MasterTool® Programming
PONTO Series Programmin

Rev. F 01/2005
Céd. Doc.: MP399602

Condicdes Gerais de Fornecimento

No part of this document may be copied or reproduced in any form without the prior written consent
of ALTUS Information Systems S.A. who reserve theright to carry out alterations without advice.

According to legislation in force in Brazil, the Consumer Defence Code, we are giving the following
information regarding personal safety and installation by the client.

Theindustrial automation equipment, built by ALTUS are strong and reliable due to the stringent
quality control it is subjected to. However the electronic industrial control equipment (programmable
controllers, numerical commands, etc.) can cause damage to the machines or processes through their
controllers when there are defective components and programming or installation errors. This can
even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional
external installations for security so that, if necessary, the security of the system can be maintained
especially during theinitial installation and testing.

It is essential to completely read the manuals and/or about the technical characteristics of the product
beforeit’sinstallation or use.

ALTUS guarantee their equipment against genuine production faults for a period of twelve months
starting from the shipping date. This guaranteeis given in terms of factory maintenance, that isto
say, the transportation costs of returning to factory will be borne by the client. The guarantee will be
automatically suspended where there are modifications introduced to the equipment by personnel not
authorized by ALTUS. ALTUS are exempt from any responsibility with regard to repairs or
replacement parts owing to faults created by outside influences, through inappropriate use, as well as
the result of accidents or force majeure.

ALTUS guarantees that their equipment works in accordance with the clear instructions contained in
their manuals and/or the technical characteristics, not guaranteeing the success of any particular type
of application of the equipment.

ALTUS does not acknowledge any other guarantee, direct or implied, principally when it is dealing
with supply of third parties.

Requests for additional information about the supply and/or characteristics of the equipment and
ALTUS services should be put in writing. The address for ALTUS can be found on the back cover.
ALTUS is not responsible for supplying information about their equipment without formal
registration.

COPYRIGHTS

MASTERTOOL and QUARK are the registered trademarks of ALTUS Information Systems S.A.
IBM istheregistered trademark of the International Business Machines Corporation.

Sumary

Sumary
L PREFACE ...ttt Rt E e Rt R e R et R e e R e nR e e e R e R e e nne e neennes 6
Description Of thISIMANUAL ...ttt s e et e et e e s e e e eae e e sneeeenneeeans 6
DOCUMENTS Of PONTO SENTES ...ttt ettt b et et e e b e s e e e s e e s neenneennneenneennneens 6
B IS8 1] oo VST 7
CONVENTIONS USE. ...ttt et h e et e b e e R e e s e e bt e nhe e e st e neenan e e neennnennneenees 8
TECNNICAl SUPPONT ...ttt e s h e et s e s st e e e be e e se e e n e e b e e nnneeneenneennes 9
ISSUES OF TNIS MANUAL ...t b e st n e e nneennneenees 10
2. INTRODUGCTION ...ttt e s s e s ae e st e b e e e ae e e e e e be e e ae e e s e e neesae e e s e e aneennnennreeneas 11
Programming LaNQUAGE.cceoeeeeeeeitieeaieeeateeeateeeaeeeaaseeaaaeeeeaseeaasseeaaseeaanseeaanseeaaseeesaseeaanseeansesesnseesnsees 11
3. DIAGRAMS OF RELAYSLANGUAGEoooiiiiiietee ettt 12
Elements of Programming..........oo.ei oottt e et e e st e e saee e e s eeesteeesnteeenneeeanteeeaneeeeneens 12
PONto SerieS M emOry OF QANIZALIONcooeeieeeieeiiee ettt e s s s e b e sse e n e e s neesnnennneenees 12
oo 03T 13
L0 0= = [0 LT 14
Identifying an Operand through AdAreSS..........ooueii i 14
Identification of an Operand through Tag.........oocuiiiiiie e 14
Operands Used 0N MaStErTOO!coeiiiiiiie ettt et e e nee e e et e e emee e e eneeeenneens 15
Identification Of SIMPIE OPErANGS.......ccoouiiiiiie et st e e seeeeeneeeens 15
Identification Of CONSLANS OPEFANGS.coeiureeiiiee et e riee et e eeeeeteeeseeeesteeeseeeesnaeeesseeeeseeeanneeenneeeaas 16
Identification Of tall@ OPErANASoiiiiie et st sne e e sneeeeneeeens 17
Operands YE — INPUL REIQYS.ooieieiiie ettt et ettt e e saee e et e e e eeeesneeeeneeesneeeenneeas 18
Operands %S — OULPUL REIGYSeeiieiiii e n e n e sneennne e 18
Operands %A — AUXITANY REIGYS.....coooiiiieee ettt eeneeas 19
(@ 0c =100 R Y B = 11010 1= S 19
Operands YD - DECIMAIS.c.cuiiiiieieiiee ettt ettt e e st e e st e e ste e e sae e e steeesnteeeanseesnneeesnseeeanseeeneens 20
OPErandS YoF — REAIS.......ooieieeee ettt ettt e e st e e e te e st e e e s st e e et e e eneeeeaneeeeteeennteeeneeas 21
(@ 0c =100 SR B 1 (o = SRS 21
Operands %KM, %K1, %KD € YK F - CONSLANEScuveeiiiieiieeeeiee e e siee e e et e e e eeseee e 22
Operands %TM, %T1, %TD @%TF - TADIES......coeeieeeeee e 23
INOITECT ACCESS ...ttt h e s h et e bt e e bt e bt e e b e e sae e e b e e be e nan e e neenneennneenees 24
DeClaration OF OPEFBNGScvieiiieiiieieeiee ettt e s e e b e b e e nae e e n e e sneennneenees 25
RELENTIVE OPEIANGS. ...ttt r e s e e e et e e s b e e s e e e s e e s be e s an e e neenneesnnennneeneas 26
g U T[] TSP P PR PP PPRP 27
Restrictions Using INStructions 0N the PLCS.........ooeiiiieiieieeeeee e 28
Graphic Representation Of the INSITUCLIONS............coiiiiiieiie e 29
Description Of SyntaX INSITUCTIONeeiiieiieiie e 30
Restrictions in Positioning the INSITUCLIONS...........cceiiiiiiieeere e s 30
Programming PrOJECLeei i iie oot ee et ettt et e e st e e st e e s et e e smeeeeaaeeesseeesnteeeanseeeneeesnseeeaneneeneens 32
Structure of aProgramming PrOJECL..........coiiiiieieie et 32
Operating StatuS Of TNEPLC...... ..o n e nnne e 35
Execution of the Programming ProjECL............oo it eee e snaeeeens 37
Elaboration of the Programming ProJECL............uuiiiiiiii e 39
Depuration of Programming PrOJECEScoueieiiiieiiee et eee sttt see ettt e e seee e st e snte e e sneeesneeesnneeeeas 43
Program EXeCULION CYCIE TIMES........oiiieiiiiii ettt e s nnneenees 51
Protection LEVEIS OF TNEPLC ... e 52

Interlocking of CommandSiNTNEPLCoo e e e e e eneeeens 53
4. INSTRUGCTIONS. ...ttt e et e b e e ae e et e e b e e e e e e e s e e be e e an e e neeaneenaneeneenneennes 55
LISE OF INSEFUCLIONS.......eeet ettt e ettt s e et e n e e b e e eae e san e e n e e nneenaneenean 55
CONVENTIONS USEO.......ceeeeeieeiee ettt h ettt e e b e e et e b e e s s et e aneesbeesnreeneenneenneennnean 55
INstructions of the REIAYS GrOUDooi it saeeeeneeeeas 58
{01 K= T PP 59
Coils 60
SLT —JUMP GO0l ettt b e b e e et b e ebe e e n e e ne e nnn e e neenneennneen 61
PLS = PUISEREIGY.......c.eee ettt e s n e e n e s s e e s 63
RM, FRM — Master Relay, End of Master REEYooociriiiieeie e 64
INSLrUCLIONS Of MOVING GIOUDvviitietiesieeete ettt ettt ettt e s s s e b e e sse e e e e e nneennneennennneenees 65
MOV —MoVING SIMPIE OPEIANGS.ccueeiieeiieiie ettt sr e e eesne e s enees 66
MOP —Moving of parts (SubdiviSions) Of OPErandSceeiueeiieriirieesee e 67
MOB — Maoving of BIOCKS Of OPEIranCS...........cooiiiiiiiieie et e e e sneens 69
MOT —MOVING Of TADIES ...ttt et e e sae e e et e e smee e e saeeeneeeeas 71
CAB — L OB BIOCK ...ttt ettt e e n e nne e nnne e 73
ATthMELIC GroUP INSIIUCTIONS.c.veeieieeet ettt r e eneenaneenees 78
SOM = SUIML ...ttt a et e bt e s et et e e e he e e e et et e e eRe e ea e e e bt e e R e e ann e e b e e aneennneenneeaneennnean 78
SUB = SUBIIACHION. ...ttt ettt s et e b e e se e esn e e b e e e neeeneenneenneennneen 80
MUL - MURTPIICBIION. ...t e e n e e b e nnneenees 81
DIV = DIVISION ...ttt ettt h e s ae e s e e b e e ae e e st e b e e e ae e eane e be e s me e e st e neenneennneeneen 82
AND — And binary DEIWEEN OPEFBNGSciveiiiierie ettt eneas 83
OR — Or binary DEWEEN OPEIaNGS.ccueiiiieiieiiec et 85
XOR — Or EXClUSIVE DEIWEEN OPEFGINGS.c.vveiiveeriesiee et ettt ettt sb e s e neesneesaneen 87
CAR — LOBH OPEIGNGS. ...ttt ettt ase e see e be e ase e e s e e abeeas e e anneeabeesnreeneesseeaneennneans 89
Instructions of Comparison of Operands — Equals, Morethan and Lessthan.............ccccooceeieeniciieeen. 0
INSLFUCLIONS Of COUNEETS GIOUDvveeiteestiesiee et et e st s sttt s e se e s et esse e s e e e be e s se e e b e e nneesnneennennneenees 93
CON — SIMPIE COUMEES ...ttt e et b e sn et e s he e e st e beessn e e neenneesreenneennneen 94
COB — BidireCtional COUNLENccueiiieeiiieiieeiee ettt e b sie e n e e neenne e s aneennneens 95
TEE — TIMEN O TUIM ON ..ttt b e sb et nb e e st e b e e nne e s n e e nneennneen 96
TED — TIMEr TOTUIMM OFf <.ttt nne e nane e 97
INStructions of the CONVErSION GIOUPc..uerrieiueeieeeireesieesee ettt ss e sieesneesseesse e e neesneessnesnneenneas 98
B/D - Conversion Binary-DECIMELcooiiiiiiiieiiiieesee et 99
D/B - Conversion DECIMAI-BINarycociiiiiiiiiieiie e 100
INStructions Of the GENEIAl GIOUPveeiieeireeiieriee ettt re e s nb e sne e neennneens 101
LDI — Connect/DiSCONNECE INAEXE.oiiieeieieeiieee e nne e 102
TEI —TeSt Of INAEXEH SEALUS.coiueieiieiiee ettt n e ne e s 104
R @ TS o 1 0ot PP R PR 106
CHP — Call the ProCedUre@ MOUUIE............ooiieeeeeeeeee e 111
CHF — Call FUNCEION MOGUIE........cceiiiiiiieeee e 112
ECH — Write of Operands on Another PLC for Ethernet.............oocovieiiiiiiieeeee e 115
LTH —Reading of Operands from Another PLC for EtNerNetcccooviiiieii i 120
LAH — Free Updated Images Operands for EXthernet............cooviiiiiiciec e 122
Instructions of the CONNECLIONS GIOUPeeiuririieieeiiee ettt se e e ne e e sn e e nneesneenaneen 123
LGH — HOriZontal CONMNECLIONooiuiiiieeieesiee ettt sn e e ne e s e nnne e 123
LGN — DENIEA CONMNECLION.eeeutieiiie ettt ettt b e se e eebe e s seesn e e be e s sneanneenneesnnennnean 123
LGV — VertiCal CONNECLION........ciiieiieieiete ettt n e ne e s e e neesneennneea 123
5. FUNCTION MODULES.ottt ettt se e s se e e st e s ne e san e e nneennnenaneens 124
F-PID.033 — PID CONtrOl FUNCLIONouiiiiieiieiee it 125
(L g LU0l [FTox A o o F TSRO PPUPRPRP PRI 125
0o 2100101 oo [T T RSP OTRPRPPRTR 126
F-RAIZN.034 — SqQuar @ ROOE FUNCEION.coiiiiiiiiiieieeiee et 130

L g LU0l [FTox A o o H TSP P P OPP PSPPI PRI 130
(070 =10 0 o S 130
F-ARQ2.035 to F-ARQ31.042 — Functions Data File..........cooiiiiiiiiiiieecceeee e 132
(L g LU0l [FTox A Lo o H TSRS PP PRPPRTR 132
(070 =101 0 o S 132
F-MOBT.043 — Function for Moving Blocksfrom Table Operands..........ccccovcoveicireiennce e 136
(L g LU0l [FTox A o o H TSP P PSPPSR PRPPRTR 136
(070 =100 oo S 136
F-REL G.048 — Function to Access the Real Time ClOCKccouiiiiiiieiieiieeeesiee e 138
(L g LU0l [FTox A o o H TSRS PR PSPPI PRI 138
(070 =100 o S 138
F-PID16.056 — F Module for PID CONEIOl.......ccouiiiiiiieieeiie et 140
(L g LU0l [FTox A o o H TSP P PSPPSR PRP PRI 140
(070 =1 00 oo S 142
(@07 =00 ST P PSP PP PR 142
INPUES @NO OULPULS. ...ttt b e s e e e b e s e e e an e e e neennneeneenneennneen 142
FUNCEIONING CharaCteriSICS. ... eeiuieeiie it n e e sneennn e 143
Unsaturation of the INtegral ACHIONcocuiiiiiiiee e 143
MBNUBI MOttt h et h e s b e e e s e e be e s se e et e e b e e enneeneesneennneans 143
Direct and REVEISE CONMLIOLoouiiiieiieiiee ettt sn e nneennne e 143
SAMPIING TNEENVEL......eeeeee et e b e s s e en e e neenneenaneenees 143
EXECULION THMIE. ..ttt s e et e b e e s e e e e e e be e s e e e s e e e beennneenneenneennneens 144
Table Position ParameterS DESCIPIIONco.viiiieieire ettt 144
Description of %A Operand COMIOLcoiiiiiiiiieiie e nne e 145
APPHCAEON NOLES.......eeeeeiee ettt b et b e b e e be e s e e e ne e sne e sne e s ne e nee e 146
PID Controller AdjUSEMENES SUGQESHIONS.........eiiuriiiieiiieiie ettt n e nnne e 149
Determination of the Constants of the Controller Through the Period and Critical Gain...................... 149
Determination of the Constants of the Controller Through the Constants of the Process...................... 150
GAINS X SCAIES......ceiteetie ettt ettt b e sttt h e e s ae e et e b e e se e e s e e bt e s ae e e e e e n e e nneennneene s 152
EXAMPI e Of APPHICAIIONeiiiiiiie ettt n e sne e sn e sneennn e 154
USES Of F-PIDLG.056eeeieiiieiiieiiie ettt ettt e e be e se e e e e e be e s sneenneenneesneennneens 157
CompariSon WIth F-PID.033 ...t n e n e neenees 157
F-CTRL.059 — F Module for Advanced CONtrol...........c.cooieiieieiiieeesee e 159
(L g LU0l [FTox A o o H TSP P TP OPP PR PRPPRTR 159
0o 2100101 T oo [T PP PR PRP PRI 162
F-NORM.071 — FUNCLion tO NOFMalIZAEION.eoiiiiiieiee it 164
(L g LU0l [FTox A o o H TSP PSP PRPRP PRI 164
00 2100101 oo [P OPROPR PR PRI 164
F-COMPF.072 — Function for Multiple COMP@riSONS..........cocieiieriierieeiie e 166
(L g LU0l [FTox A o o H TSRS PRSP UPRPRP PRI 166
0o 2100101 T oo [T PP PRPPRTR 166
F-AES.087 — I nputs and Outputs Immediate Update FUNCLIONccceiiiiiieiienieneeeeesee e 168
L g LU0l [FTox A o o H TSP PP PP PR PRPPRTRN 168
0o 2100101 oo [T T PP PR PRP PRI 168
F-ANDT.090, F-ORT.091 and F-XORT.092 — Function L ogical Oper ations between T able Oper ands
170
(L g LU0l [FTox A o o H TSP PP PR PRP PRI 170
0o 2100101 T oo [T OPP ST PR PRI 170
F-STCP.044 — CPU SEAtUS FUNCHION.ciiiiiiiiiie ittt 172
(L g LU0l [FTox 1 o o H TSP PR PR PRPUPRTRN 172
0o 2100101 T oo [T OPP TR PRPPRTIN 172
F-NEGT.093 — Function for the logic denial of Table Operands..........cccccovcvriieiieienieesee e 177
(L g LU0l [FTox A o o H TSP PP PRPRPPRTRN 177
(070 =100 o S 177
B. GLIOSSARY .ttt R R e R e R e Rt e R e e R et e Rt e R e e e R et e et e Re e Re e nnn e e ne e e e nnneaas 179

GlOSSANY 10 PONEO SEITES ...ttt ettt h e s e s s e e e e b e e s meenan e e neennnennneenees 179
N Y0 S] (xS | S 179
GENEN Al GIOSSANY ...eieiieiiie ettt ettt e et e e st e e s st e e e st e e e teeeaneee e seeesmseeeaneeesnseeesmseeeanseesnseeesnseeennenean 180
F e 0010 01 TSP 183

Preface

1. Preface

Description of this Manual

This manual presents the programming language used on ALTUS Ponto Series programmable
controllers, and orientations on implementing application programs. It was written assuming a
familiarity with the use of standard IBM PC® microcomputers and Windows™ operating
environment.

The software programmer MasterTool Programming MT4000 or MT4100 referred to from now on as
MasterTool® was developed for programming in the relay and blocks language of the programmable
controller ALTUS Ponto Series.

This manual is divided into 4 chapters and glossary.

Chapter 1, Introduction, present the basic characteristics of ALTUS Ponto Series programming.
Chapter 2, Diagrams f Relays L anguage, show this language components.

Chapter 3, Instructions, describe the function and syntax of all instructions.

Chapter 4, Function Modules, describe the function and the programming parameters of input and
output of the ALTUS function modules.

Documents of Ponto Series

To obtain additional information about Ponto Series can be used other documents (manuals and
technical characteristics) besides this one. This documents can be found on www.altus.com.br.

Each product have a document named as Technical Characteristic (CT), in this document can be
found the characteristics of the product. If the product have more informations, it can havea user’s
manual too (the code of the manual is cited on CT)

For example, the module PO2022 have all it characteristics informations, uses and buying, onit CT.
On the other side, the PO5063 have, besides the, an user’s manual.

Advices the following documents as additional information:
Technical characteristics of each product

e User's Manual of the Master Tool Programming

* Use’sManual of the Ponto Series

http://www.altus.com.br/

Preface

Terminology

In this manual the words “ software’, “hardware’, “mouse’, “tag” and “wire-info” are used freely, in
general and frequently. For this reason, despite their being English words, they appear without
inverted commas.

Thefollowing expressions are employed with frequency on the manual text. So, the need of being
known to a better understanding.

* PLC: Programmable Logical Controller —understood as an equipment with an PLC, input and
output modules and power supply.

* CPU: Central Processing Unit, is the main module of the CP, it process the data.

Theword “modul€’, when referring to hardware, is used to determinate each component of an
equipment.

Theword “modul€’, when referring to software, is used to determinate each component of an
application program.

Other expressions can be found on Appendix A, Glossary.

Preface

Conventions Used
The symbols used throughout this manual have the following significance:
* Thismark indicates alist of items or topics
CAPITAL LETTER indicate names of keys, for example ENTER.

KEY 1 +KEY 2 isused for keys which have to be pressed simultaneously. For example, the
simultaneous pressing of keys CTRL and END is indicated by CTRL + END.

KEY 1, KEY 2 isused for keys which have to be pressed sequentially. For example, the message
“Press ALT, F10” indicates that the ALT key should be pressed and freed and then the F10 key pressed
and freed.

CAPITAL LETTERS indicatefile names and folder names.

Italics indicate words and characters which are keyed in on the keyboard or viewed on screen. For
example, if you are asked to key in A: MasterTool these characters are keyed in exactly as they
appear in the manual.

BOLD-FACED TYPE is used for names of commands or options, or for emphasizing important
parts of the text.

Warning messages have the following format and significance.

DANGER:
The label DANGER indicatesarisk to life, serious harm to people or that substantial material
damage may happen it the necessary precautions are not taken.

WARNING:
The label WARNING indicates that har m to people or minimal material damage can happen if
the necessary precautions ar e not taken.

ATTENTION:
Thelabel ATTENTION indicates arisk to life, of serious harm to people or that substantial material
damage can happen if the necessary precautions are not taken.

Preface

Technical Support

Any questions about the product should be directed to ALTUS support service. The address and
telephone number can be found on the back cover. Or on the internet:

1 www.atus.com.br
2 E-MAIL: dtus@altus.com.br

In the event of the equipment already being installed, it is advisable to provide the following
information before getting in contact:

3 Modds of used equipments and configuration of the installed system

4 Serial number of the CPU, the equipment revision and the version of the executive software, on
the labd on the equipment

Information about the status of the PLC, available through the command Communication, Status,
option information about MasterTool programmer or sdecting the button

5 Modules of the applicative program, obtained through the MASTERTOLL programmer

Version of MasterTool programmer, which can be obtained starting with command Help, About

Master Tool or selecting the button

http://www.altus.com.br/
mailto:altus@altus.com.br

Preface

Issues of this manual

Thereference code, of the issue and the date of the current manual is indicated on the cover. A

change in the issue can mean alterations to the functional specification or improvements to the
Manual.

Thefollowing is an account of the corresponding alterations to each issue of this Manual.

Revisdo: A Data: 10/2004
Approval: Luiz Gerbase
Author: Jean Schmith

Observations:

e First issue of this manual

Revisédo: F Data: 01/2005
Approval: Luiz Gerbase
Author: Jean Schmith

Observations:

» Sincronization of the Portuguese and English versions of the manuals.

10

Chapter 2 Introduction

2. Introduction

Welcome to ALTUS language of Relays and Blocks, a language which allows constructing
application programs for ALTUS PLCs with MasterTool Programming.

The applications program’s objective is the execution of control tasks. This program, when |oaded
into the programmable controller (PLC), makes this passto exercise the control functions of the
machine or process which is being programmed.

Programming Language

Programmabl e controllers came to replace relay control panels. In this context, a programming
language which approaches it more from the experience of technicians and engineers will bea more
adequate solution for the development of PLC’ s applications programs.

In view of this, the available instructions for construction of the applicationsin MasterTool are
programmed in a language of relays and blocks, very similar to language of eectrical contacts and
bobbins, used in the description of therelay control panels.

The main advantage of using this type of language isits quick learnship, sinceit is very much like
conventional electrical outlines.

The accompaniment and verification of the functioning of on applications program is similar to the
electrical outline, with the advantage of visualizing the status of the contacts and reels in the
MasterTool window.

11

Chapter 3

Diagram of Relays Language

3. Diagrams of Relays Language

This chapter describes the ALTUS Relays and Blocks language. It detailing those elements of the
language, the modular structure of an applications program and the function of each module.

After reading this chapter it will be possible to structure an applications program as well as carry out
the configuration of the PLCs and router devices.

Elements of Programming

An applications program is made up of 4 basic e ements:
* modules

* logics

* instructions

e Operands

An applications program is composed of different modules, allowing a better structure for the
routines according to its functions. The modules are programmed in the language of relays, following
the global tendency for Normalization in this area.

A module of an application programis divided into programming logics. The format of an
application program logic use don Ponto Series CLPs allows the maximum of eight e ementsin
series ans up to four elementsin paralld.

Theinstructions are used to execute determined tasks for the environment of readings and for
alterations to the value of the operands.

The operandsidentify different types of variables and constants used in the elaboration of an
applications program, being able to have its value changed according to the program carried out. An
example of variables are points of 1/0 and memory counters.

Each component element of the applications program is explained in detail in the following sections.

Ponto Series Memory Organization

The applications program is stored in the controller in an area of memory divided into banks. There
can exist one or more RAM and EPROM memory banks, according to the model of the PLC and its
memory configuration, each bank having 16, 32 or 64 Kbytes.

In this manual, in the MasterTool help and in MasterTool programmer, the name EPROM refers
indistinctly to memory for permanent recording of the application program used inthe PLC, that is
to say of type EPROM cartridge or EPROM flash.

In the directory window of the PLC's modules (options Communication, M odules) it is possible
to visualize the quantity of free memory in each bank, for each type existing in the controller. C.f.

M odules Option in the section Communication Command in chapter 4.

The values of the numeric operands (% M, %D, %F, %TM, %TD and %TF) are stored in a separate
area of the program, with different sizes according to the model of PLC. The amount of operands
memory free can be checked in the editing window of module C in the operands pand. For further
information about the Editing Window of module C, c.f. section Editing Windows, in chapter 3 of
the User's Manual.

12

Chapter 3 Diagram of Relays Language

Logics

The binary operands (%E, %S and %A) have area permanently reserved for their values in the
internal memory of the microprocessor.

The use of memory operands is shown in detail in the section Declaration of Operands, in the
same chapter.

For further information about the capacities and memory organization of each controller, consult
their respective Users Manuals (c.f. section Related M anuals, in the preface of this manual).

Theword logic refers to a programming matrix made up of 32 cdls (matrix elements arranged in four
lines 0 to (3 to 8) columns (0 to 7). Instructions can be placed in each one of these cells, being
possibleto program up to 32 instructions in the same logic.

Each logic present to the program, simulates a short part of areal diagram of relays. Figure 2-1
shows the format of an applications program logic.

|7 maximum sequence of 8 calumns 4|

] 1 2 3 q h b 7

T 0

ma=imum 1

q parallel
lines 2
|
| L cell |
left energy bar right energy bar

Figure 2-1 L ogic For mat
Thetwo lateral lines of the logic represent energy bars between the instructions placed for execution.

Symboalic instructions usually found in diagrams are available for programming, such as contracts,
coils, connections and instructions shown in boxes as timers, counters and arithmetics.

Thelogic should be programmed in a format which reel and inputs of instructions from boxes may be
“powered” starting from the closure of a flow of “current” from the left to the right between the two
bars, through the contacts or from the outputs of interconnected boxes. However, the flow of
“eectrical current” simulated in alogic flows only in the sense of from an energy bar on the |&ft to
theright, different from thereal dectrical outlines. The concept used simplifies very much thelogic
project of relays, once that is not necessary to be concerned with the escape paths of current.

The processing of the instructions of alogic carried out in columns, from column 0 to 7. One column
is processed in the sequential order of its lines, from line O to line 3. Figure 2-2 shows the processing
order of thelogic cells. The number existing in each cell indicates its order in the processing.

13

Chapter 3 Diagram of Relays Language

-
0 1 2 3 1 h b 7

] 1 al 9 13 17 A 25 29

1 2 E 10 14 18 22 26 a0

2 3 7 1 15 13 23 27 A

3 4 8 12 16 20 24 28 32

Figure 2-2 Processing order of the Logic Cells

Operands

Operands are elements used for MasterTool instructions in the elaboration of an applications
program. The operands can define constant values, defined at the time of programming, or variables,
identified through an address or tag, with values able to be changed during the execution of an
applications program.

Identifying an Operand through Address

Theidentification and use of an operand through its address is characterized through character % as
first character of the name. Therest of the name used should follow the rules for forming the
addresses of operands.

Theformat of each operand can be seen in the section | dentification of Simple Operandsandin
the subsequent sections, in this same chapter.

Identification of an Operand through Tag

Theidentification and use of an operand through its tag is characterized through use of a name, with
up to 7 characters (alphanumeric), which can be attributed to any operand, except constants. This
name passes to represent the operand in the processes of programming, monitoring, purifying and
documentation of an applications program.

[MasterTool does not allow the use of TAGs for operands of the type constant (%KM or %KD).

E.g.:

Attribute the tag CONT 1 to the operand % M 0000. Always when the operand % M 000 reeds to be
used in the editing of the applications program, it can useitstag CONT 1.

OHINT:

The choice of name tag for the operand should reflect at the most the function which the contents of
the operand executes in the applications program.

E.g.: TANK 1, storesthe volume of tank 1.

Theidentification of an operand through its address can always be done, once the whole operand has
an address. The identification of an operand through its tag, can only be achieved after attributing
the tag to an operand.

14

Chapter 3 Diagram of Relays Language

The attributing of tags to operands can be achieved through the command Oper ands from the menu
Report or directly at the time of programming. In the second case, to fill in the name of an
instruction operand with a non-existent tag, indicates the non-existence of a tag definition, and asks
which type of operand the tag should be created for.

For further information about creating and attributing tags to operands, c.f. sections about the
command Report, Operands, on the chapter 4 and Inserting Tags and Comments for
Operands, on the User’ s Manual of MasterTool.

The operands can also be visualized through their associated wire-info, However, an operand cannot
beforced or monitored by keying in the wire-info instead of the tag or address.

Operands Used on MasterTool
The operand availablein MasterTool are shown in table 2-1:

Type Operand

%E Input Relays

%S Output Relays

%A Auxiliary Relays
%M Memorys

%l Integers

%D Decimals

%F Reals

%KM Memory Constants
%KD Decimals Constants
Y%KF Reals Constants
%TM Memory Tables
%TI Integer Tables
%TD Decimals Tables
%TF Reals Tables

Table 2-1 Operands Used in M aster Tool
The operands are divided into 3 groups:

* simple operands

* constant operands

» tableoperands

Identification of Simple Operands

The simple operands are used with variables of storing the values in the applications programs.
According to theinstruction which they use, they can be referenced in full or in a subdivision (one

part of the operand). The subdivisions of operands can be word, octet, nibble or point.
The general format of a simple operand can be seen in figure 2-3.

HOEEHE

address of the subdivision [hexadecimal - optional)
type of subdivision [.. h. n. b, w. - optional]
addreszs of the operand [decimal]

type of the operand [E. 5. A . R. M. D_F. 1]
identifier of address of operand

Figure 2-3 Format of simple operand

15

Chapter 3

Diagram of Relays Language

Operand type:
%E - input

%S - output
%A - auxiliary
%M — memory
%I - integer
%D - decimal
%F - real

Subdivision type:

. —point of box word (1 point)
h - point of high word (1 point)
n - nibble (4 point)

b - octet (8 point)

w - word (16 point)

Examples of Addresses:

%EQ0002.3 — point 3 of the input operand 2
%S0004.7 — point 7 of the output operand 4
%A0039n1 - nibble 1 of the auxiliary operand 39
%A0045 - auxiliary octet 45

%I10234 —integer operand 234

%M 0205 - memory operand 205

%M 0205h0 - octet O of the memory 205
%D0029 - decimal operand 29

%D0034w1 - word 1 of the decimal operand 34
%F0001 —real operand 1

Tags examples:
FORNO
LIMSUP
CHAVE1L

Identification of Constants Operands

The constant operands are used to define the fixed values during the editing of an applications

program.

The general format of a constant operand can be seen in figure 2-4.

16

Chapter 3 Diagram of Relays Language

[%] k| 0]+s] 3000 |

yvalue of the constant [decimal]

signal of the conztant [positive or negative]
type of the constant (M. D, F. or]

symbol of constant [K]

identifier of address of operand

Figur e 2-4 Format of a constant Oper and

Constant type:
% M memory
%1 integer

% D decimal
%F red

Examples:

%KM+05172 — memory positive constant
%K1-1 — integer negative constant

%K D-0974231 — negative decimal constant
%K F+0153.78 — positive real constant

Identification of table Operands

Tables of Operands are groups of simple operands set out in one dimensional arrays. Indices are used
to determine the position of thetableisrequired to beread or altered. Memory, integer, decimal and
real operand tables are possible.

The general format of an operand table can be seenin figure 2-5.

=] 1]o] o0 |

addrezs of the table [decimall
type of the table (M. D, F or 1]

symbol of table [T]
identifier of addresz of operand

Figure 2-5 Format of a table Operand
Tabletype:
% TM memory
%TI integer
% TD decimal
% TF real

Examples:
%TM0026 — memory table 26
%T10020 — integer table 20

17

Chapter 3 Diagram of Relays Language

%TDO0015 — decimal table 15
%TF0069 —real table 69

Operands %E — Input Relays

Operands used to reference points of digital modules of input. Their quantity is determined through
the number of 1/0 modules which are arranged behind the scenes of the system. C.f. item
Configuring the Busin the section Configuring the M odule C on the MasterTool User’s
Manual.

The operands %E are normally used in binary instructions (contacts, reels) and for movement. They
use up one byte of memory (8 bits), storing the values of the points directly in each bit. The values of
the operands are stored in the internal memory of the microprocessor, not using the space availablein
the applications program.

The formats of the operands %E can be seen in figure 2-6.

X E | 2000 - octet of input [8 pointz]
= E | x00t | n | 2| - mbble of input [4 points - n0 until nl]
= | E | 3000¢] . | =| - point of input [1 point - .0 until 7]

L address of the subdivision
type of subdivizion
address of the operand

Figure 2-6 Format of Operands % E
Examples:
%EQ018.6 - point 6 of the input octet 18
%E0021n0 - nibble O of the input octet 21
%E0025 — input octet 25

Operands %S — Output Relays

Operands are used to reference points of digital modules of output. Their quantity is determined
through the number of 1/0 modules which are arranged behind the scenes in the system. C.f. item
Configuring the Busin the section Configuring the M odule C on the MasterTool User’s
Manual.

The operands % are used in binary instructions (contacts, reels) and for movement. They use up one
byte of memory (8 hits), storing the values of the points directly in each bit. The values of the
operands are stored in the internal memory of the microprocessor, not using the available space of the
applications program.

Theformat of the operands can be seen in figure 2-7.

o | g [oo - octet of output [B pointz]

%Z|S |00 n|¥| - nibble of putput [4 points - nO until n1]

v 4 I
gl 5 1— point of output [1 point - _0 until .7]

address of the subdivision
type of subdivision
addrezs of the operand

Figure 2-7 Format of Operands% S
Examples:

18

Chapter 3 Diagram of Relays Language

%S0011.2 - point 2 of the output octet 11
%S0010n1 - nibble 1 of the output octet 10
%S0015 — output octet 15

Operands %A — Auxiliary Relays

Theauxiliary relays are operands used to store and manipulate the intermediate binary values in the
processing of the applications program. Their quantity in the controllersis fixed (c.f. section
Declaration of the Operandsin this same chapter).

Operands %A are used in binary instructions (contacts, reels) and for movement. They use up one
byte of memory (8 bits), storing values directly in each bit. The values of the operands are stored in
the internal memory of the microprocessor, not using the space available to the applications program.

The formats of the Operands %A can be seenin figure 2-8.

- octet of auxiliary [B [points]
% | A| 200 n|X| - nibble of auxiliary [4 points - n0 until n1])
Z|A| 20| . | X| - point of auziliary [1 point - .0 until .7]

:

L address of the subdivision
type of subdivision
address of the operand

Figur e 2-8 Formats of Operands % A
Examples:
%A0032.7 - point 7 of the auxiliary output 32
%A0087nl - nibble 1 of the auxiliary output 87
%A0024 — auxiliary octet 24

Operands %M - Memories
The operands %M are used for numerical processing, storing values in simple precision, with signal.

The formats of the operands %M can be seen in figure 2-10.

