

i

Diagrammatic construction of Csound instruments

Christopher Ware

Bachelor of Science in Computer Science with Honours

The University of Bath

April 2009

ii

This dissertation may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signed:

iii

Diagrammatic construction of Csound instruments

Submitted by: Christopher Ware

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The

Intellectual Property Rights of the products produced as part of the project belong to the

University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation from the

dissertation and no information derived from it may be published without the prior written

consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements

of the degree of Bachelor of Science in the Department of Computer Science. No portion of

the work in this dissertation has been submitted in support of an application for any other

degree or qualification of this or any other university or institution of learning. Except where

specifically acknowledged, it is the work of the author.

Signed:

iv

Abstract

Csound is a powerful music programming language, capable of emulating any commercial

synthesizer. However it is also considered difficult for musicians without programming

experience to use. Here, we specify and implement a graphical front end enabling

instruments to be constructed as diagrams. Usable Csound code can then be generated from

these diagrams. We also lay the foundations for the reverse process: generation of diagrams

from existing code.

v

Contents

1 Introduction .. 1

1.1 Background .. 1

1.2 Problem Description... 1

2 Literature Survey .. 3

2.1 Introduction .. 3

2.2 Csound Orchestra Design ... 3

2.3 Interface/Drawing Conventions ... 4

2.3.1 Hardware Synthesizers & Software Emulation .. 5

2.3.2 Block Diagrams .. 7

2.4 Current GUI Implementations .. 10

2.4.1 Winsound ... 11

2.4.2 Csound5GUI .. 11

2.4.3 CsoundX ... 12

2.4.4 Blue .. 12

2.4.5 Cseditor .. 14

2.4.6 FLTK Widgets and GUI Controllers .. 14

2.4.7 Patchwork ... 14

2.4.8 Visual Orchestra ... 15

2.4.9 Cabel .. 16

2.4.10 WinXound.Net ... 17

2.4.11 QuteCsound .. 17

2.5 Csound Language ... 18

2.5.1 Language Structure .. 18

2.5.2 CsoundXML ... 19

2.6 Diagramming Tools ... 22

2.6.1 Dia .. 22

2.6.2 Microsoft Visio .. 23

2.6.3 JGraph .. 23

2.6.4 Graphviz ... 24

2.6.5 Crocodile Clips... 24

2.7 GUI Libraries ... 25

2.7.1 Java ... 25

2.7.2 .NET ... 25

2.7.3 GTK+ ... 25

2.7.4 Qt .. 25

2.7.5 FLTK .. 26

vi

2.7.6 OpenGL .. 26

2.8 Summary and Conclusions of Literature Survey ... 26

3 Requirements ... 28

3.1 Introduction .. 28

3.2 Functional Requirements ... 28

3.2.1 Mandatory Requirements ... 28

3.2.2 Recommended Requirements ... 30

3.2.3 Optional .. 30

3.3 Non-functional Requirements .. 31

3.4 Summary and Discussion of Requirements ... 31

4 Design .. 34

4.1 Introduction of Concepts .. 34

4.1.1 Orchestra .. 34

4.1.2 Instrument .. 34

4.1.3 Opcode ... 35

4.1.4 Variable .. 35

4.1.5 Parameter ... 36

4.1.6 Expression .. 36

4.1.7 Comment .. 37

4.2 Selection of Diagram Framework .. 37

4.2.1 Dia .. 37

4.2.2 JGraph .. 40

4.3 Development Methodology .. 42

4.4 Graph Model .. 42

4.5 Opcode Acquisition .. 45

4.5.1 Representation .. 45

4.5.2 Acquisition ... 45

4.5.3 Presentation .. 46

4.6 Orchestras ... 46

4.7 Detailed Editing and Connection ... 46

4.7.1 Variable Length Parameter Lists .. 47

4.7.2 Input Expression Parsing, Validation and Connection 47

4.7.3 Output Naming and Validation .. 50

4.7.4 User Editing of Connections .. 50

4.8 Code Generation .. 51

4.9 Saving/Loading .. 53

4.10 Parsing and Import ... 53

4.10.1 Parsing Orchestra Code .. 53

4.10.2 Automated Diagram Layout ... 54

5 Detailed Design and Implementation ... 56

5.1 Language and Tools ... 56

vii

5.2 High Level Overview ... 56

5.3 Opcode Loader and Format .. 57

5.3.1 Structure and Storage ... 57

5.3.2 Parsing of Csound Manual ... 58

5.4 User Interface ... 60

5.4.1 Editor .. 60

5.4.2 Instrument Workspace ... 61

5.4.3 DialogProperties ... 62

5.5 Vertices, Ports and their Views .. 64

5.6 Expression Parsing and Connection ... 65

5.6.1 extractVars ... 65

5.6.2 Variable Validation .. 66

5.6.3 refreshConnections ... 66

5.6.4 Edge Deletion ... 67

5.6.5 Edge Connection .. 67

5.7 Code Generation .. 68

5.8 Serialisation .. 69

5.9 Code Parsing and Import .. 69

5.10 Image Rendering .. 70

6 Testing and Evaluation ... 71

6.1 Testing Strategy and Plan... 71

6.2 Known Shortcomings of Prototype Implementation .. 73

6.3 Analysis of Results ... 73

6.3.1 Port Display and Refresh ... 74

6.3.2 Opcode Catalogue Import .. 75

6.3.3 Deletion of Instruments .. 75

6.3.4 Graph Model and Code Generation Improvements 76

6.3.5 Non-Functional Considerations ... 78

6.3.6 Development Model ... 79

6.4 Future Extensions ... 79

6.4.1 Online Help/Manual Pages .. 79

6.4.2 Saveable Groups/User Defined Opcodes (UDO) ... 79

6.4.3 Control Widgets ... 80

6.4.4 Code Verification/Auditioning with Csound ... 80

6.4.5 Writing into CSD files ... 80

6.4.6 SVG Output .. 81

7 Conclusions .. 82

8 Bibliography ... 84

Appendices ... 87

A1 Extract of opcodes.xml File ... 87

A2 User Interface Designs ... 89

viii

A3 Test Plan and Results ... 91

A4 Source Code Listings ... 97

A5 Usage Instructions .. 120

A6 Project Poster ... 121

ix

List of Figures
Figure 1: Software emulator for a Korg MS-20 analogue synthesizer, with virtual interactive

patching .. 2

Figure 2: Nord Modular Patch Language – movable modules are represented by labelled

rectangular boxes and patches are represented by the arcs between virtual ―sockets‖ on the

modules [Sourced from (8)] ... 6

Figure 3: De facto standard Csound diagramming symbols (11) ... 8

Figure 4: Example diagram from (10), drawn using Csound flowchart symbols 9

Figure 5: Setting a simple numerical value for a parameter on loscil in Patchwork 15

Figure 6: Instrument tree in Visual Orchestra .. 16

Figure 7: QuteCsound code graph.. 18

Figure 8: Categorised insert menu in Crocodile Clips ... 25

Figure 9: Abstract diagram showing opcodes as graph vertces with ports 43

Figure 10: Expansion of expressions to diagram elements leads to clutter 44

Figure 11: Orchestra structure as a hierarchy of nested containers .. 51

Figure 12: Left vertex generated first but depends on right hand vertex for a value, resulting

in error or incorrect assignment in Csound .. 53

Figure 13: Example for diagram generation showing long edges .. 55

Figure 14: High level overview of system architecture ... 57

Figure 15: The insert menu .. 61

Figure 16: Appearance of the main Editor window ... 62

Figure 17: Example instance of the DialogProperties box ... 63

Figure 18: Incorrect spacing of ports relative to labels after modification 74

Figure 19: QuteCsound output showing a more complex graph with expressions and

redeclarations ... 77

file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849986
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849987
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849988
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849989
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849989
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849990
file:\\rumba.campus.bath.ac.uk\cjw26\project\Diagrammatic%20construction%20of%20Csound%20instruments%20(Final%20final).docx%23_Toc227849991

x

List of Tables

Table 1: Csound variable prefixes .. 19

Table 2: Example input parameters table ... 47

xi

Acknowledgements

I am grateful to Professor John Fitch for supervising this project despite the fact he likes

neither GUIs nor Java. Also to my parents for making my life at home as comfortable as

possible while writing this, and for help with proofreading.

1

1 Introduction

1.1 Background
Csound is a music programming language. It allows the implementation of synthesizers and

digital signal processors in software, and the performance of musical pieces using them. It is

very powerful and sufficiently flexible that given the correct programming it can model

almost any acoustic instrument, commercial synthesizer or effects processor available today.

Csound was originally developed by Barry Vercoe at the M.I.T. Media Laboratory and

development is now led by John Fitch.

In Csound terminology the individual synthetic sound generators one implements are known

as instruments. A collection of instruments used together to play a piece is called the

orchestra and resides in a file. Instructions to play sounds can be given in real time via

MIDI (Musical Instrument Digital Interface) or specified in the Csound language in a

separate score file. In this way creation of instruments and the score are independent. The

system accepts these source files and compiles (or technically ―renders‖) them to produce

audio, using the orchestra to play the score. (1)

1.2 Problem Description
Csound is considered by some to be a difficult language to learn. Because of this, there are

several graphical front ends available. At their most powerful, these allow interactive

arrangement of pieces and assignment of instruments to parts, as would be expected in

commercial DAW (digital audio workstation) software. (2)

It would appear from the above statement that the problem of building a GUI (Graphical

User Interface) for Csound has already been solved. However, current GUIs are still lacking

somewhat in their ability to construct new instruments from component parts (opcodes in

Csound terminology) such as oscillators, modulators, filters etc. Instrument definitions must

still be manually created in a text editor, or for those uncomfortable with that, premade

instruments are available online.

Traditional hardware-based modular synthesizers define sounds through the ―patching‖

together of components with cables. Each component either generates sound or has some

parameters which affect a signal as it passes through. By connecting together multiple

components in a chain, the musician can create more acoustically interesting sounds than just

simple waveforms.

Hardware modular synthesizers still exist today, but there is now also a proliferation of

emulation software. Software versions of specific hardware synthesizers (such as the Korg

MS-20 – Figure 1) exist, and also generic synthesis programs such as Pure Data or its

2

predecessor Max (3) based on the modular architecture. These GUIs allow drag and drop

placement and connection of components.

Figure 1: Software emulator for a Korg MS-20 analogue synthesizer, with virtual interactive patching

Clearly there is a parallel between the Csound instrument architecture and modular synthesis.

Unfortunately, though, no graphical tool similar to those described exists to build and write

out the code for Csound instruments.

The main aim of this project is to implement such a GUI allowing diagrammatic

construction of Csound instruments, supporting both input and output of Csound code.

This will increase Csound’s appeal to musicians who lack a programming background.

3

2 Literature Survey

2.1 Introduction
Simply put, the problem addressed by this project is that of the creation of a graphical user

interface for the construction of instruments in Csound. Such a problem can be approached

from two main directions or viewpoints:

1. Conversion of Csound code (as may be written by a Csound programmer) into a

graphical representation and back, without loss of semantics.

2. Interactive construction of instruments in a way that is intuitive to musicians (who

are perhaps familiar with traditional hardware-based modular synthesizers) – i.e. the

use of suitable metaphors in the UI (User Interface).

Clearly an ideal program will address both viewpoints and so result in their convergence into

an effective software product. We therefore intend to first review current conventions and

standards in the coding of Csound orchestras, followed by established layouts for hardware-

based modular synthesizers (particularly how these are drawn in diagrams). In the latter

section we will also cover commercial software emulations of such synthesizers.

We will then move on to the centrepiece of the survey: the analysis of existing Csound GUIs

and their shortcomings. This will serve firstly to confirm the fact that this project is indeed

covering new ground (i.e. that no similar GUI exists) and secondly to highlight strengths and

weaknesses of existing offerings.

Finally, the practical side of the project will be addressed by reviewing the Csound orchestra

language from a parsing and compilation perspective, before reviewing tools for GUI

programming.

2.2 Csound Orchestra Design
The Csound orchestra language is used to describe and specify the virtual instruments that

will be used to play a piece (i.e. how they will sound). It is distinct from the score language

which sequences the notes to be played, performing rather the same role as traditional sheet

music (1 pp. 6-8). This project will focus primarily on the former.

In terms of structure and appearance, the language does not resemble C (despite the name –

which comes from the fact that it is written in C). Vercoe, the originator, likens it more to

assembler and some macro languages (4). For those familiar with the appearance of

assembly language and aware of the complexity of most Csound instruments, this will likely

raise the question: how can instruments best be structured in the language; what are the best

4

practices for maintainable code? Whatever the answer, if we are to produce a program

which writes out Csound code, it would be as well for such code to follow these established

conventions and practices.

From our review it in fact transpires that there are no formally documented conventions for

coding style; therefore we have conducted a study of the structure of several sample

orchestra files from The Csound Book (5) and present the findings here.

The first of these is that orchestra files appear to be formatted into ―columns‖ using spaces or

tabs, with each line taking the form:

[Result Variable] [Opcode] [Comma Separated Parameters]

[Comments if any]

For the purposes of formatting, the = operator used to assign to variables is treated like an

opcode. Any arithmetic expressions appear inline in the parameters list as necessary.

In some examples, the instr and endin keywords are aligned with the opcodes column.

While this is perhaps tidier it makes more sense (and many orchestra files agree) to left align

these keywords and inset the intervening lines, rather like the curly braces for function

definitions in the K&R C programming style (6). This would make it easier to spot distinct

instruments in a large orchestra file.

As noted above, inline comments tend to appear at the end of each row, in a separate

―column‖; but there are also block comments (several lines dedicated to comments) which

can describe the instruments or the file as a whole. These are important because we must

ensure they are not lost when a file is modified or displayed diagrammatically. Also, some

composers prefer to comment on lines on the line above as opposed to in the last column,

which will possibly complicate ―comment associations‖ in our system.

Globals (such as sr, kr etc.) are not associated with a particular instrument and generally

appear at the top of the orchestra file (or CsInstruments section in Csound unified files
1
).

2.3 Interface/Drawing Conventions
If we are to design a new interface to Csound that resembles traditional hardware

synthesizers, it would be sensible to examine some of the conventions in their layout that

have become established over their history. This is especially important because if our tool

is to be able to convert Csound orchestra code into a graphical representation, we will need

1
 A new file format introduced in Csound 5 that incorporates both orchestra and score in

clearly defined sections. Usually these files have the extension .csd and are referred to as

5

to decide how to lay out the components in the most effective way (since Csound makes no

provision for storing layout information itself
2
).

A related line of enquiry which we will also explore is how the designs for such synthesizers

(and indeed Csound instruments) are drawn and notated, and whether there are any

recognised practices there.

2.3.1 Hardware Synthesizers & Software Emulation

Richard Boulanger states in his Introduction to Sound Design in Csound (1) that Csound

draws from a toolkit of over 450 signal processing modules. This architecture makes its

closest hardware equivalent a class of synthesizers known as modular synthesizers, and it is

these we will therefore examine. The following informal definition of the term further

supports this conclusion (although the phrasing is a little misleading – an infinite number of

configurations is only possible with an infinite number of modules!):

―The modular synthesizer is a type of synthesizer consisting of separate specialized

modules connected by wires (patch cords) to create a so-called patch. Every output

generates a signal - an electric voltage of variable strength. Combining the signals

generated by multiple modules into a common audio output allows a potentially

infinite number of configurations, leading to a potentially infinite number of

sounds.‖(7)

The intention in the review was to examine trends in the layout of hardware modular

synthesizers, however there is a distinct lack of literature surrounding that particular topic.

This suggests that there are no significant conventions and that it is usually left to personal

preference on the part of the owner/player as to how the modules will be arranged (since

they are generally removable). It is therefore intended that our designs for a new GUI will

reflect this and allow arbitrary placement of opcode/module symbols, taking advantage of

the fact that no physical work is needed to rearrange software modules!

When we direct our attention to software emulations of modular synthesizers, however, we

discover that there have indeed been studies of popular layouts here. Noble and Biddle (8)

conducted one such study, investigating the Nord Modular Patch Language. This is used to

visually program the Nord Modular system (produced by the Swedish company Clavia AB

in 1998) using a PC. An example ―patch‖ from such a system is given in Figure 2.

2
 Indeed it should not as a purely audio processing language, so a possible task may be to

implement (or reuse) a language on top of Csound which offers layout capabilities

6

Figure 2: Nord Modular Patch Language – movable modules are represented by labelled rectangular

boxes and patches are represented by the arcs between virtual “sockets” on the modules [Sourced

from (8)]

Noble and Biddle quantitatively analysed 1051 preset patches to discover what they term

―stereotypical layouts‖ of modules and concluded the following points which are relevant to

this project:

1. The most popular module type in terms of the number of occurrences in patches seen

across the study is the oscillator, followed by envelope modules and low frequency

oscillators (LFOs). This may influence our choice of ordering/categorisation of any

symbol libraries implemented.

2. Commonly used modules (that is featuring in the widest range of patches) were the

ADSR (Attack-Decay-Sustain-Release) envelope, mixer, and of course inputs and

outputs

3. The following module location trends:

7

a. Inputs usually appear at the top of the screen

b. Oscillators and LFOs appear primarily to the left of the screen (presumably

near the inputs)

c. Filters usually appear in the centre column

d. Enveloping modules are usually to the top right

e. Outputs are usually in the right hand column towards the bottom

4. Modular programmers appear to prefer to scroll vertically rather than horizontally

(and underuse the right hand side of the screen in their patches).

The number of patches examined in the study suggests that this is a good indication of

popular layouts among this particular user base. Users of a Csound graphical patching tool

would likely share similar preferences and so these are valuable points to consider in the

design of such a tool.

The study technique used to analyse the 1051 patches is interesting and would appear to be

also useful for analysing trends in any graphical Csound patch layouts. However, unlike the

Nord language, Csound does not yet have a widely accepted standard format for graphical

layouts– indeed this is part of the rationale for this project. Such a technique is therefore of

no use to us, since we lack the ―corpus‖ of patches/instruments.

2.3.2 Block Diagrams

The alternative to a full graphical simulation of a hardware device is diagram drawing. It

would appear from reading various Csound related documentation that there already exists a

diagrammatic convention for representing Csound instrument designs. Although there is

apparently no formal specification, this common style is used in examples throughout The

Csound Book (5), tutorials on the official website (9), and the Amsterdam Catalog of Csound

Computer Instruments (10) – a widely recognised collection of Csound instruments. It has in

a sense become the de facto standard, and so it would be sensible to consider this for our

graphical representation.

Because of its status as the de facto standard, the Csound flowchart symbols have received

some coverage on electronic music courses at various institutions. Figure 3 has been

extracted from course materials in use at the University of Florida (11) and summarises some

common Csound diagram symbols.

8

Figure 3: De facto standard Csound diagramming symbols (11)

Note that the lines protruding from the symbols indicate parameters to the opcode as

opposed to points for ―patch cord‖ connection. We can see in example diagrams such as

Figure 4 how these connections might be made. We also note that there are some shorthand

notations such as the sine-wave symbol which presumably means an oscillator (and the

related orchestra file indeed confirms that it is oscili) or the use of a thick-bordered circle

to mean output. Also, not all formal parameters specified in Figure 3 need be used. The

latter is simply the concept of optional parameters (12) in action and is not specific to

diagramming.

9

Figure 4: Example diagram from (10), drawn using Csound flowchart symbols

Clearly there are some design decisions to be made around details such as connection points,

optional parameters and ―shorthand‖ opcode representations.

It is also interesting to read the orchestra file associated with Figure 4:

instr 1

 idur = p3

 iamp = p4

 ifqc = p5

 ifc = p6

 iwidth = p7

 irate = p8

 ifm = p9

 amod oscili iwidth, irate, ifm ; LFO modulator

 amod = ifqc + amod

 aenv linen iamp, .1, idur, .1 ; prevent clicks

 a1 oscili aenv, amod, ifc ; carrier waveform

 out a1

endin

Immediately we can see that the various pX parameters input from the score do not feature

on the diagram. They are instead assigned to variables with more meaningful names and

some of these are notated on the diagram. We would need a way to diagram these if

diagrams are to be used to construct instruments from scratch. Also note that the four

parameters to linen are not all notated on the diagram – an oversight, perhaps? Certainly

10

the template symbol given in Figure 3 makes provision for them all and the manual confirms

they are all required. If we are to produce a system based on this that is truly bidirectional (in

the sense that is can convert from Csound to diagram and back), it will not be allowable to

lose information in this way.

Similarly the oscillators seem to be missing a third parameter on the diagram – only one of

the four parameters to oscili is optional according to the manual. Closer inspection

reveals that Figure 3 notates the parameter fn inside the shape – another anomaly. Perhaps

the sine wave symbol in Figure 4 is in fact shorthand for fn = some sinusoid function.

In conclusion there is strong evidence of an established diagram format for Csound

instruments. However this is not sufficiently strict or formal to be able to transfer directly to

software without adding some constraints or specifying certain aspects strictly. Our review

of current GUI implementations in the following section may reveal existing approaches to

dealing with this problem that can be reused, however.

2.4 Current GUI Implementations
As may be expected with a language that is generally considered to be difficult to learn, there

have already been many attempts at implementing a GUI for Csound. Some of these are

actively maintained, some not; some are directly related to the subject of this project, some

are not; but in all cases we can learn something by reviewing them.

We will adopt a systematic approach to evaluation to ensure that we cover each in sufficient

detail, but avoid spending an unnecessary amount of time on programs which are not directly

relevant. Specifically, for each GUI application, we will review the following points

relevant to this project:

 Editing support for orchestra files/sections

 Generation of orchestra code from diagrams (and whether real-time or explicit

conversion)

 Generation of diagrams from orchestra code (and whether real-time or explicit

conversion)

 On diagrams (if used)

o Shape conventions

o Setting of opcode parameters in the diagram

o Layout and ease of use of the shape ―library‖ and connectors

 GUI manipulation of parameters (e.g. using knobs, sliders etc.)

11

 Auditioning of instruments (real-time or otherwise)

 Handling of multiple instruments in the orchestra file

 Current activity on the development of the tool

 Csound 5 compatibility

 Platform compatibility/programming language

2.4.1 Winsound

Winsound is a basic GUI included with the Csound distribution. It appears to be designed

primarily as a graphical interface to command line parameters (i.e. a ―launcher‖), rather than

providing an interface for authoring scores and more importantly orchestras. It provides

several additional utilities such as various analyses and file information extraction, but

contains nothing particularly novel that would be beneficial for reuse in this project.

It is written in C and uses Fast Light Toolkit (FLTK), and as the name suggests it is intended

to run mainly on Windows, although according to the Csound website (13) it can run on

Linux under WINE. There are portions of the source code suggesting Mac OSX

compatibility (i.e. detection of Core Audio).

Winsound is Csound 5 compatible but this appears to be an afterthought, at least in terms of

the UI presentation.

2.4.2 Csound5GUI

Csound5GUI is very similar to Winsound in that it is included with the official Csound

distribution and is essentially a graphical command line launcher. However the overall

appearance is generally more sophisticated and it has obviously been designed to take

advantage of Csound 5 features such as the new programming interface and CSD files. It

allows, for example, simple real-time seeking through the score during rendering of the

piece.

Csound5GUI can also launch external user specified programs to allow editing of the

rendered sound file or to play it.

Our project is not as concerned with production of finished sound files so much as it is with

production of correct orchestra files, but it is possible that our program could allow quick

auditioning of the orchestra against a user specified score, and such functionality might use a

similar interface to this one.

Csound5GUI displays the console window by default to allow viewing of text output from

the renderer and has a useful feature in that it highlights output errors in red.

Like Winsound, Csound5GUI also uses FLTK.

12

2.4.3 CsoundX

CsoundX is a front-end for Apple Mac OSX only. Access to this operating system was not

available, but quoting from a news post on the official Csound website (14) about its release:

―Things you can do with CsoundX:

 Render simultaneous multiple csd/orc/sco in real-time or to disk.

 Use a generic GUI Control panel for real-time control that you can replace or

modify with your own interface using Apple's Interface Builder application [see

README]

Things you can't do with CsoundX:

 Edit [save] your csd/orc/sco files

 FLTK [hangs CsoundX]‖

This therefore appears to be a similar tool to Csound5GUI and does not offer the graphical

instrument editing functionality we are looking for.

2.4.4 Blue

Blue is a large, complex and powerful frontend for Csound written in Java. It is referred to

as a ―music composition environment‖ (15) and is similar to commercial Digital Audio

Workstation (DAW) packages such as Steinberg’s Cubase or Cakewalk Sonar. As such, we

will not be examining every feature in depth, but will focus on those related to the orchestra.

It is, however, worth mentioning that ―Blue interacts with Csound by generating CSD files,

which it then feeds to Csound for compilation‖ (15). Code generation for CSD/ORC files is

something we are intending to implement and so there may be reusable code in Blue since it

is open source, assuming we choose Java as the implementation language. Similarly, Blue

can also import CSD files to presumably some kind of internal representation, suggesting

that it is able to parse the language – more potentially reusable functionality.

Blue separates its interface with tabs, and most work with orchestras and instruments is

unsurprisingly carried out on the orchestra tab. The left hand side of takes the form of a

―librarian‖ style interface where instruments can be organised, numbered, named, selected

for editing and stored for later use etc. We will likely need a similar interface in our

diagramming tool, since orchestras generally contain more than one instrument and it is

unlikely the user would want them all to be simultaneously onscreen for editing.

The right hand side of the orchestra tab is altogether more interesting – it is where editing of

the instrument takes place. Blue defines several different types of instrument on top of the

basic Csound format. The most interesting to us are the GenericInstrument,

13

BlueSynthBuilder and BlueX7, all creatable using the library and each presenting a different

editing interface.

GenericInstrument has the simplest editing interface. It is a simply a way to build

traditional Csound instruments inside Csound, by just writing out the code in a text area.

The code is syntax-highlighted and since Blue manages the instrument naming and

numbering, the instr and endin keywords are unnecessary when editing in this way.

BlueSynthBuilder is similar to the kind of interactive GUI design environment found in

Microsoft Visual Studio or Qt Designer, except that the controls are tailored to synthesizer

(rather than desktop application) use. It allows the user to lay out knobs, sliders and similar

controls and then refer to these as parameters from inside an ordinary Csound text-

instrument. The parameters on the instrument can then be adjusted using the graphical view

rather than by changing values in the code – a more intuitive approach. This allows the

construction of the kind of interface previously seen on the modules in Figure 2 (although

note that it does not model ―patching‖ of opcodes – the ―control panel‖ is that of the

instrument as a whole, not the individual module).

It is worth taking a moment here to examine a comment made by Yi in the manual (15) just

before discussing the BlueSynthBuilder.

―Modular instruments are easier to express connections of modules via text or code

rather than visual paradigms (patch cables, line connections), and thus easier to

create the instrument by text. Graphical elements, however, excel in relaying

information about the configuration of the instrument to the user and also invite

experimentation, while text-based configuration of instruments is often more

difficult to quickly understand the parameters settings and limits.

