AN INTRODUCTION TO

GALOPPS

The "Genetic ALgorithm Optimized
for
Portability and Parallelism” System

(c) Michigan State University, 1993, 1994, 1995, 1996.

RELEASE 3.2 (July 31, 1996)

(Obsoleting GALOPPS Releases 2.05 - 3.02 and ESGA/IPGA Releases 1.0 - 2.05)

Written by
Erik D. Goodman, Professor and Co-Director
MSU Genetic Algorithm Research and Applications Group (GARAGe)
Intelligent Systems Laboratory, Dept. of Computer Science, and
Case Center for Computer-Aided Engineering and Manufacturing

Professor, EE, ME
Director, MSU Manufacturing Research Consortium
Director, Case Center for
Computer-Aided Engineering and Manufacturing
Michigan State University, East Lansing 48824

TECHNICAL REPORT # 96-07-01

GENETIC ALGORITHMS
RESEARCH AND APPLICATIONS GROUP (GARAGe)
INTELLIGENT SYSTEMS LABORATORY,
DEPARTMENT OF COMPUTER SCIENCE
AND
CASE CENTER FOR COMPUTER-AIDED
ENGINEERING AND MANUFACTURING

MICHIGAN STATE UNIVERSITY, EAST LANSING

HEREDITY

GALOPPS is a distant descendant of:
SGA-C, v1.1, modifications by Jeff Earickson, Boeing Company,
which was based on SGA-C, by Robert E. Smith, Univ. of Alabama,
which was based on SGA (in Pascal), (c) David E. Goldberg 1986,
All Rights Reserved,
as described in GOLDBERG, David E., Genetic Algorithms in
Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, Massachusetts, USA, 1989.

GALOPPS

The "Genetic ALgorithm Optimized for Portability and Parallelism" System
Erik D. Goodman

(C) Copyright, 1994, 1995, 1996, Board of Trustees, Michigan State Univesity
East Lansing, Michigan 48824 USA

ESGA/IPGA SYSTEM (on which GALOPPS IS BASED)

The Extended SGA and Island Parallel Genetic Algorithm System

Erik D. Goodman

(C) Copyright, 1993, 1994, Board of Trustees, Michigan State University
East Lansing, Michigan 48824 USA

GALOPP SYSTEM NOTICE

NO WARRANTY
THE GALOPPS SYSTEM IS DISTRIBUTED UNDER THE PROVISIONS OF THE GNU GENERAL PUBLIC
LICENSE (SEE FILE 'LICENSE’ IN THE DOCS DIRECTORY). BECAUSE THE GALOPP SYSTEM IS
LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY NO WARRANTY, TO THE EXTENT
PERMITTED BY APPLICABLE STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, THE
AUTHORS OF THE GALOPP SYSTEM PROVIDE THE GALOPP SYSTEM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
GALOPP SYSTEM PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL THE AUTHORS OF THE GALOPP
SYSTEM, AND/OR ANY OTHER PARTY WHO MAY MODIFY AND REDISTRIBUTE THE GALOPP
SYSTEM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST
PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY FREE
SOFTWARE FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

SGA-C NOTICE
(Covering the software from which the ESGA/IPGA System, and
then eventually, the GALOPP System, was originally derived)

NO WARRANTY

BECAUSE SGA-C IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY NO WARRANTY, TO
THE EXTENT PERMITTED BY APPLICABLE STATE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING, THE AUTHORS OF SGA-C PROVIDE SGA-C "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE SGA-C
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL THE AUTHORS OF SGA-C, AND/OR
ANY OTHER PARTY WHO MAY MODIFY AND REDISTRIBUTE SGA-C AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH PROGRAMS NOT DISTRIBUTED BY FREE SOFTWARE FOUNDATION, INC.) THE
PROGRAM, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR
ANY CLAIM BY ANY OTHER PARTY.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 iii

(This Page Intentionally Left Blank.)

TABLE OF CONTENTS

Topic Page

(070] o) Y/ 4o | o1 B == Vo =TT PPPPRN Inside Front Cover

NO WAITANTY NOTICE.... ettt ettt e et et e e e e e tb e e e e eebba e e aaeeanas il

TABLE OF CONTENTS ..ottt e e ettt \Y

Disclaimer and AcKknNOWIEdgeMENTS.oouuuuiiiiiiiii e 1

HARDWARE/OPERATING SYSTEM REQUIREMENTS.......ccviiiiiiiiiiiiiiiiens 2

BACKGROUND INFORMATION. ...ttt ettt 2

WHAT ELSE IS COMING OUT WITH GALOPPS? 3
Release History and Bug Fixes, ESGA 2.0 - GALOPPS 3.2oiiiiiiiiiiiiiiiiiiiien, 4

A Note On USer INtErfaCeS, ETC.cooiiiiii et 8

NEW AND ENHANCED CAPABILITIES OF GALOPPS 3.2 FROM

GOLDBERG'’S SIMPLE GENETIC ALGORITHM -- IN BRIEF............cvvvennnnnn. 9
HOW TO GET STARTED RUNNING GALOPPS.........oociiiiiiiii e 13
WRITING YOUR OWN APPLICATION. ..ottt 15

OVERVIEW OF RELEASE 3.0'S ISLAND (COARSE-GRAIN) PARALLEL

CAPABILITIES. ..ottt e e e e e e e et r e e e e e aaaaens 22
FILES USED IN GALOPPSttt ettt e e e e e b ees 24
Files Created by the GALOPP System During Execution...............c.coevvieevivinnnnnnn. 24
NEW CAPABILITIES OF GALOPPS ...ttt 26
Graphical USEr INTEITACEuiiiiiiiiii e e et e eeees 26
Differing Alphabet Sizes (Field LeENGthS)oooiiiiiiiiiii e 26
Multiple-Field Mutation OPEratorcooeuuuiiiiaiiiiiie e eeeae s 27
Boltzmann Scaling Of FItN@SSESccuiuuiiiiiiiiiii e 27
Optional Automatically Controlled Selection ..., 27
Falkenauer's Grouping Genetic Algorithm Representation and Operators (GGA) .. 28
Threaded GALOPPS ... e 28
Subpopulation-Level Inversion Operator and Related Support ... 28
Multi ple Representations -- Different Rep for Each Subpopulation....................... 30
Command Line Parameter OVEITIAES.cooviii it 30
Additional Selection Methods. ... 31
Stochastic Universal Sampling........ccouuueiiiiiiiiiii e 31
Linear Ranking, Followed by SUS.............oooiii e 31
Representing Non-Binary Chromosomes (Alphabet Size > 2)......cccooeeiiiiiiiiiiiiiinin, 32
Restructuring and Addition of More Crossover Operators
for "Value-Based" Problems ... 33
Six Operators and Other Tools Added for Solution of
Order-Based (or Permutation-Type) Problems...........cooooiiiiiiiiiiiiiiiieee 33
Quiet Mode, for Reduced Output under App Control...........cceeeveeeiiiiiiiiiiiiieemnen. 34
New Fitness Scaling MethOdS. i e 34
WINAOW SCAIING. ... ittt et e et eaeeeeeas 34
LIN@AY SCAIING. ... ittt a s 33
SIGMA TIUNCALION.ceuiiiieieeii e e et aeeeaaans 34
OPLIONAI EILISIM...cieiiie et e et e e et eeeaaa e aees 35
Tools for Monitoring Convergence of Populations..............cooouuiiiiiiiiiiiiiiiiiceeee, 35
Percentage of Ones at EaCh LOCUS.........oooiiiiiiiiiiiiiiieiii e 35
Measurement of Resemblance to Best Individual...............ccccccvviviiiiiiieeneee. 35

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2

DeJong-Style Crowding, ... Replacement, Niche Formation..................ooooviveiiinnnnnn.
Incest Reduction -- A Formof Mating Restriction...........couuiiiiiiiiiiiii e
Enriched Application-Dependent Callback FUNCLONS.............ccooiiiiiiiiiiiiiiiiees
Operator Usage Automatically Documented t0 OQUEPUL.........coooeiiiiiiiiiiiiiiiiiee e
User-Supplied Initialization of Populations and Post-Initialization

"Cleanup™ SUPPOITEAu ettt e e e et e e e e eaeaas

Option to Count and Reduce Objectiva~unction Calls.............cccoiiiiiiiiiiiiiieiiiiiiinnn.
Migration Capabilities Significantly Enhanced
and Multiple Representations SUPPOIted..........ooouuuuiiiir i

Checkpoint and Restart Capability...........ccoooiiiiiiiii e

NEW FORMAT FOR INPUT FILES.......coi ittt
Sample of Optional Input File FOrmat..........coooiiiiiime e
Specifications for Input Files -- for Onepop and ManypopsS........ccoeeeeeeieeeeeiiiniinnnnnn
Explanation of Input for a Manypops RUN..........oooiiiiiiiiiiiii e

ISLAND PARALLELISM -- GALOPPS/MANYPOPS FOR SIMULATION OF
MULTIPLE SUBPOPULATIONSt
Principles of GALOPPS/MaNYPOPS. . .ccceeutruiieeaieeiiiiaa e e e e ettt eeeeeai s smmmeee s
General Format for a Master File........cooouv i

RUNNING MANYPOPS ON MULTIPLE PROCESSORS........ccoooiiiiiiiiiiiiiiie e

NEW EXAMPLE PROBLEM FILES........c ittt
Approyrd.c -- Holland's Royal Road Problem..............oiii e
AppOto9.c -- A Non-Binary Alphabet Demonstration Problem........c..c.oiiiii.
Appbtsp.c -- Blind Traveling Salesman Problem............ccciis
Appdemoi.c -- Demo Problem for Inversion Operator..............cooeeieeiiiieiiiiiinieeeeeeeeans
Appdifrp.c -- Demo Problem for Different Representations and Injection

ATCRITECIUIE. ... e e e
Appbpp.c -- Demo of GGA Representation for Bin Packing Problem
Appxxxxx.c -- "Blank" Template for Development

Of New GALOPPS APPlICAtIONS. ...ccuuiiieeiiieiiii e

CONTENTS OF USER'S APPLICATION-SPECIFIC FILE (APPXXXXX.C).....covvvuennee

CODE DISTRIBUTION FORMATetiittiieeeii ittt ettt e et e e e e e e e e e aaes
How to Prepare the GALOPP System for Solving
YOUR ProbIem......ccoooiii e
Compiling/Linking the SYSTEM.......uuui e
MOdUIES 10 COMPIIE. ... et

UPDATES AND BUG REPORTING......ciiiiiiiiiiiii e

APPENDICES
APPENDIX ONE -- AUXILIARY FILES
Listing of All Auxiliary Files Provided with the GALOPP

System, Release 3.0, by the Problem Files They Accompany.............ccceeiiiiiiiiiiiiinnnnn.

APPENDIX TWO -- CONTENTS OF THE FILE TYPES WRITTEN BY GALOPPS...

APPENDIX THREE -- EXCERPTS FROM SGA-C V1.1 RELEASE DOCUMENT.......

Vi

47
48
48
49
49
49

49
49

50

50

58

60
61

6l

63

64

68

74

AN INTRODUCTION TO
GALOPPS

The "Genetic ALgorithm Optimized for Portability and Parallelism" System

DISCLAIMER NOTICE:

Maodifications, extensions, enhancements, reimplementations, etc., of all preceding code from which this system is
derived are the sole responsibility of Erik D. Goodman, Professor and Director, Case Center for Computer-Aided
Engineering and Manufacturing, and member of the Genetic Algorithms Research and Applications Group,
Michigan State University; and absolutely no claim is made as to the correctness, fithess or merchantability of this
code or the code on which it is based, or the accuracy of the accompanying documentation, for any purposes
whatsoever. While the author will be pleased to receive information regarding any bugs discovered, and may, at
his option, choose to release revised versions of the code repairing such bugs, no promise or warranty is made that
such bugs will be fixedAll use of this code and documentation is at the sole risk of the user.

This code, like the original SGA-C, is distributed under the terms described in the accompanying file
"NOWARRAN?", in accordance with the guidelines of the GNU General Public LiceFfsa means that this

code has absolutely NO WARRANTY implied or given, and that the author assumes no liability for any

damage resulting from its use or misuseThe contents of the NOWARRAN files for both GALOPPS and the
original SGA-C code are also printed for your convenience on the second page of this document. A copy of the
GNU Public License is available in subdirectory docs, in file "license".

ThisWARNING is intended to be REAL: the many features of GALOPPS means that there are many possible
combinations of features which may never have been tested, or which may contain bugs which were not
discovered even though they affected test runs. At each new release, bugs in former releases have been found
(and corrected), and the "last” bug will probably never be found. As with any GA code, the thingpe&arto

work while doing something quite different from what was intended. Before investing large amounts of time
and/or resources in applications based on this (or, the author believes, ANY) GA code, the user should VERIFY
the correctness of the operations with the features selected. The author found several significant bugs, for
example, in the original SGA-C code from which this software was initiated, even though that code has been
available for several years.

ACKNOWLEDGMENTS:

The author wishes to acknowledge the contributions of Mr. Wang Gang, graduate student, Beijing University of
Aeronautics and Astronautics, to the writing of the 'C' code for some of the modifications and extensions of this
system, and thanks him for help in debugging of some of the author's code, as well, through Release 2.05 of the
ESGA/IPGA system.

The author would like to thank Prof. John Holland for introducing him to the concepts of genetic algorithms, in
the Logic of Computers Group at the University of Michigan, 1968 - 1971, and for successfully introducing
genetic algorithms to the world.

The author is grateful to Beijing University of Aeronautics and Astronautics, Beijing, China, and to Prof. Li Wei
and other faculty members of the Department of Computer Science for providing him an excellent environment
and facilities for use during his sabbatical leave, September, 1993 - February, 1994, during which time he began
the development of this system. Special thanks are due to the author's colleague and friend, Prof. Pei Min,
College of Automation Engineering, Beijing Union University, for his great help in making the stay in China both
productive and enjoyable.

The author thanks the members of MSU's Genetic Algorithms Research and Applications Group (GARAGe), and
especially Bill Punch, Assoc. Prof, Computer Science, and Co-Director of the GARAGe, for advice and assistance

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 1

with the packaging, benchmarking, profiling, and other improvements made in Versions 2.05 and beyond. Bill's
persistence in getting the djgpp 'C’ compiler packaged up for distribution with PC versions of GALOPPS and
lilgp has been a great help.

The author also appreciates the helpful suggestions made by members of Computer Science 941 (Genetic
Algorithms) taught by Bill P unch in the fall semester, 1994, and especially thanks Dan Judd, who furnished code
for four of DeJong’s classical GA test functions and reported several bugs. The author thanks Prof. Rich Enbody
(Computer Science) and his class, who did PVM parallel implementations of GALOPPS and wrote Unix-based
graphical user interfaces for the system in fall semester, 1994; Prof. Enbody and Vera Bakic , who developed a
PVM implementation of GALOPPS3.0 for a MPP (or distributed workstation network). The author is grateful to
Brian Zulawinski, who actively explored and extended GALOPPS in the areas of scheduling (and bin packing),
and implemented the GGA (invented by Emanuel Falkenauer) under GALOPPS. The author thanks Leslie
Thomas Wall Hoppensteadt, who greatly improved the checkpoint file handling process in Release 3.0, and who
built in the command line parameter overrides, using code written originally for lilgp (another product of the MSU
GARAGe) by Doug Zongker. Leslie Hoppensteadt also revised much of the code for reading inputs. Yizheng
Feng, with the assistance of Prof. Min Pei, wrote the new Tcl/Tk-based Graphical User Interface for GALOPPS
3.2 (Unix distribution).

HARDWARE / OPERATING SYSTEM REQUIREMENTS:

This software is written in 'C’, and has been run on DOS-based, MS-Windows-based, Macintosh, and many Unix-
based systems. It has been tested on Sun, Hewlett Packard, and NeXT workstations, using a variety of compilers.
On PC systems, it has been tested using Borland C++ (Release 3.1) (but not making use of functionality beyond
standard 'C"), Microsoft C, and djgpp. It has also been tested on Macintosh computers, under the Metrowerks
CodeWarrior compiler. The 'C' code for all of these systems is identical, and allows the user to select via one or
two "#defines" in files sga.h and external.h whether or not ANSI-style in-line prototype declarations are used,
depending on the compiler to be used. The user should specify the characteristics of the compiler and the
hardware in use via compilation options before compiling the code (for exammaleprocessor, whether or not

a coprocessor is present, what memory model is to be used, what optimization should be done, etc., are

needed by Borland C+3. Some editing of makefiles may be needed to accommodate the locations of standard
include files, etc., on the user’s system.

Beginning with Release 3.0, and ending with Release 3.2, the author is distributing with a PC version of
GALOPPS a 'C’ compiler, djgpp, which, like GALOPPS, is distributed under the GNU General Public License,
and which makes GALOPPS and lilgp very practical to use for fairly large problems on a PC. The djgpp compiler
treats all installed PC memory as flat, removing the need for extended memory, etc., and also providing paging
transparently to the user, just as if in a Unix environment, but running under DOS. Therefore, the user can run
GA problems requiring many MB of RAM without difficulty. However, future releases will not include djgpp, as
other compilers now typically also provide access to all of RAM.

BACKGROUND INFORMATION:

This software was developed from the starting framework of the Simple Genetic Algorithm (SGA) system
described in David Goldberg's bodkenetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, Reading, Mass., USA, 1989. This was done in order that the beginner to genetic algorithms can
read Goldberg's superb description of the theory and organization of a genetic algorithm, and understand the code
in his book, as a stepping stone to understanding the more complex and powerful structure of the GALOPP
System. The code has been extended many fold from the oi&§s#&iC (documented in Appendix Three of

this manual), and many sections have been rewritten for greater efficiency (speed), but the organization of the
core GA is parallel to that of the original SGA in many respects. Many of the operators, measures, concepts, etc.,
used here and NOT included in SGA-C are defined in Chapters 1-4 of Goldberg’s book. Ideas and algorithms
defined there are NOT, in general, repeated in detail in this guide, so the user should refer to Goldberg’s book for
answers to questions not found here.

2 Erik D. Goodman, GARAGe, Michigan State University

The best way to become familiar with genetic algorithms in general, and with the SGA organization in particular,
is to read Chapters 1-4 of Goldberg's book, perhaps along with several chapters of Holland's pioneering work,
Adaptation in Natural and Artificial Systems (UM Press, 1975, or MIT Press, 1990). (Copies of both of these
books, and several other books and conference proceedings, as well, are furnished to all universities joining the
Russian/American Joint Education/Research Consortium for Intelligent CAD/CAM/CAE and Genetic Algorithms
(the "ICAD/GA Consortium") and to the universities in China collaborating with the Genetic Algorithms Research
and Applications Group of Michigan State University). (All Russian members of the GARAGe also belong to the
ICAD/GA Consortium, but not all members of the ICAD/GA Consortium are funded to conduct research as
members of the GARAGe.) The prospective user might also want to conssEB#€ documentation

included as Appendix Threeof this document, in order to see what was done in translating the system from
Pascal to 'C'. All later enhancements and extensions are those of the author, and are described below.

In addition to being available for anonymous ftp and worldwide web distribution, this release is being distributed
to two groups of universities: (1) the Russian/American Joint Education/Research Consortium for Intelligent
CAD/CAM/CAE and Genetic Algorithms, including members at Moscow State Bauman Technological

University, Moscow Aviation Institute, Nizhny Novgorod State University, Penza State University, the Institute of
Computation of the Russian Academy of Sciences, and Taganrog State University of Radioengineering, and (2) a
consortium of Chinese universities conducting joint research on genetic algorithms with the author and his
colleagues at Michigan State University, including the Beijing University of Aeronautics and Astronautics,
Tsinghua University, Zhejiang University, the Academia Sinica (Chinese Academy of Sciences), and Beijing
Union University. The software is available to others upon request, or via anonymous ftp from the archive server
in the Genetic Algorithms Research and Applications Group (GARAGe), Michigan State University (ftp to
isl.msu.edu, look in subdirectory pub/GA for the latest GALOPPS release in both gzipped tar format and as a
directory of files. Web users may use //isl.msu.edu. For more information, contact the author by email:
goodman@egr.msu.edu. The Case Center's Sister Center in Moscow, and Russian headquarters for the GARAGe,
is the AI/CAD Laboratory of Moscow State Bauman Technological University, V. L. Uskov, Director (email
uskov@aicad.isrir.msk.su). Dr. Uskov can also provide assistance to users or other interested parties in Russia
and the CIS. Russian-language versions of GALOPPS are also available from the Russian GARAGe, but are
usually one release delayed from the English-language version.

WHAT ELSE IS COMING OUT WITH GALOPPS?

Graphical User Interface is available in Tcl/Tk for Unix users -- see GARAGe web site.

Threaded version of GALOPPS 3.01 is available -- see GARAGe web site.

PVM GALOPPS Release 3.1 continues to be current

DAGA2 -- a 2-level GA based on GALOPPS -- will be available "shortly".

DAGAZ2 does ON-LINE competition among multiple subpopulations solving a problem, using different
crossover, mutation, selection operators, different representations, different operator probabilities,
parameters, etc. It uses PROGRESS in solving the problem as the "fithess function" for each
subpopulation, and good combinations of operators, representations, parameters, etc., spread
through the set of subpopulations via genetic operations (crossover, mutation, selection) treating
subpopulations as individuals. DAGAZ2 can dynamically track the solution process, changing
operators and rates as the problem solution progresses.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 3

RELEASE HISTORY AND BUG FIXES (ESGA/IPGA 2.00 --> GALOPPS 3.2):
GALOPPS 3.2, July 15, 1996

This is a major new release, with several added capabilities, and many minor
improvements to 1/0O, completeness of information reported, and documentation. Primary
new capabilities are:

A GRAPHICAL USER INTERFACE for Unix users, implemented in Tcl/Tk, which
allows easy, form-fill-in driving of Onepop and Manypops, and provides
GRAPHICAL output of key variables under user control. It also allows graphical
input of migration relationships in Manypops, and writes/reads input files
compatible with the "standard", non-graphical user interface. See the GARAGe
web page (http://isl.msu.edu/GA) to download it. Full documentation for the GUI
is still in preparation.

Allowing user to define different ALPHABET SIZES (cardinalities) for different fields,
and automatically treating them correctly (crossover only at field boundaries,
mutation only to allowable values), even if subpopulation-level inversion is in use.
To use different alphabet sizes, selpha_size = 1 in the input file, and supply
values for array field_sizes][] in function app_set_field_sizes() in the appxxxxx.c file.
GALOPPS automatically decodes the chromosome properly, and remaps variable-
length fields under an inversion operation, and transforms migrants into the correct
inversion pattern (and field boundaries) for the receiving subpopulation.
(Introduced at user request -- thanks to Dragan Savic at University of Exeter.)

Introduction of a new MULTI_FIELD MUTATION OPERATOR. Single field (or
single-bit, for binary reps) mutation is very ineffective for problems with much
"deception”, and a spatially correlated mutation operator, which can change
several adjacent fields at once, can be helpful. User specifies (in the input file) the
frequency of subjecting a chromosome to a multi-field mutation (probability per
chromosome) and (in function app_set_options()) the expected value of number of
fields possibly altered (this mutation changes at RANDOM some fields in a
computed range of loci, but some may NOT be altered).

Introduction of BOLTZMANN SCALING for control of selection via a single
parameter, beta. Settingbeta to 0. makes all individuals equally likely to be chosen,
while large betas (3, for example) give almost all probability of selection to the most

4 Erik D. Goodman, GARAGe, Michigan State University

fit individual. Between the extremes, any desired level of selection pressure can be
achieved.

Optional AUTOMATICALLY CONTROLLED SELECTION. The pioneering
theoretical work in applying statistical mechanics (or maximum entropy
assumption) to GA'’s (see Shapiro and Pruegel-Bennet, for example) has produced a
method for dynamically controlling selection so as to achieve relatively high rates of
improvement of mean fitness without strongly reducing the diversity of the
population. A method for control of selection, using dynamically altered
Boltzmann scaling, is provided in GALOPPS 3.2.

Introduction to GALOPPS of a specialized representation and operators for
manipulating it, the GROUPING GENETIC ALGORITHM. This GGA
representation, developed by Emanuel Falkenauer, greatly enhances performance
of a GA for attacking many grouping and grouping-related problems, as are
frequently found in scheduling, partitioning, packing, and similar problems. A
problem directory has an example of a GGA problems (for bin packing) together
with the specialized operators and encoding/decoding routines to use the
representation. It should be regarded as alpha-test (experimental) code, but is
included because of interest to some users

Improved REPORTING of input configuration and internal parameter settings, plus
more convenient (and optional) printing of integer fields for non-binary problems.

A THREADED version of GALOPPS, enabling users on multiprocessor systems to speed
up the running of either Onepop or Manypops runs, using the pvm system, without
user intervention.

GALOPPS 3.2 fixes a bug (in 3.0 and beyond) which did not allow the user to specify an
output file name without also specifying an input file name. While this may represent an
unusual method of usage, it now works correctly.

GALOPPS3.2 fixes a bug (in 3.0 and beyond) in the demoinv example, restoring code in
appdemoi.c which was inadvertently deleted and which defeated the second-order selection
mechanism which the example was to demonstrate.

GALOPPS 3.01, 3.02, August 1, 1995

This is a minor bug-fix and documentation improvement release. The new checkpoint file routines introduced in

3.0 were found to interfere with EXTENDING of checkpointed Onepop runs, and that is now fixed in file

mainone.c. Release 3.0's makefiles showed an error (on some systems) because file master.c was accidentally
included in the compilation when "make Onepop" is typed. That has been fixed in all of the makefiles in 3.01. A
few examples of extending runs have been added to subdirectories work and examples/app. A comment in many of
the app files might have misled the user into thinking the user needed to malloc utility fields used by user's
application, so that has been corrected to indicate that GALOPPS automatically mallocs the utility fields, so long

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 5

as the user specifies a non-zero length (bytes) in routine GetUtilitySize() (in user's appxxxxx.c file). The manual,
guide301.ps, has been updated to include these changes, and the section on getting started with GALOPPS and
writing your own GALOPPS application have been extended and improved. Release 3.02 was a repackaging for
PC users, with no extended capabilities.

GALOPPS 3.0 is distributed in a new form, as a directory galopps3.0, with several subdirectories. Unix users may
load the tarred, compressed file. PC users may use that if they wish, but an (otherwise identical) form is available
with the DOS-type end-of-line terminations, which is necessary for some compilers. PC (DOS or Windows) users
who want to run problems requiring more than 640KBRAM should also download the djgpp 'C++’ compiler, a PC
port of the GNU g++ compiler, providing up to 128MB of "flat" RAM and up to 128MB of paging disk (whatever

is available on your machine). Makefiles which are usable by djgpp are also included (in both versions). (See
directions for use below.) However, for debugging new applications, the user may want to use his/her "usual”
tools. For Borland 'C’ users, some example ".prj" files are provided (in the work\ subdirectory and the
examples\app\ subdirectory. Before compiling with Borland 'C’, be sure to specify under "options" that include
files are also located under subdirectory 'galopps3.0\include’, and when making a new project, the user must add
in the source files from subdirectory 'galopps3.0\src’. Specify the problem file’s subdirectory as the place to put
compiled objects (output from compiler).

The Beijing 2.0 release of the ESGA/IPGA system, distributed on January 31, 1994, was prepared during October,
1993 - January, 1994, while the author was conducting research and teaching a graduate-level course on genetic
algorithms during his sabbatical leave at Beijing University of Aeronautics and Astronautics, Beijing, China.
Students in the class used parts of this code for solution of problems, but no large-scale, comprehensive test
program was undertaken. Several bugs were found and repaired in the SGA-C code which served as the starting
point for this development (a "stuck at" fault in the initialization of chromosomes, improper rate and counting of
mutations, and errors in ithruj2int for reading of integer fields from chromosomes were particularly significant
errors).

The Beijing 2.01 Release of ESGA/IPGA (February 16, 1994) corrected not only the bugs discovered in the
original SGA-C, but also several bugs in earlier alpha test releases of the code from November, 1993 - January,
1994. It added a print of the random number seed to the program output, generalized example problem
applperm.c, and added an additional example problem. Modules updated included generate.c, report.c, tselect.c,
mixedrep.c, master.c, utility.c, startup.c, initsubp.c, random.c, applperm.c, and sgafunc.h. The example
makefiles for the mixed representation files were also modified. The new example file added was called
applboth.c.

Release 2.05 of ESGA/IPGA (subsequently renamed GALOPPS 2.05) corrected a very few additional bugs, made
the input file 1/O code more portable, provided some additional tools for working on hybrid problems
(reordering/parameter value problems), and added a new manufacturing sequencing example problem.

Besides additions, several output formats were changed in Release 2.05. Routines altered included: mainpga.c,
mixtutor.c, statisti.c, and apprally.c. Also, a new callback (app_new_global_best_report()) was added to every
app-type file and template. This was intended to make it easier for the user to turn on "quiet” mode, particularly
for parallel runs, and see output only when new global best individuals are found, but to be able to print out
whatever information is desired (from the new callback) at that time, even if in quiet mode.

GALOPPS2.20 corrected a severe bug in the optional crowding mechanism which was introduced earlier.
Crowding had not been tested extensively, and did not work properly before Release 2.20. All I/O file formats
changed in 2.20, due to the many additional features introduced (see New Features below).

GALOPPS2.25 corrected a serious bug in migration among subpopulations. Users using parallel subpopulations
at all were urged to go to 2.25, as the 2.20 version had a serious bug in migration of individuals among
subpopulations.

GALOPPS2.30 included several bug fixes to the 2.25 release, including a bug fixed in uniform crossover.

