
Design Tools for Rapid Prototyping of Embedded
Controllers

Manuel Almeida, Bruno Pimentel, Valery Sklyarov, Iouliia Skliarova
Department of Electronics, Telecommunications and Informatics, IEETA

University of Aveiro, 3810-193 Aveiro, Portugal
manuel.almeida@ieeta.pt, pimentel@ieeta.pt, skl@det.ua.pt, iouliia@det.ua.pt

Abstract
Electronic devices used in the scope of robotics and embedded systems have to be adapted to numerous external
events and many of them might be unknown in advance. This application-specific particularity requires
environment-specific adaptation and frequent changes in the pre-defined behaviour. In general, all feasible
functionality cannot be incorporated in the device during the design phase, i.e. some eventual modifications are
postponed until physical tests in real working conditions. Even after executing physical tests, some unexpected
events (requiring the appropriate device reaction) might appear. Thus, either sophisticated adaptable electronics
has to be implemented or the device has to be able to communicate with another more intelligent host computer,
which would assist to cope with emerging problems. The paper suggests tools that provide support for dealing
with the considered situations. This is achieved through the following: 1) FPGA-based prototyping core board
(reconfigurable platform) establishing both wired and wireless interactions with host computers; 2) Design
templates and libraries for interacting with standard peripheral equipment and widely used components for
different types of control and computations; 3) Software providing support for interactions with the core board;
4) Intellectual property cores for solving a number of optimization problems common to many engineering
applications.

Keywords: FPGA, prototyping, VHDL templates, design library, reconfigurable systems, remote
configuration

1 Introduction
Modern Field Programmable Gate Arrays (FPGA) are
composed of programmable logic cells, memories,
arithmetical devices, processors, circuits for advanced
synchronization, etc. The majority of the FPGA
components can change their functionality and
interconnections between the components can
arbitrarily be established through reprogramming the
relevant chip. This opportunity opens practically
unlimited capabilities of FPGA-based systems for
rapid prototyping, which is a demanded technique for
robots and embedded systems.

Let us summarize the most important basic features of
FPGA-based systems:

• The implemented circuit can be optimized for a
particular application. This permits to reduce the
number of the necessary clock cycles, to execute
(as many as required) operations in parallel, to
choose the most appropriate device architecture,
etc.;

• Although a clock frequency of FPGAs is much
lower than a clock frequency of ASICs we can
benefit from reconfiguration and practically
unlimited prototyping facilities, which, in
particular, allow different competitive and
alternative implementations and algorithms to be
examined and compared;

• Since FPGA-based systems might be configured
not only statically but also dynamically, we can
construct virtual systems than might require more
resources than the resources available on an
FPGA chip. Indeed, since dynamic
reconfiguration makes it possible to change the
functionality of FPGA during run time, we can
partition a complex system into subsystems
functioning sequentially. As soon as one
subsystem has completed the required sub-task,
hardware for the subsequent subsystem can be
provided through reconfiguration of the same
FPGA;

• The design lead time for FPGA-based systems is
much shorter than for ASICs.

Numerous advantages of FPGAs make reconfigurable
platforms an ideal target for modern embedded
systems that combine high computation demands with
dynamic task sets [1]. A number of FPGA-based
prototyping boards have been manufactured and they
enable the designers to verify alternative and
competitive engineering solutions. Using such boards
simplifies significantly the design of new FPGA-
based applications and allows the development lead
time to be shortened. Very often we can take full
advantage range of hardware capabilities of
prototyping boards if the relevant design tools are
available, namely design templates, design libraries
and intellectual property (IP) cores.

Note that a large number of available FPGA-based
prototyping systems makes it difficult to find the best
choice for a particular application and, as a rule, it is
necessary to find a compromise between the required
hardware/software resources and the price. Taking
into account the fact that the majority of prototyping
boards/systems include many typical components
(such as memories, liquid crystal displays - LCDs,
standard interfaces, etc.) it is very difficult to find a
board optimally targeted to the particular application,
i.e. such a board that contains only those elements that
are required for a particular design problem and no
other components, which just increase the cost and
occupy the space. The paper suggests a technique
permitting to overcome this problem, which has been
achieved through the design of an extendable set of
hardware/software tools easily retargeted to different
engineering application areas. Any particular problem
can be solved using just the selected subset from the
considered set, which includes only the needed
hardware/software components and excludes all the
other available components. In case if the desired
components are not available they can be constructed
easily.