Going completely graphical for the building of instruments, in the case of systems

like Max/PD/jMax or Reaktor, I've found that the instrument's design no longer

become apparent when viewing complicated patches. On the other hand, using

completely textual systems such as Csound or C++ coding, the design of the

instrument has a degree of transparency, while the configuration of the parameters of

the instrument becomes difficult to understand and invites less exploration.‖

We are inclined to disagree in part with this. If Csound instruments were always easier to

express and understand in text, then the diagramming conventions outlined in 2.3.2 would

simply not exist, and catalogues of Csound instruments such as (10) would not include

diagrams. Therefore some users at least find diagrams to be useful and there is value in

implementing a diagrammatic means of building or editing instruments. However, a valid

point is raised in that access to the instrument code should also be made available, and that

has indeed been the intention so far with this project.

14

Presenting an interactive graphical interface to the parameters of an instrument is an

interesting and useful idea, which is worth pursuing as a secondary goal to the visual

patching together of modules if time permits. Rather than make controls instrument-scoped

as Blue does, it would be more natural for this project to assign controls to each module and

visually group them with that module on screen, again much like the interface seen earlier in

Figure 2.

BlueX7 is a ready-made instrument based on Russell Pinkston’s Yamaha DX7 emulation in

Csound. Its parameters are highly configurable but does not offer any new insights into

graphical instrument creation so we will not investigate in any further detail. Possibly our

implementation could ship with a similar instrument included as an example, but time

constraints are unlikely to permit this.

Instruments in blue can be applied to existing scores, or played in real-time using MIDI (on a

sufficiently powerful computer) using ―blue Live‖. However, unlike some commercial

emulations it does not have an audition mode where preset phrases can be played to give a

quick preview of the sound.

Blue is actively maintained and fully compatible with Csound 5. Because it is written in

Java, it will theoretically run on any platform for which there is a Java VM available. As

would be expected from such a complex program, blue maintains its own file format which

stores the graphical instrument interfaces and this cannot be read directly by Csound.

2.4.5 Cseditor

Cseditor is a simple syntax-highlighted text editor for Csound that is supplied with the

default distribution. It can read and write ORC, SCO and CSD files but has no graphical

capabilities so we will not investigate any further.

2.4.6 FLTK Widgets and GUI Controllers

According to the Csound manual (12) FLTK Widgets allow the design of a custom

Graphical User Interface to control an orchestra in real-time from within Csound. However,

it is not a GUI frontend as such and does not allow ―patching together‖ of modules. Its

primary use is the control of instrument parameters and as such we are not especially

interested in it with respect to this project.

2.4.7 Patchwork

Patchwork (16) is a flowchart-based instrument design program for Windows 3.1 (although

there has been an X-Windows version developed called xPatchwork). Symbols represent

opcodes and have connection points representing inputs and outputs. They are patched

together with connecting lines.

It can export the diagrams drawn using it to produce Csound orchestra files but is not able to

import existing Csound files to create diagrams. Linked to this, it does not support direct

15

editing of the score file that is under construction, instead making production of the score file

an explicit compilation step.

There is no real-time auditioning of instruments, although there is an easily reachable ―run‖

button which will play a specified score with the current orchestra file, which serves a

similar purpose.

The interface has a large library of Csound opcodes (over 140) which is fairly complete

according to (16). These use symbols similar to those already discussed in 2.3.2. Parameters

for the opcodes are set by ―patching‖ simple values to connection points on the shapes; for

example, in Figure 5 a frequency is set by simply attaching the text 1000 to one of the

terminals. A particularly irritating feature of the interface is that it would appear that

symbols cannot be moved without severing the connection to the patch cable – this goes

against the intuition of modern flowcharting software.

Figure 5: Setting a simple numerical value for a parameter on loscil in Patchwork

Multiple instruments in an orchestra are handled interestingly. There are symbols available

from the library for instr and endin and it appears that physically locating these on the

diagram where the equivalent keywords would appear in the code (i.e. above and below the

symbols to be contained in the instrument) is how one groups components to form an

instrument.

Returning to orchestra compilation, it appears that no checking is performed on the diagram

before the code is generated. It is possible to omit required parameters or the endin symbol

and these errors will not be detected until the file is read with Csound.

Patchwork is no longer updated and has not been for some time – it therefore does not

support the new features of Csound 5. The library of devices is stored in a proprietary binary

format which is not easily reverse engineered, so extensions of Patchwork with new opcodes

are unlikely to be viable to anyone other than the original author.

2.4.8 Visual Orchestra

Visual Orchestra (17) is a graphical design environment based around Csound. It is a

commercial product for Windows but a demo version is available. The latest version is

16

version 2.0 which was released in 1999 – this suggests that it is probably not Csound5-

aware, nor actively maintained. In fact Visual Orchestra installs its own copy of Csound.

Visual Orchestra works as a Multiple Document Interface (MDI) application and each

instrument is a separate child window inside. The instruments are shown in a tree to the

right (Figure 6), and selecting one toggles to the editing window. The aforementioned tree

includes the opcodes in use as child nodes, and allows modification of their parameters (in

plain text only), which are represented as further child nodes.

Figure 6: Instrument tree in Visual Orchestra

In addition to the tree, there is also a main editing area where Patchwork-like editing can

take place. Updating the tree updates the diagram and vice versa. Unlike Patchwork, the

connections and drag and drop mechanism is intuitive and does not break when the

components are moved around the screen. However, also unlike Patchwork, the traditional

Csound diagram symbols are nowhere to be seen – instead the opcodes are all represented by

boxes. Output variables from the various opcodes are clearly displayed and are user

definable. Opcodes are selected from a menu where they have been arranged in various

categories to speed up finding them.

There is no support for importing an existing Csound orchestra for editing, only the

generation of a new one from a representation built in Visual Orchestra.

Despite the name, Visual Orchestra appears to be able to edit scores too, albeit only in a note

list format. It also supports real-time MIDI playing of the instruments.

2.4.9 Cabel

Cabel (18) is another interface for building Csound instruments by patching modules similar

to modular synthesizers. Cabel does not appear to work directly with the Csound primitive

opcodes but redefines them into their own user-defined opcodes for which they present the

graphical components. These user defined codes are named more similarly to the

components you would find on a hardware analogue synthesizer. They are accessible for

insertion from the menu and grouped into categories. All units are rectangular, and do not

use the Csound diagram convention discussed previously.

17

The patching mechanism is very nice, with simple click and drag from socket to socket being

sufficient to create a connection. The sockets are colour coded for the expected type of

signal and there are tooltips that explain the relevant parameter.

It appears to be the intention that Cabel shall be able to export CSD files but this menu

option appeared non-functional in testing so this may still be planned functionality. Cabel

cannot import from Csound. There was an option to start Csound from within Cabel but this

didn’t appear to actually start it with any particular options. As such, Cabel is not actually

functional for Csound code generation or parsing at this stage.

Cabel is written in Python and so is technically cross-platform. However, the Windows

version at least has many dependencies on UI libraries.

2.4.10 WinXound.Net

WinXound.Net is simply an editor for Csound files written in .NET, with syntax highlighting

and other features rather like Cseditor. It does not have graphical capabilities but does give

dynamic documentation for the opcode under the cursor which is a useful feature for any

program that works with the often cryptic Csound opcodes. Because it is a simple editor it

can read and write orchestra, score, and CSD files, but we will not examine it any further

because it has no diagramming features.

However, one interesting point worth mentioning is that WinXound.Net comes with a large

CSV file containing a listing of all opcodes and their descriptions. We may be able to reuse

this (especially since the license permits) in any software of our own creation.

2.4.11 QuteCsound

QuteCsound is a recently developed frontend for Csound written using the Qt GUI library

(19). It is unique from the other diagram-capable programs reviewed in that it can actually

generate a ―code graph‖ based on a given orchestra file (an example output is shown in

Figure 7). This is achieved using the GraphViz graph drawing tool which we review

separately later.

Parsing the Csound source code to generate a graph in this way is certainly a major step

forward compared to other tools. However using GraphViz means there is no interactivity in

the graph – it is just a simple bitmap. This makes it impossible to edit the graph

representation and regenerate Csound code in QuteCsound, and therefore it does not

completely overlap the aims of this project

We can, though, use the graph layout produced by QuteCsound to influence the format of the

diagrams produced by our software. A brief analysis of Figure 7 reveals that round cornered

boxes are used to represent opcodes, with the name in the centre, input parameters at the top,

and output parameters at the bottom. Parameters on the opcode are shown using their formal

names. Actual variables used to store outputs are shown by labels on the graph edges.

18

Figure 7: QuteCsound code graph

Note: This section has been added retrospectively to the literature review because

QuteCsound is currently under active development and was not available when this section

was originally written or the designs produced for this project. Further discussion in

hindsight is given in section 6.3.4.

2.5 Csound Language
We have already remarked that the Csound language resembles assembly language, but how

does one go about parsing and generating it? Specifying this in depth is likely a topic for

consideration the system design but here we will briefly review the language structure and

then investigate a related language.

2.5.1 Language Structure

The syntax of a typical Csound orchestra file is actually fairly simple (and this should make

it equally simple to parse or generate), due to its assembler-type format. It is described

informally in most introductory texts such as (20) but there seems to be no formally defined

grammar (for example in BNF) available.

To summarise, the only 2D structure as such is the instrument, enclosed by instr x and

endin. The remainder of the instructions are the ―variable opcode parameters‖

tuples we have seen before. There are also of course the comments prefixed by ;, and also

labels which are not generally seen in practical use. The orchestra header contains some

assignments to reserved variables.

19

In terms of semantics, the most significant checking is that of variable types, since there are

certain naming conventions that have a bearing on how variables may be used. Table 1,

based on a similar one from Pinkston’s primer (20) and the Csound manual (12) provides a

summary.

Prefix (scope) Example Description

Local Global

a ga asig Value updated at audio

rate, generally used to

contain an actual audio

signal

k gk kmod Value updated at

control rate, generally

used to contain a

control signal (for

example modulation or

envelope)

i gi iamp Value set at

initialisation time

p - p2 Parameter passed from

the score – should not

be set in the orchestra

x (formal only) - xcps Formal parameter for

an opcode, specifying

that arguments may be

of varying type
Table 1: Csound variable prefixes

It is worth noting that because we will only be parsing Csound for conversion to a graphical

representation, the semantics are not as crucial as they are in the real Csound compiler.

However, we must still ensure they are retained and can be accurately transformed from our

representation back to Csound in order to allow lossless round trip conversion of Csound

orchestras. In particular if we will allow the user to patch the output of one opcode to

another in our graphical tool, we may wish to ensure that such a variable assignment is

actually allowed.

The Csound Reference Manual (12) contains an ―opcode quick reference‖ which specifies

the argument type for every opcode. We could possibly import this and parse it to determine

the correct type for every opcode argument without manually entering them.

2.5.2 CsoundXML

Worth mentioning in this section is CsoundXML (21), a meta-language for Csound designed

by Pedro Kröger and based on XML. According to Kröger it is intended to ―describe the

Csound orchestra language with a few added features.‖ This new language was designed to

elegantly solve several problems with the Music V derived series of languages, the most

important of which are:

20

1. Instrument reuse – generally instruments are numbered not named, and they do not

have context-dependent sound output (i.e. flexibility between routing output to the

DAC or to another instrument/signal processor);

2. Parameters as an ordered list – difficult for the user to recall the order and

function of all parameters for an opcode or instrument;

3. Lack of graphical scalability – tools used to describe instruments graphically need

to have a deep understanding of the language syntax and often implement another

full parser for the language. Csound actually has opcodes for graphical widgets

which mixes graphics functionality and synthesis in the same code, reducing

maintainability;

4. Lack of score-orchestra integration – specifically the lack of integration between

any pre-processors for the score and the orchestra. Tools for score processing usually

define musical representation in a higher level than the flat note list. However this

breaks the communication between the pre-score (the file to be processed and

converted into the score) and the orchestra.

Clearly point 3 is a crucial issue in this project, and hence CsoundXML is worthy of further

investigation if it promises to solve this problem – the other points also have relevance.

Unfortunately CsoundXML does not appear to have gained widespread acceptance in the 4

years since its conception: web search results for ―CsoundXML‖ are mainly for (21) itself –

no actual implementations are apparent. In any case, though, we are likely to need an

intermediate representation, and even if we need to write our own parser and compiler, it is

still valuable for this area to have already been investigated in research. Of course in this

latter case we are still not starting from scratch – there are many XML parsers available.

In discussing CsoundXML’s application to graphical tools, two problems are highlighted:

1. Design decisions to define how elements will be drawn. Sound generators such as

oscillators are easy to represent while opcodes that convert values, and flow control,

are hard to represent graphically.

2. Producing algorithms to distribute the synthesis elements on the screen avoiding

overlap of graphical elements.

These are key issues that this project will need to overcome. We have already addressed a

little of the second point in our review of module placement earlier, but the arrangement

algorithms are an issue still to be investigated.

Returning to the essence of CsoundXML; information about the opcodes (e.g. their formal

parameters) and parameters themselves (e.g. the possible values) is defined in an XML

21

library for Csound called CXL (22), which was also developed by the author of the

CsoundXML paper. This document is, however, only available in Spanish (possibly the

reason that adoption of CsoundXML has not been widespread). This is problematic for us,

especially since protection on the electronic copy makes automated translation unreasonably

difficult! However the portions containing the Csound opcodes and XML are interpretable

since these are typically in English, and use of CXL can hopefully still be made in this

project.

An example instrument in CsoundXML (taken from the paper) may appear something like

this:

<opcode name=”oscil” id=”foo” type=”a”>

<out id=”foo_out”/>

<par name=”amplitude”>

<number>10000</number>

</par>

<par name=”frequency”>

<number>440</number>

</par>

<par name=”function”>

<number>1</number>

</par>

<comment>some comment here</comment>

</opcode>

This would be representative of the classic Csound example – note that output is not

necessarily named identically in the XML: this is part of the idea of making outputs more

flexibly routable:

aout oscil 10000, 440, 1 ;some comment here

CsoundXML also makes provision for defining i-variables, as follows:

<defpar id=”gain”>

<description>

Gain factor, usually 0 - 1

</description>

<default>1</default>

<range steps=”float”>

<from>0</from>

<to>1</to>

</range>

</defpar>

22

In conclusion, having an intermediate representation of this kind is of value if we can easily

translate it to both a graphical representation and Csound. We will see that there are XML

diagramming tools that would be ideally suited to such a transformation in the next section.

As to XML-to-Csound translation we may well need to further Kröger’s work on

CsoundXML and implement such a compiler since none appears to be in existence. Also, a

more difficult task, Csound to XML conversion remains unsolved – all we have gained from

CsoundXML is a specification for the intermediate language and a justification for it. It

seems more likely that we will just reuse certain ideas from this effort in a more specific

solution, rather than attempting to implement the general XML scheme proposed here.

2.6 Diagramming Tools
Practically since the invention of graphical computer interfaces, there have been software

tools for drawing diagrams. This is an obvious task for a computer. Well known packages

include AutoCAD and Visio (now a Microsoft product). In the open source world (and hence

more suited to Csound’s philosophy) there is a product called Dia, which is in fact modelled

after Visio.

2.6.1 Dia

This is part of the GNOME project and has been in development for at least 5 years (23).

There have recently been some discussions online (24) about using Dia for Csound

instrument design but no action as of yet.

Dia is particularly relevant to our project because it stores its diagram data in XML files,

more discussion of which we shall see shortly. If we were able to make use of it, it would

eliminate much work that would be needed to implement a drag and drop diagramming

application from scratch so it is clearly worthy of further investigation.

2.6.1.1 Shapes

Dia is distributed with a wide range of prebuilt diagramming shapes; for example UML,

network diagrams etc. Some of these come with extended property pages allowing, for

example, the classes and fields to be formally specified on a UML class.

Perhaps unsurprisingly Csound is not among the included shapes and so we would need to

create our own to use this tool. According to the FAQ on (23) there are two ways to do this.

The first is the apparently ―easier‖ method of drawing the shape in Dia and then exporting it

to a shape file using the ordinary graphics export feature of the program. This disadvantages

of this are that it is a manual method, and there appears to be no way to place ―connection

points‖ other than those already supplied in the primitives being used. Also there seems to be

no way to build the extended property pages seen in some of the supplied shapes.

The second approach is writing the shape files directly in XML (25). The XML files use a

subset and an extension of the Scalable Vector Graphics (SVG) format. This seems to be a

23

more flexible way to generate the shapes and opens up the possibility of programmatic

generation (since we have a large number of opcodes to encode as shapes).

However the document referred to still sheds no light on how custom property pages can be

created. This will need to be investigated further if we are to provide a means to write

parameters directly into shapes and so model the opcodes more intuitively. An alternative to

property pages may be to have separate text areas in the shape for the different parameters

but this seems untidy. Inspection of the source code for Dia reveals that the extended

property pages are actually coded directly in C using the GTK+ UI widgets. Although highly

flexible, this complicates matters and is (in the author’s opinion) something which should be

abstracted into the shape XML in future Dia releases.

2.6.1.2 File Format

Dia diagram files are unsurprisingly also based on XML, utilising the Dia namespace

http://www.lysator.liu.se/~alla/dia. The format is simple enough to

understand. Inside the top level there are elements for the diagram metadata, such as paper

size etc. and for each layer. Inside the layers are references to the ―objects‖ or shapes that

make up the drawing, including sizing and positioning information, the values of custom

parameters, and details of connections to other objects.

2.6.1.3 Python Scripting

Dia supports extensions (26) written in Python, and this capability has been used

successfully to allow import and export of SVG for example. It is possible that we could

utilise this to allow Csound import and export, if we wrote the parser or code generator in

Python.

2.6.2 Microsoft Visio

Visio, a part of Microsoft Office, is Microsoft’s diagram drawing package. It is a commercial

product with a similar purpose to Dia which we have already described, although it has in

general a greater range of features.

Visio allows the linking of shapes to data, mainly intended for database connectivity but this

could possibly be made use of for generation of Csound code. Further investigation would

be required. Visio can also store its diagrams in XML files which gives the possibility of

transforming them as discussed above for Dia.

However, Visio is not freely available which makes it unsuitable for this project where we

wish to make available a program with the same philosophy as Csound itself in terms of

redistribution and extension.

2.6.3 JGraph

JGraph(27) is a Java based graphing library. It handles the drawing and arrangement of

shapes, connections between them, and extraction of data from the graph.

24

According to the manual (28):

―JGraph provides a range of graph drawing functionality for client-side or server-

side applications. JGraph has a simple, yet powerful API enabling you to visualize,

interact with, automatically layout and perform analysis of graphs. The following

sections define these terms in more detail.

Example applications for a graph visualization library include; process diagrams,

workflow and BPM visualization, flowcharts, traffic or water flow, database and

WWW visualization, networks and telecoms displays, mapping applications and

GIS, UML diagrams, electronic circuits, VLSI, CAD, financial and social networks,

data mining, biochemistry, ecological cycles, entity and cause-effect relationships

and organisational charts.

JGraph, through its programming API, provides the means to configure how the

graph or network is displayed and the means to associate a context or metadata with

those displayed elements.‖

In the earlier discussion QuteCsound (section 2.4.11) it was seen that the Csound instrument

architecture can be treated as a specialised type of graph, and therefore a graph drawing

library such as JGraph seems highly appropriate for consideration alongside Dia. As a library

rather than a complete application it may prove more flexible in the event that our

requirements cannot be satisfied by Dia etc. and a custom program is necessary.

2.6.4 Graphviz

Graphviz (29) is a package for automatic graph drawing given an abstract representation of

the graph. It is in fact used by QuteCsound (discussed above in 2.4.11) to generate its code

graph output view. However, Graphviz does not allow interactive editing of diagrams and is

hence will not be a major candidate for use in this project.

2.6.5 Crocodile Clips

While not a general purpose diagramming program, Crocodile Clips (a product for

constructing and simulating electrical circuits) provides some UI features that we may draw

influence from for this project. In particular the insertion of components is done by selection

from a categorised menu (Figure 8) rather than by any more complex means. This is an

easily implemented design feature that would lend itself to selection of opcodes for insertion

into diagrams.

25

Figure 8: Categorised insert menu in Crocodile Clips

2.7 GUI Libraries
In the case that diagramming tools prove insufficiently flexible for our problem, it may be

necessary to write the entire graphical program from scratch. This would require use of a

graphics programming API and here we briefly examine some common ones.

2.7.1 Java

The Sun Java API provides the Swing and AWT packages for windowed GUIs. Because

Java is cross-platform so are these interfaces, which is advantageous. Java also has the

advantage of having XML processing capabilities in other parts of the language. Use of

JGraph discussed earlier would involve the use of Java.

2.7.2 .NET

.NET is a Microsoft programming API similar to Java’s, except that it is officially Windows

only. .NET supports XML manipulation as part of the library functions, and also 2D

graphics.

2.7.3 GTK+

GTK+ was originally a toolkit for the X-window system designed for use in programming

―The GIMP‖: a photo editing tool for UNIX. It has since been used to build the GNOME

desktop environment and has been ported to Windows and other operating systems. It has

bindings for many languages including C (its native language), Java, Perl, Python and PHP.

2.7.4 Qt

Qt is similar to GNOME in that it was originally developed to sit behind KDE, another major

UNIX desktop environment. It has since been ported to other operating systems in a similar

way to GTK+ and with similar language bindings.

26

2.7.5 FLTK

We have already seen FLTK in one form as an extension to Csound itself, but we could also

use it for a standalone GUI.

Paraphrasing from (30), FLTK is a cross-platform C++ GUI toolkit for UNIX/Linux (X11),

Microsoft Windows, and MacOS X. FLTK provides modern GUI functionality without an

excessively large code base and supports 3D graphics via OpenGL and its built-in GLUT

emulation.

FLTK is designed to be small and modular enough to be statically linked, but also works as a

shared library. It includes a UI builder called FLUID that can be used for rapid application

development.

2.7.6 OpenGL

OpenGL is a low level graphics library mainly intended for writing 3D applications in C. It

is not a windowing toolkit and is probably too low-level for this project so will not be

pursued.

2.8 Summary and Conclusions of Literature Survey
By searching the literature we have discovered some of the conventions in Csound orchestra

design, and the de facto standard diagramming convention. We also saw a popular layout

and format for the instrument source file text. Current GUIs have been investigated, with

particular focus on any instrument-editing capabilities – particularly graphical patching. The

Csound language has been examined and we reviewed CsoundXML – a language that

promised an easy interface to graphical manipulation of instruments if only the relevant

parsers and compilers were implemented. Finally, we discussed diagramming tools with

particular focus on Dia, and briefly overviewed some graphics toolkits.

The original scope of this project was to build a bi-directional GUI capable of graphical

patching of opcodes to create instruments, with the ability to both input and output Csound

code. This would be easily attainable if CsoundXML had complete parsers and code

generators available, because we could simply apply an XML stylesheet transformation to

produce a diagram from the CsoundXML and vice versa. However, these missing links

complicate matters and we must now consider how much of the problem it is possible to

address with the constraints of this project. For example whether we wish to pursue

CsoundXML as a solution, or implement a graphical application that can read and output

Csound code directly.

The latter is a more likely choice at this point, and we will shortly give further consideration

to a choice of framework on which to construct our program. It should be noted that we wish

to avoid use of a raw graphics library (such as those described in 2.7) if at all possible, since

this would require manual implementation of low level diagram drawing features such as

27

drag and drop, resizing and placement of shapes etc. Such work is not in scope of the project

aims.

28

3 Requirements

3.1 Introduction
Here we present the requirements for the project. Due to the lack of a real end-user, these are

mainly influenced by discussions during the proposal stage and the subsequent literature

review. Throughout, consistent use is made of certain words indicating the necessity of the

requirement, defined as:

 Must – the system must implement the described functionality in order for the

project to be considered a success, i.e. they are mandatory requirements

 Should – such functionality is desirable and useful but is not absolutely required; the

system will still be usable without it

 May – such functionality would add value but is not particularly important

Sorting the requirements by these qualifiers leads to an approximate ordering that indicates

the main increments of the project. That is, all must requirements will be addressed first,

followed by should and so on. The requirements are also split into functional and non-

functional categories.

3.2 Functional Requirements
At a high level, the system is required to provide a graphical environment for constructing

and editing Csound instruments by manipulating the components as symbols in a drag and

drop manner. Specifically required functionality is as follows.

3.2.1 Mandatory Requirements

1. Any diagrams created must be exportable to Csound code in a consistent and

understandable way. This is the main project aim.

2. There must be a large, resizable, scrollable workspace in which the diagrams can be

constructed, which must be able to house an unlimited number of connected

diagram symbols. This is a standard feature in the domain of diagramming tools,

allows the majority of available screen space to be used to display the diagram, and

does not restrict the size of the diagram.

3. A library of symbols must be available for insertion into the diagram, one for each

possible Csound opcode. That is, the entire range of opcodes available in Csound

must be usable in diagrams.

29

4. The opcodes must be presented in categories for ease of location, since there are a

large number available.

5. Opcodes must be able to be selected and moved around the workspace using drag-

and-drop, in line with expected behaviour in this class of application.

6. In order to allow at-a-glance interpretation of the diagrams by the user, opcode

symbols on the workspace must display:

a. The name/type of the opcode

b. Input parameters and their values

c. Output variable names

7. The user must be able to change the name of output variables from the design

workspace, since the formal output parameter will not always be the desired choice

name for the result of the opcode.

8. The user must be able to drag the mouse to interactively/visually create connections

between components.

9. Optional parameters for opcodes must be able to be specified in the diagram,

including arbitrary length parameter lists, in order to allow full flexibility in the use

of opcodes through the diagram.

10. Instrument diagrams must be able to be saved and restored (in a possibly program-

specific format). Obviously a user may wish to return to a diagram and continue

work on it at a later stage.

11. The equivalent Csound code for an opcode symbol added to the diagram must be

accessible at all times during design, to allow the user to review the code

representation of their design at a detailed level.

12. The tool must support creation of orchestras (i.e. multiple instruments in one logical

collection), not just single instruments. This is mainly for convenience, since

compilation of the orchestra could be completed with a text editor.

13. Functions and expressions must be handled since Csound allows for more complex

inputs to opcodes than simple variables. Specifically the interpretation of functions

as either opcodes or part of an expression.

30

3.2.2 Recommended Requirements

14. An alphabetical list of opcodes should also be available for selection to aid in

location of known opcodes.

15. The program should be able to import existing Csound orchestra code and draw the

representative diagram.

a. There should be some algorithm to lay the shapes out that minimises

overlap of connecting lines and if possible follows modular synthesizer

layout conventions discovered during literature review.

b. The system should not lose any information on an import-export cycle – for

example the user should be able to import a Csound orchestra file to a

diagram (requirement 15), use the export function (requirement 1), and end

up with an identical Csound file.

16. The program should be able to record a limited number of comments for each

opcode and each instrument, and insert them into the outputted code in appropriate

locations, to allow some self-documentation of Csound diagrams.

