SuperSort
User’'s Guide

ALPHA
MICROSYSTEMS

RIGHT. FROM THE START.

DSM-00195-01

© 1996 Alpha Microsystems

REVISIONS INCORPORATED

REVISION DATE
00 April 1994
01 August 1996

SuperSort User’s Guide

To re-order this document, request part number DSO-00195-00.

This document applies to SuperSort versions 1.0 and later.

The information contained in this manual is believed to be accurate and reliable. However, no responsibility
for the accuracy, completeness or use of this information is assumed by Alpha Microsystems.

This document may contain references to products covered under U.S. Patent Number 4,530,048.

The following are registered trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AMIGOS AMOS Alpha Micro
AlphaBASIC AlphaCALC AlphaCOBOL
AlphaFORTRAN 77 AlphaLAN AlphaLEDGER
AlphaMATE AlphaNET AlphaPASCAL
AlphaWRITE CASELODE OmniBASIC
VIDEOTRAX

The following are trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AlphaBASIC PLUS AlphaVUE AM-PC
AlphaDDE AlphaConnect DART
inFront/am ESP MULTI

All other copyrights and trademarks are the property of their respective holders.

ALPHA MICROSYSTEMS
2722 S. Fairview St.
P.O. Box 25059
Santa Ana, CA 92799

AlphaACCOUNTING
AlphaDDE
AlphaMAIL
AlphaRJE
VER-A-TEL

AMTEC
inSight/am

Table of Contents

CHAPTER 1 - INTRODUCING SUPERSORT 1-1
COMPATIBILITY 1-2
SUPERSORT: TODAY’S SORT PROGRAM 1-2
SORTING DEFINITIONS 1-2

Key 1-2
Record and Field 1-3
Random and Sequentid Files 1-3
COLLATING SEQUENCE AND CULTURALLY EXPECTED RESULTS 1-3

CHAPTER 2 - INSTALLATION 2-1
ENTERING THE PRODUCT INSTALLATION CODE 2-1
WHAT'SINCLUDED? 2-2

CHAPTER 3-THE AMOS SORT COMMAND 31

CHAPTER 4- ALPHABASIC AND ALPHABASIC PLUS PROGRAM INTERFACE 4-1
WHAT ISBASORT? 4-1
BEFORE YOU CAN USE BASORT 4-1
DEFINING A KEY ARRAY 4-2
SORTING A RANDOM FILE 4-3

Sample Random File Sort 4-5
SORTING SEQUENTIAL FILES 4-7
Sample Sequential File Sort 4-9

CHAPTER5- ASSEMBLY LANGUAGE PROGRAM INTERFACE 51
LOCATING SSORT.SYSIN MEMORY 5-1
ALLOCATING MEMORY FOR THE SORT PROCESS 5-1
DEFINING KEY S 5-1
DEFINING SORT PARAMETERS 5-3
CALLING SSORT.SYS 5-5
PUTTINGIT ALL TOGETHER 5-6
CULTURALLY CORRECT SORTING AND STRING COMPARISON 5-7

SuperSort User’s Guide, Rev. 01

Page ii Table of Contents

CHAPTER 6 - ALPHAC PROGRAM INTERFACE 6-1
LOCATING SSORT.SYSIN MEMORY 6-1
ALLOCATING MEMORY FOR THE SORT PROCESS 6-1
DEFINING KEY S 6-1
DEFINING SORT PARAMETERS 6-2
CALLING SSORT.SY S 6-4
PUTTING IT ALL TOGETHER 6-4

CHAPTER 7 - LANGUAGE-SPECIFIC RULESFOR SORTING 7-1
ENGLISH 7-1
FRENCH 7-2
GERMAN 7-2
SPANISH 7-3
DEFINING YOUR OWN COLLATING SEQUENCE 7-3

DOCUMENT HISTORY

INDEX

SuperSort User’s Guide, Rev. 01

Chapter 1 - Introducing SuperSort

SuperSort is a high-performance replacement for the standard sorting software that comes with AMOS.
This new implementation uses modern sorting techniques to provide sorting designed for today’s
computer configurations.

Although SuperSort can be used to sort a sequential file from AMOS command level, it is primarily
designed to be used by your AlphaBASIC and AlphaBASIC Plus application programs to substantially
increase the speed with which they sort datain sequential and random files.

This document contains information on using the SuperSort program interface from within your
AlphaBASIC, AlphaBASIC Plus, assembly language, and AlphaC programs. SuperSort is directly
compatible with the older AMOS sort module, and your application software can make use of SuperSort
with no programming changes whatsoever—all you have to do isinstall SuperSort onto your computer
system and load it into memory to see an automatic increase in the speed of the applications that sort
data.

Of course, if you want to change your application programs’ sort interface, you will be able to take
advantage of SuperSort’s advanced sorting features:

Sorting Based on the Requirements of National L anguages. Different cultures and languages
have different expectations of how characters should be sorted. For example, a Spanish customer
requesting data between the range of “luz” and “maca’ expects to see included in that range the
words “llama,” “lleno,” and “lluvia,” but the simple language-specific collating sequence used by
the older AMOS sorting software will not provide these results. (See “Collating Sequences and
Culturally Expected Results,” later in this chapter for more information on this feature.)

Unlimited AlphaBASIC and AlphaBASIC Plus Keys. In the case of AlphaBASIC and
AlphaBASIC Plus, SuperSort expands the previous limit of three sort keys to an unlimited
number by allowing your program to point to an array specifying atable of keys. The new
AlphaC and assembly language interfaces also allow an unlimited number of keys.

New Key Types Supported. In addition to the traditional key types of string, AMOS 6-byte
floating point, and binary, you may now also use | EEE 4-byte floating point, |EEE 8-byte
floating point, and integer keys.

Variable Length Records Supported. When using SuperSort to sort sequential files, you may
specify variable length records. This increases efficiency in speed and memory use, because
records do not have to be “padded” to afixed length.

Additional Featuresfor SORT.LIT. The SuperSort replacement for the AMOS SORT
command provides severa new features:

Although each sort key must begin in the same character position in every record, the records
may vary in length if you request the variable record length option.

Y ou may request sorting be done using a culturally correct collating sequence for a specific
language.

SuperSort User’s Guide, Rev. 01

Page 1-2 Chapter One

Program Interfaces for Assembly Language and AlphaC Programs. The older AMOS sort
program provided a sorting program to be used at AMOS command level and an interface for
AlphaBASIC and AlphaBASIC Plus programs. SuperSort provides all of these, plus
programming interfaces for assembly language and AlphaC.

COMPATIBILITY

SuperSort is compatible with AMOS 1.4C and AMOS 2.2C and later. Programming interfaces are
provided for AlphaBASIC, AlphaBASIC Plus, AlphaC, and assembly language.

SUPERSORT: TODAY'S SORT PROGRAM

SuperSort has been optimized for modern computer configurations and applications. The older AMOS
sort program, AMSORT.SY S, was developed during the days when memory was at a premium, and was
therefore optimized for a small memory partition that could not contain an entire datafile. In fact, when
used in small memory partitions (80KB or less), AMSORT.SY Sis dtill very efficient. But, increasing the
memory partition does not improve AMSORT.SY S's performance. On the other hand, SuperSort has
been written to take advantage of today’ s larger memory partitions, and shows a substantial speed
increase over AMSORT when used in memory partitions larger than 80KB.

In the following chapters, you will learn how to install SuperSort, and how to use it from within your
application programs.

SORTING DEFINITIONS

This section introduces you to some of the terms you need to know when sorting data. If you are already
familiar with these terms, you may want to move to Chapter 2, “Installing SuperSort.”:

Key
Record and Field
Sequential file

Random file

Key

Whenever you sort data, you need to identify which piece of data you want to base the sort on. The item
on which you base the sort is called the “key.” For example, if you have alist of customer names and
phone numbers, to find the phone number of a particular customer, it would probably be most convenient
to have the list sorted alphabetically by customer name. In this case, the customer name is the key. If
your datais more complicated, you might have more than one sort key. For example, if you have alist of
customers with addresses, in order to send amailing by bulk mail, you need to sort your mailing labels
by the address zip code. Once the dataisin order by zip code, you will probably want to sort on the
customer name. In this case, your first key isthe zip code, and the second is the customer name.

SuperSort User’s Guide, Rev. 01

Introducing SuperSort Page 1-3

Record and Field

A record is acollection of related data. For example, a customer name, address, and phone number might
make up a single record. Each of these separate itemsin arecord is called a “field,” and each field can
also be used as a sort key. Each datafile usually consists of many records. Using our example of arecord
consisting of customer name, address, and phone number, a set of three records might look something
likethis:

Avi an Exotics 670 San Pabl o, San C enente, CA 92672 714 496 8999
Parrot Par adi se 167 Via Estrella, San Cenente, CA 92672 714 496 5678
Tropical Bird Farm 2701 N. EIm St., Santa Ana, CA 92704 714 875 1256

Note that each field begins at the same character position in each record.. Y ou will need to know the
character position of each key you want to sort on when you use the AMOS SORT command or the
SuperSort program interfaces.

Random and Sequential Files

A random file is one in which the records are physically grouped together in one area of the disk, and
where any point within that file can thus be found immediately by calculating an offset from the file's
beginning. A sequential file' s records are not necessarily contiguous on the disk, but are linked in
sequence by pointersin each segment indicating where on the disk the next segment can be found.
Because it is quick to locate arecord in arandom file, random files are commonly used by application
programs to store data.