In general, the suggested tools possess the following
distinctive features:

• The core FPGA can be configured using wired
(USB) and, in future, wireless (Bluetooth)
interfaces, which makes the prototyping system
ideal for remote applications, such as that are
needed for robotics and embedded systems;

• The developed software/hardware components
provide support for both dynamic onboard
reconfiguration and remote wireless
reconfiguration and/or interaction;

• The design process is supported by various
supplied tools, such as hardware description
language (VHDL, in particular) templates, design
libraries and IP cores. Some of them are targeted
to the remote control and the reconfigurability.

The remainder of this paper is organized in six
sections. Section 2 describes FPGA-based embedded
controllers. Section 3 considers the developed FPGA-
based prototyping system. Section 4 shows how
remote interactions with the board can be established.
Sections 5, 6 present the developed software tools,
hardware and language templates, IP cores and design
libraries. The conclusion is in section 7.

2 FPGA-based Embedded
Controllers

The main objective of the proposed tools is illustrated
in figures 1 and 2. We would like to divide the design
process of an embedded controller into two stages.
The first stage is verification and debugging of the
developed circuit at different levels of abstraction,
namely:

• Simulation in computer using general purpose
and application-specific software;

• Hardware/software co-simulation [2] in such a
way that the developed FPGA-based controller
interacts with virtual sensors and actuators
displayed on PC monitor screen (see figure 1)
and their activity (much like the activity of
analogous sensors and actuators in physical
systems) is supported by the relevant software
models.

• Using hardware libraries that enable the designers
to communicate with typical peripheral devices
(see the right-hand part of figure 1). This is very
helpful for debugging purposes.

interface with PC

USB module
Socket

Extension hardware for
interactions with sensors

and actuators

Simulation of an execution
unit in a virtual mode on PC

monitor screen

Figure 1: Using wired interfaces for testing and
debugging purposes

After the controller has been tested it can be
connected to the proper physical system (see figure
2). At this stage we can use the same prototyping
board replacing the USB interface block with a
Bluetooth wireless interface block, which can be
inserted in the same socket. After that we still have
support for debugging through remote interactions.
This permits many useful functions to be
implemented, such as:

• Reading and verifying the controller’s states;

• Remote reconfiguration;

• Intellectual assistance from the host computer,
which possesses more powerful hardware/
software resources;

• Hardware support for virtual capabilities allowing
the controller to be constructed on an FPGA that
does not have sufficient hardware resources to
accommodate all the required functionality, etc.

In order to implement the considered technique many
different software/hardware components have been
developed, namely:

• Drivers for USB/Bluetooth interfaces;

• Software supporting functions, illustrated in
figures 1 and 2;

• Design templates permitting dynamically
reconfigurable circuits to be constructed;

• Design libraries to support interfaces with typical
peripheral devices (see figure 1);

• IP cores for solving numerous optimization
problems formulated over binary and ternary
matrices;

• Hardware/software tools for data compression
and decompression.

Bluetooth module

Socket

Embedded
controller

Wireless
communication

Bluetooth module

Socket

Embedded
controller

Wireless
communication

Figure 2: Using wireless interfaces

3 FPGA-based Prototyping System
The basic architecture of the developed prototyping
system (see figure 3) is organized in such a way that it
permits to provide the following features:

• Powering and programming the board from PC
through USB port. If necessary an external power
source can also be used;

• Keeping bitstreams for the FPGA in a flash
memory, which permits to use the board as an
autonomous device without any connection to PC
and only external powering has to be provided;

• Keeping more than one bitstream in the flash
memory for dynamic reconfiguration of FPGA.
The capacity of the selected flash memory
permits to store up to 8 bitstreams. This is very
practical not only for run-time reconfiguration
but also for verification of different types of
alternative and competitive implementations;

• User-friendly software interface for programming
the board and data exchange with PC;

• Data exchange with any other device supporting
standard USB port;

• Extension connectors for interacting with
application-specific externally connected devices.

In general, this architecture presents further
improvements over the previously designed
prototyping system [3].

The flash memory is divided into three logical
sections, as shown in figure 4. The first section
contains a bitstream that has to be pre-loaded to
FPGA in order to allow the following set of
operations: 1) transferring an application-specific
bitstream to the second section; 2) erasing flash
memory sectors; 3) transferring data from a host
device to the third section of the flash memory and
vice versa. This technique has already been used in
Trenz prototyping boards [4]. The second logical
section is used to store an application-specific
bitstream for subsequent quick loading into the FPGA
(using the “project” pushbutton available on the
board). The third memory section enables the
designer to store additional bitstreams for configuring
the FPGA or any arbitrary data such as bitmaps for a
VGA monitor.