17. The program should allow editing and storage of the orchestra header text as part of

the interface, and include this in the generated orchestra file (requirement 1).

18. The program should be easily extensible for new opcodes that may be added to

Csound in future. This is a shortcoming of many of the current implementations

reviewed in 2.4.

19. The program should perform basic validation on variable names as a convenience to

the user (avoiding them needing to first complete the diagram and attempt Csound

compilation of the generated code to detect errors).

3.2.3 Optional

20. An opcode search feature may be implemented to allow rapid location of a specific

opcode.

21. The symbols may have different geometric shapes reflecting the type of opcode,

based on the de facto standards outlined in 2.3.2 (p7)

22. The program may rasterize diagrams and export them as common image formats

such as PNG, JPEG if requested by the user. This would be useful for including

Csound diagrams produced with this tool in documentation or web pages.

31

23. The program may connect with the Csound executable to provide verification of

generated code and possible auditioning of instruments using a MIDI controller or

preset score.

24. Functionality to allow the creation and use of user defined opcodes may be added.

3.3 Non-functional Requirements
The following requirements are not related to the presence or absence of specific functions

of the system:

25. The system must be delivered, documented, and tested for compliance with the

requirements by the project hand in date of 27 April 2009.

26. Code generation should complete quickly to allow rapid adjustment of the diagram

and regeneration of the code by the user. A reasonable average time would one

second for each instrument. For individual opcodes there should be no discernible

delay in generation and display of code.

27. The program should be able to operate in a cross-platform way, so that it is able to

support the same operating systems as Csound itself.

3.4 Summary and Discussion of Requirements
One advantage of specification of the system by the programmer and analyst is that there are

no obvious conflicts or ambiguities in the requirements at this stage. We have identified all

the key user requirements and categorised them according to relative importance. We will

now proceed to give a brief outline of the main areas of work for this project, based on the

functional requirements. This forms a basis for planning the project increments, and will

later assist with logical grouping of design and implementation details.

Requirements with the ―may‖ qualifier are not addressed here, on the assumption that they

will be considered later after the more important requirements are satisfied, and will need no

special allowances in the earlier design of the system other than good design principles and

maintainable code.

 Workspace and generic diagramming functionality – for example, symbol

insertion, deletion, drag-and-drop, resize etc. (Requirements 2, 5)

 Opcode acquisition and selection – the mechanism to make the entire Csound

opcode collection available and accessible for use in the UI (Requirements 3, 4, 14,

18)

32

 Opcode details and connection – detailed editing of opcode specifics such as input

parameters, output variables and comments, connections and their effects on the

diagram appearance (Requirements 6, 7, 8, 9, 16)

 Orchestra-level features – management of multiple instruments, and editing of the

orchestra header (Requirements 12, 17)

 Expression entry and validation – the generalisation of opcode inputs to handle

expressions rather than simply the output of another opcode, validation of variable

names in these expressions (Requirements 13, 19)

 Code generation and export – generation of Csound code for individual opcodes,

instruments, and the orchestra as a whole (Requirements 1, 11)

 Saving/Loading of diagrams – in either a ―proprietary‖ or preferably an XML

format (Requirement 10)

 Parsing and import – full parsing of existing Csound orchestra code and

conversion to editable diagram format (Requirement 15)

With these requirement related work units in mind, interdependencies and the order in which

they should be addressed will now be considered.

A clear starting point would be to set up the workspace and generic diagramming

functionality, since as we have suggested in the Literature Review this is most likely to be

obtained from a ready-made tool or library and at this stage need not involve Csound specific

features. In parallel we could at this stage consider a suitable internal representation for

the opcodes that will be available for insertion and then import the entire list of opcodes to

this format, perhaps using automated means.

The next stage would be to decide on the exact graph/diagram representation for a

Csound instrument, precisely what data would be represented in each element of the

diagram, and how the user accesses and edits this. This stage has preliminary links to code

generation because the diagram editing must be expressive enough to allow construction of

instruments using the full capabilities of the language. In fact once this has been decided,

code generation for the instrument should follow naturally and simply. This stage would

also involve designing the import mechanism to instantiate the reference opcodes catalogued

in the previous stage into symbols that can be manipulated on the diagram. With this, we

would also address the issue of presenting the opcode types for selection in the UI.

Generalisation of the instrument model to an orchestra containing multiple instruments and

a header could follow this, together with code generation for the entire orchestra and the

production of orchestra files. This would then complete implementation of the possible

33

different scopes for variables, allowing the issue of expressions and variable validation to

be addressed at an opcode level.

Finally we would implement the saving and loading of diagrams, through extension of the

functionality provided as part of the generic diagram software. This would complete a

working system for the construction of diagrams and generation of code, and we could then

turn efforts to parsing and importing existing code to diagrams as a further increment.

In terms of the non-functional requirements, finishing by the deadline is a matter of project

governance rather than a particular unit of work, although care will be taken to address the

most critical requirements first and avoid ―feature creep‖ in the designs. To ensure rapid

code generation, algorithms will be written in an efficient manner and profiling will take

place after testing, if required. Cross-platform compatibility will be considered in selection

of the programming language.

34

4 Design

4.1 Introduction of Concepts
There are a number of important Csound concepts which we must either encapsulate into our

diagrams, or which affect them in some way. These will now be enumerated with a brief

description of the data they contain to aid understanding when they are later discussed in

more detailed designs. Of necessity, a description of some problems anticipated with

encoding these concepts into diagrams will be given.

4.1.1 Orchestra

From the description in the Csound manual (12): the Csound orchestra section contains:

 A header section, which specifies global options for instrument performance

 A list of User defined opcodes and instrument blocks containing UDO and

instrument definitions.

User defined opcodes are for the time being out of scope of the main project (as they are not

a key requirement). This leaves the header and a collection of instruments to be encoded in

the orchestra in our program.

The Orchestra Header contains global information that applies to all instruments

and defines aspects of Csound output. For example, a Csound header may look like:

sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

0dbfs = 1

massign 1, 10

(12)

The header does not have an obvious parallel with block diagrams, unlike the structure of

actual instruments which we will discuss next. For this reason plain text storage of the

header is suggested.

4.1.2 Instrument

An instrument is a collection of ordered opcode calls which process signals as they pass

through the instrument, surrounded by the instr and endin statement as seen previously

in the literature review. Instruments are numbered uniquely in an orchestra.

35

Representing an instrument purely as a list of opcodes though does not allow an obvious

transition to the desired graph like structure of diagrams. Therefore it seems better to

represent an instrument as a graph, generating the list of opcodes from a traversal of this

graph (section 4.1.4 on variables suggests a possible problem with this, however).

In some examples the instrument has a closely associated comment describing it, and

requirement 16 would suggest that we store this with the instrument data structure.

4.1.3 Opcode

An opcode is a unit which generates, changes or consumes a signal in some way. It accepts

inputs and produces outputs (although not both in all cases). When called in instrument code,

the syntax is as follows:

output1, output2, ... opcode input1, input2, ...

In the case of multiple inputs and outputs, the position in the ordering determines the

interpretation of the value with respect to the opcode’s function, just as with function calls in

languages such as C.

There are two quite different interpretations of an opcode as a data structure, both of which

are important to our application. These are:

 the call/instantiation of an opcode in an actual instrument, as seen above, which

must contain a way of identifying actual opcode invoked and the actual parameters

being passed

 the definition of an opcode, including its name and formal parameter information

Clearly we need a way of representing the second of these so that we have a template to

present to the user for insertion to the diagram (as per requirement 3). We also need a

representation for the first in order to record the specific assignments the user makes to the

opcode once it is on the diagram. This is rather like classes and objects in object-oriented

programming although it is not anticipated that it be implemented as such.

4.1.4 Variable

A variable stores the output of an opcode. Note that ―=‖ is in fact a valid opcode and

expressions (to be dealt with shortly) are valid when passed as parameters. Therefore

assignment to variables can always be interpreted as being assignment to the output of an

opcode. Following this reasoning we can actually store variable assignments in the opcode

that makes them, since there is no further information to be encoded.

A potential problem with this approach, however, is that in the sequential code

representation of an instrument, a variable can be redefined after it has been first assigned.

Therefore the ordering of the opcode calls is actually important and we cannot completely

36

eliminate the ordered list structure in favour of a graph without possibly losing information

or making certain instrument structures impossible.

Scoping variables is not an issue because there are naming conventions which encode this

information, which we can enforce (see Table 1 p19).

4.1.5 Parameter

A parameter is a specification of an expected input for an opcode. When referred to in

documentation, these typically have a formal name to suggest the purpose of any value

passed as that parameter. This is not technically necessary since the ordering determines the

actual interpretation of the value but we will be storing the formal names in order to be able

to present them to the user and satisfy requirement 6.

Another consideration with parameters is whether or not they are optional. This would

appear to be a simple binary property but Csound in fact has some rather complicated

optional parameter arrangements. For example, consider the following syntax definition for

linseg, the linear segment opcode, taken from (12):

ares linseg ia, idur1, ib [, idur2] [, ic] [...]

The interpretation of this is that there are three required input parameters followed by an

arbitrary number of further pairs of parameters (specifying in this case duration of the

segment and target level for the signal). In other words, specifying idur2 alone is not valid,

so there is a more complex structure than just a binary property of the parameter.

However, instead of attempting to implement this complex optional parameter structure and

risk limiting flexibility we will instead allow the user to add/remove the ―slots‖ for all

optional parameters arbitrarily in the UI. It will then be their responsibility to ensure that

optional parameters are used in a valid way that allows the generated code to parse

successfully in Csound. In this way we can leave the property of a parameter being optional

as a Boolean value and simplify coding without compromising the requirements.

4.1.6 Expression

An expression is a combination of mathematical operators, functions and variables which

evaluates to a value and can be passed into an opcode as an argument. The availability of

expressions threatens to complicate the diagrammatic representation because they remove

the constraint that the relationship between an input parameter on an opcode and the output

of another opcode be 1:1. Consider this assignment as an example of a simple case:

a2r oscil 10000, kcps, 1

The second input is simply the variable kcps, so the mapping between that input parameter

and the output of whatever opcode produced the kcps is 1:1 (and could be represented by a

single connecting line on our diagram). But now consider a more complicated advanced

example using expressions:

37

out (a1l+a2l+a3l)/3 * aenv

Now we are passing in an expression containing four variables as a single input and the

relationship between input and outputs has become one-to-many. Not only that, but there is

additional information to be encoded, namely the arithmetic operations.

Obviously it is therefore insufficient to simply store a reference to another opcode’s output

in order to record the actual input for a certain parameter. Even a list of references to

multiple outputs would also be inadequate because the details of how to combine them

arithmetically would not be stored. We therefore propose that input expressions be stored as

a string as they would be written natively in Csound. The string would then be parsed when

required to identify referenced variables and at this point lines on the diagram could be

drawn.

4.1.7 Comment

A comment is a piece of descriptive text prefixed with ; which will not be parsed. In Csound

this is permitted anywhere but for the purpose of diagrams we will restrict this to common

locations, for simplicity of storage. There will be slots to allow commentary to be stored for

opcodes and instrument definitions only, since these are the most common use. This is in

line with requirement 16.

Recall from the introduction that other concepts, in particular the score are out of scope of

this project.

4.2 Selection of Diagram Framework
It is at this stage necessary to select a general architecture for the application and also a

framework on which to base it, from those overviewed in the literature review. The

framework will influence the architecture, and affects how we will address the topics

covered in the previous section in more detail, so must be decided first. Note that the choice

is currently between two possibilities: extending/supplementing Dia with Csound specific

features, or implementing a new tool on top of the JGraph library.

4.2.1 Dia

We have seen in section 2.6 that Dia is an open source diagram drawing tool offering XML

representations of shapes and diagrams. However a thorough investigation with the

requirements in mind revealed several deficiencies that make it unsuitable for this project.

What follows is not an exhaustive list of criteria against which Dia was evaluated, rather an

explanation of several key problems with its use for Csound diagrams as required.

4.2.1.1 Design-Time Shape Editing

Shapes must be predefined as XML files and cannot be modified once inserted into a

diagram. This complicates the use of opcodes with infinite optional parameters, such as

38

linseg as seen, because extra component ―legs‖ cannot be added at runtime to connect

these extra parameters. The only way to enable this would be to write software which

dynamically generates the XML shape files with the correct number of parameters, at the

user’s request. However we must also assume that they may wish to modify the number of

parameters later which would require regeneration of the shape after it has been inserted to

the diagram, and it is unclear how Dia deals with this. Alternately we may abandon the idea

of individual component legs for the different parameters, but this is a crucial feature of the

conventional diagram style.

Formally, this problem would prevent satisfaction of requirement 9.

4.2.1.2 Editable Text Regions

Multiple editable text fields on a shape are not permitted by Dia – a shape has only one,

default editable area, and there are no ―text boxes‖ that can be specified as part of a shape.

These are required if the user is to be able to individually name the output variables in the

diagram or enter expressions for input values (as per requirement 7).

It is possible to label the connecting lines between output and input terminals which would

appear to allow entry of the required data. However, as will be seen in more depth later, this

is not an appropriate model for the Csound language since it allows the appearance of

multiple variables in places where this is not allowed – for example, particular opcode

outputs.

4.2.1.3 Geometric Considerations

Sizing and proportioning of components and spacing of the terminals/connection points

behaves strangely, and how to achieve the correct positioning of this relative to the size of

the symbol. is not well documented. This does not violate a particular requirement but would

detract from the usability and aesthetics of the application.

4.2.1.4 Real-time Code Generation

Real-time processing, for example generating Csound code on the fly, is difficult without

access to hooks for internal events such as connecting two symbols or renaming an opcode.

The only real way would be to achieve code generation would be transform the saved

diagram, which makes requirement 11 difficult to satisfy.

It is possible that the Python scripting capabilities would allow access to diagram attributes

for the open document (and this is supported by (26)) but this is not well documented and

Python is an unfamiliar language to the author which would make this an inefficient route to

follow.

4.2.1.5 File Format Expressiveness

As a format intended to represent mainly geometric data on the positioning of shapes, the

Dia file format actually lacks sufficient ―depth‖ to be able to represent a Csound instrument

39

without losing information originally present in the code. The only way to store this extra

information is to misuse shape attributes intended to affect visual properties of the diagram.

For example, to store the name of an opcode or parameters etc., we would have to use the

text field on a shape which in addition to the earlier considerations on editable text regions

results in difficulties with the code representation. For example, setting the name of a symbol

to ―oscil‖ results in code such as the following in the Dia document XML:

<dia:attribute name="text">

<dia:composite type="text">

<dia:attribute name="string">

<dia:string>#oscil#</dia:string>

</dia:attribute>

<dia:attribute name="font">

<dia:font family="sans" style="0" name="Helvetica" />

</dia:attribute>

<dia:attribute name="height">

<dia:real val="0.80000000000000004" />

</dia:attribute>

<dia:attribute name="pos">

<dia:point val="10.1522,7.01745" />

</dia:attribute>

<dia:attribute name="color">

<dia:color val="#000000" />

</dia:attribute>

<dia:attribute name="alignment">

<dia:enum val="0" />

</dia:attribute>

</dia:composite>

</dia:attribute>

This representation is obviously lacking in semantics and these must be inferred from

presentational characteristics, which is not desirable. Nowhere, for example, does the code

state that oscil is the name of an opcode. It would be preferable to have a representation

where the geometry of the diagram was secondary to the semantic information about the

opcodes in use, rather than the opposite.

Connections between symbols in Dia are similarly difficult to extract the semantics for,

which would likely cause problems interpreting the diagram structure for code generation.

This inability to store all but very simple items of data (and even then not in a way best

suited to programmatic manipulation) makes it unlikely that we can elegantly satisfy any

requirements relating to the storage of additional data within the diagram (for example

expressions, comments etc.)

40

Having eliminated or at least discouraged Dia as a choice for code/feature reuse, we will

now consider the features of JGraph which appear to make it more appropriate for this task.

It is also worth mentioning that use of JGraph will force an object-oriented architecture on

the application, which is actually rather appropriate for this problem.

4.2.2 JGraph

The JGraph library is a freely available graph visualisation library for Java. Unlike other

graph drawing solutions we have examined, JGraph focuses on interactive design of graph

based diagrams, with graph analysis and rendering a secondary concern.

Throughout the rest of the project, use will be made of various pieces of graph terminology,

and also some JGraph specific terms. To begin with, let us define the following based on

definitions in (31 p. 2):

 Vertex – also known as a node, this is a point on the graph which may be considered

to be connected to certain other vertices

 Edge – the connection between two vertices

The following are JGraph specific extensions to graph theory, explained in (28)

 Port – an artificial addition in JGraph used to indicate places on a vertex where an

edge may be connected to that vertex. Ports are considered to be children of one

vertex. This effectively implements an ordering on connected edges, allowing the

differentiation of edges connected to a vertex without needing to inspect the opposite

end. This has important implications for Csound diagrams as we will see later.

 Cell – a JGraph term used in general to refer to vertices, edges and ports.

With this defined, it should be fairly straightforward to see the correspondence to Csound

diagrams as discussed so far. Opcodes can be represented as vertices, with the input and

output parameters as ports and the connections between them as edges. The problem of

code generation then becomes one of graph analysis to some extent.

Considering this further, we will now investigate some key features in JGraph with brief

suggestions on how they may be used to satisfy the mandatory requirements for this project.

These suggestions are preliminary and more detailed design involving specific features will

be dealt with properly in the remainder of the chapter.

4.2.2.1 The JGraph Class

The JGraph class is the top level class for a graph and provides the workspace UI

component used to contain the interactively designed graphs. It conforms to the

JComponent interface and so can be used easily in an application built using the Swing

API. It is this component that (by aggregation of other components) contains the features

41

required by requirements 2 and 5. In particular: we can ensure the workspace is resizable by

ensuring that the main application frame is resizable, then inserting the JGraph into a

BorderLayout or similar. Scrolling can be implemented using a JScrollPane which

contains the JGraph. The JGraph places no software limit on the number of vertices

which may be added to it, which in turn would not restrict the number of opcodes we could

place.

A JGraph would be a suitable representation for an individual instrument, and we could

extend the class to store other instrument specific information. Then, an array of these

JGraph derivatives with some additional information might form an orchestra

representation.

4.2.2.2 Vertices and Views

The default implementation of a vertex can be extended in the usual Java way with

additional information and functionality. This allows storage of the extra Csound specific

data and methods that are needed to allow us to satisfy requirements 6, 7, 9, 16. All cells in

JGraph have views and renderers to display them on the graph UI, and these can be

overridden to allow us to display arbitrary information about opcodes to the user with

positioning of our choice. This is a great improvement in flexibility over Dia.

The vertex object representing an opcode would also be a suitable place to store a method for

generating the Csound source for that opcode, which is requirement 11 and a precursor to

requirement 1.

It appears to be difficult in JGraph to insert vertical text into the view and so it must be

assumed that the labels for the ports will be horizontal. If an arbitrary number of ports are to

be allowed on an opcode vertex, they must therefore be stacked in vertical lists at the left and

right hand edges of the vertex (for inputs and outputs respectively). Therefore it is expected

that diagrams will flow left to right rather than top to bottom as is tradition. However there

is no requirement to the contrary.

4.2.2.3 Edges

Edges can be dragged between ports to connect them, and stay connected when the vertex to

which the port belongs is moved. This is generally expected functionality in diagrams, and

is provided by default in JGraph. The edges can be interrogated to find the ports and/or

vertices connected to either end which allows the graph traversal necessary for code

generation. Edges can be labelled, but as will be discussed later this is probably not

necessary if we can label the ports.

4.2.2.4 Serialization

Like most Java classes, objects produced from the JGraph classes are serializable and so can

be written out to a file. This will allow us to save and load (unserialize) diagrams as

specified by requirement 10.

42

4.2.2.5 JGraphX

JGraphX is ―the next generation of Java Swing Diagramming Library, factoring in 7 years of

architectural improvements into a clean, concise design‖ (27). However it appears to lack

documentation and is not sufficiently mature that we will consider it for this project, instead

preferring the older and more established JGraph.

4.3 Development Methodology
Now that some justification has been given for the use of JGraph, a suitable development

lifecycle model will be briefly discussed. Due to the fact that JGraph is an unfamiliar

platform, a method of evolutionary prototyping will be adopted, where the application is

constructed and constantly refined as familiarity is gained with the different parts of the

framework (32 p. 119).

Throwaway prototyping, while likely to result in a more cleanly structured end product,

will not be applied due to the time constraints of the project. This does not preclude re-

implementing the application after the initial exploratory stage (which forms the main part of

the project) is complete.

Traditional approaches such as the waterfall model (33 p. 66) are inappropriate for this

project because the clear design needed for this model cannot be produced until a suitable

understanding of the tools has been gained. Such an understanding relies on experimenting

with JGraph, which given project time constraints must be carried as part of development.

4.4 Graph Model
In light of the selection of an augmented graph structure (i.e. with ports) as a suitable data

structure, the mapping between Csound concepts and the graph model will be considered.

Note that not every concept discussed in section 4.1 will be involved in the graph structure.

The graph representation will store instrument structure only, and all other necessary

functionality outside of that will be implemented with standard Java features.

It should be reasonably apparent that a vertex in a graph suitably models the role of an

opcode in a diagram. That is, it may be connected to other opcodes to receive and pass

values from and to them. At this point it is worth clarifying some terminology: hereafter let

an opcode be the formal definition of the name and parameters of a Csound opcode, and let

an opcode vertex be a particular instance of that opcode on a diagram.

The outputs and inputs must be differentiated from each other, however; as must the

individual parameters in each of those lists. For this the ports extension to the vertex is

appropriate which allows distinct and well defined terminations for the connections to

another opcode. These ports will map directly to the idea of formal parameters. Specifically

there will be one port per parameter on an opcode vertex.

43

Following on from this, the concept of an edge gives a way of representing the assignment of

a variable to a parameter. Graphs in JGraph are always directed and so an edge has a

direction. The direction will be implicit by the fact that outputs may only be connected to

inputs and the direction of assignment is then obvious. Figure 9 shows an abstract diagram of

three partially connected opcode vertices. The circles represent ports and the arrows

represent connecting edges. It is shown that a single output may connect to multiple inputs,

which would reflect the ability to make use of the result of an opcode vertex multiple times.

The problem of expressions identified earlier must now be discussed again. It was decided

previously that an expression specified as an input to an opcode vertex may be entered as

plain text and then parsed to form connections (edges) to the correct outputs. However, if

this is the case, it means that the edges alone do not form an entire representation of the input

to that port, and so the configuration of the instrument cannot be represented entirely by the

graph structure.

One exception to this may be if an expression was itself parsed and expanded to a tree

representation, which could then be represented on the diagram since a tree is a graph.

However this would clutter the workspace with symbols not directly relevant to sound

generation, without major benefit to the user. Figure 10 shows the result of expanding the

example of out (a1l+a2l+a3l)/3 * aenv used earlier, with a simplified view of the

opcode vertices involved. It can be seen that this does not allow the user to gain anything,

except perhaps to access the intermediate result a1l+a2l+a3l for use elsewhere. This is

only a small advantage compared to the cost of the clutter.

opcode

input 1

input 2

input 3

input 4

output 1

output 2

opcode

input 1

input 2

input 3

input 4

output 1

output 2

opcode

input 1

input 2

input 3

input 4

output 1

output 2

Figure 9: Abstract diagram showing opcodes as graph vertces with ports

44

The use of this technique will therefore be avoided, and so we confirm the compromise of

storing plain text expressions. This means graph structure will now provide the visualisation

of the instrument layout only, and a full representation and expansion to code will require

access to the expression for each input. In other words, the presence of edges will be

dictated by the input expressions alone – the former will not exist in their own right.

Practically speaking, a function will be implemented which will, for a given input port and

expression, make all the necessary edge connections to the referenced outputs (discussed

later). An expression can be stored in the port object to which it relates.

This leaves the question of where interactive editing of the diagram now stands, since as

discussed previously, JGraph facilitates drag and drop creation of edges. The answer (to be

discussed fully later) is that in simple cases where a given input takes its value from only one

output, it is still perfectly acceptable for the user to indicate this by dragging an edge

between ports with the mouse (requirement 8). There is only a problem if an expression is

already present on the input port where the edge is being targeted.

There need not actually be separate cases for expressions and single variables, since a

variable is an expression itself. For the case of manual drag-and-drop connection of a single

output to an input, we can fit it into the existing model by causing the drag-drop operation to

set the expression on the target port to the name of the source output variable. Then calling

the function for making the connections based on the expression (introduced above) can be

called to actually make the edge. So, if the expression string for a port is made accessible and

editable, connection between opcodes can appear to the user to be possible by either drag-

and-drop or expression entry.

As a final note on the graph model, we will discuss requirement 7 which is that the user be

able to specify the name of variables used for opcode vertex output. This is obviously

necessary because the formal parameter given in the opcode definition is likely to conflict

+

/

*

3

a1l

a2l

a3l

a

aenv

a

out

Figure 10: Expansion of expressions to diagram elements leads to clutter

45

with other instances of the same opcode, or even different opcodes (for example ares as

shorthand for the-result-at-rate-a is hardly likely to be an output name unique). The formal

parameter should, then, be given as a default but the user must be able to change it, and it is

the user specified value to which expressions will refer. This user defined value would be

stored in the output port object.

4.5 Opcode Acquisition
A means to make the hundreds of available Csound opcodes available for insertion into

diagrams must now be discussed.

It may be argued that having a catalogue of every possible opcode in the application is

unnecessary when a user could just enter the name of the opcode they wanted onto the

symbols directly. However, this would not provide any information about what parameters a

certain opcode was expecting, and would mean the user had to add the correct ports to the

vertex themselves. It would be better to have all this information available automatically

once an opcode has been selected, and therefore storage of this information is necessary.

4.5.1 Representation

Representation of an opcode definition is slightly different to that of an opcode vertex, in that

it represents a name and some formal parameters rather than any particular input and output

values. Recall from section 4.1.5 that the status of whether or not each parameter is optional

will also be stored.

Since a categorised list is required, a group/container data structure for storing multiple

opcodes will also need to be implemented. Such a container need only store its name, any

opcodes contained, and any nested further containers. In other words, it is a tree node.

This catalogue of opcodes will need to be persisted between multiple runs of the

diagramming tool, therefore it must be loaded from a file on disk. XML is recommended as

an appropriate language for this file because the opcode definitions are structured data, and

such a list of them may be reusable in other applications.

4.5.2 Acquisition

Manual entry of this catalogue information would be tedious and time consuming, so we

instead present a novel method which is to parse these from the XHTML-based Csound

manual. The Opcode Quick Reference page in the HTML version of (12) provides an ideal

listing of the name and formal parameters of every opcode. What is more, it groups them

into named hierarchical categories which are readily transferred to menus (see following

section).

Parsing is relatively straightforward because the page is valid XHTML so an XML parser

can be used. Certain formatting characteristics of the page make it easy to infer the semantics

of portions of text, for example to detect when a new opcode is being introduced and which

portion of the string is its name, and also which category heading it falls under.

