
PGPLOT

Graphics Subroutine Library

T. J. Pearson

Copyright © 1988-1997 by California Institute of Technology

Contents

● Acknowledgments

● Chapter 1 Introduction

❍ 1.1 PGPLOT
❍ 1.2 This Manual
❍ 1.3 Using PGPLOT
❍ 1.4 Graphics Devices
❍ 1.5 Environment Variables

● Chapter 2 Simple Use of PGPLOT

❍ 2.1 Introduction
❍ 2.2 An Example
❍ 2.3 Data Initialization
❍ 2.4 Starting PGPLOT
❍ 2.5 Defining Plot Scales and Drawing Axes
❍ 2.6 Labeling the Axes
❍ 2.7 Drawing Graph Markers
❍ 2.8 Drawing Lines
❍ 2.9 Ending the Plot
❍ 2.10 Compiling and Running the Program
❍ Figure 2.1: Output of Example Program

● Chapter 3 Windows and Viewports

❍ 3.1 Introduction
❍ 3.2 Selecting a View Surface
❍ 3.3 Defining the Viewport
❍ 3.4 Defining the Window
❍ 3.5 Annotating the Viewport
❍ 3.6 Routine PGENV

● Chapter 4 Primitives

❍ 4.1 Introduction
❍ 4.2 Clipping
❍ 4.3 Lines
❍ 4.4 Graph Markers
❍ 4.5 Text

❍ 4.6 Area Fill: Polygons, Rectangles, and Circles
❍ Figure 4.1: PGPLOT standard graph markers

❍ Figure 4.2: Text Examples

❍ Figure 4.3: Escape Sequences for Greek Letters

● Chapter 5 Attributes

❍ 5.1 Introduction
❍ 5.2 Color Index
❍ 5.3 Color Representation
❍ 5.4 Line Style
❍ 5.5 Line Width
❍ 5.6 Character Height
❍ 5.6 Character Font
❍ 5.7 Text Background
❍ 5.8 Fill-Area Style
❍ 5.9 The Inquiry Routines
❍ 5.10 Saving and Restoring Attributes
❍ Figure 5.1: Default color representations of color indices 0-15

❍ Figure 5.2: Fill-area styles

● Chapter 6 Higher-Level Routines

❍ Introduction
❍ XY-plots
❍ Histograms
❍ Functions of two variables

● Chapter 7 Interactive Graphics

❍ 7.1 Introduction
❍ 7.2 The Cursor
❍ 7.3 Using the Cursor
❍ 7.4 Buffering

● Appendix A Subroutine Descriptions

● Appendix B PGPLOT Symbols

❍ B.1 Character Encoding
❍ B.2 Additional Symbols
❍ Figure B.0: Character Encoding

❍ Figure B.1: Symbols 1-527

❍ Figure B.2: Symbols 528-713

❍ Figure B.3: Symbols 714-2017

❍ Figure B.4: Symbols 2018-2192

❍ Figure B.5: Symbols 2193-2400

❍ Figure B.6: Symbols 2401-2747

❍ Figure B.7: Symbols 2748-2932

● Appendix C Calling PGPLOT from a C Program

❍ C.1 Introduction
❍ C.2 Using the CPGPLOT library

❍ C.3 Limitations
❍ C.4 Other Machine Dependencies
❍ C.5 Examples

● Appendix D Supported Devices

❍ Introduction
❍ Available Devices

● Appendix E Writing a Device Handler

❍ E.1 Introduction
❍ E.2 The device dispatch routine GREXEC
❍ E.3 Device handler interface
❍ E.4 Handler state
❍ E.5 Summary of operations

● Appendix F Installation Instructions

● Appendix G Porting PGPLOT

❍ G.1 General Notes
❍ G.2 Porting to UNIX systems

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995-6 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Acknowledgments

Many people have contributed to PGPLOT over the years, and I thank all who have contributed
code and device drivers or who have helped in debugging PGPLOT on a variety of systems. I am
particularly grateful to the following for their major contributions: Klaus-Georg Adams, Scott
Allendorf, Robert Deverill, C. T. Dum, Alan Fey, Karl Glazebrook, Diab Jerius, Chris Jacobs, Neil
Killeen, Harry Lehto, Colin Lonsdale, Grant McIntosh, Massimo Manghi, Michael Michelsen, Jim
Morgan, Martin Shepherd, Sam Southard, Allyn Tennant, David Terrett, Peter Teuben, Jean-Marc
Zucconi.

1. Introduction

1.1 PGPLOT

PGPLOT is a Fortran subroutine package for drawing simple scientific graphs on various graphics
display devices. It was originally developed for use with astronomical data reduction programs in
the Caltech Astronomy department.

This manual is intended for the Fortran programmer who wishes to write a program generating
graphical output. For most applications, the program can be device-independent, and the output
can be directed to the appropriate device at run time. The output device is described by a ``device
specification,'' discussed below. The programmer can build a specific device specification into the
program, but it is better to make this a parameter which the user of the program can supply.

All the examples in this manual use standard Fortran-77. PGPLOT itself is written mostly in
standard Fortran-77, with a few non-standard, system-dependent subroutines.

1.2 This Manual

This manual is intended both as a tutorial introduction to PGPLOT and as a reference manual.
The remainder of this chapter describes some fundamentals: how to include the PGPLOT library
in your program, and the types of graphic devices that PGPLOT can use.

Chapter 2 is tutorial: it presents a Fortran program for drawing a graph using the minimum number

of PGPLOT subroutines, and explains what each of these subroutines does. After reading this
chapter, you should be able to write your own PGPLOT program, although it may be helpful to
refer to the individual subroutine descriptions in Appendix A.

The basic features of PGPLOT are introduced in Chapters 3, 4, and 5. Chapter 3 explains the

positioning and scaling of plots on the page, Chapter 4 describes the basic (``primitive'') routines

for drawing lines, writing text, drawing graph markers, and shading areas, and Chapter 5 describes

the routines for changing the ``attributes'' of these primitives: color, line-style, line-width, text
font, etc.

Chapter 6 describes some ``high level'' routines that use the primitive routines to build up more

complicated pictures: e.g., function plots, histograms, bar charts, and contour maps.

Chapter 7 describes PGPLOT's capabilities for ``interactive'' graphics, whereby the user of the

PGPLOT program can control its action with a cursor, joystick, mouse, etc.

There are seven appendices. Appendix A is a list of all the PGPLOT routines, with detailed

instructions for their use. Appendix B shows the complete set of PGPLOT characters and symbols

that can be used for annotating graphs. Appendix C is intended for those who want to call

PGPLOT subroutines from a program written in C. Appendix D gives details of the devices

supported by PGPLOT. Appendix E provides instructions for programmers who want to extend

PGPLOT to support other devices. Appendix F provides installation instructions, and Appendix G

gives some hints for porting PGPLOT to a new operating system.

1.3 Using PGPLOT

In order to use PGPLOT subroutines, you will need to link your program with the graphics
subroutine library.

1.3.1 UNIX

The following assumes that the PGPLOT library libpgplot.a has been installed in a standard
location where the loader can find it. To compile, link, and run a graphics program example.f:

f77 -o example example.f -lpgplot
example

In some installations, it may be necessary to include other libraries, such as the Xwindow library,
and specify a directory to search for the PGPLOT library; e.g.

f77 -o example example.f -L /usr/local/pgplot -lpgplot -lX11
example

1.3.2 VMS

On most VMS computers, the graphics subroutine library is scanned automatically by the LINK
command, so the following sequence of instructions suffices to compile, link, and run a graphics
program EXAMPLE.FOR:

$ FORTRAN EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

On other VMS computers, the automatic search of the graphics library may not occur. You will
then need to include the graphics library explicitly by using a LINK commands like the following:

$ LINK EXAMPLE,PGPLOT_DIR:GRPSHR/LIB

The PGPLOT subroutines are not included in your .EXE file, but are fetched from a shareable
image when you execute the RUN command. This makes the .EXE file much smaller, and means
that the program need not be relinked when changes are made to the graphics subroutines; but the .
EXE file can only be run on a machine that has a copy of the shareable image and is running a
compatible version of VMS. To make a transportable .EXE file, use the non-shared library as
follows (the XLIB library is not required if your version of PGPLOT does not include an X-
window driver):

$ LINK EXAMPLE,PGPLOT_DIR:GRPCKG/LIB,SYS$INPUT:/OPT
SYS$SHARE:DECW$XLIBSHR.EXE/SHARE
[ctrl-Z]

$

1.4 Graphics Devices

Graphics devices fall into two classes: devices which produce a hardcopy output, usually on
paper; and interactive devices, which usually display the plot on a TV monitor. Some of the
interactive devices allow modification to the displayed picture, and some have a movable cursor
which can be used as a graphical input device. There is also a ``null device,'' to which unwanted
graphical output can be directed. Hardcopy devices are not used interactively. One must first
create a disk file and then send it to the appropriate device with a print or copy command. Consult
Appendix D (or your System Manager) to determine the appropriate device-specific command.

A PGPLOT graphical output device is described by a ``device specification'' that consists of two
parts, separated by a slash (/): the device name or file name, and the device type.

1.4.1 Device Name

device name or file name is the name by which the output device is known to the operating system.
For most hardcopy devices, this should be the name of a disk file, while for interactive devices, it
should be the name of a device of the appropriate type; in both cases, the name should be specified
according to the syntax of the operating system in use. If the device or file name includes a slash
(/), enclose the name in double quotation marks ("). If the device name is omitted from the device
specification, a default device is used, the default depending on the device type (see Appendix D).
In Unix, device and file names are case-sensitive.

1.4.2 Device Type

device type tells PGPLOT what sort of graphical device it is. Appendix D lists the device types
available at the time of writing, together with the names by which they are known to PGPLOT. If
the device type is omitted, a system-dependent default type is assumed (this is the value of the
``environment variable'' PGPLOT_TYPE). The device type is not case-sensitive: you can use
uppercase or lowercase letters, or a mixture of the two.

1.4.3 Examples

A window on the default Xwindow display screen:

● /XWINDOW

Tektronix 4006/4010 terminal:

● /TEK (the logged-in terminal)
● tta4/TEK (VMS device _TTA4:)
● "/dev/tty6"/TEK (Unix device tty6)

Disk file, PostScript format:

● plot.ps/PS (in the current default directory)

● plot.ps/VPS (the same, but in portrait orientation)
● "/scr/tjp/plot.ps"/PS (in a specified directory)

1.5 Environment Variables

Some aspects of the behavior of PGPLOT can be modified at run time by specifying environment
variables. The variables have names which begin with PGPLOT_.

In UNIX systems, environment variables can be defined using the shell. For the bash, bourne (sh),
or korn (ksh) shell, use commands like the following:

PGPLOT_DIR="/usr/local/pgplot"; export PGPLOT_DIR

For the c-shell and tcsh, use

setenv PGPLOT_DIR "/usr/local/pgplot/"

Note that the names of PGPLOT environment variables are specified using upper case characters,
e.g. PGPLOT_DIR, not pgplot_dir.

In VMS systems, environment variables are ``logical names'' and can be defined with the DEFINE
or ASSIGN command, e.g.

$ DEFINE PGPLOT_DIR user_disk:[local.pgplot]
$ DEASSIGN PGPLOT_DIR

The following environment variables affect all PGPLOT programs:

PGPLOT_DIR
Directory name. Unless told otherwise by environment variables PGPLOT_FONT and
PGPLOT_RGB, PGPLOT looks for the files it needs at run-time in this directory. The
binary font file is grfont.dat and the color-name database is rgb.txt. If this variable is
undefined, or if the specified file does not exist in this directory, PGPLOT looks in the
current default directory. e.g.

setenv PGPLOT_DIR /usr/local/lib/pgplot/

PGPLOT_FONT
File name for the binary font file. If this variable is defined, PGPLOT will interpret the
value as a file name for the binary font file. If it is not defined, PGPLOT will look for the
binary font file under name grfont.dat in the directory specified by PGPLOT_DIR. e.g.

setenv PGPLOT_FONT /usr/local/pgplot/grfont.dat

PGPLOT_RGB
File name for the color-name database. If this variable is defined, PGPLOT will interpret
the value as a file name for the color-name database. If it is not defined, PGPLOT will look
for the binary font file under name rgb.txt in the directory specified by PGPLOT_DIR.

The color-name database is only used by programs that call PGSCRN, or when
environment variable PGPLOT_BACKGROUND or PGPLOT_FOREGROUND is defined.
e.g.

setenv PGPLOT_RGB /usr/local/pgplot/rgb.txt

PGPLOT_DEV
Device specification. If this variable is defined, it is used as the default device
specification: if the device specification given to PGBEG (or supplied by the user in
response to the PGPLOT prompt) is a blank string, this device specification is used, e.g.

setenv PGPLOT_DEV /xwin

PGPLOT_TYPE
Device type. If this variable is defined, it is used as the default device type: if the device
specification supplied to PGBEG consists of a file name without a trailing slash (/) and
device type, this device type is assumed. e.g.

setenv PGPLOT_TYPE ps

PGPLOT_ENVOPT
Character string. This affects programs that call routine PGENV. The characters supplied
are options for PGBOX (in addition to those assumed by default by PGENV, i.e., `BCNST'.
Useful options include `G' to draw a grid, `V' to draw y-axis labels upright, `I' to draw axis
tick marks outside the box instead of inside, `1' or `2' to change the numeric label style. e.g.

setenv PGPLOT_ENVOPT IVG

PGPLOT_FOREGROUND
Color name. This variable can be used to change the color representation of color index 1
(the ``foreground'' color) from its device-dependent default (usually white or black). The
value of the variable should be a color name defined in the color-name database. If the
variable is defined, the effect is the same as a call to PGSCRN with this name as argument
immediately after the graphics device is opened. Color names are case-insensitive and
embedded spaces are ignored. e.g.

setenv PGPLOT_FOREGROUND springgreen

PGPLOT_BACKGROUND
Color name. This variable can be used to change the color representation of color index 0
(the ``background'' color) from its device-dependent default (usually black or white). The
value of the variable should be a color name defined in the color-name database. If the
variable is defined, the effect is the same as a call to PGSCRN with this name as argument
immediately after the graphics device is opened. On devices without a color lookup table,
changing the background color only affects the color of elements explicitly drawn in color
index 0. To ensure that the background of the entire view surface changes to the new color,
it is also necessary to call PGERAS at the start of each page. e.g.

setenv PGPLOT_BACKGROUND slateblue

PGPLOT_BUFFER
Switch. If this variable is defined, with any non-null value, PGPLOT buffers output. The
effect is the same as if PGBBUF is called immediately after opening the graphics device,
and PGEBUF immediately before closing it. It will have no effect on programs that already
include these calls. On some devices, buffering output can lead to large improvements in
speed, but enabling buffering may upset synchronization between graphical output and
other program activity. e.g.

setenv PGPLOT_BUFFER yes

PGPLOT_DEBUG
Switch. If this variable is defined, with any non-null value, PGPLOT will print some
debugging information on the standard output. Currently this includes attempts to open
input files (binary font file and color-name database), and, when the null device is selected
for output, statistics of device-driver calls. e.g.

setenv PGPLOT_DEBUG yes

In addition to these environment variables, several device drivers use device-specific environment
variables. See the device descriptions for details.

Next: Chapter 2

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

2. Simple Use of PGPLOT

2.1 Introduction

This chapter introduces the basic subroutines needed to create a graph using PGPLOT, by way of
a concrete example. It does not describe all the capabilities of PGPLOT; these are presented in
later chapters.

A graph is composed of several elements: a box or axes delineating the graph and indicating the
scale, labels if required, and one or more points or lines. To draw a graph you need to call at least
four of the PGPLOT functions and subroutines:

1. PGBEG, to start up PGPLOT and specify the device you want to plot on;

2. PGENV, to define the range and scale of the graph, and draw labels, axes etc;

3. one or more calls to PGPT or PGLINE or both, or other drawing routines, to draw points or

lines.
4. PGEND to close the plot.

To draw more than one graph on the same device, repeat steps (2) and (3). It is only necessary to
call PGBEG and PGEND once each, unless you want to plot on more than one device.

This chapter presents a very simple example program to demonstrate the above four steps.

2.2 An Example

A typical application of PGPLOT is to draw a set of measured data points and a theoretical curve
for comparison. This chapter describes a simple program for drawing such a plot; in this case there
are five data points and the theoretical curve is y = x². Here is the complete Fortran code for the

program:

 PROGRAM SIMPLE
 INTEGER I, IER, PGBEG
 REAL XR(100), YR(100)
 REAL XS(5), YS(5)
 DATA XS/1.,2.,3.,4.,5./
 DATA YS/1.,4.,9.,16.,25./
 IER = PGBEG(0,'?',1,1)
 IF (IER.NE.1) STOP
 CALL PGENV(0.,10.,0.,20.,0,1)
 CALL PGLAB('(x)', '(y)', 'A Simple Graph')
 CALL PGPT(5,XS,YS,9)
 DO 10 I=1,60
 XR(I) = 0.1*I
 YR(I) = XR(I)**2
 10 CONTINUE
 CALL PGLINE(60,XR,YR)
 CALL PGEND

 END

The following sections of this chapter describe how the program works, and the resulting plot is
shown in Figure 2.1.

2.3 Data Initialization

We shall store the x and y coordinates of the five data points in arrays XS and YS. For
convenience, this program defines the values in DATA statements, but a more realistic program
might read them from a file. Arrays XR and YR will be used later in the program for the theoretical
curve.

 REAL XR(100), YR(100)
 REAL XS(5), YS(5)
 DATA XS/1.,2.,3.,4.,5./
 DATA YS/1.,4.,9.,16.,25./

2.4 Starting PGPLOT

The first thing the program must do is to start up PGPLOT and select the graphics device for
output:

 INTEGER PGBEG
 IER = PGBEG(0,'?',1,1)
 IF (IER.NE.1) STOP

Note that PGBEG is a Fortran function, not a subroutine, and must be declared INTEGER. It has

four arguments, and returns an integer code which will have value 1 if the device was opened
successfully.

● The first argument is present for historical reasons. It should always be set to zero (0).
● The second argument is a character string which gives a ``device specification'' for the

interactive graphics device or disk file for hardcopy graphics (see Chapter 1 and Appendix

D). This program makes use of a special shorthand feature of PGPLOT, however: if this

argument is set to '?', the program will ask the user to supply the device specification at
run-time.

