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Introduction 
 
 This document describes the Cicero Word Generator project, a collection 
of software applications for controlling atomic physics experiments. The project 
was undertaken at the MIT Center for Ultracold Atoms, beginning in 2007.  
 The purposes of this document are: 

• To describe the architecture of the software, and the fundamentals of 
how it operates. 

• To instruct users in configuring and operating the software. 
• To provide details on the inner workings of the software, of interest to 

those who would add features or modify the software. 
 
When text appears in Courier, this indicates that the text is the name of an 
object or function as it appears in the software source code. When text appears 
in Boldface, this indicates that the text refers to a field or text label in the 
software’s user interface, or to a literal string such as a file name. 
 
 
License and Warranty Information 
 
The following copyright information applies to all the applications in the Cicero 
Word Generator suite: 
 
Copyright (C) 2008, Aviv Keshet 
 
This program is free software: you can redistribute it and/or modify it 
under the terms of the GNU General Public License as published by the 
Free Software Foundation, either version 3 of the License, or (at your 
option) any later version. 
 
This program is distributed in the hope that it will be useful, but 
WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
General Public License for more details. 
 
For the full text of the of the GNU General Public License, see 
<http://www.gnu.org/licenses/>. 
 
 
This Cicero Word Generator suite makes use of the .Math library to parse and 
evaluate user-entered equations. The following copyright notice applies to the 
.Math library: 
 
 
Copyright (c) 2001-2004, Stephen Hebert 
All rights reserved. 
   
Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are 
met: 
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Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimer.  
 
Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution.  
 
Neither the name of the .Math, nor the names of its contributors may be 
used to endorse or promote products derived from this software without 
specific prior written permission.  
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 
 
 
Hardware and software support and requirements 
 

• Cicero is designed primarily to drive National Instruments output 
hardware. It should be compatible with any output hardware which uses 
the NIDaqMx driver library. It has been tested with the following output 
cards: 

o Analog: PCI-6713, PXI-6713 
o Digital: PXI-6533, PXI-6434, PCI-6533 

• The NIDaqMx library does NOT RUN on Windows Vista. Thus, the 
hardware layer of Cicero (ie Atticus, as explained below) requires 
Windows XP or earlier, with XP being the recommended choice. In 
principle, the UI layer of Cicero may run on Vista, but this is not tested. 
Atticus is known to run on Windows 2000, and Cicero is known not to run 
on Windows 2000. 

• The hardware layer can consume substantial amounts of memory for 
generation of output buffers. It is thus recommended to have 4GB of 
memory on computers with output cards. 

• For the software to run, the .NET Framework 2.0 must be installed. This is 
not installed by default with new Windows XP installations, but can be 
installed via Windows Update. 

• It is recommended to install the National Instruments Measurement Studio 
package. This contains a full suite of drivers for all National Instruments 
devices, as well as the National Instruments Measurement & Automation 
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Explorer (aka MAX) which is useful in getting information about installed 
devices. 

 
Installation Instructions 
 
 Once the National Instruments drivers and .NET Framework are installed, 
all of the applications in this collection are standalone programs, that do not 
require running an install program. The software is generally distributed as raw 
source code + compiled binaries. To install, for example, the Cicero client, go to 
[BaseDirectory]\Cicero\WordGenerator\bin\Release\ and copy all the contents of 
this directory to a new directory on your computer where you would like to store 
the application. The hardware server program installation procedure is similar, 
residing in Cicero\AtticusServer\... 
 To update your installation to reflect a new version of the software, simply 
copy over the contents of the new version’s directory over the contents of the 
directory on your computer. However, be sure not to completely erase your old 
directory, since this directory contains the configuration settings files that you 
have made when configuring the software. Only overwrite the contents of the 
directory, not the directory itself. 
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What is Cicero? 
 
 Cicero was built as a replacement for “Word Generator II” (or WG2), 
written by Chris Kuklewicz around 1999. WG2 is capable of designing a 
sequence to be run on a fixed number of National Instruments digital and analog 
output cards. The user interface, fairly intuitively, allows the user to set the digital 
output values at discrete time slices of settable duration (called Words in that 
program). Analog and GPIB-controlled microwave ramps can be started at the 
beginning of these Words (by starting a Group).  

While this powerful interface allowed for fairly straightforward design of 
very complex control sequences, there were limitations to WG2. The principle 
limitations were: 

• Unmaintained code, difficult or impossible to upgrade with new 
features. 

• Fixed hard-coded hardware configuration, limiting the number and type 
of channels that could be used. 

• Incompatibility with newer National Instruments output hardware. 
• No support for “batch mode” runs, in which parameters are scanned 

through a number of values. 
 The groundwork for Cicero was laid by Widagdo Setiawan, with the 
XGenerator project. Unfortunately, XGenerator was not finished by the time of 
Widagdo’s graduation, and it was determined that a re-write would be more 
efficient than a continuation of the project. Much of the architecture of Cicero was 
inspired by the architecture of XGenerator, and Cicero would certainly have been 
far inferior if not for the lessons of XGenerator. 
 The user interface for sequence design in Cicero is based on the same 
concepts as that of WG2. A number of UI features have been added, most 
prominently the ability to make any numerical parameter of the sequence into a 
scannable variable. Further changes will be elaborated upon below. 
 
 
How it Works 
 
 There are two main applications which are used in designing and running 
experiment control sequences: 
 

• Cicero: the user interface (“client”) for editing sequences.  
• Atticus: the back-end (“server”) software which translates the 

sequences to output buffers, and passes these output buffers to the 
output hardware. 

 
 In addition, an application named Elgin allows for browsing the run logs 
generated by Cicero every time a sequence is run, and assists in data analysis. 
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 Cicero and Atticus communicate with each other via .NET Remoting, a 
software library which seamlessly allows applications running on separate 
computers to share data. In fact, one Cicero application can simultaneously 
communicate with several Atticus servers, allowing multiple computers to have 
their output hardware controlled by one user interface. The rationale behind this 
client/server model is precisely that it allows for multiple output hardware 
computers. This enables the control system to scale to (in principle) arbitrarily 
high numbers of outputs without being limited by the resources of a single 
computer. 
 
 It is instructive to expand further on the roles of the two pieces of software. 
Cicero is in essence an editor, which edits two types of objects: 
 

• SettingsData: this object stores all of the data which, while it should 
be editable from within the user interface, will not vary from sequence 
to sequence. Examples are the names and descriptions of all of the 
channels, the locations of the servers to connect to, and the mappings 
from channels (LogicalChannel) to their hardware address 
(HardwareChannel). 

• SequenceData: this objects stores all of the sequence-specific data 
not stored in the settings object described above. This includes the 
values of all of the digital channels during each of the TimeSteps, all 
of the AnalogGroups used in the sequence and the Waveforms that 
each of these uses, the names and values of all of the Variables 
used in the sequence, etc. 