Socket

Interface
socket

CPLD
XC9572XL

FLASH
AM29LV160D

FPGA
Spartan-3
XC3S400

Data

ControlControl
Control

Control

Data

Extension connectors Extension connectors

Address

Figure 3: Basic architecture of the developed

prototyping system

Bitstream for
configuration

User bitstream

User data /
alternative
bitstreams

First logical section

Second logical section

Third logical section

Figure 4: Dividing the flash memory into logical

sections

To download a bitstream to the first logical section of
the flash memory a JTAG connector [5] is employed.
JTAG mode has to be used just once during the board
manufacturing. After that, the developed software
permits to store new bitstreams if required.

The CPLD (see figure 3) is needed for controlling the
flash memory and pushbuttons assembled on the
board because during configuration the FPGA cannot

execute these functions. The CPLD generates also an
initial reset signal for FPGA circuits as soon as a new
configuration is completed.

The board contains a powerful FPGA of Xilinx
Spartan-3 family, namely XC3S400 [5], based on
90nm technology, with 400000 system gates, 56Kb of
distributed RAM, 288Kb of block RAM, 16
multipliers and 264 inputs/outputs. For shortening the
reconfiguration time, a parallel mode has been
chosen.

Extension connectors permit to attach any
application-specific external hardware, which enables
the designer to optimize resources, to improve
performance and to extend the functionality (see
figure 1). General-purpose extensions make possible
to construct embedded systems interacting with the
desired peripheral devices.

The USB controller (version 2.0) provides data
exchange with PC for downloading FPGA bitstreams
and interactions between the FPGA and external
hardware.

4 Remote Functions
By replacing the USB controller with a Bluetooth
module, the FPGA can be configured remotely. The
bitstream stored in the first section of the flash
memory, which is used for configuration purposes,
automatically identifies the module attached to the
socket and changes its behaviour accordingly. In
contrast to parallel mode provided for USB interface,
the Bluetooth module functions in a serial mode, (8
bit data, 115200 baud-rate, no parity bit and one stop
bit).

The developed software tools [3] (see section 5 for
details) have been modified in order to provide
support for the new functionality based on serial
interface for the constructed Bluetooth module. From
the end-user point of view this functionality is exactly
the same as for the USB module and the difference is
just in an opportunity of a remote interaction with the
board instead of a wired interaction.

Note that an external power source is required if
Bluetooth module is used. A small battery-based
power source can be supplied to provide the required
portability.

5 Software Tools
A software program called PBM (Prototyping Board
Manager) has been developed and it provides a
convenient user-friendly interface (partially
demonstrated in figure 5) and debugging tools.

The most important function of PBM is managing a
user bitstream in the second section for quick loading
into the FPGA (by pressing the “project” button). This
technique is the most appropriate to integrate design
workflows for single-bitstream projects.

PBM also features a terminal window for run-time
data exchange between the user and the prototyping
system, thus constituting an integrated input/output
peripheral, which is ideal for project monitoring and
testing.

PBM application

Bitstream
uploading tool

Data transferring
tool

Terminal Window
DK

ISE

Handel-C
specification

EDIF file

VHDL description

bitstream

Prototyping board running
configuration bitstream

Flash

Prototyping board running
user bitstream

Flash

FPGA
other

devices

FPGA

Application-specific
software program Extension

connectors

USB or

Bluetooth

Figure 5: An example of interactions between

software and hardware

A more advanced function allows to send multiple
bitstreams and to store them in the third section of the
flash memory (see figure 4). This function is
appropriate for three different purposes:

1. Autonomous experiments with different single-
bitstream projects without connection to a host
computer. In particular, this mode can be used to
compare and validate alternative/competitive
implementations. The third section of the flash
memory is logically subdivided in 6 pre-defined
sectors for storing bitstreams. Selecting the
desired sector is achieved with the aid of a simple
additional switch attached through extension
connectors, which indicates the proper sector for
the CPLD. The same function can be executed
remotely through wireless interface.

2. FPGA dynamic reconfiguration, using techniques
such as those described in [6,7]. These techniques
permit to implement circuits that require more
resources than the resources available in the
FPGA through run-time reconfiguration.

3. Programming FPGAs installed on additional
extension boards. In this case, the core FPGA is
considered to be a controller (manager) for a run-
time reconfigurable system, which is composed
of multiple FPGAs.

The software application includes a user manual in
English and in Portuguese languages (also available
online [8]) which gives detailed information on how
to take full advantage of all the available
functionality.

