
XMLPDF Library

.NET Programmers Guide

Version 5.5.7 16 November 2006

Produced with XMLPDF 5.5.7M

www.xmlpdf.com

http://www.xmlpdf.com

XMLPDF 5.5.7 Programmers Guide November 2006

Contents
1 Introduction 1

1.1 Why create PDF files ? 1
1.2 Why use PDF instead of HTML ? 1
1.3 Development Environments 1
1.4 Do I need to know about the PDF file format ? 1
1.5 About this manual 1

2 Features 2

2.1 Document templates 2
2.2 Text Formatting 2
2.3 Fonts 2
2.4 Images 2
2.5 Pagination 3
2.6 Tables 3
2.7 Merging Data 3
2.8 Styles 3
2.9 Links 3
2.10 Sequences 3

3 Installation 4

4 Usage 5

4.1 Introduction 5
4.2 Hello world XML file 5
4.3 API 5
4.4 XML Validation 7
4.5 Versions 7
4.6 License File 7

5 C# Example 9

5.1 C# Code 9
5.2 Step by Step 9

6 Visual Basic Example 12

7 ASP.NET Example 15

8 ASP.NET Virtual Directories 16

9 XML Characters and Entities 17

9.1 Escaping XML Characters 17
9.2 Using XML Entities 18

10 Units of Measurement 19

10.1 Units 19
10.2 Page sizes 20
10.3 Custom page sizes 20
10.4 Page orientation 20
10.5 Margins 20

www.xmlpdf.com

http://www.xmlpdf.com

XMLPDF 5.5.7 Programmers Guide November 2006

10.6 Default values 21

11 Fonts 22

11.1 Basics 22
11.2 Changing fonts 22
11.3 Line height or leading 23
11.4 TrueType fonts 23
11.5 Unicode fonts 24

12 Document Structure 25

12.1 Basics 25
12.2 XML encoding 25
12.3 Document element 26
12.4 Fonts element 26
12.5 Images element 26
12.6 Content elements 27
12.7 Formatting elements 31
12.8 New page element 31
12.9 Dynamic Attributes 31

13 Text Formatting 32

13.1 Basics 32
13.2 Horizontal alignment 32
13.3 Vertical alignment 32
13.4 Text color 33
13.5 Underline and strikethrough 33
13.6 Space after 33
13.7 Space before 33
13.8 Forcing space before 34
13.9 Indent left 34
13.10 Indent right 34
13.11 Kerning 34
13.12 Keep together 34
13.13 Keep spaces 34
13.14 Leading 35
13.15 Rise 35
13.16 Non Breaking Space 35
13.17 Changing Text Formatting 35

14 Page Numbering 37

14.1 Basics 37
14.2 Breaks 37
14.3 Grouping 37

15 Colors 38

15.1 Basics 38
15.2 Predefined Colors 38
15.3 Custom Colors 38
15.4 CMYK Colors 38

16 Tables 39

16.1 Basics 39
16.2 Column widths 39
16.3 Borders 40

www.xmlpdf.com

http://www.xmlpdf.com

XMLPDF 5.5.7 Programmers Guide November 2006

16.4 Rounded Corners 41
16.5 Line styles 41
16.6 Border colors 42
16.7 Cell padding 42
16.8 Nested tables 42
16.9 Row height 43
16.10 Newspaper layout 44
16.11 Other attributes 46

17 Lines and Boxes 48

17.1 Drawing Boxes 48
17.2 Drawing Lines 48

18 Images 49

18.1 Basics 49
18.2 Image Size 51
18.3 Image Resolution 52
18.4 Merging the file-name value 52
18.5 Using Scalable Vector Graphics 52

19 Styles 55

19.1 Basics 55

20 Document Security 56

20.1 Passwords 56
20.2 Restrictions 56
20.3 Example 56

21 Error Handling 58

21.1 Basics 58
21.2 Logging to File 58
21.3 Logging to A Stream 58
21.4 Logging to System.Diagnostics.Trace 59
21.5 Logging to Multiple Destinations 59

22 Merging Data 60

22.1 Basics 60
22.2 Conditional processing 60
22.3 Merging Fields from XML using XPath expressions 61
22.4 Integration with ADO.NET 67

23 Links 69

23.1 Basics 69
23.2 Merging the URL Value 70

24 Positioning Output 71

24.1 Absolute Positioning 71
24.2 Relative Positioning 71

25 Creating a Table of Contents 72

25.1 Creating a Table Of Contents 72
25.2 Table Of Contents Page Layout 73

www.xmlpdf.com

http://www.xmlpdf.com

XMLPDF 5.5.7 Programmers Guide November 2006

26 Reference 75

26.1 <auto-sequence-get> 75
26.2 <auto-sequence-get-name> 75
26.3 <auto-sequence-inc> 76
26.4 <begin-page-number-group> 77
26.5 <boxes> 77
26.6 <block> 79
26.7
 80
26.8 <cell> 81
26.9 <condition> 82
26.10 <conditions> 82
26.11 <data> 82
26.12 <define-sequence> 82
26.13 <document> 84
26.14 <forward-reference> 85
26.15 85
26.16 <fonts> 85
26.17 <graphic> 86
26.18 <header> 86
26.19 
<show-image image-name='im1'/>

</document>

18.5 Using Scalable Vector Graphics

XMLPDF for .NET version 3.8.2 and higher provides support for including SVG
images into the PDF document.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 53 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 18: Images

Scalable Vector Graphics is a standard XML vocabulary used to define an image.
XMLPDF uses the Sharp Vector Graphics (SVG#) library for SVG support.
Currently version 0.30 is supported.

Support for SVG is an optional feature. XMLPDF will run without SVG# being
installed. To activate SVG support download and install SVG# and set the
SVGDIR enviornment variable as described below.

In version 0.3 of SVG# these files are located in the build subdirectory and are
called:

SharpVectorCss.dll
SharpVectorObjectModel.dll
SharpVectorRenderingEngine.dll
SharpVectorScripting.dll
SharpVectorXml.dll
SharpZipLib.dll

If you have problems getting SVG# integration to work try setting the logging
level to Level.INFO (see previous chapters for more information on error
handling).

You should see messages logged similar to this (when things go wrong):

info:Loading image file from file:butterfly.svg
info:Failed to load optional assembly from
d:\xmlpdf\cs2\testit\bin\release\SharpVectorCss.dll
info:Optional SVG support is disabled

Or like this (when things go well):

info:Loading image file from file:butterfly.svg
info:Loaded optional SVG assemblies ok

These messages will tell you where XMLPDF is looking for the SVG# DLLs.

Set the environment variable SVGDIR to the directory which contains the SVG#
files and XMLPDF will load them from this directory.

For instance if you have SVG# installed in d:\SharpVectorGraphics then the
DLLs will be in d:\SharpVectorGraphics\build and you can set SVGDIR like
this:

set SVGDIR=d:\SharpVectorGraphics\build

SVG images are used in the same manner as other types of images in XMLPDF.
The image is defined using an 
<show-image image-name='im1'/>

</document>

In this example the image-name attribute of the image element is set to the name
attribute of the image element in the data XML.

www.xmlpdf.com

http://www.xmlpdf.com/http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconformattingoverview.asp
http://www.xmlpdf.com

xmlpdf user manual page 67 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 22: Merging Data

An example of data XML which would work with this template is:
<data>
<image name='clouds.jpg'/>

</data>

22.4 Integration with ADO.NET

This section describes how iterate over a .NET DataTable object to insert values
from database records into the PDF file.