 
 While it should not be necessary to do so under normal operation, within 
Cicero it is possible to directly browse and edit these objects hierarchically. This 
can be accomplished by selecting the Advanced -> Sequence Explorer or 
Advanced -> Settings Explorer menu items within Cicero. Of course, using the 
normal user interface is a much more natural way to accomplish most sequence 
and settings editing. 
 At any time, it is possible to load or save a sequence or settings object. 
This functionality is accessed through File menu. In addition, this menu can be 
used to save a sequence or settings object as the default startup object, which 
will cause it to be automatically loaded whenever Cicero is started. This is a 
natural course of action, especially for the settings object which is unlikely to 
require frequent changes. 
 The other main role of Cicero is to communicate with the various Atticus 
servers in order to execute a run, or to fetch a collection of available 
HardwareChannels. 
 
 
 The user interface for Atticus is fairly bare by comparison, allowing the 
user to configure all of the hardware parameters (to be explained in much greater 
detail below). These settings are all stored in a ServerSettings object which 
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is saved to the file AtticusServerSettings.set in the same directory as the 
Atticus executable. Atticus detects which HardwareChannels are available on 
the computer it is running on, and allows the user to browse them and exclude 
specific channels if necessary (circumstances where this is recommended will be 
described later). 
 The main role of Atticus is to listen for messages from Cicero, and to turn 
sequence and settings data into output buffers and put these output buffers to 
use. To initiate each run of the experiment, Cicero sends the following series of 
messages to Atticus: 

1. A SettingsData object for the current run. 
2. A SequenceData object for the current run. 
3. A generateBuffers command, which causes Atticus to turn the small 

sequence data object into a full-size output buffer for all of the channels 
that reside on the given server. Depending on the size of the buffer, this 
step can be time consuming, on the order of several seconds. 

4. An armTasks command, which instructs Atticus to prepare any hardware-
triggered or externally-clocked buffers to be triggered. (the details of 
triggering and clocking will be explained below). 

5. A generateTrigger command, which actually begins the run. 
 
 Note that if multiple Atticus servers are attached to a single Cicero client, 
then each server will receive each message at nearly the same time, and none of 
the servers will receive the next message until each of the servers has finished 
handling the previous one. This ensures the possibility of synchronizing outputs 
from multiple computers. 
 At the end of the run, Atticus receives a runSuccess query, so that 
Cicero can determine whether the run executed successfully or not. 
 
Tasks 
 
 This section will give an overview of the types of outputs supported by 
Atticus, and the relevant features of these outputs to keep in mind when 
configuring the system. 
 The SequenceData object that is edited in Cicero and passed over the 
network to Atticus is a high-level description of the sequence to be run. The 
sequence is described in terms of durations of words, values of ramps, and other 
user-editable values. However, the data format for the output hardware is a low-
level description of the sequence, just a buffer or an array of values to be output 
at particular times. Such a buffer, along with the hardware-specific configuration 
settings for that buffer, is called a Task. 
 There are two classes of Task – Software Timed and Hardware Timed. 
To run a software timed task, a computer’s CPU runs a thread which polls the 
CPU’s clock at regular intervals. Whenever the CPU determines that it is time to 
output the next command or data point, it does so. However, this form of timing is 
nondeterministic. In other words, the exact time when output will occur cannot be 
controlled to better than a few milliseconds, because of variations in CPU load 
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and CPU clock inaccuracies. Thus, Software Timed tasks are not suitable for use 
on outputs which require fast and tight synchronization with other outputs. 
 Hardware Timed tasks, on the other hand, are deterministic. A buffer of 
outputs or commands is loaded to the onboard memory of an output card. The 
card also has a SampleClock signal input. Every time an edge is received on 
the SampleClock signal, the card immediately (~ns) outputs the next value of its 
buffer. By sharing a sample clock between several output cards, it is thus 
possible to synchronize them deterministically. 
 In practice, all of the analog and digital outputs from Atticus are provided 
by National Instruments output cards, which support sophisticated hardware 
timing. On the other hand, serial and GPIB devices are all run with software 
timing. 
 
Hardware Timing features of NI output cards 
 
 National Instruments cards offer a fair bit of flexibility in configuring their 
timing (more flexibility than we need). This section will discuss the basics of the 
timing features supported by Cicero, and their potential uses. 
 As mentioned above, NI cards make use of an output buffer and a sample 
clock to generate their outputs. Each time an edge is received on the sample 
clock, the card goes to the next sample in its buffer. Cards are capable of 
synthesizing their own sample clock at a wide range of fixed frequencies, by 
dividing down from an onboard master clock (usually running at 10MHz). 
 NI cards on a single computer share a bus for communicating with other 
cards, and sharing timing signals. With PCI cards, this is knows as the rtsi bus 
(channels rtsi0 to rtsi7). With PXI cards, it is the PXI_Trig bus (PXI_Trig0 to 
PXI_Trig7). Most of the timing signals that a card uses can either be routed to, or 
routed from, one of the channels of this shared bus. In addition, each card will 
have some number of PFI channels which allow routing of external signals 
(through the same cable that connects your card to the outside world) into or out 
of this timing bus. 
 There are a number of ways to synchronize several cards. Cards on the 
same PXI or rtsi bus can share a sample clock over the bus. Or, they can share a 
master clock and a start trigger signal, and each generate their sample clock 
independently (the advantage of this method being that it allows you to run 
different cards at different clock rates). If cards are not on the same bus (for 
instance, cards in separate computers), then a card on the “sending” end can 
route its sample clock to a PFI channel, this can be wired by a coax cable to a 
PFI channel on the “receiving” card, and the receiving end PFI channel can be 
routed to the channel’s sample clock. 
 