6 Erik D. Goodman, GARAGe, Michigan State University

GALOPPS2.31 differed from 2.30 only in that an additional user callback function, app_after_random_init() was
added to each application file, called from startup.c (Onepop) and initsubp.c (Manypops). The user who had
already created new application functions just needed to add a blank (dummy) callback to their app......c file, as
illustrated in any of the app files accompanying 2.31.

GALOPPS2.32 differed from 2.31 only in the rewriting of files appmansq.c to use automix, and of appmatch.c

and appautmx.c to improve their understandability. Their input files were also augmented with comments about
the automix runs which should precede them. On Oct. 26, 8pm, Release 2.32 was updated slightly with
corrections to the guides, slightly improved logic for the "quiet” mode printing (at user request), and corrected
comments and better input files for 3 hybrid-type example files, applperm.c, applposn.c, and applboth.c. Users
preparing their own application files should not have been affected by any of these changes, except to see slightly
more output than before when "quiet" is set to 1 or 2.

In GALOPPSZ2.35, a bug in crossover rate, when crowding is used, was fixed. Several other small problems were
remedied, in files mainmany.c, checkwt.c, checkrd.c, generate.c, random.c, sgapure.h, and 24into8.mst. Program
input was reorganized. The sequence in which inputs are requested, by both Onepop and Manypops, was
organized more rationally. Especially in Manypops, any inputs which cannot differ among subpopulations are
now requested only once, and used for all subpopulations "owned" by the process. The entry of random number
seeds for the second and later subpopulations, which were not, in fact, used, is no longer necessary. This
reorganization allowed a new, simpler description of the input files (in intempla.one and intempla.man), but
altered ALL sample input files, the ".h" files, and all sample application files, as well as the contents written to the
checkpoint header file. Checkpoint header files written by older versions of GALOPPS cannot be read by Release
2.35.

In GALOPPS2.35, user-created app files require alteration of only the initialization portions (addition of a
parameter to app_init(), and adding of "blank” functions app_user_init_pop() and app_after_random_init() to the
app files).

GALOPPS2.36 fixed a small number of bugs found in 2.35, having to do with uniform crossover evaluation
counting, crossover rates when crowding was used, a bad value in an example .mst file, and some irregularities
with global parameters under certain restart conditions, which required a small change to the checkpoint header
files (.ckp). Therefore, previous checkpoint files are not compatible with those of Release 2.36 and beyond.

GALOPPS2.37 contained a few bug fixes to Release 2.36, including two to the app_user_init_pop feature added at
Release 2.35, one involving file locking when multiple processes or machines are used, one sometimes causing
faulty initialization of the global .stt file, and one affecting dynamic resizing of populations. The order of reading
checkpointfileprefix and restartfileprefix in Onepop has been revised to match that of Manypops.

Release 3.0 contains many enhancements. File locking has been greatly simplified from the user perspective:
only the global statistics file still has a companion locking file, z.....stt. The .ckp and .ind files are now "self-
locking”, and multi-population runs on multiple processors may be run without the program creating many z......
lock files. The structure of the command line invoking the program has been enhanced. The (optional) input file
name is now preceded by -i , output file name by -0, etc. Other parameters may now be OVERRIDDEN for the
run by specifying their values (for all subpops or only one) on the command line (see description of this feature).

The addition of optional inversion for use with all but permutation representations means that if ‘permproblem’ is
false, the input file must contain the probability (per generation) of inversion, as described below under New
Features. Multiple subpopulation runs (on ONE processor or on many) now allow each subpopulation to use a
different representation for the problem solutions; the user must only supply 'C’ code to map from those
representations to the "standard” one used in the fitness function, and to map migrants from one representation to
any other to which migration will occur. Since number of fields, alpha_size, and choice of random or
superuniform initialization may now change from one subpopulation to another (even within the same process),
the order of the input information had to be changed, so all .in files were revised to reflect this change (a .txt file
in the distribution tells how to update any existing applications you may have written to comply with the new
input file structure). Documentation in the code is improved, as is this user guide. The USER, in the app code,
must provide any "meta-level" code to control the inversion rate, in order, for example, to allow competition

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 7

among subpopulations using different inversion patterns. A simple example of a method to do that is provided in
directory examples/demoinv.

If you have begun using any of the earlier releases, the author urges you to convert to the latest release. The
newest release has been tested more thoroughly than any of the early releases, some of which were interim
development releases only. The capabilities of Release 3.0 and beyond, and their level of system independence
and testing, are much better than early releases. Conversion from a recent release should involve only MINOR
changes in user-written code -- in any app files the user has written. The easiest way to find the changes to be
made is probably to diff the appxxxxx.c file you used in creating your application with the appxxxxx.c file in the
new release, and then make corresponding changes in YOUR app file. However, an additional file, changes.txt,
documents the changes to be made in a user’s app file from release 3.0x to 3.2

Release 3.01, August 1, 1995, is a minor bug-fix release of 3.0, to remedy a problem introduced when the 1/0
system was improved. The problem occurred if a user tried to EXTEND (restart) a run done under Onepop, and
did not occur on either ordinary runs or using extension of Manypops runs. An error for compiling Onepop in the
makefiles in the examples subdirectories and work directory was also corrected (file master.c should NOT be
linked for compiling Onepop, to avoid a multiple definition error). Users not using Onepop need not install
Release 3.01, although it does also include three additional example input files illustrating extensions of runs, and

user need NOT malloc utility fields... they are malloc’d automatically by the system, using the length information
provided in the user callback GetULtilitySize(). .

A NOTE ON USER INTERFACES, ETC.:

A NEW GUI is available for Unix users of GALOPPS 3.2. See the GARAGe web site (http://isl. msu.edu/GA) for
information about and/or to download the new graphical user interface (beta test). A PC version of the GUI
(which is written in Tcl/Tk) should be available in Winter, 1997 (depending on release of versions of Tcl/Tk for
various Windows, Windows95, and WindowsNT environments). The GALOPPS system is FILE-DRIVEN, for
system independence, and does not include a graphical user interface bundled within it (for window-based
specification of input and graphical display of output, for example). GALOPPS is the ENGINE, which was
designed to be easy to embed in a GUI. The GUI simply writes the input files (which can be in a human-readable
format for easy development) and displays the results from the output or checkpoint files, for example. Hooks
(via app callbacks) are provided for modifying a run in process, etc.

For information about these and related developments, please send email to gopodman@egr.msu.edu indicating
that you want to be included on the list of GALOPPS users. Alternatively, consult the WorldWideWeb page of
the Genetic Algorithms Research and Applications Group at MSU (//isl.cps.msu.edu/GA/) for progress reporting
on their availability, or contact gopodman@egr.msu.edu

Please monitor the web page of the MSU Genetic Algorithms Research and Applications Group (MSU GARAGe)
for further information.

8 Erik D. Goodman, GARAGe, Michigan State University

NEW AND ENHANCED CAPABILITIES OF GALOPPS 3.0
FROM GOLDBERG'S “SIMPLE GENETIC ALGORITHM ”
IN BRIEF:

(NOTE: For information on how to get started running GALOPPS,
see the next sections, "How to Get Started Running GALOPPS"
and "Writing Your Own Application.")

(For more DETAILED descriptions of the new features cited below,
see the section "Additional Tools for Traditional Problems" (p. xx)

(For more DETAILED explanations of parallel operation (on one
computer or on many), see the sections "Overview of GALOPPS
3.0’s Island (Coarse-Grain) Parallel Capabilities," "Files Used in
GALOPPS," and "Files Created by GALOPP System During
Execution"). Alternatively, Unix users may see the separate
documentation and code for PVYM GALOPPS or Threaded
GALOPPS (on the GARAGe web site, http://isl.msu.edu/GA).

GALOPPS was initiated from the Simple Genetic Algorithm as described in Goldberg’s book, and inherits some

of its characteristics -- for example, itgenerational (i.e., the next generation is calculated entirely from the

current generation without drawing individuals for breeding from among newly generated offspring) rather than
steady-state However, in many other ways, it has been extended to allow CHOICES, some of which differ from
the single possibilities offered by the original SGA. For example, offspring need not replace only their own
parents, etc. The user should be familiar with genetic algorithms before using GALOPPS (or any other GA which
offers many choices of parameters, methods, etc.), because the problem-solving ability of the GA often depends
STRONGLY on appropriate selection of, and harmonization among, the many possible representations, operators,
selection methods, replacement strategies, parameter settingbhetaser is counseled NOT to use optional

features beyond the Simple GA (for example, crowding, incest reduction, sigma truncation, migration

crowding, rank-based selection, etc.) without understanding what they do and whether or not they are

appropriate for the problem the user is solving. An inappropriate choice MAY make the solution much

more difficult, rather than easier. GALOPPS does not decide on appropriate parameter settings or operators for

a particular configuration -- that is up to the user. The sample applications merely ILLUSTRATE the use of
various features, and ARE NOT OPTIMIZED for best performance -- rather, use of various features is sprinkled
among sample applications largely based on when the feature and the application were developed and undergoing
test. The author hatb interest in pursuing optimal tuning of any particular sample application, but rather

sought to illustrate ways in which GALOPPS may be used.

Major ways in which the current system has been extended or improved from the SGA as documented in
Goldberg's book (and from the SGA-C v1.1 version) include

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 9

(*** indicates a capability NEW in Release 3.0 - 3.2. Other items were new in Releases 2.0 - 2.25.)

*** Added a GRAPHICAL USER INTERFACE for Unix users, implemented in TCL/TK, which allows easy,

form-fill-in driving of Onepop and Manypops, and provides GRAPHICAL output of key variables under
user control. It also allows graphical input of migration relationships in Manypops, and writes/reads
input files compatible with the "standard", non-graphical user interface. As soon as users of other
systems have tcl/tk available on their systems, they may begin using this new GUI.

*** Allowing user to define different ALPHABET SIZES (cardinalities) for different fields, and automatically

treating them correctly (crossover only at field boundaries, mutation only to allowable values), even if
subpopulation-level inversion is in use. GALOPPS automatically remaps variable-length fields under an
inversion operation, and transforms migrants into the correct inversion pattern (and field boundaries) for
the receiving subpopulation. To use different-length fields, simply input alpha_size as 1 (a flag), and
specify the desired alphabet size for each field in array field_sizes[], found in function
app_set_field_sizes() in all application (app.c, appl.c, appxxxxx.c, etc.) files. GALOPPS will handle the
fields automatically, even if they are subsequently reshuffled by a subpopulation-wide inversion
operation. Migrating individuals are automatically translated into the format of the receiving
subpopulation.

*** Introduction of a new MULTI_FIELD MUTATION OPERATOR. Single field (or single-bit, for binary reps)

mutation is very ineffective for problems with any "deception”, and a spatially correlated mutation
operator, which can change several adjacent fields at once, can be helpful. User specifies frequency of
subjecting a chromosome to a multi-field mutation (probability per chromosome) and the expected value
of number of fields possibly altered (this mutation changes at RANDOM fields in a computed range of
loci, but some may NOT be altered). Currently, this operator is used by substituting "multimut.c” for
"bitmutat.c” in the makefile in the /work or /examples/??? directory. In a future release, all operators will
be loaded at compile time, and the user will select among them during the run, so that both sorts of
mutation could be in use simultaneously. Once multimut.c is loaded, the user specifies the average
width (number of fields) to be mutated at random (value may return to current value) as avg_mut_width,
a global in app_set_optiona() in the user’s app file. The probability of doing a multi-mutation is
specified PER CHROMOSOME, currently as "pmutation” in the normal input file, which multimut.c
knows to interpret as a per chromosome, not per field, rate.

*** Introduction of BOLTZMANN SCALING for control of selection via a single parameter, beta. Setting beta

to 0. makes all individuals equally likely to be chosen, while large betas (3, for example) give almost all
probability of selection to the most fit individual. Between the extremes, any desired level of selection
pressure can be achieved.

*** Optional AUTOMATICALLY CONTROLLED SELECTION. The pioneering theoretical work in applying

statistical mechanics (or maximum entropy assumption) to GA'’s (see Shapiro and Pruegel-Bennet, for
example) has produced a method for dynamically controlling selection so as to achieve relatively high
rates of improvement of mean fitness without strongly reducing the diversity of the population. A
method for control of selection, using dynamically altered Boltzmann scaling, is provided in GALOPPS
3.2

*** Introduction of a specialized representation and operators for manipulating it, the GROUPING GENETIC

10

ALGORITHM. This GGA representation, developed by Emanuel Falkenauer, greatly enhances
performance of a GA for attacking many grouping and grouping-related problems, as are frequently
found in scheduling, partitioning, packing, and similar problems. Subdirectory /examples/GGA has an
example of GGA problems (appbpp.c for bin packing) together with the specialized operators and
encoding/decoding routines to use the representation. It should be regarded as alpha-test (experimental)
code, but is included because of interest to some users.

Erik D. Goodman, GARAGe, Michigan State University

*** A THREADED version of GALOPPS, enabling users on multiprocessor systems to speed up the running of
either Onepop or Manypops runs, using the pvm system, without user intervention.

*** Setting flag different_reps now allows the user to utilize DIFFERENT REPRESENTATIONS of the problem
in different subpopulations, by filling in one 'C’ callback routine to map a chromosome from an arbitrary
subpopulation’s rep to the "standard" rep used in the objective (fithess) function, and one routine to map
a chromosome from any subpopulation’s rep to any other subpopulation’s rep to which individuals will
migrate. (Added in Release 3.0.)

*** Migration of individuals among subpopulations includes many options, including crowding versus the
receiving population, incest reduction from the donor population against the best individual of the
receiving population, user-written migration code, and transformation of migrants from one
representation to another, allowing the user to use a different representation for each subpopulation, if
desired. This capability readily allows for such parallel architectures as the "injection architecture”
described in the recent publications of MSU’s GARAGe. It allows for increasingly refined
representations on lower levels of a tree of subpopulations, and also allows for inversion on the
subpopulation level, for example.

*** Command line overrides of all input parameters are now allowed, making it easier to conduct many
replicated experiments changing only one or a few parameters or random seed between runs, without
having to generate and keep many different input files.

*** The preliminary checkpoint files (suffixes .new and .neu) used in earlier releases for locking and
synchronization purposes are no longer needed. They are replaced by new .ckp and .ind files which
employ alternating buffers, and are read/written with care to preserve file consistency. Multiple-process
statistics (.stt) files continue to use the old locking scheme, as they have multiple writers.

*** Inversion operators and associated support for inversion of entire subpopulations are provided in 3.0. (See
Additional Tools for Traditional Problems for more description).

*** Representation of problems involving non-binary alphabets, using new crossover and mutation operators
restricted to generating only legal values (mutation) and crossing over only at boundaries between fields,
and a new initialization routine to generate only legal values in such fields.

Solution of order-based (permutation-type) problems.

Capability for simulation (on one computer) of interacting, "island" parallel subpopulations, with many methods
for interchange migrants..

Capability for running island parallel subpopulations on MULTIPLE processors (workstations or PC's), with
migration among the subpopulations in the various processors, so long as processors can read/write from
a common file system.

Capability for running island parallel subpopulations using MULTIPLE processes on a single workstation, with
migration among the subpopulations controlled by the various processes.

Complete rewrites of bit-by-bit mutation and of uniform random initialization of binary chromosomes, reducing
execution times of these routines 10-30 fold from SGA-C, particularly when hardware floating point is
not available.

Improved capability for user-supplied initialization of the population.

Optional SHORT form of the "master” file, xxxxxxxx.mst, which specifies for each subpopulation of a

Manypops run which types of individual are to migrate in from which other subpopulations. If this

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 11

migration pattern is to be the SAME (relative to the positions of neighbors) for all subpopulations, then
the user may now specify it only for subpopulation 0, and the program will do corresponding migrations
for all other subpopulations.

Performance measures: on-line, off-line, current best and best ever, all measurable within a single
subpopulation, within a single cycle on one processor (or process, in a workstation), and lumped for all
subpopulations of a problem.

Convergence measuring tools, including "lost" and "converged" loci and "percent converged" for all loci, plus
callback functions for terminating a run or reinitializing all or part of a population or subpopulation based
on its performance or convergence measures.

A non-standard measure of convergence based on percentage of "good" (above some standard-deviation-based
fitness cutoff) which are closer to some other "good" individual than to the current optimum individual.

Checkpoint and restart capability.-- for one population and for multiple subpopulations. Onepop’s
checkpointing was extended in Release 3.0 to allow checkpointing every k generations, rather than just at
the end (maxgen) specified by the user.

Two additional selection methods: stochastic universal sampling, suselect.c (see Baker, Proc. Second ICGA);
and linear ranking (see Whitley) followed by stochastic universal sampling of the resulting probability
distribution.

Addition of many more genetic operators, including two-point crossover, uniform crossover, uniform order-
based crossover, cycle crossover, order crossover, partially matched crossover (pmx), random sublist
scramble mutation, two-field swap mutation, and GGA crossover and mutation. The non-permutation
operators operate on binary or larger alphabets.

Superuniform initialization (optional), which (for binary representations, only) guarantees that a population
initially contains ALL of the possible combinations of length less than or equal g, <.

*** A richer callback structure for defining user applications without needing to alter any of the routines of the
GALOPPS system, in the same spirit as the original SGA.

An optional DeJong crowding-type replacement capability. Setting crowding_factor input to:
0 invokes "kid replaces parent” as in SGA,;
1 causes kids to replace population members selected at uniform random from among those already
selected according to fitness for reproduction and/or survival into the next generation, and
cf>1 causes kids to replace most similar (Hamming distance) of cf randomly selected individuals
from among those already selected according to fitness for reproduction and/or survival into the next
generation (DeJong crowding).

*** Optional Incest Reduction (only when also using DeJong-style crowding) helps to pair for crossover
chromosomes which differ significantly from each other, preserving diversity, reducing "wasted"
crossovers among nearly identical mates, and helping to combine building blocks for better global search.

Optional "elitism".

Several fitness scaling methods.

Improved "Quiet" mode operation, for reduced output under app control. User can set "quiet" input to O (full

output), 1 (most output suppressed), 2 (only "milestone™ outputs recorded), or 3 (no output except saving
of populations, statistics in checkpoint files).

12 Erik D. Goodman, GARAGe, Michigan State University

Many new sample applications.

An improved format for input of problems from files. Release 2.0 and beyond allowed for an optional keyword
on each line in an input file, allowing easy checking for correctness and automatic reporting of what
parameter the program expected and what it found. In Release 2.20, a SHORT form is also added for
input to Manypops runs, if the parameters for all subpopulations to be calculated by one process (or
processor) are to be identical. In that case, the user specifies them for one population, and those values
are used for all subpopulations. Only one random number seed is used, and random numbers continue in
the sequence determined by that seed throughout all subpopulations handled by the process.

A limited capability for "seeding" of populations (see checkpoint/restart).

New features are described in more detail in later sections of this manual.

HOW TO GET STARTED RUNNING GALOPPS

NOTE: GALOPPS 3.2 is available in several forms, for the convenience of the user community. For Unix users,
it is available in a gzipped, tarred form on the GARAGe web site, at http://isl.msu.edu/GA/software. For PC
users, it is available in an ARJ-archived form in DOS-formatted files, and including the DJGPP 'C’ compiler for
DOS, which can be used to compile it for the PC architecture, making available all memory plus paging disk.
DOS users who want to develop code and/or compile in their usual 'C’ environment may use their 'C’ compiler
(BorlandC, Microsoft C, etc.) on the DOS files, and may delete the djgpp compiler, if desired. The directions in
this guide’s section on compiling GALOPPS may be used to compile using any other 'C’ compiler. Makefiles are
supplied with each application, for those systems which can use them. Some users will need to "tailor" the
makefiles for their particular software/hardware environment (changing ’include’ file directories, compiler names
and options, etc.). Other forms of GALOPPS to be released during summer, 1996, include PVM GALOPPS 3.2
(for Unix only -- superseding Release 3.1); a new, threaded version of GALOPPS (as yet unnamed), and a multi-
level GALOPPS-compatible package called DAGA2. A new Tcl/Tk-based Graphical User Interface (GUI) is
available in Unix GALOPPS Release 3.2 on the web site as of August 1, 1996.

GETTING STARTED:
0. If unfamiliar with GA's, read Goldberg's book, Chapters 1-4. It describes the basic structure of the Onepop
program. Then read sections of this GALOPPS User Guide? (who, me?) for description of capabilities,
etc., to see what you might want to use?

1. Copy all files distributed with the GALOPP System Release 3.2 for Unix (or the GALOPPS 3.2 for djgpp or
for DOS) from its distribution medium into the directory under which you wish to hae your directory
galopps3.2 made. Directory galopps3.2 will include subdirectories src, include, work, and examples;
subdirectory examples will include many subdirectories (one per example). The work subdirectory is
where you will create your own applications. ('C’ code of the DOS version is nearly identical to the
Unix version... only the line-ending characters are system-specific, and the makefiles use del instead of
rm, gcc instead of cc, and the Tcl/Tk-based GUI code is removed.) (The djgpp release includes the djgpp
compiler and a directory for galopps3.2.) Unzip and unpack the routines as usual, if required (per readme
files). (Users who will use the djgpp compiler need to make the appropriate modifications to the PC’s
autoexec.bat and config.sys files, as described in th&riggall.txt” which accompanies the release.)

2. If your compiler does not accept ANSI-style prototype declarations, you must edit files external.h and sga.h in
directory galopps3.2/include/ to comment out the lines "#define PROTOTYPES_ACCEPTED" and/or
"#define SECONDARY_PROTOTYPES ACCEPTED" as described in the header of external.h. The
header (.h) files for GALOPPS are located in subdirectory galopps3.2/include/.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 13

3. Change to directory galopps3.2/src and edit makefile. Edit the compiler options in the makefile so the CC line

gives the command for invoking your compiler (cc, gcc, etc.). Edit the CFLAGS lines for any desired
optimization, etc. (FP coprocessor or not, which processor, debug flag -g or not, etc.) to fit your system.
(Note: the version of djgpp distributed with this release of GALOPPS does not compile correctly on
some hardware if the -O (optimize) flag is set, so -g should be used, or another distribution of digpp or
some other 32-bit compiler used.) If you want to look at the GALOPPS system’s source code lines while
debugging your application, turn off optimization and turn ON debug (-g option on some compilers, for
example). Exit the makefile and type "make". This will use makefile to compile (but not link) all of the
"core" 'C’ source files used by GALOPPS applications. Some compilers complain about not having
linked the program -- THAT IS NORMAL, as linking is not desired as part of the make in /src.

4. Select a sample problem (objective function definition, etc.) to run (example problems all have file names

which begin with "app" and end in ".c"). The table in Appendix One describes which input files are to be
used with which applications, and specifies any auxiliary programs which must first be built and run to
create sample files specifying problem parameters and data, etc. (if needed). Information about values to
specify when running those auxiliary programs for data creation for the example input files is in
comments at the top of the input files or in Appendix One.

5. Change to directory galopps3.2/examples/(whatever_example_you_want)/. Edit the options indicated in the

makefile there just as above, and, if needed or desired, you may alter the choice of selection method,
crossover type, inversion type, and mutation type, to ones also appropriate for the problem at hand (Note
-- you specify an inversion type in the makefile even if inversion will not be used, to avoid a linking
problem).

6. Use "make Onepop" to compile and link the code for a single-population run, producing an module Onepop,

or use "make Manypops" or simply "make" to create module Manypops. Users of djgpp must perform an
additional step: coff2exe Manypops or coff2exe Onepop, which convert the output of djgpp into a .exe
file. (Alternatively, the djgpp user may do debugging, etc., using another djgpp utility, run32, which is
described in the documentation included with djgggQTE: If you will run GALOPPS from the

new Graphical User Interface (GUI), you should have downloaded the Unix form of Release 3.2 and
should follow the instructions for compiling and invoking the GUI at this point (see file

“readme.gui’ included with that release). It will help you to create new .mst files for migration,

define properly formatted input files, and watch the output as your GALOPPS problem runs.

7. If running Manypops, you should already have created a (or use an existing) master file, with extension .mst.

(GUI users are helped to create it.) It will tell each subpopulation what its neighbors are, and what to
read from each at the beginning of each cycle. Format of the master file is described in the section
"General Format For Master File" in this manual.

8. Run the executable, which will be called Onepop or Manypops. (For a listing of command-line options, type,

for example, an illegal field, such as Manypops x, and the program will echo the legal parameters.)

9. Answer the questions as they appear on the screen. (At first, you may want to use sample input files, and to

look at the output in a file. See next paragraph.) For details on the meanings of parameters, consult this
manual as needed (see section "Explanation of Parameters for a Manypops Run,"” for example). If you
are not EXTENDING a run already completed, you may leave restartfileprefix blank (just "return™). If

you want to preserve the checkpointfiles at the end of the run, it is best to specify a prefix for their names
(a checkptfileprefix, up to 6 characters).

(If desired, you may read the input from a file and record the output to a file, by using the "-i inputfilename™

and/or "-o outputfilename” options on the line invoking the program. See the section on "New Format for Input
Files" for details on input, or simply record the interactive process to guide you in generating an input file. If you
sprcify the parameter names in the file, as recommended (so that a typical line is of the form "pmutation = 0.05",

14

Erik D. Goodman, GARAGe, Michigan State University

for example), then if the program finds some parameter name other than what it expects, it will tell you what it
found and what it expected, making it easy to correct the file.

NOTE: In GALOPPS Release 3.0 and beyond, IF YOU ARE READING INPUT PARAMETERS FROM A FILE,
you may also specify on the command line the values of parameters in the file to be OVERRIDDEN for this run.
GALOPPS will then ignore the corresponding values in the input file, and will use the values given on the
command line. The OUTPUT file will properly document the actual values used. For the format of the command
line, simply type Onepop -? or Manypops -?, and the format specification will be echoed for you.

The Graphical User Interface for GALOPPS3.2 eliminates the need to create input files and master files manually,
allowing you instead to fill out a form for to specify the input and to make a graph specifying the exchange
protocol. Then the GUI creates properly formatted input and master files compatible with the examples included
here.

NOTE: the values for GA parameters in the sample input files are NOT suggested settings for you to use. They
may not always even be appropriate for the application being run, but are simply choices which are acceptable to
the program. Use, for example, the schema theorem, Goldberg’s recent results on population sizing, Shapiro’s
results on selection pressure, your problem-specific knowledge, and testing to determine reasonable settings for
the parameters. Regarding communications topology for parallel subpopulations, I'd recommend keeping the
migration rates low, balancing premature "contamination” of all subpopulations with non-globally-optimal
immigrants (reducing global search effectiveness -- all subpopulations tending to search the same space) against
lack of recombination of good suboptimal individuals. Hierarchical or "tree-like" communications, in which some
"donor" subpopulations receive NO immigrants, but furnish "uncontaminated” migrants to other subpopulations
toward the root of the tree, have been found to be very effective for many problems. Use your intuition and
observation of resultsDon’t use inversion unless you see a clear justification for it. If you use inversion, you
MUST supply in callbacks the logic for selecting FOR or AGAINST patrticular inversion maps... the "base" logic
just keeps inverting subpopulations with the specified frequency, regardless of how well any particular map aids
the search process.) See example demoinv for ideas of how selection over inversion maps might be implemented.

NOTE: GALOPPS' MANYPOPS may be run on ONE or MANY processors (workstations, PC’s, etc.). For more
details on running MANYPOPS on MORE THAN ONE PROCESSOR, See the séRtimming Manypops on
Multiple Processors.

WRITING YOUR OWN APPLICATION:

In general, you must first decide how you want to represent each possible solution in the search space on the
chromosome. GALOPPS presents two primary alternatives for what the chromosome represents, and operators to
go with each choice. The first form is a "permutation problem” or "permproblem” -- i.e., one in which the
chromosome consists nfimfields integer fields, and each integer in the rangeji@fields-1] appears exactly

once on the chromosome. The second form is an "optimal values" problem,in which the chromosome is a
concatenation of a set of integers (which may, in turn, represent discretized real numbers), and each integer field
has a finite range. TheSeptimal value’ problems are described below (in a) - ¢)), and then the permutation
problem is described:

a) @pha_size == 2,permproblem == n) A string ofnumfields BITS, which the user may interpret in ANY

MANNER desired élpha_size is set to 2 for binary, antumfields is the number of bits represented. The user

may use any subset of the bits to encode any variable desired, and the appropriate operators are one-point
crossover, two-point crossover, or uniform crossover, and and either bitwise mutation or a spatially correlated
multi-bit mutation operator (multimut.c). Any of the routines -- ithruj2int (for several contiguous bits), getfield
(for any one bit), or chromtointarray (for all of the bits into an array of ints, one bit per int field) -- may be used to
get the values from the chromosome.

b) (@lpha_size > 2, permproblem == n) A set ohunfields equal-length integer fields, each ranging in value from
0 to @lpha_size-1), each of which represents, directly or indirectly, the VALUE of some variable. These

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 15

may be fetched as ints from the chromosome one at a time (using getfield) or all at once (using
chromtointarray). Additional functions in file utility.c (for example, indextofloat()) may be used to

convert some or all of the ints into a discretized set of real numbers, for example. For this method -- that
is, whenevealpha_size > 2 -- the crossover operators will only operate at the boundaries BETWEEN
fields, and the mutation operators will generate only ints lessatpbha size. The same operators as

above (oneptx.c, twoptx.c, or unifx.c; and bitmutat.c or multimut.c) are available in GALOPPS for this
type of problem.

c) (@pha_size < 2 (typically 1, but immaterialpermproblem == n) (New in GALOPPS 3.2) A set ofimfields
not-necessarily-equal-length integer fields, fietdnging in value from O tdifld_sizeg[i] - 1). Each
represents, directly or indirectly, the VALUE of some variable. Their respective sizes (cardinalities) are
defined by the user in function app_set_field_sizes() in the user’s appxxxxx.c file. They may be fetched
exactly as when all are the same length, one at a time (using getfield) or all at once (using
chromtointarray). Additional functions in file utility.c (for example, indextofloat()) may be used to
convert some or all of the ints into a discretized set of real numbers, for example. For this method -- that
is, whenevealpha_size |= 2 -- the crossover operators will only operate at the boundaries BETWEEN
fields, and the mutation operators acting on fiekdll generate only ints less théield_size[i]. The
same operators as above (oneptx.c, twoptx.c, or unifx.c; and bitmutat.c or multimut.c) are available in
GALOPPS for this type of problem.

d) (permproblem ==y) Each of th@umfields ints in the range [(umfields-1] appears exactly ONCE on each
chromosome, in any of theinfields! possible arrangements. The problem is to find which permutation
of thesenunfields fields produces the optimal value of the fitness function. These values are
conveniently fetched either one at a time (getfield) or all at once (chromtointarray). The appropriate
operators to use for these permutation-type or reordering problems are: one of {uobx.c, pmx.c, cx.c,
ox.c} and one of {swap.c, scramble.c} (all are described in Goldberg’s book or in Didaisiook of
Genetic Algorithms). These operators all generate only legitimate permutations of the original set of
numbers [Onumfields-1]. NOTE: INVERSION cannot be used for permutation problems, as it is for
rearranging chromosomes in which the order of appearance of values on the string can be changed
without affecting the fitness. Thus,permproblem ==y defeats inversion (but an inversion operator must
still be loaded in the makefile, in order to satisfy the unused call in the code).