Pl - memory operand [16 pointz]

wrnwn |y | 32| - octet of memory [8 points - b0 until b1)

w00 | | % | - nibble of memory [4 points - n0 until n3]

Y| 89| 8| 8
I

oo | | | - point of memory [1 point - .0 until _F]

L address of the subdivision

type of subdivizion

address of the operand

Figur e 2-9 For mats of the Operands % M

The quantity of memory operands is configurable in the declaration of the module C, being the

maximum limit depending on the PLC mode! in use (c.f. section Declar ation of Operandsin the
same chapter).

The operands %M are used in instructions of movement, comparison, arithmetic, counting, timing
and conversion. They can be used in contacts, for the same form as the operands %E, %S and %A.

19

Chapter 3 Diagram of Relays Language

These operands use up two bytes of memory (16 bits) storing the value in two complement from (2')
according to figure 2-10.

[s] | |

value 2°
S - bit of arithmetic spgnal [0 positive, 1 negative]

Figur e 2-10 For mat of the Memory Operand
Examples:
%M 0032 - memory 32
%M0072n1 - nibble 1 of the memory 72
%M0084.F - point 15 of the memory 84

Operands %D - Decimals

The operands %D are used for numerical processing, storing values in BCD format with up to 7
digits and signal.

The formats of the operands %D can be seen in figure 2-11.

= | D | 2000 - decimal operand [32 pointz]

Z|D| 20| w | X| - word of decimal [16 points - w0 until w1]
Z|D| X b | ¥| - octet of decimal [8 points - bD until b3]
%|D| XK1 N | ®| - nibble of decimal (4 points - n0 until n7)
DXL | X] - point in word 0 [1 point .0 until _F)

Z| D) XXX | h [X| _ point in word 1 [1 point hD until hF)

addrezz of the subdivizion
type of subdivizion
address of the operand

Figur e 2-11 For mats of the Operands % D

The quantity of decimal operands is configurable in the declaration of module C, being the maximum

limit depending on the PLC model being used (c.f. section Declaration of Operandsin the same
chapter).

The operands %D are used in instructions of movement, comparison, arithmetic and conversion.
They can be used in contacts, in the same form as the operands %E, %S and %A. These operands use
up four bytes of memory (32 bits), storing the value in the format BCD (each digit occupies 4 hits),
with signal, according to figure 2-12.

L] | | |

L I I I I
value BCD

5 - bit of arithmetic signal [0 positive, 1 negative]
Figure 2-12 Format of the Operand Decimal
Examples:

20

Chapter 3 Diagram of Relays Language

%D0041 - decimal 41

%D0023b2 - octet 2 of the decimal 23

%D0059n6 - nibble 6 of the memory 59

%D0172hA - point 10 of theword 1 of the memory 172

Operands %F — Reals
The formats of the operands %F can be seen on the following figure:

P e - real operand (32 points)

- real word (16 points - wi to w1)
- real octet (8 points - bl to b3)

- real nibble (4 points - nl to n7)

- point on word 0 {1 point .0 to .F)

- point on word 1 (1 point hi to hF)

|| B
mmm|m|m|m

’—XXX)CX

address of the subdivizion
L type of the subdivision
address of the operand

Figur e 2-13 For mats of the Operands % F

The quantity of real operands is configurable in the declaration of module C, being the maximum

limit depending on the PLC mode! being used (c.f. section Declaration of Operandsin the same
chapter).

The operands %F are used to the numeric processing, storing values in 32 bits with floating point,
simple precision and signal, as |EEE 754. These operands use four bytes of memory (32 bits), storing
the value as the following figure:

] | |

[]]
Exp (8 bits) Mantis=a (23bitg)

S - bit of arithmetical signal (0 positive, 1 negative)

Figur e 2-14 For mats of the Operand Real
The value of areal operand (%F) is obtained as the following expression:
Value = Signal x 1,Mantissax 25°- %)
So, the storing band values is from -3,4028234663852886E+38 to 3,4028234663852886E+38.

Values that the module is greater than zero and less than 1,1754943508222875E-38, are treated as
zero by the PLCs. PLCsdon't support denormalized numbers, infinity and NANSs (not a number).

Example:
%F0032 —real 32

Operands %l - Integer

The operands %l are used to the numerical processing, storing values in simple precision, with
signal. The basically difference between this kind of operand and the memory operand %M, is that
theinteger operand %l is 32 bits.

The operands %l formats can be seen on the following picture.

21

Chapter 3

Diagram of Relays Language

e - integer operand [32 points]

- integer word [16 points - wi to wl]

- integer octet [8 points - bl to b3]

- integer nibble [4 points - n0 to n?]

- word point 0 [1 point .0 to _F]
- word point 1 [1 point hD to hF]

M (MM N M
| bt [t [t [t | et

’—XXXXX

subdivizion address
L subdivision type
address of the operand

Figur e 2-15 For mats of Operands % |

The quantity of integer operands can be configured on C module declaration, the max limit depends
on the CPU mode that isin use (see the section Operands Declaration on this chapter).

The %l operands are used on move, comparing, arithmetic’s and conversion instructions. This
operands use four memory bytes (32 bits), with signal, asthefollowing figure:

B | | | |

yvalue

5 - arnithmetic hit signal [0 positive. 1 negative]

Figur e 2-16 For mat of the Operand I nteger
Examples:
%I10041 - integer 41
%I10023b2 - octet 2 of the integer 23
%I 0059n6 - nibble 6 of the integer 59
%I0172hA - ponto 10 of the word 1 of the integer 172

Operands %KM, %KI, %KD e %KF - Constants

Operands are used to define the fixed values in the elaboration of the applications program. These are
two types of constant, %KM, %KD, %KF and % K, each one following a different format from the
representation of values, being identical to the operands %M, %D, %F and %l, respectively.

Theformat f the constant operands can be seen on the following figure.

[2| k|0 |+ 0000¢ |

value of the constant [decimal or real]
signal of the conztant [pozitive or negative]
type of the conztant [M. 1. D, or F]

gymbol of the constant [K]

identifier of address of operand

Figure 2-17 For mat of the Oper ands Constants

These operands are used for instructions of movement, comparison, arithmetic, counting and timing.

22

Chapter 3 Diagram of Relays Language

Examples:

%KM+00241 — memory constant + 241

%K |+2000000000 — integer constant 2 bi or 2 x 10°
%K D-0019372 — decimal constant - 19.372
%KF+0125.78 —real constant + 125.78

%K F+3.1415E23 —real constant 3.1415 x 107

[The real constants can contain up to 8 significative digits.

Operands %TM, %TI, %TD e %TF - Tables

Tables of operands are grouped with simple operands, made up of one-dimensional arrays with the
objective of storing numerical values. Each table has a number of configurable positions, where each
position can count exactly the same values of an operand %M, %D, %F or %l if the table was of type
%TM, %TD, %TF or %TI, respectively.

Theformat f the table operands can be seen on the following figure:

[Z[1]0] wox |

addrezs af the table [decimal]
type of the table [M. . D, or F]

spmbol of the table [T]
identifier of address of operand

Figure 2-18 Format of the Operands Tables

The quantity of tables and the number of positions of each one is configurable in the declaration of
module C. They can be defined in up to 255 tables in total and up to the maximum of 255 positions
in each table, respecting the limit of the memory of the operands of the PLC.

Thetables are used in instructions of movement.

23

Chapter 3 Diagram of Relays Language

Indirect Access

Thisform of accessis used in conjunction with a memory operand %M to reference other operands
in the system indirectly.

Thesign *, placed in front of a type of operand, indicates that it is referenced through the address
contained in the specific memory to the left of the sign.

Theformat of indirect access can be seen in figure 2-19.

|x | Hl }OOO{l = |D| - operand type 0. pointed indirectly
by the memory EM>CCCK

type of the operand acceszing indirectly
[E.5. A WM 1D, TH, TI. TD or TF)

gpmbol of indirect access (7]

pointer memory address, it contains
the address of the operand accessed
indirectly

Figure 2-19 Format of an I ndirect Access
In MasterTool, the indirect access to the tables is shown without the asterisk.
Theindirect access is used in instructions of movement, comparison, counting and timing.
Examples:
%MO0043*E - input octet referenced indirectly through memory 43
%M 1824* A - auxiliary octet referenced indirectly through memory 1824
%MO0371TD - table of decimals referenced indirectly through memory 371
%M0009*M - memory operand referenced indirectly through memory 9
Example:

MOV

ZKM+
00431

enakhle SUCCESS

ZM0009"M

This instruction moves the value +431 to the memory operand whose address is the value correctly
stored in %M 0009. If %M 0009 contains the value 32, then the value +431 may be stored in
%M 0032. If %M 0009 contains the value 12 then the constant value will be stored in %M 0012.

WARNING:

It is the responsibility of the applications program that the value contained in the reference memory
(%M 0009, in the example) represents valid addresses, not containing negative values or above of the
existing addresses for that type of operand referenced indirectly. The instructions do not carry out
invalid indirect access, normally having an output sign to indicate an error.

If in the program of the previous example there were 256 operands %M to be declared, the value of
%M 0009 should be between 0 and 255 so that the instruction will be executed correctly. If the value
is not in this band, access will not be achieved.

24

Chapter 3 Diagram of Relays Language

Declaration of Operands

The operands %E, %S and %A occupy their own memory areas permanently reserved inthe PLC's
microprocessor. The number of these operands in the controllers, therefore is constant.

To represent fixed values, the constant operands (%KM, %KF, %KI and %K D) also do not occupy
memory space, being stored in their own applications program in the programming stage. There are
no limits to the number of constant operands used in the program.

The declaration of the operands is carried out through the editing window of module C of
MasterTool, being stored in module C. The number of operands declared should betailored to the
maximum capacity of the available memory. C.f. items Configuring Simple Operands,
Configuring Table Operandsand Configuring Retentive Operandsin the section
Configuring Module C on the MasterTool User's Manual.

Should be declared the minimal quantity of memory operands (%M) to supply the diagnostic bytes
used on the bus modules.

Thereserve of the operands %M, %l, %F and %D is carried out in blocks of 256 bytes. In the case of
memory operands, this quantity corresponds to 128 operands. In decimal operands, corresponds to 64
operands.

The operands %TM, %TI, %TF and %TD are declared finding out the number of tables necessary for
each type and the number of positions which each table contains. It is possible to define up to 255
tablesin total and up to 255 positions for each table, respecting the limit of RAM memory of the
operands.

Table 2-2 shows the memory space used up for each type of operands and where its values are stored.

Operand Memory Occupied Location

%E — input 1 byte Microprocessor
%S — output 1 byte Microprocessor
%A — auxiliary 1 byte Microprocessor

%KM — constant M
%KI — constant |

%KD — constant D
%KF — constant F - -
%M — memory 2 bytes RAM of operands

%I — integer 4 bytes RAM of operands
%D - decimal 4 bytes RAM of operands
%F — real 4 bytes RAM of operands

%TM —table M

2 bytes per position

RAM of operands

%TI — table |

4 bytes per position

RAM of operands

%TD — table D

4 bytes per position

RAM of operands

%TF - table F

4 bytes per position

RAM of operands

Table 2-2 Occupied M emory and L ocation of Oper ands

25

Chapter 3 Diagram of Relays Language

Retentive Operands

Retentive Operands are operands which have their values preserved when the CPU is turned OFF
(disconnected). The operands not retentive have their value zeroed at the moment the programmable
controller is disconnected.

All the table operands are always retentive. It is possible to configure the number of operands %M
(memory), %I (Integer), %F (real), %D (decimal), %S (output) and %A (auxiliary) retentive.

Theretentive operands are configured starting from the last addresses up to the first, obeying the
same rule as simple operands. That is to say, thereserveis carried out in blocks of 256 for numeric
operands. The declaration of the operands %S and %A is carried out octet to octet.

For example, there are 512 operands %M declared (%M 0000 to %M0511), and it is required that 128
of these operands are retentive, the operands %M 0384 to %M 0511 are considered retentive.

C.f.item Configuring Retentive Operandsin the section Configuring M odule C on the
MasterTool User's Manual.

26

Chapter 3

Diagram of Relays Language

Instructions

The ALTUS PLCs use the language of relays and blocks to eaborate the applications program,
whaose main advantage, beyond and its graphic representation is to be similar to the conventional

diagrams of relays.

The programming of this language, carried out through. MasterTool, uses a group of powerful

instructions in chapter 3 Reference of Instructions, in this manual.

MasterTool instructions can be divided into 7 groups:

« RELAYSc

ontaining the instructions:

RNA
RNF
BOB
BBL
BBD
SLT
PLS
RM
FRM

contact normally open
contact normally closed
simplereds

reel connected

reel disconnected

reel jump

pulserelay

master relay

end of master rdlay

« MOVEMENTS containing the instructions:

MOV
MOP
MOB
MOT
CAB

moving of simple operands
moving of parts of operands
moving of blocks of operands
moving of tables of operands
load block of constants

« ARITHMETICS containing the instructions:

SOM
SUB
MUL
DIV
AND
OR
XOR
CAR

<

>

sum
subtraction

multiplication

division

function “and” binary between operands
function “ or” binary between operands

function “or exclusive’ binary between operands
load operand

equal

less than

more than

 COUNTERS containing theinstructions:

CON
CcOB
TEE

simple counter
bidirectional counter
timer to turnon

27

Chapter 3

Diagram of Relays Language

TED

timer to turn off

+ CONVERTORS containing the instructions:

B/D
D/B

conversion binary - decimal
conversion decimal - binary

+ GENERAL containing the instructions:
connect or disconnect indexed points
test the status of indexed points
sequencer
call procedure module
call function module

LDI
TEI

SEQ
CHP
CHF
ECH
LTH
LAH

LGH
LGV
LGN

write operands on another PLC for Ethernet
read of operands from another PLC for Ethernet

freeimage update of operands for Ethernet
+ CONNECTIONS containing the instructions:

horizontal connection

vertical connection

denied connection

Some special functions executed by the PLC are only obtained with the M odules Function, that are
called by theinstruction CHF. On the chapter 4 Referring the M odules Function presents a list of
these modules, available to Ponto Series and come with the MasterTool Programming.

The execution time of each instruction to the Ponto Series PL Cs should be consulted on the
respective manual.

Restrictions Using Instructions on the PLCs

Thelanguage of relays and blocks is perfectly compatible between the PL Cs programmed through
MasterTool. Dueto the characteristics of functioning, nevertheless, some instructions are not
availablein all the controllers. Table 2-3 shows the instructions and the controllers in which they

cannot be used.

- indicates that the PLC have theinstructions

- indicates that the PLC does not have the instructions

CPUs

Instruction

AL-600

AL-3003
AL-3004

PL101, AL-2000, PO3042
QK600, PL102, AL-2002, PO3142 PO3242
QK800, PL103, AL-2003, PO3045 PO3342
QK801 PL104 AL-2004, PO3145

PL105 QK2000

MES

AES

CES

A/ID

D/A
ECR
LTR
LAI
ECH
LTH
LAH

Table 2-3 Non-existent | nstructionsin Certain PLCs

28

Chapter 3 Diagram of Relays Language

MasterTool does not permit an instruction which cannot be executed in the PLC for which it is
configured to be inserted in the applications program.

WARNING:
On editing an applications program module, the type of CPU declared in theitem CPU M odél in
the editing windows of module C should be from the CPU where the program was executed.

WARNING:

If is required to change the type of CPU for another, after the program to be edited, you should
search and remove theinstructions which cannot be used in the new type of CPU. This procedure
should be carried out in all the program modules.

Graphic Representation of the Instructions

Thefollowing figures show the maximum configurations of input and outputs in each type, not being
necessary all used in a certain instruction.

Instructions with one cell

M5
input — OFER |— output
input — INS — output

Instructions with two cells

— output 1

— output 2

Instructions with tree cells
M5
input 1— OFER1 |—output 1

input 2 — OPER? |—output 2

input 3— QOFER3 |—output 3

Instructions with four cells

INS
input 1 OPER1 | OPER3 |—output 1

input 2 OPERZ | OPER4 —output 2

29

Chapter 3

Diagram of Relays Language

Description of Syntax Instruction
The description of the possible operands to be programmed in the cells of each instructionis carried

Instructions with six cells

M=

input 1— OPER1

input 2 — OPERZ

input 3— OPER3

out in accordance with the format shown in figure 2-20.

Various different combinations of operands can be specified for the same instruction

Example:

This syntax declaration shows that, like thefirst operand, % M or % D can be used. If thefirst

OFERd ——output 1
CPERE [—output 2

CFERE [—output 3

OPER1 OPER2 OPER3
LIST LIST LIST

oF oF oF
OPERANDS OPERANDS OPERANDS
POSSIBLES POSSIBLES POSSIBLES
IN THE IN THE IN THE
CELL CELL CELL

Figur e 2-20 For mats of Syntax | nstructions

OPER1 OPER2

=M ZM
ZMM
ZKM

OPER1 OPER2

%D %D
ZM=D
ZKD

operand is % M, the second can only be % KM, % M or % M*M (accessed indirectly in memory). If

thefirst is % D, the second can only be % KD, % D or % M*D (accessed indirectly in decimal).

Restrictions in Positioning the Instructions

There are rules to be respected as to the positioning of the instructions in the 8 logic columns. The

instructions can be divided into three categories:

* Instructions which can be edited only in column 7:

BOB
BBL
BBD
SLT
RM
FRM

smplered
connected reel
disconnected reel
jump reel

master relay

end of master relay

¢ |nstructions which can be edited in columns O to 6:

30

Chapter 3

Diagram of Relays Language

RNA
RNF
PLS
LGH
LGV
LGN
DIV
MOB

SEQ
CHF

normally open relay
normally closed relay
pulse relay

horizontal connection
vertical connection
denied connection
division

moving of blocks of operands
more than

less than

equal

sequencer

call function module

e |nstructions which can be edited in all the columns:

MOV
MOP
MOT
CAB
SOM
SUB
MUL
AND
OR
XOR
CON
CcOB
TEE
TED
B/D
D/B
CAR
LDI
TEI
CHP
ECH
LTH
LAH

moving of simple operands

moving of parts of operands

moving of table of operands

load block of constants

sum

subtraction

multiplication

function “ and” binary between operands
function “or” binary between operands
function “or exclusive’ binary between operands
simple counter

birectional counter

timer to turn on

timer to turn off

conversion binary - decimal

conversion decimal - binary

load operand

connect or disconnect indexed points
status test of indexed points

call procedure module

write operands on another PLC for Ethernet
read of operands from another PLC for Ethernet
free image update of operands for Ethernet

31

Chapter 3 Diagram of Relays Language

Programming Project

Structure of a Programming Project

Functionally, a programming project, can be seen as a collection of modules used to carry out a
specific task, also known as an applications program. This allows a hierarchical view of the project
with the creation of sub-routines and functions.

The modules are called for execution through executive software (operating system of the PLC). or
for other modules, through appropriate instructions. When stored on disk, the programming project
corresponds to a group of files, where each file contains a module, named as shown in figure 2-21.

- name of the file

[T] - [x00000<| . [NNN|

number of the module [0 until 255]

point of separation

name of the module [until & characteres]
identifier of module [-]

type of the module [C. E. P, F]

Figure 2-21 Format of Name of Modulesin File
Example: F-PI1D.033

In some places in this manual and in the Help the program modules are referenced only through their
type and number, when it is not relevant to use their name.

Example: EO18

WARNING:

Thefile name corresponds to a program module which should not be changed through another
application of Windows TM. To change the name of afile, it should be read and saved with the
name required through MasterTool. C.f. section Saving a M odule with Another Name on the
MasterTool User’s Manual.

If thefiles nameis modified through another Windows™ application, it can be given an nameinvalid
for it, not being able any moreto beread to MasterTool or loaded into the PLC.

There are 5 types of modules which can do part of a programming project:

« Module C (Configuration): there is a configuration module for the project, containing the
configuration parameters of the PLC (C000).

» Extended Module C (Configuration): this configuration module exists when the user use on the
project a specific characteristic of the PLC and needs an extended configuration module. For
further information see the user’s manual of the MasterTool Programming (C003 to C009).

» Module E (Execution): there can be up to 4 execution modules for the project. They are only
called through the operating system of the PLC (E000, E001, E018 and E020).

« Module P (Procedure): there can be up to 112 procedure modules per project. They contain
passages of the applications program being called through instructions placed in execution
modules, procedure or function. After they are executed, the returns to the following instruction
of the call. The modules P act as sub-routines not allowing parameter passing for the module
called (POOO to P111).

« Module F (Function): there can be up to 112 function modules per project. They contain
passages of the applications program written in generic form, allowing parameter passing to the
module called, in this way they can be reapproved in various different applications programs.

32

Chapter 3

Diagram of Relays Language

Module C - Configuration

They are similar to instructions, being able to be called for, modules of execution, procedure or
function. (FOOO to F111).

Module C contains the configuration parameters of the PLC. Its creation is a pre-requisite for editing
the rest of the MasterTool programming project modules. The definition of the parameters contained
in module C is carried out through the editing window of module C. For further details regarding

how to configurein module C, c.f. section Configuring M odule C in chapter 5 of the MasterTool

User’'s Manual.

Thereis only one module C per programming project, having as its own name the name of the
project and the number 000.

Contents of amodule C:

Declaration of the Bus of 1/0 modules: specifies the configuration of the 1/O modules to be
used in the programmabl e controller, indicating the distribution of these modules and special
modules in the PLC’ s bus. The declaration of the modules defines, in this way, the number of
points and the I/O addresses to be used in applications program. The declaration takes placein
the editing window of module C. For further information about how to configure the bus, c.f. the
item Configuring the Busin the section Configuring M odule C in chapter 5 of the
MasterTool User’s Manual.

Declaration of Operands:. specifies the number of simple operands and tables of operands
which are used in the programming project, within each available type. It also allows the
definition of the retainability of the operands, that is to say, which operands can keep their
contents even with a power cut.

Declaration of Simple Operands: allows the definition of the number of
Memory operands (%M) and Decimal (%D). It takes place in the editing window
of module C. For more information regarding how to declare simple operands, c.f.
the item Configuring Simple Operands in the section Configuring M odule
C onthe MasterTool User’s Manual.

Declaration of Table Operands:. alows the definition of the number of tables
of Memory operands (%TM) and of Decimal operands (%TD) and of the number
of positions in each one. One table shows a group of operands, being defined in the
editing window of Module C. For further information about how to configure table
operands, c.f. the item Configuring Table Operands in the section
Configuring Module C on the MasterTool User's Manual.

Declaration of Retentive Operands: specifies the number of simple operands
which are retentive , within the operands already declared. Retentive operands are
those which continue with their contents unchanged through a power cut, those not
being retentive are zeroed when the system restarts. The table operands are all
retentive . The declaration is made in the editing window of Module C. For more
information regarding how to configure retentive operands, c.f. the item
Configuring Retentive Operands in the section Configuring Retentive
Operands on the MasterTool User's Manual.

Declaration of the General Parameters of the CPU: there are generic parameters
necessary for the functioning of the programmable controller, such asthe type of CPU in which
the applications program will be loaded, the period of calling the activated modules for
interruption and the maximum time of the scan cycle. These parameters are declared in the
editing window of Module C. For more information about how to configure the general
parameters, c.f. section Configuring M odule C on the MasterTool User’s Manual.

Declaration of the Parameters of the ALNET | Network: specifies the parameters
necessary for the functioning of communication in ALNET I. These parameters are configured in
the editing window of Module C. For further information regarding how to configure parameters
of ALNET I, c.f. item Configuring Parameters of the ALNET | Network in the section
Configuring Module C on the MasterTool User's Manual.

Declaration of the Parameter s of the Ethernet Network: specifies the various parameters
necessary for the functioning of communication in Ethernet, for the programmable controllers

33

Chapter 3 Diagram of Relays Language

which allow its use. These parameters are configured in the editing window of Module C. For
further information regarding how to configure parameters of Ethernet, c.f. item Configuring
Parameters of the Ethernet Network in the section Configuring M odule C on the
MasterTool User’s Manual.

Extended Module C — Configuration
This modules have configurations of determined characteristics of the PLCs. This modules are totally
controlled by the user, it should be created and erased as the need of the user. The quantity of this
kind of module vary as the application.

For further information see the user’s manual of MasterTool.

Modulo E - Execution
The modules E contain passages of the applications program, being called for execution through
executive software. These are different Modules E, differing from each other through the way they
are called for execution, according to their number.

Types of Modules:

* EOO00 - Initialization Module: is executed once, when the PLC is turned on or in the passage of
programming mode for execution with MasterTool, before the cyclical execution of Module EOO1.

» EOO01 - Sequential Module of Applications Program: contains the main passage of the
applications program, being executed cyclically.

+ [EO018- Module Enabled for Time Interruption: the passage of applications program placed in
this moduleis called for execution at time intervals. It defines the calling period for the
applications program in the general parameters of Module C, being able to choose between 50ms,
25ms, 10ms, 5ms, 3.125ms, 2.5ms, 1.25ms and 0.625ms. At the running time, the sequential
execution of the applications program is interrupted and the module EO18 is executed. After it is
finished, the system returns to execution for the sequential processing point where the module
EO0O01 has been interrupted. The time continues to be counted during the call of Module E018, its
execution having to be as short as possible so as not to an excessive increase in the time of Module
EO01 iscycle.

WARNING:
The execution time of Module EO18 cannot be more or equal to thetime period of the call. If this

happens, the PLC goes into error mode displaying the message Recessed in M odule EQ18, in the
window | nfor mation (command Communication, Status, | nformation).

Module P - Procedure

The Modules P contain passages of applications programs called starting from ModulesE, P or F
through the instruction CHP (Procedure Call).

This type of module does not have parameter passing, being similar to the concept of the sub-routine.
The maximum number of modules of this typeis 112 (PO00 to P111).

The module P is useful to contain passages of applications programs which should be repested
several times in the main program, being like this programmed once only and called when necessary,
being economical with the programs memory.

They can be used also for a better structure of the main program, dividing it into segments according
to its function and declaring then in different Modules P. In this case, the execution module continues
EO01 only and calls the Modules P in the required sequence.

Examples:

* P-MECAN.000 - carries out the Mechanical breaking of the machine
* P-TEMPER.001 - achieves control of temperatures

* P-VIDEO.002 - achieves the man-machine interface

* P-IMPRES.003 - manages the printing of reports

34

Chapter 3 Diagram of Relays Language

Module F - Function
The Modules F contain passages of applications programs called from the start of ModulesE, P or F,
through the instruction CHF (Call Function).

Inthecall fromModules F it is possible to pass the values as parameters for the module called. These
modules are usually written in generic form to be approved for different applications programs, in the
language of relays or of machine, being similar to the instructions of the language of relays. The
values of the parameters are sent and returned through the lists of existing operands in the call
instruction and in Module F.

In the editing of an instruction CHF, 2 lists of operands should be defined that are used for:
* sending parameters for execution of the function module (Input)

* receiving the values returned through the function module (Output)

In editing the function module, 2 lists of operands should be defined, using the command Editing,
Edit, Parameters, which are used for:

* receiving parameters of instruction CHF (Input)
* sending values of return for the instructions CHF (Output)

The passing of parametersis achieved through the copy of the values of the declared operands
(passing of parameters for value). Figure 2-22 shows the flow of data between instruction CHF and
the function module.

—CHF
OFERI COFERA4

Farameters sent Function bodules
to the function

Input

.

OFERZ ingut _
Frocessing of

the function

QOFER3 output

il

coutput

“alues returned
by function

Figure 2-22 Parameter Passing for Module F

Further information regarding parameter passing can be found in the description of the instruction
CHF in the same manual. The passing of al types of operands is permitted.

Examples:
* F-LINEAR.002 - executes the linearization of values read from a sensor
* F-PID.033 - carries out calculations for implementing the control PID loop

Operating Status of the PLC

There are five statuses or modes of operation of the PLC: initializing , execution, programming,
cycling and error. The status in which the programmable controller finds itself is indicated in the
LEDs of the front pandl of the CPU, also being able to consult MasterTool, through the dialogue box
Status (options Communication, Status, starting from the main menu). To obtain specific
information about these operating modes, consult the User’s Manual for the controller used.

« StatuslInitialization : the PLC initializes the different data structures for use by the executive
program and achieves consistency in the programming project present in the memory. This

35

Chapter 3

Diagram of Relays Language

status occurs after the controller is turned on, passing after a few seconds to the execution status.
If no applications program exists in memory, the PLC passes to error mode.

Whilethe PLC isinitialized, it can activate the command Communication, Status,
Programming, or equivalent short cut in the tool bars, having done that the PL C passes
directly to programming status, instead of executing the applications program. This procedureis
useful for thereinitialization of PLCs with programs containing serious programming errors.

For example, a module with an infinite execution loop, programmed with an instruction for
jumping to a previous logic, provokes the enabling of the CPU’ s guard dog circuit that is always
connected, after Initialization status. Executing itself the previous procedure straight after being
turned on, the PLC passes to the programming status after initializing , allowing the erasing or
the substitution of the program.

« Execution Status: normally the programmable controller is found in this status, continually
sweeping away the input points and updating the output points according to the logic
programmed. This status shows that the PLC is executing an applications program correctly.

« Programming Status: The applications program is not executed, not having the reading of the
input points, the outputs being deactivated and the PLC’s memory compacted. The PLC remains
non-operational, waiting for commands from MasterTool. This mode is normally used to load
programming project modules for MasterTool through the serial channel. At the passing for
execution or cycling status starting from the programming status, the operands are zero.

» Cycling Status: whenin cycling mode, the programmable controller does not execute the
module EO01 cyclically, remaining to wait for the commands from Master Tool. Each command
execute cycle activated in MasterTool (options Communication, Status, Execute Cycle
starting from the main menu or equivalent shortcut) fires one single scan of the applications
program (M odule E001), the PL C remaining to wait for a new command after executing the scan.
When the PLC passes to cycled mode, the counting of time in the timers stops, being the same
increments of one unit of time for each two scans executed. The calls to the module of
interruption of time E018 are not carried out in this mode. The Module E020, activated through
theinput of external interruption, continues being called in this mode.

« Error Status: shows there was some anomaly in the PLC during the processing of the
programming project. Thetype of error occurring can be checked through the dial ogue box
(options Communication, Status, I nformation starting from the main menu), while the PLC
isinthis status. The output of the error status is only possible passing the programmable
controller to programming mode.

In normal conditions, the programmable controller can bein the modes of execution, programming
and cycling, these modes being Enabled through the MasterTool commands (options Execution,
Programming and Cycling in the dialogue box Status, or their shortcut equivalentsin the Tool
Bars. In the event of some functional error in these modes, the PLC passesto error status. The
recovery of error mode is only possible by passing the programmabl e controller to programming
mode. Figure 2-23 shows the possibilities for changing status.

36

Chapter 3 Diagram of Relays Language

FPLC OPERATION MODES

r—-- Cycled
- I
1
1
1
1
! P P P P
1
1
! P [
Initializing —E—D| Execution Programming
: - P F—
1
1 I !
1 1
E! 3 :
I : P 1 E
: . :
1 1
L-- Error P]

P - Command of the MASTERTOOL
E - Status of error

Figure 2-23 Operating Status of the PLC

In the modes of execution, programming and cycling it is possible to load and read project modules
from the programming project through the serial channel of the programmable controller, aswell as
monitoring and forcing whatever operands are used. These operations are not possibleif thePLC is
in error mode.

The operands which are not retentive are zeroed in the passing of the programming mode for
execution or programming for cycling, the rest of them remaining unchanged.

Execution of the Programming Project

When the PLC is powered or after the passing to execution mode, the Initialization of the system are
carried out according to the contents of Module C, being straight after executing Module EQ0O once.
The programmable controller then passes to cyclical processing of Module EQ0L, updating the inputs
and outputs and calling the M odule E018, when it exists, for each period of interruption time
programmed. Figure 2-24 shows the execution of the applications programin outline.

37

Chapter 3

Diagram of Relays Language

Pass Execution Mode Time Interruption

Interruption Input

| Execute E018 | | Execute ED20 |

Scan Inputs

| Return | | Return |

Execute EOOO

Scan Dutputs

Scan Inputs

(M1 Fxecute PRI I.:‘I Execute P}G-G{|

Executa
EDD1

MLl Fyrecute PROO I.:'I Execute P05 |

Figur e 2-24 Execution of the Project Programming

38

Chapter 3 Diagram of Relays Language

Elaboration of the Programming Project

General Considerations
A programming project is made up at least one Module C (configuration) and one M odule EQ01
(execution). The minimum condition for the execution of a programming project is the presence of
these two modules in the programmabl e controller’s CPU.

Thefirst step in the editing of a MasterTool programming project is the creation or reading of the
project. The configuration module of the project is created automatically when the new project is
created, once this module has the declarations of the modules of input and output and the operands
used in the whole project. Each module which contains passages of applications program (E, P or F)
requires Module C to be present in MasterTool for it to be able to be edited.

After the creation or reading of a project, it can edit the project adding modules already in existence,
creating new modules for the project or excluding modules already made part of the project.

MasterTool allows various modules to be loaded and remain simultaneously in its memory.

Considerations about Operands
The various modules which make up a programming project should preferably be programs using the
same Module C. If amodule aready programmed needs to be used in another programming project,
the operands used for the modul e should be obliged to be declared in Module C of the new project.

The available operands in the programmabl e controller are of common useto all the programming
project modules present in the PLC (global operands). Consequently, there are two modules which
can be inadvertently accessed by the same operand, with errors occurring in the functioning of both.

To daborate a programming project, operands should be reserved in a sufficient number for the
project, preferably separated in groups, each group used for only one module. The operands used in
Modules F programmed in language of relays and blocks can also be accessed for any other program
modules present in the PLC, the same applies to operands used in the parameter passing. To
guarantee its generic character, each Module F should use a different group of operands from the rest
used in the applications program.

Using of the Module P and F
Inside a programming project module the instructions can be placed to call other modules. The
instructions CHP and CHF call, respectively the modules of procedure and function. They carry out
the generating of calls to modules, verifying the existence or not of the modules in the directory of
the programmable controller, based on their types and numbers.

Exist 32 levels of calling, so, can be executed up to 32 consecutive callings of modules without being
finalized anyone. Should be considered that the module E018 (if it exists) and the modules called by
it occupy call levels.

39

Chapter 3 Diagram of Relays Language

18 Fo11
' 1—1
4 FoO1
3 EO018
2 FO10
1 FO00

Figure 2-25 Maximum number of modules calling levels

When the maximum number of calls accumulated without return is surpassed, the system may not
carry them out, continuing with the normal execution of the applications program. In cases where
calls occur for non-existent modules or the above the number of total calls, warning messages are
shown in the window I nfor mation (options, Communication, Status, | nfor mation starting
from the main menu), since these situations can cause processing errors according to the programmed
logic.

It ispossibleto call from a moduleto itself (programming for recourse) taking the necessary care,
that is to say, should be predicted in the applications program passage with recourse one moment in
which there are no more calls to the same module. Although it is possible, the use of such procedure
is not advisablein programmable controllers, dueto the long time for processing which a small
passage of applications program can need to be executed and the facility of infinite loops of
execution.

>

E0MN

Foo1

Recursive Call

Figur e 2-26 Recursive Call of Modules

Undue programming with dead locks should be avoided. If a programming project module calls
another and this also carries out a call to thefirst, if the call instructions in the two modules can not
be disabled, both remain called mutually until the passing of the programmable controller to error
mode, for an excess of execution time of the applications program.

The same situation can occur with calls linked together between different modules, when a module
called changes to call some initial module of the chain. For example, if module PO05 calls PO02, this
calls POO7 and this calls PO05 again, the processing can remain in this loop if no calling instructionis
disabled.