Variable Timebase clocks 
 
 The methods discussed above all involve synchronizing a set of output 
cards through the use of one or a few fixed frequency clocks. However, this 
method has one major disadvantage. The disadvantage comes from the wide 
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separation of timescales involved in a typical atomic physics experimental 
sequence. 
 In a typical BEC experimental sequence, for instance, you may want to 
have several seconds of MOT loading time or evaporation time during which 
none of the digital or analog channels have changing values. But then, you also 
want an imaging pulse during which you change a number of outputs in say 
50us. Thus, if running your experiment with a fixed frequency clock synchronizing 
all of the output cards, you have no choice but to clock all the cards at 50us 
throughout the whole sequence, even during the long stretches of time when 
nothing is changing. As a result, you must generate long redundant buffers for 
these long operations, just so that your short operations will be fast enough. This 
increases the buffer generation time, and decreases the best time resolution you 
can achieve. If you were to attempt to go to ~1us time resolution, these 
requirements quickly become too much to bare. 
 An alternative method is to synchronize all the cards with a variable 
frequency clock (known throughout this program as a variable timebase), which 
only generates clock pulses when the card outputs actually need to change. This 
provides a great saving in buffer memory usage, generation time, and a large 
improvement in achievable time resolution. Variable Timebase features are 
implemented in Atticus. Configuration details will be discussed below, but the 
concepts will be explained here.  
 To use this feature, one digital output is specified as the variable timebase 
output channel. This channel is routed to the PFI channels of at least one card 
on each computer (or each RTSI / PXI bus) in use. The cards are configured to 
use this variable timebase as their sample clock. 
 Before the server generates buffers for the output channels, it calculates 
the behavior of the variable frequency clock, based on when output channel 
need to be changing. This list of VariableTimebaseSegments is then used 
when calculating the output buffers, and is used to synthesize a variable 
timebase clock which is output on the specified variable timebase output 
channel. 
 It is worthwhile to note that whenever the value of any channel changes, 
there is a variable timebase clock pulse for all of the cards. If analog groups are 
running, then while they are running the clock rate comes from the minimum 
time resolution of the running analog groups. Thus, when using a variable 
timebase it is somewhat important to keep the underlying timing mechanism in 
mind when designing an experimental sequence. When not necessary, do not 
create extremely long-duration analog groups with a high clock frequency, as 
this effectively invalidates the advantages of using a variable timebase. 
 Finally, there are some hardware considerations when using a variable 
timebase. The synthesized variable timebase clock is itself a Task, which must 
be clocked with a frequency that is twice as high as the highest variable 
timebase output frequency. While saving on generating large buffers for all the 
other channels, using a variable timebase does require one large buffer to be 
generated (the buffer for the synthesized clock). The NI 6533 digital output card 
has a very small on-board buffer of just 16 samples (relying on frequent 
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refreshes of the on-board buffer from system memory). Thus, this card is 
unsuitable for generating the variable timebase clock. The NI 6534 on the other 
hand has a sizable on-board buffer, and is quite suitable. For best performance, 
the variable timebase output should be the first output channel on the card, and 
the next 15 outputs should not be used. This means sacrificing half of the 
channels of the card. The reason behind this is that each half of the card can be 
clocked independently, but all the channels within one half must NOT be clocked 
independently. If you want to use the other 15 channels on the same half of the 
card as the variable timebase output, then the increased memory required for 
this limits somewhat the maximum length buffers you can generate. 
 This variable timebase scheme has been tested as able to run ~60s 
sequences with 1us time resolution, on a computer with 4GB of memory. Longer 
sequences may require a reduction in time resolution in order not to run out of 
memory. 
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Configuring Atticus 
 
This chapter will give a step-by-step guide to configuring a new installation of 
Atticus. 
 

1. Start Atticus. 
2. Select a Server Name, and enter it into the appropriate text box. The 

server name will be incorporated into the names of the 
HardwareChannels exported by the server. 

3. Familiarize yourself with the installed output hardware. This can be done 
by running the National Instruments software “Measurement and 
Automation Explorer” or MAX. This software is available as part of the 
National Instruments Measurement Studio software package, or with the 
drivers of your output hardware.  

4. Discover your hardware-timed channels. 
a. In the Hardware Settings section of the Atticus window, you 

should see a box containing a list of the detected output devices 
(Dev1, Dev2, etc.). Note: It is possible within MAX to rename these 
devices. However, renaming them is not recommended; Atticus 
relies on the NI output hardware to have names that begin with 
Dev.  

b. Select a device to see its configuration settings appear in the 
property editor box to the right of the device list. If no devices 
appear in the list, press the Refresh Hardware button. 

c. Under the heading Global, examine the value under Device 
Description. For National Instruments output cards, this will give 
you the part number of the output card, so that you can identify 
which card corresponds to which device number. (This can also be 
done with MAX, as described above). 

d. Set DeviceEnabled to true, if you wish to use this card. 
e. If this card has analog channels that you wish to use, set 

AnalogChannelsEnabled to True under the Analog heading. 
Similarly for digital channels. Most cards tested only support either 
analog OR digital output, not both simultaneously. If you attempt to 
use both types of channels and this is not supported by the card, 
you will receive an exception to this effect if you try to run a 
sequence that uses both types of channels on this card. 

f. Detect the card’s channels, by pressing the Refresh Hardware 
button. The list of channels towards the bottom of the Hardware 
Settings section should now contain the channels available on this 
card. 

g. Some cards have channels which are not actually useful. For 
instance, the digital output card PXI-6753 has 4 8-bit ports of 
channels which support hardware timing, but also an additional 4-
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bit port of channels which only support software timing, and are 
thus basically useless for our applications. Thus, to ensure that 
these channels do not get used by accident, you can select these 
useless channels from the list, and click the Exclude Channel(s) 
button to remove them from the list of exported channels. To 
recover these channels in the future, if necessary, you can edit the 
Excluded Channels list under the Hardware heading of the 
Server Settings property box. 

5. Configure hardware timing / synchronization 
a. As discussed above, the easiest way to synchronize various tasks 

is to have them share a sample clock. Each NI card can either 
produce a sample clock by dividing down a higher frequency 
“master clock”, or get its sample clock from another source. 
Multiple cards with different sample clock rates can even be 
synchronized, by having each card divide down its own sample 
clock, but all from a shared “master clock”. This document will 
explain how to set up timing and synchronization for either a 
shared sample clock, or for a shared variable timebase. 

b. Shared Sample Clock. 
1. Chose one of the cards on one of the computers to be the 

master card (say Dev1). This card will be the source of the 
sample clock. We will use a 50000 Hz (50 kHz) clock rate 
in this example. 

2. Edit the device settings for Dev1 to reflect the following:  
Setting Value 
MasterTimebaseSource OnBoardClock 
MySampleClockSource DerivedFromMaster
SampleClockRate 50000 
UsingVariabletimebase False 
SoftTriggerLast True 
StartTriggerType SoftwareTrigger 
3. Route the sample clock signal to the timing bus. If you 

have Measurement & Automation Explorer installed (aka 
MAX, by National Instruments) you can browse the 
possible connections available for this device. For 
instance, with a PXI 6713 analog output card as Dev1, we 
would connect /Dev1/ao/SampleClock to 
/Dev1/ao/PXI_Trig0 . For PCI cards, or for other types of 
cards, consult MAX to see the corresponding sample clock 
source port, and available rtsi timing ports. To route the 
signal, edit the Connections settings in the Server 
Settings property browser. Click Add to add a connection. 
Set the SourceTerminal to /Dev1/ao/SampleClock and 
the DestinationTerminal to /Dev1/PXI_Trig0 . Now the 
sample clock timing signal is being exported from this 
device to shared timing port PXI_Trig0. 
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4. If you are using additional computers, or additional cards 
which are not on the same timing bus as this master card, 
then route /Dev1/ao/SampleClock to /Dev1/PFI0 , run a 
wire or coaxial cable from this card’s PFI0 channel to the 
PFI0 channel on a card on the other computer, and on the 
destination computer route /DevX/PFI0 to 
/DevX/PXI_Trig0 ( where X is the device number of the 
card on the destination computer, and assuming that the 
destination card is using a PXI bus. If rtsi, make the 
appropriate substitutions). Note: if the length of this cable 
running the timing signal is greater than a few feet, it may 
be advisable to add a 50 ohm terminator to the receiving 
end of the timing signal. There is a known instance of a 
long cable leading to reflections / distortion of the timing 
signal, causing intermittent timing glitches.  