● The last two arguments are described in Section 3.2. Usually they are both set to 1, as in
this example.

2.5 Defining Plot Scales and Drawing Axes

Subroutine PGENV starts a new picture and defines the range of variables and the scale of the

plot. PGENV also draws and labels the enclosing box and the axes if requested. In this case, the x-
axis of the plot will run from 0.0 to 10.0 and the y-axis will run from 0.0 to 20.0.

 CALL PGENV(0.,10.,0.,20.,0,1)

PGENV has six arguments:

● the left and right limits for the x (horizontal) axis (real numbers, not integers).
● the bottom and top limits for the y (vertical) axis (also real numbers).
● An integer argument: if this is 1, the scales of the x-axis and y-axis (in units per inch) will

be equal; otherwise the axes will be scaled independently. In this case we have not
requested equal scales.

● Another integer argument, that controls whether an enclosing box, tick-marks, numeric
labels, and/or a grid will be put on the graph. The recommended value is 0. Some of the
allowed values are: -2: no annotation; -1: draw box only; 0: draw box, and label it with
coordinate values around the edge;1: in addition to the box and labels, draw the two axes
(lines x=0, y=0) with tick marks; 2: in addition to the box, labels, and axes, draw a grid at
major increments of the x and y coordinates.

2.6 Labeling the Axes

Subroutine PGLAB may (optionally) be called after PGENV to write identifying labels on the x

and y axes, and at the top of the picture:

 CALL PGLAB('(x)', '(y)', 'A Simple Graph')

All three arguments are character variables or constants; any of them can be blank (' ').

● A label for the x-axis (bottom of picture).
● A label for the y-axis (left-hand edge).
● A label for the plot (top of picture).

2.7 Drawing Graph Markers

Subroutine PGPT draws graph markers at one or more points on the graph. Here we use it to mark

the five data points:

 CALL PGPT(5,XS,YS,9)

If any of the specified points fall outside the window defined in the call to PGENV, they will not
be plotted. The arguments to PGPT are:

● The number of points to be marked (integer).
● The x and y coordinates of the points (real arrays).
● The number of the symbol to be used to mark the points. In this example, we use symbol

number 9 which is a circle with a central dot. The available symbols are shown in Chapter
4.

2.8 Drawing Lines

The following code draws the ``theoretical curve'' through the data points:

 DO 10 I=1,60
 XR(I) = 0.1*I
 YR(I) = XR(I)**2
 10 CONTINUE
 CALL PGLINE(60,XR,YR)

We compute the x and y coordinates at 60 points on the theoretical curve, and use subroutine
PGLINE to draw a curve through them. PGLINE joins up the points with straight-line segments, so

it is necessary to compute coordinates at fairly close intervals in order to get a smooth curve. Any
lines which cross the boundary of the window defined in PGENV are ``clipped'' at the boundary,
and lines which lie outside the boundary are not drawn. The arguments of PGLINE are like those
of PGPT:

● The number of points defining the line (integer).
● The x and y coordinates of the points (real arrays).

2.9 Ending the Plot

Subroutine PGEND must be called to complete the graph properly, otherwise some pending output

may not get sent to the device:

 CALL PGEND

2.10 Compiling and Running the Program

To compile the program and link it with the PGPLOT library, see Chapter 1. For example, under
Unix:

emacs simple.f
...
f77 -o simple simple.f -lpgplot -lX11

Under VMS:

$ EDIT SIMPLE.FOR
...
$ FORTRAN SIMPLE
$ LINK SIMPLE

When you run the program, it will ask you to supply the graphics device specification. Type in any
allowed device specification, or type a question-mark (?) to get a list of the available device types.
For example, if you are using an X Window display, type /XWIN: the graph will appear on the
terminal screen.

If you want a hard copy, you can run the program again, and specify a different device type, e.g.,
simple.ps/PS to make a disk file in PostScript format. To obtain the hard copy, print the file (but
first check with your system manager what the correct print command is; it is possible to waste a
lot of paper by using the wrong command or sending a file to the wrong sort of printer!).

Next: Chapter 3

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure 2.1: Output of Example Program

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/fig21.ps
mailto:tjp%E6%88%A2stro.caltech.edu

3. Windows and Viewports

3.1 Introduction

This chapter is concerned with positioning a graph on the screen or hardcopy page, and
controlling its scale. In simple applications, the position and scale of the graph are controlled
more-or-less automatically by the routine PGENV, but in order to obtain complete control of
positioning and scaling, it is necessary to understand the concepts of the View Surface, the
Window, and the Viewport, and two coordinate systems: World Coordinates and Device
Coordinates.

A simple PGPLOT picture might be a two-dimensional graph showing the dependence of one
variable on another. A typical graph has data points, represented by error bars or special markers
such as dots or diamonds, possibly connected by lines, or perhaps plotted on the same scale as a
theoretical model drawn as a smooth curve. The graph must be labeled with two axes to indicate
the coordinate scales.

The programmer must describe to PGPLOT the various elements of the graph in terms of
rectangular Cartesian coordinates. The only limitation on the coordinates is that they be
represented as floating-point (REAL or REAL*4) numbers; otherwise we are totally free to choose
the meaning of the coordinates. For example, in a graph showing the temporal variation of a radio
source, the abscissa (x-coordinate) might be Epoch (in years) and the ordinate (y-coordinate) Flux
Density (in Jy).

In accordance with common practice in graphics programming, these coordinates, chosen by the
programmer, are termed world coordinates. PGPLOT maps a selected rectangular region of the
world-coordinate space (termed the window) onto a specified rectangle (termed the viewport) on
the view surface (the screen of an interactive display or a sheet of paper on a hardcopy plotter).
The program must make calls to PGPLOT routines to define both the window and the viewport.
For complete descriptions of the routines and their arguments, refer to Appendix A.

3.2 Selecting a View Surface

The first thing a graphics program must do is to tell PGPLOT what device it is going to use. This
is done by calling function PGBEG. For example, to create a plot file for a PostScript printer:

INTEGER PGBEG
IER = PGBEG (0, 'plotfile.ps/PS', 1, 1)

Equally important, when all plotting has been completed, it is necessary to call PGEND to flush
any pending plot requests:

CALL PGEND

Note that only one device can be used at a time. If PGBEG is called while a plot is in progress, the
old plot is closed and a new one is begun.

After calling PGBEG the program has access to a view surface. For workstations, it is a window
on the workstation screen. For interactive devices, this is the full screen of the device. For
hardcopy devices, it is a standard page, usually about 10 inches (width) by 8 inches (height) on a
device used in ``landscape'' mode (e.g, device type /PS or /QMS), or 8 inches by 10 inches on a
device used in ``portrait'' mode (e.g., device type /VPS and /VQMS).

On some devices, it is possible to plot on a larger or smaller piece of paper than the standard page;
see the description of routine PGPAP, which must be called immediately after PGBEG to change
the size of the view surface. The different devices differ not only in the size of the view surface,
but also in its aspect ratio (height/width). PGPAP can be called to ensure that a plot has the same
aspect ratio no matter what device it is plotted on.

After completing a graph, it is possible to advance to a new page to start a new graph (without
closing the plot file) by calling PGPAGE:

CALL PGPAGE

This clears the screen on interactive devices, or gives a new piece of paper on hardcopy devices. It
does not change the viewport or window.

The last two arguments of PGBEG (NX and NY) can be used to subdivide the view surface into
smaller pieces called panels, each of which can then be used separately. The view-surface is
divided into NX (horizontally) by NY (vertically) panels. When the view surface has been
subdivided in this way, PGPAGE moves the plotter to the next panel, and only clears the screen or
loads a new piece of paper if there are no panels left on the current page. In addition to selecting
the view surface, PGBEG also defines a default viewport and window. It is good practice,
however, to define the viewport and window explicitly as described below.

3.3 Defining the Viewport

A viewport is a rectangular portion of the plotting surface onto which the graph is mapped.
PGPLOT has a default viewport which is centered on the plotting surface and leaves sufficient
space around it for annotation. The application program can redefine the viewport by calling
routine PGSVP or PGVSIZ.

PGSVP defines the viewport in a device-independent manner, using a coordinate system whose
coordinates run from 0 to 1 in both x and y. This coordinate system is called normalized device
coordinate space. For example, if we wish to divide the view surface into four quadrants and map a
different plot onto each quadrant, we can define a new viewport before starting each plot. PGSVP
has the format:

CALL PGSVP (XMIN, XMAX, YMIN, YMAX)

For example, to map the viewport onto the upper left quadrant of the view surface:

CALL PGSVP (0.0, 0.5, 0.5, 1.0)

(Note that this does not leave room around the edge of the viewport for annotation.)

PGVSIZ defines the viewport in absolute coordinates (inches); it should only be used when it is
known how big the view surface is and a definite plot scale is required. The arguments are the
same as for PGSVP, but measured in inches from the bottom left corner of the view surface. For
example:

CALL PGVSIZ (1.5, 9.5, 1.5, 6.5)

defines a rectangular viewport 8 by 5 inches, offset 1.5 inches from the bottom and left edges of the
view surface.

PGVSTD defines a standard viewport, the size of which depends on the particular device being
used, and on the current character size (it uses the whole view surface excluding a margin of four
character heights all around):

CALL PGVSTD

This is the default viewport set up by PGBEG.

Note that the viewport must be defined before calling any routines that would actually generate a
display. The viewport may, however, be changed at any time: this will affect the appearance of
objects drawn later in the program.

3.4 Defining the Window

The program defines the window by calling routine PGSWIN, whose arguments specify the world-
coordinate limits of the window along each coordinate axis, e.g.

CALL PGSWIN (1975.0, 1984.0, 5.0, 20.0)

specifies that the x-axis (epoch) is going to run (left to right) from 1975 to 1984, and the y-axis
(flux density) is going to run (bottom to top) from 5 to 20~Jy. Note that the arguments are floating-
point numbers (Fortran REAL variables or constants), and require decimal points. If the order of
either the x pair or the y pair is reversed, the corresponding axis will point in the opposite sense,
\ie, right to left for x or top to bottom for y. PGPLOT uses the window specification to construct a
mapping that causes the image of the window to coincide with the viewport on the view surface.
Furthermore, PGPLOT ``clips'' lines so that only those portions of objects that lie within the
window are displayed on the view surface.

Like the viewport, the window must be defined before drawing any objects. The window can be
defined either before or after the viewport: the effect will be the same. The default window, set up
by PGBEG, has x limits 0.0--1.0 and y limits 0.0--1.0.

If the ratio of the sides of the window does not equal the ratio of the sides of the viewport, the
mapping of the world coordinates onto the view surface results in an image whose shape is
compressed in either x or y. One way to avoid this compression is to carefully choose the viewport
to have the same aspect ratio as the window. Routine PGWNAD can do this: it defines the window
and simultaneously adjusts the viewport to have the same aspect ratio as the window. The new
viewport is the largest that can fit inside the old one, and is centered in the old one.

3.5 Annotating the Viewport

For a simple graph, it is usually necessary to draw a frame around the viewport and label the frame
with tick marks and numeric labels. This can be done with the routine PGBOX. For our sample
graph, the call might be:

CALL PGBOX ('BCTN', 0.0, 0, 'BCNST', 0.0, 0)

Another routine, PGLAB, provides text labels for the bottom, left hand side, and top of the
viewport:

CALL PGLAB ('Epoch', 'Flux Density (Jy)',
 'Variation of 3C345 at 10.7 GHz')

The first two arguments provide explanations for the two axes; the third provides a title for the
whole plot. Note that unlike all the other plotting routines, the lines and characters drawn by
PGBOX and PGLAB are not clipped at the boundaries of the window. PGLAB actually calls a
more general routine, PGMTXT, which can be used for plotting labels at any point relative to the
viewport.

The amount of space needed outside the viewport for annotation depends on the exact options
specified in PGBOX; usually four character heights will be sufficient, and this is the amount
allowed when the standard viewport (created by PGVSTD) is used. The character height can be
changed by using routine PGSCH.

3.6 Routine PGENV

Having to specify calls to PGPAGE, PGSVP, PGSWIN, and PGBOX is excessively cumbersome
for drawing simple graphs. Routine PGENV (for PGplot ENVironment) combines all four of these
in one subroutine, using the standard viewport, and a limited set of the capabilities of PGBOX. For
example, the graph described above could be initiated by the following call:

CALL PGENV (1975.0, 1984.0, 5.0, 20.0, 0, 0)

which is equivalent to the following series of calls:

CALL PGPAGE
CALL PGVSTD
CALL PGSWIN (1975.0, 1984.0, 5.0, 20.0)
CALL PGBOX ('BCNST', 0.0, 0, 'BCNST', 0.0, 0)

PGENV uses the standard viewport. The first four arguments define the world-coordinate limits of
the window. The fifth argument can be 0 or 1; if it is 1, PGENV calls PGWNAD instead of
PGSWIN so that the plot has equal scales in x and y. The sixth argument controls the amount of
annotation.

Next: Chapter 4

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

4. Primitives

4.1 Introduction

Having selected a view surface and defined the viewport and the window, we are ready to draw the
substance of the image that is to appear within the viewport. This chapter describes the most basic
routines, called primitives, that can be used for drawing elements of the image. There are four
different sorts of primitive: lines, graph-markers, text, and area fill. Chapter 5 explains how to
change the attributes of these primitives, e.g., color, line-style, text font; and Chapter 6 describes
some higher-level routines that simplify the composition of images that would require a large
number of calls to the primitive routines.

The primitive routines can be used in any combination and order after the viewport and window
have been defined. They all indicate where the primitive is to appear on the view surface by
specifying world coordinates. See the subroutine descriptions in Appendix A for more details.

4.2 Clipping

The primitives are ``clipped'' at the edge of the viewport: any parts of the image that would appear
outside the viewport are suppressed. The various primitives behave slightly differently. A line is
clipped where it crosses the edge of the viewport. A graph marker is plotted if the center (the point
marked) lies within or on the edge of the viewport; otherwise it is suppressed. Text, which is
usually used for annotation, is not clipped (except at the edge of the view surface. A filled area is
clipped at the edge of the viewport.

4.3 Lines

The primitive line-drawing routine is PGLINE. This draws one or more connected straight-line

segments (generally called a polyline in computer graphics). It has three arguments: the number (N)
of points defining the polyline, and two arrays (XPTS and YPTS) containing the world x and y-
coordinates of the points. The polyline consists of N-1 straight-line segments connecting points 1--
2, 2--3, ..., (N-1)--N:

 CALL PGLINE (N, XPTS, YPTS)

The two routines PGMOVE and PGDRAW are even more primitive than PGLINE, in the sense

that any line graph can be produced by calling these two routines alone. In general, PGLINE
should be preferred, as it is more modular. PGMOVE and PGDRAW are provided for those who are
used to Calcomp-style plotting packages. PGMOVE moves the plotter ``pen'' to a specified point,
without drawing a line (``pen up''). It has two arguments: the world-coordinates of the required new
pen position. PGDRAW moves the plotter ``pen'' from its current position (defined by the last call
of PGMOVE or PGDRAW) to a new point, drawing a straight line as it goes (``pen down''). The
above call to PGLINE could be replaced by the following:

 CALL PGMOVE (XPTS(1), YPTS(1))

 DO I=2,N
 CALL PGDRAW (XPTS(I), YPTS(I))
 END DO

4.4 Graph Markers

A Graph Marker is a symbol, such as a cross, dot, or circle, drawn on a graph to mark a specific
point. Usually the symbol used will be chosen to be symmetrical with a well-defined center. The
routine PGPT draws one or more graph markers (sometimes called a polymarker). It has four

arguments: the number (N) of points to mark, two arrays (XPTS and YPTS) containing the world x
and y-coordinates of the points, and a number (NSYM) identifying the symbol to use:

 CALL PGPT (N, XPTS, YPTS, NSYM)

The symbol number can be: -1, to draw a dot of the smallest possible size (one pixel); 0--31, to draw
any one of the symbols in Figure 4.1; -3 - -8, to draw regular polygon with 3--8 sides; 33--127, to

draw the corresponding ASCII character (the character is taken from the currently selected text
font); or >127, to draw one of the Hershey symbols from Appendix B. The Fortran ICHAR function

can be used to obtain the ASCII value; e.g., to use letter F :

 CALL PGPT (1, 0.5, 0.75, ICHAR('F'))

4.5 Text

The Text primitive routine is used for writing labels and titles on the image. It converts an internal
computer representation of the text (ASCII codes) into readable text. The simplest routine for
writing text is PGTEXT, which writes a horizontal character string starting at a specific (x,y)

world coordinate position, e.g.,

 CALL PGTEXT (X, Y, 'A text string')

PGTEXT is actually a simplified interface to the more general primitive routine PGPTXT, which

allows one to change orientation and justification of the text, e.g.,

 CALL PGPTXT (X, Y, 45.0, 0.5, 'A text string')

writes the text at an angle of 45 degrees to the horizontal, centered at (x,y).

Both PGTEXT and PGPTXT require the position of the text string to be specified in world
coordinates. When annotating a graph, it is usually more convenient to position the text relative to
the edge of the viewport, rather than in world-coordinate space. The routine PGMTXT is

provided for this, and PGLAB provides a simple interface to PGMTXT for the normal job of

annotating an (x,y) graph.

The appearance of text can be altered by specifying a number of attributes, described in the next
chapter. In particular, the character size and character font can be changed. Figure 4.2 illustrates

some of the possibilities.

To include one of the graph marker symbols (0--32) in a text string, use the Fortran CHAR
function, e.g.,

 CALL PGTEXT (X, Y, 'Points marked with '//CHAR(17))

4.5.1 Escape Sequences

The routine PGPTXT (and all the PGPLOT routines which call it, e.g., PGTEXT, PGLAB)
allows one to include escape sequences in the text string to be plotted. These are character-
sequences that are not plotted, but are interpreted as instructions to change font, draw
superscripts or subscripts, draw non-ASCII characters (e.g., Greek letters), etc. All escape
sequences start with a backslash character (\). The following escape sequences are defined (the
letter following the \ may be either upper or lower case):

\u start a superscript, or end a subscript

\d start a subscript, or end a superscript (note that \u and \d must always be used in pairs)

\b backspace (i.e., do not advance text pointer after plotting the previous character)

\fn switch to Normal font (1)

\fr switch to Roman font (2)

\fi switch to Italic font (3)

\fs switch to Script font (4)

\\ backslash character (\)

\x multiplication sign (×)

\. centered dot (·)

\A ångström symbol (Å)

\gx greek letter corresponding to roman letter x, as indicated in Figure 4.3

\mn
\mnn

graph marker number n or nn (1-31), as indicated in Figure 4.1

\(nnnn)

character number nnnn (1 to 4 decimal digits) from the Hershey character set; the closing
parenthesis may be omitted if the next character is neither a digit nor ``)''. This makes a
number of special characters (e.g., mathematical, musical, astronomical, and
cartographical symbols) available. See Appendix B for a list of available characters.