46

This method of acquisition has the major advantage that when new opcodes are released for

Csound and documented in the manual, we can reparse the page and bring the diagramming

tool up to date with the latest version of Csound. If the catalogue of opcodes is stored on disk

there is even no need to recompile. This fulfils requirement 18.

Recall that when WinXound.net was reviewed in 2.4.10 (p17) we noted a possibility of

reusing the internal opcode list for that program, which was readily available. However this

does not address the problem of updates so we have chosen not to reuse it at this time.

4.5.3 Presentation

Using the categories recovered from the quick reference manual page, a hierarchical menu

structure can be formed, much like the one seen during the review of Crocodile Clips in

section 2.6.5. This will satisfy requirement 4.

It is also straightforward to sort the entire list of opcodes by name and produce menus based

on an A-Z ordering for use alongside the categories in the case where a particular opcode

needs to be located rapidly (requirement 14).

4.6 Orchestras
As already discussed in the introduction of concepts, an orchestra is just a collection of

instruments with a plain text header attached. The instruments are not necessarily ordered,

but are uniquely numbered. So, to implement orchestras we simply need: a class with a

collection of instruments; a way to obtain the next number in sequence for a new instrument

added to the orchestra; a string field for the header; and a function to aggregate generated

code for each instrument.

In terms of the UI, it is anticipated that a tabbed view be used to contain as many instrument

graph workspaces as are required for the orchestra, a popular UI metaphor in multiple

document applications.

4.7 Detailed Editing and Connection
Detailed consideration will now be given to how input expressions and output variable

names will be entered by the user, and the effect this will have on the graph visualisation.

Requirements 7 (renaming output variables), 8 (drag-and-drop connections), 9 (optional

parameter entry and extension of the parameter lists), 13 (expressions and functions) and 16

(opcode level comments) relate to this.

Broadly speaking, editing can be divided into three main categories: inputs, outputs and

comment. It is proposed that a separate user interface be implemented for editing these, since

editing in place on the diagram itself is complicated to program in JGraph, and would also

clutter the workspace. The interface would take the role of a per-opcode-vertex properties

window, which could be opened and closed by the user as desired. This would allow the

47

graph workspace itself to be a read only view of data (aside from drag and drop moving and

port connection), with all detailed editing taking place in the properties window.

The dialog box would have three sections, one for each of the above categories. Storing

comments is trivial so will not be discussed here.

4.7.1 Variable Length Parameter Lists

In section 4.1.5 on parameters, a simpler approach to optional parameter lists was suggested,

which involved giving the user most of the control of the optional part of the parameter list.

This relies on them being able to specify optional parameters in a way that is valid for

Csound, but removes some programming complexity. It also avoids unintentionally

restricting flexibility through misinterpretation and then enforcement of the optional

parameter structure when parsing the manual as per 4.5.2 .

We must therefore supply a means in the UI to carry out editing of the parameters list (and

hence alteration of the number of ports available for connection). This is a separate matter

than the actual specification of values for the inputs and names for the outputs, but need not

be completely separated in the interface. A tabular representation for each of the two lists of

parameters is proposed (e.g. Table 2 for inputs), where the first column holds the formal

parameter name and the second holds the actual value/name. Parameter list editing could

then be carried out by addition and deletion of rows in these tables.

Optional parameters are always at the end of the list and so it is acceptable to restrict such

addition and deletion to the latter part of the table containing them. This avoids accidental

reordering or shifting of the mandatory parameters, which would result in unexpected

behaviour in Csound since the position of the argument dictates its interpretation.

Formal Parameter Actual Value/Expression

xamp

xcps

ifn

[iphs]

Table 2: Example input parameters table

Modification of the table structure would result in real-time changes to the diagram (visible

behind the properties window) – i.e. ports would appear and disappear to reflect the table.

4.7.2 Input Expression Parsing, Validation and Connection

Expressions were introduced at the start of this chapter and discussed again with the Graph

Model (4.4). Design decisions so far have resulted in a need to be able to parse expressions

to some extent in order to make connections to the relevant ports and so represent the use of

outputs values as inputs diagrammatically. A mechanism for doing this will now be

discussed, at a high level.

48

Given an expression string, it is possible to extract (using regular expressions) the names of

variables, or at least candidates for being variables, because they are a simply the substrings

which are not operator symbols or numbers.

This matching pattern will also, however, capture function names, for which is it is not

desirable to attempt to make representative connections on the diagram. A simple technique

for eliminating these is to maintain a list of registered functions. This can be added to the

opcode acquisition phase since all functions are clearly defined in the manual. Then, if a

candidate variable is in this list, it can be removed from consideration.

The remaining references to variables then fall in to one of three categories based on scope

(recall that variable names define the type and scope in Csound, as per (12 p. 48) and

discussed in 2.5.1):

 Local – variables with local instrument scope, which we can expect to find as

outputs elsewhere on the diagram

 Global – variables with global scope which we can expect to find in either the

instrument or the instrument header

 Score parameters – variables beginning p that are passed from the score and should

not be expected to appear as either an output or in the header

 Invalid name – variables which do not have a valid name for Csound

It is therefore possible, using a recogniser for each of these types (based on further regular

expressions and some ad-hoc parsing techniques), to implement a simple syntactic validation

scheme to aid the user in production of valid code and satisfy requirement 19. This allows

the user to be warned in the case that they have entered an invalid name, and avoids attempts

to draw an edge/connection for it on the diagram. Also connections will not be attempted for

score parameters, although there is no way to detect if they are defined and so no warning

will be given.

For the other two cases, edge connection can be attempted. We will now consider how to

implement this. More precisely, the problem to be solved is for a given variable name in an

expression on an input port, locate the output port which assigns that variable and

create an edge between them. At first sight this appears to be a simple search problem –

and typically diagrams are small enough that this can be solved by a linear search of the

output ports without detriment to performance. A problem emerges, however, when we wish

to encode an instrument such as the following as a diagram (i.e. build a diagram which

generates this code). This is a fragment only, so all variables used can be assumed to be

defined.

...

49

a1r oscil 10000, icps*0.999, 1

a1l oscil 10000, icps, 1

a2r oscil 10000, icps*0.996, 1

a2l oscil 10000, icps*1.004, 1

a2r vdelay a2r,5,5

a2l vdelay a2l,5,5

outs (a1l+a2l)/2 * kenv, (a1r+a2r)/2 * kenv

...

Consider the case of forming a connection for the input expression (a1l+a2l)/2 *

kenv to the output variable a2l. There are two assignments to a2l which must be decided

between, since a2l is redefined in terms of itself when vdelay is used. In a code

representation such as the above, it is obvious which of the two possibilities to use because

of the ordering, but in a graph interpretation it is not as clear.

In the case of the user dragging the connection between ports this appears not to be a

problem, since the source of the connection will be a single distinct output. However, it has

already been decided that dragging a connection will just result in setting of the target

expression to the source variable and then application of the algorithm currently being

discussed to do the actual connection. While this offers consistency and convenience, it

eliminates the ability to distinguish the intended output for connection to the input.

The most obvious method unfortunately appears to be one in which the graph representation

is further abused. We propose selection of the nearest output port to the left of the input port

in question as the source of the connection (since the diagrams flow left to right as discussed

in 4.2.2.2). This is not strictly a good solution because it relies on a geometric/visual

property of the diagram, rather than a logical property of the graph, but does have some

significant merits in addition to solving the problem:

 It is more intuitive for the user to lay a diagram out in the approximate order of the

code they are expecting to be generated

 For import purposes (requirement 15), layout of the diagram based on ordering of

the source code will result in all the connections remaining valid, and as above it

will be easy to see the relationship between the code and diagram

Note that the nearest output technique only need be used if an output is redefined in terms of

itself (i.e. appears more than once as an output). There is no requirement that all outputs be

to the left of an input they are used in.

Having decided this, it remains to note that if a variable which is not present as an output is

specified in an expression, it will not be possible to make a connection. The user should be

warned in this case. The exception to this is global variables, which should be checked for in

50

the orchestra header before warning. Note that we choose to warn rather than forbid the

expression outright because of the possibility of the introduction of new variable

types/scopes to Csound.

4.7.3 Output Naming and Validation

Requirement 7 is that the user be able to specify a name of their choice for actual output

variables storing the result of an opcode vertex.

Validation of variable names has already been discussed in the previous section. The same

validation technique can and in fact must (for consistency) be applied to user specified

output variable names.

The other important point to consider is what happens when an output is renamed after it has

been connected to one or more inputs. The obvious solution of performing ―find and

replace‖ on the expression for any opposite ports is sufficient to deal with this case, although

it does have the problem of potentially capturing substrings of other unrelated variables in

the expression.

4.7.4 User Editing of Connections

Finally, we must discuss what should happen when a user attempts to modify the connecting

edges on the diagram when an expression has already been specified and the relevant

outputs/inputs are connected.

First the case will be examined where an extra edge is connected to an input port that

already has an expression set. The decision is between forbidding the operation outright or

finding some way to modify the expression. The former seems overly restrictive in that the

only edge which may be connected to an input port by drag and drop is the first one, then

any further connections must be made by editing the expression string. Therefore an attempt

to combine the output variable for the newly connected edge into the expression will be

made. This need only be something as straightforward as appending the variable name

separated by an operator such as +. More precise editing of the expression could then take

place in the properties box.

Dealing with deletion of one of a collection of edges terminating on an input is more

complicated. Our choices are between:

1. forbidding the operation (and forcing editing of the expression as the means to

delete edges);

2. clearing the expression and disconnecting all ports;

3. attempting to modify the expression or

4. deleting the edge without changing the expression.

51

3 is the most difficult to implement well and 4 is the least useful, because code generation

will be based on the expression and would be identical whether or not the edge was

connected! Neither 1 nor 2 stand out as being particularly good choices alone, but a

combination of the two is suggested where the user is warned that deleting the edge will

clear the expression and so disconnect all other edges. They will be given the choice to

cancel and edit the expression themselves.

This warning need not be displayed where the target input port has no other connections.

4.8 Code Generation
Requirement 1 (p28) states that it must be possible to generate consistent (i.e. repeatable)

Csound code for the orchestra currently being edited. This is the main aim of the project so

we must now discuss how it is to be achieved.

At first sight it would seem particularly simple: the overall application has a fixed number of

levels of nested containers which make up the orchestra. We have now defined the data

storage requirements for all of these, and Figure 11 below shows how the scalar data is

arranged in a hierarchy of nested container objects.

Code generation would then, seem to be a case of just flattening the structure according to

the rules of the language, resulting in output according to the following pseudo-code:

print orchestra header

Orchestra

Header

 Instrument

Number

Comment

Opcode Vertex

Opcode name

Comment

Inputs with expressions

Outputs with variable names

Figure 11: Orchestra structure as a hierarchy of nested containers

52

for each instrument

 print “instr” and its number

 print instrument comments

 for each opcode vertex

 print comma separated list of output variables

 print opcode name

 print comma separated list of input expressions

 print comment if any

 next

 print “endin”

next

The problem here is determining the correct order to output the code for the opcode vertices,

which are stored unordered and related only by the graph structure and input expressions.

The correct order would appear to be determined by dependencies. That is, a variable must

have been output previously by an opcode before it can be used as an input (otherwise

Csound will generate an error when it attempts to interpret the code).

However, there is a similar problem with code generation to that of deciding where to

connect edges based on expressions, which was discussed above. That is, how to decide the

correct order of code when a variable is redefined in terms of itself; or in other words which

version of a variable to use. Fortunately this is simple to solve using the graph structure

defined so far – it is not necessary to calculate dependencies separately; edges can just be

traced back from any opcode with no output value (e.g. outs) to give the reverse order of

the code. The correct version of a variable use will be given by the connecting edges.

Unfortunately this does not necessarily produce very logically structured code. When

―backward chaining‖ in this way it is unclear which opcode should be generated next. A

simple example is the opcode outs, which outputs to the digital-to-analogue converter

(DAC) in stereo. The inputs are signals for the left and right channels. It is, then, unclear

whether the value for the left or right channel should be obtained or generated first. When

extending this to further opcodes with multiple inputs further up the chain it can be imagined

that this would result in an ordering of code which is difficult to define. This would possibly

violate the requirement that code generation be consistent.

Recall that the connection of edges due to expressions is based on the physical left to right

order of the vertex symbols on the diagram: for an output variable named in an expression

the instance nearest to the input is used. It follows that code generation could also be based

on the physical layout of the diagram, and this is the method that will be adopted.

An important point to note is that this will allow the generation of invalid code if dependent

vertices are positioned the wrong way around on the diagram. However if the user is aware

of the need to position opcodes correctly it need not be a problem. Diagrams with this

53

problem are simple to spot because they will have an arrangement similar to Figure 12 which

looks rather untidy.

4.9 Saving/Loading
Java provides an object serialisation framework, and JGraph graph objects are serialisable.

Therefore by ensuring the orchestra objects are serialisable, we can implement saving and

loading of diagrams rapidly, albeit in a Java specific format. This also deals with versioning

of the file format, ensuring that future versions of the tool can detect incompatible files.

The alternative would be to write a procedure to output a custom XML-based format

representing the orchestra and contained instruments and opcodes. This would be appropriate

because of the hierarchical nature of the orchestra as discussed earlier and shown in Figure

11. However, encoding all the positioning data and writing custom methods to restore it

would be very time consuming and we will instead use the serialisation methods.

4.10 Parsing and Import
Requirement 15 is that the program should be able to import existing Csound orchestra code

and create the representative diagram. There are two main stages involved in this: parsing the

Csound code and laying out the diagram.

4.10.1 Parsing Orchestra Code

To parse orchestra code, there are two possible options. The first is using a formal, structured

parser such as recursive descent or shift-reduce. The second is using an ad-hoc parser. The

latter is favourable here because in order to create a diagram it is not necessary to extract the

Input port

Output port

Figure 12: Left vertex generated first but depends on right hand vertex

for a value, resulting in error or incorrect assignment in Csound

54

full semantics from the code. We simply need to be able to distinguish the concepts outlined

at the start of the chapter.

Therefore a simple algorithm such as the following would be sufficient as a beginning:

while not end of file read a line

if instr x seen, begin new instrument and advance line

if inside instrument

 if line not a comment

 parse opcode statement

 else

 store comment to apply to next opcode seen

else

 write line to orchestra header

end

loop

Parsing the opcode statement would be delegated to a separate function which would extract

the inputs, name, output and any associated comment.

4.10.2 Automated Diagram Layout

In 4.8, code generation based on a physically ordered diagram was discussed. It is therefore

reasonable that an imported instrument should also be laid out in a way based on the

ordering of the code.

The complexity comes with arranging a layout in two dimensions. A one dimensional layout

based on ordering of the opcode statements in the code would be trivial to implement, but

adding a second dimension so that opcodes stack down the workspace in appropriate places

requires some more thought. However, it need not be that difficult. Consider the workspace

as a large grid, so that an opcode vertex may be placed in each grid cell. Then a suggested

layout algorithm is as follows:

1. Starting at the top of the Csound source code file, create the vertex for the first

statement encountered in the top left cell.

2. Inspect the next statement, and if it depends on the output from the previous opcode

(i.e. that opcode’s output variable appears in one of inputs on the new opcode) place

it in the cell to the right and connect it. If it does not depend on any previous outputs,

begin a new row of the table and insert at the beginning.

3. Inspect the next statement and check for dependencies again. If there are some,

place the vertex for it at the next available cell on the row in which the dependent

opcode vertex is located and make the connection. For multiple dependencies find

55

the right-most of the dependencies and place the new vertex in the next cell in that

row, so that it is to the right of all required dependencies and consequently the code

will regenerate correctly. If there are no dependencies, begin a new row and place at

the beginning.

4. Repeat step 3 for all remaining statements.

This will result in the creation of non-overlapping vertices, and in the correct order so that if

code is regenerated from the diagram any dependent variables are initialised before they are

used. A disadvantage is that it may result in some very long connecting edges although this

is purely a visual problem and does not impact the interpretation or functionality of the

diagram. Consider the example in Figure 13: opcode vertex F depends on B, E and G. The

algorithm positions it in the second row because E is the right-most dependency. However,

G which is also a dependency is not dependent on any other vertices and so is to the far left

and results in a very long connecting edge to F.

A possible way to resolve this is to apply a second algorithm after all vertices have been

imported which minimises edge distances where possible. Such an algorithm would for

example move G and B up to the third column. There is a potential problem with doing this,

however. Suppose the output of A is stored in a variable, and the output of D then redefines

this same variable name. Moving B to minimise the edge distance to F will place to the right

of D which results in its input assuming the value of D’s output variable, because it is

identically named to the output of A and is closer. A must therefore be moved as well to

maintain its position as closed output to B. This algorithm has the potential to get

complicated quickly and is mainly for aesthetics, so it will not be implemented as a high

priority.

A B

C D E F

G

Figure 13: Example for diagram generation showing long edges

56

5 Detailed Design and

Implementation

Here, a more detailed discussion will be given of important parts of the system and the

relevant implementation details. Only particularly interesting or crucial functions will be

treated in any depth, since the evolutionary prototyping methodology in use has resulted in

little in the way of significant design documentation for more mundane parts of the system.

The reader is invited to consult Appendix A4 for fully commented source code.

We shall take the approach of justifying and evaluating design decisions and algorithms as

they are introduced. Alternative methods of implementing features will be suggested and

commented upon where appropriate.

5.1 Language and Tools
Java has already been nominated as the language of choice; because it is cross-platform

(satisfying requirement 27) and more importantly facilitates the use of the JGraph library

which forms a central part of the application. The Eclipse IDE will be used, since the author

has experience with its features and many of these can be used to speed up development. The

most useful of these features is automated syntax checking which means the source need not

be compiled to detect syntax errors resulting in a major time saving. Also available is

automated formatting and indentation of the code ensuring standard layout for source files.

Eclipse also provides a ―local history‖ feature which maintains copies of old versions of

files, and allows reversion to an earlier copy if necessary. Because of this feature and the fact

that the system will be developed by a single programmer, an additional version control

system (such as the Concurrent Versioning System or Subversion) will not be used.

The use of Java promotes self-documenting code facilitated by the javadoc tool and

structured comments. Separate JavaDoc documentation is not included in the appendices

because the source code is supplied, which contains the comments. It can however be easily

generated if required.

Good object oriented design principles are followed throughout, for example suitable

encapsulation and variable naming.

5.2 High Level Overview
The annotated Figure 14 shows a high level overview of the system architecture. This is

intended to summarise the context of the designs produced in the previous chapter in order to

prepare the reader for the more detailed implementation discussion in this chapter.

57

5.3 Opcode Loader and Format
In section 4.5, a high level design for acquiring and storing opcode definitions was proposed.

The implementation of this part of the system will now be examined in more detail. The first

consideration is the internal storage format for the opcode definitions, i.e. relevant class

structure, since there must be some structure to parse into.

5.3.1 Structure and Storage

We implement four classes: Opcode, OpcodeGroup, FunctionOpcode and

Parameter. An OpcodeGroup represents the container class mentioned in the designs,

and contains Opcodes and/or FunctionOpcodes. Opcodes have a list of input and

output Parameters. FunctionOpcode is a subclass of Opcode representing a function,

since functions can be interpreted as opcodes and so must conform to the same interface.

Parameter is just a simple data structure but the other classes contain (in addition to their

data structure) functionality to load objects of that type from and output to an XML

representation. The full definitions of these classes are given in sources in Appendix A4.

Opcode

Quick

Reference

manual page

Manual parser

Internal XML opcode

catalogue

(opcodes.xml)

Opcode

Definition

s

Orchestra

Instrument

Opcode

Vertices

Opcode

selection

and

insertion

Disk

Save diagram

to disk

Load diagram

from disk

Csound code

Parsing and

diagram

generation

Output of

Csound

orchestra

code

Figure 14: High level overview of system architecture

58

For XML processing, the JDOM (34) library is used which allows XML documents to be

interpreted as Java objects and handles their parsing and code generation. Note that the XML

format referred to here is a format internal to this application – parsing of the manual is yet

to be discussed in detail. An example of the storage format is given in Appendix A1 and it

should be obvious from this how the groups contain other groups, opcodes, and functions in

a hierarchical fashion.

This format is rather simple to read and write so there will be no detailed discussion of this.

The file is read in when the application starts and used to create the opcode tree stored in the

variable octree in Editor. One interesting point to note is that if a function is seen

during the loading process, it is also added into the statically defined list regFuncs in the

FunctionOpcode class. This list is used later in another part of the system to detect if a

token from an expression is a valid function.

We will now progress to examine parsing of the manual to extract opcode definitions.

5.3.2 Parsing of Csound Manual

To extract the opcode definition information from the Csound manual opcode quick

reference section, an ad-hoc parser is implemented. This is contained in the class

PageParser in the uk.ac.bath.cs.csdiag.opcodeloader package. The opcode

loader is in fact a complete program in itself that accepts two command line parameters. The

first is a URI (Uniform Resource Identifier) of the manual page, which can for example be a

local file specified with the file:// scheme, the canonical version of the quick reference

at http://www.csounds.com/manual/html/MiscQuickref.html or any other

URL. The second is the name of a local file where the structured internal XML opcode

catalogue discussed in the section above should be output. This allows on demand updating

of the diagramming tool’s opcode catalogue directly from the site, whilst still allowing the

possibility of direct modification of the same by advanced users or the system developer.

Although not a recursive descent parser, the implemented parser does follow similar

principles of handing off particular language constructs to be processed by separate functions

5.3.2.1 parse

The process begins at the parse method which loads the XHTML web page to be parsed

into a JDOM Document object. A filter is then constructed which is used to extract an

ordered list of all HTML and <pre> elements from the document regardless of where

they lie in the XML nesting. This is a useful heuristic that takes advantage of the fact that in

the manual page tags are only used to format group headings and <pre> elements are

only used when the definition of an opcode is being given. This has the advantage that

straight away other matter on the page (in which we are not interested) can be eliminated,

without having to write code to ignore it explicitly. On the other hand this method is

vulnerable to failure if the formatting of the manual is changed.

59

A more reliable technique might be to parse the DocBook XML sources of the Csound

manual if these could be obtained, so that semantic information is not being inferred from

formatting.

The parse function then loops through the collected elements and begins the process of

extracting information. Lines up to the heading Signal Generators concern the

orchestra structure and are not opcodes so processing does not start until that text is seen.

After this point, the action taken depends on whether the element is a group heading or an

opcode definition (which can be distinguished as described above).

If the element is a heading, it means we are beginning a new group for subsequent opcodes.

This group has a position the overall hierarchy of groups, and this can be inferred because

the full path to the group is given in the heading text. For example, the heading Signal

Modifiers:Standard Filters:Resonant taken from about halfway down the

manual page details a group that is nested two levels deep in the group hierarchy. By

splitting the string where a colon occurs, the name of the group at each level can be

extracted. The function keeps track of the current OpcodeGroup and updates this reference

when a new heading is seen.

Hash tables are used to map group names to actual group objects at each level of the

hierarchy, in order to allow lookup/matching of groups from the parsed strings in the source

code. Full implementation details are clearly commented in the code itself, included in

Appendix A4.

If the element is an opcode, the method parseLine is invoked on the element to create an

Opcode object which can be added to the current group.

5.3.2.2 parseLine

This function converts a <pre> element representative of an opcode to an Opcode object.

Rather than attempting to deduce which token in the string is the opcode name, another

heuristic ―trick‖ based on the manual formatting is used. This takes advantage of the fact

that in the quick reference all opcode names are linked to their corresponding full manual

page. Therefore the opcode name is surrounded by an HTML <a> tag which can be

recognised. Once the opcode name is known, the current line can be split into two halves

about that substring, resulting in strings known to contain the output and input parameters

respectively. These parameter strings follow the same format and so both are passed off to

the parseParams function for conversion to a list of Parameters.

Functions are detected by the presence of parentheses, which causes a FunctionOpcode

to be generated.

5.3.2.3 parseParams

This function interprets a string comma separated list of formal parameters with possible

square brackets indicating optional parameters. Rather than attempting to parse the full

60

optional parameter structure properly (which is non-trivial as discussed in section 4.1.5) we

use the regular expression [A-Za-z0-9]+ to match parameter names whether or not they

are optional. We also take note of where, if anywhere, the first occurrence of the opening

square bracket [is seen. Then, parameter names which are seen after this location indicate

optional parameters, and all other parameters are mandatory. With this information in hand it

is straightforward to form up Parameter objects and return a list of them.

5.4 User Interface
The user interface is implemented using the JGraph component and the Swing windowing

toolkit. The two important windows are the main Editor window, where the diagrammatic

layout of instruments takes place, and the DialogProperties window where detailed

editing of opcode parameters and comments is performed. Another key interface element is

the Instrument class which provides the interactive diagram workspace.

Preliminary user interface designs can be found in Appendix A2.

5.4.1 Editor

The editor window is implemented as a standard JFrame utilising a BorderLayout. A

screenshot is given in Figure 16. Use of this layout allows a toolbar at the top (in position

NORTH) and leaves the remainder of the frame as an expanding area in which we place a set

of tabs (JTabbedPane) representing the instruments in the orchestra. Inside each tab is a

further BorderLayout with a text field accepting an instrument level comment in the

NORTH position, and the remainder of the space taken by the ―workspace‖ (an

Instrument object). The Instrument is located inside a JScrollPane in order to

allow scrolling when diagrams are larger than the screen size.

The menus and toolbars provide access to expected functionality such as adding/deleting

instrument tabs, cut, copy paste, undo, redo and will not be discussed in detail apart from the

Insert menu which is an important element of the project. It is based loosely on the design of

the Crocodile Clips Add menu seen in the literature review Figure 8 (p25), in that it uses

categories. These categories are obtained from the Csound manual as discussed above, and at

the time of writing, result in the menu shown in Figure 15. Note the A-Z menu provided as

the top submenu, and the option to show the properties window immediately for inserted

items at the bottom.

Such a design provides the UI components to address the following requirements:

 Requirement 2: use of the resizable JFrame and BorderLayout allows the

Instrument diagram editing area to expand to fill the space as the window is

resized. The scroll bars allow scrolling as required.

61

 Requirements 3, 4, 14: The insert menu provides a categorised and alphabetical

library of opcodes for insertion

 Requirement 16: The text field at the top of the instrument area (containing the text

―This is a simple text instrument‖ in the example figure) allows comments to be

entered for the instrument

 Requirement 12: Multiple tabs allows instruments to be collected as an orchestra

Other requirements may be seen to be satisfied in the screenshots, but the above list contains

only those which directly concern UI components in the Editor frame.

Figure 15: The insert menu

5.4.2 Instrument Workspace

The instrument workspace is the main area where opcode vertices can be placed, arranged,

and connected. It is coded in the Instrument class, which extends JGraph. Using the

functionality inherited from JGraph, it draws OpcodeVertexViews,

DefaultPortViews and DefaultEdgeViews to represent the cells in the graph. The

latter two are built into JGraph, but the former is written to incorporate some custom features

which will be seen in a following section. Figure 16 shows three OpcodeVertexViews

and some edges (lines) between ports (the small squares terminating each line and labelled

with a name).