5. For each of the remaining cards, use the following device 
settings: 

Setting Value 
MasterTimebaseSource  
MySampleClockSource External 
SampleClockExternalSource PXI_Trig0 or 

rtsi0 as 
appropriate 

SampleClockRate 50000 
UsingVariabletimebase False 
SoftTriggerLast False 
StartTriggerType SoftwareTrigger

c. Variable Timebase 
1. Read the above instructions for the basics of routing 

signals.  
2. The variable timebase output channel should be a channel 

on the large-buffer NI digital output card (6534). For 
convenience, we use the first channel of this card, and 
assume that this card is Dev1 on a PXI timing bus. We will 
use a fundamental clock speed of 1MHz. This means that 
sequences running with this variable timebase will have 
1us time resolution (but with a minimum time between 
clock edges of 2us). 

3. Under Server Settings, set 
VariableTimebaseOutputChannel to /Dev1/port0/line0 . 
This specifies that the first channel of Dev1 will be used as 
the variable timebase output. 

4. Set VariableTimebaseMasterFrequency to 1000000. 
5. Exclude /Dev1/port0/line0 from the list of exported 

channels (see section on discovering channels for 
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instructions). For best performance, consider excluding all 
of the channels on port0 and port1. 

6. Run a wire or coaxial cable from the /Dev1/port0/line0 
output to the PFI0 input of one card on each of the 
computers / timing busses in use. On these “receiving 
cards”, route their PFI0 channel to rtsi0 or PXI_Trig0 as 
appropriate. 

7. For each device including the one generating the variable 
timebase clock, set the following device settings: 

Setting Value 
MasterTimebaseSource  
MySampleClockSource External 
SampleClockExternalSource PXI_Trig0 or 

rtsi0 as 
appropriate 

SampleClockRate 1000000 
UsingVariabletimebase True 
SoftTriggerLast False 
StartTriggerType SoftwareTrigger

6. Tweaking buffer performance 
a. Most of the details of the communication between the computer 

and the output cards and handled by the NI drivers. This includes 
the re-filling of the cards’ onboard buffers when necessary. Usually 
this works fine, however some of the cards are prone to buffer 
underruns if clocked at above ~50kHz (the card runs out of data in 
its on board buffer, and doesn’t get it re-filled before the next 
sample clock). These underruns are reported as such by Atticus. 
Some of the cards (in my experience, the Analog output cards) 
support giving the drivers some hints or tweaks about what data 
transfer mechanism to use, and with these tweaks applied the 
cards can perform at higher rates. Other cards don’t support these 
tweaks, and the drivers will report an error if you attempt to apply 
them. 

b. The tweaks are applied by editing the device settings for the card 
you want to tweak. In my experience, the best tweaks are as 
follows. For each analog output card, set 
UseCustomAnalogTransferSettings to True, 
AnalogDataTransferMechanism to Interrupts, and 
AnalogDataTransferCondition to 
OnBoardMemoryHalfFullOrLess. This effectively makes the 
analog cards a little more aggressive in refilling their buffers, 
reducing the likelihood of buffer underruns. 

7. Configure Software Timed Devices 
a. GPIB Devices 

1. Whenever Atticus refreshes its hardware, it searches for 
connected GPIB devices on any of its GPIB ports. If a 
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device is detected, the channel number for the GPIB 
device appears in the Devices list. The device description 
is set to the string returned by the device in response to a 
“*IDN?\n” command, which is the standard query for a 
device to identify itself. 

2. Most of the DeviceSettings parameters are meaningless 
for GPIB devices. The only relevant parameter is 
SampleClockRate. This parameter sets the rate at which 
commands are output during ramps (for instance, when 
ramping the voltage and frequency of a microwave 
synthesizer, for forced evaporation of a BEC). In my 
experience, Agilent microwave synthesizers begin to 
behave strangely (ignore a random subset of their 
received commands) if clocked beyond ~17 Hz. 

3. If you wish to run voltage / frequency ramps on this GPIB 
device, then Atticus needs to know the commands for 
setting the voltage and frequency. This support is built-in 
for devices whose ID string contains the substring “ESG-
4000B” or “N5181”. For other devices, you need to tell 
Atticus how to formulate the commands. To do this, you 
must add a new GpibRampCommandConverter. These 
can be added to the GPIB subsection of the server 
settings object. Consult the manual for your gpib device, to 
determine the commands for setting the amplitude and 
frequency of its output. The commands output by Atticus 
are a string combining a prefix and postfix string to go 
before and after a numerical value (in Volts for amplitude, 
in Hz for frequency). For instance, to set a certain brand of 
synthesizer to 1 GHz, Atticus might use the command 
“FREQ 1000000000 Hz\r\n”. In this case, the prefix is 
“FREQ “, the postfix is “ Hz\r\n”, and the number is 
1000000000. The field DeviceIdentifierSubstring should 
contain a substring which is contained in the Device 
Description for the GPIB device, so that Atticus knows 
which device to apply this ramp converter to. Note: the 
patterns “\r” or “\n” in the prefix or postfix string are 
converted by Atticus into the special characters that they 
conventionally represent (Carriage Return and Line Feed 
respectively). Nearly all devices require commands to be 
terminated by one or both of these characters, so the 
pattern “\r\n” should be included at the end of the postfix 
string. Some devices are pickier, and want one special 
character but not the other. 

4. Device settings for GPIB devices will persist even if the 
device is disconnected or turned off. If, at a later time, a 
different GPIB device with the same GPIB address is 
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attached to this GPIB port, then the device settings for 
may be inappropriate for the device, and the device 
description string may not get refreshed. To resolve this 
issue, delete the device settings object for the 
disconnected device, and click refresh hardware to 
discover the newly connected device properly. 

b. RS232 Devices 
1. At present, there are no special configuration parameters 

required for RS232 channels. Some devices are picky 
about the baud rate or other serial settings of the data they 
receive. There is a mechanism for setting these 
appropriately within Atticus, but a more convenient way is 
to edit the properties of the output port the usual windows 
way. MAX provides a good user interface for doing so. 

c. Triggering / synchronization of software timed tasks 
1. As discussed above, software timed tasks do not have a 

deterministic timing mechanism. The default behavior is 
for the software timed tasks to be started when Atticus 
finishes processing the “generate triggers” command from 
Cicero (as discussed near the beginning of this 
document). This generally works fairly well, and results in 
the software timed tasks being started within a few ms of 
the hardware timed tasks. However, for deployments of 
the software which run on multiple computers, it is 
possible for the “generate triggers” command to take 
vastly different amounts of time for different computers to 
process (especially when one of the computers is running 
a variable timebase task – these tasks, because they 
consume so much memory, take longer to start, and make 
the generate triggers command take longer to handle). 
This can result in unacceptably long software timing 
offsets of up to a second.  