4.6 Area Fill: Polygons, Rectangles, and Circles

The Area Fill primitives allow the programmer to shade the interior of an arbitrary polygonal or
circular region. The appearance of the primitive is controlled by attributes fill area style and color
index (see Chapter 5). Note that one fill-style option is hollow, i.e., draw the outline only.

The routine PGPOLY is used to fill an area defined as a polygon. It has three arguments: the

number (N) of vertices defining the polygon, and two arrays (XPTS and YPTS) containing the

world x and y-coordinates of the vertices:

 CALL PGPOLY (N, XPTS, YPTS)

If the polygon is not convex, it may not be obvious which points in the image are inside the
polygon. PGPLOT assumes that a point is inside the polygon if a straight line drawn from the
point to infinity intersects an odd number of the polygon's edges.

For the special case of a rectangle with edges parallel to the coordinate axes, it is better to use
routine PGRECT instead of PGPOLY; this routine will use the hardware rectangle-fill capability

if available. PGRECT has four arguments: the (x,y) world coordinates of two opposite corners
(note the order of the arguments):

 CALL PGRECT (X1, X2, Y1, Y2)

To draw a circle use routine PGIRC. This routine has three arguments: the (x,y), world coordinates

of the center, and the radius in world coordinates. Note that a circle may appear elliptical if the
world-coordinate scaling is not the same in x and y.

 CALL PGCIRC (X, Y, RADIUS)

Next: Chapter 5

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure 4.1: PGPLOT standard graph markers

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/fig41.ps
mailto:tjp%E6%88%A2stro.caltech.edu

Figure 4.2: Text Examples

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/fig42.ps
mailto:tjp%E6%88%A2stro.caltech.edu

Figure 4.3: Escape Sequences for Greek Letters

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/fig43.ps
mailto:tjp%E6%88%A2stro.caltech.edu

5. Attributes

5.1 Introduction

The appearance of the primitive elements of a graphical image (lines, graph-markers, text, and
area-fill) can be changed by specifying primitive attributes. The attributes, and the corresponding
routines for changing them, are:

Color Index:
PGSCI.

Color Representation:
PGSCR, PGSCRN, and PGSHLS.

Line Style:
PGSLS.

Line Width:
PGSLW.

Character Height:
PGSCH.

Character Font:
PGSCF.

Text Background:
PGSTBG.

Fill-area Style:
PGSFS, PGSHS.

The routines to change attributes can be freely intermixed with the PGPLOT drawing routines.
Once an attribute has been changed by a call to the appropriate routine, it remains in effect for all
subsequent plotting until it is changed again. In addition to the routines that set attributes
(PGSxx) there are routines for determining the current value of each attribute (PGQxx). These
make it possible to write subroutines which change attribute values temporarily but restore the old
attributes before returning to the calling program.

5.2 Color Index

This attribute affects all the primitives: lines, graph-markers, text, and area-fill, and is controlled
by routine PGSCI.

Devices differ considerably in their ability to draw in more than one color. On most hardcopy
devices, the default color is black on a white background, while on most CRT devices, it is white
on a black background. Color is selected using an integer parameter called the color index. Color
index 1 is the default color, and color index 0 is the background color. The number of different
color indices available depends on the device. On most monochrome devices, only color indices 0
and 1 are available, while some color CRT devices may permit color indices from 0 to 255. On some
monochrome devices, color index can be used to select different brightnesses (intensities).

Color index 0, the background color, can be used to ``erase'' elements from a picture by overwriting

them with color index 0. Note that not all devices are capable of this: e.g., Tektronix storage-tube
terminals and pen-plotters cannot erase part of a displayed picture.

To select a new color index for subsequent plotting, use routine PGSCI (Set Color Index), e.g..

 CALL PGSCI(2)
 CALL PGLINE(100, XP, YP)
 CALL PGSCI(3)
 CALL PGPT(15, XP, YP, 17)

Appendix D lists the capabilities of the devices for plotting in color and variable intensity. The

default color index is 1; all devices accept this. Most devices also accept color index 0
(background or erase), and several accept color index up to 15 or more. The maximum color index
is the number of different colors that can be displayed at once. Some devices permit the
assignment of colors to color indices to be changed (by calling PGSCR, see below). The range of

color indices available on the active device can be determined by calling routine PGQCOL. The

lower limit is always either 0 or 1, and the upper limit can be in the range 1 to 255.

5.3 Color Representation

Each color index has an associated Color Representation, which defines the associated color and
intensity. Color Representation may be expressed by a set of three numbers, either the Hue,
Lightness, and Saturation (H,L,S) components or the Red, Green, and Blue (R,G,B) components. (R,
G,B) are quantities in the range 0.0 to 1.0, with 1.0 being maximum intensity; if R=G=B the color is
a shade of gray. In the (H,L,S) system, hue is a cyclic quantity expressed as an angle in the range 0
to 360, while L and S are in the range 0.0 to 1.0.

The following table and Figure 5.1 show how the color indices are defined on most devices when

PGPLOT is started. Note that these assignments are device-dependent, and in particular some
devices plot in black on white background (color index 0 = white, color index 1 = black), while
others plot in white on black background (color index 0 = black, color index 1 = white). Color
indices 0-15 have these predefined color representations, but these may be changed with by calling
PGSCR, PGSCRN, or PGSHLS. Color indices 16-maximum have no predefined representations: if
these indices are used, one of these routines must be called to define the representation.

Table 5.1. Default Color Representation

Color
Index Color (H, L, S) (R, G, B)

 0 Black (background) 0, 0.00, 0.00 0.00, 0.00, 0.00
 1 White (default) 0, 1.00, 0.00 1.00, 1.00, 1.00
 2 Red 120, 0.50, 1.00 1.00, 0.00, 0.00
 3 Green 240, 0.50, 1.00 0.00, 1.00, 0.00
 4 Blue 0, 0.50, 1.00 0.00, 0.00, 1.00
 5 Cyan (Green + Blue) 300, 0.50, 1.00 0.00, 1.00, 1.00
 6 Magenta (Red + Blue) 60, 0.50, 1.00 1.00, 0.00, 1.00
 7 Yellow (Red + Green) 180, 0.50, 1.00 1.00, 1.00, 0.00
 8 Red + Yellow (Orange) 150, 0.50, 1.00 1.00, 0.50, 0.00

 9 Green + Yellow 210, 0.50, 1.00 0.50, 1.00, 0.00
10 Green + Cyan 270, 0.50, 1.00 0.00, 1.00, 0.50
11 Blue + Cyan 330, 0.50, 1.00 0.00, 0.50, 1.00
12 Blue + Magenta 30, 0.50, 1.00 0.50, 0.00, 1.00
13 Red + Magenta 90, 0.50, 1.00 1.00, 0.00, 0.50
14 Dark Gray 0, 0.33, 0.00 0.33, 0.33, 0.33
15 Light Gray 0, 0.66, 0.00 0.66, 0.66, 0.66
16--255 Undefined

On some devices, but not all, the assignments of colors to color indices can be changed by calling
routine PGSCR, to specify the color in terms of its (R,G,B) components, PGSHLS, to specify the

color in terms of its (H,L,S) components, or PGSCRN, to specify the color by name. Note that

color-index 0, the background color, can be redefined in this way.

The effect of changing color representation is device-dependent. Devices usually fall into one of
three classes: static color (unchangeable representation), pseudo-color (color lookup table), and
direct color. On static color devices (e.g., pen plotters, Printronix printer, Tektronix terminal),
attempts to change the color representation are ignored. On pseudo-color devices (e.g., most X
Window devices), changing the color representation of index J changes the lookup table. Pixels
already drawn with index J change to the new color, as do subsequent ones. On direct color
devices (e.g., PostScript color printers, some X Window devices), changing color representation
only affects the color of pixels drawn with that color index later in the program.

On monochrome devices which can display a range of intensities, the displayed intensity I is
calculated from the requested (R,G,B) intensities by the following formula:

I = 0.30 R + 0.59 G + 0.11 B

as in the NTSC encoding used by US color television systems.

Setting Color Representation in the RGB System

Use routine PGSCR, which requires red, green, and blue values in the range 0.0 (dark) to 1.0

(maximum intensity). The following example changes color index 2 to dark blue:

 CALL PGSCR(2, 0.0, 0.0, 0.3)

Note that most devices do not have an infinite range of colors or monochrome intensities available;
the nearest available color is used. Examples: for black, set R = G = B = 0.0; for white, set R = G =
B = 1.0; for medium gray, set R = G = B = 0.5; for medium yellow, set R = G = 0.5, B = 0.0.

Setting Color Representation in the HLS System

The HLS, or Hue-Saturation-Lightness, system is an alternative to RGB for specifying color
representation. Use routine PGSHLS instead of PGSCR. Hue is represented by an angle in

degrees, with red at 120, green at 240, and blue at 0 (or 360). Lightness ranges from 0.0 to 1.0, with
black at lightness 0.0 and white at lightness 1.0. Saturation ranges from 0.0 (gray) to 1.0 (pure
color). Hue is irrelevant when saturation is 0.0.

 Examples: H L S R G B
 black any 0.0 0.0 0.0 0.0 0.0
 white any 1.0 0.0 1.0 1.0 1.0
 medium gray any 0.5 0.0 0.5 0.5 0.5
 red 120 0.5 1.0 1.0 0.0 0.0
 yellow 180 0.5 1.0 1.0 1.0 0.0
 pink 120 0.7 0.8 0.94 0.46 0.46

Reference: SIGGRAPH Status Report of the Graphic Standards Planning Committee, Computer
Graphics, Vol.13, No.3, Association for Computing Machinery, New York, NY, 1979. See also: J. D.
Foley et al., ``Computer Graphics: Principles and Practice'', second edition, Addison-Wesley,
1990, section 13.3.5.

Setting Color Representation by Name

A third alternative to PGSCR and PGSHLS is routine PGSCRN, which specifies color by name.

For example,

 CALL PGSCRN(2, 'MediumOrchid', IER)

The name is converted to R,G,B intensities by consulting an external file which is read the first
time that PGSCRN is called. The name of the external file is found as follows:

1. if environment variable (logical name) PGPLOT_RGB is defined, ts value is used as the
file name;

2. otherwise, if environment variable PGPLOT_DIR is defined, a file rgb.txt in the directory
named by this environment variable is used;

3. otherwise, file rgb.txt in the current directory is used.
4. If all of these fail to find a file, an error is reported and the routine does nothing.

Each line of the file defines one color, with four blank- or tab-separated fields per line. The first
three fields are the R, G, B components, which are integers in the range 0 (zero intensity) to 255
(maximum intensity). The fourth field is the color name. The color name may include embedded
blanks. The file rgb.txt distributed with PGPLOT is based on the standard list of color names

supported by the X-window system.

Setting Background and Foreground colors at run time

The device-dependent default color representation of color indices 0 (background) and 1
(foreground) can be overridden at run time by defining environment variables
PGPLOT_BACKGROUND and PGPOLOT_FOREGROUND. The values of these variables are
color names, as used by routine PGSCRN. For example, to ensure that all devices use a black
foreground on a white background, on a UNIX system, type

setenv PGPLOT_FOREGROUND black
setenv PGPLOT_BACKGROUND white

before running the PGPLOT program. Or you can be more creative, e.g.,

setenv PGPLOT_FOREGROUND gold
setenv PGPLOT_BACKGROUND slategrey

On direct color devices (e.g., PostScript), it is necessary to fill the view surface with the
background color (by calling routine PGERAS) for a change in color representation to affect the

whole view surface.

5.4 Line Style

Line Style can be, e.g., solid, dashed, or dotted. The attribute affects only lines, not the other
primitives. It is controlled by subroutine PGSLS. The default line style is a full, unbroken line.

Line style is described by an integer code:

● 1: full line,
● 2: long dashes,
● 3: dash-dot-dash-dot,
● 4: dotted,
● 5: dash-dot-dot-dot.

To change the line style, use routine PGSLS. For example, to draw a dashed line:

 CALL PGSLS(2)
 CALL PGLINE(620, X, Y)
 CALL PGSLS(1)

5.5 Line Width

Line Width affects lines, graph-markers, and text. It is specified with routinePGSLS, which takes

an integer argument specifying the line-width multilpier. The exact appearance of thick lines is
device-dependent---it depends on the resolution of the device---but on most devices PGPLOT
attempts to make the line-width unit equal to 0.005 inches (0.13 mm). The default width is 1, and
the maximum that may be specified is 201. Requesting a line-width of 10, say, will give lines that
are approximately 1/20 inch thick. e.g.,

 CALL PGSLW(5)

5.6 Character Height

Character Height affects graph-markers and text. Character height is specified as a multiple of the
default character height; the default character height one-fortieth of the height or width of the
view surface (whichever is less). To change the character height, use routine PGSCH. Note that

the argument is a real variable or constant, not an integer like the other attribute routines. The
following example is part of the program used to draw Figure 4.2:

 CALL PGSCH(1.5)
 CALL PGSLW(3)
 CALL PGTEXT(0.05,10.0,'Bigger (1.5)')

 CALL PGSCH(0.5)
 CALL PGSLW(1)
 CALL PGTEXT(0.5,10.0,'Smaller (0.5)')
 CALL PGSCH(1.0)

5.7 Character Font

Character Font affects text only. Four fonts are available. The default font (1) is simple and is the
fastest to draw. The font is defined by an integer code:

● 1: normal (simple) font (default),
● 2: roman font,
● 3: italic font,
● 4: script font.

To change the character font, use routine PGSCF; it is also possible to change the font

temporarily by using escape sequences (see Chapter 4). For example, the following code generates
text in roman font:

 INTEGER ROMAN
 PARAMETER (ROMAN=2)
 ...
 CALL PGSCF(ROMAN)
 CALL PGTEXT(X, Y, 'SPQR')

5.8 Text Background

This attribute affects the appearance of text. Text may be either transparent (the default), in
which case underlying graphics show between the characters of the text, or opaque, in which case
the bounding box of the text is filled with a specified color before drawing the text characters. Use
routine PGSTBG to specify the text background; the argument is an integer which may be

● -1: to select transparent text (the default), or
● 0 - 255: to select opaque text, with the argument specifying the color index of the text

background. Use color index 0 to erase underlying graphics before drawing text.

If the color index specified by PGSTBG is the same as that specified by PGSCI, then text will be
written on a background of the same color and will be unreadable.

The following code draws yellow test on a blue background:

 INTEGER YELLOW, BLUE
 PARAMETER (BLUE=4, YELLOW=7)
 ...
 CALL PGSCI(YELLOW)
 CALL PGSTBG(BLUE)
 CALL PGTEXT(X, Y, 'SPQR')

5.9 Fill-Area Style

Fill-Area Style can be solid (fill the area with the current color), outline (only the outline of the
polygon is drawn), hatched (the region is shaded with parallel lines) or cross-hatched (the region is
shaded with two sets of perpendicular lines). The style is defined by an integer code:

● 1: solid (default),
● 2: outline,
● 3: hatched,
● 4: cross-hatched.

These are illustrated in Figure 5.2.

Fill-area style applies to polygons (PGPOLY), circles (PGCIRC), and rectangles (PGRECT).

To change the fill-area style, use routine PGSFS. The following example uses both outline and

solid fill: it first erases a rectangle (using color index 0 and fill-area style 1), and then draws a
frame around it (using color index 1 and fill-area style 2):

 CALL PGSCI(0)
 CALL PGSFS(1)
 CALL PGRECT(0.31, 0.69, 0.85, 0.97)
 CALL PGSCI(1)
 CALL PGSFS(2)
 CALL PGRECT(0.31, 0.69, 0.85, 0.97)

The spacing and orientation of the hatching lines in styles 3 and 4 can be changed by calling
routine PGSHS.

5.10 The Inquiry Routines

The current setting of each attribute can be determined with an inquiry routine, e.g., PGQCH to

determine the current character height. A general-purpose subroutine that needs to change
attributes temporarily should first determine the current settings and then restore them before
finishing, e.g.,

 INTEGER LW, CI
* save the current attributes
 CALL PGQLW(LW)
 CALL PGQCI(CI)
* change the attributes and draw something
 CALL PGSLW(2)
 CALL PGSCI(11)
 CALL PGLINE(7, X, Y)
* restore the attributes
 CALL PGSLW(LW)
 CALL PGSCI(CI)
 RETURN

There are also inquiry routines for determining the current window (PGQWIN), current viewport

(PGQVP), and current pen position for use with PGMOVE and PGDRAW (PGQPOS).

5.11 Saving and Restoring Attributes

It is sometimes convenient to change the current attributes temporarily, to draw a small prt of a
picture, for example, and then restore them to their previous settings. This can be accomplished
with the routines PGSAVE and PGUNSA.

PGSAVE saves the current PGPLOT attributes in a private storage area. They can be restored by

calling PGUNSA (unsave). Attributes saved are: character font, character height, color index, fill-

area style, line style, line width, pen position, arrow-head style, hatching style. Color
representation is not saved.

Calls to PGSAVE and PGUNSA should always be paired. Up to 20 copies of the attributes may be
saved. PGUNSA always retrieves the last-saved values (last-in first-out stack).

Note that when multiple devices are in use, PGUNSA retrieves the values saved by the last
PGSAVE call, even if they were for a different device.

The example in the previous section can be written more simply as:

* save the current attributes
 CALL PGSAVE
* change the attributes and draw something
 CALL PGSLW(2)
 CALL PGSCI(11)
 CALL PGLINE(7, X, Y)
* restore the attributes
 CALL PGUNSA
 RETURN

Next: Chapter 6

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995-1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure 5.1 Default color representations of color indices 0-15 on most color and gray-scale devices.

