
Design Tools for Rapid Prototyping of Embedded 
Controllers 

Manuel Almeida, Bruno Pimentel, Valery Sklyarov, Iouliia Skliarova 
Department of Electronics, Telecommunications and Informatics, IEETA 

University of Aveiro, 3810-193 Aveiro, Portugal 
manuel.almeida@ieeta.pt, pimentel@ieeta.pt, skl@det.ua.pt, iouliia@det.ua.pt  

Abstract 
Electronic devices used in the scope of robotics and embedded systems have to be adapted to numerous external 
events and many of them might be unknown in advance. This application-specific particularity requires 
environment-specific adaptation and frequent changes in the pre-defined behaviour. In general, all feasible 
functionality cannot be incorporated in the device during the design phase, i.e. some eventual modifications are 
postponed until physical tests in real working conditions. Even after executing physical tests, some unexpected 
events (requiring the appropriate device reaction) might appear. Thus, either sophisticated adaptable electronics 
has to be implemented or the device has to be able to communicate with another more intelligent host computer, 
which would assist to cope with emerging problems. The paper suggests tools that provide support for dealing 
with the considered situations. This is achieved through the following: 1) FPGA-based prototyping core board 
(reconfigurable platform) establishing both wired and wireless interactions with host computers; 2) Design 
templates and libraries for interacting with standard peripheral equipment and widely used components for 
different types of control and computations; 3) Software providing support for interactions with the core board; 
4) Intellectual property cores for solving a number of optimization problems common to many engineering 
applications.            
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1 Introduction 
Modern Field Programmable Gate Arrays (FPGA) are 
composed of programmable logic cells, memories, 
arithmetical devices, processors, circuits for advanced 
synchronization, etc. The majority of the FPGA 
components can change their functionality and 
interconnections between the components can 
arbitrarily be established through reprogramming the 
relevant chip. This opportunity opens practically 
unlimited capabilities of FPGA-based systems for 
rapid prototyping, which is a demanded technique for 
robots and embedded systems.     

Let us summarize the most important basic features of 
FPGA-based systems: 

• The implemented circuit can be optimized for a 
particular application. This permits to reduce the 
number of the necessary clock cycles, to execute 
(as many as required) operations in parallel, to 
choose the most appropriate device architecture, 
etc.; 

• Although a clock frequency of FPGAs is much 
lower than a clock frequency of ASICs we can 
benefit from reconfiguration and practically 
unlimited prototyping facilities, which, in 
particular, allow different competitive and 
alternative implementations and algorithms to be 
examined and compared; 

• Since FPGA-based systems might be configured 
not only statically but also dynamically, we can 
construct virtual systems than might require more 
resources than the resources available on an 
FPGA chip. Indeed, since dynamic 
reconfiguration makes it possible to change the 
functionality of FPGA during run time, we can 
partition a complex system into subsystems 
functioning sequentially. As soon as one 
subsystem has completed the required sub-task, 
hardware for the subsequent subsystem can be 
provided through reconfiguration of the same 
FPGA; 

• The design lead time for FPGA-based systems is 
much shorter than for ASICs. 

Numerous advantages of FPGAs make reconfigurable 
platforms an ideal target for modern embedded 
systems that combine high computation demands with 
dynamic task sets [1]. A number of FPGA-based 
prototyping boards have been manufactured and they 
enable the designers to verify alternative and 
competitive engineering solutions. Using such boards 
simplifies significantly the design of new FPGA-
based applications and allows the development lead 
time to be shortened. Very often we can take full 
advantage range of hardware capabilities of 
prototyping boards if the relevant design tools are 
available, namely design templates, design libraries 
and intellectual property (IP) cores.  



Note that a large number of available FPGA-based 
prototyping systems makes it difficult to find the best 
choice for a particular application and, as a rule, it is 
necessary to find a compromise between the required 
hardware/software resources and the price. Taking 
into account the fact that the majority of prototyping 
boards/systems include many typical components 
(such as memories, liquid crystal displays - LCDs, 
standard interfaces, etc.) it is very difficult to find a 
board optimally targeted to the particular application, 
i.e. such a board that contains only those elements that 
are required for a particular design problem and no 
other components, which just increase the cost and 
occupy the space. The paper suggests a technique 
permitting to overcome this problem, which has been 
achieved through the design of an extendable set of 
hardware/software tools easily retargeted to different 
engineering application areas. Any particular problem 
can be solved using just the selected subset from the 
considered set, which includes only the needed 
hardware/software components and excludes all the 
other available components. In case if the desired 
components are not available they can be constructed 
easily.  

