
altus

MasterTool® Programming
PONTO Series Programming

Rev. F 01/2005
Cód. Doc.: MP399602

Condições Gerais de Fornecimento

i

No part of this document may be copied or reproduced in any form without the prior written consent
of ALTUS Information Systems S.A. who reserve the right to carry out alterations without advice.

According to legislation in force in Brazil, the Consumer Defence Code, we are giving the following
information regarding personal safety and installation by the client.

The industrial automation equipment, built by ALTUS are strong and reliable due to the stringent
quality control it is subjected to. However the electronic industrial control equipment (programmable
controllers, numerical commands, etc.) can cause damage to the machines or processes through their
controllers when there are defective components and programming or installation errors. This can
even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional
external installations for security so that, if necessary, the security of the system can be maintained
especially during the initial installation and testing.

It is essential to completely read the manuals and/or about the technical characteristics of the product
before it’s installation or use.

ALTUS guarantee their equipment against genuine production faults for a period of twelve months
starting from the shipping date. This guarantee is given in terms of factory maintenance, that is to
say, the transportation costs of returning to factory will be borne by the client. The guarantee will be
automatically suspended where there are modifications introduced to the equipment by personnel not
authorized by ALTUS. ALTUS are exempt from any responsibility with regard to repairs or
replacement parts owing to faults created by outside influences, through inappropriate use, as well as
the result of accidents or force majeure.

ALTUS guarantees that their equipment works in accordance with the clear instructions contained in
their manuals and/or the technical characteristics, not guaranteeing the success of any particular type
of application of the equipment.

ALTUS does not acknowledge any other guarantee, direct or implied, principally when it is dealing
with supply of third parties.

Requests for additional information about the supply and/or characteristics of the equipment and
ALTUS services should be put in writing. The address for ALTUS can be found on the back cover.
ALTUS is not responsible for supplying information about their equipment without formal
registration.

COPYRIGHTS

MASTERTOOL and QUARK are the registered trademarks of ALTUS Information Systems S.A.

IBM is the registered trademark of the International Business Machines Corporation.

Sumary

ii

Sumary

1. PREFACE..6

Description of this Manual ..6
Documents of Ponto Series ..6
Terminology...7
Conventions Used...8
Technical Support..9
Issues of this manual..10

2. INTRODUCTION ...11

Programming Language..11

3. DIAGRAMS OF RELAYS LANGUAGE...12

Elements of Programming...12
Ponto Series Memory Organization ..12
Logics ...13
Operands..14

Identifying an Operand through Address ..14
Identification of an Operand through Tag...14
Operands Used on MasterTool ...15
Identification of Simple Operands ..15
Identification of Constants Operands..16
Identification of table Operands ...17
Operands %E – Input Relays..18
Operands %S – Output Relays ...18
Operands %A – Auxiliary Relays...19
Operands %M - Memories ...19
Operands %D - Decimals...20
Operands %F – Reals...21
Operands %I - Integer ..21
Operands %KM, %KI, %KD e %KF - Constants ...22
Operands %TM, %TI, %TD e %TF - Tables ..23
Indirect Access ..24
Declaration of Operands ..25
Retentive Operands..26

Instructions ..27
Restrictions Using Instructions on the PLCs...28
Graphic Representation of the Instructions ...29
Description of Syntax Instruction ...30
Restrictions in Positioning the Instructions...30

Programming Project ..32
Structure of a Programming Project..32
Operating Status of the PLC...35
Execution of the Programming Project ...37
Elaboration of the Programming Project...39
Depuration of Programming Projects ...43
Program Execution Cycle Times ..51
Protection Levels of the PLC ...52

Sumary

iii

Interlocking of Commands in the PLC ...53

4. INSTRUCTIONS...55

List of Instructions...55
Conventions Used..55
Instructions of the Relays Group ..58
Contacts...59
Coils 60
SLT – Jump Coil..61
PLS – Pulse Relay..63
RM, FRM – Master Relay, End of Master Relay ..64
Instructions of Moving Group ..65
MOV – Moving Simple Operands..66
MOP – Moving of parts (Subdivisions) of Operands ..67
MOB – Moving of Blocks of Operands ..69
MOT – Moving of Tables ..71
CAB – Load Block ..73
Arithmetic group Instructions...78
SOM - Sum..78
SUB - Subtraction..80
MUL - Multiplication...81
DIV - Division...82
AND – And binary between operands ..83
OR – Or binary between operands..85
XOR – Or Exclusive between operands..87
CAR – Load Operands ...89
Instructions of Comparison of Operands – Equals, More than and Less than...90
Instructions of counters group ..93
CON – Simple Counter ..94
COB – Bidirectional Counter ...95
TEE – Timer to turn on ..96
TED – Timer to turn off ...97
Instructions of the Conversion Group ...98
B/D - Conversion Binary-Decimal ...99
D/B - Conversion Decimal-Binary ...100
Instructions of the General Group ..101
LDI – Connect/Disconnect indexed..102
TEI – Test of Indexed Status..104
SEQ - Sequencer..106
CHP – Call the Procedure Module..111
CHF – Call Function Module ...112
ECH – Write of Operands on Another PLC for Ethernet...115
LTH – Reading of Operands from Another PLC for Ethernet ...120
LAH – Free Updated Images Operands for Ethernet...122
Instructions of the Connections Group ...123
LGH – Horizontal Connection ...123
LGN – Denied Connection...123
LGV – Vertical Connection..123

5. FUNCTION MODULES ...124

F-PID.033 – PID Control Function ...125
Introduction ...125
Programming...126

F-RAIZN.034 – Square Root Function..130

Sumary

iv

Introduction ...130
Programming...130

F-ARQ2.035 to F-ARQ31.042 – Functions Data File..132
Introduction ...132
Programming...132

F-MOBT.043 – Function for Moving Blocks from Table Operands ..136
Introduction ...136
Programming...136

F-RELG.048 – Function to Access the Real Time Clock ..138
Introduction ...138
Programming...138

F-PID16.056 – F Module for PID Control...140
Introduction ...140
Programming...142
Operands ...142
Inputs and Outputs...142
Functioning Characteristics ..143
Unsaturation of the Integral Action ..143
Manual Mode...143
Direct and Reverse Control ..143
Sampling Interval...143
Execution Time..144
Table Position Parameters Description ...144
Description of %A Operand Control ..145
Application Notes ..146
PID Controller Adjustments Suggestions..149
Determination of the Constants of the Controller Through the Period and Critical Gain......................149
Determination of the Constants of the Controller Through the Constants of the Process......................150
Gains X Scales...152
Example of Application ...154
Uses of F-PID16.056 ...157
Comparison with F-PID.033 ..157

F-CTRL.059 – F Module for Advanced Control...159
Introduction ...159
Programming...162

F-NORM.071 – Function to Normalization...164
Introduction ...164
Programming...164

F-COMPF.072 – Function for Multiple Comparisons..166
Introduction ...166
Programming...166

F-AES.087 – Inputs and Outputs Immediate Update Function ...168
Introduction ...168
Programming...168

F-ANDT.090, F-ORT.091 and F-XORT.092 – Function Logical Operations between Table Operands
170
Introduction ...170
Programming...170

F-STCP.044 – CPU Status Function..172
Introduction ...172
Programming...172

F-NEGT.093 – Function for the logic denial of Table Operands ...177
Introduction ...177
Programming...177

6. GLOSSARY...179

Sumary

v

Glossary to Ponto Series ..179
Network Glossary ..179
General Glossary ...180
Acronyms ...183

Preface

6

1. Preface

Description of this Manual
This manual presents the programming language used on ALTUS Ponto Series programmable
controllers, and orientations on implementing application programs. It was written assuming a
familiarity with the use of standard IBM PC® microcomputers and WindowsTM operating
environment.

The software programmer MasterTool Programming MT4000 or MT4100 referred to from now on as
MasterTool® was developed for programming in the relay and blocks language of the programmable
controller ALTUS Ponto Series.

This manual is divided into 4 chapters and glossary.

Chapter 1, Introduction, present the basic characteristics of ALTUS Ponto Series programming.

Chapter 2, Diagrams f Relays Language, show this language components.

Chapter 3, Instructions, describe the function and syntax of all instructions.

Chapter 4, Function Modules, describe the function and the programming parameters of input and
output of the ALTUS function modules.

Documents of Ponto Series
To obtain additional information about Ponto Series can be used other documents (manuals and
technical characteristics) besides this one. This documents can be found on www.altus.com.br.

Each product have a document named as Technical Characteristic (CT), in this document can be
found the characteristics of the product. If the product have more informations, it can have a user’s
manual too (the code of the manual is cited on CT)

For example, the module PO2022 have all it characteristics informations, uses and buying, on it CT.
On the other side, the PO5063 have, besides the, an user’s manual.

Advices the following documents as additional information:

Technical characteristics of each product

• User’s Manual of the Master Tool Programming

• User’s Manual of the Ponto Series

http://www.altus.com.br/

Preface

7

Terminology
In this manual the words “software”, “hardware”, “mouse”, “tag” and “wire-info” are used freely, in
general and frequently. For this reason, despite their being English words, they appear without
inverted commas.

The following expressions are employed with frequency on the manual text. So, the need of being
known to a better understanding.

• PLC: Programmable Logical Controller – understood as an equipment with an PLC, input and
output modules and power supply.

• CPU: Central Processing Unit, is the main module of the CP, it process the data.

The word “module”, when referring to hardware, is used to determinate each component of an
equipment.

The word “module”, when referring to software, is used to determinate each component of an
application program.

Other expressions can be found on Appendix A, Glossary.

Preface

8

Conventions Used
The symbols used throughout this manual have the following significance:

• This mark indicates a list of items or topics

CAPITAL LETTER indicate names of keys, for example ENTER.

KEY 1 + KEY 2 is used for keys which have to be pressed simultaneously. For example, the
simultaneous pressing of keys CTRL and END is indicated by CTRL + END.

KEY 1 , KEY 2 is used for keys which have to be pressed sequentially. For example, the message
“Press ALT, F10” indicates that the ALT key should be pressed and freed and then the F10 key pressed
and freed.

CAPITAL LETTERS indicate file names and folder names.

Italics indicate words and characters which are keyed in on the keyboard or viewed on screen. For
example, if you are asked to key in A: MasterTool these characters are keyed in exactly as they
appear in the manual.

BOLD-FACED TYPE is used for names of commands or options, or for emphasizing important
parts of the text.

Warning messages have the following format and significance.

DANGER:
The label DANGER indicates a risk to life, serious harm to people or that substantial material
damage may happen it the necessary precautions are not taken.

WARNING:
The label WARNING indicates that harm to people or minimal material damage can happen if
the necessary precautions are not taken.

ATTENTION:
The label ATTENTION indicates a risk to life, of serious harm to people or that substantial material
damage can happen if the necessary precautions are not taken.

Preface

9

Technical Support
Any questions about the product should be directed to ALTUS support service. The address and
telephone number can be found on the back cover. Or on the internet:

1 www.altus.com.br

2 E-MAIL: altus@altus.com.br

In the event of the equipment already being installed, it is advisable to provide the following
information before getting in contact:

3 Models of used equipments and configuration of the installed system

4 Serial number of the CPU, the equipment revision and the version of the executive software, on
the label on the equipment

Information about the status of the PLC, available through the command Communication, Status,

option information about MasterTool programmer or selecting the button

5 Modules of the applicative program, obtained through the MASTERTOLL programmer

Version of MasterTool programmer, which can be obtained starting with command Help, About

MasterTool or selecting the button

http://www.altus.com.br/
mailto:altus@altus.com.br

Preface

10

Issues of this manual
The reference code, of the issue and the date of the current manual is indicated on the cover. A
change in the issue can mean alterations to the functional specification or improvements to the
Manual.

The following is an account of the corresponding alterations to each issue of this Manual.

Revisão: A Data: 10/2004
Approval: Luiz Gerbase
Author: Jean Schmith

Observations:

• First issue of this manual

Revisão: F Data: 01/2005
Approval: Luiz Gerbase
Author: Jean Schmith

Observations:

• Sincronization of the Portuguese and English versions of the manuals.

Chapter 2 Introduction

11

2. Introduction

Welcome to ALTUS language of Relays and Blocks, a language which allows constructing
application programs for ALTUS PLCs with MasterTool Programming.

The applications program’s objective is the execution of control tasks. This program, when loaded
into the programmable controller (PLC), makes this pass to exercise the control functions of the
machine or process which is being programmed.

Programming Language
Programmable controllers came to replace relay control panels. In this context, a programming
language which approaches it more from the experience of technicians and engineers will be a more
adequate solution for the development of PLC’s applications programs.

In view of this, the available instructions for construction of the applications in MasterTool are
programmed in a language of relays and blocks, very similar to language of electrical contacts and
bobbins, used in the description of the relay control panels.

The main advantage of using this type of language is its quick learnship, since it is very much like
conventional electrical outlines.

The accompaniment and verification of the functioning of on applications program is similar to the
electrical outline, with the advantage of visualizing the status of the contacts and reels in the
MasterTool window.

Chapter 3 Diagram of Relays Language

12

3. Diagrams of Relays Language

This chapter describes the ALTUS Relays and Blocks language. It detailing those elements of the
language, the modular structure of an applications program and the function of each module.

After reading this chapter it will be possible to structure an applications program as well as carry out
the configuration of the PLCs and router devices.

Elements of Programming
An applications program is made up of 4 basic elements:

• modules

• logics

• instructions

• operands

An applications program is composed of different modules, allowing a better structure for the
routines according to its functions. The modules are programmed in the language of relays, following
the global tendency for Normalization in this area.

A module of an application program is divided into programming logics. The format of an
application program logic use don Ponto Series CLPs allows the maximum of eight elements in
series ans up to four elements in parallel.

The instructions are used to execute determined tasks for the environment of readings and for
alterations to the value of the operands.

The operands identify different types of variables and constants used in the elaboration of an
applications program, being able to have its value changed according to the program carried out. An
example of variables are points of I/O and memory counters.

Each component element of the applications program is explained in detail in the following sections.

Ponto Series Memory Organization
The applications program is stored in the controller in an area of memory divided into banks. There
can exist one or more RAM and EPROM memory banks, according to the model of the PLC and its
memory configuration, each bank having 16, 32 or 64 Kbytes.

In this manual, in the MasterTool help and in MasterTool programmer, the name EPROM refers
indistinctly to memory for permanent recording of the application program used in the PLC, that is
to say of type EPROM cartridge or EPROM flash.

In the directory window of the PLC’s modules (options Communication, Modules) it is possible
to visualize the quantity of free memory in each bank, for each type existing in the controller. C.f.
Modules Option in the section Communication Command in chapter 4.

The values of the numeric operands (% M, %D, %F, %TM, %TD and %TF) are stored in a separate
area of the program, with different sizes according to the model of PLC. The amount of operands
memory free can be checked in the editing window of module C in the operands panel. For further
information about the Editing Window of module C, c.f. section Editing Windows, in chapter 3 of
the User’s Manual.

Chapter 3 Diagram of Relays Language

13

The binary operands (%E, %S and %A) have area permanently reserved for their values in the
internal memory of the microprocessor.

The use of memory operands is shown in detail in the section Declaration of Operands, in the
same chapter.

For further information about the capacities and memory organization of each controller, consult
their respective Users Manuals (c.f. section Related Manuals, in the preface of this manual).

Logics
The word logic refers to a programming matrix made up of 32 cells (matrix elements arranged in four
lines 0 to (3 to 8) columns (0 to 7). Instructions can be placed in each one of these cells, being
possible to program up to 32 instructions in the same logic.

Each logic present to the program, simulates a short part of a real diagram of relays. Figure 2-1
shows the format of an applications program logic.

Figure 2-1 Logic Format

The two lateral lines of the logic represent energy bars between the instructions placed for execution.

Symbolic instructions usually found in diagrams are available for programming, such as contracts,
coils, connections and instructions shown in boxes as timers, counters and arithmetics.

The logic should be programmed in a format which reel and inputs of instructions from boxes may be
“powered” starting from the closure of a flow of “current” from the left to the right between the two
bars, through the contacts or from the outputs of interconnected boxes. However, the flow of
“electrical current” simulated in a logic flows only in the sense of from an energy bar on the left to
the right, different from the real electrical outlines. The concept used simplifies very much the logic
project of relays, once that is not necessary to be concerned with the escape paths of current.

The processing of the instructions of a logic carried out in columns, from column 0 to 7. One column
is processed in the sequential order of its lines, from line 0 to line 3. Figure 2-2 shows the processing
order of the logic cells. The number existing in each cell indicates its order in the processing.

Chapter 3 Diagram of Relays Language

14

Figure 2-2 Processing order of the Logic Cells

Operands
Operands are elements used for MasterTool instructions in the elaboration of an applications
program. The operands can define constant values, defined at the time of programming, or variables,
identified through an address or tag, with values able to be changed during the execution of an
applications program.

Identifying an Operand through Address

The identification and use of an operand through its address is characterized through character % as
first character of the name. The rest of the name used should follow the rules for forming the
addresses of operands.

The format of each operand can be seen in the section Identification of Simple Operands and in
the subsequent sections, in this same chapter.

Identification of an Operand through Tag

The identification and use of an operand through its tag is characterized through use of a name, with
up to 7 characters (alphanumeric), which can be attributed to any operand, except constants. This
name passes to represent the operand in the processes of programming, monitoring, purifying and
documentation of an applications program.

MasterTool does not allow the use of TAGs for operands of the type constant (%KM or %KD).

E.g.:

Attribute the tag CONT1 to the operand %M0000. Always when the operand %M000 reeds to be
used in the editing of the applications program, it can use its tag CONT1.

☺HINT:
The choice of name tag for the operand should reflect at the most the function which the contents of
the operand executes in the applications program.
E.g.: TANK 1, stores the volume of tank 1.

The identification of an operand through its address can always be done, once the whole operand has
an address. The identification of an operand through its tag, can only be achieved after attributing
the tag to an operand.

Chapter 3 Diagram of Relays Language

15

The attributing of tags to operands can be achieved through the command Operands from the menu
Report or directly at the time of programming. In the second case, to fill in the name of an
instruction operand with a non-existent tag, indicates the non-existence of a tag definition, and asks
which type of operand the tag should be created for.

For further information about creating and attributing tags to operands, c.f. sections about the
command Report, Operands, on the chapter 4 and Inserting Tags and Comments for
Operands, on the User’s Manual of MasterTool.

The operands can also be visualized through their associated wire-info, However, an operand cannot
be forced or monitored by keying in the wire-info instead of the tag or address.

Operands Used on MasterTool

The operand available in MasterTool are shown in table 2-1:

Type Operand
%E Input Relays
%S Output Relays
%A Auxiliary Relays
%M Memorys
%I Integers
%D Decimals
%F Reals
%KM Memory Constants
%KD Decimals Constants
%KF Reals Constants
%TM Memory Tables
%TI Integer Tables
%TD Decimals Tables
%TF Reals Tables

Table 2-1 Operands Used in MasterTool

The operands are divided into 3 groups:

• simple operands

• constant operands

• table operands

Identification of Simple Operands

The simple operands are used with variables of storing the values in the applications programs.
According to the instruction which they use, they can be referenced in full or in a subdivision (one
part of the operand). The subdivisions of operands can be word, octet, nibble or point.

The general format of a simple operand can be seen in figure 2-3.

Figure 2-3 Format of simple operand

Chapter 3 Diagram of Relays Language

16

Operand type:

%E - input

%S - output

%A - auxiliary

%M – memory

%I - integer

%D - decimal

%F - real

Subdivision type:

. – point of box word (1 point)

h - point of high word (1 point)

n - nibble (4 point)

b - octet (8 point)

w - word (16 point)

Examples of Addresses:

%E0002.3 – point 3 of the input operand 2

%S0004.7 – point 7 of the output operand 4

%A0039n1 - nibble 1 of the auxiliary operand 39

%A0045 - auxiliary octet 45

%I0234 –integer operand 234

%M0205 - memory operand 205

%M0205b0 - octet 0 of the memory 205

%D0029 - decimal operand 29

%D0034w1 - word 1 of the decimal operand 34

%F0001 – real operand 1

Tags examples:

FORNO

LIMSUP

CHAVE1

Identification of Constants Operands

The constant operands are used to define the fixed values during the editing of an applications
program.

The general format of a constant operand can be seen in figure 2-4.

Chapter 3 Diagram of Relays Language

17

Figure 2-4 Format of a constant Operand

Constant type:

%M memory

%I integer

%D decimal

%F real

Examples:

%KM+05172 – memory positive constant

%KI-1 – integer negative constant

%KD-0974231 – negative decimal constant

%KF+0153.78 – positive real constant

Identification of table Operands

Tables of Operands are groups of simple operands set out in one dimensional arrays. Indices are used
to determine the position of the table is required to be read or altered. Memory, integer, decimal and
real operand tables are possible.

The general format of an operand table can be seen in figure 2-5.

Figure 2-5 Format of a table Operand

Table type:

%TM memory

%TI integer

%TD decimal

%TF real

Examples:

%TM0026 – memory table 26

%TI0020 – integer table 20

Chapter 3 Diagram of Relays Language

18

%TD0015 – decimal table 15

%TF0069 – real table 69

Operands %E – Input Relays

Operands used to reference points of digital modules of input. Their quantity is determined through
the number of I/O modules which are arranged behind the scenes of the system. C.f. item
Configuring the Bus in the section Configuring the Module C on the MasterTool User’s
Manual.

The operands %E are normally used in binary instructions (contacts, reels) and for movement. They
use up one byte of memory (8 bits), storing the values of the points directly in each bit. The values of
the operands are stored in the internal memory of the microprocessor, not using the space available in
the applications program.

The formats of the operands %E can be seen in figure 2-6.

Figure 2-6 Format of Operands %E

Examples:

%E0018.6 - point 6 of the input octet 18

%E0021n0 - nibble 0 of the input octet 21

%E0025 – input octet 25

Operands %S – Output Relays

Operands are used to reference points of digital modules of output. Their quantity is determined
through the number of I/O modules which are arranged behind the scenes in the system. C.f. item
Configuring the Bus in the section Configuring the Module C on the MasterTool User’s
Manual.

The operands % are used in binary instructions (contacts, reels) and for movement. They use up one
byte of memory (8 bits), storing the values of the points directly in each bit. The values of the
operands are stored in the internal memory of the microprocessor, not using the available space of the
applications program.

The format of the operands can be seen in figure 2-7.

Figure 2-7 Format of Operands %S

Examples:

Chapter 3 Diagram of Relays Language

19

%S0011.2 - point 2 of the output octet 11

%S0010n1 - nibble 1 of the output octet 10

%S0015 – output octet 15

Operands %A – Auxiliary Relays

The auxiliary relays are operands used to store and manipulate the intermediate binary values in the
processing of the applications program. Their quantity in the controllers is fixed (c.f. section
Declaration of the Operands in this same chapter).

Operands %A are used in binary instructions (contacts, reels) and for movement. They use up one
byte of memory (8 bits), storing values directly in each bit. The values of the operands are stored in
the internal memory of the microprocessor, not using the space available to the applications program.

The formats of the Operands %A can be seen in figure 2-8.

Figure 2-8 Formats of Operands %A

Examples:

%A0032.7 - point 7 of the auxiliary output 32

%A0087n1 - nibble 1 of the auxiliary output 87

%A0024 – auxiliary octet 24

Operands %M - Memories

The operands %M are used for numerical processing, storing values in simple precision, with signal.

The formats of the operands %M can be seen in figure 2-10.

Figure 2-9 Formats of the Operands %M

The quantity of memory operands is configurable in the declaration of the module C, being the
maximum limit depending on the PLC model in use (c.f. section Declaration of Operands in the
same chapter).

The operands %M are used in instructions of movement, comparison, arithmetic, counting, timing
and conversion. They can be used in contacts, for the same form as the operands %E, %S and %A.

Chapter 3 Diagram of Relays Language

20

These operands use up two bytes of memory (16 bits) storing the value in two complement from (2’)
according to figure 2-10.

Figure 2-10 Format of the Memory Operand

Examples:

%M0032 - memory 32

%M0072n1 - nibble 1 of the memory 72

%M0084.F - point 15 of the memory 84

Operands %D - Decimals

The operands %D are used for numerical processing, storing values in BCD format with up to 7
digits and signal.

The formats of the operands %D can be seen in figure 2-11.

Figure 2-11 Formats of the Operands %D

The quantity of decimal operands is configurable in the declaration of module C, being the maximum
limit depending on the PLC model being used (c.f. section Declaration of Operands in the same
chapter).

The operands %D are used in instructions of movement, comparison, arithmetic and conversion.
They can be used in contacts, in the same form as the operands %E, %S and %A. These operands use
up four bytes of memory (32 bits), storing the value in the format BCD (each digit occupies 4 bits),
with signal, according to figure 2-12.

Figure 2-12 Format of the Operand Decimal

Examples:

Chapter 3 Diagram of Relays Language

21

%D0041 - decimal 41

%D0023b2 - octet 2 of the decimal 23

%D0059n6 - nibble 6 of the memory 59

%D0172hA - point 10 of the word 1 of the memory 172

Operands %F – Reals

The formats of the operands %F can be seen on the following figure:

Figure 2-13 Formats of the Operands %F

The quantity of real operands is configurable in the declaration of module C, being the maximum
limit depending on the PLC model being used (c.f. section Declaration of Operands in the same
chapter).

The operands %F are used to the numeric processing, storing values in 32 bits with floating point,
simple precision and signal, as IEEE 754. These operands use four bytes of memory (32 bits), storing
the value as the following figure:

Figure 2-14 Formats of the Operand Real

The value of a real operand (%F) is obtained as the following expression:

Value = Signal x 1,Mantissa x 2(Exp - 127)

So, the storing band values is from -3,4028234663852886E+38 to 3,4028234663852886E+38.

Values that the module is greater than zero and less than 1,1754943508222875E-38, are treated as
zero by the PLCs. PLCs don’t support denormalized numbers, infinity and NANs (not a number).

Example:

%F0032 – real 32

Operands %I - Integer

The operands %I are used to the numerical processing, storing values in simple precision, with
signal. The basically difference between this kind of operand and the memory operand %M, is that
the integer operand %I is 32 bits.

The operands %I formats can be seen on the following picture.

Chapter 3 Diagram of Relays Language

22

Figure 2-15 Formats of Operands %I

The quantity of integer operands can be configured on C module declaration, the max limit depends
on the CPU model that is in use (see the section Operands Declaration on this chapter).

The %I operands are used on move, comparing, arithmetic’s and conversion instructions. This
operands use four memory bytes (32 bits), with signal, as the following figure:

Figure 2-16 Format of the Operand Integer

Examples:

%I0041 - integer 41

%I0023b2 - octet 2 of the integer 23

%I0059n6 - nibble 6 of the integer 59

%I0172hA - ponto 10 of the word 1 of the integer 172

Operands %KM, %KI, %KD e %KF - Constants

Operands are used to define the fixed values in the elaboration of the applications program. These are
two types of constant, %KM, %KD, %KF and % KI, each one following a different format from the
representation of values, being identical to the operands %M, %D, %F and %I, respectively.

The format f the constant operands can be seen on the following figure.

Figure 2-17 Format of the Operands Constants

These operands are used for instructions of movement, comparison, arithmetic, counting and timing.

Chapter 3 Diagram of Relays Language

23

Examples:

%KM+00241 – memory constant + 241

%KI+2000000000 – integer constant 2 bi or 2 x 109

%KD-0019372 – decimal constant - 19.372

%KF+0125.78 – real constant + 125.78

%KF+3.1415E23 – real constant 3.1415 x 1023

The real constants can contain up to 8 significative digits.

Operands %TM, %TI, %TD e %TF - Tables

Tables of operands are grouped with simple operands, made up of one-dimensional arrays with the
objective of storing numerical values. Each table has a number of configurable positions, where each
position can count exactly the same values of an operand %M, %D, %F or %I if the table was of type
%TM, %TD, %TF or %TI, respectively.

The format f the table operands can be seen on the following figure:

Figure 2-18 Format of the Operands Tables

The quantity of tables and the number of positions of each one is configurable in the declaration of
module C. They can be defined in up to 255 tables in total and up to the maximum of 255 positions
in each table, respecting the limit of the memory of the operands of the PLC.

The tables are used in instructions of movement.

Chapter 3 Diagram of Relays Language

24

Indirect Access

This form of access is used in conjunction with a memory operand %M to reference other operands
in the system indirectly.

The sign *, placed in front of a type of operand, indicates that it is referenced through the address
contained in the specific memory to the left of the sign.

The format of indirect access can be seen in figure 2-19.

Figure 2-19 Format of an Indirect Access

In MasterTool, the indirect access to the tables is shown without the asterisk.

The indirect access is used in instructions of movement, comparison, counting and timing.

Examples:

%M0043*E - input octet referenced indirectly through memory 43

%M1824*A - auxiliary octet referenced indirectly through memory 1824

%M0371TD - table of decimals referenced indirectly through memory 371

%M0009*M - memory operand referenced indirectly through memory 9

Example:

This instruction moves the value +431 to the memory operand whose address is the value correctly
stored in %M0009. If %M0009 contains the value 32, then the value +431 may be stored in
%M0032. If %M0009 contains the value 12 then the constant value will be stored in %M0012.

WARNING:
It is the responsibility of the applications program that the value contained in the reference memory
(%M0009, in the example) represents valid addresses, not containing negative values or above of the
existing addresses for that type of operand referenced indirectly. The instructions do not carry out
invalid indirect access, normally having an output sign to indicate an error.

If in the program of the previous example there were 256 operands %M to be declared, the value of
%M0009 should be between 0 and 255 so that the instruction will be executed correctly. If the value
is not in this band, access will not be achieved.

Chapter 3 Diagram of Relays Language

25

Declaration of Operands

The operands %E, %S and %A occupy their own memory areas permanently reserved in the PLC’s
microprocessor. The number of these operands in the controllers, therefore is constant.

To represent fixed values, the constant operands (%KM, %KF, %KI and %KD) also do not occupy
memory space, being stored in their own applications program in the programming stage. There are
no limits to the number of constant operands used in the program.

The declaration of the operands is carried out through the editing window of module C of
MasterTool, being stored in module C. The number of operands declared should be tailored to the
maximum capacity of the available memory. C.f. items Configuring Simple Operands,
Configuring Table Operands and Configuring Retentive Operands in the section
Configuring Module C on the MasterTool User’s Manual.

Should be declared the minimal quantity of memory operands (%M) to supply the diagnostic bytes
used on the bus modules.

The reserve of the operands %M, %I, %F and %D is carried out in blocks of 256 bytes. In the case of
memory operands, this quantity corresponds to 128 operands. In decimal operands, corresponds to 64
operands.

The operands %TM, %TI, %TF and %TD are declared finding out the number of tables necessary for
each type and the number of positions which each table contains. It is possible to define up to 255
tables in total and up to 255 positions for each table, respecting the limit of RAM memory of the
operands.

Table 2-2 shows the memory space used up for each type of operands and where its values are stored.

Operand Memory Occupied Location
%E – input 1 byte Microprocessor
%S – output 1 byte Microprocessor
%A – auxiliary 1 byte Microprocessor
%KM – constant M - -
%KI – constant I - -
%KD – constant D - -
%KF – constant F - -
%M – memory 2 bytes RAM of operands
%I – integer 4 bytes RAM of operands
%D - decimal 4 bytes RAM of operands
%F – real 4 bytes RAM of operands
%TM – table M 2 bytes per position RAM of operands
%TI – table I 4 bytes per position RAM of operands
%TD – table D 4 bytes per position RAM of operands
%TF - table F 4 bytes per position RAM of operands

Table 2-2 Occupied Memory and Location of Operands

Chapter 3 Diagram of Relays Language

26

Retentive Operands

Retentive Operands are operands which have their values preserved when the CPU is turned OFF
(disconnected). The operands not retentive have their value zeroed at the moment the programmable
controller is disconnected.