FO0%

r

Foo2

L 4

Foo?

Figure 2-27 Module Call L oop

Use of Module E018
Module E018 should be used when quick processing is necessary for some points of input and output
of the programmable controller, like for example, in sensing the end limit in Systems of rapid

40

Chapter 3 Diagram of Relays Language

positioning. The instruction for updating the points of 1/0 (AES) should used in this case, carrying
out a similar process in module EQ18 to a complete loop of main program execution. Theinputs are
read, the passage of the applications program required is executed and the outputs are updated.

In this way, this module makes itself useful when it requires a response from the operations of output
after afixed time of stimulating inputs, do not depend on the verification time of the main program,
which can vary. This characteristic is also important in position control Systems.

Another application for Module E018 is the generation of time less than 100ms for the main
program. Timers can be created with precision of 50ms, 10ms or less, if necessary, through the use of
instructions counting in the module of time interruption.

This module is useful when precise time control is needed in the PLC’ s processing.

Care in Using the Module E018
Some special careis necessary in programming module EO18. Asit is called from synchronized
mode to each fixed time period, interrupting the process of module EQ01, its execution time should
be as short as possible so as not to add excessively to the overall cycletime of the applications

program.
If theinterval between the calls from module EO18 is programmed for 25 ms, for example, and its

execution time is 20 ms, they restore only 5 ms for the execution of the main program before which
E018 will be called again. This situation considerably increases the cycle of module EOO1.

B s Execute EOD01

20 ms Execute EO18

— Time
Ems Execute EOD1

20 ms Execute EO18

Figure 2-28 Carein Use of Module EO18

If the execution of module EQ18 takes more than the time interval programmed for their calls, the
PLC passes to error status, sending the message “Re-input in module E018” in the window.

I nformation (options Communication, Status, I nformation starting from the main menu). In
this situation, the period of the call used should be increased or the execution time of module E018
should be reduced so that the programming project can be executed correctly.

Theinstructions behave the same when executed in module E018, except in relation to some other
particular characteristics. Thetimers (TEE and TED) continue to count the time at each 100 ms, any
whichisinthe period of enabling programmed for the module, exactly asin the execution cycle. The
pulse relay (PLC) action its output during an execution of module E0Q18, zeroing it in the next call.
Theinstructions CHP and CHF can be used in the some way as in the main program the modules
having to be enabled through them obeying the same rules of programming applying to module
E018. The maximum number of levels of call from modules used in the module E018 should be
added to the maximum level used in EOO1, the sum having to be less than the limit of the system (18
levels).

Using of Operands in Programming of Modules E018
Other care necessary is with the data sharing between the modules EO18 and the rest present in the
programmable controller. Theinterruptions can occur at any point of the main program of execution
cycle (module EO01 or modules P or F called through it), including during the processing of its

41

Chapter 3

Diagram of Relays Language

instructions. As the operands are all of common use to any programming project module, care should
be taken not to inadvertently use, in modules EO18 any operand which is used in another
programming project module, since this use, according to the case, can cause incorrect functioning.

In order to share the data between the Modules E018 and other module any cyclical execution should
use the instructions MOV (moving of simple operands) and MOB (moving of blocks of operands), to
create an image of operands which contain the data to be shared. These instructions should be used in
the modules pertaining to the normal execution cycle and not in modules E018.

For exampleif it is necessary that the module E018 uses the value contained in a memory used in the
main program, it should pass the value this memory to another through the instruction MOV, the
module E018 only having to use this last are. The MOV instruction should bein the main program,
and not in the module EO18.

The contrary flow of data also demands the creation of image operands. If module E018 manipulates
atable and the main program needs to use the values in this table, these values should be copied to a
second table for exclusive use of the main program, through the instruction MOB. Theinstruction
MOB should bein the main program and not in Module EQ18.

A similar situation occurs for reel instructions. If some point of an operand is modified in the main
program through aredl, it is not permitted to change any point pertaining to the whole octet of the
same operand in Modules E018. This restriction does not exist when the octets used belong to the
group %S0000 to %S0015.

However it is possible that the points of an operand are altered in the Modules E018 through a regl
and are only tested for another module with contact instructions, for example. The opposite situation
is permitted, that is to say the operand points changed in the main program through coils can be
tested in Modules E018 through contacts.

Other care to be taken with respect to the updating of the inputs and outputs of Modules EQ18.

Preferably the inputs used in its processing should be only updated in these modules, using the
instruction F-AES. As the application program of the cyclical execution can beinterrupted in any
place for these modules, if theinput images of the main program are updated in these, these can take
on different values at different points of the applications program during the same execution cycle.
This fact can cause errors if an input operand is used in various areas of the main program, since
normally it is supposed that its value remains unaltered in the same verification process.

Dueto thisfact, it isrecommended to use exclusive input octets for the Modules EQ18, if it is
necessary for its updating in it, not being the octets used in the main program.

If it is necessary to update the inputs used simultaneously in the interruptions and in the cyclical
processing, the value of these can be copied to auxiliary operands in therest of it. Also it cannot
update input images in Modules E018 with the instruction F-AES, but only read directly the values of
the 1/0 modules to memory operands through the instruction MES, and use these memoriesin
contacts to carry out the processing in the interruption modules.

The updating of output octets in Modules E018 (through the instruction F-AES) is possible, since the
points pertaining to these octets are action through coils only in these modules.

In Modules EQ18, the values with the instruction MES in output modules declared in the bus through
MasterTool should not be written, since the verification of output also carries out the updating of the
values in these modules.

42

Chapter 3

Diagram of Relays Language

Depuratio

When a Module EO18 is being executed and the compaction is enabled, the modules can be
transferred to another position in memory through the routine of compaction. During this transfer its
call will be disabled, some interruptions being possible without which the Modules E018 will be
processed. Attention should be paid to this effect of compaction regarding the execution of the
module enabled for interruption. During the compaction of the rest of the modules, still, the Modules
E018 continue being executed.

n of Programming Projects

Various facilities are previewed in the programmabl e controller to help the depuration of the
programming project, being described as follows.

Information about the status of the PLC

Monitoring

Various information about the status of the controller can be obtained with the enabling of the
options Communication, Status, I nformation in MasterTool:

Shortcut:

« CPU Modsd - indicates the type of controller with which MasterTool is communicating.

« Version of Executive - shows the number of the version of the executive program which the
PLC contains.

« Mode of Operation - shows the actual operation of the PLC: execution, programming cycling
or error.

« Error/Warning Message - if the PLC isin an error mode, a message is shown indicating the
cause of the error. If the PLC isin another mode, a message indicates the existence of problems
that do not cause the change to error mode (for example, the PLC’ s battery isflat). C.f. Error
M essages, appendix A of the MasterTool User’'s Manual.

» Outputs- indicateif the outputs are enabled or disabled.
» Forced Relays- indicateif any forced point off input or output exists.

« Change of Moduleswith PLC powered - indicates the possibility of changing from
modules with PLC powered.

« Compacting RAM - indicating if the PLC is compacting the RAM memory of the applications
program.
« Copying Module - indicates if any moduleis being loaded into the PLC, transferring from

RAM to EPROM flash or from EPROM flash to RAM, or if the PLC is erasing the flash
memory.

« Protection Level - shows the current protection level of the PLC.

» Cycle Times - shows the instantaneous value, average, maximum and minimum of the cycle
time of the applications program. C.f. section Program Execution Cycle Timesin this same
chapter.

« Enabling Period of E018 - shows the period of module call enabled for time interruption
EQ18, if it ispresent in the PLC.

The status windows of the PLC (options Communication, Status, | nformation), directory of
modules (options Communication, M odules) and monitoring (options Communications,
Monitor Operandsor Monitor Block of Operandsor Monitor Tables) supplies various
information used to verify the correct functioning of the controller. This information can be obtained
from a distance, if the PLC is connected to a network. When MasterTool is connected to any PLC, it
regards the obtaining of thisinformation as the first step to take.

Through MasterTodl it is possible to monitor the values of on or more operands in the PLC
in any mode of operation, except error mode.

43

Chapter 3 Diagram of Relays Language

Forcing

The values of the operands contained in alogic of an applications program can be visualized
directly in the PLC allowing the verification of its functioning.

For more information about how to carry out the monitoring, c.f. items M onitoring Simple
Operands, Monitoring Table Operandsand M onitoring Programsin the section
Communicating with the PLC or Router on the MasterTool User's Manual.

The monitoring of operandsin the PLC occurs at the end of the execution cycle of the applications
program. Dueto this, incoherent situations can be visualized in the monitoring of the logics, if the
values of the operands are modified in the subsequent logics to be monitored.

'

Start of the
Scan Cycle

+
Logic 000 | ZMO0D0=0

Logic 000

ZM0000=32

¥ ! Request of Monitoration

[——1

Logic 001 ZM0000=0
*
Logic nnn ZM0000=32

*
Enf of the
Scan Cycle
¥

Attending of the Monitoration data
Communications

I

Figure 2-29 I ncoherent Situation in Logic Monitoring

The values of the operands can also be forced with MasterTool, that is to say, can modify the content
of any programming project operand. Theforcing of operandsis permitted in any operating mode.
Theforcing of operandsis permitted in any operating mode, except error mode. C.f. items Forcing
Simple Operands and For cing Table Operandsin the section Communicating with the
PLC or Router in chapter 5 of the MasterTool User’s Manual.

The operands %A, %M, %D, %I, %F, %TM, %TD, %TI and %TF have their value altered only for
one verification, straight after a command has been sent to the PLC. So that the forced value remains
in the operands, it cannot have any instruction in the program which modifiesiit.

Theforcing of the operands %E and %S is carried out in a permanent way in the controller. After the
commands is sent to the PLC, the value is forced in all the verifications of the applications program,
until the operand is freed. The LED FC in the CPU pand remains connected if thereis someforced
operand %E or %S.

Theforced values in operands %E superimpose those abtained in the reading of the input modules,
before the start of each execution cycle of the applications program. The program is executed with
the value forced, as if the point of input corresponds with this value, being able to be visualized in the
monitoring.

44

Chapter 3 Diagram of Relays Language

For example, if the operand %EQ002.5 is forced with the value, the applications program will be
executed with this value for this operand, not importing the status of the point in the module of
corresponding input. The monitoring of %E0002.5 always the value 1.

The values forced in the operands %S are sent directly to the output modules, independent of the
values obtained after the execution of the applications program. The monitoring shows the forced
value, which corresponds to the value assumed through the corresponding point in the operand in the
output module.

For example, if the operand %S0024.3 is forced with the value O, the respective point in the output
modul e remains disconnected, not importing the status of the coil which contains the monitoring of
%S0024.3 always shows the value 0.

WARNING:
Incoherent situations can be visualized in monitoring logics with operands %S forced. This happens
because the value monitored can be different from the value really obtained through the applications

program.

WARNING:

All theforcing of operands %E and %S are removed when the turning off the PLC. The forcing of
these operands should be used in temporary form, only to help the depuration of the programming
project. The operands %E or %S should not be |eft forced in character permanently, sincethey are
freed with the turning off and after the turning on of the controller.

Operands %E and %S stop being forced through the PLC through the command liberating from
forcing. The liberation consists of canceling the forcing previously determined. The operands %E
return to have their values updated according to the input modules, while the output modules receive
the values obtained in the processing of the applications program.

WARNING:

Force operation doesn't actuate in %E or %S operands that has been updated by F-AES.087
instruction. This instruction read %E operands or write %S operands and it doesn’t make operands
forcing effects. For this reason, | recommend you don’t make operands force with operands that has
been updated by F-AES.087 actives program instructions.

For further information about how to free forced operands, c.f. item Liberating Forced

Operandsin the section Communicating with the PLC or Router onthe MasterTool User’'s
Manual.

Disabling the Outputs
For the “on Initialization ” security when if the applications programis used directly in the machine,
the enabling of output by the programmable controller can be disabled through the disable command.
The application program continues to be executed in the PLC, with the verification of the inputs and
calculation of the output values, however with all the output points kept deactivated. The operands
%S can be monitored and given the values waiting for them.

For more information regarding the disabling of outputs, c.f. item Enabling and Disabling the

Outputsin the section Communicating with the PLC or Router on the MasterTool User’s
Manual.

45

Chapter 3 Diagram of Relays Language

WARNING:

If the PLC isturned off, the disabling of the points of output is removed. That is to say, when the
PLC isturned on again, the status of the memory operands will normally be transferred, to the end of

each verification, for the points of output. The disabling should be used in temporary form, only to
help the depuration of the programming project.

Modifications in the Program

Theloading of the modules during the execution of the programming project (loading “on line”)
makes possible successive modifications and messages from the module in the depuration for the
programmable controller. In this mode it is not necessary to reinitialize the control application

program not even a change of status from programmable controller to each alteration carried out in a
module.

WARNING:

After any modification carried out in Module C of the programming project, it should be sent to the
PLC.

WARNING:

If the declaration of the simple operands or tables may be modified, it advisesitself to reinitialize
the PLC, passing to programming mode, loading the Module C and returning to execution mode.

Functioning errors can occur altering the configuration of the operands and sending the Module C,
with the controller, into execution mode.

After a certain number of successive loads in execution mode, however, it can make necessary the
compaction of the RAM memory for reasons explained in the section M anaging Programming

Project Modulesin the PLC, in this chapter. This type of loading is only possibleif thereis
enough free memory in the PLC storing the modul e to be sent.

At the end of the depuration of a program module, its transfer is suggested to an EPROM flash
memory or its recording in the EPROM cartridge, freeing the space available in the RAM memory of
the program.

Cycling Mode

The execution of the programming project in cycling mode makes use, in the verification of the
functioning of rapid brakes in the applications program. The rest of the facilities of depuration

continue acting in the same way as in the execution mode (monitoring, forcing, loading and other
operations with modul es).

In cycling mode, the operand values remain constants among the cycles, except the input points (%E)
which continue being continually updated, showing their real values.

Managing Programming Project Modules

The modules which make up the applications program are independent among them selves, not
needing the connection (“link™) through the auxiliary programs. The loading of modulesin the
programmable controller for the serial channel can be carried out in any order, allowing only the
model altered to be loaded into the PLC, if the programming projects have to be maintained.

WARNING:

Only the module type and its number are relevant to the CPU in this system, the name being ignored.

If two modules with equal type and number but with different names are to be loaded into the PLC,
only the last to beloaded will be considered.

46

Chapter 3 Diagram of Relays Language

The programmable controller organizes an internal directory where the various information regarding
modules contained in it are stored, able to be consulted for MasterTool through the directory
command of modules (options Communication, M odules starting from the main menu). When
this command is to be enabled, a dialogue box is opened, showing in its upper section, two panels
called RAM Modulesand EPROM M odules with thelist of names and the memory occupied by
each modulein the PLC.

In the panel M emory Occupied details the total number of modules and the total memory space
occupied by them (sum of all theindividual occupations), beyond the total space occupied in RAM
or EPROM.

The panel M emory Free shows the amounts of RAM memory and EPROM available for the
loading new modules, in each memory bank existing in the programmable controller.

[Only the modules present in the directory are considered valid for execution in the PLC.

A program module present in the directory can only be in one type of memory, RAM or EPROM,
never in both at the sametime. The modules |loaded by the serial channel are always stored in RAM
memory of the applications program.

Compaction
The memory of the programmable controller’s memory is divided into one or more banks, depending

on the CPU mode! used (c.f. table 2-1 in the section Organization of Memory in PLCsin this
chapter.

As the modules which make up the programming project are sent to the PL C through the serial
channel, they occupy the first memory bank, fromits beginning to its end. When the space remaining
in thefirst bank is not enough to load the next module, it will be loaded into the following bank, if
one exists.

At each loading of a new module into the programmable controller, the executive software tests if
thereis enough spacefor it from the first to the last bank available. The loading of a new moduleis
only possibleif thereis free memory available for its storage.

Inside the RAM memory bank, the loading of a module is always carried out starting from the first
position after the last module present. If a module at the start of the bank is removed, the modules
which are after it should be transferred to occupy its space in the memory, so that this spaceis
available at the end of the bank for other modules to be loaded. This procedure names itself

compaction of RAM memory of the applications program.

Example:
Supposing that the first memory bank of the programmable controller isinitially with the following
modules:

47

Chapter 3 Diagram of Relays Language

Bank 0

End

EOD1
EO18
PO10
Start | CO00

Figur e 2-30 Compaction of RAM Memory
If Module PO10 is removed from the PLC the bank O will pass to have the following organization:

Bank 0

End

EODOD1
EO18

<iart | C000

Figure 2-31 Compaction of RAM Memory-2

The space previously occupied by P010 is not taken advantage of by the programmable controller,
since to carry out the compaction of the PLC’s memory, bank O passes to the following

configuration:
Bank 0
End
EDOD1
ED18
Start | C0O0D

Figur e 2-32 Compaction of RAM Memory-3

The Modules EQ18 and E001 are transferred to the space previously occupied by Module P010,
making this space available to the end of the memory of the bank for loading the other module.

If the programmable controller isin programming mode or cycling, the RAM memory banks of the
program are automatically kept compacted by the executive program. In execution mode, however,
the compaction should be enabled manually, through MasterTool (options Communication,

M odules, Compact RAM from the main menu). This procedure is common when different
loadings of modules in execution mode are carried out (loads “on ling’), typically when a moduleis
being purified, needing successive alterations and transmissions for the PLC.

48

Chapter 3

Diagram of Relays Language

Use of EP

WARNING:

Depending on the location of the modules in memory, the procedure for compaction can much
increase the time for some cycles of applications programs, when carried out in execution mode. It is
important to be aware of the effects of this increasein processing time. Be advised that the

compaction is not fired if the machine under control isin operation or with its main active enabling.

Due to this mechanism of managing the modules in the programmabl e controller, it is possible that
the sum of the available memory in the PLC banks with the value occupied by modulesiis less than
the total memory of the program, if it isin execution mode. This fact means that the program
memory is not compacted. After the compaction, however, the sum of the values occupied with the
free memory should be equal to the total memory.

On the MasterTool don't exist a Flash compaction, asthe RAM compaction. The method to compact
the Flash is to carry the modules to the RAM, clean the Flash and carry the modules to the flash.

ROM Flash Memory

The controllers contain EPROM Flash Memory and it is placed on the board of the PLC, and thereis
no need to remove them to store ore erase programs. This operations are realized by the controller
itsdf, through the MasterTool. This memory can be stored partially, although it don’'t permit the
partial erasing. So, it is only possibleto erase all the memory.

The memory configuration of each PLC model is shown in the section Organization of Memory
of the PLC’ sin this chapter.

Transference of Modules from Ram to Flash

After they are loaded into the RAM memory of the program, through the serial of the PLC, the
programming project’s modules can be transferred to EPROM flash. This command is only unablein
PLC’s which have flash memory. For further information about the transferring modules from RAM
to EPROM Flash c.f. item Transferring M odules from RAM to EPROM Flash in the section

Communicating with the PLC or Router on the MasterTool User’s Manual.

It is possibleto transfer one single module or a group of modules, the same with the PLC executing
the program. Thetransfer in execution modeis carried out partially in each verification, being able to
wait several seconds until it is completed, mainly of these was along time of cycle of execution. At
the end of the transfer, the modulein RAM is automatically erased and the information from the
directory is modified.

Managing the module loading in EPROM flash isidentical to the RAM memory, shown in the
previous section Compaction. That is to say the RAM module isrecorded in the first bank of flash
which has enough space free for the counter, after the last module of the last module of the bank. The
search for free space occurs in the sequential order of the banks (0, 1, 2 and 3).

Transference of Modules from EPROM to RAM:

The modules present in EPROM flash memory or in EPROM cartridge can be transferred to the
RAM memory of the program. For further information about how to transfer modules from EPROM
to RAM, c.f. item Transferring M odules from EPROM to RAM in the section
Communicating with the PLC or Router on the MasterTool User’s Manual.

It is possible to transfer one single module or a group of module, the same with the PLC executing
the program. Thetransferring into execution mode is partially carried out in each verification, being
ableto wait several seconds until it is completed, mainly if the cycle execution timeislong. At the
end of thetransfer, the information from the directory is modified.

49

Chapter 3 Diagram of Relays Language

The management of the loading of the module into EPROM flash isidentical to that of RAM
memory, shown in the previous section Compaction.

Erasing and Re-enabling Modules on EPROM
The erasing command can be used for modules stored in the EPROM memory of the PLC. Asthe
erasing of EPROM’sis only possible for al its contents, this command only retires the information
from the modules directory, not carrying out areal erasing of the memory.

The same happens if a module recorded in EPROM s substituted for a new module of the sametype
and number |oaded by the serial channel. The new moduleis stored in RAM, remaining the old one
in EPROM, only the new onein RAM being shown in the directory.

The module removed through the erasing command or substituted with the load from a new module
can berestored to the directory, since its contents are still recorded in EPROM memory. This
recovery is possible with the modul es re-enabling command.

There-enabling renders the module non-existent in the directory and reappears in EPROM, or that
one already existingin RAM may be substituted for a previous onein EPROM.

For further information regarding how to erase or re-enable modules, c.f. items Erasing M odules
in the PLC or Router and Re-enabling M odulesin EPROM in the section Communicating
with the PLC or Router onthe MasterTool User’s Manual.

Erasing the EPROM Memory
With the total erasing from EPROM memory, all the modules are removed, all the available space
being available for the recording of the new modules.

To erase the EPROM cartridge an appropriate eraser device should be used, after the removal of the
cartridge fromthe PLC.

To erase the EPROM flash memory, use the options Communications, M odules, Erase Flash
which arethe PLC in programming mode. The erasing can wait several seconds, depending on the
capacity of the flash used in the PLC. For further information regarding how to erase the flash
memory, c.f. item Erasing the EPROM Flash Memory in the section Communicating with
the PLC or Router onthe MasterTool User’s Manual.

50

Chapter 3 Diagram of Relays Language

Program Execution Cycle Times

The maximum time possible for the execution of a complete cycle of the applications program in the
programmable controller is configurable for 100ms to 800ms. That is to say, the complete execution
of a verification of Module EOO1 cannot be extended for more than the value configured, including
the calls to the Modules P and F and the enabling of the time interruption Module E018. The
executive software carries out a continuous verification in the cycle time, passing automatically to
error statusif this limit is overtaken.

It can be verified the execution times of the applications program through the PLC’ s information

window (options Communication, Status, I nformation starting from the main menu) various
execution cycle times being given, specified as follows:

« Instantaneous cycle time: shows the cycle time of the last verification executed by the PLC
before sending the information of its statusto MasterTool. This item is useful in cycling mode,
when it shows the execution time of thelast cyclefired in the programmable controller.

» Average cycletime: shows the average times of execution of the last 256 verifications carried
out by the PLC. In execution mode this parameter gives a general idea of the processing time of
the applications program, as opposed to the instantaneous cycle time, which can be shown an
untypical value isolated from a verification. Asthistime is calculated only at each 256 scanning,
at times its value needs a few seconds to be updated, mainly in the case of an abrupt increase in
the execution time (including the new modules in the programmable controller for example.

« Maximum cycle time: shows thelongest time between all the cycles carried out since the
passing of the PLC into execution or cycling mode.

¢ Minimum cycle time: shows the shortest time between all the cycles carried out since the
passing of the PLC to execution or cycling mode.

The cycle times are shown in milliseconds (ms), being the counts initialized in the passing from
programming mode to execution or programming to cycling.

The service of the serial communication with MasterTool increases the application program’s cycle
timeinthe PLC, being able, in some cases, to overtake the maximum cycle time selected. If thetime
limit for execution is overtaken only due to the commands from the serial communication
(monitoring, forcing and the rest), the PLC does not Enter error status. It is possible therefore, to
indicate from the maximum cycle time greater than that selected without which the programmable
controller will have to Enter error mode.

The procedure of compaction of program memory by the programmable controller always follows
the previous rule. In some cases, the compaction routine needs to copy a much extended module into
the memory between two cycles of the applications program, increasing in the extreme the execution
time of one verification. In this situation the PLC does not Enter error status.

Status care should be taken when the execution cycle times move nearer to the maximum time
selected. The simplefact that the applications program is to be executed correctly with the more
common conditions of the input points does not guarantee that its verification time, in real conditions
of the machine functioning, will remain inside the value limit.

WARNING:

Each programming project should be examined carefully in the search for situations which will
cause the longer execution times.

These situations should be simulated and the times averaged, verifying if they are not excessive.
This procedure should be carried the samein the programming project with cycle times well below
thelimit, to ensure it functions well.

51

Chapter 3 Diagram of Relays Language

It is possible that in some isolated verifications the cycle time exceeds the maximum time sel ected
without which the PLC passes to error mode, in case these sporadic verifications do not cause delays
in the system timers.

WARNING:

If the PLC indicates a greater maximum cycle time than that sdected without which it will have to
have a memory compaction, evenif it continues normally in execution mode, the program should be
examined to reduce its cycle time in situations which cause greater times.

OHINT:

Sometypical procedures exist to reduce the execution time of the much extended applications
programs. A good management of the modules call can reduce thetotal cycletime sensibly, the calls
of afew modules of the applications program being carried out in each verification, not allowing
then all to be fired in the same cycle. The use of jump instructions in the modules, reduces their
execution time, since a jJumped passage of applications programis disregarded by the executive
software. The master rdlay and end of master relay instructions do not have this property, since the
segment of applications program delimited by them continue to be executed the same as when the
RM caoil is disabled.

OHINT:

Thelnitialization s of values in operands or tablesin Module EO00 should be carried out, devised
specially for this intention the execution of module EOQO, for not to be cycled, can delay more than
the maximum time, this time being disregarded in counting the time of the first verification of
Module E001. Asthe mode s, executed, it becomes meaningless to the programming of the timers
(TEE, TED) in module EQQO.

Protection Levels of the PLC

CPUs in the Ponto series have a mechanism to protect the programming project and the operands,
allowing the blockage of the loading of program modules, forcing the values or same, readings of
modules and monitoring for un-authorized operators.

These characteristics are of interest to critical processes, to avoid accidental modifications in the data
or in the control program or in the need for secrecy.

The blocking of operationsis carried out through the protection levels, which can be defined only for
operators which know a pre-defined password. The controller can work on four different:

* Level O0- all thePLC's operands are permitted.

» Level 1 - not possible to alter the programming project (to erase or load new program
modules) or change the status of the PLC. Can force and monitor operands and read
program modul es.

e Level 2 - not possible to alter the programming project (to erase or load new program
modules). Not possible to force operands or change the status of the PLC. Possible to
monitor operands and read program modul es.

* Leve 3-not possibleto read or alter the programming project, to monitor or force
variables not even to change the status of the PLC. Possible only to consult the status of
the PLC and its directory.

The change of protection level is carried out with the options Communication, Status,
Protection in MasterTool, having to key in the password to achieve correct access. The PLC's

52

Chapter 3 Diagram of Relays Language

protection level can be consulted with MasterTool through the options Communication, Status,
Infor mation.

Theuse of different protection levels from zero allows only authorized people, who know the
password, modify the program or the PLC’ s data. Unauthorized operators, even are prevented from
carrying out inadvertent alterations.

The access password can have from oneto eight alphanumeric characters. It is defined or changed

with the options Communication, Status, Password, the previous password and the new
password having to be keyed in twice, for the change to be confirmed.

The PLC is supplied with a password. It is not necessary to key in any value in previous password
field to define the first password.

WARNING:
The password should be written and kept in a secure place. If the password programmed inthe PLC
islost, ALTUS should be contacted.

The PLC’s protection acts not only to carry out operations with MasterTool, but also the commands
received through ALNET | and ALNET II, with the same characteristics defined for each level.

For more information about how to alter the protection level and the password of the PLC, c.f. items
Altering the Protection Level and Altering the Password in the section Communicating
with the PLC or Router on the MasterTool User’s Manual.

Interlocking of Commands in the PLC

In the Ponto series it is possible to usethe ALNET | and ALNET Il communication networks
together. When interconnected in this way, it is possible to receive two commands simultaneously
whose concurrent execution will not be desirable, dueto their characteristics. For example, the PC
can receive a command to transfer from EPROM to RAM through ALNET 11 while the same
command is being loaded in ALNET I.

Similar situations occur with the commands for transferring program modules from EPROM

Memory to RAM to flash or erasing from flash memory. The execution of these commands can be
extended for several seconds, during these the PLC can receive other commands which conflict with
operation in progress. For example, PLC can receive one command to erase the flash memory whilea
module may be being transferred to the same memory.

To resolve possible conflicts, thereis a braking mechanism to execute some of the commands
available in the PLC. These commands cannot be executed if the PLC is carrying out a specific
operation. There are two internal signals, loading module (CM) and compacting RAM (CR)
which are used for thisintention. The tables 2-4 and 2-5 show the commands which use the braking
and the enabling of the signals.

The status of the signals carrying module and compacting RAM can be verified in the information

window of the PLC, options Communication, Status, | nfor mation on MasterTool. While any of
the signals are enabled, the LED FC of the panel in the PLC remains alight.

Operation realized by the PLC Command Blocked Signal
(ALNET I, ALNET Il) ON
Loading Modules Load Modules CM

Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

Transfer from EPROM to RAM Load Modules CM
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules

53

Chapter 3

Diagram of Relays Language

Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

Transfer from RAM to Flash Load Modules CM
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

Erasing of Flash EPROM Load Modules CM
Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Erasing of Flash EPROM
Compaction

Legend: CM — Load Module

Table 2-4 Braking of Commandsin the PL C (loading module)

Operation realized on PLC Blocked Command Signal
(ALNET I, ALNET I ON
Compaction Load Modules CR

Transfer from EPROM to RAM
Transfer from RAM to Flash
Requesting Load of Modules
Re-enabling of modules in EPROM
Removal of Modules

Compaction

Legend: CR - Compacting RAM

Table 2-5 Braking of Commandsin the PL C (Compacting RAM)

For example, whileamodule is being loaded into the PLC through ALNET | or ALNET I1, the
commands for loading modules, transfer from EPROM to RAM, transfer from flash, requesting to
load modules, re-enabling of modulesin EPROM, erasing of EPROM Flash and compaction not be
possibleto execute, if they are received through another network. If they are received through
another network. If they are received through PLC areply indicating that their execution is
impossible is transmitted to the applicant.

54

Chapter 4 Instructions

4. Instructions

This chapter gives alist of integral instructions of the ALTUS Language of Diagrams and Relays,
describing the format, use, syntax and gives examples of each instruction.

List of Instructions

The ALTUS PLCs use the language of relays and blocks to eaborate the applications program,
whaose main advantage, apart from its graphic representation is being similar to the conventional
diagrams of relays.

The programming of this language, carried out through MasterTool, uses a group of powerful
instructions shown in the following sections.

MasterTool instructions can be divided into 7 groups:
* RELAYS

* MOVEMENTS

 ARITHMETIC

» COUNTERS
* CONVERSIONS
» GENERAL

* CONNECTIONS

Conventions Used

Different conversions are used for the presentation of groups and instructions making a better
visualization and recognition of the items described, aiming at a simpler method of learning and a
source of direct consulting of the required topics.

Presentation of the Groups
The descriptions of each group follows this routine.

1. Thegroup is described with a little containing the name of the group.

2. Straight after thelittle, a brief descriptions of the common characteristics of the group is
given.

3. Finishing the presentation of the group, atableis displayed containing the name athe
instruction in the first column, the description of the name of the instructions in the
second column and in the sequence of keys to carry out theinsertion of the instruction
directly through the keyboard in the third column.

Example:

Instructions of the Relays Group

Theinstructions of the Relays group are used for the logic processing of the diagrams of relays.
Through these instructions it is possible to manipulate the values of the digital points of input (%l)
and output (%0) aswell as points of auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used for divert the flow and control of the processing of the applications program.

55

Chapter 4 Instructions

Name Description of Name S(EgLijt(ierr]\%e Tool Bars
RNA contact normally open ALT, R, A
RNE contact normally closed ALT, R, F
BOB Simple coil ALT,R,B
SLT Jump coil ALT, R, S
BBL Connected coll ALT, R, L
BBD Disconnected coil ALT,R,D
PLS Pulse relay ALT, R, P
FRM End of master relay ALT,R, M
RM Master relay ALT, R, R

Presentation of the Instructions
The description of each instruction is made in the following way.

1. Theinstruction is described with alittle containing the name of the instruction and the description
of the name. A figure presented as an instruction is visualized in the diagram of relays containing
its operands, input and output. Above each figure a brief description of the significance of each
operand is displayed.

2. Theitem Description contains information describing the functioning of the instruction
according to the enabled inputs and the types of operand used. Also described in this item are the
outputs which are enabled after the execution of the instruction.

3. Theitem Syntax describes the combinations of operands which can be used in the instruction.
This itemis only present in instructions which have operands.

4. Theitem Example gives an example of the use of an instruction describing its behavior. This
itemis only present in instructions which require major detailing of their functioning.

5. Thereare also other items which describe a specific characteristic of theinstruction if it is
necessary.

Example:
PLS - Pulse Relay

PLS
input QOFER output
Description:

Theinstruction pulse relay generates a pulse from a scan on its output, that isto say, remains
powered during a scan of the applications program when the status of its input may pass from turned
off to powered.

Theauxiliary relay declared serves as data storage, avoiding limits as to the number of pulse
instructions present in the applications program.

WARNING:
The value of the auxiliary relay should not be modified in any other point of the applications
program.

56

Chapter 4

Instructions

Syntax:

OPER1

HADOOI X

57

Chapter 4

Instructions

Instructions of the Relays Group

Theinstructions of the Relays group are used for the logic processing of the diagrams of relays.
Through these instructions it is possible to manipulate the values of the digital points of input (%E)
and output (%S) as well as points of auxiliary (%A), memory (%M) and decimal (%D) operands.

They are also used to divert the flow and control of the processing of the applications program.

Name Description of Name S(EgLijt(ierr]\%e Tool Bars
RNA Contact normally open ALT,R, A

RNF Contact normally closed ALT, R, F

BOB Simple Coil ALT,R, B

SLT Jump Caoll ALT,R, S

BBL Connected Cail ALT,R, L

BBD Disconnected Coil ALT,R, D

PLS Pulse Relay ALT,R, P

FRM End of master relay ALT,R, M

RM Master relay ALT,R,R

Table 3-1 I nstructions of Relays Group

58

Chapter 4

Instructions

Contacts

* RNA contact normally open

* RNF contact normally closed
OFER

/]

Description:

Syntax:

These instructions reflect, logically, thereal behavior of an electrical contact of arday in the
applications program.

The contact normally open, closes according to the status of its associated operand. If the operand
point isin thelogic status 1 or O, the contact normally open is closed or opened respectively.

The contact normally has behavior opposite to normally open. If the point of the associated operand
isinthelogic status 1 or O, the contact normally closed is opened or closed respectively.

When a contact is closed, the instruction transmits the logic status of its input to its output. If it is
open, theinput value is not placed on the output.

OPER1

EEROOX
FAT
A e
A e e
A LE
A LE)

Table 3-2 Syntax of the Instructions RNA and RNF

59

Chapter 4

Instructions

Coils

Description:

BOB Simple Coil

OFER
f 3

L

BBL Connected Coail

OFER
f1}

{L}

BBD Disconnected Coil

OPER
(D)

The coail instructions modify the logic status of the operand in the image memory of the
programmable controller, according to the status of the enabling line of the instructions.

The simple coils connect or disconnect the operand point according to the enabling line, while the of

type connected and of type disconnected only connect or disconnect. Operands when thelineis
powered (“set/reset”).

These instructions can only be positioned in column 7 of thelogic.