Y ou can only use the AMOS SORT command to sort sequential files. The AlphaBASIC, AlphaBASIC
Plus, assembly language, and AlphaC program interfaces to SuperSort allow you to sort either random or
sequential files, but you set up the SuperSort interface slightly differently for each type of file.

COLLATING SEQUENCE AND CULTURALLY EXPECTED RESULTS

We are all used to sorting information. From the time we are children, we learn to find a name in a phone
book by scanning the names alphabetically. The set of rules we use to sort datais called a “collating
sequence.” (One such ruleis, “ad’ comes before “b.”)

In order for computers to sort, numeric values are assigned to characters, and the computer sorts the
characters by comparing those values. Traditionally, the collating sequence used by computers has been
the ASCII standard, which assigns numeric values to printable characters “a’ through “z,” “0” through
“9,” and punctuation, as well as non-printing characters such as Control-C.

However, if the language we are using contains special characters, computers using the ASCII standard
sort datain ways we don’t expect. For example, a Spanish speaker expects that “i” comes after “nz” and
before “0,” but using the ASCII collating sequence does not provide these results.

To sort data according to the requirements of a national language (that is, to achieve “culturally expected
results’), a new collating sequence must be used. Before SuperSort, the Alpha Micro language definition
files were used to specify the correct collating sequence. Although the language definition file comes
closer to reflecting the culturally expected results than the ASCII standard, it cannot handle special

SuperSort User’s Guide, Rev. 01

Page 1-4 Chapter One

multiple characters like the Spanish “ch” or the ligature “ga” However, by using the SuperSort collating
option, you can achieve true, culturally correct results.

If you request the optional SuperSort collating feature, SuperSort selects the appropriate collating
sequence based on the language used by the job performing the sort. For example, if your job has used
the AMOS SET LANGUAGE command to select German as the language you are going to use,
SuperSort uses the proper collating sequence for German. For details on the collating rules used by
SuperSort’s collating sequences, see Chapter 7, “Language-specific Rules for Collating.”

SuperSort supports the following languages:

ENGLISH
FRENCH
GERMAN
SPANISH
DANISH

If you are using alanguage other than these, you will need to define your own collating sequence table.
See Chapter 7 for instructions on doing so. To see what languages are supported on your computer, type:

SET LANGUAGE

Y ou now see something like this:

Current | anguage i s ENGLI SH(AMERI CAN)

The follow ng alternate | anguages are avail abl e:
FRENCH (FRANCAI S)
ENGLI SH (AMERI CAN)

SuperSort User’s Guide, Rev. 01

Chapter 2 - Installation

SuperSort will overwrite some of the existing sort programs on your computer. Before installing
SuperSort, decide whether you want to preserve the older software. If you do, enter the following
commands:

LOG OPR
COPY *.SAV = SYS: SORT. LI T, BAS: BASORT. SBR, BP; BASORT. XBR

Toinstall SuperSort, download the SuperSort files from the software media. In the case of a streamer
tape, your command will look like this:

LOG OPR
MTUSAV = ALL:[]

If you have questions about the correct transfer command to use, contact your dealer for help. The
command above installs the SuperSort files into the proper accounts. To verify that all files copied
correctly, use the AMOS VERIFY command:

LOG OPR
VERI FY SSORT. DI R

ENTERING THE PRODUCT INSTALLATION CODE

Y ou must enter the Product Installation Code (PIC) to activate SuperSort. Contact your dealer for the PIC
for your computer system. The first time you attempt to sort afile using SuperSort (either within your
own program or when using the SORT command), you will be asked to enter the PIC. The computer will
lock out other users for a few seconds while the PIC is being processed. Now SuperSort is ready to use.

SuperSort User’s Guide, Rev. 01

Page 2-2

Chapter Two

WHAT’S INCLUDED?

The SuperSort product consists of the following files:

SYS:SSORT.SY'S,
SY S:SST000.0VR

SYS:SORT.LIT

BAS:BASORT.SBR

BP.BASORT.XBR

BAS:SRTSYM.BSI,
BP:SRTSYM.BFI,
MAC:SRTSYM.M68
, MAC:SRTSYM.H

LCS.COLLAT.SYS

LCS.LDFTBL.H

LCS:COLGEN.C,
LCS:COLGEN.LIT,
LCS:COLGEN.RTI

OPR:SSORT.DIR

SuperSort modules. Used by the AMOS SORT command and
AlphaBASIC, AlphaBASIC Plus, assembly language, and AlphaC
program interfaces.

Replacement for the standard AMOS SORT command; standalone
sort program that can be used from AMOS command level.

AlphaBASIC external assembly language subroutine; interfacesto
SuperSort. Replaces older subroutine.

AlphaBASIC Plus external assembly language subroutine;
interfaces to SuperSort. Replaces older subroutine.

Include files giving sample key table array definitions for the
different program interfaces supported by SuperSort.

Module used when you use SuperSort’s culturally correct sorting
feature.

Source to COLGEN program, which can be changed to define new
collating sequence.

Collating sequence table generation program. Uses LDFTBL.H to
define the correct collating sequence for the language your job is
using, CULCMP.Ing

File used by AMOS VERIFY command to verify correct
installation.

SuperSort User’s Guide, Rev. 01

Chapter 3 - The AMOS SORT
Command

The AMOS SORT command sorts a sequential file from AMOS command level. The SuperSort SORT
command acts very much like the older one—except, of course, that it’s faster!

However, additional options are included:
1. You may request sorting be done using a culturally correct collating sequence for a specific
language.

2. Although each key must begin in the same character position in every record, the records may
vary in length if you request the variable record length option.

For your convenience, we have included on the next few pages a command reference sheet for the
SuperSort SORT command; please insert it in your aphabetically ordered command reference sheetsin
your AMOS System Commands Reference Manual.

SuperSort User’s Guide, Rev. 01

sort

FUNCTION:
Sorts data records in a sequential text file..
CHARACTERISTICS:

SORT.LIT can be loaded into system memory. It sorts logical recordsin ascending or descending
order, and sorts only sequential files, not random files. Before SORT sorts your file, it loads
SSORT.SY Sinto user memory if that file is not already in system memory. SORT replaces the
file you specify with a sorted file of the same name.

If you do not use the /C switch, SORT performs a simple sort based on the ASCII collating
sequence. If you use /C without specifying a language file extension, SORT performs a culturally
correct sort using the collating sequence for the language your job is set to. If you use /C and
specify alanguage file extension, SORT sorts using the collating sequence for that language.

You may sort atext file too large to fit into memory all at one time. SORT does not understand
wildcard symbols.

FORMAT:
SORT {/{:Ing}}{/V} filespec
where:

filespec Selects file you want to sort. SORT assumes an extension of .DAT and
the account and device you're logged into.

/'Kl ng} Selects sorting based on culturally correct collating sequence. If you do
not specify Ing, SORT assumes the language your job isset to. (Ingis
the three-character extension of the language definition file on your
computer specifying the language you want to use. For example,
/C:USA indicates you want sorting to be done based on the collating
sequence for U.S. English.)

IV Specifies variable length records will be used.

OPERATION:

Enter SORT and the specification of the file you want to sort. For example:

SORT LABELS. DAT

SuperSort User’s Guide, Rev. 01

Page 2 SORT (Continued)

SORT now asks you for the following information. After you have entered the information for all
of the keys you want to use, just press the next time it asks for key information to end the
guestions.

RECORD SIZE | If you don't use the /V option, SORT recognizes a ReTury) as the end of
each data record, but needs to know the size of the largest datarecord it is
going to be dealing with. Enter the maximum size (in bytes) of the logical
records in your file. Every character is one byte of data, including spaces
and punctuation. Exclude carriage return and line-feed bytes.

KEY SIZE The key is the field in the record on which you want to sort (for example,
customer name). SORT asks this question for each key you define. Enter
the size (in bytes) of the key.

KEY POSITION | SORT asks this question for each of the keys you define. Enter the column
number in the record where the first byte of the sort key occurs. The first
byte of arecord is position #1.

KEY ORDER SORT asks this question for each of the keys you define. Enter an A for
ascending or D for descending order.

If you are using the /V option to select variable length records, SORT asks:
Enter record ending (0=CR, 1=LF, 2=CR&LF)
SORT now sorts the file. After the sort is done, SORT displays statistics.

MESSAGES:

?Cannot delete [fil espec] - wite protected
Write-enable your disk and try again.

?Cannot open [filespec] - file type m smatch
You tried to sort a random file—you may only sort sequentia files.

?Enter Aor D
Answer A for ascending order, or D for descending order.

?1l1 1 egal key size...
Either the record size istoo small or the key size istoo big. Re-enter the numbers, adjusting one
or the other.

?l nsufficient nmenory
Delete any unnecessary memory modules from your user memory, or see your System Operator
about increasing your memory.

?Key size must be > 0
?Key size must be | ess than record size
?Record size nmust be > 0

Enter a correct number.

SuperSort User’s Guide, Rev. 01

SORT (Continued) Page 3

?Sort error - Device (VDKO:) has overfl owed!
The virtual disk (VDKO:) was used for temporary file storage, and that temporary file became too
large, aborting the COPY . Either increase the VDK size, or remove the temporary (*.SRT) name
from your VDK.INI file.

WNMrning - A null byte was encountered in the input file.