2. Thus, there exists a mechanism to more closely tie the 
starting of the software timed tasks to the starting of the 
hardware timed tasks (hardware timed tasks on multiple 
computers already have a natural synchronization 
mechanism, in that they will share a sample clock). This 
involves creating a thread on Atticus during its handling of 
the arm tasks command which constantly polls the current 
buffer position of one of the hardware timed tasks. As 
soon as the buffer position of this task moves, Atticus 
knows that the hardware timed tasks have started, and 
starts the software timed tasks. This results in software 
timed tasks that, even on multiple computers, can be 
synchronized to the hardware timed tasks on the order of 
a few ms. 
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3. To use this feature, go to server settings and set 
SoftwareTaskTriggerMethod to PollBufferPosition, and 
DeviceToSyncSoftwareTimedTasksTo to the string 
identifier for the output card whose task Atticus should poll 
for this synchronization (e.g. Dev1, Dev2, etc). Note that 
you must specify a card that actually has channels bound 
to it and that is being used in the sequence. Otherwise, 
there will not be a task corresponding to this id string to 
synchronize to. 
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Configuration and Basic Usage of 
Cicero 

 
 This chapter will give a step by step description of how to configure a new 
installation of Cicero, and use its basic sequence editing and running features. It 
is assumed that the reader has at least one configured Atticus server. 
 

1. Start Cicero. 
2. When started for the first time, Cicero may prompt you to select a 

ClientStartupSettings file. Click cancel on the file open dialog to instruct 
Cicero to create this object anew. 

3. Connect to servers. (This step is necessary to use output hardware. 
However, if you just want to start Cicero to get a flavor of how the interface 
works, it can be skipped) 

a. Press F11, click on the Server Manager button, or Server 
Manager from the Tools menu to start the Server Manager. 

b. Open the Servers collection, by clicking on Servers, and then on 
the small … button. 

c. Add a new server with the Add button. Set ServerEnabled to True, 
and set the ServerAddress to the IP address of the computer 
running Atticus (or to localhost, if running the server on the same 
computer as the client). 

d. Repeat as necessary, if more servers are being used. 
e. Close the server collection editor, and click on Connect To 

Enabled Servers to attempt to connect. If connection is successful, 
ConnectedServersCount will reflect the number of servers that 
were successfully connected. 

f. If Atticus is running, but Cicero is unable to connect to it, it may be 
one of the following reasons: 

i. You did not click the Connect button on the server, and thus 
the server is not accepting connection requests. 

ii. The IP address for the server is entered incorrectly. 
iii. Either the Client or the Server is not connected to the 

network, or there is a firewall running on one of the 
computers interfering with their connection. (Cicero and 
Atticus communicate via TCP on port 5678, so the firewall 
problem can be alleviated by opening this port to TCP 
traffic). 

g. Whenever Cicero is started, you will need to start the Server 
Manager and click Connect To Enabled Servers if you intend to 
use the output hardware. 

4. Create and bind channels. 
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a. Start the Channel Manager, either with the labeled button or 
through the Tools menu. 

b. The Channel Manager allows you to easily add or edit channels of 
the various channel types supported by Cicero.  

i. Whenever a channel is created, it is assigned a Logical ID #.  
ii. Within each channel type, no two channels can have the 

same ID#.  
iii. The SequenceData objects that are later created with Cicero 

store their sequence information based on the ID# of the 
channel they apply to, so changes to the channel ID#s will 
cause changes in the way Sequences are output. 

iv. When editing a sequence, data for the various channels will 
be displayed sorted by the channel ID#. 

c. To bind a logical channel to a hardware channel, select the 
Hardware Channel drop down menu either when adding or editing 
a given channel. This will give a list of all the known and unused 
hardware channels. Select Unassigned to leave this channel un-
bound.  It is useful to have Unassigned channels to act as 
placeholders for future channels, or to temporarily stop using 
certain hardware. If the drop down list of hardware channels is 
empty, then either: 

i. No servers are connected. 
ii. The servers that are connected do not have any channels 

the selected channel type, or all the channels of that type are 
already bound. 

d. Channels can be given a name, as well as a description. In most of 
the user interface elements which display the channel name, 
holding the mouse over the channel name will cause a tool-tip to 
display the full channel description. 

e. When the channel manager is closed, labels for the newly created 
channels should appear in the appropriate channel label panels. 

5. Save the server and channel configuration, by saving the Settings data. 
Select Save Settings as Default from the file menu to save these to the 
default settings file, or save them to a different file with the other menu 
options. 

6. Start making your first Sequence. 
a. Right-click somewhere in the empty region to the right of the 

“Analog Group:” label, to make the TimeStep panel context menu 
appear. Add some new timesteps. 

b. The digital value boxes will appear gray. This indicates that these 
channels have no entry in the sequence data object. To give these 
channels their sequence data entries, click the Populate 
Sequence button. The digital boxes will turn beige, to indicate that 
they have the value “false”. Clicking on the boxes toggles the digital 
value at that point. Clicking and dragging horizontally allows for 
toggling one channel’s value at several different timesteps. 
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c. The analog preview panel will appear to have a red hatched 
background, with grey channel separator lines and flat white 
channel preview lines. Red indicates that the given timestep is 
disabled. Enable some timesteps to see this background turn 
green. Click on the preview panel to see a cursor indicating the 
value of a given channel at a certain time. 

d. Make your analog channels do something more interesting. Go to 
the Analog tab of the main window, and rename the analog group 
“Unnamed” to something more descriptive by editing the text box 
next to the Rename button, and then clicking rename. Turn on a 
few channels in this analog group by clicking on the buttons labeled 
Continue to make them read Enabled. Waveform viewers will 
appear for the enabled channels. Click on a waveform to select it, 
and enable the waveform editor. Create a piecewise linear 
waveform with five data points (use the down arrow to add 
interpolation points), lasting 10 seconds (duration), and with some 
interesting shape. Select some other channel waveforms and 
explore some of the other interpolation types. 

e. Go back to the Sequence tab. In one of your timesteps, click on the 
analog group drop-down list and select your newly edited analog 
group. The analog preview pane will update to reflect this change. 
This panel updates automatically if the checkbox labeled Auto 
(next to the Update button) is selected. Turn this off if auto-
updating is causing an unacceptable performance lag. To force an 
update, click the update button. 

f. Channels that have a waveform that has just started in a given 
timestep will have a black background in the preview panel. 
Channels that are continuing a waveform that was started in a 
previous timestep will have a green background. A given analog 
group only affects the channels that are Enabled in that group. The 
channels that are Continue in that group will not be affected by 
starting the group, but will continue doing what they were doing 
before. 

g. Drag the boundary between the analog preview panel and the 
digital grid up and down, depending one which are you more 
interested at a given moment. 

h. Create and add GPIB and RS232 Groups in a similar way to 
Analog Groups. RS232 and GPIB Groups both involve creating a 
set of commands to give to a device. GPIB Groups also allow 
turning a Amplitude / Frequency ramp into a series of commands. 
To create a GPIB group with a ramp, enable the desired channel, 
and select A+F ramp from the nearby drop-down. Waveforms for 
the amplitude and frequency will appear, and can be edited. Other 
data formats are Raw, which allows you to enter a raw string 
command, and Parameter which allows you to enter one or several 
(right click on the text boxes to insert or delete) numerical based 
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commands with a string prefix and postfix. When designing these 
text commands, remember to insert appropriate line termination 
characters for the device you are using (usually “\r\n”). RS232 
Groups support Raw and Parameter data in the same way. 

i. Run the sequence. Click the Run Iteration 0 button or press F9. If 
all is well, the sequence will run and a progress bar will appear. 
Congratulations! Otherwise, a hopefully descriptive message will 
tell you what problems to resolve before trying to run a sequence. 

j. Save the sequence with the Save Sequence As item in the File 
menu. 
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Features of Cicero 
 

 This section attempts to describe all of the features of Cicero beyond 
basic sequence editing. 
 