ONCE YOU HAVE DECIDED WHAT FORM OF CHROMOSOMAL REPRESENTATION TO USE,
YOU SHOULD:

1) Copy the "blank” template appxxxxx.c in directory galopps3.2/work to a new filename.c of your choice (for
example, appmine.c).

2) Create a new makefile (copying an old one, and inserting the name of the app file to be compiled and linked on
the line beginning "APP = ") for compiling your problem. In the makefile, choose the type of crossover, mutation,
selection, and inversion operators for your problem and the representation you have chosen.

3) Edit your new file, appmine.c. The only things you absolutely MUST do, for ANY problem, are to

A) specify in function objfunc() HOW THE FITNESS is to be calculated. That is, you must make objfunc()
into a function which has as domain the chromosome of an individual ("critter->chrom™ is a pointer to the
chromosome), and as range, its fithess (a field called critter->init_fitness in GALOPPS). In other words,
GALOPPS passes to the user, in objfunc, a pointer (critter) to the structure "individual” which defines the
individual to be evaluated. One field of the individual is a pointer to its chromosome. The chromosome
is a set of contiguous unsigned integers, the first of which is pointed to by critter->chrom. (critter is the
local name for the individual in the population whose fithess is now being evaluated.) To define this
mapping, the GALOPP System includes several routines to help you to "decode" the chromosome into its
constituent fields (chromtointarray, getfield, and ithruj2int -- see belé)f these functions are in a
file called utility.c, in the /src directory. NOTE: If you are using inversion (pinversion > 0.), you CAN

16 Erik D. Goodman, GARAGe, Michigan State University

IGNORE that fact in defining the fitness function -- all chromosomes are temporarily "remapped" to the
"standard"” order used in the fitness function (as defined automatically in the array:
this_pop_map_to_std) BEFORE they are passed to the fitness function objfunc().

B) Choose the appropriate or desired options for the problem, in function app_set_options(). Those include such
flags as whether the fitness function is stochastic (different values when called again with same
chromosome), whether you are supplying your own code for migration or for initialization of new
individuals, whether you will use inversion during the run, whether all subpopulations in a Manypops run
use the same representation, etc. If you use variable-length fields, you must also set field_sizes][] in
function app_set_field_lengths]].

Briefly speaking, there are 3 "families” of routines in utility.c available to help you DECODE the chromosome
into the set of variables it represents for use in the fitness function (and any user-defined output functions, if
needed) -- each routine’s "inverse" is also present, in case you also need to "manufacture" chromosomes with
particular valuesALTERNATIVELY , you may "tell" GALOPPS in your input that the chromosome is just a
string ofnumfields bits, and then use your OWN routines called from objfunc() to decode the chromosome
however you want.

(NOTE: New in GALOPPS3.2 -- many of these routines also exist in a second form, for use
whenalpha_size < 2 (in this case, the user-speciffedld_sizeq]] (in app_set_field_sizes()) is

used to determinield_lengthg[] (in bits), and therield_endq]], the ending bit positions of each
field on the chromosome). Then, since the user may also be using inversion, or another
representation in which the fields appear in different places or have different lengths in different
subpopulations, the user must also be able to pass the APPROPHRYATENS]] array for the
subpopulation in which the individual originates to the decoding routines (getfield,
chromtointarray). For that special case (when different_reps is TRUE), the user should call,
instead, getfield_uneq_flds() or chromtointarray_uneq_flds(), as illustrated in the example
problems diffreps or demoinv. Those routines accéigtch endd]] array (which GALOPPS
automatically updates) for each individual who is migrating, and the user provides the code to
transform migrants in app_transform_migrants whenever different reps is TRUE but
USING_INVERSION is FALSE (GALOPPS handles the inversion case automatically).)

The three chromosome decoding families "built in", from the most "atomic" to the most compact, are:

ithruj2int(int i, int j, unsigned int #rom): Treats the sequence of bits in bit positions i through j (where
bits are numbered in range [throm) of the chromosome pointed to, as a nonnegative binary integer and
puts it into an int variable. Using this function, the user can "decode" arbitrary binary strings of varying
lengths into int variables, any of which may then be mapped into real (float or double) variables over
arbitrary ranges, if desired, using a few lines of 'C’ code (or provided functions like indextofloat() in file
utility.c). Using this lowest level decoding function, the user has essentially complete control over the
decoding of the chromosome at the bit level. This form of decoding is usually used only with "binary”
chromosomes -- i.e., when the inpijppha_sizeis set to 2. This routine is used in all three of the
examples from Goldberg’s book, in subdirectories app, appl, and app?2.

Example:

int intval;

intval = ithruj2int(1,10, critter->chrom);

(This code would take the value in bits 1-10 of the chromosome

critter->chrom and put it into intval.)

getfield(int n, int nbroffields unsigned *throm: The chromosome is always defined as a set of
numfields fields (binary or larger), whether or not they all have the same length, and this function may
be used to fetch the contents of the nth field (Gximfields), with one exception -- see EXCEPTION in
next paragraph The user specifiesfields (andalpha_size, for non-permutation problems) to

GALOPPS as part of the input stream, and then passes to getfield() paramretetsls and the number

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 17

of the field wanted, together with the pointer to the chromosome. (Of course, for permutation problems,
numfields also determines the range (and therefore size) of each field, since the fields must contain all
integers in [Onpumfields-1].) Note that whenevelpha size 1= 2 orpermproblem ==y (TRUE),
GALOPPS crossover operators will break the chromosome only at field boundaries, and mutations will
be performed so as to generate only LEGAL values (in rangéplty_size-1], or, when alpha_size <2,

in range [Ofield_sizeq[i] - 1]).

Example:

int intval;

intval = getfield(7, numfields, critter->chrom)

(This code will fetch the value in field 7 foifnfields total) from critter->chrom, placing it in intval.)

EXCEPTION: getfield() fetches fields using the global &islaly ends defined for the current
population (which is calculated by GALOPPS based on user input). However, if the chromosome to be
decoded is coming into this subpopulation from another one or is a saved "best" individual, then if flag
different_reps is set, then the arrdield_ends may not match the array in use when the chromosome
was evaluated. To assist with this situation, GALOPPS 3.2 provides two things: 1) it saves the
field_ends array with the individuals recorded as "bests", and 2) it sendielitheends array for the
sending population along with any migrants sent to another subpopulation. However, to use that
information, the user must call a substitute for getfields(), called getfields_uneq_fields(), using the
following form:

getfields_uneq_fields(numfields, critter->chrom, proper_field_ends);
whereproper_field_ends is replaced by the name of thed_ends array in use (passed along) when the
chromosome was evaluated. This information, together with the stapedo_standard array
prevailing when the chromosome was first evaluated, allows a correct interpretation of the chromosome
at a later time or when it enters another subpopulation.

chromtointarray(int * intarray, unsigned *throm): If the user wants to "unload" the chromosome into a
set of int fields, then rather than fetching each field one-at-a-time, the user can provide an array of ints,
and chromtointarray() will fill the array with the int values coded by the fields on the chromosome. If
alpha_size == 2, then each int will contain O or 1;alfpha_size > 2, then the ints will be in the range [0,
alpha_size -1]. Whenalpha_size < 2, each field has its own upper linfigld_sizeq[i].

Example:

int array[10];

chromtointarraydrray, critter->chrom);

(This code places all of the int valuescoitter->chrom into array, converting the chromosome,

essentially, from a string of adjacent bit fields within a set of contiguous unsigned ints into an array of int
values, which are easily manipulated in calculating the fitness.)

NOTE: There is a corresponding function, chromtointarray uneq_faetdg(critter->chrom,
proper_field_ends) for use wheralpha_size < 2 anddifferent_reps ==y is in use. It performs

analogously to function getfields_uneq_fields() dexcribed above.

YOUR_OWN_CODE(): (writing your own decoder, if you prefer)

Tell GALOPPSalpha_size is 2 (binary), and the chromosomenigrfields BITS long. Then you may

supply your own code for decoding the chromosome from its set of unsigneds into your fields, or use any
of the three calls above to copy the chromosome into intermediate int structures you define.

ANY OF THE ABOVE FUNCTIONS IS TYPICALLY USED TO "DECODE" THE CHROMOSOME FIRST
INTO A SET OF INT VARIABLES. THEN THE USER TRANSFORMS THEM INTO WHATEVER
FORM IS NEEDED IN THE FITNESS FUNCTION (INT, FLOAT, BOOL, DOUBLE, OR
WHATEVER IS APPROPRIATE).
IT IS USUALLY BEST TO DECLARE ANY VARIABLES YOU WILL NEED TO USE IN CALCULATING
FITNESS OR FOR HOLDING OUTPUT INFORMATION TO BE STATIC VARIABLES AT THE TOP OF
YOUR APPXXXXX.C FILE, OUTSIDE ANY FUNCTION DEFINITIONS, SO THEY MAY BE USED FROM

18 Erik D. Goodman, GARAGe, Michigan State University

ANYWHERE WITHIN THAT FILE, BUT CANNOT INTERFERE WITH SIMILARLY-NAMED VARIABLES
ELSEWHERE IN GALOPPS. SEE 6) BELOW FOR METHODS TO READ IN APPLICATION-SPECIFIC
PARAMETERS, ETC.)

NOTE on decoding ints to float or double variables: there are multiple ways to do this, and the user may easily
bias the resulting float variable, or cause the mid-range value to be unattainable, for example, if care is not given
regarding the desired mapping of both endpoints, whether the range should have an even or odd number of
discrete values, etc. The interested user is referred to the discussion in the GA Digest during April, 1996 (approx.)
on this topic.

4) Using the decoded variables, calculate the fitness of this chromosome, and place that value in the individual’s
critter->init_fitness. This is the "raw" or "unscaled" fithess, and GALOPPS will use it to calculate critter->fitness,
the "scaled" fitness used in selection, according to the scaling options you select in the input file.

5) Then examine the "control variables" in function app_set_options(). There, you select the following:

the expected (average) number of adjacent fields to be set at random when multimut is done on a
chromosome (occurs with probabifityutation PER CHROMOSOME when multimut.c is linked in the
makdile),

whether or not to use elitism (always keep the single best individual found),

whether or not the fithess function is stochastic (or dynamic -- has different values if called more than once
with the same genotype) (if so, chromosomes are re-evaluated every generation, to "sample” their
average values),

user_supplied_initialization (if 1, YOU must supply code to initialize the population "legally” in routine
app_user_init_pop() below),

call_app_user_does_migration (if 1, YOU must supply the code to migrate an individual among subpopulations,
below, in app_user_does_migration()), (using the system-provided version as a guide, presumably)

using_inversion (if 1, the program will use and report the inversion maps, even if the probability of inversion,
pinversion, is currently set to 0.0; if flag using_inversion is left at its default (0) value, it is set
automatically if you set pinversion > 0.0 at the start of a cycle). Allows YOU to control the inversion
process, suspending inversion in a subpopulation by setting its pinversion to 0, but still using its current
inversion map,

different_reps -- automatically set to 1 if you are using_inversion; if you are not using_inversion, then IF you
set different_reps to 1, YOU must supply the code to transform individuals, when they migrate, from
their representation in the donor population to their representation in the recipient population, in function
app_transform_migrant() below. In that case, you must also supply code, in app_user_transform_to_std()
below, to transform a chromosome from the current subpopulation’s representation to the "standard"
representation used by the objective function, objfunc().

You may also look through the remainder of the appxxxxx.c file to see some of the other capabilities provided to
you by use of the callback routines. You may "clean up" the population after an initialization, watch for certain
criteria and then reinitialize or alter subpopulations, output desired information when new global best individuals
are found, do printing when in quiet > 0 modes, and many other things. Unless your application requires input,
output, or tracking of other variables, additional globals, etc., you need not use these other callback functions. If
you must do some of your own input, see 6) below. If you want to do some application-specific output, see 7)
below. If your application must preserve certain application-specific variables with each individual, see the
information on using the utility field in Goldberg’s book... it is handled similarly here, but automated somewhat.
You simply need to use the callback routines GetUtilitySize() and GetMaxUltilitySize() in your app file to tell

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 19

GALOPPS the number of bytes of utility fields each individual has, so that it can save them. Then you can "cut
up" those bytes however you like (using a struct, or in some other fashion). GALOPPS will malloc them, record
and restore them when the population is checkpointed, etc., automatically. (See example files app2.c or
approyrd.c for examples of the use of utility fields). Otherwise, proceed to 8) below.

6) There are several callback functions in your app......c file from which you mayydoput of parameters or

data you require for your application, depending on when you want to read them in and whether they should be
re-read when a run is extended, or recorded with each subpopulation, etc. The most common places to do I/O are
in app_read_prob_params, app_data, and app_init. Look at each for information on which you want to use (i.e.,
when it is called). To keep your input consistent with the rest of the GALOPPS /O, you may call functions
ffscanf(), in file ffscanf.c, to read one input value per line. You should call it to read from the stream infp, which
is automatically redirected to be keyboard or input file, depending on what you specified on the command line
invoking the GALOPPS run. See files mainone.c or mainmany.c for examples of calls to ffscanf(). By using it,
you are allowed to (optionally) include keywords on input lines, just as is done in GALOPPS example input files.
You may use ffscanf.c to read floats, ints, doubles, strings, etc., just as you normally would use fscanf to do. If
you will do extensive input of tabular data, then reading the data directly from a data file (with file name read
using ffscanf(), for example) is suggested, as is done in many example GALOPPS problems.

Where to do your input:
app_read_prob_params():
This is called once, at the beginning of any run (whether starting a new run only from input data
or extending a previous run from saved checkpoint (restart) files. It is called before the
"standard" inputs likeumfields, alpha_size, etc., are read. Therefore, the user cannot use this
callback to read information which depends on those values. It is useful for reading in tables of
parameters defining the problem, etc.
If Onepop is used, this routine is called at the beginning of each RUN (Onepop allows multiple
runs in one "job.")
User-defined values read here are usually defined as static variables at the top of the application
file, so their values, once read in, are available to all the user-supplied routines in the file. Note
that they apply to ALL subpopulations in Manypops. So long as they are read in this callback,
they will be read even when a run is EXTENDED by initiating GALOPPS and supplying saved
checkpoint (restart) files. Therefore, parameter values read here need NOT be written to any
checkpoint file for restarting. HOWEVER, if the user wants to SAVE values of any of these
variables (if, for example they change during a run and capture the STATE of a run), they can be
written to checkpoint files created by each subpopulation, by including writes and reads in
app_write_ckp_hdr() and app_read_ckp_hdr(). Then they will be restored by each
subpopulation (even DURING a run) at the beginning of each cycle, to their values at the end of
the previous cycle FOR THAT SUBPOPULATION.

app_data(REVISING):

This is called (perhaps multiple times) from two places in files initsubp.c (Manypops) or

startup.c (Onepop): when a run is initiated from the beginning (no restartfileprefix is given), OR

if the user EXTENDS a previous run, giving a restartfileprefix, AND answers 'y’ to the question
about revising parameters. This callback is called once for EACH subpopulation, unless the user

says "y" to the question "all_subpops_use_same_parameters?". In that case, it is called only
once at the beginning of a run (or when a run is being EXTENDED).

1) subpop_data calls it when the program is started "from scratch” with flag REVISING set to
FALSE, telling it that the user just finished supplying the parameters (crossover rate, etc.) for
this subpopulation, and the user may set any additional user-defined ones desired.

2) subpop_data calls it when a run is being EXTENDED, with flag REVISING set to TRUE,
telling it that the user has just finished revising the normal parameters (crossover rate, etc.) for
this subpopulation, and the user MAY revise any additional ones desired. The usual course,
unless user will really change them, is to use the default logic:

20 Erik D. Goodman, GARAGe, Michigan State University

if (REVISING) return;
to avoid re-reading user-provided parameter files, etc.
HOWEVER, if the user EXTENDSs a run, supplying a non-blank restartfileprefix, and does NOT
choose to revise the GA parameters, then this is routine is NOT called, SO it is not a good place
to do input of variables that are NOT preserved in a checkpoint file (see app_init below, or
app_read_prob_params above for possible places to do the input).

app_init():

This routine is called by initialize() (in file initsubp.c or startup.c) for EACH subpopulation
EACH CYCLE, whether a new run is being started, or extended, or just continuing from the
restartfiles, and whether all_subpops_use_same_parameters is TRUE or FALSE. It is called
AFTER individuals are malloc'd and after individuals are read from the .ind file (on a restart),
but before random initialization of all individuals (if initial start) or of individuals NOT read (if
restarting). If doing 1/O that needs to be done only ONCE when GALOPPS is started (from
beginning/EXTENDING or restart), then user may use the "firstcall” logic in this routine to
execute the input (or other) code only once. Otherwise, it will be done each time EACH
SUBPOPULATION is initialized or is reloaded from its checkpointed state in EACH CYCLE.

7) Output may be done under varying circumstances from a number of callback routines in your app file. See
those callbacks for descriptions of when they are called. You should probably write most output using file pointer
outfp, which is the global output file descriptor used by GALOPPS, which is automatically redirected if an output
file name is specified on the command line invoking GALOPPS.

8) If you use utility fields to store problem-specific additional information about each individual in the population
(see Goldberg’s book for description of this capability, and application royalrd for an example), you must also fill
in the routines GetUtilitySize() and GetMaxUtilitySize() in your app file, so that the system can malloc and
read/write the correct number of bytes for whatever data you are storing in the utility fields.

9) If your problem or approach requires you to perform any operations NOT provided in GALOPPS, or you wish

to control the run automatically by monitoring certain parameters, and taking particular actions when particular
thresholds are reached, etc., it is EASY to do WITHOUT modifying the GALOPPS code, by using the many
available user callback functions in your app file (which you made from appxxxxx.c, for example). Some
examples are provided in the file (commented out), and some sample applications contain examples of the use of
some of these callbacks. You may also construct your own operators (crossover, selection, mutation, inversion,
etc.) by using the "standard" operators as an example and replacing them with your own file containing an
operator with the same calling structure.

10) Compile, link, and run your program, just as you do the example problems.

11) EXTENDING a GALOPPS run:

Any GALOPPS run (Onepop or Manypops) which has terminated normally, or has completed ckptfreq generations
(Onepop) or at least one cycle (Manypops) may be EXTENDED by restarting GALOPPS and specifying as
restartfileprefix the prefix used as checkptfileprefix during the run completed or interrupted. For such a run, the
user may restart INTERACTIVELY by typing Onepop or Manypops, or may supply a simple input file containing
the same information. Command-line parameter settings can be used to override the input values in an input file,
but an input file OR interactive inputs must always be provided. The data for the population (or for each
subpopulation) is RESTORED from the restartfiles (.ckp and .ind suffixes), and, unless modified new command-
line values or by new user-supplied inputs (if other_changes == yes in the input file or interactive dialog), the
previous values are used. NOTE: it does not matter when in the cycle a run is interrupted -- GALOPPS will
always begin extending the run from the last FULL CYCLE COMPLETED (Manypops) or last set of ckptfreq
generations completed (Onepop).

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 21

OVERVIEW OF GALOPPS
ISLAND (COARSE-GRAIN) PARALLEL CAPABILITIES

GALOPPS provides hardware parallelism for genetic algorithm users, even for users of networked PC's, and can
also provide simulated parallelism on a single processor. It is designed as an (either true or simulated) coarse-
grain- (or "island-") parallel Genetic Algorithm (GA). It consists of two main programs, with executables called
(by the Unix makefiles) Onepop (main program in file mainone.c) and Manypops (main program in file
mainmany.c), for simulating single populations and multiple (parallel) subpopulations, respectively.

The Onepop and Manypops modules share ALL but the main program and initialization code file in common,
including using a COMPLETELY identical "app".c file defining the user's problem to be solved. In addition,
Manypops also uses code in file master.c and a MASTER data file (suffix .mst) to define the neighboring
subpopulations of each subpopulation, and how many individuals are to migrate in from each neighbor each cycle,
whether these migrants include the best individual and/or some number of randomly selected individuals, an
option for guiding the selection of individuals to migrate using incest reduction, and an option for using
migration_crowding to decide which individuals to replace by migrants. (At compile time, the user may also
decide instead to perform the migration with user-supplied code, by setting a flag in app_set_options()). Onepop
is run ONLY when one wants to use a SINGLE population for the problem. Manypops can be run in many

modes, all of which allow simulation of more than one subpopulation.

ThelSLAND PARALLELISM of Manypops (in mainmany.c) is provided in THREE ways:
1) "Serial" simulated parallelism:

One can simulate any number of subpopulations using only a SINGLE PC or workstation, using
GALOPPS/Manypops. In this case, each subpopulation is simulated, in turn, for some number
of generations called a CYCLE, and at the end of the cycle, that subpopulation is
CHECKPOINTED to two files, for later restart. Each population receives one turn per cycle; at
the beginning of each population's turn, and according to the master table (originally from a
specified file with suffix .mst), it reads one or more individuals from each of its declared
neighboring subpopulations. The frequency of this interchange is entirely under user control
(determined by the number of generations per cycle, independently settable for each
subpopulation). All other GA-related input parameters (population size, crossover rate, etc.)
can also be independent among the various subpopulations -- only the compile-time options are
constrained to be the same (of course) in all subpopulations.

2) Multiple-process simulated parallelism
On a single Unix workstation, or on any other system which allows the user to run more than one
copy of GALOPPS/Manypops at the same time, with access to the same file directory, the user
may run any number of copies of GALOPPS at the same time, each as a separate user process.
This is particularly useful for debugging/testing code which will ultimately be run on multiple
processors (see below). It also allows different sets of subpopulations (owned by different
processes) to use different compile-time options (operators, selection methods, etc.) -- the user
need only retitle differertversion$ of Manypops to other names before invoking them. All
copies share the use of a single MASTER file (suffix .mst), which tells all the processes what
must be communicated among the subpopulations, whether they are within a process or in
separate processes. Each process, in the input file it reads, is told WHICH SUBPOPULATIONS
(by number) IT is responsible for simulating. Then these processes run in parallel (of course, the
OPERATING SYSTEM is now doing the "checkpointing” or context-switching). The operation
of the subpopulations is NO LONGER SYNCHRONOUS among processes, but GALOPPS was
designed with this asynchrony in mind. Simultaneous access to the same file is controlled by a
simple File Locking protocol (different from releases previous to 3.0), which controls file access
and prevents overwriting of information being read by another process. In the event of many
consecutive failures to gain access to a file to read something, the process either continues (with
a notation to that effect) without performing that particular migration (in the event of migration

22 Erik D. Goodman, GARAGe, Michigan State University

attempts), or fails, if it cannot continue without the file (such as a restart file for one of its own
subpopulations). The aborting of one process typically results in "freezing" of the emigrants it
provides to its neighbors, but does not interrupt the continued progress of the remaining
processes.

Accounting (e.g., reporting the BEST individual found in ANY subpopulation, or tracking the
number of evaluations performed in ALL subpopulations before a new "best" individual was
found, or the "on-line performance” across ALL subpopulations, etc.) is more difficult in this
asynchronous environment. GALOPPS does this (whenever a process does not control ALL of
the subpopulations in use) by maintaining a file, with suffix .stt, which is updated by ALL
processors and ALL processes which are running one problem (i.e., from one file directory using
one .mst file). At the start of each cycle, a process reads the current "global” information from
the .stt file, and then uses those values for all reporting it does during the CYCLE (which may be
as short or as long as the user sets it to be). Then, at the end of the cycle, it locks the .stt file,
reads the (probably new, updated by other processes or processors) values from the file, updates
its local copies, and writes the new "totals" back to the .stt file, then unlocks it. Thus, WITHIN

A CYCLE, a process is ignorant of things which happened in OTHER processes during its cycle,
but "catches up" again at the end of the cycle, and provides the information which all OTHER
processes will need to "catch up" with ITS work whenever THEY next complete a cycle. This
reporting is "asymptotically correct,” and the only improvement possible would be to do this
updating "more often," but how often it is done is under user control, so should not be an issue.

Theuser must start the process which simulates subpopulation 0 before any other processes
to allow for proper zeroing (at beginning of run) or loading (during a run EXTENSION) of the
cumulative statistics file (which has suffix .stt).

3) "TRUE" parallel execution:
Several processors (computers) each run their own copy (or copies, using mode 2) above, as
well) of GALOPPS/Manypops, each simulating as many subpopulations as desired.
GALOPPS/Manypops allows simulation of ANY number of subpopulations on ANY number of
processors (actually up to 99, with default file naming conventions). Again, all cooperating
processors must share a common file directory. The MASTER file (suffix .mst) determines the
neighbors and migrations, which are conducted asynchronously. A collection of processors of
different speeds may be used, with the only effect being that the number of evaluations done to
find each emigrant will differ strongly among processors, unless the user chooses to "balance"
that by doing less frequent migration from processors which run at slower speeds.

The global statistics file locking mechanism was described above in 2), and is most important
when multiple processors are utilized. Accounting (for example, number of evaluations before a
new "best" individual was found, on-line performance, etc.) is also done as described in 2)
above.

Since the parallelism of GALOPPS is accomplished without the need for direct inter-process
communication, it is easy to run truly parallel subpopulations even on a number of PC's linked
by a typical PC network (Novell net, LANtastic, Pathworks, Windows NT, etc.), or to run
simulated parallel subpopulations on a single machine. It is the simplicity of this scheme which
renders it so portable. This portability was a key design goal, since this software was developed
to support U.S. collaboration with GA researchers in Russia and China, where the typical
hardware available is much more likely to be individual or networked PC'’s.

The GALOPPS code is so portable and system-independent that parallel subpopulations for a
given problem can be run on an arbitrary mixture of PC's, workstations, or any other computer
sharing a common file system, so long as the word lengths and byte orders (big-endian vs. little-
endian) match (this affects the format of the files they read and write). Any differences in

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 23

machine speed may be taken into account by the user, if desired, by assigning processors
different numbers of subpopulations, or different subpopulation sizes, or other such decisions, so
as to keep the evolution among the subpopulations "loosely" in synchronization; however, the
operation of the code does not require that to any extent. The rationale for doing it is to keep
from "overwhelming" the search of slower processors by introducing to them "advanced"
individuals from a faster processor, thereby "poisoning" their own search and likely leading to
local premature convergence. However, a rough balancing is all that is needed, and that can be
achieved.

(NOTE: When GALOPPS (Manypops) is run using more than ONE process, then differences in timing of
migrations, etc., from process to process, mean that choosing the same SEED for the random number generator
NO LONGER guarantees that the results will be the same. This effect is even more obvious when multiple
processors are used on a single problem. However, running multiple subpopulations from a SINGLE process still
allows reproducing of the same run if the same random number seed is used.)

FILES USED IN GALOPPS

Files involved with the GALOPP System are described in six places:

1) Files CREATED by the GALOPP System during execution are described in THIS section, below, and in
detail in APPENDIX TWO.

2) Filesused for compiling a version of the GALOPP System are described in the subsection entitled
"Modules to Compile” in the "CODE DISTRIBUTION FORMAT" section.

3) The format of the "master" file (suffix .mst) is described in the section entitled, "General Format for
Master File."

4) The formats for (optional) input files are described in the section entitled, "New Format for Input Files."

5) All new example problems are described in the section entitled, "New Example Problem Files." This

includes a description of any auxiliary programs provided to create test data or specifications for the
representation for use with the particular example problem.

6) A brief explanation of each file SUPPLIED with the GALOPP System is provided as Appendix One.
Files Created by the GALOPP System During Execution

NOTE WELL: Since GALOPPS is intended to be portable, it restricts file names specified by the user OR created
by the system to 8 characters, plus a period, plus a 3-letter suffix or extension, for DOS/Windows compatibility.
Therefore, even when running on a Unix or other system which permits long file names, LONG PREFIXES
cannot be specified for the intermediate files the program writes (see restrictions below). The user is free,
however, to specify on the command line an input or output file name AS LONG as the system in use will accept,
so that results may be labeled conveniently on Unix systems, for example.