All the table operands are always retentive. It is possible to configure the number of operands %M
(memory), %I (Integer), %F (real), %D (decimal), %S (output) and %A (auxiliary) retentive.

The retentive operands are configured starting from the last addresses up to the first, obeying the
same rule as simple operands. That is to say, the reserve is carried out in blocks of 256 for numeric
operands. The declaration of the operands %S and %A is carried out octet to octet.

For example, there are 512 operands %M declared (%M0000 to %M0511), and it is required that 128
of these operands are retentive, the operands %M0384 to %M0511 are considered retentive.

C.f. item Configuring Retentive Operands in the section Configuring Module C on the
MasterTool User’s Manual.

Chapter 3 Diagram of Relays Language

27

Instructions

The ALTUS PLCs use the language of relays and blocks to elaborate the applications program,
whose main advantage, beyond and its graphic representation is to be similar to the conventional
diagrams of relays.

The programming of this language, carried out through. MasterTool, uses a group of powerful
instructions in chapter 3 Reference of Instructions, in this manual.

MasterTool instructions can be divided into 7 groups:

• RELAYS containing the instructions:
• RNA contact normally open

• RNF contact normally closed

• BOB simple reels

• BBL reel connected

• BBD reel disconnected

• SLT reel jump

• PLS pulse relay

• RM master relay

• FRM end of master relay

• MOVEMENTS containing the instructions:

• MOV moving of simple operands

• MOP moving of parts of operands

• MOB moving of blocks of operands

• MOT moving of tables of operands

• CAB load block of constants

• ARITHMETICS containing the instructions:

• SOM sum

• SUB subtraction

• MUL multiplication

• DIV division

• AND function “and” binary between operands

• OR function “ or” binary between operands

• XOR function “or exclusive” binary between operands

• CAR load operand

• = equal

• < less than

• > more than

• COUNTERS containing the instructions:

• CON simple counter

• COB bidirectional counter

• TEE timer to turn on

Chapter 3 Diagram of Relays Language

28

• TED timer to turn off

• CONVERTORS containing the instructions:

• B/D conversion binary - decimal

• D/B conversion decimal - binary

• GENERAL containing the instructions:

• LDI connect or disconnect indexed points

• TEI test the status of indexed points

• SEQ sequencer

• CHP call procedure module

• CHF call function module

• ECH write operands on another PLC for Ethernet

• LTH read of operands from another PLC for Ethernet

• LAH free image update of operands for Ethernet

• CONNECTIONS containing the instructions:

• LGH horizontal connection

• LGV vertical connection

• LGN denied connection

Some special functions executed by the PLC are only obtained with the Modules Function, that are
called by the instruction CHF. On the chapter 4 Referring the Modules Function presents a list of
these modules, available to Ponto Series and come with the MasterTool Programming.

The execution time of each instruction to the Ponto Series PLCs should be consulted on the
respective manual.

Restrictions Using Instructions on the PLCs

The language of relays and blocks is perfectly compatible between the PLCs programmed through
MasterTool. Due to the characteristics of functioning, nevertheless, some instructions are not
available in all the controllers. Table 2-3 shows the instructions and the controllers in which they
cannot be used.

- indicates that the PLC have the instructions

- indicates that the PLC does not have the instructions

CPUs

Instruction
AL-600

AL-3003
AL-3004

QK600,
QK800,
QK801

PL101,
PL102,
PL103,
PL104
PL105

AL-2000,
AL-2002,
AL-2003,
AL-2004,
QK2000

PO3042
PO3142
PO3045
PO3145

PO3242
PO3342

MES
AES
CES
A/D
D/A
ECR
LTR
LAI
ECH
LTH
LAH

Table 2-3 Non-existent Instructions in Certain PLCs

Chapter 3 Diagram of Relays Language

29

MasterTool does not permit an instruction which cannot be executed in the PLC for which it is
configured to be inserted in the applications program.

WARNING:
On editing an applications program module, the type of CPU declared in the item CPU Model in
the editing windows of module C should be from the CPU where the program was executed.

WARNING:
If is required to change the type of CPU for another, after the program to be edited, you should
search and remove the instructions which cannot be used in the new type of CPU. This procedure
should be carried out in all the program modules.

Graphic Representation of the Instructions

The following figures show the maximum configurations of input and outputs in each type, not being
necessary all used in a certain instruction.

Instructions with one cell

Instructions with two cells

Instructions with tree cells

Instructions with four cells

Chapter 3 Diagram of Relays Language

30

Instructions with six cells

Description of Syntax Instruction

The description of the possible operands to be programmed in the cells of each instruction is carried
out in accordance with the format shown in figure 2-20.

Figure 2-20 Formats of Syntax Instructions

Various different combinations of operands can be specified for the same instruction

Example:

This syntax declaration shows that, like the first operand, % M or % D can be used. If the first
operand is % M, the second can only be % KM, % M or % M*M (accessed indirectly in memory). If
the first is % D, the second can only be % KD, % D or % M*D (accessed indirectly in decimal).

Restrictions in Positioning the Instructions

There are rules to be respected as to the positioning of the instructions in the 8 logic columns. The
instructions can be divided into three categories:

• Instructions which can be edited only in column 7:

• BOB simple reel

• BBL connected reel

• BBD disconnected reel

• SLT jump reel

• RM master relay

• FRM end of master relay

• Instructions which can be edited in columns 0 to 6:

Chapter 3 Diagram of Relays Language

31

• RNA normally open relay

• RNF normally closed relay

• PLS pulse relay

• LGH horizontal connection

• LGV vertical connection

• LGN denied connection

• DIV division

• MOB moving of blocks of operands

• > more than

• < less than

• = equal

• SEQ sequencer

• CHF call function module

• Instructions which can be edited in all the columns:

• MOV moving of simple operands

• MOP moving of parts of operands

• MOT moving of table of operands

• CAB load block of constants

• SOM sum

• SUB subtraction

• MUL multiplication

• AND function “ and” binary between operands

• OR function “or” binary between operands

• XOR function “or exclusive” binary between operands

• CON simple counter

• COB birectional counter

• TEE timer to turn on

• TED timer to turn off

• B/D conversion binary - decimal

• D/B conversion decimal - binary

• CAR load operand

• LDI connect or disconnect indexed points

• TEI status test of indexed points

• CHP call procedure module

• ECH write operands on another PLC for Ethernet

• LTH read of operands from another PLC for Ethernet

• LAH free image update of operands for Ethernet

Chapter 3 Diagram of Relays Language

32

Programming Project

Structure of a Programming Project

Functionally, a programming project, can be seen as a collection of modules used to carry out a
specific task, also known as an applications program. This allows a hierarchical view of the project
with the creation of sub-routines and functions.

The modules are called for execution through executive software (operating system of the PLC). or
for other modules, through appropriate instructions. When stored on disk, the programming project
corresponds to a group of files, where each file contains a module, named as shown in figure 2-21.

Figure 2-21 Format of Name of Modules in File

Example: F-PID.033

In some places in this manual and in the Help the program modules are referenced only through their
type and number, when it is not relevant to use their name.

Example: E018

WARNING:
The file name corresponds to a program module which should not be changed through another
application of Windows TM. To change the name of a file, it should be read and saved with the
name required through MasterTool. C.f. section Saving a Module with Another Name on the
MasterTool User’s Manual.

If the files name is modified through another WindowsTM application, it can be given an name invalid
for it, not being able any more to be read to MasterTool or loaded into the PLC.

There are 5 types of modules which can do part of a programming project:

• Module C (Configuration): there is a configuration module for the project, containing the
configuration parameters of the PLC (C000).

• Extended Module C (Configuration): this configuration module exists when the user use on the
project a specific characteristic of the PLC and needs an extended configuration module. For
further information see the user’s manual of the MasterTool Programming (C003 to C009).

• Module E (Execution): there can be up to 4 execution modules for the project. They are only
called through the operating system of the PLC (E000, E001, E018 and E020).

• Module P (Procedure): there can be up to 112 procedure modules per project. They contain
passages of the applications program being called through instructions placed in execution
modules, procedure or function. After they are executed, the returns to the following instruction
of the call. The modules P act as sub-routines not allowing parameter passing for the module
called (P000 to P111).

• Module F (Function): there can be up to 112 function modules per project. They contain
passages of the applications program written in generic form, allowing parameter passing to the
module called, in this way they can be reapproved in various different applications programs.

Chapter 3 Diagram of Relays Language

33

They are similar to instructions, being able to be called for, modules of execution, procedure or
function. (F000 to F111).

Module C - Configuration
Module C contains the configuration parameters of the PLC. Its creation is a pre-requisite for editing
the rest of the MasterTool programming project modules. The definition of the parameters contained
in module C is carried out through the editing window of module C. For further details regarding
how to configure in module C, c.f. section Configuring Module C in chapter 5 of the MasterTool
User’s Manual.

There is only one module C per programming project, having as its own name the name of the
project and the number 000.

Contents of a module C:

• Declaration of the Bus of I/O modules: specifies the configuration of the I/O modules to be
used in the programmable controller, indicating the distribution of these modules and special
modules in the PLC’s bus. The declaration of the modules defines, in this way, the number of
points and the I/O addresses to be used in applications program. The declaration takes place in
the editing window of module C. For further information about how to configure the bus, c.f. the
item Configuring the Bus in the section Configuring Module C in chapter 5 of the
MasterTool User’s Manual.

• Declaration of Operands: specifies the number of simple operands and tables of operands
which are used in the programming project, within each available type. It also allows the
definition of the retainability of the operands, that is to say, which operands can keep their
contents even with a power cut.

• Declaration of Simple Operands: allows the definition of the number of
Memory operands (%M) and Decimal (%D). It takes place in the editing window
of module C. For more information regarding how to declare simple operands, c.f.
the item Configuring Simple Operands in the section Configuring Module
C on the MasterTool User’s Manual.

• Declaration of Table Operands: allows the definition of the number of tables
of Memory operands (%TM) and of Decimal operands (%TD) and of the number
of positions in each one. One table shows a group of operands, being defined in the
editing window of Module C. For further information about how to configure table
operands, c.f. the item Configuring Table Operands in the section
Configuring Module C on the MasterTool User’s Manual.

• Declaration of Retentive Operands: specifies the number of simple operands
which are retentive , within the operands already declared. Retentive operands are
those which continue with their contents unchanged through a power cut, those not
being retentive are zeroed when the system restarts. The table operands are all
retentive . The declaration is made in the editing window of Module C. For more
information regarding how to configure retentive operands, c.f. the item
Configuring Retentive Operands in the section Configuring Retentive
Operands on the MasterTool User’s Manual.

• Declaration of the General Parameters of the CPU: there are generic parameters
necessary for the functioning of the programmable controller, such as the type of CPU in which
the applications program will be loaded, the period of calling the activated modules for
interruption and the maximum time of the scan cycle. These parameters are declared in the
editing window of Module C. For more information about how to configure the general
parameters, c.f. section Configuring Module C on the MasterTool User’s Manual.

• Declaration of the Parameters of the ALNET I Network: specifies the parameters
necessary for the functioning of communication in ALNET I. These parameters are configured in
the editing window of Module C. For further information regarding how to configure parameters
of ALNET I, c.f. item Configuring Parameters of the ALNET I Network in the section
Configuring Module C on the MasterTool User’s Manual.

• Declaration of the Parameters of the Ethernet Network: specifies the various parameters
necessary for the functioning of communication in Ethernet, for the programmable controllers

Chapter 3 Diagram of Relays Language

34

which allow its use. These parameters are configured in the editing window of Module C. For
further information regarding how to configure parameters of Ethernet, c.f. item Configuring
Parameters of the Ethernet Network in the section Configuring Module C on the
MasterTool User’s Manual.

Extended Module C – Configuration
This modules have configurations of determined characteristics of the PLCs. This modules are totally
controlled by the user, it should be created and erased as the need of the user. The quantity of this
kind of module vary as the application.

For further information see the user’s manual of MasterTool.

Modulo E - Execution
The modules E contain passages of the applications program, being called for execution through
executive software. These are different Modules E, differing from each other through the way they
are called for execution, according to their number.

Types of Modules:

• E000 - Initialization Module: is executed once, when the PLC is turned on or in the passage of
programming mode for execution with MasterTool, before the cyclical execution of Module E001.

• E001 - Sequential Module of Applications Program: contains the main passage of the
applications program, being executed cyclically.

• E018 - Module Enabled for Time Interruption: the passage of applications program placed in
this module is called for execution at time intervals. It defines the calling period for the
applications program in the general parameters of Module C, being able to choose between 50ms,
25ms, 10ms, 5ms, 3.125ms, 2.5ms, 1.25ms and 0.625ms. At the running time, the sequential
execution of the applications program is interrupted and the module E018 is executed. After it is
finished, the system returns to execution for the sequential processing point where the module
E001 has been interrupted. The time continues to be counted during the call of Module E018, its
execution having to be as short as possible so as not to an excessive increase in the time of Module
E001 is cycle.

WARNING:
The execution time of Module E018 cannot be more or equal to the time period of the call. If this
happens, the PLC goes into error mode displaying the message Recessed in Module E018, in the
window Information (command Communication, Status, Information).

Module P - Procedure
The Modules P contain passages of applications programs called starting from Modules E, P or F
through the instruction CHP (Procedure Call).

This type of module does not have parameter passing, being similar to the concept of the sub-routine.

The maximum number of modules of this type is 112 (P000 to P111).

The module P is useful to contain passages of applications programs which should be repeated
several times in the main program, being like this programmed once only and called when necessary,
being economical with the programs memory.

They can be used also for a better structure of the main program, dividing it into segments according
to its function and declaring then in different Modules P. In this case, the execution module continues
E001 only and calls the Modules P in the required sequence.

Examples:

• P-MECAN.000 - carries out the Mechanical breaking of the machine

• P-TEMPER.001 - achieves control of temperatures

• P-VIDEO.002 - achieves the man-machine interface

• P-IMPRES.003 - manages the printing of reports

Chapter 3 Diagram of Relays Language

35

Module F - Function
The Modules F contain passages of applications programs called from the start of Modules E, P or F,
through the instruction CHF (Call Function).

In the call from Modules F it is possible to pass the values as parameters for the module called. These
modules are usually written in generic form to be approved for different applications programs, in the
language of relays or of machine, being similar to the instructions of the language of relays. The
values of the parameters are sent and returned through the lists of existing operands in the call
instruction and in Module F.

In the editing of an instruction CHF, 2 lists of operands should be defined that are used for:

• sending parameters for execution of the function module (Input)

• receiving the values returned through the function module (Output)

In editing the function module, 2 lists of operands should be defined, using the command Editing,
Edit, Parameters, which are used for:

• receiving parameters of instruction CHF (Input)

• sending values of return for the instructions CHF (Output)

The passing of parameters is achieved through the copy of the values of the declared operands
(passing of parameters for value). Figure 2-22 shows the flow of data between instruction CHF and
the function module.

Figure 2-22 Parameter Passing for Module F

Further information regarding parameter passing can be found in the description of the instruction
CHF in the same manual. The passing of all types of operands is permitted.

Examples:

• F-LINEAR.002 - executes the linearization of values read from a sensor

• F-PID.033 - carries out calculations for implementing the control PID loop

Operating Status of the PLC

There are five statuses or modes of operation of the PLC: initializing , execution, programming,
cycling and error. The status in which the programmable controller finds itself is indicated in the
LEDs of the front panel of the CPU, also being able to consult MasterTool, through the dialogue box
Status (options Communication, Status, starting from the main menu). To obtain specific
information about these operating modes, consult the User’s Manual for the controller used.

• Status Initialization : the PLC initializes the different data structures for use by the executive
program and achieves consistency in the programming project present in the memory. This

Chapter 3 Diagram of Relays Language

36

status occurs after the controller is turned on, passing after a few seconds to the execution status.
If no applications program exists in memory, the PLC passes to error mode.

While the PLC is initialized, it can activate the command Communication, Status,
Programming, or equivalent short cut in the tool bars, having done that the PLC passes
directly to programming status, instead of executing the applications program. This procedure is
useful for the reinitialization of PLCs with programs containing serious programming errors.

For example, a module with an infinite execution loop, programmed with an instruction for
jumping to a previous logic, provokes the enabling of the CPU’s guard dog circuit that is always
connected, after Initialization status. Executing itself the previous procedure straight after being
turned on, the PLC passes to the programming status after initializing , allowing the erasing or
the substitution of the program.

• Execution Status: normally the programmable controller is found in this status, continually
sweeping away the input points and updating the output points according to the logic
programmed. This status shows that the PLC is executing an applications program correctly.

• Programming Status: The applications program is not executed, not having the reading of the
input points, the outputs being deactivated and the PLC’s memory compacted. The PLC remains
non-operational, waiting for commands from MasterTool. This mode is normally used to load
programming project modules for MasterTool through the serial channel. At the passing for
execution or cycling status starting from the programming status, the operands are zero.

• Cycling Status: when in cycling mode, the programmable controller does not execute the
module E001 cyclically, remaining to wait for the commands from MasterTool. Each command
execute cycle activated in MasterTool (options Communication, Status, Execute Cycle
starting from the main menu or equivalent shortcut) fires one single scan of the applications
program (Module E001), the PLC remaining to wait for a new command after executing the scan.
When the PLC passes to cycled mode, the counting of time in the timers stops, being the same
increments of one unit of time for each two scans executed. The calls to the module of
interruption of time E018 are not carried out in this mode. The Module E020, activated through
the input of external interruption, continues being called in this mode.

• Error Status: shows there was some anomaly in the PLC during the processing of the
programming project. The type of error occurring can be checked through the dialogue box
(options Communication, Status, Information starting from the main menu), while the PLC
is in this status. The output of the error status is only possible passing the programmable
controller to programming mode.

In normal conditions, the programmable controller can be in the modes of execution, programming
and cycling, these modes being Enabled through the MasterTool commands (options Execution,
Programming and Cycling in the dialogue box Status, or their shortcut equivalents in the Tool
Bars. In the event of some functional error in these modes, the PLC passes to error status. The
recovery of error mode is only possible by passing the programmable controller to programming
mode. Figure 2-23 shows the possibilities for changing status.

Chapter 3 Diagram of Relays Language

37

Figure 2-23 Operating Status of the PLC

In the modes of execution, programming and cycling it is possible to load and read project modules
from the programming project through the serial channel of the programmable controller, as well as
monitoring and forcing whatever operands are used. These operations are not possible if the PLC is
in error mode.

The operands which are not retentive are zeroed in the passing of the programming mode for
execution or programming for cycling, the rest of them remaining unchanged.

Execution of the Programming Project

When the PLC is powered or after the passing to execution mode, the Initialization of the system are
carried out according to the contents of Module C, being straight after executing Module E000 once.
The programmable controller then passes to cyclical processing of Module E001, updating the inputs
and outputs and calling the Module E018, when it exists, for each period of interruption time
programmed. Figure 2-24 shows the execution of the applications program in outline.

Chapter 3 Diagram of Relays Language

38

Figure 2-24 Execution of the Project Programming

Chapter 3 Diagram of Relays Language

39

Elaboration of the Programming Project

General Considerations
A programming project is made up at least one Module C (configuration) and one Module E001
(execution). The minimum condition for the execution of a programming project is the presence of
these two modules in the programmable controller’s CPU.

The first step in the editing of a MasterTool programming project is the creation or reading of the
project. The configuration module of the project is created automatically when the new project is
created, once this module has the declarations of the modules of input and output and the operands
used in the whole project. Each module which contains passages of applications program (E, P or F)
requires Module C to be present in MasterTool for it to be able to be edited.

After the creation or reading of a project, it can edit the project adding modules already in existence,
creating new modules for the project or excluding modules already made part of the project.

MasterTool allows various modules to be loaded and remain simultaneously in its memory.

Considerations about Operands
The various modules which make up a programming project should preferably be programs using the
same Module C. If a module already programmed needs to be used in another programming project,
the operands used for the module should be obliged to be declared in Module C of the new project.

The available operands in the programmable controller are of common use to all the programming
project modules present in the PLC (global operands). Consequently, there are two modules which
can be inadvertently accessed by the same operand, with errors occurring in the functioning of both.

To elaborate a programming project, operands should be reserved in a sufficient number for the
project, preferably separated in groups, each group used for only one module. The operands used in
Modules F programmed in language of relays and blocks can also be accessed for any other program
modules present in the PLC, the same applies to operands used in the parameter passing. To
guarantee its generic character, each Module F should use a different group of operands from the rest
used in the applications program.

Using of the Module P and F
Inside a programming project module the instructions can be placed to call other modules. The
instructions CHP and CHF call, respectively the modules of procedure and function. They carry out
the generating of calls to modules, verifying the existence or not of the modules in the directory of
the programmable controller, based on their types and numbers.

Exist 32 levels of calling, so, can be executed up to 32 consecutive callings of modules without being
finalized anyone. Should be considered that the module E018 (if it exists) and the modules called by
it occupy call levels.

Chapter 3 Diagram of Relays Language

40

Figure 2-25 Maximum number of modules calling levels

When the maximum number of calls accumulated without return is surpassed, the system may not
carry them out, continuing with the normal execution of the applications program. In cases where
calls occur for non-existent modules or the above the number of total calls, warning messages are
shown in the window Information (options, Communication, Status, Information starting
from the main menu), since these situations can cause processing errors according to the programmed
logic.

It is possible to call from a module to itself (programming for recourse) taking the necessary care,
that is to say, should be predicted in the applications program passage with recourse one moment in
which there are no more calls to the same module. Although it is possible, the use of such procedure
is not advisable in programmable controllers, due to the long time for processing which a small
passage of applications program can need to be executed and the facility of infinite loops of
execution.

Figure 2-26 Recursive Call of Modules

Undue programming with dead locks should be avoided. If a programming project module calls
another and this also carries out a call to the first, if the call instructions in the two modules can not
be disabled, both remain called mutually until the passing of the programmable controller to error
mode, for an excess of execution time of the applications program.

The same situation can occur with calls linked together between different modules, when a module
called changes to call some initial module of the chain. For example, if module P005 calls P002, this
calls P007 and this calls P005 again, the processing can remain in this loop if no calling instruction is
disabled.

Figure 2-27 Module Call Loop

Use of Module E018
Module E018 should be used when quick processing is necessary for some points of input and output
of the programmable controller, like for example, in sensing the end limit in Systems of rapid

Chapter 3 Diagram of Relays Language

41

positioning. The instruction for updating the points of I/O (AES) should used in this case, carrying
out a similar process in module E018 to a complete loop of main program execution. The inputs are
read, the passage of the applications program required is executed and the outputs are updated.

In this way, this module makes itself useful when it requires a response from the operations of output
after a fixed time of stimulating inputs, do not depend on the verification time of the main program,
which can vary. This characteristic is also important in position control Systems.

Another application for Module E018 is the generation of time less than 100ms for the main
program. Timers can be created with precision of 50ms, 10ms or less, if necessary, through the use of
instructions counting in the module of time interruption.

This module is useful when precise time control is needed in the PLC’s processing.

Care in Using the Module E018
Some special care is necessary in programming module E018. As it is called from synchronized
mode to each fixed time period, interrupting the process of module E001, its execution time should
be as short as possible so as not to add excessively to the overall cycle time of the applications
program.

If the interval between the calls from module E018 is programmed for 25 ms, for example, and its
execution time is 20 ms, they restore only 5 ms for the execution of the main program before which
E018 will be called again. This situation considerably increases the cycle of module E001.

Figure 2-28 Care in Use of Module E018

If the execution of module E018 takes more than the time interval programmed for their calls, the
PLC passes to error status, sending the message “Re-input in module E018” in the window.
Information (options Communication, Status, Information starting from the main menu). In
this situation, the period of the call used should be increased or the execution time of module E018
should be reduced so that the programming project can be executed correctly.

The instructions behave the same when executed in module E018, except in relation to some other
particular characteristics. The timers (TEE and TED) continue to count the time at each 100 ms, any
which is in the period of enabling programmed for the module, exactly as in the execution cycle. The
pulse relay (PLC) action its output during an execution of module E018, zeroing it in the next call.
The instructions CHP and CHF can be used in the some way as in the main program the modules
having to be enabled through them obeying the same rules of programming applying to module
E018. The maximum number of levels of call from modules used in the module E018 should be
added to the maximum level used in E001, the sum having to be less than the limit of the system (18
levels).

Using of Operands in Programming of Modules E018
Other care necessary is with the data sharing between the modules E018 and the rest present in the
programmable controller. The interruptions can occur at any point of the main program of execution
cycle (module E001 or modules P or F called through it), including during the processing of its

Chapter 3 Diagram of Relays Language

42

instructions. As the operands are all of common use to any programming project module, care should
be taken not to inadvertently use, in modules E018 any operand which is used in another
programming project module, since this use, according to the case, can cause incorrect functioning.

In order to share the data between the Modules E018 and other module any cyclical execution should
use the instructions MOV (moving of simple operands) and MOB (moving of blocks of operands), to
create an image of operands which contain the data to be shared. These instructions should be used in
the modules pertaining to the normal execution cycle and not in modules E018.

For example if it is necessary that the module E018 uses the value contained in a memory used in the
main program, it should pass the value this memory to another through the instruction MOV, the
module E018 only having to use this last are. The MOV instruction should be in the main program,
and not in the module E018.

The contrary flow of data also demands the creation of image operands. If module E018 manipulates
a table and the main program needs to use the values in this table, these values should be copied to a
second table for exclusive use of the main program, through the instruction MOB. The instruction
MOB should be in the main program and not in Module E018.

A similar situation occurs for reel instructions. If some point of an operand is modified in the main
program through a reel, it is not permitted to change any point pertaining to the whole octet of the
same operand in Modules E018. This restriction does not exist when the octets used belong to the
group %S0000 to %S0015.

However it is possible that the points of an operand are altered in the Modules E018 through a reel
and are only tested for another module with contact instructions, for example. The opposite situation
is permitted, that is to say the operand points changed in the main program through coils can be
tested in Modules E018 through contacts.

Other care to be taken with respect to the updating of the inputs and outputs of Modules E018.

Preferably the inputs used in its processing should be only updated in these modules, using the
instruction F-AES. As the application program of the cyclical execution can be interrupted in any
place for these modules, if the input images of the main program are updated in these, these can take
on different values at different points of the applications program during the same execution cycle.
This fact can cause errors if an input operand is used in various areas of the main program, since
normally it is supposed that its value remains unaltered in the same verification process.

Due to this fact, it is recommended to use exclusive input octets for the Modules E018, if it is
necessary for its updating in it, not being the octets used in the main program.

If it is necessary to update the inputs used simultaneously in the interruptions and in the cyclical
processing, the value of these can be copied to auxiliary operands in the rest of it. Also it cannot
update input images in Modules E018 with the instruction F-AES, but only read directly the values of
the I/O modules to memory operands through the instruction MES, and use these memories in
contacts to carry out the processing in the interruption modules.

The updating of output octets in Modules E018 (through the instruction F-AES) is possible, since the
points pertaining to these octets are action through coils only in these modules.

In Modules E018, the values with the instruction MES in output modules declared in the bus through
MasterTool should not be written, since the verification of output also carries out the updating of the
values in these modules.

Chapter 3 Diagram of Relays Language

43

When a Module E018 is being executed and the compaction is enabled, the modules can be
transferred to another position in memory through the routine of compaction. During this transfer its
call will be disabled, some interruptions being possible without which the Modules E018 will be
processed. Attention should be paid to this effect of compaction regarding the execution of the
module enabled for interruption. During the compaction of the rest of the modules, still, the Modules
E018 continue being executed.

Depuration of Programming Projects

Various facilities are previewed in the programmable controller to help the depuration of the
programming project, being described as follows.

Information about the status of the PLC
Various information about the status of the controller can be obtained with the enabling of the
options Communication, Status, Information in MasterTool:

Shortcut:

• CPU Model - indicates the type of controller with which MasterTool is communicating.

• Version of Executive - shows the number of the version of the executive program which the
PLC contains.

• Mode of Operation - shows the actual operation of the PLC: execution, programming cycling
or error.

• Error/Warning Message - if the PLC is in an error mode, a message is shown indicating the
cause of the error. If the PLC is in another mode, a message indicates the existence of problems
that do not cause the change to error mode (for example, the PLC’s battery is flat). C.f. Error
Messages, appendix A of the MasterTool User’s Manual.

• Outputs - indicate if the outputs are enabled or disabled.

• Forced Relays - indicate if any forced point off input or output exists.

• Change of Modules with PLC powered - indicates the possibility of changing from
modules with PLC powered.

• Compacting RAM - indicating if the PLC is compacting the RAM memory of the applications
program.

• Copying Module - indicates if any module is being loaded into the PLC, transferring from
RAM to EPROM flash or from EPROM flash to RAM, or if the PLC is erasing the flash
memory.

• Protection Level - shows the current protection level of the PLC.

• Cycle Times - shows the instantaneous value, average, maximum and minimum of the cycle
time of the applications program. C.f. section Program Execution Cycle Times in this same
chapter.

• Enabling Period of E018 - shows the period of module call enabled for time interruption
E018, if it is present in the PLC.

The status windows of the PLC (options Communication, Status, Information), directory of
modules (options Communication, Modules) and monitoring (options Communications,
Monitor Operands or Monitor Block of Operands or Monitor Tables) supplies various
information used to verify the correct functioning of the controller. This information can be obtained
from a distance, if the PLC is connected to a network. When MasterTool is connected to any PLC, it
regards the obtaining of this information as the first step to take.

Monitoring

Through MasterTool it is possible to monitor the values of on or more operands in the PLC
in any mode of operation, except error mode.

Chapter 3 Diagram of Relays Language

44

The values of the operands contained in a logic of an applications program can be visualized
directly in the PLC allowing the verification of its functioning.

For more information about how to carry out the monitoring, c.f. items Monitoring Simple
Operands, Monitoring Table Operands and Monitoring Programs in the section
Communicating with the PLC or Router on the MasterTool User’s Manual.

The monitoring of operands in the PLC occurs at the end of the execution cycle of the applications
program. Due to this, incoherent situations can be visualized in the monitoring of the logics, if the
values of the operands are modified in the subsequent logics to be monitored.

Figure 2-29 Incoherent Situation in Logic Monitoring

Forcing
The values of the operands can also be forced with MasterTool, that is to say, can modify the content
of any programming project operand. The forcing of operands is permitted in any operating mode.
The forcing of operands is permitted in any operating mode, except error mode. C.f. items Forcing
Simple Operands and Forcing Table Operands in the section Communicating with the
PLC or Router in chapter 5 of the MasterTool User’s Manual.

The operands %A, %M, %D, %I, %F, %TM, %TD, %TI and %TF have their value altered only for
one verification, straight after a command has been sent to the PLC. So that the forced value remains
in the operands, it cannot have any instruction in the program which modifies it.

The forcing of the operands %E and %S is carried out in a permanent way in the controller. After the
commands is sent to the PLC, the value is forced in all the verifications of the applications program,
until the operand is freed. The LED FC in the CPU panel remains connected if there is some forced
operand %E or %S.

