
Summary Praat: Procedures 1

Sometimes we will want to use a portion of code in a script more than once. On the one hand, loops
come in handy, on the other hand this might not be enough for specific performances. This is where
procedures come in.
A procedure is a block of several instructions which can be called whenever needed. Therefore, you can
re-use similar pieces of code. Look at the following. . .

key_x = 0.751

key_y = 4902

3

select Sound ’name1$’4

To Pitch... 0 75 60005

select Pitch ’name1$’6

Black7

Draw... 0 0 0 500 yeso8

Text... key_x Left key_y Top ’name1$’9

key_y = key_y - 2010

11

select Sound ’name2$’12

To Pitch... 0 75 600013

select Pitch ’name2$’14

Red15

Draw... 0 0 0 500 yes16

Text... key_x Left key_y Top ’name2$’17

key_y = key_y - 2018

19

select Sound ’name3$’20

To Pitch... 0 75 600021

select Pitch ’name3$’22

Green23

Draw... 0 0 0 500 yes24

Text... key_x Left key_y Top ’name3$’25

key_y = key_y - 2026

27

drawing$ = "pitch_curves.pdf"28

Save as PDF file... ’drawing$’29

select all30

Remove31

1Reference: Praat User Manual - Scripting 5.5 Procedures [03.07.2013]

1


key_x = 0.75
key_y = 490

select Sound ’name1$’
To Pitch... 0 75 6000
select Pitch ’name1$’
Black
Draw... 0 0 0 500 yes
Text... key_x Left key_y Top ’name1$’
key_y = key_y - 20

select Sound ’name2$’
To Pitch... 0 75 6000
select Pitch ’name2$’
Red
Draw... 0 0 0 500 yes
Text... key_x Left key_y Top ’name2$’
key_y = key_y - 20

select Sound ’name3$’
To Pitch... 0 75 6000
select Pitch ’name3$’
Green
Draw... 0 0 0 500 yes
Text... key_x Left key_y Top ’name3$’
key_y = key_y - 20

drawing$ = "pitch_curves.pdf"
Save as PDF file... ’drawing$’
select all
Remove



proc1.praat



As you can see, some arguments occur again. Using a procedure, you do not have to write those repeat-
edly but can re-use them whenever needed. . .

key_x = 0.751

key_y = 4902

3

soundname$ = "monotone"4

Black5

@draw ()6

7

soundname$ = "declarative"8

Red9

@draw ()10

11

soundname$ = "declarative_low"12

Green13

@draw ()14

15

drawing$ = "pitch_curves.pdf"16

Save as PDF file... ’drawing$’17

select all18

Remove19

20

procedure draw ()21

select Sound ’soundname$’22

To Pitch... 0 75 600023

select Pitch ’soundname$’24

Draw... 0 0 0 500 yes25

Text... key_x Left key_y Top ’soundname$’26

key_y = key_y - 2027

endproc28

As you see, a procedure definition in Praat consists of three parts:

1. a line with the word procedure, followed by the name of the procedure, followed by a pair of
parentheses

2. the body of the procedure

3. a line with the word endproc

You can put a procedure definition anywhere in your script; the beginning or end of the script are com-
mon places. The bodies of procedures are executed only if you call the procedure explicitly (using the
symbol @ and the name of the procedure), which you can do anywhere in the rest of your script

Arguments

In the script above, you still have to define the single sound files that should be drawn and the color they
should be drawn in. This can be improved. In the following version of the script, the procedure draw
requires an explicit argument: @draw ("monotone", "Black").

2


key_x = 0.75
key_y = 490

soundname$ = "monotone"
Black
@draw ()

soundname$ = "declarative"
Red
@draw ()

soundname$ = "declarative_low"
Green
@draw ()

drawing$ = "pitch_curves.pdf"
Save as PDF file... ’drawing$’
select all
Remove

procedure draw ()
select Sound ’soundname$’
To Pitch... 0 75 6000
select Pitch ’soundname$’
Draw... 0 0 0 500 yes
Text... key_x Left key_y Top ’soundname$’
key_y = key_y - 20
endproc