Nul Il s are discarded and not rewitten to the sorted file,

resulting in lost data. You may press "C at this tine to

term nate the sort and | eave your data intact, or press

RETURN to conti nue.
Thereis at least one non-ASCII character in the file you are sorting. Make sure you specified the
correct datafile; trying to sort a program file would cause this kind of error.

?Main sort nodul e not found.
If SSORT.SY Sis not found in memory, you see this message

SuperSort User’s Guide, Rev. 01

Chapter 4 - AlphaBASIC and
AlphaBASIC Plus Program
Interface

This chapter discusses:
What is the interface between your AlphaBASIC or AlphaBASIC Plus program and SuperSort?
How do | use the SuperSort interface?

How do | sort arandom or sequential file?

WHAT IS BASORT?

BASORT is an external assembly language subroutine called by your AlphaBASIC or AlphaBASIC Plus
program as the interface to SuperSort. (If your program is AlphaBASIC, you use BASORT.SBR; if itis
AlphaBASIC Plus, use BASORT.XBR.)

The two main types of AlphaBASIC datafiles are random files and sequential files. Using BASORT,
you can use SuperSort to sort either type of file. See Chapter 1 for a discussion of sequential and random
files.

Y ou can use BASORT to sort the contents of afile into numeric order, alist of names or words into
alphabetic order, and so on. BASORT permits the use of an unlimited number of keysif you define a
table of keysin an array, and point BASORT to that array. See the details in the sections below for more
information.

BEFORE YOU CAN USE BASORT

SSORT.SY S must be loaded into either system or user memory prior to running an AlphaBASIC
program that uses BASORT. To load SSORT.SY S into user memory, enter:

LOAD DSKO: SSORT. SYS] 1, 4]

To load SSORT.SY Sinto system memory, you must have aline in your system initialization command
filelike this:

SYSTEM DSKO: SSORT. SYS[1, 4]

For more information on loading subroutines into system memory when your computer boots, see your System
Operator's Guide.

When an AlphaBASIC or AlphaBASIC Plus program calls a subroutine by using an XCALL statement,
AlphaBASIC attempts to locate the subroutine in user or system memory. If it cannot, it attempts to load

SuperSort User’s Guide, Rev. 01

Page 4-2 Chapter Four

the subroutine from the disk. For details on where on the disk AlphaBASIC looks for the subroutine, see
the AlphaBASI C XCALL Subroutine User’s Manual.

If an AlphaBASIC or AlphaBASIC Plus program fetches a subroutine from the disk, it |oads the subroutine into
memory only for the duration of its execution. Once the subroutine has completed its execution, it is removed
from memory. Therefore, if a subroutine isto be called alarge number of times, it iswiseto load it into
memory (using the AMOS LOAD command) to avoid the overhead of fetching the subroutine from disk.

Q] Subroutines loaded into memory by use of the AMOS LOAD command remain in memory until
\J you reboot or until you use the AMOS command DEL to delete them.

DEFINING A KEY ARRAY

The rest of this chapter discusses how to set up the BASORT calling statement to sort random or
sequential files. If you use the format of the BASORT statement that allows you to define the sort keysin
an array table, use MAP statements to set up the array. For each key, you will need to define:

Size of Key
Position of Key (the Key’s character position in the record)

Type of Key:
0 = String
1 =AMOS 6-byte floating point
2 =Binary
3 = |EEE 4-byte floating point
4 = |EEE 8-byte floating point
5 = Integer

Key Sort Order (O for ascending, 1 for descending).

Define one more key in the array than you need; then set the last key to null (0)—thistells BASORT it
has reached the end of your key table. For example, to define an array of 12 keys:

SuperSort User’s Guide, Rev. 01

AlphaBASIC and AlphaBASIC Plus Program Interface Page 4-3

MAP1 TABLE(13)
MAP2 KEY' Sl ZE, B, 2
MAP2 KEY' PCS, B, 2
MAP2 KEY' TYPE, B, 1
MAP2 KEY' ORDER, B, 1

KEY' SI ZE(13) = 0 I Define end of table.

I Set up ke.ys.
KEY' SI ZE(1) = 16
KEY' POS(1) =1

First key is 16 characters.

First key begins in first character
position of the record.

First key is a string

First key is to be sorted in

descendi ng order.

KEY' TYPE(1) = O
KEY' ORDER(1) = 1

Remember that KEY' TYPE is aways String for sequential files. For more information on defining keys
and setting up the BASORT statement, see the sections below.

SORTING A RANDOM FILE

Y our program can call BASORT in one of two formats. The first format includes information on each of
up to three sort keys. Because this format is compatible with that used with the older AMOS sorting
software, you can use this format with existing AlphaBASIC programs without making any changesto
your programs. The second format omits much of the key information, but instead points to a table you
define containing key information for an unlimited number of keys. Only the second format allows an
optional argument at the end of the statement to request a language-specific, culturally correct collating
sequence be used.

\\| When you use BASORT to sort random files, BASORT sorts the file onto itself (that is, it replaces
>>] - the original, unsorted file with a file containing the sorted data). Therefore, if you wish to keep a
backup copy of the unsorted file, you must create a separate copy to be sorted.

XCALLsin AlphaBASIC Plus assume an integer value unless a number is specified with a
decimal point, so be sure to include a decimal point in numbers on the BASORT statement line if
you mean afloating point number instead of an integer.

FORMAT #1:

XCALL BASORT, Channel, Record' Count, Record'Size, &
Keyl' Si ze, Keyl' Position, Keyl' Order, Key2'Size, &
Key2' Position, Key2' Order, & Key3'Size, Key3' Position, &
Key3' Order, & Keyl' Type, Key2' Type, Key3' Type

SuperSort User’s Guide, Rev. 01

Page 4-4 Chapter Four

CHANNEL File channel on which file to be sorted is open for random processing.

RECORD COUNT Number of records in the random file you are sorting.

RECORD SI ZE Size of the longest record in the file you are sorting. The size of arecord is
the number of bytesin that record (including characters, spaces, etc.).

KEY1" SI ZE The size in bytes of the first key. Give the size of the largest instance of the

first key (i.e., if thefirst key is the customer’s name, find the longest name
in any record, or perhaps allow for avery long one).

KEY1" POSI TI ON | Thefirst character position occupied by the first key. If

KEY1' POSI TI ONis 50, for example, BASORT will fit the characters
beginning at the fiftieth byte in the record into the sequence it is creating.

KEY1' ORDER Sort order of the first key. Enter 0 to indicate you want the first key of each
record to be sorted in ascending sequence, or enter 1 to indicate descending
sequence.

KEY2' SI ZE The size in bytes of the second key.

KEY2' POSI TI ON | Thefirst character position of the second key.

KEY2' ORDER Sort order of the second key. Enter a0 or a 1. (See KEY1' ORDER, above.)

KEY3' SI ZE The size in bytes of the third key.

KEY3' POSI TI ON | Thefirst character position of the third key.

KEY3" ORDER Sort order of the third key. Enter a0 or a 1. (See KEY1' ORDER, above.)

KEY1" TYPE The data type of the first key. Key types are:

0 = String
1 =AMOS 6-byte floating point
2 =Binary

3 = |EEE 4-byte floating point
4 = |EEE 8-byte floating point

5 = Integer
KEY2' TYPE The data type of the second key. See KEY1' TYPE.
KEY3' TYPE The data type of the third key. See KEY1' TYPE.

If you want to use less than three keys, all entriesin the XCALL command line for the unused keys must
be zero.

If you omit the key types, BASORT assumes string data type. All arguments in the XCALL command
line are numeric, but may be passed as either floating point or string values. For example, “99” isavalid
entry. Arguments must not be in binary format. The first character in arecord is considered position 1.

FORMAT #2:

The second BASORT calling format is:

XCALL BASORT, Channel, Record' Count, Record'Size, &
Keyl' Si ze, Key' Pointer{, Coll at}

SuperSort User’s Guide, Rev. 01

AlphaBASIC and AlphaBASIC Plus Program Interface

Page 4-5

CHANNEL File channel on which file to be sorted is open for random processing.

RECORD COUNT Number of records in the random file you are sorting.

RECORD SI ZE Size of the longest record in the file you are sorting. The size of arecord is
the number of bytesin that record (including characters, spaces, etc.).

KEY1' Sl ZE Set this argument to -1 to indicate key information is defined in a separate
array table.

KEY' PO NTER Pointer to first element of an array in which you have used MAP

statements to define as many keys as you want (e.g., KEY §(1)). See
“Defining aKey Array,” above for a sample definition.

COLLAT If set to 1, perform asimple sort based on language set; if 0, use culturally
correct collating sequence for that language

All argumentsin the XCALL command line are numeric, but may be passed as either floating point or
string values. For example, “99” isavalid entry. Arguments must not be in binary format.

Sample Random File Sort

We Il use the following unsorted file as an example. The file PO.DAT contains customer names, dates,
and purchase order numbers. (The dates are in the format Y EAR/MONTH/DAY so they will sort by year,

then by month, then by day.)