Onepop:
During execution, GALOPPS/Onepop creates only (at most) three files:
a) The ouput file specified in d-0“ field of the command invoking the Onepop code (if one is given).
This name may be selected by the user arbitrarily, so long as it does not conflict with any of the naming
conventions (suffixes) used by GALOPPS for other purposes, and so long as the operating system will
accept it.

24 Erik D. Goodman, GARAGe, Michigan State University

b) The checkpoint header file, which records the state of the Onepop program when the specified number of
generations have been computed. It has the suffix ".ckp”, and the rest of the name is specified by the user
at run time (or in the input file, if used, in the "checkptfileprefix” field, maximum of 8 characters).

c) The checkpoint individuals file, which records all individuals in the population when it is checkpointed.

It has the suffix ".ind", and the rest of the name is specified by the user at run time (or in the input file, if
used, in the "checkptfileprefix” field). Thus, for example, the user would end up with a pair of files
called "c1p322.ckp"” and "c1p322.ind", if the checkptfileprefix "c1p322" was specified.

Manypops creates the files above, PLUS:

A) The multiple subpopulation module, Manypops (actually just the main program in file mainmany.c),
writes the three file types above, but slightly differently, plus several more. Manypops allows migration
of individuals among subpopulations at the end of each "cycle", which is one OR MORE generations of
EACH subpopulation which a particular process is responsible for calculating. Migrating "individuals"
are read from the ".ind" files written by their neighbors as checkpoint files. However, in order to provide
a "fair" environment in which subpopulations numerically higher than a given subpopulation are not
"disadvantaged" vis-a-vis subpopulations numerically lower (which would already have been calculated
for another cycle), all migrating individuals are taken from the "old" buffer in those files, and the buffer
pointer for reading is updated at the END OF EACH CYCLE. Each subpopulation also saves its "state"
in a .ckp file, which is similarly divided into two buffers, and the buffer is updated at the END of the
ENTIRE CYCLE, so that an extension of a run will restore a CONSISTENT set of states, even if the
previous run was interrupted in mid-cycle.

Thus, for each subpopulation it is responsible for from the master file, a Manypops process
writes .ind and .ckp files. Note that cycles are COMPLETELY asynchronous among multiple
processes running on the same CPU (on a Unix system, for example) and among VARIOUS
CPU's (on a workstation or PC network, for example).

The file name prefix for .ind, and .ckp files for Manypop runs must be no longer than 6 (SIX)
characters, since Manypops adds a 2-digit subpopulation number to this prefix in making the
names for the various checkpoint files.

NOTE: When a run is to be EXTENDED from a set of checkpoint files already written, the file prefix
used for reloading state and population data is given as the restartfileprefix in the input file (or in
response to that question, if working interactively, or overridden by the appropriate option on the
command line). THAT NAME will be used ONLY for RESTARTING ONCE, and all
checkpoint files WRITTEN by the new run will be written to the checkptfileprefix file names.

The many "internal” restorations of checkpointed subpopulations during a run, AFTER THE
INITIAL READING OF THE restartfileprefix files, are performed using the checkptfileprefix

file names. Of course, if the user does not want to PRESERVE the restartfileprefix files for later
performing OTHER experiments, the user may specify checkptfileprefix and restartfileprefix to
be the SAME, and then the restartfileprefix files will be overwritten during execution. If the

user leaves the restartfileprefix empty, the program expects to start from interactive user input or
the corresponding text input file (specified on the command line after the program name). In
that case, if checkptfileprefix is blank, the default "sgackp" is created automatically. On an
EXTENSION of a previous run, if the user leaves the checkptfileprefix empty, the
restartfileprefix is used as the checkptfileprefix as well, overwriting the previously saved state.

If this is not desired, the user should specify different prefixes.

B) Whenever more than one process is working on the same problefin{sepopnum-startpopnum !=
popno) Manypops also writes a single file called "xxxxxx99.stt", where xxxxx is the checkpointfileprefix
specified by the user. It contains information about ALL subpopulations in the master file, regardless of
what process or processor is doing their calculations. It is the place in which, at the end of each cycle,
each process(or) READS the current "all-populations” state, increments the variables by the numbers IT
calculated during its just-completed cycle, and then WRITES BACK to all_pops.stt the new "all-

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 25

populations” state. Information contained in the .stt file includes the raw totals needed to calculate on-
line performance, off-line performance, and total number of evaluations performed to date, as well as the
genotype of the BEST INDIVIDUAL found so far by ANY subpopulation in any process(or). Since
multiple processes are in use, this .stt file is LOCKED using an auxiliary lock file, zxxxxx99.stt, which is
created automatically by the program. When a process wants to use file abcdef00.stt, for example, which
another process or processor might also be using, it first checks file zbcdef00.stt, a "companion” file. If
the z.... file contains 0, the file is "unlocked." If the file contains another number, the process "backs off"
a process-specific and varying amount of time before attempting again to lock the file. When trying to
lock the file, the process opens it, reads it, and if it is 0, rewinds it, writes the process's unique number to
it (actually, the lowest number subpopulation it "owns", plus one), then READS it back. It performs the
read several times (just "killing time"), and if, at the end, the number it reads MATCHES the number it
WROTE, it concludes that it has "LOCKED" the file. It closes the z.... file, then opens the file
abcdef00.stt, does any reading or writing it likes, then closes it. It MUST then UNLOCK the file by
opening the z.... file and writing a O to it.

There is some complexity in the initial creation (or finding in existence) of the companion lock file, but

that is handled largely by trying to lock the file, and if that fails initially, concluding that the companion

z.... file does not exist, and creating it. Of course, later in the run, the companion file MUST already

exist, so a failure has a different interpretation later in the run. If the all_pops.stt file can't be locked for
updating, the user is warned (again, in the output stream) that all subsequent global statistics are probably
corrupted, but the run continues.

For obvious reasons, the user maid specifying any file prefix beginning with "z" to GALOPPS,
since files starting with "z" cannot be locked (and will be destroyed) by GALOPPS.

NEW CAPABILITIES OF GALOPPS

NEW FEATURES IN RELEASE 3.2

Graphical User Interface:

Release 3.2 features a tcl/tk-based (hence, currently, only for Unix users) GRAPHICAL USER INTERFACE,
which allows easy, form-fill-in driving of Onepop and Manypops, and provides GRAPHICAL output of key
variables under user control. It also allows graphical input of migration relationships in Manypops, and
writes/reads input files compatible with the "standard”, non-graphical user interface. Its use is documented in a
separate, brief user guide, GALOPPS GUI User Guide, also available at the GARAGe web site
http://isl.msu.edu/GA. A version of the GUI for a PC environment is expected for December, 1996.

Differing Alphabet Sizes (Field Lengths):

Release 3.2 allows the user to define different alphabet sizes (cardinalities) for different fields, and automatically
treats them correctly (crossover only at field boundaries, mutation only to allowable values), even if subpopulation-
level inversion is in use. (Of courgermproblem must be ‘n’ for this to be available.) The user signals the use of
these user-defined field lengths by enteatjgha_size as 1 (or any value < 2) in the input file. The use must then

set the field sizes in function app_set_field_sizes() in the user’s appxxxxx.c file. Then the user simply uses the
same tools as always (getfields, chromtointarray, for example) to decode the chromosome into integer variables,
and then treats these varying-range integers as desired to define the fitness function. The new versions of getfields,
putfields, chromtointarray, etc., all use the array field_ends[] (calculated by the program from array field_sizes][])

to tell them where each field starts and ends, so the user need not worry about it. Thus, for example, two fields
may represent int variables with ranges [0,5] and [0,100], respectively, while ten others are used to map to floating
point variables discretized to different resolutions (500 values for some, 1000 values for others, etc.). If inversion
is in use, GALOPPS automatically remaps variable-length fields under an inversion operation, and transforms

26 Erik D. Goodman, GARAGe, Michigan State University

migrants into the correct inversion pattern (and field boundaries) for the receiving subpopulation. To use different-
length fields, simply input alpha_size as 1 (a flag), and specify the desired alphabet size for each field in array
field_sizes[], found in function app_set_field_sizes() in all application (app.c, appl.c, appxxxxx.c, etc.) files.
GALOPPS will handle the fields automatically, even if they are subsequently reshuffled by a subpopulation-wide
inversion operation. Migrating individuals are automatically translated into the format of the receiving
subpopulation.

One complication arises when the user apisa_size == 1 AND uses different representations in different
subpopulations (whether inversion or user-supplied differences). The routines getfields or chromtointarray for
decoding the chromosome (or corresponding ones for encoding a new one, if needed) must be replaced by new ones
which can accept a field_ends][] array argument as well, since the user may be decoding a chromosome which has a
different map than the one for the current subpopulation (due to migration or to changes in a subpop’s
representation after a “best” individual was saved). Therefore, new routines, getfields_uneq_fields() and
chromtointarray_uneq_fields() are supplied for that case. The user is referred to example subdirectory diffreps for
an example of their use.

Multiple-Field Mutation Operator:

Release 3.2 includes a new mutation operator capable of making changes in several nearby fields at once. Single
field (or single-bit, for binary reps) mutation is very ineffective for problems with much "deception”, and a spatially
correlated mutation operator, which can change several adjacent fields at once, can be helpful. The user specifies
the frequency of subjecting a chromosome to a multi-field mutation (probability per chromosome) in the input file
(or interactive input), and the expected value of number of fields possibly altered (this mutation sets to RANDOM
values all fields in a computed range of loci, but that means that some may NOT be altered). The parameter
governing the expected number of fields to set at random is in the user’s appxxxxx.c file, in app_set_options(), and
is called avg_mut_width. Its value is the average number of adjacent FIELDS (bits, if binary) to be set at random,
legal values, all at once. The new value of some field(s) may be the same as the old value -- in fact, for binary
fields, the probability of no change to any one particular locus is 50%. As with other operators, this operator is
chosen by linking "bitmutat.c" in the makefile in the /work or /examples/??? directory. It may NOT be used for
permutation-type problemgdrmproblem ="'y’). In a future release, all operators will be loaded at compile time,

and the user will select among them during the run, so that both sorts of mutation could be in use simultaneously.
Once multimut.c is loaded, the user specifies the average width (number of fields) to be mutated at random (value
may return to current value) as avg_mut_width, a global in app_set_optiona() in the user’s app file. The
probability of doing a multi-mutation is specified PER CHROMOSOME, currently as "pmutation” in the normal
input file, which multimut.c knows to interpret as a per chromosome, not per field, rate.

Boltzmann Scaling of Fitnesses:
Release 3.2 allows the user to specibgta value, the Boltzmann scaling constant, and scaled fitnesses (.fithess
terms) are calculated from raw fitnesses (.init_fitness fields, really) using, for individual [i]:
fitness[i] = expfeta * .init_fitness][i]) / Sum_over_all_i(expéta * .init_fitness]i]))
Settingbeta to 0. makes all individuals equally likely to be chosen, while |betges (3, for example) give almost
all probability of selection to the most fit individual. Between the extremes, any desired level of selection pressure
can be achieved. This simple Boltzmann scaling by a coristant invoked by selectingutocontrol _selection
to ‘n’ (off) in the input, and then specifying a numerical valuebfa.

Optional Automatically Controlled Selection:

The pioneering theoretical work in applying statistical mechanics (or a maximum entropy assumption) to analysis
of GA performance (see Shapiro and Pruegel-Bennet, for example) has produced a method aimed at dynamically
controlling selection so as to achieve relatively high rates of improvement of mean fitness without strongly
reducing the diversity of the population. A method for control of selection, using dynamically altered Boltzmann
scaling, is provided in GALOPPS 3.2. This method has not yet been tested for effectiveness on a wide range of
problems, but the user may find it interesting to explore. GALOPPS Release 3.2 allows the user to elect
"autocontrol_selection” in the input stream (file or interactive input). The user must then specify (or use the
automatic default forpeta_s tilde. The automatic default is based on the work of Shapiro and Pruegel-Bennett,

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 27

and is determined by using a recommended point on the graph of the ratio of the std. deviation of fithesses (across
one generation) versus beta_s. The valumtaf s tilde is obtained by multiplying beta_s by sqrt(2 * logpsize).
Frombeta_s tilde, beta is defined by:

beta = beta_s tilde/ sqrt (std. dev. of scaled fitnesses).

Beta, calculated in this way, tends to keep selection pressure roughly constant as the fitness distribution changes.
If the suggested default foeta s tilde is accepted, Shapiro and Pruegel-Bennett suggest that it may tend to
maximize the gain in mean fitness subject to not sharply decreasing the diversity of the population. Thus, if
autocontrol_selection is y(es), GALOPPS calculatesta_s tilde (based omopsize) once, and then rescalesta

from it at each generation, using the current std. deviation of the scaled fitness distribution (after any migrants
have entered the population).

If autocontrol_selection is chosen, the selection function in suselect.c must be compiled in. That is Stochastic
Universal Sampling, which then acts on the "optimally" Boltzmann-scaled values to sample the population quite
accurately according to the Boltzmann-scaled probabilities.

Falkenauer's Grouping Genetic Algorithm Representation and Operators:

Release 3.2 includes as an example an implementation (by Brian Zulawinski of the MSU GARAGe) of Emanuel
Falkenauer's GGA (Grouping Genetic Algorithm). This GGA representation greatly enhances performance of a

GA for attacking many grouping and grouping-related problems, as are frequently found in scheduling,

partitioning, packing, and similar problems. Subdirectory /examples/GGA has an example of a GGA problem
(appbpp.c for bin packing) together with the specialized operators and encoding/decoding routines to use the
representation. It should be regarded as alpha-test (experimental) code, but is included because of interest to some
users. Reading of one or more of Falkenauer’s papers is suggested before attempting to use the GGA provided
here.

Threaded GALOPPS:

A THREADED version of GALOPPS, written and tested on Sun workstations, enables users on multiprocessor
systems to speed up the running of either Onepop or Manypops runs, using the pvm system, without user
intervention. Available as a separately downloadable module on the GARAGe web site, http://isl.msu.edu/GA.

Features Added in Release 3.0 - 3.02

Subpopulation-Level Inversion Operator and Related Support:

Release 3.0 included a major addition of capabilities for solution of the most difficult problems using value-based
(i.e., NOT permutation-based) representations. Inversion is introduced, with a choice of two inversion operators:

the "classical” operator, in which a starting position and a (subsequent) ending position on the chromosome are
selected at random, and all fields between them are reversed in order, and a "circular" inversion operator, which
treats the chromosome as a ring, and picks start and end positions at random on the ring, and reverses the segment
in the positive direction from start to end, including passing "around the end" of the chromosome.

However, unlike the various reordering operators in GALOPPS for use in solving permutation-type problems,
when inversion occurs, GALOPPS makes the change in order to ALL the chromosomes in the population (or in a
single subpopulation, in the case of Manypops) and tracks the locations of the rearranged fields relative to their
position in the original "standard" representation used in the fitness function, so that the inversions may be
"undone" before chromosomes are actually evaluated in the fithess function. Thus, the user does NOT need to
deal with inverted chromosomes in the fitness function, because the chromosome is transformed temporarily back
to "standard" form before being passed to objfunc().

A major difficulty with the inversion operator in the past for most GA applications has been that it is difficult to
meaningfully crossover individuals with different inversion patterns. GALOPPS overcomes this by doing

28 Erik D. Goodman, GARAGe, Michigan State University

inversion as an operation on an entire population or subpopulation. Then all matings are done within the same
representation, averting the usual problems. The only potential problem is what to do when individuals in
Manypops migrate from one subpopulation to another (which may have a different inversion pattern). GALOPPS
handles that by transforming migrating individuals into the inversion ordering used in the receiving subpopulation.
This is accomplished by first transforming the migrating chromosome back to "standard” form, using the donor’s
"map_to_standard", then using the INVERSE of the receiving subpopulation’s "map_to_standard” to map the
chromosome FROM standard to the receiving subpopulation’s current representation.

The prospective user of inversion is CAUTIONED to read and understand thoroughly the inversion operator
before deciding to use it. In many cases, use of inversion for simple function-optimization tasks will ONLY
SLOW the search, producing no beneficial effects. It is useful ONLY for problems in which there is considerable
epistatic (nonlinear) interaction among variables on the chromosome, but the user does NOT know enough about
the nature of those interactions to "pre-arrange” the chromosome so that variables related to each other can be
placed close to each other on the chromosome. In that case, inversion may help speed the search, by (through
random chance) placing two (or more) variables in close proximity to each other on the chromosome, which
allows crossover to exploit their relationship more effectively. NOTE that inversion is a "second-level" operator:
performing inversion has NO effect on the fitness of the individuals inverted, but rather affects the probability that
various "good" schemata which have a long defining length in the "standard" representation (used by objfunc) will
become short schemata in the inverted representation, and thus able to act as "Building Blocks." It is a corollary
that the inversion capability provided by GALOPPS (and actually, the process itself, the author postulates) is
useful only when inversion patterns are judged at a higher (i.e., subpopulation) level. (Therefore, using inversion
with Onepop is not recommended, although it is permitted.) GALOPPS permits this higher-level control
(subpopulation-level selection on the inversion map) easily, as shown in the demonstratppdignoi.c In

that example, the inversion rate is independently controlled for each subpopulation, being changed to 0. or a user-
input value, based on competition among the subpopulations. That is, the effectiveness of a subpopulation’s
inversion pattern is judged vis-a-vis the effectiveness of other subpopulations’ patterns by seeing how well the
crossover-driven search progresses with each particular inversion pattern, and rewarding GOOD inversion patterns
with a 0.0 inversion rate (i.e., FIXING the good pattern) so long as the subpopulation continues to outperform the
other subpopulations. The user has a great deal of flexibility in how to control this, and only a simple example is
shown in the file appdemoi.c.

The start and end points for the segment to be inverted by an inversion operator are selected at FIELD
BOUNDARIES, not between any two pairs of bits. If alpha_size == 2, of course, then inversion can start and end
anywhere, but if alphasize = 20, for example, then inversions will start and end at 5-bit field boundaries.

If your problem is simple enough that it can be solved within a few hundred generations, then it is UNLIKELY

that you will benefit from using inversion. However, for problems with high degrees of nonlinear interaction
(epistasis) among variables, and no "natural” arrangement of the variables, then if the problem is long enough to
require many hundreds or thousands of generations to solve, the inversion operator MIGHT be useful in achieving
success. Please note also that while inversion is usable with either one-point or two-point crossover, it is literally
useless (and a waste of time) if uniform crossover is used, since uniform crossover treats fields for inheritance
INDEPENDENT of their relative positions on the parent chromosomes. (Many have found that inversion is more
useful for solving production-rule-set problems, etc., than for conventional function optimization problems. You
should determine its efficacy before settling on the use of inversion for any particular problem.)

Note: If you begin using inversion, and subsequently set pinversion (the probability of inversion per generation)
to 0., then you MUST ALSO set the global variable "using_inversion” to 1 (TRUE), for example, in
app_set_options() in your appxxxxx.c file. This will allow the migrations among subpopulations to proceed
correctly, while producing no more NEW inversions of the subpopulations. The "using_inversion" variable is
automatically set, as is the variable "different_reps," whenever pinversion > 0. at the start of a cycle.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 29

Multiple Representations -- Different Rep for Each Subpopulation:

In Release 3.0, a new flag in app_set_options(), in files app......c, is "different_reps." If TRUE, it means that each
subpopulation MAY have a different representation for its chromosomes. That can occur in two cases: the user is
using INVERSION, or the user has supplied code (in app_transform_migrant) which can translate any
subpopulation’s representation into the "standard” representation used in defining the fitness function (in
objfunc()) and user has supplied code (in app_user_transform_to_std()) to transform a chromosome from the
current subpopulation’s representation to the "standard" representation used by the objective function, objfunc()..
If the user sets flag "using_inversion" to TRUE, or sets pinversion > 0., then "different_reps" is automatically set
by the system. But if the "different_reps" flag is set to TRUE (default is FALSE), and using_inversion is FALSE,
this signals Manypops that special user-defined routines, app_transform_migrant() and
app_user_transform_to_std(), must be called whenever an individual to migrate has been selected or the objective
function must be called, respectively. During migration in this case, it is the job of the user to use the individual
passed in the "donor population” representation to define and return the corresponding individual in the
representation of the recipient population. When the fitness function is to be called, the user is first allowed to
transform the chromosome’s representation from its current form to the "standard" representation used in the
fitness function. Migration will involve the user’s making modifications to the chromosome and/or the utility

fields (if used). Of course, the user may need auxiliary information from both subpopulations to know how to
transform the migrating individual, and it is the responsibility of the user to obtain that information in whatever
manner is appropriate. The remapped individual returned by app_transform_migrant is used by Manypops to
replace a member of oldpop[] in the receiving population, just as if the representation had not been changed. The
only feature NOT allowed when different_reps is set is incest reduction during migration -- if
migration_incest_reduction is > 1, it is ignored when different_reps is TRUE, and individuals to migrate are
chosen as if migration_incest_reduction were 0.

See the differentreps example (in subdirectory examples) for an illustration of the use of different_reps.

The use of different_reps allows the user to easily implement parallel GA architectures such as the MSU
GARAGe’s "Injection Island" architecture. In that approach, subpopulations are organized in a treelike manner,
with base level subpopulations using a representation which is more highly aggregated than the "leaf' nodes.
Migration of individuals occurs ONLY in the direction toward the "leaf* nodes. When an individual is passed to a
node with a more refined representation, the any value for a more coarsely aggregated variable in the "donor"
subpopulation is simply placed into all the destination variables which correspond to the single donor variable.
Then, when the receiving subpopulation does genetic operations, these values (which were forced to be
aggregated in the donor subpopulation) may diverge from one another, providing a more detailed representation of
the problem, but continuously "seeded" with potential "building blocks" from the coarser level. We have found
that this Injection Island parallel GA architecture speeds our search significantly on some very difficult synthesis
problems.

Command Line Parameter Overrides:
Release 3.0 introduces optional command line overrides for parameters. Earlier releases allowed only the name
of an input file and an output file on the command line. In 3.0, those must be prefixed by "-i " and "-0 ",
respectively, as in:
Manypops -i infilename -o outfilename
However, Release 3.0 also allows many other things to be specified on the command line. Names of an input
file, output file, master file prefix, checkpoint file prefix, and/or restart file prefix may be specified on the
command line for any run, but OVERRIDES for parameter values may only be specified IF the user also specifies
an input file on the command line. That is, parameter overrides override those specified in an input file, but may
not be used if the user is setting the parameters from the keyboard at run time. Parameters which may differ in
each subpopulation may be specified to override the input file values for ALL subpopulations controlled by this
process by giving only the parameter name, an "=", and the new value (for example, pcross=0.4), OR, may be
specified for any single population by giving the parameter name, the two-digit subpopulation number, "=", and a

30 Erik D. Goodman, GARAGe, Michigan State University

value (for example, pcross03=0.6, which applies only to subpopulation 6). A full listing of the command line
options is given if the user enters, for example "Manypops X" or other illegal specification. The listing produced
then is shown below (analogous options for Onepop may be obtained by typing Onepop x):

Usage: Manypops [-iocem <file name|prefix>] [-p <tag>=<value>] ...

File names:
-i <file name> file of input parameter values
-0 <file name> file for run time output
-c <file prefix> checkpointfile prefix (6 char max)
-e <file prefix> restartfile prefix for extending a run (6 char max)
-m <file prefix> masterfile prefix for migration patterns (8 char max) (Manypops only)

Global parameters:
-p quiet=<output level, 0-3>
-p npops=<# of populations to be run> (Manypops only)
-p startpopnum=<first population for this process/processor, 0 to npops-1> (Manypops only)
-p finishpopnum=<last population for this process/processor, 0 to npops-1> (Manypops only)
-p ncycles=<# of cycles to be run> (Manypops only)

Population-specific parameters:
-p pcross=<% probability of crossover>
-p pmutation=<% probability of mutation>
-p pinversion=<% probability of inversion>
-p crowding_factor=<crowding factor>
-p popsize=<# of individuals/population>
-p genspercycle=<# of generations per cycle>

Add a 2 digit population number to tag to change the value of a
population-specific parameter for only a single population, i.e.,
-p pcross02=0.05 will only override for pop #2

All values specified on a command line SUPERSEDE values specified in the input files, and the LATEST value

determined for any parameter on the command line supersedes any earlier values for it given on the command
line.

Additional Selection Methods:

Stochastic Universal Sampling:

An additional form of selection, stochastic universal sampling (file suselect.c) has been added, and is
recommended over srselect.c and rselect.c. (See Baker, Proc. 2nd Int'l Conf. on GA, pp. 14-21.) because of its
small SPREAD about the desired distribution and its freedom from bias. It is faster to compute than all of the
other methods, for a serial machine. GALOPPS continues to provide rselect (roulette wheel), srselect (stochastic
remainder sampling), and tselect (tournament selection), as well as ranking (described below).

Linear Ranking, followed by SUS:

Whitley (ref.) describes and documents many benefits of using fitness ranking, rather than relative fithesses, as the
basis for selection for survival and mating. For problems in which control of the rate of convergence is at all

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 31

difficult, ranking is generally more tractable other methods. It is similar in some ways to tournament selection,
but has a much smaller spread, of course. It is most useful when GA's in general are most useful: for multimodal
problems of high dimensionality. Ranking can be used by compiling in file rnkslect.c as the selection routine.

Representing Non-Binary Chromosomes (Alphabet Size > 2)
(Note: Release 3.2 even allows different-sized alphabets
for different fields)

Releases 2.30 and later of GALOPPS support the use of non-binary alphabets to represent solutions on the
chromosome. That is, bits are grouped into fields n-bits long, of which only some subset may be legal values for
the field. For example, if alpha_size (the cardinality of the alphabet) is set to 6, then each field is 3 bits long, but
the only legal bit combinations in each field are the binary strings for,0 Ftat is, 1102 and 1112 are NOT

legal values in any field. Crossover, mutation, inversion, and initialization will "respect" these restrictions,

allowing crossover to occur only at field boundaries, for example. The user triggers the use of this type of
representation by responding NO to "permproblem?" and any integer > 2 for alpha_size. (Alpha_size = 2 provides
the usual binary representation.)

Input files (if used) must now contain alpha_size (cardinality of alphabet) and numfields, instead of lchrom
(length of chromosome in bits) for all non-permutation representations. (Permutation reps have never used
Ichrom.)

Implementation of this feature involved initialization of the populations (there is a new function called in
initsubp.c and startup.c, and superuniform initialization of these chromosomes is not allowed), and development
of new variations of the traditional crossover and mutation operators. The new inversion operators were
developed with the non-binary alphabet capability enabled.

Crossover (oneptx.c, twoptx.c, and unifx.c) for this representation are all performed only at the boundaries
between fields. This prevents generation of any illegal codes, and preserves the fields as the basic atoms of any
building blocks. Crossover probability continues to be a per-chromosome probability.

Mutation is done on a per-field basis (mutation rate is per-FIELD (or per LOCUS, if you prefer), just as it is for a
binary representation, where a bit is a field). When a field is to be mutated, its value is changed at uniform
random to a different one of the legal values. It is forced NOT to remain the same (just as in the binary case), but
to remain legal. (Of course, more than one mutation at a time on the same chromosome could conceivably return
it to its former value.)

Inversion constitutes a re-arrangement of FIELDS, regardless of the field length. Probability of inversion is
expressed as a per-generation probability, since entire subpopulations are inverted at once.

A new example application file illustrating the use of a non-binary alphabet is proam#itp9.c This

application searches for the single best string of length numfields, of the form:

0,1,..m-1,0,1,....m-1, ... 0,1,...k,

where m is the user-specified alphabet size. There is no upper limit imposed on either k or m, although it will
likely not work with 2**m > MAX_UINT.

32 Erik D. Goodman, GARAGe, Michigan State University

Restructuring and Addition of More Crossover Operators for
"Value-Based" Problems

The crossover and mutation operators are in separate files, allowing the user to select them independently at
compilation time. As an alternative to single-point crossover (the only crossover provided in the original SGA-C),
two-point crossover and uniform crossover have been added for manipulating binary representations. These three
operators are now in files oneptx.c, twoptx.c, and unifx.c, respectively. The user must select one of these in the
makefile (or one of the others, for a permutation-type problem -- see below), and a mutation operator (normally,
bitmutat.c for non-permutation problems).

Two-point crossover treats the chromosome as a ring, and places genes from one parent between two randomly
selected points on the chromosome, with the remainder of genes coming from the other parent. Two-point
crossover is considered by many to be superior to one-point crossover for most applications, and its use is
recommended.

Uniform crossover treats each locus as independent of all others, so for each locus, it assigns the first child the
allele from parent one with probability 50%, making a new, independent decision for each locus. Child two
always receives its value for any locus from the parent NOT used in child one. While uniform crossover often
works promotes very rapid search on very simple "counting ones" problems, for example, it renders the concept of
linkage completely inoperative, so should NOT be used in any system using an INVERSION operator to evolve
better linkages. (Such an inversion operator is expected to be available in the next release of GALOPPS.)
Uniform crossover also is NOT recommended by this author for problems in which a "natural” representation
offers the hope that linkage might help to preserve co-adapted sets of alleles which are relatively close on the
chromosome.

Six Operators and Other Tools Added for Solution of
Order-Based (or Permutation-Type) Problems

Genetic algorithms are frequently used to find solutions to problems which are essentially problems of permuting
(or reordering) a set of fields. Scheduling of production facilities, solution of shortest path problems, partitioning
and placement for electronic circuits, etc., are common examples. Release 2.05 added facilities for solving such
problems as part of the basic GALOPP System. If the user specifies that the problem is a permutation-type
problem, the user must select appropriate operators in the makefile (Unix systems) or project file (Borland C,
etc.). For permutation-type problems, four different crossover operators are included: uniform order-based
crossover (uobx.c), order crossover (0x.c), cycle crossover (cx.c), and partially matched crossover (pmx.c). The
first of these is described in Davis, Handbook of Genetic Algorithms, while the other three are described in the
Goldberg book. A choice of two mutation-type operators for permutation problems is also provided -- swapping
of two randomly selected fields (swap.c) or random sublist scramble mutation (scramble.c), which is described in
Davis, Handbook of Genetic Algorithms. The user is referred to both Goldberg and Davis for discussions of the
merits of these various operators for various types of problems.