The forced values in operands %E superimpose those obtained in the reading of the input modules,
before the start of each execution cycle of the applications program. The program is executed with
the value forced, as if the point of input corresponds with this value, being able to be visualized in the
monitoring.

Chapter 3 Diagram of Relays Language

45

For example, if the operand %E0002.5 is forced with the value, the applications program will be
executed with this value for this operand, not importing the status of the point in the module of
corresponding input. The monitoring of %E0002.5 always the value 1.

The values forced in the operands %S are sent directly to the output modules, independent of the
values obtained after the execution of the applications program. The monitoring shows the forced
value, which corresponds to the value assumed through the corresponding point in the operand in the
output module.

For example, if the operand %S0024.3 is forced with the value 0, the respective point in the output
module remains disconnected, not importing the status of the coil which contains the monitoring of
%S0024.3 always shows the value 0.

WARNING:
Incoherent situations can be visualized in monitoring logics with operands %S forced. This happens
because the value monitored can be different from the value really obtained through the applications
program.

WARNING:
All the forcing of operands %E and %S are removed when the turning off the PLC. The forcing of
these operands should be used in temporary form, only to help the depuration of the programming
project. The operands %E or %S should not be left forced in character permanently, since they are
freed with the turning off and after the turning on of the controller.

Operands %E and %S stop being forced through the PLC through the command liberating from
forcing. The liberation consists of canceling the forcing previously determined. The operands %E
return to have their values updated according to the input modules, while the output modules receive
the values obtained in the processing of the applications program.

WARNING:
Force operation doesn’t actuate in %E or %S operands that has been updated by F-AES.087
instruction. This instruction read %E operands or write %S operands and it doesn’t make operands
forcing effects. For this reason, I recommend you don’t make operands force with operands that has
been updated by F-AES.087 actives program instructions.

For further information about how to free forced operands, c.f. item Liberating Forced
Operands in the section Communicating with the PLC or Router on the MasterTool User’s
Manual.

Disabling the Outputs
For the “on Initialization ” security when if the applications program is used directly in the machine,
the enabling of output by the programmable controller can be disabled through the disable command.
The application program continues to be executed in the PLC, with the verification of the inputs and
calculation of the output values, however with all the output points kept deactivated. The operands
%S can be monitored and given the values waiting for them.

For more information regarding the disabling of outputs, c.f. item Enabling and Disabling the
Outputs in the section Communicating with the PLC or Router on the MasterTool User’s
Manual.

Chapter 3 Diagram of Relays Language

46

WARNING:
If the PLC is turned off, the disabling of the points of output is removed. That is to say, when the
PLC is turned on again, the status of the memory operands will normally be transferred, to the end of
each verification, for the points of output. The disabling should be used in temporary form, only to
help the depuration of the programming project.

Modifications in the Program
The loading of the modules during the execution of the programming project (loading “on line”)
makes possible successive modifications and messages from the module in the depuration for the
programmable controller. In this mode it is not necessary to reinitialize the control application
program not even a change of status from programmable controller to each alteration carried out in a
module.

WARNING:
After any modification carried out in Module C of the programming project, it should be sent to the
PLC.

WARNING:
If the declaration of the simple operands or tables may be modified, it advises itself to reinitialize
the PLC, passing to programming mode, loading the Module C and returning to execution mode.
Functioning errors can occur altering the configuration of the operands and sending the Module C,
with the controller, into execution mode.

After a certain number of successive loads in execution mode, however, it can make necessary the
compaction of the RAM memory for reasons explained in the section Managing Programming
Project Modules in the PLC, in this chapter. This type of loading is only possible if there is
enough free memory in the PLC storing the module to be sent.

At the end of the depuration of a program module, its transfer is suggested to an EPROM flash
memory or its recording in the EPROM cartridge, freeing the space available in the RAM memory of
the program.

Cycling Mode
The execution of the programming project in cycling mode makes use, in the verification of the
functioning of rapid brakes in the applications program. The rest of the facilities of depuration
continue acting in the same way as in the execution mode (monitoring, forcing, loading and other
operations with modules).

In cycling mode, the operand values remain constants among the cycles, except the input points (%E)
which continue being continually updated, showing their real values.

Managing Programming Project Modules
The modules which make up the applications program are independent among them selves, not
needing the connection (“link”) through the auxiliary programs. The loading of modules in the
programmable controller for the serial channel can be carried out in any order, allowing only the
model altered to be loaded into the PLC, if the programming projects have to be maintained.

WARNING:
Only the module type and its number are relevant to the CPU in this system, the name being ignored.
If two modules with equal type and number but with different names are to be loaded into the PLC,
only the last to be loaded will be considered.

Chapter 3 Diagram of Relays Language

47

The programmable controller organizes an internal directory where the various information regarding
modules contained in it are stored, able to be consulted for MasterTool through the directory
command of modules (options Communication, Modules starting from the main menu). When
this command is to be enabled, a dialogue box is opened, showing in its upper section, two panels
called RAM Modules and EPROM Modules with the list of names and the memory occupied by
each module in the PLC.

In the panel Memory Occupied details the total number of modules and the total memory space
occupied by them (sum of all the individual occupations), beyond the total space occupied in RAM
or EPROM.

The panel Memory Free shows the amounts of RAM memory and EPROM available for the
loading new modules, in each memory bank existing in the programmable controller.

Only the modules present in the directory are considered valid for execution in the PLC.

A program module present in the directory can only be in one type of memory, RAM or EPROM,
never in both at the same time. The modules loaded by the serial channel are always stored in RAM
memory of the applications program.

Compaction
The memory of the programmable controller’s memory is divided into one or more banks, depending
on the CPU model used (c.f. table 2-1 in the section Organization of Memory in PLCs in this
chapter.

As the modules which make up the programming project are sent to the PLC through the serial
channel, they occupy the first memory bank, from its beginning to its end. When the space remaining
in the first bank is not enough to load the next module, it will be loaded into the following bank, if
one exists.

At each loading of a new module into the programmable controller, the executive software tests if
there is enough space for it from the first to the last bank available. The loading of a new module is
only possible if there is free memory available for its storage.

Inside the RAM memory bank, the loading of a module is always carried out starting from the first
position after the last module present. If a module at the start of the bank is removed, the modules
which are after it should be transferred to occupy its space in the memory, so that this space is
available at the end of the bank for other modules to be loaded. This procedure names itself
compaction of RAM memory of the applications program.

Example:
Supposing that the first memory bank of the programmable controller is initially with the following
modules:

Chapter 3 Diagram of Relays Language

48

Figure 2-30 Compaction of RAM Memory

If Module P010 is removed from the PLC the bank 0 will pass to have the following organization:

Figure 2-31 Compaction of RAM Memory-2

The space previously occupied by P010 is not taken advantage of by the programmable controller,
since to carry out the compaction of the PLC’s memory, bank 0 passes to the following
configuration:

Figure 2-32 Compaction of RAM Memory-3

The Modules E018 and E001 are transferred to the space previously occupied by Module P010,
making this space available to the end of the memory of the bank for loading the other module.

If the programmable controller is in programming mode or cycling, the RAM memory banks of the
program are automatically kept compacted by the executive program. In execution mode, however,
the compaction should be enabled manually, through MasterTool (options Communication,
Modules, Compact RAM from the main menu). This procedure is common when different
loadings of modules in execution mode are carried out (loads “on line”), typically when a module is
being purified, needing successive alterations and transmissions for the PLC.

Chapter 3 Diagram of Relays Language

49

WARNING:
Depending on the location of the modules in memory, the procedure for compaction can much
increase the time for some cycles of applications programs, when carried out in execution mode. It is
important to be aware of the effects of this increase in processing time. Be advised that the
compaction is not fired if the machine under control is in operation or with its main active enabling.

Due to this mechanism of managing the modules in the programmable controller, it is possible that
the sum of the available memory in the PLC banks with the value occupied by modules is less than
the total memory of the program, if it is in execution mode. This fact means that the program
memory is not compacted. After the compaction, however, the sum of the values occupied with the
free memory should be equal to the total memory.

On the MasterTool don’t exist a Flash compaction, as the RAM compaction. The method to compact
the Flash is to carry the modules to the RAM, clean the Flash and carry the modules to the flash.

Use of EPROM Flash Memory
The controllers contain EPROM Flash Memory and it is placed on the board of the PLC, and there is
no need to remove them to store ore erase programs. This operations are realized by the controller
itself, through the MasterTool. This memory can be stored partially, although it don’t permit the
partial erasing. So, it is only possible to erase all the memory.

The memory configuration of each PLC model is shown in the section Organization of Memory
of the PLC’s in this chapter.

Transference of Modules from Ram to Flash
After they are loaded into the RAM memory of the program, through the serial of the PLC, the
programming project’s modules can be transferred to EPROM flash. This command is only unable in
PLC’s which have flash memory. For further information about the transferring modules from RAM
to EPROM Flash c.f. item Transferring Modules from RAM to EPROM Flash in the section
Communicating with the PLC or Router on the MasterTool User’s Manual.

It is possible to transfer one single module or a group of modules, the same with the PLC executing
the program. The transfer in execution mode is carried out partially in each verification, being able to
wait several seconds until it is completed, mainly of these was a long time of cycle of execution. At
the end of the transfer, the module in RAM is automatically erased and the information from the
directory is modified.

Managing the module loading in EPROM flash is identical to the RAM memory, shown in the
previous section Compaction. That is to say the RAM module is recorded in the first bank of flash
which has enough space free for the counter, after the last module of the last module of the bank. The
search for free space occurs in the sequential order of the banks (0, 1, 2 and 3).

Transference of Modules from EPROM to RAM:
The modules present in EPROM flash memory or in EPROM cartridge can be transferred to the
RAM memory of the program. For further information about how to transfer modules from EPROM
to RAM, c.f. item Transferring Modules from EPROM to RAM in the section
Communicating with the PLC or Router on the MasterTool User’s Manual.

It is possible to transfer one single module or a group of module, the same with the PLC executing
the program. The transferring into execution mode is partially carried out in each verification, being
able to wait several seconds until it is completed, mainly if the cycle execution time is long. At the
end of the transfer, the information from the directory is modified.

Chapter 3 Diagram of Relays Language

50

The management of the loading of the module into EPROM flash is identical to that of RAM
memory, shown in the previous section Compaction.

Erasing and Re-enabling Modules on EPROM
The erasing command can be used for modules stored in the EPROM memory of the PLC. As the
erasing of EPROM’s is only possible for all its contents, this command only retires the information
from the modules directory, not carrying out a real erasing of the memory.

The same happens if a module recorded in EPROM is substituted for a new module of the same type
and number loaded by the serial channel. The new module is stored in RAM, remaining the old one
in EPROM, only the new one in RAM being shown in the directory.

The module removed through the erasing command or substituted with the load from a new module
can be restored to the directory, since its contents are still recorded in EPROM memory. This
recovery is possible with the modules re-enabling command.

The re-enabling renders the module non-existent in the directory and reappears in EPROM, or that
one already existing in RAM may be substituted for a previous one in EPROM.

For further information regarding how to erase or re-enable modules, c.f. items Erasing Modules
in the PLC or Router and Re-enabling Modules in EPROM in the section Communicating
with the PLC or Router on the MasterTool User’s Manual.

Erasing the EPROM Memory
With the total erasing from EPROM memory, all the modules are removed, all the available space
being available for the recording of the new modules.

To erase the EPROM cartridge an appropriate eraser device should be used, after the removal of the
cartridge from the PLC.

To erase the EPROM flash memory, use the options Communications, Modules, Erase Flash
which are the PLC in programming mode. The erasing can wait several seconds, depending on the
capacity of the flash used in the PLC. For further information regarding how to erase the flash
memory, c.f. item Erasing the EPROM Flash Memory in the section Communicating with
the PLC or Router on the MasterTool User’s Manual.

Chapter 3 Diagram of Relays Language

51

Program Execution Cycle Times

The maximum time possible for the execution of a complete cycle of the applications program in the
programmable controller is configurable for 100ms to 800ms. That is to say, the complete execution
of a verification of Module E001 cannot be extended for more than the value configured, including
the calls to the Modules P and F and the enabling of the time interruption Module E018. The
executive software carries out a continuous verification in the cycle time, passing automatically to
error status if this limit is overtaken.

It can be verified the execution times of the applications program through the PLC’s information
window (options Communication, Status, Information starting from the main menu) various
execution cycle times being given, specified as follows:

• Instantaneous cycle time: shows the cycle time of the last verification executed by the PLC
before sending the information of its status to MasterTool. This item is useful in cycling mode,
when it shows the execution time of the last cycle fired in the programmable controller.

• Average cycle time: shows the average times of execution of the last 256 verifications carried
out by the PLC. In execution mode this parameter gives a general idea of the processing time of
the applications program, as opposed to the instantaneous cycle time, which can be shown an
untypical value isolated from a verification. As this time is calculated only at each 256 scanning,
at times its value needs a few seconds to be updated, mainly in the case of an abrupt increase in
the execution time (including the new modules in the programmable controller for example.

• Maximum cycle time: shows the longest time between all the cycles carried out since the
passing of the PLC into execution or cycling mode.

• Minimum cycle time: shows the shortest time between all the cycles carried out since the
passing of the PLC to execution or cycling mode.

The cycle times are shown in milliseconds (ms), being the counts initialized in the passing from
programming mode to execution or programming to cycling.

The service of the serial communication with MasterTool increases the application program’s cycle
time in the PLC, being able, in some cases, to overtake the maximum cycle time selected. If the time
limit for execution is overtaken only due to the commands from the serial communication
(monitoring, forcing and the rest), the PLC does not Enter error status. It is possible therefore, to
indicate from the maximum cycle time greater than that selected without which the programmable
controller will have to Enter error mode.

The procedure of compaction of program memory by the programmable controller always follows
the previous rule. In some cases, the compaction routine needs to copy a much extended module into
the memory between two cycles of the applications program, increasing in the extreme the execution
time of one verification. In this situation the PLC does not Enter error status.

Status care should be taken when the execution cycle times move nearer to the maximum time
selected. The simple fact that the applications program is to be executed correctly with the more
common conditions of the input points does not guarantee that its verification time, in real conditions
of the machine functioning, will remain inside the value limit.

WARNING:
Each programming project should be examined carefully in the search for situations which will
cause the longer execution times.
These situations should be simulated and the times averaged, verifying if they are not excessive.
This procedure should be carried the same in the programming project with cycle times well below
the limit, to ensure it functions well.

Chapter 3 Diagram of Relays Language

52

It is possible that in some isolated verifications the cycle time exceeds the maximum time selected
without which the PLC passes to error mode, in case these sporadic verifications do not cause delays
in the system timers.

WARNING:
If the PLC indicates a greater maximum cycle time than that selected without which it will have to
have a memory compaction, even if it continues normally in execution mode, the program should be
examined to reduce its cycle time in situations which cause greater times.

☺HINT:
Some typical procedures exist to reduce the execution time of the much extended applications
programs. A good management of the modules call can reduce the total cycle time sensibly, the calls
of a few modules of the applications program being carried out in each verification, not allowing
then all to be fired in the same cycle. The use of jump instructions in the modules, reduces their
execution time, since a jumped passage of applications program is disregarded by the executive
software. The master relay and end of master relay instructions do not have this property, since the
segment of applications program delimited by them continue to be executed the same as when the
RM coil is disabled.

☺HINT:
The Initialization s of values in operands or tables in Module E000 should be carried out, devised
specially for this intention the execution of module E000, for not to be cycled, can delay more than
the maximum time, this time being disregarded in counting the time of the first verification of
Module E001. As the mode is, executed, it becomes meaningless to the programming of the timers
(TEE, TED) in module E000.

Protection Levels of the PLC

CPUs in the Ponto series have a mechanism to protect the programming project and the operands,
allowing the blockage of the loading of program modules, forcing the values or same, readings of
modules and monitoring for un-authorized operators.

These characteristics are of interest to critical processes, to avoid accidental modifications in the data
or in the control program or in the need for secrecy.

The blocking of operations is carried out through the protection levels, which can be defined only for
operators which know a pre-defined password. The controller can work on four different:

• Level 0 - all the PLC’s operands are permitted.

• Level 1 - not possible to alter the programming project (to erase or load new program
modules) or change the status of the PLC. Can force and monitor operands and read
program modules.

• Level 2 - not possible to alter the programming project (to erase or load new program
modules). Not possible to force operands or change the status of the PLC. Possible to
monitor operands and read program modules.

• Level 3 - not possible to read or alter the programming project, to monitor or force
variables not even to change the status of the PLC. Possible only to consult the status of
the PLC and its directory.

The change of protection level is carried out with the options Communication, Status,
Protection in MasterTool, having to key in the password to achieve correct access. The PLC’s

Chapter 3 Diagram of Relays Language

53

protection level can be consulted with MasterTool through the options Communication, Status,
Information.

The use of different protection levels from zero allows only authorized people, who know the
password, modify the program or the PLC’s data. Unauthorized operators, even are prevented from
carrying out inadvertent alterations.

The access password can have from one to eight alphanumeric characters. It is defined or changed
with the options Communication, Status, Password, the previous password and the new
password having to be keyed in twice, for the change to be confirmed.

The PLC is supplied with a password. It is not necessary to key in any value in previous password
field to define the first password.

WARNING:
The password should be written and kept in a secure place. If the password programmed in the PLC
is lost, ALTUS should be contacted.

The PLC’s protection acts not only to carry out operations with MasterTool, but also the commands
received through ALNET I and ALNET II, with the same characteristics defined for each level.

For more information about how to alter the protection level and the password of the PLC, c.f. items
Altering the Protection Level and Altering the Password in the section Communicating
with the PLC or Router on the MasterTool User’s Manual.

Interlocking of Commands in the PLC

In the Ponto series it is possible to use the ALNET I and ALNET II communication networks
together. When interconnected in this way, it is possible to receive two commands simultaneously
whose concurrent execution will not be desirable, due to their characteristics. For example, the PC
can receive a command to transfer from EPROM to RAM through ALNET II while the same
command is being loaded in ALNET I.

Similar situations occur with the commands for transferring program modules from EPROM
Memory to RAM to flash or erasing from flash memory. The execution of these commands can be
extended for several seconds, during these the PLC can receive other commands which conflict with
operation in progress. For example, PLC can receive one command to erase the flash memory while a
module may be being transferred to the same memory.

To resolve possible conflicts, there is a braking mechanism to execute some of the commands
available in the PLC. These commands cannot be executed if the PLC is carrying out a specific
operation. There are two internal signals, loading module (CM) and compacting RAM (CR)
which are used for this intention. The tables 2-4 and 2-5 show the commands which use the braking
and the enabling of the signals.

The status of the signals carrying module and compacting RAM can be verified in the information
window of the PLC, options Communication, Status, Information on MasterTool. While any of
the signals are enabled, the LED FC of the panel in the PLC remains alight.

Operation realized by the PLC Command Blocked
(ALNET I, ALNET II)

Signal
ON

Loading Modules Load Modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

CM

Transfer from EPROM to RAM Load Modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules

CM

Chapter 3 Diagram of Relays Language

54

Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

Transfer from RAM to Flash Load Modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

CM

Erasing of Flash EPROM Load Modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

CM

Legend: CM – Load Module

Table 2-4 Braking of Commands in the PLC (loading module)

Operation realized on PLC Blocked Command
(ALNET I, ALNET II)

Signal
ON

Compaction Load Modules
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Removal of Modules
Compaction

CR

Legend: CR - Compacting RAM

Table 2-5 Braking of Commands in the PLC (Compacting RAM)

For example, while a module is being loaded into the PLC through ALNET I or ALNET II, the
commands for loading modules, transfer from EPROM to RAM, transfer from flash, requesting to
load modules, re-enabling of modules in EPROM, erasing of EPROM Flash and compaction not be
possible to execute, if they are received through another network. If they are received through
another network. If they are received through PLC a reply indicating that their execution is
impossible is transmitted to the applicant.

Chapter 4 Instructions

55

4. Instructions

This chapter gives a list of integral instructions of the ALTUS Language of Diagrams and Relays,
describing the format, use, syntax and gives examples of each instruction.

List of Instructions
The ALTUS PLCs use the language of relays and blocks to elaborate the applications program,
whose main advantage, apart from its graphic representation is being similar to the conventional
diagrams of relays.

The programming of this language, carried out through MasterTool, uses a group of powerful
instructions shown in the following sections.

MasterTool instructions can be divided into 7 groups:

• RELAYS

• MOVEMENTS

• ARITHMETIC

• COUNTERS

• CONVERSIONS

• GENERAL

• CONNECTIONS

Conventions Used

Different conversions are used for the presentation of groups and instructions making a better
visualization and recognition of the items described, aiming at a simpler method of learning and a
source of direct consulting of the required topics.

Presentation of the Groups
The descriptions of each group follows this routine.

1. The group is described with a little containing the name of the group.

2. Straight after the little, a brief descriptions of the common characteristics of the group is
given.

3. Finishing the presentation of the group, a table is displayed containing the name a the
instruction in the first column, the description of the name of the instructions in the
second column and in the sequence of keys to carry out the insertion of the instruction
directly through the keyboard in the third column.

Example:

Instructions of the Relays Group
The instructions of the Relays group are used for the logic processing of the diagrams of relays.
Through these instructions it is possible to manipulate the values of the digital points of input (%I)
and output (%O) as well as points of auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used for divert the flow and control of the processing of the applications program.

Chapter 4 Instructions

56

Name Description of Name Editing
Sequence

Tool Bars

RNA contact normally open ALT, R, A

RNF contact normally closed ALT, R, F

BOB Simple coil ALT, R, B

SLT Jump coil ALT, R, S

BBL Connected coil ALT, R, L

BBD Disconnected coil ALT, R, D

PLS Pulse relay ALT, R, P

FRM End of master relay ALT, R, M

RM Master relay ALT, R, R

Presentation of the Instructions
The description of each instruction is made in the following way.

1. The instruction is described with a little containing the name of the instruction and the description
of the name. A figure presented as an instruction is visualized in the diagram of relays containing
its operands, input and output. Above each figure a brief description of the significance of each
operand is displayed.

2. The item Description contains information describing the functioning of the instruction
according to the enabled inputs and the types of operand used. Also described in this item are the
outputs which are enabled after the execution of the instruction.

3. The item Syntax describes the combinations of operands which can be used in the instruction.
This item is only present in instructions which have operands.

4. The item Example gives an example of the use of an instruction describing its behavior. This
item is only present in instructions which require major detailing of their functioning.

5. There are also other items which describe a specific characteristic of the instruction if it is
necessary.

Example:

PLS – Pulse Relay

Description:
The instruction pulse relay generates a pulse from a scan on its output, that is to say, remains
powered during a scan of the applications program when the status of its input may pass from turned
off to powered.

The auxiliary relay declared serves as data storage, avoiding limits as to the number of pulse
instructions present in the applications program.

WARNING:
The value of the auxiliary relay should not be modified in any other point of the applications
program.

Chapter 4 Instructions

57

Syntax:

Chapter 4 Instructions

58

Instructions of the Relays Group

The instructions of the Relays group are used for the logic processing of the diagrams of relays.
Through these instructions it is possible to manipulate the values of the digital points of input (%E)
and output (%S) as well as points of auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used to divert the flow and control of the processing of the applications program.

Name Description of Name Editing
Sequence

Tool Bars

RNA Contact normally open ALT, R, A

RNF Contact normally closed ALT, R, F

BOB Simple Coil ALT, R, B

SLT Jump Coil ALT, R, S

BBL Connected Coil ALT, R, L

BBD Disconnected Coil ALT, R, D

PLS Pulse Relay ALT, R, P

FRM End of master relay ALT, R, M

RM Master relay ALT, R, R

Table 3-1 Instructions of Relays Group

Chapter 4 Instructions

59

Contacts

• RNA contact normally open

• RNF contact normally closed

Description:
These instructions reflect, logically, the real behavior of an electrical contact of a relay in the
applications program.

The contact normally open, closes according to the status of its associated operand. If the operand
point is in the logic status 1 or 0, the contact normally open is closed or opened respectively.

The contact normally has behavior opposite to normally open. If the point of the associated operand
is in the logic status 1 or 0, the contact normally closed is opened or closed respectively.

When a contact is closed, the instruction transmits the logic status of its input to its output. If it is
open, the input value is not placed on the output.

Syntax:

Table 3-2 Syntax of the Instructions RNA and RNF

Chapter 4 Instructions

60

Coils

• BOB Simple Coil

• BBL Connected Coil

• BBD Disconnected Coil

Description:
The coil instructions modify the logic status of the operand in the image memory of the
programmable controller, according to the status of the enabling line of the instructions.

The simple coils connect or disconnect the operand point according to the enabling line, while the of
type connected and of type disconnected only connect or disconnect. Operands when the line is
powered (“set/reset”).

These instructions can only be positioned in column 7 of the logic.

Syntax:

Table 3-3 Syntax of Instructions BOB, BBL and BBD

Chapter 4 Instructions

61

SLT – Jump Coil

Description:
The instruction jump coil serves as a controller of execution sequence of an applications program,
being used to divert its processing to a determined logic.

Its operand is a constant which determines the number of logics to be jumped starting with the
powering of the coil the determining of the logic destination is carried out by the sum of the constant
which accompanies the instruction with the number of the logic where it is found.

When the enabling line of the jump coil is turned off, the jump does not take place, and the following
instruction which in the coil is declared and executed.

Example:
If the following instruction is in logic 2, the execution of the applications program is diverted to logic
7 if the enabling line is powered, that is to say, if the value of the point %A0009.3 is 1. If the value of
this point is 0, the execution continues normally in logic 003.

Figure 3-1 Example of SLT Instruction

This instruction can only be placed in 7 column of the logic.

In this instruction it is possible to use a constant %KM with zero value or with negative value. If
programmed with zero value, the logic destination is the same as that which contains the jump coil,
when it is powered. That is to say, the processing is diverted to the start of the coil’s own logic. If the
value programmed is negative, the processing is diverted to a logic before the logic which contains
the jump coil.

WARNING:
The use of a zero constant or negative corresponds to an unconventional use of the instruction. If it is
required to use it there, the necessary precautions should be taken to avoid the input in a loop or the
excessive increase of the cycle time of the applications program. It is recommended nevertheless, to
use the jump coil only with positive constants greater than zero.

The control of the execution of these situations should be carried out through a braking which
disconnects the jump from the previous logic, after a certain number of loops have been executed in
the return passage.

If the logic destination overtakes the last logic the applications program, the PLC jumps to the end of
the program and continue its normal cycle.

If the logic destination of a return jump is less than the first logic of the applications program, the
execution is restarted starting from logic 0.

Chapter 4 Instructions

62

Syntax:

Table 3-4 Syntax Instruction SLT

Chapter 4 Instructions

63

PLS – Pulse Relay

Description:
The instruction pulse relay generates a pulse for a scan in its output, that is to say, it remains powered
during a scan of the applications program when the status of its input may pass from turned off to
powered.

The auxiliary relay declared serves as a memorizer, avoiding limits as to the number of pulse
instructions present in the applications program.

WARNING:
The value of the auxiliary relay should not be modified in any other point of the applications
program.

Syntax:

Table 3-5 Syntax of PLS Instruction

Chapter 4 Instructions

64

RM, FRM – Master Relay, End of Master Relay

• RM Master Relay

• FRM End of Master Relay

Description:
The master relay instructions end of master relay instructions are used to delimit passages of the
applications programs, the logic bar of supply in these powered or not, according to the status of the
enabling line.

These instructions do not need operands since it is possible to position then only in column 7 of the
logic.

When the input of instruction RM is turned off, the logic bar of the supply is turned off since the
following logic until the logic which contains the FRM instruction.

As these instructions always act on the logic following the one counted, it is advisable that their
position should always be as the instructions in the logic in which they are present. This being so, the
passage of applications program delimited visually through instructions in the diagram corresponds
exactly to that controlled by the instructions, therefore avoiding bad interpretation of its functioning.

WARNING:
The instructions CON, COB, TEE and TED contain outputs powered in the same way without their
outputs being enabled. These outputs remain powered the same within the passage over the turned
off command of a master relay, being able to result in unwanted enabling.

Chapter 4 Instructions

65

Instructions of Moving Group

These instructions are used to Manipulate and transfer numerical values between constants, simple
operands or tables of operands.

Name Description of Name Editing Tool Bars

MOV Moving simple operands ALT, M, V

MOP Moving of parts of operands ALT, M, P

MOB Moving of blocks of operands ALT, M, B

MOT Moving of tables of operands ALT, M, T

CES Conversion of inputs or outputs ALT, M, S

CAB Load block ALT, M, C

Table 3-6 Instructions of Group Movements

Chapter 4 Instructions

66

MOV – Moving Simple Operands

OPER1 – origin operand

OPER2 – destination operand

Description:
This instruction moves the contents of simple operands, without carrying out conversions between
different types of operands, when the enabled input is enabled.

The operand which occupies the first instruction cell (OPER 1) is the origin operand, whose value is
moved to the destination operand, specified in the second cell (OPER 2).

If the format of the destiny operand is less than the origin, the more significant octets are zeroed. If
the moving is carried out, the output success is enabled.

If the indirect indices exceed the limits of the operands declared in the configuration module, the
moving is not carried out and the output success is not lit up.

The moving of subdivisions of operands is not permitted. For this reason, the instruction MOP should
be used.

When the destination operand is an integer (%M) and at least one of the other operands of the
instruction is real (%F) the result stored is stopped, only the integer part of the result is stored on M
operand.

Syntax:

OPER1 OPER2 OPER1 OPER2

%E
%S
%A
%M
%I
%D

%M*E
%M*S
%M*A
%M*M
%M*I
%M*D
%KM
%KD

%E
%S
%A
%M
%I
%D

%M*E
%M*S
%M*A
%M*M
%M*I
%M*D

%M
%F
%I

%M*M
%M*F
%M*I
%KM
%KF
%KI

%M
%F
%I

%M*M
%M*F
%M*I

Table 3-7 Syntax of the Instruction MOV

Chapter 4 Instructions

67

MOP – Moving of parts (Subdivisions) of Operands

OPER1 – origin operand

OPER2 – destination operand

Description:
This instruction moves the contents of parts of simple operands (words, octets, nibbles, points) when
the enabled input is powered. The conversion between types of operands is not carried out, only the
moving of values.

The operand which occupies the first cell of the instruction (OPER 1) is the origin operand, whose
value is moved to the destiny operand specified in the second cell (OPER 2). The type of subdivision
used in the first operand should be the same as the second.

WARNING:
If the moving is carried out from a constant to an operand, the subdivision is always considered a
less significant equal constant to that declared in the destination operand. Due to this characteristic,
the real value to be moved should always be declared in the origin constant to make the program
clearer.

Example:

The destination operand is declared with nibble division. Therefore, the less significant nibble of the
origin constant (with value equal to 1101 in binary, 13 in decimal) to be moved to nibble 2 of
memory M0061.

Figure 3-2 Example of Instruction MOP

The remaining bits which make up the constant are ignored, that is to say, the result of the moving
will be identical using a constant %KM00013. The example shown uses a the functioning higher
value than that of the moving to better illustrate of the MOP. For better interpretation of the program
the value %KM00013 should be used.