Leucadia Begonia Farms

Durango Nurseries
Springtime Growers
Capistrano Gardens
Daisy’s Daisies
Durango Nurseries
Springtime Growers

Leucadia Begonia Farms

Durango Nurseries
Durango Nurseries

Leucadia Begonia Farms

Capistrano Gardens

Here' sthe program we'll use to sort thefile:

94/01/30
93/03/07
94/02/28
93/06/24
94/04/21
93/11/01
93/10/13
94/01/30
93/07/03
92/12/31
92/07/16
93/06/24

49130
1207
K79876
75729
A00326
4103
K65843
57045
1209
0301
24150
75730

SuperSort User’s Guide, Rev. 01

Page 4-6

Chapter Four

I Sanple programto sort a randomdata file:

!
MAP1

MAP1
MAP1
MAP1
MAP1
MAP1
MAP1

CUSTOVER' | NFO Definition of the Record:
MAP2 NAME, S, 35 35 bytes maxi num
MAP2 PURCHASE' DATE, S, 8 8 bytes nmaxi num
MAP2 PURCHASE' ORDER, S, 7 7 bytes maxi num
RECORD' Sl ZE, F, 6, 50 50 bytes maxi mum
RECORD NUMBER, F, 6, 0 First record is #0

CHANNEL, F, 6, 100 I's #100

!
!
!
!
!
!
I Open channel
I

I

I

RECORD TOTAL, F, 6, 12 Total of 12 records
ASCENDI NG, F, 6, 0 Sort in ascendi ng order
STRING F, 6,0 All keys are strings

START:

NG

END

OPEN #100, " PO. DAT", RANDOM RECORD' Sl ZE, RECORD' NUMBER

PRI NT "Now sorting..."

XCALL BASORT, CHANNEL, RECORD' TOTAL, RECORD' Sl ZE, 35, 1, &
ASCENDI NG, 8, 36, ASCENDI NG, 7, 44, ASCENDI NG, STRI NG, STRI NG, STRI

PRINT "W will sort on nane, purchase date,"
PRI NT "and purchase order number:" : PRINT
FOR RECORD NUMBER = 0 TO RECORD TOTAL

READ #100, CUSTOVER' | NFO

PRI NT NANME,

PRI NT PURCHASE' DATE,

PRI NT PURCHASE' ORDER
NEXT
CLCSE #100

Note the line right after START: that opens the file, PO.DAT. The XCALL statement then calls the
BASORT subroutine, where the variables (defined in the MAP statements) define the BASORT
parameters. BASORT writes the new data back into the original file, overwriting the old data. The
program also displays the results on your screen, and then closes the file. The resulting display looks like

this:

Now sorting...

W will sort on name, purchase date,

and purchase order nunber:

Capi strano Gardens 93/ 06/ 24 75729
Capi strano Gardens 93/ 06/ 24 75730
Dai sy’ s Dai si es 94/ 04/ 21 A00326
Durango Nurseries 92/ 12/ 31 0301
Durango Nurseries 93/ 03/ 07 1207
Durango Nurseries 93/07/03 1209
Durango Nurseries 93/11/01 4103
Leucadi a Begoni a Farns 92/ 07/ 16 24150
Leucadi a Begoni a Farns 94/ 01/ 30 49130
Leucadi a Begoni a Farns 94/ 01/ 30 57045
Springtime Gowers 93/10/ 13 K65843
Springtime Gowers 94/ 02/ 28 K79876

SuperSort User’s Guide, Rev. 01

AlphaBASIC and AlphaBASIC Plus Program Interface Page 4-7

SORTING SEQUENTIAL FILES

When you sort a sequential file, you must specify both an input and an output file. Before BASORT is
called, your program must open the file to be sorted for input. BASORT leaves the file open for output. If
you wish to sort afile back onto itself, you may specify the same file for both input and outpui.

Y our program can call BASORT in one of two formats. The first format includes information on each of
up to three sort keys. Because this format is compatible with that used with the older AMOS sorting
software, you can use this format with existing AlphaBASIC programs without making any changesto
your programs. The second format omits much of the key information, but instead points to a table you
define containing key information for an unlimited number of keys. Only the second format allows
optional arguments at the end of the statement to: 1) request a language-specific, culturally correct
collating sequence be used or 2) Define the end-of-record character (allowing the use of variable length
records).

Sequential files contain only ASCII data. For that reason, when you sort sequential files you do
not have to specify the data type of the sort keys, BASORT knows all keysin a sequential file
are strings.

XCALLsin AlphaBASIC Plus assume an integer value unless a number is specified with a
decimal point, so be sure to include a decimal point in numbers on the BASORT statement line if
you mean afloating point number instead of an integer.

FORMAT #1:

The first format for calling BASORT for sequential filesis:

XCALL BASORT, Input'Channel, CQutput' Channel, Record'Size, &
Keyl' Si ze, Keyl' Position, Keyl' Order, &
Key2' Si ze, Key2' Position, Key2' Order, &
Key3' Si ze, Key3' Position, Key3' O der

SuperSort User’s Guide, Rev. 01

Page 4-8

Chapter Four

| NPUT" CHANNEL The file channel on which the inpuit file is open.

QUTPUT' CHANNEL | The file channel on which the output file is open.

RECORD Sl ZE The size, in bytes, of the largest record in the file, including the term-
inating carriage return/linefeed characters. Too small avalueresultsin
truncation of data records.

KEY1" SI ZE The size, in bytes, of the first key. Give the size of the largest instance of
thiskey (i.e, if the first key is the customer’s name, find the longest name
in any record, or perhaps allow for avery long one).

KEY1" POSI Tl ON The first character position of the first key. If KEY1' POSI TI ON is 50,
for example, BASORT will fit the characters beginning at the fiftieth byte
in the record into the sequence it is creating.

KEY1' ORDER Sort order of the first key. Enter 0 to indicate you want the first key of
each record to be sorted in ascending sequence, or enter 1 to indicate
descending sequence.

KEY2' SI ZE The size in bytes of the second key.

KEY2' POSI Tl ON The first character position of the second key.

KEY2' ORDER Sort order of the second key. Enter a0 or a 1. (See KEY1' ORDER,
above))

KEY3' SI ZE The size in bytes of the third key.

KEY3' POSI Tl ON The first character position of the third key.

KEY3' ORDER Sort order of the third key. Enter a0 or a 1. (See KEY1' ORDER, above.)

If you want to use less than three keys, all entriesin the XCALL command line for the unused keys must
be zero. Key types are always string for sequential files. All argumentsin the XCALL command line are
numeric, but may be passed as either floating point or string values. For example, “99” isavalid entry.
Arguments must not be in binary format. The first character in arecord is considered position 1.

FORMAT #2:

The second BASORT calling format is:

XCALL BASORT,

| nput' Channel, CQutput' Channel, Record'Size, &

Keyl' Si ze, Key' Pointer{, Collat}{, EOR}

SuperSort User’s Guide, Rev. 01

AlphaBASIC and AlphaBASIC Plus Program Interface Page 4-9

| NPUT" CHANNEL The file channel on which the inpuit file is open.

QUTPUT" CHANNEL | The file channel on which the output file is open.

RECORD Sl ZE The size, in bytes, of the largest record in the file, including the term-
inating carriage return/linefeed characters. Too small avalueresultsin
truncation of data records.

If set to -1, BASORT assumes variable length records, and uses EOR
(below) to determine the end of record.

KEY1' Sl ZE Set this argument to -1 to indicate key information is defined in a separate
array table.
KEY' PO NTER Pointer to first element of an array (e.g., TABLE(1)) in which you have

used MAP statements to define as many keys as you want. See “Defining
aKey Array,” above for a sample definition.

COLLAT If set to 1, perform asimple sort based on language set; if 0, use culturally
correct collating sequence for that language. If omitted, O is assumed.
EOR Defines end of record character:

0 =CR only (0D hex)

1=LF only (OA hex)

2=BothCRand LF (0D & 0A)
RECORD' Sl ZE must be set to -1 indicating variable length records if
you are using EOR. If omitted, O is assumed.

All argumentsin the XCALL command line are numeric, but may be passed as either floating point or
string values. For example, “99” isavalid entry. Arguments must not be in binary format.

Sample Sequential File Sort

The following is an unsorted sequentia file containing alist of street names and the cities they are
located in. Thefileiscalled STREET.DAT.

We want to record the sorted, alphabetic list of all the streetsin afile called STREET.LST. The street
names sorted according to the city they are located in we'll placein afilecalled CITY.LST.

SuperSort User’s Guide, Rev. 01

Page 4-10

Chapter Four

Hereis the unsorted file:

Redeye Circle Laguna Niguel
Rancho Laguna Road Laguna Beach
Redfield Road Mission Vigjo
Random Drive L ake Forest
Reposado Drive Laguna Hills
Ramona Drive Mission Vigjo
Revere Road Laguna Beach
Ravenscroft Road Mission Vigjo
Redbird Street Irvine

Red Bluff Drive Laguna Hills
Random Drive Mission Vigjo
Raspberry Lane San Juan Capistrano
Ranchero San Clemente
Ramona Drive San Juan Capistrano
Revere Road L ake Forest
Raintree Drive Irvine

Rhodolite Court L ake Forest

Rancho Laguna Road Laguna Hills
Ramona Drive San Clemente
Revere Road Mission Vigjo

Now we create the AlphaBASIC program. The first thing we have to remember to do is open thefile
channel for the file we want to sort, and two more file channels and files where we want to put the sorted
data (or we could use just one other file if we wanted to write over the original, unsorted data). Our
program might look like this:

I Sample programto sort a sequential data file:
START:
OPEN #1, " STREET. DAT", | NPUT
OPEN #2, " STREET. LST", OUTPUT
OPEN #3,"CI TY. LST", QUTPUT
PRI NT "Now sorting all streets al phabetically."”
XCALL BASORT, 1, 2, 50, 30, 1, 0, 20, 31,0,0,0,0
CLCSE #1
PRI NT "Now sorting according to city."
OPEN #1, " STREET. DAT", | NPUT
XCALL BASORT, 1, 3, 50, 20, 31,0, 30,1,0,0,0,0
PRINT "All done." : PRINT
PRI NT "See STREET.LST and CITY.LST for sorted files."
CLOSE #1 : CLOSE #2 : CLOSE #3
END

The file opened for input is our unsorted source file. The files opened for output are what will contain our
sorted data.