Syntax:

OPER1

ESRODIR

LMD X
2ADYOE K
%DYOOOth

Table 3-3 Syntax of I nstructions BOB, BBL and BBD

60

Chapter 4

Instructions

SLT —Jump Coil

K+ |
{s) |
2O

Description:

Example:

Theinstruction jump coil serves asa controller of execution sequence of an applications program,
being used to divert its processing to a determined logic.

Its operand is a constant which determines the number of logics to be jumped starting with the
powering of the coil the determining of the logic destination is carried out by the sum of the constant
which accompanies the instruction with the number of the logic whereiit is found.

When the enabling line of the jump coail is turned off, the jump does not take place, and the following
instruction which in the cail is declared and executed.

If thefollowing instructionisin logic 2, the execution of the applications programis diverted to logic
7 if the enabling line is powered, that isto say, if the value of the point %A0009.3 is 1. If the value of
this point is O, the execution continues normally in logic 003.

F Logic 002 -

400093

— |)r—

SHM+00005

Figure 3-1 Example of SLT Instruction
This instruction can only be placed in 7 column of the logic.

Inthisinstruction it is possible to use a constant %KM with zero value or with negative value. If
programmed with zero value, the logic destination is the same as that which contains the jump coil,
when it is powered. That is to say, the processing is diverted to the start of the coil’s own logic. If the
value programmed is negative, the processing is diverted to alogic before the logic which contains
the jJump coil.

WARNING:

The use of a zero constant or negative corresponds to an unconventional use of theinstruction. If it is
required to useit there, the necessary precautions should be taken to avoid the input in a loop or the
excessive increase of the cycletime of the applications program. It is recommended nevertheless, to
use the jump coil only with positive constants greater than zero.

The control of the execution of these situations should be carried out through a braking which
disconnects the jump from the previouslogic, after a certain number of 1oops have been executed in
the return passage.

If the logic destination overtakes the last logic the applications program, the PLC jumps to the end of
the program and continue its normal cycle.

If the logic destination of a return jump isless than thefirst logic of the applications program, the
execution is restarted starting from logic O.

61

Chapter 4

Instructions

Syntax:

OPER1

ZKM 000
FAY L B ey

Table 3-4 Syntax I nstruction SLT

62

Chapter 4 Instructions

PLS — Pulse Relay

PLS
input QOFER output

Theinstruction pulse relay generates a pulsefor a scan in its output, that isto say, it remains powered

during a scan of the applications program when the status of its input may pass from turned off to
powered.

Description:

Theauxiliary relay declared serves as a memorizer, avoiding limits as to the number of pulse
instructions present in the applications program.

WARNING:
The value of the auxiliary relay should not be modified in any other point of the applications
program.
Syntax:
OPER1
ZAXDODL X

Table 3-5 Syntax of PLS Instruction

63

Chapter 4 Instructions

RM, FRM — Master Relay, End of Master Relay

 RM Master Reay
— BRM
* FRM End of Master Relay
— FRM
Description:

The master relay instructions end of master relay instructions are used to delimit passages of the
applications programs, the logic bar of supply in these powered or not, according to the status of the
enabling line.

These instructions do not need operands since it is possible to position then only in column 7 of the
logic.

When theinput of instruction RM is turned off, thelogic bar of the supply isturned off sincethe
following logic until the logic which contains the FRM instruction.

Asthese instructions always act on the logic following the one counted, it is advisable that their
position should always be as the instructions in the logic in which they are present. This being so, the
passage of applications program delimited visually through instructions in the diagram corresponds
exactly to that controlled by the instructions, therefore avoiding bad interpretation of its functioning.

WARNING:

Theinstructions CON, COB, TEE and TED contain outputs powered in the same way without their
outputs being enabled. These outputs remain powered the same within the passage over the turned
off command of a master relay, being ableto result in unwanted enabling.

64

Chapter 4

Instructions

Instructions of Moving Group

These instructions are used to Manipulate and transfer numerical values between constants, simple
operands or tables of operands.

Name Description of Name Editing Tool Bars
MOV Moving simple operands ALT, M,V ML
MOP Moving of parts of operands ALT, M, P MOF
MOB Moving of blocks of operands ALT, M, B MOE
MOT Moving of tables of operands ALT, M, T HMOT
CES Conversion of inputs or outputs ALT, M, S CES
CAB Load block ALT, M, C CAE

Table 3-6 Instructions of Group M ovements

65

Chapter 4

Instructions

MOV — Moving Simple Operands

Syntax:

OPERL1 — origin operand

enahle

OPER?2 — destination operand

Description:
This instruction moves the contents of simple operands, without carrying out conversions between

different types of operands, when the enabled input is enabled.

MOV

OFERI SUCCESS

DOFPERZ

The operand which occupies thefirst instruction cell (OPER 1) is the origin operand, whose valueis

moved to the destination operand, specified in the second cell (OPER 2).

If theformat of the destiny operand is less than the origin, the more significant octets are zeroed. If
the moving is carried out, the output success is enabled.

If theindirect indices exceed the limits of the operands declared in the configuration module, the

moving is not carried out and the output success is not lit up.

The moving of subdivisions of operandsis not permitted. For this reason, the instruction MOP should

be used.

When the destination operand is an integer (%M) and at least one of the other operands of the
instruction is real (%F) the result stored is stopped, only the integer part of theresult is stored on M

operand.

OPERL | OPER2
%E .
%S e
%A %on
%M 96
%I %l
%D %D
%M*E YME
%M*S SM*S
%M*A SR
%M*M MM
%M*| g
%M*D %MD
%KM
%KD

OPER1 | OPER2
%M
%F %M
%l %F
%M*M %l
%M*F %M*M
%M*| %M*F
%KM %M*|
%KF
%KI

Table 3-7 Syntax of the Instruction MOV

66

Chapter 4 Instructions

MOP — Moving of parts (Subdivisions) of Operands

MOP
CFERT

enable copy of the input

COFERZ

OPERL1 — origin operand
OPER?2 — destination operand
Description:

This instruction moves the contents of parts of simple operands (words, octets, nibbles, points) when

the enabled input is powered. The conversion between types of operandsis not carried out, only the
moving of values.

The operand which occupies thefirst cell of theinstruction (OPER 1) is the origin operand, whose

value is moved to the destiny operand specified in the second cell (OPER 2). The type of subdivision
used in the first operand should be the same as the second.

WARNING:

If the moving is carried out from a constant to an operand, the subdivision is always considered a
less significant equal constant to that declared in the destination operand. Dueto this characteristic,

the real value to be moved should always be declared in the origin constant to make the program
clearer.

Example:

enahle copy of the input

%MO061n2

The destination operand is declared with nibble division. Therefore, the less significant nibble of the

origin constant (with value equal to 1101 in binary, 13 in decimal) to be moved to nibble 2 of
memory M0OO61.

(0000 {1101 (1001 [1101 |

(0100{1101 [1100 [0001 |

Figure 3-2 Example of I nstruction MOP

The remaining bits which make up the constant areignored, that is to say, the result of the moving
will beidentical using a constant %KMO00013. The example shown uses a the functioning higher

value than that of the moving to better illustrate of the MOP. For better interpretation of the program
the value %KM 00013 should be used.

67

Chapter 4

Instructions

Syntax:

OPER1 OPER2 OPER1 OPER2
YOEXXXX. X
YSXXXX. X YEXXXX. X
YAXXXX.X YSXXXX. X Y%MXXXXbX
YoMXXXX. X YAXXXX.X %DXXXXbX
Y%DXXXX.X YoMXXXX. X YFXXXXbX Y%MXXXXbX
%DXXXXhX %DXXXX.X YIXXXXbX %DXXXXbX
YFXXXX.X Y%DXXXXhX YEXXXX YFXXXXbX
YFXXXXhX YFXXXX.X YSXXXX YIXXXXbX
YIXXXX. X YFXXXXhX YAXXXX
YIXXXXhX YIXXXX. X YoKMXXXXX
YKMXXXXX | %IXXXXhX YKDXXXXX
YKDXXXXX
OPER1 OPER2 OPER1 OPER2
YEXXXXnX
Y%SXXXXnX YEXXXXnX
YAXXXXNnX Y%SXXXXnX o
YMXXXXNnX YAXXXXNX "//(())I\D/I;(())(())(())((tt))))((YEXXXX
Y%DXXXXnX YMXXXXNnX YEXXXXbX YSXXXX
YFXXXXnX Y%DXXXXnX (; IXXXXbX YAXXXX
YIXXXXNnX YFXXXXnX 0
YKMXXXXX | %IXXXXnX
YKDXXXXX
OPER1 OPER2 OPER1 OPER2
YDXXXXwX
0
O//o'I:))(())(())(())((VV\Y))((YDXXXXwX YDXXXXwX
gA) MXXXX YoFXXXXwX YoFXXXXwX %M XXXX
0 0
YK MXXXXX Yol XXXXwX Yol XXXXwX
YKDXXXXX

Table 3-8 Syntaxes of the I nstruction MOP

68

Chapter 4 Instructions

MOB — Moving of Blocks of Operands

—MOB
enakle — OPER1 OFER4 |— terminated mowvement
OFEFRZ | OFERE |— originindex invalid
OFER3 L destination index invalid

OPERL1 —first operand of origin block
OPER2 — number of transfers to be carried out
OPERS3 — control operand

OPERA4 —first operand of designation block
OPERS5 — number of transfers for scan

Description:
Thisinstruction carries out the copy the value of a block of origin operands to the destination block.
It specifies the first operand of the origin block in OPER 1 and the first operand of the destination
block in OPER 4. The total number of transfers to be carried out is declared in parameter OPER 2, to

the number of transfers for the scan (OPER 5) should always be specified and a memory accumulated
to count the number of transfers (OPER 3).

If the origin or destination block is atable, the transfer should beginin itsfirst position.

If the operand format is less than the origin, the more significant octets of the origin value are
ignored. If oppositeis the case, the more significant octets of the destination are zeroed.

The number of transfers for scan is limited in 255 operands. In general, if possible, a high number of
transfers in the some scan should be avoided, to reduce the execution time of the program.

In each MOB instruction a memory is used as control operand (OPER 3), which should be zeroed
before the first execution.

WARNING:
The control operand should not have its contents altered in any part of the applications program,
under penalty of preventing the correct execution of the instruction. Each occurrence of this

instruction in the program should have an operand of exclusive control, different fromto rest. This
operand cannot be retentive.

When connected, the outputs of the second and third cells show, respectively, that at least one of the
component operands of the origin or destination block has a greater address than the maximum
number declared for the operand or table used, no moving being carried out. If the value of the

second operand is negative the output origin index invalid is enabled.
The output of thefirst cell is enabled in the scan in which the moving is completed.

WARNING:

Theinput enable should remain active until the moving is concluded. As thisinstruction is executed
in multiple execution cycles, it should not be jumped while the moving is still in progress.

69

Chapter 4

Instructions

Syntax:

OPERL | OPER2 | OPER3 | OPER4 | OPERS
%E %E
%S %S
%A %A
%M . . %M .
%l %KM %M %l %KM
%D %D
%TM %TM
%TD %TD
OPERL | OPER2 | OPER3 | OPER4 | OPERS
0 %F
Yo %KM %M %TF %KM

%TF

Table 3-9 Syntax of the I nstruction MOB

70

Chapter 4 Instructions

MOT — Moving of Tables

—MOT—
enakle —{ OFPER1 — success
OFERZ |— origin index irvalid
OFER3 |— destination index invalid

OPERL1 — origin table or origin operand
OPER?2 — table index
OPERS3 — destination operand or destination table

Description:
This instruction allows the two operations: to transfer the value from one position of thetableto a
simple operand or from one simple operand to a position in the table.

The operand which occupies thefirst instruction cell (OPER 1) is the origin operand, whose valueis
moved to the destination operand specified in the third cell (OPER 3). OPER 2 contains the position
of thetable declared in OPER 1 or OPER 3.

Reading the contents of the table:

Allows reading of the contents of a table position and loads into a memory operand or decimal
operand.

Theinstruction is programmed in the following way:

* OPERL - specifies the address of the table to be read

+ OPER2 - specifies the position (%KM) to be read or the memory (%M) which contains this
position

» OPERS - specifies where the contents of the table position should be transferred to

If thefirst operand to reference a table indirectly is not specified or if the value of the second operand
is negative or greater than the last position defined for the table, the transfer is not carried out or the
output origin index invalid is enabled. If the third operand to indirectly reference an operand is not
declared, the transfer is not carried out and the output destination index invalid is enabled.

Writing valuesinto table:

It allows a constant value or the contents of a memory operand or decimal operand to be written into
a table position.

Theinstruction is programmed in the following way:

» OPER1 - specifies the origin operand

» OPERZ2 - specifies the position (%K M) to be written in the table or the memory (%M) which
contains this position

* OPERS - specifies the address of the table where the contents
aretransferred to

If thefirst operand indirectly references an undeclared the transfer of the contentsis not carried out
and the output origin index invalid is enabled. If the value of the second operand is negative or
greater than the last position defined for thetable, or if the third operand indirectly to reference a
tableis not specified, the transfer of the contents is not carried out and the output destination index
invalid is enabled.

71

Chapter 4

Instructions

Syntax:

This instruction simplifies the programming of a series of algorithms involving decodifications,

sequencings, generating of curves, storing and comparison of values, among others.

Reading:

OPER1 OPER2 | OPER3
%TM %KM %M
%M*TM %M %M*M
OPER1 OPER2 | OPER3
%TD %KM %D
%M*TD %M %M*D
OPER1 OPER2 | OPER3
%TF %KM %F
%M*TF %M %M*F
OPER1 OPER2 | OPER3
%TI %KM %I
%M*TI %M %M*|

Writing:
OPER1 | OPER2 | OPER3

0,

/OZ)KI\'/\I/' %KM %TM
YMM %M %M*TM
OPER1 | OPER2 | OPER3

0,

/OZ)KDD %KM %TD
%MD %M %M*TD
OPER1 | OPER2 | OPER3

0,

/0°/OKFF %KM %TF
YME %M %M*TF
OPER1 | OPER2 | OPER3

0,

o %KM %TI

%I
%M %M*TI

%M*

Table 3-10 Syntax of the InstructionsM OT

72

Chapter 4 Instructions

CAB - Load Block

— CAB—
enable — OPER1 [— success

COFEREZ

OFER3 |— destination index irsalid

OPERL1 —initial operand or table to be loaded
OPER2 — number of operands or positions of table
OPER3 — table of constants to be loaded

Description:
This instruction allows the loading of up to 255 constant valuesin a block of operands or tables.

Theinitial operand or table to be carried is specified in thefirst parameter (OPERL1), the number of
operands or positions of the table to be loaded in the second operand (OPER2) and the value of the
constants in the third (OPERS3).

The value of the second operand should be positive, less or equal to %KM+128.

Thethird operand (OPER3) is made up of a table of constant values to be loaded. These values are
declared by selecting the button Block, an editing window being open in MasterTool. The constants
are of type %KM if the type of thefirst operand is %E, %S, %A, %M, %TM or they are of type
%KD if thefirst operand is %D or %TD. If thefirst operand is an octet (%E, %S or %A), only the
values of the less significant octets of each constant declared are moved.

Alsoit is possible to carry out the declaration of the values of the table in ASCII. This mode allows.
In this modeit is possible to insert the addresses or tags of operands which should represent its value
at the moment when the instruction is executed. The address or tag of operand should be keyed in
between keys ({ }).

E.g.: If %MO0000 has the value 35 and that it has loaded the following text in ASCII “Value of
{%MO0000}”. Thetext isasfollows:

Value of %M 0000:00035.
When the button Block is selected the dialogue box CAB - Valuesis shown:

73

Chapter 4

Instructions

Declaration of constant values table

CAB - Yalues

Values

ooon

oooon

00000

oooon

oooon

oooon

oooon

oooon

oooon

(5= == VI = - TR

oooon

Type: M

Base: DEC

ASCII Editing

Cancel

Press the button to do ASCII

editing

Press the button to initialize
the constant values with a

specific value

Figure 3-3 Dialogue Box CAB - Values

To carry out the editing of the constants
1. Position the cursor on theindex to be edited. If it is necessary to roll the pages, the keys PAGE
DOWN and PAGE UP or the vertical roll bar can be used.

2. Key in the constant value.
To carry out the editing in ASCII

1. Select thebutton Editing ASCI 1. The dialogue box CAB - Editingin ASCII is

shown.

2. Key inthetext whichit is required to be loaded in the constants of the CAB and sdlect

the Ok button.

74

Chapter 4

Instructions

CAB - Editing in ASCII

Editing the table contents in ASCIL
Use { } to inclusion of address or tags. Cancel

|> IH

\

L Key in the text may be attributed at constant table of
the CAB instructions.

Figure 3-4 Dialogue Box CAB - Editing in ASCI |

To initialize the constants with a specific value

1
2.
3.

Select the button I nitiali ze. The window CAB-Initialize tableis displayed.
Intheitem Value, key in the value to be initialized in the constants.

Intheitem I nitial Position, key in the number of thefirst position to receive the value of
Initialization.

Inthe item Final position, key in the number of the last position to receive the Initialization
value.

Select the button OKk.

75

Chapter 4 Instructions

Key in the value will be

CAB - Imitialize table

Ualue:| / |

O =enee
Initial position:
Last position: m-

L Key in the first position number which
will be receive the initialization value

Key in the last position number which
will be receive the initialization value

Figure 3-5 CAB —Initialize table

The output destination index invalid is enabled when some operand can not be accessed or atable
position does not exist. The output successis always enabled when the instruction is executed
correctly. If the output destination index invalid is enabled, no loading of constants occurs.

Theloading of the constant values is entirely carried out in one scan of the applications program, be
able to cause an excessive time cycle when it is extended. In most parts of applications programs, the
instruction CAB can only be executed in the Initialization (loading of tables whaose contents are only
read) or at some special times, not needing to be called in all the scans. In these cases, it is
recommended that it is programmed in the applications program module of Initialization or that it is
enabled only at the necessary loading times.

Syntax:

OPER1 OPER2 OPER3

%E
%S
%A
%M

MEMORY
O%TE/I %KM TABLE
/OM'E VALUES
%M*S
%M*A
%M*M
%M*TM

OPER1 OPER2 OPER3

%D

DECIMAL
0
A)TP %KM TABLE
YoM*D VALUES
%M*TD

76

Chapter 4

Instructions

OPER1 | OPER2 | OPER3
0,
(yf’TFF REAL
%KM TABLE
YoM VALUES
%M*TF
OPER1 | OPER2 | OPER3
0,
fyf')l!l INTEGER
oM %KM TABLE
YoM VALUES

Table 3-14 Syntax of the Instruction CAB

77

Chapter 4

Instructions

Arithmetic group Instructions

The arithmetic instructions modify the values of numerical operands, allowing arithmetic and logic
calculations to be carried out between them. They also allow comparison between values of

operands.
Name Description of Name Editing Tool Bar
Sequence
SOM Sum ALT, A, S +
SUB Subtraction ALT,A /B =
MUL Multiplication ALT, A M e
DIV Division ALT,A, D
AND Function “and” binary between ALT, A A faTe g
operands
OR Function “or” binary between ALT, A, O oF
operands
XOR Function “or exclusive” binary ALT, A, X YR
between operands
CAR Load operands ALT, A, C CAR
IGUAL Equal ALT, A, | = |
MENOR Less than ALT, A, N < |
MAIOR More than ALT, A, R e
Table 3-15 Arithmetic I nstructions of the Group
SOM - Sum
—S0M—
enahle — OFER1 — copy ofthe input

OPER1 —first plot

OPER2 — second plot

OPERS3 - total

Description:
Thisinstruction carries out the arithmetic sum of operands. When the input enabled is powered, the
values of the specified operands in thefirst two cells are added and the result stored in the operand of

the third cdll.

OFER3

OFERZ — owerflow

If the result of the operation is more or less than is allowed to be stored, the output overflow is
powered and the maximum or minimum storable value is attributed the total variable as the result.

If theinput enableis not powered, all the outputs are turned off and the value of OPER3 is not

altered.

78

Chapter 4

Instructions

Syntax:

OPER1 OPER2 OPER3
%KD %KD .
%D %D /D
OPER1 OPER2 OPER3
%KF %KF
%F %F .
%KM %KM (yA’I\FA
%M %M)

%K
%l

%K
%l

%l

Table 3-16 Syntaxes of the I nstruction SOM

79

Chapter 4 Instructions

SUB - Subtraction

—SUB—
enable —1 ©FER1 —result> 0

OFERZ —result=10

OFERS —result<0

OPER1 —first plot
OPER2 — second plot
OPERS3 - result

Description:

Thisinstruction carries out the subtraction arithmetic between operands. When enablesis powered,
the value of the operand of the second cdll is subtracted from thefirst cell. Theresult is stored in the
memory specified in the third cell.

Thelines of output result > 0, result = 0 and the result < 0 can be used for comparisons and are
enabled according to the result of the subtraction.

If theinput enableis not powered, all the outputs are turned off and OPER3 remains unaltered.

If the result of the operation exceeds the greatest or smallest storable value in the operand, the
respective value limit is considered as the result.

Syntax:

OPER1 OPER2 OPER3

%KD %KD

0
%D %D /D

OPERL1 OPER2 OPER3

%KF %KF
%F %F .
%KM %KM (y{:’l\'jl
%M %M %l
%K %K 0
%l %l

Table 3-17 Syntaxes of the I nstruction SUB

80

Chapter 4

Instructions

MUL - Multiplication

enahle

— MUL—

OFER3

OPERL1 - multiplied
OPER2 - multiplier
OPERS - product

Description:

Thisinstruction carries out the multiplication arithmetic of operands. When theinput enableis
powered, the multiplication of the contents of the specified operand takes placein thefirst cell by

those specified in the second.

— OFER1 — copyofthe input

OFPERZ — overflow

Theresult is stored in the specified memory of thethird cell. If thisis more than the maximum value
storablein a memory, thefinal result is this value and the output overflow is powered. If the output

enableisturned off, no output is lit and OPERS3 remains unchanged.

Syntax:
OPER1 | OPER2 | OPER3
%KF %KF
0, 0,
s | okn |

%M
%K
%l

%M
%K
%l

%M
%l

Table 3-18 Syntax of the Instruction MUL

81

Chapter 4

Instructions

DIV - Division

Syntax:

OPERL - divided
OPER2 - divider
OPERS - quotient
OPERA4 - remainder

Description:
Thisinstruction carries out the division arithmetic of operands. When the input enable is powered,
the division of the value of the operand in the first cell by the second takes place, the result being
stored in the specified memory in the third cell and the remainder of the operation placed in the
fourth operand. The operands of the first and second cells can be of the type memory or constant.

enahle

DIY
CFERT

COFPERZ

OFER3 +— copy oftheinput

OFERA |— division by zero

OPER1 OPER2 OPER3 OPER4
%KM %KM
%M %M %M %M
%K1 %K1 %l %l
%l %l
OPER1 OPER2 OPER3 OPER4
%KF %KF
%F %F .

0/6F
%KM %KM , .
%M %M g;l\l/l %6M (NU)
%K %K 0
%l %l

Table 3-19 Syntax of the Instruction DIV

NU= Not used, any memory can be used.

If the value of the second operand is zero, the output division by zero is enabled and the maximum or
minimum storable value is placed in the operand, according to the sign of OPERL. In this case, zero
will be stored in OPERA4 (remainder). The outputs of the instruction are only powered if the input

enableis enabled. If it is not enabled, OPER3 and OPER4 remain unchanged.

Always that the OPERL1 (divided), OPER2 (divider) or OPER3 (quotient) is an operand of real type
the fourth parameter (rest) will be unconsidered.

82

Chapter 4

Instructions

AND — And binary between operands

enable —

—AND—

OFER1 — copy of the input

COFEREZ

OFER3

OPERL - first operand
OPER?2 - second operand
OPERS3 - result

Description:

This instruction carries out the operation “and” binary between thefirst two operands, storing the

result in thethird.

The operation is carried out point between the operands. The table to follow shows the possible

combinations of the “and” point to point operation.

point OPER1 point OPER?2 point OPERS3 (result)
0 0 0
0 1 0
1 0 0
1 1 1
Table 3-20 Point to Point Oper ations
Example:
—AND—,
enable — %MO0D0 — copy of the input
"KM+
00015
“%MO001

Inthis exampleit is required to keep the less significant value of the nibble of %M0000, zeroing the

rest of the operand. If %M 0000 contains 215 (11010111 binary), the result of the “and” binary with
15 (00001111 binary) is 7 (0000011 binary).

Decimal Binary
215 00000000 11010111 (contents of %MO0000)
AND 15 AND 00000000 00001111 (value of %KM+00015)
7 00000000 00000111 (result in %M0001)

Therefore, the decimal value 7 is stored in %M 0001.

Syntax:
OPER1 OPERZ OPER3 OPER1 OPERZ OPER3
oM KM LA T | kD D %D
oM oM et I i

83

Chapter 4

Instructions

OPER1

OPER2

OPER3

%l
%K

%l
%Ki

%l

Table 3-21 S Syntaxes of the I nstruction AND

84

Chapter 4

Instructions

OR — Or binary between operands

enahle — OFERI

OPERL1 —first operand

OPER?2 - second operand

OPERS3 - result
Description:

COFEREZ

OFER3

- copy afthe input

This instruction carries out the operation “or” binary between the values of the first two operands,

storing theresult in the third.

The operation is carried out point to point between the operands. The table to follow shows the
possible combinations of the operation “or” point to point.

point OPER1 point OPER?2 point OPERS3 (result)
0 0 0
0 1 1
1 0 1
1 1 1
Table 3-22 Operations Point to Point (OR)
Example:
enable — wmonon — copy of the input
KM+
00015
“»MO0D1

Inthis exampleit is required to force the less significant nibble of %M0000 to 1, saving thevaluein
the other nibbles. If %MO000 contains 28277 (0110111001110101 binary) the result is 28287

(011011100111111 binary).

Decimal Binary
28277 01101110 01110101 (content of %MO0000)
OR 15 OR 00000000 00001111 (value of %KM+00015)
28287 01101110 01111111 (result of %MO0001)
Syntax:
OPER1 OPER2 OPER3 OPER1 OPER2 OPER3
Y %KM oM KD “%WKD %D
A oM oDy "D

85

Chapter 4

Instructions

OPER1

OPER2

OPER3

%l
%K

%l
%Ki

%l

Table 3-23 Syntaxes of the I nstruction OR

86

Chapter 4

Instructions

XOR - Or Exclusive between operands

enable —

—MOR—

OFER1 | — copyofthe input

COFEREZ

OFER3

OPERL1 —first operand
OPER2 — second operand
OPERS3 - result

Description:

This instruction carries out the operation “or exclusive’ binary between the two first operands,

storing theresult in the third.

The operation is carried out point to point between the operands. The table to follow shows the

possible combinations of the operation “or exclusive’ point to point.

Point OPER1 point OPER?2 point OPER3 (result)
0 0 0
0 1 1
1 0 1
1 1 0
Table 3-24 Operations Point to Point (XOR)
Example:
—X0R—
enable — wmponop — copy of the input
"KM+
00015
*»MO0D1

Inthis exampleit is required to invert the points contained in the less significant nibble of %M 0000,

saving therest of the operand. If %M 0000 contains 1612 (0000011001001100 binary), theresult is

16603 (0000011001000011 binary).

Decimal Binary

1612 00000110 01001100 (content of %M0000)
XOR 15 XOR 00000000 00001111 (value of %KM+00015)

1603 00000110 01000011 (result of %MO0001)

Therefore, the decimal value 1603 is stored in MOO1.

Syntax:
OPER1 OPERZ OPER3 OPER1 OPERZ OPER3
oM KM LA T | kD D %D
oM oM et I i

87

Chapter 4

Instructions

OPER1

OPER2

OPER3

%l
%K

%l
%Ki

%l

Table 3-25 Syntaxes of the I nstruction XOR

88

Chapter 4 Instructions

CAR — Load Operands

CAR
enahle OFER SUCCESS

OPER - operand to be |oaded

Description:

Syntax:

Theinstruction loaded in the operand carries the loading of the value of the operand specified in the
special internal register inthe PLC, for the subsequent use of the instructions of comparison (more
than, less than, equals). The operand remains loaded until the next instruction for loading, being able
to be used for different logics, including subsequent scan cycles.

The output success is enabled if theloading is carried out. If someindirect access of the operand is
not possible (invalid index), the output success is not enabled.

See considerations and examples shown in the following section, I nstructions of Comparison of
Operands.

[The comparing of decimal operands and real operands is not allowed.

OPER1

%E
%S
%A
%M
%D
%F
%l
%KM
%KD
%KF
%K
%M*E
%M*S
%M*A
%M*M
%M*D
%M*F
%M*

Table 3-26 Syntax of the Instruction CAR

89

Chapter 4 Instructions

Instructions of Comparison of Operands — Equals, More than and Less than

enable — (QOFER [register=operand
— <

enable — (QPER — register < operand
—

enable — QPFER |— reqgister> operand

OPER — operand to be compared

Description:

Example:

Theinstructions more than, less than and equals carry out comparisons of the operand specified with
the value loaded previously in the internal register with the instruction CAR (Load Operand),
supplying the result of the comparison in its outputs. If any indirect accessisinvalid, the output is
disabled.

For example, the instruction more power to its output if the value of the operand present in the last
active CAR instruction is greater than the value of its operand. The equals instructions and less than
work in an identical way, changing only the type of the comparison carried out.

If the operands to be compared are of the same type, they are compared according to their storage
format (taking their signsinto consideration). If they are not of the same type, they are compared
point to point (as binary values without sign).

| The comparing of decimal operands and real operands is not allowed.

WARNING:
It is suggested that operands of equal types are always compared to avoid wrong interpretation in the
results when the operands have negative values. C.f. following example.

F Logic @ 003 -

AR pa— %A0003.2
MO01 2—|—Ennuu { —

Figur e 3-6 Example of Instructions of Comparison

Asthetypes of operands are different (%M and %D), the comparison is carried out point to point,
without taking the arithmetic signs into consideration. Due to this fact, if %M 0012 has value -45 and
%D0010 has the value +21, the operand %A0003.2 will be powered, asif the value of %M0012 is
greater than %D0010, which actually is not.

%M0012 =-45 1111 1111 1101 0011
%D0000 =+21 0000 0000 0000 0000 0000 0000 0010 0001

90

Chapter 4 Instructions

To consider the signs in the comparison of the example, the value of the memory operand should be
converted to a decimal, using this last in the instruction CAR, as shown in the logic to follow:

Thevalue 111 111 1101 0011 (%M0012) is greater than 100001 (%D0010) in the comparison point
to point. Showing it as a negative value.

F Logic ;003 -

AR = — %40003.2
Do 2—|—E001 o { —

Figure 3-7 Example of the I nstructions of Comparison

WARNING:

Dueto the processing order or theinstructionsin the logic, care should be taken in positioning the
instructions of comparison to avoid errorsin interpretation in its functioning. C.f. section Logicsin
this same chapter and the example to follow.

Example:

E Logic ;003 -

AR — = — %0001 0

Lechaooon = skons ¢ —
00000 ~

AR — = — %0001 1

Loonoomt = skonts ¢ —
00001 ~

AR — = — %0001 2

Leonoonz = skomts ¢ —
0002 ~

—CAR—— — = — %0001 3

Loenoonz = skme ¢ —
00003 -

Figure 3-8 Incorrect Use of the I nstruction CAR

In the logic shown, it is required to compare the value of the operands %M 0000, %M 0001, %M 0002
and %M 0003 with the constants %KM 00000, %K M00001, %K M00002 and %K M00003,
respectively. However, the functioning. As the processing of the logic takes places in columns, at the
end of the execution of column O the value of %M 0003 will be loaded to the comparisons in column
1. Inredlity, only the value of the operand %M 0003 will be compared with the constants present in
column 1.

For the required functioning, the logic should be programmed in the following way:

91

Chapter 4

Instructions

F Logic @ 003 -
-FLAR — = — 80001 .0
FAO000 A { Y—
| ooom »
—CAR— — = — %.40001 1
pooot] sk { Y—
ooon »
Y e g 40001 .2
moooz = sk { Y—
o000z *
M o Y~ — = — YeA0001 3
MO003 ANy { —
| 00003 *
Figure 3-9 Correct Use of the I nstructions CAR
WARNING:

To avoid wrong interpretations in the functioning of the comparison, it is suggested to use only one

instruction CAR for the column of thelogic.

Syntax:

OPER1

%E
%S
%A
%M
%D
%F
%l
%KM
%KD
%KF
%Ki
%M*E
%M*S
%M*A
%M*M
%M*D
%M*F
%M*

Table 3-27 Syntax of the Instructions M ore than, Equals and L ess than

92

Chapter 4

Instructions

Instructions of counters group

The counter instructions are used to carry out counts of events or the time of the applications

program.
Name Description of Name Editing Tool Bar
Sequence
CON Simple counter ALT,C,N COH
COB Bidirectional counter ALT,C,B COg
TEE Timer to turn on ALT,C, T TEE
TED Timer to turn off ALT,C,D TED

Table 3-28 I nstructions of Group Counters

93

Chapter 4

Instructions

CON — Simple Counter

increase lirnit

active no limit

OPER1 - counter
OPER2 — count limit

Description:

Syntax:

Thisinstruction carries out simple counts, with the increase of one unit in each enabling.

Theinstruction simple counter has two operands. Thefirst always of type %M, specifies the memory
which writes up the events. The second establishes the value limit of the counting to power of the
upper cell and can be of type %KM or operand %M referenced indirectly.

If theinput activeis turned off, the memory in OPERL is zeroed, the output no limit powered and
the output limit turned off.

When theinput active is powered, each transition of connection in the input incr ease raises the
value of the operand counter (OPER1) by one unit.

If the value of thefirst operand is equal to the second operand, the output limit is powered. The
counter variable is not increased with new transitions in the input increment, staying with the value
limit. If it is less, the output limit is turned off. Thelogic status of the output No limit is exactly the
opposite of the output limit, being the deactivated instruction.

In case of invalid indirect access to the second operand of the instruction, the output no limit is
powered.

WARNING:
With the input active deactivated, the output no limit always remains powered, also when the

instruction is in a command passage through the instruction RM (master relay). Due to this care
should be taken not to carry out unrequired enabling in the logic.

OPER1 OPER2

Y KM
M
MM

Table 3-29 Syntax of Instruction CON

94

Chapter 4 Instructions

COB - Bidirectional Counter

— COB—
increase —{ OFERT |— upper limit
decrease — OPERZ — nolimit
active — OFPER3 |— lower limit

OPER1 - counter
OPER2 — count step
OPER3 — count limit

Description:

Syntax:

This instruction carries out counts with the value for increase or decrease defined for an operand. The

bidirectional counter instruction allows counts in both directions, that is, increases or decreases the
contents of type memory.

Thefirst operand contains the accumulated memory of the value counted while the second specifies
the value of the increase or decrease required. Thethird operand contains the value limit of the count.

The count always takes place when the input active is powered and the inputs increase or
decr ease have a transition from disconnected to connected. If both the inputs have the transition in

the same scan cycle of the program, thereis no increase nor decrease in the value of the memory
declared in OPERL1.

If the value of the increase is negative, the input increase causes decreases and the input decr ease
causes increases in the value of the count.

If the value of the first operand makes more than or equal to the third operand, the output upper
limit is powered, not being increased.

If the value of the first operand is equal to or less than zero, the output lower limit is enabled, zero
being stored in the first operand.

If the value of the first operand is between zero and the limit, the output No limit is enabled. If the
input activeis not powered, the output lower limit is powered and the first operand is zeroed.

In case of invalid indirect access to any one of the operands of the instruction, the outputs lower limit
is powered.