Chapter 4 Instructions

68

Syntax:

OPER1 OPER2 OPER1 OPER2

%EXXXX.X
%SXXXX.X
%AXXXX.X
%MXXXX.X
%DXXXX.X
%DXXXXhX
%FXXXX.X
%FXXXXhX
%IXXXX.X
%IXXXXhX

%KMXXXXX
%KDXXXXX

%EXXXX.X
%SXXXX.X
%AXXXX.X
%MXXXX.X
%DXXXX.X
%DXXXXhX
%FXXXX.X
%FXXXXhX
%IXXXX.X

%IXXXXhX

%MXXXXbX
%DXXXXbX
%FXXXXbX
%IXXXXbX
%EXXXX
%SXXXX
%AXXXX

%KMXXXXX
%KDXXXXX

%MXXXXbX
%DXXXXbX
%FXXXXbX
%IXXXXbX

OPER1 OPER2 OPER1 OPER2

%EXXXXnX
%SXXXXnX
%AXXXXnX
%MXXXXnX
%DXXXXnX
%FXXXXnX
%IXXXXnX

%KMXXXXX
%KDXXXXX

%EXXXXnX
%SXXXXnX
%AXXXXnX
%MXXXXnX
%DXXXXnX
%FXXXXnX

%IXXXXnX

%MXXXXbX
%DXXXXbX
%FXXXXbX
%IXXXXbX

%EXXXX
%SXXXX
%AXXXX

OPER1 OPER2 OPER1 OPER2

%DXXXXwX
%FXXXXwX
%IXXXXwX
%MXXXX

%KMXXXXX
%KDXXXXX

%DXXXXwX
%FXXXXwX

%IXXXXwX

%DXXXXwX
%FXXXXwX
%IXXXXwX

%MXXXX

Table 3-8 Syntaxes of the Instruction MOP

Chapter 4 Instructions

69

MOB – Moving of Blocks of Operands

OPER1 – first operand of origin block

OPER2 – number of transfers to be carried out

OPER3 – control operand

OPER4 – first operand of designation block

OPER5 – number of transfers for scan

Description:
This instruction carries out the copy the value of a block of origin operands to the destination block.

It specifies the first operand of the origin block in OPER 1 and the first operand of the destination
block in OPER 4. The total number of transfers to be carried out is declared in parameter OPER 2, to
the number of transfers for the scan (OPER 5) should always be specified and a memory accumulated
to count the number of transfers (OPER 3).

If the origin or destination block is a table, the transfer should begin in its first position.

If the operand format is less than the origin, the more significant octets of the origin value are
ignored. If opposite is the case, the more significant octets of the destination are zeroed.

The number of transfers for scan is limited in 255 operands. In general, if possible, a high number of
transfers in the some scan should be avoided, to reduce the execution time of the program.

In each MOB instruction a memory is used as control operand (OPER 3), which should be zeroed
before the first execution.

WARNING:
The control operand should not have its contents altered in any part of the applications program,
under penalty of preventing the correct execution of the instruction. Each occurrence of this
instruction in the program should have an operand of exclusive control, different from to rest. This
operand cannot be retentive.

When connected, the outputs of the second and third cells show, respectively, that at least one of the
component operands of the origin or destination block has a greater address than the maximum
number declared for the operand or table used, no moving being carried out. If the value of the
second operand is negative the output origin index invalid is enabled.

The output of the first cell is enabled in the scan in which the moving is completed.

WARNING:
The input enable should remain active until the moving is concluded. As this instruction is executed
in multiple execution cycles, it should not be jumped while the moving is still in progress.

Chapter 4 Instructions

70

Syntax:

OPER1 OPER2 OPER3 OPER4 OPER5

%E
%S
%A
%M
%I
%D

%TM
%TD

%KM %M

%E
%S
%A
%M
%I
%D

%TM
%TD

%KM

OPER1 OPER2 OPER3 OPER4 OPER5

%F
%TF %KM %M

%F
%TF %KM

Table 3-9 Syntax of the Instruction MOB

Chapter 4 Instructions

71

MOT – Moving of Tables

OPER1 – origin table or origin operand

OPER2 – table index

OPER3 – destination operand or destination table

Description:
This instruction allows the two operations: to transfer the value from one position of the table to a
simple operand or from one simple operand to a position in the table.

The operand which occupies the first instruction cell (OPER 1) is the origin operand, whose value is
moved to the destination operand specified in the third cell (OPER 3). OPER 2 contains the position
of the table declared in OPER 1 or OPER 3.

Reading the contents of the table:

Allows reading of the contents of a table position and loads into a memory operand or decimal
operand.

The instruction is programmed in the following way:

• OPER1 - specifies the address of the table to be read

• OPER2 - specifies the position (%KM) to be read or the memory (%M) which contains this
position

• OPER3 - specifies where the contents of the table position should be transferred to

If the first operand to reference a table indirectly is not specified or if the value of the second operand
is negative or greater than the last position defined for the table, the transfer is not carried out or the
output origin index invalid is enabled. If the third operand to indirectly reference an operand is not
declared, the transfer is not carried out and the output destination index invalid is enabled.

Writing values into table:

It allows a constant value or the contents of a memory operand or decimal operand to be written into
a table position.

The instruction is programmed in the following way:

• OPER1 - specifies the origin operand

• OPER2 - specifies the position (%KM) to be written in the table or the memory (%M) which
contains this position

• OPER3 - specifies the address of the table where the contents
 are transferred to

If the first operand indirectly references an undeclared the transfer of the contents is not carried out
and the output origin index invalid is enabled. If the value of the second operand is negative or
greater than the last position defined for the table, or if the third operand indirectly to reference a
table is not specified, the transfer of the contents is not carried out and the output destination index
invalid is enabled.

Chapter 4 Instructions

72

This instruction simplifies the programming of a series of algorithms involving decodifications,
sequencings, generating of curves, storing and comparison of values, among others.

Syntax:
Reading: Writing:

OPER1 OPER2 OPER3 OPER1 OPER2 OPER3

%TM
%M*TM

%KM
%M

%M
%M*M

%KM
%M

%M*M

%KM
%M

%TM
%M*TM

OPER1 OPER2 OPER3 OPER1 OPER2 OPER3

%TD
%M*TD

%KM
%M

%D
%M*D

%KD
%D

%M*D

%KM
%M

%TD
%M*TD

OPER1 OPER2 OPER3 OPER1 OPER2 OPER3

%TF
%M*TF

%KM
%M

%F
%M*F

%KF
%F

%M*F

%KM
%M

%TF
%M*TF

OPER1 OPER2 OPER3 OPER1 OPER2 OPER3

%TI
%M*TI

%KM
%M

%I
%M*I

%KI
%I

%M*I

%KM
%M

%TI
%M*TI

Table 3-10 Syntax of the Instructions MOT

Chapter 4 Instructions

73

CAB – Load Block

OPER1 – initial operand or table to be loaded

OPER2 – number of operands or positions of table

OPER3 – table of constants to be loaded

 Description:
This instruction allows the loading of up to 255 constant values in a block of operands or tables.

The initial operand or table to be carried is specified in the first parameter (OPER1), the number of
operands or positions of the table to be loaded in the second operand (OPER2) and the value of the
constants in the third (OPER3).

The value of the second operand should be positive, less or equal to %KM+128.

The third operand (OPER3) is made up of a table of constant values to be loaded. These values are
declared by selecting the button Block, an editing window being open in MasterTool. The constants
are of type %KM if the type of the first operand is %E, %S, %A, %M, %TM or they are of type
%KD if the first operand is %D or %TD. If the first operand is an octet (%E, %S or %A), only the
values of the less significant octets of each constant declared are moved.

Also it is possible to carry out the declaration of the values of the table in ASCII. This mode allows.
In this mode it is possible to insert the addresses or tags of operands which should represent its value
at the moment when the instruction is executed. The address or tag of operand should be keyed in
between keys ({ }).

E.g.: If %M0000 has the value 35 and that it has loaded the following text in ASCII “Value of
{%M0000}”. The text is as follows:

Value of %M0000:00035.

When the button Block is selected the dialogue box CAB - Values is shown:

Chapter 4 Instructions

74

Figure 3-3 Dialogue Box CAB - Values

To carry out the editing of the constants
1. Position the cursor on the index to be edited. If it is necessary to roll the pages, the keys PAGE

DOWN and PAGE UP or the vertical roll bar can be used.

2. Key in the constant value.

To carry out the editing in ASCII
1. Select the button Editing ASCII. The dialogue box CAB - Editing in ASCII is

shown.

2. Key in the text which it is required to be loaded in the constants of the CAB and select
the Ok button.

Declaration of constant values table

Press the button to do ASCII
editing

Press the button to initialize
the constant values with a
specific value

Chapter 4 Instructions

75

Figure 3-4 Dialogue Box CAB - Editing in ASCII

To initialize the constants with a specific value
1. Select the button Initialize. The window CAB-Initialize table is displayed.

2. In the item Value, key in the value to be initialized in the constants.

3. In the item Initial Position, key in the number of the first position to receive the value of
Initialization.

4. In the item Final position, key in the number of the last position to receive the Initialization
value.

5. Select the button Ok.

Key in the text may be attributed at constant table of
the CAB instructions.

Chapter 4 Instructions

76

Figure 3-5 CAB – Initialize table

The output destination index invalid is enabled when some operand can not be accessed or a table
position does not exist. The output success is always enabled when the instruction is executed
correctly. If the output destination index invalid is enabled, no loading of constants occurs.

The loading of the constant values is entirely carried out in one scan of the applications program, be
able to cause an excessive time cycle when it is extended. In most parts of applications programs, the
instruction CAB can only be executed in the Initialization (loading of tables whose contents are only
read) or at some special times, not needing to be called in all the scans. In these cases, it is
recommended that it is programmed in the applications program module of Initialization or that it is
enabled only at the necessary loading times.

Syntax:

OPER1 OPER2 OPER3

%E
%S
%A
%M

%TM
%M*E
%M*S
%M*A
%M*M

%M*TM

%KM
MEMORY

TABLE
VALUES

OPER1 OPER2 OPER3

%D
%TD

%M*D
%M*TD

%KM
DECIMAL

TABLE
VALUES

Key in the value will be

Key in the first position number which
will be receive the initialization value

Key in the last position number which
will be receive the initialization value

Chapter 4 Instructions

77

OPER1 OPER2 OPER3

%F
%TF

%M*F
%M*TF

%KM
REAL

TABLE
VALUES

OPER1 OPER2 OPER3

%I
%TI

%M*I
%M*TI

%KM
INTEGER
TABLE

VALUES

Table 3-14 Syntax of the Instruction CAB

Chapter 4 Instructions

78

Arithmetic group Instructions

The arithmetic instructions modify the values of numerical operands, allowing arithmetic and logic
calculations to be carried out between them. They also allow comparison between values of
operands.

Name Description of Name Editing
Sequence

Tool Bar

SOM Sum ALT, A, S

SUB Subtraction ALT, A, B

MUL Multiplication ALT, A, M

DIV Division ALT, A, D

AND Function “and” binary between
operands ALT, A, A

OR Function “or” binary between
operands ALT, A, O

XOR Function “or exclusive” binary
between operands

ALT, A, X

CAR Load operands ALT, A, C

IGUAL Equal ALT, A, I

MENOR Less than ALT, A, N

MAIOR More than ALT, A, R

Table 3-15 Arithmetic Instructions of the Group

SOM - Sum

OPER1 – first plot

OPER2 – second plot

OPER3 - total

Description:
This instruction carries out the arithmetic sum of operands. When the input enabled is powered, the
values of the specified operands in the first two cells are added and the result stored in the operand of
the third cell.

If the result of the operation is more or less than is allowed to be stored, the output overflow is
powered and the maximum or minimum storable value is attributed the total variable as the result.

If the input enable is not powered, all the outputs are turned off and the value of OPER3 is not
altered.

Chapter 4 Instructions

79

Syntax:

OPER1 OPER2 OPER3

%KD
%D

%KD
%D %D

OPER1 OPER2 OPER3

%KF
%F

%KM
%M
%KI
%I

%KF
%F

%KM
%M
%KI
%I

%F
%M
%I

Table 3-16 Syntaxes of the Instruction SOM

Chapter 4 Instructions

80

SUB - Subtraction

OPER1 – first plot

OPER2 – second plot

OPER3 - result

Description:
This instruction carries out the subtraction arithmetic between operands. When enables is powered,
the value of the operand of the second cell is subtracted from the first cell. The result is stored in the
memory specified in the third cell.

The lines of output result > 0, result = 0 and the result < 0 can be used for comparisons and are
enabled according to the result of the subtraction.

If the input enable is not powered, all the outputs are turned off and OPER3 remains unaltered.

If the result of the operation exceeds the greatest or smallest storable value in the operand, the
respective value limit is considered as the result.

Syntax:

OPER1 OPER2 OPER3

%KD
%D

%KD
%D %D

OPER1 OPER2 OPER3

%KF
%F

%KM
%M
%KI
%I

%KF
%F

%KM
%M
%KI
%I

%F
%M
%I

Table 3-17 Syntaxes of the Instruction SUB

Chapter 4 Instructions

81

MUL - Multiplication

OPER1 - multiplied

OPER2 - multiplier

OPER3 - product

Description:
This instruction carries out the multiplication arithmetic of operands. When the input enable is
powered, the multiplication of the contents of the specified operand takes place in the first cell by
those specified in the second.

The result is stored in the specified memory of the third cell. If this is more than the maximum value
storable in a memory, the final result is this value and the output overflow is powered. If the output
enable is turned off, no output is lit and OPER3 remains unchanged.

Syntax:

OPER1 OPER2 OPER3

%KF
%F

%KM
%M
%KI
%I

%KF
%F

%KM
%M
%KI
%I

%F
%M
%I

Table 3-18 Syntax of the Instruction MUL

Chapter 4 Instructions

82

DIV - Division

OPER1 - divided

OPER2 - divider

OPER3 - quotient

OPER4 - remainder

Description:
This instruction carries out the division arithmetic of operands. When the input enable is powered,
the division of the value of the operand in the first cell by the second takes place, the result being
stored in the specified memory in the third cell and the remainder of the operation placed in the
fourth operand. The operands of the first and second cells can be of the type memory or constant.

If the value of the second operand is zero, the output division by zero is enabled and the maximum or
minimum storable value is placed in the operand, according to the sign of OPER1. In this case, zero
will be stored in OPER4 (remainder). The outputs of the instruction are only powered if the input
enable is enabled. If it is not enabled, OPER3 and OPER4 remain unchanged.

Always that the OPER1 (divided), OPER2 (divider) or OPER3 (quotient) is an operand of real type
the fourth parameter (rest) will be unconsidered.

Syntax:

OPER1 OPER2 OPER3 OPER4

%KM
%M
%KI
%I

%KM
%M
%KI
%I

%M
%I

%M
%I

OPER1 OPER2 OPER3 OPER4

%KF
%F

%KM
%M
%KI
%I

%KF
%F

%KM
%M
%KI
%I

%F
%M
%I

%M (NU)

Table 3-19 Syntax of the Instruction DIV

NU= Not used, any memory can be used.

Chapter 4 Instructions

83

AND – And binary between operands

OPER1 - first operand

OPER2 - second operand

OPER3 - result

Description:
This instruction carries out the operation “and” binary between the first two operands, storing the
result in the third.

The operation is carried out point between the operands. The table to follow shows the possible
combinations of the “and” point to point operation.

point OPER1 point OPER2 point OPER3 (result)
0 0 0
0 1 0
1 0 0
1 1 1

Table 3-20 Point to Point Operations

Example:

In this example it is required to keep the less significant value of the nibble of %M0000, zeroing the
rest of the operand. If %M0000 contains 215 (11010111 binary), the result of the “and” binary with
15 (00001111 binary) is 7 (0000011 binary).

Decimal Binary
215 00000000 11010111 (contents of %M0000)

AND 15 AND 00000000 00001111 (value of %KM+00015)
 7 00000000 00000111 (result in %M0001)

Therefore, the decimal value 7 is stored in %M0001.

Syntax:

Chapter 4 Instructions

84

OPER1 OPER2 OPER3

%I
%KI

%I
%KI %I

Table 3-21 S Syntaxes of the Instruction AND

Chapter 4 Instructions

85

OR – Or binary between operands

OPER1 – first operand

OPER2 - second operand

OPER3 - result

Description:
This instruction carries out the operation “or” binary between the values of the first two operands,
storing the result in the third.

The operation is carried out point to point between the operands. The table to follow shows the
possible combinations of the operation “or” point to point.

point OPER1 point OPER2 point OPER3 (result)
0 0 0
0 1 1
1 0 1
1 1 1

Table 3-22 Operations Point to Point (OR)

Example:

In this example it is required to force the less significant nibble of %M0000 to 1, saving the value in
the other nibbles. If %M000 contains 28277 (0110111001110101 binary) the result is 28287
(011011100111111 binary).

Decimal Binary
28277 01101110 01110101 (content of %M0000)

OR 15 OR 00000000 00001111 (value of %KM+00015)
28287 01101110 01111111 (result of %M0001)

Syntax:

Chapter 4 Instructions

86

OPER1 OPER2 OPER3

%I
%KI

%I
%KI %I

Table 3-23 Syntaxes of the Instruction OR

Chapter 4 Instructions

87

XOR – Or Exclusive between operands

OPER1 – first operand

OPER2 – second operand

OPER3 - result

Description:
This instruction carries out the operation “or exclusive” binary between the two first operands,
storing the result in the third.

The operation is carried out point to point between the operands. The table to follow shows the
possible combinations of the operation “or exclusive” point to point.

Point OPER1 point OPER2 point OPER3 (result)
0 0 0
0 1 1
1 0 1
1 1 0

Table 3-24 Operations Point to Point (XOR)

Example:

In this example it is required to invert the points contained in the less significant nibble of %M0000,
saving the rest of the operand. If %M0000 contains 1612 (0000011001001100 binary), the result is
16603 (0000011001000011 binary).

Decimal Binary
1612 00000110 01001100 (content of %M0000)

XOR 15 XOR 00000000 00001111 (value of %KM+00015)
 1603 00000110 01000011 (result of %M0001)

Therefore, the decimal value 1603 is stored in M001.

Syntax:

Chapter 4 Instructions

88

OPER1 OPER2 OPER3

%I
%KI

%I
%KI %I

Table 3-25 Syntaxes of the Instruction XOR

Chapter 4 Instructions

89

CAR – Load Operands

OPER - operand to be loaded

Description:
The instruction loaded in the operand carries the loading of the value of the operand specified in the
special internal register in the PLC, for the subsequent use of the instructions of comparison (more
than, less than, equals). The operand remains loaded until the next instruction for loading, being able
to be used for different logics, including subsequent scan cycles.

The output success is enabled if the loading is carried out. If some indirect access of the operand is
not possible (invalid index), the output success is not enabled.

See considerations and examples shown in the following section, Instructions of Comparison of
Operands.

The comparing of decimal operands and real operands is not allowed.

Syntax:

OPER1

%E
%S
%A
%M
%D
%F
%I

%KM
%KD
%KF
%KI

%M*E
%M*S
%M*A
%M*M
%M*D
%M*F
%M*I

Table 3-26 Syntax of the Instruction CAR

Chapter 4 Instructions

90

Instructions of Comparison of Operands – Equals, More than and Less than

OPER – operand to be compared

Description:
The instructions more than, less than and equals carry out comparisons of the operand specified with
the value loaded previously in the internal register with the instruction CAR (Load Operand),
supplying the result of the comparison in its outputs. If any indirect access is invalid, the output is
disabled.

For example, the instruction more power to its output if the value of the operand present in the last
active CAR instruction is greater than the value of its operand. The equals instructions and less than
work in an identical way, changing only the type of the comparison carried out.

If the operands to be compared are of the same type, they are compared according to their storage
format (taking their signs into consideration). If they are not of the same type, they are compared
point to point (as binary values without sign).

The comparing of decimal operands and real operands is not allowed.

WARNING:
It is suggested that operands of equal types are always compared to avoid wrong interpretation in the
results when the operands have negative values. C.f. following example.

Example:

Figure 3-6 Example of Instructions of Comparison

As the types of operands are different (%M and %D), the comparison is carried out point to point,
without taking the arithmetic signs into consideration. Due to this fact, if %M0012 has value -45 and
%D0010 has the value +21, the operand %A0003.2 will be powered, as if the value of %M0012 is
greater than %D0010, which actually is not.

%M0012 =-45 1111 1111 1101 0011
%D0000 =+21 0000 0000 0000 0000 0000 0000 0010 0001

Chapter 4 Instructions

91

To consider the signs in the comparison of the example, the value of the memory operand should be
converted to a decimal, using this last in the instruction CAR, as shown in the logic to follow:

The value 111 111 1101 0011 (%M0012) is greater than 100001 (%D0010) in the comparison point
to point. Showing it as a negative value.

Figure 3-7 Example of the Instructions of Comparison

WARNING:
Due to the processing order or the instructions in the logic, care should be taken in positioning the
instructions of comparison to avoid errors in interpretation in its functioning. C.f. section Logics in
this same chapter and the example to follow.

Example:

Figure 3-8 Incorrect Use of the Instruction CAR

In the logic shown, it is required to compare the value of the operands %M0000, %M0001, %M0002
and %M0003 with the constants %KM00000, %KM00001, %KM00002 and %KM00003,
respectively. However, the functioning. As the processing of the logic takes places in columns, at the
end of the execution of column 0 the value of %M0003 will be loaded to the comparisons in column
1. In reality, only the value of the operand %M0003 will be compared with the constants present in
column 1.

For the required functioning, the logic should be programmed in the following way:

Chapter 4 Instructions

92

Figure 3-9 Correct Use of the Instructions CAR

WARNING:
To avoid wrong interpretations in the functioning of the comparison, it is suggested to use only one
instruction CAR for the column of the logic.

Syntax:

OPER1

%E
%S
%A
%M
%D
%F
%I

%KM
%KD
%KF
%KI

%M*E
%M*S
%M*A
%M*M
%M*D
%M*F
%M*I

Table 3-27 Syntax of the Instructions More than, Equals and Less than

Chapter 4 Instructions

93

Instructions of counters group

The counter instructions are used to carry out counts of events or the time of the applications
program.

Name Description of Name Editing
Sequence Tool Bar

CON Simple counter ALT, C, N

COB Bidirectional counter ALT, C, B

TEE Timer to turn on ALT, C, T

TED Timer to turn off ALT, C, D

Table 3-28 Instructions of Group Counters

Chapter 4 Instructions

94

CON – Simple Counter

OPER1 - counter

OPER2 – count limit

Description:
This instruction carries out simple counts, with the increase of one unit in each enabling.

The instruction simple counter has two operands. The first always of type %M, specifies the memory
which writes up the events. The second establishes the value limit of the counting to power of the
upper cell and can be of type %KM or operand %M referenced indirectly.

If the input active is turned off, the memory in OPER1 is zeroed, the output no limit powered and
the output limit turned off.

When the input active is powered, each transition of connection in the input increase raises the
value of the operand counter (OPER1) by one unit.

If the value of the first operand is equal to the second operand, the output limit is powered. The
counter variable is not increased with new transitions in the input increment, staying with the value
limit. If it is less, the output limit is turned off. The logic status of the output no limit is exactly the
opposite of the output limit, being the deactivated instruction.

In case of invalid indirect access to the second operand of the instruction, the output no limit is
powered.

WARNING:
With the input active deactivated, the output no limit always remains powered, also when the
instruction is in a command passage through the instruction RM (master relay). Due to this care
should be taken not to carry out unrequired enabling in the logic.

Syntax:

Table 3-29 Syntax of Instruction CON

Chapter 4 Instructions

95

COB – Bidirectional Counter

OPER1 - counter

OPER2 – count step

OPER3 – count limit

Description:
This instruction carries out counts with the value for increase or decrease defined for an operand. The
bidirectional counter instruction allows counts in both directions, that is, increases or decreases the
contents of type memory.

The first operand contains the accumulated memory of the value counted while the second specifies
the value of the increase or decrease required. The third operand contains the value limit of the count.

The count always takes place when the input active is powered and the inputs increase or
decrease have a transition from disconnected to connected. If both the inputs have the transition in
the same scan cycle of the program, there is no increase nor decrease in the value of the memory
declared in OPER1.

If the value of the increase is negative, the input increase causes decreases and the input decrease
causes increases in the value of the count.

If the value of the first operand makes more than or equal to the third operand, the output upper
limit is powered, not being increased.

If the value of the first operand is equal to or less than zero, the output lower limit is enabled, zero
being stored in the first operand.

If the value of the first operand is between zero and the limit, the output no limit is enabled. If the
input active is not powered, the output lower limit is powered and the first operand is zeroed.

In case of invalid indirect access to any one of the operands of the instruction, the outputs lower limit
is powered.

WARNING:
With the input active deactivated, the output lower limit always remains powered, the same when
the instruction is in a passage commanded by the instruction RM (master relay). Due to this care
should be taken not to carry out unrequired enabling in the logic.

Syntax:

Table 3-30 Syntax of the Instruction COB

Chapter 4 Instructions

96

TEE – Timer to turn on

OPER1 – time accumulator

OPER2 – time limit (tenths of seconds)

Description:
This instruction carries out time counts with the powering of its two enabling inputs.

The instruction TEE has two operands. The first (OPER1) specifies the accumulated memory of the
time count. The second operand (OPER2) shows the maximum time to be accumulated. The time
count is carried out in tenths of seconds, that is to say, each unit increased in OPER1 corresponds to
0.1 seconds.

While the inputs free and active are powered simultaneously, the operand OPER1 is increased by
each tenth of a second. When OPER1 is more than or equal to OPER2, the output Q is powered and -
Q turned off, OPER1 keeping the same value as OPER.

In the disabling of the input free, there is an interruption in the count time, OPER1 keeping the same
value. Disabling the input active, the value in OPER1 is zeroed.

If OPER2 is negative or the indirect access is invalid, OPER1 is zeroed and the output - Q is
powered.

The logic status of output Q is exactly the opposite of the output -Q being the deactivated
instruction.

WARNING:
With the input active deactivated, the output -Q always remains powered, the same when the
instruction is in a passage commanded by the instruction RM (master relay). Due to this care should
be taken not to carry out unrequired enabling in the logic.

Diagram of Times:

Figure 3-10 Diagram of Times of the Instruction TEE

Chapter 4 Instructions

97

Syntax:

Table 3-31 Syntax of the Instruction TEE

TED – Timer to turn off

OPER1 – time accumulator

OPER2 – time limit (tenths of seconds)

Description:
This instruction carries out the time counts with the turning off its enabling input.

The instruction TED has two operands. The first (OPER1) specifies the accumulated memory of the
time count. The second operand (OPER2) shows the maximum time to be accumulated. The time
count is carried out in tenths of seconds, that is to say, each unit increased in OPER1 corresponds to
0.1 seconds.

While the input active is powered and the input block turned off, the operand OPER1 is increased
by each tenth of a second. When OPER1 is greater than or equal to OPER2, the output Q is turned
off and -Q powered, OPER1 keeping the same value as OPER2.

The output Q always powered when the input active is powered and OPER1 is less than OPER2.

Enabling the input block, there is an interruption in the time count, while disabling the input active,
the time of the accumulator is zeroed and the output Q is disabled.

If OPER2 is negative or the indirect access is invalid, OPER1 is zeroed and the output Q is powered.

The logic status of output -Q is exactly the opposite of the output Q, being the deactivated
instruction.

WARNING:
With the input active deactivated, the output - Q always remains powered, the same when the
instruction is in a passage commanded by instruction RM (master relay). Due to this care should be
taken not to carry out unrequired enabling in the logic.

Chapter 4 Instructions

98

Diagram of Times:

Figure 3-11 Diagram of Times of Instruction TED

Syntax:

Table 3-32 Syntax of the Instruction TED

Instructions of the Conversion Group

This group has instructions which allow the conversion between the formats of storing the values
used in the operands of the applications program and accesses to analog modules in the input and
output bus.

Name Description of Name Editing
Sequence

Tool Bar

BIN/DEC Conversion binary-decimal ALT, V, B

DEC/BIN Conversion decimal-binary ALT, V, D

Table 3-33 Group Converter Instructions

Chapter 4 Instructions

99

B/D - Conversion Binary-Decimal

OPER1 - origin

OPER2 - destination

Description:
This instruction converts values stored in binary format, contained in memory operands (%M), to
decimal format (BCD), storing them in decimal operands (%D).

The binary value contained in the first operand (OPER1) is converted to decimal value and stored in
the second operand (OPER2). The output success is enabled and the conversion is carried out
correctly. If any invalid indirect access happens to the operand, the output success is not powered.

Syntax:

Table 3-34 Syntax of the Instruction B/D

Chapter 4 Instructions

100

D/B - Conversion Decimal-Binary

OPER1 - origin

OPER2 - destination

Description:
This instruction converts values stored in decimal format, contained in decimal operands (%D), to
binary format, storing them in memory operand (%M).

The decimal value contained in the first operand (OPER1) is converted to binary value and stored in
the second operand (OPER2). The output success is enabled if the conversion is correctly carried
out. If any invalid indirect access to the operand happens, the output success is not powered.

If the value converted results in a value greater than the maximum storable in operands %M, the
output success is not powered, the limit value being stored in the destination operand. In this case,
the output overflow is powered.

Syntax:

Table 3-35 Syntax of the Instruction D/B

Chapter 4 Instructions

101

Instructions of the General Group

The general group instructions allow the testing and enabling of points indirectly, implementations of
status machines, calls for procedures and functions.

Name Description of Name Editing
Sequence Tool Bar

LDI Connect or disconnect indexed points ALT, G, L

TEI Status test of indexed points ALT, G, T

SEQ Sequencer ALT, G, S

CHP Call the procedure module ALT, G, P

CHF Call the function module ALT, G, F

ECH Write operands on another PLC for
Ethernet ALT, G, E

LTH Read operands from another PLC for
Ethernet ALT, G, T

LAH Free images update for Ethernet ALT, G, A

Table 3-40 Instructions of the general group

Chapter 4 Instructions

102

LDI – Connect/Disconnect indexed

OPER1 - address of point to be connected or disconnected

OPER2 - address lower limit

OPER3 - address upper limit

Description:
This instruction is used to connect or disconnect indexed points for a memory, delimited by operands
of upper and power limit.

The first operand specifies the memory whose contents reference the auxiliary operand, input or
output to be connected or disconnected. It should be declared as the operand of indirect access to the
operand %E or %A (%MXXXX*E or %MXXXX*A). The same when the instruction is used to
connect or disconnect points of output (%0), the representation in this operand will be as indirect
access to the input (%MXXXX*E).

The second operand the address of the first valid output or auxiliary relay in the instruction. It should
be specified with subdivision of point (%RXXXX.X, %SXXXX.X or %AXXXX.X).

The third operand specifies the address of the last output relay or valid help in the instruction. It
should be specified with subdivision of point (%EXXXX.X, %SXXXX.X or %AXXXX.X).

If the inputs connect or disconnect will be enabled, the point specified by the value contained in
the memory operand (OPER1) is connected or disconnected if there is a limit for OPER2 and OPER3
in the addresses areas. For example, if these operands correspond to %S0003.3 and %S0004.5,
respectively, this instruction only acts for the elements of %S0003.3 to %S0003.7 and from
%S0004.5.

Chapter 4 Instructions

103

If the relay or help pointed at the memory index is outside the defined limits for the defined limits for
the parameters of the second and third cells, the output upper index invalid or lower index
invalid is connected. The output of the first cell is enabled if any one of the inputs connect or
disconnect is powered and the access is correctly carried out.

If the inputs remain disabled, all the outputs of the instruction remain turned off.

If both the inputs are powered simultaneously, no operation is carried out, and all the turned off.