A DataTable object represents data extracted from a database. The DataTable is
created using a SqlDataAdapter object. XMLPDF is able to iterate over the
DataTable using the <foreach> element and to extract individual fields from the
DataTable using the <merge> merthod.

22.4.1 Creating the DataTable

The following code shows a method which creates and returns a DataTable. The
table returned is the 'sales' table from the 'pubs' database which is part of the
SQL Server default installation.

using System;
using System.Text;
using System.IO;
using System.Diagnostics;
using System.Collections;
// recordset related
using System.Data;
using System.Data.SqlClient;

public DataTable RetrieveRowsWithDataTable() {
string CONNECTIONSTRING
= "server=(local);Integrated Security=SSPI;database=pubs";

SqlConnection conn = null;
try {

conn = new SqlConnection(CONNECTIONSTRING);
SqlCommand cmd = new SqlCommand("select * from sales", conn);
cmd.CommandType = CommandType.Text;
SqlDataAdapter da = new SqlDataAdapter(cmd);
DataTable dt = new DataTable("sales");
da.Fill(dt);
return dt;

}
finally {

if(conn != null) {
conn.Close();

}
}

}

22.4.2 Creating the PDF File

The following code calls the RetrieveRowsWithDataTable method and creates
the PDF file:

PDFDocument doc = new PDFDocument();
DataTable reader = RetrieveRowsWithDataTable();
doc.addNamedObject("sales_datatable", reader);
doc.generate("testrecordset.xml", "testrecordset.pdf");

The source code for this article is in file testrecordset.cs. The file is called
testrecordset.cs_, you will need to rename it to testrecord.cs.

The key thing in this code is the call to doc.addNamedObject(). This associates a
logical name 'sales_datatable' with the recordset.

Within the template XML in file testrecordset.xml this name is used in the
<foreach> tag to tell XMLPDF which object to iterate over.

The full content of the XML template is:

www.xmlpdf.com

http://www.xmlpdf.com/testrecordset.cs_
http://www.xmlpdf.com
http://www.xmlpdf.com/testrecordset.xml

xmlpdf user manual page 68 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 22: Merging Data
<?xml version="1.0" encoding="utf-8" ?>
<document>
<table space-before='1cm' width='40%'

block-align='center' border-width-all='.1'
widths='20%,30%,*' padding-all='2'>
<header widths='20%,30%,*' padding-all='2'>

<row background-gray="90">
<cell>Store</cell>
<cell align='center'>Date</cell>
<cell align='right'>Quantity</cell>

</row>
</header>
<foreach iterator='itr' list='sales_datatable'>

<row>
<cell><merge method='itr.stor_id'/></cell>
<cell align='center'><merge method='itr.ord_date'

format="dd/mm/yyyy"/></cell>
<cell align='right'><merge method='itr.qty'

format='N'/></cell>
</row>

</foreach>

</table>
</document>

Key things to note in the template XML are:

(a) the <foreach> element has a 'list' attribute which has a value equal to the
logical name given to the recordset in the call to doc.addNamedObject()

(b) the <merge> element has a 'method' attribute which has a value which is the
name of the iterator (in this case 'itr') followed by a '.' followed by the field name
in the recordset.

(c) the 'format' attribute of the <merge> element is passed to a call to
System.Text.StringBuilder.AppendFormat(), so any value which is a valid format
string for this method can be specified.

This produces testrecordset.pdf showing all the records in the database.

www.xmlpdf.com

http://www.xmlpdf.com
http://www.xmlpdf.com/testrecordset.pdf

xmlpdf user manual page 69 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 23: Links

CHAPTER 23

Links
23.1 Basics

XMLPDF supports URL's in the PDF document so that when the user clicks on
the link their browser is started and the linked web page is retrieved.

For example click on www.xmlpdf.com to go to the XMLPDF web site.

A sample document with one link looks like this:

<document>
<style name='link' decoration='underline'/>
<block>

The link is <link url='http://www.sun.com'>
The Sun Site</link>

</block>
</document>

Note the use of the style named 'link' which is automatically applied to all link
elements and makes them underlined. The example creates a link which looks
like this:

The link is The Sun Site

The attributes of the <link> element are:

Attribute Description

url This indicates which web site or file will be displayed
when the user clicks on the link. Links to web pages
should start with http:// as shown in the example above.
Mailto links are implemented like this:
<link
url='mailto:test@xmlpdf.com'>test@xmlpdf.com</link
>

url-show-border Setting url-show-border='true' will draw a box around
the URL, which is useful for showing where the hit
region is when you are developing the document.

A link with a border looks like this:

<document>
<style name='link' decoration='underline'/>
<block>
The link is
<link url='http://www.sun.com'
url-show-border='true'>
The Sun Site
</link>

</block>
</document>

to display the link inside a border like this:

The link is The Sun Site

A link can also refer to a local file. To do this set the url attribute to the file
name. For instance to link to the local file 'unicode.pdf' you would do this:

<document>
<block>
The link is
<link url='unicode.pdf'>
unicode.pdf
</link>

</block>
</document>

www.xmlpdf.com

http://www.xmlpdf.com
http://www.xmlpdf.com

xmlpdf user manual page 70 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 23: Links

23.2 Merging the URL Value
An alternate syntax can be used to provide the value for the url attribute. By
using a separate nested <url> element it becomes possible to merge the value of
the url attribute from the data XML. The <url> element should contain only
characters and which will be treated as if they had been specified for the url
attribute.

<document>
<block>
The link is
<link>

<url><merge root='invoice-itr' xpath='linkTC'/>.</url>
information
</link>

</block>
</document>

This example will create a link with the text 'information' and when clicked will
go to whatever value is returned from the <merge> operation.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 71 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 24: Positioning Output

CHAPTER 24

Positioning Output
24.1 Absolute Positioning

Any block element, such as a <block>, <table> or <show-image> element can be
positioned at an absolute location on the page using the following attributes:

Attribute Description

ax The absolute x location on the page in points of the top
left corner of the block.

ay The absolute y location on the page in points of the top
left corner of the block.

Using the following XML we can position the image at location 480, 750, where
the units are points (at 72 points per inch) and the bottom left corner of the page
is location (0,0) and the top right is (595,841) so x=480 y=750 is in the top right
quarter of the page.

<show-image image-name='ferret' scale-width='50' ax='480' ay='750'/>

(480,750)

Absolutely positioned elements are outside the normal flow of the document and
so are not paginated. You are responsible for making sure they fit on the page.

24.2 Relative Positioning

Any block element, such as a <block>, <table> or <show-image> element can be
positioned relative to another block element using the following attributes:

Attribute Description

rx The relative x location on the page in points of the top
left corner of the block.

ry The relative y location on the page in points of the top
left corner of the block.

relative-to The name given to the block which we are relative to
using the relative-name attribute on that other block.

For example this block of text has the attribute relative-name='101'. We can
position the image to the left of this block using XML. Setting ry='0' means the
image will be at the same height on the page as the text, and setting rx='-72' will
positioning the image one inch (72 points) to the left of the text.

The XML for positioning the image looks like this:

<show-image relative-to='101' ry='0' rx='-72'
image-name='ferret' scale-width='50' />

By using relative positioning the image will be located adjacent to the named
block regardless of where that block appears in the document.