Variables 
 Any numerical parameter (timestep duration, ramp value, etc) in a 
sequence can be either entered manually, or bound to a variable. To bind a 
numerical parameter to a variable, right click on the number box to see a drop 
down list of the existing variables. 
 To create a variable, go to the Variables tab. Click the Add Variable 
button. (If this button is disabled, it is because the lists are locked. Click the 
Unlock Lists button towards the bottom right of the window). 
 Variables have a name and a value. Values can be entered manually, 
bound to a list, or derived from other variables using equations. Duplicate 
variables with the same name are allowed, though not recommended.  
 To make a variable list-driven, right click on its value number box to get a 
drop-down list of lists to bind the variable to. To make the variable driven by an 
equation, click the Derived? check box, and enter the equation in the text box 
below. Variables can be referenced in equations by name in this text box, but 
only if their name contains no spaces or reserved characters. If the equation is 
formatted in a readable way, the equation value will be given below the text box. 
Otherwise, a message indicating the problem will appear, and the variable’s 
value will be set to zero. To see a list of supported operators and functions, right 
click on the text box and select the Help option. 
 In addition to the editable variables, there are two special variables 
IterationCount and IterationNum. IterationCount is the total number of 
iterations in the given list configuration, and IterationNum is the iteration number 
for the current iteration (spanning between 0 and IterationCount-1 inclusive).  
  
 
Lists 
 Lists allow for batch processing, by allowing the value of a variable or set 
of variables to run through a pre-defined list of values. If lists are locked, then to 
edit them you need to unlock them. Up to 10 Lists can be individually enabled or 
disabled using the checkboxes above their labels. When data is entered in an 
enabled list, the list label will have a green background if the data is valid, and 
red if invalid. Reasons for invalid data include non-numerical text or empty lines. 
The total number of lines in a list will be given at the bottom of the list. 
 Multiple lists can be used at once, and can either be scanned “in parallel” 
or “in series”. To scan in series means that, for example, List 1 will take its first 
value while List 2 takes its first value. Then on the next run, List 1 will take its 
second value while List 2 will take its second value. To scan in parallel means 
that List 1 will take its first value while List 2 runs through each of its values. 
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Once List 2 has reached the end, it will start from the beginning with List 1 taking 
its second value, and so on. 
 To chose whether lists are scanned in parallel or in series, use the buttons 
labeled “,” or “X”. A “,” between two lists means that they will be scanned in 
series, “X” in parallel. If two lists are to be scanned in series, they must have the 
same length, and you will not be able to lock the lists unless they do. If you 
attempt to lock lists, but there is a reason why it can’t be done, this reason will be 
given below the lock button. 
 Variables get their values updated from the lists whenever the current 
iteration number is set. The iteration number ranges from 0 to the total number of 
iterations minus 1. The default running behavior, accessed by the F9 button, is to 
run iteration number 0. An arbitrary iteration number can be run by setting the 
iteration number using the Set Iteration button (either in the Variables tab or the 
Sequence tab) and then clicking the Run Current Iteration button. To run 
through all of the iterations, use the Run List button. To run through all of the 
iterations from the current iteration onward to the last one, use the Continue List 
button. To run through all the iterations, in a random order, use the Run List in 
Random Order button. There is not currently support to continue a random run 
or pick up where you left off in one, but this is a likely future feature. 
 
Calibration Shots 
 When running through a batch list of iterations, it may be desirable to 
occasionally have a shot with some baseline sequence. This is supported 
through the Calibration Shots feature, accessible in the Variables tab. When 
enabled and loaded, you can specify whether to run the Calibration Shot as the 
first shot of a list run, the last shot, or after every Nth shot. To specify the 
sequence data corresponding to this calibration shot, use the Load Sequence 
button in the calibration shot configuration panel, and select a sequence file. This 
file gets loaded into memory, and incorporated as the calibration shot for the 
currently open sequence file. The calibration shot is always run with its iteration 
number set to 0. The calibration shot sequence object is saved as part of the 
currently open sequence. NOTE: Future changes to the sequence file which the 
calibration shot was loaded from have no affect on previously loaded calibration 
sequences. The calibration sequence is stored as an object within the parent 
sequence object, not as a reference to a file or file name.  
 
Digital Colors 
 Colors used in the digital grid are stored in the Settings Data object. They 
can be set by using the Settings Explorer, and editing the DigitalGridColors 
field. To use a color other than the list of named colors, select color type custom, 
and right click on one of the color swatches. 
 To revert back to the default color scheme, remove all entries from the list 
of colors. 
 
Dwell Word 
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 After any sequence is run (or if a sequence is aborted), the output 
hardware reverts to outputting a set of dwell values on its analog and digital 
output hardware. These values come from the sequence’s dwell word, which is 
the first enabled timestep in the sequence.  
 
Output Now 
 Aside from running a sequence, output hardware can also be accessed by 
using various “Output Now” features. A timestep can be output, by right clicking 
on it and selecting Output Now. Outputting a timestep in this way causes the 
analog and digital output channels to output the value that they would have at the 
end of the selected timestep. Under some circumstances, it is desirable to have 
analog channels ignore these output now requests (such as when the analog 
values are used as the setpoints of large power supplies, or of high power 
lasers). Instead of outputting the value of the selected timestep, these channels 
can instead output their dwell value, as determined from the dwell word.  
 This option can be configured on a per-channel basis by editing the logical 
channel for a given analog channel in the Channel Manager, or globally for all 
analog channels by going to the Settings Explorer and setting the 
OutputAnalogDwellValuesOnOutputNow field. 
 If timestep output now is successful, a message to this effect appears in 
the status bar at the bottom of the window, and the background for the timestep 
turns grey. If the timestep does not change color, this is a sign that some error 
prevented the timestep from being output. You can examine the message log tab 
to determine what the error was.  
 Note: There is no guarantee of synchronization between various channels 
when using output now. All of the channels on a given card will update 
simultaneously, but different output cards will update at different times. Thus it is 
possible, for short periods of time (~ms) while the outputs are changing, for the 
collection of output channels to be in neither the new state nor the old state, but 
some transitional state with some channels in the new state and some in the old 
state. This should be kept it mind if, for safety or other reasons, you are for 
instance relying on channel a to be false whenever channel b is true. (It is 
anyway extremely unwise to rely on this unless you use external circuitry to 
enforce these safety conditions, for a wide variety of reasons beyond this output 
now quirk). 
 Running output now on a timestep DOES NOT output gpib or rs232 
commands. To output these, go to the gpib or rs232 tab, select the desired 
group, and click the Output Now button. Note, the output now feature for gpib 
Amplitude + Frequency ramps is not supported (as these cannot be fulfilled by 
outputting just a command, but require a series of commands over a extended 
length of time). Channels with this data type will be ignored during a gpib output 
now.  
 