proc2.praat



key_x = 0.751

key_y = 4902

3

@draw ("monotone", "Black")4

@draw ("declarative", "Red")5

@draw ("declarative_low", "Green")6

7

drawing$ = "pitch_curves.pdf"8

Save as PDF file... ’drawing$’9

select all10

Remove11

12

procedure draw (soundname$, color$)13

select Sound ’soundname$’14

To Pitch... 0 75 600015

select Pitch ’soundname$’16

’color$’17

Draw... 0 0 0 500 yes18

Text... key_x Left key_y Top ’soundname$’19

key_y = key_y - 2020

endproc21

This works as follows. The first line of the procedure now not only contains the name (draw), but also a
list of variables (soundname$ and color$). In the first line of the script, the procedure draw is called with
the argument "monotone" and "Black". Execution then jumps to the procedure, where the arguments
are assigned to the variable soundname$ and color$, which is then used in the body of the procedure.
You can use multiple arguments, separated by commas, and string arguments (with a dollar sign in the
variable name). For mere numeric arguments use something like @draw (400 + 100).

Encapsulation and local variables

Look at the following script.

frequency = 3001

@playOctave (440)2

@playOctave (400)3

@playOctave (500)4

printline ’frequency’5

procedure playOctave (frequency)6

Create Sound from formula... note Mono 0 0.3 44100 0.4 * sin (2 * pi * frequency * x)7

Play8

Remove9

octaveHigher = 2 * frequency10

Formula... 0.4 * sin (2 * pi * octaveHigher * x)11

Play12

Remove13

endproc14

You might have thought that this script will write "300" to the Info window, because that is what you
expect if you look at the first five lines. However, the procedure will assign the values 440, 400, and 500
to the variable frequency, so that the script will actually write "500" to the Info window, because 500 is
the last (fourth!) value that was assigned to the variable frequency.
What you would want is that variables that are used inside procedures, such as frequency and octaveHigher,
could somehow be made not to "clash" with variable names used outside the procedure. A trick that
works would be to include the procedure name into the names of these variables:

3


key_x = 0.75
key_y = 490

@draw ("monotone", "Black")
@draw ("declarative", "Red")
@draw ("declarative_low", "Green")

drawing$ = "pitch_curves.pdf"
Save as PDF file... ’drawing$’
select all
Remove

procedure draw (soundname$, color$)
select Sound ’soundname$’
To Pitch... 0 75 6000
select Pitch ’soundname$’
color$
Draw... 0 0 0 500 yes
Text... key_x Left key_y Top ’soundname$’
key_y = key_y - 20
endproc



proc3.praat


frequency = 300
@playOctave (440)
@playOctave (400)
@playOctave (500)
printline ’frequency’
procedure playOctave (frequency)
Create Sound from formula... note Mono 0 0.3 44100 0.4 * sin (2 * pi * frequency * x)
Play
Remove
octaveHigher = 2 * frequency
Formula... 0.4 * sin (2 * pi * octaveHigher * x)
Play
Remove
endproc



proc4.praat



frequency = 3001

@playOctave (440)2

@playOctave (400)3

@playOctave (500)4

printline ’frequency’5

procedure playOctave (playOctave.frequency)6

Create Sound from formula... note Mono 0 0.3 44100 0.4*sin(2*pi*playOctave.frequency*x)7

Play8

Remove9

playOctave.octaveHigher = 2 * playOctave.frequency10

Formula... 0.4 * sin (2 * pi * playOctave.octaveHigher * x)11

Play12

Remove13

endproc14

Fortunately, Praat allows an abbreviated version of these long names: just leave "playOctave" off from
the names of the variables, but keep the period (.):

...1

procedure playOctave (.frequency)2

Create Sound from formula... note Mono 0 0.3 44100 0.4 * sin(2 * pi * .frequency * x)3

...4

endproc5

4


frequency = 300
@playOctave (440)
@playOctave (400)
@playOctave (500)
printline ’frequency’
procedure playOctave (playOctave.frequency)
Create Sound from formula... note Mono 0 0.3 44100 0.4*sin(2*pi*playOctave.frequency*x)
Play
Remove
playOctave.octaveHigher = 2 * playOctave.frequency
Formula... 0.4 * sin (2 * pi * playOctave.octaveHigher * x)
Play
Remove
endproc



proc5.praat


