0.5 A / output
Electrical isolation	None
Protective circuit	Overload, overvoltage, overtemperature
Protection against inductive loads	yes
Signal voltage ON	typ. V _{Supply} - 1.5 V

3.3 Connection Diagram

Fig. 2: System interconnect diagram

Note!

The relay is a NO contact and must be connected potential-free.

Analog output with 9-pole SUB-D connector			
Controller	Shielding	Specification max. length	
9-pole SUB-D connector X62	Shield B	Maximum cable length: 20 m	
	Connect shield with the grea- test possible surface area! Use a metallised housing		
Pin	Signal	Comment	
1	Gnd	Voltage supply	
2	not assigned		
3	Relay contact 1*)	Release (max. 30 V, max. 1 A)	
4	Relay contact 2*)	Servo amplifier	
5	not assigned		
6	not assigned		
7	not assigned		
8	Gnd	for 9	
9	Speed setpoint value	-10V +10V (max. ± 5 mA)	

*) floating contact

Encoder with 15-pole SUB-D connector				
Controller	Shielding	Cable specification, max. length		
15-pole SUB-D connector X61	Shield Shield Connect shield with the grea- test possible surface area! Use a metallised housing	Maximum cable length: 5 V differential voltage: 100 m 24 V: 20 m		
Pin	Signal	Comment		
1	Gnd	Voltage supply		
2	K0 +	Input		
3	K0 -	Input		
4	K1 +, D + (SSI)	Input		
5	K1 -, D - (SSI)	Input		
6	K2 +	Input		
7	K2 -	Input		
8	Clock - (SSI)	Output		
9	Clock + (SSI)	Output		
10	DC 5 V (50mA)	Voltage supply		
11	not assigned	not assigned		
12	not assigned	not assigned		
13	not assigned	not assigned		
14	not assigned	not assigned		
15	not assigned	not assigned		

Encoder inputs of the JX2-SV1 module				
Male connector SUB-D, 15 pins	PIN	24 Volt encoder	5 Volt differential voltage	
X61				
	1	GND	GND	
	2	K0 +	K0 +	
	3	not assigned	К0 -	
	4	K1 +	K1 +	
	5	not assigned	K1 -	
	6	K2 +	K2 +	
	7	not assigned	K2 -	
	8	not assigned	not assigned	
	9	not assigned	not assigned	
	10	not assigned	5 Volt (- 5%) encoder supply with max. 50 mA input current	
	11	not assigned	not assigned	
	12	not assigned	not assigned	
	13	not assigned	not assigned	
	14	not assigned	not assigned	
	15	not assigned	not assigned	

Important!

 \geq

To prevent functional problems or destruction of the module JX2-SV1:

an encoder connected to Pin 1 and Pin 10 and supplied with 5 Volt must not consume more than maximum 50 mA current.

3.4 Description of LEDs

The eight LEDs of the JX2-SV1 module light up in various operating states, whereby:

- the first four LEDs indicate output states controlled via the software.
- the second four LEDs indicate the unit state.

LED Li+:	The positive limit switch is or was active.
LED Li-:	The negative limit switch is or was active.
LED Pos:	The axis has reached the position. The LED lights up as soon as the axis has reached the destination window. The LED goes out as soon as a new positioning is started.
X:	flashes when an update of the operating system is being load-ed
K1:	Encoder channel 1
K2:	Encoder channel 2
К0:	Encoder channel 0
5V:	5V Logic voltage of the servo module is OK.

The LEDs for the limit switches have four display modes:

•	lights up continuously:	The axis is at the limit switch, the limit switch is active.
•	even flashing:	The limit switch was active, is no longer active and no new positioning was started.
•	uneven flashing:	The software limit switch was triggered.
•	even flashing of the LED Pos:	Tracking error recognised.

Software Description 3.5

Axis Numbering 3.5.1

The example of the xy axis is used to explain the axis numbering system.

The first digit defines the number of the module at which the module JX2-SV1 is ٠ located:

x = Module number.

The second digit defines the number of the axis which is to be addressed on the module:

y =Axis number.

In the case of module JX2-SV1, the axis number is always 1 and in the case of module JX2-SM2 it is either 1 or 2.

Note!

To determine the module number, only the intelligent modules and no nonintelligent modules are counted. See the table below.

Number assignment of the modules	Basic unit	JX2-SV1 Servo module	JX2-ID8 Input module	JX2-SM1D Servo module
	Module 1	Module 2	Module 3	Module 4
	Input 101 108	Axis 2 1	Input 201 208	Axis 3 1 and axis 3 2

3.5.2 Register Numbering

Using the example of the register REG **1xyzz**, the method by which the axis numbering is performed is demonstrated.

- The registers are addressed via five-digit numbers.
- The first digit is 1.
- The second digit x is obtained from the module number, at which the N-SV1 module is located.
- The third digit y corresponds to the number of the axis which is addressed via the register, in the case of module JX2-SV1 it is always 1.
- The digits four and five zz define the actual register number, whereby zz correspond to the register numbers 0 to 99.

Note!

To determine the module number, only the intelligent modules and no nonintelligent modules are counted. See the table below.

Basic unit	JX2-SV1 Servo module	JX2-ID8 Input module	JX2-SM1 Servo module
Module 1	Module 2	Module 3	Module 4
Input 101 108	Register numbers 121zz	Input 201 208	Register numbers 131zz

Number assignment of the modules in the case of axes

3.5.3 Position Control Modes: Mode 0, 1, 2, 3

The JX2-SV1 module can be operated in 4 different position control modes. All position control modes require the basic register as the basis for control, see Section 3.7: "Registers of the JX2-SV1 Module", page 28.

Mode 0 In the case of Mode 0, the axis moves outside the Acceleration and Deceleration Ramps with a constant default speed (Register **1xy03**) towards the target point. When the target point is reached, the position is controlled to the target position; to achieve this, the difference between the setpoint and actual positions is multiplied by the gain factor (Register **1xy10**).