In order to be able to work with PBM, the user must
first press the board’s “configuration” button allowing
to load the bitstream from the first section of the flash
memory into the FPGA. This bitstream configures the
FPGA to implement a control circuit in accordance
with the desired protocol (either USB or Bluetooth),
which is automatically recognized by PBM. Each
function available for the user generates a sequence of
basic operations supported by this protocol, such as:

erase a sector, read from pre-specified range of
addresses, write a sequence of bytes, etc.

Table 1 presents the average time for performing
some of the tasks listed above using the USB
protocol. Note that a) each sector has 64 KB, b)
writing operations time includes the time for erasing
the corresponding sectors and c) writing a bitstream
involves 4 sectors. Table 1 demonstrates that the
developed PBM is faster than the tools [4].

Table 1: Average time for executing PBM
functions

Function Average time (s)
Erase a sector 0.7
Read a sector 0.4
Write a sector 1.5
Write a bitstream 5.5

In order to allow PBM to be used with future
prototyping hardware, some design guidelines have
been established, which guarantee future
compatibility. The set of guidelines covers 3 scopes:
board architecture, configuration bitstream and
board’s specification file. The first relates to the board
construction and hardware properties; the second, to
the protocol employed to communicate with the
application; the last one applies to the file containing
information about the board allowing PBM to manage
bitstreams and data transfers correctly.

PBM allows not only to download user bitstreams but
also to update the configuration (system) bitstream
stored in the first section of the flash memory and
providing interface between the PBM and the
prototyping system. Reloading the system bitstream is
required very rarely just in the case if either flash
memory contents has been damaged or a new version
of PBM is launched.

From figure 5 we can see that the developed software
can collaborate with commercial CAD systems in
such a way that PBM supplies all kinds of low-level
functionality, device drivers, interface and debugging
facilities and CAD systems make it possible FPGA
based circuits to be designed.

For example, user projects can completely be
managed in Xilinx ISE [5] or in any similar
environment, which finally generates a bitstream that
is ready for downloading to FPGA. System-level
specification tools (such as Celoxica DK design suite
[9]) can also be used. For instance, in figure 5 the
design suite of Celoxica translates a Handel-C project
description to an electronic design interchange format
(EDIF) file, which is further converted in ISE to a
bitstream for the FPGA.

It is also possible to develop application-specific
software which will communicate directly with the
board (see figure 5), i.e. without using PBM. This
possibility is useful to build solutions that require

collaboration between software and hardware
components, such as co-processing systems and
portable devices with computer-based maintenance.

6 Templates, Design Libraries and
IP Cores

Basically, templates, design libraries and IP cores can
be taken from the previously developed tools for other
prototyping boards namely TE-XC2Se [4], RC100,
RC200 [9] and ADM-XPL PCI [10]. Thus, this
section reviews the previous authors’ results and
shows how they can be adapted to the new
prototyping platform.

The tools proposed in [11] include reusable
specifications of hardware components (modules) that
have been developed for two types of CAD
environments; Xilinx ISE [5] and Celoxica DK [9].
The components can be employed to implement both
application-specific blocks for optimization purposes
and a number of standard interfaces that are very
useful for interaction and data exchange with devices
attached to the FPGA, such as LCD and touch panels,
bus controllers, etc. (see figure 1). The designed
modules can be easily integrated into any application-
specific digital system and used for visualizing the
results, fast data transfer, debugging of internal sub-
circuits, etc. They were constructed in such a way that
their functionality can be either fixed or modifiable
(both statically and dynamically). The latter capability
was provided with the aid of re-loadable RAM-based
blocks. To illustrate the capabilities of the tools
suggested, four design examples were discussed in
[11].

There are three following types of reusable
components that have been developed (based on the
previous results) for the new reconfigurable platform:

1. Hardware and VHDL templates. A hardware
template is a circuit with pre-defined connections
between all primarily components. The
functionality of the circuit can be customized
through reconfiguration of the alterable circuit
blocks, which are RAM blocks. An example of
such circuit is given in [12]. VHDL templates are
considered to be skeletal code fragments
(described in a hardware description language,
namely in VHDL), which can easily be
customized for particular functionality. They are
used much like language templates supplied with
Xilinx ISE [5]. An example of VHDL template
for a hierarchical finite state machine is given in
[13].

2. Design libraries, which are considered to be
fragments of parameterizable VHDL code, which
can be inserted to any project requiring the
respective facilities (for example, requiring USB
or RS232 serial communication). VHDL libraries
of such type have been developed for many

standard interfaces and peripheral devices, such
as RS232, VGA, mouse, keyboard, static RAM,
flash RAM, etc. Parametrization has been
provided through VHDL generic and generate
statements.