Overrides 
 Any analog or digital channel can have its value overridden in the override 
tab. When a channel is overridden, its value is determined by the override value 
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rather than by the sequence object. Override information is stored in the settings 
object, rather than the sequence object. 
 Changing the override status or override value of a digital channel will 
automatically re-output the last timestep to be “output now”. Changes in analog 
channels require clicking on the re-output button. 
 
Hotkeys 
 A number of features in Cicero can have hotkeys bound to them. The 
most commonly useful is to bind a hotkey to a timestep. Whenever this hotkey is 
pressed, the given timestep is output using the “output now” feature. To set a 
hotkey for a timestep, right click on the timestep and navigate to the Set 
Timestep Hotkey context menu option. Select the text box and type a 
alphanumeric character. The hotkey for this timestep will now be set to 
CTRL+[character], and the character will be displayed in curly brackets next to 
the timestep number. 
 Hotkeys can also be assigned in a similar way to digital and analog 
overrides.  
 
Pulses 
 In many circumstances, it is desirable to have certain digital events pre-
triggered, occurring a specified amount of time before other events. For instance, 
when creating an imaging pulse to take a picture of an atom cloud, it may be 
necessary to open a mechanical shutter several ms before the image is taken, 
and then to flash on the light with an AOM for a short period of time. This can be 
somewhat awkward to do with a digital-value-per-timestep sequence design, 
especially if this shutter opening has to take place during some other operation 
completely unrelated to imaging your atoms. 
 Cicero has an additional way to specify digital output values, using a 
feature called “Pulses”. A Pulse is a description of digital data that allows for 
digital values to be changed in the middle of timesteps, with user specified 
amounts of pretrigger or delay from the timestep they are inserted into. These 
pulses are “written on top of” the normal digital data. 
 To define a pulse, go to the pulses tab and click the Create Pulse button. 
A pulse has a name, a start condition, a stop condition, and a pulse value. The 
pulse can be stopped or started at a time specified relative to the start of the 
timestep it is inserted into (TimestepStart), the end of the timestep 
(TimestepEnd), or according to the duration of the pulse (Duration). If either the 
start or stop condition of the pulse is set to Duration, then the other must not be. 
Cicero uses the start and stop condition of the pulse to determine when the pulse 
is active, and writes the pulse’s Pulse Value onto the digital channel outputs 
during this active time of the pulse.  
 For example, to create a pulse that will force the value of a digital channel 
to false for the 10 ms preceding the timestep that it is placed into, do the 
following. Set Start Condition to Duration, End Condition to TimestepStart, 
Pulse Duration to 10ms, and Pulse Value to false.  
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 To create a pulse that will make a digital output true, will start 2ms after 
the start of the timestep it is in, and end 3ms before the end of the timestep it is 
in, set Start Condition to TimestepStart, Start Pretrig/Delay Enabled to true, 
Start Pretrig/Delay time to 2ms, Start Delay to true, End Condition to 
TimestepEnd, End Pretrig/Delay Enabled to true, End Pretrig/Delay time to 
3ms, End Delay to false, and Pulse Value to true. 
 To insert a pulse into the sequence, right click on the digital box you wish 
to apply it to (in the sequence tab digital grid, corresponding to the channel and 
timestep you want the pulse to apply to), to see a drop down list of available 
pulses. 
 There are a wide variety of possible uses that these pulses can have, 
beyond just shutter pretriggers for imaging. Be creative. But keep in mind that 
Pulses are somewhat more resource intensive than normal digital data, so do not 
use them when they are completely unnecessary. 
 NOTES:  

• Pulses do not affect the output now behavior of digital channels, they are 
ignored when using the output now feature. 

• When using a variable timebase as the clock for your sequence, there is a 
possibility that the start or stop of pulses can be displaced by as much as 
2 times the period of the underlying master clock. This will occur if the 
pulse tries to change the value of a digital channel too close to a time 
when the channels are changing anyway (due to an analog ramp, or the 
beginning of a timestep, etc.). This is more likely to happen if pulses are 
used in close proximity to high time resolution analog ramps. Occurrence 
of these displacements should be fairly rare, and unless you are very 
sensitive to the timing of these pulses, it should not make much difference. 

 
Analog Group Time Resolution 
 In the analog group editor tab, there is a field to enter the time resolution 
of the analog group being edited. This field is only meaningful if you are using a 
variable timebase clock. In such a case, the time resolution given here will set 
the rate at which the variable timebase clock will run while the analog group is 
active. A group is considered active if any of its channels still has changing data. 
If multiple analog groups are running at the same time, the lower value of the 
time resolution is used. To take full advantage of the benefits of the variable 
timebase clock, avoid the temptation to set extremely fast time resolution for long 
running analog groups. However, make sure to keep this time resolution in mind 
when designing analog groups that have fast ramps. The default time resolution 
for an analog group is relatively large (1ms), and this may be unsuitable for 
certain ramps. 
 
Common Waveforms 
 There are a set of waveforms that are editable but that do not belong to a 
specific analog group. These are called the Common Waveforms, and are 
selectable and editable from the Common Waveforms tab. 
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 A special interpolation type supported by Cicero, which allows you to 
combine various common waveforms, is the Combine Waveforms interpolation 
type. This allows you to, for example, make an exponentially damped sinusoid by 
multiplying a sinusoidal waveform with a exponential one. Keep in mind that the 
combine waveforms interpolation type uses substantially more resources than 
the normal interpolation types, and thus should not be used when the normal 
interpolation types can do the job. 
 To use a common waveform in an analog group, enable that channel, and 
select the desired common waveform from the drop down list to the right of its 
enable/continue button. The waveform for this channel will be displayed in gray, 
to indicate that it is a common waveform rather than a waveform editable from 
within thin analog group. 
 To copy a waveform from and analog (or gpib) group to the set of common 
waveform, select the waveform, then right-click on the on the waveform editor 
and select the copy to common waveforms context menu item. 
 
Saving and Inserting Subsequences 
 On occasion it may be desirable to take a part of one sequence and insert 
it into another. To do this, open the sequence that you would like to copy from. 
By right clicking on timesteps and selecting the Mark menu item, mark the 
timesteps that you would like to copy. Marked timesteps will appear with a 
orange-pink background color. Under the file menu, select Save Marked 
Timesteps to create and save a sequence made up of the selected timesteps 
(this will include all the variables, common waveforms, analog groups, gpib 
groups, rs232 groups, and pulses that were used in those timesteps). 
 In the destination sequence, select Insert Sequence from the file menu to 
insert a sequence from a file into the currently open sequence. Note: Inserting a 
sequence may cause duplicate groups, pulses, variables etc. with the same 
name, if the inserted sequence included such items with the same name as the 
open sequence. It then may be necessary to manually re-name, or to manually 
re-assign groups and remove groups to eliminate this potential confusion. 
 