The output setpoint voltage is calculated on the basis of the following formula:

Output value =
$$\frac{\Delta (\text{Setpoint value} - \text{Actual value})}{16} \times \frac{\text{REG 1xy10}}{128} \times 4,88\text{mV}$$

Mode 1 Mode 1 includes Mode 0 and also uses the digital speed control (see Mode 3).

- Mode 2 Mode 2 realises a full position control over the full distance. The current setpoint position is calculated for each time and the setpoint / actual difference is formed. The product with the gain factor defines the speed setpoint value. Calculation of the current setpoint position is performed with a software or virtual axis, which mathematically "runs" the required speed profile, see Section 3.7.1: "Registers for Mode 2: Full Position Control", page 42 for details. This corresponds to the track-ing error monitoring.
- Mode 3Mode 3 includes Mode 2 and also uses the digital speed control.
The requirement is:
The speed controller in the servo amplifier must be bypassed. See Section 3.7.2:
"Registers for Mode 1 and 3: Digital Speed Control", page 47.

3.6 Register Overview - JX2-SV1 Module

Reg. No.	Register type –	Servo controller	R/W Ro* ⁾
	General	registers	
1xy00	Status register	0 23 Bit	R/W
1xy01	Command register	0 255	R/W
1xy02	Setpoint position	- 8388608 + 8388607	R/W
1 xy03	Setpoint speed	0 32767	R/W
1xy04	Input polarities	0 7 Bit	R/W
1xy05	Acceleration ramp	1 32767	R/W
1xy06	Deceleration ramp	1 32767	R/W
1xy07	Destination window	0 8388607	R/W
1xy08	Digital offset	0 2047	R/W
1xy09	Actual position	- 8388608 + 8388607	R/W
1xy10	P-gain	0 32767	R/W
1xy11	Setpoint speed of the po- sition controller	- 32768 + 32767	R/W
1xy12	Actual speed	- 32768 32767	Ro
1xy13	Time basis for the meas- urement of the actual speed	0 32767	Ro
1xy14	Positive software limit switch	- 8388608+ 8388607	R/W
1xy15	Negative software limit switch	- 8388608+ 8388607	R/W
1xy16	Digital offset	- 2048 + 2047	R/W
1xy17	Encoder line count	0 10000	R/W
1xy18	Maximum speed of the servo amplifier / motor combination	0 32767	R/W
1xy19	Tracking error	- 8388608 + 8388607	Ro
1xy20	Tracking error limit	0 8388607	R/W
1xy21	Reference value for Register 03. Maximum setpoint speed	0 32767	R/W

Reg. No.	Register type –	Servo controller	R/W Ro* ⁾
	Register for the dig	ital speed controller	
1xy24	P-gain of the digital speed controller	0 32767	R/W
1xy25	Current setpoint value	-2048 + 2047	Ro
1xy26	I-component of the speed controller	0 32767	R/W
1xy27	Current limitation within the speed controller	0 2047	R/W
1xy28	Present I-component of the speed controller	- 30000+ 30000	R/W
1xy29	Limitation of the I-compo- nent within the speed con- troller	030000	R/W
	Register for the absolu	ute value encoder (SSI)	
1xy64	Word size of the absolute value encoder	1 24	R/W
1xy65	Offset to the reference position	- 8388608 + 8388607	R/W
1xy66	Bit number for the word size	1 23	R/W
	Relative p	ositioning	
1xy67	Relative position in the rel- ative mode	- 8388608 + 8388607	R/W
1xy68	Last setpoint position in the relative mode	- 8388608 + 8388607	R/W
1xy71	Move reference point	- 8388608 + 8388607	R/W
1xy80	Move deceleration ramp	0 + 8388607 (Incremental)	R/W
	Other re	egisters	
1xy43	Axis (slave) receives actu- al position	21, 22, 31, 41, 42 102 116	R/W
1xy78	Time basis, table mode in 0.5 ms	0 32767	R/W
1xy81	Switch off outputs below an output value	0 2047 (0 10 V)	R/W
1xy85	Absolute maximum posi- tion (endless positioning, relative positioning)	0 7490000	R/W

Reg. No.	Register type – S	Servo controller	R/W Ro* ⁾
1xy95	Present position of the Master	- 8388608 + 8388607	Ro
1xy96	Present speed of the Mas- ter	-32768 32767	Ro
1xy98	Endless positioning and relative positioning mode	0 3	R/W
1xy99	Version number	+ 8388607	Ro

 $^{\star)}$ R/W means Read/Write; Ro means Read only

3.7 Registers of the JX2-SV1 Module

Register 1xy00: Status Register		
Function	Description	
Read	Present status of the axis	
	Value following a reset: Bit 10 set	
Write	defines a new status	
Value range	bit-oriented, 24 Bit	

Meaning of the individual bits

Bit 0:	Reference set
Bit 1:	AXARR= Position was reached. The bit is deleted and set at the start of the positioning as soon as the destination window is reached.
Bit 2:	not assigned
Bit 3:	Tracking error recognised in the case of REG 1xy19 > REG 1xy20
Bit 4:	Negative limit switch active
Bit 5:	Positive limit switch active
Bit 6:	Reference switch active
Bit 7:	Software limit switch was active
Bit 8:	Limit switch was active
Bit 9:	Position controller switched on
Bit 10:	Switched on following AXARR
Bit 11:	Relay switched on
Bit 12:	Machine referencing error
Bit 13:	BUSY , applies only to commands 9 to 12 and command 42, as well as to register 1xy43
Bit 14:	Software limit switch switched on. Entering 1 into this bit activates this function.
Bit 15:	Speed controller active
Bit 16:	Axis is in the deceleration ramp
Bit 17:	Do not switch off if tracking error is recognised. Entering 1 into this bit activates this function.
Bit 18:	Print-mark not found

- Bit 19: not assigned
- Bit 20: not assigned
- Bit 21: not assigned
- Bit 22: Error recognised on a digital output
- Bit 23: Tracking error correction deactivated. Setting the bit deactivates the correction.