Note: Some Web browsers may not display the colors correctly. The PostScript version of the

figure may be more reliable.

http://www.astro.caltech.edu/~tjp/pgplot/fig51.ps
http://www.astro.caltech.edu/~tjp/pgplot/fig51.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure 5.2 Fill-Area Styles: illustrated with PGPOLY, PGCIRC, and PGRECT.

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/fig52.ps
mailto:tjp%E6%88%A2stro.caltech.edu

Higher-Level Routines

Introduction

This chapter describes a number of ``high level'' routines that simplify the composition of
complicated graphical images. They include routines for drawing graphs of one variable or
function against another (``xy-plots''), histograms, and display of two-dimensional data (functions
of two variables). Rather than giving complete details of all the available routines, this chapter
just points out some of the ways that they can be used. See Appendix A for details of the calling
sequences.

XY-plots

The basic technique for drawing xy-plots is described in Chapter 2, which showed how to make
scatter plots using graph markers produced by PGPT and line plots produced by PGLINE.
Considerable variation in the appearance of the graph can be achieved using the following
techniques.

Attributes

Use different attributes to distinguish different datasets. Graph markers can be distinguished by
choosing different markers, different colors, or different sizes (character height attribute). Lines
and curves can be distinguished by line-style, color, or line-width.

Box parameters

If routine PGENV is replaced by calls to the more basic routines (see Section 3.6), including
PGBOX, considerable variety in the appearance of the graph can be achieved. For example, one
can suppress the tick marks, draw the tick marks projecting out of the box instead of into it, or
draw a grid over the whole viewport. Note that PGBOX may be called many times: one might call it
once to draw a grid using thin dotted lines, and again to draw the frame and tick marks using thick
lines:

 CALL PGSLW(1)
 CALL PGSLS(4)
 CALL PGBOX('G',30.0,0,'G',0.2,0)
 CALL PGSLW(3)
 CALL PGSLS(1)
 CALL PGBOX('ABCTSN',90.0,3,'ABCTSNV',0.0,0)

Note that in this example we have also specified tick intervals explicitly. If the horizontal axis is
to represent an angle in degrees, it is convenient to choose a tick interval that is a simple fraction
of 360; here we have a major tick interval of 90 degrees and a minor tick interval of 30 degrees.

Stepped-line plots

As an alternative to PGLINE, which ``joins up the dots'' using straight line segments, it is
sometimes appropriate to use PGBIN which produces a ``stepped line plot'' (sometimes
misleadingly called a histogram) with horizontal line segments at each data point and vertical line
segments joining them. This is often used, for example, in displaying digitized spectra.

Error bars

Graphs of real data often require the inclusion of error bars. The two routines PGERRX and
PGERRY draw horizontal and vertical error bars, respectively. These routines are usually used in
combination with PGPT, e.g., to draw a set of points with 2-sigma error-bars:

 DO 10 I=1,15
 YHI = YPTS(I) + 2.0*ERR(I)
 YLO = YPTS(I) - 2.0*ERR(I)
 CALL PGPT(1, XPTS(I), YPTS(I), 17)
 CALL PGERRY(1, XPTS(I), YLO, YHI, 1.0)
 10 CONTINUE

Logarithmic axes

It is commonly required that the x-axis, the y-axis, or both, be logarithmic instead of linear; that is,
one wishes to plot the logarithm of the quantity instead of its actual value. PGPLOT doesn't
provide any automatic mechanism to do this: one has to adopt log10 x and/or log10 y instead of x

and y as world-coordinates; i.e., if the range of x is to be 1 to 1000, choose as world-coordinate
limits for the window log 1 = 0.0 and log 1000 = 3.0, and supply the logarithms of x to PGPT and
PGLINE. However, PGENV and PGBOX have options for labeling the axis logarithmically; if this
option is used in our example, the axis will have labeled major tick marks at 1, 10, 100, and 1000,
with logarithmically-spaced minor tick marks at 2, 3, 4, ..., 20, 30, 40, etc. An example may make
this clearer:

 CALL PGENV(-2.0,2.0,-0.5,2.5,1,30)
 CALL PGLAB('Frequency, \gn (GHz)',
 1 'Flux Density, S\d\gn\u (Jy)', ' ')
 DO 10 I=1,15
 XPTS(I) = ALOG10(FREQ(I))
 YPTS(I) = ALOG10(FLUX(I))
 10 CONTINUE
 CALL PGPT(15, XPTS, YPTS, 17)

This is a fragment of a program to draw the spectrum of a radio source, which is usually plotted as
a log--log plot of flux density v. frequency. It first calls PGENV to initialize the viewport and
window; the AXIS argument is 30 so both axes will be logarithmic. The x-axis (frequency) runs
from 0.01 to 100 GHz, the y-axis (flux density) runs from 0.3 to 300 Jy. Note that it is necessary to
specify the logarithms of these limits in the call to PGENV. The penultimate argument requests
equal scales in x and y so that slopes will be correct. The program then marks 15 data points,
supplying the logarithms of frequency and flux density to PGPT.

Histograms

The routine PGHIST draws a histogram, that is, the frequency distribution of measured values in a
dataset. Suppose we have 500 measurements of a quantity (the sky brightness temperature at 20
GHz, say, in mK) stored in Fortran array VALUES. The following program-fragment draws a
histogram of the distribution of these values in the range 0.0 to 5.0, using 25 bins (so that each bin
is 0.2 K wide, the first running from 0.0 to 0.2, the second from 0.2 to 0.4, etc.):

 DO 10 I=1,500
 VALUES(I) =
 10 CONTINUE
 CALL PGHIST(500, VALUES, 0.00, 5.00, 25, 0)
 CALL PGLAB('Temperature (K)',
 1 'Number of measurements',
 2 'Sky Brightness at 20 GHz')

The histogram does not depend on the order of the values within the array.

Functions of two variables

A function of two variables, f(x,y), really needs a three-dimensional display. PGPLOT does not
have any three-dimensional display capability, but it provides three methods for two-dimensional
display of three-dimensional data.

Contour maps

In a contour map of f(x,y), the world-coordinates are x and y and the contours are lines of constant
f. The PGPLOT contouring routines (PGCONT and PGCONS) require the input data to be stored
in a two-dimensional Fortran array F, with element F(I,J) containing the value of the function f(x,
y) for a point (xi, yj). Furthermore, the function must be sampled on a regular grid: the (x,y)

coordinates corresponding to (I,J) must be related to I and J by:

x = a + bI + cJ,
y = d + eI + fJ.

The constants a, b, c, d, e, f are supplied to PGCONT in a six-element Fortran array. The other
input required is an array containing the contour values, i.e., the constant values of f
corresponding to each contour to be drawn. In the following example, we assume that values have
been assigned to the elements of array F. We first find the maximum and minimum values of F, and
choose 10 contour levels evenly spaced between the maximum and minimum:

 REAL F(50,50), ALEV(10), TR(6)
 ...
 FMIN = F(1,1)
 FMAX = F(1,1)
 DO 300 I=1,50
 DO 200 J=1,50
 FMIN = MIN(F(I,J),FMIN)
 FMAX = MAX(F(I,J),FMAX)
 200 CONTINUE
 300 CONTINUE

 DO 400 I=1,10
 ALEV(I) = FMIN + (I-1)*(FMAX-FMIN)/9.0
 400 CONTINUE

Next, we choose a window and viewport, and set up an array TR containing the 6 constants in the
transformation between array indices and world coordinates. In this case, the transformation is
simple, as we want x = I, y = J:

 CALL PGENV(0.,50.,5.,45.,0,2)
 TR(1) = 0.0
 TR(2) = 1.0
 TR(3) = 0.0
 TR(4) = 0.0
 TR(5) = 0.0
 TR(6) = 1.0

Finally, we call PGCONT; actually, we call it twice, to draw the first five contours in color index
2 (red) and the remaining 5 in color index 3 (green):

 CALL PGSCI(2)
 CALL PGCONT(F,50,50,1,50,1,50,ALEV,5,TR)
 CALL PGSCI(3)
 CALL PGCONT(F,50,50,1,50,1,50,ALEV(6),5,TR)

Normally PGCONT is preferable to PGCONS. See the description in Appendix A for suggestions
as to when PGCONS should be used.

Gray-scale plots

The routine PGGRAY is used in a similar way to PGCONT. Instead of drawing contours, it shades
the interior of the viewport, the intensity of shading representing the value of the function at each
point. The exact appearance of the resulting ``image'' is device-dependent. On some devices,
PGGRAY does the shading by drawing many dots, so it can be very slow.

Cross sections

Routine PGHI2D draws a series of cross-sections through a two-dimensional data array. Each
cross-section ``hides'' those that appear behind it, giving a three-dimensional effect. See Appendix
A for details.

7. Interactive Graphics

7.1 Introduction

The previous chapters have described how to produce a static graphical image: if the same
program is run twice with the same input parameters, the same image will result. An interactive
program allows the user to control the behavior of the program with a graphical input device.
PGPLOT supports a limited interactive capability on devices with a cursor for graphical input (e.
g., Xwindow workstations, some Tektronix terminals and emulators). The capabilities are
necessarily limited by the aim to keep PGPLOT device-independent.

7.2 The Cursor

Some of the graphics devices supported by PGPLOT have a graphics cursor. This appears on the
view surface as a plus sign, a cross-hair, or a diamond, and can be moved around the view surface
with a mouse, joy-stick, or trackball attached to the graphics device. If the hardware does not
provide this mechanism, PGPLOT allows the user to move the cursor using the arrow keys on his
terminal. See Appendix D for instructions for using the cursor on a specific device.

7.3 Using the Cursor

The basic routines for cursor input are PGCURS and PGBAND. Routine PGCURS enables the

cursor on the selected device, positions it at a specified location within the viewport, and allows
the user to move it. When the user has positioned the cursor, he types a key on his terminal;
PGCURS returns the cursor position (in world coordinates) and the character that was typed. On
some devices the user can also click (depress and release) a mouse button. Buttons 1, 2, 3 have the
same effect as typing A, D, or X. Routine PGBAND is similar to PGCURS but has additional

options that request that a visible line (``rubber band'') or rectangle join the cursor position to a
fixed point and track it as it moves. These options are not available on every device that supports
a cursor.

In addition, PGPLOT provides three higher-level routines for cursor input: PGOLIN, PGNCUR,
and PGLCUR. These three routines require that the device has erase capability.

PGOLIN allows the user to specify a set of points within the viewport, with the capability of

correcting mistakes. Interactive commands (single characters [A, D, or X] typed on the keyboard)
allow the user to add a point at the current cursor position, delete the last-entered point, or exit
from the subroutine. The world-coordinates of the entered points are returned to the calling
program. The following program fragment illustrates the use of PGOLIN; the user supplies NPT
(up to 50) points with world-coordinates X() and Y(), and the program then shades the polygon
defined by these points by calling PGPOLY:

 INTEGER NPT
 REAL X(50), Y(50)
 ...
 WRITE (6,*) 'Use the cursor to draw a polygon'

 WRITE (6,*) 'Type A to add point, D to delete, X to exit'
 NPT = 0
 CALL PGOLIN (50, NPT, X, Y, 0)
 IF (NPT.GE.3) CALL PGPOLY (NPT, X, Y)

PGNCUR is similar to PGOLIN, but the points are sorted into increasing order of x before being

returned to the calling program. In addition, the delete command deletes the point nearest to the
cursor, rather than the last-entered point. It can be used, for example, to allow the user to supply a
set of points to represent the continuum level on a spectrum.

PGLCUR is similar to PGOLIN but instead of using a graph marker to mark each entered point it

draws a polyline through them.

7.4 Buffering

By default, PGPLOT ensures that the image seen on the view surface is up to date at all times;
that is, each PGPLOT subroutine updates the image before returning control to the calling
program. To improve efficiency, PGPLOT can save instructions for controlling the graphics
device in a buffer, and only send them to the device when the buffer is filled up. This means that at
any given moment, the image displayed on the screen may not be completely up to date. This can
be a problem in an interactive program, where, for example, the user has to tell the program what to
do next based on his interpretation of the current display. Three PGPLOT routines (PGBBUF,
PGEBUF, and PGUPDT) are provided for controlling the buffering of output. All three routines
have no arguments.

The routine PGBBUF causes PGPLOT to begin saving graphical output in a buffer. The output is

saved until (1) a matching PGEBUF call is made, or (2) the buffer fills up, or (3) the buffer is
emptied by a call to PGUPDT, or (4) PGEND is called. The routine PGEBUF stops buffering and

causes the buffered commands to be sent to the output device. Calls to PGBBUF and PGEBUF
should always be paired. PGBBUF increments an internal counter, while PGEBUF decrements this
counter and flushes the buffer to the output device when the counter drops to zero. This allows a
subroutine to turn on and turn off buffering without disturbing any buffering that may have been
established by the calling program.

Routine PGUPDT empties the buffer created by PGBBUF, but it does not alter the internal

counter. The routine should be called when it is essential that the display be completely up-to-
date (before interaction with the user, for example) but it is not known if output is being buffered.

Usually output is not buffered; this is the default state established by PGBEG. The default
behavior can be changed, however, by defining an environment variable PGPLOT_BUFFER. If

this variable is defined, with any value, PGBEG will start buffering output (by calling PGBBUF).

The following example shows how routine PGLAB might be implemented in terms of routine
PGMTXT:

 SUBROUTINE PGLAB (XLBL, YLBL, TOPLBL)
 CHARACTER*(*) XLBL, YLBL, TOPLBL
 CALL PGBBUF
 CALL PGMTXT('T', 2.0, 0.5, 0.5, TOPLBL)

 CALL PGMTXT('B', 3.2, 0.5, 0.5, XLBL)
 CALL PGMTXT('L', 2.2, 0.5, 0.5, YLBL)
 CALL PGEBUF
 END

The calls to PGBBUF and PGEBUF ensure that the output generated by the three calls to
PGMTXT is buffered (i.e., sent to the output device as a single command instead of three separate
ones). If buffering is already enabled by the program which calls PGLAB, the calls to PGBBUF
and PGEBUF have no effect.

On some devices (e.g., X-Window workstations) use of buffering can greatly speed up the execution
of a program.

Next: Appendix A

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Subroutine Descriptions

Introduction

This appendix includes a list of all the PGPLOT subroutines, and then gives detailed instructions
for the use of each routine. The subroutine descriptions are in alphabetical order. For more
information about PGPLOT, see the PGPLOT home page.

Fortran Usage

The subroutine descriptions indicate the data type of each argument. When arguments are
described as input, they may be replaced with constants or expressions in the CALL statement,
but make sure that the constant or expression has the correct data type.

INTEGER arguments:
these should be declared INTEGER or INTEGER*4 in the calling program, not
INTEGER*2.

REAL arguments:
these should be declared REAL or REAL*4 in the calling program, not REAL*8 or
DOUBLE PRECISION.

LOGICAL arguments:
these should be declared LOGICAL or LOGICAL*4 in the calling program.

CHARACTER arguments:
any valid Fortran CHARACTER variable may be used (declared CHARACTER*n for some
integer n).

C usage

A standard C synopsis indicating argument types is provided for each subroutine that has a C
binding. The PGPLOT header file should be included in all programs that use these subroutines:

#include "cpgplot.h"

int arguments
Input int arguments are passed by value, and non-int values will be converted to int; for
output arguments, supply a pointer to int

float arguments
Single-valued float arguments are passed by value, and non-float values (e.g., double) will
be converted to float; for output arguments, supply a pointer to float. Array arguments are
passed by address.

char* arguments
For input, supply a pointer to a null-terminated string; for an output argument char *value,
there is another argument int * value_length. value_length should be set to the maximum
number of characters that may be stored in value before entry to the routine; it receives the
actual number of characters used.

2-dimensional arrays
Two-dimensional arrays should be packed in a one-dimensional C array, with the first

index changing fastest.