In general, the suggested tools possess the following 
distinctive features: 

• The core FPGA can be configured using wired 
(USB) and, in future, wireless (Bluetooth) 
interfaces, which makes the prototyping system 
ideal for remote applications, such as that are 
needed for robotics and embedded systems; 

• The developed software/hardware components 
provide support for both dynamic onboard 
reconfiguration and remote wireless 
reconfiguration and/or interaction; 

• The design process is supported by various 
supplied tools, such as hardware description 
language (VHDL, in particular) templates, design 
libraries and IP cores. Some of them are targeted 
to the remote control and the reconfigurability. 

The remainder of this paper is organized in six 
sections. Section 2 describes FPGA-based embedded 
controllers. Section 3 considers the developed FPGA-
based prototyping system. Section 4 shows how 
remote interactions with the board can be established.  
Sections 5, 6 present the developed software tools, 
hardware and language templates, IP cores and design 
libraries. The conclusion is in section 7. 

2 FPGA-based Embedded 
Controllers   

The main objective of the proposed tools is illustrated 
in figures 1 and 2. We would like to divide the design 
process of an embedded controller into two stages. 
The first stage is verification and debugging of the 
developed circuit at different levels of abstraction, 
namely: 

• Simulation in computer using general purpose 
and application-specific software; 

• Hardware/software co-simulation [2] in such a 
way that the developed FPGA-based controller 
interacts with virtual sensors and actuators 
displayed on PC monitor screen (see figure 1) 
and their activity (much like the activity of 
analogous sensors and actuators in physical 
systems) is supported by the relevant software 
models. 

• Using hardware libraries that enable the designers 
to communicate with typical peripheral devices 
(see the right-hand part of figure 1). This is very 
helpful for debugging purposes. 
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Figure 1: Using wired interfaces for testing and 
debugging purposes 

After the controller has been tested it can be 
connected to the proper physical system (see figure 
2). At this stage we can use the same prototyping 
board replacing the USB interface block with a 
Bluetooth wireless interface block, which can be 
inserted in the same socket. After that we still have 
support for debugging through remote interactions. 
This permits many useful functions to be 
implemented, such as:  

• Reading and verifying the controller’s states; 

• Remote reconfiguration; 

• Intellectual assistance from the host computer, 
which possesses more powerful hardware/ 
software resources; 

• Hardware support for virtual capabilities allowing 
the controller to be constructed on an FPGA that 
does not have sufficient hardware resources to 
accommodate all the required functionality, etc.  

In order to implement the considered technique many 
different software/hardware components have been 
developed, namely: 

• Drivers for USB/Bluetooth interfaces; 

• Software supporting functions, illustrated in 
figures 1 and 2; 



• Design templates permitting dynamically 
reconfigurable circuits to be constructed; 

• Design libraries to support interfaces with typical 
peripheral devices (see figure 1); 

• IP cores for solving numerous optimization 
problems formulated over binary and ternary 
matrices; 

• Hardware/software tools for data compression 
and decompression. 
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Figure 2: Using wireless interfaces 

3 FPGA-based Prototyping System 
The basic architecture of the developed prototyping 
system (see figure 3) is organized in such a way that it 
permits to provide the following features: 

• Powering and programming the board from PC 
through USB port. If necessary an external power 
source can also be used; 

• Keeping bitstreams for the FPGA in a flash 
memory, which permits to use the board as an 
autonomous device without any connection to PC 
and only external powering has to be provided; 

• Keeping more than one bitstream in the flash 
memory for dynamic reconfiguration of FPGA. 
The capacity of the selected flash memory 
permits to store up to 8 bitstreams. This is very 
practical not only for run-time reconfiguration 
but also for verification of different types of 
alternative and competitive implementations; 

• User-friendly software interface for programming 
the board and data exchange with PC; 

• Data exchange with any other device supporting 
standard USB port; 

• Extension connectors for interacting with 
application-specific externally connected devices. 

In general, this architecture presents further 
improvements over the previously designed 
prototyping system [3].  

The flash memory is divided into three logical 
sections, as shown in figure 4. The first section 
contains a bitstream that has to be pre-loaded to 
FPGA in order to allow the following set of 
operations: 1) transferring an application-specific 
bitstream to the second section; 2) erasing flash 
memory sectors; 3) transferring data from a host 
device to the third section of the flash memory and 
vice versa. This technique has already been used in 
Trenz prototyping boards [4]. The second logical 
section is used to store an application-specific 
bitstream for subsequent quick loading into the FPGA 
(using the “project” pushbutton available on the 
board). The third memory section enables the 
designer to store additional bitstreams for configuring 
the FPGA or any arbitrary data such as bitmaps for a 
VGA monitor. 
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Figure 3: Basic architecture of the developed 

prototyping system 
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Figure 4: Dividing the flash memory into logical 

sections 

To download a bitstream to the first logical section of 
the flash memory a JTAG connector [5] is employed. 
JTAG mode has to be used just once during the board 
manufacturing. After that, the developed software 
permits to store new bitstreams if required. 