Register 1xy01: Command Register		
Function	Description	
Read	Present or most recently processed command	
	Value following a reset: 0	
Write	Starts the execution of a new command	
Value range	0 255	

Writing values between 0 and 79 into this register starts one of the following commands:

- 1: Switches the controller **ON** and issues a release.
- **2**: The relay is switched off and controller remains active.
- **3:** The reference point is set at the present position of the axis. At the same time, the actual and setpoint position of the axis are set to 0.
- 4: The reference is searched for again. The next coincidence of the reference switch and the K0 signal of the incremental encoder references the axis again. Use of command 4 is not necessary if the commands 9 to 12 are used.
- 5: The axis is stopped and the position is controlled (AXARR command).
- **6:** The axis is stopped and the position is not controlled (analog output = 0 V).
- **7:** The position is controlled in the target point (*).
- 8: The position is not controlled in the target point.
- 9: Automatic machine referencing with the speed entered into register 1xy03.

Start in the positive direction, attention must immediately be paid to the reference switch.

If the positive limit switch is actuated, the rotation direction of the axis is reversed and it continues to rotate in the negative direction until:

- The reference switch is found, whereby the actual and setpoint positions are then set to 0.
- The negative limit switch is actuated, whereby the machine referencing ends, the setpoint position is set the same as the actual position, the controller is switched off and an error (Bit 12) is reported in the status register **1xy00**.

10:	Automatic machine referencing with the speed contained in register 1xy03.
	Start in the negative direction and immediately pay attention to the reference switch. If the negative limit switch is actuated, the rotation direction of the axis is reversed and it continues to rotate in the positive direction until:
	• The reference switch is found and the actual and setpoint positions are then set to 0.
	• The positive limit switch is actuated, whereby the machine referencing ends, the setpoint position is set the same as the actual position, the controller is switched off and an error (Bit 12) is reported in the status register 1xy00 .
11:	Automatic machine referencing with the speed contained in register 1xy03.
	Start in the positive direction to the positive limit switch and ig- nore the reference switch. Turn round there, move in the neg- ative direction and observe the reference switch at the same time.
	If the negative limit switch is actuated, machine referencing is ended and an error (Bit 12) is signalled in the status register 1xy00 .
12:	Automatic machine referencing with the speed contained in register 1xy03.
	Start in the negative direction to the negative limit switch and ignore the reference switch. Reverse there, move in the posi- tive direction and observe the reference switch at the same time.
	If the positive limit switch is actuated, machine referencing is ended and an error is signalled in the status register.
13:	Axis control at limit switch position OFF: 0 V is output when the limit switch is reached
14:	Axis control at limit switch position ON: When a limit switch is reached the axis is kept in this position (*).
15 - 16:	Reserved!
17:	Relative positioning: refers to the last setpoint position, not to the reference position.
18:	Absolute positioning: refers to the reference position (*).
19:	Interrupted positioning is continued with the AXARR com- mand
20:	Relative position with start input ON
21:	Relative position with start input - OFF

22:	Stop at reference point - ON: during the machine referencing cycle, the axis stops at the reference point (*).
23:	Stop at reference point - OFF: the axis does not stop at the reference point during a machine referencing cycle, instead it continues to travel to the setpoint.
24 - 25:	Reserved!
26:	Activate the print-mark recognition mode.
27:	Deactivate the print-mark recognition mode (*).
28:	Machine referencing, coarse: ON
29:	Machine referencing, coarse: OFF
30:	Master axis in servo-controller mode: this command is given in the Master
31 - 41:	Reserved!
42:	Switch off function of command 30 and register 1xy43 . This command can be used in both the Master and the Slave.
43:	Reserved!
44:	Servo-controller - ON
45:	Servo-controller - OFF
46:	Servo-controller mode via table - ON
47:	Servo-controller mode via table - OFF
48:	Clockwise rotation: Always move to the right when using single-turn rotary encoders
49:	Counter-clockwise rotation: Always move to the left when using single-turn rotary encoders.
50:	Optimised path: When using single-turn rotary encoders, always move to position on the shortest path.
51:	The commands 48 to 50 for using single-turn rotary encoders are deactivated
52 - 55:	Reserved!
56:	Endless positioning in the positive direction is started and is only valid for this single positioning cycle.
57:	Endless positioning in the negative direction is started and is only valid for this single positioning cycle.
58 - 69:	Reserved!
70:	Unipolar DAC output
71:	Bipolar DAC output
72 - 73:	Reserved
74:	Digital output 1 ON

- 75: Digital output 1 OFF
- 76: Digital output 2 ON
- 77: Digital output 2 OFF
- 78: Linear ramps
- 79: Sine square ramps (*)

(*) = Default setting after Reset

Register 1xy02: Setpoint Position		
Function	Description	
Read	Present value of the given parameter Value following a reset: 0	
Write	Defines a new setpoint position for the axis and at the same time starts the positioning to this set- point position.	
Value range	-8388608 +8388607	

Examples:

1) THEN

LOAD_REGISTER [1xy02 with 10000]

Starts the positioning of the axis to the absolute position 10000 increments.

2) THEN

DISPLAY_REG [#0, cp=1, Reg=1xy02]

Shows the momentary setpoint position of the axis in the top left corner on user interface LCD9, LCD10 or LCD12.

REG 1xy02 = REG 1xy02 + 100

Starts the positioning in absolute mode of the axis to the relative position 100, i.e. continue 100 increments.

Note!