In OPER1 a value which specifies the required point should be loaded to connect or disconnect,
according to the following formula:

VALUE OPER1 = (OCTET*8) + POINT

Example:
For example, if S0010.5 is the point requires to be connected indirectly, then:

OCTET = 10

POINT = 5

VALUE OPER1 = (10*8) + 5 = 85

The value to be loaded in OPER1 is 85.

WARNING:
This instruction allows the points of the operands %E to be connected or disconnected indirectly
superimposing the value of the scan of the input modules after their execution.

Syntax:

Table 3-41 Syntaxes of the Instruction LDI

Chapter 4 Instructions

104

TEI – Test of Indexed Status

OPER1 - address of point to be tested

OPER2 - address lower limit

OPER3 - address upper limit

Description:
This instruction is used to test the status of the points indexed for a memory, delimited for operands
of lower and upper limit.

The first operand specifies the memory whose contents reference the auxiliary operand or output
relay to be tested. The operand %E or %A (%MXXXX*E or %MXXXX*A) should be declared as
the operand of indirect access. The same when the instruction is used to test output points (%S), the
representation of this operand will be as indirect access to the input (%MXXXX*E).

The second operand specifies the address of the valid output or auxiliary relay in the instruction. It
should be specified with the subdivision of point (%EXXXX.X, %SXXXX.X or %AXXXX.X).

The third operand specifies the address of the last a valid output or auxiliary relay in the instruction.
It should be specified with the subdivision of point (%EXXXX.X, %SXXXX.X or %AXXXX.X).

If the input enable is powered, the status of the relay or auxiliary specified for the value contained in
the memory index (OPER1) is examined. According to whether they are 1 or 0, the output answer is
connected or not.

The point indexed by memory is tested if it is in the area of addresses limited for OPER2 and
OPER3. For example if these operands corresponds to %S0003.3 and %S0004.5, respectively, this
instruction only acts for the elements of %S0003.3 to %S0003.7 and from %S0004.0 to %S0004.5.

Chapter 4 Instructions

105

If the relay or auxiliary pointed at the memory index is outside the limits defined by the parameters
of the second and third cells, the output upper index invalid or lower index invalid is connected
the output of the first cell disconnected. This verification is only carried out at the moment when the
input enable is powered.

The calculation of the value to be stored in the first operand, to reference the required point, is the
same specified in the instruction LDI.

Syntax:

Table 3-42 Syntaxes of the Instructions TEI

Chapter 4 Instructions

106

SEQ - Sequencer

OPER1 - table of conditions or first table of statuses

OPER2 - index of the table(s) (current status)

OPER3 - operand base of the first series of conditions

OPER4 - operand base of the second series of conditions

Description:
This instruction allows the programming of complex sequencer with specific conditions of evolution
for each status. Its form of programming is similar to “state machine”.

The instruction can be executed in two modes: the 1000 mode and the 3000 mode. When the input
mode is turned off, the instruction is executed in 3000 mode. In the 3000 mode more complex
sequences can be programmed.

Mode 1000:
In this mode a fixed sequence of evolution of the statuses occurs. The evolution always happens from
the current status to the following one, and from the last to the first.

The first operand specifies a table where each position contains the address of an auxiliary operand
point which is tested as a condition of evolution for the next status.

The second operand specifies a memory which stores the current status and serves from index to a
specified table in the first operand.

The third operand is irrelevant, however an operand of type memory or auxiliary should be specified
in this cell, since MasterTool achieves the consistency according to the 3000 mode.

The fourth operand is irrelevant, however it should be specified in an operand of type memory or
auxiliary in this cell, since MasterTool achieves consistency in accordance with the 3000 mode.

When the input enable is turned off, the outputs pulse and invalid index are turned off,
independent of any other condition. When the input enable is powered, the pulse output is normally
powered, and the output invalid index is normally turned off.

Beyond this, when the input enable is powered, the table position (OPER1) indexed by the current
status (OPER2) is accessed and the auxiliary operand point referenced in this table position is
examined. If this point is powered, the contents of OPER2 is increased (or zeroed, if it is pointed at
the last table position OPER1) and a turning off pulse occurs in the output pulse with the duration of
a program cycle. If the point examined is turned off nothing happens and the memory value in
OPER2 remains unchanged.

The output invalid index is activated if the memory OPER2 (current status) contains a value which
indexes a non-existent position in the table specified in OPER1. This can happen by modifying the
memory OPER2 at one point of the applications program outside the instruction SEQ (in the
Initialization of OPER2, for example). Care should be taken to define and initialize the table
specified in OPER1 with the legal values.

The values in decimal format which specify the points of auxiliary operands which have to be tested
as conditions of evolution should be loaded into the table specified in OPER1. The calculation of
these values is specified through the equation:

Chapter 4 Instructions

107

VALUE = (address of the operand *8) + address of the subdivision

Example:
If %A0030.2 is the point which it is required to use as a condition of evolution starting from the
status 4, then:

Address of operand = 30

Address of subdivision = 2

VALUE = (30 * 8) + 2 = 242

The value to be loaded in position 4 of the table OPER1 should be 242 so that the point %A0030.2
causes the evolution for the next status, that is the status 5 (or the status 0, if the table has 5
positions).

Mode 3000:
In this mode it is possible to define the evolution sequence and choose one of two paths starting from
the current status. Therefore, 2 degrees of freedom are offered in relation to the 1000 mode, allowing
more complex status machines to be used.

The first operand specifies the first of the two subsequent tables that are used for each instruction.
The two table have to be the same size. Each position of the first table contains the next status if the
condition associated to operand 3 is powered. Each position of the second table contains the next
status if the condition associated to the operand 4 is powered.

The second operand specifies a memory which shows what the current status is and serves as an
index for the tables specified in the first operand.

The third operand specifies an operand which serves from base to determine the condition of
evolution starting from the status OPER2 to the status indexed for OPER2 in the first table.

The fourth operand specifies an operand which serves from base to determine the condition of
evolution starting from the status OPER2 for the status indexed for OPER2 in the second table.

When the input enable is turned off, the outputs pulse and invalid index are turned off,
independent of any other condition. When the input enable is powered, the pulse output is normally
powered, and the output invalid index is normally turned off.

After this, when the input enable is powered, the instruction searches the value of the memory
OPER2 (current status) and tests the respective condition of evolution with base in OPER3. If this
condition is powered, the operand OPER2 is loaded with a new status, indexed through operand
OPER2 in the first table specified for OPER1. If the condition of evolution associated with OPER2
and with the base in OPER3 is turned off, it tests the evolution condition associated to OPER2 and
with base in OPER4. If this last condition is powered, the operand OPER2 is loaded with a new
status, indexed through its own operand OPER2 in the second table specified for OPER1. If at least
one of the 2 conditions above are powered, a status transition occurs, and a turning off pulse with the
duration of an applications program cycle takes place in the pulse output of the instruction. If neither
of the 2 conditions are powered, nothing happens and the value of memory OPER2 (current status)
remains unchanged, as well as the pulse output continuing powered.

Chapter 4 Instructions

108

The output invalid index is activated if the memory OPER2 contains a value which indexes a non-
existent position in the tables specified in OPER1. This can happen by modifying the memory
OPER2 in one point of the applications program outside of the instruction SEQ (in the Initialization
of OPER2, for example) or in the appropriate SEQ instruction, if any of the positions of the tables
specified in OPER1 contain invalid values for being the next status. Care should be taken to define
the 2 tables specified for OPER1 with the same size, and they should be initialized with legal values
(example: if the tables have 10 positions, only values between 0 and 9 should be loaded in positions
of this table, since only these can have legal status.

The conditions of evolution associated to the current status (OPER2) are determined with base in
OPER3 (next status is loaded starting from the first table) or with base in OPER4 (next status is
loaded starting from the second table. Knowing that the operands OPER3 and OPER4 are of memory
type (16 bits) or of auxiliary type (8 bits), suppose the following is the case:

ESTADO = contents of operand OPER2 (current status)

END3 = address of OPER3

END4 = address of OPER4

END1 = address of point to be tested, with base in OPER3

SUB1 = subdivision of point to be tested, with base in OPER3

END2 = address of point to be tested, with base in OPER4

SUB2 = subdivision of point to be tested, with base in OPER4

The points tested as evolution condition associated to each table are:

M<END1>.<SUB1> or A<SUB1> (first table) and M<END2>.<SUB2> or A<END2>.<SUB2>
(second table)

where:

END1 = END3 + STATUS/16 (if operand %M)

END1 = END3 + STATUS/8 (if operand %A)

SUB1 = REST (STATUS/16) (if operand % M)

SUB1 = REST (STATUS/8) (if operand % A)

END2 = END4 +STATUS/16 (if operand % M)

END2 = END4 + STATUS/8 (if operand % A)

SUB2 = REST (STATUS/16) (if operand % M)

SUB2 = REST (STATUS/8) (if operand % A)

Example:
They may be:

OPER1 = %TM000

OPER2 = %M0010

OPER3 = %M0100

OPER4 = %A0020

Chapter 4 Instructions

109

Where:

%TM000 Position Value
000 00001
001 00002
002 00004
003 00001
004 00000

%TM001 Position Value
000 00001
001 00003
002 00001
003 00004
004 00000

%M0010 = 00001

%M0100 XXXXX
%M0101 XXXXX
%M0102 XXXXX
%M... ...

%A0020 XXXXX
%A0021 XXXXX
%A0022 XXXXX
%A... ...

Then the evolution starting from status 1 are:

For the first table:

• 100 + 1/16 = 100

• rest(1/16) = 1

• point to be tested = %M0100.1

For the second table:

• 20 + 1/8 = 20

• rest (1/8) = 1

• point to be tested = %A0020.1

Based on the conditions of %M0100.1 and %A0020.1 we have, starting from one of the tables, the
new status of the operand %M0010:

%M0100.1 %A0020.1 %M0010 Observation
0 0 00001 No status changing

0 1 00003 Status changing according to
%TM001

1 0 00002 Status changing according to
%TM000

1 1 00002
Status changing according to
%TM000 (OPER3 have priority over
OPER4)

Chapter 4 Instructions

110

Syntax:

Table 3-43 Syntax of the Instruction SEQ

Chapter 4 Instructions

111

CHP – Call the Procedure Module

OPER1 – name of module to call

OPER2 – number of module to call

Description:
This instruction carries out the diversion of the processing of the current module to the Procedure
module specified in their operands, if it is present in the PLC. At the end of the execution of the
module called, the processing returns to the instruction following the CHP. There is no passing of
parameters to the module called.

The first operand (OPER1) is documentation and specifies the name of the module to be called. The
second operand (OPER2) specifies the number of this module, the fact that the module called is of
type procedure being implicit.

If the module called does not exist, the output success is turned off and the execution continues
normally after the instruction. The name of the module is not considered for the PLC for the call but
only its number. If there is a module P with the same number as the module called, however with
different name, this same module is executed like this.

C.f. section Use of Modules P and F in chapter 2 of this manual.

Example:

Syntax:

Table 3-44 Syntax of CHP Instruction

Chapter 4 Instructions

112

CHF – Call Function Module

OPER1 - name of module to call

OPER2 - number of parameters to send

OPER3 - number of parameters to return

OPER4 - number of module to call

OPER5 - list of parameters to send

OPER6 - list of parameters to return

Description:
The instruction the function Module carries out diversion of the processing of the current module to
the module specified, if this is present in the PLC. At the end of the execution of the module called,
the processing returns to the instruction following the CHF.

The name and number of the module should be declared as operands OPER1 and OPER4
respectively, the fact that the module called is of function type being implicit. If the module called
does not exist in the controller, the execution continues normally after the call instruction, with the
output succeeded disconnected from it. The name of the module is not taken into consideration by the
PLC, being in the applications program only as a documentation reference, only its type and number
being taken into consideration for the call. If there is a module F with the same number called but a
different name, this module is executed.

The passing of values of operands (parameters) to the module called and vice-versa after its
execution. In the fifth cell of the instruction (OPER5) a list of operand to be sent to the module called
is specified. Before the execution of the module, the values of these operands are copied to the
operands specified in the list of parameters of the input of the module F, declared in the MasterTool
option Parameters when it was programmed.

After calling for the execution of module F, the values of the operands declared in the list of
parameters of output (option MasterTool Parameters in its programming) are copied to the operands
declared in the list of operands to return from the instruction CHF (OPER6). Having finalized the
copy of the return, the processing continues in the instruction following the call.

WARNING:
MasterTool does not achieve any consistency in relation to the operands programmed as parameters,
as much in the CHF instruction as in module F.

The list of operands to be sent to module F should count the same number of operands with the same
type of them declared as input parameters of the module, so that the copy of their values is correctly
made. The copy of the operands is carried our in the same order in which they are arranged in the list.
If one of the list has fewer operands in relation to another, the values of the surplus operands are not
copied. If the operands have different types, the copy of the values is carried out with the same rules
used in the instruction MOV (simple moving of operands). This principal is also valid for the list
return parameters of Module F.

Chapter 4 Instructions

113

The passing of parameters is carried out with the copy of values of declared operands (parameter
passing for value), although these operands still remain in overall use, usable for any module present
in the PLC. The F module can be programmed in generic form, to be re-used in different applications
programs as new instructions. It is advisable that they use their own operands, not used for any other
module present in the applications program, avoiding inadvertent alteration in operands used in other
modules.

The passing of simple operands and constants for module F is possible. The passing of tables as
parameters is not permitted, due to the long time that is needed to copy the contents of module F.
Meanwhile, the address of a table can be passed to Module F contained in an operand memory and
indirect access to the table is carried out in this module.

It’s not possible to pass operands with subdivisions for module F , for example %M004.2,
%A0021n1, etc. Only simple operands should be used.

To carry out the editing of parameters
1. Declare the number of parameters to send and return in OPER2 and OPER3, limited to 10 for

each one (%KM + 00000 to %KM + 00010).

2. Select the button Input. The window CHF - Input Parameters.

3. Place the cursor on the index to be editing and key in the address or tag of the required operand
for that position.

4. Repeat step until all the operand used as input parameters have been edited.

5. Select button Ok.

6. To edit the output parameters of the CHF, repeat step 2 selecting the button Output, and after
repeat steps 3, 4 and 5.

Figure 3-12 Dialogue Box CHF - Input Parameters

C.f. section Use of Modules P and F in chapter 2 of this manual.

If the value of OPER2 or OPER3 is more than 10, MasterTool considers such a value as equal to 10
(%KM + 00010).

Key in the used operands as
input parameters

Chapter 4 Instructions

114

Example:

Syntax:

OPER1 OPER2 OPER3 OPER4 OPER5 OPER6

NAME %KM %KM NUMBER

%KM
%KD
%KF
%TM
%TD
%TF
%M
%D
%F
%E
%S
%A

%KM
%KD
%KF
%TM
%TD
%TF
%M
%D
%F
%E
%S
%A

Table 3-45 Syntax of Instruction CHF

Chapter 4 Instructions

115

ECH – Write of Operands on Another PLC for Ethernet

OPER1 – IP address of the remote controller
OPER2 – not used
OPER3 – instruction control operand
OPER4 – edition operand window

Description:
This instruction carries the writing of values of operands of the controller where it is being executed
in operands presented in other PLCs, through the Ethernet communication. For its use, therefore, it is
essential that the controller who executes is connected to other PLCs through the Ethernet.

Through the ECH can be transferred individual values of operands or sets of operands, being possible
the programming of up to 6 different communications in one same instruction.

To program the instruction, it must be declared in the first cell OPER1 the IP address of the
programmable controller destination that will receive the written values.

On the third cell OPER3 must be declared a decimal operand (%D) to be used by the proper
instruction in the control of its processing.

WARNING:
The %D operand programmed on OPER3 cannot have its value modified in none another point of
the applicatory program for the correct functioning of the ECH. Consequently , each new instruction
ECH or inserted LTH in the applicatory program must use an %D operand different from the others.
This operand cannot be retainer.

To carry through the edition of the ECH parameters

1. Select the PLC button. The Parameters dialog is presented.

Figure 3-13 Dialog box parameters

This box of dialogue is divided in two parts: REMOTE CPU and LOCAL CPU, each one contend
three columns. In the three columns that compose the local CPU can be defined the operand or the
group of operands whose values will be sent to the programmable controller destination. In the
columns pertaining to the remote CPU, will be declared the operands that will receive the values in
the destination controller, being able to be different of the local CPU types. The dialogue box have

Chapter 4 Instructions

116

six lines, allowing that up to six different communications can be defined in same instruction ECR to
the same destination controller.

The operands specified for the local CPU are consisted by the MasterTool in accordance with the
constant declarations in module C presented, by belonging to the applicatory program that is being
edited. The operands declared for the remote CPU do not suffer consistency in relation to the type
and addresses, by belonging to a applicatory program of another programmable controller. However,
the number of busy bytes for the operands block declared in the local CP must be equal to the
number of bytes busied by the operands of the remote CPU in each communication, for the correctly
carried through writing. The maximum number of possible bytes busy by a block of operands in each
communication is limited in 220.

Following are related the types of possible operands to be programmed for the local and remote CPU,
with the correct disposal in the edition columns and its respective meanings.

LOCAL PLC or REMOTE PLC Meaning

%EXXXX Individual Operand %EXXXX

%SXXXX Individual Operand %SXXXX

%AXXXX Individual Operand %AXXXX

%MXXXX Individual Operand %MXXXX

%DXXXX Individual Operand %DXXXX

%FXXXX Individual Operand %FXXXX

%EXXXX .. %EYYYY Operands Group %EXXXX a %EYYYY

%SXXXX .. %SYYYY Operands Group %SXXXX a %SYYYY

%AXXXX .. %AYYYY Operands Group %AXXXX a %AYYYY

%MXXXX .. %MYYYY Operands Group %MXXXX a %MYYYY

%DXXXX .. %DYYYY Operands Group %DXXXX a %DYYYY

%FXXXX .. %FYYYY Operands Group %FXXXX a %FYYYY

%TMXXXX YYY Table %TMXXXX position YYY

%TDXXXX YYY Table %TDXXXX position YYY

%TFXXXX YYY Table %TFXXXX position YYY

%TMXXXX III .. FFF Table %TMXXXX position III a FFF

%TDXXXX III .. FFF Table %TDXXXX position III a FFF

%TFXXXX III .. FFF Table %TFXXXX position III a FFF

Table 3-47 Operands to Local PLC and Remote PLC on ECH

The MasterTool allows the free edition of the operands inside of a same line, making possible the
exchange of columns with the aid of the horizontal arrows keyboard keys movement. The
consistency are carried through in attempt of line exchange (vertical arrows) or confirmation of the
edited content in the window with the ENTER keyboard key. The ESC Keyboard key can given up
the carried through alterations, remaining the instruction with the previous content before the opening
of the edition window.

The following table shows the busy number of octets for each type of possible operand of being
programmed in the definitions of writings.

Chapter 4 Instructions

117

Operand Number of
bytes

%E 1
%S 1
%A 1
%M 2
%F 4
%D 4
%TM 2 per position
%TD 4 per position
%TF 4 per position

Table 3-48 Number of bytes of the operands on ECH

The calculation of the busy number of bytes in declarations of the local and remote CPU is carried
through by multiplying the number of declared operands by the number of octets of the
corresponding type. On the flolowing table, some examples are shown.

LOCAL PLC or REMOTE PLC Calculus Bytes

%E0004 1 operand x 1 byte 1

%S0020 1 operand x 1 byte 1

%A0018 1 operand x 1 byte 1

%M0197 1 operand x 2 bytes 2

%D0037 1 operand x 4 bytes 4

%E0005 .. %E0008 4 operands x 1 byte 4

%S0024 .. %S0031 8 operands x 1 byte 8

%A0089 .. %A0090 2 operands x 1 byte 2

%M0002 .. %M0040 39 operands x 2 bytes 78

%D0009 .. %D0018 10 operands x 4 bytes 40

%TM0031 101 1 position x 2 bytes 2

%TD0002 043 1 position x 4 bytes 4

%TM0000 000 .. 002 3 positions x 2 bytes 6

%TD0007 021 .. 025 5 positions x 4 bytes 20

Table 3-49 Examples of length in Bytes

Enabling the enable input, is turned on the communication of the first present writing in the ECH,
being powered the busy output. At the moment that this communication is completed, the instruction
turns on the next writing, independently of the state of the enabling input, repeating this procedure
for the other existing communications in this instruction. On the end of the last writing, the busy
output of ECH is unpowered, with the application of a pulse with duration of one sweeping in the
error output in case that it has not been possible to carry through some communication.

On six first nibbles of D operand programmed in OPER3 the states of the six communications of the
instruction are placed. The last two nibbles are used for the control of its processing.

Chapter 4 Instructions

118

Figure 3-14 Operand of Control of the Instruction ECH and LTH

The state of the communication stored in each nibble is codified in the following form:

0 - communication with success

1 - not defined operand

2 - local controller address equal to the remote (communication with the CPU)

3 - invalid operand box

4 - invalid operand type

5 - package transmission timeout

6 - no space on the transmition waiting stack

7 - lacking of transmition buffer

8 - solicitation timeout

9 - hardware error

10 - protected remote CPU

In summary, to execute an ECH instruction all the existing communications are carried through, even
if the enabling input is unpowered. When all the writings are completed, the next found instruction
ECH or LTH in the applicatory program with the enable input powered becomes active, starting to
process its communications.

WARNING:
The application program cannot carry through jumps on the active instruction ECH or do not execute
the module that contains it, to assure its correct processing.

In a applicatory program being executed in the CPU, only one instruction of access to the Ethernet
net (ECH or LTH) is considered active, even if some other instructions with input enable exist.

The busy output determines which is the active instruction, being able to be used to synchronize the
communications with the applicatory program. To prevent overloads in the traffic of information in
the net, it is advised turn on the ECH instructions periodically, preventing to permanently keep its
enabled in the applicatory program, if possible. A recommended procedure is disconnect the enable
input after that the busy output is powered, preventing a new enabling of the instruction after its
ending.

Chapter 4 Instructions

119

If the instruction is programmed specifying that the IP address is equal to the address of the proper
controller who executes it (written of proper values), the error output is powered. Case none operand
has been defined on OPER4, the error and busy output keep unpowered.

Syntax of the Instruction:

OPER1 OPER2 OPER3 OPER4

IP Address %D COMUNICATIONS

Table 3-50 Syntax of the Instruction ECH

Example:

Content of the edition window on OPER4 of ECH

COM Local PLC Remote PLC

1 %M0004 %A0014 .. %A0015

2 %S0038 .. %S0041 %D0027

3 %TD0007 028 .. 030 %M0009 .. %M0014

4 %M0006 %M0018

5 %A0013 .. %A0020 %D0003 .. %D0004

6 %TM0019 000 .. 004 %TM0032 018 .. 022

This instruction carries through writes in the programmable controller with IP address 192.168.7.5.
Six communications defined, transferring data of diverse types between the CPUs. Communication 0
sends the content of a memory operand in the local CPU for two auxiliary operands in the remote
CPU, being transferred 2 octets. Communications 1, 2, 3, 4 and 5 transfer, respectively, 4, 12, 2, 8
and 10 octets between the controllers.

Chapter 4 Instructions

120

LTH – Reading of Operands from Another PLC for Ethernet

OPER1 - IP address of the remote controller
OPER2 – not used
OPER3 – operand of control of the instruction
OPER4 – edition operand window

Description:
This instruction carries through the reading of values of operands presented in other programmable
controllers for operands of the programmable controller where it is being executed, through the
Ethernet communication. For its use, therefore, it is essential that the CPU that executes it is
connected to other CPUs by the Ethernet.

Through the LTH values of individual operands or sets of operands can be read, being possible the
programming of up to 6 different communications of reading in the same instruction.

The programming of instruction LTH is identical to the ECH, observing the same restrictions. In the
LTH, the transference of the values occurs from the declared operands in the remote CPU to the local
CPU, being this the only difference between both.

Syntax of the Instruction:

OPER1 OPER2 OPER3 OPER4

IP Address %D COMUNICATIONS

Table 3-51 Syntax of the Instruction LTH

Example:

Content of the edition window on OPER4 in a LTH:

COM Local PLC Remote PLC

1 %M0004 %A0014 .. %A0015

2 %S0038 .. %S0041 %D0027

3 %TD0007 028 .. 030 %M0009 .. %M0014

4 %M0006 %M0018

5 %A0013 .. %A0020 %D0003 .. %D0004

6 %TM0019 000 .. 004 %TM0032 018 .. 022

This instruction carries through readings in the programmable controller with the IP address
192.168.7.5. Six communications for the same one are defined, transferring data of diverse types
between the CPUs. Communication 0 reads the content of two auxiliary operands in the remote CPU

Chapter 4 Instructions

121

for one memory operand in the local CPU, being transferred 2 octets. Communications 1, 2, 3, 4 and
5 transfer, respectively, 4, 12, 2, 8 and 10 octets between the programmable controllers.

Chapter 4 Instructions

122

LAH – Free Updated Images Operands for Ethernet

Description:
The instruction LAH carries through the processing of the hanging communications of the Ethernet
net for the local CPU.

When returning for the processing of executive software, on each sweepings end, the CPU processes
the solicitations of reading and other services that have been requested to it by other CPUs in the net,
during the execution of the applicatory program.

The programmable controller have an memory area reserved for the storage of up to 32
communications received during the execution loop of the applicatory program, while executive
software does not process it. If the applicatory program have relatively high time of execution and
the programmable controller receives many solicitations from services of the net, can occur the
situation that the CPU can not take care of it, arriving at the limit of 32 hanging communications
waiting to the processing. In this case that, the CPU returns a reply to the one who requests indicating
the impossibility to take care of its communication.

The LAH instruction executes the hanging processing of receptions and transmissions in the CPU,
diminishing the possibility of occurrence of the previously described situation and reducing the
attendance time to the solicitations. Its recommended it use in applicatory programs with high time of
cycle, having to be inserted in intermediate points of the modules, dividing in stretches with
approximately 20 ms of execution time.

WARNING:
The values of the operands of the applicatory program can be modified after the execution of a LAH,
therefore another equipment turned on plugged to the net can request to write in the same ones. It
must be considered the influence of this fact if inserting this instruction in the applicatory program.

Chapter 4 Instructions

123

Instructions of the Connections Group

The Instructions of the connection group allows the constructions of series and parallel ways and the
inversion of the signal.

Name Description of Name Sequence
Edition Tool Bar

LGH Horizontal connection ALT, L, H

LGN Denied Connection ALT, L, N

LGV Vertical connection ALT, L, V

Table 3-52 Instructions of the Connections group

LGH – Horizontal Connection

LGN – Denied Connection

LGV – Vertical Connection

Description:
The connections are auxiliary elements on the construction of the relays diagram, to connect other
instructions.

The denied connection inverts the logic status of its input in its output.

Chapter 5 Function Modules

124

5. Function Modules

This chapter contains the description of the Function modules (F) which accompany MasterTool,
available for the programmable controllers in the series AL - 600, AL - 2000, QUARK and
PICCOLO.

The function modules implement different routines for specific use or for access to special I/O
modules for the applications program, being similar to the instructions, however loaded as program
modules. Its execution is activated for other modules through the instruction CHF.

The modules which accompany MasterTool are programmed in Machine language, not being able to
be read to the programmer and visualized as the modules in diagram of relays. They should loaded
directly from disk to the PLC (options Communication, Read/Send Module).

Each model of PLC have group of function modules. The following list present the function modules
to the Ponto Series PLCs.

- F-PID.033

- F- RAIZN.034

- F-ARQ2.035 to F-ARQ31.042

- F-MOBT.043

- F-RELG.048

- F-PID16.056

- F-CTRL.059

- F-NORM.071

- F-COMPF.072

- F-AES.087

- F-ANDT.090

- F-ORT.091

- F-XORT.092

- F-NEGT.093

Durante a instalação do MasterTool são copiados diversos módulos com o mesmo nome, sendo
armazenados em subdiretórios diferentes, conforme o tipo de UCP ao qual se destinam. Mesmo
possuindo o mesmo nome, estes módulos diferem no seu conteúdo.

ATENÇÃO:
Os arquivos contidos no subdiretório de um CP não devem ser copiados para o de outro CP, sob o
risco de perda de módulos. Deve-se carregar no controlador somente os módulos contidos no
subdiretório correspondente à UCP utilizada.

During the installation of MasterTool different modules are copied with the some name, being stored
in different subdirectories, according to the type of CPU to which they are destined. The CPU having
the same name, these modules differ in their contents.

The execution time of each function module is different on each PLC, so, this information can be
obtained on the manual of the respective PLC.

Chapter 5 Function Modules

125

There is much more function modules available, that are more specific to some applications or
products. The complete list of all function modules available, and how to obtain it can be found on
the document F Modules List.

F-PID.033 – PID Control Function

Introduction

The function F-PID.033 implements the proportional control algorithm, integral and derivative.
Starting from a measured variable (MV) and from the required set point (SP) the function calculates
the Controlled variable (CV) for the system controlled. This value is calculated periodically, taking
into consideration the proportional, integral and derivative factors programmed. The function’s
blocks diagram is shown in figure 4-1.

The most important characteristics introduced by the control loop implemented are:

• unsaturation of the integral action (anti-reset windup)

• accompaniment of the output in manual mode and balanced manual/automatic (output tracking
and bumpless transfer)

• direct or reverse action

• adjustable maximum and minimum output limits

• derivative action calculated for different samples

• capacity to carry out discreet integral

• shift with signal

• execution time of 1.6 ms in the worst case

• resolution of output of 1: 1000

Chapter 5 Function Modules

126

Figure 4-1 Diagram in Blocks of the Function PID

The use of the function PID in the application program allows a series of facilities which are
integrated into the system, without the use of external controllers. For example:

• automatic/manual function

• inhibition of integral or derivative factor

• cascade loops

• generation of curves of set points

• modification of the control parameters by program

• modification of the control policy in function of the process’s status

Programming

Operands
The cells of the CHF instruction used for the function call are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. It is compulsory
for this operand to be a memory constant with value 5 (%KM+00005).

• OPER2 - Specifies the number of parameters passed to the function in OPER4. It is compulsory
for this operand to be a memory constant with value 0 (%KM+00000).

• OPER3 - Contains the parameters passed to the function declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameters is
specified in OPER1, being set at 5 for this module:

� %TMXXXX - Table which contains the parameters used by the control
algorithm. Should count 16 positions.

� %MXXXX - Memory which contains the measure value of the process.

� %MXXXX - Contains the set point, which is the value required for the measured
variable. Its value can be modified according to the control politic required.

� %MXXXX - Memory which contains the controlled variable in the process.

Chapter 5 Function Modules

127

� %AXXXX - Auxiliary octet which contains control points of the PID function.

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input powered the function is called, the programmed parameters in the CHF
instruction being analyzed. If the number of parameters or their type is different from the needs
of the function all the outputs of the instruction are turned off. If they are correct, the control
calculation PID is carried out.

• automatic (0)/manual (1) - when powered, the action operand does not receive the value
calculated by the function (manual mode).

• direct (0)/reverse (1) - specifies form of action of the control.

Description of the outputs:

• success - is powered when then function has been correctly executed.

• error - is powered if an error occurs in the specification of the operands or there is an attempt to
access operands not declared.

Additional Parameters
Apart from operands programmed in the CHF call instruction other parameters should be loaded into
the table declared in OPER3. This table should contain 16 positions, being used to define the
parameters used for the control algorithm and to store intermediate results. The table 4-1 presents the
parameters which should be loaded in each table position as well as minimum and maximum values.