The CPLD (see figure 3) is needed for controlling the 
flash memory and pushbuttons assembled on the 
board because during configuration the FPGA cannot 



execute these functions. The CPLD generates also an 
initial reset signal for FPGA circuits as soon as a new 
configuration is completed. 

The board contains a powerful FPGA of Xilinx 
Spartan-3 family, namely XC3S400 [5], based on 
90nm technology, with 400000 system gates, 56Kb of 
distributed RAM, 288Kb of block RAM, 16 
multipliers and 264 inputs/outputs. For shortening the 
reconfiguration time, a parallel mode has been 
chosen. 

Extension connectors permit to attach any 
application-specific external hardware, which enables 
the designer to optimize resources, to improve 
performance and to extend the functionality (see 
figure 1). General-purpose extensions make possible 
to construct embedded systems interacting with the 
desired peripheral devices. 

The USB controller (version 2.0) provides data 
exchange with PC for downloading FPGA bitstreams 
and interactions between the FPGA and external 
hardware. 

4 Remote Functions 
By replacing the USB controller with a Bluetooth 
module, the FPGA can be configured remotely. The 
bitstream stored in the first section of the flash 
memory, which is used for configuration purposes, 
automatically identifies the module attached to the 
socket and changes its behaviour accordingly. In 
contrast to parallel mode provided for USB interface, 
the Bluetooth module functions in a serial mode, (8 
bit data, 115200 baud-rate, no parity bit and one stop 
bit). 

The developed software tools [3] (see section 5 for 
details) have been modified in order to provide 
support for the new functionality based on serial 
interface for the constructed Bluetooth module. From 
the end-user point of view this functionality is exactly 
the same as for the USB module and the difference is 
just in an opportunity of a remote interaction with the 
board instead of a wired interaction. 

Note that an external power source is required if 
Bluetooth module is used. A small battery-based 
power source can be supplied to provide the required 
portability. 

5 Software Tools 
A software program called PBM (Prototyping Board 
Manager) has been developed and it provides a 
convenient user-friendly interface (partially 
demonstrated in figure 5) and debugging tools. 

The most important function of PBM is managing a 
user bitstream in the second section for quick loading 
into the FPGA (by pressing the “project” button). This 
technique is the most appropriate to integrate design 
workflows for single-bitstream projects. 

PBM also features a terminal window for run-time 
data exchange between the user and the prototyping 
system, thus constituting an integrated input/output 
peripheral, which is ideal for project monitoring and 
testing. 
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Figure 5: An example of interactions between 

software and hardware 

A more advanced function allows to send multiple 
bitstreams and to store them in the third section of the 
flash memory (see figure 4). This function is 
appropriate for three different purposes: 

1. Autonomous experiments with different single- 
bitstream projects without connection to a host 
computer. In particular, this mode can be used to 
compare and validate alternative/competitive 
implementations. The third section of the flash 
memory is logically subdivided in 6 pre-defined 
sectors for storing bitstreams. Selecting the 
desired sector is achieved with the aid of a simple 
additional switch attached through extension 
connectors, which indicates the proper sector for 
the CPLD. The same function can be executed 
remotely through wireless interface.  

2. FPGA dynamic reconfiguration, using techniques 
such as those described in [6,7]. These techniques 
permit to implement circuits that require more 
resources than the resources available in the 
FPGA through run-time reconfiguration. 

3. Programming FPGAs installed on additional 
extension boards. In this case, the core FPGA is 
considered to be a controller (manager) for a run-
time reconfigurable system, which is composed 
of multiple FPGAs. 

The software application includes a user manual in 
English and in Portuguese languages (also available 
online [8]) which gives detailed information on how 
to take full advantage of all the available 
functionality. 

In order to be able to work with PBM, the user must 
first press the board’s “configuration” button allowing 
to load the bitstream from the first section of the flash 
memory into the FPGA. This bitstream configures the 
FPGA to implement a control circuit in accordance 
with the desired protocol (either USB or Bluetooth), 
which is automatically recognized by PBM. Each 
function available for the user generates a sequence of 
basic operations supported by this protocol, such as: 



erase a sector, read from pre-specified range of 
addresses, write a sequence of bytes, etc. 

Table 1 presents the average time for performing 
some of the tasks listed above using the USB 
protocol. Note that a) each sector has 64 KB, b) 
writing operations time includes the time for erasing 
the corresponding sectors and c) writing a bitstream 
involves 4 sectors. Table 1 demonstrates that the 
developed PBM is faster than the tools [4]. 