Relatively positioned elements are outside the normal flow of the document and
so are not paginated. You are responsible for making sure they fit on the page.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 72 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 25: Creating a Table of Contents

CHAPTER 25

Creating a Table of Contents
25.1 Creating a Table Of Contents

A table of contents is created using the <toc> element. This element creates a set
of pages which contain the table of contents.

A lists of items which will appear in the table of content is created from all the
auto-sequence-get-name elements which have outline="true" specified. So any
item which appears in the bookmarks will also appear in the table of contents.
Internally XMLPDF creates a collection of these items and the table of contents
is created by iterating over this collection using a <foreach> element.

For example if we have the following content:

<auto-sequence-inc level="1" name="Introduction"/>
<auto-sequence-get-name level="1" outline="true">

<block>the introduction text</block>

<auto-sequence-inc level="1" name="Advanced"/>
<auto-sequence-get-name level="1" outline="true">

<block>the advanced text</block>

This creates two outline entries and two entries in the table of contents collection
which is called 'contents'. We can then iterate over this collection to output the
table of contents in the same way we can iterate over any other collection of
objects. Each entry in the collection has the following fields:

number the number of the outline entry which created this table of
contents entry, such as 1.2

text the text of the outline entry which created this table of contents
entry

page the page number the outline entry which created this table of
contents entry appears on

contents the collection of lower level table of contents entries, created
from outline entries which are children of the current entry.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 73 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 25: Creating a Table of Contents

Given this collection of entries we can use XML like this to iterate over the
collection and create the table of contents:

<toc>
<-- insert some text before the table of contents itself -->
<block indent-left='-2.5cm' font-name="helvetica" font-size="24"

align="center">Contents</block>
<-- create a table -->

<table widths='5%,10%,*' width='85%' block-align='center'>

<-- iterate over the top level elements -->
<foreach list='contents' iterator='itr'>

<-- create a row for each element -->
<row padding-top='12' padding-bottom='6'

destination-page='itr.page'>
<-- a cell for the element number -->
<cell>

<merge method='itr.number'/>
</cell>

<-- a cell for the element text and page number -->
<cell font-size='10' colspan='2'>

<merge method='itr.text'/>

<merge method='itr.page'/>
</cell>

</row>
<-- iterate over the child elements -->
<foreach list='itr.contents' iterator='level2'>

<row destination-page='level2.page' >
<cell/>
<cell>

<merge method='level2.number'/>
</cell>
<cell>

<merge method='level2.text'/> <merge
method='level2.page'/>

</cell>
</row>

</foreach>
</foreach>

</table>
</toc>

The XML above will create a two-level table of contents. If we wanted another
levels we could have another nested foreach element contained within the second
foreach loop.

25.2 Table Of Contents Page Layout

The toc element can contain page-header and page-footer elements to define the
page header and footer for the table of content pages. This allows you to have
different headers and footers on the table of contents pages. The table of contents
pages in this manual have the following elements to create their page headers and
footers:

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 74 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 25: Creating a Table of Contents
<toc>

<page-header space-after="1cm" indent-left="-2.75cm"
indent-right="1.5cm">
<row>

<cell align="left" font-name="helvetica" font-size="8"
text-color="blue">

XMLPDF <info field="version" flags="independent"/>
Programmers Guide

</cell>
<cell align="right" font-name="helvetica" font-size="8"

text-color="blue">
<info field="date" flags="MMMMM yyyy"></info>

</cell>
</row>

</page-header>
<page-footer space-before="0.5cm" indent-left="-2.75cm"

indent-right="1.5cm">
<row>

<cell align="middle" font-name="gara" font-size="10">
<link url="http://www.xmlpdf.com">www.xmlpdf.com</link>

</cell>
</row>

</page-footer>
...

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 75 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

CHAPTER 26

Reference
26.1 <auto-sequence-get>

Summary of attributes

Attribute Description

level The level of the hierarchy for which to retrieve the
number.

XMLPDF automatically maintains a document outline which is used to number
headings and subheadings and to generate the outline which Acrobat displays on
the left side of the screen. Use of this feature is optional. Each heading in the
document is created using an auto-sequence-inc element which (a) defines the
heading for a given level in the outline hierarchy and (b) increments the current
heading number for the level specified.

The <auto-sequence-get> element retrieves the current heading number (not
name) for the specified level. Use the auto-sequence-get-name element to
retrieve the heading text for a speficied level.

For example at the start of the document we might call the first chapter
'Introduction'. Because this is a chapter level heading its level attribute will be 1.
Below the Introduction we want a second level header called 'Overview'. This is
done as follows:

...
<auto-sequence-inc level='1' name='Introduction'/>
<auto-sequence-inc level='2' name='Overview/>
...

This creates a hierarchy like this:
1 Introduction
1.1 Overview

Having set the title for the current level of the outline we can retrieve its number
and insert it into the document using the auto-sequence-get element. Specifying
the level attribute on the element determines which heading number is inserted
into document.

For instance the element <auto-sequence-get level='1'/> would insert the string
'1' into the document. If we change the level to '2', as in <auto-sequence-get
level='2'/> we would insert the string '1.1' into the document. The maximum
level is 10.

26.2 <auto-sequence-get-name>

Summary of attributes

Attribute Description

level The level of the hierarchy from which to retrieve the
name.

uid The unique identifier which can then be used to
generate a cross reference to this heading by using the
Section 26.42, "<xref>" element.

outline The should be set to 'true' if you want the heading
retrieved to appear in the document outline.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 76 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

XMLPDF automatically maintains a document outline which is used to number
headings and subheadings and to generate the outline which Acrobat displays on
the left side of the screen. Use of this feature is optional. Each heading in the
document is created using an auto-sequence-inc element which defines the
heading at a given level in the outline hierarchy and increments the current
heading number at the level specified.

The auto-sequence-get element retrieves the current heading name (not number)
for the specificied level.

For example at the start of the document we might call the first chapter
'Introduction'. Because this is a chapter level heading its level attribute will be 1.
Below the Introduction we want a second level header called 'Overview'. This is
done as follows:

...
<auto-sequence-inc level='1' name='Introduction'/>
<auto-sequence-inc level='2' name='Overview/>
...

This creates a hierarchy like this:
1 Introduction
1.1 Overview

Having set the title for the current level of the outline we can retrieve it and insert
it into the document using the auto-sequence-get-name element. Specifying the
level attribute on the element determines which heading is inserted into
document.

For instance the element <auto-sequence-get-name level='1'/> would insert the
string 'Introduction' into the document. If we change the level to '2', as in
<auto-sequence-get-name level='2'/> we would insert the string 'Overview' into
the document.

The auto-sequence-get-name element has an attribute called uid which is used to
specify a unique identifier for this heading when it appears in the document.
This uid can then be used to create a cross reference in the document using the
xref element. See Section 26.42, "<xref>".

26.3 <auto-sequence-inc>

Summary of attributes

Attribute Description

level The level of the hierarchy for which to set the name and
increment the counter.

name The title to be given to this level in the hierarchy.

XMLPDF automatically maintains a document outline which is used to number
headings and subheadings and to generate the outline which Acrobat displays on
the left side of the screen. Use of this feature is optional. Each heading in the
document is created using an auto-sequence-inc element which defines the
heading at a given level in the outline hierarchy and increments the current
heading number at the level specified.