This register can also be changed at any time during positioning. The positioning process then refers to the new value. The axis does not stop in this positioning process and a reversal of the axis rotation direction takes place jerkily.

Register 1xy03: Setpoint Speed	
Function	Description
Read	Present setpoint speed of the axis
	Value following a reset: 300 (‰)
Write	Transfer of a new setpoint speed for the axis
Value range	0 32767; the upper limit is defined with the register 1xy21 . (Default 1000)

The value is immediately valid and results in:

- Presently no movement of the axis: The new value is saved for the next positioning cycle.
- Positioning currently running: The new setpoint speed is accepted. The speed change does not take place suddenly. The change takes place with the acceleration ramp defined in the register **1xy05**. This applies to the increase or reduction of the setpoint speed.

Examples:

1) THEN

2)

LOAD_REGISTER [1xy03 with 20]

Results in travel at creep rate with approx. 2% of the maximum speed value.

THEN		
	REG	1xy03
	=	
	REG	1xy03
	+	
	80	

Increases the speed of the axis to 10% of the maximum speed value.

Register 1xy04: Input Polarities	
Function	Description
Read	Present value of the given parameter Value following a reset: 131
Read	Defines a new setting of the inputs for reference switches and limit switches
Value range	bit-oriented, 7 Bit

Meaning of the individual bits

Bit 0:	0 = 1 =	Reference input 0V-active Reference input 24V-active
Bit 1:	0 = 1 =	Limit switch 0V-active = (NC contact) Limit switch 24V-active (NO contact)
Bit 2:	0 = 1 =	K0 input high-active K0 input low-active
Bit 3:	0 = 1 =	Standard rotation direction, rotation direction depends on the encoder connection. Rotation direction reversal
Bit 4:	0 = 1 =	Lower half of table or the entire table Upper half of table
Bit 5:	0 = 1 =	Deactivate function Set output 1 inactive and activate the following function: Output 1 becomes active as soon as the actual position becomes less than the value in Reg. 1xy77 (the Bit is then deleted again)
Bit 6:	0 = 1 =	Deactivate function Set output 1 inactive and activate the following function: Output 1 becomes active as soon as the actual position becomes greater than the value in Reg. 1xy77 (the Bit is then deleted again)
Bit 7:	0 = 1 =	Digital outputs 0 active Digital outputs 1 active

Register 1xy05: Acceleration Ramp		
Function	Description	
Read	Presently valid value for acceleration ramp	
	Value following a reset: 1000 (ms)	
Write	Transfer of a new value for the given parameter	
Value range	Transfer of a new value for the given parameter	

If the register **1xy05** is written into during a positioning, this has no effect on the ongoing positioning. Only at the start of the next positioning the new value for the acceleration ramp is used, i.e. when writing into register **1xy02** or in the case of the **POS** command.

Fig. 3: Acceleration ramp

Register 1xy06: Deceleration Ramp	
Function	Description
Read	Presently valid value for deceleration ramp
	Value following a reset: 1000 (ms)
Write	Transfer of a new value for the given parameter
Value range	1 32767

If the register **1xy06** is written into during a positioning, this has no effect on the ongoing positioning. Only at the start of the next positioning the new value for the deceleration ramp is used, i.e. when writing into register **1xy02** or in the case of the **POS** command.

Fig. 4: Deceleration ramp

Register 1xy07: Destination Window	
Function	Description
Read	Presently valid value of the given parameter
	Value following a reset: 0 increments
Write	0 8388607
Value range	0 8388607

Using the parameter destination window area accelerates the program sequence, as the condition for progression:

WHEN

AXARR

is then fulfilled before the exact target position is reached. Despite this, the exact target position is still aimed for.

Fig. 5: Destination window

Register 1xy08: Digital Offset	
Function	Description
Read	Presently valid value of the given parameter Value following a reset: 0
Write	Transfer of a new value for the given parameter. This new value is saved and is effective immedi- ately.
Value range	0 2047 with 5 mV steps per bit

Note!

The parameter "Digital Offset" is required to overcome friction.

Fig. 6: Digital offset

Register 1xy09: Actual Position		
Function	Description	
Read	Present actual position of the axis; in increments. Value following a reset: 0	
Write	Defines a new actual position. The reference is lost.	
Value range	-8388608 +8388607	

Example:

WHEN	
	REG 1xy09
	>
	2000
THE	N
	A 3
	•••

Register 1xy10: P-gain of the position controller		
Function	Description	
Read	Presently valid value of the given parameter. Value following a reset: 750	
Write	Transfer of a new P-gain output value *) of the po- sition controller. The new value is valid immedi- ately, i.e. also during a positioning cycle.	
Value range	0 to 32767	

*) The P-gain is calculated with the following formula:

Output value =
$$\frac{\Delta (\text{Setpoint'''value} - \text{Actual'''value})}{16} \times \frac{\text{REG 1xy10}}{128} \times 4,88 \text{mV}$$

3.7.1 Registers for Mode 2: Full Position Control

Register 1xy11: Setpoint speed of the position controller	
Function	Description
Read	Present value of the parameter
	Value following a reset: 0
Write	Illegal
Value range	-32768 +32767 with the unit RPM, if the register 1xy18 is correctly set.

Register 1xy12: Actual speed	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 0 (1/min)
Write	lllegal
Value range	-32768 +32767

To calculate the actual speed with the module JX2-SV1, quote in this register the physical line number of the incremental encoder used. Four-fold evaluation occurs, i.e. counting is performed four times per graduation.