Two routines in utility.c, int2ithruj and ithruj2int, are the lowest-level routines used to encode and decode
individual fixed-length integer fields to and from specified bit ranges on the chromosome. Higher-level routines
are also available for simpler access, when the application permits (getfield and putfield for individual fields, and
chromtointarray and intarraytochrom for unloading/loading the whole chromosome from an int array (numfields
and fieldlength are global variables used in these cases). A special routine, initpermpop(), in startup.c (single
populations) or initsubp.c (multiple subpopulations), performs random initialization of all fields so that each
possible value appears on the chromosome exactly once.

An example file, appbtsp.c, implements a solution to the Blind Traveling Salesman Problem... that is, a TSP in

which the solver does not know (or does not make use of) the distances between individual city pairs, but only
receives at the end of the tour a measure of the total length. This routine illustrates the use of the facilities

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 33

provided for solving such problems, and should serve as the basis for the user's development of his/her own file,
starting from the "generic" appxxxxx.c file.

Quiet Mode, for Reduced Output Under App(xxxxx).c Control

A new variable, "quiet", has been added to control output. A user might to do very long runs and be interested
only in the final result, or in output when a specific events occur. To assist with controlling the amount of output,
"quiet” may be set to any integer O - 3, from program input or during the run in response to testing in the user's
appxxxxx.c code). If quiet == 0, all normal program output is presented to the screen or output file. Quiet ==
eliminates most normal output (except attaining of new best individuals) after the copyright notice is printed, and
at each generation, whenever quiet is not 0, the function app_quiet_report() is called. Here, the user may examine
any global variables, etc., reset quiet to another value, or print specific things. Quiet == 2 suppresses all but end-
of-cycle reporting, and quiet == 3 suppresses all output except from app_quiet_report (the user may simply choose
to leave all output suppressed until the run terminates, and then EXTEND (by restarting) the program from the
checkpoint file to examine the results and/or continue the run). Periodic output is easily done by using code of the
form:

if (gen % 100) fprintf (...........)
for example, in app_quiet_report, producing an output only each 100 generations, if quiet == 3.

New Fitness Scaling Methods:

Three forms of scaling have been added: window scaling, sigma truncation, and linear scaling. (Note:

Boltzmann scaling has also been added, in Release 3.2, see above.) Selecting window scaling disallows the other
two, but if window scaling is off, the user may elect either sigma truncation or linear scaling or both (sigma
truncation followed by linear scaling of the result).

Window Scaling

Window scaling, similar to that provided in GeneSYS or GAucsd, is provided. The user may elect no window
scaling (-1), or may set scaling_window to any integer from 0 to a #define’d maximum (currently 19). The fithess
is scaled by subtracting from the raw fitness (init_fitness in the code) the LOWEST fitness of any individual in the
past scaling_window generations (0 means current generation only; 1 means current plus immediately preceding
generation, etc.). Of course, this window scaling differs from GENESIS in that GENESIS subtracts the maximum
fitness seen in scaling_window generations, because it uses "anti-fitness", which it tries to minimize; in contrast,
GALOPPS uses true fitness, which it seeks to maximize. The user may turn window scaling on or off during a run
-- it keeps the needed minimum fitness history whether or not it is active, and operates correctly (the author
intends) from first activation, even when files are restarted after a checkpoint halt.

Linear Scaling

Linear scaling is provided as described in Goldberg's book, using scalemult (user input) as the ratio of best fithess
to mean fitness. If maintaining the user-specified ratio between best and mean fithess would cause some fitnesses
to become negative, the slope of the scaling line is readjusted so that the worst fithess individual receives a scaled
fitness of 0, while the mean fitness is maintained. A value of -1 causes linear scaling NOT to be performed.

Sigma Truncation

Sigma truncation, as described in Goldberg's book, has been added. Thisallows the user to specify a multiplier of
sigma, the standard deviation, which the sigma truncation feature in file statisti.c uses to alter the fitness function
as follows:

34 Erik D. Goodman, GARAGe, Michigan State University

The standard deviation, sigma, of the fithesses of the current generation is calculated. The fitness, f, is
transformed to sigma-truncated fitness, f', using:

f' = max(0.0, f - (fbar - sigma_trunc * sigma)),

where fbar is the mean fitness of the current generation, and sigma_trunc is the multiple of sigma specified by the
user. That is, all of the transformed values of f' below 0.0 are truncated to 0. The resulting values (in
newpop[j].fitness) are then available for linear scaling, if desired. If the user specifies sigma_trunc = 0.0, sigma
truncation is turned off. NOTE: sigma truncation does not preserve the mean fitness of the population.

Optional Elitism

By setting or resetting a compile-time flag, elitism, in function app_set_options() in the user's app(xxxxx).c
problem definition file, the user may use or not use elitism. If elitism is elected, the generation process is modified
to INSURE that AT LEAST ONE copy of the current generation's best fitness individual appears in the next
generation's population. If turned off, random chance may fail to allow the best individual to be selected for
reproduction unchanged, and chance may cause all copies of the current best individual to be subjected to
crossover and/or mutation, perhaps resulting in NO copies of it in the next generation, in spite of its higher-than-
average fitness. Thus, the fitness of the best individual of the current population could actually decrease, if
elitism is not employed. However, depending on the circumstances, some may wish to avoid it, to insure
absolute adherence to the sampling probabilities given by the fithess distribution, etc.

If the user elects elitism, survival of the best individual is also guaranteed by GALOPPS during migration
operations (i.e., last copy of best guy is never replaced by a worse individual), and during partial re-initialization
of a subpopulation (so long as at least ONE individual is NOT randomly replaced, the best one will be preserved).

Tools for Monitoring Convergence of Population(s)

Percentage of Ones at Each Locus:

A facility was added for calculating the proportion of 1 bits present in the population at each locus. Using this
measure, which can be calculated and reported at a user-specified interval, it is easy to determine when most
individuals have the same values for particular loci, and thus judge the degree of convergence of the population,
and determine hyperplanes in which it may be difficult for the population to explore.

Measurement of Resemblance to Best Individual:

This convergence measure, developed by Erik Goodman, calculates a non-standard measure of the diversity of the
population as the GA progresses. It compares the chromosomes of all individuals defined as "good" by the user
against each other and against the best individual of the current generation. It tabulates the number of good
individuals which are closer to the current best individual than to any of the other good individuals, and then
calculates the percentage which are closer to the best individual. The user defines (via input) the criterion for
"good"... entering a multiple of the standard deviation. This multiple of the standard deviation is added to the
mean to determine a lower fithess limit for being considered "good." The number entered may be a positive or
negative floating point number, and will typically be between +3. and -3. For example, 1.0 will result in all
individuals at least 1.0 standard deviations above mean fitness to be in the "good" group. An entry of 0.0 means
all with higher than average fitness are "good.” An entry of -3. means that essentially EVERYONE is "good." A
special entry, 7.0, is used to disable this convergence calculation and reporting. Otherwise, it is calculated and
reported at the same intervals as the count of ones in each locus, another convergence-related measure.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 35

DeJong-Style Crowding, An Alternative Method For Replacing Population
Members with New Offspring (Can Be Used to Foster Niche Formation)

DeJong-style crowding, as described in Goldberg's book, has been added as a means of allowing "niching" of the
population -- that is, allowing several distinct groups of individuals (in different "niches") to develop and persist in
the population, with lessened pressure by the GA for all to converge toward a single type of individual. This
technique is intended to help reduce premature convergence of the population, allowing it to more effectively
explore the domain of a multi-modal function. It may be particularly useful for very difficult functions, in which
runs of many generations are expected to be necessary to find a global optimum.

DeJong crowding uses an integer "crowding_factor" specified by the user. |Ifitis set to 0, crowding is turned off,
and the crossover operation proceeds as usual, with offspring replacing their gaerntsding_factor is set to

1, then each individual produced by crossover replaces a randomly selected individual from the population
ALREADY SELECTED according to relative fitness for reproduction or survival into the next generation.

That is, this case does norowding, but is simply an alternative strategy for placement of offspring (instead

of simply replacing their parents, as in SGA).If crowding_factor is set greater than 1 (usually to 2, 3, or other
small integer), crossover is modified to work as follows:

Prior to any crossover or mutation, normal fithess-weighted selection (with or without sigma
truncation and linear scaling) is used to select the tentative members of the next generation,
newpop. Crossover is then performed on pairs of individuals selected at UNIFORM RANDOM
from this set (since fithess has already been used to bias the SELECTION FOR SURVIVAL).
After a pair of individuals is selected for crossover, the children are calculated as usual. Then,
for each child, "crowding_factor" members of the set of tentative survivors are selected (at
uniform random), and HAMMING DISTANCE of each chromosome (i.e., number of
DIFFERENT BITS) from the child is calculated for the crowding_factor individuals. The child
then REPLACES whichever survivor it was CLOSEST TO in Hamming distance. Mutation is
then applied to all members of the new population at the specified rate, and fitnesses are
calculated for new individuals.

The idea of crowding is that children will tend to replace individuals to which they are SIMILAR, so that, as more
individuals of a similar genotype arise in the population, the chances increase that their offspring will replace one
of them, rather than a dissimilar individual. That gives the DISSIMILAR individuals (presumably fewer in
number) a BETTER CHANCE to survive. Since FITNESS REALLY MEANS INFLUENCE ON THE NEXT
GENERATION (survival of self or producing offspring similar to oneself), crowding produces a DENSITY-
DEPENDENT FITNESS FUNCTION, in effect. However, unlike the concept of "fitness sharing," it does not
require calculation of average Hamming distances among ALL members of a population, for example.

Since crowding actually implicitly ALTERS THE TRUE FITNESS FUNCTION, the user should expect that
different settings for crossover rate, mutation rate, scaling factor, etc., may be needed for effective search than if
crowding is not used.

Incest Reduction -- A Form of Mating Restriction

When DeJong-style crowding is used (crowding_factor is set greater than 0), the user is also asked whether or not
to use incest reduction. If it is turned on, then a mechanism (developed by the author) to reduce the fraction of
crossovers between very similar chromosomes is invoked. In this scheme, after the individuals are selected which
will survive or produce offspring into the next generation, using whatever selection method the user has chosen,
pairs for crossover are picked by choosing the first parent at uniform random from the list of survivors and
breeders, then choosimgeest_reduction (for example, 3) possible candidates for the other parent, again at

uniform random from the list of survivors and breeders. Then the Hamming distance of each candidate from the
first parent is calculated, and the one with the greatest Hamming distance is picked for the crossover. Only the

36 Erik D. Goodman, GARAGe, Michigan State University

two parents actually used are eliminated from the list of eligible parents for the next crossover selection, or for
survival (possibly mutated) after crossover is completed. This scheme structures pairs for crossover so as to
promote diversity, while preserving all members of the selection-biased pool (or their offspring) into the next
generation. It is expected to be especially useful for problems in which good building blocks can exist relatively
independently of one another, allowing them to be combined with high probability (the royal road function is such
an example). Itis a form of negative-assortative mating.

Enriched Application-Dependent Callback Functions

In support of the many new functions added to SGA's original set, and in the spirit of the design of the original,
the application file template, appxxxxx.c, within which the user can develop the code needed to solve a particular
problem using GALOPPS, has been enriched and extended. The user is given the opportunity to inject problem-
specific code at many points, without modifying the GALOPP System. Thus, most applications can be coded
simply by modifying the single file appxxxxx.c. "NOP" model functions for all of the user callbacks have been
precoded in appxxxxx.c, and any which are not needed may simply be left "as is."”

Operator & File Usage Automatically Documented to Output

At Release 2.35, code has been added to each crossover, mutation, and selection file (and inversion, in 3.0)
operator file, so that GALOPPS can record for the user which operators were compiled in for the particular run
being made. The names of the input file (if used) and of the master file (specifying migration among
subpopulations in Manypops) are also printed at the beginning of the run. This is intended to simplify for the user
the task of keeping track of the environment in which any run was made.

User-Supplied Initialization of Populations
and Post-Initialization "Cleanup" Supported:

Four types of "standard" initialization of chromosomes are furnished with GALOPPS (random values between 0
and alpha_size-1 in each field, random binary (a special case of the preceding one), superuniform initialization of
binary chromosomes, and random permutations of n values among n fields). In order to accommodate the needs of
users of representations which need to impose additional constraints on initialization, two new callbacks have
been added to the app files: user_supplied_init_pop(starting_guy_index) (new in 2.35) and
app_after_random_init() (new in 2.31). The first is called INSTEAD of one of the normal four random
chromosome generators, if the user sets the flag "user_supplied_initialization" to TRUE in app_init (the default is
FALSE). This then requires that the user fill oldpop[starting_guy_index] through oldpop[popsize-1] with valid
chromosomes, generated however the user desires. The user may wish to do this "from scratch,” or by copying
one of the standard routines (from startup.c or initsubp.c) into user_supplied_init_pop() in appxxxxx.c, then
modifying it to the requirements of the user’s particular representation. The second callback,
app_after_random_init(), (introduced in Release 2.31) is called after ANY (including user-supplied) random
initialization of chromosomes has been performed, but before the statistics have been run on the initial population.
The user may perform any desired transformations, replacements, etc., on the population, to complete the
initialization.

Option to Count and Reduce Objective Function Calls

For greater efficiency of operation, generate.c was modified so that the objective function is normally called
ONLY when a chromosome has been subjected to a genetic operation (and at initialization, of course). For time-
varying or stochastic problems, or any others for which the evaluation of a chromosome may vary each time it is
evaluated, a flag (stochastic) has been added to retain calling of the objective function for every chromosome in
every generation, at the user's option.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 37

Migration Capabilities Significantly Enhanced and Multiple
Representations Supported

At Release 3.0, significant new features have been added to migration of individuals in Manypops. One level of
tournament selection (with tourneysize = 3) is automatically applied in picking candidates for migration from a
subpopulation, unless it is the best individual which is to be migrated. This is to insure that when high crossover
and/or mutation rates are used, the many "lethals"” produced are not so likely to be selected as immigrants. Note
that immigrants from a subpopulation are picked from a population which has NOT y et been subjected to ANY
selection since the previous generation’s operations were performed. Therefore, a tournament of three for picking
each candidate for migration helps to provide a fithess-biased probability of selection for migration. Note that, in
the event that migration_incest_reduction is used (see below), EACH CANDIDATE for

migration_incest_reduction is ALREADY the winner of a tournament of three based on fitness (and the actual
migrant will be chosen based on Hamming distance from the best of the receiving subpopulation).

In addition to providing the above fitness bias for migrants, two new fields have been added to the neighbor lines
in the .mst files, which control two new processes added to migration.

"Incest Reduction" During Migration:

The first is called migration_incest_reduction, and is a small integer value (usually [0-5] individuals). When
migration_incest_reduction > 1, then when a random individual (i.e., NOT requested as the donor population’s
BEST) is to be picked for migration, migration_incest_reduction individuals are randomly chosen (but fitness-
biased by making each the winner of a tournament of 3, see above) from the donor population, and each of their
chromosomes is compared with the chromosome of the BEST individual of the recipient population. The one
MOST DIFFERENT (largest Hamming distance) is chosen as the immigrant. This may have the desirable effect
of reducing the likelihood of "re-importing” the same individual over and over from a neighboring subpopulation,
and, in conjunction with crowding, may aid in maintaining diversity and in assembling different building blocks in
the recipient population. Note: values of 0 and 1 are equivalent, and effectively disable incest reduction during
migration. Note: If the flag different_reps is set (in function app_init, or because inversion is in use),
migration_incest_reduction is automatically disabled (treated as 0).

Crowding During Migration:

The second new field is called migration_crowding_amount, and is also a small integer (typically [0-5]
individuals). It works similarly to crowding during normal selection: each immigrant is compared with
migration_crowding_amount individuals selected randomly from the recipient population, and the individual
whose chromosome is CLOSEST (smallest Hamming distance) to the immigrant is replaced. Depending on other
parameters and the problem being solved, this may have the effect of favoring the formation of more than one
"cohort" or cluster of individuals with relatively high fitness, but with somewhat distinct genotypes (perhaps
representing regions of the solution space with different local optima). This may aid the GA in combining

building blocks, by allowing several distinct ones to persist, at least briefly, before selection eliminates the ones
with marginally lower fitness.

User-Supplied Migration Code:

In Release 3.0, a flag variable, call_app_user_does_migration, has been added to the app files, in the app_init()
function. If that variable is set to TRUE (default is FALSE), then when migration is to occur, instead of calling
the usual migration routines, Manypops calls app_user_does_migration() (in the user’s app......c file), passing it a
set of parameters likely to be useful to the user in performing migration. It is then up to the user to do the
migration in any manner desired. The net effect should be to move some individuals from neighboring
subpopulations (as set in the .mst file) to replace some set of individuals in the receiving population. Migration
occurs for each subpopulation at the beginning of its execution in each cycle (except the very first), just after it
has been initialized from the restart files, and before any genetic operations are performed. Migrants are

38 Erik D. Goodman, GARAGe, Michigan State University

introduced into population oldpop([], from which selection of individuals to create the next generation is later
made. It is suggested that a user wanting to use this feature examine carefully the "standard" migration code (in
files master.c and checkrd.c) and "cannibalize" whatever portions are applicable. (See also the related (but
different) capability for using different representations in each subpopulation, which may supplant the need for
using call_app_user_does_migration, by letting the user specify only the transformation code, not the code for
selecting and placing migrants.)

Checkpoint and Restart Capability:

GALOPPS, in either single-population or multiple-population (parallel) modes, features a checkpoint/restart

facility, which allows the user to run for a specified interval, after which GALOPPS saves its state in checkpoint
files on the disk, and exits. The user may then restart the program and specify a restart from the saved checkpoint
files. The user may examine the population, and may change any parameters, including popsize. If popsize is
increased, new individuals to fill the empty slots are generated at random, as at initiation of a run. If the user
requests printing of the chromosome strings, it is also done at initialization time.

*** At Release 3.0, checkpointing in Onepop has been extended to allow the user to specify an interval (every
"ckptfreq" generations) between checkpoint file writing. This new parameter, ckptfreq, is read as part of
interactive user input, or from an input file, if one is used. (Manypops has always written checkpoint files at the
end of each "cycle", and that is not altered.) Checkpoint files continue to be written at the end of the run in any
case, so long as termination is normal.

Checkpointing and restarting are actually accomplished with a pair of files, with suffixes .ckp and .ind, which
contain header (program state) information and the population (individuals), respectively. The files share a
common prefix, and are always written. If the user specifies no checkpoint filename, they are written to
sgackp.ckp and sgackp.ind. When the program is started, the user is allowed to enter a restartfileprefix to
EXTEND a previous run, and if none is entered, the program gets its input from the keyboard (or file) as before.

The user may use restart files as a means of seeding a population with the results of an earlier run. If needed, the
user could also create "simulated” restart files by hand for reading in as initial populations. In all cases, if popsize
is larger than the number of individuals provided in a file, the program uses random generation to fill empty
population slots.

Checkpoint files are written to disk into one of two buffers in each file. At the end of each full cycle, GALOPPS
changes the buffer pointer for reading. This is done to allow OTHER subpopulations to read individuals from
neighboring subpopulations and to get the SAME CYCLE's results, regardless of whether the subpopulation being
read from is processed BEFORE or AFTER the receiving subpopulation. (Of course, when subpopulations are
calculated by more than one PROCESS (on a Unix workstation) or by more than one PROCESSOR (networked
PC, workstation, or whatever), there is no longer any attempt to keep the subpopulations "in sync," but the file
renaming still operates, for the sake of any subpopulations handled by the same PROCESS, and to allow
consistent EXTENDING of interrupted runs.

SPECIAL NOTE FOR USERS OF THE PVM VERSION OF GALOPPS: See the separate guide to PVM
GALOPPS for information on the handling of files in the PVM version, which is different from the "normal”
version discussed here.

NEW FORMAT FOR INPUT FILES

GALOPPS Release 2.05 and beyond includes an optional format for input files to GALOPPS. The user may
optionally include on each input line (from keyboard or file) the name of the parameter being entered and an "="
sign before the value. This is not useful from the keyboard, which already prompts for input, but may be valuable
when composing disk files of input parameters for SGA. It is suggested that the user prepare a template with all
of the parameter names in their correct order, and then simply fill in the values. A sample input file is shown next

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 39

in this README document. Parameters in the file must still appear in the same order as if the keywords are not
specified, but the user has available an aid in composing the file, and the input is checked to be certain that each
field name in the file matches the field being read. When the program detects a field DIFFERENT from what it
expected, it informs the user of what it found and what it was looking for, then exits. This makes it easy to correct
the input file. For your convenience in documenting what a file is set up to do, or for "commenting out" unneeded
fields, C-style comment lines:

[* Comment text */

are allowed in the file, but ONLY as standalone lines, not as "trailing" comments.

SAMPLE OF OPTIONAL INPUT FILE FORMATS
(Single Population Version, for solving problem app.c, for example, not a permutation-type problem):

[* This is a sample input file for Onepop */

numberofruns= 1

quiet=0

ckptfreq = 10

checkptfileprefix = appckp

/* blank restartfileprefix means will take input from this file, not */
/* from a restart file -- i.e., NOT EXTENDING a previous run */
restartfileprefix =

permproblem =n

alpha_size =2

numfields = 10

superuniform = n

maxgen = 5

popsize = 20

printstrings = n

pcross = .5

pmutation = 0.01

pinversion = 0.

autocontrol_selection = n

beta =

scaling_window = -1

/* Note that if scaling_window is not -1, sigma_trunc and scalemult */
/* MUST be removed or commented out, as the program will NOT try to */
[* read them. */

sigma_trunc =0

scalemult = 1.40

crowding_factor =0

conv_sigma_coeff =7

convinterval = 0

randomseed = 0.345

Additional fields are required for GALOPPS/Manypops and for solving permutation-type problems. If you use
tournament selection (tselect.c), you will also need to enter a field for the tournament size (for each
subpopulation, in Manypops). If you elect crowding (>0), you may also elect incest_reduction. For value-based
(i.e., NOT permutation) problems, you may elect pinversion > 0 (otherwise, specify pinversion = 0). If you
choose autocontrol_selection =y, then instead of beta, you enter beta_s_tilde. In each case, if you omit a
parameter, when you run GALOPPS, it will tell you what it was looking for, and what it found instead, so it is
easy to correct.

New in Release 2.20 and beyond, there is a SHORT form for Manypops runs, useful if ALL of the subpopulations

(to be run by the process being started) are supposed to use the SAME parameters (e.g., population size, crossover
rate, scaling method, etc.) In that case, the user should set the parameter "all_subpops_use_same_parameters" =y

40 Erik D. Goodman, GARAGe, Michigan State University

(for yes). In that case, the program will prompt for (or read from file) the input parameters for only ONE
subpopulation, and will use the same values for all others. This includes the random number seed... in this case,
the random number generator just continues operating without reseeding when a new subpopulation is loaded in.

SPECIFICATIONS FOR INPUT FILES -- FOR ONEPOP AND MANYPOPS

ONEPOP INPUT SPECIFICATION

I* */

[* appinputtemplate -- sample input file for single-population run (Onepop), */

/* which actually doesn't run ANY problem. The IF lines DO NOT APPEAR IN AN */
/* ACTUAL INPUT FILE. In all cases in which a default value is shown at run */

/* time, a blank line or blank in the value field can be used to indicate */

[* acceptance of the default shown. */
I* */
numberofruns = [1-?]

quiet = [0-3]

ckptfreq = [1 - nnn]
checkptfileprefix = (blank or up to 6 characters, NOT starting with 'z’)
restartfileprefix = (blank or up to 6 characters, NOT starting with 'z')
IF (restartfileprefix IS BLANK)

permproblem = (y|n)
ANY INPUT FROM infp IN USER'S app_read_problem_params goes here.
maxgen = nnn
IF (restartfileprefix NOT BLANK)

other_changes = (y/n)
IF (restartfileprefix IS BLANK || other_changes)

[* Can specify or change any of the values below. */

alpha_size = nn
numfields = nn
IF (not permproblem && alpha_size == 2)
superuniform = (y|n)

popsize = nnn

printstrings = (y|n)

pcross = [0., 1.0]

pmutation = [0., 1.0] (NOTE: is probability/chromosome for

permproblem ==y or if using multimut.c, and probability/field otherwise)
autocontrol_selection = (y|n)
IF (autocontrol_selection ==y)
beta_s_tilde = [0., ~5.]

ELSE
beta = [0., ~5.]
scaling_window = [-1 - 20] (NOTE: must be -1 IF using rank-based

selection)
IF (scaling_window < 0)
sigma_trunc = [0. - ~5.0]
scalemult = 0.0 or [1.0n - ~2.n] (NOTE: must be >1.0 IF
using rank-based selection.

crowding_factor = [0 - ~5] (NOTE: 0 means crowding off)
IF (crowding_factor > 0)

incest_reduction = (y|n)
conv_sigma_coeff = [0. - ~5.0]

convinterval = [0 - ~100]

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 41

IF (tournament selection is compiled in)
tourneysize = n
IF (restartfileprefix IS BLANK && popno == 0)
USER-DEFINED INPUTS, IF ANY, from app_data, app_input, etc., GO HERE
randomseed = .123
IF (numberofruns > 1)
(The same fields, beginning after numberofruns line, go here for each
subsequent run.)

MANYPOP INPUT SPECIFICATION

I* */

[* appinputtemplate -- specs for sample input file for multi-population run */

/* (Manypops), which actually doesn't run ANY problem. The IF lines DO NOT */
/* APPEAR IN AN ACTUAL INPUT FILE. In all cases in which a default value is */
/* shown at run time, a blank line or blank in the value field can be used to */

/* indicate acceptance of the default shown. */
I* */
npops = nn

startpopnum = nn [0, npops-1]
finishpopnum = nn [startpopnum, npops-1]
ncycles = nnn
quiet = [0-3]
checkptfileprefix = (blank or up to 6 characters, NOT starting with 'z")
restartfileprefix = (blank or up to 6 characters, NOT starting with 'z")
masterfileprefix = (blank or up to 8 characters, NOT starting with 'z")
[* i.e., start of new run or first cycle extending a previous run */
IF (restartfileprefix NOT BLANK && cycle == 0)
changes_to_this_pop = (y|n)
IF (changes_to_this_pop ==y || (restartfileprefix IS BLANK
&& (popno == startpopnum || NOT all_subpops_use_same_parameters))
{

/* Can specify or change any of the values below. */
alpha_size = nn
numfields = nn
IF (not permproblem && alpha_size == 2)
superuniform = (y|n)
genspercycle =nn
popsize = nnn
printstrings = (y|n)
pcross = [0., 1.0]
pmutation = [0., 1.0] /* (NOTE: is probability/chromosome for
permproblem ==y or if using multimut.c, and probability/field IF not
a permproblem) */
pinversion = [0., 1.0]
autocontrol_selection = (y|n)
IF (autocontrol_selection =="y’)
beta_s_tilde =[0., ~5.0]
ELSE
beta = [0., ~5.0]
scaling_window = [-1 - 20] /* (NOTE: must be -1 IF using rank-based
selection) */

42 Erik D. Goodman, GARAGe, Michigan State University

IF (scaling_window < 0)
sigma_trunc = [0. - ~5.0]
scalemult = 0.0 or [1.0n - ~2.n] /* (NOTE: must be >1.0 IF
using rank-based selection. */
crowding_factor = [0 - ~5] /* (NOTE: 0 means crowding off) */
IF (crowding_factor > 0)
incest_reduction = (y|n)
conv_sigma_coeff = [0. - ~5.0]
convinterval = [0 - ~100]
IF (tournament selection is compiled in)
tourneysize = n
IF (user reads in input during this operation from app_data, app_init)
USER-DEFINED INPUTS, IF ANY, (in app_data, app_init, etc.) HERE
randomseed = .123

}

EXPLANATION OF INPUT FOR A MANYPOPS RUN

Upon starting the GALOPPS/Manypops, if the user started the program interactively (i.e., did not specify an input
file on the command line) the user is asked the following questions. If an input file name was given (after -i
option), program reads the same fields from that file. If an output file is specified (-o option), output will be
written to that file; otherwise, it is written to the screen. The inputs requested are (NOTE the difference in inputs
required below depending on whether the run is a NEW one (restartfileprefix is blank) or an EXTENSION of a
previous run (restartfileprefix is NOT BLANK):

the number of subpopulations,

the number of the first subpopulation THIS process should calculate
the number of the last subpopulation THIS process should calculate
the number of cycles (restarts of each subpopulation) to run,

what quantity/frequency of output is desired (the "quiet” flag, with
settings from 0 (show all output) to 3 (show NO output).

the file prefix (6 characters or fewer) for the new checkpoint files to be written during
this run (if none given, the prefix specified below
for restart files(if any) is used; otherwise, a default "sgackp" is used).

the file prefix (6 characters or fewer) for the restart files to initialize each
subpopulation (if response is "xyz", then files xyz00.ind, xyz00.ckp, xyz01.ind,
xyz01l.ckp, ..., (and also xyz99.stt, of running populations from more than one
process) must exist in the current directory). If response is a
"return” (i.e., no file prefix is given), then the user is prompted for
all of the parameters for the run from the keyboard, or input parameters
come from the file specified in the command line, in the format
described above under "New Format for Input Files (or -- NOT recommended -- as "naked"
responses identical to keyboard input).

the file prefix (8 characters or fewer) for the master file (if none is specified, default

file prefix "master"” is used. If file cannot be opened or read,
then populations are assumed to be independent (no migration).)