Run Logging 
 Every time a sequence successfully runs, it generates a run log file which 
contains the full sequence and settings objects that were used for that runs (this 
includes the values of all the variables), as well as a timestamp indicating when it 
was run. These files accumulate in the RunLogs subdirectory of the Cicero 
installation. RunLogs can be opened and batch-examined with the Elgin 
program. Elgin is currently not described at any length in this program, but its 
features are straightforward enough that hopefully they can be deduced by a new 
user. 
 
Sequence “Modes” 
 A SequenceMode is a data structure that stores the enabled/disabled and 
hidden/visible state of each of the TimeSteps in a sequence. Modes can be 
saved and loaded using the mode drop-down list box and its neighboring buttons. 
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These are located right next to the timesteps panel, in the sequence page. When 
a mode is selected from the list, it is loaded, meaning that all of the sequence’s 
timesteps are enabled or disabled and are shown or hidden based on the data 
stored in this mode. Whenever the Store button is clicked, the current state of all 
the timesteps is saved into the currently open mode (and the name of the mode 
is changed, if the name textbox has been updated). 
 The modes feature allows a single sequence object to be quickly switched 
between various functionalities. For example, by enabling and disabling the right 
timesteps, the same sequence object can both create a cloud of atoms out of a 
magnetic trap, or out of a subsequent optical trap, or after a subsequent 
evaporation, etc. Using a single sequence object to perform all these “checks” en 
route to the final result can allow you to re-use the parts of the sequence that 
would be common to all these procedures, and avoid needing to tediously 
manually update all your sequence files whenever some detail in these shared 
steps was changed. 
 The modes feature also allows for more sophisticated batch runs than 
what could be achieved using just normal list scanning + calibration shots. This is 
accomplished through use of a special named variable. If a variable with the 
name SeqMode exists, then before each run, Cicero will set the sequence mode 
to the mode corresponding to the nearest integer value of SeqMode (0 for the 
first item in the list of modes, 1 for the second, etc). Thus this allows for a batch 
run in which the sequence mode changes between individual shots.



 29

 

Miscellaneous 
 
Help! Bugs! 
 
 If (gasp!) you should run across a bug when using Cicero, do not fret. 
Send an email describing the bug and the circumstances under which it occurred 
to akeshet AT mit DOT edu. If the bug was accompanied by an exception 
window, giving a stack trace of the exception, paste this text into the email as 
well, as this information makes tracking down and fixing bugs much easier. 
 
Why do the buffers not seem fully used up? 
 
 A monitoring feature in Atticus is that at the end of each run, Atticus will 
report for each of its output tasks the size of the buffer for that task, as well as 
the number of samples that were actually generated. The perceptive user may 
note that, when using a variable timebase: 

• The buffers do not appear to get completely used up. 
• Different tasks report having generated a different number of samples. 

 
 The reason that some of the buffers do not get completely used up is that 
the NI drivers require buffer sizes to be a multiple of 4, so extra unused samples 
are added to the end of buffers to make them reach this condition, but these 
extra samples are not used. However, certain output cards also will only report 
the number of samples generated rounded up to the nearest multiple of 4 (in my 
experience, these are the digital output cards) whereas other cards will show the 
exact number of generated samples. Thus tasks on different cards may claim to 
have generated a different number of samples. 
 These monitoring features are quite useful in tracking down and 
debugging timing problems. If a sequence is run repeatedly, the number of 
samples generated should be the same each time. If not, this may indicate that 
the timing signal is being degraded. If a variable timebase is being generated on 
one computer and then shared over a long cable to another computer, it may be 
necessary to add a terminator at the receiving end to eliminate intermittent timing 
glitches. 
 
File Formats 
 
 All the files saved by Cicero are saved using .NET binary serialization. 
This means that it is fairly straightforward to write a program using a .NET 
compatible language (such as C#) that will open, manipulate, and save any 
Cicero object, should the need to do custom processing of these files arise. To 
see examples of how to load and save files, see the code for the Storage class. 
 
Code Overview 
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 This is intended as a brief overview of the source code of Cicero, for those 
who would upkeep the software or add new features. The information contained 
here is of course only a sketch. But the source code is, for the most part, well 
documented, so it should be possible to find one’s way around after a bit of 
experience. 
 
The Visual Studio “solution” for the source code contains several main "projects": 
 Atticus: This project contains all of the UI code for the server, and all of the 
hardware side code. 
 Cicero: This project contains all of the UI code for Cicero, as well as some 
code for sending those sequences to the server. 
 DataStructures: This project does not contain any executable. Instead, it 
contains class definitions for all of the classes use to describe and store 
sequences. In addition, it contains some of the code used to communicate 
between client and server, and a few auxiliary classes shared by multiple 
projects but without a unifying theme. 
 Elgin: This is a simple RunLog viewing program, to view the RunLogs 
produced by Cicero. It may eventually be extended to do things like batch 
processing. 
 
  
Some of the key important files, perhaps worth looking at first in getting 
acquainted with the code: 
 
 Atticus/ServerRuntime/AtticusServerRuntime.cs: This file is the main 
server object. It receives requests over .NET remoting (interface defined by 
ServerCommunicator), detects hardware channels, creates buffers and triggers. 
 Atticus/ServerRuntime/DaqMxTaskGenerator.cs: This class contains a 
number of static methods used to generate digital and analog output tasks out of 
sequence objects. 
 Atticus/AtticusServer.cs: Entry point for the Atticus executable. 
 Atticus/Form1.cs: Top level user interface for Cicero. Best viewed with 
Visual Studio designer. 
 
 Cicero/Controls/MainClientForm.cs: The top-level user interface for 
Cicero. Most of the guts of the user interface resides in sub-controls of this. The 
easiest way to understand this code is by viewing it with Visual Studio’s designer. 
 Cicero/Program.cs: entry point for Cicero. 
 Cicero/Controls/RunForm.cs: A user interface object which displays a 
progress bar during a run. RunForm also contains the client-side code for 
orchestrating a sequence run, making the appropriate calls to ServerManager to 
send sequence objects, settings objects, and start runs. 
  Cicero/Storage.cs: Contains static references to the SettingsData and 
SequenceData objects being edited, as well as methods for loading and saving. 
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 DataStructures/SequenceData/SequenceData.cs: The class which stores 
a sequence. This class is effectively "edited" by Cicero, and then sent (along with 
SettingsData) to the servers, which turn the SequenceData object into output 
buffers. This class contains the code used to make the various types of buffers 
out of sequence objects. 
 DataStructures/SettingsData/SettingsData.cs: The class which stores 
"settings". This includes mapping from channel ID integers to Hardware channels 
(thorough LogicalChannelManager), addresses of servers 
 DataStructures/Communication/ServerManager/ServerManager.cs: 
Contains a lot of client-server communication code. 
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Screenshots 
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