Example:

Present speed =

Number of counts x constant

Time constant x line count

Number of counts x 30000

Register 1xy13 x Register 1xy17

Register 1xy13: Time Basis for the Measurement of the Actual Speed in Register 1xy12	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 6 (3ms)
Write	New time basis
Value range	032767

Register 1xy14: Positive Software Limit Switch	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: +8388607
Write	New value for the positive software limit switch
Value range	-8388608 +8388607

The status of the two software limit switches can be checked in the status register **1xy00 Bit 7**. A set **Bit 7** means that one of the two software limit switches has been activated. With **Bit 14** of the status register, it is possible to switch on the function "Software limit switch". The numerical value in increments at which the positive software limit switch becomes active is defined in the register **1xy14**. The axis then stops in the positive direction.

Register 1xy15: Negative Software Limit Switch	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: -8388608
Write	Defines a new value for the given parameter.
Value range	-8388608 +8388607

The status of the two software limit switches is checked in the status register **1xy00 Bit 7**. A set **Bit 7** means that one of the two software limit switches has been activated. The function "Software limit switch" is activated with **Bit 14** of the status register. The numerical value (in increments) with which the negative software limit switch is activated is defined in the register **1xy15**. This stops the axis in the negative direction.

Register 1xy16: Digital Analog Offset	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 0
Write	New value for the given parameter.
Value range	-2048 +2047 (in 5mV steps)

The analog offset of the servo amplifier is compensated with this register. The value entered into this register is added to the output voltage of the position controller algorithm.

Register 1xy17: Encoder Line Count	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 500
Write	Defines a new value for the given parameter.
Value range	0 10000

Register 1xy18: Maximum Speed of the Servo-controller / Motor Combination	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 3000 (rpm)
Write	Defines a new value for the given parameter.
Value range	0 32767

The maximum speed which can be reached by the servo-controller/motor combination is to be entered into this register.

Important!

The product from the registers **1xy17** and **1xy18** must not exceed the value 15.359.000, as a higher value causes malfunctions of the servo module.

Note!

If the setpoint speed of 3000 rpm should be reached for an application, set a value of e.g. 3200 rpm on the servo amplifier and in the register 1xy18 so that there is a reserve in mode 2 and mode 3 for compensating the tracking error.

Register 1xy19: Tracking Error	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 0 (increments)
Write	Illegal
Value range	-8388608 +8388607

The value of the register indicates by how many increments the axis deviates from the position of the virtual axis. This functions only in modes 2 and modes 3.

Register 1xy20: Tracking Error Limit	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 8388607 (increments)
Write	Defines a new value for the tracking error limit.
Value range	0 8388607

This register defines the value from which the tracking error recognition function reacts and signals a tracking error in the status register; **Bit 3 = 1**. A tracking error is recognised when the amount of the value in register 1xy19 becomes greater than the value in register 1xy20.

If a tracking error is recognised, enabling of the axis can be cancelled and the axis can be deenergised with **Bit 17** of the status register. **Bit 17=0**: Tracking error recognition cancels axis enabling.

Register 1xy21: Reference Value to Register 1xy03 (maximum setpoint speed)	
Function	Description
Read	Present value of the given parameter. Value following a reset: 1000
Write	Defines a new reference value for the values in Register 1xy03.
Value range	0 32767

Values in Register 1xy21	
Value	Comment
1000	The details in register 1xy03 are per mil figures of the maximum setpoint speed. 1000 ‰ corresponds to the maximum speed of the axis.
100	The details in register 1xy03 are percentages of the maximum setpoint speed. 100 % corresponds to the maximum speed of the axis.
1xy21 = 1xy18	The values in the register 1xy03 are given in rpm.

Note!

Other reference values can be defined accordingly in the register **1xy21**.

3.7.2 Registers for Mode 1 and 3: Digital Speed Control

Register 1xy24: P-gain of the Digital Speed Controller	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 70
Write	Defines a new value of the given parameter.
Value range	0 32767

Register 1xy25: Current Setpoint value	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 0
Write	Illegal *)
Value range	-2048 +2047

**) Is calculated by the tachometer.

Register 1xy26: I-component	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 1000
Write	Defines a new value
Value range	0 32767

Register 1xy27: Current limitation	
Function	Description
Read	Present value of the given parameter. Value following a reset: 2047
	(corresponds to an output value of 10 V)
Write	Defines a new value.
Value range	0 2047

Register 1xy28: Present I-component	
Function	Description
Read	Present value of the I-component.
	Value following a reset: 0
Write	Defines a new value.
Value range	-30000 30000

Register 1xy29: Limitation of the I-component	
Function	Description
Read	Present I-component limitation
	value following a reset: 30000
Write	Defines a new value for limitation of the I-component
Value range	0 30000

Register 1xy43: Axis receives the Actual Position of the Master	
Function	Description
Read	Present module number of the Masters (only intelligent modules are taken into account) Value following a reset: 0
Write	New module number of the Master
Value range	21 42 The Master is an intelligent module

Register 1xy64: Word Size of the Absolute Value Encoder (SSI)	
Function	Description
Read	Present word size.
	Value following a reset: 0 (no absolute value en- coder installed)
Write	New word size
Value range	3 25

Register 1xy65: Offset to the reference position	
Function	Description
Read	Present offset to the reference position.
	Value following a reset: 0
Write	Defines a new offset.
Value range	-8388608 +8388607

Note!

The reference position of the axis relative to the zero position of the absolutevalue encoder is defined with this register, but not for the incremental encoder. The following relationship applies:

Axis position = Absolute-value encoder position - Register 1xy65

Register 1xy66: Bit Number for the Word Size	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	bit-oriented, 24 Bit

If an absolute value encoder should use a smaller range than the bit number for the word size of the hardware, this range can be defined with the aid of the register **1xy66**. In this way, for example, a **24-Bit**-encoder can be operated as a **12-Bit** single-turn encoder. The number of bits which should actually be used is stated in register **1xy66**. In this case, the register **1xy66** must be written after register **1xy64**.

Register 1xy67: Relative Positioning with Start Input	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	-8388608 +8388607

Note!

The value in the register **1xy67** indicates by how many increments the axis should continue to be positioned if 24 Volts are applied to the start input and the axis is in the **AXARR** state.