P
o

Stored Parameter Form. Allowed Variation Table Value

00 Proportional Gain x 10 GP x 10 GP: 1,0 to 100,0 10 to 1000
01 Integral factor- fraction part dt / GI GI: 1 to 1000

s/rep
0,0001 to 10,000

02 Integral factor- integer part dt: 0,1 to 10 s
03 Derivative factor – fraction

part
GD / 3dt GD: 1 to 1000 s 0,0333 to 3333,3333

04 Derivative factor – integer part dt: 0,1 to 10 s
05 Dislocated DE 0 to 1000 0 to 1000
06 Minimum value of output 0 to 1000 0 to 1000
07 Maximum value of output 0 to 1000 0 to 1000
08 Not used
09 Measured Value N – 1 0 to 1000
10 Measured Value N – 2 0 to 1000
11 Measured Value N – 3 0 to 1000
12 Error 0 to 1000
13 Proportional action x 10 0 to 65535
14 Integral action – fractional part

x 10
0 to 65535

15 Integral action – integer part x
10

0 to 65535

Table 4-1 Additional Parameters of the PID

To make possible a greater execution speed, some parameters should be loaded in the table already
pre-calculated. Being values relatively fixed, in this way avoiding recalculation for each function
call.

The parameters which should be pre-calculated are:

• Proportional gain x 10 (position 0) - Is calculated by multiplying the proportional gain required
for 10.

• Integral multiplicative factor - Is calculated by dividing the sample interval (dt) by the whole
gain required. The unit of dt is seconds, its minimum value being 0.1 seconds and maximum 10.0
seconds and should be equal to the interval in which the routine is executed. The G1 is

Chapter 5 Function Modules

128

seconds/repetition, able to vary from 1 to 1000 seconds/repetition G1 equals to 1
second/repetition signifies the maximum integral effect.

• Multiplicative derivative factor (positions 3 and 4) - Is calculated by dividing the derivative gain
(DG) by the sample interval (dt) and by value 3. The unit of DG is seconds, being possible to
vary from 1 to 1000 seconds. DG equal to 1000 seconds signifies maximum derivative effect. It
is recommended that the greater the value of the DG, the greater should be the sample interval.
The same for the DG values = 1 second, the sample interval should be more than 0.2 seconds. If
such care is not taken, the derivative term only produces “noise” and the control action will be
very abrupt.

• Dislocating (position 5) - Allows the introduction of a shift (“bias”) in the controlled value,
avoiding negative errors causing saturation in the minimum value of the output. Generally this
value is set to 50% (500) or equal to the set point, if the proportional gain is small.

• The minimum and maximum output values (positions 6 and 7) - They are optional values which
limit the excursion of the controlled value, being able to be modified dynamically in the function
of the operational conditions. If the maximum value is more them or equal to 1000 and the
minimum value equals 0, no limitation is carried out.

The measure value, the controlled value, the dislocating, the maximum and minimum values have as
variation the band from 0 to 1000, which corresponds to a variation of 0 to 100% in the variables of
the process.

The remaining positions of the table are used exclusively by the function PID, not being able to be
modified by the applications program. Position 12 (error) can be consulted by the program. Positions
14 and 15 accumulate the whole factor, being able to be zeroed, if necessary. It is recommended that
these positions are zeroed at the beginning of the processing to avoid random value becoming stored.

Apart from the table of parameters, same control points are used by the function, contained in the
auxiliary octet specified (%AXXXX).

• %AXXXX.4 - Signal for whole action - Is used by the function PID. When tumed off, the
integral term is positive, if the opposite it is negative. It can be read by the program, if required.

• %AXXXX.5 - Signal for dislocating. Indicates to the function what the signal for dislocating is,
having to be enabled by the program. The point tumed off indicates positive shift. When
powered, the shift is negative.

• %AXXXX.6 - Inhibits derivative action - When powered the function does not execute the
derivative action.

• %AXXXX.7 - Inhibits whole action. When powered, the whole action is not calculated,
remaining attributed as the last value calculated before the inhibition, unless the value limit are
exceeded.

Characteristics of Functioning
The unsaturation of the whole action (anti-reset windup) is done in a mode to avoid the integral term
continuing to accumulate error when trouble in the process causes the saturation of the output of the
controller in some limits. At the moment when the output value reaches any of the limits (maximum
or minimum), the integral term is set at its current value, blocking its undefined increase, without
influencing the output.

This ensures that it will have a answer from the controller so the trouble which saturated the output
disappears. The function can be executed in manual mode, by powering the second input of the
CHF instruction. In this mode, the routine does not modify the action output value any more, but
accompanies it. That is, en function of the value of the fixed output and of the measure value of the
process, the proportional and derivative term are calculated and the integral term is forced to an
adequate value, in a way that, when a transition occurs from manual to automatic, the routine
reassumes control with the initial value of the output equal to the last value of the output in manual
mode. This act of communication from manual/automatic is called balanced (bumpless transfer).

The form of control can be direct or reverse. This selection is carried out by turning off or powering
the third input of the CHF instruction. If the process is such that the measure value grows when the

Chapter 5 Function Modules

129

value of the output of the action grows, the direct action should be selected. If the measure value
decreases with the increase of the output of the action, then the reverse action should be used.

The interval between samples of a PID loop can very from 0.1 to 10.0 seconds. It is the responsibility
of the user to program a trigger of the function, that is to say, a passage of applications program that
only enables the PID routine in the time intervals required. Note that the value of the sample interval
used for the calculation of the multiplicative factors integral and derivative should coincide with the
time interval of the calls of the trigger . As each routine execution can last up to 3 ms, it is advisable
that each different control loop is fired in different scans of the program.

Example of Application
As an example of use, the following adjustment values are required for a control loop:

PA = 62
GP = 5 (GP = 100 / proportional band in %)
GI = 100 seconds/repetition
GD = 5 seconds
dt = 1 second
DES = 50%
MAX = 80%
MIN = 0%

The values which should be loaded in the table of parameters are:

Position Value
0 50 GP X 10 (50)
1 100 dt / GI (0,0100)
2 0
3 6666 GD / 3dt (1,6666)
4 1
5 500 DES
6 0 MIN
7 800 MAX
8 620 PA

Chapter 5 Function Modules

130

F-RAIZN.034 – Square Root Function

 Introduction

The function F-RAIZN.034 extracts the square root of a value supplied and normalize s the result to
a previously defined scale, if required.

The calculation carried out corresponds to the following expression:

Op Destination = Square Root (Op Source) *Normalization Constant/256

The Normalization executed together with the processing of the square root ensures very precise
results, since internal variables with greater storage capacity than memory operands are used.

This function is typically used in the linearization of the readings from translaters which supply
values in quadratic scale, that is to say, with the output proportional to the root of the signal measure.

Programming

Operands
The cells of the CHF instruction used to call the function are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. It is
compulsory for this operand to be a memory constant with value 3 (%KM+00003).

• OPER2 - Should be an operand of type memory constant with value 0 (%KM+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPER4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters which are passed to the function, declared through a window
visualized in MasterTool when the CHF instruction is edited. The number of editable parameters
is specified in OPER1, being set at 3 for this module:

• %MXXXX - Operand with the value to be extracted to the square root (source).
This value should be positive so that the calculation can be carried out.

• %MXXXX or %KM+XXXXX - Memory or constant operand for the
Normalization of button of scale of the square root extracted. The value
programmed is divided by 256 and multiplied by the root of the operand supplied,
giving the value of the destination operand, when the instructions second input is
powered.

• %MXXXX or %FXXXX - Operand which receives the result of the normalized
square root (destination). Should be necessarily of the same type that the source
operand.

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If they are incorrect, all the outputs of the instruction are turned
off. If they are correct, the calculations are carried out, the outputs success or error being
enabled.

Chapter 5 Function Modules

131

• normalize - when powered, carries out the adjustment of the button of scale to value of the
square root obtained. If turned off, the value of the memory operand destination simply receives
the square root of the source operand.

Description of the outputs:

• success - indicates that the calculation of the root and its Normalization has been carried out
correctly. When turned off, indicates that the input enabled is not enabled, the module is not
loaded into the PLC, the operands were not correctly defined or negative values are stored in
them.

• error - this output is always powered when one of the following errors occurs:

• negative values exist in the supply operand or in the Normalization constant
• error in the specification of the operands or attempt to access the operands not

declared.
• operand source with a different destination operand

WARNING:
In the version 1.00 of F-RAIZN.034 the output error is not enabled in the attempt to access the
operands not declared.

Example of Application
To normalize the value of the destination operand in a form that has the same scale as the operand
supplied, the value to be declared in the Normalization operand should be equal to the square root of
the operand supplied multiplied by 256.

For example, there may be the case of a transducer which supplies values from 0 to 1024,
proportional to the root of an outflow, and it may be required that these values are linearized to the
same scale of values (0 to 1024). The Normalization constant programmed is 8192 (square root
(1024) *256).

Chapter 5 Function Modules

132

F-ARQ2.035 to F-ARQ31.042 – Functions Data File

Introduction

The function data file allow the use of the applications program memory to store large quantities of
information, using concepts of registers and fields. In this way it obtains great flexibility in the
utilization of the PLC’s memory banks, apart from a substantial increase in the data storage capacity.

There are different function which implement data files, being identical in the programming mode
and functioning, differing only in the storage capacity. The modules available are:

• F-ARQ2.035 - File function with 2 Kbytes of data

• F-ARQ4.036 - File function with 4 Kbytes of data

• F-ARQ8.037 - File function with 8 Kbytes of data

• F-ARQ12.038 - File function with 12 Kbytes of data

• F-ARQ15.039 - File function with 15 Kbytes of data

• F-ARQ16.040 - File function with 16 Kbytes of data

• F-ARQ24.041 - File function with 24 Kbytes of data

• F-ARQ31.042 - File function with 31 Kbytes of data

Each file can have up to 255 registers, numbered from 0 to 254, being that each register can have up
to 255 fields, also numbered from 0 to 254. Note, however, that the total quantity of memory
occupied cannot exceed the modules capacity.

Each field occupies the same number of bytes of the operand where the files readings or writings are
carried out.

Programming

Operands
The cells of the CHF instruction used to call the function are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. It is compulsory
for this operand to be a memory constant with value 5 (%KM+00005).

• OPER2 - Specifies the number of parameters passed to the function in OPER4. It is compulsory
for this operand to be a memory constant with value 0 (%KM+0000).

• OPER3 - Contains the parameters passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameters is
specified in OPER1, being set at 5 for this module:

� %MXXXX, %DXXXX, %AXXXX, %EXXXX, %SXXXX, %TMXXXX,
%TDXXXX, %KM+XXXXX or %KD+XXXXXXX - Operand from where the
data is read in the writing operations in the file or to where the data is copied into
readings of the file (parameter 1).

� %MXXXX - Number of register from/to which the data will be copied
(parameter 2). Should contain between 0 and the total number of registers less 1.

Chapter 5 Function Modules

133

� %MXXXX - Number of field from/to which the data will be copied (parameter
3). Should contain between 0 and the total number of fields less 1.

� %KM+XXXXX - Total number of registers (1 to 255) required for the file
(parameter 4).

� %KM+XXXXX - Total number of fields (1 to 255) required for the file
(parameter 5).

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If the number of parameters or their type are different from the
needs of the module, the error output is powered. If they are correct a attempt to access the file is
carried out.

• read/write - when powered, the value of the first parameter is copied to the register and the
field specified in the second and third parameters. If it is turned off, the value is read from the
field and copied to the first parameter.

Description of the outputs:

• success - indicates that the access to the data file was correctly carried out.

• invalid index - this output is connected:

� the field to be read or written was not specified

� the declaration of the registers and fields exceeds the modules memory capacity

� there is an attempt to read when the first parameter is a constant

� there is an attempt to write the module being stored in EPROM memory

• error - is powered if an error occurs in the specification of the parameters or attempt to access
the operands not declared.

Description of Functioning
For correct declaration of the number of fields and registers of the file, the following calculation
should be carried out:

Occupation of the file = Num. registers X Num. fields X Num. bytes per field (parameter 4)
(parameter 5)

The number of bytes per field occupied for each type of operand can be obtained from table 4-2.

Parameter 1 Number of bytes per
field

%MXXXX 2
%DXXXX 4
%AXXXX 1
%EXXXX 1
%SXXXX 1
%TMXXXX 2
%TDXXXX 4
%KM+XXXXX 2
%KD+XXXXXXX 4

Table 4-2 Occupation of the Field of the Files

The value obtained in the previous calculation should be less than or equal to the total capacity of the
function used, according to table 4-3.

Chapter 5 Function Modules

134

Function Capacity (bytes)
F-ARQ2.035 2048
F-ARQ4.036 4096
F-ARQ8.037 8192
F-ARQ12.038 12288
F-ARQ15.039 15360
F-ARQ16.040 16384
F-ARQ24.041 24576
F-ARQ31.042 31744

Table 4-3 Capacity of the Functions Data Files

WARNING:
Different CHF instruction for access to the same file can be declared in the same program. In all
these instructions the operands with the values to be written or that receive (parameter 1 in OPER 3)
the same number of bytes per field.

Therefore, it is possible to indistinctly read or write operands %E, %S and %A of one file or %KM,
%M and %TM of another. Never the less they should not be accessed with operands %M or %D in
the same file.

If the first parameter is a table (%TM or %TD), all the fields of the register indicated in the second
parameter are copied, that is to say, the transfer of data is carried out between the register and the
table, being that the value of the third parameter (number of field is ignored).

If the table has fewer positions than the number of fields in the register, only the fields which
correspond to the existing positions are transferred. If the table has more positions than the number of
fields in the register, only the existing fields are transferred.

The operation of writing the data copies it to the appropriate area of memory occupied by the
function module.

WARNING:
If the module F-ARQ is stored in EPROM Flash, it is not possible to write data in the file, only to
read data. To carry out the writing of the data into the files, the F modules corresponding to the them
should be in the RAM memory of the applications program.

WARNING:
During the reading of a PLC’s module data file with MasterTool or during its transferring from
RAM to Flash, no writing of data should be carried out.

This is because the writing of data modifies the module read, being considered invalid by the
programmer or by the PLC due to the alterating of its checksum.

The functions data files are modules of the applications programs being able to be loaded or read by
the PLC and stored on disks. For example, there may be the case of a PLC controlling a injector
machine, storing different configuration parameters in an F-ARQ8.037 module. After the
parameters are stored, this module F can be read and stored on disk, to load in other equal injected
machines.

Example of Application
As an example if it a file with 120 registers and with 8 fields for register to store operands %D, the
occupation of memory will be:

Occupation of the file = 120 registers X 8 fields/register X 4 bytes/field

Occupation of the file = 3840

Chapter 5 Function Modules

135

The configuration requires 3840 bytes to be occupied, the module
F-ARQ4.036 having to be used, then it allows the storing of 4096 bytes.

The parameters programmed in OPER3 of the CHF instruction for the access to the file are:

• %D0020 - operand to where it will be read or with the value to be written in the file

• %M0100 - contains the number of the register to be read or written, having to have between 0
and 119 (120 register in total).

• %M0101 - contains the number of the field to be read or written, having to have between 0 and 7
(8 register in total).

• %KM+00120 - total number of registers.

• %KM+00008 - total number of fields.

Chapter 5 Function Modules

136

F-MOBT.043 – Function for Moving Blocks from Table Operands

Introduction

The function F-MOBT.043 carries out the copy of blocks of numeric operands (%M or %D) or
positions of tables (%TM or %TD) up to 255 values of simple operands can be copied to tables and
vice versa, also transferring the positions from one table to another. It is possible to specify the initial
position of the block to be copied into the table supplied and into the destination table.

Programming

Operands
The cells of the CHF instruction used to call the function are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. It is compulsory
for this operand to be a memory constant with value 5 (%KM+00005).

• OPER2 - Should be an operand of type memory constant with value 0 (%KM+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPER4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameter is specified
in OPER1, being set at 5 for this module:

• %MXXXX, %DXXXX, %TMXXXX or %TDXXXX - Initial operand
from where the values are copied (source operand).

• %KMXXXX - Initial position to be transferred from the source operand is a
simple operand (%M or %D).

• %MXXXX, %DXXXX, %TMXXXX or %TDXXXX - Initial operand
where the values are copied to (destination operand).

• %KMXXXX - Initial position where the values in the destination table are copied
to. This parameter is disregarded if the destination operand (%M or %D).

• %KMXXXX - Number of simple operands or table positions to be transferred
starting from the operand or from the initial position in the parameters previously
declared. It should be less than or equal to 255.

• OPER4 – Not used.

Inputs and Outputs
Description of the Inputs:

• enable - when this input is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If these are incorrect, the outputs of the invalid index are
enabled.

Chapter 5 Function Modules

137

Description of the outputs:

• success - indicates that the moving was correctly carried out

• source index invalid - indicates that there was an error in the specification of the supply
operand:

• the operand is not declared in module C

• the type of parameter 2 is not %KM

• the initial position programmed does not exist, if the source operand is table

• there are not enough operands or table positions to carry out the movement

• destination index invalid - indicates that there was an error in the specification of the
destination operand:

• the operand is not declared in module C

• the type of parameter 4 is not %KM

• the initial position programmed does not exist, if the destination operand is table

• there are not enough operand or table positions to carry out the movement

If the two outputs of the invalid index are enabled simultaneously, some of the following errors
occur:

• the number of parameters programmed in OPER1 is different from five.

• the type of parameter 5 is not %KM

• the total number of position to be transferred is greater than 255

WARNING:
This function allows the moving of a large number of operands in one scan. It should be used with
care so that the maximum time of the program cycle is not exceeded.

Chapter 5 Function Modules

138

F-RELG.048 – Function to Access the Real Time Clock

Introduction

The function F-RELG.048 carries out the access of the real time clock contained in the CPU. The
clock has complete hour and calendar, allowing the development of applications programs which
depend on precise time bases. The time information is kept the same when there is power failure in
the system, since the CPU is powered by batteries.

This function has similar characteristics to function F-SINC.049, since both execute accesses to the
same clock, differing only in the methods of setting. They can be used simultaneously in the same
program, if necessary.

Programming

Operands
The cells of the CHF instruction used to call the function are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. This operand
must be a memory constant with value 2 (%KM+00002).

• OPER2 - Should be an operand of type memory constant with value 0 (%KM+00000).
Determines the number of parameters possible to be programmed in the editing window of
OPER 4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameter passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameters is
specified in OPER1, being set at 2 for this module:

• %MXXXX or %TMXXXX - Specification of the operands to where the clock
values are read. If this parameter is specified as memory, the values are read to the
memory declared and the following six. If it is specified as table, the values are
placed starting from position 0 to 6. If the operands are not declared, the reading of
the time values is not carried out and the instruction outputs are disconnected. It is
possible to use tables with more than 7 positions, being that values are read from
operands in the following sequence:

Operand Position Table Content Format
%MXXXX 0 Seconds 000XX
%MXXXX + 1 1 Minutes 000XX
%MXXXX + 2 2 Hours 000XX
%MXXXX + 3 3 Days of Month 000XX
%MXXXX + 4 4 Month 000XX
%MXXXX + 5 5 Year 000XX
%MXXXX + 6 6 Days of the Week 000XX

Table 4-4 Values Read from the Clock (F-RELG.048)

The contents of these operands can be read at any time, but are updated with the real hour of the
clock only when the instruction is executed. The 24 hour format is used in the time count. The days
of the week are counted with values from 1 to 7.

Chapter 5 Function Modules

139

Value Days of the Week
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday

Table 4-5 Values of the Days of the Week (F-RELG.048)

• %MXXXX or %TMXXXX - Specification of the operands from where the
clock values are set, with the enabling of some of the inputs to set the function. If
this parameter is specified as memory, the values are copied from the memory
declared and the following 6. If it is specified as table, the values are copied from
position 0 to 6. If the operands are not declared, the setting is not carried out and
the outputs of the instructions are disconnected. The values to be copied to clock
should be placed in the operands in the same sequence as the operands of reading
(seconds, minutes, hours, day of the month, year and day of the week).

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input is powered the function is called, the parameters programmed in the
CHF instruction are analyzed. If they are incorrect, all the output of the instruction are turned off.
If they are correct, the time values of the clock are transferred to the memory operands or to a
table declared as first parameter in OPER3, the output success is powered and the output pulse a
second is connected by a scan at each second.

• set clock - when powered, the values of the operands declared as second parameter in OPER3
are set in the clock, if the values are correct. While the input is enabled the time is not counted,
the output pulse a second remaining turned off.

Example:

Figure 4-2 Example of Diagram of Setting Input Times

Description of the outputs:

• success - is powered when the function has been correctly executed.

• pulse a second - indicates if there was a change in the clock. The pulse lasts one scan and can
be used to synchronize events of the application program.

• loss of time - this output is connected if the clock was left without battery power during a
failure of the main supply. It is deactivated with the setting of the clock.

Chapter 5 Function Modules

140

F-PID16.056 – F Module for PID Control

Introduction

The F-PID16.056 function, available to AL-2003, AL-2004, PO3145, PO3142 and PO3242 CPUs,
implements the proportional, integral and derivate control algorithm. From a measured value (VM)
and the point of desired adjustment (PA) the function calculates the performance value (VA) for the
controlled process. This value is periodically calculated, considering the proportional, integral and
derivative programmed factors. It is a PID control type ISA algorithm where the proportional gain is
the gain of the controller, applied in the error of integral and derivative parcels of the controller.

The F module can be represented by the diagram below:

Figure 4-10 Diagram of blocks of F-PID16.056

Details of the PID controller diagram is presented below:

Figure 4-11 Diagram of blocks detailed of F-PID16.056

Chapter 5 Function Modules

141

The basic control algorithm used on PID controller is described on the following equation:

Bias
dt

q
Tddte

Ti
eGpVA +∂⋅±⋅⋅+⋅= ∫)

1
(

Where:

VA is the performance value;

Gp is the proportional gain of the controller;

e is the system(PA-VM) error;
Ti is the integral time constant (s/rep);

Td is the derivative constant time in (s);

dt is the sampling period;

q represents the system error (+) or the measure variable (-), as the selection;

PA is the adjustment time;

VM is the variable measured on the process that is being controlled;

Bias is a displacement inserted through an additional point after the calculation of the
algorithm.

Bias is a displacement inserted through an additional point after the calculation of the algorithm.

Operation in 4 quadrants (positive and negative values in inputs and outputs);

It can be used in cascade mode, implementing complex algorithms of control;

16 bits operation;

Use of parameters (Gp, Ti, Td) directly on ISA format;

Derivative term selection acting on error function (positive) or on the measured variable (negative);

Individual inhibition of the derivative, integral or proportional terms;

Derivative action calculated on three samplings (filter);

Direct or reverse action;

Adjustable output limits;

Unsaturation of the integral action (anti reset windup);

Limitation of the growth tax;

Feedforward / bias;

Manual or automatic mode;

Output tracking for soft transition (bumpless) from the manual mode to the automatic mode;

Configurable dead zone applied on error.

Chapter 5 Function Modules

142

Programming

Operands

The cells of CHF instruction used for the call of the function are programmed in the following way:

OPER1 - - Specifies the number of parameters that are passed to the function on OPER3. This operand must be
obligatorily a memory constant with value 6 (%KM+00006).

OPER2 - - Specifies the number of parameters that are passed to the function on OPER4. This operand must be
obligatorily a memory constant with value 0 (%KM+00000).

OPER3 - - It contains the parameters that are passed to the function, declared when the CHF instruction is edited.
The number of editable parameters is specified on OPER1, and it is equal to 6 for this module:

- %TMXXXX - Table that contains the parameters used on control algorithm. Must
contain at least 30 positions.

- %MXXXX - Memory that contains the measured value of the process (VM),
normally gotten through an analogical input.

- %MXXXX - It contains the adjustment point (PA), that is the desired value to the
measured variable (set point).

- %MXXXX - Memory that contains the performance value (VA) generated for the
control algorithm. In manual mode the control algorithm does not act on this
variable, that can be manipulated by the user.

- %MXXXX - Memory to feedforward/bias. The value of this operand will be
added to the output value of the PID controller, before the limitation (limits upper
and lower declared on parameters table).

- %AXXXX - Auxiliary Octet that contains control points of the PID function.

 OPER4 – Not used.

Inputs and Outputs

Description of the Inputs:
enable - when this input is powered the function is called, being analyzed the parameters programmed on CHF

instruction. If the number of parameters or it type are different of the function needs, the output success/error
will be unpowered. If it is correct, the PID control calculus is realized.

automatic(0)/manual(1) - when powered, the performance variable is not modified by the function, being able
to be modified manually (manual mode).

reverse (0)/direct (1) - it specifies the way as the controller will act on the process.

WARNING:
The direct and reverse concept on F-PID.033 module are the opposite of F-PID16.056.

Description of the Outputs:
success(1)/error(0) - it is powered when the function is correctly executed. Always that occurs errors in the

specification of the operands, invalid attempt in accessing the operands not declared or invalid parameters,
this output is not powered, indicating error.

saturation - when powered indicates that the output of the controller reached the saturation, or on max limit, or
on min limit.

Chapter 5 Function Modules

143

Functioning Characteristics

Unsaturation of the Integral Action

The unsaturation of the integral action (anti-reset windup) is made in order to prevent that the integral
term continues to accumulating errors when a riot in the process cause the saturation of the output of
the controller in one of the limits. In the moment that the value of the output reaches one of the
limits (maximum or minimum), the integral term is fixed in its current value, hindering its indefinite
growth. This assures that it will have a reply of the controller so soon disappears the riot that took it
to saturate the output.

Manual Mode

The function can be executed in manual mode, powering the second input of CHF instruction. On
this mode, the routine does not modify the value of the performance output, but follows it (output
tracking). Or either, in function of the output value on the manual mode and of the measured value
of the process, the terms proportional and derivative are calculated and the integral term is forced for
an adequate value that, when there is the manual transition for automatic, the routine can reassume
the control with the initial value of the output equal to the last value of the output in the manual
mode. This behavior is called balanced manual/automatic commutation (bumpless transfer). It is
important to observe that this resource only success when the integral action is enabled. Although in
manual mode, the performance output cannot assume bigger values than the limits declared in the
table of parameters. When this occur the value of the performance output will be forced to the closer
limit.

Direct and Reverse Control

The control can be direct or reverse. This selection is realized unpowering or powering the third input
of the CHF instruction.

On direct control, in case that an increase in the measured value occurs (VM), the controller must
increase the performance output (VA) in order to control the process.

On reverse control, in case that an increase in the measured value occurs (VM), the controller must
diminish the performance output (VA) in order to control the process.

Considering two examples that use the same valve, controlled for an analogical output 4-20 mA (VA
varies from 0 to 4095). Assumes that with VA = 0 (4 mA) the valve is total closed, and with VA =
4095 (20 mA) the valve total is opened.

In the first example, it is desired to control the level of a tank (VM = level of the tank), through a
valve of exhaustion of the tank. Therefore, the more the valve is open, faster the level of the tank
diminishes. In this in case, if the tank level increases (VM), the controller must increase VA to open
the valve. Therefore, it is a direct control.

On second example, it is desired to control the outflow through the valve. Therefore, the more the
valve open, greater will be the outflow. In this case, if the outflow increases (VM) through the valve,
the controller must diminish VA to close the valve. Therefore, it is a reverse control.

Sampling Interval

The interval between samplings of a PID loop can vary from 0,01 to 10 seconds. It is responsibility
of the user to program a "trigger" to the function, or either, a stretch of applicatory program that only
enables F-PID16.056 routine in the desired intervals of time. It is advised to use a E018 module,
therefore this module is executed inside of an fixed time interval time that can be used to generate
one or more bases of time for the execution of one or more PID loops. Notice that the value of the
sampling interval (dt) declared in the table of parameters of the controller must coincide with the
time interval of the “trigger” calls.

Chapter 5 Function Modules

144

Execution Time

The worse case of execution of a control loop with the F-PID16.056 reaches the time of 360 us. This
time is valid for the Al-2003, Al-2004, PO3145, PO3142 and PO3242 CPUs.

Table Position Parameters Description

The table with the parameters of the controller is also used to store variables of internal use, the total
sum of the integral action and the measured variable or errors of previous cycles for the derivative
action calculation. Each position of this table is described below:

Table
Position

Parameters Description

00 GP (x10) Proportional gain (without unit). The possible values are inside of the interval from
0,1 to 3000. The proportional gain must be multiplied by 10 to be declared in this
field, assuming the interval from 1 to 30000.Values out of this band will make that F
module enters on error mode and does not execute the control algorithm.

01 Ti (x10) Constant of integral time (s/repetition). The possible values are inside of the
interval from 0,1 to 3200 s/rep. The constant of integral time must be multiplied by
10 to be declared in this field, assuming the interval from 1 to 32000. It is observed
here that lesser the value of Ti, greater will be the integral action. Values out of this
band will make that F module enters in error mode and does not execute the control
algorithm.

02 Td (x100) Derivative constant of time (s). The possible values are inside of the interval from 0
to 320 s in units of 0,01s. The constant of time derivative must be multiplied by 100
to be declared in this field, assuming the interval from 0 to 32000. Values out of this
band will make that F module enters in error mode and do not execute the control
algorithm. If attributed value zero to the derivative time constant, the action will be
calculated with value zero, not influencing in the performance output. One sends
regards to disable the derivative action when it is not used.

03 dt (x100) Sampling interval of the process that is being controlled (s). The possible values
are inside of the interval from 0,01 to 10 s. The sampling interval must be multiplied
by a factor of 100 to be declared in this field, assuming the interval from 1 to 1000.
Values out of this band will make that F module enters in error mode and does not
execute the control algorithm. It is responsibility of the user to enable the F module
in this time interval.

04 Maximun output value Maximum value of allowed output. It can assume values from -30000 to +30000.
Must necessarily be bigger than the minimum output value. Values out of this band
will make that the F module enters in error mode and does not execute the control
algorithm.

05 Minimun output value Minimum value of allowed output. It can assume values from -30000 to +30000,
Must necessarily be minor than the maximum output value. Values out of this band
will make that F module enters in error mode and does not execute the control
algorithm.

06 Dead Zone Dead Zone. It can assume values from 0 to +30000. Always if the absolute value of
the error is minor than the value defined in this field, the controller will be executed
considering the error as zero. To disable this resource it is enough to declare the
value zero for the dead zone. Values out of this band will make that F module
enters in error mode and does not execute the control algorithm.

07 Maximun allowed
variation.

The value declared in this field indicates the absolute value of the maximum
variation that the output of the controller can have to each sampling interval (dt). It
can assume values from 1 to 30000. Value 1 represents a very small variation
while that value 30000 represents a great variation to each cycle of sampling.
Declaring zero in this field the maximum allowed variation is not verified, allowing
any variation. Values out of this band will make with that F module enters in error
mode and does not execute the control algorithm.

08 Accumulated AI x100
(Hi)

The value presented in this field is the accumulated integral action. Aiming to get
more numerical resolution, the accumulated integral action is stored multiplied for a
factor of 100. Three operands of 16 bits are used to keep the high part, low part
and factionary part of the integral action. These fields must be started with zero to
prevent that some random value is stored.

09 Accumulated AI x100
(Lo)

10 Accumulated AI x100
(frac)

11 Value of previous
performance (VA)

This field is restricted to F module use and it must not have its content modified.
The value of this field is the variable of performance of the previous cycle, used to
limit the maximum variation.

12-13 Reserved Reserved Operands.

Chapter 5 Function Modules

145

14 VM(t-3) or error(t-3) This field is restricted to F module use and it must not have its content modified.
Description of the three last errors or measured variables, used for calculation of the
derivative term. The derivative action can act in function of the error as in the
measured variable, however never the selection must be changed from error to
measured variable or vice versa during the control process.