The first BASORT statement sorts STREET.DAT using the street name as the first key and the city name
as the second. Refer back to the discussions on BASORT statement format if you need a refresher on
what the numeric arguments on the BASORT statement line mean. Note that since we are only using two
keys, the third key datais 0, 0, 0.

SuperSort User’s Guide, Rev. 01

AlphaBASIC and AlphaBASIC Plus Program Interface Page 4-11

Next, the file STREET.LST is created and the datain STREET.DAT is rewritten in alphabetical order.
The next linesin the program close and then re-open file channel #1 and the file STREET.DAT. If those
two lines are omitted, the new file CITY.LST, though created, would be empty because no further data
would be found in the file STREET.DAT. These two lines cause the BASORT subroutine to look at the
beginning of thefile, rather than the end.

We again call the BASORT program. Thislineis different than the first because we are now specifying
the city as the first key and the street name as the second key.

STREET.LST, the sorted version of all the streets contained in the file STREET.DAT, looks like this:

Raintree Drive Irvine

Ramona Drive Mission Vigjo
Ramona Drive San Clemente
Ramona Drive San Juan Capistrano
Ranchero San Clemente
Rancho Laguna Road Laguna Beach
Rancho Laguna Road Laguna Hills
Random Drive L ake Forest
Random Drive Mission Vigjo
Raspberry Lane San Juan Capistrano
Ravenscroft Road Mission Vigjo

Red Bluff Drive Laguna Hills
Redbird Street Irvine

Redeye Circle Laguna Niguel
Redfield Road Mission Vigjo
Reposado Drive Laguna Hills
Revere Road Laguna Beach
Revere Road L ake Forest

Revere Road Mission Vigjo
Rhodolite Court L ake Forest

SuperSort User’s Guide, Rev. 01

Page 4-12

Chapter Four

Raintree Drive
Redbird Street
Rancho Laguna Road
Revere Road

Rancho Laguna Road
Red Bluff Drive
Reposado Drive
Redeye Circle
Random Drive
Revere Road
Rhodolite Court
Ramona Drive
Random Drive
Ravenscroft Road
Redfield Road
Revere Road
Ramona Drive
Ranchero

Ramona Drive
Raspberry Lane

Irvine

Irvine

Laguna Beach
Laguna Beach
Laguna Hills
Laguna Hills
Laguna Hills
Laguna Niguel

L ake Forest

L ake Forest

L ake Forest
Mission Vigjo
Mission Vigjo
Mission Vigjo
Mission Vigjo
Mission Vigjo

San Clemente

San Clemente

San Juan Capistrano
San Juan Capistrano

Thefile CITY.LST, which is the streets first sorted according to their city location, looks like this:

SuperSort User’s Guide, Rev. 01

Chapter 5 - Assembly Language
Program Interface

SuperSort is fully accessible from the AMOS assembly language programming environment. To call SuperSort
from assembly language, follow these basic steps:

Locate SSORT.SY Sin system or user memory.
Allocate memory within the job partition for sorting.
Define the keys on which to sort.

Define other sort parameters.

Call SSORT.SY Sto perform the actual sort.

o~ w0 NP

Definitions used by SuperSort programs are contained in the file DSK0:SRTSYM.M68[7,7].

LOCATING SSORT.SYS IN MEMORY

The sort module, SSORT.SY S, must be located in user or system memory prior to sorting. From within assembly
language programs, you can use the SRCH monitor call to locate the memory module in memory, as shown in the
sample program later in this chapter

ALLOCATING MEMORY FOR THE SORT PROCESS

SuperSort performs its best when given the maximum amount of memory. For this reason, you will want to
allocate as much memory as possible for the sort process. Once alocated, you pass a pointer to this memory to
SuperSort. After the sort is complete, you are free to dispose of this memory.

DEFINING KEYS

SuperSort supports a virtually unlimited number of sort keys. Y ou must, however, define the characteristics of
each key prior to calling SuperSort. Keys are defined using a key table, as defined in SRTSY M.M68.

Each element in the key table consists of five fields, which describe the key to use for sorting. Y ou can
specify as many keys as you like. You are only limited by the amount of memory you have to sort in.
The structure of the key table is as follows:

SuperSort User’s Guide, Rev. 01

Page 5-2

Chapter Five

KT.CMP 4 bytes Optional comparison routine
KT.SIZ 2 bytes Size of key

KT.OFF 2 bytes Offset within the record of key
KT.TYP 1 byte Type of key

KT.ORD 1 byte Sort order

S..KT = Size of one element in the key table. Multiply this with the maximum number of keys you might
use in asort to find the size of this area when allocating memory for it.

Description of each key table field:

KT.CMP

KT.SIZ

KT.OFF

KT.TYP

KT.ORD

Pointer to an optional comparison routine. If you have a unique key type you wish to
sort on you would use this option. If used, KT.TY P should specify avalue greater
than the last defined type (e.g., >5).

Register use: Input: DO => Pointer to first string.
D1 => Pointer to second string.
Output: DO := Result code:
1 =stringl > string2
-1 =stringl < string2
0 = stringl = string2

Load this field with the size of the key. It must be more than zero and no larger that
the size of the record specified in the main interface structure passed to SSORT.

Load thisfield with the offset, in bytes, of the key within the data record. It must not
exceed the size of the record. Also, key offsets start from a base of 1.

Thisfield specifies the type of key:
0 = string
1 = 6-byte (AMOS) floating point
2 = binary (AlphaBASIC compatible format)
3 = 4-byte (IEEE) floating point
4 = 8-byte (IEEE) floating point
5 = integer
6 = use user-supplied comparison routine

Sort order. Thisfield tells SSORT which order to sort this particular key. Set as
follows: 0 = Ascending; 1 = Descending

SuperSort User’s Guide, Rev. 01

Assembly Language Program Interface Page 5-3

DEFINING SORT PARAMETERS

After the keys have been defined, you must set up the remaining parameters which control the way the
sort isto be performed. We have provided a SRTSYM.M68 symbol file that defines the layout of this
structure to help you get your program sorting with a minimum of difficulty. Thisis the layout of the
interface structure:

Symbol Size Description

ISMEM 4 bytes Address of free memory area

ISMSZ 4 bytes Size of the free memory area

ISNRC 4 bytes Number of records for arandom file
ISINP 4 bytes Address of optional input routine

IS.OUT 4 bytes Address of optional output routine
IS.ERR 4 bytes Address of optional error handling routine
ISCLT 4 bytes Address of optional collate table

ISKTB 4 bytes Address of the key table

ISNOR 4 bytes Number of records sorted (returned by SSORT)
IS.CMP 4 bytes Number of comparisons made

IS.SWP 4 bytes Number of swaps made

IS.IDB 110 bytes Input DDB

IS.ODB 110 bytes Output DDB

ISRSZ 2 bytes Record size

ISKYS 2 bytes Total number of keys

IS.ERC 2 bytes Error code

IS.BGF 2 bytes “Big Flag” used for random files

IS.COL 1 byte Sort flag, simple or collate

IS.EOR 1 byte End of record indicator

S..IS = Size of this structure
Description of each element:

ISMEM Thisis an address to an area of memory that SSORT will useto do itswork. To get
the best results, this area should be as large as possible. Use the GETMEM call to
alocate this area and leave at least 4096 bytes for SSORT to allocate disk buffers,
etc. It isimportant to note that you should alocate this memory in accordance with
the way that AMOS all ocates memory modules, because SSORT will be using
standard AMOS calls to allocate buffers and load disk drivers.

ISMSZ Thisisthe size of the free memory area.

ISNRC Thisisthe number of records to be sorted. It is only used with random files. This
can be left uninitialized for sequential file sorting.

SuperSort User’s Guide, Rev. 01

Page 5-4

Chapter Five

ISKTB

IS.IDB

1S.ODB

IS RSZ

ISKYS

IS.BGF

IS.COL

ISEOR

Pointer to the key table. The key table contains information on all the keys you
wish to sort on, starting with the primary, then secondary and so on, with an
unlimited number. The key table structure is also defined in SRTSY M.M68,
supplied with the SuperSort software. It is described in the next section.

Thisisthe DDB for the input file. If you are supplying your own I/O routines this
can be left uninitialized; otherwise, it should be set up for both random and
sequential file sorts.

Thisisthe DDB for the output file. In the case of random files, this should be all
cleared. In the case of sequentia files, it can be null if you want the input file to be
overwritten with the result file; otherwise, it should be set up so that a separate
output fileis created by the sort.

Thisisfor the record size. It should be set for either type of file to be sorted but if
you are specifying variable record sizes for a sequentia file, it should be set to -1. If
you are using your own 1/O routines this should contain the maximum record size
the input routine might pass.