Index of Routines

● PGARRO -- draw an arrow

● PGASK -- control new page prompting

● PGAXIS -- draw an axis

● PGBAND -- read cursor position, with anchor

● PGBBUF -- begin batch of output (buffer)

● PGBEG -- open a graphics device

● PGBIN -- histogram of binned data

● PGBOX -- draw labeled frame around viewport

● PGCIRC -- draw a circle, using fill-area attributes

● PGCLOS -- close the selected graphics device

● PGCONB -- contour map of a 2D data array, with blanking

● PGCONF -- fill between two contours

● PGCONL -- label contour map of a 2D data array

● PGCONS -- contour map of a 2D data array (fast algorithm)

● PGCONT -- contour map of a 2D data array (contour-following)

● PGCONX -- contour map of a 2D data array (non rectangular)

● PGCTAB -- install the color table to be used by PGIMAG

● PGCURS -- read cursor position

● PGDRAW -- draw a line from the current pen position to a point

● PGEBUF -- end batch of output (buffer)

● PGEND -- close all open graphics devices

● PGENV -- set window and viewport and draw labeled frame

● PGERAS -- erase all graphics from current page

● PGERR1 -- horizontal or vertical error bar

● PGERRB -- horizontal or vertical error bar

● PGERRX -- horizontal error bar

● PGERRY -- vertical error bar

● PGETXT -- erase text from graphics display

● PGFUNT -- function defined by X = F(T), Y = G(T)

● PGFUNX -- function defined by Y = F(X)

● PGFUNY -- function defined by X = F(Y)

● PGGRAY -- gray-scale map of a 2D data array

● PGHI2D -- cross-sections through a 2D data array

● PGHIST -- histogram of unbinned data

● PGIDEN -- write username, date, and time at bottom of plot

● PGIMAG -- color image from a 2D data array

● PGLAB -- write labels for x-axis, y-axis, and top of plot

● PGLCUR -- draw a line using the cursor

● PGLDEV -- list available device types on standard output

● PGLEN -- find length of a string in a variety of units

● PGLINE -- draw a polyline (curve defined by line-segments)

● PGMOVE -- move pen (change current pen position)

● PGMTXT -- write text at position relative to viewport

● PGNCUR -- mark a set of points using the cursor

● PGNUMB -- convert a number into a plottable character string

● PGOLIN -- mark a set of points using the cursor

● PGOPEN -- open a graphics device

● PGPAGE -- advance to new page

● PGPANL -- switch to a different panel on the view surface

● PGPAP -- change the size of the view surface

● PGPIXL -- draw pixels

● PGPNTS -- draw several graph markers, not all the same

● PGPOLY -- draw a polygon, using fill-area attributes

● PGPT -- draw several graph markers

● PGPT1 -- draw one graph marker

● PGPTXT -- write text at arbitrary position and angle

● PGQAH -- inquire arrow-head style

● PGQCF -- inquire character font

● PGQCH -- inquire character height

● PGQCI -- inquire color index

● PGQCIR -- inquire color index range

● PGQCLP -- inquire clipping status

● PGQCOL -- inquire color capability

● PGQCR -- inquire color representation

● PGQCS -- inquire character height in a variety of units

● PGQDT -- inquire name of nth available device type

● PGQFS -- inquire fill-area style

● PGQHS -- inquire hatching style

● PGQID -- inquire current device identifier

● PGQINF -- inquire PGPLOT general information

● PGQITF -- inquire image transfer function

● PGQLS -- inquire line style

● PGQLW -- inquire line width

● PGQNDT -- inquire number of available device types

● PGQPOS -- inquire current pen position

● PGQTBG -- inquire text background color index

● PGQTXT -- find bounding box of text string

● PGQVP -- inquire viewport size and position

● PGQVSZ -- inquire size of view surface

● PGQWIN -- inquire window boundary coordinates

● PGRECT -- draw a rectangle, using fill-area attributes

● PGRND -- find the smallest `round' number greater than x

● PGRNGE -- choose axis limits

● PGSAH -- set arrow-head style

● PGSAVE -- save PGPLOT attributes

● PGUNSA -- restore PGPLOT attributes

● PGSCF -- set character font

● PGSCH -- set character height

● PGSCI -- set color index

● PGSCIR -- set color index range

● PGSCLP -- enable or disable clipping at edge of viewport

● PGSCR -- set color representation

● PGSCRL -- scroll window

● PGSCRN -- set color representation by name

● PGSFS -- set fill-area style

● PGSHLS -- set color representation using HLS system

● PGSHS -- set hatching style

● PGSITF -- set image transfer function

● PGSLCT -- select an open graphics device

● PGSLS -- set line style

● PGSLW -- set line width

● PGSTBG -- set text background color index

● PGSUBP -- subdivide view surface into panels

● PGSVP -- set viewport (normalized device coordinates)

● PGSWIN -- set window

● PGTBOX -- draw frame and write (DD) HH MM SS.S labelling

● PGTEXT -- write text (horizontal, left-justified)

● PGTICK -- draw a single tick mark on an axis

● PGUPDT -- update display

● PGVECT -- vector map of a 2D data array, with blanking

● PGVSIZ -- set viewport (inches)

● PGVSTD -- set standard (default) viewport

● PGWEDG -- annotate an image plot with a wedge

● PGWNAD -- set window and adjust viewport to same aspect ratio

● PGADVANCE -- non-standard alias for PGPAGE

● PGBEGIN -- non-standard alias for PGBEG

● PGCURSE -- non-standard alias for PGCURS

● PGLABEL -- non-standard alias for PGLAB

● PGMTEXT -- non-standard alias for PGMTXT

● PGNCURSE -- non-standard alias for PGNCUR

● PGPAPER -- non-standard alias for PGPAP

● PGPOINT -- non-standard alias for PGPT

● PGPTEXT -- non-standard alias for PGPTXT

● PGVPORT -- non-standard alias for PGSVP

● PGVSIZE -- non-standard alias for PGVSIZ

● PGVSTAND -- non-standard alias for PGVSTD

● PGWINDOW -- non-standard alias for PGSWIN

PGARRO -- draw an arrow

void cpgarro(float x1, float y1, float x2, float y2);

 SUBROUTINE PGARRO (X1, Y1, X2, Y2)

 REAL X1, Y1, X2, Y2

Draw an arrow from the point with world-coordinates (X1,Y1) to
(X2,Y2). The size of the arrowhead at (X2,Y2) is determined by
the current character size set by routine PGSCH. The default size

is 1/40th of the smaller of the width or height of the view surface.
The appearance of the arrowhead (shape and solid or open) is
controlled by routine PGSAH.

Arguments:
 X1, Y1 (input) : world coordinates of the tail of the arrow.
 X2, Y2 (input) : world coordinates of the head of the arrow.

PGASK -- control new page prompting

void cpgask(Logical flag);

 SUBROUTINE PGASK (FLAG)
 LOGICAL FLAG

Change the ``prompt state'' of PGPLOT. If the prompt state is
ON, PGPAGE will type ``Type RETURN for next page:'' and will wait

for the user to type a carriage-return before starting a new page.
The initial prompt state (after the device has been opened) is ON
for interactive devices. Prompt state is always OFF for
non-interactive devices.

Arguments:
 FLAG (input) : if .TRUE., and if the device is an interactive
 device, the prompt state will be set to ON. If
 .FALSE., the prompt state will be set to OFF.

PGAXIS -- draw an axis

void cpgaxis(const char *opt, float x1, float y1, float x2, float y2, \
 float v1, float v2, float step, int nsub, float dmajl, \
 float dmajr, float fmin, float disp, float orient);

 SUBROUTINE PGAXIS (OPT, X1, Y1, X2, Y2, V1, V2, STEP, NSUB,
 : DMAJL, DMAJR, FMIN, DISP, ORIENT)
 CHARACTER*(*) OPT
 REAL X1, Y1, X2, Y2, V1, V2, STEP, DMAJL, DMAJR, FMIN, DISP
 REAL ORIENT
 INTEGER NSUB

Draw a labelled graph axis from world-coordinate position (X1,Y1) to
(X2,Y2).

Normally, this routine draws a standard LINEAR axis with equal
subdivisions. The quantity described by the axis runs from V1 to V2;
this may be, but need not be, the same as X or Y.

If the 'L' option is specified, the routine draws a LOGARITHMIC axis.
In this case, the quantity described by the axis runs from 10**V1 to
10**V2. A logarithmic axis always has major, labeled, tick marks
spaced by one or more decades. If the major tick marks are spaced
by one decade (as specified by the STEP argument), then minor
tick marks are placed at 2, 3, .., 9 times each power of 10;
otherwise minor tick marks are spaced by one decade. If the axis
spans less than two decades, numeric labels are placed at 1, 2, and
5 times each power of ten.

If the axis spans less than one decade, or if it spans many decades,
it is preferable to use a linear axis labeled with the logarithm of
the quantity of interest.

Arguments:
 OPT (input) : a string containing single-letter codes for
 various options. The options currently
 recognized are:
 L : draw a logarithmic axis
 N : write numeric labels
 1 : force decimal labelling, instead of automatic
 choice (see PGNUMB).

 2 : force exponential labelling, instead of
 automatic.
 X1, Y1 (input) : world coordinates of one endpoint of the axis.
 X2, Y2 (input) : world coordinates of the other endpoint of the axis.
 V1 (input) : axis value at first endpoint.
 V2 (input) : axis value at second endpoint.
 STEP (input) : major tick marks are drawn at axis value 0.0 plus
 or minus integer multiples of STEP. If STEP=0.0,
 a value is chosen automatically.
 NSUB (input) : minor tick marks are drawn to divide the major
 divisions into NSUB equal subdivisions (ignored if
 STEP=0.0). If NSUB <= 1, no minor tick marks are
 drawn. NSUB is ignored for a logarithmic axis.
 DMAJL (input) : length of major tick marks drawn to left of axis
 (as seen looking from first endpoint to second), in
 units of the character height.
 DMAJR (input) : length of major tick marks drawn to right of axis,
 in units of the character height.
 FMIN (input) : length of minor tick marks, as fraction of major.
 DISP (input) : displacement of baseline of tick labels to
 right of axis, in units of the character height.
 ORIENT (input) : orientation of label text, in degrees; angle between
 baseline of text and direction of axis (0-360.

PGBAND -- read cursor position, with anchor

int cpgband(int mode, int posn, float xref, float yref, float *x,\
 float *y, char *ch_scalar);

 INTEGER FUNCTION PGBAND (MODE, POSN, XREF, YREF, X, Y, CH)
 INTEGER MODE, POSN
 REAL XREF, YREF, X, Y
 CHARACTER*(*) CH

Read the cursor position and a character typed by the user.
The position is returned in world coordinates. PGBAND positions

the cursor at the position specified (if POSN=1), allows the user to
move the cursor using the mouse or arrow keys or whatever is available
on the device. When he has positioned the cursor, the user types a
single character on the keyboard; PGBAND then returns this

character and the new cursor position (in world coordinates).

Some interactive devices offer a selection of cursor types,
implemented as thin lines that move with the cursor, but without
erasing underlying graphics. Of these types, some extend between
a stationary anchor-point at XREF,YREF, and the position of the
cursor, while others simply follow the cursor without changing shape
or size. The cursor type is specified with one of the following MODE
values. Cursor types that are not supported by a given device, are
treated as MODE=0.

-- If MODE=0, the anchor point is ignored and the routine behaves
like PGCURS.

-- If MODE=1, a straight line is drawn joining the anchor point
and the cursor position.
-- If MODE=2, a hollow rectangle is extended as the cursor is moved,
with one vertex at the anchor point and the opposite vertex at the
current cursor position; the edges of the rectangle are horizontal
and vertical.
-- If MODE=3, two horizontal lines are extended across the width of
the display, one drawn through the anchor point and the other
through the moving cursor position. This could be used to select
a Y-axis range when one end of the range is known.
-- If MODE=4, two vertical lines are extended over the height of
the display, one drawn through the anchor point and the other
through the moving cursor position. This could be used to select an
X-axis range when one end of the range is known.
-- If MODE=5, a horizontal line is extended through the cursor
position over the width of the display. This could be used to select
an X-axis value such as the start of an X-axis range. The anchor point
is ignored.
-- If MODE=6, a vertical line is extended through the cursor
position over the height of the display. This could be used to select

a Y-axis value such as the start of a Y-axis range. The anchor point
is ignored.
-- If MODE=7, a cross-hair, centered on the cursor, is extended over
the width and height of the display. The anchor point is ignored.

Returns:
 PGBAND : 1 if the call was successful; 0 if the device

 has no cursor or some other error occurs.
Arguments:
 MODE (input) : display mode (0, 1, ..7: see above).
 POSN (input) : if POSN=1, PGBAND attempts to place the cursor

 at point (X,Y); if POSN=0, it leaves the cursor
 at its current position. (On some devices this
 request may be ignored.)
 XREF (input) : the world x-coordinate of the anchor point.
 YREF (input) : the world y-coordinate of the anchor point.
 X (in/out) : the world x-coordinate of the cursor.
 Y (in/out) : the world y-coordinate of the cursor.
 CH (output) : the character typed by the user; if the device has
 no cursor or if some other error occurs, the value
 CHAR(0) [ASCII NUL character] is returned.

Note: The cursor coordinates (X,Y) may be changed by PGBAND even if

the device has no cursor or if the user does not move the cursor.
Under these circumstances, the position returned in (X,Y) is that of
the pixel nearest to the requested position.

PGBBUF -- begin batch of output (buffer)

void cpgbbuf(void);

 SUBROUTINE PGBBUF

Begin saving graphical output commands in an internal buffer; the
commands are held until a matching PGEBUF call (or until the buffer

is emptied by PGUPDT). This can greatly improve the efficiency of

PGPLOT. PGBBUF increments an internal counter, while PGEBUF

decrements this counter and flushes the buffer to the output
device when the counter drops to zero. PGBBUF and PGEBUF calls

should always be paired.

Arguments: none

PGBEG -- open a graphics device

int cpgbeg(int unit, const char *file, int nxsub, int nysub);

 INTEGER FUNCTION PGBEG (UNIT, FILE, NXSUB, NYSUB)
 INTEGER UNIT
 CHARACTER*(*) FILE
 INTEGER NXSUB, NYSUB

Note: new programs should use PGOPEN rather than PGBEG. PGOPEN

is retained for compatibility with existing programs. Unlike PGOPEN,

PGBEG closes any graphics devices that are already open, so it

cannot be used to open devices to be used in parallel.

PGBEG opens a graphical device or file and prepares it for

subsequent plotting. A device must be opened with PGBEG or PGOPEN

before any other calls to PGPLOT subroutines for the device.

If any device is already open for PGPLOT output, it is closed before
the new device is opened.

Returns:
 PGBEG : a status return value. A value of 1 indicates

 successful completion, any other value indicates
 an error. In the event of error a message is
 written on the standard error unit.
 To test the return value, call
 PGBEG as a function, eg IER=PGBEG(...); note

 that PGBEG must be declared INTEGER in the

 calling program. Some Fortran compilers allow
 you to use CALL PGBEG(...) and discard the

 return value, but this is not standard Fortran.
Arguments:
 UNIT (input) : this argument is ignored by PGBEG (use zero).

 FILE (input) : the "device specification" for the plot device.
 (For explanation, see description of PGOPEN.)

 NXSUB (input) : the number of subdivisions of the view surface in
 X (>0 or <0).
 NYSUB (input) : the number of subdivisions of the view surface in
 Y (>0).
 PGPLOT puts NXSUB x NYSUB graphs on each plot
 page or screen; when the view surface is sub-
 divided in this way, PGPAGE moves to the next

 panel, not the next physical page. If
 NXSUB > 0, PGPLOT uses the panels in row
 order; if <0, PGPLOT uses them in column order.

PGBIN -- histogram of binned data

void cpgbin(int nbin, const float *x, const float *data, \

 Logical center);

 SUBROUTINE PGBIN (NBIN, X, DATA, CENTER)
 INTEGER NBIN
 REAL X(*), DATA(*)
 LOGICAL CENTER

Plot a histogram of NBIN values with X(1..NBIN) values along
the ordinate, and DATA(1...NBIN) along the abscissa. Bin width is
spacing between X values.

Arguments:
 NBIN (input) : number of values.
 X (input) : abscissae of bins.
 DATA (input) : data values of bins.
 CENTER (input) : if .TRUE., the X values denote the center of the
 bin; if .FALSE., the X values denote the lower
 edge (in X) of the bin.

PGBOX -- draw labeled frame around viewport

void cpgbox(const char *xopt, float xtick, int nxsub, \
 const char *yopt, float ytick, int nysub);

 SUBROUTINE PGBOX (XOPT, XTICK, NXSUB, YOPT, YTICK, NYSUB)
 CHARACTER*(*) XOPT, YOPT
 REAL XTICK, YTICK
 INTEGER NXSUB, NYSUB

Annotate the viewport with frame, axes, numeric labels, etc.
PGBOX is called by on the user's behalf by PGENV, but may also be

called explicitly.

Arguments:
 XOPT (input) : string of options for X (horizontal) axis of
 plot. Options are single letters, and may be in
 any order (see below).
 XTICK (input) : world coordinate interval between major tick marks
 on X axis. If XTICK=0.0, the interval is chosen by
 PGBOX, so that there will be at least 3 major tick

 marks along the axis.
 NXSUB (input) : the number of subintervals to divide the major
 coordinate interval into. If XTICK=0.0 or NXSUB=0,
 the number is chosen by PGBOX.

 YOPT (input) : string of options for Y (vertical) axis of plot.
 Coding is the same as for XOPT.
 YTICK (input) : like XTICK for the Y axis.
 NYSUB (input) : like NXSUB for the Y axis.

Options (for parameters XOPT and YOPT):
 A : draw Axis (X axis is horizontal line Y=0, Y axis is vertical
 line X=0).
 B : draw bottom (X) or left (Y) edge of frame.
 C : draw top (X) or right (Y) edge of frame.
 G : draw Grid of vertical (X) or horizontal (Y) lines.
 I : Invert the tick marks; ie draw them outside the viewport
 instead of inside.
 L : label axis Logarithmically (see below).
 N : write Numeric labels in the conventional location below the
 viewport (X) or to the left of the viewport (Y).
 P : extend ("Project") major tick marks outside the box (ignored if
 option I is specified).
 M : write numeric labels in the unconventional location above the
 viewport (X) or to the right of the viewport (Y).
 T : draw major Tick marks at the major coordinate interval.
 S : draw minor tick marks (Subticks).
 V : orient numeric labels Vertically. This is only applicable to Y.
 The default is to write Y-labels parallel to the axis.
 1 : force decimal labelling, instead of automatic choice (see PGNUMB).

 2 : force exponential labelling, instead of automatic.

To get a complete frame, specify BC in both XOPT and YOPT.
Tick marks, if requested, are drawn on the axes or frame
or both, depending which are requested. If none of ABC is specified,
tick marks will not be drawn. When PGENV calls PGBOX, it sets both

XOPT and YOPT according to the value of its parameter AXIS:
-1: 'BC', 0: 'BCNST', 1: 'ABCNST', 2: 'ABCGNST'.

For a logarithmic axis, the major tick interval is always 1.0. The
numeric label is 10**(x) where x is the world coordinate at the
tick mark. If subticks are requested, 8 subticks are drawn between
each major tick at equal logarithmic intervals.

To label an axis with time (days, hours, minutes, seconds) or
angle (degrees, arcmin, arcsec), use routine PGTBOX.

PGCIRC -- draw a circle, using fill-area attributes

void cpgcirc(float xcent, float ycent, float radius);

 SUBROUTINE PGCIRC (XCENT, YCENT, RADIUS)
 REAL XCENT, YCENT, RADIUS

Draw a circle. The action of this routine depends
on the setting of the Fill-Area Style attribute. If Fill-Area Style
is SOLID (the default), the interior of the circle is solid-filled
using the current Color Index. If Fill-Area Style is HOLLOW, the
outline of the circle is drawn using the current line attributes

(color index, line-style, and line-width).

Arguments:
 XCENT (input) : world x-coordinate of the center of the circle.
 YCENT (input) : world y-coordinate of the center of the circle.
 RADIUS (input) : radius of circle (world coordinates).

PGCLOS -- close the selected graphics device

void cpgclos(void);

 SUBROUTINE PGCLOS

Close the currently selected graphics device. After the device has
been closed, either another open device must be selected with PGSLCT

or another device must be opened with PGOPEN before any further

plotting can be done. If the call to PGCLOS is omitted, some or all

of the plot may be lost.

[This routine was added to PGPLOT in Version 5.1.0. Older programs
use PGEND instead.]