After each heading is defined it becomes the current heading for that level until a
new heading is defined. The auto-sequence-get and auto-sequence-get-name
elements are used to retrieve the current heading number and name.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 77 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

For example at the start of the document we might call the first chapter
'Introduction'. Because this is a chapter level heading its level attribute will be 1.
Below the Introduction we want a second level header called 'Overview'. This is
done as follows:

...
<auto-sequence-inc level='1' name='Introduction'/>
<auto-sequence-inc level='2' name='Overview/>
...

This creates a hierarchy like this:
1 Introduction
1.1 Overview

26.4 <begin-page-number-group>

Summary of attributes

Attribute Description

group-name unique name for this group.

This element starts a new group of page numbers. This resets the page number
to 1 and sets the counter retrieved by the forward-reference element to 1.

See Section 14, "Page Numbering" for more information.

26.5 <boxes>

Summary of attributes

Attribute Description

box-height Height of boxes.

box-width Width of each individual box

number The number of boxes.

number-down The number of rows of boxes.

The boxes element is used to display one or more square boxes as typically
found on a form which is designed to be completed by a person.

For example this:

is produced with this XML:

<graphic>
<boxes box-width='12' box-height='12'

number='8' line-width='1'/>
</graphic>

Using XMLPDF you can insert text into the boxes by placing it in the
<boxes>element like this:

<graphic>
<boxes box-width='12' box-height='12'
number='22' line-width='1'>
THIS IS IN THE BOXES
</boxes>
</graphic>

This produces this output:

T H I S I S I N T H E B O X E S

Multiple rows of boxes can be created using the number-down attribute and filled
by using
 elements to split the lines like this:

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 78 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference
<graphic>
<boxes box-width='12' box-height='12'
number='30' line-width='1' number-down='2'>
THIS IS IN LINE ONE

THIS IS IN LINE TWO
</boxes>
</graphic>

This produces this output:

T H I S I S I N L I N E O N E
T H I S I S I N L I N E T W O

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 79 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.6 <block>
Summary of attributes

Attribute Description

align Specifies the text alignment to use for this block. This
specifies the alignment of text within the block, not the
alignment of the block on the page. Alignment of the
block on the page is specified using the block-align
attribute as stated below. See horizontal alignment

block-align Specifies how a block which is less than 100% of the
page width wide is aligned on the page. This can be
'left', 'right' or 'center'.

class Specifies the class of this block so that styles which
match the class will automatically be applied. See
Section 19, "Styles"

font-name Specifies the font face of this block. See
Section 11, "Fonts"

font-size Specifies the font size of this block. See
Section 11, "Fonts"

indent-left Specifies the left indentation of the text. Indentation is
the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the left edge of the page to the content is the
left-margin value from the document element plus the
indent-left value of the block.

indent-right Specifies the right indentation of the text. Indentation
is the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the right edge of the page to the content is the
right-margin value from the document element plus the
indent-right value of the block.

keep-together If set to 'true' will prevent the block being split if it
appears near the end of a page and will not fit. If
keep-together is 'false' (the default) the block will be
split over two pages if it does not fit in the available
space at the end of the page. If keep-together is 'true'
the block will not be split and will be moved
completely to the start of the next page.

keep-with-next If set to 'true' will keep the block on the same page as
the next block level element. If necessary a page break
will be inserted to keep the block and the following
block or table together.

space-before Sets the amount of white space which appears before
the content of the block.

space-after Sets the amount of white space which appears after the
content of the block. The space between two blocks is
the space-after of the first block plus the space-before
of the second block.

space-required Sets the amount of space which must be present on the
page for the block to be output. If that amount of space
is not available the whole block is moved to the next
page. This is useful to prevent headers being output by
themselves at the bottom of the page.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 80 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Attribute Description

width Specifies the width of the block. This can be a fixed
amount such as '12cm' or a percentage of the page
width, such as '80%'. If the block is less than 100% of
the page width it is aligned using the block-align
attribute.

The <block> element is used to place a block of text in the PDF document. The
block used to create this sentence looks like this:

<block>The <block> element is used to place a block of text in
the PDF document.
The block used to create this sentence looks like this:</block>

26.7

This element is used within a block element or cell element to create a line
break. For example to separate to lines in a block use XML like this:

...
<block>
this is line 1

this is line 2
</block>

This produces a line break like this:

this is line 1
this is line 2

There are no attributes on the br element.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 81 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.8 <cell>
Summary of attributes

Attribute Description

align Specifies the text alignment for text which appears
inside the cell. See
Section 13.2, "Horizontal alignment"

background-gray Specifies gray shading which appears in the
background of the cell. This is expressed as a
percentage between 0 and 100, as in
background-gray='20'. Smaller numbers are darker.

The following nested table shows columns with
background-gray values of 20, 40 and 60 respectively.

20 40 60

border-color-all
border-color-inner
border-color-outer
border-color-top
border-color-bottom
border-color-left
border-color-right

Sets the color of cell borders. If colors are not
specified on the cell element they will be inherited from
the row and table elements containing the cell.

border-width-all
border-width-inner
border-width-outer
border-width-top
border-width-bottom
border-width-left
border-width-right

Sets the widths of cell borders. If widths are not
specified on the cell element they will be inherited from
the row and table elements containing the cell.

class Specifies the class of this cell so that styles which
match the class will automatically be applied. See
Section 19, "Styles"

colspan Specifies the number of columns in the table this cell is
wide. This defaults to 1.

fill-color Specifies background color of the cell. See
Section 15, "Colors".

The following nested table shows columns with
fill-color values of 'red' and 'blue' respectively.

red blue

font-name Specifies the font face of this cell. See
Section 11, "Fonts"

font-size Specifies the font size of this cell. See
Section 11, "Fonts"

min-height Specifies the minimum height of the cell.

padding-all
padding-inner
padding-outer
padding-top
padding-bottom
padding-left
padding-right

Sets cell padding. Padding is the amount of space
between the border of a cell and the text or image in it.

rowspan Specifies the number of rows in the table this cell is
high. This defaults to 1.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 82 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Attribute Description

text-color Specifies the foreground color of text the cell. See
Section 15, "Colors".

The following nested table shows columns with
fill-color values of 'red' and 'blue' and
text-color='white'.

red blue

A cell can contain text, images a graphic, or nested table.

See Section 16, "Tables" and Section 18, "Images" for examples of how to place
text, tables and images inside cells.

26.9 <condition>

Summary of attributes

Attribute Description

name Specifies the name of the condition. Conditions are
named so they can be referred to by name in <if>
elements. See Section 22.2, "Conditional processing"

value Specifies the value of the condition. This must be 'true'
or 'false'. See Section 22.2, "Conditional processing"

Conditions are used when merging data XML to include or exclude parts of the
document template.

Conditions are defined in the data XML using condition elements and the
template XML uses if and ifnot elements to surround parts of the template XML.

As the PDF document is created the if and ifnot elements in the template XML
are compared with the conditions in the data XML and parts of the document
include or excluded as appropriate.

See Section 22, "Merging Data".

26.10 <conditions>

This element is a container for <condition> elements. It should appear only in
data XML and not in document template XML.

See Section 22.2, "Conditional processing" for an example of this element.

This element has no attributes.

26.11 <data>

This element is a container for data to be merged in the data XML used in the
merging process. It is the outermost element in the data XML and should appear
only in data XML and not in document template XML.

See Section 22.2, "Conditional processing" for an example of this element.

This element has no attributes.