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 43

IF a new run (not an extension)
whether or not all subpopulations use the same parameter settings
the problem type (permutation or not)
whether or not all subpopulations to be run by this process use the same
parameter values (so they are specified only once below).

IF NOT a permproblem (permproblem == 0)
the size of each field, alpha_size (<2 means different sizes specified in
app_set_options)

the number of fields on the chromosome (numfields). For a binary
representation, this is the number of bits on the chromosome; for
non-binary problems, the number of fields. Note that for non-permutation
problems, the operations of crossover, mutation, etc. are done AT field
boundaries only. For perm problems, the number of fields determines
the set of integers to be permuted on the chromosome.

IF a permutation problem (permproblem == 1)
the number of extra fields (>= 0; >0 only for "hybrid" reps -- O for most GALOPPS users)

IF not a permutation problem && alpha_size ==
whether to use superuniform initialization or not

whether to complete the run without offering the user any further
opportunity to modify the parameters of the subpopulations (this
question is asked only in the first cycle).

Then, if a restart file prefix was given (EXTENDING a previous run), and all_pops_use_same_parameters ==y,
then the run begins. If different subpops use different parameters, then the user enters the GA parameters for each
subpopulation in turn (from genspercycle through randomseed (first subpop) or convinterval (subsequent

subpops), and the program executes the specified number of cycles. Note that if restarting from stored files,
exchange of chromosomes with neighbors begins with the first cycle, whereas, if the subpopulations are just being
initialized, exchanges will commence only at the beginning of the second cycle). Files of "individuals" written by
GALOPPS3.2, are labeled with the suffix ".ind"

A similar procedure is used to save program state, in .ckp files written at the end of the each subpopulation’s
execution in the cycle.

During the running of GALOPPS/Manypops, at the end of any subpopulation's cycle in which it achieved a new
global best (unscaled) fitness, the program prints a special output message describing the individual found. The
user may find it useful to scan output files for these special lines, which are the only ones containing the word
"Achieved", to track the progress of the entire set of subpopulations.

ISLAND PARALLELISM --

GALOPPS/MANYPOPS FOR SIMULATION OF MULTIPLE SUBPOPULATIONS

A major capability of the GALOPPS system is the capability to simulate a number of "island" subpopulations
running in parallel. The capability is provided using a second "main" program, Manypops, and different
initialization routines. All other code, and user files, are common or compatible between the single population
and parallel subpopulations systems. The single-population version, called GALOPPS/Onepop, has a

44 Erik D. Goodman, GARAGe, Michigan State University

checkpoint/restart capability, which serves as the basis for the new version, GALOPPS/Manypops (an island-
parallel genetic algorithm), which allows the user to simulate parallel operation of multiple subpopulations, with
periodic interchange of individuals among the various subpopulations. This coarse-grain parallelism is intended
to assist the user in avoiding premature convergence on difficult multimodal problems. Files (populations)
created via the checkpoint facility of GALOPPS/Onepop may be used to initialize runs of Manypops, and vice-
versa (given the proper choices of file names).

Manypops can SIMULATE parallel subpopulations, or, in Release 2.20 and beyond, can use multiple processors
to run more than one subpopulation simultaneously, as described below.

PRINCIPLES OF GALOPPS/Manypops (Release 2.20 and Beyond)

GALOPPS/Manypops is built upon the checkpoint/restart capability of GALOPPS/Onepop. When run on a
SINGLE processor from a SINGLE process, it operates by running in sequence a set of subpopulations (labeled
00, 01, 02,...), first reading a checkpoint file for one of the subpopulations, then reading individuals from
"neighboring” subpopulations as specified by the user, running for a specified number of generations, then writing
a new checkpoint file. Then it proceeds to the next subpopulation. It operates in "cycles," in which each
subpopulation receives one turn.

On MULTIPLE processors, the subpopulations are run with exactly the same sort of intercommunication and
execution, but more than one subpopulation may be in execution AT THE SAME TIME (true parallelism). This
new capability of Release 2.20 and beyond is described more fully in the sé&uiomng MANYPOPS on

Multiple Processors.

Regardless of the mode of execution (one process or many processes or many processors), each subpopulation has
individual control over all of its own parameters, including the number of generations to run in each cycle,
population size, etc. However, some properties (like chromosome length, etc.) are shared among all
subpopulations, since individuals must be able to pass from one subpopulation to another, UNLESS the
“different_rep% flag is set (see that section). The exchange of individuals between subpopulations is specified by
a new form of text file, called a "master” file, *.mst. The master file is a table which contains the number of
subpopulations, and for each, its number of neighbors, followed by the number of each neighbor, and how many
individuals (and how chosen) are to be read from that neighbor. A SHORT version is also available for situations
when the pattern of migration is to be identical for ALL subpopulations (for example, each subpopulesats

the best individual from the subpopulations numberddandn+1 (modulo npops, the number of

subpopulations). Details follow the example:

NOTE: New, in Release 3.0: migrants which are to be chosen "randomly” (i.e., not picked because they are the
current best of subpopulation) are now PRE-SELECTED. For each "random” individual to migrate, three are
chosen at uniform random, then tournament-selected (i.e., the best of the three is picked). Thus, the migration
process acts as if emigrants were chosen from a population which has already undergone some selection. (This is
important, because otherwise, offspring of crossovers and mutations in the donor population which have terrible
fitness might be picked to migrate -- the new ones have NOT YET been subjected to any selection.) If the user
has elected to use migration_incest_reduction, then EACH of the individuals to be examined for possible

migration is already the winner of a three-way tournament selection.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 45

GENERAL FORMAT FOR A MASTER (.mst) FILE

FULLY GENERAL VERSION (ARBITRARY PATTERN)
SAMPLE MASTER FILE: EXPLANATION:
subcnt =4 There are 4 subpopulations
subpop =02 Subpop 0 has 2 neighbors
neighbor=1 2 3 4 gets, from subpop 1, 2 randomly choserhcom's,
migration_incest_reduction = 3; migration_crowding_amt =4

neighbor=3 2 3 4 | gets, from subpop 3, 2 randomly chosen chrom's, etc.
subpop=11 | Subpop 1 has 1 neighbor
neighbor=0-1 4 3 | He gets, from subpop 0, its one best chrom
subpop =22 | Subpop 2 has 2 neighbors
neighbor=3 2 3 4 | gets, from subpop 3, 2 randomly chosen chrom's
neighbor=1-23 4 | gets, from subpop 1, best + 1 randomly chosen
chrom
subpop=31 | Subpop 3 has 1 neighbor
neighbor=0 23 3 gets, from subpop 0, 2 randomly chosen chrom's
SHORT VERSION (SYMMETRICAL PATTERN)
SAMPLE MASTER FILE: | EXPLANATION:
subcnt = -4 | There are 4 subpops; "-" means all use same pattern
subpop =02 | Subpop 0 has 2 neighbors
neighbor=1 2 3 4 | gets, from subpop 1, 2 randomly chosen chrom's, m.i.r.=3, mig_cr=4
neighbor=3 2 3 3 | gets, from subpop 3, 2 randomly chosen chrom's{c.

General Format for Master File:

subcnt = <number of subpops> or -<number of subpops>

subpop = <subpopindex> <numberofneighbors>
neighbor = <subpopindex> <FLAG> <migration_incest_reduction> <migration_crowding_amount>
etc.

where subcnt, if negative, means that the neighbors will be specified for only ONE subpopulation, and all others
will use CORRESPONDING patterns (modulo npops, and neighbor patterns "wrap around" so that subpopulation
"npops" is really subpopulation "0", etc.,

FLAG means:
if positive, the number of randomly chosen individuals to read
from the specified neighbor's file;
if zero, no chromosomes are to be read from that neighbor;
if negative, the BEST chromosome is to be read, plus |FLAG|-1 additiarmadomly chosen individuals (so -1
means best only, -2 means best and one other, etc.).

Migration_incest_reduction (new in 3.0) applies only to migrants to be RANDOMLY chosen (i.e., NOT

applicable to the BEST individual when it is specifically requested for migration). Migration_incest_reduction is
the number of individuals picked at random (but each is the best of three candidates chosen at uniform random)
from the donor subpopulation to compare with the current best individual of the receiving subpopulation, with the
one FARTHEST in Hamming distance winning the right to migrate. Setting migration_incest_reduction to 0 or 1
effectively turns off this optional mechanism, and each migrant to move is selected at random (the best of 3
candidates).

46 Erik D. Goodman, GARAGe, Michigan State University

Migration_crowding_amount (new in 3.0) means the number of individuals from the receiving subpopulation
against which the migrating chromosome will be "crowded", with the one CLOSEST in Hamming distance to the
migrant selected to be be replaced by the migrant. This is similar to DeJong-style crowding, but applied in the
context of immigrants rather than newly generated offspring. Setting it to 1 or 0 means that a single individual is
selected at uniform random for replacement.

For simplicity, the master file is stored in memory as a fixed-size table, holding a maximum of 50 subpopulations.
This is readily alterable by the user, if needed. This makes it easy for the user to implement dynamic strategies
for migration, if desired, by changing the table based on whatever criteria the user establishes, from one of the app
callback routines.

RUNNING MANYPOPS ON MULTIPLE PROCESSORS

Manypops can be run on one processor or multiple processors. Ifitis to be run on ONE processor, its input must
tell it that, givennpops total subpopulationstartpopnumis 0 andinishpopnumis npops-1. That tells Manypops

that this copy of the program is the ONLY one working on the problem at this time. It turns off the keeping of a
global “.stt” file, since all global statistics can be kept in this one copy of Manypops. It disables file locking, since
the .stt file was the only one still needing it after Release 3.0. Statistics for each subpopulation and global (best of
all subpopulations) statistics are written to the output file by Manypops under user control.

If Manypops is to be run on MULTIPLE processors, then the user can EITHER manually start the multiple copies
of Manypops (sharing a common file space and common .mst file), or the user may use either the PVM version or
the Threaded version of GALOPPS (see those two releases for directions for their use. They must be downloaded
separately from the “standard” GALOPPS 3.2 distribution). Non-Unix users have only the manual option
available for using multiple processors (PC’s sharing a file server, for example).

MANUALLY STARTING MANYPOPS on MULTIPLE PROCESSORS (PC'’s or workstations or
multiprocessor systems):

1) Prepare, compile, link, and test your application on a SINGLE processor to be sure it is working correctly. Itis
far easier to debug problems in that environment. Put the linked Manypops code a directory from which it may be
started on ALL processors, and in which ALL processors may read and write input, output, and checkpoint files.

2) Prepare separate input files for each processor (actually, every process, if you happen to want to run more than
one process on any processor in a Unix system) to be used. They may be identical except for the
SUBPOPULATION NUMBERS assigned. Each process must have ONE or MORE of the subpopulations (there
arenpops in total) assigned to it. For example, if running six subpopulations total on two processors, the first copy
of Manypops may be given startpopnum = 0, finishpopnum = 2 and the second Manypops copy given startpopnum
= 3 and finishpopnum = 5. BOTH PROCESSES MUST BE GIVEN BAME MASTERFILEPREFIX . That

is the mechanism that allows the communication among the two processes.

3) Prepare the COMMAND LINE for starting each Manypops process. Be sure to specify the APPROPRIATE
input file name and to specify a DIFFERENT NAME for the output file of each process (or they will try to

overwrite each other). While no synchronization is required or maintained among the multiple processors, the
process(or) running SUBPOPULATION 0 must be started first, as it is the only one which knows how to create the
GLOBAL STATISTICS (.stt) FILE. In order to synchronize as much as possible, it is common practice to prepare
the input line to invoke Manypops process on each processor (all except the return key), and to start them nearly
together by hitting the return key on the process owning subpop 0, then the others in rapid succession. Then, to
whatever extent the processors are similar, and the number of subpops/processor is balanced, they will tend to
maintain similar progress in solving the problem.

(NOTE: There is no procedural problem if they run as somewhat different rates. Manypops simply takes any
subpopulation’s immigrant(s) from the specified neighbor’s LAST SAVED checkpoint file, so if some processors

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 47

are slower, the migrants they provide will simply be less “advanced.” However, as migration occurs throughout a
structure (at least if all nodes of the .mst file’s graph are in some cycle) then slower-calculating subpopulations will
tend to “catch up” because of immigrants from faster-moving ones, although that effect is not perfect, and may
allow slower populations to tend toward mimicking the searches of their neighbors if the migrants are able to “take
over”. However, even in that case, the diversity of the receiving subpopulation helps to broaden the search around
the new, highly-fit immigrants, at least for some time, so the slower processor is doing useful work. The theory for
modeling and describing these phenomena is interesting and not yet worked out.)

4) Examine the output file created by each process. Examine the .stt file for global summary information about the
best values found by ANY process(or) at any point in time. NOTE: The current version of the new Tcl/Tk GUI
works only with a single Manypops process, and does not know about the global .stt file. That will be improved in
future releases. However, the user may USE the GUI (as a separate process on each processor) to initiate each
Manypops process and to plot its results, so long as each process uses a different output file name (and hence, a
different plot file name for the GUI to use).

NEW EXAMPLE PROBLEM FILES

The SGA-C v1.1 release from which this software was developed contained three exampgfilesappl.q

andapp2.c These are also included in this release (in a modified form, of course, for compatibility with the
changes made in developing GALOPPS). For a description of these three applications, see APPENDIX THREE,
documentation for the ORIGINAL SGA-C, v1.1. NOTE: these examples use unnecessarily difficult means for
decoding the chromosome, and app2 unnecessarily uses utility fields, because they were part of the original SGA-
C system, and the more advanced decoding routines (getfield and chromtointarray) were not available in SGA-C.

However, in order to introduce the user to many of the new features of the GALOPP System, this release contains
many additional example files, including app0to9.c (illustrating non-binary alphabet usage), approyrd.c (Holland’s
Royal Road challenge problem), appbtsp.c (a blind traveling salesman problem illustrating permproblem features),
4 DeJong functions, an inversion demo application, a demo with different representations in different
subpopulations, and a "generic" template for new applications, appxxx&@ME OF THESE

APPLICATIONS REQUIRE THAT THE USER FIRST RUN A STANDALONE PROGRAM TO CREATE

THE PARAMETER FILE DESCRIBING THE PARTICULAR PROBLEM. IF YOU WISH TO RUN

THE SAMPLE INPUT FILES AS PROVIDED, YOU SHOULD LOOK IN APPENDIX ONE FOR

INFORMATION ABOUT THE INPUTS TO BE ENTERED INTO THE STANDALONE SETUP

PROGRAMS IN ORDER TO PREPARE FOR THE USE OF THE SAMPLE INPUT FILE. (NOTE: the

"hybrid" applications are no longer distributed with GALOPPS by default. Any users wanting them may

request them from goodman@egr.msu.edu.)Each NEW application is described briefly below:

APPROYRD.C -- The Royal Road Function

John Holland's 1993 Royal Road Function (challenge problem to attain Royal Road level 3 within 10,000 function
evaluations) has been coded as a GALOPPS application example, and is very useful for learning how to select the
most appropriate options and tune the parameters of a GA, especially for a binary representation problem. Itis
difficult to meet Holland’s challenge for optimization of this function in the required number of evaluations. Files
approyrd.in and approyr8.in are sample input files for use with Onepop and Manypops, respectively, and should
be understandable to all users planning to write their own applications using utility fields, user-generated output,
etc.

At Release 3.0, additional examples of input files associated with the Royal Road function have been added.
These files include a sequence of five, called royrdstl.in, ..., royrdst5.in, a batch file, royalrd.bat (DOS version) or
royalrd.sh, Unix version), which invokes them (with some file copying interspersed), and three .mst files,
32isopop.mst, 8to4to2.mst, and 39feedbk.mst, to demonstrate a possible approach to Holland's Royal Road
challenge problem. It demonstrates the flexibility of the GALOPPS framework in manipulating multiple

48 Erik D. Goodman, GARAGe, Michigan State University

populations, but is intended only as an example for the sophisticated user planning to use time-varying
architectures for multiple population runs.

The shell script, royalrd.sh, or batch file, royalrd.bat, illustrate one way in which a student used GALOPPS to
attack Holland’s challenge, using a variety of configurations of subpopulations and migration patterns during a
series of runs. It makes use of files royrdstl.in, ..., royrdst5.in.

APPOTO9.C -- A Non-Binary Alphabet Demonstration Problem

File appOto9.cillustrates the use of a non-binary alphabet.. This application searches for the single best string of
length numfields, of the form:

0,1,..m-1,0,1,..m-1, ... 0,1,...k,

where m is the user-specified alphabet size. There is no upper limit imposed on either k or m, although it will
likely not work with 2**m > MAX_UINT. The user enters the alphabet size and the number of fields, and the
program initializes each field to a legal value between 0 and alpha_size-1. All crossover operators (oneptx,
twoptx, and unifx) perform crosses ONLY at the boundaries between fields, and mutation changes one field to a
different legal value.

APPBTSP.C-- A Blind Traveling Salesman Problem

The tools for using the permutation-type operators in this release are illustrated in appbtsp.c. The user may
generate a set of randomly placed cities using a freestanding program called cre8btsp.c (the command for
compiling it is in file cre8btsp.mak). The program writes a table which contains the distances between all n (user-
input) cities. When running the appbtsp.c application, the user is asked for the name of this distance table. The
GALOPPS program then searches for the shortest path among all of these cities (no mandatory starting point is
given, so there are n equivalent paths, one for each starting point). As with any reordering-type problem, the user
may select a favorite crossover operator and permutation operator at compile time, in the makefile (Unix systems)
or project file (PC systems).

APPDEMOI.C -- A Simple Demonstration Problem Using Inversion

In this "cooked-up" example, the objective function has two components: the first is a penalty for distance of the
solution from being a palindrome -- i.e., best fitness is when the values are symmetrical about the center of the
chromosome. A second component of fithess is added merely to gain a single global optimum, making the
problem harder. It decrements fitness for distance of the left half of the chromosome from the sequence
0,1,2,3,...numfields/2. Thus, it is conceivable that inversion will help crossover find good solutions by

rearranging the chromosome so that the related pairs of fields (equidistant from the center) actually appear next to
each other on the chromosome for some period of crossover, so that good pairs, once found, can tend to be
preserved under crossover. Numfields should be entered as an even number.

APPDIFRP.C -- Demo Problem for Different Representations and
Injection Architecture

This simple file illustrates the use of two different representations simultaneously in a parallel GA run. Four
subpopulations are searching for an optim value of the function in a coarser space, and feeding their solutions into
a fifth subpopulation, which refines it using a finer-grained representation. The problem is simply to minimize the
difference of a sum of fields from the number 100.5. Four subpops look for integer values, and only the fifth
refines the search more finely. Immigrants are supplemented with O fractional parts when they immigrate.

APPBPP.C -- Demo Problem GGA Representation, for Bin Packing
See explanation under New Capabilities section (GGA).

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 49

APPXXXXX.C -- A "Blank" Template for Development of New
"Ordinary" GALOPPS Applications

A copy of this code should be used as the template for development of a new "ordinary optimization" application,
unless the user finds another example application provided is closer in form to the new problem to be solved. For
hybrid or mixed-type applications (i.e., where both an optimal ordering of some fields and values for some
parameters are sought), template apphybxx.c should be used instead, as it is already prepared to interface with the
mixsetup.c program for definition of the permutation subfields and position subranges needed.

For many applications, the user will need only to type in a few lines in the objfunc(), and can use the remainder of
the file without alteration. As applications become very complex, more of the facilities will need to be utilized.

CONTENTS OF USER'S APPLICATION-SPECIFIC FILE (APPxxxxx.C)

GALOPPS offers the user a wide range of options for definition of BOTH the problem to be solved and the GA
techniques to be used to solve it. Some choice of GA techniques is made by selection of crossover operator,
mutation operator, and selection method when the code is compiled (i.e., in the makefile, project file, etc.) and by
setting of input parameters (type and magnitude of scaling, problem type, etc.). These are "standard" choices the
user makes. The user can also "customize" the system for the particular problem, via problem-specific output,
alteration of control logic, addition of genetic operators, etc. -- in MOST cases, WITHOUT having to alter the
GALOPPS code at all EXCEPT within the user's application-definition file, which is usually written starting from
template appxxxxx.c. This template contains two things:

1) a placeholder function, called objfunc(), in which the user MUST define the fitness function used to evaluate a
chromosome, and

2) many "callback functions," which the user may COMPLETELY IGNORE if the "standard" output, program
control, and representations are to be used, but which the user MAY use to perform problem-specific /O,
initialization, dynamic alteration of GA parameters, addition of "utility” fields to the chromosome, addition of

state variables to be saved and restored with each subpopulation's checkpoint file, and many other actions. These
functions, the places where they are called, and some of their typical uses are described below.

The standard application template file, appxxxxx.c, is shown below, with additional explanatory comments. The
user may want to compare this file with other application file examples (such as app.c, approyrd.c, etc.) to see
how the various callbacks are used in particular cases.

[* */

/* appxxxxx.c - application dependent routines, "fill in the blanks" to *
I* define your problem for solution by GALOPPS. Any functions */
I* not needed may simply be left "as is." */

I* */

#include <math.h>
#include "external.h"

void

objfunc(critter)

/* Application-dependent objective function. THIS IS THE ONLY ROUTINE THE */

/* USER ABSOLUTELY MUST FILL IN TO DEFINE THE USER'S PROBLEM. OTHERS ARE */
/* OPTIONAL, DEPENDING ON THE NATURE AND COMPLEXITY OF THE PROBLEM. */

/* This is where you code the objective function for your particular problem, */
/* getting the genotype from critter->chrom, and then placing the */

/* raw (unscaled) fitness for critter into critter->init_fitness. */

/* Another action which must be accomplished is to increment the current */
/* evaluation number (neval) and record it in critter->neval. */

struct individual *critter;

50 Erik D. Goodman, GARAGe, Michigan State University

neval++;
local_cycle_neval++;

critter->neval = neval;

/* The LEAST that any application can do is to replace the line below */

/* with a valid statement that assigns a raw fitness to the genotype */

/* (chromosome) passed in (pointed to by critter). The constant below is */
/* just so you can check that this "blank" template indeed compiles and */
/* runs with the rest of the system as you have configured it. */

critter->init_fitness = 10;

void

app_set_options()

/* This routine is called once when a new run or extended run is started. */
/* It must set a value for all of its global variables, although they may */

/* be modified later (in other app_ functions) during the run. */

{

avg_mut_width = 3; /* Must set if using multimut.c. Value is expected */
/* number of adjacent fields (bits, if binary) to */
/* set randomly at once. */

stochastic = 0; /* Must set to 0 or 1 to specify whether or not */
/* fitness fu nction always returns same value for a */
/* given chrom.-- If always same, set stochastic = 0 */
/* to avoid extra evaluations; if changes with env't */
/* or randomly, set = 1 */

elitism = 1; /* Must set to 0 or 1 to determine whether or not */
/* best indiv. is always preserved in next generation */
I* (L =yes). *
elitism &= !stochastic; /* Note that elitism is reset to 0 automatically */
/* if user specifies stochastic flag = 1, since the */
/* changing fi tness makes it impossible to insure that*/
/* what was once best is still best. */

user_supplied_initialization = 0; [* Make it TRUE (1) if you will */
[* supply code to initialize the */
[* individuals in oldpop below, in */
[* routine app_user_init_pop(), */
[* instead of using one of the */
[* "standard" methods supplied with*/
[* GALOPPS. */
call_app_user_does_migration = 0; /* Flag, if set, allows user full */
/* control of m igration, from */
/* app_user_does_migration(), below */

using_inversion = 0;
/* Set flag to 1 (TRUE) if will use inversion to */
[* alter placement of fields on chromosome, with */
[* remapping of fields to "standard" positions at */
[* each evaluation, before objective function is */
[* called. Itis set automatically if pinversion>0, */
[* but user may set manually here if has ever used */
[* inversion, so unmapping, translation, etc., will*/
/* continue to occ ur, even if pinversion now set */
/*t0 0. */

different_reps = 0 || using_inversion;
/* You set to 1 (TRUE) if will use different reps */
/* in different subpops. If TRUE, and if the */
/* difference is NOT ONLY INVERSION, then YOU MUST*/
[* also supply code to transform ALL of the */
/* migrating individuals, in app_transform_migrant*/
/* in the skeleton below, and code below in */

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2

51

[* app_transform_chrom_to_std to transform a */

/* chromosome into its STANDARD repr esentation */
/* (used in the objective function objfunc(). *

/* Always 1 if inversion is being used. */

if (different_reps && lusing_inversion) {
[* User is using different representations in various subpopulations, */
[* so must be supplying app_transform_chrom_to_std() and */
[* app_transform_migrant(). User must also set the variables */
/* max_chromsize_among_all_subpops and max_numfields_among_all_subpops */
/* in the lines directly below, and delete the print and the call to */
[* exit() which are inserted as a reminder to the user. */
fprintf(stderr, "\n*** You have selected different_reps and are not ");
fprintf(stderr,"using inversion, \nso you MUST specify here in app_init");
fprintf(stderr, " the maximum sizes of chromsize and numfields.***\n");
exit(-9);

else {
max_chromsize_among_all_subpops = -1; /* set to illegal value, as flag */
max_numfields_among_all_subpops = -1; /* set to illegal value, as flag */
}
}

void

app_set_field_sizes()

/* Routine called ONLY IF user inputs alpha_size as < 2, meaning fields have */
/* different lengths. In that case, user MUST provide code here to set the */
/* array field_sizes][i], O<=i<numfields, to the number of different codes */
/* possible in the ith field (codes will vary from 0 to field_sizesJi] - 1). */

/* Data may be set in executable statements, or via initializers. If the */

/* problem uses different representations in different subpopulations, and */
/* If that affects the field sizes, then this code must set the proper sizes */

/* for each subpopulation, using popno to tell which subpop is being */
/* initialized. Elsewhere, the program will also automatically use the ~ */

/* field_sizes to set array field_ends, to the final bit number (in */

*[1, Ichrom]) of each field. */

{

inti;

/¥ field_sizes[0] = 24; Replace with code to set them to the sizes */
/* you actually want. */
[*...%

/¥ field_sizes[9] = 24; Replace with code to set them to the sizes */
/* you actually want. */
}

void

app_read_prob_params()

/* Application dependent data input, called ONCE at start of run (whether */

/* started from input parameters or EXTENDED from restart files) by main */

/* program BEFORE it reads the "standard" fields like numfields, etc. */

/* (Note: Onepop may do many RUNS, and this is called at start of each). *

/* Values read here are usually stored in static variables */

/* declared at the top of the app file, so they may be used in any of the */

/* user callback routines, but do NOT have to be read/written to the */

/* checkpoint files. Thus, user should read these values ALSO when arunis */
/* restarted from saved checkpoint files. If values MUST be preserved ACROSS */
/* runs (i.e., saved when checkpointing and reread when restarting) then ~ */

/* that must be done in app_write_ckp_hdr() and app_read_ckp_hdr(), below, */
/* and the variables will be saved with EACH subpopulation. Note: values */

/* like numfields, alpha_size, etc., are NOT yet known when this is called. */

52 Erik D. Goodman, GARAGe, Michigan State University

void

app_data(REVISING)

BOOL REVISING;

/* Application dependent data input, called by initdata() and revisedata(), */

/* just after user answers questions about crossover rate, scaling, */

/* convinterval, etc. Ask input questions here which might be different for */

/* each subpopulation, and write (and read) the values to the checkpoint ~ */

/* header file by putting code into app_write_ckp_hdr() and app_read_ckp_hdr()*/
/* below. Values like numfields, alpha_size, etc., are already known when */

/* this routine is called. */

/* NOTE: app_data is called whenever the user is initializing (from user */

/* input, flag REVISING == FALSE) or revising (flag REVISING == TRUE) input */
/* data (but only once if flag all_subpops_use_same_parameters is TRUE). */

/* HOWEVER, IF user is RESTARTING from saved checkpoint files, and does NOT */

/* ask to revise any parameters, this routing IS NOT CALLED. Therefore, for */
/* user data (tables, etc.) which you want to read in on a RESTART, also, */
/* use app_init to read those data, as it is called whether restarting or */

/* starting from the beginning. (Put it inside the "firstcall" logic.) */

if (REVISING)
return;

void

application()

/* this routine should contain any application-dependent computations */
/* that should be performed before each generation. called by main() */

{
}

void

app_init()

/* Application dependent initialization routine called by initialize() for */

/* EACH subpopulation each cycle, whether started from input or restarted */

/* from a restartfile, and whether all_subpops_use_same_parameters is TRUE */
/* or FALSE. Called after individuals are malloc'd and after individuals */

/* are read from .ind file (on a restart), but before random initialization*/

/* of all individuals (if initial start) or of individuals NOT read (if */

[* restarting).

static int firstcall =
/* Any code you want to add to app_init goes below. */

if (firstcall) {
firstcall =
/* Put here any code you want to do just once in a run, regardless of */
/* how run was started. */

return;

[* Put here any code you want run for each subpopulation at the beginning */
[* of its execution in each cycle. */

return;

void

app_user_init_pop(starting_guy_index)

/* If none of the standard methods supplied with GALOPPS will work for ~ */

/* initializing the individuals in oldpop at start of run, or for creating */

/* new "random" guys when popsize is expanded, or when convergence triggers*/
/* partial re-initialization, etc., then you can create the individuals */