15 VM(t-2) or error(t-2)

16 VM(t-1) or error(t-1)

17-27 Internal use These positions of the table are used exclusively by PID function, can not be
modified by the applicatory program.

28-29 Reserved Reserved Operands

Table 6: Description of the positions of the parameters table of the F-PID16.056

Always if occur some alteration in the parameters GP, Ti, Td or dt, the F-PID16.056 module needs a
cycle execution to adapt the controller to the new parameters, not executing the control in this cycle
and keeping the variable of performance (VA) unchanged.

Description of %A Operand Control

The auxiliary operand of F module control is used in agreement with the table below.

Bit Description

0 inhibits(1) / enable(0) integral action

1 inhibits(1) / enable(0) derivative action

2 inhibits(1) / enable(0) proportional action

3 Derivative action in error function (1) or in process
variable (0)

4 Reserved

5 Internal use

6 Internal use

7 Internal use

Table 7: Description of the auxiliary operand control

Through the auxiliary control operand of the F-PID16.056 function is possible to incapacitate the
proportional action, integral and/or derivative and also to select the derivative action acting in
function of the error or the measured variable in the process. When some action of control (either it
proportional, integral or derivative) will not be used, this must be incapacitated enabling the
corresponding bit.

Incapacitating the action of proportional control it can not generate action to the error, but the gain of
the system continues being applied on the integral and derivative actions. For a pure integrator, for
example, only the integral action must be enabled, adjust the desired time constant Ti and attribute to
constant GP (proportional gain) a unitary gain.

The derivative action acting in function of the measured variable is recommended for the majority of
the applications, therefore it prevents great variations on VA output when the PA adjustment point is
modified. For special applications exists the possibility of the derivative action selection in function
of the error of the system.

The bits of internal use are of F-PID16.056 function exclusive use and they must not have its content
modified.

Chapter 5 Function Modules

146

Application Notes

Time Sampling Selection
The efficiency of the digital controller is directly related with the used sampling interval. The more
that this interval diminishes, the result of the digital controller come close to the result of an
analogical controller. It is advised to use a time of sampling of order of one tenth of the time
constant of the system, or either

10

T
TA =

where TA is the used sampling time and T is the time constant of the system.

Example: The time constant of a first-class system can be gotten from its reply graph of the
performance variable (VA) to a step in the PA point of adjustment with open control loop (PID
disabled or in manual mode), as the figure below:

Figure 33: Time constant o the system and sampling interval

This figure demonstrates the attainment of the time constant of the system in two distinct ways.
Most usual is to take as time constant of the system the time necessary to the system to reach
63.212% of the final value. Another way is to trace the first derivate of the reply to step curve, the
time constant is that straight line that crosses the final value of the system reply.

Defined the time constant, is enough to define the sampling interval of order of one tenth of this
value.

It is important to remember that the update of the inputs and outputs occurs in the same order of a
CPU time cycle. Always that the time of cycle of the CPU is greater than the sampling time advises
to use the AES instruction for the Al-2003 and Al-2004 CPUs or F-AES for the Ponto series.

Feedforward/Bias
Through operating the memory used for feedforward/bias it is possible to inject some variable of the
system on the output of the controller and/or apply a displacement on the same one.

The objective of feedforward is to measure the main riots of the process and to calculate the change
necessary in the performance variable to compensate them before these cause alterations in the
controlled variable. The manipulation of the riots of the process can be made through the blocks of

Chapter 5 Function Modules

147

advanced control (F-CTRL.059) that possess advance-delay blocks, derivation with secular
retardation and first-class secular retardation.

It can be cited as example, a system where the variable to be controlled is the temperature of a hot
mixture. In one determined phase of the process it is necessary to spill cold water in this mixture.
Without feedforward, it would be necessary to wait the cold water to change the state of the mixture
for then the controller to generate the corrective action. Using feedforward, a value associated with
the temperature of the cold water would be injected in the exit of the controller, making with that this
takes “the corrective action” before the cold water start to modify the state of the hot mixture,
speeding the reply of the controller.

The bias it is used always that it is desired to apply some displacement on the output of the
controller.

Control in Cascade
Probably the control in cascade is one of the most used techniques of advanced control in the
practical one. He is composed at least two control loops. The figure below shows a controller in
cascade with two loops.

Figure 34: Controller in cascade with two loops

The external loop is called the master controlling and the internal loop the slave controller. The
master controlling has its adjustment point fixed and its output supplies the adjustment point of the
slave controller (VA 1). The performance variable of the slave controller (VA 2) will act on process 2
that, in turn, will act on process 1, closing the controlling master loop.

This type of controller is applied, for example, in the temperature control for the vapor injection.
Beyond the variation of the temperature, that must be controlled, the system is displayed to variations
of pressure in the vapor line. One becomes then desirable an outflow slave controller acting in
function of the pressure variations and a controlling master to manipulate the reference of the slave,
controlling then the temperature of the process. This example can be represented in agreement with
the graphically figure below.

Figure 35: Application of a controller in cascade

In case that a temperature controller that only act directly on the vapor valve, it would not have to
compensate eventual variations of pressure in the vapor line.

Three main advantages in the use of controllers in cascade:

Chapter 5 Function Modules

148

• Any riot that affects the slave controller is detected and compensated for this controller before
affecting the controlled variable for the master controlling;

• Increase of the controllability of the system. In the case of the temperature control for the vapor
injection, the system reply is improved because of the outflow controller increasing the
controllability of the main loop;

• Non linearities of an internal loop are manipulated inside of this loop and not perceived by the
external loop. In the previous example, the pressure variations are compensated by the slave
controller and the master controlling “can see” just a linear relation between the valve and the
temperature.

Important Notes
To use controllers in cascade the following cares must be taken:

• As the adjustment point of the slave controllers is manipulated in agreement with the masters
controlling output, will be able to occur brusque variations in the error of the slave controller. If
the slave controllers will be with the derivative acting in function of the error will appear
derivative actions with great values. Therefore it advised to use the slave controllers with the
derivative action in function of the measured variable;

• The slave controller must be sufficient fast to eliminate the riots from loops before these affect
the loops of the master controlling;

Chapter 5 Function Modules

149

PID Controller Adjustments Suggestions

Two methods for the determination of the PID controller constants of controller are presented. The
first method consists on the determination of the constants in function of the period of oscillation and
the critical gain, while it determines the constants of the controller in function of the time constant
(T), of the dead time (Tm) and of the static gain of the system (K). For bigger details is advised
reading literature references to it.

WARNING:
Altus are not responsible for eventual damages caused by configuration errors of the constants of the
controller or parameters configuration. One sends regards that a qualified person executes this task.

Determination of the Constants of the Controller Through the Period and Critical Gain

This method generates a cushioned reply whose tax of damping is equal to 1/4. Or either, after
syntonizing a loop through this method, a reply as shown in the figure below is expected:

Figure 36: Reply with ¼ of damping tax

The critical gain is defined as the gain of a proportional controller who generates an oscillation of
constant amplitude in the system in closed loop and the critical period is the period of this oscillation.
The critical gain is a measure of controllability of the system, or either, bigger the critical gain easier
will be the control of the system. The critical period of oscillation is a measure of the speed of the
system reply in closed loop, or either, how much bigger the period of oscillation slower will be the
system. In elapsing of this chapter the critical gain will be called as GPc and the critical period as Tc.

It is important to remember that slightly lesser gains that GPc generate oscillations whose period
decreases with the time, while that bigger gains that GPc generate oscillations whose amplitude
grows with the time. In the case of bigger gains that GPc is necessary to have well-taken care of not
to become the system critically unstable.

The process to determine GPc and Tc consists of closing the loop with the controller in automatic
mode disabling the integral action and the derivative. The steps are the following ones:

• Remove the integral and derivative action through operand %A of control;

• Increase the proportional gain with small increments. After each increment inserting a small riot
in the system through a small step in the adjustment point (PA). To verify the behavior of the
system (VM), the amplitude of oscillation must increase while the gain increases. The critical
gain (GPc) will be that one that generate oscillations with constant amplitude (or almost
constant) as the figure below;

t

1
1/4

PA VM

Chapter 5 Function Modules

150

• To measure the period of these oscillations (Tc).

To determine the constants of the controller it is enough to apply the values of GPc and Tc on the
equations of the table below.

Figure 37: Graphic representing of a system out of control when subjected to GPc

Type of the Controller Constants

Proportional (P) GPcGP ⋅= 5,0
Proportional and Integral (PI) GPcGP ⋅= 45,0

2,1

Tc
Ti =

Proportional, Integral and Derivative
(PID)

GPcGP ⋅= 75,0

6,1

Tc
Ti =

10

Tc
Td =

Table 8: Equations to determine the constants of the controller

Determination of the Constants of the Controller Through the Constants of the Process

This method applies the linear processes, first-class (similar to a circuit RC) and with dead time. In
the practical, many industrial processes is adapted to this model.

The method requires, initially, to determine the following characteristics of the process in open loop:

• K: Static gain of the process. Defined as the division between a variation of VM and a variation
of VA, or either, K = ∆VM/∆VA;

• Tm: Dead time, defined as the time between the beginning of a variation on output VA (t0) and
the beginning of the reaction of the system;

• T: time constant of the system, defined as the time that the measured variable leads to reach
63.212% of its final value;

Moreover, the method requires two additional parameters, that are not characteristic of the process in
itself, and must be informed by the user:

Tr: time of reply desired after the tunning of the loop. Through this parameter the user can inform a
requirement of performance of the controlled loop.

Chapter 5 Function Modules

151

dt: time of sampling in seconds, or either, the period of call of the F-PID16.056 and update of input
VM and output VA. The constant dt symbolizes an additional dead time, that must be added the Tm.
In the practical, adds dt/2 to the value of Tm, therefore this is the inserted average dead time.

The time of Tr reply can be compared with a “time constant” of the closed loop, as illustrates the
figure below.

Figure 38: Specification of the Reply Time Tr

The Tr parameter shows the desired time of reply. It is about the measured time between the
beginning of the reply of the system (after the dead time Tm), and the moment where VM reach
63.21% of its total excursion. Through Tr the user can specify a “performance requirement” for the
controlled loop. Be careful in not to specify minor times of reply that one tenth of the constant of
time of the system, therefore the system can be unstable. How much minor the value of Tr, greater
the need of gain.

To follow, it is described how to determine, through a test of opened loop, the other parameters (K,
Tm and T), that characterize the process. A simple way to determine these constants of the process is
to place the F-PID16.056 module in manual mode, generate a small step in VA and plot the reply of
VM in time. For slow processes this can manually be made, but for fast processes the use of an
oscilloscope or any another device that monitors the variation of VM is advised. The step in VA
must be sufficient to cause a perceivable variation in VM.

The figures below represent, respectively, a step on VA output, applied in the instant t0 and the reply
of a first-class linear system with dead time.

Tm

t

100%
63,21%

VM

PA

Tr

Chapter 5 Function Modules

152

Figure 39: Step on VA Figure 40: Reply to the step

Through these figures it can be gotten all the necessary constants for the determination of the
parameters of the controller. The static gain of the process is gotten through the division between the
variation of the measured variable and the variation of the performance variable, or either:

12

12

VAVA

VMVM
K

−
−=

The dead time, Tm, is the time between the moment of application of the step in VA (t0) and the
beginning of the reply of the system.

The constant of time of the system, T, is the time between the beginning of the reaction of system
and 63.212% of the final value of VM (VM), or either:

12

1'
63212,0

VMVM

VMVM

−
−

=

From the constants of the system, K, Tm and T, can be gotten the parameters of the controller using
the equations of the table below:

Type of the Controller Constants

Proportional, Integral and Derivative
(PID) GP = _______T_________

 K * (Tr + Tm + dt/2)

Ti = T

Td = Tm/2 + dt/4

Table 9: Equations to determine the parameters of the controller

Gains X Scales

It is important to remember that the proportional gain will only execute its action in correct way
when the Input and the output of the system are using the same scales. For example, a proportional
controller with unitary gain and input (VM) using the band from 0 to 1000 will only be really unitary
if the output band (VA) also is from 0 to 1000.

Chapter 5 Function Modules

153

In many cases the scales of inputs and outputs are different. A system can be cited as example where
the card of analogical entrance is of 4-20 mA, where 4 mA corresponds to value 0, and 20 mA
corresponds to value 30000. And the card of analogical output is from 0V to 10 V, where 0 V
corresponds to value 0, and 10V corresponds to value 1000. In cases like this, the adjustment of
scales can be made through the proportional gain instead of a normalization of the values of input or
output.

A strategy that can be adopted is, initially, to determine the gain in percentile terms (independent of
scales), without worrying about the type of modules of used analogical input and output. Later, after
this gain determined, the correction of scales must be executed, before introducing the proportional
gain in the F-PID16.056 module.

The strategy consists in determining the proportional gain of the system using the percentile band
(0% the 100%) of the variable measured (VM) as the performance value (VA), without taking in
consideration the absolute values, as much of VM as of VA.

This will lead to the determination of a proportional gain called GP%. This GP% gain cannot
directly be used in the F-PID16.056. Before it is necessary to make a correction of scales, that
considers the absolute values of these variable.

Warning: In the previous section, Suggestions for Adjustments of PID Controller, are suggested
methods of adjustment which the correction of scales are implicit to the method, not having to be
considered. In the following chapter, Example of Application, the correction of scales also is
unnecessary, therefore was used one of the methods boarded in the section Suggestions for
Adjustments of PID Controller.

The correction of scales is illustrated on the example below.

Considering a conditional air system where the module of analogical input is reading an electrical
resistance PTC (positive thermal coefficient) and the module of analogical output generates a tension
from 0 to 10V to act on the responsible valve for the circulation of the water that cools insufflating
air.

The entrance module works with a band from 0 to 30000, however the useful band is from 6634 to
8706 with the following meaning:

• EA0 = 6634 = 0% = 884,6 ohms (corresponds to the minimal temperature that can be measured)

• EA1 = 8706 = 100% = 1160,9 ohms (corresponds to the maximal temperature that can be
measured)

The output module uses the same band from 0 to 30000 without restrictions and with the following
meaning:

• SA0 = 0 = 0% = 0V (corresponds to the minimal water outflow through the valve)

• SA1 = 30000 = 100% = 10V (corresponds to the maximal water outflow through the valve)

Assuming that the GP% gain has been previously determined, the GP gain can be calculated by the
following equation:

GP = GP% * R

where:

01

01

EAEA

SASA
R

−
−

=

For the previous example:

478,14
66348706

030000 =
−

−=R

Chapter 5 Function Modules

154

This reason R is a constant that, when multiplied by the proportional gain of the controller, it
compensates the differences between the inputs and outputs bands without the necessity of a direct
normalization.

Example of Application

On this item it is demonstrated a practical example of the F-PID16.056 module use, enclosing diverse
phases of the project, of the process and its system of control.

Description of the Process
The process example has as objective the warm water supply, with controlled temperature, to the
consumer. The heating will be made through a gas burner, being controlled on the variation of the
gas outflow through a valve.

The figure below illustrates this process.

Figure 41: Process of burning water

On the figure, it is observed that the temperature transmitter (TT) is close to the consumer, who is
located 20 meters from the point of the water heating. Processes as this are good examples to
illustrate how can be introduced “dead times”. This because the warm water in the heating point
takes some time to cover the distance until the point of measurement next to the consumer. Dead
times had been argued previously.

Some hypotheses had been assumed on the model of this process:

It is assumed that the water that arrives at the heating point on the burner has fixed temperature, of 30
oC.

It is assumed that the water outflow is constant.

Some characteristics of this process and the used elements:

The warm water must have its programmable temperature between 50 oC and 80 oC.

The temperature TT transmissor has output from 4 to 20 mA, and if floodgate of linear form, such
that the 4 mA correspond to 30 oC and 20 mA correspond to 130 oC.

It is assumed that, to increase in 10 oC the water temperature, is necessary to inject 1 m3/h of gas.
This behavior is linear. The gas valve closes with 4 mA, injecting 0 m3/h of gas. On the other hand,
with 20 mA, it injects 8 m3/h of gas.

20 meters

gas
burner

water

TT

 VA (4 – 20 mA) (4 – 20 mA) VM
CONTROLLER

PA

Chapter 5 Function Modules

155

Description of the Analogical Modules
As it can be seen in figure 4-13, is needed an analogical output from 4 to 20 mA, and an analogical
entrance from 4 to 20 mA, as interfaces between the controller and the process.

Internally to the controller, these bands from 4 to 20 mA correspond the numerical bands in M
operand (VM and VA). These bands of numerical values can vary in function of the input modules
and selected analogical output. In this example, the following is assumed:

analogical input VM (0 a 30000):

VM = 0 ---> 4 mA ---> 30 oC

VM = 30000 ---> 20 mA ---> 130 oC

analogical output VA (0 a 10000):

VA = 0 ---> 4 mA = 0 ---> 0 m3/h

VA = 10000 ---> 20 mA ---> 8 m3/h

Adjustment Point
The PA operand must be used to program the desired temperature, between 50 oC and 80 oC.

As this operand must be compared with VM, it must have the same numerical band of VM, or either:

PA = 0 ---> 30 oC

PA = 30000 ---> 130 oC

Or to restrict the band between 50 oC and 80 oC:

PA = 6000 ---> 50 oC

PA = 15000 ---> 80 oC

General Diagram and Boundary-Values
Figure 42 shows a general diagram of the system (controlling + process), where inside of the
controlling is revealed the F-PID16.056 module. To observe that PA, VM and VA are M operands.

Figure 42: General Diagram

PA:

minimum = 6000 (50 oC)

maximum = 15000 (80 oC)

VM:

minimum = 0 (30 oC)

maximum = 30000 (130 oC)

VA:

minimum = 0 (0 m3/h)

VM

PA
F-PID16.056 Analogica

l output

Analogica
l input

PROCESS

VA

CONTROLLER

Chapter 5 Function Modules

156

maximum = 7500 ---> (6 m3/h)

It is observed that in the VA case, even so the valve has capacity to inject 8 m3/h, is desired to limit
this outflow in 6 m3/h.

Parameters of the Process
Figure 43 shows the result of a test of an opened loop of the process. To execute this test, was
directly used the VA and VM variables, with its internal units.

Figure 43: Open Loop Test

On this figure can be determined the 3 basic parameters, as explained previously.

Tm = 10 seconds (dead time, since the step was applied in t = 50 s and the reply initiated in t = 60 s).

T = 30 seconds (time constant, since the reply t initiated in = 60 s, and reached 63.21% of the
excursion in t = 90 s):

9792 = 6000 + (12000 – 6000) * 0,6321.

K = 2.4 (static gain of the process)

2.4 = 12000 – 6000

 5000 - 2500

Tunning of the Controller
Since the test of opened loop was carried through, will be used the second tunning method previously
described on Notes of Application.

To use this method, beyond the determined parameters of the process in the previous section (Tm, T
and K), also it is necessary that the user informs others 2 parameters:

979
(70 oC) 12000

(50 oC)

(4 m3/h) 5000

(2 m3/h) 2500

VA

t

VM

t

50 60 90

Chapter 5 Function Modules

157

Tr, or desired time of reply. In this example, it will be decided in 10 seconds (the time constant in
open loop divided by 3).

dt, or time of cycle of the F-PID16.056. As commented previously, this time must be 10 times minor
than the time constant in loop opened, or still minor. Therefore, the value must be minor than 3
seconds. Was selected dt = 1 second.

Now, it is possible to apply the equations of the method:

GP = T / (K * (Tr + Tm + Dt/2)) = 30 / (2.4 * (10 + 10 + 1/2) = 0,609

Ti = T = 30 s/rep

Td = Tm/2 + Dt/4 = 10/2 + 1/2 = 5.25 s

Uses of F-PID16.056

To each one second, must be executed the F-PID16.056, setting in motion its input ENABLE during
only one sweeping.

The AUTOMATIC/MANUAL input can be controlled during the operation of the process. Normally
the process will be in automatic.

For this process, the REVERSE/MANUAL input will have to be in state 0 (reverse). The process
demands control reverse therefore, in the case of an increase of VM, the controller must diminish VA
in order to control the process. In other terms, if the temperature increases, the valve must be closed.

Operand TMXXXX:

position 0 = GP x 10 = 6

position 1 = Ti x 10 = 300

position 2 = Td x 100 = 525

position 3 = dt x 100 = 100

position 4 = maximum output value = 7500

position 5 = minimum output value = 0

position 6 = dead zone = 0 (disable)

position 7 = maximum variation allowed = 0 (disable)

positions 8 to 29, begins with zeros only on CPU powering

Operand AXXXX of control: all the start bits must be zero.

Comparison with F-PID.033

The F-PID16.056 module was developed aiming to improve the interface with the user, to optimize
the execution time and to become it compatible with variable of 16 bits or little resolution.

The main changes:

• Inputs and outputs with a range from -30000 to 30000;

• Parameters inputs without initial calculation (direct input of Gp, Ti, Td and dt);

• Sampling interval (dt) from 10ms to 10s, while that on F-PID.033 the minimum limit is 100ms.

Together with these alterations, a set of new characteristics was added to the previous F-PID. The
table below brings a comparison of the characteristics between the F-PID16.056 module and the F-
PID.033.

Chapter 5 Function Modules

158

CHARACTERISTIC F-PID.033 New PID

Parameters programmed directly in
ISA format (Gp, Ti, Td)

X

Calculated derivative action in function
of the error or the measured variable.

X

Calculated derivative action on 3
samplings

X X

Direct or reverse action X X

Input and output interval from –100%
to +100%

X

Dead band X

Unsaturation of the integral action
(“anti-reset windup”)

X X

Feedforward / bias input
(displacement)

X X

Inhibition of the derivative term X X

Inhibition of the integral term X X

Inhibition of the proportional term X

Limitation of the growth tax X

Adjustable output limits X X

Manual / automatic mode X X

Accompaniment of the output on the
manual mode and balanced

manual/automatic commutation
(“Output tracking” and “bumpless

transfer”).

X X

Table 10: Comparison between the F-PID.033 and the F-PID16.056

Chapter 5 Function Modules

159

F-CTRL.059 – F Module for Advanced Control

Introduction

The module function F-CTRL.059 uses the control algorithms lead/lag, first-order retardation and
derivation with first-order retardation. Each operation mode (algorithm) is selected through an index
on F-CTRL.059 module.

From an input value, the module calculates an output value in function of the selected algorithm. All
the modules use two constants, a time T constant and a second constant K whose function vary as the
selected algorithm. The algorithms are executed in discrete mode, and the time of shot of the function
must be declared with the parameters.

These functions are used in advanced control algorithms to the optimization of the control loop.
Generally used with PID function.

 1ª Order retardation
When the selected algorithm is the first-order retardation, the F module applies on the input (Vi)
operand value a first-order retardation. The output value (Vo) of this function is proportional to the
input, however, been late as an exponential function.

This algorithm needs two constants. A T time constant that, in analogy with an RC circuit, represent
it load time constant (63,212% at final value) and a constant of proportional gain K.

On frequency domain (s), the first-class retardation follows the transference function below:

)(
1

)(sVi
sT

K
sVo ×

⋅+
=

Where Vi(s) and Vo(s) are Laplace transformations of the input and output signals.

The reply to the step is represented on 4-16 figure, where can be observed the T time constant
associated with V’ value, that represents 63,212% of start and the end value difference.

Figure 4-16 first – order retardation

Chapter 5 Function Modules

160

Derivation with Retardation of 1ª Order
When this algorithm is selected, the F module applies on the input operand value it derivation with
the first-order retardation. The Output value is the input Vi derivation with the retardation as an
exponential function.

This algorithm needs two constants. A T time constant that can be extended, on the same analogy of
the first-order retardation, as the time constant of discharge of a RC circuit. The second constant is
the derivation constant K that, divided by the T constant, will determine a third constant that can be
treated as a gain.

On frequency domain (s), the derivation of first-order retardation follows the transference function
below:

)(
1

)(sVi
sT

sK
sVo ×

⋅+
⋅=

Where Vi(s) and Vo(s) are Laplace transformations of the input and output signals.

The reply to the step is represented by 4-17 figure. On start instant (t = t0) can be observed that the
function (Vo) output is the input step, with A amplitude, multiplied by the K/T division. On t = t0 + T
instant, the system output value is equal to V’, or either, 36,788% of A x K/T. When the Vi input is
constant, the output of this function returns zero with a first-order retardation.

Figure 4-17 Derivation with first order retardation

It is important to remember that the step can not be seen by the F-CTRL.059 module as a instant
variation, but as a variation between two sampling. On contrary case it derivation would have an
infinite value.

 Lead/Lag
When this algorithm is selected, the F module applies on the input operand value the lead or the lag
as the relation between the declared constants.

The algorithm needs two constants. One T time constant that, as the same way that the algorithms
before, can be extended as the time constant of a RC circuit. And a K constant that, with the constant
T, will define the algorithm behavior as lead or lag.

Always if the T time constant is bigger than the constant K, the algorithm will behave as lag. When K
is bigger then T it behavior will be as lead. The constants K and T are known too as lead and lag
constants, respectively.

On frequency domain (s), the Lead/Lag follows the transference function below:

Chapter 5 Function Modules

161

)(
1

1
)(sVi

sT

sK
sVo ×

⋅+
⋅+=

Where Vi(s) and Vo(s) are the Laplace transformations of the inputs and outputs signals.

The reply to step of the lead is represented by the 4-18 figure. On t = t0 instant can be observed that
the function output Vo(t0) is equal to V’’ that can be described as

T

K
AtViV ×+=)('' , to t < t0 ,

or either, the input value before the step plus the amplitude of the step applied to input (A) multiplied
to the division of K/T. On t = t0 + T instant, the system output is equal to V’, or either, 36,788% of
the difference between the max value (V’’) and the Vi(t) value for t > t0 plus a displacement equal to
Vi(t0).

Figure 4-18 Lead

The reply to step of the lag is represented by 4-19 figure. On t = t0 figure it can be observed that the
Vo(t0) function output is equal to V’’ that, on the same way of lead, can be written as:

T

K
AtViV ×+=)('' , to t < t0 ,

differing of the lead graph because K is minor than T. On t = t0 + T instant, the output of the system
is equal to V’, or either, 63,212% of the difference between the Vi(t) value, to t > t0 , and the V’’
value, plus a displacement equal to Vi(t0).

Chapter 5 Function Modules

162

Figure 4-19 Lag

Programming

 Operands
The cells of CHF instruction used to the function call are programmed as follows:

• OPER1 - It specifies the number of parameters that are passed to the function in OPER3. This
operand must be obligatorily a memory constant with value 8 (%KM+00008).

• OPER2 - It specifies the number of parameters that are passed to the function in OPER4. This
operand must be obligatorily a memory constant with value 0 (%KM+00000).

• OPER3 - It contains the parameters that are passed to the function, declared when the CHF
instruction is edited. The number of editable parameters is specified on OPER1, equal to 8 on
this module:

• %KMXXXX – Memory constant that points the used algorithm, it can assume the
following values:

%KM0000 – first-order retardation;
%KM0001 – derivation with first-order retardation;
%KM0002 – lead/lag.

• %KMXXXX – Constant with the sampling interval value. It assumes values from
0,01 to 10s, and it must be multiplied by 100 to be declared on this field.

• %MXXXX – Memory with the time T constant value. It assumes values from 0,01
to 320s, and it must be multiplied by 100 to be declared on this field.

• %MXXXX – Memory with the K constant value. It assumes values from 0,01 to
320, and it must be multiplied by 100 to be declared on this field.

• %MXXXX – Memory with input value from -32768 to +32767.

• %MXXXX – Memory with the output value from –30000 to +30000.

• %MXXXX – Internal use. Not declared.

Chapter 5 Function Modules

163

%MXXXX – Internal Use. Not Declared.

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input is powered the function is called, analyzing the parameters programmed
on CHF instruction. If the number of parameters or it type are different from the function needs,
the success/error outputs will be unpowered. If it is correct, the algorithm selected is realized.

Description of the outputs:

• success(1) /error (0) - it is powered when the function is correctly executed. It is not powered if
an operand specification error occurs, or trying to access not declared operands or invalid
parameters.

Characteristics of Functioning
For each sampling interval the function input is applied on the algorithm and update the function
output value.

It can be observed that the algorithm is applied on a discrete form, the sampling time (dt) must be 10
times minor than the time constant T to a satisfactory result. The interval between the sampling of the
F-CTRL.059 loops module can vary from 0,01 to 10 seconds. It is the user responsability
programming the “start” of the function, or either, an application program that enable the F module
only on desired time interval. It is advised to use a E018 module, this module is executed in a fixed
time interval that can be used to generate one or more time bases to one or more F-CTRL.059 loops
execution. Note that the sampling interval declared on parameters must coincide with the time
interval of the “starter” call.

It is important to remember that the inputs and outputs update occurs on the same time order of the
CPU cycle. Always if the CPU cycle time is bigger than the sampling time it is advised the use of
AES instruction to the AL-2003 and AL-2004 CPUs or F-AES to the Ponto series.

Execution Times
• First-order retardation: 298 µs

• Derivation with first-order retardation: 338 µs

• Lead/Lag: 338 µs

These times are valid to AL-2003, AL-2004, PO3145, PO3142 and PO3242 CPUs.

Chapter 5 Function Modules

164

F-NORM.071 – Function to Normalization

Introduction

The function F-NORM.071 normalize s whole operands, implementing the function M [output] =
(M [input] - A) * C/ (B-A), where A, B and C are constants.

AB

CAentradaM
saídaM

−
⋅−=)())((

)(

Programming

- OPER1 - Specifies the number of parameters passed to the function in OPER3. This operand must be a
memory constant with value 6 (%KM+00006).

- OPER2 - Should be an operand of type memory constant with the value 0 (%KM+00000). It determines the
number of parameters possible to be programmed in the editing window of OPER4. As this function does
not need any parameter in OPER4, the value of OPER2 is 0.

- OPER3 - Contains the parameters passed to the function, declared through a window visualized in
MasterTool when the CHF instruction is edited. The number of editable parameter is specified in OPER1,
being 6 for this call:

• %KM+XXXX - Number of operands to process (1 to 127)

• %MXXXX - Initial input operand

• %MXXXX - Initial output operand

• %KM+XXXX - Offset to subtract from the input operand (A)

• %KM+XXXX - Value reference of the input (B)

• %KM+XXXX - Value normalize d by the output corresponding to B (C)

From version 1.10 of F-NORM.071, available to PLCs AL-2003, AL-2004 and Ponto Series, can be
used a D parameter, that define the start input band. When the 6 parameters on CHF from F-
NORM.071 version 1.10, will be admitted that the 7th parameter D is equal to zero and executed the
same normalization algorithm.

The normalization algorithm will be typed as:

D
AB

DCAentradaM
saídaM +

−
−⋅−=)())((

)(

After the 7th value declared (%KM+00007) to the OPER1, the parameters passed through OPER3
are as following:

• %KMXXXXX number of operands;

• %MXXXXX first input operand;

• %MXXXXX first output operand;

• %KMXXXXX start of the input band(A);

Chapter 5 Function Modules

165

• %KMXXXXX end of the output band(B);

• %KMXXXXX end of the output band(C);

• %KMXXXXX start of the input band (D) (only on version 1.10).