WARNING:

With the input active deactivated, the output lower limit always remains powered, the same when
theinstruction is in a passage commanded by the instruction RM (master relay). Dueto this care

should be taken not to carry out unrequired enabling in the logic.

OPER1 OPER2 OPER3

%M oM M
%M M MM M
%KM KM

Table 3-30 Syntax of the Instruction COB

95

Chapter 4 Instructions

TEE — Timer to turn on

TEE
free OFER1 l
active OFERZ -2

OPERL1 — time accumulator

OPER?2 — time limit (tenths of seconds)

Description:
Thisinstruction carries out time counts with the powering of its two enabling inputs.

Theinstruction TEE has two operands. The first (OPER1) specifies the accumulated memory of the
time count. The second operand (OPER?2) shows the maximum time to be accumulated. Thetime

count is carried out in tenths of seconds, that is to say, each unit increased in OPER1 corresponds to
0.1 seconds.

While the inputs free and active are powered simultaneously, the operand OPER1 is increased by
each tenth of a second. When OPER1 is more than or equal to OPER2, the output Q is powered and -
Q turned off, OPER1 keeping the same value as OPER.

In the disabling of theinput free, thereis an interruption in the count time, OPER1 keeping the same
value. Disabling the input active, the value in OPER1 is zeroed.

If OPER2 is negative or theindirect accessisinvalid, OPERL1 is zeroed and the output - Q is
powered.

Thelogic status of output Q is exactly the opposite of the output -Q being the deactivated
instruction.

WARNING:

With the input active deactivated, the output -Q always remains powered, the same when the

instruction is in a passage commanded by the instruction RM (master reay). Dueto this care should
be taken not to carry out unrequired enabling in the logic.

Diagram of Times:

active J I—
free 4|—|

i time
Q

Q I

Figure 3-10 Diagram of Times of the Instruction TEE

96

Chapter 4 Instructions

Syntax:

OPER1 OPER2

%M M
M M
M

Table 3-31 Syntax of the Instruction TEE

TED — Timer to turn off

OPERL1 — time accumulator

OPER2 — time limit (tenths of seconds)

Description:
This instruction carries out the time counts with the turning off its enabling input.

Theinstruction TED has two operands. Thefirst (OPERLY) specifies the accumulated memory of the
time count. The second operand (OPER2) shows the maximum time to be accumulated. The time

count is carried out in tenths of seconds, that is to say, each unit increased in OPER1 corresponds to
0.1 seconds.

While the input active is powered and the input block turned off, the operand OPER1 is increased
by each tenth of a second. When OPERL1 is greater than or equal to OPER?2, the output Q is turned
off and -Q powered, OPER1 keeping the same value as OPER2.

The output Q always powered when the input active is powered and OPERL is less than OPER2.

Enabling the input block, thereis an interruption in the time count, while disabling the input active,
the time of the accumulator is zeroed and the output Q is disabled.

If OPER2 is negative or theindirect accessisinvalid, OPERL is zeroed and the output Q is powered.

The logic status of output -Q is exactly the opposite of the output Q, being the deactivated
instruction.

WARNING:

With the input active deactivated, the output - Q always remains powered, the same when the

instruction is in a passage commanded by instruction RM (master relay). Dueto this care should be
taken not to carry out unrequired enabling in the logic.

97

Chapter 4 Instructions

Diagram of Times:

active ——| [
block — | |
Q I N
« [

Figure 3-11 Diagram of Times of I nstruction TED

Syntax:

OPER1 OPER2

%M M
M M
M

Table 3-32 Syntax of the Instruction TED

Instructions of the Conversion Group

This group has instructions which allow the conversion between the formats of storing the values

used in the operands of the applications program and accesses to analog modules in the input and
output bus.

Name Description of Name Editing Tool Bar
Sequence
BIN/DEC Conversion binary-decimal ALT,V,B
DEC/BIN Conversion decimal-binary ALT,V,D

Table 3-33 Group Converter Instructions

98

Chapter 4 Instructions

B/D - Conversion Binary-Decimal

enahble SUCCESS

OPERL - origin
OPER? - destination

Description:
This instruction converts values stored in binary format, contained in memory operands (%6M), to
decimal format (BCD), storing them in decimal operands (%D).

The binary value contained in thefirst operand (OPER1) is converted to decimal value and stored in
the second operand (OPER2). The output success is enabled and the conversion is carried out
correctly. If any invalid indirect access happens to the operand, the output SUCCESS is not powered.

Syntax:

OPER1 OPER2

%M WD
YM M M D

Table 3-34 Syntax of the I nstruction B/D

99

Chapter 4 Instructions

D/B - Conversion Decimal-Binary

enahle SUCCESS

el o

OPERL - origin
OPER?2 - destination
Description:

This instruction converts values stored in decimal format, contained in decimal operands (%D), to
binary format, storing them in memory operand (%M).

The decimal value contained in the first operand (OPERL1) is converted to binary value and stored in
the second operand (OPER2). The output successis enabled if the conversion is correctly carried
out. If any invalid indirect access to the operand happens, the output successis not powered.

If the value converted results in a value greater than the maximum storable in operands %M, the
output successis not powered, the limit value being stored in the destination operand. In this case,
the output over flow is powered.

Syntax:

OPER1 OPER2

%Dy M
Y%M*D MM

Table 3-35 Syntax of the Instruction D/B

100

Chapter 4

Instructions

Instructions of the General Group

The general group instructions allow the testing and enabling of points indirectly, implementations of
status machines, calls for procedures and functions.

Name Description of Name Editing Tool Bar
Sequence
LDI Connect or disconnect indexed points ALT, G, L Lo
TEI Status test of indexed points ALT,G, T TEI
SEQ Sequencer ALT, G, S SEQ
CHP Call the procedure module ALT,G,P CHF
CHF Call the function module ALT, G, F CHF
ECH Write operands on another PLC for ALT.G. E ECH
Ethernet
LTH Read operands from another PLC for ALT. G, T LTH
Ethernet
LAH Free images update for Ethernet ALT,G, A LAH

Table 3-40 I nstructions of the general group

101

Chapter 4 Instructions

LDI — Connect/Disconnect indexed

—LDIl—
connect — COFER1 |—connect ar disconnect
disconnect — OFPERZ2 —Iower index invalid

OFER3 — upperindexinvalid

OPERL - address of point to be connected or disconnected
OPER?2 - address lower limit
OPERS - address upper limit

Description:
Thisinstruction is used to connect or disconnect indexed points for a memory, delimited by operands
of upper and power limit.

Thefirst operand specifies the memory whose contents reference the auxiliary operand, input or
output to be connected or disconnected. It should be declared as the operand of indirect access to the
operand %E or %A (M XXXX*E or %M XXXX*A). The same when theinstructionis used to
connect or disconnect points of output (%0), the representation in this operand will be as indirect
access to the input (YoM XXXX*E).

The second operand the address of thefirst valid output or auxiliary relay in theinstruction. It should
be specified with subdivision of point (o0RXXXX.X, %SXXXX.X or %AXXXX.X).

Thethird operand specifies the address of the last output relay or valid help in the instruction. It
should be specified with subdivision of point (YoEXXXX.X, %SXXXX.X or %AXXXX.X).

If theinputs connect or disconnect will be enabled, the point specified by the value contained in
the memory operand (OPERY) is connected or disconnected if thereis alimit for OPER2 and OPER3
in the addresses areas. For example, if these operands correspond to %S0003.3 and %S0004.5,
respectively, thisinstruction only acts for the e ements of %S0003.3 to %S0003.7 and from
%S0004.5.

102

Chapter 4

Instructions

Example:

Syntax:

If therelay or help pointed at the memory index is outside the defined limits for the defined limits for
the parameters of the second and third cells, the output upper index invalid or lower index
invalid is connected. The output of thefirst cell is enabled if any one of the inputs connect or

disconnect is powered and the access is correctly carried out.
If the inputs remain disabled, all the outputs of the instruction remain turned off.

If both the inputs are powered simultaneously, no operation is carried out, and all the turned off.

In OPERL1 a value which specifies the required point should be loaded to connect or disconnect,

according to the following formula:

VALUE OPERL1 = (OCTET*8) + POINT

For example, if S0010.5 isthe point requires to be connected indirectly, then:

OCTET =10
POINT =5
VALUE OPER1 = (10*8) + 5=85

The valueto beloaded in OPERL1 is 85.

WARNING:

This instruction allows the points of the operands %E to be connected or disconnected indirectly
superimposing the value of the scan of the input modules after their execution.

OPER1 OPER2 OPER3
“M*E "HE 4E
OPER1 OPER2 OPER3
oS hS S
OPER1 OPER2 OPER3
oA Yl lk

Table 3-41 Syntaxes of the I nstruction LDI

103

Chapter 4 Instructions

TEI — Test of Indexed Status

TEI
enable — CFER1 [— reply ofthe test
OFERZ |— lowerindex invalid
OFER3 |— upperindeximsalid

OPERL - address of point to be tested
OPER?2 - address lower limit
OPERS - address upper limit

Description:
Thisinstruction is used to test the status of the points indexed for amemory, delimited for operands
of lower and upper limit.

Thefirst operand specifies the memory whose contents reference the auxiliary operand or output
relay to betested. The operand %E or %A (oM XXXX*E or %M XXXX*A) should be declared as
the operand of indirect access. The same when the instruction is used to test output points (%S), the
representation of this operand will be as indirect access to the input (%6MXXXX*E).

The second operand specifies the address of the valid output or auxiliary relay in the instruction. It
should be specified with the subdivision of point (BEXXXX.X, %6SXXXX.X or %AXXXX.X).

Thethird operand specifies the address of the last a valid output or auxiliary relay in the instruction.
It should be specified with the subdivision of point (BEXXXX.X, %SXXXX.X or %AXXXX.X).

If theinput enableis powered, the status of the relay or auxiliary specified for the value contained in

the memory index (OPER1) is examined. According to whether they are 1 or 0, the output answer is
connected or not.

The point indexed by memory istested if it isin the area of addresses limited for OPER2 and
OPER3. For exampleif these operands corresponds to %S0003.3 and %S0004.5, respectively, this
instruction only acts for the elements of %S0003.3 to %S0003.7 and from %S0004.0 to %S0004.5.

104

Chapter 4

Instructions

Syntax:

If therelay or auxiliary pointed at the memory index is outside the limits defined by the parameters
of the second and third cells, the output upper index invalid or lower index invalid is connected
the output of thefirst cell disconnected. This verification is only carried out at the moment when the
input enableis powered.

The calculation of the value to be stored in thefirst operand, to reference the required point, is the
same specified in theinstruction L DI.

OPER1 OPER2 OPER3

“M*E "HE 4E

OPER1 OPER2 OPER3

oS hS S

OPER1 OPER2 OPER3

oA Yl lk

Table 3-42 Syntaxes of the I nstructions TEI

105

Chapter 4 Instructions

SEQ - Sequencer

SEQ
enakle OFERT OPER3 |— pulse
mode OFERZ OFPER4 |— invalid inde:x

OPER1 - table of conditions or first table of statuses
OPER? - index of thetable(s) (current status)

OPERS3 - operand base of thefirst series of conditions
OPERA4 - operand base of the second series of conditions

Description:
Thisinstruction allows the programming of complex sequencer with specific conditions of evolution
for each status. Its form of programming is similar to “state machine”.

The instruction can be executed in two modes: the 1000 mode and the 3000 mode. When the input

mode is turned off, the instruction is executed in 3000 mode. In the 3000 mode more complex
sequences can be programmed.

Mode 1000:
In this mode a fixed sequence of evolution of the statuses occurs. The evolution always happens from
the current statusto the following one, and from the last to thefirst.

Thefirst operand specifies a table where each position contains the address of an auxiliary operand
point which is tested as a condition of evolution for the next status.

The second operand specifies a memory which stores the current status and serves from index to a
specified tablein thefirst operand.

Thethird operand is irrdevant, however an operand of type memory or auxiliary should be specified
inthis cell, since MasterTool achieves the consistency according to the 3000 mode.

The fourth operand is irrelevant, however it should be specified in an operand of type memory or
auxiliary in this cell, since MasterTool achieves consistency in accordance with the 3000 mode.

When theinput enableis turned off, the outputs pulse and invalid index are turned off,
independent of any other condition. When the input enable is powered, the pulse output is normally
powered, and the output invalid index is normally turned off.

Beyond this, when theinput enable is powered, the table position (OPER1) indexed by the current
status (OPER?2) is accessed and the auxiliary operand point referenced in this table position is
examined. If this point is powered, the contents of OPER2 isincreased (or zeroed, if it is pointed at
the last table position OPER1) and a turning off pulse occurs in the output pulse with the duration of
a program cycle. If the point examined is turned off nothing happens and the memory valuein
OPER2 remains unchanged.

The output invalid index is activated if the memory OPER2 (current status) contains a value which
indexes a non-existent position in the table specified in OPER1. This can happen by modifying the
memory OPER?2 at one point of the applications program outside the instruction SEQ (in the
Initialization of OPER2, for example). Care should be taken to define and initialize thetable
specified in OPER1 with the legal values.

The values in decimal format which specify the points of auxiliary operands which have to be tested
as conditions of evolution should be loaded into the table specified in OPERL1. The calculation of
these values is specified through the equation:

106

Chapter 4

Instructions

Example:

VALUE = (address of the operand *8) + address of the subdivision

If %A0030.2 is the point which it is required to use as a condition of evolution starting from the
status 4, then:

Address of operand = 30
Address of subdivision =2
VALUE =(30* 8) +2=242

The valueto beloaded in position 4 of the table OPER1 should be 242 so that the point %A0030.2
causes the evolution for the next status, that is the status 5 (or the status O, if thetable has 5
positions).

Mode 3000:

In this mode it is possible to define the evolution sequence and choose one of two paths starting from
the current status. Therefore, 2 degrees of freedom are offered in relation to the 1000 mode, allowing
more complex status machines to be used.

Thefirst operand specifies the first of the two subsequent tables that are used for each instruction.
The two table have to be the same size. Each position of thefirst table contains the next status if the
condition associated to operand 3 is powered. Each position of the second table contains the next
status if the condition associated to the operand 4 is powered.

The second operand specifies a memory which shows what the current status is and serves as an
index for the tables specified in the first operand.

The third operand specifies an operand which serves from base to determine the condition of
evolution starting from the status OPER? to the status indexed for OPER2 in the first table.

The fourth operand specifies an operand which serves from base to determine the condition of
evolution starting from the status OPER2 for the status indexed for OPER2 in the second table.

When theinput enableis turned off, the outputs pulse and invalid index are turned off,
independent of any other condition. When the input enable is powered, the pulse output is normally
powered, and the output invalid index is normally turned off.

After this, when theinput enable is powered, the instruction searches the value of the memory
OPER2 (current status) and tests the respective condition of evolution with base in OPERS. If this
condition is powered, the operand OPER?2 is loaded with a new status, indexed through operand
OPERZ2 in thefirst table specified for OPER1. If the condition of evolution associated with OPER2
and with the base in OPERS3 is turned off, it tests the evolution condition associated to OPER2 and
with base in OPERA4. If thislast condition is powered, the operand OPER?2 is |oaded with a new
status, indexed through its own operand OPER?2 in the second table specified for OPERL. If at |east
one of the 2 conditions above are powered, a status transition occurs, and a turning off pulse with the
duration of an applications program cycle takes place in the pulse output of theinstruction. If neither
of the 2 conditions are powered, nothing happens and the value of memory OPER2 (current status)
remains unchanged, as well as the pulse output continuing powered.

107

Chapter 4 Instructions

The output invalid index is activated if the memory OPER2 contains a value which indexes a non-
existent position in the tables specified in OPER1. This can happen by modifying the memory
OPERZ2 in one point of the applications program outside of the instruction SEQ (in the Initialization
of OPER2, for example) or in the appropriate SEQ instruction, if any of the positions of the tables
specified in OPERL1 contain invalid values for being the next status. Care should be taken to define
the 2 tables specified for OPER1 with the same size, and they should be initialized with legal values
(example: if the tables have 10 positions, only values between 0 and 9 should be loaded in positions
of thistable, since only these can have legal status.

The conditions of evolution associated to the current status (OPER?2) are determined with basein
OPERS3 (next status is loaded starting from the first table) or with basein OPER4 (next statusis
loaded starting from the second table. Knowing that the operands OPER3 and OPERA4 are of memory
type (16 bits) or of auxiliary type (8 bits), suppose the following is the case:

ESTADO = contents of operand OPER2 (current status)
ENDS3 = address of OPER3

END4 = address of OPER4

END1 = address of point to be tested, with basein OPER3
SUB1 = subdivision of point to be tested, with basein OPER3
END2 = address of point to be tested, with base in OPER4
SUB2 = subdivision of point to be tested, with base in OPER4

The points tested as evolution condition associated to each table are:

M<END1>.<SUB1> or A<SUB1> (first table) and M<END2>.<SUB2> or A<END2>.<SUB2>
(second table)

where:

END1 = END3 + STATUS/16 (if operand %M)
END1 = END3 + STATUS/8 (if operand %A)
SUB1 = REST (STATUS/16) (if operand % M)
SUB1 = REST (STATUS/8) (if operand % A)
END2 = END4 +STATUS/16 (if operand % M)
END2 = END4 + STATUS/8 (if operand % A)
SUB2 = REST (STATUS/16) (if operand % M)
SUB2 = REST (STATUS/8) (if operand % A)

Example:
They may be:

OPER1 = %TMO000
OPER2 = %M0010
OPER3 = %M0100
OPER4 = %A0020

108

Chapter 4

Instructions

Where:

% M 0010 = 00001

%TMO000 Position Value
000 00001
001 00002
002 00004
003 00001
004 00000

%TMO001 Position Value
000 00001
001 00003
002 00001
003 00004
004 00000

%M0100 XXXXX

%MO0101 XXXXX

%M0102 XXXXX

%M...

%A0020 XXXXX

%A0021 XXXXX

%A0022 XXXXX

%A...

Then the evolution starting from status 1 are:
For thefirst table:

+ 100+ /16 = 100

 rest(l/16) =1
e point to betested = %M0100.1
For the second table:
e 20+1/8=20

o rest(1/8)=1

e point to betested = %A0020.1
Based on the conditions of %M0100.1 and %A0020.1 we have, starting from one of the tables, the

new status of the operand %M 0010:

%M0100.1 %A0020.1 %MO0010 Observation
0 0 00001 No status changing
Status changing according to
0 1 00003 %TMOO1
Status changing according to
1 0 00002 %TMO000
Status changing according to
1 1 00002 %TMO000 (OPERS3 have priority over

OPER4)

109

Chapter 4

Instructions

Syntax:

OPER1 OPER2 OPER3 OPER4
%TM M L M
M TM MM ol Yk

Table 3-43 Syntax of the Instruction SEQ

110

Chapter 4

Instructions

CHP — Call the Procedure Module

enahle SUCCESS

OPER1 — name of moduleto call
OPER2 — number of moduleto call

Description:

Example:

Syntax:

Thisinstruction carries out the diversion of the processing of the current module to the Procedure
modul e specified in their operands, if it is present in the PLC. At the end of the execution of the
modul e called, the processing returns to the instruction following the CHP. Thereis no passing of
parameters to the module called.

Thefirst operand (OPERL1) is documentation and specifies the name of the moduleto be called. The
second operand (OPER?2) specifies the number of this module, the fact that the module called is of
type procedure being implicit.

If the module called does not exist, the output success is turned off and the execution continues
normally after theinstruction. The name of the moduleis not considered for the PLC for the call but
only its number. If there is a module P with the same number as the module called, however with
different name, this same moduleis executed likethis.

C.f. section Use of Modules P and F in chapter 2 of this manual.

CHP
enahle FORNO SUCCESS

003

OPER1 OPER2

HOME HOMERO

Table 3-44 Syntax of CHP Instruction

111

Chapter 4 Instructions

CHF — Call Function Module

—CHF
enakle — OFER1 OFPER4 |— success

COFERZ | OPERS

COFER3 | OFERE

OPER1 - name of moduleto call
OPERZ2 - number of parameters to send
OPERS - number of parametersto return
OPER4 - number of moduleto call
OPERS - list of parameters to send
OPERSG - list of parametersto return

Description:
Theinstruction the function Module carries out diversion of the processing of the current module to

the module specified, if thisis present in the PLC. At the end of the execution of the module called,
the processing returns to the instruction following the CHF.

The name and number of the module should be declared as operands OPER1 and OPER4
respectively, the fact that the module called is of function type being implicit. If the module called
does not exist in the controller, the execution continues normally after the call instruction, with the
output succeeded disconnected from it. The name of the module is not taken into consideration by the
PLC, being in the applications program only as a documentation reference, only its type and number
being taken into consideration for the call. If there is a module F with the same number called but a
different name, this moduleis executed.

The passing of values of operands (parameters) to the module called and vice-versa after its
execution. In thefifth cell of the instruction (OPERS) a list of operand to be sent to the module called
is specified. Before the execution of the module, the values of these operands are copied to the
operands specified in the list of parameters of the input of the module F, declared in the Master T ool
option Par ameters when it was programmed.

After calling for the execution of module F, the values of the operands declared in the list of
parameters of output (option MasterTool Par ametersin its programming) are copied to the operands
declared in the list of operands to return from the instruction CHF (OPERG). Having finalized the
copy of the return, the processing continues in the instruction following the call.

WARNING:

MasterTool does not achieve any consistency in relation to the operands programmed as parameters,
as much in the CHF instruction as in module F.

Thelist of operands to be sent to module F should count the same number of operands with the same
type of them declared as input parameters of the module, so that the copy of their valuesis correctly
made. The copy of the operands is carried our in the same order in which they are arranged in thelist.
If one of the list has fewer operands in relation to another, the values of the surplus operands are not
copied. If the operands have different types, the copy of the valuesis carried out with the samerules
used in the instruction MOV (simple moving of operands). This principal is also valid for the list
return parameters of Module F.

112

Chapter 4 Instructions

The passing of parametersis carried out with the copy of values of declared operands (parameter
passing for value), although these operands still remain in overall use, usable for any module present
in the PLC. The F module can be programmed in generic form, to be re-used in different applications
programs as new instructions. It is advisable that they use their own operands, not used for any other
modul e present in the applications program, avoiding inadvertent alteration in operands used in other
modules.

The passing of simple operands and constants for module F is possible. The passing of tables as
parametersis not permitted, due to the long time that is needed to copy the contents of module F.
Meanwhile, the address of a table can be passed to Module F contained in an operand memory and
indirect access to thetableis carried out in this module.

It's not possible to pass operands with subdivisions for module F , for example %M004.2,
%A0021n1, etc. Only simple operands should be used.

To carry out the editing of parameters
1. Declare the number of parameters to send and return in OPER2 and OPERS3, limited to 10 for
each one (%KM + 00000 to %KM + 00010).

2. Select the button I nput. Thewindow CHF - Input Parameters.

3. Placethe cursor on the index to be editing and key in the address or tag of the required operand
for that position.

4. Repeat step until all the operand used as input parameters have been edited.
5. Select button OK.

6. To edit the output parameters of the CHF, repeat step 2 sdecting the button Output, and after
repesat steps 3, 4 and 5.

CHF - Input Parameters

Operands -
%A0000 -
%A0000
340000
*A0000
%A000(
%A000(
%A000(
%A000(
%A000(
%4000 =]

(5= == VI = - TR

Key in the used operands as
input parameters

Figure 3-12 Dialogue Box CHF - Input Parameters
C.f. section Use of Modules P and F in chapter 2 of this manual.

If the value of OPER2 or OPER3 is morethan 10, MasterTool considers such a value as equal to 10
(%KM + 00010).

113

Chapter 4

Instructions

Example:

Syntax:

—CHF
enable — posIC oo? |— success
"KM+
00003 OPERS
"KM+
00001 OPERG
OPERS: OPER6:
w0159 “A0023
%WS0012
o017
OPER1 OPER2 OPER3 OPER4 OPER5 OPERG6
%KM %KM
%KD %KD
%KF %KF
%TM %TM
%TD %TD
NAME %KM %KM NUMBER %TF %TF

%M
%D
%F
%E
%S
%A

%M
%D
%F
%E
%S
%A

Table 3-45 Syntax of Instruction CHF

114

Chapter 4 Instructions

ECH — Write of Operands on Another PLC for Ethernet

ECH
gnable — OPERI | OPER3 — bus
QFERZ | OPERA |— eror

OPER1 — | P address of the remote controller

OPER2 — not used

OPERS3 — instruction control operand

OPERA4 — edition operand window

Description:

Thisinstruction carries the writing of values of operands of the controller whereit is being executed
in operands presented in other PLCs, through the Ethernet communication. For its use, therefore, it is
essential that the controller who executes is connected to other PLCs through the Ethernet.

Through the ECH can be transferred individual values of operands or sets of operands, being possible
the programming of up to 6 different communications in one same instruction.

To program the instruction, it must be declared in the first cell OPERL1 the IP address of the
programmable controller destination that will receive the written values.

On the third cell OPER3 must be declared a decimal operand (%D) to be used by the proper
instruction in the control of its processing.

WARNING:

The %D operand programmed on OPER3 cannot have its value modified in none another point of
the applicatory program for the correct functioning of the ECH. Consequently , each new instruction

ECH or inserted LTH in the applicatory program must use an %D operand different from the others.
This operand cannat be retainer.

To carry through the edition of the ECH parameters
1. Select the PLC button. The Parameters dialog is presented.

Parameters
—LOCAL PLC —REMOTE PLC
PA I I unli|1 I I unlil1
2 I I unlil1 I I unlil1
3 I I until1 I I unlil1
1 until1 unlil1
5 until1 unlil1
6 I I until1 I I unlil1

Figure 3-13 Dialog box parameters

This box of dialogueis divided in two parts: REMOTE CPU and LOCAL CPU, each one contend
three columns. In the three columns that compose the local CPU can be defined the operand or the
group of operands whose values will be sent to the programmable controller destination. In the
columns pertaining to the remote CPU, will be declared the operands that will receive the valuesin
the destination controller, being able to be different of the local CPU types. The dialogue box have

115

Chapter 4 Instructions

six lines, allowing that up to six different communications can be defined in sameinstruction ECR to
the same destination controller.

The operands specified for the local CPU are consisted by the Master T ool in accordance with the
constant declarations in module C presented, by belonging to the applicatory program that is being
edited. The operands declared for the remote CPU do not suffer consistency in relation to the type
and addresses, by belonging to a applicatory program of another programmable controller. However,
the number of busy bytes for the operands block declared in thelocal CP must be equal to the
number of bytes busied by the operands of the remote CPU in each communication, for the correctly
carried through writing. The maximum number of possible bytes busy by a block of operandsin each
communication is limited in 220.

Following are related the types of possible operands to be programmed for the local and remote CPU,
with the correct disposal in the edition columns and its respective meanings.

LOCAL PLC or REMOTEPLC M eaning

YOEX XXX Individual Operand %EXXXX

YSX XXX Individual Operand %SXXXX

YoAXXXX Individual Operand %AXXXX

YoM X XXX Individual Operand %M XXXX

%D XX XX Individual Operand %DXXXX

YFX XXX Individual Operand %FXXXX

YEXXXX .. Y%EYYYY | Operands Group %EXXXX a%EYYYY

YSXXXX .. %SYYYY | Operands Group %SXXXX a%SYYYY

YAXXXX .. %AYYYY | Operands Group %AXXXX a%AYYYY

YMXXXX .. %MYYYY | Operands Group %M XXXX a%MYYYY

YDXXXX .. %DYYYY | Operands Group %DXXXX a%DYYYY

YFXXXX .. %FYYYY | Operands Group %FXXXX a%FYYYY
%TMXXXX YYY Table %TMXXXX postionYYY
%TDXXXX YYY Table %TDXXXX position YYY
YTFXXXX YYY Table %TFXXXX postion YYY
%TMXXXX 1n . FFF | Table %TMXXXX postion Il a FFF
%TDXXXX mn . FFF| Table %TDXXXX postion Il aFFF
YTFXXXX mn . FFF| Table %TFXXXX position Il a FFF

Table 3-47 Operandsto Local PLC and Remote PLC on ECH

The MasterTool allows the free edition of the operands inside of a same line, making possible the
exchange of columns with the aid of the horizontal arrows keyboard keys movement. The
consistency are carried through in attempt of line exchange (vertical arrows) or confirmation of the
edited content in the window with the ENTER keyboard key. The ESC Keyboard key can given up
the carried through alterations, remaining the instruction with the previous content before the opening
of the edition window.

Thefollowing table shows the busy number of octets for each type of possible operand of being
programmed in the definitions of writings.

116

Chapter 4

Instructions

Operand Number of
bytes

%E 1

%S 1

%A 1

%M 2

%F 4

%D 4

%TM 2 per position
%TD 4 per position
%TF 4 per position

Table 3-48 Number of bytes of the operandson ECH

The calculation of the busy number of bytes in declarations of thelocal and remote CPU is carried
through by multiplying the number of declared operands by the number of octets of the
corresponding type. On the flolowing table, some examples are shown.

LOCAL PLC or REMOTE PLC Calculus Bytes

%E0004 1 operand x 1 byte 1

%S0020 1 operand x 1 byte 1

%A0018 1 operand x 1 byte 1

%M0197 1 operand x 2 bytes 2

%D0037 1 operand x 4 bytes 4

%E0005 %E0008 4 operands x 1 byte 4

%S0024 %S0031 8 operands x 1 byte 8

%A0089 %A0090 2 operands x 1 byte 2

%MO0002 %MO0040 39 operands x 2 bytes 78

%D0009 %D0018 10 operands x 4 bytes 40

%TMO0031 101 1 position x 2 bytes 2
%TD0002 043 1 position x 4 bytes 4
%TMO0000 000 002 3 positions x 2 bytes 6
%TDO0007 021 025 5 positions x 4 bytes 20

Table 3-49 Examples of length in Bytes

Enabling the enable input, is turned on the communication of thefirst present writing in the ECH,
being powered the busy output. At the moment that this communication is completed, the instruction
turns on the next writing, independently of the state of the enabling input, repeating this procedure
for the other existing communications in this instruction. On the end of the last writing, the busy
output of ECH is unpowered, with the application of a pulse with duration of one sweeping in the
error output in case that it has not been paossibleto carry through some communication.

On six first nibbles of D operand programmed in OPER3 the states of the six communications of the

instruction are placed. The last two nibbles are used for the control of its processing.

117

Chapter 4

Instructions

%0 operand programmed in OPERZ on ECH and LTR instructions

7 f 5 4 3 2 1 1]

I I N 2 T O O
1 I I
Control of the Communication Status
instruction

Comrnunication status 1 - Mibble 5
Comrnunication status 2 - Mibble 4
Communication status 3 - Mibble 3
Communication status 4 - MNibhle 2
Communication status 5 - Nibble 1
Communication status & - Mibble O

Figur e 3-14 Operand of Control of the I nstruction ECH and LTH
The state of the communication stored in each nibbleis codified in the following form:

0 - communication with success

1 - not defined operand

2 - local controller address equal to the remote (communication with the CPU)

3 - invalid operand box

4 - invalid operand type

5 - package transmission timeout

6 - no space on the transmition waiting stack

7 - lacking of transmition buffer

8 - solicitation timeout

9 - hardware error
10 - protected remote CPU

In summary, to execute an ECH instruction all the existing communications are carried through, even
if the enabling input is unpowered. When all the writings are completed, the next found instruction
ECH or LTH in the applicatory program with the enable input powered becomes active, starting to
process its communications.

WARNING:
The application program cannot carry through jumps on the active instruction ECH or do not execute
the module that containsit, to assure its correct processing.

In a applicatory program being executed in the CPU, only one instruction of access to the Ethernet
net (ECH or LTH) is considered active, even if some other instructions with input enable exist.

The busy output determines which is the active instruction, being able to be used to synchronize the
communications with the applicatory program. To prevent overloads in the traffic of information in
the net, it is advised turn on the ECH instructions periodically, preventing to permanently keep its
enabled in the applicatory program, if possible. A recommended procedure is disconnect the enable
input after that the busy output is powered, preventing a new enabling of the instruction after its
ending.

118

Chapter 4 Instructions

If theinstruction is programmed specifying that the IP address is equal to the address of the proper
controller who executes it (written of proper values), the error output is powered. Case none operand
has been defined on OPERA4, the error and busy output keep unpowered.

Syntax of the Instruction:

OPER1 OPER2 | OPER3 OPER4

IP Address %D COMUNICATIONS

Table 3-50 Syntax of the Instruction ECH
Example:
ECH

enahle —|P 192168, [CONTROL — husy
7.8

— Bfrror

Content of the edition window on OPER4 of ECH

COM Local PLC Remote PLC

1 %M0004 %A0014 . %A0015
2 %S0038 . %S0041 %D0027

3 %TDO0007 028 . 030 %M 0009 . %M0014
4 %M 0006 %M0018

5 %A0013 . %A0020 %D0003 . %D0004
6 %TM0019 000 . 004 %TM0032 018 . 022

This instruction carries through writes in the programmable controller with IP address 192.168.7.5.
Six communications defined, transferring data of diverse types between the CPUs. Communication O
sends the content of a memory operand in the local CPU for two auxiliary operands in the remote
CPU, being transferred 2 octets. Communications 1, 2, 3, 4 and 5 transfer, respectively, 4, 12, 2, 8
and 10 octets between the controllers.

119

Chapter 4 Instructions

LTH — Reading of Operands from Another PLC for Ethernet

1 L
L

enable — COPER1 | OPER3 |— bus

OPER1 - |P address of the remote controller

OPER2 — not used

OPERS3 — operand of control of the instruction

OPERA4 — edition operand window

Description:

This instruction carries through the reading of values of operands presented in other programmable
controllers for operands of the programmable controller where it is being executed, through the
Ethernet communication. For its use, therefore, it is essential that the CPU that executesiit is
connected to other CPUs by the Ethernet.

Through the LTH values of individual operands or sets of operands can be read, being possible the
programming of up to 6 different communications of reading in the same instruction.

The programming of instruction LTH isidentical to the ECH, observing the samerestrictions. Inthe
LTH, the transference of the values occurs from the declared operands in the remote CPU to the local
CPU, being this the only difference between both.

Syntax of the Instruction:

OPER1 OPER2 | OPER3 OPER4

IP Address %D COMUNICATIONS

Table 3-51 Syntax of the Instruction LTH
Example:
LTH

enahle IP 192168, |CONTROL —— busy
7.8

— efrrar

Content of the edition window on OPER4 inaLTH:

COM Local PLC Remote PLC

1 %M0004 %A0014 . %A0015
2 %S0038 . %S0041 %D0027

3 %TDO0007 028 . 030 %M 0009 . %M0014
4 %M 0006 %M0018

5 %A0013 . %A0020 %D0003 . %D0004
6 %TM0019 000 . 004 %TM0032 018 . 022

This instruction carries through readings in the programmable controller with the IP address
192.168.7.5. Six communications for the same one are defined, transferring data of diverse types
between the CPUs. Communication O reads the content of two auxiliary operands in the remote CPU

120

Chapter 4 Instructions

for one memory operand in the local CPU, being transferred 2 octets. Communications 1, 2, 3, 4 and
5 transfer, respectively, 4, 12, 2, 8 and 10 octets between the programmable controllers.

121

Chapter 4 Instructions

LAH — Free Updated Images Operands for Ethernet

enable — LAH |+— copythe input

Description:

Theinstruction LAH carries through the processing of the hanging communications of the Ethernet
net for thelocal CPU.

When returning for the processing of executive software, on each sweepings end, the CPU processes
the solicitations of reading and other services that have been requested to it by other CPUs in the net,
during the execution of the applicatory program.