3. IP cores have been implemented for matrix based
optimization (1) and compression/decompression
(2) algorithms, which are often required for
robotics and embedded applications. The first
group (1) of algorithms permits to solve various
problems over binary and ternary matrices, which
include matrix covering [14], Boolean
satisfiability [15], graph colouring, etc. These
tasks are very important for many engineering
applications [16,17]). The second group (2) of
algorithms makes possible the volume of
transmitted data between a host computer and the
prototyping board to be reduced. For such
purposes methods described in [18] have been
employed.

7 Conclusion
The paper suggests tools enabling the designers of
electronic devices to simplify many synthesis and
verification problems. They include: 1) the core
prototyping system (CPS); 2) CPS-oriented software;
3) design templates, design libraries and IP cores for
solving optimization problems over binary/ternary
matrices and for data compression/decompression.

8 References
[1] C. Steiger, H. Walder, M. Platzner, “Operating

systems for reconfigurable embedded platforms:
online scheduling of real-time tasks”, IEEE
Trans. on Computers, vol. 53, no. 11, pp 1393-
1407 (2004).

[2] V. Sklyarov, “Hardware/software modeling of
FPGA-based systems”, Parallel Algorithms and
Applications, ISSN 1063-7192, vol. 17, nº 1, pp
19-39 (2002).

[3] M. Almeida, V. Sklyarov, I. Skliarova, B.
Pimentel, “Design tools for reconfigurable
embedded systems”, Proceedings of the 2nd
International Conference on Embedded Software
and Systems, Xian, China, pp 254-261 (2005).

[4] Trenz Spartan-IIE Development Platform,
http://www.trenz-electronic.de, visited on
10/7/2006.

[5] Xilinx, Inc., products and services,
http://www.xilinx.com/, visited on 10/7/2006.

[6] N. Shirazi, W. Luk, P. Y. K. Cheung, “Run-time
management of dynamically reconfigurable
designs”, 8th International Workshop on
Programmable Logic and Applications - FPL'98,
Tallinn, Estonia, Springer, pp 59-68 (1998).

[7] V. Sklyarov, A.A. da Rocha, A.B. Ferrari,
“Synthesis of reconfigurable control devices

based on object-oriented specifications”, in
J.C.López, R.Hermida and W.Geisselhardt,
Advanced Techniques for Embedded Systems
Design and Test, Kluwer Academic Publisher, pp
151-177 (1998).

[8] PBM user’s manual, http://www.ieeta.pt/~iouliia,
visited on 10/7/2006.

[9] Celoxica products, http://www.celoxica.com,
visited on 10/7/2006.

[10] Alpha Data products, http://www.alpha-
data.com, visited on 10/7/2006.

[11] V. Sklyarov, I. Skliarova, P. Almeida, M.
Almeida, “Design tools and reusable libraries for
FPGA-based digital circuits”, Proceedings of
EUROMICRO Symposium on Digital Systems
Design – DSD’2003, Belem, Turkey, IEEE
Computer Society, pp 255-263 (2003).

[12] V. Sklyarov, I. Skliarova, A. Oliveira, A. Ferrari,
“A dynamically reconfigurable accelerator for
operations over Boolean and ternary vectors”,
Proceedings of EUROMICRO Symposium on
Digital Systems Design – DSD’2003, Belem
Turkey, IEEE Computer Society, pp 222-229
(2003).

[13] V. Sklyarov, “FPGA-based implementation of
recursive algorithms”, Microprocessors and
Microsystems, 28(5-6), pp 197-211 (2004).

[14] I. Skliarova, A.B. Ferrari, “The Design and
implementation of a reconfigurable processor for
problems of combinatorial computation”,
Journal of Systems Architecture, 49(4-6), pp
211-226 (2003)

[15] I. Skliarova, A.B. Ferrari, “A Software/
reconfigurable hardware SAT Solver”, IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, 12(4), pp 408-419 (2004)

[16] I. Skliarova, A.B. Ferrari, “Reconfigurable
hardware SAT solvers: a survey of systems”,
IEEE Transactions on Computers, 53(11), pp
1449-1461 (2004).

[17] R. Feldman, C. Haubelt, B. Monien, J. Teich,
“Fault tolerance analysis of distributed
reconfigurable systems using SAT-based
techniques”, Proceeding of FPL’2003, Lisbon,
Portugal, pp 478-487 (2003).

[18] V. Sklyarov, I. Skliarova, B. Pimentel, J. Arrais,
“Hardware/software implementation of FPGA-
targeted matrix-oriented SAT solvers”,
Proceedings of the 14th International.
Conference on Field-Programmable Logic and
Applications – FPL’2004, Antwerp, Belgium, pp
922-926 (2004).