26.12 <define-sequence>

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 83 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Summary of attributes

Attribute Description

format Specifies the format of the sequence. When a
sequence-get element is used to retrieve the current
value of the sequence and insert it into the document it
can be retrieved as either alphabetic, numeric or roman
numeral format. Sequence formats and the first two
values in each format are:
alpha a b
alpha-upper A B
roman I II
roman-lower i ii
numeric 1 2

name Specifies the name of the sequence. This is used in
<sequence-get> elements to retrieve the current value
of the sequence and insert it into the document. See
Section 26.33, "<sequence-get>".

prefix Specifies a string which is prepended to the sequence
number when it is retrieved using the sequence-get
element. The following shows some examples using
prefix and suffix.

suffix=')' a) b)

prefix='(' (a (b

prefix='(' suffix=')'(a) (b)

suffix Specifies a string which is appended to the sequence
number when it is retrieved using the sequence-get
element. See above for some examples using prefix and
suffix.

A sequence is a source for a list of numbers. It provides a simple way of
numbering paragraphs in a document or items in a list.

Using a sequence is a two-stage process:

First a sequence is created using a <define-sequence> element and then the
current value of the sequence can be inserted into the document using a
<sequence-get> element.

Each time the sequence-get element is used the associate value is increments.

For example to define a sequence of roman numerals and then display the first
five values we do this:

<define-sequence name='s1' format='roman-lower'/>
<sequence-get name='s1'/>

<sequence-get name='s1'/>

<sequence-get name='s1'/>

<sequence-get name='s1'/>

<sequence-get name='s1'/>

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 84 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

This produces the following output: i
ii
iii
iv
v

26.13 <document>

Summary of attributes

Attribute Description

deny-print When set to true prevents printing of the document
without the owner password. See
Section 20, "Document Security" for details.

deny-extract When set to true prevents cutting text or graphics from
the document without the owner password. See
Section 20, "Document Security" for details.

deny-modify When set to true prevents modifying the document
without the owner password. See
Section 20, "Document Security" for details.

info-title Sets the PDF document title which is displayed in the
document summary dialog box in Adobe Acrobat.

info-author Sets the PDF document author which is displayed in the
document summary dialog box in Adobe Acrobat.

info-subject Sets the PDF document subject which is displayed in
the document summary dialog box in Adobe Acrobat.

margin-left Sets the left margin for the whole document.

margin-right Sets the right margin for the whole document.

margin-top Sets the top margin for the whole document.

margin-bottom Sets the bottom margin for the whole document.

orientation Sets the page orientation for the document. If specified
this must be 'landscape' or 'portrait'. The default value
is 'portrait'. The page orientation can be changed later
using the Section 26.27, "<next-page>"<next-page>
element.

owner-password Sets the password required to take ownership of the
document. See Section 20, "Document Security" for
details.

page-size Sets the size of the page for the whole document. See
Section 10.2, "Page sizes" for details.

user-password Sets the password required (if any) to open the
document with limited access. See
Section 20, "Document Security" for details.

The <document> element is the outermost element in the document template
XML. This is the top-level element and contains the whole document.
Attributes of the document element set overall characteristics of the document
such as the page size and the page margins.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 85 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.14 <forward-reference>
Summary of attributes

Attribute Description

name Curently this must be 'total-pages' or 'group-pages'

To display the total pages in the document in the page footer do this:

<page-footer indent-left='-2.75cm' indent-right='1.5cm'>
<row>
<cell align='left' font-name='helvetica' font-size='8'

text-color='blue'>
<link url='http://www.xmlpdf.com'>

www.xmlpdf.com<
/link>

</cell>
<cell border-width-top='0.01' align='right'

font-size='8' font-name='helvetica'>
xmlpdf user manual
page <page-number/> of
<forward-reference name='total-pages'/>

</cell>
</row>

</page-footer>

This will print 'Page 1 of n' at the bottom of each page, where n is the total
number of pages in the document.

If you are using page grouping as described in Section 14, "Page Numbering"
you set the name attribute to 'group-pages' to get the total number of pages in the
current page group.

26.15

Summary of attributes

Attribute Description

font-name The name by which the font will be known in the
document. This is used when specifying the font to be
used on block and other elements which contain text.
For the standard Adobe fonts this must be one of the
values show in the standard font names table. For
TrueType fonts this can be any value assigned by the
writer of the XML.

directory Specifies the name of a directory in which to look for
the named file. This attribute is optional. If it is used
then the directory name is prepended to the font-file
value in order to make a full path to the font file.

font-file Specifies the path of the font file.

unicode If the font contains (and you want to use) characters
above U+00FF specify unicode='true' so that XMLPDF
will correctly process the font. Characters used from a
Unicode fonts are always embedded in the document .

To use a TrueType font you have to tell XMLPDF about the font before you can
use it. This is done by placing a element into the <fonts> element near the
start of the document.

26.16 <fonts>

This element is a container for elements and should appear only in
document template XML.

See Section 11, "Fonts" for an example of this element.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 86 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

This element has no attributes.

26.17 <graphic>
This element is a container for <boxes> and <segment> elements and should
appear only in document template XML.

See Section 26.5, "<boxes>" for an example of this element.

This element has no attributes.

26.18 <header>

Summary of attributes

Attribute Description

widths Sets the widths of columns.

border-width-all
border-width-inner
border-width-outer
border-width-top
border-width-bottom
border-width-left
border-width-right

Sets the widths of the header border.

border-color-all
border-color-inner
border-color-outer
border-color-top
border-color-bottom
border-color-left
border-color-right

Sets the color of header border. See
Section 15, "Colors"

padding-all
padding-inner
padding-outer
padding-top
padding-bottom
padding-left
padding-right

Sets cell padding. Padding is the amount of space
between the border of a cell and the text or image in it.

The header element is used to define a table header. It must appear inside a
<table> element.

The header element is very similar to a <table> element. It contains <row>
elements which in turn contain <cell> elements.

The table header is repeated at each time the table is broken by a page break.

This is an example of a header element.

<table border-width-all='.1' indent-left='3cm'
indent-right='3cm' padding-all='2'>

<header fill-color='blue'>
<row>

<cell>header one</cell>
<cell>header two</cell>

</row>
</header>
<row>

<cell>one</cell>
<cell>two</cell>

</row>
</table>

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 87 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

This produces the following table:

header one header two

one two

Note that the number of columns in a table header can be different to the number
of columns in the table body.

26.19 <image>

Summary of attributes

Attribute Description

anti-aliasing Specifies whether the PDF reader will apply
anti-aliasing to the image. Anti-aliasing removes
jagged borders and lines, especially when the image is
viewed at high zoom levels. By default anti-aliasing is
on.
The following two images are loaded from the same
file, the one on the left has anti-aliasing='false', the one
on the right uses the default setting.

directory Specifies the name of a directory in which to look for
the named file. This attribute is optional. If it is used
then the directory name is prepended to the file-name
value in order to make a full path to the image file.

dpi A value which defines the image dots per inch value,
typically 72 or 300. This applies only to JPEG and
SVG images. This value changes the size of the image
when it is stored in the PDF file. The default value is
the value stored in the image file.

file-name Specifies the name of the file which contains the image.
From version 3.0 this can be a full URL such as
http://www.xmlpdf.com/images/download.gif with the
image being retrieved from the URL.

image-name Specifies a logical name which is used to uniquely
identify the image within the document. This value is
used on the show-image element to say which image to
display.

image-type As of version 1.8 of the XMLPDF library this attribute
is no longer used. The image file is read to determine
the type of the image.

quality A value which defines the image quality. This applies
only to JPEG and SVG images. This value changes
the compression level of the image when it is stored in
the PDF file. The value ranges from 1 to 100, with 1
giving lowest quality and highest compression and 100
giving the highest quality and largest image size. The
default is 100.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 88 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

The <image> element must occur inside an <images> element before the image
is referenced by a <show-image> element.
See Section 18, "Images" for examples on how to include an image in the
document.