The programmabl e controller have an memory area reserved for the storage of up to 32
communications received during the execution loop of the applicatory program, while executive
software does not processit. If the applicatory program have relatively high time of execution and
the programmable controller receives many solicitations from services of the net, can occur the
situation that the CPU can not take care of it, arriving at the l[imit of 32 hanging communications
waiting to the processing. In this case that, the CPU returns areply to the one who requests indicating
theimpossibility to take care of its communication.

The LAH instruction executes the hanging processing of receptions and transmissions in the CPU,
diminishing the possibility of occurrence of the previously described situation and reducing the
attendance time to the solicitations. Its recommended it use in applicatory programs with high time of
cycle, having to beinserted in intermediate points of the modules, dividing in stretches with
approximately 20 ms of execution time.

WARNING:

The values of the operands of the applicatory program can be modified after the execution of a LAH,
therefore another equipment turned on plugged to the net can request to write in the same ones. It
must be considered theinfluence of this fact if inserting this instruction in the applicatory program.

122

Chapter 4 Instructions

Instructions of the Connections Group

The Instructions of the connection group allows the constructions of series and parallel ways and the
inversion of the signal.

Name Description of Name Seqt_u_ence Tool Bar
Edition

LGH Horizontal connection ALT,L,H

LGN Denied Connection ALT,L, N

LGV Vertical connection ALT, L,V

Table 3-52 I nstructions of the Connections group

LGH — Horizontal Connection

LGN — Denied Connection

enable — NEG |— denied copy of the input

LGV — Vertical Connection

Description:

The connections are auxiliary el ements on the construction of therelays diagram, to connect other
instructions.

The denied connection inverts the logic status of its input in its output.

123

Chapter 5 Function Modules

5. Function Modules

This chapter contains the description of the Function modules (F) which accompany MasterTool,
availablefor the programmable controllers in the series AL - 600, AL - 2000, QUARK and
PICCOLO.

The function modules implement different routines for specific use or for access to special |/0
modules for the applications program, being similar to the instructions, however loaded as program
modules. Its execution is activated for other modules through the instruction CHF.

The modules which accompany MasterTool are programmed in Machine language, not being able to
be read to the programmer and visualized as the modules in diagram of relays. They should loaded
directly from disk to the PLC (options Communication, Read/Send M odule).

Each model of PLC have group of function modules. The following list present the function modules
to the Ponto Series PLCs.

- F-PID.033

- F-RAIZN.034
- F-ARQZ2.035 to F-ARQ31.042
- F-MOBT.043

- F-RELG.048

- F-PID16.056

- F-CTRL.059

- F-NORM.071
- F-COMPF.072
- F-AES.087

- F-ANDT.090

- F-ORT.091

- F-XORT.092

- F-NEGT.093

Durante ainstalacéo do MasterTool séo copiados diversos modulos com 0 mesmo nome, sendo
armazenados em subdiretérios diferentes, conforme o tipo de UCP ao qual se destinam. Mesmo
possuindo 0 mesmo nome, estes médul os diferem no seu contedido.

ATENCAO:

Os arquivos contidos no subdiretério de um CP ndo devem ser copiados para o de outro CP, sob o
risco de perda de médulos. Deve-se carregar no controlador somente os médulos contidos no
subdiretério correspondente a UCP utilizada.

During theinstallation of MasterTool different modul es are copied with the some name, being stored
in different subdirectories, according to the type of CPU to which they are destined. The CPU having
the same name, these modules differ in their contents.

The execution time of each function moduleis different on each PLC, so, this information can be
obtained on the manual of the respective PLC.

124

Chapter 5 Function Modules

There is much more function modules available, that are more specific to some applications or
products. The complete list of al function modules available, and how to obtain it can be found on
the document F Modules List.

F-P1D.033 — PID Control Function

CHF
enakle FID 033 L SUCCESS
autormaticd OFER] OFER3 — error
manual
directreverse OPERZ OFERA

Introduction

The function F-PI D.033 implements the proportional control algorithm, integral and derivative.
Starting from a measured variable (MV) and from the required set point (SP) the function calculates
the Controlled variable (CV) for the system controlled. This valueis calculated periodically, taking
into consideration the proportional, integral and derivative factors programmed. The function’s
blocks diagramis shown in figure 4-1.

The most important characteristics introduced by the control loop implemented are:
» unsaturation of the integral action (anti-reset windup)

» accompaniment of the output in manual mode and balanced manual/automatic (output tracking
and bumpless transfer)

» direct or reverse action

* adjustable maximum and minimum output limits
» derivative action calculated for different samples
* capacity to carry out discreet integral

+ shift withsignal

» executiontime of 1.6 msin theworst case

* resolution of output of 1: 1000

125

Chapter 5 Function Modules

SP|CV —= SP = Set Pocint
— |[MV | PG MV = Measured Variable
S | IG S = Shift
DG CV = Controlled Variable
PG = Proportional Gain
IG = Integral Gain
DG = Deriwvative Gain

SHIFT

INTEGRAL ACTION

4{PROPORTIONAL (1/1G). Serror.PG,d*& H LIMITATION
ACTION

SP @ error| .p error. PG
- 1]

PROCESS

MV

MV(t) — MV(t-3) PG . DG

Figure 4-1 Diagram in Blocks of the Function PID

Theuse of the function PID in the application program allows a series of facilities which are
integrated into the system, without the use of external controllers. For example:

» automatic/manual function

» inhibition of integral or derivative factor

» cascadeloops

e generation of curves of set points

* modification of the control parameters by program

* modification of the control policy in function of the process's status

Programming

Operands
The cells of the CHF instruction used for the function call are programmed in the following way:

* OPERL1 - Specifies the number of parameters passed to the function in OPER3. It is compulsory
for this operand to be a memory constant with value 5 (%KM +00005).

* OPERZ2 - Specifies the number of parameters passed to the function in OPERA. It is compulsory
for this operand to be a memory constant with value 0 (%K M-+00000).

* OPERS - Contains the parameters passed to the function declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parametersis
specified in OPERL, being set at 5 for this module:

O %TMXXXX - Table which contains the parameters used by the control
algorithm. Should count 16 positions.

0 %M XXXX - Memory which contains the measure value of the process.

0 %M XXXX - Contains the set point, which is the value required for the measured
variable. Its value can be modified according to the control politic required.

0 %M XXXX - Memory which contains the controlled variable in the process.

126

Chapter 5

Function Modules

0 %AXXXX - Auxiliary octet which contains control points of the PID function.
OPER4 — Not used.

Inputs and Outputs
Description of the inputs:

enable - when thisinput powered the function is called, the programmed parameters in the CHF
instruction being analyzed. If the number of parameters or their typeis different from the needs
of the function all the outputs of theinstruction are turned off. If they are correct, the control
calculation PID is carried out.

automatic (0)/manual (1) - when powered, the action operand does not receive the value
calculated by the function (manual mode).

direct (O)/reverse (1) - specifies form of action of the control.

Description of the outputs:

success - is powered when then function has been correctly executed.

error - ispowered if an error occurs in the specification of the operands or there is an attempt to
access operands not declared.

Additional Parameters
Apart from operands programmed in the CHF call instruction other parameters should be loaded into
the table declared in OPERS. This table should contain 16 positions, being used to define the
parameters used for the control algorithm and to store intermediate results. Thetable 4-1 presents the
parameters which should be loaded in each table position as well as minimum and maximum values.

P | Stored Parameter Form. Allowed Variation Table Value

[¢]

00 | Proportional Gain x 10 GP x10 [GP: 1,0 to 100,0 10 to 1000

01 | Integral factor- fraction part dt/ Gl Gl: 1to 1000 0,0001 to 10,000

sirep

02 | Integral factor- integer part dt: 0,1to10s

03 | Derivative factor — fraction GD/3dt | GD: 1t0 1000 s 0,0333 to 3333,3333
part

04 | Derivative factor — integer part dt: 0,1to10s

05 [Dislocated DE 0to 1000 0to 1000

06 | Minimum value of output 0 to 1000 0 to 1000

07 | Maximum value of output 0 to 1000 0 to 1000

08 [Not used

09 [Measured Value N — 1 0to 1000

10 | Measured Value N — 2 0to 1000

11 | Measured Value N — 3 0to 1000

12 | Error 0to 1000

13 | Proportional action x 10 0 to 65535

14 | Integral action — fractional part 0 to 65535
x 10

15 | Integral action — integer part x 0 to 65535
10

Table 4-1 Additional Parameters of the PID

To make possible a greater execution speed, some parameters should be loaded in the table already
pre-calculated. Being values relatively fixed, in this way avoiding recalculation for each function

call.

The parameters which should be pre-calculated are:

Proportional gain x 10 (position 0) - Is calculated by multiplying the proportional gain required
for 10.

Integral multiplicative factor - |Is calculated by dividing the sample interval (dt) by the whole
gain required. The unit of dt is seconds, its minimum value being 0.1 seconds and maximum 10.0
seconds and should be equal to the interval in which the routine is executed. The G1 is

127

Chapter 5 Function Modules

seconds/repetition, ableto vary from 1 to 1000 seconds/repetition G1 equalsto 1
second/repetition signifies the maximum integral effect.

* Multiplicative derivative factor (positions 3 and 4) - Is calculated by dividing the derivative gain
(DG) by the sample interval (dt) and by value 3. The unit of DG is seconds, being possibleto
vary from 1 to 1000 seconds. DG equal to 1000 seconds signifies maximum derivative effect. It
is recommended that the greater the value of the DG, the greater should be the sample interval.
The samefor the DG values = 1 second, the sampleinterval should be more than 0.2 seconds. If
such careis not taken, the derivative term only produces “noise’ and the control action will be
very abrupt.

» Didocating (position 5) - Allows the introduction of a shift (“bias”) in the controlled value,
avoiding negative errors causing saturation in the minimum value of the output. Generally this
valueis set to 50% (500) or equal to the set point, if the proportional gain is small.

* The minimum and maximum output values (positions 6 and 7) - They are optional values which
limit the excursion of the controlled value, being able to be modified dynamically in the function
of the operational conditions. If the maximum value is more them or equal to 1000 and the
minimum value equals 0, no limitation is carried out.

The measure value, the controlled value, the dislocating, the maximum and minimum values have as
variation the band from O to 1000, which corresponds to a variation of 0 to 100% in the variables of
the process.

Theremaining positions of the table are used exclusively by the function PID, not being ableto be

modified by the applications program. Position 12 (error) can be consulted by the program. Positions
14 and 15 accumulate the whole factor, being able to be zeroed, if necessary. It isrecommended that
these positions are zeroed at the beginning of the processing to avoid random value becoming stored.

Apart from the table of parameters, same control points are used by the function, contained in the
auxiliary octet specified (AXXXX).

* %AXXXX.4 - Signal for whole action - I's used by the function PID. When tumed off, the
integral term is positive, if the oppositeit is negative. It can be read by the program, if required.

* %AXXXX.5 - Signal for dislocating. Indicates to the function what the signal for dislocating is,
having to be enabled by the program. The point tumed off indicates positive shift. When
powered, the shift is negative.

* %AXXXX.6 - Inhibits derivative action - When powered the function does not execute the
derivative action.

* %AXXXX.7 - Inhibits whole action. When powered, the whole action is not calculated,
remaining attributed as the last value calculated before the inhibition, unless the value limit are
exceeded.

Characteristics of Functioning
The unsaturation of the whole action (anti-reset windup) is donein a mode to avoid theintegral term
continuing to accumulate error when trouble in the process causes the saturation of the output of the
controller in some limits. At the moment when the output value reaches any of the limits (maximum
or minimum), the integral term is set at its current value, blocking its undefined increase, without
influencing the output.

This ensures that it will have a answer from the controller so the trouble which saturated the output
disappears. The function can be executed in manual mode, by powering the second input of the
CHF instruction. In this mode, the routine does not modify the action output value any more, but
accompanies it. That is, en function of the value of the fixed output and of the measure value of the
process, the proportional and derivative term are calculated and the integral termisforced to an
adequate value, in away that, when a transition occurs from manual to automatic, the routine
reassumes control with theinitial value of the output equal to the last value of the output in manual
mode. This act of communication from manual/automatic is called balanced (bumpless transfer).

Theform of control can be direct or reverse. This sdlection is carried out by turning off or powering
thethird input of the CHF instruction. If the process is such that the measure value grows when the

128

Chapter 5

Function Modules

value of the output of the action grows, the direct action should be selected. If the measure value
decreases with the increase of the output of the action, then the reverse action should be used.

Theinterval between samples of a PID loop can very from 0.1 to 10.0 seconds. It is the responsibility
of the user to program a trigger of the function, that is to say, a passage of applications program that
only enables the PID routine in the time intervals required. Note that the value of the sample interval
used for the calculation of the multiplicative factors integral and derivative should coincide with the
time interval of the calls of the trigger . As each routine execution can last up to 3 ms, it is advisable

that each different control loop isfired in different scans of the program.

Example of Application

As an example of use, the following adjustment values are required for a control |oop:

PA = |62
GP = |5 (GP =100/ proportional band in %)
Gl = | 100 seconds/repetition
GD = | 5 seconds
dt = | 1 second
DES = |50%
MAX = | 80%
MIN = | 0%
The values which should be loaded in the table of parameters are:
Position Value
0 50 GP X 10 (50)
1 100 dt/ Gl (0,0100)
2 0
3 6666 GD / 3dt (1,6666)
4 1
5 500 DES
6 0 MIN
7 800 MAX
8 620 PA

129

Chapter 5

Function Modules

F-RAIZN.034 — Square Root Function

Introduction

CHF
enahble RAIZM 034 — suCcess
narmalize OFER1 OPER3 |— error

OFERZ | DOPERA4

Thefunction F-RAI1ZN.034 extracts the square root of a value supplied and normalize s the result to
apreviously defined scale, if required.

The calculation carried out corresponds to the following expression:

Op Destination = Square Root (Op Source) *Normalization Constant/256

The Normalization executed together with the processing of the square root ensures very precise
results, since internal variables with greater storage capacity than memory operands are used.

This function is typically used in the linearization of the readings from translaters which supply
valuesin quadratic scale, that is to say, with the output proportional to the root of the signal measure.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in the following way:

OPERL1 - Specifies the number of parameters passed to the function in OPERS. It is
compulsory for this operand to be a memory constant with value 3 (%KM+00003).

OPER?2 - Should be an operand of type memory constant with value 0 (%KM +00000). It
determines the number of parameters possible to be programmed in the editing window of
OPERA4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

OPERS - Contains the parameters which are passed to the function, declared through a window
visualized in MasterTool when the CHF instruction is edited. The number of editable parameters
is specified in OPER1, being set at 3 for this module:

+ %M XXXX - Operand with the value to be extracted to the square root (source).
This value should be positive so that the calculation can be carried out.

« BMXXXX or %KM+XXXXX - Memory or constant operand for the
Normalization of button of scale of the square root extracted. The value
programmed is divided by 256 and multiplied by the root of the operand supplied,
giving the value of the destination operand, when the instructions second input is
powered.

o HMXXXX or % FXXXX - Operand which receives the result of the normalized
square root (destination). Should be necessarily of the same type that the source
operand.

OPER4 — Not used.

Inputs and Outputs
Description of theinputs:

enable - when thisinput is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If they are incorrect, all the outputs of the instruction are turned
off. If they are correct, the calculations are carried out, the outputs success or error being
enabled.

130

Chapter 5 Function Modules

« normalize - when powered, carries out the adjustment of the button of scaleto value of the
square root obtained. If turned off, the value of the memory operand destination simply receives
the square root of the source operand.

Description of the outputs:

e success - indicates that the calculation of the root and its Normalization has been carried out
correctly. When turned off, indicates that the input enabled is not enabled, the module is not

loaded into the PLC, the operands were not correctly defined or negative values are stored in
them.

* error - this output is always powered when one of the following errors occurs:

+ negative values exist in the supply operand or in the Normalization constant
« eror inthe specification of the operands or attempt to access the operands not
declared.

» operand source with a different destination operand

WARNING:

Inthe version 1.00 of F-RAIZN.034 the output error is not enabled in the attempt to access the
operands not declared.

Example of Application
Tonormalize the value of the destination operand in a form that has the same scal e as the operand

supplied, the value to be declared in the Normalization operand should be equal to the square root of
the operand supplied multiplied by 256.

For example, there may be the case of a transducer which supplies values from 0 to 1024,
proportional to theroot of an outflow, and it may be required that these values are linearized to the

same scale of values (0 to 1024). The Normalization constant programmed is 8192 (square root
(1024) *256).

131

Chapter 5

Function Modules

F-ARQZ2.035 to F-ARQ31.042 — Functions Data File

Introduction

CHF
enahle ARC2 035 - SUCCEss
readfwrite OFERT OFER3 |— invalid index
OFERZ OFERd |— error

Thefunction datafile allow the use of the applications program memory to store large quantities of
information, using concepts of registers and fields. In this way it obtains great flexibility in the
utilization of the PLC’s memory banks, apart from a substantial increase in the data storage capacity.

There are different function which implement data files, being identical in the programming mode
and functioning, differing only in the storage capacity. The modules available are:

F-ARQ2.035 - File function with 2 Kbytes of data
F-ARQ4.036 - File function with 4 Kbytes of data
F-ARQ8.037 - Filefunction with 8 Kbytes of data
F-ARQ12.038 - File function with 12 Kbytes of data
F-ARQ15.039 - File function with 15 Kbytes of data
F-ARQ16.040 - File function with 16 Kbytes of data
F-ARQ24.041 - File function with 24 Kbytes of data
F-ARQ31.042 - File function with 31 Kbytes of data

Each file can have up to 255 registers, numbered from O to 254, being that each register can have up
to 255 fidds, also numbered from O to 254. Note, however, that the total quantity of memory
occupied cannot exceed the modul es capacity.

Each field occupies the same number of bytes of the operand where the files readings or writings are
carried out.

Programming

Operands

The cells of the CHF instruction used to call the function are programmed in the following way:

OPERL1 - Specifies the number of parameters passed to the function in OPERS. It is compulsory
for this operand to be a memory constant with value 5 (%KM +00005).

OPER?2 - Specifies the number of parameters passed to the function in OPERA4. It is compulsory
for this operand to be a memory constant with value 0 (%6KM+0000).

OPERS - Contains the parameters passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parametersis
specified in OPERL, being set at 5 for this module:

O %MXXXX, % DXXXX, % AXXXX, EXXXX, % SXXXX, %TMXXXX,
% TDXXXX, oKM+XXXXX or %KDHXXXXXXX - Operand from where the
dataisread in the writing operations in the file or to where the data is copied into
readings of thefile (parameter 1).

0 %MXXXX - Number of register from/to which the data will be copied
(parameter 2). Should contain between 0 and the total number of registersless 1.

132

Chapter 5 Function Modules

0 %MXXXX - Number of field from/to which the data will be copied (parameter
3). Should contain between 0 and the total number of fields less 1.

0 %KM+XXXXX - Total number of registers (1 to 255) required for the file
(parameter 4).

O %KM+XXXXX - Total number of fidds (1 to 255) required for the file
(parameter 5).

+ OPER4 — Not used.

Inputs and Outputs
Description of the inputs:

» enable - when thisinput is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If the number of parameters or ther type are different from the
needs of the module, the error output is powered. If they are correct a attempt to access thefileis
carried out.

« read/write - when powered, the value of the first parameter is copied to the register and the
field specified in the second and third parameters. If it is turned off, the valueis read from the
field and copied to thefirst parameter.

Description of the outputs:
* success - indicates that the access to the data file was correctly carried out.
« invalid index - this output is connected:
[0 thefield to beread or written was not specified
[0 thedeclaration of theregisters and fields exceeds the modules memory capacity
[0 thereisan attempt to read when thefirst parameter is a constant
[0 thereisan attempt to write the module being stored in EPROM memory

* error -ispoweredif an error occurs in the specification of the parameters or attempt to access
the operands not declared.

Description of Functioning
For correct declaration of the number of fields and registers of thefile, the following calculation
should be carried out:

Occupation of thefile= Num. registers X Num. fields X Num. bytes per field (parameter 4)
(parameter 5)

The number of bytes per field occupied for each type of operand can be obtained from table 4-2.

Parameter 1 Number of bytes per
field

NMXXXX
NDXXXX
NAXXXX
NEXXXX
YSXXXX
NTMXXXX
NTDXXXX
YKM+XXXXX
YK D+XXXXXXX

Table 4-2 Occupation of the Field of the Files

The value obtained in the previous calculation should be less than or equal to the total capacity of the
function used, according to table 4-3.

NIBRINIRPIR(IFPID™IN

SN

133

Chapter 5 Function Modules

Function Capacity (bytes)
F-ARQ2.035 2048

F-ARQ4.036 4096

F-ARQ8.037 8192

F-ARQ12.038 12288

F-ARQ15.039 15360

F-ARQ16.040 16384

F-ARQ24.041 24576

F-ARQ31.042 31744

Table 4-3 Capacity of the Functions Data Files
WARNING:

Different CHF instruction for access to the samefile can be declared in the same program. In all
these instructions the operands with the values to be written or that receive (parameter 1 in OPER 3)
the same number of bytes per fidd.

Therefore, it is possibleto indistinctly read or write operands %E, %S and %A of onefile or %KM,
%M and %TM of another. Never the less they should not be accessed with operands %M or %D in
the samefile.

If thefirst parameter isatable (%TM or %TD), all thefields of the register indicated in the second
parameter are copied, that is to say, the transfer of datais carried out between the register and the
table, being that the value of the third parameter (number of field isignored).

If the table has fewer positions than the number of fields in the register, only the fields which
correspond to the existing positions are transferred. If the table has more positions than the number of
fieldsin theregister, only the existing fields are transferred.

The operation of writing the data copies it to the appropriate area of memory occupied by the
function module.

WARNING:

If the module F-ARQ is stored in EPROM Flash, it is not possible to write data in thefile, only to
read data. To carry out the writing of the data into thefiles, the F modules corresponding to the them
should bein the RAM memory of the applications program.

WARNING:
During thereading of a PLC’s module data file with MasterTool or during its transferring from
RAM to Flash, no writing of data should be carried out.

This is because the writing of data modifies the module read, being considered invalid by the
programmer or by the PLC dueto the alterating of its checksum.

The functions data files are modules of the applications programs being able to be loaded or read by
the PLC and stored on disks. For example, there may be the case of a PLC controlling ainjector
machine, storing different configuration parametersin an F-ARQ8.037 module. After the
parameters are stored, this module F can be read and stored on disk, to load in other equal injected
machines.

Example of Application

As an exampleif it afile with 120 registers and with 8 fields for register to store operands %D, the
occupation of memory will be:

Occupation of thefile= 120 registers X 8 fidds/register X 4 bytes/field
Occupation of the file= 3840

134

Chapter 5 Function Modules

The configuration requires 3840 bytes to be occupied, the module
F-ARQ4.036 having to be used, then it allows the storing of 4096 bytes.

The parameters programmed in OPER3 of the CHF instruction for the accessto thefileare:
* 9%DO0020 - operand to whereit will beread or with the value to be written in thefile

* 9%MO100 - contains the number of the register to beread or written, having to have between O
and 119 (120 register in total).

* 9%MO0101 - contains the number of thefield to be read or written, having to have between 0 and 7
(8 register in total).

o %KM+00120 - total number of registers.
* %KM+00008 - total number of fields.

135

Chapter 5 Function Modules

F-MOBT.043 — Function for Moving Blocks from Table Operands

CHF
enahble FOET 043 L SUCCESS
OFERI OFER3 |— source index inwvalid
OFERZ DOPERY4 |— destination index inwvalid

Introduction

Thefunction F-M OBT .043 carries out the copy of blocks of humeric operands (%M or %D) or
positions of tables (%TM or %TD) up to 255 values of simple operands can be copied to tables and
vice versa, also transferring the positions from one table to another. It is possible to specify the initial
position of the block to be copied into the table supplied and into the destination table.

Programming

Operands
The cells of the CHF instruction used to call the function are programmed in the following way:

* OPERL1 - Specifies the number of parameters passed to the function in OPER3. It is compulsory
for this operand to be a memory constant with value 5 (%KM -+00005).

* OPERZ2 - Should be an operand of type memory constant with value O (%K M+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPERA4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

* OPERS - Contains the parameters passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parameter is specified
in OPERL, being set at 5 for this module:

%M XXXX, DXXXX, %TMXXXX or % TDXXXX - Initial operand
from where the values are copied (source operand).

o KMXXXX - Initial position to be transferred from the source operand is a
simple operand (%M or %D).

o IMXXXX, %BDXXXX, %TMXXXX or % TDXXXX - Initial operand
where the values are copied to (destination operand).

e %KMXXXX - Initial position where the values in the destination table are copied
to. This parameter is disregarded if the destination operand (%M or %D).

e KMXXXX - Number of simple operands or table positions to be transferred
starting from the operand or from the initial position in the parameters previously
declared. It should beless than or equal to 255.

+ OPER4 — Not used.

Inputs and Outputs
Description of the Inputs:

» enable - when thisinput is powered the function is called, the parameters programmed in the
CHF instruction being analyzed. If these areincorrect, the outputs of theinvalid index are
enabled.

136

Chapter 5 Function Modules

Description of the outputs:
* success - indicates that the moving was correctly carried out

« sourceindex invalid - indicates that there was an error in the specification of the supply
operand:

» theoperandis not declared in module C

» thetype of parameter 2 is not %KM

» theinitia position programmed does not exist, if the source operand is table
» therearenot enough operands or table positions to carry out the movement

« destination index invalid - indicates that there was an error in the specification of the
destination operand:

» theoperandis not declared in module C

* thetype of parameter 4 is not %KM

» theinitial position programmed does not exist, if the destination operand is table
» therearenot enough operand or table positions to carry out the movement

If the two outputs of theinvalid index are enabled simultaneously, some of the following errors
occur:

» thenumber of parameters programmed in OPERL1 is different fromfive.
* thetype of parameter 5is not %KM
» thetotal number of position to be transferred is greater than 255

WARNING:
This function allows the moving of alarge number of operandsin one scan. It should be used with
care so that the maximum time of the program cycleis not exceeded.

137

Chapter 5

Function Modules

F-RELG.048 — Function to Access the Real Time Clock

Introduction

CHF
enahle RELG 048 — SUCCESS
set clock COFER1 OFEFR3 |— pulse asecond
OFER2 | OPER4 |— loss oftime

Thefunction F-REL G.048 carries out the access of the real time clock contained in the CPU. The
clock has complete hour and calendar, allowing the devel opment of applications programs which
depend on precise time bases. The time information is kept the same when there is power failurein
the system, since the CPU is powered by batteries.

This function has similar characteristics to function F-SINC.049, since both execute accesses to the
same clock, differing only in the methods of setting. They can be used simultaneously in the same
program, if necessary.

Programming

The cells of the CHF instruction used to call the function are programmed in the following way:

» OPERL1 - Specifies the number of parameters passed to the function in OPER3. This operand
must be a memory constant with value 2 (%KM +00002).

* OPERZ2 - Should be an operand of type memory constant with value 0 (%KM +00000).
Determines the number of parameters possible to be programmed in the editing window of
OPER 4. Asthis function does not need any parameter in OPER4, the value of OPER2 is 0.

* OPERS - Contains the parameter passed to the function, declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parametersis
specified in OPERL, being set at 2 for this module:

%M XXXX or %TMXXXX - Specification of the operands to where the clock
values are read. If this parameter is specified as memory, the values are read to the
memory declared and the following six. If it is specified as table, the values are
placed starting from position O to 6. If the operands are not declared, the reading of
the time values is not carried out and the instruction outputs are disconnected. It is
possible to use tables with more than 7 positions, being that values are read from
operands in the following sequence:

Operand Position Table Content Format
SMXXXX 0 Seconds 000XX
SMXXXX + 1 1 Minutes 000XX
SMXXXX + 2 2 Hours 000XX
YMXXXX + 3 3 Days of Month 000XX
SMXXXX + 4 4 Month 000XX
%HMXXXX + 5 5 Year 000XX
YMXXXX + 6 6 Days of the Week 000XX

Table 4-4 Values Read from the Clock (F-REL G.048)

The contents of these operands can beread at any time, but are updated with the real hour of the
clock only when the instruction is executed. The 24 hour format is used in the time count. The days
of the week are counted with values from 1 to 7.

138

Chapter 5

Function Modules

Value Days of the Week
Sunday

Monday

Tuesday
Wednesday
Thursday

Friday

Saturday

N[O |W|IN |-

Table 4-5 Values of the Days of the Week (F-REL G.048)

e MXXXX or % TMXXXX - Specification of the operands from where the
clock values are s&t, with the enabling of some of the inputs to set the function. If
this parameter is specified as memory, the values are copied from the memory
declared and the following 6. If it is specified as table, the values are copied from
position O to 6. If the operands are not declared, the setting is not carried out and
the outputs of the instructions are disconnected. The values to be copied to clock
should be placed in the operands in the same sequence as the operands of reading
(seconds, minutes, hours, day of the month, year and day of the week).

OPER4 — Not used.

Inputs and Outputs
Description of the inputs:

Example:

enable - when thisinput is powered the function is called, the parameters programmed in the
CHF instruction are analyzed. If they are incorrect, all the output of the instruction are turned off.
If they are correct, the time values of the clock are transferred to the memory operands or to a
table declared as first parameter in OPERS3, the output success is powered and the output pulse a
second is connected by a scan at each second.

set clock - when powered, the values of the operands declared as second parameter in OPER3
are set inthe clock, if the values are correct. While the input is enabled the time is not counted,
the output pulse a second remaining turned off.

input set:

programmed time: 9h 3bm 20s

output pulse a second: set clock

] [] L] []

fime clock 842 13s 8:4214s 935205 935 s

Figure 4-2 Example of Diagram of Setting Input Times

Description of the outputs:

success - is powered when the function has been correctly executed.

pulse a second - indicates if there was a change in the clock. The pulse lasts one scan and can
be used to synchronize events of the application program.

loss of time - this output is connected if the clock was left without battery power during a
failure of the main supply. It is deactivated with the setting of the clock.

139

Chapter 5 Function Modules

F-PID16.056 — F Module for PID Control

—CHF
enable ' PR 056 — success S error
automatic/ | OpER| | OPERI L saturation
manual
directfreverse — OPERZ | OPER4

Introduction
The F-PID16.056 function, available to AL-2003, AL-2004, PO3145, PO3142 and PO3242 CPUs,
implements the proportional, integral and derivate control algorithm. From a measured value (VM)
and the point of desired adjustment (PA) the function cal culates the performance value (VA) for the
controlled process. Thisvalueis periodically calculated, considering the proportional, integral and
derivative programmed factors. It isaPID control type ISA algorithm where the proportional gainis
the gain of the controller, applied in the error of integral and derivative parcels of the controller.

The F module can be represented by the diagram below:

— T
TN F-PID.050

*| Process

Figure 4-10 Diagram of blocks of F-PI D16.056

Details of the PID controller diagram is presented bel ow:

Feedforward [biaz

Manual Mode
|
PID
1p----
Dead Band — Output Limitor
+ +
o * * + Artireset | A
] e 41 Gp —H __/_ ™ windup ¥ PROCESS
WM . =qh

L Td

Figure 4-11 Diagram of blocks detailed of F-PID16.056

140

Chapter 5 Function Modules

The basic control algorithm used on PID controller is described on the following equation:
1 :
VA=Gp me+?qemt +Td B‘Z%) + Bias
I

Where:

VA isthe performance value;

Gp is the proportional gain of the controller;

eisthe system(PA-VM) error;

Ti isthe integral time constant (rep);

Td isthe derivative constant timein (S);

dt is the sampling period;

g represents the system error (+) or the measure variable (-), as the selection;
PA isthe adjustment time;

VM isthe variable measured on the process that is being controlled,;

Bias is adisplacement inserted through an additional point after the calculation of the
algorithm.

Biasis a displacement inserted through an additional point after the calculation of the algorithm.
Operation in 4 quadrants (positive and negative values in inputs and outputs);

It can be used in cascade mode, implementing complex algorithms of control;

16 bits operation;

Use of parameters (Gp, Ti, Td) directly on ISA format;

Derivative term selection acting on error function (positive) or on the measured variable (negative);
Individual inhibition of the derivative, integral or proportional terms;

Derivative action calculated on three samplings (filter);

Direct or reverse action;

Adjustable output limits;

Unsaturation of the integral action (anti reset windup);

Limitation of the growth tax;

Feedforward / bias;

Manual or automatic mode;

Output tracking for soft transition (bumpless) from the manual mode to the automatic mode;
Configurable dead zone applied on error.

141

Chapter 5 Function Modules

Programming

Operands
The cells of CHF instruction used for the call of the function are programmed in the following way:

OPERL - - Specifies the number of parameters that are passed to the function on OPER3. This operand must be
obligatorily a memory constant with value 6 (%KM +00006).

OPER?2 - - Specifies the number of parameters that are passed to the function on OPER4. This operand must be
obligatorily a memory constant with value 0 (%KM +00000).

OPERS - - It contains the parameters that are passed to the function, declared when the CHF instruction is edited.
The number of editable parametersis specified on OPER1, and it is equal to 6 for this module:

- % TMXXXX - Tablethat contains the parameters used on control algorithm. Must
contain at least 30 positions.

- %BMXXXX - Memory that contains the measured value of the process (VM),
normally gotten through an analogical input.

- % MXXXX - It contains the adjustment point (PA), that is the desired value to the
measured variable (set point).

- % MXXXX - Memory that contains the performance value (VA) generated for the
control algorithm. In manual mode the control algorithm does not act on this
variable, that can be manipulated by the user.

- %MXXXX - Memory to feedforward/bias. The value of this operand will be
added to the output value of the PID controller, before the limitation (limits upper
and lower declared on parameters table).

- % AXXXX - Auxiliary Octet that contains control points of the PID function.
OPER4 — Not used.

Inputs and Outputs

Description of the Inputs:

enable - when thisinput is powered the function is called, being analyzed the parameters programmed on CHF
instruction. If the number of parameters or it type are different of the function needs, the output success/error
will be unpowered. If it is correct, the PID control calculusis realized.

automatic(0)/manual (1) - when powered, the performance variable is not modified by the function, being able
to be modified manually (manual mode).

reverse (O)/direct (1) - it specifies the way as the controller will act on the process.

WARNING:
Thedirect and reverse concept on F-PID.033 module are the opposite of F-PID16.056.

Description of the Outputs:

success(1)/error(0) - it is powered when the function is correctly executed. Always that occurs errorsin the
specification of the operands, invalid attempt in accessing the operands not declared or invalid parameters,
this output is not powered, indicating error.

satur ation - when powered indicates that the output of the controller reached the saturation, or on max limit, or
on min limit.

142

Chapter 5 Function Modules

Functioning Characteristics

Unsaturation of the Integral Action

The unsaturation of the integral action (anti-reset windup) is made in order to prevent that the integral
term continues to accumulating errors when ariot in the process cause the saturation of the output of
the controller in one of the limits. In the moment that the value of the output reaches one of the
limits (maximum or minimum), the integral term is fixed in its current value, hindering its indefinite
growth. This assures that it will have areply of the controller so soon disappears the riot that took it
to saturate the outpuit.

Manual Mode

The function can be executed in manual mode, powering the second input of CHF instruction. On
this mode, the routine does not modify the value of the performance output, but follows it (output
tracking). Or either, in function of the output value on the manual mode and of the measured value
of the process, the terms proportional and derivative are calculated and the integral term is forced for
an adequate value that, when there is the manual transition for automatic, the routine can reassume
the control with theinitial value of the output equal to the last value of the output in the manual
mode. This behavior is called balanced manual/automatic commutation (bumpless transfer). Itis
important to observe that this resource only success when the integral action is enabled. Althoughin
manual mode, the performance output cannot assume bigger values than the limits declared in the
table of parameters. When this occur the value of the performance output will be forced to the closer
limit.