62

Figure 16: Appearance of the main Editor window

Multiple edges and vertices can be selected and deleted using the delete key or menu option.

Vertices can be moved by dragging and any connected edges will also move to ensure they

still terminate at the correct place to connect the input and output ports. Edges can be created

by dragging from an output to an input.

The detail of what happens when edges are created and deleted, and the text that appears on

the vertices, will be discussed later.

The following requirements are satisfied by these features:

 Requirement 2: The Instrument class provides a workspace area for constructing

instruments

 Requirement 5: JGraph’s built in functionality allows vertices to be selected and

moved by drag and drop

 Requirement 8: Edges can be created by drag and drop

5.4.3 DialogProperties

The properties dialog box (the Americanized spelling is deliberately used for consistency

with Java) allows editing of detailed properties of a given opcode vertex. It is defined in the

63

class DialogProperties. One instance of the dialog may be displayed for each opcode

vertex in the orchestra and any number of them may be onscreen at any time.

Figure 17 below shows an example of the properties dialog for an oscil opcode in

Instrument 1 in the orchestra (the window title reports this).

Figure 17: Example instance of the DialogProperties box

A Hashtable which maps OpcodeVertex objects to DialogProperties objects is

maintained in Editor. The purpose of this is to record which OpcodeVertex objects on

the diagram currently have their corresponding properties window open. When the menu

option to show the properties window for an opcode vertex is invoked, an entry is made into

the map. When the window is closed, it is removed. Maintaining such a map is useful for:

 Avoiding opening the properties window twice if the menu command is selected

twice – in the second instance the correct window can just be given focus and

brought to the foreground

 Ensuring that the corresponding properties window is closed if the opcode vertex is

deleted

In terms of components actually present in the window (which is a JDialog-derived class),

it is clear that there is a comment text field, to allow modification of the comment on the

opcode. The two tables proposed in section 4.7 for editing the input and output details are

present as JTable objects. These tables are based on custom table models (extending

AbstractTableModel) which update the values on the opcode vertex directly when the

64

table is modified. The toolbar underneath each table allows addition and removal of optional

parameter rows.

DialogProperties also registers itself as a Java ChangeListener on the

OpcodeVertex it is concerned with. This allows it to update the text in the UI when the

OpcodeVertex is changed as a result of another action outside of the dialog. For example,

when the name of a connected output is changed in the properties for that vertex, the input

expression on this vertex will update. The listener ensures that change is immediately visible

in the UI.

Also note we have decided to include the generated code for the opcode vertex at the bottom

of the dialog. This is a read only text field, and by the means discussed above (and listeners

on all fields on the dialog itself) it automatically updates as input/output values are modified

and connections are made/unmade on the diagram. This functionality was originally intended

to display in a separate dialog box on demand, but code generation is sufficiently

straightforward and fast that an always-visible field updated in real time is feasible.

The properties dialog addresses the following requirements:

 Requirement 7: Names of output variables can be changed by modifying the cells in

the Variable Name column of the output table

 Requirement 9: Optional parameters can be added and removed from either of the

tables using the supplied buttons to add/remove rows

 Requirement 11: Csound code for the current opcode vertex is displayed and

updated in real time

 Requirement 13: Expressions can be entered into the Value column of the inputs

table to assign them as the input value for that port (this to be further discussed in the

following section)

 Requirement 16: Commentary on opcodes can be recorded using this dialog

 Requirement 19: Variables names entered into the table are validated (to be further

discussed in the following section)

5.5 Vertices, Ports and their Views
As already seen, the class OpcodeVertex represents a vertex in the graph and an opcode

statement in the instrument. It extends from JGraph’s DefaultGraphCell which is the

default implementation of a vertex. The DefaultGraphCell contains a list of children,

which are the ports defined on that vertex. For this project, OpcodeVertex extends this

implementation by storing two further lists of references to the same ports, in order to

separate them into inputs and outputs. It also defines a field for a comment.

Once instantiated, an OpcodeVertex does not keep a reference to the Opcode it was

based on – the name and parameters are copied to the vertex itself. This is necessary to allow

user adjustment of the parameter list and facilitate features such as the input/output tables in

DialogProperties. This also means that if opcodes are ever deprecated in future

65

versions of Csound and the internal catalogue described earlier is updated to remove them,

old diagrams will still be editable since there will be no ―broken‖ references.

The OpcodeVertex provides the logical function of an instance of an opcode. To visualise

this, we use the OpcodeVertexView class. This contains, as an inner class, the

OpcodeVertexRenderer which can draw the vertex onscreen. This uses the parent class

to paint the vertex using the default implementation, then paints on labels for the ports in the

correct location using the method paintPortLabels(). This results in vertices which

appear similarly to the three shown in the earlier example in Figure 16.

The labels for inputs reflect the names of the formal parameters, the labels for outputs show

the names of the actual output variables. Actual input values are not shown because this

would clutter the interface – instead these can be inferred from the connecting lines, or

viewed in the properties dialog.

The fact that vertices are visually rendered as described above satisfies requirement 6.

5.6 Expression Parsing and Connection
Let us now consider the implementation of the algorithms discussed in 4.7.2 concerning

connection of edges based on an entered expression. Recall that this algorithm is in fact the

only way that edges are created, since in reality the drag and drop method of drawing an

edge only modifies the expression on the target port and then generates the edge based on

that expression. Generation of edges from expressions will be discussed shortly but first the

actions performed by setValue on OpcodeInputPort will be reviewed.

The setValue method on OpcodeInputPort is used to modify the expression or value

for that input port. It is called by either the table model in DialogProperties for when

the value is changed there by the user, or by the connect and deleteCells methods in

Editor for when an edge has just been created by drag and drop or deleted from the

workspace. setValue validates the variables in the expression, and then sets the new

expression on the object.

5.6.1 extractVars

To extract the individual variables from an expression, the method extractVars is

implemented. This applies the regular expression [A-Za-z0-9_]+ to match possible

candidates for being variables, then removes duplicate matches, matches which are function

names (according to FunctionOpcode.isFunction which checks against the list of

registered functions it gathers when loading opcodes.xml at startup) and matches which

are just numbers. These variables can then be validated and used for connection, which will

now be described.

66

5.6.2 Variable Validation

Validation of variables was designed in section 4.7.2. It is implemented in the Variable

class which contains static methods for testing if variables are of particular types. These

methods work by examining the variable name and matching it to various regular

expressions similar to the one in the previous section. setValue extracts the variables from

the supplied expression, and validates each one by calling Variable.isValidLocal

and Variable.isValidGlobal to test validity of each scope. Variables which are not

valid under one of these are added to an exception which is thrown at the end and results in a

warning in the UI.

Variable validation for setValue can be skipped by specifying the second parameter of

that method as false. This is for performance reasons when the program is calling

setValue internally and all variables in the expression are known to be valid.

5.6.3 refreshConnections

A call to setValue is usually followed by a call to refreshConnections (which is

also defined on OpcodeInputPort). refreshConnections first deletes all the

current edges to the input port, then extracts the variables from the expression and attempts

to locate output ports where these variables are set.

Deletion of connected edges is trivial and variable extraction has already been discussed.

This leaves the location and connection of relevant outputs to be covered. This functionality

is contained within the makeConnections method.

For each extracted variable, makeConnections calls getNearestOutput to obtain

the nearest output port that sets the required variable. This method iterates through all ports

which have the correct output variable, using the portDistance function to calculate the

Euclidean distance to the port. The closest port is then returned and an edge created between

it and the OpcodeInputPort whose connections are being refreshed.

A visual enhancement is also implemented in makeConnections, which is to use solid

lines for the connecting edge when only one variable features in the expression and dashed

lines when there are multiple edges. This makes it easier for the user to see when an output

value is only forming part of an input and is being supplemented in some way.

This implementation of refreshConnections, and the fact that drag-and-drop

connection creates edges by setting the input expression then calling this method produces an

interesting feature. This is that if a user attempts to drag-connect an output to an input, and

there is an intervening vertex closer to the input with the same output variable defined, the

connection will be made to the output on this vertex instead. This is useful and not a bug

because with a left to right code generation (discussed in 4.8) an intervening vertex which

shadows the output name of another will result in an unexpected value at the input if the

input is intended to be connected to a vertex that is further away. Having a drag-and-dropped

67

edge automatically moved to the nearer port will indicate the assignment which will actually

be made, and the user can then rearrange the diagram if desired.

In the case where an output port for the requested variable name cannot be found anywhere

on the diagram by makeConnections, its scope is checked using the validation methods

discussed earlier. If it is a p-value from the score, it is ignored and a connection is not

attempted. If it is global, it is checked for in the orchestra header (using a very primitive

search which will unfortunately result in a positive result for any matching substring,

including where it has been commented out); if found, it is ignored and not connected. In the

case where it is missing from the header, or for missing local variables, an error is produced

and displayed as a message box by the UI.

5.6.4 Edge Deletion

Manual deletion of edges by users is interesting in the case that the deleted edge forms part

of an expression on the target input port. In 4.7.4 it was concluded that the best solution to

this was to clear the entire expression (and hence delete all other edges terminating on the

target) after first warning the user that this would happen. This functionality is implemented

in the deleteCells method on Editor (which also deals with deletion of vertices,

resulting in the deletion of any connecting edges which will be subject to the same treatment

as discussed).

A consideration is that multiple cells may be deleted at once using a selection and so it is

possible that even though multiple edges are connecting into a port, they have all been

selected for deletion. In this case it is obvious to the user that the port will be left empty and

so the expression is cleared without warning.

The code is sufficiently well commented that it should be easy to follow the deletion

algorithm in an inspection of the listing for Editor.deleteCells in Appendix A4,

therefore further details are not discussed here.

5.6.5 Edge Connection

Connection of edges presents a similar problem to be solved as in the case of deletion. That

is, if there is already an expression present on the port that is the target of a connection, how

should it be modified to incorporate the new variable being connected? This implementation

uses the very simple method of appending the name of the connected variable to the end of

the expression, separated by a ―+‖ so that it is added to the existing value. The user could

then rearrange the expression as they wished using the properties window.

A future improvement may be to present a small dialog box offering a choice of operator to

use to join the new value with.

The mechanisms given in this section satisfy the following requirements:

68

 Requirement 8: Expression parsing backs the UI features introduced earlier to allow

interactive connection of ports

 Requirement 13: Handling of expressions and the use of functions in those

expressions is provided

 Requirement 19: Rudimentary validation of variable names is performed, and checks

for presence of variables are made as part of the process of formatting connections.

Appropriate warnings are given

5.7 Code Generation
Code generation was discussed in section 4.8, with the outcome that code would be

generated based strictly on the left-to-right ordering of the vertices on screen. The

straightforward part of code generation is based on the nested structure shown earlier in

Figure 11 (p51). Each of the following classes implements a method getCode which

operates as described here:

 Orchestra – gives the orchestra header followed by the result of calling

getCode on each member instrument.

 Instrument – gives the instr opening statement followed by the instrument

level comment, then the results of calling getCode on all member opcodes in

order (to be discussed below) before finishing with endin.

 OpcodeVertex – gives the comma separated list of outputs, followed by the

opcode name and the comma separate list of inputs. The getCode method for

opcode allows a separator to be specified as an argument, with the default as the tab

character. This is to allow a shorter separator for when the code is shown in

DialogProperties and space is limited, but proper tab separation for outputted

ORC files.

In order to obtain the correct ordering for the opcode level generations, the

CellViewComparator class is implemented (as an inner class of Instrument). This

compares the x position of two CellViews (CellView is a class from JGraph

representing physical cells on the graph and encoding data such as location and size). By

using a comparator, the standard Java sorting algorithm for sorting collections can be used to

efficiently sort the OpcodeVertexes by x position, ready for generation in

Instrument.getCode. This recognises non-functional requirement 26.

Implementation of code generation satisfies Requirement 1 (there is a method

saveOrcFile in Editor which implements the final trivial step of writing the generated

69

code out to a file). It also underlies the UI features which satisfy Requirement 11, allowing

real-time viewing of generated code at the opcode vertex level.

5.8 Serialisation
Serialisation and de-serialisation of the orchestra was intended to be implemented in the

serializeOrchestra and unserializeOrchestra methods of the Editor (with

the appropriate save and open dialog boxes presented beforehand by loadDiagFile and

saveDiagFile to obtain a filename). However we will pre-empt the test results and

comment here that implementation of this part of the system has so far been unsuccessful.

When attempting to serialize some test orchestras, some very obscure errors are seen which

are almost impossible to track down to a certain component of the system. Certainly it is not

as simple as a named object not implementing the Serializable interface (necessary for

an object to serialize in Java), or this would be easily remedied. It would appear that the way

in which the JGraph API has been used has resulted in an arrangement of object references

somewhere which causes the serialization to fail.

Due to project time constraints there was insufficient time to debug this fully and so the

methods have been commented out. This means that requirement 10 has not currently been

satisfied, with the consequence that this system has not yet met all its mandatory

requirements and is missing a crucial part of the functionality in the code version created so

far. Given sufficient time and JGraph expertise, it should be possible to either debug this or

write a separate file format out manually without using serialization. The latter could use the

JDOM XML library already linked to the application. This is left as further work to be

undertaken.

5.9 Code Parsing and Import
This portion of the system (as designed in section 4.10) was not implemented due to time

constraints imposed by the need to first implement the full diagramming tool with editing

and code generation. Had there been a basic system already available (for example if Dia had

proved more suitable for the task), more project resources could have been allocated to this

part of the implementation.

It was decided therefore that this part would be excluded (since requirement 15 to which it

relates is not mandatory) and indicated in section 6 as a future extension. Such future work

would be relatively straightforward to carry out since we have:

1. Provided the previously missing foundation of a Csound diagramming tool so this

work need not be repeated

2. Written it in a structured, object oriented style that facilitates easy extension and

modification

70

3. Provided full API documentation

4. Suggested algorithms for crucial stages involved in this part of the system

5.10 Image Rendering
Requirement 22 was optional and a suggestion that rasterization of diagrams may be

performed to allow users to save pictures of their diagrams for inclusion in documents etc.

This was found to be very straightforward to implement due to the inclusion of the

getImage function in the JGraph class which performs this task. Therefore despite the

optional nature of the requirement this feature has been added and the current diagram can be

saved as Portable Network Graphics (PNG) using a menu option on the Instrument menu.

71

6 Testing and Evaluation

This section discusses the testing stage of the project and gives an evaluation of the

implemented solution based on the results of the tests. The Introduction and Requirements

sections present this as a mainly implementation-based project intended to produce a piece of

software to solve the problem of diagrammatic Csound instrument construction. Therefore,

testing is approached mainly as a requirements validation exercise.

Throughout its course, the project has introduced several new ideas surrounding diagram-to-

code generation and so in a sense is also investigative. Focus on these investigative areas has

led to the reprioritization of other aspects, with the consequence that some requirements have

intentionally been left unsatisfied (for example Csound code import and some optional

requirements). These requirements are therefore not tested, but instead have been discussed

in terms of their effect on the value of the software product as a whole. It should, then, be

noted that the program is not intended to be ―perfect‖ finally developed product but instead

is presented as a proof-of-concept foundation for future work in this area.

6.1 Testing Strategy and Plan
As mentioned above, the testing of the system is approached from a requirements validation

perspective. That is, all tests are conducted in relation to a particular requirement, similarly

to the way that the implementation documentation referenced the requirements that were

satisfied at each stage. As a side-effect of performing the validation, verification of the

functionality involved will occur and this will expose possible errors in the implementation.

These tests are black box tests in that they are conducted on the whole system in its

completed state. This is considered appropriate because the system is intended as a single

application and is not especially modular in design. Admittedly, high level black box testing

cannot detect every error - in fact testing in general cannot prove the absence of errors

because of its non-exhaustive nature in complex systems (35). What such testing does supply

is a breadth-not-depth validation of the system requirements from a user perspective. As a

consequence many parts of the system are tested simultaneously which increases the

coverage of the tests for the same investment of time. Positive results in these tests indicate

that the approach used is, in general, fit for purpose, which in this case where the solution is

a prototype, is sufficient.

Informal white box testing of individual methods was carried out at implementation time to

ensure expected results on a limited range of data. In the case of failure, the relevant code

was debugged until a positive result was seen and so these tests have not been documented.

In a production implementation, unit testing using a framework such as JUnit may be

implemented to provide more formal verification of low levels. Knowledge of the internal

72

structure of the system was, however, used to inform the design of the black box tests in

order to ensure that these tests rely on as much internal functionality as possible.

The test plan used can be found (completed with results) in Appendix A3. It covers each

requirement identified in section 3, specifying a small number of tests for each that cover

most possible situations relevant to the requirement. It can be seen that due to the overlap

between requirements, some tests are dependent on a positive result from others and a

positive result for these tests implies that other parts of the system are working. An example

of this is where a value must be internally generated and then displayed in the UI. Black box

verification of the internal generation must take place through the UI and so as a result both

the internal function and the UI are tested together. Therefore, where requirements overlap,

tests of the same feature may be conducted from the perspective of both requirements,

explicitly in one and implicitly in the others.

Tests are grouped by specific parts of the system, using the groupings/work units identified

in the summary of the requirements section:

 Workspace and generic diagramming functionality (Requirements 2, 5) Tests

involve placement and movement of opcode vertices around the workspace, ensuring

the window can be sized and scroll etc.

 Opcode acquisition and selection (Requirements 3, 4, 14, 18) Tests involve import

of the manual to the internal catalogue, checking of the menus for accurate

reproduction and categorisation, insertion of opcodes

 Opcode details and connection (Requirements 6, 7, 8, 9, 16) Tests involve editing

of details using the properties dialog, and ensuring that connecting or disconnecting

ports updates expressions correctly. Also ensuring that data displays on the actual

diagram correctly.

 Orchestra-level features (Requirements 12, 17) Tests involve adding and removing

instruments from the orchestra and modifying the orchestra header text

 Expression entry and validation (Requirements 13, 19) Tests address various

aspects of variable name validation and will also cover some automated edge

connection issues again to ensure that connection is attempted and warnings are

generated for the correct types of variable

 Code generation and export (Requirements 1, 11) Tests address the correct transfer

of data from the representation in the UI to outputted code, including correct

ordering of the orchestra code

73

 Image rendering (Requirement 22) Tests will ensure that both diagrams which fit

on the screen and those which do not are rendered correctly to bitmaps

6.2 Known Shortcomings of Prototype Implementation
The following requirements were known not to be satisfied fully, prior to testing (many of

these were optional features in any case):

 Requirement 10, Saving and restoring of diagrams was not compliant, due to

obscure bugs in the serialization methods. Debugging was attempted by temporarily

restricting the serialization to just one Instrument object and then using the

DebuggingObjectOutputStream class described in an article on

http://crazybob.org/2007_02_01_crazyboblee_archive.html. There was initially

limited progress, allowing blank diagrams to be serialized error-free, but work on

this was deferred due to time constraints. The relevant implementation section has

already suggested possible ways to remedy the problem.

 Requirement 15, importing of Csound code and automated layout of a diagram based

on it. This was removed from scope due to project time constraints based on the fact

that a general Csound diagramming foundation was not in place at the start of the

project and therefore had to be implemented as extra work. However, this aspect was

given detailed consideration in the design and recommended as future work.

 Requirement 20, opcode search, was not implemented as it was optional – the A-Z

menu provides equivalent functionality requiring only a few more mouse clicks.

 Requirement 21, different geometric shapes for different opcodes was only an option

and not implemented – this was considered more difficult to implement than it was

valuable, although it should be noted that the opcode catalogue format developed is

sufficiently extensible to allow storage of data about the type of shape that should be

used for a particular opcode. Only the JGraph details of how to use an arbitrary

shape for a vertex and ensure the ports line up remain to be understood before this

can be implemented.

 Requirement 23 (again an optional feature), connection with Csound executable to

verify code, not implemented, suggested as future work

 Requirement 24 (optional), user defined opcodes, not implemented – suggested as

future work

6.3 Analysis of Results
The results of executing the test plan as documented in Appendix A2 will now be discussed.

As expected, the majority of tests completed without issue, however there were a small

74

number of bugs detected. The focus will be on these negative results since positive results

require no further action to satisfy requirements.

In addition to considering individual results, the opportunity will also be taken to reflect on

possible implementation issues as a result of the design of algorithms etc. which are not

detected by testing. Finally, non-functional aspects will be considered.

6.3.1 Port Display and Refresh

One particular area of concern surrounds update of the diagram display when values are

changed in the properties window. This resulted in the failure of tests 3.3, 3.4 and 3.5, all of

which reported that after changing an output variable in the properties dialog, no change was

seen on the diagram until the respective opcode vertices were moved with the mouse. This

would suggest that the issue is caused by the opcode vertex views not being repainted when

a value changes. The line cell.graph.repaint() was added to the methods in

DialogProperties that should change the diagram but this results in no change to

behaviour. Therefore further investigation into the correct way to update the display in

JGraph must be conducted to remedy this problem.

Similar problems are experienced when adding and removing ports for optional parameters.

It would appear that the correct ports are added and removed as expected, but that the ports

are not spaced correctly with the labels. Tests 3.4, 3.5, 3.6 concern this. Figure 18 below

shows incorrect spacing of input ports relative to the labels after deletion of optional ports on

linseg.

Figure 18: Incorrect spacing of ports relative to labels after modification

This is again likely to be the result of an incomplete understanding of JGraph’s operation.

The labels are drawn with custom code, whereas the ports themselves are created and

assigned x and y locations before being passed to some JGraph code to draw (since JGraph

must handle mouse clicks at the correct location). The function distributePorts on

OpcodeVertex was implemented to attempt to address this, and does work to distribute

the ports correctly when the opcode is created. However subsequent calls appear to have no

effect so it is possible that JGraph ignores further changes to co-ordinates after object

creation. A thorough investigation into the methods used by JGraph to render the ports

would need to be conducted.

75

6.3.2 Opcode Catalogue Import

This section refers to the functionality tested in section 2 of the test plan where the manual is

parsed to acquire opcode definitions and these are displayed on the menus. All tests were

passed, however there were also some observations.

The first of these is that occasionally two categories of the same name appear to be created,

for example ―Table Control‖. A closer investigation of which opcodes and subcategories

were being placed into which of the identically named categories revealed that the two

category names are not exactly identical, one differing from the other by the presence of a

trailing space character. This resulted in them being entered into the hash table separately at

manual parse time. Attempts were made to modify PageParser to remove this space

(using various trimming methods) but these failed to match the space. Further debugging

revealed that the space was an HTML non-breaking space in the manual (the

entity) and this appears not to be matched by the regular expression whitespace class. The

JDOM XML parser has an option that prevents it expanding entities which should have

solved the problem by allowing detection of the text but when this was activated no

effect was observed and the space continued to appear. This problem can be rectified by

manual editing of the generated opcodes.xml file after it has been generated; however,

the problem of removing the spaces at parse-time remains a minor problem to be solved.

The second point of note was that in some places opcodes appear twice on the menu. This

was quickly found to be because they appear twice in the manual, once for each combination

of parameter variable types (for example for some opcodes the definition is given once for an

a-rate result and again for a k-rate result). This is obviously redundant in our application

since output variables can be renamed to whichever type the user wishes but other than that

there are no ill-effects. The parsing method could be modified to remove duplicates easily

enough in a future update.

Finally, it was noted that some of the A-Z opcode menus ran off the bottom of the screen,

resulting in those opcodes later in the ordering being inaccessible. At which point a menu

runs off the screen is obviously dependent on screen resolution and window position which

is what makes this problem difficult. It is surprising that Java does not implement a

scrollable menu automatically, but there seems no simple way to enable this. Therefore we

propose setting an arbitrary limit on the number of items that may show in an A-Z list and

then creating further submenus chained from this (entitled for example ―More...‖) to contain

any overflow. An alternative would be to abandon A-Z menus and implement the opcode

text search feature mentioned in Requirement 20, as this would fulfil the same user

requirement of being able to find a known opcode rapidly.

6.3.3 Deletion of Instruments

The failure highlighted by test 4.3 is a trivial bug and could be easily resolved by calling

Editor.closePropertiesFor() on each vertex in the deleted instrument.

76

6.3.4 Graph Model and Code Generation Improvements

The current method of code generation and edge connection by physical vertex positioning

works correctly and indeed has several advantages, including a clear way for the user to

manipulate the generated code order and a visual guide to ensure variables are not

inadvertently shadowing others of the same name.

However, it does not seem a particularly ―clean‖ or scientific technique; not least because it

relegates the graph structure to a purely visual function when it could in fact be used to

supply variable dependency information or used to infer the order. Given further time to

redesign this tool and the benefit of hindsight, it seems possible that a solution based more

on the graph structure could be made to work.

Let us now consider alternative graph representations by examine the example of

QuteCsound (19), which was not available during the design phase of this project. Figure 19

shows the graph view of the following code:

instr 1

 ivel veloc

 kenv madsr 0.001, 0.4, 0, 0

 anoise noise 20000*kenv*(ivel/127), 0

 anoise butterhp anoise,4000

 outs anoise, anoise

endin

It would appear then that the problem of graphically representing an instrument has been

elegantly solved by QuteCsound.

77

Figure 19: QuteCsound output showing a more complex graph with expressions and redeclarations

Expressions and values are recorded in vertices of their own before being connected into

inputs, rather than being specified directly on the input as with our implementation. While

this has the advantage that it allows all information to be displayed on the diagram rather

than requiring a dialog to access it, it introduces an additional complication that opcodes-to-

vertices is no longer a 1:1 mapping and there are now different types of vertex to deal with.

It also suffers from the same potential problem that the set of variables used in an expression

is encoded twice – once by way of the connected edges, and again as text in the expression

string itself. It is possible in theory for these to become unsynchronised, and for there to be

ambiguity in determining the correct edges from the expression, as seen. Note that these are

not problems in QuteCsound because the graph is not intended to be interactively editable,

but would become issues in trying to adapt QuteCsound’s approach to interactive editing.

78

It can also be seen that the names of actual parameters are shown on the connecting edges

themselves rather than on the source port. Although this does no harm, it is not strictly

correct because it implies that two edges from the same port could have different variable

names, and results in redundancy of information because this is not possible. This can be

seen on Figure 19 with the variable anoise into outs.

It can be concluded from this additional analysis of a separate implementation that

expressions are the source of weakness in the graph representation. They allow a many-to-

many mapping between outputs and inputs where the rules to combine the edges terminating

on an input are not defined in graph theory. The theory dictates that the only way to address

this is to expand expressions fully to trees and make them part of the graph, which would

result in clutter. This could perhaps be addressed with hiding or collapsing inner parts of the

expression but is certainly complicated. Therefore, our method of parsing expressions and

connecting the nearest available value is justified for practical purposes.

One final comment is that we have approached the overall problem from the perspective that

the code which is output should be easily understandable and editable by a user. If we

remove this requirement and permit the output of semantically correct but difficult to read

code, the possibility of assigning unique variables for every output becomes apparent. This

would remove the need to match expressions to the ―nearest instance‖ of a given variable,

which in turn would allow a code generation algorithm based on backward chaining/formal

tree traversal.