PNG, GIF and JPEG formats are supported by XMLPDF. Interlaced or
transparent versions of these formats are not supported.

26.20 <images>

This element is a container for <image> elements and should appear only in
document template XML.

See Section 18, "Images" for an example of this element.

This element has no attributes.

26.21 <if>

Summary of attributes

Attribute Description

condition Specifies the name of condition which is tested to see if
the content of this element should be included in the
PDF file.

The if element is used to control what parts of a document should be included in
the PDF file at the time of generation. This allows you to include or exclude
parts of the document template XML depending on data values specified in the
data XML.

The if element contains other block level elements such as <table>, <block> and
other <if> elements.

See Section 22.2, "Conditional processing" for an example of this element.

26.22 <ifnot>

Summary of attributes

Attribute Description

condition Specifies the name of condition which is tested to see if
the content of this element should be included in the
PDF file.

The ifnot element is used to control what parts of a document should be included
in the PDF file at the time of generation. This allows you to include or exclude
parts of the document template XML depending on data values specified in the
data XML.

The ifnot element contains other block level elements such as <table>, <block>
and other <if> elements.

See Section 22.2, "Conditional processing" for an example of this element.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 89 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.23 <info>
Summary of attributes

Attribute Description

field The field to insert into the document. Current valid
values are 'version' to insert the current XMLPDF
version and 'date' to insert the date.

flags When field='date', this can be used to specifiy the date
format. This can be any value specified for the
java.text.SimpleDateFormat class. See examples
below.

This element is replaced in the PDF file by the field specified.

Examples of date formatting are:

Field Flags Result

date yyyy.MM.dd G 'at' hh:mm:ss z 2003.05.29 G at 11:44:20 +12

date EEE, MMM d, ''yy EEE, May 29, 03

date h:mm a 11:44 a

date hh 'o''clock' a, zzzz 11 oclock a, +12:00

date K:mm a, z K:44 a, +12

26.24 <link>

Summary of attributes

Attribute Description

url Specifies the URL this link points to. This can be
either a hyperlink such as 'http://www.xmlpdf.com' or a
mailto link such as 'mailto:support@xmlpdf.com'

The link element is used to insert a hyperlink into the PDF document. When the
user clicks on the link their browser will be launched and will go to the specified
url.

Click on the www.xmlpdf.com link at the bottom left of this page to see how this
works.

The link element contains text which appears in the document. This text is
independent of the url attribute. For example the link at the bottom of this page
is created with the following XML:

<link url='http://www.xmlpdf.com'>
www.xmlpdf.com
</link>

26.25 <merge>

Summary of attributes

Attribute Description

source-element-name Specifies the name of the element to be merged from
the data XML.

This element is used to include an element from the data XML into the PDF
document.

The value of the source-element-name attribute must match the name of a
<source-element> element in the data XML.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 90 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

The merge element is replaced completely by the contents of the source-element
element from the data XML. The source-element element can contain any
amount of XML, for instance the document XML might contain a table element
and the header for the table, and all of the rows might be merged from the data
XML with a single merge element.

See Section 22, "Merging Data" for an example of merging data.

26.26 <new-page>

Summary of attributes

Attribute Description

next-page-number Specifies the number of the next page. This is optional.

This element causes an immediate page break in the PDF document.

Setting the next-page-number attribute will change the page number of the
following page. This is used in this manual to make the second physical page be
page number 1 instead of 2.

The total number of pages in the document retrieved by the
forward reference element is also adjusted.

26.27 <next-page>

Summary of attributes

Attribute Description

orientation Specifies the orientation of the next page and all
following pages until another <next-page> element is
found. This attribute is optional. If it appears its value
must be 'portrait'or 'landscape'.

margin-left Sets the left margin for the next and following pages.

margin-right Sets the right margin for the next and following pages.

margin-top Sets the top margin for the next and following pages.

margin-bottom Sets the bottom margin for the next and following
pages.

This element sets parameters for the next page. It does not cause a page break,
this is done using the <new-page> element.

26.28 <page-footer>

The page-footer element defines a table which is repeated at the end of each page
from the point at which it appears.

The page footer can be changed at any point by putting another page-footer
element in the XML.

The page-footer element has the same attributes and contents as a <table>
element. See Section 26.40, "<table>" for more details.

In addition to the normal table attributes the first-page and last-page attributes
can also be used to limit the range of pages on which this page footer will be
displayed.

26.29 <page-header>

The page-header element defines a table which is repeated at the start of each
page from the point at which it appears.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 91 of 101

This is page 91

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

The page header can be changed at any point by putting another page-header
element in the XML.
The page-header element has the same attributes and contents as a <table>
element. See Section 26.40, "<table>" for more details.

In addition to the normal table attributes the first-page and last-page attributes
can also be used to limit the range of pages on which this page header will be
displayed.

26.30 <page-number>

This element is used to insert the current page number into the document. For
instance the following XML:

<block>
This is page <page-number/>
</block>

Produces this output:

This element has no attributes.

26.31 <restore>

This element is used to restore the values of text formatting attributes such as
font-size and font-name which have been changed using a <set> element.

See Section 11.2, "Changing fonts" for an example of this.

This element has no attributes.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 92 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.32 <row>
Summary of attributes

Attribute Description

align Specifies the text alignment for text which appears
inside cells which are in this row. See
Section 13.2, "Horizontal alignment"

background-gray Specifies gray shading which appears in the
background all cells in the row. This is expressed as a
percentage between 0 and 100, as in
background-gray='20'. Smaller numbers are darker.

The following nested table shows columns with
background-gray values of 20, 40 and 60 respectively.

20 40 60

border-color-all
border-color-inner
border-color-outer
border-color-top
border-color-bottom
border-color-left
border-color-right

Sets the color of row borders. These colors are
inherited by cells in the row. If colors are not specified
on the row element they will be inherited from the table
element containing the row.

border-width-all
border-width-inner
border-width-outer
border-width-top
border-width-bottom
border-width-left
border-width-right

Sets the widths of row borders. If border widths are not
specified on the row element they will be inherited
from table element containing the row.

class Specifies the class of this row so that styles which
match the class will automatically be applied. See
Section 19, "Styles"

fill-color Specifies background color of the row. See
Section 15, "Colors".

The following nested table shows columns with
fill-color values of 'red' and 'blue' respectively.

red blue

font-name Specifies the font face of this row. See
Section 11, "Fonts"

font-size Specifies the font size of this row. See
Section 11, "Fonts"

padding-all
padding-inner
padding-outer
padding-top
padding-bottom
padding-left
padding-right

Sets cell padding for cells in this row. Padding is the
amount of space between the border of a cell and the
text or image in it.

text-color Specifies the foreground color of text of cells in the
row. See Section 15, "Colors".

The following nested table shows columns with
fill-color values of 'red' and 'blue' and
text-color='white'.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 93 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Attribute Description

red blue

Rows are used in <table>, <header>, <page-header> and <page-footer>
elements. Rows contain cells which contain text or images. See
Section 26.8, "<cell>".