Direct and Reverse Control

The control can be direct or reverse. This selection is realized unpowering or powering the third input
of the CHF instruction.

Ondirect control, in case that an increase in the measured value occurs (VM), the controller must
increase the performance output (VA) in order to control the process.

On reverse control, in case that an increase in the measured value occurs (VM), the controller must
diminish the performance output (VA) in order to control the process.

Considering two examples that use the same valve, controlled for an analogical output 4-20 mA (VA
varies from 0 to 4095). Assumes that with VA =0 (4 mA) the valveis total closed, and with VA =
4095 (20 mA) the valvetotal is opened.

In thefirst example, it is desired to control the level of atank (VM = level of the tank), through a
valve of exhaustion of thetank. Therefore, the more the valve is open, faster the level of the tank
diminishes. Inthisin casg, if thetank level increases (VM), the controller must increase VA to open
thevalve Therefore, it isadirect control.

On second example, it is desired to control the outflow through the valve. Therefore, the more the
valve open, greater will bethe outflow. Inthis case, if the outflow increases (VM) through the valve,
the controller must diminish VA to close the valve. Therefore, it is areverse control.

Sampling Interval

Theinterval between samplings of a PID loop can vary from 0,01 to 10 seconds. It is responsibility
of the user to program a "trigger"” to the function, or either, a stretch of applicatory program that only
enables F-PID16.056 routine in the desired intervals of time. It is advised to use a EO18 module,
therefore this module is executed inside of an fixed time interval time that can be used to generate
one or more bases of time for the execution of one or more PID loops. Notice that the value of the
sampling interval (dt) declared in the table of parameters of the controller must coincide with the
timeinterval of the“trigger” calls.

143

Chapter 5

Function Modules

Execution Time

The worse case of execution of a control loop with the F-PID16.056 reaches the time of 360 us. This
timeisvalid for the Al-2003, Al-2004, PO3145, PO3142 and PO3242 CPUs.

Table Position Parameters Description

The table with the parameters of the controller is also used to store variables of internal use, the total
sum of theintegral action and the measured variable or errors of previous cycles for the derivative
action calculation. Each position of thistable is described below:

Table
Position

Parameters

Description

00

GP (x10)

Proportional gain (without unit). The possible values are inside of the interval from
0,1 to 3000. The proportional gain must be multiplied by 10 to be declared in this
field, assuming the interval from 1 to 30000.Values out of this band will make that F
module enters on error mode and does not execute the control algorithm.

01

Ti (x10)

Constant of integral time (s/repetition). The possible values are inside of the
interval from 0,1 to 3200 s/rep. The constant of integral time must be multiplied by
10 to be declared in this field, assuming the interval from 1 to 32000. It is observed
here that lesser the value of Ti, greater will be the integral action. Values out of this
band will make that F module enters in error mode and does not execute the control
algorithm.

02

Td (x100)

Derivative constant of time (s). The possible values are inside of the interval from 0
to 320 s in units of 0,01s. The constant of time derivative must be multiplied by 100
to be declared in this field, assuming the interval from 0 to 32000. Values out of this
band will make that F module enters in error mode and do not execute the control
algorithm. If attributed value zero to the derivative time constant, the action will be
calculated with value zero, not influencing in the performance output. One sends
regards to disable the derivative action when it is not used.

03

dt (x100)

Sampling interval of the process that is being controlled (s). The possible values
are inside of the interval from 0,01 to 10 s. The sampling interval must be multiplied
by a factor of 100 to be declared in this field, assuming the interval from 1 to 1000.
Values out of this band will make that F module enters in error mode and does not
execute the control algorithm. It is responsibility of the user to enable the F module
in this time interval.

04

Maximun output value

Maximum value of allowed output. It can assume values from -30000 to +30000.
Must necessarily be bigger than the minimum output value. Values out of this band
will make that the F module enters in error mode and does not execute the control
algorithm.

05

Minimun output value

Minimum value of allowed output. It can assume values from -30000 to +30000,
Must necessarily be minor than the maximum output value. Values out of this band
will make that F module enters in error mode and does not execute the control
algorithm.

06

Dead Zone

Dead Zone. It can assume values from 0 to +30000. Always if the absolute value of
the error is minor than the value defined in this field, the controller will be executed
considering the error as zero. To disable this resource it is enough to declare the
value zero for the dead zone. Values out of this band will make that F module
enters in error mode and does not execute the control algorithm.

07

Maximun allowed
variation.

The value declared in this field indicates the absolute value of the maximum
variation that the output of the controller can have to each sampling interval (dt). It
can assume values from 1 to 30000. Value 1 represents a very small variation
while that value 30000 represents a great variation to each cycle of sampling.
Declaring zero in this field the maximum allowed variation is not verified, allowing
any variation. Values out of this band will make with that F module enters in error
mode and does not execute the control algorithm.

08

Accumulated Al x100
(Hi)

The value presented in this field is the accumulated integral action. Aiming to get
more numerical resolution, the accumulated integral action is stored multiplied for a
factor of 100. Three operands of 16 bits are used to keep the high part, low part
and factionary part of the integral action. These fields must be started with zero to
prevent that some random value is stored.

09

Accumulated Al x100
(Lo)

10

Accumulated Al x100
(frac)

11

Value of previous
performance (VA)

This field is restricted to F module use and it must not have its content modified.
The value of this field is the variable of performance of the previous cycle, used to
limit the maximum variation.

12-13

Reserved

Reserved Operands.

144

Chapter 5 Function Modules

14 VM(t-3) or error(t-3) This field is restricted to F module use and it must not have its content modified.
Description of the three last errors or measured variables, used for calculation of the
derivative term. The derivative action can act in function of the error as in the
measured variable, however never the selection must be changed from error to
measured variable or vice versa during the control process.

15 VM(t-2) or error(t-2)

16 VM(t-1) or error(t-1)

17-27 Internal use These positions of the table are used exclusively by PID function, can not be
modified by the applicatory program.
28-29 Reserved Reserved Operands

Table 6: Description of the positions of the par ameter stable of the F-PI D16.056

Always if occur some alteration in the parameters GP, Ti, Td or dt, the F-PID16.056 module needs a
cycle execution to adapt the controller to the new parameters, not executing the control in this cycle
and keeping the variable of performance (VA) unchanged.

Description of %A Operand Control

Theauxiliary operand of F module contral is used in agreement with the table below.

Bit Description

0 inhibits(1) / enable(0) integral action

1 inhibits(1) / enable(0) derivative action

2 inhibits(1) / enable(0) proportional action

3 Der_ivative action in error function (1) or in process
variable (0)

4 Reserved

5 Internal use

6 Internal use

7 Internal use

Table 7: Description of the auxiliary operand control

Through the auxiliary control operand of the F-PID16.056 function is possible to incapacitate the
proportional action, integral and/or derivative and also to select the derivative action acting in
function of the error or the measured variable in the process. When some action of control (either it
proportional, integral or derivative) will not be used, this must be incapacitated enabling the
corresponding bit.

Incapacitating the action of proportional control it can not generate action to the error, but the gain of
the system continues being applied on the integral and derivative actions. For a pureintegrator, for
example, only theintegral action must be enabled, adjust the desired time constant Ti and attribute to
constant GP (proportional gain) a unitary gain.

The derivative action acting in function of the measured variable is recommended for the majority of
the applications, therefore it prevents great variations on VA output when the PA adjustment point is
modified. For special applications exists the possibility of the derivative action seection in function
of the error of the system.

The bits of internal use are of F-PID16.056 function exclusive use and they must not have its content
modified.

145

Chapter 5 Function Modules

Application Notes

Time Sampling Selection
The efficiency of the digital controller is directly related with the used sampling interval. The more
that thisinterval diminishes, the result of the digital controller come closeto the result of an
analogical controller. It isadvised to use atime of sampling of order of one tenth of the time
constant of the system, or either

T
T, =—

A10
where T, isthe used sampling time and T is the time constant of the system.

Example: Thetime constant of a first-class system can be gotten from its reply graph of the
performance variable (VA) to a step in the PA point of adjustment with open control loop (PID
disabled or in manual mode), as the figure below:

Figure 33: Time constant o the system and sampling interval

This figure demonstrates the attainment of the time constant of the system in two distinct ways.
Most usual is to take as time constant of the system the time necessary to the system to reach
63.212% of thefinal value. Another way isto trace the first derivate of the reply to step curve, the
time constant is that straight line that crosses the final value of the system reply.

Defined the time constant, is enough to define the sampling interval of order of onetenth of this
value.

It isimportant to remember that the update of the inputs and outputs occurs in the same order of a
CPU time cycle. Always that the time of cycle of the CPU is greater than the sampling time advises
to use the AES instruction for the Al-2003 and Al-2004 CPUs or F-AES for the Ponto series.

Feedforward/Bias
Through operating the memory used for feedforward/bias it is possible to inject some variable of the
system on the output of the controller and/or apply a displacement on the same one.

The objective of feedforward is to measure the main riots of the process and to calculate the change
necessary in the performance variable to compensate them before these cause alterationsin the
controlled variable. The manipulation of theriots of the process can be made through the blocks of

146

Chapter 5 Function Modules

advanced control (F-CTRL.059) that possess advance-delay blocks, derivation with secular
retardation and first-class secular retardation.

It can be cited as example, a system where the variable to be controlled is the temperature of a hot
mixture. In one determined phase of the processit is necessary to spill cold water in this mixture.
Without feedforward, it would be necessary to wait the cold water to change the state of the mixture
for then the controller to generate the corrective action. Using feedforward, a value associated with
the temperature of the cold water would beinjected in the exit of the controller, making with that this
takes “the corrective action” before the cold water start to modify the state of the hot mixture,
speeding the reply of the controller.

Thebias it is used always that it is desired to apply some displacement on the output of the
controller.

Control in Cascade
Probably the control in cascade is one of the most used techniques of advanced control in the
practical one. Heis composed at least two control loops. Thefigure below shows a controller in
cascade with two loops.

P4 + E,

Va, o+ E Vi PROCE=S PROCESS
PID, [— » PID; 2 1

b
b

WM Wi,

Figure 34: Controller in cascade with two loops

The external loop is called the master controlling and the internal loop the slave controller. The
master controlling has its adjustment point fixed and its output supplies the adjustment point of the
dlave controller (VA ;). The performance variable of the slave controller (VA ;) will act on process 2
that, in turn, will act on process 1, closing the controlling master loop.

Thistype of controller is applied, for example, in the temperature control for the vapor injection.
Beyond the variation of the temperature, that must be controlled, the system is displayed to variations
of pressure in the vapor line. One becomes then desirable an outflow slave controller acting in
function of the pressure variations and a controlling master to manipulate the reference of the dlave,
controlling then the temperature of the process. This example can be represented in agreement with
the graphically figure below.

Pa + E,

PID; [so-E2al PID; [2tsf valve
PREZZURE

TEMPERATURE

b
b

PROCESS

Figure 35: Application of a controller in cascade

In case that a temperature controller that only act directly on the vapor valve, it would not have to
compensate eventual variations of pressurein the vapor line.

Three main advantages in the use of controllers in cascade:

147

Chapter 5

Function Modules

Any riot that affects the slave controller is detected and compensated for this controller before
affecting the controlled variable for the master controlling;

Increase of the controllability of the system. In the case of the temperature control for the vapor
injection, the system reply is improved because of the outflow controller increasing the
controllability of the main loop;

Non linearities of an internal loop are manipulated inside of this loop and not perceived by the
external loop. In the previous example, the pressure variations are compensated by the slave
controller and the master controlling “can see” just alinear relation between the valve and the
temperature.

Important Notes
To use controllers in cascade the following cares must be taken:

As the adjustment point of the slave controllers is manipulated in agreement with the masters
controlling output, will be able to occur brusque variations in the error of the slave controller. If
the slave controllers will be with the derivative acting in function of the error will appear
derivative actions with great values. Therefore it advised to use the slave controllers with the
derivative action in function of the measured variable;

The slave controller must be sufficient fast to eliminate the riots from loops before these affect
the loops of the master controlling;

148

Chapter 5 Function Modules

PID Controller Adjustments Suggestions

Two methods for the determination of the PID controller constants of controller are presented. The
first method consists on the determination of the constants in function of the period of oscillation and
the critical gain, while it determines the constants of the controller in function of the time constant

(T), of the dead time (Tm) and of the static gain of the system (K). For bigger detailsis advised
reading literature references to it.

WARNING:

Altus are not responsible for eventual damages caused by configuration errors of the constants of the
controller or parameters configuration. One sends regards that a qualified person executes this task.

Determination of the Constants of the Controller Through the Period and Critical Gain

This method generates a cushioned reply whose tax of damping is equal to /4. Or ether, after
syntonizing a loop through this method, areply as shown in the figure below is expected:

>t

Figure 36: Reply with ¥ of damping tax

The critical gain is defined as the gain of a proportional controller who generates an oscillation of
constant amplitude in the system in closed loop and the critical period is the period of this oscillation.
The critical gain isameasure of controllability of the system, or either, bigger the critical gain easier
will be the control of the system. Thecritical period of oscillation is a measure of the speed of the
system reply in closed loop, or éther, how much bigger the period of oscillation slower will be the
system. In dapsing of this chapter the critical gain will be called as GPc and the critical period as Tc.

It isimportant to remember that slightly lesser gains that GPc generate oscillations whose period
decreases with the time, while that bigger gains that GPc generate oscillations whose amplitude
grows with the time. In the case of bigger gains that GPc is necessary to have well-taken care of not
to become the system critically unstable.

The process to determine GPc and Tc consists of closing the loop with the controller in automatic
mode disabling the integral action and the derivative. The steps are the following ones:

* Removetheintegral and derivative action through operand %A of control;

* Increasethe proportional gain with small increments. After each increment inserting a small riot
in the system through a small step in the adjustment point (PA). To verify the behavior of the
system (VM), the amplitude of oscillation must increase while the gain increases. The critical
gain (GPc) will bethat one that generate oscillations with constant amplitude (or almost
constant) as the figure below;

149

Chapter 5 Function Modules

* Tomeasurethe period of these oscillations (Tc).

To determine the constants of the controller it is enough to apply the values of GPc and Tc on the
equations of the table below.

VM 4,

=
ffs)

Figure 37: Graphic representing of a system out of control when subjected to GPc

Type of the Controller Constants
Proportional (P) GP =0,5[GPc
Proportional and Integral (PI) GP =0,45[GPc
n=Te
12
Proportional, Integral and Derivative GP =0,75[GPc
(PID) Tc
Ti=—
16
Td=1
10

Table 8: Equationsto deter mine the constants of the controller

Determination of the Constants of the Controller Through the Constants of the Process

This method applies the linear processes, first-class (similar to acircuit RC) and with dead time. In
the practical, many industrial processes is adapted to this model.

The method requires, initially, to determine the following characteristics of the process in open loop:

» K: Static gain of the process. Defined as the division between a variation of VM and a variation
of VA, or ether, K = AVM/AVA;

* Tm: Dead time, defined as the time between the beginning of a variation on output VA (t0) and
the beginning of the reaction of the system;

e T:timeconstant of the system, defined as the time that the measured variable leads to reach
63.212% of itsfinal value

Moreover, the method requires two additional parameters, that are not characteristic of the processin
itsdf, and must beinformed by the user:

Tr: time of reply desired after the tunning of the loop. Through this parameter the user can inform a
requirement of performance of the controlled loop.

150

Chapter 5 Function Modules

dt: time of sampling in seconds, or either, the period of call of the F-PID16.056 and update of input
VM and output VA. The constant dt symbolizes an additional dead time, that must be added the Tm.
In the practical, adds dt/2 to the value of Tm, therefore thisis the inserted average dead time.

Thetime of Tr reply can be compared with a “time constant” of the closed loop, asillustrates the
figure below.

________________________ ==

63,21%

| 0
pa 100%

>t

Tm

Figure 38: Specification of the Reply TimeTr

The Tr parameter shows the desired time of reply. It is about the measured time between the
beginning of the reply of the system (after the dead time Tm), and the moment where VM reach
63.21% of itstotal excursion. Through Tr the user can specify a*“performance requirement” for the
controlled loop. Becareful in not to specify minor times of reply that one tenth of the constant of
time of the system, therefore the system can be unstable. How much minor the value of Tr, greater
the need of gain.

Tofollow, it is described how to determine, through a test of opened loop, the other parameters (K,
Tmand T), that characterize the process. A simple way to determine these constants of the processis
to place the F-PID16.056 module in manual mode, generate a small step in VA and plot the reply of
VM intime. For slow processes this can manually be made, but for fast processes the use of an
oscilloscope or any another device that monitors the variation of VM is advised. Thestep in VA
must be sufficient to cause a perceivable variation in VM.

Thefigures below represent, respectively, a step on VA output, applied in the instant to and the reply
of afirst-class linear system with dead time.

151

Chapter 5 Function Modules

VAR 2, VM 2,

VA,

v, |

a ")

Figure 39: Step on VA Figure 40: Reply to the step

Through these figures it can be gotten all the necessary constants for the determination of the
parameters of the controller. The static gain of the process is gotten through the division between the
variation of the measured variable and the variation of the performance variable, or either:

« VM, ~WM,
VA, =VA

The dead time, Tm, is the time between the moment of application of the step in VA (tp) and the
beginning of the reply of the system.

The constant of time of the system, T, is the time between the beginning of the reaction of system
and 63.212% of thefinal value of VM (VM), or dther:

VM '-VM
063212=—— —1-
M, -VM,
From the constants of the system, K, Tmand T, can be gotten the parameters of the controller using
the equations of the table below:
Type of the Controller Constants

Proportional, Integral and Derivative
(PID) GP = T
K*(Tr+ Tm + dt/2)

Ti=T

Td =Tm/2 + dt/4

Table 9: Equationsto deter mine the par ameter s of the controller

Gains X Scales

It isimportant to remember that the proportional gain will only executeits action in correct way
when the Input and the output of the system are using the same scales. For example, a proportional
controller with unitary gain and input (VM) using the band from 0 to 1000 will only bereally unitary
if the output band (VA) also isfrom 0 to 1000.

152

Chapter 5 Function Modules

In many cases the scales of inputs and outputs are different. A system can be cited as example where
the card of analogical entranceis of 4-20 mA, where 4 mA corresponds to value 0, and 20 mA
corresponds to value 30000. And the card of analogical output isfrom OV to 10 V, where 0 V
corresponds to value 0, and 10V corresponds to value 1000. In cases likethis, the adjustment of
scales can be made through the proportional gain instead of a normalization of the values of input or
output.

A strategy that can be adopted is, initially, to determine the gain in percentile terms (independent of
scales), without worrying about the type of modules of used analogical input and output. Later, after
this gain determined, the correction of scales must be executed, before introducing the proportional
gain in the F-PID16.056 module.

The strategy consists in determining the proportional gain of the system using the percentile band
(0% the 100%) of the variable measured (VM) as the performance value (VA), without taking in
consideration the absolute values, as much of VM as of VA.

Thiswill lead to the determination of a proportional gain called GP%. This GP% gain cannot
directly beused in the F-PID16.056. Beforeit is necessary to make a correction of scales, that
considers the absolute values of these variable.

Warning: In the previous section, Suggestions for Adjustments of PID Controller, are suggested
methods of adjustment which the correction of scales are implicit to the method, not having to be
considered. Inthefollowing chapter, Example of Application, the correction of scalesalsois
unnecessary, therefore was used one of the methods boarded in the section Suggestions for
Adjustments of PID Controller.

The correction of scalesisillustrated on the example bel ow.

Considering a conditional air system where the module of analogical input is reading an electrical
resistance PTC (positive thermal coefficient) and the module of analogical output generates atension
from O to 10V to act on the responsible valve for the circulation of the water that cools insufflating
air.

The entrance module works with a band from 0 to 30000, however the useful band is from 6634 to
8706 with the following meaning:

* EA=6634 = 0% = 884,6 ohms (corresponds to the minimal temperature that can be measured)

 EA,;=8706 = 100% = 1160,9 ohms (corresponds to the maximal temperature that can be

measured)
The output modul e uses the same band from 0 to 30000 without restrictions and with the following
meaning:
e SA;=0=0%=0V (corresponds to the minimal water outflow through the valve)

* SA; =30000 =100% = 10V (corresponds to the maximal water outflow through the valve)

Assuming that the GP% gain has been previously determined, the GP gain can be calculated by the
following equation:

GP=GP%* R

where:

no SA-SA
EA - EA
For the previous example:

30000-0

= Y =14.478
8706 - 6634

153

Chapter 5 Function Modules

Thisreason R is a constant that, when multiplied by the proportional gain of the controller, it
compensates the differences between the inputs and outputs bands without the necessity of a direct
normalization.

Example of Application

Onthisitem it is demonstrated a practical example of the F-PID16.056 module use, enclosing diverse
phases of the project, of the process and its system of control.

Description of the Process
The process exampl e has as objective the warm water supply, with controlled temperature, to the
consumer. The heating will be made through a gas burner, being controlled on the variation of the
gas outflow through a valve.

Thefigure below illustrates this process.

B

44 o4 o4 < < < < TT

< burner
gas

VA (4 — 20 mA) (4 — 20 mA) VM
CONTROLLER
PA

Figur e 41: Process of burning water

Onthefigure, it is observed that the temperature transmitter (TT) is close to the consumer, who is
located 20 meters from the point of the water heating. Processes as this are good examples to
illustrate how can be introduced “dead times’. This because the warm water in the heating point
takes some time to cover the distance until the point of measurement next to the consumer. Dead
times had been argued previously.

Some hypotheses had been assumed on the model of this process:

It is assumed that the water that arrives at the heating point on the burner has fixed temperature, of 30
0,
C.

It is assumed that the water outflow is constant.
Some characteristics of this process and the used elements:
The warm water must have its programmabl e temperature between 50 °C and 80 °C.

Thetemperature TT transmissor has output from 4 to 20 mA, and if floodgate of linear form, such
that the 4 mA correspond to 30°C and 20 mA correspond to 130°C.

It is assumed that, to increasein 10 °C the water temperature, is necessary to inject 1 m¥h of gas.
This behavior islinear. The gas valve closes with 4 mA, injecting 0 m*h of gas. On the other hand,
with 20 mA, it injects 8 m*h of gas.

154

Chapter 5 Function Modules

Description of the Analogical Modules
Asit can be seen infigure 4-13, is needed an analogical output from 4 to 20 mA, and an analogical
entrance from 4 to 20 mA, asinterfaces between the controller and the process.

Internally to the controller, these bands from 4 to 20 mA correspond the numerical bandsin M
operand (VM and VA). These bands of numerical values can vary in function of the input modules
and selected analogical output. In this example, thefollowing is assumed:

analogical input VM (0 a 30000):
VM =0-->4mA --->30°C

VM = 30000 ---> 20 mA ---> 130 °C
analogical output VA (0 a 10000):
VA=0-->4mA=0-->0mYh
VA = 10000 ---> 20 mA ---> 8 m’h

Adjustment Point
The PA operand must be used to program the desired temperature, between 50 °C and 80 °C.

As this operand must be compared with VM, it must have the same numerical band of VM, or either:
PA=0-->30°C

PA = 30000 ---> 130 °C

Or to restrict the band between 50 °C and 80 °C:

PA = 6000 ---> 50 °C

PA = 15000 ---> 80 °C

General Diagram and Boundary-Values
Figure 42 shows a general diagram of the system (controlling + process), whereinside of the
controlling is revealed the F-PID16.056 module. To observethat PA, VM and VA are M operands.

PA—> VAL o
. | F-PID16.056 ——» I”gu‘:gﬁa —
VM [P ;
; : PROCESS
| Analogica |
[input ‘ !
i CONTROLLER :

Figure 42: General Diagram
PA:
minimum = 6000 (50 °C)
maximum = 15000 (80 °C)
VM:
minimum = 0 (30 °C)
maximum = 30000 (130 °C)
VA:

minimum = 0 (0 m¥h)

155

Chapter 5 Function Modules

maximum = 7500 ---> (6 m*/h)

It is observed that in the VA case, even so the valve has capacity to inject 8 m¥/h, is desired to limit
this outflow in 6 m’/h.

Parameters of the Process
Figure 43 shows the result of atest of an opened loop of the process. To execute this test, was
directly used the VA and VM variables, with itsinternal units.

Ay

(4 M3N) 5000
(2 m*h) 2500
> t
Avm
(70°C) 12000
979
(50 °C)
> t

50 60 90

Figure 43: Open Loop Test

On this figure can be determined the 3 basic parameters, as explained previoudly.
Tm = 10 seconds (dead time, since the step was applied int = 50 sand thereply initiated int = 60).

T = 30 seconds (time constant, since thereply t initiated in = 60 s, and reached 63.21% of the
excursionint=90s):

9792 = 6000 + (12000 — 6000) * 0,6321.
K = 2.4 (static gain of the process)
2.4 = 12000 — 6000

5000 - 2500

Tunning of the Controller
Since the test of opened loop was carried through, will be used the second tunning method previously
described on Notes of Application.

To use this method, beyond the determined parameters of the process in the previous section (Tm, T
and K), also it is necessary that the user informs others 2 parameters:

156

Chapter 5 Function Modules

Tr, or desired time of reply. In this example, it will be decided in 10 seconds (the time constant in
open loop divided by 3).

dt, or time of cycle of the F-PID16.056. As commented previously, this time must be 10 times minor
than the time constant in loop opened, or still minor. Therefore, the value must be minor than 3
seconds. Was sdected dt = 1 second.

Now, it is possible to apply the equations of the method:
GP=T/(K* (Tr+Tm+ Dt/2)) =30/ (2.4* (10 + 10 + 1/2) = 0,609
Ti=T =309grep

Td=Tm/2+Dt/4=10/2+1/2=525s

Uses of F-PID16.056

To each one second, must be executed the F-PID16.056, setting in motion its input ENABLE during
only one sweeping.

The AUTOMATIC/MANUAL input can be controlled during the operation of the process. Normally
the process will bein automatic.

For this process, the REVERSE/MANUAL input will haveto bein state O (reverse). The process
demands control reverse therefore, in the case of an increase of VM, the controller must diminish VA
in order to control the process. In other terms, if the temperature increases, the valve must be closed.

Operand TMXXXX:

position0=GPx 10=6

position 1 =Ti x 10 =300

position 2 = Td x 100 = 525

position 3 = dt x 100 = 100

position 4 = maximum output value = 7500

position 5 = minimum output value=0

position 6 = dead zone = O (disable)

position 7 = maximum variation allowed = O (disable)
positions 8 to 29, begins with zeros only on CPU powering
Operand AXXXX of control: al the start bits must be zero.

Comparison with F-PID.033

The F-PID16.056 module was developed aiming to improve the interface with the user, to optimize
the execution time and to become it compatible with variable of 16 bits or little resolution.

The main changes:

* Inputs and outputs with a range from -30000 to 30000;

» Parameters inputs without initial calculation (direct input of Gp, Ti, Td and dt);

e Sampling interval (dt) from 10ms to 10s, while that on F-PID.033 the minimum limit is 100ms.

Together with these alterations, a set of new characteristics was added to the previous F-PID. The
table below brings a comparison of the characteristics between the F-PID16.056 module and the F-
PID.033.

157

Chapter 5

Function Modules

CHARACTERISTIC F-PID.033 New PID
Parameters programmed directly in X
ISA format (Gp, Ti, Td)
Calculated derivative action in function X
of the error or the measured variable.

Calculated derivative action on 3 X X
samplings

Direct or reverse action X X

Input and output interval from —100% X
to +100%

Dead band X

Unsaturation of the integral action X X

(“anti-reset windup”)
Feedforward / bias input X X
(displacement)

Inhibition of the derivative term X X

Inhibition of the integral term X X

Inhibition of the proportional term X

Limitation of the growth tax X

Adjustable output limits X X

Manual / automatic mode X X

Accompaniment of the output on the X X

manual mode and balanced
manual/automatic commutation
(“Output tracking” and “bumpless
transfer”).

Table 10: Comparison between the F-P1D.033 and the F-PID16.056

158

Chapter 5 Function Modules

F-CTRL.059 — F Module for Advanced Control

Introduction

The module function F-CTRL.059 uses the control algorithms lead/lag, first-order retardation and
derivation with first-order retardation. Each operation mode (algorithm) is selected through an index
on F-CTRL.059 module.

From an input value, the module calculates an output value in function of the selected algorithm. All
the modules use two constants, atime T constant and a second constant K whose function vary as the
selected algorithm. The algorithms are executed in discrete mode, and the time of shot of the function
must be declared with the parameters.

These functions are used in advanced control agorithms to the optimization of the control loop.
Generally used with PID function.

1° Order retardation
When the selected algorithm is the first-order retardation, the F modul e applies on the input (Vi)
operand value afirst-order retardation. The output value (Vo) of this function is proportional to the
input, however, been late as an exponential function.

This algorithm needs two constants. A T time constant that, in analogy with an RC circuit, represent
it load time constant (63,212% at final value) and a constant of proportional gain K.

On frequency domain (s), the first-class retardation follows the transference function bel ow:

Vo(s) = xVi(s)

1+T[$
Where Vi(s) and Vo(s) are Laplace transformations of the input and output signals.

Thereply to the step is represented on 4-16 figure, where can be observed the T time constant
associated with V' value, that represents 63,212% of start and the end value difference.

Foft)

/ itt)

Firk 1

Fig---

'—\.]. - -

Figure 4-16 first — order retardation

159

Chapter 5 Function Modules

Derivation with Retardation of 1- Order
When this algorithm is selected, the F module applies on the input operand value it derivation with
thefirst-order retardation. The Output value is theinput Vi derivation with the retardation as an
exponential function.

This algorithm needs two constants. A T time constant that can be extended, on the same analogy of
thefirst-order retardation, as the time constant of discharge of a RC circuit. The second constant is
the derivation constant K that, divided by the T constant, will determine a third constant that can be
treated asa gain.

On frequency domain (s), the derivation of first-order retardation foll ows the transference function
below:

Vo(s) = xVi(s)

1+T LS
Where Vi(s) and Vo(s) are Laplace transformations of the input and output signals.

Thereply to the step is represented by 4-17 figure. On start instant (t = to) can be observed that the
function (Vo) output is the input step, with A amplitude, multiplied by the K/T division. Ont =t + T
instant, the system output valueis equal to V', or either, 36,788% of A x K/T. When the Vi input is
constant, the output of this function returns zero with a first-order retardation.

AxE 4 -eeeae oo

b |

Fift)

f, fL+r tI:S:I

Figure4-17 Derivation with first order retardation

It isimportant to remember that the step can not be seen by the F-CTRL.059 module as a instant
variation, but as a variation between two sampling. On contrary case it derivation would have an
infinite value.

Lead/Lag
When this algorithm is selected, the F modul e applies on the input operand value the lead or the lag
asthe relation between the declared constants.

The algorithm needs two constants. One T time constant that, as the same way that the algorithms
before, can be extended as the time constant of a RC circuit. And a K constant that, with the constant
T, will define the algorithm behavior as lead or lag.

Always if the T time constant is bigger than the constant K, the algorithm will behave as lag. When K
is bigger then T it behavior will be as lead. The constants K and T are known too as lead and lag
constants, respectively.

On frequency domain (s), the Lead/L ag follows the transference function below:

160

Chapter 5 Function Modules

1+K[$
Vo(s) =————xVi(9)
1+TL$
Where Vi(s) and Vo(s) are the Laplace transformations of the inputs and outputs signals.
Thereply to step of the lead is represented by the 4-18 figure. Ont = t, instant can be observed that
the function output Vo(to) is equal to V'’ that can be described as

V"=Vi(t) + A><$,tot< to,

or either, theinput value before the step plus the amplitude of the step applied to input (A) multiplied
tothedivision of K/T. Ont = tp + T instant, the system output is equal to V', or either, 36,788% of
the difference between the max value (V'’) and the Vi(t) valuefor t > to plus a displacement equal to

Vilto).

M

L

4 "_: Folt)

1 T i
Al
| .
f, ftT t(s)

Figure4-18 L ead

Thereply to step of the lag is represented by 4-19 figure. Ont = t, figure it can be observed that the
Vo(tp) function output is equal to V'’ that, on the same way of lead, can be written as:

V"=Vi(t) + A><$,tot< to,

differing of the lead graph because K is minor than T. Ont = to + T instant, the output of the system
isequal to V', or either, 63,212% of the difference between the Vi(t) value, tot >ty , and the V"’
value, plus a displacement equal to Vi(to).

161

Chapter 5 Function Modules

Fiit)

Foft)

Figure4-19 Lag

Programming

Operands
The cells of CHF instruction used to the function call are programmed as follows:

* OPERL1 - It specifies the number of parameters that are passed to the function in OPER3. This
operand must be obligatorily a memory constant with value 8 (% KM +00008).

* OPER2 - It specifies the number of parameters that are passed to the function in OPER4. This
operand must be obligatorily a memory constant with value 0 (% K M +00000).

* OPERS- It contains the parameters that are passed to the function, declared when the CHF
instruction is edited. The number of editable parametersis specified on OPER1, equal to 8 on
this module;

* %KMXXXX —Memory constant that points the used algorithm, it can assume the
following values:

% K M 0000 —first-order retardation;
% K M 0001 — derivation with first-order retardation;
% KM 0002 — lead/lag.

e %KMXXXX — Constant with the sampling interval value. It assumes values from
0,01 to 10s, and it must be multiplied by 100 to be declared on thisfield.

* % MXXXX —Memory with thetime T constant value. It assumes values from 0,01
to 320s, and it must be multiplied by 100 to be declared on this field.

* % MXXXX —Memory with the K constant value. It assumes values from 0,01 to
320, and it must be multiplied by 100 to be declared on this field.

* % MXXXX —Memory with input value from -32768 to +32767.
* % MXXXX —Memory with the output value from —30000 to +30000.

e UBMXXXX —Internal use. Not declared.

162

Chapter 5 Function Modules

% MXXXX —Internal Use. Not Declared.

 OPER4 — Not used.

Inputs and Outputs
Description of the inputs:

* enable - when thisinput is powered the function is called, analyzing the parameters programmed
on CHF instruction. If the number of parameters or it type are different from the function needs,
the success/error outputs will be unpowered. If it is correct, the algorithm selected is realized.

Description of the outputs:

» success(1) /error (0) - it is powered when the function is correctly executed. It is not powered if
an operand specification error occurs, or trying to access not declared operands or invalid
parameters.

Characteristics of Functioning
For each sampling interval the function input is applied on the algorithm and update the function
output value.

It can be observed that the algorithm is applied on a discrete form, the sampling time (dt) must be 10
times minor than the time constant T to a satisfactory result. The interval between the sampling of the
F-CTRL.059 loops module can vary from 0,01 to 10 seconds. It is the user responsability
programming the “ start” of the function, or either, an application program that enable the F module
only on desired time interval. It is advised to use a E018 module, this module is executed in a fixed
timeinterval that can be used to generate one or more time bases to one or more F-CTRL.059 loops
execution. Note that the sampling interval declared on parameters must coincide with the time
interval of the“starter” call.

It isimportant to remember that the inputs and outputs update occurs on the same time order of the
CPU cycle. Alwaysif the CPU cycletimeis bigger than the sampling timeit is advised the use of
AES instruction to the AL-2003 and AL-2004 CPUs or F-AES to the Ponto series.

Execution Times
» First-order retardation: 298 ps

» Derivation with first-order retardation: 338 ps
* Lead/Lag: 338 ps
These times arevalid to AL-2003, AL-2004, PO3145, PO3142 and PO3242 CPUs.