Register 1xy68: Last Setpoint Position in the Relative Mode	
Function	Description
Read	Value of the last setpoint position.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	-8388608 +8388607

If the process was interrupted during the relative positioning by a **AXARR** command, the absolute setpoint position of the last positioning can be read in the register **1xy68** in order to recommence the positioning. With the command **19**, the axis moves to the absolute position value given in registers **1xy68 + 1xy67** or registers **1xy68 + 1xy02**. It is then possible to continue with normal relative positioning.

Register 1xy71: Reference Point Shift	
Function	Description
Read	Value of the last reference point shift.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	-8388608 +8388607

Register **1xy71** at the same time writes into register **1xy02** (Setpoint Position) and register **1xy09** (Actual Position), without an axis movement having to be carried out. If write access is made to register **1xy71** the value is transferred directly to the setpoint position. The actual position is shifted by the difference between the old and the new setpoint postion so that the setpoint / actual difference is maintained.

Register 1xy80: Deceleration Ramp Shift	
Function	Description
Read	Value of the last deceleration ramp shift.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	0 8388607 (increments)

With this register it is possible to shift the deceleration ramp towards the start position. The remaining travel is then traversed with the analog output value which corresponds to the value in the register 1xy08. In certain circumstances, this can be of interest for positioning with a frequency converter.

Register 1> belo	cy81: Switch off outputs w an output value
Function	Description
Read	Value of the last default value for the lower limit.
	Value following a reset: 0
Write	Defines a new value of the given parameter.
Value range	0 2047 (0 10V)

When travelling with a unipolar DAC output, both digital outputs become inactive if the DAC output value falls below the value in this register. This enables e.g. a frequency converter to be rapidly switched to braking operation if its speed setpoint value becomes too low.

Register 1xy85: Absolute maximum pos	sition
with endless and relative positionin	g

Function	Description
Read	Present value of the given parameter.
	Value following a reset: 7490000
Write	Defines a new value of the given parameter.
Value range	0 7490000

For the relative or endless positioning, the value of register **1xy85** is set to 0 as soon as the absolute position has exceeded the maximum value 7490000 of register **1xy85**.

Register 1xy95: Present Position of the Master	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 0
Write	lllegal
Value range	-8388608 + 8388607

Register 1xy96: Present Speed of the Master	
Function	Description
Read	Present value of the given parameter.
	Value following a reset: 0
Write	lllegal
Value range	-8388608 + 8388607

Register 1xy98: Position Controller Mode	
Function	Description
Read	Present mode of the JX2-SV1 module Value following a reset: 0
Write	Defines a new mode with which the JX2-SV1 mo- dule works.
Value range	bit-oriented, 2 Bit

Note!

The JX2-SV1 module can be operated in various modes.

Register 1xy98 = 0	Position control only for AXARR
Register 1xy98 = 1	Mode P with digital controller
Register 1xy98 = 2	Full position control without digital speed con- troller
Register 1xy98 = 3	Full position control with digital speed controller with:
	 Bit 0 = 1 tachometer in the JX2-SV1 module is addressed. Bit 1 = 1 full position control and tracking

error recognition are enabled.

Register 1xy99: Version of the operating system of the N-SV 1 module	
Function	Description
Read	Present version number.
	Value following a reset: Version of the operating system
Write	lllegal
Value range	23-bit-signed integer

The version number of the operating system can be read out of this register by the JX2-SV1 module. The version number must be stated in the case of technical enquiries, e.g. 116 = Version 1.16.

4 Putting a servo controller axis into operation

Preparatory work:

- Speed factor = 0
- Offset factor = 0

4.1 Putting the speed control loop into operation

Disconnect the speed setpoint value input on the servo controller (input voltage 0 V) and enable the servo amplifier by way of a command with the register **1xy01 = 1** -> Relay on. If the motor now turns at a high speed, the tacho controller has reverse polarity.

After correct polarity is restored, the motor stops or continues to drift slowly. Now, the motor shaft remains in this position and can be hardly moved out of it. If the motor is oscillating, the gain on the servo amplifier is set too high.

Now, cancel the "Enable" signal with the register 1xy01 = 2

Relay off, and connect the speed setpoint value input.

- Enter the encoder line count into register 1xy17. This realises the speed measurement.
- Enter the maximum speed of the motor in the register 1xy18. An approximate value is sufficient in the first instance.
- In the offset adjustment, first enter the command **3** and then the command **1** into the register **1xy01**. Define the positioning with the speed 0:

Register **1xy03 = 0** Register **1xy02 = 500000** (Speed 0) (Position forwards)

 \geq

 \geqslant

0V is now present at the output of the servo amplifier. The motor now rotates slowly.

- Now adjust the servo amplifier with the offset potentiometer ("zero point") so that the motor shaft comes to a standstill.
- Applies only to direct current: To define the rotation direction, increase the speed to 300 with the register 1xy03 = 300. The motor must now rotate in the positive direction. If it does not, the connections on the motor and on the tacho generator must be swapped round. Rearrange the Plus / Minus cable on the motor and the Plus / Minus cable on the tacho generator.
- To adjust the speed, increase the speed to 100% with the register **1xy03 = 1000**. If the motor rotates rapidly in the positive direction, set the required maximum speed of the motor with the potentiometer "Speed" on the servo amplifier. The actual speed of the motor can be read off in the register **1xy12**. The set value can now be entered into the register **1xy18**, as well as also later in the initialisation part of the program.
- Define the counting direction of the incremental encoder. Cancel the "Enable" signal of the servo amplifier with the command **2**. With the command **3**, set the reference point and turn the motor shaft in the positive direction. If the incremental encoder counts in the positive direction in the case of register **1xy09**, the incremental encoder is correctly connected. Otherwise, the connections K1 and K2 must be swapped round. K1- and K2- must also be swapped round in the case of the differential inputs. Now again issue the command **1** to set the setpoint and actual positions to the same value. Again issue the "Enable" signal with the command **3**. The motor is now stationary. If it oscillates, the gain factor in the register **1xy10** must be reduced.