Any attribute set on a row will be inherited by the cells in that row unless
overridden by an attribute specified on the cell itself.

26.33 <sequence-get>

Summary of attributes

Attribute Description

name Specifies the name of the sequence to get the value
from.

This element is used to get current value of a sequence defined by a
define-sequence element as described in Section 26.12, "<define-sequence>".
This gets the current value of the element and inserts it into the document. The
sequence value is also incremented.

26.34 <segment>

Summary of attributes

Attribute Description

x1 x coordinate of start point of line

x2 x coordinate of end point of line

y1 y coordinate of start point of line

y2 y coordinate of end point of line

width width of the line segment in points

Lines can be drawn on the page using the <segment> element.

Each segment has an start point defined in by values x1,y1 and and end point
defined by x2,y2. These x and y values are absolute coordinates in points, with
0,0 being at the bottom left corner of the page.

For example this page as a crop mark drawn near the bottom left corner.

This was drawn with the following XML:

<graphic>
<segment width='1' x1='90' x2='110' y1='100' y2='100' />
<segment width='1' x1='100' x2='100' y1='110' y2='90' />
</graphic>

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 94 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.35 <show-image>
Summary of attributes

Attribute Description

align Specifies the text alignment to use for this block. See
Section 13.2, "Horizontal alignment"

class Specifies the class of this block so that styles which
match the class will automatically be applied. See
Section 19, "Styles"

image-name Specifies the name of the image to insert at this point in
the document.

indent-left Specifies the left indentation of the text. Indentation is
the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the left edge of the page to the content is the
left-margin value from the document element plus the
indent-left value of the block.

indent-right Specifies the right indentation of the text. Indentation
is the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the right edge of the page to the content is the
right-margin value from the document element plus the
indent-right value of the block.

scale-width Specifies the width of the image. This is optional and is
used to change the default size of the image. If only
one of scale-width and scale-height are used the aspect
ratio of the image is preserved.

scale-height Specifies the height of the image. This is optional and
is used to change the default size of the image. If only
one of scale-width and scale-height are used the aspect
ratio of the image is preserved.

space-before Sets the amount of white space which appears before
the content of the block.

space-after Sets the amount of white space which appears after the
content of the block. The space between two blocks is
the space-after of the first block plus the space-before
of the second block.

space-required Sets the amount of space which must be present on the
page for the block to be output. If that amount of space
is not available the whole block is moved to the next
page. This is useful to prevent headers being output by
themselves at the bottom of the page.

Images are included in the document using an image element as described in
Section 18, "Images" and Section 26.19, "<image>". They can then be displayed
at a given point by using a show-image element with the name attribute
corresponding to the name given on the image element.

An image can be displayed any number of times using a single image element
and multiple show-image elements.

A show-image element can be used both inside a document element to display
the image inline like a text block or inside a cell element to display the image
inside a table.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 95 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Images displayed within a table will be scaled to fit the cell width. Images in the
main body of the document can be resized using the scale-width and scale-height
attributes.

The following example shows an image at its default size:

and with indent-left='5cm' and ident-right='5cm', so the image is scaled to fit the
width available:

and with scale-width='100' so the image is scaled and the aspect ratio is
preserved:

and with scale-width='100' and scale-height='200' so the image is scaled and the
aspect ratio is not preserved:

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 96 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.36 <set>

Any attribute which can be applied to text can be used with this element.

This element is used to change the formatting of text within a block or cell
element. The change specified is applied to all text which follows the set
element until a restore element (see Section 26.31, "<restore>") is found which
sets the text attributes back to the value they had before the set element. Set and
restore elements work on stack based approach to multiple set elements can be
used and matched with multiple restore elements.

Given the following XML:

<document font-name='helvetica' font-size='12'>
<block>

Hello World this is XMLPDF
</block>

</document>

We can change the word 'World' to a courier by inserting set and restore elements
around the word as shown here:

<document font-name='helvetica' font-size='12'>
<block>

Hello
<set font-name='courier'/>World<restore/>

this is XMLPDF
</block>

</document>

This changes the output from this:

Hello World this is XMLPDF

to this:

Hello World this is XMLPDF

Any attribute which applies to text can be specified on the set element.

26.37 <space>

This element has no attributes or content.

This element is used to insert a space character into the PDF document where
normal XML processing might remove the space. See Space Handling for a
discussion of space handling.

26.38

Any attribute which can be applied to text can be used with this element.

www.xmlpdf.com

http://www.xmlpdf.com
http://www.xmlpdf.com/articles-space.html

xmlpdf user manual page 97 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

This element is used to change the formatting of text within a block or cell
element. The change specified is applied to all text contained within span
element.

Given the following XML:

<document font-name='helvetica' font-size='12'>
<block>

Hello World this is XMLPDF
</block>

</document>

We can change the word 'World' to a courier by enclosing it in a span element as
shown here:

<document font-name='helvetica' font-size='12'>
<block>

Hello
World

this is XMLPDF
</block>

</document>

This changes the output from this:

Hello World this is XMLPDF

to this:

Hello World this is XMLPDF

Any attribute which applies to text can be specified on the set element. Span
elements can be nested inside other span elements.

26.39 <style>

Summary of attributes

Attribute Description

name Specifies the name of the style. See below.

Any other attribute can be specified on a style. These attributes are then applied
to any element which matches the style.

A style element is used to define a set of attributes which can then be
automatically be applied to elements. This means the default formatting of text
can be defined in a single place in the document and applied automatically. This
manual has styles defined for text, text in cells, code examples and heading. This
gives the manual a consistent appearance and makes it simple to change the
whole document.

Styles which have a name which is the same as the name of a element (i.e. a
name such as 'block') are automatically applied to all elements of that type which
follow in the document. See Section 19, "Styles"

For example this manual uses the following style:

<style name='xref' text-color='blue'/>

to make all cross references created with <xref> elements appear block, like this
one: See Section 19, "Styles"

Styles which have a name which begins with a '. character, such as name='.code'
are applied to all elements which have class attribute of the matching name
without the '.'

For example this manual uses the following style:

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 98 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference
<style name='.h1' font-name='helvetica-bold'

font-size='14' space-before='.5cm'
space-after='.5cm' />

to make all elements with a class='h1' appear in 14 point helvetica.

It is also possible to combine the two notations. To create a style which applied
to all blocks (i.e. name='block') which have a class of 'code' (i.e. name='.code')
create the style with the name='block.code'.