Total number of keys to sort on. Set this according to the number of keys being
used to sort with, not the number of entries you have allocated for the key table.

Thisisthe “big flag.” Thisis used with random files and signifies that the data
records span physical block boundaries, i.e., exceed 512 bytes. Set it to a non-zero
value if thisistrue, else set it to zero.

Collate flag. Set thisto O for culturally correct sorting or set to 1 for asimple
ASCI| sort.

End of record indicator. Used for sequential files. Use thisif you are specifying
variablerecord sizes. Setto;: CR=0,LF=1, CRLF = 2.

Optional routines:

ISINP

Pointer to an optional input routine. SSORT will do its own 1/O when you use
standard files, such as those created by AlphaBASIC. But if you are sorting data that
comes from a file with a specia format or from memory, use this so your program can
present the data to SSORT so it can be sorted properly.

Register use: Input: DO => Pointer to memory area to put
record data.
Output: DO := Size of record. Set to -1 to signd
no more records.

SuperSort User’s Guide, Rev. 01

Assembly Language Program Interface

Page 5-5

ISOUT

IS.ERR

ISCLT

Pointer to an optional output routine. If you supply an input routine you must supply
an output routine.

Register use: Input: DO => Pointer to record data
D1 := Size of record.
Output: nothing.

Pointer to an optional error handler. This option is independent of the other routines,
i.e., you can use this option without the optional 1/0 routines. Use this option when
you want to control error processing in your program.

DO := Error code.
nothing.

Register use: Input:

Output:

Pointer to an optional collate table. If you are doing a simple compare, this field
should be left 0. If you want to sort using a special collating sequence, load thisfield
with the address of a CULCMP.Ing file, created with COLGEN.LIT. For more
information on COLGEN.LIT, see Chapter 7.

Statistics returned by SSORT:

ISNOR

IS.CMP

IS.SWP

IS.ERC

When the sort is complete SSORT loads this with the number of records that were
actually sorted.

Thisfield isloaded by SSORT upon completion with the number of comparisons made
to achieve the correct sort.

Thisfield is set with the number of swaps SSORT performed during the sorting
operation.

Upon completion of the sort, SSORT loads this field with the resulting error code.

Below isalist of symbolsthat define the errors that SSORT might return:

SESNOMEM =1 Insufficient memory.

SE$FILERR =5 File improperly opened in SSORT.
SE$REDERR =6 Read file error.

SE$SWRTERR =7 Write file error.

SE$SIZERR =8. Wrong record size given.
SE$SNOIO =09. input/output routines not found.
SE$CTRLC =12 CTRLC detected.

CALLING SSORT.SYS

Calling SuperSort is simply a matter of using the location of SSORT.SY S, found in the first step, and calling that

address, passing in the parameter definitions you have set up.

SuperSort User’s Guide, Rev. 01

Page 5-6 Chapter Five

PUTTING IT ALL TOGETHER

Now let’s look at a sample program which sorts afile.

Note that the basic structure to pass to SSORT.SY Sis defined in the SRTSYM.M68 file.

SEARCH SYS
SEARCH SYSSYM
SEARCH SRTSYM

. OFI' NI ;
. OFDEF KEYTBL, <S..KT*4> ; Key table.

.OFDEF INTER, S..1S ; Interface structure.
.OFSIZ S..IMP ;
CGETIMP S..IMP, A5
LEA Al, KEYTBL(A5) ; Index the key table.
LEA A0, | NTER(A5) ; Index the interface structure.

; Set up the input DDB.

LEA A2, DATFIL ; Index the data fil enane.
LEA Ad, |S.1DB(A0) ; I'ndex the input DDB.
FSPEC @4 ;. CGet the fil enane.
INIT (@] ;o Init it.

Set up the key table.

' MoV #0, KT. CWP(Al) ; No conparison routine.
MOVW #6, KT. Sl Z(Al) ; Set size of key.
MOVW #1, KT.OFF(AL) ; Ofset of the key.
MOVB #1, KT.TYP(A1L) ; Set the type.

MOVB #0, KT. ORD(Al) Set the sorting order.
: Now the interface structure.

USRFRE D1 ; Get the start of avail abl e nenory.
USREND DO Get the end of nenory.

SUB D1, DO ; Find the difference.

SuUB #4096., DO ; Leave sone extra room

PUSH DO ; Move the desired size onto the stack.
PUSH ; Make sone room for the address.
GETMEM @BP ; Get sone nenory.

POP A3 ; Get the address of the nodul e.
POP ; Clean up the stack.

MoV A3, | S. MEM AO) ; Save the address in the structure.
MoV DO, | S. MBZ(A0) ; Save the size as well.

MoV #250., | S.NRC(A0) ; Set the nunber of records.

MoV #0, | S. 1 NP(A0) ; No input routine.

MoV #0, | S. QUT(AO) ; No output routine.

MoV #0, | S. ERR(A0) ; No error handl er.

MoV #0, |S. CLT(A0) ; No collate table.

MoV Al, |S. KTB(A0) ; Save the key tabl e address.

MOVW #86., |S.RSZ(AO0) ; Set the record size.

MOVW #1, |S. KYS(A0) ; Set the number of keys.

MOVW #0, | S. BGF(A0Q) ; Set the "big" flag.

MOVB #1, |S. COL(A0) ; Do a sinple sort.

; Use OPENIO for any files that span bl ocks, or for any file created
; usi ng OPENI O

SuperSort User’s Guide, Rev. 01

Assembly Language Program Interface Page 5-7

COPENIO @\, #F.WAT, |S.RSZ(A0) ; Open the file.
OPENR @\

I ndex SSCORT. SYS

SRCH SSORT, A6 ;I ndex SSORT. SYS.
BEQ 10% ;. Cot it.
TYPECR <%BSSORT. SYS not found in nenory>
EXIT :
10%:
MOV A0, DO : Index the interface structure.
CALL 10. (A6) ; Call SSORT.
TYPECR <Done>
EXIT
DATFI L: ASCl Z / SSTO01. DAT/ ; Data fil enane.
EVEN
SSORT: RAD50 / SSORT SYS/ : SSORT. SYS fil enane.
END

CULTURALLY CORRECT SORTING AND STRING COMPARISON

Another option is the use of the file COLLAT.SYS. This program is used for comparing or translating
string information using the current CULCMP.Ing file found in the LCS: account. To generate the
CULCMP.Ing file, use the COLGEN.LIT program found in the LCS: account. As shipped, LDFTBL.H it
will generate a CULCMP.USA file that will be compatible for English and most other languages. If, on
the other hand, the language you wish to use for sorting purposes does not match this table, you need to
modify the LDFTBL.H filein the LCS: account, and recompile COLGEN.C. When finished, rename the
resulting file so that it has the proper extension for the language to be used.

Note: When recompiling COLGEN, you must use AlphaC 2.0 or later (GNU C). Alpha C 1.x will not
work.

When using COLLAT.SY Sto trandate strings, passit anormal ASCII string of characters and
COLLAT.SY Swill trandate it according to the CULCMP.Ing file found in the LCS: account. This result
string will not consist of any printable characters; rather, it will contain the codes found in the CULCMP
file that correspond with the ASCII character in the original string. These are the codes that SSORT
would usein aculturally correct sort.

Calling sequence for trandlating a string:

PEA dest' buff ; Address of destination buffer.
POP DO ; Save in DO.
PEA source'string Address of source string.

PUSH #1 Functi on code (translate).

POP DI © Save in DI.
PUSH col |l at'table Address of CULCMP file.

SSORT returns: DO := Length of the trandated string.
When using COLLAT.SY S to compare two strings, you pass it the addresses of the two ASCII strings

you want compared along with the address of the CULCMP file and SSORT returns a code indicating the
result of the compare.

SuperSort User’s Guide, Rev. 01

Page 5-8 Chapter Five

Calling sequence for comparing two strings:

PEA stringl Address of 1st string.

PUSH col |l at'table Address of CULCMP file.

POP DO : Save in DO.

PEA string2 ; Address of 2nd string.
POP D1 : Save in D1.

PUSH #0 ; Function code (conpare).

SSORT returns the result code in DO:

1 =stringl > string2
0 = stringl = string2
-1 =stringl < string2

SuperSort User’s Guide, Rev. 01

Chapter 6 - AlphaC Program
Interface

SuperSort is fully accessible from the AlphaC 2.0 programming environment. While the main sorting module,
SSORT.SY S, uses a non-standard calling method, glue logic is provided which makes calling from C quite
straightforward.
Aswhen calling SuperSort from assembly language, you follow the same simple steps:
1. Locate SSORT.SY S in system or user memory.
Allocate memory within the job partition for sorting.
Define the keys on which to sort.
Define other sort parameters.
Call SSORT.SY Sto perform the actual sort.

o~ w0 N

Definitions used by SuperSort programs are contained in the file DSK0:SRTSYM.H[7,7].

NOTE: SuperSort is only compatible with AlphaC 2.0 or later (GNU C). It will not work with AlphaC 1.x.

LOCATING SSORT.SYS IN MEMORY

The sort module, SSORT.SY'S, must be located in user or system memory prior to sorting. From within C, you
can use the afetch() function to locate the memory module in memory.

ALLOCATING MEMORY FOR THE SORT PROCESS

SuperSort performs at its best when given the maximum amount of memory. For this reason, you will want to
allocate as much memory as possible for the sort process. Once alocated, you pass a pointer to this memory to
SuperSort. After the sort is complete, you are free to dispose of this memory.