Check the limit and reference switches. Activate the positive limit switch: To do this, **Bit 5** must be set in the status register **1xy00** and deleted again if the positive limit switch is no longer actuated. Depending on the bit status and the corresponding limit switch state, it is possible to examine the correctness of the polarity definition in the register **1xy04**. The same procedure applies to the negative limit switch with status bit **4** and the reference switch with the status bit **6**.

- Reconnect the motor mechanically and readjust the servo gain if necessary.
- Define the parameters "Acceleration Ramp", "Deceleration Ramp" and "Digital Offset" by way of trial positioning. To do so, carry out several positioning cycles back and forth.

4.3 Position Controller Mode 2: Complete Position Control

In contrast to the mode **0**, the SV module in mode **2** provides complete position control. This requires the value **2** to be written into register **1xy98** when the unit is stationary. In this case, the positioning must function in the same way as in the mode **0**. The P-gain of the position control is now also set through register **1xy10**. If the positioning runs unevenly or if the axis oscillates, the value in the register **1xy10** must be reduced. Otherwise, to adjust the register, the value is increased until the axis begins to run unevenly or oscillate. Now, reduce the value in the register **1xy10** so that the axis runs smoothly.

5 Differences Between Modules JX2-SV1C and JX2-SV1

Comparison between JX2-SV1 and JX2-SV1C Modules	
JX2-SV1 module	JX2-SV1C module
Max. encoder frequency K1, K2: fixed 100 kHz	Max. encoder frequency K1, K2: 24 Volt with max. 500 kHz 5 Volt with max. 1 MHz

An additional counter module for evaluating incremental encoders and absolute value encoders is used in module JX2-SV1C. This extends the functionality of the module by:

- Filtering incremental encoder signals in a value range of 7812 Hz up to 1 MHz.
- Single and double evaluation of the signal encoders.
- Variation of the clock frequency of the SSI interface between 55 kHz and 1 MHz. This is important for different cable lengths of the module JX2-SV1 to the absolute value encoder. The standard clock frequency has a fixed value of 333 kHz, without the extensions of the JX2-SV1C module.
- Option to change between binary and gray code in the case of the SSI absolute value encoder.
- Using the test bit of the SSI absolute value encoder.

Note!

Additional registers and commands are required in order to use the additional counter. These registers are defined with the number 5 at the third point in the register designation.

When using the JX2-SV1C module, the additionally installed counter is automatically used. Use of the counter is indicated by Bit 7 of the register 1x560.

Register 1x560: Counter Calibration	
Function	Description
Read	Present value of the given parameter
	Value following a reset: 11(4-fold evaluation of the incremental value encoder, Gray-Code for SSI, without test bit)
Write	Defines the values for the counter calibration.
Value range	bit-oriented, 7 bit (0 59)

Meaning of the individual bits

Bit 1,0:	Evaluation of the incremental value encoder:	
	 00 = Pulse direction mode 01 = Single evaluation 10 = Double evaluation 11 = 4-fold evaluation 	
Bit 2	0 = Setpoint adjustment	
Bit 3	0 = Adjustment, binary code for evaluation of the SSI absolute value encoder	
	 Adjustment, gray code for evaluation of the SSI absolute value encoder 	
Bit 4	0 = No use of the test bit for the SSI absolute value encoder	
	1 = Use of the test bit for the SSI absolute value encoder	
Bit 5	0 = Uneven test bit, when Bit 4 = 1 is set 1 = Even test bit, when Bit 4 = 1 is set	
Bit 5	No function	
Bit 7	0 = Additional counter active 1 = Additional counter	

Register 1x561: Test Bit Counter		
Function	Description	
Read	Present value of the parameter "Test Bit Counter"	
	Value following a reset: 0	
Write	Illegal	
Value range	-8388608 +8388607	

If an SSI absolute value encoder is used with a test bit and if the bit 4 of register 1x560 is set, the register 1x561 is displayed in the case of a test bit error. The register 1x561 must be reset by the application program.

Register 1x562: SSI Clock Generator Frequency		
Function	Description	
Read	Present value of the parameter "Clock Generator Frequency"	
	Value following a reset: 75000 (75 kHz)	
Write	New value of the parameter "Clock Generator Frequency"	
Value range	55000 1000000 (55 kHz bis 1 MHz)	

The register allows transfer of a clock frequency in the range 55 kHz to 1 MHz to a SSI absolute-value encoder.

Register 1x563: Filter Frequency for the Incremental Value Encoder		
Function	Description	
Read	Present value of the parameter "Filter Frequency of the Incremental Value Encoder"	
	Value following a reset: 0 (filter deactivated)	
Write	New value of the parameter Filter Frequency	
Value range	0, 7812 1000000 (0, 7812 Hz bis 1 MHz)	

This register allows filtering of transmitted signals of an incremental value encoder. Signals with a higher frequency than stated in this register are not evaluated.