6.3.5 Non-Functional Considerations

There were no specific tests designed to validate the non-functional requirements given in

section 3.3. Instead we will summarise the system with respect to these here:

25. The system must be delivered, documented, and tested for compliance with the

requirements by the project hand in date of 27 April 2009.

 This is an administrative requirement and at the time of writing work is on

schedule to meet this deadline.

26. Code generation must complete quickly to allow rapid adjustment of the diagram

and regeneration of the code by the user. A reasonable average time would one

second for each instrument. For individual opcodes there should be no discernible

delay in generation and display of code.

 During execution of the functional test plan, no noticeable delays were

experienced in the generation of code. The only delay seen was when

inserting the first opcode vertex after the application starts – this causes a

freeze of approximately 1 second while presumably the OpcodeVertex

79

and respective view classes are loaded into memory for the first time. This is

not seen for subsequent vertex additions.

27. The program must be able to operate in a cross-platform way, so that it is able to

support the same operating systems as Csound itself.

 The program is written for Java which is available for all major operating

systems. The compiled JAR files supplied are compatible only with Java SE

1.6 , but the source code will also compile on Java 1.5.

6.3.6 Development Model

In hindsight the use of an evolutionary prototype model was entirely satisfactory for

development of software within the bounds of this project. It resulted in software which

satisfied the majority of the requirements and so proved the intended concept, incorporating

novel designs and algorithms devised during the development process as a result of previous

work on the prototype. Such improvisation would not have been possible with a stricter

model such as waterfall or an iterative process.

The software is however as a result, not directly suitable for production release and as

commented earlier it would benefit from the prototype being thrown away and re-

implemented. Such re-implementation should be done by someone with experience of

JGraph, such as the author now that such experience has been acquired as part of the project.

6.4 Future Extensions
There has already been much discussion of improvements that would address most of the

requirements which were not satisfied in this first prototype, and a detailed review of

possible changes to the graph structure. These are obviously areas for future work but will

not all be discussed again. Instead, descriptions are given here of other potential

improvements for the application.

6.4.1 Online Help/Manual Pages

Many other Csound editing tools, including some of those identified in the literature

incorporate the manual as a form of online help system. That is, the correct manual page can

be called up for the opcode under the cursor in the event that the user is unsure of its function

or usage. This would be an obvious addition to our software for similar reasons, and could be

accessed by an extra item on the context menu for the selected opcode.

6.4.2 Saveable Groups/User Defined Opcodes (UDO)

User Defined Opcodes are groups of built-in opcodes that are connected together in some

way and can be used as a single opcode, much like a function definition in procedural

programming. They are defined in the orchestra header and can be called inside instrument

blocks (12 p. 53). This is another feature that could be readily implemented in this

diagramming tool, for example by allowing a selected set of opcodes in the instrument to be

80

saved as a UDO. At the very least, existing UDOs could be parsed from the header and

presented for insertion into the diagram.

Arguably this is possible in the current implementation, since the user can access the

orchestra header to add the UDO definition, and can modify the opcodes.xml file to put it on

the menus. However this is obviously an inelegant approach and could be improved.

6.4.3 Control Widgets

When Blue was reviewed in section 2.4.4, it was seen how UI ―widgets‖ such as knobs and

sliders could be attached to control various parameters of the instrument. Also, Csound

contains the FLTK category of opcodes for the same purpose. Although such controls to

adjust parameter values is mainly intended for use in real-time performances, there may be

some value in providing widgets for adjusting hardcoded instrument parameters in the

diagram design view. On the whole, however, this does not seem an area of major interest,

especially since it is likely to result in the incorrect impression that the widgets might be

available in a real-time performance.

6.4.4 Code Verification/Auditioning with Csound

Something the current implementation does not contain at all is any communication with the

Csound executable itself. When suitably extended, our solution could make use of such in a

number of ways:

 Attempting compilation of the orchestra file at the user’s request to detect semantic

errors or missing variables

 Use of a preset score to audition the instruments on demand

 Use of MIDI to allow playing the instrument currently being constructed, for

example with a controller keyboard

6.4.5 Writing into CSD files

Our current solution to code output is to write out the slightly outdated ORC file format.

Such a file would traditionally be used alongside a SCO file containing the score to render a

piece. However, the more recent trend is to use Csound Unified Files (CSDs) which contain

the score and orchestra in the same file, in an XML-like container structure. It is simple to

paste the code from an ORC file into as CSD, but an extension to our application could be

automated writing of the orchestra portion of a CSD file. A point to bear in mind here is that

it will often be desirable to export the orchestra section into an existing CSD file, which

requires the format to be interpreted to some extent (to find the beginning and end of the

CsInstruments section) and also the user to be warned if existing orchestra content will

be overwritten.

81

6.4.6 SVG Output

We implemented the optional requirement concerning export of diagrams as images.

However these are bitmap/raster graphics when diagrams are generally best represented as a

vector format such as SVG. Therefore implementation of a means to export to this format is

desirable. The JGraph manual (28 p. 99) discusses this in more detail.

82

7 Conclusions

The aim of this project was to implement a GUI facilitating interactive diagrammatic design

and editing of Csound instruments. We will now consider the extent to which that problem

has been addressed, and in what state this leaves the field of Csound front-ends in general.

The literature review identified a gap in the current provision of interactive front-ends,

namely that there is no solution which allows a user to import the code for an existing

Csound instrument, edit it using a diagram, and re-export it back to Csound code. In

attempting to fill this gap, we have successfully implemented a modern, flexible and

extensible GUI allowing interactive graphical design of instruments and code generation for

the full set of Csound 5 opcodes.

The ability to generate diagrams from previously created orchestra code remains to be added,

and this is suggested as a future project, now that a suitable foundation is in place. A very

recent solution, QuteCsound, can generate diagrams from code – a feature not seen

elsewhere in the literature review. However these diagrams are not interactive, so a

convergence of these two functions still remains to be achieved. It is hoped that basis

provided by this project will allow rapid implementation of such functionality.

We have covered novel diagram-to-code generation techniques and addressed the details and

inherent problems of a diagrammatic representation that have resulted in limited progress

elsewhere in the domain. The suitability of such methods has been critically evaluated, and

as such this project has now provided some much needed modern research in the area.

Although far from exhaustive, this is expected to be useful to those undertaking further work

in this field.

Another original technique introduced is the parser for extracting opcode definitions from

the manual, and it is due to this that we claim the solution is readily extensible for new

opcodes, which need not even involve recompilation of the program. This is a major

improvement over older solutions such as Patchwork which, had they been able to keep up

with new opcodes in Csound, may have had a longer lifespan.

In terms of missing functionality, in addition to code import, the key feature of being able to

save and load diagrams is absent. This limits the practical use of the application at this stage,

which is not entirely unexpected for a prototype. However, the prototype serves as a good

proof-of-concept for a modern interactive Csound diagram editing program and so has been

successful and useful in most respects. For these and the remaining items of functionality

intended as future work, we have offered suggestions or discussions which will provide a

basis for either an immediate implementation or further research on the area.

83

The discussions in section 6 have given a critical review of the shortcomings of the prototype

implementation, and this forms a strong foundation for future improvements. We reiterate

the point made that use of an evolutionary prototype model was entirely satisfactory for this

project, and resulted in software which proved the intended concept and incorporated novel

designs and algorithms. However, as a result, the software is not directly suitable for

production release and would benefit from the prototype being re-implemented.

To conclude, the project was successful in the sense that it has provided a significant and

useful advance to the field of interactive diagrammatic instrument editors, which could be

readily built upon to work towards a full solution suitable for use as production software.

84

8 Bibliography

1. Boulanger, Richard. Introduction to Sound Design in Csound. The Csound Book.

Cambridge, Massachusetts : MIT Press, 2000, p. 5.

2. Frontends. Csound Website. [Online] [Cited: 13 October 2008.]

http://www.csounds.com/frontends/.

3. Zmoelnig, Iohannes M. Pure Data. Pure Data. [Online] [Cited: 13 October 2008.]

http://puredata.info/.

4. Vercoe, Barry L and Scheirer, Eric D. SAOL: The MPEG-4 Structured Audio Orchestra

Language. Computer Music Journal. 1999, Vol. 23, 2.

5. Boulanger, Richard (Ed). The Csound Book. Cambridge, Massachusetts : MIT Press,

2000. 0262522616.

6. Kernighan, Brian D and Ritchie, Dennis M. The C Programming Language. Englewood

Cliffs : Prentice Hall, 1978. 0-13-110163-3.

7. Wikipedia. Modular synthesizer. Wikipedia. [Online] 15 November 2008. [Cited: 16

November 2008.]

http://en.wikipedia.org/w/index.php?title=Modular_synthesizer&oldid=251945911.

8. Visualising 1,051 Visual Programs - Module Choice and Layout in the Nord Modular

Patch Language. Noble, James and Biddle, Robert. Sydney : Australian Computer Society,

Inc., 2001.

9. Tutorials. Csound website. [Online] [Cited: 16 November 2008.]

http://www.csounds.com/tutorials.

10. Gather, John-Philipp. Amsterdam Catalog of Csound Computer Instruments. Buffalo :

University at Buffalo, 1995.

11. University of Florida. Courses. Florida Electroacoustic Music Studio/Computer Aided

Music Instruction Laboratory. [Online] University of Florida. [Cited: 24 November 2008.]

http://emu.music.ufl.edu/courses/#6445.

12. Vercoe, Barry et al. The Canonical Csound Reference Manual. Cambridge,

Massachusetts : MIT, 2008.

13. Downloads. Csound Website. [Online] [Cited: 27 November 2008.]

http://www.csounds.com/downloads/.

85

14. Csound News Archive. Csounds.com. [Online] [Cited: 27 November 2008.]

http://csounds.com/news/archive/news06.html.

15. Yi, Steven. blue: a music composition environment for csound. 2008.

16. UTEMS. Patchwork. UTEMS. [Online] University of Texas at Austin. [Cited: 6

December 2008.] http://ems.music.utexas.edu/dwnld/.

17. Perry, Dave. Visual Orchestra. The Sonic Spot. [Online] [Cited: 6 12 2008.]

http://www.sonicspot.com/visualorchestra/visualorchestra.html.

18. Gutsfeld, Sebastian. Cabel. Sourceforge. [Online] [Cited: 6 December 2008.]

http://cabel.sourceforge.net/.

19. Cabrera, Andrés. QuteCsound. Sourceforge. [Online] [Cited: 11 April 2009.]

http://qutecsound.sourceforge.net/.

20. Pinkston, Russell. An Introduction to Csound. [Online] [Cited: 5 December 2008.]

http://ems.music.utexas.edu/program/mus329j/CSPrimer.pdf.

21. CsoundXML: A meta-language in XML for sound synthesis. Kröger, Pedro. Barcelona,

Spain : s.n., 2004. International Symposium on Music Information Retrieval.

22. Kröger, Pedro. Desenvolvendo uma meta-linguagem para síntese sonora. Bahia :

Universidade Federal da Bahia, 2004.

23. Dia. GNOME Live. [Online] GNOME Project. [Cited: 6 December 2008.]

http://live.gnome.org/Dia.

24. Various. Using Dia for drawing out instrument diagrams. Nabble. [Online] Nabble.

[Cited: 6 December 2008.] http://www.nabble.com/Using-Dia-for-drawing-out-instrument-

diagrams-td19589773.html.

25. Henstridge, James. Dia. GNOME Live. [Online] [Cited: 6 December 2008.]

http://projects.gnome.org/dia/custom-shapes.

26. Breuer, Hans. Re: python plugin and object properties. [Online] 8 July 2001. [Cited: 9

April 2009.] http://mail.gnome.org/archives/dia-list/2001-July/msg00054.html.

27. JGraph Ltd. JGraph - The Java Open Source Graph Drawing Component. JGraph.

[Online] [Cited: 14 March 2009.] http://www.jgraph.com/.

28. Benson, David. JGraph and JGraph Layout Pro User Manual. Northampton : JGraph

Ltd., 2008.

29. Graphviz. [Online] Graphviz. [Cited: 14 March 2009.] http://www.graphviz.org/.

86

30. Spitzak et al. Fast Light Toolkit (FLTK). [Online] 2008. [Cited: 6 December 2008.]

http://www.fltk.org/.

31. Diestel, Reinhard. Graph Theory. s.l. : Birkhäuser, 2006. 3540261834.

32. Dawson, Christian. Projects in Computing and Information Systems. s.l. : Addison

Wesley, 2005. 0321263553.

33. Sommerville, Ian. Software Engineering. 7th Edition. Harlow : Pearson Education, 2004.

0321210263.

34. Hunter, Jason. JDOM. [Online] [Cited: 13 April 2009.] http://www.jdom.org/.

35. Formal approaches to software testing. Petrenko, Alexandre and Ulrich, Andreas.

Montréal : Springer, 2003. Third International Workshop on Formal Approaches to Testing

of Software. 3540208941.

87

Appendices

A1 Extract of opcodes.xml File
The full file is ~10,000 lines so only an extract is included here. The first portion shows the

header for the file, nested groups, opcodes and parameters. The second portion shows a

further nested group. The final portion shown gives examples of functions.

<?xml version="1.0" encoding="UTF-8"?>

<opcodes xmlns="http://people.bath.ac.uk/cjw26/csdiag/opcodes"

version="5.09">

 <group>

 <name>Plugin Hosting</name>

 <group>

 <name>VST</name>

 <opcode>

 <name>vstaudio</name>

 <input>instance</input>

 <input optional="yes">ain1</input>

 <input optional="yes">ain2</input>

 <output>aout1</output>

 <output>aout2</output>

 </opcode>

 <opcode>

 <name>vstaudiog</name>

 <input>instance</input>

 <input optional="yes">ain1</input>

 <input optional="yes">ain2</input>

 <output>aout1</output>

 <output>aout2</output>

 </opcode>

...

 <group>

 <name>Real-time MIDI</name>

 <group>

 <name>Note Output </name>

 <opcode>

 <name>midion</name>

 <input>kchn</input>

88

 <input>knum</input>

 <input>kvel</input>

 </opcode>

 <opcode>

 <name>midion2</name>

 <input>kchn</input>

 <input>knum</input>

 <input>kvel</input>

 <input>ktrig</input>

 </opcode>

 <opcode>

 <name>moscil</name>

 <input>kchn</input>

 <input>knum</input>

 <input>kvel</input>

 <input>kdur</input>

 <input>kpause</input>

 </opcode>

...

 <group>

 <name>Functions</name>

 <function>

 <name>cent</name>

 </function>

 <function>

 <name>cpsmidinn</name>

 </function>

 <function>

 <name>cpsoct</name>

 </function>

 <function>

 <name>cpspch</name>

 </function>

89

A2 User Interface Designs
These are preliminary drawings produced to design the user interfaces. As such there may be

features missing from the drawings which are present in the finished prototype.

Main user interface mock-up showing menus, toolbar, tabs for instruments and the

diagramming area:

CsDiagCsDiag

Instrument Another Instrument

Instrument comment

File Edit Instrument InsertView

90

Properties dialog box for editing individual opcodes, showing variable tables, space for

comment and space for generated code:

Properties (opcode name)Properties (opcode name)

Parameter Value

Inputs

Parameter Variable Name

Outputs

 Comment

 Code

91

A3 Test Plan and Results
The following test plan was created and then used to verify key parts of the system to ensure

compliance with the requirements. Due to time constraints, exhaustive or low level testing

was not feasible and the focus was on a higher level of testing which nonetheless covers the

full breadth of the system.

Ref

no

Related

Requirement
Description/Expected Functionality Result Comments

1 Workspace and generic diagramming functionality

1.1 5 Insert an opcode from the menu and click

to select, opcode should highlight

Pass

1.2 5 Perform test 1.1 and then click and drag

the opcode, it should move with the mouse

Pass

1.3 5 Perform test 1.1 action then click and drag

one of the resize handles on the opcode

vertex, this should resize it

Pass

1.4 2 Perform test 1.2 and move the vertex

offscreen to the bottom right, both

scrollbars should appear and when dragged

move the opcode back into view

Pass

1.5 2 With the window in its restored state, drag

the border or maximise it: the window

should be resizable and the white

workspace area should fill the available

window space

Pass

1.6 2 Insert a very large number of opcode

vertices (~100): the diagram should retain

them all

N/T Requires automated

means to test

quickly

2 Opcode acquisition and selection

2.1 3, 4, 18 Use the PageParser program to create an

opcodes.xml file from the canonical

Csound Manual which should be placed in

the main CsDiag working directory. Start

the main program and select the insert

menu. Visually check for at least 20 top

level categories. Check that the first and

last categories from the web page have

been imported. Check that category entries

are submenus and contain items with

opcode names.

Pass Certain categories

and opcodes appear

twice, e.g. Table

Control at the top

level categories and

oscil at the opcode

level.

2.2 3 Randomly select 5 opcodes from 5

separate categories and click the menu

item to insert. Opcodes should appear in

the workspace.

Pass

2.3 14 Use the A-Z submenu to insert 5 random

opcodes from 5 different ―letters‖.

Opcodes should appear in the workspace.

Pass Some letters have

very long menus

resulting in some

opcode choices

being off the screen

and thus not

selectable.

92

3 Opcode details and connection

3.1 - Insert the oscil opcode and display the

properties window for it using the menu.

The window should display with the

correct instrument and opcode in the title

and with the tables populated with the

correct input and output parameters.

Pass Input and output

parameters shown

are consistent with

the manual’s

definition

3.2 6 Perform test 3.1 and verify that the opcode

name, formal input parameters and actual

output parameters are shown on the

diagram, and that they match with those

showing in the properties dialog.

Pass

3.3 6, 7 Perform test 3.2 then change the name of

the output variable using the outputs table

and inspect the diagram to ensure the label

on the output port has changed.

FAIL The text on the

diagram does not

update until a

repaint is forced by

moving the affected

vertex.

3.4 9 Perform test 3.2 then use the table to add

an extra optional input parameter at the

end of the list. Check the diagram to

ensure a port has been added.

FAIL Port added but not

spaced correctly.

Label does not

display until repaint

as with 3.3

3.5 9 Perform test 3.2 then use the table to add

an extra optional output parameter at the

end of the list. Check the diagram to

ensure a port has been added.

FAIL Port added but not

spaced correctly.

Label does not

display until repaint

as with 3.3

3.6 9 Perform test 3.2 then delete the optional

parameter iphs. Check that the diagram

updates.

Pass Labels are spaced

correctly, but ports

are not, after delete.

3.7 8, 13 Create two opcode vertices and move them

apart from each other. For the right-hand

one display the properties window and

enter the name of the output of the left

hand one into one of the inputs. A solid

line should connect the two ports.

Pass

3.8 8, 13 Perform test 3.7 and then add another

vertex. Rename the output if it is the same

as any existing output then modify the

same input expression as used in 3.7 to

include the new output port via some

connecting operator. A connecting edge

should be drawn to it and both lines should

now be dashed.

Pass

3.9 8 Create two opcode vertices and move them

apart from each other. Display both

property windows, and drag the output of

the left hand one to the input on the right.

A line should be drawn and the target input

value that the line connects to should be set

to the source output port.

Pass

93

3.10 8 Perform test 3.9 and then insert and

connect a further opcode by drag and drop.

New opcode output should be appended to

target expression with a +

Pass

3.11 8 Connect the output of two opcodes to a

third, then delete one of the connecting

edges. A dialog should display with a

warning, select no and no change should

occur.

Pass

3.12 8 Connect the output of two opcodes to a

third, then delete one of the connecting

edges. A dialog should display with a

warning, select yes and the expression

should clear, deleting both edges.

Pass

3.13 8 Connect the output of two opcodes to a

third, then select both connecting edges

and delete them. No message should be

displayed, the expression should clear and

both edges should be deleted.

Pass

3.14 8 Connect the output of two opcodes to a

third, then delete the third opcode. Both

connecting edges should also be deleted.

Pass

3.15 8 Connect the output of two opcodes to a

third, then delete one of the source

opcodes. The warning dialog about edge

deletion resulting in clearing of the

expression should display.

Pass

3.16 16 Insert an opcode and display the properties

window. Enter a comment and close the

window. Reopen the window and the

comment should be shown again.

Pass

3.17 7 Insert two opcode and connect one to the

other. Modify the output variable name on

the source opcode and ensure it updates the

name on the input port of the other.

Pass

3.18 - Insert an opcode and open the properties

window, then delete the opcode. The

window should close.

Pass

3.19 7 Test nearest-variable capture: Insert three

opcodes, and set two to have identically

named output variables. Arrange the

opcodes in a row left to right with the two

with identical outputs together on the left.

Enter the name of those outputs into the

input of the third opcode in the properties

window. Should connect to the nearest

output with the correct name.

Pass

94

3.20 7 Test nearest-variable capture: Perform

setup as per 3.19 then attempt to connect

the output of the leftmost opcode to the

input on the rightmost. The connection

should actually be made between the

second and third opcodes because the

second opcode has the same output name

and is closer.

Pass

4 Orchestra-level features

4.1 12 Use the instrument menu to add another

instrument to the orchestra. Test that it can

be selected and Instrument 1 can also still

be restored by selecting the tab. Ensure

opcodes can be added to both instruments

Pass

4.2 12 Perform 4.1 and then delete each

instrument in turn. The instrument tabs

should disappear.

Pass

4.3 12 Delete an instrument containing opcodes

with open property windows. The

windows should close.

FAIL The window

remains open

4.4 17 Use the menu to display the instrument

header and edit the default that should

display. Close the window then redisplay it

and ensure the changes have been retained.

Pass

5 Expression entry and validation

5.1 13, 19 Create an opcode and attempt to set the

output variable name to a valid name from

each class in Table 1 (p19 of dissertation

document) in turn. No errors should be

seen.

Pass

5.2 13, 19 Repeat 5.1 with another opcode present on

the diagram. With each new output

introduced, attempt to create a connection

by entering it as an expression in an input

on the other opcode. No errors should be

seen if all names are valid.

Pass

5.3 13, 19 Create three opcodes (referred to as A, B,

C), with different output variable names.

Arrange so that they do not overlap. This is

a setup for subsequent tests.

Pass

5.4 13, 19 Set up as per 5.3 and enter an expression

A+B into C (where A and B are the

relevant output variables). Connections

should be created with dashed lines and no

error.

Pass

5.5 13, 19 Set up as per 5.3 and enter a more complex

expression (A*A+B)/7 into C (where A

and B are the relevant output variables).

Connections should be created with no

error.

Pass

95

5.6 13, 19 Set up as per 5.3 and enter an expression

involving a score parameter such as

A+B+p5 into C (where A and B are the

relevant output variables). Connections

should be created for A and B with no

error about p5 being nonexistent.

Pass

5.7 13, 19 Set up as per 5.3 and enter an expression

involving a function such as

A+cpspch(B+p5) into C (where A and B

are the relevant output variables).

Connections should be created for A and B

and there should be no error about cpspch

being invalid.

Pass

5.8 13, 19 Set up as per 5.3 and enter an expression

involving a variable with an invalid name

such as A+B+dsajlk into C (where A and

B are the relevant output variables).

Connections should be created for A and B

and there should be two error messages –

one about dsajlk being an invalid name and

another about not being able to connect it.

Pass

5.9 13, 19 Set up as per 5.3 and enter an expression

involving a variable that is not defined but

has a valid name that is not a function,

such as A+B+kstuff into C (where A and B

are the relevant output variables).

Connections should be created for A and B

and there should be one error message

about not being able to connect kstuff.

Pass

5.10 13, 19 Set up as per 5.3 and enter an expression

involving only a score parameter such as

p5 into C. No connections or error

messages should be seen.

Pass

5.11 13, 19 Set up as per 5.3 and enter an expression

containing a valid but undefined global

variable name such as gkstuff into C. An

error message should be seen reporting that

the variable is not defined.

Pass

5.12 13, 19 Repeat 5.11 but before entering the

expression, define gkstuff = 5 in the

orchestra header. No error should then be

seen on entry of the expression. No

connections should be made either

Pass

5.13 13, 19 Repeat 5.11 but before entering the

expression, set the name of one of the

outputs A or B to gkstuff. No error should

then be seen on connection.

Pass

6 Code generation and export
6.1 1, 11 Test single opcode code generation: place

one opcode and fill all inputs with constant

expressions. Display properties and check

the generation for correct reproduction and

order of inputs

Pass

96

6.2 1, 11 Test single opcode code generation: place

one opcode and fill only mandatory

inputs with constant expressions. Display

properties and check the generation to

ensure no excess separating commas

Pass

6.3 1, 11 Test opcode comments: Enter comments in

the Comment box of the properties

window and check for appearance in the

dynamic code generation

Pass

6.4 1, 11 Test instrument code generation: For the

default instrument 1, enter an instrument-

level comment, place a single opcode and

use the View > Instrument Source menu

item to generate code for the instrument

Pass

6.5 1, 11 Test code ordering: Place two different

opcodes in a clear left-right order on the

workspace. Generate instrument level code

and check ordering correct. Reverse the

order, regenerate, and check for a reversal

in the code.

Pass

6.6 1, 11 Test removal of statements: After

executing test 4, delete one of the opcodes

and regenerate code. Check that relevant

statement has been deleted from code.

Pass

6.7 1 Test multi-instrument orchestra code gen:

Insert another instrument and ensure there

are at least two opcodes on each

instrument. Modify the default orchestra

header, and generate orchestra code (to a

file on disk). Check that both instruments

and the header are included correctly.

Pass Unix line endings

are used for the

orchestra output so

the file does not

appear correctly

formatted in

Windows notepad.

6.8 1 Test connected opcodes: In a new single

instrument orchestra, place two different

opcode and connect ones output to the

other’s input (with the correct left-right

ordering of the opcode). Generate

instrument code and check the actual

output parameter has been substituted for

the formal input parameter as expected.

Pass

7 Image Rendering

7.1 22 Construct a diagram contained entirely

within the window, including multiple

opcode vertices and connections between

them. Render to an image and check for

presence of all elements.

Pass

7.2 22 Construct a diagram larger than the

window (such that scrolling is required to

edit it), including multiple opcode vertices

and connections between them. Render to

an image and check for presence of all

elements.

Pass

97

A4 Source Code Listings
This section lists the source code for the applications developed. Package and

import statements have been omitted to save space. All classes belong to the

uk.ac.bath.cs.csdiag class, except the last which is the PageParser

and belongs to uk.ac.bath.cs.csdiag.opcodeloader. Classes are listed

in alphabetical order within their package.

Only source files including interesting parts of the system or key algorithms are

included. In particular the UI classes have been left out because they are long and

present only routine user interface code. Full sources can be found on the CD.