DEFINING KEYS

SuperSort supports a virtually unlimited number of sort keys. Y ou must, however, define the characteristics of
each key prior to calling SuperSort. Keys are defined using the KEY TBL structure, as defined in SRTSYM.H.
Because multiple keys are supported, SuperSort expects multiple copies of the KEY TBL structure, one following
the other without intervening data.

The entry for akey is defined by the following fields:

SuperSort User’s Guide, Rev. 01

Page 6-2

Chapter Six

Symbol Size

Description

*fCompare Pointer to function
returning int.

wKeySize Unsigned short

wKeyOffseat Unsigned short

cKeyType char

cKeyDirec char

Function pointer defining the function to be called to compare
thiskey, or NULL if SuperSort's built-in key comparison
routines are to be used. Thisfield allows you to expand the types
of keys supported by SuperSort by providing your own
comparison routine.

The size of the key in bytes.
The offset from the start of the record to the start of the key.

The type of the key, defined as.
0 =string
1 = 6-byte (AMOY) floating point
2 = binary (AlphaBASIC compatible)
3 = 4-byte (IEEE) floating point
4 = 8-byte (IEEE) floating point
5 = Integer
6 = use user-supplied comparison routine.

0 for ascending sort on this key, 1 for descending.

DEFINING SORT PARAMETERS

After the keys have been defined, you must set up the remaining parameters which control the way the sort isto be

performed. Y ou specify these parameters in a structure call INTERFACE, which is defined in SRTSYM.H.

The entries in this structure are as follows:

Symboal Size Description

*dwAddressOfMem unsigned long Pointer to the memory you allocated for the sort process.
dwSizeOfMem unsigned long The size of the memory area you allocated.
dwRndNoOfRec unsigned long If sorting a random file, this field must contain the

*fAddrOf I nput

*fAddrOfOutput

pointer to
function

number of records to be sorted.

Pointer to the input function used to read data from the
input file, or NULL if you want SuperSort to use its

returning short built-in routines.

pointer to
function

Pointer to the output function used to write data to the
output file, or NULL if you want SuperSort to use its

returning void built-in routines.

SuperSort User’s Guide, Rev. 01

AlphaC Programming Interface

Page 6-3

Symboal Size Description
*fErrorHandler pointer to Pointer to the error handling function called in case of an
function error during the sort process, or NULL if you want

*pwCollatThl

pstkeyTable

dwNoOfRec

dwNoOfCmps

dwNoOfSwps

stinpFile

stOutFile

nRecSize

nTotalKeys

WErrorNo

wBigFlag

bCollat

cEorind

returning void

pointer to short

pointer to
KEYTBL

unsigned long

unsigned long

unsigned long

ddb

ddb

short

short

unsigned short

unsigned short

boolean

char

SuperSort to use its built-in routines.

Pointer to the collating table or NULL if no collating
table isto be used.

Pointer to the key definition table, as defined in the
previous step.

Thisfield is set by SuperSort upon completion of the
sort. It will contain the total number of records sorted.

Thisfield is set by SuperSort upon completion of the
sort. It will contain the total number of key comparisons
done.

Thisfield is set by SuperSort upon completion of the
sort. It will contain the total number of record swaps
performed.

Thisentry isthe DDB used by the input file. Y ou must
fill inthis DDB with al necessary items to access this
file.

Thisentry isthe DDB used by the output file. Y ou must
fill inthis DDB with al necessary items to access this
file.

The size of the records to be sorted.

The total number of sort keys provided in the key
definition table.

Thisfield is set by SuperSort upon completion of the
sort. It will contain an error code if the sort did not
complete successfully. Error codes are defined in
SRTSYM.H.

Set to 1 if random file being sorted is structured as "big"
records (records span block boundaries), setto O
otherwise.

Set to FALSE for ssimple key comparison, set to TRUE
for culturally correct collating sequence.

The character to be treated as a end-of-record indicator
when sorting sequentid files.

SuperSort User’s Guide, Rev. 01

Page 6-4 Chapter Six

CALLING SSORT.SYS

Calling SuperSort is simply a matter of using the location of SSORT.SY S, found in the first step, and calling that
address, passing in the parameter definitions you have set up.

PUTTING IT ALL TOGETHER

Now let’s ook at a sample program which sorts a sequential file, DATA.IN, on asingle, ascending, string key,
starting at the first byte of each record. The results of the sort are placed in DATA.OUT.

#def i ne BOOL char

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
#include <string. h>
#i ncl ude <noncal . h>
#i ncl ude <anos. h>

#i ncl ude <rad50. h>

#include <srtsym h>

version (1, 0, , 100, , -1, 0, PH$REE! PH$REU);
#def i ne ELBOWSPACE 4048 /* Mem to be left fromalloc. block */

| NTERFACE stlnterface; /* SuperSort interface structure */

ddb st UnSort Fil e; /* ddb for input file */

unsi gned char * pcFreeMenmAr ea; /* pointer to currently free nenory */
unsi gned char * pcStart Men#rea; /* pointer to the start of mem */

unsi gned | ong dwMemAr eaFr ee; /* total amount of nemrenaining */
nch st MemAr ea; /* nmchb for getmem */

K o o e */
void InitKey (void); /* initialize global key table */

void OpenlnpFile (char **); /* opens input file */

void ErrorHandl er (unsi gned short); /* displays errors and sets joberr */

/* __ *
* Main program

void main(int argc, char **argv)

{

const char * | npFil eName = " SYS: SSORT. SYS";

i nt (* fnSsort)();

ddb st | npddb;

int i Ret Val ;

stlnterface.fErrorHandl er = NULL;

/* fetch SSORT. SYS which gives the address of sort routine */
i RetVal = fspec (& npFileNane, &stlnpddb, 0);
if (lafetch (&stlnpddb, & nSsort, 0)) {

Er r or Handl er (NOAMSORT) ;

exit(1);

SuperSort User’s Guide, Rev. 01

AlphaC Programming Interface Page 6-5

/* junmp to offset 10, as initially ver. info. stored */
fnSsort = fnSsort + 10;

/* Allocate nenory for sort process */
/* check if nenory available is enough or not */
st MemAr ea. si ze = usrend() - usrfre() - ELBONSPACE;

if (stMemArea.size <= 10240) { /* 10k min. nem requirement */
Er r or Handl er (NOVEMORY) ;

exit(1);

}

if (!'getnmen(&stMenmirea)) ({ /* allocate nenmory */
Er r or Handl er (CANTALLCOCATE) ;
exit(1);

} else {
/*
* Store size and ptr. to free mem
*/
dwiemAr eaFree = st MemAr ea. si ze;
pcStart MemArea = st MenAr ea. adr;
pcFreeMemArea = pcStart Mendr ea;

}

/* Open the sequential file we are going to sort */
Openl npFi |l e(&argv[1]);

/* Initialize the file ddbs in interface structure */
stinterface.stlnpFile = stUnSortFil e;
clear (stlnterface.stQutFile);

/* Define the keys we are going to sort on */
I ni tKey();

/* Set up the remining argunents to sort */

stlnterface. dwAddressOf Mem = (unsi gned | ong) pcFreeMemAr ea;
stlnterface. dwSi zeOf Mem = dwMenAr eaFr ee;

stlnterface. f Addr Of | nput = NULL;

stlnterface. f Addr Of Qut put = NULL;

stlnterface. bCol |l at = S| MPLECOVPARE;

st nterface. dwWNoOf Cnps 0;

st nterface. dWNoOf Swps 0;

/* Now call SSORT.SYS itself, passing a ptr to interface structure */
if (!fnSsort (&stlnterface))
/* error returned fromssort.sys */

if (stinterface.fErrorHandl er == NULL) {
Error Handl er (st | nt erface. werror No) ;
exit(1);

}

printf ("\nRecords sorted: %d", stlnterface.dwNoOf Rec);
printf ("\nConparisons: %d", stlnterface.dwNoOf Cps);
printf ("\nSwaps: %\ n", stlnterface.dwNoOf Swps);

} /* end main */

/* __ *
* | nitKey
* I nput : none
* Qut put : none
*

This function initializes the global key table

voi d | nitKey()

{
PKEYTBL pst KeyTabl e;

SuperSort User’s Guide, Rev. 01

Page 6-6

Chapter Six

/* allocate space for key table */

pst KeyTabl e = (PKEYTBL) pcStart MemArea;
stlnterface. pst KeyTabl e = (PKEYTBL) pcStart MemAr ea;
stlnterface. nTotal Keys = 0;

/* set up record size */
stlnterface. nRecSi ze = 80;

/* set up a single key */

pst KeyTabl e- >f Conpare = NULL;
pst KeyTabl e- >wKeySi ze = 8;
pst KeyTabl e- >wKeyOf f set = 1;
pst KeyTabl e- >cKeyType = O0;

pst KeyTabl e- >cKeyDi rec = 0;

pst KeyTabl e++;

stlnterface. nTot al Keys++;
pcFreeMemAr ea += si zeof (KEYTBL);
dwMemAr eaFree -= si zeof (KEYTBL);