Attributes applied by a style are overridden by attributes which are defined on
the element the style is being applied to.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 99 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

26.40 <table>
Summary of attributes

Attribute Description

align Specifies the text alignment to use for this table. This
specifies the default alignment of text within the table,
not the alignment of the table on the page. Alignment
of the table on the page is specified using the
block-align attribute as stated below. See
Section 13.2, "Horizontal alignment"

block-align Specifies how a table which is less than 100% of the
page width is aligned on the page. This can be 'left',
'right' or 'center'.

class Specifies the class of this block so that styles which
match the class will automatically be applied. See
Section 19, "Styles".

font-name Specifies the font face of this block. See
Section 11, "Fonts".

font-size Specifies the font size in points of this block. See
Section 11, "Fonts".

indent-left Specifies the left indentation of the text. Indentation is
the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the left edge of the page to the content is the
left-margin value from the document element plus the
indent-left value of the block.

indent-right Specifies the right indentation of the text. Indentation
is the amount of space between the margin of the page
and the edge of the text, image or table. The distance
from the right edge of the page to the content is the
right-margin value from the document element plus the
indent-right value of the block.

keep-together If set to 'true' will prevent the block being split if it
appears near the end of a page and will not fit. If
keep-together is 'false' (the default) the block will be
split over two pages if it does not fit in the available
space at the end of the page. If keep-together is 'true'
the block will not be split and will be moved
completely to the start of the next page.

keep-with-next If set to 'true' will keep the block on the same page as
the next block level element. If necessary a page break
will be inserted to keep the block and the following
block or table together.

layout If set to 'newspaper' will format cells like a newspaper,
with cells going down one column from top to bottom
then going down the next column from top to bottom
until all columns are filled.

space-before Sets the amount of white space which appears before
the content of the block.

space-after Sets the amount of white space which appears after the
content of the block. The space between two blocks is
the space-after of the first block plus the space-before
of the second block.

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 100 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

Attribute Description

space-required Sets the amount of space which must be present on the
page for the block to be output. If that amount of space
is not available the whole block is moved to the next
page. This is useful to prevent headers being output by
themselves at the bottom of the page.

width Specifies the width of the table. This can be a fixed
amount such as '12cm' or a percentage of the page
width, such as '80%'. If the table is less than 100% of
the page width it is aligned using the block-align
attribute.

widths Sets the widths of columns.

border-width-all
border-width-inner
border-width-outer
border-width-top
border-width-bottom
border-width-left
border-width-right

Sets the widths of table, row and cell borders.

border-color-all
border-color-inner
border-color-outer
border-color-top
border-color-bottom
border-color-left
border-color-right

Sets the color of table, row and cell borders. See
Section 15, "Colors"

padding-all
padding-inner
padding-outer
padding-top
padding-bottom
padding-left
padding-right

Sets cell padding. Padding is the amount of space
between the border of a cell and the text or image in it.

How to use the table element is described in detail in Section 16, "Tables"

26.41 <watermark>

The watermark element creates an image which is repeated on every page.

The <watermark> element is a type of <table> element and so can have all the
attributes of a <table> element, as listed in Section 26.40, "<table>"

The table defined by the <watermark> element will be placed on every page
following the element. The watermark will be placed in the center of the page.
To move the watermark to a different position use the absolute-x and absolute-y
attributes as described in Section 26.40, "<table>"

An example of the watermark is:

<watermark>
<row>

<cell>
<show-image image-name='draft'

priority='-100'/>
</cell>

</row>
</watermark>

www.xmlpdf.com

http://www.xmlpdf.com

xmlpdf user manual page 101 of 101

XMLPDF 5.5.7 Programmers Guide November 2006 26: Reference

In the above example the priority attribute is used to make sure the watermark
appears behind any content.

26.42 <xref>

Summary of attributes

Attribute Description

uid Unique identifier which must match a uid attribute from
an auto-sequence-get-name element as described in
Section 26.2, "<auto-sequence-get-name>"

text Optional value which will appear as the text of the link
in the document. If this is not specified the outline
header referred to by the uid value will be inserted into
the document.

This is used to create a cross reference to an outline entry. The outline entry
must have a unique uid value and the xref element then has the uid of the outline
entry it refers to.

This document has an outline entry called 'tables'. We can create a cross
reference to this entry using this XML:

See <xref uid='tables'/>

which gives the following result: See Section 16, "Tables"

or we can override the text displayed like this:

See <xref uid='tables' text='section on tables'/>

which gives the following result: See section on tables

www.xmlpdf.com

http://www.xmlpdf.com

	Introduction
	Why create PDF files ?
	Why use PDF instead of HTML ?
	Development Environments
	Do I need to know about the PDF file format ?
	About this manual

	Features
	Document templates
	Text Formatting
	Fonts
	Images
	Pagination
	Tables
	Merging Data
	Styles
	Links
	Sequences

	Installation
	Usage
	Introduction
	Hello world XML file
	API
	XML File to PDF File
	XML File to PDF File, Data in File
	XML Document to PDF Stream
	XML File to PDF Stream
	XML File to PDF Stream, Data in String
	XML Stream to PDF Stream
	XML Stream to PDF Stream, Data in String
	Retrieving count of pages created

	XML Validation
	Versions
	License File

	C# Example
	C# Code
	Step by Step

	Visual Basic Example
	ASP.NET Example
	ASP.NET Virtual Directories
	XML Characters and Entities
	Escaping XML Characters
	Using XML Entities

	Units of Measurement
	Units
	Page sizes
	Custom page sizes
	Page orientation
	Margins
	Default values

	Fonts
	Basics
	Changing fonts
	Line height or leading
	TrueType fonts
	Unicode fonts

	Document Structure
	Basics
	XML encoding
	Document element
	Fonts element
	Images element
	Content elements
	Block element
	Table element
	Show-image element
	Page-header element
	Page-footer element

	Formatting elements
	New page element
	Dynamic Attributes

	Text Formatting
	Basics
	Horizontal alignment
	Vertical alignment
	Text color
	Underline and strikethrough
	Space after
	Space before
	Forcing space before
	Indent left
	Indent right
	Kerning
	Keep together
	Keep spaces
	Leading
	Rise
	Non Breaking Space
	Changing Text Formatting

	Page Numbering
	Basics
	Breaks
	Grouping

	Colors
	Basics
	Predefined Colors
	Custom Colors
	CMYK Colors

	Tables
	Basics
	Column widths
	Borders
	Rounded Corners
	Line styles
	Border colors
	Cell padding
	Nested tables
	Row height
	Newspaper layout
	Other attributes

	Lines and Boxes
	Drawing Boxes
	Drawing Lines

	Images
	Basics
	Image Size
	Image Resolution
	Merging the file-name value
	Using Scalable Vector Graphics

	Styles
	Basics

	Document Security
	Passwords
	Restrictions
	Example

	Error Handling
	Basics
	Logging to File
	Logging to A Stream
	Logging to System.Diagnostics.Trace
	Logging to Multiple Destinations

	Merging Data
	Basics
	Conditional processing
	Merging Fields from XML using XPath expressions
	Selecting the Value of a Single Node
	More Complex Expressions
	Looping
	Nested Loops
	Using Selection with <foreach>
	XPath Functions
	Conditions
	Formatting Merged Values
	Merging Image File Names

	Integration with ADO.NET
	Creating the DataTable
	Creating the PDF File

	Links
	Basics
	Merging the URL Value

	Positioning Output
	Absolute Positioning
	Relative Positioning

	Creating a Table of Contents
	Creating a Table Of Contents
	Table Of Contents Page Layout

	Reference
	<auto-sequence-get>
	<auto-sequence-get-name>
	<auto-sequence-inc>
	<begin-page-number-group>
	<boxes>
	<block>
	

	<cell>
	<condition>
	<conditions>
	<data>
	<define-sequence>
	<document>
	<forward-reference>
	
	<fonts>
	<graphic>
	<header>
	<image>
	<images>
	<if>
	<ifnot>
	<info>
	<link>
	<merge>
	<new-page>
	<next-page>
	<page-footer>
	<page-header>
	<page-number>
	<restore>
	<row>
	<sequence-get>
	<segment>
	<show-image>
	<set>
	<space>
	
	<style>
	<table>
	<watermark>
	<xref>