/* here, filling oldpop[starting_guy_index] through oldpop[popsize-1]. */

int starting_guy_index;

}

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2

53

void

app_after_random_init()

/* Application-dependent changes or redoing of initialization, called after */
/* the random initialization is performed and (on restart) individuals have */
/* been read in from restart file. */

{

}

void
app_initreport()
/* Application-dependent initial report called once by initialize() */

}

void
app_report()
/* Application-dependent report, called each generation by report() */

/* Normal app-dependent end-of-generation printing done here. */

}

void

app_decide_if_converged(flag, num_to_replace_if_converged)

/* This routine is called at the end of each generation of each subpopulation */
/* to give the user the option of checking for convergence of the */

/* subpopulation, or other condition. When (if) that happens, if user wants */
/* simply to reinitialize all or part of the subpopulation to random values */

/* and keep running, user can just set flag to 1 and set */

/* num_to_replace_if_converged to the desired number to reinitialize. If */
/* user wants to take some other action, should set flag = 2 and code the */
/* desired actions in routine app_when_converged() below. */

int * flag;

int * num_to_replace_if_converged;

{

}

void

app_when_converged()

/* This routine is called if user's routine (above) app_decide_if_converged */
/* ever sets its flag to 2. The intent is that user can here stop a run, or */

/* change any GA parameters as desired, for the current subpopulation, etc. */

}

void
app_quiet_report()
/* Routine to be called when other output is suppressed, to check for
* trigger for special user-defined output, or to print desired output even
* when running in quiet mode. Helpful when doing many long runs.
* User can do checking for last generation of a Manypops run, for example,
* in case want to reset quiet to O for a final summary printout, etc. */

/* Below, supply any logic and printing to be used in quiet mode
* gperation, when most other normal output is suppressed. */

/* for example, print warning ONE TIME if quiet flag is on, so user knows

* why doesn't get any output. */

if(quiet < 3 && popno == 0 && cycle == 0 && gen == startgen)
fprintf(outfp, "\n Flag quiet > 0, normal output suppressed.\n");

/* Logic below starts printing end of next-to-last generation of last
* cycle, for final summary. (Works for GALOPPS/Onepop (ncycles == 0) */
/* and GALOPPS/Manypops) */
/* To enable this logic, remove comment delimiters on next line.
/* if((cycle == ncycles - 1 || ncycles == 0) && gen == maxgen - 2)
quiet = 0; */

54 Erik D. Goodman, GARAGe, Michigan State University

void

app_new_global_best_report()

/* Application-dependent report, called by globalstats() in statisti.c when */

/* GALOPPS/Manypops is run (not used by GALOPPS/Onepop runs). Itis called */
/* after the LAST GENERATION of the cycle of EACH subpopulation. That means */
/* that some things MAY have changed (inversion pattern, etc.) in some *

/* generations BETWEEN when this best individual was found and now, when it */
/* is to be printed, so user must be aware of that in writing outputs. Also */

/* called in checkhdr.c to print the same values (local_bestfit.xxx) when */

/* that local best turns out also to be the best among all pops, all */

/* processes, so is EQUIVALENT at that time to printing all_pops_bestfit.xxx)*/

/* It should print out any app-dependent fields user will want to see. */

/* (This call is not made at all from Onepop -- single-population runs). */

{

/* User can print from utility fields, call output routines, etc. */

/* to print whatever information is wanted when a new best individual of */
/* all populations on all processes (processors) is found. Since the */

/* performance measures, etc., have NOT yet been updated in the .stt */
/* file, user should now output local_bestfit.xxxxx, etc., not yet */

/* all_pops_bestfit.xxxx, which will be updated AFTER this print is done.*/
/* Use of this callback is OPTIONAL. */

}

void

app_print_strings()

/* Application-dependent string printer, called by report() and initreport() */

[* if flag printstrings == 1, just after it has finished printing the *

/* chromosomes in "standard" binary format. (Using this is OPTIONAL.) */
{

}

void
app_conv_rept()
/* Application-dependent report, called by reptconv() (in report.c) */

}

BOOL
app_user_does_migration(IndArray, filename, number_to_migrate, want_best
, migration_crowding_amount, ChromSize
, migration_incest_reduction, Bestind
, migrant_holder)
/* In this routine, if the user has set the global variable (in app_init) */
/* call_app_user_does_migration, and user is NOT using inversion, then the */
/* user HERE is allowed to perform migration among subpopulations in any */
/* manner the user chooses. ChromSize is the number of unsigneds in the */
/* chromosome of the DONOR population, and global chromsize is the number of*/
/* unsigneds in the chromosome of the RECEIVING population (in IndArray). */
/* IndArray is the receiving population (the global variable is oldpop), */
/* and transfer occurs at the start of a cycle); the index of the best ~ */
/* individual in oldpop (in internal form, without one added) is in Bestind.*/
/* For guidance in performing the required operations, see routine */
/* GetMigrants() in file checkrd.c, where the system-provided migration */
/* capabilities (migration_incest_reduction, migration crowding, inversion, */
/* etc., are all done. */
struct individual *IndArray;
char *filename;
int number_to_migrate;
BOOL want_best;
int migration_crowding_amount, ChromSize, migration_incest_reduction;
int BestInd;
struct individual * migrant_holder;

return TRUE;
}

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2

55

BOOL

app_transform_chrom_to_std(mapped_saved_chromosome, chrom_for_objfunc)
/* If the user is using different representations for different subpops, */

/* but is NOT using the system-provided inversion code, here is where the */

/* user must supply the code to transform a migrant individual's chromosome */
/* (in mapped_saved_chromosome) from its "mapped" representation in the */
/* subpopulation to the STANDARD representation, which is the one the user */
/* uses in defining the objective (or fitness) function, objfunc. The */

/* "standard rep" chromosome must be returned in chrom_for_objfunc, which is*/
/* a local name for critter->chrom, the chromosome passed to objfunc(). */

/* The user can use any of the global variables, or local variables defined */

/* at the top of this file, to determine which supopulation this is (popno),*/

/* and what characteristics THIS representation may have (local variables, */

[* utility fields, etc.) */

unsigned *mapped_saved_chromosome;
unsigned *chrom_for_objfunc;

{

int ii;

/* The commented-out code below does the "identity" transformation on the */
/* chromosome -- i.e., copies one to the other. If the user is doing some */

/* transformation OTHER than the system-provided inversion, user */

/* should change the first loop below to perform the actual */

/* transformation process. Finally, user must make the function return */

/* TRUE if successful. */

/* NOTE: Next loop must be modified if subpops have different chromosome */
/* representations -- user must do a transformation, not a copy. */
/* for (ii=0;ii<chromsize;ii++) {
chrom_for_objfunc]ii] = mapped_saved_chromosomeii];

}

return TRUE;
*/

return FALSE;

BOOL

app_transform_migrant(migrant_holder, DonorChromSize, newguy, filename)
/* If the user is using different representations for different subpops, */

/* but is NOT using the system-provided inversion code, here is where the */
/* user must supply the code to transform a migrant individual (in a struct */

/* individual pointed to by migrant_holder) from its donor pop rep to its */

/* popno (a global, the current "receiving” population) representation, */

/* returning the transformed guy in newguy, which has a chromosome length of*/
/* RecipientChromSize unsigneds. If user is using inversion, not user's */
/* "own" transformation, then this routine is not called, so may be left in */

/* its "commented out" form, which is the the IDENTITY transformation (i.e.,*/
/* copy the individual unchanged from migrant_holder to newguy. */

/* A pointer to the individual to migrate, as read from donorpop, and its */
/* DonorChromSize, are provided, as is the filename of the recipient pop. */
/* After transforming the individual, the user should place it into new_guy */
/* and return TRUE if successful. */

struct individual *migrant_holder, *newguy;

int DonorChromSize;

char *filename;

int ii;
/* The commented-out code below does the "identity" transformation. If user */
/* is doing some transformation OTHER than the system-provided inversion, user*/
/* should change the first loop below to perform the actual transformation */
/* process. Finally, make the function return TRUE if successful. */

/* NOTE: limit chromsize in next loop below must be revised if subpops have */
[* different chromosome sizes... user must do a transformation, not a copy. */
[* for (ii=0;ii<chromsize;ii++) {

newguy->chrom([ii] = migrant_holder->chromi(ii];

56 Erik D. Goodman, GARAGe, Michigan State University

newguy->parent[0] = migrant_holder->parent[0];
newguy->parent[1] = migrant_holder->parent[1];
newguy->xsite[0] = migrant_holder->xsite[0];
newguy->xsite[1] = migrant_holder->xsite[1];
newguy->fitness = migrant_holder->fitness;
newguy->init_fitness = migrant_holder->init_fitness;
newguy->neval = migrant_holder->neval;
sys_util_copy_utility(newguy->utility, migrant_holder->utility);

return TRUE;
*/
return FALSE;

void

app_generate()

/* Opportunity to do any desired (application-dependent) operations at the */
/* end of each generation of each subpopulation. */

{
}

void

app_stats(pop)

/* Application-dependent statistics calculations called by statistics() at */
/* the end of each generation. */

struct individual *pop;

/* See approyrd.c for an example. */

void

app_before_inversion()

/* Allow user to perform any desired application-specific actions before */
/* calling the inversion routine. Only called when an inversion WILL be */
/* performed on the current subpopulation at the current generation. */
{

}

BOOL
app_write_ckp_hdr(fp)
FILE *fp;

/* Application-dependent callback routine user may use for writing ~ */
/* any needed app-specific variables into a checkpoint file. */

/* See approyrd.c for an example. */
return TRUE;

BOOL
app_read_ckp_hdr(fp)
FILE *fp;

/* Application-dependent callback routine user may use for reading back */
/* from the checkpoint header file any fields added to the checkpoint */
/* header by the user. */

/* See approyrd.c for an example. */
return TRUE;

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2

57

int

GetUtilitySize()

/* Application-dependent callback routine user must use to tell program */
/* the size of the utility field to malloc for each chromosome. Used */

/* to compute the amount of space needed per individual in the checkpoint */
/* files. */

/* See approyrd.c for an example. */
return O;

int

GetMaxUtilitySize()

/* User must here return 0 (utility fields not used) or GetUtilitySize */

/* (if different_reps are NOT used), or the size (bytes) of the LARGEST */
/* utility field used by ANY subpopulation, if different_reps includes use */
/* of utility fields of different sizes. */

int nbytes;

nbytes = GetUtilitySize();
if (nbytes) {
if (different_reps)
[* Here, return size of largest utility field used by any rep. */
[* nbytes = xxxxxx; */
return nbytes;
else
return nbytes; /* same as GetUtilitySize if Idifferent_reps */

return nbytes;

CODE DISTRIBUTION FORMAT

The GALOPP System Release 3.2 is being released in two formats -- Unix and DOS/Windows (with identical 'C’
code, but different compilation files, text file formats, etc.) (the PVM distribution and the multi-THREADED
distribution have different code, and are described in their own guides -- see the WWW page):

DOS Format

GALOPPS 3.2 is bundled with the djgpp 'C’ compiler for DOS: Disk or directory contains djgpp, and below it, a
subdirectory containing galopps3.2. Galopps3.2 has a subdirectory structure as follows:
c:\djgpp\galopps3.2

\src .c files comprising "core" of galopps3.2

\include .h files included in all files in galopps system

\docs documentation for galopps system

\work directory for developing new applications

\GUI (Not yet available for DOS, but forthcoming; available now for Unix only)

\examples
\app Goldberg’s first example problem
\appl Goldberg’s second example problem
\app2 Goldberg'’s third example problem
\btsp Blind Traveling Salesperson Problem
\royalrd John Holland’s Royal Road Challenge Problem
\demoalph Demo of a problem with non-binary representation
\demoinv Demo of a problem using inversion
\diffreps Demo of a problem using different reps (injection architecture)
\dejongfn Four of Ken DeJong's five benchmark functions
\gga Bin Packing example and code for Falkenauer’'s Grouping Genetic Algorithm

58 Erik D. Goodman, GARAGe, Michigan State University

representation and operators.

\src contains the "core" .c files for galopps3.2; \include contains the .h header files. \work and the subdirectories
under \examples contain example application “.c”, input, master, etc., files. All of the text files in this directory
are in "DOS standard file format.” Djgpp users must use the makefile in /src first to compile the "core" routines,
then switch to an example directory and use the makefile there to create a Manypops or Onepop; then they must
run "coff2exe Manypops", for example, to create the executable file Manypops.exe. Users may need to perform
minor editing on the makefiles, to supply the correct compiler name (cc, gcc, CC, etc.), for example.

Unix Format:

/galopps3.2
[src .c files comprising "core" of galopps3.2
f/include .h files included in all files in galopps system
/docs documentation for galopps system
/work directory for developing new applications
/GUI (Not yet available for DOS, but forthcoming; available now for Unix only)

/examples
lapp Goldberg’s first example problem
/appl Goldberg’s second example problem
/app2 Goldberg’s third example problem
/btsp Blind Traveling Salesperson Problem
/royalrd John Holland’s Royal Road Challenge Problem
/demoalph Demo of a problem with non-binary representation
/demoinv Demo of a problem using inversion
[diffreps Demo of a problem using different reps (injection architecture)
/dejongfn Four of Ken DeJong'’s five benchmark functions
/gga Bin Packing example and code for Falkenauer’s Grouping Genetic Algorithm

representation and operators.

A main directory galopps3.2 contains 6 subdirectories: src, include, docs, GUI, work, and examples. The src
subdirectory contains all of the GALOPPS3.2 files which are NOT application-specific. It must be compiled before
any application can be run. To compile, enter the src subdirectory and type "make". The makefile contains
directives to generate all of the .0 modules. You should first edit makefile to select the compiler options you want
(for example, -g for debugger-compatible code, -xO2 for a high level of optimization on SPARCworks compiler,
etc.) This make produces no executable (no linking is done), but generates all but the application-specific ".0"
files. Subdirectory include contains the header (.h) files common to all applications. Subdirectory work contains
a "blank" application template, appxxxxx.c, which users "customize" to program their own applications.
Subdirectory GUI contains the Tcl/Tk code for the new (optional) Graphical User Interface, which has been tested
to date only on Sun Solaris systems. Subdirectory examples contains many other subdirectories, of example
applications. In each subdirectory is one or more .c files (which are derived from appxxxxx.c), and example input
files, examples of any datasets needed by the application (or programs to generate them), .mst files describing
migration patterns for the parallel example, etc. To run any application, the user should enter its directory, type
"make" or "make Manypops" to prepare for a parallel GA run, or "make Onepop" to prepare for a single-
population run. Then typing "Onepop"” or "Manypops" will invoke the GA in interactive mode. Typing "Onepop -

i abcdef.in" or "Manypops -i abcdef.in” will run the GA with inputs taken from the file abcdef.in, and typing
"Onepop -i abcdef.in -0 abcdef.out" or "Manypops -i abcdef.in -o abcdef.out” will run the GA with inputs from the
first file and all but error output going to file abcdef.out. See earlier sections for full description of command line
parameter overrides, etc.

When using your OWN application file (derived from appxxxxx.c in /galopps3.2/work), you need to edit the
Makefile so the " APP=" line lists your .c files for this application.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 59

The nature and use of all files is explained in Appendix One: Auxiliary Files.

GALOPPS/Onepop and /Manypops share nearly all files -- the exceptions are the main programs (each has its
own, labeled mainone.c and mainmany.c, respectively) and initialization routines (startup.c for Onepop and
initsubp.c for Manypops), plus file master.c only for Manypops. The two programs use exactly the same
application files (app.c, appl.c, app2.c, approyrd.c, appbtsp.c, app0to9.c, appxxxxx.c, apprally.c, applperm.c,
applposn.c, applboth.c, appmatch.c, etc.). They use identical formats for checkpoint and restart files.

When editing any of the files distributed with the GALOPP System, your TAB character should be set equivalent
to 8 SPACES, to match the setting used when the files were created. Otherwise, your listing will appear to be
strangely indented.

The 'C' code runs unmodified on Unix systems (tested on Sun4, HP 9000/7XX, DECstation, and NeXT systems),
on PC's (tested under MSDOS 5.0 and 6.0 and under Windows 3.1, with djgpp; with Borland C++, using only the
'C' features; and using Microsoft 'C"), and on Macintosh systems. A compile-time choice defining
PROTOTYPES_ACCEPTED handles the compiler differences encountered so far (ANSI-type or the older K-R-
type 'C’). The system was made so it can be compiled by ANSI-compliant 'C' compilers with modern prototype
declarations, or without the ANSI variations. We have provided two forms of declaration for functions, in files
sgafunc.h and sgapure.h. If you leave

#define PROTOTYPES_ACCEPTED

at the top of files sga.h and external.h, they will do full ANSI-style prototype checking, using prototypes in file
sgafunc.h. If your compiler objects to these prototypes, comment out the line #define PROTOTYPES-
ACCEPTED at the top of the sga.h and external.h files, and then the older-style declarations in sgapure.h will be
used instead. In that case, use extra caution that the types of all arguments in any functions you create for calling
from the appxxxxx.c routines match their declarations, for less checking is done. NOTE: On many systems, some
"warning" messages will be generated during compilation, as the "skeleton" callback structure causes many
variables to be declared which are not used, etc. This sN@ildbe a cause for alarm when GALOPPS

compilations are done.

For Unix systems, makefiles are included, which can easily be modified to create whatever configuration of
modules (operators, selection methods, etc.) is desired. On DOS systems (other than with djgpp, which can use
the Unix makefiles), you may simply follow the directions given below to compile and link the necessary modules
with whatever tools you are familiar.

How to Prepare the GALOPP System for Solving YOUR Problem

The author ENCOURAGES users to use this system as a basis for development of their own genetic algorithm
applications and enhancements. Information about successful or unsuccessful attempts to use/modify the system
would be welcomed by the author.

The system may be used in three ways:

1) write all of the code needed to run your GA application inside a copy of the appxxxxx.c file. In that case, the
author will be happy to try to address bugs you may discover in the GALOPPS code, and your application should
need only minor modifications to be able to be run under future releases of GALOPPS.

2) add new operators, selection methods, etc., without changing the structure of the other routines which call
them. In that case, the author can still assist with bugs in the original system, if they occur with the original
operators/selection methods. If you add useful routines, the author would be happy to receive them for possible
inclusion in future releases of the system. Upgrade to new releases of GALOPPS should still be very easy.

3) freely modify the content and structure of any of the routines in the system. This provides the greatest freedom,
but the author will no longer attempt to assist in fixing any bugs discovered in such a modified system, unless you

60 Erik D. Goodman, GARAGe, Michigan State University

also demonstrate them in the unmodified code. However, the author will be pleased to learn of and/or receive
copies of any such enhancements which are found to be useful.

Compiling/Linking the System

The systems have been run on many Unix, DOS, Windows, and Macintosh systems. A makefile is provided for
each application (in its example subdirectory on Unix release and for djgpp users under DOS. If your system
cannot use these makefiles directly, they may still be used as documentation of the modules required for
compiling and linking of each system.

You should first copy all files (with their directory structure) from the distribution diskette or archive file
downloaded from a web or ftp site to a directory GALOPPS3.2 (or djgpp, for the DOS distribution) on your hard
disk. USE CARE to be sure that the compiler options are set appropriately for your hardware configuration before
you use these files to compile the system. If you are using djgpp, you will be able to make use of all RAM on
your system. If you are using Borland C, Microsoft C, etc., you will want as much RAM as possible available to
the GA, if you want the good performance provided by larger population sizes. You might want to set
optimization for speed if your compiler allows that.

To change the problem being solved, the file appxxxxx.c (or one of the other app files) must be edited to create
the new problem file. Other files need not be changed. It is suggested that the user create a copy of appxxxxx.c,
called appmine.c (for example), and then edit the makefile in the /work directory to set "APP = appmine.c”, for
example.

Similar to the original SGA-C, to change the method of selection (among roulette wheel, stochastic remainder
selection, stochastic uniform sampling, tournament selection, and rank-based selection), just uncomment the
appropriate line in the makefile. File rselect.c is roulette wheel selection; srselect.c is stochastic remainder
selection, suselect.c is stochastic uniform sampling (usually recommended over the first two), tselect.c is
tournament selection, and rnkslect.c is rank-based selection. Similarly, uncommenting the appropriate line
chooses among the various crossover operators (oneptx.c, twoptx.c, unifx.c, uobx.c, pmx.c, cx.c, and ox.c) and the
various mutation operators (bitmutat.c, multimut.c, swap.c, and scramble.c). You must use care to be sure that if
your problem is a permutation problem, you use only the legal permutation operators (uobx, cx, ox, pmx for
crossover; swap or scramble for mutation), and if not, that you use the other operators (oneptx, twoptx, unifx for
crossover; bitmutat or multimut for mutation).

Modules to Compile

If an ANSI-compatible 'C' compiler is available, the code can be compiled "as is". If your compiler will not
accept ANSI-style prototype declarations, then you must edit the files "external.h" and "sga.h" and comment out
the lines near the top which read "#define PROTOTYPES_ACCEPTED" and "#define
SECONDARY_PROTOTYPES_ACCEPTED" from both files (see additional information in the header of file
"external.h™).

For Unix users, example makefiles are provided, which the user may alter to suit their particular needs.

To compile and link the files for a PC, you must select the appropriate routines to compile, including selection
among the choices above, using the rules below.

The files to compile and link for ALL types of problems are the following (they are in the
subdirectory galopps3.2/src):

checkhdr.c checkrd.c checkwt.c ffscanf.c
filestat.c generate.c memory.c random.c
report.c statisti.c utility.c user_in.c

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 61

In galopps3.2/include must be the #include files:
sga.h (#included in mainone.c or mainmany.c)
external.h (#included in most other .c files)
sgafunc.h (#included in sga.h and external.h)
sgapure.h (#included in sga.h and external.h)

One must also choose EXACTLY ONE APPLICATION FILE -- in a subdirectory UNDER
galopps3.2/examples:

app.c appl.c app2.c appbpp.c

approyrd.c appOto9.c appbtsp.c

appdemoi.c appxxxxx.c appdjfl.c (etc.)

appdifrp.c (or your problem, made by modifying the appxxxxx.c form supplied

in directory galopps3.2/work).

plus a choice of EXACTLY ONE SELECTION METHOD (in the makefile in the
problem’s subdirectory FROM:

rselect.c srselect.c rnkslect.c

suselect.c tselect.c

plus a choice of EXACTLY ONE CROSSOVER OPERATOR (in the makefile in the
problem’s subdirectory FROM:

oneptx.c (for non-permutation problems)

twoptx.c (for non-permutation problems)

unifx.c (for non-permutation problems)

uobx.c (for permutation problems)

0X.C (for permutation problems)

cX.C (for permutation problems)

pmx.c (for permutation problems)

plus a choice of EXACTLY ONE MUTATION OPERATOR (in the makefile in the
problem’s subdirectory FROM:

bitmutat.c (for non-permutation problems)

multimut.c (for non-permutation problems)

scramble.c (for permutation problems)

swap.c (for permutation problems)

plus a choice of EXACTLY ONE INVERSION OPERATOR (in the makefile in the
problem’s subdirectory FROM:

invercla.c

invercir.c

62 Erik D. Goodman, GARAGe, Michigan State University

plus, for SINGLE POPULATION OPERATION, BOTH OF:
mainone.c
startup.c

OR for PARALLEL SUBPOPULATION OPERATION, ALL THREE OF:
mainmany.c
initsubp.c
master.c

AUXILIARY MAIN PROGRAM -- COMPILATION

To compile the only*auxiliary" main programs provided with the GALOPP System, for making a sample data
files for the blind traveling salesperson problem, the following directive (or its equivalent) may be used (the file
cre8btsp.mak may be sourced by Unix users to do this, instead):

For cre8btsp.c(Creates distance table for n randomly placed cities in a square of user-specified size, for blind
traveling salesperson problem):
cc -g cre8btsp.c utility.c -Im -0 makecity

NOTE: (At some point (probably not now), you may want to know this:)

The GALOPPS/Onepop and Manypops programs can read and write each others' checkpoint/restart files (.ckp for
headers and .ind for individuals). Thus, for example, the user can make several runs with Onepop on single
populations, and then can use their checkpoint files to initiate a multiple subpopulation run of Manypops. The
user would have to rename the .ind checkpoint files, in that case, so that they share a common prefix, are
numbered 00 ... On, and are suffixed .ind and .ckp for individual and header files, respectively. The .stt files for
global statistics will also be invalid and must be ignored. Alternatively, the user may want to "explore" the
behavior of a single subpopulation created by Manypops, and may use Onepop to do that exploration. Examining
the checkpoint files created by Manypops (see appendices) should make it very clear how to proceed.

UPDATES AND BUG REPORTING

Please report all bugs as soon as possible to:

Erik Goodman

goodman@egr.msu.edu

Phone 1-517-355-6453 Fax: 1-517-355-7516

(Or see mailing address on cover.)

PLEASE BE SURE TO INCLUDE INFORMATION ON HOW TO REACH YOU WITH QUESTIONS OR
REVISED CODE!

(From Russia, you may forward material and seek information through SHIBAEVA, Olga L., GARAGe, CAD
Department (RK-6), Moscow State Bauman Technological University, Building 5, 2-nd Baumanskaya Street,
Moscow, 107005, Russia. email: uskov@aicad.isrir.msk.su., phone: 095/263-65-26 (department office).

(From China, you may forward material or request information through Professor Li Wei, Department of
Computer Science, Beijing University of Aeronautics and Astronautics, Beijing, 100083, China (Phone: 86-1-201-
7251, ext. 614 or 918, Fax: 86-1-201-5347.

If you would like to receive updates (bug fixes and/or new releases of the system) please let the author know of
your interest through any of these channels.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 63

APPENDIX ONE -- AUXILIARY FILES

List of the Auxiliary Files Provided with the
GALOPP System, Release 3.2, and with
What Problem Files They Are Associated

Files below are listed according to the applications with which they are used. Note that some .mst files are listed
several times, as they are used with more than one application. Not included below are the .c and .h files, which
are described in the section entitled "Modules To Compile" above.

NOTICE: the parameter values, number of subpopulations, length of runs, choice of neighbors and how many
individuals to bring in, which selection and genetic operators to use, etc., are all chosen here ONLY FOR DEMO
PURPOSES, to show the various features of the GALOPP SyNt@inas examples of good choices of values,
operators, etc. GALOPPS does NOT automatically choose good parameter settings for you by default, and it is
expected that users have familiarity with genetic algorithms AT LEAST to the level of reading the first few
chapters of Goldberg’s boo&enetic Algorithmsin Search, Optimization, and Machine Learning. Examples were
chosen to demonstrate all of the features of GALOPPS, not necessarily to solve particular problems with
maximum efficiency. Please bear that in mind when running these examples or your own problems.

Information For Users (most in subdirectory "docs":

READMEFI.RST (ASCII text file describing this version of the GALOPP System)
changes.txt (ASCII text file describing differences of this version from previous ones)

nowarran (ASCII text file disclaimer, indicating that there is NO WARRANTY of any
kind associated with the GALOPP System -- user uses at own risk)

guide32.ps (User's Guide for GALOPP System, Rele&s?2, in Microsoft Word 6.0 (.doc)
and PostScript (.ps) versions

license (GNU General Public License, under which GALOPPS is distributed)

Templates Defining the Structure of Input Files: (For users NOT using the new Graphical User Interface)

NOTE: GUI users: The GUI will automatically write correctly formatted input files for you, which you
may then use with or without the GUI for further runs.

The easy way to develop an input file for YOUR application is just to pick an example of one and then
modify it until it runs. As long as you use the (optional) keyword on each input line, then at each stage,
the program will TELL you what it has was looking for and what it has found, so it is very easy to
develop a file with all inputs present in the correct order. (Template files are in subdirectory "docs"):

intempla.one (template defining the optional input file fGmepop)
intempla.man (template defining the optional input file for Manypops)

64 Erik D. Goodman, GARAGe, Michigan State University

Subdirectory examples/app
Application Fileapp.c. (From Goldberg’'s book)

makefile (sample makefile for app.c for Onepop
appone.in (sample input file for app.c for Onepop (i.e.,

mainone.c))
2runsapp.in (sample input file for Onepop, 2 runs (diff. params))
apppop4.in (sample input file, app.c for Manypops (4

subpopulations))

4popbest.mst (sample .mstife used by several Manypops input files)
continul.in (sample input file for Onepop, for EXTENDING the run done by

appone.in)

Subdirectory examples/appl
Application Fileappl.c (From Goldberg’s book)

makefile (sample makefile for appl.c)

applone.in (sample input for Onepop (applone) run)

applpop4.in (sample input file for Manypop(applmany) multi-subpop run)

4popbest.mst (sample .mst file used by several Manypops input files)

1st20f4.in (sample input file for Manypops run from two different processors (or
processes -- this file runs subpops 0 and 1)

2nd2o0f4.in (sample input file for Manypops run from two different processors (or
processes -- this file runs subpops 2 and 3)

readme (describes running of Manypops on 2 machines, using 1st2of4.in,
2nd2of4.in)

Subdirectory examples/app2
Application Fileapp2.c: (From Goldberg’'s book)

makefile (sample makele for app2.c)

app2one.in (sample input for Onepop (app2one) run)

app2pop8.in (sample input for Manypops (app2many) multi-subpop run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)

Subdirectory examples/royalrd
Application Fileapproyrd.c: (John Holland’s Royal Road Challenge Problem)

makefile (sample makefile for approyrd.c)

approyrd.in (sample input for Onepop (approyrd) run)

approyr8.in (sample input for Manypopsgproyrp) multi-subpop run,
but all running from one process)

approyr8.inl (one of FOUR sample input files for Manypops (approyrp)

for a truly parallel run on 4 processors (or faked
with 4 processes on one processor, in Unix)

approyr8.in2 (see above)
approyr8.in3 (see above)
approyr8.in4 (see above)
rr24to8.in (sample input for Manypops (approyrp) multi-subpop run)
royalrd.sh (example shell script to run a multi-phase, multi-pop run)

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 65

royalrd.bat
rrnoinit.sh

rrnoinit.bat

(same, but for DOS)
(restart script for running royalrd.sh, but without the first round of
initializations)

(restart script for running royalrd.bat, but without the first round of
initializations)

(plus various other .mst and .in files used for a multi-phase Manypops run by royalrd.sh or royalrd.bat)

Subdirectory examples/btsp
Application Fileappbtsp.c

makefile
appbtsp.in
appbtsp8.in
8pop2nbr.mst
cre8btsp.c

cre8btsp.mak

cre8btsp.bat

(sample makefile for appbtsp.c)

(sample input for Onepop (appbtsp) run)

(Manypops (mainmany.c) run)

(sample .mst file used by several Manypops input files)

(program to make intercity distance input file. To run

the sample input files, you should run cre8btsp (or

makecity, as executable is called under Unix) to

create files 10cities.dst (for appbtsp.in) or

20cities.dst (for appbtsp8.in).)