FunctionOpcode

Opcode representation of single-input, single-output function

public class FunctionOpcode extends Opcode {

 /**

 * Registered functions

 */

 protected static Hashtable<String, FunctionOpcode> regfuncs = new

Hashtable<String, FunctionOpcode>();

 /**

 * Create a new FunctionOpcode

 *

 * @param symbol

 * The name of the function

 */

 public FunctionOpcode(String symbol) {

 this.name = symbol;

 this.inputs.add(new Parameter("in", false));

 this.outputs.add(new Parameter("aout", false));

 }

 /**

 * Is the specified string a registered function?

 *

 * @param s

 * String to test for functionness

 * @return Is it a function?

 */

 public static boolean isFunction(String s) {

 return regfuncs.containsKey(s);

 }

 public Element getXML() {

 Element el = new Element("function");

 // Set name element

 Element name = new Element("name");

 name.setText(this.getName());

 el.addContent(name);

 return el;

 }

 /**

 * Load a FunctionOpcode from an XML function element

 *

 * @param e

 * The function element

 * @return The reconstructed function opcode

 */

 public static FunctionOpcode loadFromXML(Element e) {

 FunctionOpcode o = new FunctionOpcode(e.getChildText("name"));

 return o;

 }

}

98

Instrument

Graph representation of a Csound instrument.

public class Instrument extends JGraph {

 private static final long serialVersionUID = 5356019698991919162L;

 protected int instrNumber;

 protected String description = "";

 protected transient Orchestra orchestra;

 /**

 * Construct a new instrument graph

 *

 * @param instrNumber

 * The unique instrument number

 * @param orchestra

 * The orchestra to which the instrument belongs

 */

 public Instrument(int instrNumber, Orchestra orchestra) {

 this(new InstrumentGraphModel(), null);

 this.instrNumber = instrNumber;

 this.orchestra = orchestra;

 }

 /**

 * Construct the Graph using the Model as its Data Source

 *

 * @param model

 * Model for graph data

 * @param cache

 * Layout cache for storing layout information

 */

 public Instrument(GraphModel model, GraphLayoutCache cache) {

 super(model, cache);

 // Make Ports Visible by Default

 setPortsVisible(true);

 // Use the Grid (but don't make it Visible)

 setGridEnabled(true);

 // Set the Grid Size to 10 Pixel

 setGridSize(6);

 // Set the Tolerance to 2 Pixel

 setTolerance(2);

 // Accept edits if click on background

 setInvokesStopCellEditing(true);

 // Allows control-drag

 setCloneable(true);

 // Jump to default port on connect

 setJumpToDefaultPort(true);

 // Prevent JGraph's inline changes to cell names

 setEditable(false);

 // Anti-aliasing on

 setAntiAliased(true);

 }

 /**

 * @return Unique instrument number

 */

 public int getInstrNumber() {

 return instrNumber;

 }

 /**

 * @param instrNumber

 * Unique instrument number

 */

 public void setInstrNumber(int instrNumber) {

 this.instrNumber = instrNumber;

 }

 /**

 * @return Descriptive comment about the instrument

 */

 public String getDescription() {

 return description;

 }

 /**

 * @param description

 * Descriptive comment about the instrument

 */

 public void setDescription(String description) {

 this.description = description;

 }

 /**

 * Do code generation, strictly left to right across the visualised graph

 *

99

 * @return Generated code for this instrument

 */

 public String getCode() {

 // Begin instrument block

 String out = "instr " + this.getInstrNumber() + "\n";

 // If there's a comment add that, else don't leave just a ;

 if (!this.getDescription().equals(""))

 out += "; " + this.getDescription() + "\n";

 // Sort the cells by X position

 List<CellView> views = Arrays.asList(this.getGraphLayoutCache()

 .getCellViews());

 Collections.sort(views, new CellViewComparator());

 // For each cell

 for (CellView view : views) {

 if (DefaultGraphModel.isVertex(this.getModel(), view.getCell())) {

 // If it's a vertex, generate code and add to the overall

 // instrument code

 OpcodeVertex v = (OpcodeVertex) view.getCell();

 out += v.getCode() + "\n";

 }

 }

 // Terminate instrument block

 return out + "endin\n";

 }

 /**

 * Compare the X location of two cells

 *

 * @author Chris Ware

 */

 public class CellViewComparator implements Comparator<CellView> {

 public int compare(CellView arg0, CellView arg1) {

 double a = arg0.getBounds().getMinX();

 double b = arg1.getBounds().getMinX();

 return Double.compare(a, b);

 }

 }

}

Opcode

Definition of an opcode.

public class Opcode implements Comparable<Opcode> {

 protected String name;

 protected List<Parameter> inputs = new ArrayList<Parameter>();

 protected List<Parameter> outputs = new ArrayList<Parameter>();

 public Opcode() {

 name = "";

 }

 public Opcode(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String toString() {

 return outputs + " " + name + " " + inputs;

 }

 public List<Parameter> getInputs() {

 return inputs;

 }

 public void setInputs(List<Parameter> inputs) {

 this.inputs = inputs;

 }

 public List<Parameter> getOutputs() {

 return outputs;

 }

 public void setOutputs(List<Parameter> outputs) {

 this.outputs = outputs;

 }

100

 /**

 * Load an opcode from an XML representation

 *

 * @param e

 * XML Element to reconstruct to an opcode

 * @return Opcode extracted from the XML

 */

 public static Opcode loadFromXML(Element e) {

 Opcode o = new Opcode(e.getChildText("name"));

 Iterator<?> it = e.getContent().iterator();

 while (it.hasNext()) {

 Element sub = (Element) it.next();

 // Try to check if a parameter is optional

 boolean optional;

 try {

 optional = sub.getAttribute("optional").getBooleanValue();

 } catch (Exception ex) {

 optional = false;

 }

 if (sub.getName() == "input") {

 o.getInputs().add(new Parameter(sub.getText(), optional));

 } else if (sub.getName() == "output") {

 o.getOutputs().add(new Parameter(sub.getText(), optional));

 }

 // Else it's probably the name - we don't care about that

 }

 return o;

 }

 /**

 * @return XML element representation of this opcode

 */

 public Element getXML() {

 Element el = new Element("opcode");

 // Set name element

 Element name = new Element("name");

 name.setText(this.getName());

 el.addContent(name);

 // Add input parameters

 Iterator<Parameter> it = this.getInputs().iterator();

 while (it.hasNext()) {

 Parameter p = it.next();

 Element input = new Element("input");

 input.setText(p.getName());

 if (p.isOptional())

 input.setAttribute("optional", "yes");

 el.addContent(input);

 }

 // Add output parameters

 it = this.getOutputs().iterator();

 while (it.hasNext()) {

 Parameter p = it.next();

 Element output = new Element("output");

 output.setText(p.getName());

 if (p.isOptional())

 output.setAttribute("optional", "yes");

 el.addContent(output);

 }

 return el;

 }

 public int compareTo(Opcode o) {

 return (this.getName().compareTo(o.getName()));

 }

}

101

OpcodeGroup

Possibly nested category of opcodes.

public class OpcodeGroup implements Comparable<OpcodeGroup> {

 private String name;

 private ArrayList<Opcode> members;

 private Hashtable<String, OpcodeGroup> subgroups;

 /**

 * Create an opcode group with the specified name

 *

 * @param name

 * Context sensitive name for the opcode group

 */

 public OpcodeGroup(String name) {

 this.name = name;

 this.members = new ArrayList<Opcode>();

 this.subgroups = new Hashtable<String, OpcodeGroup>();

 }

 /**

 * @return Context sensitive name for this opcode group

 */

 public String getName() {

 return name;

 }

 /**

 * @param name

 * Context sensitive name for this opcode group

 */

 public void setName(String name) {

 this.name = name;

 }

 /**

 * @return Member opcodes of this OpcodeGroup

 */

 public ArrayList<Opcode> getMembers() {

 return members;

 }

 /**

 * @return Subgroups of this OpcodeGroup

 */

 public Collection<OpcodeGroup> getSubgroups() {

 return subgroups.values();

 }

 /**

 * Add subgroup necessary for the supplied path

 *

 * @param path

 * Array of descendant group names, including this group

 */

 public OpcodeGroup addSubgroup(String[] path) {

 if (path.length == 1)

 return this;

 OpcodeGroup child;

 String name = path[1].trim();

 if (!this.subgroups.containsKey(name)) {

 child = new OpcodeGroup(name);

 this.subgroups.put(name, child);

 } else {

 child = this.subgroups.get(name);

 }

 String[] nextpath = new String[path.length - 1];

 System.arraycopy(path, 1, nextpath, 0, path.length - 1);

 return child.addSubgroup(nextpath);

 }

 /**

 * Add a subgroup to this group

 *

 * @param o

 * Subgroup to add

 */

 public void addSubgroup(OpcodeGroup o) {

 this.subgroups.put(o.getName(), o);

 }

 /**

 * Load a hierarchy of OpcodeGroups from an XML document

 *

 * @param file

102

 * File to parse for groups

 * @return List of OpcodeGroups forming the roots of the hierarchy

 */

 public static List<OpcodeGroup> loadTreeFromXML(File file)

 throws JDOMException, IOException, FileNotFoundException {

 SAXBuilder parser = new SAXBuilder();

 parser.setIgnoringBoundaryWhitespace(true);

 Document doc = parser.build(file);

 return loadTreeFromXML(doc);

 }

 /**

 * Load a hierarchy of OpcodeGroups from an XML document

 *

 * @param d

 * Document to load the groups from

 * @return List of OpcodeGroups forming the roots of the hierarchy

 */

 public static List<OpcodeGroup> loadTreeFromXML(Document d) {

 List<Content> groups = d.getRootElement().getContent();

 Iterator<Content> groupit = groups.iterator();

 ArrayList<OpcodeGroup> tree = new ArrayList<OpcodeGroup>();

 // Foreach group

 while (groupit.hasNext()) {

 Element group = (Element) groupit.next();

 OpcodeGroup o = loadFromXML(group);

 tree.add(o);

 }

 return tree;

 }

 /**

 * Load an OpcodeGroup and all children and subgroups from an XML element

 *

 * @param e

 * XML element to load from - should be an opcodegroup element

 * @return The opcode group reconstructed from the XML

 */

 private static OpcodeGroup loadFromXML(Element e) {

 OpcodeGroup ocg = new OpcodeGroup(e.getChildText("name"));

 Iterator<Element> it = e.getContent().iterator();

 while (it.hasNext()) {

 Element sub = it.next();

 if (sub.getName() == "opcode") {

 // Opcode

 ocg.getMembers().add(Opcode.loadFromXML(sub));

 } else if (sub.getName() == "function") {

 // Function

 FunctionOpcode f = FunctionOpcode.loadFromXML(sub);

 // Put into the list of registered functions

 FunctionOpcode.regfuncs.put(f.getName(), f);

 ocg.getMembers().add(f);

 } else if (sub.getName() == "group") {

 // Nested group

 OpcodeGroup g = loadFromXML(sub);

 ocg.addSubgroup(g);

 }

 // Else it's probably the group name - we don't care about that

 }

 return ocg;

 }

 /**

 * @return The XML representation of this opcode group

 */

 public Element getXML() {

 Element el = new Element("group");

 Element name = new Element("name");

 name.setText(this.getName());

 el.addContent(name);

 Iterator<OpcodeGroup> itg = this.getSubgroups().iterator();

 while (itg.hasNext()) {

 el.addContent(itg.next().getXML());

 }

 Iterator<Opcode> ito = this.getMembers().iterator();

 while (ito.hasNext()) {

 el.addContent(ito.next().getXML());

 }

 return el;

 }

103

 public int compareTo(OpcodeGroup g) {

 return this.name.compareTo(g.getName());

 }

 /**

 * Flatten the tree structure and return all descendant member opcodes

 *

 * @return A list of descendant opcodes

 */

 public ArrayList<Opcode> flatten() {

 ArrayList<Opcode> ops = new ArrayList<Opcode>();

 ops.addAll(this.members);

 Iterator<OpcodeGroup> it = this.getSubgroups().iterator();

 while (it.hasNext()) {

 ops.addAll(it.next().flatten());

 }

 return ops;

 }

}

OpcodeInputPort

A logical input port on an opcode vertex.

public class OpcodeInputPort extends OpcodePort {

 private static final long serialVersionUID = -8066552230485897724L;

 protected String value = "";

 public OpcodeInputPort(Parameter p) {

 super(p);

 }

 public OpcodeInputPort(String name) {

 super(name);

 }

 public String getValue() {

 return value;

 }

 /**

 * Set the value of this input parameter

 *

 * @param value

 * Value expression

 * @param checkValid

 * Should this be checked for validity

 * @throws InvalidVariablesException

 * Thrown if checking is on and variables are misnamed or

 * globals are missing - value is always set

 */

 public void setValue(String value, boolean checkValid)

 throws InvalidVariablesException {

 this.value = value;

 this.getVertex().fireChange();

 if (checkValid) {

 InvalidVariablesException e = new InvalidVariablesException();

 // For each attempted variable check validity

 for (String v : extractVars(value)) {

 // Validate

 if (!Variable.isValidLocal(v) && !Variable.isValidGlobal(v))

 // If it's not global and not a valid local, add to invalid

 // list

104

 e.invalid.add(v);

 }

 if (e.hasInvalid())

 // If the exception accumulated any bad things, throw it

 throw e;

 }

 }

 /**

 * Force connections to all outputs mentioned in value

 */

 protected void makeConnections() throws RuntimeException {

 List<String> vars = extractVars(this.value);

 List<String> missingVars = new ArrayList<String>();

 // For each variable

 for (String var : vars) {

 // If it's not a function

 if (shouldConnect(var)) {

 // Find the nearest source

 OpcodeOutputPort source = getNearestOutput(var);

 if (source != null) {

 // If it's multiple inputs, use dashed lines

 boolean dashed = (vars.size() > 1);

 // Connect source

 source.connectTo(this, dashed);

 // It's missing but if it's global check for it in the

 // header

 } else if (!Variable.isValidGlobal(var)

 || (Variable.isValidGlobal(var) && !this.getVertex()

 .getInstrument().orchestra.getHeader()

 .contains(var))) {

 missingVars.add(var);

 }

 }

 }

 // Were there any missing variables?

 if (missingVars.size() > 0) {

 String s = "";

 for (String mv : missingVars)

 s += (mv + "\n");

 throw new RuntimeException(

 "The following connectable variables were not found as an

output:\n"

 + s

 + "\nNo connections for these have been added to the

diagram.");

 }

 }

 /**

 * Get the nearest output port to this one with a certain user variable

 * string

 *

 * @param userVar

 * Variable name to search for

 * @return The nearest instance of that variable on an output port, or

null

 * if there are none

 */

 protected OpcodeOutputPort getNearestOutput(String userVar) {

 PortView[] ports = this.getVertex().getInstrument()

 .getGraphLayoutCache().getPorts();

 PortView thisPort = (PortView) this.getVertex().getInstrument()

 .getGraphLayoutCache().getMapping(this, false);

 PortView closest = null;

 double closestDist = 0;

 for (int i = 0; i < ports.length; i++) {

 // For all opcode output ports

 if (ports[i].getCell() instanceof OpcodeOutputPort) {

 OpcodeOutputPort port = (OpcodeOutputPort) ports[i].getCell();

 // That aren't on the same vertex as this one

 if (port.getVertex() != this.getVertex()) {

 // And that have the right output variable name...

 if (((OpcodeOutputPort) ports[i].getCell()).getUserVar()

 .equals(userVar)) {

 // Decide it it's closer

 double distance = portDistance(thisPort, ports[i]);

 if (closest == null || distance < closestDist) {

 closest = ports[i];

105

 closestDist = distance;

 }

 }

 }

 }

 }

 if (closest != null)

 return (OpcodeOutputPort) closest.getCell();

 else

 return null;

 }

 /**

 * Work out the distance between two port views

 *

 * @param a

 * First port view

 * @param b

 * Second port view

 * @return Euclidean distance between ports

 */

 public static double portDistance(PortView a, PortView b) {

 return Point2D.distance(a.getLocation().getX(),

a.getLocation().getY(),

 b.getLocation().getX(), b.getLocation().getY());

 }

 /**

 * Destroy all connections into this port

 */

 protected void destroyConnections() {

 this.getVertex().graph.getGraphLayoutCache().remove(

 this.getEdges().toArray());

 }

 /**

 * Redraw the connections to reflect the current expression

 *

 * @throws RuntimeException

 * if there are variables that cannot be located for a

 * connection

 */

 public void refreshConnections() throws RuntimeException {

 this.destroyConnections();

 this.makeConnections();

 }

 /**

 * Extract all variables mentioned in the value expression to a list

 *

 * @return List of variable names

 */

 protected List<String> extractVars(String expr) {

 ArrayList<String> vars = new ArrayList<String>();

 // Iterate through the matches to this regex

 Pattern param = Pattern.compile("[A-Za-z0-9_]+");

 Matcher m = param.matcher(expr);

 while (m.find()) {

 // It's a new variable if unique, not a function and not just a

 // number

 if (!vars.contains(m.group()) && !m.group().matches("[0-9]+")

 && !FunctionOpcode.isFunction(m.group()))

 vars.add(m.group());

 }

 return vars;

 }

 /**

 * Check if connection to an output should be attempted for a particular

 * variable

 *

 * @param var

 * Variable to check eligibility for connection for

 * @return Should connection be attempted?

 */

 protected static boolean shouldConnect(String var) {

 // Connect variables that are not functions or p variables

 boolean attempt = !FunctionOpcode.isFunction(var);

 attempt = attempt && !Variable.isP(var);

 return attempt;

 }

}

106

OpcodeOutputPort

A logical output port on an opcode vertex.

public class OpcodeOutputPort extends OpcodePort {

 private static final long serialVersionUID = -1147611910721457965L;

 protected String userVar = "";

 /**

 * Create a new output port

 *

 * @param p

 * The parameter from the model that it represents

 */

 public OpcodeOutputPort(Parameter p) {

 super(p);

 userVar = p.getName();

 }

 public OpcodeOutputPort(String name) {

 super(name);

 userVar = name;

 }

 /**

 * Get the user's actual output variable

 *

 * @return User specified output variable name

 */

 public String getUserVar() {

 return userVar;

 }

 /**

 * Set the user's actual output variable name

 *

 * @param newUserVar

 * User defined output variable name

 * @throws RuntimeException

 * if variable name is invalid

 */

 public void setUserVar(String newUserVar) throws RuntimeException {

 // Validate

 if (!Variable.isValidLocal(newUserVar)

 && !Variable.isValidGlobal(newUserVar)) {

 throw new RuntimeException(newUserVar

 + " is not a valid Csound variable name");

 } else {

 // Rename on opposite ports - already validated so don't check

again

 OpcodePort[] opposites = this.getOppositePorts();

 for (int i = 0; i < opposites.length; i++) {

 OpcodeInputPort input = (OpcodeInputPort) opposites[i];

 input.setValue(input.getValue().replaceAll(this.userVar,

 newUserVar), false);

 }

 this.userVar = newUserVar;

 this.getVertex().fireChange();

 }

 }

 /**

 * Get the output name

 */

 public String getValueName() {

 return userVar;

 }

 public void connectTo(OpcodePort target, boolean dashed) {

 super.connectTo(target, dashed);

 // If it's connecting to an input port (which it should do

 // according to model), update the value string

 /*

 * if (target instanceof OpcodeInputPort) { OpcodeInputPort in =

 * (OpcodeInputPort)target; if (in.getValue().equals(""))

 * in.setValue(this.getUserVar()); else in.setValue(in.getValue() +

"+" +

 * this.getUserVar()); }

 */

 }

}

/**

 * Port on an OpcodeVertex to allow connection of parameters to other ports

 *

 * @author Chris Ware

107

 */

OpcodePort

Superclass for ports used to connect opcodes together.

public abstract class OpcodePort extends DefaultPort {

 // The parameter it represents - no need to serialize

 protected transient Parameter parameter = null;

 // Details about the parameter - may match the parameter above or not, if

 // user specified

 protected String formal = "";

 protected boolean optional = false;

 /**

 * Create an opcode port based on a formal parameter from an opcode

 * definition

 *

 * @param parameter

 * The parameter it represents

 */

 public OpcodePort(Parameter parameter) {

 super(parameter.getName());

 this.parameter = parameter;

 this.formal = parameter.getName();

 this.optional = parameter.isOptional();

 }

 /**

 * Create a custom opcode port without an associated formal parameter

 *

 * @param name

 * The name of the formal parameter

 */

 public OpcodePort(String name) {

 super(name);

 this.parameter = null;

 this.formal = name;

 this.optional = true;

 }

 /**

 * @return Any ports connected to this one

 */

 public OpcodePort[] getOppositePorts() {

 GraphModel m = getVertex().getInstrument().getModel();

 Object[] edges = DefaultGraphModel.getEdges(m, new Object[] { this })

 .toArray();

 OpcodePort[] opp = new OpcodePort[edges.length];

 for (int i = 0; i < edges.length; i++) {

 opp[i] = (OpcodePort) DefaultGraphModel.getOpposite(m, edges[i],

 this);

 }

 return opp;

 }

 /**

 * @return The vertex this port belongs to

 */

 public OpcodeVertex getVertex() {

 return (OpcodeVertex) this.getParent();

 }

 /**

 * @return The Parameter this port represents or null if it was a user

 * defined parameter

 */

 public Parameter getParameter() {

 return parameter;

 }

 /**

 * Make a connection to the target port

 *

 * @param target

 * Target port to connect to

 */

 public void connectTo(OpcodePort target) {

 connectTo(target, false);

 }

 /**

 * Make a connection to the target port, with a possibly dashed line

 *

 * @param target

108

 * @param dashed

 */

 public void connectTo(OpcodePort target, boolean dashed) {

 DefaultEdge edge = new DefaultEdge();

 GraphModel model = this.getVertex().getInstrument().getModel();

 if (model.acceptsSource(edge, this)

 && model.acceptsTarget(edge, target)) {

 GraphConstants.setLineEnd(edge.getAttributes(),

 GraphConstants.ARROW_SIMPLE);

 if (dashed)

 GraphConstants.setDashPattern(edge.getAttributes(),

 new float[] { 5, 5 });

 getVertex().getInstrument().getGraphLayoutCache().insertEdge(edge,

 this, target);

 }

 }

 /**

 * @return Name of the formal parameter

 */

 public String getFormal() {

 return formal;

 }

 /**

 * @return Is this an optional parameter

 */

 public boolean isOptional() {

 return optional;

 }

}

OpcodeVertex

Graph vertex to represent an instantiation of a Csound opcode.

public class OpcodeVertex extends DefaultGraphCell {

 private static final long serialVersionUID = -6677403453502084141L;

 protected transient Instrument graph;

 protected ArrayList<OpcodeInputPort> inputs = new

ArrayList<OpcodeInputPort>();

 protected ArrayList<OpcodeOutputPort> outputs = new

ArrayList<OpcodeOutputPort>();

 protected String comment = "";

 EventListenerList changeListeners = new EventListenerList();

 /**

 * Create an opcodecell with specified name, inputs, outputs

 *

 * @param name

 * @param inputs

 * @param outputs

 */

 public OpcodeVertex(String name, Instrument graph, List<Parameter>

inputs,

 List<Parameter> outputs) {

 super(name);

 this.graph = graph;

 Iterator<Parameter> it = inputs.iterator();

 while (it.hasNext()) {

 this.inputs.add(new OpcodeInputPort(it.next()));

 }

 it = outputs.iterator();

 while (it.hasNext()) {

 this.outputs.add(new OpcodeOutputPort(it.next()));

 }

 addInputPorts();

 addOutputPorts();

 distributePorts();

 double height = Math.max(inputs.size(), outputs.size()) * 20;

109

 AttributeMap map = new AttributeMap();

 GraphConstants.setBorderColor(map, Color.black);

 GraphConstants.setBackground(map, Color.white);

 GraphConstants.setBounds(map, new Rectangle2D.Double(20, 20, 160,

 height));

 this.getAttributes().applyMap(map);

 }

 /**

 * Create a new opcode vertex from the specified opcode

 *

 * @param o

 * The opcode template to create it from

 * @param graph

 * The graph the vertex belongs to

 */

 public OpcodeVertex(Opcode o, Instrument graph) {

 this(o.getName(), graph, o.getInputs(), o.getOutputs());

 }

 /**

 * Add ports for the Opcode input parameters

 */

 private void addInputPorts() {

 for (OpcodeInputPort p : inputs)

 this.add(p);

 }

 /**

 * Add ports for the Opcode output parameters

 */

 private void addOutputPorts() {

 for (OpcodeOutputPort p : outputs)

 this.add(p);

 }

 /**

 * Distribute the ports evenly along the sides of the vertex

 */

 public void distributePorts() {

 int count = 0;

 float space = 0;

 if (inputs.size() > 0)

 space = GraphConstants.PERMILLE / inputs.size();

 for (OpcodeInputPort p : inputs) {

 Point2D point = new Point2D.Double(0, count * space + space / 2);

 GraphConstants.setOffset(p.getAttributes(), point);

 count++;

 }

 count = 0;

 if (outputs.size() > 0)

 space = GraphConstants.PERMILLE / outputs.size();

 for (OpcodeOutputPort p : outputs) {

 Point2D point = new Point2D.Double(GraphConstants.PERMILLE, count

 * space + space / 2);

 GraphConstants.setOffset(p.getAttributes(), point);

 count++;

 }

 }

 /**

 * Get the opcode lvalues in Csound format

 *

 * @return Full outputs string based on user defined variables

 */

 public String getUserOutputString() {

 String out = "";

 for (OpcodeOutputPort p : outputs) {

 out = out + ", " + p.getUserVar();

 }

 // Cut the last comma off, if there is one

 return (out.length() > 2) ? out.substring(2) : "";

 }

 /**

 * Get a list of input ports on this opcode

 *

 * @return Ordered list of input ports

 */

 public ArrayList<OpcodeInputPort> getInputs() {

 return inputs;

 }

110

 /**

 * Get a list of output ports on this opcode

 *

 * @return Ordered list of output ports

 */

 public ArrayList<OpcodeOutputPort> getOutputs() {

 return outputs;

 }

 /**

 * Get the instrument this vertex is in

 *

 * @return The parent instrument

 */

 public Instrument getInstrument() {

 return graph;

 }

 /**

 * Generate source for this opcode using the default separator (tab)

 *

 * @return Csound source code for the opcode

 */

 public String getCode() {

 return getCode("\t");

 }

 /**

 * Generate source for this opcode

 *

 * @param sep

 * Separator for inputs, opcode name and outputs

 * @return Csound source code for the opcode

 */

 public String getCode(String sep) {

 String inputValues = "";

 for (int i = 0; i < this.getChildCount(); i++) {

 Object port = this.getChildAt(i);

 if (port instanceof OpcodeInputPort) {

 String val = ((OpcodeInputPort) port).getValue();

 if (val.length() > 0)

 inputValues = inputValues + ", " + val;

 }

 }

 // Lose the additional comma-space from before the first item

 if (inputValues.length() > 2)

 inputValues = inputValues.substring(2);

 String outputs = this.getUserOutputString();

 if (outputs.length() > 0)

 outputs = outputs + sep;

 String comment = this.comment;

 if (comment.length() > 0)

 comment = sep + ";" + comment;

 return sep + outputs + this.toString() + sep + inputValues + comment;

 }

 /**

 * Add a custom input at the end

 *

 * @param name

 */

 public void addInput(String name) {

 OpcodeInputPort n = new OpcodeInputPort(name);

 inputs.add(n);

 this.add(n);

 distributePorts();

 }

 /**

 * Add a custom input before the specified item

 *

 * @param name

 * @param position

 */

 public void addInput(String name, int position) {

 OpcodeInputPort n = new OpcodeInputPort(name);

 inputs.add(position, n);

 this.add(n);

 distributePorts();

 }

 /**

 * Add a custom output at the end

 *

111

 * @param name

 */

 public void addOutput(String name) {

 OpcodeOutputPort n = new OpcodeOutputPort(name);

 outputs.add(n); // Add to vertex output list

 this.add(n); // Add to ports

 distributePorts();

 }

 /**

 * Add a custom output before the specified item

 *

 * @param name

 * @param position

 */

 public void addOutput(String name, int position) {

 OpcodeOutputPort n = new OpcodeOutputPort(name);

 outputs.add(position, n);

 this.add(n); // It's not adding properly

 distributePorts();

 }

 /**

 * Remove an optional input

 *

 * @param index

 */

 public void removeInput(int index) {

 // Remove from children

 this.remove(inputs.get(index));

 // Remove from typed port list

 inputs.remove(index);

 // Redistribute remaining ports

 distributePorts();

 }

 /**

 * Remove an optional output

 *

 * @param index

 */

 public void removeOutput(int index) {

 // Remove from children

 this.remove(outputs.get(index));

 // Remove from typed port list

 outputs.remove(index);

 // Redistribute remaining ports

 distributePorts();

 }

 /**

 * Get the comment for the opcode

 *

 * @return The comment

 */

 public String getComment() {

 return comment;

 }

 /**

 * Set the comment for the opcode

 *

 * @param comment

 */

 public void setComment(String comment) {

 this.comment = comment;

 fireChange();

 }

 public void addChangeListener(ChangeListener listener) {

 changeListeners.add(ChangeListener.class, listener);

 }

 public void removeChangeListener(ChangeListener listener) {

 changeListeners.remove(ChangeListener.class, listener);

 }

 protected void fireChange() {

 Object[] listeners = changeListeners.getListenerList();

 int numListeners = listeners.length;

 for (int i = 0; i < numListeners; i += 2) {

 if (listeners[i] == ChangeListener.class)

 ((ChangeListener) listeners[i + 1])

 .stateChanged(new ChangeEvent(this));

 }

 }

}

112

OpcodeVertexView

View and renderer to visualise an opcode vertex on the diagram.

public class OpcodeVertexView extends VertexView {

 protected transient static WrapperRenderer renderer = new

WrapperRenderer();

 /**

 * Creates new VertexView for the specified cell

 *

 * @param arg0

 * a graph cell to create view for

 */

 public OpcodeVertexView(Object arg0) {

 super(arg0);

 }

 public CellViewRenderer getRenderer() {

 return renderer;

 }

 public static class WrapperRenderer extends JPanel implements

 CellViewRenderer {

 private transient static JLabel label = new JLabel();

 private transient static OpcodeVertexRenderer portLabelRenderer = new

OpcodeVertexRenderer();

 /**

 * Cache the current graph for drawing

 */

 transient protected JGraph graph = null;

 /**

 * Cached hasFocus and selected value.