Appendices

Appendix A: Glossary

Absolute value encoder	Rotary encoder which completely measures the momentary position and not just the position change.
Analogue	A parameter, e.g. voltage, which is steplessly adjustable. Contrasted with digital.
Digital	Presentation of a parameter, e.g. time, in the form of characters or figures. This parameter in digital representation can be changed in given steps only. Contrasted with analogue.
Electro-Magnetic Compatibility	Definition according to the EMC regulations: "EMC is the ability of a device to function in a satisfactory way in electro-magnetic surroundings without causing electromagnetic disturbances itself, which would be unbearable for other devices in these surroundings."
Gray-Code	Also called cyclical binary code. A binary method of representing numbers in which each number differs from the one before only in one unit (bit) in one position. The numbers in the gray code deviate from the usual binary numbers, both codes being based on 0 and 1. The gray code is used for fault reduction when showing unit measurements, as the individual ascending numbers differ only in one bit.
I-component	Integral component of a controller.
Incremental encoder	A rotary encoder which measures the position change. Machine referencing is required here ahead of the measurement.
Increment	The minimum amount by which a digital variable increases.
Integer	Also referred to as an »integral number« or »whole number«. A positive or negative whole number, e.g. 37, -50 or 764. In programming, »integer« designates a data type which represents whole numbers. Calculations with integers are considerably faster than calculations with floating point numbers. Therefore, integers are commonly used for counting and numbering procedures. Integers can have a leading sign (positive or negative) or be unsigned (positive). In addition to this, distinction is made between long and short integers depending on the number of bytes they occupy in the memory. Short integers comprise a smaller range of numbers (e.g 32,768 to +32,767) than long integers do (e.g 2,147,483,648 to +2,147,483,647). At Jetter AG: 24 Bit = - 8388608 to + 8388607
P-component	Proportional component of a controller

Process	A program or a part of it. A related sequence of steps carried out by program.
Process level	Level of a system overriding the field level.
Pull-Up resistors	A functional resistor generating defined states for measurements and evaluations. Such a resistor pulls up the potential to a high level in contrast to a pull down transistor pulling down the potential to the ground.
Register	A high-speed memory for a group of bits placed in a microprocessor or in another electronic device where data can be buffered for a specific purpose. At Jetter AG, usually, these are 24 bit wide storage positions in a remanent RAM.
Feedback	The feedback of a part of the system output to the input of the same system. In most cases, feedback is intentionally used in a system, but it can also be unwanted. In electronics, feedback is used for monitoring, control and in amplifier circuits.
Tracking error	Setpoint / actual difference of the position
Servo	The part of a servo mechanism which, controlled by the control circuit of the servo mechanism, produces the actual mechanical output variable.
Servo mechanism	A control system, the output variable of which is a mechanical movement. A servo mechanism based on a control circuit for controlling the position, velocity or acceleration of a mechanical element.
Servo controller	Controls a servo amplifier
Servo amplifier	Controller and drive unit for a servo (motor or hydraulics)
Single-turn encoder	Absolute value encoder for 1 rotation
Slave	A device, e.g. a JetControl 241 controller, which is controlled or influenced by another device called "Master", e.g. a JetControl 243 controller.
TASK	An individual application or sub-program which can be executed as an independent unit.
Timeout	The amount of time the system will wait for a peripheral device to respond before it detects and reports this as an error.
Token	An unambiguous, structured data object or a message which continuously circulates between the node of a token ring network and describes the current state of the network.

Appendix B: List of abbreviations

A/D	Analogue/Digital
AC	Alternating Current
ADC	Analogue-to-Digital Converter
CPU	Central Processing Unit
D/A	Digital/Analogue
DAC	Digital-to-Analogue Converter
EMC	Electro Magnetic Compatibility
ENC	Encoder: "Coder, encryption unit "
ESD	Electro Statical Discharge
Gnd	Ground GROUND
I/O	Input/Output
IEC	International Electrotechnical Commission
LC	Liquid Crystal
LCD	Liquid Crystal Display
LED	Light - Emitting Diode
Li	Limit Switch
ms	Millisecond
NUM 25	Keyboard module for LCD 16 user interface
PID	Proportional Integral Differential (controller)
PWM	Pulse width Modulation
SELV	Safe Extremly Low Voltage: Voltage up to 60 V, galvanically separated from the network.
PLC	Programmable Logical Controller
SSI	Syncronous Serial Interface
SUB-D	Type name of a plug-in connector
SYMPAS	Sym bolische P rogramm a blauf s prache "symbolic program sequence language"
cf.	compare
e.g.	for example

Appendix C: Index of Illustrations

Fig. 1:	Shielding in conformity with the EMC standards	10
Fig. 2:	System interconnect diagram	17
Fig. 3:	Acceleration ramp	37
Fig. 4:	Deceleration ramp	38
Fig. 5:	Destination window	39
Fig. 6:	Digital offset	40

Appendix D: Index

Α		1xy04	36
Absolute value encoder (SSI)	26	1xy05	37
	 18	1XV06	38
	10	1xy07	39 40
•		1xy09	41
C		1xv10	41
Connection, servo controller (X1, X2	,	1xy11	42
X3)	15	1xy12	42
		1xy13	43
П		1xy14	43
D		1xy15	43
Digital outputs	16	1xy16	44
		1xy17	44
F		1xy18	44
		1xy19	45
ENC inputs	20	1xy20	45
Encoder frequency	15	1xy21	40
Encoder with 15-pole SUB-D connect	ctor	1xy24 1xy25	47 17
19		1xy25	47 47
		1xv27	47
N		1xv28	48
IN		1xy29	48
N-SV 1 C module	59	1xy43	48
N-SV 1 module	13	1xy64	49
Number assignment of the modules	22	1xy65	49
		1xy66	50
0		1xy67	50
0		1xy68	51
Operating conditions	12	1xy71	51
		1xy80	51
P		1XY81 1xy85	52
•		1XY00 1XY05	52 52
Position controller mode 0	24	1xy95	52
Position controller mode 1	24	1xy98	53
Position controller mode 2	24	1xy99	54
Position controller mode 3	24	Relative positioning	26
D		c	
n		3	
Register		Servo controller register	25
1x560	60	Shielding in conformity with the EMC	•

gister 1x560 60 1x561 61 1x562 61 1x563 61 1xy00 28 1xy01 30 1xy02 34 1xy03 35	Servo controller register Shielding in conformity with the EMC standards T Technical Data
--	--

10

15