Arguments: none

PGCONB -- contour map of a 2D data array, with blanking

void cpgconb(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, const float *c, int nc, const float *tr, \
 float blank);

 SUBROUTINE PGCONB (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR,
 1 BLANK)
 INTEGER IDIM, JDIM, I1, I2, J1, J2, NC
 REAL A(IDIM,JDIM), C(*), TR(6), BLANK

Draw a contour map of an array. This routine is the same as PGCONS,

except that array elements that have the "magic value" defined by
argument BLANK are ignored, making gaps in the contour map. The
routine may be useful for data measured on most but not all of the
points of a grid.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.

 I1,I2 (input) : range of first index to be contoured (inclusive).
 J1,J2 (input) : range of second index to be contoured (inclusive).
 C (input) : array of contour levels (in the same units as the
 data in array A); dimension at least NC.
 NC (input) : number of contour levels (less than or equal to
 dimension of C). The absolute value of this
 argument is used (for compatibility with PGCONT,

 where the sign of NC is significant).
 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates. The
 world coordinates of the array point A(I,J) are
 given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation
 or shear.
 BLANK (input) : elements of array A that are exactly equal to
 this value are ignored (blanked).

PGCONF -- fill between two contours

void cpgconf(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, float c1, float c2, const float *tr);

 SUBROUTINE PGCONF (A, IDIM, JDIM, I1, I2, J1, J2, C1, C2, TR)
 INTEGER IDIM, JDIM, I1, I2, J1, J2
 REAL A(IDIM,JDIM), C1, C2, TR(6)

Shade the region between two contour levels of a function defined on
the nodes of a rectangular grid. The routine uses the current fill
attributes, hatching style (if appropriate), and color index.

If you want to both shade between contours and draw the contour
lines, call this routine first (once for each pair of levels) and
then CALL PGCONT (or PGCONS) to draw the contour lines on top of the

shading.

Note 1: This routine is not very efficient: it generates a polygon
fill command for each cell of the mesh that intersects the desired
area, rather than consolidating adjacent cells into a single polygon.

Note 2: If both contours intersect all four edges of a particular
mesh cell, the program behaves badly and may consider some parts
of the cell to lie in more than one contour range.

Note 3: If a contour crosses all four edges of a cell, this
routine may not generate the same contours as PGCONT or PGCONS

(these two routines may not agree either). Such cases are always

ambiguous and the routines use different approaches to resolving
the ambiguity.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.
 I1,I2 (input) : range of first index to be contoured (inclusive).
 J1,J2 (input) : range of second index to be contoured (inclusive).
 C1, C2 (input) : contour levels; note that C1 must be less than C2.
 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates. The
 world coordinates of the array point A(I,J) are
 given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation
 or shear.

PGCONL -- label contour map of a 2D data array

void cpgconl(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, float c, const float *tr, const char *label, \
 int intval, int minint);

 SUBROUTINE PGCONL (A, IDIM, JDIM, I1, I2, J1, J2, C, TR,
 1 LABEL, INTVAL, MININT)
 INTEGER IDIM, JDIM, I1, J1, I2, J2, INTVAL, MININT
 REAL A(IDIM,JDIM), C, TR(6)
 CHARACTER*(*) LABEL

Label a contour map drawn with routine PGCONT. Routine PGCONT should

be called first to draw the contour lines, then this routine should be
called to add the labels. Labels are written at intervals along the
contour lines, centered on the contour lines with lettering aligned
in the up-hill direction. Labels are opaque, so a part of the under-
lying contour line is obscured by the label. Labels use the current
attributes (character height, line width, color index, character
font).

The first 7 arguments, and the 9th argument (TR), are the same as
the corresponding arguments to PGCONT, and they should normally be

identical to those used with PGCONT. Note that the argument C is not

an array (unlike PGCONT): only one contour level can be specified;

to label more contours, call PGCONL for each level.

The label is supplied as a character string in argument LABEL.

The spacing of labels along the contour is specified by parameters
INTVAL and MININT. The routine follows the contour through the
array, counting the number of cells that the contour crosses. The
first label will be written in the MININT'th cell, and additional
labels will be written every INTVAL cells thereafter. A contour
that crosses less than MININT cells will not be labelled. Some
experimentation may be needed to get satisfactory results; a good
place to start is INTVAL=20, MININT=10.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.
 I1, I2 (input) : range of first index to be contoured (inclusive).
 J1, J2 (input) : range of second index to be contoured (inclusive).
 C (input) : the level of the contour to be labelled (one of the
 values given to PGCONT).

 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates.
 The world coordinates of the array point A(I,J)
 are given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation or
 shear.
 LABEL (input) : character strings to be used to label the specified
 contour. Leading and trailing blank spaces are
 ignored.
 INTVAL (input) : spacing along the contour between labels, in
 grid cells.
 MININT (input) : contours that cross less than MININT cells
 will not be labelled.

PGCONS -- contour map of a 2D data array (fast algorithm)

void cpgcons(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, const float *c, int nc, const float *tr);

 SUBROUTINE PGCONS (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR)
 INTEGER IDIM, JDIM, I1, I2, J1, J2, NC
 REAL A(IDIM,JDIM), C(*), TR(6)

Draw a contour map of an array. The map is truncated if
necessary at the boundaries of the viewport. Each contour line is
drawn with the current line attributes (color index, style, and
width). This routine, unlike PGCONT, does not draw each contour as a

continuous line, but draws the straight line segments composing each
contour in a random order. It is thus not suitable for use on pen

plotters, and it usually gives unsatisfactory results with dashed or
dotted lines. It is, however, faster than PGCONT, especially if

several contour levels are drawn with one call of PGCONS.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.
 I1,I2 (input) : range of first index to be contoured (inclusive).
 J1,J2 (input) : range of second index to be contoured (inclusive).
 C (input) : array of contour levels (in the same units as the
 data in array A); dimension at least NC.
 NC (input) : number of contour levels (less than or equal to
 dimension of C). The absolute value of this
 argument is used (for compatibility with PGCONT,

 where the sign of NC is significant).
 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates. The
 world coordinates of the array point A(I,J) are
 given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation
 or shear.

PGCONT -- contour map of a 2D data array (contour-following)

void cpgcont(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, const float *c, int nc, const float *tr);

 SUBROUTINE PGCONT (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR)
 INTEGER IDIM, JDIM, I1, J1, I2, J2, NC
 REAL A(IDIM,JDIM), C(*), TR(6)

Draw a contour map of an array. The map is truncated if
necessary at the boundaries of the viewport. Each contour line
is drawn with the current line attributes (color index, style, and
width); except that if argument NC is positive (see below), the line
style is set by PGCONT to 1 (solid) for positive contours or 2

(dashed) for negative contours.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.
 I1, I2 (input) : range of first index to be contoured (inclusive).
 J1, J2 (input) : range of second index to be contoured (inclusive).
 C (input) : array of NC contour levels; dimension at least NC.

 NC (input) : +/- number of contour levels (less than or equal
 to dimension of C). If NC is positive, it is the
 number of contour levels, and the line-style is
 chosen automatically as described above. If NC is
 negative, it is minus the number of contour
 levels, and the current setting of line-style is
 used for all the contours.
 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates.
 The world coordinates of the array point A(I,J)
 are given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation or
 shear.

PGCONX -- contour map of a 2D data array (non rectangular)

 SUBROUTINE PGCONX (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, PLOT)
 INTEGER IDIM, JDIM, I1, J1, I2, J2, NC
 REAL A(IDIM,JDIM), C(*)
 EXTERNAL PLOT

Draw a contour map of an array using a user-supplied plotting
routine. This routine should be used instead of PGCONT when the

data are defined on a non-rectangular grid. PGCONT permits only

a linear transformation between the (I,J) grid of the array
and the world coordinate system (x,y), but PGCONX permits any

transformation to be used, the transformation being defined by a
user-supplied subroutine. The nature of the contouring algorithm,
however, dictates that the transformation should maintain the
rectangular topology of the grid, although grid-points may be
allowed to coalesce. As an example of a deformed rectangular
grid, consider data given on the polar grid theta=0.1n(pi/2),
for n=0,1,...,10, and r=0.25m, for m=0,1,..,4. This grid
contains 55 points, of which 11 are coincident at the origin.
The input array for PGCONX should be dimensioned (11,5), and

data values should be provided for all 55 elements. PGCONX can

also be used for special applications in which the height of the
contour affects its appearance, e.g., stereoscopic views.

The map is truncated if necessary at the boundaries of the viewport.
Each contour line is drawn with the current line attributes (color
index, style, and width); except that if argument NC is positive
(see below), the line style is set by PGCONX to 1 (solid) for

positive contours or 2 (dashed) for negative contours. Attributes
for the contour lines can also be set in the user-supplied
subroutine, if desired.

Arguments:
 A (input) : data array.
 IDIM (input) : first dimension of A.
 JDIM (input) : second dimension of A.
 I1, I2 (input) : range of first index to be contoured (inclusive).
 J1, J2 (input) : range of second index to be contoured (inclusive).
 C (input) : array of NC contour levels; dimension at least NC.
 NC (input) : +/- number of contour levels (less than or equal
 to dimension of C). If NC is positive, it is the
 number of contour levels, and the line-style is
 chosen automatically as described above. If NC is
 negative, it is minus the number of contour
 levels, and the current setting of line-style is
 used for all the contours.
 PLOT (input) : the address (name) of a subroutine supplied by
 the user, which will be called by PGCONX to do

 the actual plotting. This must be declared
 EXTERNAL in the program unit calling PGCONX.

The subroutine PLOT will be called with four arguments:
 CALL PLOT(VISBLE,X,Y,Z)
where X,Y (input) are real variables corresponding to
I,J indices of the array A. If VISBLE (input, integer) is 1,
PLOT should draw a visible line from the current pen
position to the world coordinate point corresponding to (X,Y);
if it is 0, it should move the pen to (X,Y). Z is the value
of the current contour level, and may be used by PLOT if desired.
Example:
 SUBROUTINE PLOT (VISBLE,X,Y,Z)
 REAL X, Y, Z, XWORLD, YWORLD
 INTEGER VISBLE
 XWORLD = X*COS(Y) ! this is the user-defined
 YWORLD = X*SIN(Y) ! transformation
 IF (VISBLE.EQ.0) THEN
 CALL PGMOVE (XWORLD, YWORLD)

 ELSE
 CALL PGDRAW (XWORLD, YWORLD)

 END IF
 END

PGCTAB -- install the color table to be used by PGIMAG

void cpgctab(const float *l, const float *r, const float *g, \
 const float *b, int nc, float contra, float bright);

 SUBROUTINE PGCTAB(L, R, G, B, NC, CONTRA, BRIGHT)
 INTEGER NC
 REAL L(NC), R(NC), G(NC), B(NC), CONTRA, BRIGHT

Use the given color table to change the color representations of
all color indexes marked for use by PGIMAG. To change which

color indexes are thus marked, call PGSCIR before calling PGCTAB

or PGIMAG. On devices that can change the color representations

of previously plotted graphics, PGCTAB will also change the colors

of existing graphics that were plotted with the marked color
indexes. This feature can then be combined with PGBAND to

interactively manipulate the displayed colors of data previously
plotted with PGIMAG.

Limitations:
 1. Some devices do not propagate color representation changes
 to previously drawn graphics.
 2. Some devices ignore requests to change color representations.
 3. The appearance of specific color representations on grey-scale
 devices is device-dependent.

Notes:
 To reverse the sense of a color table, change the chosen contrast
 and brightness to -CONTRA and 1-BRIGHT.

 In the following, the term 'color table' refers to the input
 L,R,G,B arrays, whereas 'color ramp' refers to the resulting
 ramp of colors that would be seen with PGWEDG.

Arguments:
 L (input) : An array of NC normalized ramp-intensity levels
 corresponding to the RGB primary color intensities
 in R(),G(),B(). Colors on the ramp are linearly
 interpolated from neighbouring levels.
 Levels must be sorted in increasing order.
 0.0 places a color at the beginning of the ramp.
 1.0 places a color at the end of the ramp.
 Colors outside these limits are legal, but will
 not be visible if CONTRA=1.0 and BRIGHT=0.5.
 R (input) : An array of NC normalized red intensities.
 G (input) : An array of NC normalized green intensities.
 B (input) : An array of NC normalized blue intensities.
 NC (input) : The number of color table entries.
 CONTRA (input) : The contrast of the color ramp (normally 1.0).
 Negative values reverse the direction of the ramp.
 BRIGHT (input) : The brightness of the color ramp. This is normally
 0.5, but can sensibly hold any value between 0.0
 and 1.0. Values at or beyond the latter two
 extremes, saturate the color ramp with the colors
 of the respective end of the color table.

PGCURS -- read cursor position

int cpgcurs(float *x, float *y, char *ch_scalar);

 INTEGER FUNCTION PGCURS (X, Y, CH)
 REAL X, Y
 CHARACTER*(*) CH

Read the cursor position and a character typed by the user.
The position is returned in world coordinates. PGCURS positions

the cursor at the position specified, allows the user to move the
cursor using the joystick or arrow keys or whatever is available on
the device. When he has positioned the cursor, the user types a
single character on the keyboard; PGCURS then returns this

character and the new cursor position (in world coordinates).

Returns:
 PGCURS : 1 if the call was successful; 0 if the device

 has no cursor or some other error occurs.
Arguments:
 X (in/out) : the world x-coordinate of the cursor.
 Y (in/out) : the world y-coordinate of the cursor.
 CH (output) : the character typed by the user; if the device has
 no cursor or if some other error occurs, the value
 CHAR(0) [ASCII NUL character] is returned.

Note: The cursor coordinates (X,Y) may be changed by PGCURS even if

the device has no cursor or if the user does not move the cursor.
Under these circumstances, the position returned in (X,Y) is that of
the pixel nearest to the requested position.

PGDRAW -- draw a line from the current pen position to a point

void cpgdraw(float x, float y);

 SUBROUTINE PGDRAW (X, Y)
 REAL X, Y

Draw a line from the current pen position to the point
with world-coordinates (X,Y). The line is clipped at the edge of the
current window. The new pen position is (X,Y) in world coordinates.

Arguments:
 X (input) : world x-coordinate of the end point of the line.
 Y (input) : world y-coordinate of the end point of the line.

PGEBUF -- end batch of output (buffer)

void cpgebuf(void);

 SUBROUTINE PGEBUF

A call to PGEBUF marks the end of a batch of graphical output begun

with the last call of PGBBUF. PGBBUF and PGEBUF calls should always

be paired. Each call to PGBBUF increments a counter, while each call

to PGEBUF decrements the counter. When the counter reaches 0, the

batch of output is written on the output device.

Arguments: none

PGEND -- close all open graphics devices

void cpgend(void);

 SUBROUTINE PGEND

Close and release any open graphics devices. All devices must be
closed by calling either PGCLOS (for each device) or PGEND before

the program terminates. If a device is not closed properly, some
or all of the graphical output may be lost.

Arguments: none

PGENV -- set window and viewport and draw labeled frame

void cpgenv(float xmin, float xmax, float ymin, float ymax, \
 int just, int axis);

 SUBROUTINE PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)
 REAL XMIN, XMAX, YMIN, YMAX
 INTEGER JUST, AXIS

Set PGPLOT "Plotter Environment". PGENV establishes the scaling

for subsequent calls to PGPT, PGLINE, etc. The plotter is

advanced to a new page or panel, clearing the screen if necessary.
If the "prompt state" is ON (see PGASK), confirmation

is requested from the user before clearing the screen.
If requested, a box, axes, labels, etc. are drawn according to
the setting of argument AXIS.

Arguments:
 XMIN (input) : the world x-coordinate at the bottom left corner
 of the viewport.
 XMAX (input) : the world x-coordinate at the top right corner
 of the viewport (note XMAX may be less than XMIN).
 YMIN (input) : the world y-coordinate at the bottom left corner
 of the viewport.
 YMAX (input) : the world y-coordinate at the top right corner
 of the viewport (note YMAX may be less than YMIN).
 JUST (input) : if JUST=1, the scales of the x and y axes (in
 world coordinates per inch) will be equal,
 otherwise they will be scaled independently.
 AXIS (input) : controls the plotting of axes, tick marks, etc:
 AXIS = -2 : draw no box, axes or labels;
 AXIS = -1 : draw box only;
 AXIS = 0 : draw box and label it with coordinates;
 AXIS = 1 : same as AXIS=0, but also draw the
 coordinate axes (X=0, Y=0);
 AXIS = 2 : same as AXIS=1, but also draw grid lines
 at major increments of the coordinates;
 AXIS = 10 : draw box and label X-axis logarithmically;
 AXIS = 20 : draw box and label Y-axis logarithmically;
 AXIS = 30 : draw box and label both axes logarithmically.

For other axis options, use routine PGBOX. PGENV can be persuaded to

call PGBOX with additional axis options by defining an environment

parameter PGPLOT_ENVOPT containing the required option codes.
Examples:
 PGPLOT_ENVOPT=P ! draw Projecting tick marks
 PGPLOT_ENVOPT=I ! Invert the tick marks
 PGPLOT_ENVOPT=IV ! Invert tick marks and label y Vertically

PGERAS -- erase all graphics from current page

void cpgeras(void);

 SUBROUTINE PGERAS

Erase all graphics from the current page (or current panel, if
the view surface has been divided into panels with PGSUBP).

Arguments: none

PGERR1 -- horizontal or vertical error bar

void cpgerr1(int dir, float x, float y, float e, float t);

 SUBROUTINE PGERR1 (DIR, X, Y, E, T)
 INTEGER DIR
 REAL X, Y, E
 REAL T

Plot a single error bar in the direction specified by DIR.
This routine draws an error bar only; to mark the data point at
the start of the error bar, an additional call to PGPT is required.

To plot many error bars, use PGERRB.

Arguments:
 DIR (input) : direction to plot the error bar relative to
 the data point.
 One-sided error bar:
 DIR is 1 for +X (X to X+E);
 2 for +Y (Y to Y+E);
 3 for -X (X to X-E);
 4 for -Y (Y to Y-E).
 Two-sided error bar:
 DIR is 5 for +/-X (X-E to X+E);
 6 for +/-Y (Y-E to Y+E).
 X (input) : world x-coordinate of the data.
 Y (input) : world y-coordinate of the data.
 E (input) : value of error bar distance to be added to the
 data position in world coordinates.
 T (input) : length of terminals to be drawn at the ends
 of the error bar, as a multiple of the default
 length; if T = 0.0, no terminals will be drawn.