Table 1: Average time for executing PBM 
functions 

Function Average time (s) 
Erase a sector 0.7 
Read a sector 0.4 
Write a sector 1.5 
Write a bitstream 5.5 

 

In order to allow PBM to be used with future 
prototyping hardware, some design guidelines have 
been established, which guarantee future 
compatibility. The set of guidelines covers 3 scopes: 
board architecture, configuration bitstream and 
board’s specification file. The first relates to the board 
construction and hardware properties; the second, to 
the protocol employed to communicate with the 
application; the last one applies to the file containing 
information about the board allowing PBM to manage 
bitstreams and data transfers correctly.  

PBM allows not only to download user bitstreams but 
also to update the configuration (system) bitstream 
stored in the first section of the flash memory and 
providing interface between the PBM and the 
prototyping system. Reloading the system bitstream is 
required very rarely just in the case if either flash 
memory contents has been damaged or a new version 
of PBM is launched. 

From figure 5 we can see that the developed software 
can collaborate with commercial CAD systems in 
such a way that PBM supplies all kinds of low-level 
functionality, device drivers, interface and debugging 
facilities and CAD systems make it possible FPGA 
based circuits to be designed. 

For example, user projects can completely be 
managed in Xilinx ISE [5] or in any similar 
environment, which finally generates a bitstream that 
is ready for downloading to FPGA. System-level 
specification tools (such as Celoxica DK design suite 
[9]) can also be used. For instance, in figure 5 the 
design suite of Celoxica translates a Handel-C project 
description to an electronic design interchange format 
(EDIF) file, which is further converted in ISE to a 
bitstream for the FPGA. 

It is also possible to develop application-specific 
software which will communicate directly with the 
board (see figure 5), i.e. without using PBM. This 
possibility is useful to build solutions that require 

collaboration between software and hardware 
components, such as co-processing systems and 
portable devices with computer-based maintenance. 

6 Templates, Design Libraries and 
IP Cores 

Basically, templates, design libraries and IP cores can 
be taken from the previously developed tools for other 
prototyping boards namely TE-XC2Se [4], RC100, 
RC200 [9] and ADM-XPL PCI [10]. Thus, this 
section reviews the previous authors’ results and 
shows how they can be adapted to the new 
prototyping platform. 

The tools proposed in [11] include reusable 
specifications of hardware components (modules) that 
have been developed for two types of CAD 
environments; Xilinx ISE [5] and Celoxica DK [9]. 
The components can be employed to implement both 
application-specific blocks for optimization purposes 
and a number of standard interfaces that are very 
useful for interaction and data exchange with devices 
attached to the FPGA, such as LCD and touch panels, 
bus controllers, etc. (see figure 1). The designed 
modules can be easily integrated into any application-
specific digital system and used for visualizing the 
results, fast data transfer, debugging of internal sub-
circuits, etc. They were constructed in such a way that 
their functionality can be either fixed or modifiable 
(both statically and dynamically). The latter capability 
was provided with the aid of re-loadable RAM-based 
blocks. To illustrate the capabilities of the tools 
suggested, four design examples were discussed in 
[11]. 

There are three following types of reusable 
components that have been developed (based on the 
previous results) for the new reconfigurable platform: 

1. Hardware and VHDL templates. A hardware 
template is a circuit with pre-defined connections 
between all primarily components. The 
functionality of the circuit can be customized 
through reconfiguration of the alterable circuit 
blocks, which are RAM blocks. An example of 
such circuit is given in [12]. VHDL templates are 
considered to be skeletal code fragments 
(described in a hardware description language, 
namely in VHDL), which can easily be 
customized for particular functionality. They are 
used much like language templates supplied with 
Xilinx ISE [5]. An example of VHDL template 
for a hierarchical finite state machine is given in 
[13]. 

2. Design libraries, which are considered to be 
fragments of parameterizable VHDL code, which 
can be inserted to any project requiring the 
respective facilities (for example, requiring USB 
or RS232 serial communication). VHDL libraries 
of such type have been developed for many 



standard interfaces and peripheral devices, such 
as RS232, VGA, mouse, keyboard, static RAM, 
flash RAM, etc.  Parametrization has been 
provided through VHDL generic and generate 
statements. 

3. IP cores have been implemented for matrix based 
optimization (1) and compression/decompression 
(2) algorithms, which are often required for 
robotics and embedded applications. The first 
group (1) of algorithms permits to solve various 
problems over binary and ternary matrices, which 
include matrix covering [14], Boolean 
satisfiability [15], graph colouring, etc. These 
tasks are very important for many engineering 
applications [16,17]). The second group (2) of 
algorithms makes possible the volume of 
transmitted data between a host computer and the 
prototyping board to be reduced. For such 
purposes methods described in [18] have been 
employed. 

7 Conclusion 
The paper suggests tools enabling the designers of 
electronic devices to simplify many synthesis and 
verification problems. They include: 1) the core 
prototyping system (CPS); 2) CPS-oriented software; 
3) design templates, design libraries and IP cores for 
solving optimization problems over binary/ternary 
matrices and for data compression/decompression.       
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