 */

 transient protected boolean hasFocus, selected, preview;

 /** Cached default foreground and default background. */

 transient protected Color defaultForeground, defaultBackground;

 /**

 * Constructs a renderer that may be used to render vertices.

 */

 public WrapperRenderer() {

 super(new BorderLayout());

 this.add(portLabelRenderer, BorderLayout.CENTER);

 defaultForeground = UIManager.getColor("Tree.textForeground");

 defaultBackground = UIManager.getColor("Tree.textBackground");

 }

 public Component getRendererComponent(JGraph graph, CellView view,

 boolean sel, boolean focus, boolean preview) {

 portLabelRenderer.getRendererComponent(graph, view, sel, focus,

 preview);

 // Format

 label.setOpaque(false);

 label.setText(view.getCell().toString());

 label.setVerticalTextPosition(JLabel.CENTER);

 label.setHorizontalTextPosition(JLabel.CENTER);

 setBackground((graph != null) ? graph.getBackground()

 : defaultBackground);

 this.graph = graph;

 this.selected = sel;

 this.preview = preview;

 this.hasFocus = focus;

 return this;

 }

 public Point2D getPerimeterPoint(VertexView view, Point2D source,

 Point2D p) {

 return portLabelRenderer.getPerimeterPoint(view, source, p);

 }

 }

 /**

 * The renderer class for instance view.

 */

 public static class OpcodeVertexRenderer extends VertexRenderer {

 protected CellView vertexView = null;

 protected OpcodeVertex vertex = null;

 protected FontMetrics fontMetrics = null;

 // Margin between port labels and the edge of the vertex

113

 public static transient int PORTLABELSPACING = 8;

 /**

 * The maximum width of a label, any label more than this value in

width

 */

 public static transient int MAXLABELWIDTH = 150;

 public void paint(Graphics g) {

 super.paint(g);

 g.setColor(getForeground());

 paintPortLabels(g);

 }

 public Component getRendererComponent(JGraph graph, CellView view,

 boolean sel, boolean focus, boolean preview) {

 // Finds the ports and install them into the renderer

 Graphics2D g = (Graphics2D) graph.getGraphics();

 fontMetrics = g.getFontMetrics();

 vertex = (OpcodeVertex) view.getCell();

 vertexView = view;

 Component c = super.getRendererComponent(graph, view, sel, focus,

 preview);

 return c;

 }

 /**

 * Draws a String. Its horizontal position

 * <code>x</code> is given and its vertical position is centred on

 * given y

 *

 * @param g

 * a Graphics2D to draw with

 * @param label

 * a String to draw

 * @param x

 * an offset to left edge of the bounding box of vertex

 * @param y

 * an offset to centre of the string

 * @param right -

 * should the co-ordinates refer to the right of the label

 * instead of the left?

 */

 public static void drawPortLabel(Graphics g, String label, double x,

 double y, boolean right) {

 FontMetrics metrics = g.getFontMetrics();

 int sw = metrics.stringWidth(label);

 int sh = metrics.getHeight();

 // Offset to account for the text size

 int offsetX = 0;

 if (!right) {

 // Just space a little from the edge

 offsetX = PORTLABELSPACING;

 } else {

 // Bring the left hand edge back to simulate right align, with

 // the spacing

 offsetX = -sw - PORTLABELSPACING;

 }

 // -4 to centre it vertically about the port

 g.drawString(label, (int) x + offsetX, (int) (y + sh / 2 - 4));

 }

 /**

 * Paints port labels in the view.

 *

 * @param g

 * Graphics2D to draw with

 */

 public void paintPortLabels(Graphics g) {

 // Ports should be drawn in a lighter font

 g.setFont(new Font("sans-serif", Font.PLAIN, 12));

 paintPortLabels(g, vertex.getInputs().toArray(

 new OpcodePort[vertex.getInputs().size()]), false);

 paintPortLabels(g, vertex.getOutputs().toArray(

 new OpcodePort[vertex.getOutputs().size()]), true);

 }

 /**

 * Paint a particular array of ports

 *

 * @param g

 * The graphics subsystem

114

 * @param ports

 * The ports to paint

 * @param right

 * Should these be on the right of the vertex?

 */

 public void paintPortLabels(Graphics g, OpcodePort[] ports,

 boolean right) {

 if (ports.length > 0) {

 Rectangle2D bounds = GraphConstants.getBounds(vertexView

 .getAllAttributes());

 // Get the bounds of the vertex and deduct twice the cell label

 // height plus the vertical buffer distance from it.

 double height = bounds.getHeight();

 // Counter to calculate offsets

 int count = 0;

 float space = GraphConstants.PERMILLE / ports.length;

 // For each port

 for (OpcodePort p : ports) {

 String labelValue;

 if (p instanceof OpcodeOutputPort)

 labelValue = ((OpcodeOutputPort) p).getUserVar();

 else

 labelValue = p.getFormal();

 // Options values show with square brackets

 if (p.isOptional())

 labelValue = "[" + labelValue + "]";

 Point2D offset = new Point2D.Double(

 (right ? GraphConstants.PERMILLE : 0), count

 * space + space / 2);

 double x = 0;

 double y = 0;

 if (offset != null) {

 if (bounds != null) {

 // By x position should be 0 or the width of the

 // vertex

 x = offset.getX() * bounds.getWidth()

 / GraphConstants.PERMILLE;

 // The y position is the proportion of the vertex

 // height available for port label. Remember a bit

 // is reserved either end for the vertex label.

 y = offset.getY() * height

 / GraphConstants.PERMILLE;

 drawPortLabel(g, labelValue, x, y, right);

 count++;

 }

 }

 }

 }

 }

 }

}

115

Parameter

Represents a formal parameter on an opcode definition.

public class Parameter {

 /**

 * Parameter name

 */

 private String name;

 /**

 * Is it optional?

 */

 private boolean optional;

 /**

 * Create a new parameter

 *

 * @param name

 * Formal name of the parameter

 * @param optional

 * Is this parameter optional?

 */

 public Parameter(String name, boolean optional) {

 this.name = name;

 this.optional = optional;

 }

 /**

 * @return Formal name of the parameter

 */

 public String getName() {

 return name;

 }

 /**

 * @return Optional status of the parameter

 */

 public boolean isOptional() {

 return optional;

 }

}

Variable

Contains static validation methods for variables.

public class Variable {

 // Variable validation as per

 // http://www.csounds.com/manual/html/OrchKvar.html

 static boolean isP(String v) {

 return v.matches("p[0-9]+");

 }

 static boolean isI(String v) {

 return v.matches("i[a-zA-Z0-9_]+");

 }

 static boolean isK(String v) {

 return v.matches("k[a-zA-Z0-9_]+");

 }

 static boolean isA(String v) {

 return v.matches("a[a-zA-Z0-9_]+");

 }

 static boolean isW(String v) {

 return v.matches("w[a-zA-Z0-9_]+");

 }

 static boolean isF(String v) {

 return v.matches("f[a-zA-Z0-9_]+");

 }

 static boolean isS(String v) {

 return v.matches("S[a-zA-Z0-9_]+");

 }

 /**

 * Is this variable name valid in a local context

 *

 * @param v

 * The variable to check

 * @return Whether or not it is valid as a local variable

 */

 static boolean isValidLocal(String v) {

116

 return isP(v) || isI(v) || isK(v) || isA(v) || isW(v) || isF(v)

 || isS(v);

 }

 /**

 * Is this variable name valid in a global context

 *

 * @param v

 * The variable to check

 * @return Whether or not it is valid as a global variable

 */

 static boolean isValidGlobal(String v) {

 boolean valid = v.startsWith("g");

 if (valid) {

 String sub = v.substring(1);

 valid = isValidLocal(sub) && !isP(sub) && !isW(sub);

 }

 return valid;

 }

}

PageParser

Ad-hoc parser to extract opcodes from the page nominally located at

http://www.csounds.com/manual/html/MiscQuickref.html

public class PageParser {

 /**

 * Entry point for the Page Parser program to extract an opcode catalogue

 * from the Csound manual

 *

 * @param args

 * Input URI for opcode quick reference page and output

filename,

 * separated by a space

 */

 public static void main(String[] args) {

 if (args.length == 2) {

 String in = args[0];

 String out = args[1];

 PageParser p = new PageParser();

 try {

 System.out.println("Downloading and parsing " + in + "...");

 Hashtable<String, OpcodeGroup> tree = p.parse(in);

 System.out.println("Writing to " + out + "...");

 p.writeXML(tree, out);

 System.out.println("Done");

 } catch (JDOMException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 } else {

 System.out.println("PageParser\n\nUsage:");

 System.out.println("java " + PageParser.class.getCanonicalName()

 + " <inuri> <outfile>\n");

 System.out

 .println("<inuri> URI of the Opcode Quick Reference manual

page to parse");

 System.out.println("<outfile> Filename for the output XML file");

 }

117

 }

 /**

 * Write out an XML file from the tree-structured hashtable

 *

 * @param tree

 * Hashtable with nested opcode groups that form the tree

 * @param outpath

 * Path of local file to write to

 */

 public void writeXML(Hashtable<String, OpcodeGroup> tree, String outpath)

{

 XMLOutputter output = new XMLOutputter();

 Element root = new Element("opcodes");

 Document doc = new Document(root);

 root.setNamespace(Namespace

 .getNamespace("http://people.bath.ac.uk/cjw26/csdiag/opcodes"));

 root.setAttribute("version", "5.09");

 for (OpcodeGroup g : tree.values()) {

 root.addContent(g.getXML());

 }

 output.setFormat(Format.getPrettyFormat());

 File f = new File(outpath);

 try {

 output.output(doc, new FileOutputStream(f));

 } catch (FileNotFoundException e) {

 System.err.println(e.getMessage());

 } catch (IOException e) {

 System.err.println(e.getMessage());

 }

 }

 /**

 * Parse the Opcode quick reference page at the specified URI into a set

of

 * Opcode groups

 *

 * @param uri

 * Source of "opcode quick reference" page

 * @param lookup

 * A reference to a 1 dimensional lookup table for use for A-Z

 * listing

 * @return Hashtable of top level groups keyed by group name

 * @throws JDOMException

 * If the XML does not parse correctly

 * @throws IOException

 * If the file is inaccessible

 */

 public Hashtable<String, OpcodeGroup> parse(String uri,

 Hashtable<String, Opcode> lookup) throws JDOMException, IOException

{

 // Load the XML parser

 SAXBuilder parser = new SAXBuilder();

 // Don't expand entities - there's some pesky nbsps

 // This still doesn't work for some reason

 // parser.setExpandEntities(false);

 Document doc = parser.build(uri);

 // Each opcode is conveniently in a <pre>

 ElementFilter pre = new ElementFilter("pre");

 // And the headers are in

 Filter f = pre.or(new ElementFilter("b"));

 Iterator<Element> it = doc.getDescendants(f);

 boolean opcodesStarted = false;

 // The master array of grouped parsed opcodes

 Hashtable<String, OpcodeGroup> ocgs = new Hashtable<String,

OpcodeGroup>();

 OpcodeGroup currentGroup = null;

 // Iterating over document elements

 while (it.hasNext()) {

 Element e = it.next();

 // Don't start until we see the text Signal Generators

 if (e.getText().contains("Signal Generators")) {

 opcodesStarted = true;

 }

 // Seen a new opcode group

 if (opcodesStarted && e.getName().equals("b")) {

118

 String groupName = e.getTextNormalize().replace(".", "");

 String[] path = groupName.split(":");

 OpcodeGroup tlg;

 // Trim doesn't want to work, so regex replace whitespace

 String name = path[0].replaceAll("\\s$", "");

 if (!ocgs.containsKey(name)) {

 // New top level group

 tlg = new OpcodeGroup(name);

 ocgs.put(name, tlg);

 } else {

 tlg = ocgs.get(name);

 }

 // If we just added the conditional values or math ops, delete

 // them they're not real opcodes

 if (currentGroup != null

 && (currentGroup.getName().contains(

 "Conditional Values") || currentGroup.getName()

 .contains("Arithmetic and Logic Operations")))

 tlg.getSubgroups().remove(currentGroup);

 currentGroup = tlg.addSubgroup(path);

 }

 // Seen an opcode

 if (opcodesStarted && e.getName().equals("pre")) {

 Opcode o = parseLine(e);

 if (o != null) {

 System.out.println(o.getName());

 currentGroup.getMembers().add(o);

 if (lookup != null)

 lookup.put(o.getName(), o);

 }

 }

 }

 return ocgs;

 }

 /**

 * Parse the Opcode quick reference page at the specified URI into a set

of

 * Opcode groups

 *

 * @param uri

 * Source of "opcode quick reference" page

 * @return Hashtable of top level groups keyed by group name

 * @throws JDOMException

 * If the XML does not parse correctly

 * @throws IOException

 * If the file is inaccessible

 */

 public Hashtable<String, OpcodeGroup> parse(String uri)

 throws JDOMException, IOException {

 return parse(uri, null);

 }

 /**

 * Parse one opcode line

 *

 * @param e

 * The HTML element representing the opcode

 * @return An opcode object with parameters set from the line

 */

 protected Opcode parseLine(Element e) {

 Opcode o = new Opcode();

 String outputs = "";

 String inputs = "";

 // Split contents to output, opcode and input

 Iterator<Content> itc = e.getContent().iterator();

 while (itc.hasNext()) {

 Object c = itc.next();

 // First element seen is the <a> with the opcode name

 if (o.getName() == "" && c instanceof Element)

 o.setName(((Element) c).getText().trim());

 // If we see text before the opcode name, it's outputs

 if (o.getName().length() == 0 && c instanceof Text)

 outputs = ((Text) c).getText();

 // If we see text after the opcode name, it's inputs

 if (o.getName().length() > 0 && c instanceof Text)

 inputs = ((Text) c).getText();

119

 }

 inputs = inputs.replace("\\\n", "").trim();

 outputs = outputs.replace("\\\n", "").trim();

 if (inputs.contains("(")) {

 // It's a function

 o = new FunctionOpcode(o.getName());

 } else {

 o.setInputs(parseParams(inputs));

 o.setOutputs(parseParams(outputs));

 }

 return o;

 }

 /**

 * Parse a parameter specification string to parameter list

 *

 * @param s

 * String of parameters from the left or right side of the

opcode

 * name

 * @return A representative List of Parameter objects

 */

 protected List<Parameter> parseParams(String s) {

 ArrayList<Parameter> params = new ArrayList<Parameter>();

 int bracketpos = s.indexOf("[");

 boolean optional = false;

 Pattern param = Pattern.compile("[A-Za-z0-9]+");

 Matcher m = param.matcher(s);

 // Matches

 while (m.find()) {

 // If the optional params have started

 if (m.start() > bracketpos && bracketpos > -1)

 optional = true;

 params.add(new Parameter(m.group().trim(), optional));

 }

 // Pattern to match optional parameters (things in square brackets)

 // Superseded by above adhoc method since all optionals are together

in

 // the list

 /* Pattern optp = Pattern.compile("\\[([^\\]]+)\\]"); */

 return params;

 }

}

120

A5 Usage Instructions
This section provides usage instructions for the main CsDiag program and the PageParser.

The supplied disc contains, along with the full source code in the src directory, four Java

Archive (JAR) files in the bin directory. These are required to run precompiled versions of

the tools and must be present together in the same directory:

 csdiag.jar – Main diagrams program, executable JAR

 pageparser.jar – Csound manual to opcodes.xml parser

 jdom.jar – JDOM XML parsing library

 jgraph.jar – JGraph graph drawing library

With the files in place, CsDiag can be started by running:

java –jar csdiag.jar

The opcodes.xml file from the CD (or an equivalent generated with PageParser) should

be located in the working directory to avoid an error.

The command to run PageParser has the following syntax:

java –jar pageparser.jar <input url> <output path>

The input URL should normally be:

 http://www.csounds.com/manual/html/MiscQuickref.html

which is the location of the canonical manual.

The output path can be any local path (although paths with spaces are not accepted). Recall,

though that it is necessary for the output file to be named opcodes.xml in the CsDiag

working directory to be usable.

121

A6 Project Poster

Diagrammatic Construction of Csound Instruments
Chris Ware

Supervisor: Prof. John Fitch

An established practice among users and

manufacturers of hardware synthesizers is

the drawing of diagrams to record design

and configuration. This is especially true of

modular synthesizers where the musician

connects up the components themselves.

Csound is a software implementation of a

modular synthesizer [1], yet natively it is

programmed using an assembler-like

language. This presents an opportunity for

software which converts between the two

representations, improving the accessibility

of Csound.

This project aims to work incrementally

towards a full solution where instruments

can be constructed using both diagrams and

code simultaneously. It will bridge the gap

between these similarly to tools in other

domains such as database and web design.

We investigated the de facto diagramming

conventions for Csound and also language

structure and coding style. Well known

publications in the field such as [1], [2]

have established a trend of representing

Csound opcodes as blocks in a flow

diagram. Lines connect input and output

terminals on the blocks to show assignment

of variables to parameters. This directly

influences our interface design.

The current coverage of this area in

related programs (such as Patchwork and

Blue) was reviewed, and of 11 critiqued

none satisfied all the desirable properties:

Capable of editing instruments

Diagram-to-code generation

Code-to-diagram generation

Being cross platform, open source and

up to date with Csound developments

We have implemented a modern, flexible and

extensible GUI allowing interactive graphical design

of instruments and code generation for the full set of

Csound 5 opcodes. The ability to generate diagrams

from existing orchestra code remains to be added,

however. This is suggested as a future project, now

that a suitable foundation is in place. Recent

solutions such as QuteCsound [4] can generate

diagrams but these are not interactive, so a

convergence of these two functions remains to be

achieved.

Our program is based on the typical insert, drag, drop and resize paradigm used in almost

every drawing package (making use of the JGraph library). Users add blocks representing

opcodes to the workspace and connect them together by dragging between output and input

―ports‖. The latter represents the assignment of outputs to variables to inputs (Fig 2).

Opcode Acquisition
A consideration with the above mechanism is how the

user selects the opcode they wish to add to the diagram,

and indeed how we actually make every possible opcode

(of which there are hundreds) available in the UI. We

have a novel solution: parsing the Csound manual,

specifically the ―Opcode Quick Reference‖ [3]. This

obtains not only the formal parameters for each opcode

(from the canonical definition) but also a hierarchical

categorisation of opcodes based on the headings in the

manual. This transfers directly to the menus (Fig 3). It is

also therefore easy to extend the program to handle new

opcodes as they are created.

Once a diagram has been created, orchestra code can be generated automatically by

interrogating the graph structure. This seems trivial—for each opcode we have its name, the

name of any output variables, and can trace edges to find the value ―connected‖ to any input

port. However, there are some complicating factors to consider:

Expressions

Often the values assigned to the inputs of an opcode are more

complex than just the output of another opcode. Values may

be combined by arithmetic operations or transformed by

functions. It is cumbersome to build such expressions using

only diagram components so we implement the properties box

(Fig 4) where an expression can be entered as text. The

program will perform rudimentary parsing and automatically

connect the relevant blocks on the diagram together to reflect

the variables used in the expression.

Code Order
Ordering the generated statements requires care to ensure

variables are defined with the correct values before they are

referenced. Originally a backwards chaining solution was

planned, working backward from opcodes without output variables and filling in

dependencies. However this is problematic if variables are ever redefined in terms of

themselves, so we order the code based on physical layout (leftmost blocks generate first).

Figure 3: Opcode categories from the manual

parsed to give the menu structure

Figure 4: Properties box for more

complex editing of opcode blocks

Department of
Computer Science

1. Introduction

2. Background

3. Interactive Diagramming Abstract
Csound is a powerful music programming

language, capable of emulating any

commercial synthesizer. However it is also

considered difficult for musicians without

programming experience to use. Here, we

specify and implement a graphical front

end enabling instruments to be constructed

as diagrams. Usable Csound code can then

be generated from these diagrams. We also

lay the foundations for the reverse process:

generation of diagrams from existing code.

4. Code Generation

Figure 2: Incomplete diagram with five opcodes. Arrows connect some

ports, indicating use of an output variable as a parameter value.

5. Conclusions and Further Work

Figure 1: Example of a

simple synthesizer diagram

References
1. Boulanger, Richard (Ed). The Csound

Book. Cambridge, Massachusetts :

MIT Press, 2000. 0262522616.

2. Gather, John-Philipp. Amsterdam

Catalog of Csound Computer

Instruments. Buffalo : University at

Buffalo, 1995.

3. Vercoe, Barry et al. The Canonical

Csound Reference Manual.

Cambridge: MIT, 2008.

4. Cabrera, Andrés. QuteCsound.

http://qutecsound.sourceforge.net/

	Introduction
	Background
	Problem Description

	Literature Survey
	Introduction
	Csound Orchestra Design
	Interface/Drawing Conventions
	Hardware Synthesizers & Software Emulation
	Block Diagrams

	Current GUI Implementations
	Winsound
	Csound5GUI
	CsoundX
	Blue
	Cseditor
	FLTK Widgets and GUI Controllers
	Patchwork
	Visual Orchestra
	Cabel
	WinXound.Net
	QuteCsound

	Csound Language
	Language Structure
	CsoundXML

	Diagramming Tools
	Dia
	Shapes
	File Format
	Python Scripting

	Microsoft Visio
	JGraph
	Graphviz
	Crocodile Clips

	GUI Libraries
	Java
	.NET
	GTK+
	Qt
	FLTK
	OpenGL

	Summary and Conclusions of Literature Survey

	Requirements
	Introduction
	Functional Requirements
	Mandatory Requirements
	Recommended Requirements
	Optional

	Non-functional Requirements
	Summary and Discussion of Requirements

	Design
	Introduction of Concepts
	Orchestra
	Instrument
	Opcode
	Variable
	Parameter
	Expression
	Comment

	Selection of Diagram Framework
	Dia
	Design-Time Shape Editing
	Editable Text Regions
	Geometric Considerations
	Real-time Code Generation
	File Format Expressiveness

	JGraph
	The JGraph Class
	Vertices and Views
	Edges
	Serialization
	JGraphX

	Development Methodology
	Graph Model
	Opcode Acquisition
	Representation
	Acquisition
	Presentation

	Orchestras
	Detailed Editing and Connection
	Variable Length Parameter Lists
	Input Expression Parsing, Validation and Connection
	Output Naming and Validation
	User Editing of Connections

	Code Generation
	Saving/Loading
	Parsing and Import
	Parsing Orchestra Code
	Automated Diagram Layout

	Detailed Design and Implementation
	Language and Tools
	High Level Overview
	Opcode Loader and Format
	Structure and Storage
	Parsing of Csound Manual
	parse
	parseLine
	parseParams

	User Interface
	Editor
	Instrument Workspace
	DialogProperties

	Vertices, Ports and their Views
	Expression Parsing and Connection
	extractVars
	Variable Validation
	refreshConnections
	Edge Deletion
	Edge Connection

	Code Generation
	Serialisation
	Code Parsing and Import
	Image Rendering

	Testing and Evaluation
	Testing Strategy and Plan
	Known Shortcomings of Prototype Implementation
	Analysis of Results
	Port Display and Refresh
	Opcode Catalogue Import
	Deletion of Instruments
	Graph Model and Code Generation Improvements
	Non-Functional Considerations
	Development Model

	Future Extensions
	Online Help/Manual Pages
	Saveable Groups/User Defined Opcodes (UDO)
	Control Widgets
	Code Verification/Auditioning with Csound
	Writing into CSD files
	SVG Output

	Conclusions
	Bibliography
	Appendices
	Extract of opcodes.xml File
	User Interface Designs
	Test Plan and Results
	Source Code Listings
	Usage Instructions
	Project Poster