PGERRB -- horizontal or vertical error bar

void cpgerrb(int dir, int n, const float *x, const float *y, \
 const float *e, float t);

 SUBROUTINE PGERRB (DIR, N, X, Y, E, T)
 INTEGER DIR, N
 REAL X(*), Y(*), E(*)
 REAL T

Plot error bars in the direction specified by DIR.
This routine draws an error bar only; to mark the data point at
the start of the error bar, an additional call to PGPT is required.

Arguments:
 DIR (input) : direction to plot the error bar relative to
 the data point.

 One-sided error bar:
 DIR is 1 for +X (X to X+E);
 2 for +Y (Y to Y+E);
 3 for -X (X to X-E);
 4 for -Y (Y to Y-E).
 Two-sided error bar:
 DIR is 5 for +/-X (X-E to X+E);
 6 for +/-Y (Y-E to Y+E).
 N (input) : number of error bars to plot.
 X (input) : world x-coordinates of the data.
 Y (input) : world y-coordinates of the data.
 E (input) : value of error bar distance to be added to the
 data position in world coordinates.
 T (input) : length of terminals to be drawn at the ends
 of the error bar, as a multiple of the default
 length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X, Y, and E must be greater
than or equal to N. If N is 1, X, Y, and E may be scalar
variables, or expressions.

PGERRX -- horizontal error bar

void cpgerrx(int n, const float *x1, const float *x2, \
 const float *y, float t);

 SUBROUTINE PGERRX (N, X1, X2, Y, T)
 INTEGER N
 REAL X1(*), X2(*), Y(*)
 REAL T

Plot horizontal error bars.
This routine draws an error bar only; to mark the data point in
the middle of the error bar, an additional call to PGPT or

PGERRY is required.

Arguments:
 N (input) : number of error bars to plot.
 X1 (input) : world x-coordinates of lower end of the
 error bars.
 X2 (input) : world x-coordinates of upper end of the
 error bars.
 Y (input) : world y-coordinates of the data.
 T (input) : length of terminals to be drawn at the ends
 of the error bar, as a multiple of the default
 length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X1, X2, and Y must be greater
than or equal to N. If N is 1, X1, X2, and Y may be scalar

variables, or expressions, eg:
 CALL PGERRX(1,X-SIGMA,X+SIGMA,Y)

PGERRY -- vertical error bar

void cpgerry(int n, const float *x, const float *y1, \
 const float *y2, float t);

 SUBROUTINE PGERRY (N, X, Y1, Y2, T)
 INTEGER N
 REAL X(*), Y1(*), Y2(*)
 REAL T

Plot vertical error bars.
This routine draws an error bar only; to mark the data point in
the middle of the error bar, an additional call to PGPT or

PGERRX is required.

Arguments:
 N (input) : number of error bars to plot.
 X (input) : world x-coordinates of the data.
 Y1 (input) : world y-coordinates of top end of the
 error bars.
 Y2 (input) : world y-coordinates of bottom end of the
 error bars.
 T (input) : length of terminals to be drawn at the ends
 of the error bar, as a multiple of the default
 length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X, Y1, and Y2 must be greater
than or equal to N. If N is 1, X, Y1, and Y2 may be scalar
variables or expressions, eg:
 CALL PGERRY(1,X,Y+SIGMA,Y-SIGMA)

PGETXT -- erase text from graphics display

void cpgetxt(void);

 SUBROUTINE PGETXT

Some graphics terminals display text (the normal interactive dialog)
on the same screen as graphics. This routine erases the text from the
view surface without affecting the graphics. It does nothing on
devices which do not display text on the graphics screen, and on
devices which do not have this capability.

Arguments:
 None

PGFUNT -- function defined by X = F(T), Y = G(T)

 SUBROUTINE PGFUNT (FX, FY, N, TMIN, TMAX, PGFLAG)
 REAL FX, FY
 EXTERNAL FX, FY
 INTEGER N
 REAL TMIN, TMAX
 INTEGER PGFLAG

Draw a curve defined by parametric equations X = FX(T), Y = FY(T).

Arguments:
 FX (external real function): supplied by the user, evaluates
 X-coordinate.
 FY (external real function): supplied by the user, evaluates
 Y-coordinate.
 N (input) : the number of points required to define the
 curve. The functions FX and FY will each be
 called N+1 times.
 TMIN (input) : the minimum value for the parameter T.
 TMAX (input) : the maximum value for the parameter T.
 PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the
 current window and viewport; if PGFLAG = 0,
 PGENV is called automatically by PGFUNT to

 start a new plot with automatic scaling.

Note: The functions FX and FY must be declared EXTERNAL in the
Fortran program unit that calls PGFUNT.

PGFUNX -- function defined by Y = F(X)

 SUBROUTINE PGFUNX (FY, N, XMIN, XMAX, PGFLAG)
 REAL FY
 EXTERNAL FY
 INTEGER N
 REAL XMIN, XMAX
 INTEGER PGFLAG

Draw a curve defined by the equation Y = FY(X), where FY is a
user-supplied subroutine.

Arguments:

 FY (external real function): supplied by the user, evaluates
 Y value at a given X-coordinate.
 N (input) : the number of points required to define the
 curve. The function FY will be called N+1 times.
 If PGFLAG=0 and N is greater than 1000, 1000
 will be used instead. If N is less than 1,
 nothing will be drawn.
 XMIN (input) : the minimum value of X.
 XMAX (input) : the maximum value of X.
 PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the
 current window and viewport; if PGFLAG = 0,
 PGENV is called automatically by PGFUNX to

 start a new plot with X limits (XMIN, XMAX)
 and automatic scaling in Y.

Note: The function FY must be declared EXTERNAL in the Fortran
program unit that calls PGFUNX. It has one argument, the

x-coordinate at which the y value is required, e.g.
 REAL FUNCTION FY(X)
 REAL X
 FY =
 END

PGFUNY -- function defined by X = F(Y)

 SUBROUTINE PGFUNY (FX, N, YMIN, YMAX, PGFLAG)
 REAL FX
 EXTERNAL FX
 INTEGER N
 REAL YMIN, YMAX
 INTEGER PGFLAG

Draw a curve defined by the equation X = FX(Y), where FY is a
user-supplied subroutine.

Arguments:
 FX (external real function): supplied by the user, evaluates
 X value at a given Y-coordinate.
 N (input) : the number of points required to define the
 curve. The function FX will be called N+1 times.
 If PGFLAG=0 and N is greater than 1000, 1000
 will be used instead. If N is less than 1,
 nothing will be drawn.
 YMIN (input) : the minimum value of Y.
 YMAX (input) : the maximum value of Y.
 PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the
 current window and viewport; if PGFLAG = 0,
 PGENV is called automatically by PGFUNY to

 start a new plot with Y limits (YMIN, YMAX)

 and automatic scaling in X.

Note: The function FX must be declared EXTERNAL in the Fortran
program unit that calls PGFUNY. It has one argument, the

y-coordinate at which the x value is required, e.g.
 REAL FUNCTION FX(Y)
 REAL Y
 FX =
 END

PGGRAY -- gray-scale map of a 2D data array

void cpggray(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, float fg, float bg, const float *tr);

 SUBROUTINE PGGRAY (A, IDIM, JDIM, I1, I2, J1, J2,
 1 FG, BG, TR)
 INTEGER IDIM, JDIM, I1, I2, J1, J2
 REAL A(IDIM,JDIM), FG, BG, TR(6)

Draw gray-scale map of an array in current window. The subsection
of the array A defined by indices (I1:I2, J1:J2) is mapped onto
the view surface world-coordinate system by the transformation
matrix TR. The resulting quadrilateral region is clipped at the edge
of the window and shaded with the shade at each point determined
by the corresponding array value. The shade is a number in the
range 0 to 1 obtained by linear interpolation between the background
level (BG) and the foreground level (FG), i.e.,

 shade = [A(i,j) - BG] / [FG - BG]

The background level BG can be either less than or greater than the
foreground level FG. Points in the array that are outside the range
BG to FG are assigned shade 0 or 1 as appropriate.

PGGRAY uses two different algorithms, depending how many color

indices are available in the color index range specified for images.
(This range is set with routine PGSCIR, and the current or default

range can be queried by calling routine PGQCIR).

If 16 or more color indices are available, PGGRAY first assigns

color representations to these color indices to give a linear ramp
between the background color (color index 0) and the foreground color
(color index 1), and then calls PGIMAG to draw the image using these

color indices. In this mode, the shaded region is "opaque": every
pixel is assigned a color.

If less than 16 color indices are available, PGGRAY uses only

color index 1, and uses a "dithering" algorithm to fill in pixels,
with the shade (computed as above) determining the faction of pixels
that are filled. In this mode the shaded region is "transparent" and
allows previously-drawn graphics to show through.

The transformation matrix TR is used to calculate the world
coordinates of the center of the "cell" that represents each
array element. The world coordinates of the center of the cell
corresponding to array element A(I,J) are given by:

 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero -- unless the coordinate
transformation involves a rotation or shear. The corners of the
quadrilateral region that is shaded by PGGRAY are given by

applying this transformation to (I1-0.5,J1-0.5), (I2+0.5, J2+0.5).

Arguments:
 A (input) : the array to be plotted.
 IDIM (input) : the first dimension of array A.
 JDIM (input) : the second dimension of array A.
 I1, I2 (input) : the inclusive range of the first index
 (I) to be plotted.
 J1, J2 (input) : the inclusive range of the second
 index (J) to be plotted.
 FG (input) : the array value which is to appear with the
 foreground color (corresponding to color index 1).
 BG (input) : the array value which is to appear with the
 background color (corresponding to color index 0).
 TR (input) : transformation matrix between array grid and
 world coordinates.

PGHI2D -- cross-sections through a 2D data array

void cpghi2d(const float *data, int nxv, int nyv, int ix1, \
 int ix2, int iy1, int iy2, const float *x, int ioff, float bias, \
 Logical center, float *ylims);

 SUBROUTINE PGHI2D (DATA, NXV, NYV, IX1, IX2, IY1, IY2, X, IOFF,
 1 BIAS, CENTER, YLIMS)
 INTEGER NXV, NYV, IX1, IX2, IY1, IY2
 REAL DATA(NXV,NYV)
 REAL X(IX2-IX1+1), YLIMS(IX2-IX1+1)
 INTEGER IOFF
 REAL BIAS
 LOGICAL CENTER

Plot a series of cross-sections through a 2D data array.

Each cross-section is plotted as a hidden line histogram. The plot
can be slanted to give a pseudo-3D effect - if this is done, the
call to PGENV may have to be changed to allow for the increased X

range that will be needed.

Arguments:
 DATA (input) : the data array to be plotted.
 NXV (input) : the first dimension of DATA.
 NYV (input) : the second dimension of DATA.
 IX1 (input)
 IX2 (input)
 IY1 (input)
 IY2 (input) : PGHI2D plots a subset of the input array DATA.

 This subset is delimited in the first (x)
 dimension by IX1 and IX2 and the 2nd (y) by IY1
 and IY2, inclusively. Note: IY2 < IY1 is
 permitted, resulting in a plot with the
 cross-sections plotted in reverse Y order.
 However, IX2 must be => IX1.
 X (input) : the abscissae of the bins to be plotted. That is,
 X(1) should be the X value for DATA(IX1,IY1), and
 X should have (IX2-IX1+1) elements. The program
 has to assume that the X value for DATA(x,y) is
 the same for all y.
 IOFF (input) : an offset in array elements applied to successive
 cross-sections to produce a slanted effect. A
 plot with IOFF > 0 slants to the right, one with
 IOFF < 0 slants left.
 BIAS (input) : a bias value applied to each successive cross-
 section in order to raise it above the previous
 cross-section. This is in the same units as the
 data.
 CENTER (input) : if .true., the X values denote the center of the
 bins; if .false. the X values denote the lower
 edges (in X) of the bins.
 YLIMS (input) : workspace. Should be an array of at least
 (IX2-IX1+1) elements.

PGHIST -- histogram of unbinned data

void cpghist(int n, const float *data, float datmin, float datmax, \
 int nbin, int pgflag);

 SUBROUTINE PGHIST(N, DATA, DATMIN, DATMAX, NBIN, PGFLAG)
 INTEGER N
 REAL DATA(*)
 REAL DATMIN, DATMAX
 INTEGER NBIN, PGFLAG

Draw a histogram of N values of a variable in array
DATA(1...N) in the range DATMIN to DATMAX using NBIN bins. Note
that array elements which fall exactly on the boundary between
two bins will be counted in the higher bin rather than the
lower one; and array elements whose value is less than DATMIN or
greater than or equal to DATMAX will not be counted at all.

Arguments:
 N (input) : the number of data values.
 DATA (input) : the data values. Note: the dimension of array
 DATA must be greater than or equal to N. The
 first N elements of the array are used.
 DATMIN (input) : the minimum data value for the histogram.
 DATMAX (input) : the maximum data value for the histogram.
 NBIN (input) : the number of bins to use: the range DATMIN to
 DATMAX is divided into NBIN equal bins and
 the number of DATA values in each bin is
 determined by PGHIST. NBIN may not exceed 200.

 PGFLAG (input) : if PGFLAG = 1, the histogram is plotted in the
 current window and viewport; if PGFLAG = 0,
 PGENV is called automatically by PGHIST to start

 a new plot (the x-limits of the window will be
 DATMIN and DATMAX; the y-limits will be chosen
 automatically.
 IF PGFLAG = 2,3 the histogram will be in the same
 window and viewport but with a filled area style.
 If pgflag=4,5 as for pgflag = 0,1, but simple
 line drawn as for PGBIN

PGIDEN -- write username, date, and time at bottom of plot

void cpgiden(void);

 SUBROUTINE PGIDEN

Write username, date, and time at bottom of plot.

Arguments: none.

PGIMAG -- color image from a 2D data array

void cpgimag(const float *a, int idim, int jdim, int i1, int i2, \
 int j1, int j2, float a1, float a2, const float *tr);

 SUBROUTINE PGIMAG (A, IDIM, JDIM, I1, I2, J1, J2,
 1 A1, A2, TR)
 INTEGER IDIM, JDIM, I1, I2, J1, J2
 REAL A(IDIM,JDIM), A1, A2, TR(6)

Draw a color image of an array in current window. The subsection
of the array A defined by indices (I1:I2, J1:J2) is mapped onto
the view surface world-coordinate system by the transformation
matrix TR. The resulting quadrilateral region is clipped at the edge
of the window. Each element of the array is represented in the image
by a small quadrilateral, which is filled with a color specified by
the corresponding array value.

The subroutine uses color indices in the range C1 to C2, which can
be specified by calling PGSCIR before PGIMAG. The default values

for C1 and C2 are device-dependent; these values can be determined by
calling PGQCIR. Note that color representations should be assigned to

color indices C1 to C2 by calling PGSCR before calling PGIMAG. On some

devices (but not all), the color representation can be changed after
the call to PGIMAG by calling PGSCR again.

Array values in the range A1 to A2 are mapped on to the range of
color indices C1 to C2, with array values <= A1 being given color
index C1 and values >= A2 being given color index C2. The mapping
function for intermediate array values can be specified by
calling routine PGSITF before PGIMAG; the default is linear.

On devices which have no available color indices (C1 > C2),
PGIMAG will return without doing anything. On devices with only

one color index (C1=C2), all array values map to the same color
which is rather uninteresting. An image is always "opaque",
i.e., it obscures all graphical elements previously drawn in
the region.

The transformation matrix TR is used to calculate the world
coordinates of the center of the "cell" that represents each
array element. The world coordinates of the center of the cell
corresponding to array element A(I,J) are given by:

 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero -- unless the coordinate
transformation involves a rotation or shear. The corners of the
quadrilateral region that is shaded by PGIMAG are given by

applying this transformation to (I1-0.5,J1-0.5), (I2+0.5, J2+0.5).

Arguments:
 A (input) : the array to be plotted.
 IDIM (input) : the first dimension of array A.
 JDIM (input) : the second dimension of array A.
 I1, I2 (input) : the inclusive range of the first index

 (I) to be plotted.
 J1, J2 (input) : the inclusive range of the second
 index (J) to be plotted.
 A1 (input) : the array value which is to appear with shade C1.
 A2 (input) : the array value which is to appear with shade C2.
 TR (input) : transformation matrix between array grid and
 world coordinates.

PGLAB -- write labels for x-axis, y-axis, and top of plot

void cpglab(const char *xlbl, const char *ylbl, const char *toplbl);

 SUBROUTINE PGLAB (XLBL, YLBL, TOPLBL)
 CHARACTER*(*) XLBL, YLBL, TOPLBL

Write labels outside the viewport. This routine is a simple
interface to PGMTXT, which should be used if PGLAB is inadequate.

Arguments:
 XLBL (input) : a label for the x-axis (centered below the
 viewport).
 YLBL (input) : a label for the y-axis (centered to the left
 of the viewport, drawn vertically).
 TOPLBL (input) : a label for the entire plot (centered above the
 viewport).

PGLCUR -- draw a line using the cursor

void cpglcur(int maxpt, int *npt, float *x, float *y);

 SUBROUTINE PGLCUR (MAXPT, NPT, X, Y)
 INTEGER MAXPT, NPT
 REAL X(*), Y(*)

Interactive routine for user to enter a polyline by use of
the cursor. Routine allows user to Add and Delete vertices;
vertices are joined by straight-line segments.

Arguments:
 MAXPT (input) : maximum number of points that may be accepted.
 NPT (in/out) : number of points entered; should be zero on
 first call.
 X (in/out) : array of x-coordinates (dimension at least MAXPT).
 Y (in/out) : array of y-coordinates (dimension at least MAXPT).

Notes:

(1) On return from the program, cursor points are returned in
the order they were entered. Routine may be (re-)called with points
already defined in X,Y (# in NPT), and they will be plotted
first, before editing.

(2) User commands: the user types single-character commands
after positioning the cursor: the following are accepted:
 A (Add) - add point at current cursor location.
 D (Delete) - delete last-entered point.
 X (eXit) - leave subroutine.

PGLDEV -- list available device types on standard output

void cpgldev(void);

 SUBROUTINE PGLDEV

Writes (to standard output) a list of all device types available in
the current PGPLOT installation.

Arguments: none.