163

Chapter 5 Function Modules

F-NORM.071 — Function to Normalization

—CHF
enable — MNORM 071 |— success

OFER1 OFER3 — eror
OFERZ | OFERA

Introduction

Thefunction F-NORM.071 normalize s whole operands, implementing the function M [output] =
(M [input] - A) * C/ (B-A), where A, B and C are constants.
(M (entrada) — A) [{C)

M (saida) = B_A

Programming

OPERL - Specifies the number of parameters passed to the function in OPER3. This operand must be a
memory constant with value 6 (% KM +00006).

OPER?2 - Should be an operand of type memory constant with the value 0 (% KM+00000). It determines the
number of parameters possible to be programmed in the editing window of OPER4. As this function does
not need any parameter in OPER4, the value of OPER2 is 0.

OPERS3 - Contains the parameters passed to the function, declared through a window visualized in
MasterTool when the CHF instruction is edited. The number of editable parameter is specified in OPERL,
being 6 for this call:

%KM+XXXX - Number of operands to process (1 to 127)

%M XXXX - Initial input operand

%M XXXX - Initial output operand

%KM+XXXX - Offset to subtract from the input operand (A)
%KM+XXXX - Vauereference of theinput (B)

%KM +XXXX - Valuenormalize d by the output correspondingto B (C)

From version 1.10 of F-NORM.071, availableto PLCs AL-2003, AL-2004 and Ponto Series, can be
used a D parameter, that define the start input band. When the 6 parameters on CHF from F-
NORM.071 version 1.10, will be admitted that the 7th parameter D is equal to zero and executed the
same normalization algorithm.

The normalization algorithm will be typed as:
(M (entrada) — A) [{C — D) +D
B-A
After the 7th value declared (% K M +00007) to the OPER1, the parameters passed through OPER3
are asfollowing:
% KMXXXXX number of operands;
% MXXXXX first input operand,
% MXXXXX first output operand;
% KMXXXXX start of theinput band(A);

M (saida) =

164

Chapter 5 Function Modules

o WBKMXXXXX end of the output band(B);
o WBKMXXXXX end of the output band(C);
o BKMXXXXX start of theinput band (D) (only on version 1.10).

Operation
A F-NORM .071 implements the following cal culation:

M[output] = (M [input] - A) * C/ (B - A)
being:
* M [input] - range of whole operands of input
e M [output] - range of whole operands of output
e A - offset for theinput
* B -reference value of theinput to normalize
* C-normalized value of the output corresponding to B

The output is the Normalization of theinput and the way that for input data with the value A the

corresponding output is 0, and for an input value B the corresponding output will be C. If in this
range, the output value will be proportional to theinput, according to the formula given.

The function works with a band of up to 127 operand (1 to 127).

Inputs and Outputs
Descriptions of inputs of the function:

- enable - when thisinput is powered the function is called, the parameters programmed in the CHF
instruction being analyzed. If they are incorrect, the output instruction error is powered, and the rest
become turned off. If the parameters are correct, only the success output is powered.

Descriptions of the output of the functions:

- success - indicates that the call parameters are correct and that the function has been correctly
executed. See observation.

- error - isconnected if an error occursin the call parameters. See observation.

Observation: when both outputs (success and error) stay powered is because M input operands range
is the same of M output operands range (in parameters).

165

Chapter 5 Function Modules

F-COMPF.072 — Function for Multiple Comparisons

—CHF
enable — COMPF 072 |— success

OPER1 | OFERS | — error

OFERZ | OFPER4

Introduction

Thefunction F-COM PF.072 divides an operand into specified ranges, presenting output in binary
form, where the bit connected indicates the operand pertaining to the respective band.

Programming
Thecells of the CHF instruction used for the call are programmed in the following way:

* OPERL1 - Specifies the number of parameters passed to the function in OPER3. This operand
must be a memory constant with value 4 (%KM+00004).

* OPER2 - Should be an operand of type memory constant with the value 0 (%KM+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPERA4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

* OPERS - Contains the parameters passed to the function declared through a window visualized
in MasterTool when the CHF instruction is edited. The number of editable parametersis
specified in OPERL1, being 4 for this call:

e KM+XXXX - Number of operands %M XXX X to examine
e MXXXX - Initial input operand for comparison
e %MXXXX - Initial output operand for the indicator bits

e TMXXXX - Table which specifies up to 16 ranges of values to quality the
input (operands/c.f. format to follow)

Table Position Contents
0 Reserved
1 Reserved
2 Start range 0
3 End range O
4-31 <continue the range
definitions>
32 Start range 15
33 End Range 15

Table 4-11 Band definition

The table should have a minimum size of 4 position (1 range). To optimize the function’s execution
time, it is recommended that the table is defined with the exact size to count the definitions of the
necessary ranges.

+ OPER4 — Not used.

Operation
The beginning and end of each comparison range are specified as whole numbers.

166

Chapter 5 Function Modules

The operand is considered in the range if this condition is true:
(start of range) = % MXXXX < (end of band)

Each rangein the table %TMXXXX corresponds to a bit in the operand % M X XXX being that the O
bit of the output operand corresponds to the range O and so on successively. The bits correspond to
the ranges not defined are always 0. The ranges can be superimposed.

The number of operands to processis given by thefirst parameter (% KM +XXXX), being able to be
defined from 1 to 127.

Inputs and Outputs
Description of the function inputs:

» enable - when thisinput is powered the function is called, with the parameters programmed
being analyzed in the CHF instruction. If they are incorrect, the error output of theinstructionis
powered and the rest are turned off. If the parameters are correct only the output successis
powered

Description of the function output:

» success - indicates that the call parameters are correct and that the function has been correctly
executed.

e error - isconnected if an error occurs in the call parameters.

167

Chapter 5 Function Modules

F-AES.087 — Inputs and Outputs Immediate Update Function

CHF
enable AES na7 | SUCCeSS
DFER] JFERI |— parameters errors

OFERZ | OFER4 — error values/communication

Introduction

This instruction executes an immediate update on the image memory and on specified module
physical positions. It action is equal to the 1/O points sweeping made by the executive program on
each sweeping end, however with alimited number of positions.

If the CPU is a PO3242 or a PO3342 this function allows to update the PROFIBUS network devices
too.

Programming
The céells of the instruction CHF used for the call are programmed as follows:

* OPERL1 - Specifies the number of parameters that are passed to the function on OPERS. This
operand must be obligatorily a memory constant with value 2 (% KM +00002).

* OPER2 - It must be an operand of type constant memory with value 0 (% KM +00000).

* OPERS3 - It contains the parameters that are passed to the function, declared when the CHF
instruction are edited. The number of edited parametersis specified on OPER1, it is equal to 2 to
this F module:

o MXXXX, KMXXXX Specification of the start physical position on bus to be
updated. The existing module on the position here declared will have the operand
value updated correspondent to the outputs, on the case of the output module, or
theinputs will be read to the correspondent operand, on an input module. The value
of the physical positionisfrom 0 to 39.

PROFIBUS Network: the position must be from a PO4053 module. Case the
network is redundant, the position of just one of the modules is sufficient to the
network update.

o MXXXX, KMXXXX - MXXXX, KMXXXX - Specification of how many
positions on the bus will be updated, including the start position. For Example, if it
is specified the value 2, will be updated the position declared as start position, and
the next position. The value of this parameter must be from 1 to 10.

* OPER4 — Not used.

Inputs and Outputs
Description of the function inputs:

» enable- when thisinput is powered, the function is called, analyzing the programmed
parameters on CHF instruction. If it all correct, the function is executed and the positions are
updated. If thereis some incorrect parameter, the outputs are enabled pointing the error and it is
not updated.

Description of the function output:

» success- This output is enabled when the function is correctly executed and the bus positions
updated.

168

Chapter 5 Function Modules

» parameterserror: thisoutput is enabled when some operand not declared is passed as a
parameter. When this happens, no position is updated.

» valueserror: thisoutput is enabled when some of the parameters contain aninvalid value. This
happens if the value is out of the range allowed to this function, or if thereis no module declared
at C module to the position that must be updated.

If none of three outputs are powered, means that the function could not be executed because an
internal stop of the CPU. This can happen, for example, if afunction isin a E018 module, and if the
E018 is executed on the same instant that the C module is charging on CPU.

Execution Time
If it is used to update the PROFIBUS network the update time of the network should be considered
(see uses manual of PO4053 MU209903).

Redundancy
If the related module position is from a PO4053 of redundancy couple, call just onceto F-AES to use
the two PO4053 redundancy.

The use of the function F-AES.087 with the E/Sforcing at the same time will gener ate
variations on the physical E/S points. This situation should be avoided.

169

Chapter 5 Function Modules

F-ANDT.090, F-ORT.091 and F-XORT.092 — Function Logical
Operations between Table Operands

—CHF
enable — AMNDT 030 |—success

COFER1T | OPERE3 — scurce indexs invalid

GPEHE DPEH‘q _dﬁsmlaﬁon]IldEX
vahd

Introduction

Thefunction F-ANDT.090, F-ORT.091 and F-XORT.092 allow the carrying out of logical
operations AND/and), OR (or) or XOR (or exclusive), respectively, between simple operands (M or
D) and or tables (TM or TD). Up to 255 logic operations in one single function call It is necessary
that the three operands (supply, supply 2 and destination) are of the same type (memory or decimal).

Programming
The cells of the CHF instruction used to call the programs in the following way:

* OPERL1 - Specifies the number of parameters passed to the function i OPERS. This operand must
be a memory constant with value 3 (KM +00003).

* OPER2 - Should be an operand of type memory constant with value 0 (KM +00000). Determine
the number of parameters possible to be programmed in the editing window of OPERA4. As this
function does not need any parameter in OPER 4, the value of OPER is 0.

* OPERS - Contains the parameters passed to the function, declared through a window visualized
in AL-3830 when the CHF instruction is edited. The number of editable parametersis specified
in OPERL, being set at 3 for this module:

MXXXX, DXXXX, TMXXXX or TDXXXX — simple or table operand where the
value will be used to carry out the logic (operand source 1).

o MXXXX, DXXXX, TMXXXX or TDXXXX - simple or table operand where the
value will be used to carry out the logic (operand source 2).

o MXXXX, DXXXX, TMXXXX or TDXXXX - simple or table operand where the
result of the logic will be stored (destination operand).

o KMXXXX — number of simple operands or positions on the table where the logic
operation will be done.

+ OPER4 — Not used.

Inputs and Outputs
Description of the function input:

« enable - when thisinput is powered the function is called, the parameters programmed in the
CHF instruction being analyzed in the CHF instruction. If they areincorrect, the outputs of the
invalid index are enabled.

Description of the function output:
* success - indicates that the moving was carried out correctly.

170

Chapter 5

Function Modules

source index invalid - indicates that there was an error in the specification of the supply
operand:

» theoperandis not declared in the module C
» therearenot enough positions to carry out the logic

destination index invalid - indicates that there was an error in the specification of the
destination operand:

» theoperandis not declared in module C
» therearenot enough positions to carry out the logic

If the two outputs of theinvalid index are enabled simultaneously, some of the following errors
occurs:

the number of parameter programmed in OPER is different from three

the type of one the parameters in OPER3 is not valid

the parameters in OPERS3 is different one with other (memory and decimals)
the total number of positions to be transferred is more than 255

WARNING:
This function allows the denial of alarge number of operandsin a single scan. It should be used with
care so that the maximum time of the program cycleis not exceeded.

171

Chapter 5 Function Modules

F-STCP.044 — CPU Status Function

—CHF
enable — oTCp 044 |— sUCccess
OPER1 | OFPER3 |— error

OFERZ | DFER4 —

Introduction

The function F-STCP.044 returns the CPU statusin a M box operand or ina TM. This status
correspond to the same parameters that are answered on command 37 from ALNET]I protocol.

Programming
Theinstruction cells CHF used to call the function are programmed as following:

* OPERL1 - It specifies the number of parameters that are passed to the function on OPERS. This
operand must be a constant memory with a value equal to 1(KM+00001).

* OPER2 - Must be an constant memory operand with a value equal to O (KM +0000). This
operand defines the number of possible parameters to be programmed on OPER4 edit window.
As this function do not need any parameter on OPER4, the value of OPER2 is 0.

* OPERS- It contains the parameters that are passed to the function, declared on awindow in
MasterTool, AL-3830 or AL-3832 when theinstruction CHF is edited. The number of edited
parameters is specified on OPERL, fixed in 1 to this module;

TMXXXX or MXXXX: Table or abox of M operands where will be written the status that was
read from PLC. The table must contain 50 positions. In the case of M operands the function write on
the declared operand and on the next 49, and these must be declared on C module of the project.

+ OPER4 - Not used.

Inputs and Outputs
Description of the inputs:

* enable - when this input is powered the function is called, being analyzed the parameters
programmed on CHF instruction. If the number of parameters or it type are different of the
function needs or if exist a minimal number of declared operands after pointed on the function, it
will have a powering on error output. If these are correct, it scan the status parameters and copy
to the operands.

Description of the outputs:

* success - it is powered when the function was correctly installed.

e error - it is powered if there is an error on specification or on trying to access not declared
operands.

Description of the Operand Status
Below, the description of the operands and the index that it can be found in the function table. In the
case of M operand, the declared operand represent the 00 index.

Operand Identification Description
00 Identification of the PLC O0H - AL-3003
Model 01H - AL-3004
20H - AL-2000
21H - AL-2002
22H - QK2000

172

Chapter 5

Function Modules

23H - AL-2003
24H - AL-2004
40H - AL-600
41H - QK600
50H - QK800
51H - QK801
AOH - PL101
AlH - PL102
A2H - PL103
A3H - PL104
A4H - PL105
A5H - PL106
AG6H - PL107
BOH - GR310
B1H - GR316
B2H — GR330
B3H — GR350
B4H - GR351
B6H — GR370
B7H - GR371
COH - PO3042
C1H - PO3142
C2H - PO3242
C3H - PO3342
C6H - PO3045
C7H - PO3145
C8H - PO3245
C9H - PO3345

String of auxiliary identification of the PLC, it can take up
to 8 characters, on ASCII format

01 Character 0 of auxiliary
identification of the PLC
02 Character 1 of auxiliary
identification of the PLC
03 Character 2 of auxiliary
identification of the PLC
04 Character 3 of auxiliary
identification of the PLC
05 Character 4 of auxiliary
identification of the PLC
06 Character 5 of auxiliary
identification of the PLC
07 Character 6 of auxiliary
identification of the PLC
08 Character 7 of auxiliary
identification of the PLC
09 Executive version (high part)
10 Executive version (low part)

Format V.RC, where V is the number of the version, R is
the number of the issue and C is the number of the last
correction. On the high part the V is stored and on the low
pat R and C are stored on the nibbles 1 and O,
respectively.

173

Chapter 5

Function Modules

11

Operation Mode 1 of the PLC

FE D CUB A 5 8
[exe[prg [cic| tst|cop[for [cpt [sai |

exe: PLC on execution mode

prg: PLC on programming mode

cic: PLC on cycled mode

tst: PLC on mode test

cop: copying module from EPROM to RAM
for: exist relays forcing

cpt: compacting RAM

sai: digital outputs disabled

B 5 4 3 2 1 10

| [trc [apa| prt |
apg: erasing flash EPROM

prt: protection level of the PLC (0O — no protection - to 3 —
total protection)

trc: modules changing of E/S with the PLC powered

12

Message Code 1

13

Message Code 2

14

Message Code 3

15

Message Code 4

16

Immediate time cycle

In ms

17

Medium time cycle

In ms

18

Max time cycle

In ms

19

Min time cycle

In ms

20

Period EQ18

00H - 50ms

01H - 25ms

02H - 10ms

03H - 5ms

04H - 3,125ms
05H - 2,5ms
06H - 1,25ms
07H - 0,625ms
FFH - Sem E018

21

Reserved Operand

22

Maximum time of program
scanning

00 — 100ms
01 - 200ms
02 - 300ms
03 - 400ms
04 - 500ms
05 - 600ms
06 - 700ms
07 - 800ms

174

Chapter 5

Function Modules

23 RAM status of the applicative General information of the RAM status of the applicative
program program and the pointer to the RAM applicative program
bank existence:
FE D C B A 9 8
LI I [[[fer
cpt: RAM compacted (0) or not (1)
/i B 5 4 3 2 1 0
EHEAEEEAEEEEEIED
bits 7-0: exist banks
24 Free bytes on RAM
applicative program bank 0
25 Free bytes on RAM
applicative program bank 1
26 Free bytes on RAM
applicative program bank 2
27 Free bytes on RAM
applicative program bank 3
28 Free bytes on RAM
applicative program bank 4
29 Free bytes on RAM
applicative program bank 5
30 Free bytes on RAM
applicative program bank 6
31 Free bytes on RAM
applicative program bank 7
32 Status of the EPROM of the Pointer of the EPROM banks of the applicative programs
applicative program existence:
FEDGCEBA 9 B
[B18[E14B13EB12|E11E10[B9 | ES |
/i B 5 4 3 2 1 0
EHEAEEEAEEEEEIED
bits F-0: exist banks
33 Free bytes on EPROM
applicative program bank 0
34 Free bytes on EPROM
applicative program bank 1
35 Free bytes on EPROM
applicative program bank 2
36 Free bytes on EPROM
applicative program bank 3
37 Free bytes on EPROM
applicative program bank 4
38 Free bytes on EPROM
applicative program bank 5
39 Free bytes on EPROM
applicative program bank 6
40 Free bytes on EPROM
applicative program bank 7
41 Free bytes on EPROM

applicative program bank 8

175

Chapter 5

Function Modules

42 Free bytes on EPROM
applicative program bank 9
43 Free bytes on EPROM
applicative program bank 10
44 Free bytes on EPROM
applicative program bank 11
45 Free bytes on EPROM
applicative program bank 12
46 Free bytes on EPROM
applicative program bank 13
a7 Free bytes on EPROM
applicative program bank 14
48 Free bytes on EPROM
applicative program bank 15
49 Reserved Operand

176

Chapter 5 Function Modules

F-NEGT.093 — Function for the logic denial of Table Operands

—CHF
enakble — MEGT 093 — SUCCESS
OFERI OFERS |— source index imwalid
OFERZ OPER4 — destination index imvalid

Introduction

Thefunction F-NEGT.093 carries out the logic denial of simple (M or D) or table operands (TM or
TD). Up to 255 positions can be denied in one single function call. The result of the alteration can be
stored in this operand, substituting the original value, or in another operand, sinceit may be of the
same type as the first (memory or decimal).

Programming
The cells of theinstruction CHF used to call the function are programmed in the following way:

* OPERL1 - Specifies the number of parameters passed to the function in OPERS3. This operand
must be a memory constant with value 4 (KM +00004).

« *- OPER2 - Should be an operand of type memory constant with the value 0 (K M+00000). It
determines the number of parameters possible to be programmed in the editing window of
OPERA4. As this function does not need any parameter in OPER4, the value of OPER2 is 0.

« *_ OPERS3 - Contains the parameters passed to the function, declared through a window
visualized in AL-3830 when the CHF instruction is edited. The number of editable parametersis
specified in OPERL, being set at 3 for these modules:

o MXXXX, DXXXX, TMXXXX or TDXXXX — Simple operand or table operand
where the values will be denied (source operand).

o MXXXX, DXXXX, TMXXXX or TDXXXX — simple or table operand where the
denied values will be stored (destination operand).

o KMXXXX — Number of simple operands or positions on the table to be denied.
Should be less or equal to 255.

+ OPER4 - Not used.

Inputs and Outputs
Description of the function inputs:

» enable - whenthisinput is powered the function is called, the parameters programmed being
analyzed in the CHF instruction. If they are incorrect, the outputs of theinvalid index are
enabled.

Description of the function outputs:
* success - indicates that the moving was correctly carried out.

« sourceindex invalid - indicates that these was an error in the specification of the source
operand:

177

Chapter 5 Function Modules

e operand is not declared in module C
» therearenot enough positions to carry out the logic

» destination index invalid - indicates that there was an error in the specification of the
destination operand:

» theoperandis not declared in module C
» therearenot enough positions to carry out the logic

If the two outputs of theinvalid index are enabled simultaneously, some of the following errors
occur:

* thenumber of parameter programmed in OPERL1 is different from three
» thetype of one or more parameters in OPER3 is not valid

» thedestination type operand is different from the supply operand

» thetotal number of positions to betransferred is more than 255

WARNING:
These functions allow the execution of logic operations of a large number of operandsin asingle
scan. If should be used with care so that the maximum cycle time of the programis not exceeded.

178

Chapter 6 Glossary

6. Glossary

Glossary to Ponto Series

Address of the Field Networ k Head: it is the address of a node in the field network. It isadjusted in
thefield network head module base.

Base: component wherethe |O modules areinserted, CPUs, power supplies and remaining Ponto
Series modules.

Bus: set of 10 modules connected to a CPU or Fidd Network Head.

Bus Expander: module that connects one segment to the next

Bus Segment: part of abus. A local or remote bus that may divided into four segments.

Bus ter mination: component that must be connected to the last module in a bus.

Commercial Code: it isthe product code, formed by the letters PO and followed by four digits.
CPU: central processing unit. It is responsible for the application program execution.
Expansion cable: cablethat connects bus expander.

Field cabling: cables connecting the sensors, actuators and other process devices to the Ponto Series
IO modules.

Field network cable: cablethat connects the nodes in a field network, such as the Field Network
Interface and the Field Network Head.

Field Network | nter face: master modulefor the field networks, located in theloca bus and
performs the communication with the field network heads.

Field Network Head: slave module of afied network. It is responsible for the exchange of data
between the modules and the field network master.

L ocal Bus: set |O modules connected to a CPU.

M echanic Switch Code: two digits defined by mechanical switches, programmablein the base and
with objective of avoiding the connection of incompatible modules.

Rail: metallic element with normalized shape accordingly to the DIN50032 norm. It is also called
TS35rrail.

Remote Bus: se&t of IO modules connected to a Field Network Head.

Network Glossary

Backoff: timethat anodein a CSMA/CD network takes before transmitting data after a collision has
occurred.

Baud rate: ratethat the information bits are transmitted through a serial interface or communication
network (measured in Bits/second)

Bridge: equipment to connect two communication networks with the same protocol.
Broadcast: simultaneous communication to all the nodes in a communication network.

CSMA/CD. Type of access to the physical media based on data collisions. It is used for Ethernet
networks.

Communication network: set of equipment (nodes) interconnected by communication channels.

179

Chapter 6 Glossary

Deter ministic communication networ k: communication network where the transmission and
reception of information among the nodes is guaranteed to occur within a maximum established time
period.

EIA RS-485: industrial standard (physical level) for data communication.
Frame: information until transmitted in the network.

Gateway: equipment to connect two communication networks with different protocols. The AL
2400/S-C or QK 2400 gateways allows interconnection of ALNET | and ALNET Il networks.

M edia access: method used by all nodes in a network to synchronize data transmission and resolve
possible conflicts in simultaneous transmissions.

Master: equipment connected to a communication network originating all the command requests to
other network eguipment.

M aster -slave communication networ k: communication network where the data transfer are
initiated only by one node (the network master). The remaining network nodes (slaves) only reply
when requested.

Multicast: simultaneous communication with a group of nodes connected to a network.

Multi-master communication networ k: communication network where the data transfer are
initiated by any node connected to the data bus.

Node: any station in a network with the capacity to communicate using a established network.

Peer to peer: type of communication where two partners exchange data without relying on the
master.

Protocol: rules of procedures and formats that, under control signals, allow the establishment of data
transmission and error recovery among equipment.

Serial Channel/Canal: equipment interface that transfer data in the serial mode.

Slave: equipment connected to a communication network that only transmits upon the master
requests.

Sub networ k: segment of a communication network that connects a group of equipment (nodes)
with the goal of isolating the local datatraffic or utilizing different protocols or physical media.

Time-out: maximum preset time to a communication to take place. When exceeded then an error is
generated.

Token: it isamark that indicates who is the bus master in a moment.

General Glossary

Active CPU: in aredundant system is the CPU that is controlling the system — reading the inputs,
executing the application program and activating the outputs.

Adjustment bridge: Switch for selection of addresses and configuration. It is composed by pins on
the circuit board and one small removable connector used for a selection.

Algorithm: finite and well defined sequence of instructions with the goal to solve problems.

Altus Relay and Block L anguage: it is a set of rules, conventions and syntaxes utilized when
building a application program to runina PLC.

Application Program: it is the program uploaded into the PLC and has the instructions that define
how the machinery of process will work.

Arrestor: lightning protection device using inert gases.

Bus: electrical signal set logically grouped with the goal of transferring information and control
among several system elements.

180

Chapter 6 Glossary

Assembly language: microprocessor programming language, it is also knows as machine language.

Backup CPU: in aredundant system, it is the CPU supervising the active CPU. Thusit is not
controlling the system, but ready to take control when the main CPU fails.

Bit: information basic unit, it may beat 1 or O status.
Byte: information unit composed by eight bits.

Configuration Module (C Module): unique module in a remote application program that carries
several needed parameters for its operation, such as the operands quantity and disposition of 10
modules in the buses.

CPU: central processing unit. It controls the data flux, interprets and executes the program
instructions as well as monitors the system devices.

Default: pre defined valuefor avariable. It is used when there is no definition.

Diagnostic: procedures to detect and isolate failures. Also it relates to the data set used for such
tasks, and also serves for analysis and correction or problems.

Download: load of program of module configuration.
E2PROM: non volatile memory that may be erased by electricity.
Encoder : position measurement transducer.

EPROM (Erasable Programmable Read Only Memory): memory for read only, erasable and
programmable. The memory doesn't loose its contents upon shutting its power off.

Execution Modules (E M odules): modules that have the application program. It may be one of the
three types: EOOO, EOO1 and EO18. The EOOO module is executed just once upon system powering or
when setting programming into execution mode. The EOO1 module has the main program that is
executed cyclically, while the EO18 module is activated by the time interruption.

Executive Program: it is the operating system of a PLC. It control the PLC basic functions and
executes the application programs.

Flash EPROM: non volatile memory that may be erased by el ectricity.

Function Module (F Module): PLC module called from the main module (M module) or from
another module or procedure. It passes parameters and return values, and serves as a sub-routine.

Hardkey: connector normally attached to the parallel port of a microcomputer with the goal to
protect illegal execution of a software.

Hardware: physical equipment used to process data where normally programs (software) are
executed.

Hot swap: procedure of replacing modules in a system without shutting it down. It is normal
procedure for 10 modules.

|EC Pub. 144 (1963): norm for protection of accidental access to equipment, and sealing for water,
dust and other foreign objects to the equipment.

|EC 1131: generic norm for operation and utilization of programmable controllers.

IEC-536-1976: norm for electrical shock protection

|EC-801-4: norm for tests of immunity against interference by pulses train

IEEE C37.90.1 (SWC- Surge Withstand Capability): norm for oscillatory wave noises protection.

Inter face: devicethat adapts eectrically or logically the transferring of signals between two
equipment.

Interruption: priority event that temporarily halts the execution of a program. The interruptions are
divided into two generic types: hardware and software. The former is caused by a signal coming from
a periferic, while the later is caused within a program.

181

Chapter 6 Glossary

IO (input/output): input or output devices in a system. In the PLCs they are typically the digital or
analog modules that monitor or actuate the devices controlled by the system.

IO Module: module belonging to the 10 subsystem.
IO Subsystem: set of digital or analog IO modules of a PLC.
Kbytes: unit that assesses memory size. It represents 1024 bytes.

LED (Light Emitting Diode): type of semiconductor diode that emits light when energized. It's
used for visual indication.

L ogic: graphic matrix where are inserted the relay diagram language instructions that are part of an
application program. A set of sequentially organized logics makes up a program module.

Menu: set of available options for a program, they may be selected by the user in order to activate or
execute a specific task.

Module (hardwar€): basic element of a system and has very specific functionality. It's normally
connected to the system by connectors and may be easily replaced.

Module (software): part of a program capable of performing a specific task. It may be executed
independently or in conjunction of other modules through the passing of information and parameters.

Module address. address used by the CPU in order to access a specific 10 module.
Nibble: information unit composed by four bits.

Non-operant CPU: CPU that is not in the active status (controlling the system) neither on the
backup status (supervising the active CPU), thus not ready to control the system.

Octet: set of eight bits numbered from0to 7.

Operands: dements over which theinstructions work. They may represent constants, variables or
set of variables.

PC: Programmable Controller

Procedure Module (P Module): PLC module called from the main module (M module) or from
another module or procedure and it does not pass parameters.

Programmable Controller: equipment that controls aindustrial system based on a application
program written in relay and blocks language. It is composed by a CPU, power supply and a structure
of 10s.

Programming language: it is a set of rules, conventions and syntaxes utilized when building a
program.

RAM (Random Access Memory): memory where all the addresses may be accessed directly and in

arandom order at the same speed. It is volatile, in other words, its content may be erased when the
energy is shut down, unless there is a battery to keep its contents.

Redundant CPU: it isthe other CPU in aredundant system. For instance, the redundant CPU of
CPU2 is CPU1 and vice versa.

Redundant system: system that has backup or double elements to execute specific tasks. Such
system may suffer failures without stopping the execution of its tasks.

Ripple: undulation present in continuous voltages.
Scanning cycle: a complex execution of the PLC application program.

Slot: deviceto plug in integrated circuits or other components, thus facilitating their substitution and
mai ntenance.

Softwar e computer programs, procedures and rules related to the operation of a data processing
system.

182

Chapter 6 Glossary

System Setup: procedure when the control systemisfinally tested. It consists of a through test when
all the programs from remote stations and CPUs are put to work together.

Supervision Station: equipment connected to a PL C network with the goal of monitoring and
controlling the process variables.

Tag: name associated to a operand or to alogic that identifies its content.

Toggle: element with two stable states that are switchable at each activation.
Upload: program reading or module configuration.

Varistor: protection device against voltage spikes.

Word: information unit composed by sixteen bits.

Watchdog timer: eectronic circuit that checks the equipment operation integrity.

Acronyms
BAT - battery
BT — battery test

CPU — central processing unit

DP: Decentralized Periphery

EEPROM - Electric Erasable Programmable Read Only Memory
EMI: Electromagnetic Interference.

EPROM: Erasable Programmable Read Only Memory

ER - eror

ESD: Electrostatic Discharge.

EX - execution

E2PROM:: Electric Erasable Programmable Read Only Memory
IO —inputs and outputs

FC: Forcing

Flash EPROM: Flash Erase Programmable Read Only Memory
FMS: Fieldbus Message System

INTERF: Interface

ISOL: Isolation

L ED —ight emitting diode

Max: maximum

Min: minimum

Obs: notes

PAs — adjustment jumps

PA: Process Automation

PG - programming

PID — proportional, integrated and derivate control

RAM - random access memory

ref: reference

183

Chapter 6 Glossary

RX — serial receiving

SELEC: sdectable

TC —Technical Characteristics
TX —serial transmitting

UTIL: utilization

WD - watchdog timer

184

	Preface
	Description of this Manual
	Documents of Ponto Series
	Terminology
	Conventions Used
	Technical Support
	Issues of this manual

	Introduction
	Programming Language

	Diagrams of Relays Language
	Elements of Programming
	Ponto Series Memory Organization
	Logics
	Operands
	Identifying an Operand through Address
	Identification of an Operand through Tag
	Operands Used on MasterTool
	Identification of Simple Operands
	Identification of Constants Operands
	Identification of table Operands
	Operands %E – Input Relays
	Operands %S – Output Relays
	Operands %A – Auxiliary Relays
	Operands %M - Memories
	Operands %D - Decimals
	Operands %F – Reals
	Operands %I - Integer
	Operands %KM, %KI, %KD e %KF - Constants
	Operands %TM, %TI, %TD e %TF - Tables
	Indirect Access
	Declaration of Operands
	Retentive Operands

	Instructions
	Restrictions Using Instructions on the PLCs
	Graphic Representation of the Instructions
	Description of Syntax Instruction
	Restrictions in Positioning the Instructions

	Programming Project
	Structure of a Programming Project
	Operating Status of the PLC
	Execution of the Programming Project
	Elaboration of the Programming Project
	Depuration of Programming Projects
	Program Execution Cycle Times
	Protection Levels of the PLC
	Interlocking of Commands in the PLC

	Instructions
	List of Instructions
	Conventions Used
	Instructions of the Relays Group
	Contacts
	Coils
	SLT – Jump Coil
	PLS – Pulse Relay
	RM, FRM – Master Relay, End of Master Relay
	Instructions of Moving Group
	MOV – Moving Simple Operands
	MOP – Moving of parts (Subdivisions) of Operands
	MOB – Moving of Blocks of Operands
	MOT – Moving of Tables
	CAB – Load Block
	Arithmetic group Instructions
	SOM - Sum
	SUB - Subtraction
	MUL - Multiplication
	DIV - Division
	AND – And binary between operands
	OR – Or binary between operands
	XOR – Or Exclusive between operands
	CAR – Load Operands
	Instructions of Comparison of Operands – Equals, More than and Less than
	Instructions of counters group
	CON – Simple Counter
	COB – Bidirectional Counter
	TEE – Timer to turn on
	TED – Timer to turn off
	Instructions of the Conversion Group
	B/D - Conversion Binary˚Decimal
	D/B - Conversion Decimal˚Binary
	Instructions of the General Group
	LDI – Connect/Disconnect indexed
	TEI – Test of Indexed Status
	SEQ - Sequencer
	CHP – Call the Procedure Module
	CHF – Call Function Module
	ECH – Write of Operands on Another PLC for Ethernet
	LTH – Reading of Operands from Another PLC for Ethernet
	LAH – Free Updated Images Operands for Ethernet
	Instructions of the Connections Group
	LGH – Horizontal Connection
	LGN – Denied Connection
	LGV – Vertical Connection

	Function Modules
	F˚PID.033 – PID Control Function
	Introduction
	Programming

	F˚RAIZN.034 – Square Root Function
	Introduction
	Programming

	F˚ARQ2.035 to F˚ARQ31.042 – Functions Data File
	Introduction
	Programming

	F˚MOBT.043 – Function for Moving Blocks from Table Operands
	Introduction
	Programming

	F˚RELG.048 – Function to Access the Real Time Clock
	Introduction
	Programming

	F-PID16.056 – F Module for PID Control
	Introduction
	Programming
	Operands
	Inputs and Outputs
	Functioning Characteristics
	Unsaturation of the Integral Action
	Manual Mode
	Direct and Reverse Control
	Sampling Interval
	Execution Time
	Table Position Parameters Description
	Description of %A Operand Control
	Application Notes
	PID Controller Adjustments Suggestions
	Determination of the Constants of the Controller Through the Period and Critical Gain
	Determination of the Constants of the Controller Through the Constants of the Process
	Gains X Scales
	Example of Application
	Uses of F-PID16.056
	Comparison with F-PID.033

	F-CTRL.059 – F Module for Advanced Control
	Introduction
	Programming

	F-NORM.071 – Function to Normalization
	Introduction
	Programming

	F-COMPF.072 – Function for Multiple Comparisons
	Introduction
	Programming

	F-AES.087 – Inputs and Outputs Immediate Update Function
	Introduction
	Programming

	F-ANDT.090, F-ORT.091 and F-XORT.092 – Function Logical Operations between Table Operands
	Introduction
	Programming

	F-STCP.044 – CPU Status Function
	Introduction
	Programming

	F-NEGT.093 – Function for the logic denial of Table Operands
	Introduction
	Programming

	Glossary
	Glossary to Ponto Series
	Network Glossary
	General Glossary
	Acronyms