Operation
A F-NORM.071 implements the following calculation:

 M[output] = (M [input] - A) * C / (B - A)

being:

• M [input] - range of whole operands of input

• M [output] - range of whole operands of output

• A - offset for the input

• B - reference value of the input to normalize

• C - normalize d value of the output corresponding to B

The output is the Normalization of the input and the way that for input data with the value A the
corresponding output is 0, and for an input value B the corresponding output will be C. If in this
range, the output value will be proportional to the input, according to the formula given.

The function works with a band of up to 127 operand (1 to 127).

Inputs and Outputs
Descriptions of inputs of the function:

- enable - when this input is powered the function is called, the parameters programmed in the CHF
instruction being analyzed. If they are incorrect, the output instruction error is powered, and the rest
become turned off. If the parameters are correct, only the success output is powered.

Descriptions of the output of the functions:

- success - indicates that the call parameters are correct and that the function has been correctly
executed. See observation.

- error - is connected if an error occurs in the call parameters. See observation.

Observation: when both outputs (success and error) stay powered is because M input operands range
is the same of M output operands range (in parameters).

Chapter 5 Function Modules

166

F-COMPF.072 – Function for Multiple Comparisons

Introduction

The function F-COMPF.072 divides an operand into specified ranges, presenting output in binary
form, where the bit connected indicates the operand pertaining to the respective band.

Programming

The cells of the CHF instruction used for the call are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. This operand
must be a memory constant with value 4 (%KM+00004).

• OPER2 - Should be an operand of type memory constant with the value 0 (%KM+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPER4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

• OPER3 - Contains the parameters passed to the function declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameters is
specified in OPER1, being 4 for this call:

• %KM+XXXX - Number of operands %MXXXX to examine

• %MXXXX - Initial input operand for comparison

• %MXXXX - Initial output operand for the indicator bits

• %TMXXXX - Table which specifies up to 16 ranges of values to quality the
input (operands/c.f. format to follow)

Table Position Contents
0 Reserved
1 Reserved
2 Start range 0
3 End range 0

4-31 <continue the range
definitions>

32 Start range 15
33 End Range 15

Table 4-11 Band definition

The table should have a minimum size of 4 position (1 range). To optimize the function’s execution
time, it is recommended that the table is defined with the exact size to count the definitions of the
necessary ranges.

• OPER4 – Not used.

Operation
The beginning and end of each comparison range are specified as whole numbers.

Chapter 5 Function Modules

167

The operand is considered in the range if this condition is true:

(start of range) = %MXXXX < (end of band)

Each range in the table %TMXXXX corresponds to a bit in the operand %MXXXX being that the 0
bit of the output operand corresponds to the range 0 and so on successively. The bits correspond to
the ranges not defined are always 0. The ranges can be superimposed.

The number of operands to process is given by the first parameter (%KM+XXXX), being able to be
defined from 1 to 127.

Inputs and Outputs
Description of the function inputs:

• enable - when this input is powered the function is called, with the parameters programmed
being analyzed in the CHF instruction. If they are incorrect, the error output of the instruction is
powered and the rest are turned off. If the parameters are correct only the output success is
powered

Description of the function output:

• success - indicates that the call parameters are correct and that the function has been correctly
executed.

• error - is connected if an error occurs in the call parameters.

Chapter 5 Function Modules

168

F-AES.087 – Inputs and Outputs Immediate Update Function

Introduction

This instruction executes an immediate update on the image memory and on specified module
physical positions. It action is equal to the I/O points sweeping made by the executive program on
each sweeping end, however with a limited number of positions.

If the CPU is a PO3242 or a PO3342 this function allows to update the PROFIBUS network devices
too.

Programming

The cells of the instruction CHF used for the call are programmed as follows:

• OPER1 - Specifies the number of parameters that are passed to the function on OPER3. This
operand must be obligatorily a memory constant with value 2 (%KM+00002).

• OPER2 - It must be an operand of type constant memory with value 0 (%KM+00000).

• OPER3 - It contains the parameters that are passed to the function, declared when the CHF
instruction are edited. The number of edited parameters is specified on OPER1, it is equal to 2 to
this F module:

• MXXXX, KMXXXX Specification of the start physical position on bus to be
updated. The existing module on the position here declared will have the operand
value updated correspondent to the outputs, on the case of the output module, or
the inputs will be read to the correspondent operand, on an input module. The value
of the physical position is from 0 to 39.

PROFIBUS Network: the position must be from a PO4053 module. Case the
network is redundant, the position of just one of the modules is sufficient to the
network update.

• MXXXX, KMXXXX - MXXXX, KMXXXX - Specification of how many
positions on the bus will be updated, including the start position. For Example, if it
is specified the value 2, will be updated the position declared as start position, and
the next position. The value of this parameter must be from 1 to 10.

• OPER4 – Not used.

Inputs and Outputs
Description of the function inputs:

• enable - when this input is powered, the function is called, analyzing the programmed
parameters on CHF instruction. If it all correct, the function is executed and the positions are
updated. If there is some incorrect parameter, the outputs are enabled pointing the error and it is
not updated.

Description of the function output:

• success- This output is enabled when the function is correctly executed and the bus positions
updated.

Chapter 5 Function Modules

169

• parameters error: this output is enabled when some operand not declared is passed as a
parameter. When this happens, no position is updated.

• values error: this output is enabled when some of the parameters contain an invalid value. This
happens if the value is out of the range allowed to this function, or if there is no module declared
at C module to the position that must be updated.

If none of three outputs are powered, means that the function could not be executed because an
internal stop of the CPU. This can happen, for example, if a function is in a E018 module, and if the
E018 is executed on the same instant that the C module is charging on CPU.

Execution Time
If it is used to update the PROFIBUS network the update time of the network should be considered
(see uses manual of PO4053 MU209903).

Redundancy
If the related module position is from a PO4053 of redundancy couple, call just once to F-AES to use
the two PO4053 redundancy.

The use of the function F-AES.087 with the E/S forcing at the same time will generate
variations on the physical E/S points. This situation should be avoided.

Chapter 5 Function Modules

170

F-ANDT.090, F-ORT.091 and F-XORT.092 – Function Logical
Operations between Table Operands

Introduction

The function F-ANDT.090, F-ORT.091 and F-XORT.092 allow the carrying out of logical
operations AND/and), OR (or) or XOR (or exclusive), respectively, between simple operands (M or
D) and or tables (TM or TD). Up to 255 logic operations in one single function call It is necessary
that the three operands (supply, supply 2 and destination) are of the same type (memory or decimal).

Programming

The cells of the CHF instruction used to call the programs in the following way:

• OPER1 - Specifies the number of parameters passed to the function i OPER3. This operand must
be a memory constant with value 3 (KM+00003).

• OPER2 - Should be an operand of type memory constant with value 0 (KM+00000). Determine
the number of parameters possible to be programmed in the editing window of OPER4. As this
function does not need any parameter in OPER 4, the value of OPER is 0.

• OPER3 - Contains the parameters passed to the function, declared through a window visualized
in AL-3830 when the CHF instruction is edited. The number of editable parameters is specified
in OPER1, being set at 3 for this module:

• MXXXX, DXXXX, TMXXXX or TDXXXX – simple or table operand where the
value will be used to carry out the logic (operand source 1).

• MXXXX, DXXXX, TMXXXX or TDXXXX - simple or table operand where the
value will be used to carry out the logic (operand source 2).

• MXXXX, DXXXX, TMXXXX or TDXXXX - simple or table operand where the
result of the logic will be stored (destination operand).

• KMXXXX – number of simple operands or positions on the table where the logic
operation will be done.

• OPER4 – Not used.

Inputs and Outputs
Description of the function input:

• enable - when this input is powered the function is called, the parameters programmed in the
CHF instruction being analyzed in the CHF instruction. If they are incorrect, the outputs of the
invalid index are enabled.

Description of the function output:

• success - indicates that the moving was carried out correctly.

Chapter 5 Function Modules

171

• source index invalid - indicates that there was an error in the specification of the supply
operand:

• the operand is not declared in the module C

• there are not enough positions to carry out the logic

• destination index invalid - indicates that there was an error in the specification of the
destination operand:

• the operand is not declared in module C

• there are not enough positions to carry out the logic

If the two outputs of the invalid index are enabled simultaneously, some of the following errors
occurs:

• the number of parameter programmed in OPER is different from three

• the type of one the parameters in OPER3 is not valid

• the parameters in OPER3 is different one with other (memory and decimals)

• the total number of positions to be transferred is more than 255

WARNING:
This function allows the denial of a large number of operands in a single scan. It should be used with
care so that the maximum time of the program cycle is not exceeded.

Chapter 5 Function Modules

172

F-STCP.044 – CPU Status Function

Introduction

The function F-STCP.044 returns the CPU status in a M box operand or in a TM. This status
correspond to the same parameters that are answered on command 37 from ALNETI protocol.

Programming

The instruction cells CHF used to call the function are programmed as following:

• OPER1 - It specifies the number of parameters that are passed to the function on OPER3. This
operand must be a constant memory with a value equal to 1(KM+00001).

• OPER2 - Must be an constant memory operand with a value equal to 0 (KM+0000). This
operand defines the number of possible parameters to be programmed on OPER4 edit window.
As this function do not need any parameter on OPER4, the value of OPER2 is 0.

• OPER3 - It contains the parameters that are passed to the function, declared on a window in
MasterTool, AL-3830 or AL-3832 when the instruction CHF is edited. The number of edited
parameters is specified on OPER1, fixed in 1 to this module:

TMXXXX or MXXXX: Table or a box of M operands where will be written the status that was
read from PLC. The table must contain 50 positions. In the case of M operands the function write on
the declared operand and on the next 49, and these must be declared on C module of the project.

• OPER4 – Not used.

Inputs and Outputs
Description of the inputs:

• enable - when this input is powered the function is called, being analyzed the parameters
programmed on CHF instruction. If the number of parameters or it type are different of the
function needs or if exist a minimal number of declared operands after pointed on the function, it
will have a powering on error output. If these are correct, it scan the status parameters and copy
to the operands.

 Description of the outputs:

• success - it is powered when the function was correctly installed.

• error - it is powered if there is an error on specification or on trying to access not declared
operands.

Description of the Operand Status
Below, the description of the operands and the index that it can be found in the function table. In the
case of M operand, the declared operand represent the 00 index.

Operand Identification Description

00 Identification of the PLC
Model

00H - AL-3003

01H - AL-3004

20H - AL-2000

21H - AL-2002

22H - QK2000

Chapter 5 Function Modules

173

23H - AL-2003

24H - AL-2004

40H - AL-600

41H - QK600

50H - QK800

51H - QK801

A0H - PL101

A1H - PL102

A2H - PL103

A3H - PL104

A4H - PL105

A5H - PL106

A6H - PL107

B0H – GR310

B1H – GR316

B2H – GR330

B3H – GR350

B4H – GR351

B6H – GR370

B7H – GR371

C0H - PO3042

C1H - PO3142

C2H - PO3242

C3H - PO3342

C6H - PO3045

C7H - PO3145

C8H - PO3245

C9H - PO3345

01 Character 0 of auxiliary
identification of the PLC

02 Character 1 of auxiliary
identification of the PLC

03 Character 2 of auxiliary
identification of the PLC

04 Character 3 of auxiliary
identification of the PLC

05 Character 4 of auxiliary
identification of the PLC

06 Character 5 of auxiliary
identification of the PLC

07 Character 6 of auxiliary
identification of the PLC

08 Character 7 of auxiliary
identification of the PLC

String of auxiliary identification of the PLC, it can take up
to 8 characters, on ASCII format

09 Executive version (high part)

10 Executive version (low part)

Format V.RC, where V is the number of the version, R is
the number of the issue and C is the number of the last
correction. On the high part the V is stored and on the low
part R and C are stored on the nibbles 1 and 0,
respectively.

Chapter 5 Function Modules

174

11 Operation Mode 1 of the PLC

exe: PLC on execution mode

prg: PLC on programming mode

cic: PLC on cycled mode

tst: PLC on mode test

cop: copying module from EPROM to RAM

for: exist relays forcing

cpt: compacting RAM

sai: digital outputs disabled

apg: erasing flash EPROM

prt: protection level of the PLC (0 – no protection - to 3 –
total protection)

trc: modules changing of E/S with the PLC powered

12 Message Code 1

13 Message Code 2

14 Message Code 3

15 Message Code 4

16 Immediate time cycle In ms

17 Medium time cycle In ms

18 Max time cycle In ms

19 Min time cycle In ms

20 Period E018 00H - 50ms

01H - 25ms

02H - 10ms

03H - 5ms

04H - 3,125ms

05H - 2,5ms

06H - 1,25ms

07H - 0,625ms

FFH - Sem E018

21 Reserved Operand

22 Maximum time of program
scanning

00 – 100ms

01 - 200ms

02 - 300ms

03 - 400ms

04 - 500ms

05 - 600ms

06 - 700ms

07 - 800ms

Chapter 5 Function Modules

175

23 RAM status of the applicative
program

General information of the RAM status of the applicative
program and the pointer to the RAM applicative program
bank existence:

cpt: RAM compacted (0) or not (1)

bits 7-0: exist banks

24 Free bytes on RAM
applicative program bank 0

25 Free bytes on RAM
applicative program bank 1

26 Free bytes on RAM
applicative program bank 2

27 Free bytes on RAM
applicative program bank 3

28 Free bytes on RAM
applicative program bank 4

29 Free bytes on RAM
applicative program bank 5

30 Free bytes on RAM
applicative program bank 6

31 Free bytes on RAM
applicative program bank 7

32 Status of the EPROM of the
applicative program

Pointer of the EPROM banks of the applicative programs
existence:

bits F-0: exist banks

33 Free bytes on EPROM
applicative program bank 0

34 Free bytes on EPROM
applicative program bank 1

35 Free bytes on EPROM
applicative program bank 2

36 Free bytes on EPROM
applicative program bank 3

37 Free bytes on EPROM
applicative program bank 4

38 Free bytes on EPROM
applicative program bank 5

39 Free bytes on EPROM
applicative program bank 6

40 Free bytes on EPROM
applicative program bank 7

41 Free bytes on EPROM
applicative program bank 8

Chapter 5 Function Modules

176

42 Free bytes on EPROM
applicative program bank 9

43 Free bytes on EPROM
applicative program bank 10

44 Free bytes on EPROM
applicative program bank 11

45 Free bytes on EPROM
applicative program bank 12

46 Free bytes on EPROM
applicative program bank 13

47 Free bytes on EPROM
applicative program bank 14

48 Free bytes on EPROM
applicative program bank 15

49 Reserved Operand

Chapter 5 Function Modules

177

F-NEGT.093 – Function for the logic denial of Table Operands

Introduction

The function F-NEGT.093 carries out the logic denial of simple (M or D) or table operands (TM or
TD). Up to 255 positions can be denied in one single function call. The result of the alteration can be
stored in this operand, substituting the original value, or in another operand, since it may be of the
same type as the first (memory or decimal).

Programming

The cells of the instruction CHF used to call the function are programmed in the following way:

• OPER1 - Specifies the number of parameters passed to the function in OPER3. This operand
must be a memory constant with value 4 (KM+00004).

• # - OPER2 - Should be an operand of type memory constant with the value 0 (KM+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPER4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

• # - OPER3 - Contains the parameters passed to the function, declared through a window
visualized in AL-3830 when the CHF instruction is edited. The number of editable parameters is
specified in OPER1, being set at 3 for these modules:

• MXXXX, DXXXX, TMXXXX or TDXXXX – Simple operand or table operand
where the values will be denied (source operand).

• MXXXX, DXXXX, TMXXXX or TDXXXX – simple or table operand where the
denied values will be stored (destination operand).

• KMXXXX – Number of simple operands or positions on the table to be denied.
Should be less or equal to 255.

• OPER4 – Not used.

Inputs and Outputs
Description of the function inputs:

• enable - when this input is powered the function is called, the parameters programmed being
analyzed in the CHF instruction. If they are incorrect, the outputs of the invalid index are
enabled.

Description of the function outputs:

• success - indicates that the moving was correctly carried out.

• source index invalid - indicates that these was an error in the specification of the source
operand:

Chapter 5 Function Modules

178

• operand is not declared in module C

• there are not enough positions to carry out the logic

• destination index invalid - indicates that there was an error in the specification of the
destination operand:

• the operand is not declared in module C

• there are not enough positions to carry out the logic

If the two outputs of the invalid index are enabled simultaneously, some of the following errors
occur:

• the number of parameter programmed in OPER1 is different from three

• the type of one or more parameters in OPER3 is not valid

• the destination type operand is different from the supply operand

• the total number of positions to be transferred is more than 255

WARNING:
These functions allow the execution of logic operations of a large number of operands in a single
scan. If should be used with care so that the maximum cycle time of the program is not exceeded.

Chapter 6 Glossary

179

6. Glossary

Glossary to Ponto Series
Address of the Field Network Head: it is the address of a node in the field network. It is adjusted in
the field network head module base.

Base: component where the IO modules are inserted, CPUs, power supplies and remaining Ponto
Series modules.

Bus: set of IO modules connected to a CPU or Field Network Head.

Bus Expander: module that connects one segment to the next

Bus Segment: part of a bus. A local or remote bus that may divided into four segments.

Bus termination: component that must be connected to the last module in a bus.

Commercial Code: it is the product code, formed by the letters PO and followed by four digits.

CPU: central processing unit. It is responsible for the application program execution.

Expansion cable: cable that connects bus expander.

Field cabling: cables connecting the sensors, actuators and other process devices to the Ponto Series
IO modules.

Field network cable: cable that connects the nodes in a field network, such as the Field Network
Interface and the Field Network Head.

Field Network Interface: master module for the field networks, located in the local bus and
performs the communication with the field network heads.

Field Network Head: slave module of a field network. It is responsible for the exchange of data
between the modules and the field network master.

Local Bus: set IO modules connected to a CPU.

Mechanic Switch Code: two digits defined by mechanical switches, programmable in the base and
with objective of avoiding the connection of incompatible modules.

Rail: metallic element with normalized shape accordingly to the DIN50032 norm. It is also called
TS35 rail.

Remote Bus: set of IO modules connected to a Field Network Head.

Network Glossary
Backoff: time that a node in a CSMA/CD network takes before transmitting data after a collision has
occurred.

Baud rate: rate that the information bits are transmitted through a serial interface or communication
network (measured in Bits/second)

Bridge: equipment to connect two communication networks with the same protocol.

Broadcast: simultaneous communication to all the nodes in a communication network.

CSMA/CD. Type of access to the physical media based on data collisions. It is used for Ethernet
networks.

Communication network: set of equipment (nodes) interconnected by communication channels.

Chapter 6 Glossary

180

Deterministic communication network: communication network where the transmission and
reception of information among the nodes is guaranteed to occur within a maximum established time
period.

EIA RS-485: industrial standard (physical level) for data communication.

Frame: information until transmitted in the network.

Gateway: equipment to connect two communication networks with different protocols. The AL
2400/S-C or QK2400 gateways allows interconnection of ALNET I and ALNET II networks.

Media access: method used by all nodes in a network to synchronize data transmission and resolve
possible conflicts in simultaneous transmissions.

Master: equipment connected to a communication network originating all the command requests to
other network equipment.

Master-slave communication network: communication network where the data transfer are
initiated only by one node (the network master). The remaining network nodes (slaves) only reply
when requested.

Multicast: simultaneous communication with a group of nodes connected to a network.

Multi-master communication network: communication network where the data transfer are
initiated by any node connected to the data bus.

Node: any station in a network with the capacity to communicate using a established network.

Peer to peer: type of communication where two partners exchange data without relying on the
master.

Protocol: rules of procedures and formats that, under control signals, allow the establishment of data
transmission and error recovery among equipment.

Serial Channel/Canal: equipment interface that transfer data in the serial mode.

Slave: equipment connected to a communication network that only transmits upon the master
requests.

Sub network: segment of a communication network that connects a group of equipment (nodes)
with the goal of isolating the local data traffic or utilizing different protocols or physical media.

Time-out: maximum preset time to a communication to take place. When exceeded then an error is
generated.

Token: it is a mark that indicates who is the bus master in a moment.

General Glossary
Active CPU: in a redundant system is the CPU that is controlling the system – reading the inputs,
executing the application program and activating the outputs.

Adjustment bridge: Switch for selection of addresses and configuration. It is composed by pins on
the circuit board and one small removable connector used for a selection.

Algorithm: finite and well defined sequence of instructions with the goal to solve problems.

Altus Relay and Block Language: it is a set of rules, conventions and syntaxes utilized when
building a application program to run in a PLC.

Application Program: it is the program uploaded into the PLC and has the instructions that define
how the machinery of process will work.

Arrestor: lightning protection device using inert gases.

Bus: electrical signal set logically grouped with the goal of transferring information and control
among several system elements.

Chapter 6 Glossary

181

Assembly language: microprocessor programming language, it is also knows as machine language.

Backup CPU: in a redundant system, it is the CPU supervising the active CPU. Thus it is not
controlling the system, but ready to take control when the main CPU fails.

Bit: information basic unit, it may be at 1 or 0 status.

Byte: information unit composed by eight bits.

Configuration Module (C Module): unique module in a remote application program that carries
several needed parameters for its operation, such as the operands quantity and disposition of IO
modules in the buses.

CPU: central processing unit. It controls the data flux, interprets and executes the program
instructions as well as monitors the system devices.

Default: pre defined value for a variable. It is used when there is no definition.

Diagnostic: procedures to detect and isolate failures. Also it relates to the data set used for such
tasks, and also serves for analysis and correction or problems.

Download: load of program of module configuration.

E2PROM: non volatile memory that may be erased by electricity.

Encoder: position measurement transducer.

EPROM (Erasable Programmable Read Only Memory): memory for read only, erasable and
programmable. The memory doesn’t loose its contents upon shutting its power off.

Execution Modules (E Modules): modules that have the application program. It may be one of the
three types: E000, E001 and E018. The E000 module is executed just once upon system powering or
when setting programming into execution mode. The E001 module has the main program that is
executed cyclically, while the E018 module is activated by the time interruption.

Executive Program: it is the operating system of a PLC. It control the PLC basic functions and
executes the application programs.

Flash EPROM: non volatile memory that may be erased by electricity.

Function Module (F Module): PLC module called from the main module (M module) or from
another module or procedure. It passes parameters and return values, and serves as a sub-routine.

Hardkey: connector normally attached to the parallel port of a microcomputer with the goal to
protect illegal execution of a software.

Hardware: physical equipment used to process data where normally programs (software) are
executed.

Hot swap: procedure of replacing modules in a system without shutting it down. It is normal
procedure for IO modules.

IEC Pub. 144 (1963): norm for protection of accidental access to equipment, and sealing for water,
dust and other foreign objects to the equipment.

IEC 1131: generic norm for operation and utilization of programmable controllers.

IEC-536-1976: norm for electrical shock protection

IEC-801-4: norm for tests of immunity against interference by pulses train

IEEE C37.90.1 (SWC- Surge Withstand Capability): norm for oscillatory wave noises protection.

Interface: device that adapts electrically or logically the transferring of signals between two
equipment.

Interruption: priority event that temporarily halts the execution of a program. The interruptions are
divided into two generic types: hardware and software. The former is caused by a signal coming from
a periferic, while the later is caused within a program.

Chapter 6 Glossary

182

IO (input/output): input or output devices in a system. In the PLCs they are typically the digital or
analog modules that monitor or actuate the devices controlled by the system.

IO Module: module belonging to the IO subsystem.

IO Subsystem: set of digital or analog IO modules of a PLC.

Kbytes: unit that assesses memory size. It represents 1024 bytes.

LED (Light Emitting Diode): type of semiconductor diode that emits light when energized. It’s
used for visual indication.

Logic: graphic matrix where are inserted the relay diagram language instructions that are part of an
application program. A set of sequentially organized logics makes up a program module.

Menu: set of available options for a program, they may be selected by the user in order to activate or
execute a specific task.

Module (hardware): basic element of a system and has very specific functionality. It’s normally
connected to the system by connectors and may be easily replaced.

Module (software): part of a program capable of performing a specific task. It may be executed
independently or in conjunction of other modules through the passing of information and parameters.

Module address: address used by the CPU in order to access a specific IO module.

Nibble: information unit composed by four bits.

Non-operant CPU: CPU that is not in the active status (controlling the system) neither on the
backup status (supervising the active CPU), thus not ready to control the system.

Octet: set of eight bits numbered from 0 to 7.

Operands: elements over which the instructions work. They may represent constants, variables or
set of variables.

PC: Programmable Controller

Procedure Module (P Module): PLC module called from the main module (M module) or from
another module or procedure and it does not pass parameters.

Programmable Controller: equipment that controls a industrial system based on a application
program written in relay and blocks language. It is composed by a CPU, power supply and a structure
of IOs.

Programming language: it is a set of rules, conventions and syntaxes utilized when building a
program.

RAM (Random Access Memory): memory where all the addresses may be accessed directly and in
a random order at the same speed. It is volatile, in other words, its content may be erased when the
energy is shut down, unless there is a battery to keep its contents.

Redundant CPU: it is the other CPU in a redundant system. For instance, the redundant CPU of
CPU2 is CPU1 and vice versa.

Redundant system: system that has backup or double elements to execute specific tasks. Such
system may suffer failures without stopping the execution of its tasks.

Ripple: undulation present in continuous voltages.

Scanning cycle: a complex execution of the PLC application program.

Slot: device to plug in integrated circuits or other components, thus facilitating their substitution and
maintenance.

Software: computer programs, procedures and rules related to the operation of a data processing
system.

Chapter 6 Glossary

183

System Setup: procedure when the control system is finally tested. It consists of a through test when
all the programs from remote stations and CPUs are put to work together.

Supervision Station: equipment connected to a PLC network with the goal of monitoring and
controlling the process variables.

Tag: name associated to a operand or to a logic that identifies its content.

Toggle: element with two stable states that are switchable at each activation.

Upload: program reading or module configuration.

Varistor: protection device against voltage spikes.

Word: information unit composed by sixteen bits.

Watchdog timer: electronic circuit that checks the equipment operation integrity.

Acronyms
BAT - battery

BT – battery test

CPU – central processing unit

DP: Decentralized Periphery

EEPROM - Electric Erasable Programmable Read Only Memory

EMI: Electromagnetic Interference.

EPROM: Erasable Programmable Read Only Memory

ER - error

ESD: Electrostatic Discharge.

EX - execution

E2PROM: Electric Erasable Programmable Read Only Memory

IO – inputs and outputs

FC: Forcing

Flash EPROM: Flash Erase Programmable Read Only Memory

FMS: Fieldbus Message System

INTERF: Interface

ISOL: Isolation

LED –light emitting diode

Max: maximum

Min: minimum

Obs: notes

PAs – adjustment jumps

PA: Process Automation

PG - programming

PID – proportional, integrated and derivate control

RAM - random access memory

ref: reference

Chapter 6 Glossary

184

RX – serial receiving

SELEC: selectable

TC – Technical Characteristics

TX – serial transmitting

UTIL: utilization

WD - watchdog timer

	Preface
	Description of this Manual
	Documents of Ponto Series
	Terminology
	Conventions Used
	Technical Support
	Issues of this manual

	Introduction
	Programming Language

	Diagrams of Relays Language
	Elements of Programming
	Ponto Series Memory Organization
	Logics
	Operands
	Identifying an Operand through Address
	Identification of an Operand through Tag
	Operands Used on MasterTool
	Identification of Simple Operands
	Identification of Constants Operands
	Identification of table Operands
	Operands %E – Input Relays
	Operands %S – Output Relays
	Operands %A – Auxiliary Relays
	Operands %M - Memories
	Operands %D - Decimals
	Operands %F – Reals
	Operands %I - Integer
	Operands %KM, %KI, %KD e %KF - Constants
	Operands %TM, %TI, %TD e %TF - Tables
	Indirect Access
	Declaration of Operands
	Retentive Operands

	Instructions
	Restrictions Using Instructions on the PLCs
	Graphic Representation of the Instructions
	Description of Syntax Instruction
	Restrictions in Positioning the Instructions

	Programming Project
	Structure of a Programming Project
	Operating Status of the PLC
	Execution of the Programming Project
	Elaboration of the Programming Project
	Depuration of Programming Projects
	Program Execution Cycle Times
	Protection Levels of the PLC
	Interlocking of Commands in the PLC

	Instructions
	List of Instructions
	Conventions Used
	Instructions of the Relays Group
	Contacts
	Coils
	SLT – Jump Coil
	PLS – Pulse Relay
	RM, FRM – Master Relay, End of Master Relay
	Instructions of Moving Group
	MOV – Moving Simple Operands
	MOP – Moving of parts (Subdivisions) of Operands
	MOB – Moving of Blocks of Operands
	MOT – Moving of Tables
	CAB – Load Block
	Arithmetic group Instructions
	SOM - Sum
	SUB - Subtraction
	MUL - Multiplication
	DIV - Division
	AND – And binary between operands
	OR – Or binary between operands
	XOR – Or Exclusive between operands
	CAR – Load Operands
	Instructions of Comparison of Operands – Equals, More than and Less than
	Instructions of counters group
	CON – Simple Counter
	COB – Bidirectional Counter
	TEE – Timer to turn on
	TED – Timer to turn off
	Instructions of the Conversion Group
	B/D - Conversion Binary˚Decimal
	D/B - Conversion Decimal˚Binary
	Instructions of the General Group
	LDI – Connect/Disconnect indexed
	TEI – Test of Indexed Status
	SEQ - Sequencer
	CHP – Call the Procedure Module
	CHF – Call Function Module
	ECH – Write of Operands on Another PLC for Ethernet
	LTH – Reading of Operands from Another PLC for Ethernet
	LAH – Free Updated Images Operands for Ethernet
	Instructions of the Connections Group
	LGH – Horizontal Connection
	LGN – Denied Connection
	LGV – Vertical Connection

	Function Modules
	F˚PID.033 – PID Control Function
	Introduction
	Programming

	F˚RAIZN.034 – Square Root Function
	Introduction
	Programming

	F˚ARQ2.035 to F˚ARQ31.042 – Functions Data File
	Introduction
	Programming

	F˚MOBT.043 – Function for Moving Blocks from Table Operands
	Introduction
	Programming

	F˚RELG.048 – Function to Access the Real Time Clock
	Introduction
	Programming

	F-PID16.056 – F Module for PID Control
	Introduction
	Programming
	Operands
	Inputs and Outputs
	Functioning Characteristics
	Unsaturation of the Integral Action
	Manual Mode
	Direct and Reverse Control
	Sampling Interval
	Execution Time
	Table Position Parameters Description
	Description of %A Operand Control
	Application Notes
	PID Controller Adjustments Suggestions
	Determination of the Constants of the Controller Through the Period and Critical Gain
	Determination of the Constants of the Controller Through the Constants of the Process
	Gains X Scales
	Example of Application
	Uses of F-PID16.056
	Comparison with F-PID.033

	F-CTRL.059 – F Module for Advanced Control
	Introduction
	Programming

	F-NORM.071 – Function to Normalization
	Introduction
	Programming

	F-COMPF.072 – Function for Multiple Comparisons
	Introduction
	Programming

	F-AES.087 – Inputs and Outputs Immediate Update Function
	Introduction
	Programming

	F-ANDT.090, F-ORT.091 and F-XORT.092 – Function Logical Operations between Table Operands
	Introduction
	Programming

	F-STCP.044 – CPU Status Function
	Introduction
	Programming

	F-NEGT.093 – Function for the logic denial of Table Operands
	Introduction
	Programming

	Glossary
	Glossary to Ponto Series
	Network Glossary
	General Glossary
	Acronyms