/* could define nore keys here if we wanted to */

} /* end init_key */

*
* ErrorHandl er
* Input : Error nunber.
* Qut put : none
* This function prints the error
voi d ErrorHandl er (unsi gned short wError)
{
switch(wkrror) {
case NOVEMORY:
typecr (" ?Insufficient menory");
br eak;
case CANTALLOCATE:
typecr("?Can't allocate user specified nmenory");
br eak;
case NO NPOUT:
typecr ("?lnput Qutput routines not found");
br eak;
case NOAMSORT:
typecr ("?Main sort nodul e not found");
br eak;
case NOFI LE:
typecr ("?lnput file not found");
br eak;
case ERRORARG
typecr ("?Argunent error");
br eak;
case ERRORFI LE:
typecr ("?File not open in correct node");
br eak;
case READERROR:
typecr ("?Read error");
br eak;
case WRI TEERROR:
typecr ("?Wite error");
br eak;

K e o e e e e e e e e e e e e e e e e m e m e m e m e m e — e — -
* QOpenlnpFile

* Input : Pointer to Input file nane

* Qut put : none

SuperSort User’s Guide, Rev. 01

AlphaC Programming Interface Page 6-7

* This function opens the input file.

voi d OpenlnpFile (char ** pclnpFile)
{
i nt i Ret Val ;

clear (stUnSortFile);

i RetVal = fspec ((const char **)pclnpFile, &tUnSortFile,
irads503('D, ' A ,'T));
i RetVal = init (&stUnSortFile);
if (!'lookup (&tUnSortFile)) {
Er r or Handl er (NOFI LE) ;

exit(1);
}

i RetVal = openi (&stUnSortFile, 0);
st nterface. dwWRndNoOf Rec = O;

SuperSort User’s Guide, Rev. 01

Chapter 7 - Language-Specific
Rules for Sorting

Chapter 1 contains a discussion of collating sequences and culturally expected sort results. This chapter
gives amore technical discussion of the collating rules used for different languages. SuperSort adheres to
these rules. If you want a more detailed explanation, refer to Keys to Sort and Search for Culturally
Expected Results from the International Technical Support Center of IBM, document number GG24-
3516.

The following terms are used in this chapter:

Diacritics: These are special marks such as accent marks that serve to mark phonetic differences
in words or to distinguish two words otherwise graphically identical (for example, “résumé’ and
“resume”).

Ligatures: A single character combining two or more characters (for example, “&8').
Specials: Charactersthat are not letters or numbers (for example, “@").

Quasi-homographs: Words spelled identically when case, diacritics, ligatures, and special
characters are ignored. For example, the following word pairs are quasi-homographs: “résumé’
and “resume”; “co-op” and “coop”; and “Caesar” and “caesar.”

ENGLISH
Words are sorted according to the alphabetic rank of the letters (“a’ comes before “b”).

A longer string that begins with the same characters contained in a shorter string will come after the
shorter string regardless of case. For example, “conveyance” comes after “Convey.”

Except in the case of quasi-homographs, diacritical marks are ignored. Embedded special characters are
also ignored. For example, “co-op” comes before “cooperate” and after “co0.” Ligatures are also ignored,
being treated as two separate characters.

In the case of quasi-homographs: diacritics and ligatures are considered first. The quasi-homograph with
diacritics follows the one without. The word with the ligature comes after the one without. Next, caseis
considered: lowercase comes before uppercase. Finally, specials are considered; the word with special
characters follows the one withouit.

Strings containing only specials (e.g., “ @#$%" are sorted first).

Numbers follow specials and precede letters.

SuperSort User’s Guide, Rev. 01

Page 7-2 Chapter Seven

FRENCH

Words are sorted according to the alphabetic rank of the letters (“a’ comes before “b”). The a phabet
contains 26 characters, “a’ through “z.”

A longer string that begins with the same characters contained in a shorter string will come after the
shorter string regardless of case.

Except in the case of quasi-homographs, diacritical marks are ignored. Embedded special characters are
ignored. Ligatures are also ignored, being treated as two separate characters.

In the case of quasi-homographs: diacritics and ligatures are considered first. The word with diacritics
follows the one without. Diacritic distinction proceeds from right to left. The relative weight of diacritics
is: acute, grave, circumflex, trema, and cedilla. For example, the following words are sorted correctly:
“cote, cOte, coté, coté.”

A quasi-homograph with aligature comes after the one without. Next, case is considered: lowercase
comes before uppercase. Finally, specias are considered; the word with special characters follows the
one without.

Strings containing only specials (e.g., “ @#$%" are sorted first).

Numbers follow specials and precede letters.

GERMAN

Words are sorted according to the alphabetic rank of the letters (“a’ comes before “b”). The a phabet
contains 26 characters, “a’ through “z.” “13’ (ess-zed) is sorted as “ss’ but precedes “ss.” Umlauted
vowels“d” “6,” “U” are sorted after the vowels“a,” “0,” and “u.”

A longer string that begins with the same characters contained in a shorter string will come after the
shorter string regardless of case.

Except in the case of quasi-homographs, diacritics are ignored. Embedded specials are ignored. Ligatures
areignored, being treated as two separate characters.

In the case of quasi-homographs: diacritics and ligatures are considered first. The word with diacritics
follows the one without. A quasi-homograph with aligature comes after one without. Next, caseis
considered: lowercase comes before uppercase. Finally, specials are considered; the word with special
characters follows the one withouit.

Strings containing only specials (e.g., “ @#$%" are sorted first).

Numbers follow specials and precede letters.

SuperSort User’s Guide, Rev. 01

Language-Specific Rules for Sorting Page 7-3

SPANISH

Words are sorted according to the alphabetic rank of the letters (“a’ comes before “b"). However, the
Spanish alphabet is different than English. There are 28 letters in the Spanish a phabet: “ch” follows “cz”
and precedes “d”; “II” follows “|z" and precedes “m”; “fi” follows “nz” and precedes “0.” These
characters are treated asif they were each asingle character. A final special character, “rr,” is sorted as
two characters, and is only treated as a single character for hyphenation. The letters “k” and “w” are
generally omitted, but may be used in foreign names.

A longer string that begins with the same characters contained in a shorter string will come after the
shorter string regardless of case.

Except in the case of quasi-homographs, diacritical marks are ignored. Embedded special characters are
also ignored. Ligatures are also ignored, being treated as two separate characters.

In the case of quasi-homographs: diacritics and ligatures are considered first. The word with diacritics
follows the one without. A quasi-homograph with a ligature comes after one without. Next, caseis
considered: lowercase comes before uppercase. Finally, specials are considered; the word with special
characters follows the one without.

Strings containing only specials (e.g., “ @#$%" are sorted first).

Numbers follow specials and precede letters.

DEFINING YOUR OWN COLLATING SEQUENCE

If you are using alanguage other than the ones listed in Chapter 1, you will need to define your own
collating sequence appropriate to the language you are using. To generate a SuperSort collating sequence
table, at AMOS command leve type:

COLGEN

COLGEN will usethe LDFTBL.H file to generate a CULCMP.USA file. As shipped, LDFTBL.H causes
aCULCMP file to be created that is compatible with English and most other languages. If, on the other
hand, the language you wish to use for sorting purposes does not match this table, you need to modify the
LDFTBL.H filein the LCS: account, and recompile COLGEN.C. When finished, rename the resulting
file so that it has the proper extension for the language to be used.

Note: When recompiling COLGEN, you must use version 2.0 or later of AlphaC (GNU C); AlphaC 1.X
will not work.

Details on the content of LDFTBL.H and how these tables are constructed, may be found in the IBM
document Keys to Sort and Search for Culturally Expected Results referred to at the beginning of this
chapter. Y ou will need to fully understand this material before proceeding with modifying LDFTBL.H.

SuperSort User’s Guide, Rev. 01

Document History

Date Revision Description
April 1994 00 Initial Release
August 1996 01 Correct code sample and table reference in Chapter 4.

SuperSort User’s Guide, Rev. 01

A

AlphaBASIC - 4-1
AlphaBASIC Plus - 4-1

Array, key - 4-2

ASCII collating sequence - 1-3
Assembly language - 5-1

Index

B

BASORT - 4-1

K

Key -1-2
array - 4-2
BASORT - 4-1
defined - 1-2
multiple - 1-2
position - 1-3
types - 1-1

C

COLGEN - 7-3

Collating sequence - 1-3, 7-1
Compatibility - 1-2

Culturally expected sort results - 7-1

L

Language
culturally correct sort - 7-1
setting - 1-4

LDFTBL.H - 7-3

Ligatures - 7-1

F

Field, defined - 1-3
File
random - 4-1
sequential - 4-1
type - 1-3

P

Programming interface - 1-1
AlphaBASIC - 4-1
AlphaBASIC Plus - 4-1
assembly language - 5-1

G

Generating your own collating sequence - 7-3

R
Random file - 1-3
Record

defined - 1-3

variable length - See Variable length records

Installation - 2-1
Product Installation Code - 2-1
verifying - 2-1

S

Sequentia file - 1-3
Sort
collating sequence - 1-3

culturally expected results - 7-1

definitions - 1-2
SORT command - 1-1
features - 1-1
operation - 3-3
SSORT.SYS - 4-1
loading into memory - 4-1

SuperSort User’s Guide, Rev. 01

Page 7-2 Index

SuperSort - 1-1 \V;
compatibility - 1-2
features - 1-1 .
filesincluded - 2-2 Variable length records - 1-1, 4-9
installation - 2-1
key types - 1-1
programming interface - 1-1

SuperSort User’s Guide, Rev. 01