(sample compilation command (can tseurce cre8btsp.méakfor
making the standalone program which writes table of distances
between n randomly selected cities, to use with appbtsp.c.)

(sample compilation command (can type cre8btsp.bat) for
making the standalone program which writes the table of distances
between n randomly selected cities, to use with appbtsp.c.)

Subdirectory examples/demoinv

Application Fileappdemoi.c

makefile
appdemoi.in
apdemoid.in
apdemoi8.in
4popbest.mst
8pop2nbr.mst

(sample makefile for appdemaoi.c)

(sample input for Onepop (appdemoi) run)

(Manypops (mainmany.c) run)

(Manypops (mainmany.c) run)

(sample .mst file used by several Manypops input files)
(sample .mst file used by several Manypops input files)

Subdirectory examples/demoalph
Application Fileapp0to9.c-- Demo application with non-binary fields

makefile
ap0to9on.in
ap0toOp8.in
8pop2nbr.mst

(sample makefile for app0to9.c)

(sample input for Onepop (apOto9on) run)
(Manypops(mainmany.c) run)

(sample .mst file used by several Manypops input files)

Subdirectory examples/dejongfn
Application Fileappdjfl.c - appdjf4.c -- First 4 of DeJong’s Test Function Suite

makefile
apdjfls.in

(sample makefile for appdjfl.c) -- modify for djf2 - djf4.
(sample input for Onepop run)

66 Erik D. Goodman, GARAGe, Michigan State University

apdjflp8.in

8pop2nbr.mst

readme

(sample input for Manypops (mainmany.c) run) (similarly, apdjf2p8.in,

apdjf3p8.in, apdjf4p8.in)
(sample .mst file used by several Manypops input files)
(file describing examples in this directory)

Subdirectory examples/diffreps
Application Fileappdifrp.c -- Demo application with different representations, injection architecture
(No Onepop version is available with this application)

makefile
appdifr5.in
4tolinj.mst

readme

Subdirectory examples/gga

(sample makefile for appdifrp.c)

(Manypops (mainmany.c) run)

(sample .mst file fo“injection architectureto inject low-resolution
solutions from four subpops into one higher-resolution subpop)

(description of example provided here)

Application Fileappbpp.c-- Demo application of use of Grouping Genetic Algorithm (GGA)

representation to solve a bin-packing problem

makefile
gga.c

gga.h
ggax.c

ggamut.c
apbp1002.in

apbpp501.in
bpp501p4.in
bpp81002.in
4popbest.mst
8popring.mst
readme

t501_00.dat
t1002.dat

(sample makefile for appbpp.c)

(additional problem-independent ‘C’ code for problems using GGA
representation)

(include file for problems using GGA representation)

(crossover operator for use with GGA representation)

(mutation operator for use with GGA representation)

(sample input file for use with dataset t1002.dat for bin packing

(Onepop))
(sample input file for use with dataset t501_00.dat for bin packing

(Onepop))

(sample input file for use with dataset t501_00.dat for bin packing
(Manypops))

(sample input file for use with dataset t1002.dat for bin packing
(Manypops))

(sample .mst file used by several Manypops input files)

(sample .mst file used by several Manypops input files)

(text file describing GGA example)

(sample data file of 501 items to be packed into bins)

(sample data file of 1002 items to be packed into bins)

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 67

APPENDIX TWO:

CONTENTS OF THE FILE TYPES WRITTEN BY
GALOPPS

[. File xxxxxx99.stt:

Runs of Manypops which involve more than one PROCESS (i.e., not all subpops are calculated by a single
process) create or read and write a file called xxxxxx99.stt, where xxxxxx is the checkptfileprefix specified by the
user for this run. The file contains the overall statistics about the run, including the contributions of ALL
subpopulations being run by ALL processes in ALL processors using the master file defining this Manypops run.
(Onepop runs do not need or use this file at all, and neither does Manypops when all subpopulations are calculated
within a single process.)

If the user is initiating a NEW run, and not restarting from any saved checkpointed populations or with "seed"
individuals found in previous runs, then the run should be started with the .stt file "zeroed out." That is done
merely by REMOVING (erasing, deleting) the file from the directory in which the run is being done. When the
process "running" subpopulation 0 determines that there is not such a file in existence, it will create one full of
zero values, which will then be used by it and all other processes involved in solving this problem. IF THE USER
FORGETS to delete this file, the program will print a warning to this effect on both the program'’s normal output
and on stderr, however it does not interfere with normal execution. The file will automatically be zeroed out.

If the user EXTENDS a run from checkpoints written previously, the .stt file should be LEFT AS IS, so that
gathering of performance statistics can continue uninterrupted. Its name will agree with the checkpoints
WRITTEN by the first part of the run being extended, so it will be used when the user specifies the
restartfileprefix from which the run is to be reloaded. After the first cycle of the restart, a new .stt file for THIS
run will be created, matching the names of the checkpoint files being written now.

The .stt file is read at the beginning of the first cycle and the end of each cycle of each subpopulation in each
process of the problem. Its values are incremented by the results of that subpopulation's cycle. Thus, itis up to
date as of the last cycle completed for each subpopulation by each processor.

WARNING: Because the updating of this file is done asynchronously by (potentially) many processors, the
contents become INVALID if a restart is done after an "abnormal termination.” That is, if the restart results in
"throwing away" of partial cycles (which occurs when a cycle was not completed), then the contributions of those
partial cycles will ALREADY have been added to all_pops.stt. Thus, after such a restart, the user should
RECOGNIZE that the global statistics have been affected by adding in of fithesses, evaluations, etc., even though
the populations which did them have been THROWN OUT. This does NOT occur if the Manypops processes are
terminated normally at the end of a cycle, or if only a single process is being used to run all subpopulations.

The .stt file contains the following information:

Variable Name Explanation

all_pops_sumfitness Sum of raw fitnesses of all individuals evaluated to date
all_pops_sum_best_fitness Sum of best fitness of each subpopulation at each generation
all_pops_online_denominator Total number of fitnesses summed into current all_pops_sumfitness

68 Erik D. Goodman, GARAGe, Michigan State University

all_pops_best _fithess_count Total number of best fithesses summed into current
all_pops_sum_best_fitness

all_pops_neval Total number of evaluations performed to date in all sublptipns

all_pops_bestfit.chrom Chromosome of best individual found so far in all subpopulations
(chromsize unsigneds)

all_pops_bestfit.fitness Scaled fitness of best individual found so far
all_pops_bestfit.init_fitness Raw fitness of best individual found so far
all_pops_bestfit.neval Evaluation number of best individual found so far
all_pops_bestfit.generation Generation number (of its own subpopulation) in which the best

individual found so far was found

all_pops_bestfit If utility fields are defined (pointed to by utility on the chromosome),
the utility fields' contents are written here by
app_write_utility fields, which the user must define if using utility
fields.

[l. Files with extension .ind

Files with extension .ind are written in file checkwt.c, by function writecheckpoint().

The file name to be written is contained in the string checkptindfilename. It must comply with DOS naming
conventions, even on Unix systems, for compatibility reasons. Thus, only an 8-character name, a period, and 3-
character extension are allowed. For Onepops, this name is assembled from the user input (file or keyboard), up
to 8 characters, using the field "checkptfileprefix", and appending ".ind". If the user does not specify a
checkptfileprefix, then the restartfileprefix is used, unless none is specified; in that case, the default "sgackp" is
used. For Manypops runs, the procedure is similar, except the user-entered prefix is limited to 6 characters, and
two-digit subpopulation numbers are appended to it, generating such file names as "runone00.ind",
"runone01l.ind", etc. Each subpop has its own checkpoint individual file.

At the end of a complete cycle of all subpopulations in a Manypops run, all of the checkpoint individual files
written during the cycle are updated to exchange the read and write buffers. This enables a restart to be performed
"fairly", regardless of when a run may have been interrupted.

Files of this type contain the population at the time of checkpointing, together with a little additional information
at the beginning of the file, as follows:

Var. Name Explanation
version version number of program writing file (not currently used)
popsize Number of individuals in this (sub)population

individualsize Size (in bytes) of an individual, including the chromsize unsigneds and the utility fields

Ichrom Length of chromosome in bits

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 69

bestnow Index in oldpop of cuent best individual [0,popsize-1].
(Then, for each individual from O to popsize-1:)
{ chrom chromsize unsigneds containing the actual chromosome
fitness scaled fitness for the chromosome
init_fitness raw (unscaled) fitness for the chromosome

neval number of evaluations performed in THIS subpopulation this individual was found.

xsite[0] site [0,Ichrom-1] on parent chromosomes where crossover was done (oneptx) or substring started
(twoptx) when this individual was created, or O ifatesl some other way.

xsite[1] site where substring ended on parent chromosomes if this individual was created by twoptx; O
otherwise.

parent[0] position in oldpop [1,popsize]] of parent[0] of this individual (one more than subscript in array).

parent[1] as above, second parent.

utility fields if utility fields are defined (pointed to by utility on the chromosome), the utility fields' contents
are written here by app_write_utility_fields, which the user must define if uslitg figids.
}

lll. Files with extension .ckp

Files with extension .ckp are written in file checkhdr.c, by function WriteCheckPointHeader(callname,
CallBackFun), where argument fname is declared to be:

char *fname

and CallBackFun is declared as:

BOOL (*CallBackFun).

Files of this type contain state information (essentially, all but the actual individuals in the population) which is
needed to restore the program to be able to continue running after a checkpoint dump is taken.

Argument fname is a pointer to the string which contains the name of the file which should be opened for writing
the checkpoint header information. It must comply with DOS naming conventions, even on a Unix system, for
compatibility reasons. Thus, only an 8-character name, a period, and a 3-character extension are allowed. For
Onepops runs, this name is assembled from the user input (file or keyboard), up to 8 characters, using the field
"checkptfileprefix”, and appending ".ckp". If the user does not specify a checkptfileprefix, then the
restartfileprefix is used, unless none is specified; in that case, the default "sgackp" is used. For Manypops runs,
the procedure is similar, except that the user-entered prefix is limited to 6 characters, and two-digit subpopulation
numbers are appended to it, generating file names like "runone00.ckp”, "runone01.ckp", etc. Each subpopulation
in a run has its own checkpoint header file.

At the end of a complete cycle of all subpopulations in a Manypops run, all of the checkpoint header files written
are updated to that their read and write buffer areas are exchanged. This enables a restart to be performed "fairly”,
regardless of when a run may have been interrupted.

File contents are:

70 Erik D. Goodman, GARAGe, Michigan State University

Variable Name

popsize
indcnt

chromsize
numfields
fieldlength

Explanation

number of chromosomes in population being checkpointed

number of individuals being recorded in the accompanying .ind file (always popsize, if
written by this function, but recorded a sectne for future flexibility without
changing file format).

number of unsigned ints in a single chromosome

the total number of fields to be represented on the chromosome.

(calculated) length of each field, for permutation-type problems.

this_pop_map_to_std[i] array ofnumfields int indices, telling which field in the standard representation is now

represented at field | of the current population’s chromosome (needed when using
inversion)

max_chromsize_among_all_subpops

when user defines different reps for different subpops, specifies here the longest one in
use in any subpop (in number of unsigneds)

max_numfields_among_all_subpops

field_ends]i]

field_sizesi]

bestfit.chrom

bestfit.fitness

bestfit.init_fithess

bestfit.neval

bestfit.generation

bestfit.map_to_std]i]

bestfit.field_ends]i]

*(bestfit. utility)

std_field_ends]i]

when user defines different reps for different subpops, specifies here the maximum
number of fields used in any subpop

array ofnumfields int indices, telling the ending bit position (numbered 1 .. Ichrom) of
each field on each chromosome of this subpop.

array ofnunfields int indices, telling the number of distinct integer values fietth
each chromosome of this subpop can range over (i.e., rang@ed[Gzeq[i] - 1])..

chromsize unsigneds, containing the chromosome of the most fit individual found to
date IN THIS SUBPOPULATION.

scaled fitness (if scaling used; otherwise, raw fitness) of most fit individual to date IN
THIS SUBPOPULATION.

unscaled (raw) fitness (from user-defined routindusig()) of most fit individual to
date IN THIS SUBPOPULATION.

Number of evaluations IN THIS SUBPOPULATION ONLY of individuals up through
first finding this most fit individual of THIS SUBPOPULATION.

Generation number (for THIS SUBPOPULATION) at which this most fit individual OF
THIS SUBPOPULATION was first found.

array ofnumfields values storing the this_pop_map_to_std at time this individual was
saved, allowing later dedmg of it

array ofnumfields values storing the field_ends array for the subpop at the time this
individual was saved, to enable later decoding of the individual, even if array changes

If the user defines utility fields, their contents (for the best individual IN THIS
SUBPOPULATION to date) is written next, by a call to the user-defined utility
writer, app_write_utility(bestfit.utility,fp). Field bestfit.utility (not written) is the
pointe to these contents.

array ofnumfields values storing the field_ends array for the STANDARD
representation (i.e., used by the fitness function objfunc()), but NOT necessarily in
this subpop

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 71

one_pop_cum_sumfitness

Sum of the raw fitnesses of all individuals evaluated in this subpopulation to date.

one_pop_sum_best_fitness

Sum of the raw fitness of the best individual of each generation of this subpopulation
evaluated to date.

one_pop_best_fithess_count

Couwnt of the number of individuals included in this subpopulation's
one_pop_sum_best_fitness. Thus, offline performance for this subpopulation can
always be calculated as one_pop_sum_best_fitness / one_pop_best_fitness_count.

one_pop_online_denominator

minraw
avgraw
fit_max
pcross
pmutation

p_multimut
avg_mut_width

pinversion

autocontrol_selection

beta

bets_s tilde
scalemult
conv_measure
conv_sigma_coeff
sigma_trunc
scaling_window
windowstart
windowend

savedmins[20]
sigma

Number of individuals of this subpopulation whose raw fitnesses are included in
one_pop_cum_sumfitness. Thus, online performance for this subpopulation can
always be calculated as:

one_pop_cum_sumfitness / one_pop_online_denominator

Lowest raw fitness in the current (sub)population.

Average raw fitness in the current (sub)population.

Highest raw fitness in the current (sub)population.

Probability of crossover (per chromosome), in [0.,1.].

Probability of mutation (per BIT, for ordinary binary representations, but per
CHROMOSOME, for permutation-type representations).

Probability of multi-field mutation (per CHROMOSOME)

Expected value of number of fields (Fsma-distrib.) which will be subjected to setting
at random when a multimut is done (taken from app_set_options()).

Probability of inversion, per generation.

Flag telling whether to control selection automatically (Shapiro-like scheme) or not

Boltzmann scaling parameter specified by user when NOT autocontrolling selection, or
set automatically if ARE autocontrolling selection.

Value used to determine beta when autocontrolling selection

Multiple of average fitness to which most fit individual is to be scaled. Also used with
same meaning when rank-based selection is used. Value -1 means don't do linear
scaling.

Result of a convergence measure; see body of manual.

Number of standard deviations above/below mean to be used for convergence measure
above.

Number of standard deviations from mean at which raw fithesses are to be truncated in
calculating scaled fitness (hteans don't don't do sigma truncation).

Number of generations back from which LEAST fit individual will be used to
determine scaling of current population (-1 means don't use; 0 means current
generation only, 1 means current plus previous one, etc.; max value currently 19).

Pointer for tracking generations for window scaling.

(same as above.)

Array of minimums used for window scaling.

Standard deviation of current raw fitnesses.

72 Erik D. Goodman, GARAGe, Michigan State University

neval Number of chromosomes evaluated in current (sub)population (to date).

Ichrom Length of the chromosome (in bits).

genspercycle (Manypops only) Number of generations of a subpopulation calculated before it is
checkpointed and replaced in memory by another subpopulation.

gen Number of the current generation (a run initialized from a random population starts gen
at 0).

maxgen Value of gen at which run is to terminate (after writing its checkpoint files, of course).

Upon restart, run bets with highest value gen attained in previous run, so maxgen
must be larger than that to run at all.

printstrings Flag, 0 says don't print chromosomes; 1 says do.

nmutation Number of mutations performed to date (in this subpopulation).

Nncross Number of crossovers performed to date (in this subpopulation).

bestnow Index (in [0,popsize-1]) of best individual in the current subpopulation (may not be best
ever, if not using elitism).

convinterval Number of generations between printing of wengence statistics.

crowding_factor DeJong-type crowding factor; 0 means don't use crowding (offspring replace parents); 1

means pick a random survivor to replace with new individual (without replacement);
2 or more means replace CLOSEST (Hamming distance) individual among the 2 or
more survivors tested.

incest_reduction Flag; 0 means no mating restriction in effect; 1 means mates for parent 1 in a crossover
will be picked from a pool of 3 possible parent 2's -- the one furévesy
(Hamming distance)is chosen as the mate.

stochastic Flag; 0 means NOT stochastic, so don't reevaluate unchanged individuals; 1 means IS
stochastic, so evaluate every individual every generation (reduces sampling error
when fitnesses vary with time or are density dependent).

elitism Flag; 0 means NOT elitist; 1 means IS elitist: best individual is guaranteed at least one
spot in next generation.

oldrand[55] Array of random number generator, so restarts can pick up sequeaceitwas left
off.

jrand Index used in random number generation.

rndx2 Double used in random number generation.

rndcalcflag Flag used in random number generation.

alpha_size Int telling the number of alleles per locus (2 means a bit string). Legal values in each
field will range from O throughlpha_size - 1.

permproblem Int telling whether is (==1) a permutation problem or not (==0)

tourneysize Int telling size of tournament if tournament selection is used.

ANY USER-DEFINED VARIABLES WHICH MUST BE RECORDED (except utility fields)
Any values written to the file by CallBackFun(), which are added to end of "standard" file.

User provides the code to write these variables (if any) in a function called app_write_ckp_hdr()

in file appxxxxx.c (or whatever the user's application file is called).
These files are read by function ReadCheckPointHeader, whenever a subpopulation is being restored after being
checkpointed. (User supplies code to read any USER-DEFINED VARIABLES written by app_write_ckp_hdr() in
its corresponding function, app_read_ckp_hdr(), and by app_write_utility() in its corresponding function,
app_read_ utility().

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 73

APPENDIX THREE: EXCERPTS FROM THE
SGA-C V1.1 RELEASE DOCUMENT

NOTE: This appendix describes the SGA-C release on which the GALOPP System was based. The many
extensions and revisions, however, have rendered much of this information obsolete. It is included for
completeness, and in order to help document the transitions from Goldberg's original Pascal SGA code (in his
textbook) to the present system.

SGA-C: A C-language Implementation
of a Simple Genetic Algorithm

Robert E. Smith

The University of Alabama
Department of Engineering Mechanics
Tuscaloosa, Alabama 35405

and David E. Goldberg

The University of lllinois
Department of General Engineering
Urbana, lllinois 61801

and Jeff A. Earickson

Alabama Supercomputer Network
The Boeing Company

Huntsville, Alabama 35806

SGA-C Disclaimer: SGA-C is distributed under the terms described in the fle NOWARRANTY. These terms
are taken from the GNU General Public License. This means that SGA-C has no warranty implied or given, and
that the authors assume no liability for damage resulting from its use or misuse.

Introduction

SGA-C is a C-language translation and extension of the original Pascal SGA code presented by Goldberg, 89. It
has some additional features, but its operation is essentially the same as that of the original, Pascal version.

This report is included as a concise introduction to the SGA-C distribution. It is presented with the assumptions
that the reader has a general understanding of Goldberg's original Pascal SGA code, and a good working
knowledge of the C programming language.

The report begins with an outline of the files included in the SGA-C

distribution, and the routines they contain. The outline is followed by a discussion of significant features of SGA-
C that differ from those of the Pascal version. The report concludes with a discussion of routines that must be
altered to implement one's own application in SGA-C.

74 Erik D. Goodman, GARAGe, Michigan State University

Files Distributed with SGA-C
(EDG NOTE: Some Information OBSOLETE)

The following is an outline of the files distributed with SGA-C, the routines contained in those files, and the
structure of the SGA-C distribution.

[sga.h] contains declarations of global variables and structures for
SGA-C. This file is included by main().

Both sga.h and external.h have two "defines" set at the top of the files: LINELENGTH, which
determines the column width of printed output, and BITS _PER_BYTE, which specifies the number of
bits per byte on the machine hardware. LINELENGTH can be set to any desired positive value, but
BITS_PER_BYTE must be set to the correct value for your hardware.

[external.h] contains external declarations for inclusion in all
source code files except main(). The extern declarations in external.h should match the declarations in
sga.h.

[main.c] contains the main SGA program loop, main().

[generate.c] contains generation(), a routine which generates and
evaluates a new GA population.

[initial.c] contains routines that are called at the beginning of a
GA run.

[initialize()] is the central initialization routine called by
main().
[initdata()] is a routine to prompt the user for SGA parameters.
[initpop()] is a routine that generates a random population.
Currently, SGA-C includes no facility for using seeded populations.
[initreport()] is a routine that prints a report after
initialization and before the first GA cycle.

[memory.c] contains routines for dynamic memory management.
[initmalloc()] is a routine that dynamically allocates space for the GA population and
other necessary data structures.
[freeall()] frees all memory allocated by initmalloc().
[nomemory()] prints out a warning statement
when a call to malloc() fails.

[operators.c] contains the routines for genetic operators.

[crossover()] performs single-point crossover on two mates,
producing two children.
[mutation()] performs a point mutation.

[random.c] contains random number utility programs, including:

[randomperc()] returns a single, uniformly-distributed, real,

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 75

pseudo-random number between 0 and 1. This routine uses the subtractive method
specified by Knuth:81.
[rnd(low,high)] returns an uniformly-distributed integer between
low and high.
[rndreal(low,high)] returns an uniformly-distributed floating
point number between low and high.
[flip(p)] flips a biased coin, returning 1 with probability p, and 0 with probability 1-p.
[advance_random()] generates a new batch of 55 random numbers.
[randomize()] asks the user for a random number seed.
[warmup_random()] primes the random number generator.
[noise(mu, sigma)] generates a normal random variable
with mean mu and standard deviation sigma. This routine is not currently used in SGA-
C, and is only included as a general utility.
[randomnormaldeviate()] is a utility routine used by noise.
It computes a standard normal random variable.
[initrandomnormaldeviate()] initialization routine for
randomnormaldeviate().

[report.c] contains routines used to print a report from each cyc®&GA-C's
operation.

[report()] controls overall reporting.

[writepop()] writes out the population at every generation.

[writechrom()] writes out the chromosome as a string of ones and zeroes. In the current
implementation, the most significant bit is the rightmost bit printed.

Three selection routines are included with the SGA-C distribution:
[rselect.c] contains routines for roulette-wheel selection.

[srselect.c] contains the routines for stochastic-remainder selection
(Booker:82).

[tselect.c] contains the routines for tournament selectio(Brindle:81a).
Tournaments of any size up to the population size can be held with this implementation. [The
tournament selection routine included with the distribution was written by Hillol Kargupta, of the
University of Alabama.]

For modularity, each selection method is made available as a compile time option. Edit the Makefile to choose a
selection method. Each of the three selection files contains the routines select_memory and select_free (called by
initmalloc and freeall, respectively), which perform any necessary auxiliary memory handling, and the routines
preselect() and select(), which implement the particular selection method.

[stats.c] contains the routine statistics(), which calculates
population statistics for each generation.

[utility.c] contains various utility routines.
Of particular interest is the routine ithruj2int(), which returns bits i through j of a
chromosome interpreted as an int.

[app.c] contains application dependent routines.

76 Erik D. Goodman, GARAGe, Michigan State University

Unless you need to change the basic operation of the GA itself, you should only have to alter this file.
Further instructions for altering the SGA application are included in the description of routine
app.

[application()] should contain any application-specific

computations needed before each GA cycle. Itis called by main().
[app_data()] should ask for and read in any application-specificinformation. This routine
is called by init_data().
[app_malloc()] should perform any application-specific calls to
malloc() to dynamically allocate memory. This routine is called by initmalloc().
[app_free()] should perform any application-specific calls to
free(), for release of dynamically allocated memory. This routine is called by freeall().
[app_init()] should perform any application-specific
initialization needed. It is called by initialize().
[app_initreport()] should print out an application-specific
initial report before the start of generation cycles. This routine is called by initialize().

[app_report()] should print out any application-specific output after each GA cycle. ltis
called by report().

[app_stats()] should perform any application-specific

statistical calculations. It is called by statistics().
[objfunc(critter)] The objective function for the specific
application. The variable critter is a pointer to an individual (a GA population
member), to which this routine must assign a fitness. This routine is called by generation().

[Makefile] is a UNIX makefile for SGA-C.

New Features of SGA-C
SGA-C has several features that differ from those of the Pascal version.
One is the ability to name the input and output files on the command line, i.e.,
sga my.input my.output.
If either of these files is not named on the command line, SGA-C assumes stdin and stdout, respectively.

Another new feature of SGA-C is its method of representing chromosomes in memory. SGA-C stores its
chromosomes in bit strings at the machine level. Input-output and chromosome storage in SGA-C are discussed in
the following sections.

Input-Output

SGA-C allows for multiple GA runs. When the program is executed, the user is first prompted for the number of
GA runs to be performed. After this, the quantity of input needed depends on the selection routine chosen at
compile-time, and any application-specific information required. When

compiled with roulette wheel selection, the input requested from the user is as follows:

The number of GA runs to be performed (int).

The population size (int).

The chromosome length (int).

Print the chromosome strings each generation (y/n)?
The maximum number of generations for the run (int).
The probability of crossover (float).

The probability of mutation (float).
Application-specific input, if any.

The seed for the random number generator (float).

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 77

Chromosome Representation and Memory Utilization

SGA-C uses a machine level representation of bit strings to increase efficiency. This allows crossover and
mutation to be implemented as binary masking operations (see operators.c). Every chromosome (as well as the
population arrays and some auxiliary memory space) are allocated dynamically at run time. The dynamic
memory allocation scheme allocates a sufficient number of unsigned integers for each population member to store
bits for the user-specified chromosome length. Because of this feature, it is extremely important that
{BITS_PER_BYTE be properly set (in sga.h and external.h) for your machine's hardware and C compiler.

Implementing Application-Specific Routines
To implement a specific application, you should only have to change the file app.c.

The section on app.c describes the routines in app.c in detail.

If you use additional variables for your specific problem, the easiest method of making them available to other
program units is to declare them in sga.h and external.h. However, take care that you do not redeclare existing
variables.

Three example applications files are included in the SGA-C distribution.

The file app.c performs the simple example problem included with the Pascal version:
finding the maximum of x*10, where x is an integer interpretation of
a chromosome.

The larger version of the same problem, as described in the Goldberg text, is provided as appl.c, which
maximizes the function x*30, where x is an integer interpretation of a chromosome.

A slightly more complex application is include in app2.c. This application illustrates two features that have been
added to SGA-C. The first of these is the ithruj2int function, which converts bits i through j in a chromosome to

an integer. The second new feature is the utility pointer that is associated with each population member. The
example application interprets each chromosome as a set of concatenated integers in binary form. The length of
these integer fields is determined by the user-specified value of field_size, which is read in by the function
app_data(). The field size must be less than the smallest of the chromosome length and the length of an unsigned
integer. An integer array for storing the interpreted form of each chromosome is dynamically allocated and
assigned to the chromosome's utility pointer in app_malloc(). The ithruj2int routine (see utility.c) is used to
translate each chromosome into its associated vector.

The fitness for each chromosome is simply the sum of the squares of these integers. This example application will
function for any chromosome length.

Final Comments
SGA-C is intended to be a simple program for first-time GA experimentation. It is not intended to be definitive in
terms of its efficiency or the grace of its implementation. The authors are interested in the comments, criticisms,
and bug reports from SGA-C users, so that the code can be refined for easier use in subsequent versions.

Please email your comments to rob@galab2.mh.ua.edu, or write to TCGA:

The Clearinghouse for Genetic Algorithms
The University of Alabama

Department of Engineering Mechanics
P.O. Box 870278

Tuscaloosa, Alabama 35487

78 Erik D. Goodman, GARAGe, Michigan State University

*Acknowledgments
The authors gratefully acknowledge support provided by NASA under

Grant NGT--50224 and support provided by the National Science Foundation under Grant CTS--8451610. We
also thank Hillol Kargupta for donating his tournament selection implementation.

GALOPPS - Genetic Algorithm Optimized for Portability and Parallelism - Release 3.2 79