PGLEN -- find length of a string in a variety of units

void cpglen(int units, const char *string, float *xl, float *yl);

 SUBROUTINE PGLEN (UNITS, STRING, XL, YL)
 REAL XL, YL
 INTEGER UNITS
 CHARACTER*(*) STRING

Work out length of a string in x and y directions

Input
 UNITS : 0 => answer in normalized device coordinates
 1 => answer in inches
 2 => answer in mm
 3 => answer in absolute device coordinates (dots)
 4 => answer in world coordinates
 5 => answer as a fraction of the current viewport size

 STRING : String of interest
Output
 XL : Length of string in x direction

 YL : Length of string in y direction

PGLINE -- draw a polyline (curve defined by line-segments)

void cpgline(int n, const float *xpts, const float *ypts);

 SUBROUTINE PGLINE (N, XPTS, YPTS)
 INTEGER N
 REAL XPTS(*), YPTS(*)

Primitive routine to draw a Polyline. A polyline is one or more
connected straight-line segments. The polyline is drawn using
the current setting of attributes color-index, line-style, and
line-width. The polyline is clipped at the edge of the window.

Arguments:
 N (input) : number of points defining the line; the line
 consists of (N-1) straight-line segments.
 N should be greater than 1 (if it is 1 or less,
 nothing will be drawn).
 XPTS (input) : world x-coordinates of the points.
 YPTS (input) : world y-coordinates of the points.

The dimension of arrays X and Y must be greater than or equal to N.
The "pen position" is changed to (X(N),Y(N)) in world coordinates
(if N > 1).

PGMOVE -- move pen (change current pen position)

void cpgmove(float x, float y);

 SUBROUTINE PGMOVE (X, Y)
 REAL X, Y

Primitive routine to move the "pen" to the point with world
coordinates (X,Y). No line is drawn.

Arguments:
 X (input) : world x-coordinate of the new pen position.
 Y (input) : world y-coordinate of the new pen position.

PGMTXT -- write text at position relative to viewport

void cpgmtxt(const char *side, float disp, float coord, \
 float fjust, const char *text);

 SUBROUTINE PGMTXT (SIDE, DISP, COORD, FJUST, TEXT)
 CHARACTER*(*) SIDE, TEXT
 REAL DISP, COORD, FJUST

Write text at a position specified relative to the viewport (outside
or inside). This routine is useful for annotating graphs. It is used
by routine PGLAB. The text is written using the current values of

attributes color-index, line-width, character-height, and
character-font.

Arguments:
 SIDE (input) : must include one of the characters 'B', 'L', 'T',
 or 'R' signifying the Bottom, Left, Top, or Right
 margin of the viewport. If it includes 'LV' or
 'RV', the string is written perpendicular to the
 frame rather than parallel to it.
 DISP (input) : the displacement of the character string from the
 specified edge of the viewport, measured outwards
 from the viewport in units of the character
 height. Use a negative value to write inside the
 viewport, a positive value to write outside.
 COORD (input) : the location of the character string along the
 specified edge of the viewport, as a fraction of
 the length of the edge.
 FJUST (input) : controls justification of the string parallel to
 the specified edge of the viewport. If
 FJUST = 0.0, the left-hand end of the string will
 be placed at COORD; if JUST = 0.5, the center of
 the string will be placed at COORD; if JUST = 1.0,
 the right-hand end of the string will be placed at
 at COORD. Other values between 0 and 1 give inter-
 mediate placing, but they are not very useful.
 TEXT (input) : the text string to be plotted. Trailing spaces are
 ignored when justifying the string, but leading
 spaces are significant.

PGNCUR -- mark a set of points using the cursor

void cpgncur(int maxpt, int *npt, float *x, float *y, int symbol);

 SUBROUTINE PGNCUR (MAXPT, NPT, X, Y, SYMBOL)
 INTEGER MAXPT, NPT

 REAL X(*), Y(*)
 INTEGER SYMBOL

Interactive routine for user to enter data points by use of
the cursor. Routine allows user to Add and Delete points. The
points are returned in order of increasing x-coordinate, not in the
order they were entered.

Arguments:
 MAXPT (input) : maximum number of points that may be accepted.
 NPT (in/out) : number of points entered; should be zero on
 first call.
 X (in/out) : array of x-coordinates.
 Y (in/out) : array of y-coordinates.
 SYMBOL (input) : code number of symbol to use for marking
 entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or
equal to MAXPT.

Note (2): On return from the program, cursor points are returned in
increasing order of X. Routine may be (re-)called with points
already defined in X,Y (number in NPT), and they will be plotted
first, before editing.

Note (3): User commands: the user types single-character commands
after positioning the cursor: the following are accepted:
A (Add) - add point at current cursor location.
D (Delete) - delete nearest point to cursor.
X (eXit) - leave subroutine.

PGNUMB -- convert a number into a plottable character string

void cpgnumb(int mm, int pp, int form, char *string, \
 int *string_length);

 SUBROUTINE PGNUMB (MM, PP, FORM, STRING, NC)
 INTEGER MM, PP, FORM
 CHARACTER*(*) STRING
 INTEGER NC

This routine converts a number into a decimal character
representation. To avoid problems of floating-point roundoff, the
number must be provided as an integer (MM) multiplied by a power of 10
(10**PP). The output string retains only significant digits of MM,
and will be in either integer format (123), decimal format (0.0123),
or exponential format (1.23x10**5). Standard escape sequences \u, \d
raise the exponent and \x is used for the multiplication sign.
This routine is used by PGBOX to create numeric labels for a plot.

Formatting rules:
 (a) Decimal notation (FORM=1):
 - Trailing zeros to the right of the decimal sign are
 omitted
 - The decimal sign is omitted if there are no digits
 to the right of it
 - When the decimal sign is placed before the first digit
 of the number, a zero is placed before the decimal sign
 - The decimal sign is a period (.)
 - No spaces are placed between digits (ie digits are not
 grouped in threes as they should be)
 - A leading minus (-) is added if the number is negative
 (b) Exponential notation (FORM=2):
 - The exponent is adjusted to put just one (non-zero)
 digit before the decimal sign
 - The mantissa is formatted as in (a), unless its value is
 1 in which case it and the multiplication sign are omitted
 - If the power of 10 is not zero and the mantissa is not
 zero, an exponent of the form \x10\u[-]nnn is appended,
 where \x is a multiplication sign (cross), \u is an escape
 sequence to raise the exponent, and as many digits nnn
 are used as needed
 (c) Automatic choice (FORM=0):
 Decimal notation is used if the absolute value of the
 number is greater than or equal to 0.01 and less than 10000.
 Otherwise exponential notation is used.

Arguments:
 MM (input)
 PP (input) : the value to be formatted is MM*10**PP.
 FORM (input) : controls how the number is formatted:
 FORM = 0 -- use either decimal or exponential
 FORM = 1 -- use decimal notation
 FORM = 2 -- use exponential notation
 STRING (output) : the formatted character string, left justified.
 If the length of STRING is insufficient, a single
 asterisk is returned, and NC=1.
 NC (output) : the number of characters used in STRING:
 the string to be printed is STRING(1:NC).

PGOLIN -- mark a set of points using the cursor

void cpgolin(int maxpt, int *npt, float *x, float *y, int symbol);

 SUBROUTINE PGOLIN (MAXPT, NPT, X, Y, SYMBOL)
 INTEGER MAXPT, NPT
 REAL X(*), Y(*)
 INTEGER SYMBOL

Interactive routine for user to enter data points by use of
the cursor. Routine allows user to Add and Delete points. The
points are returned in the order that they were entered (unlike
PGNCUR).

Arguments:
 MAXPT (input) : maximum number of points that may be accepted.
 NPT (in/out) : number of points entered; should be zero on
 first call.
 X (in/out) : array of x-coordinates.
 Y (in/out) : array of y-coordinates.
 SYMBOL (input) : code number of symbol to use for marking
 entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or
equal to MAXPT.

Note (2): On return from the program, cursor points are returned in
the order they were entered. Routine may be (re-)called with points
already defined in X,Y (number in NPT), and they will be plotted
first, before editing.

Note (3): User commands: the user types single-character commands
after positioning the cursor: the following are accepted:
A (Add) - add point at current cursor location.
D (Delete) - delete the last point entered.
X (eXit) - leave subroutine.

PGOPEN -- open a graphics device

int cpgopen(const char *device);

 INTEGER FUNCTION PGOPEN (DEVICE)
 CHARACTER*(*) DEVICE

Open a graphics device for PGPLOT output. If the device is
opened successfully, it becomes the selected device to which
graphics output is directed until another device is selected
with PGSLCT or the device is closed with PGCLOS.

The value returned by PGOPEN should be tested to ensure that

the device was opened successfully, e.g.,

 ISTAT = PGOPEN('plot.ps/PS')

 IF (ISTAT .LE. 0) STOP

Note that PGOPEN must be declared INTEGER in the calling program.

The DEVICE argument is a character constant or variable; its value
should be one of the following:

(1) A complete device specification of the form 'device/type' or
 'file/type', where 'type' is one of the allowed PGPLOT device
 types (installation-dependent) and 'device' or 'file' is the
 name of a graphics device or disk file appropriate for this type.
 The 'device' or 'file' may contain '/' characters; the final
 '/' delimits the 'type'. If necessary to avoid ambiguity,
 the 'device' part of the string may be enclosed in double
 quotation marks.
(2) A device specification of the form '/type', where 'type' is one
 of the allowed PGPLOT device types. PGPLOT supplies a default
 file or device name appropriate for this device type.
(3) A device specification with '/type' omitted; in this case
 the type is taken from the environment variable PGPLOT_TYPE,
 if defined (e.g., setenv PGPLOT_TYPE PS). Because of possible
 confusion with '/' in file-names, omitting the device type
 in this way is not recommended.
(4) A blank string (' '); in this case, PGOPEN will use the value

 of environment variable PGPLOT_DEV as the device specification,
 or '/NULL' if the environment variable is undefined.
(5) A single question mark, with optional trailing spaces ('?'); in
 this case, PGPLOT will prompt the user to supply the device
 specification, with a prompt string of the form
 'Graphics device/type (? to see list, default XXX):'
 where 'XXX' is the default (value of environment variable
 PGPLOT_DEV).
(6) A non-blank string in which the first character is a question
 mark (e.g., '?Device: '); in this case, PGPLOT will prompt the
 user to supply the device specification, using the supplied
 string as the prompt (without the leading question mark but
 including any trailing spaces).

In cases (5) and (6), the device specification is read from the
standard input. The user should respond to the prompt with a device
specification of the form (1), (2), or (3). If the user types a
question-mark in response to the prompt, a list of available device
types is displayed and the prompt is re-issued. If the user supplies
an invalid device specification, the prompt is re-issued. If the user
responds with an end-of-file character, e.g., ctrl-D in UNIX, program
execution is aborted; this avoids the possibility of an infinite
prompting loop. A programmer should avoid use of PGPLOT-prompting
if this behavior is not desirable.

The device type is case-insensitive (e.g., '/ps' and '/PS' are
equivalent). The device or file name may be case-sensitive in some
operating systems.

Examples of valid DEVICE arguments:

(1) 'plot.ps/ps', 'dir/plot.ps/ps', '"dir/plot.ps"/ps',
 'user:[tjp.plots]plot.ps/PS'

(2) '/ps' (PGPLOT interprets this as 'pgplot.ps/ps')
(3) 'plot.ps' (if PGPLOT_TYPE is defined as 'ps', PGPLOT
 interprets this as 'plot.ps/ps')
(4) ' ' (if PGPLOT_DEV is defined)
(5) '? '
(6) '?Device specification for PGPLOT: '

[This routine was added to PGPLOT in Version 5.1.0. Older programs
use PGBEG instead.]

Returns:
 PGOPEN : returns either a positive value, the

 identifier of the graphics device for use with
 PGSLCT, or a 0 or negative value indicating an

 error. In the event of error a message is
 written on the standard error unit.
Arguments:
 DEVICE (input) : the 'device specification' for the plot device
 (see above).

PGPAGE -- advance to new page

void cpgpage(void);

 SUBROUTINE PGPAGE

Advance plotter to a new page or panel, clearing the screen if
necessary. If the "prompt state" is ON (see PGASK), confirmation is

requested from the user before clearing the screen. If the view
surface has been subdivided into panels with PGBEG or PGSUBP, then

PGPAGE advances to the next panel, and if the current panel is the

last on the page, PGPAGE clears the screen or starts a new sheet of

paper. PGPAGE does not change the PGPLOT window or the viewport

(in normalized device coordinates); but note that if the size of the
view-surface is changed externally (e.g., by a workstation window
manager) the size of the viewport is changed in proportion.

Arguments: none

PGPANL -- switch to a different panel on the view surface

void cpgpanl(int nxc, int nyc);

 SUBROUTINE PGPANL(IX, IY)

 INTEGER IX, IY

Start plotting in a different panel. If the view surface has been
divided into panels by PGBEG or PGSUBP, this routine can be used to

move to a different panel. Note that PGPLOT does not remember what
viewport and window were in use in each panel; these should be reset
if necessary after calling PGPANL. Nor does PGPLOT clear the panel:

call PGERAS after calling PGPANL to do this.

Arguments:
 IX (input) : the horizontal index of the panel (in the range
 1 <= IX <= number of panels in horizontal
 direction).
 IY (input) : the vertical index of the panel (in the range
 1 <= IY <= number of panels in horizontal
 direction).

PGPAP -- change the size of the view surface

void cpgpap(float width, float aspect);

 SUBROUTINE PGPAP (WIDTH, ASPECT)
 REAL WIDTH, ASPECT

This routine changes the size of the view surface ("paper size") to a
specified width and aspect ratio (height/width), in so far as this is
possible on the specific device. It is always possible to obtain a
view surface smaller than the default size; on some devices (e.g.,
printers that print on roll or fan-feed paper) it is possible to
obtain a view surface larger than the default.

This routine should be called either immediately after PGBEG or

immediately before PGPAGE. The new size applies to all subsequent

images until the next call to PGPAP.

Arguments:
 WIDTH (input) : the requested width of the view surface in inches;
 if WIDTH=0.0, PGPAP will obtain the largest view

 surface available consistent with argument ASPECT.
 (1 inch = 25.4 mm.)
 ASPECT (input) : the aspect ratio (height/width) of the view
 surface; e.g., ASPECT=1.0 gives a square view
 surface, ASPECT=0.618 gives a horizontal
 rectangle, ASPECT=1.618 gives a vertical rectangle.

PGPIXL -- draw pixels

void cpgpixl(const int *ia, int idim, int jdim, int i1, int i2, \
 int j1, int j2, float x1, float x2, float y1, float y2);

 SUBROUTINE PGPIXL (IA, IDIM, JDIM, I1, I2, J1, J2,
 1 X1, X2, Y1, Y2)
 INTEGER IDIM, JDIM, I1, I2, J1, J2
 INTEGER IA(IDIM,JDIM)
 REAL X1, X2, Y1, Y2

Draw lots of solid-filled (tiny) rectangles aligned with the
coordinate axes. Best performance is achieved when output is
directed to a pixel-oriented device and the rectangles coincide
with the pixels on the device. In other cases, pixel output is
emulated.

The subsection of the array IA defined by indices (I1:I2, J1:J2)
is mapped onto world-coordinate rectangle defined by X1, X2, Y1
and Y2. This rectangle is divided into (I2 - I1 + 1) * (J2 - J1 + 1)
small rectangles. Each of these small rectangles is solid-filled
with the color index specified by the corresponding element of
IA.

On most devices, the output region is "opaque", i.e., it obscures
all graphical elements previously drawn in the region. But on
devices that do not have erase capability, the background shade
is "transparent" and allows previously-drawn graphics to show
through.

Arguments:
 IA (input) : the array to be plotted.
 IDIM (input) : the first dimension of array A.
 JDIM (input) : the second dimension of array A.
 I1, I2 (input) : the inclusive range of the first index
 (I) to be plotted.
 J1, J2 (input) : the inclusive range of the second
 index (J) to be plotted.
 X1, Y1 (input) : world coordinates of one corner of the output
 region
 X2, Y2 (input) : world coordinates of the opposite corner of the
 output region

PGPNTS -- draw several graph markers, not all the same

void cpgpnts(int n, const float *x, const float *y, \
 const int *symbol, int ns);

 SUBROUTINE PGPNTS (N, X, Y, SYMBOL, NS)
 INTEGER N, NS
 REAL X(*), Y(*)
 INTEGER SYMBOL(*)

Draw Graph Markers. Unlike PGPT, this routine can draw a different

symbol at each point. The markers are drawn using the current values
of attributes color-index, line-width, and character-height
(character-font applies if the symbol number is >31). If the point
to be marked lies outside the window, no marker is drawn. The "pen
position" is changed to (XPTS(N),YPTS(N)) in world coordinates
(if N > 0).

Arguments:
 N (input) : number of points to mark.
 X (input) : world x-coordinate of the points.
 Y (input) : world y-coordinate of the points.
 SYMBOL (input) : code number of the symbol to be plotted at each
 point (see PGPT).

 NS (input) : number of values in the SYMBOL array. If NS <= N,
 then the first NS points are drawn using the value
 of SYMBOL(I) at (X(I), Y(I)) and SYMBOL(1) for all
 the values of (X(I), Y(I)) where I > NS.

Note: the dimension of arrays X and Y must be greater than or equal
to N and the dimension of the array SYMBOL must be greater than or
equal to NS. If N is 1, X and Y may be scalars (constants or
variables). If NS is 1, then SYMBOL may be a scalar. If N is
less than 1, nothing is drawn.

PGPOLY -- draw a polygon, using fill-area attributes

void cpgpoly(int n, const float *xpts, const float *ypts);

 SUBROUTINE PGPOLY (N, XPTS, YPTS)
 INTEGER N
 REAL XPTS(*), YPTS(*)

Fill-area primitive routine: shade the interior of a closed
polygon in the current window. The action of this routine depends
on the setting of the Fill-Area Style attribute (see PGSFS).

The polygon is clipped at the edge of the
window. The pen position is changed to (XPTS(1),YPTS(1)) in world
coordinates (if N > 1). If the polygon is not convex, a point is
assumed to lie inside the polygon if a straight line drawn to
infinity intersects and odd number of the polygon's edges.

Arguments:
 N (input) : number of points defining the polygon; the

 line consists of N straight-line segments,
 joining points 1 to 2, 2 to 3,... N-1 to N, N to 1.
 N should be greater than 2 (if it is 2 or less,
 nothing will be drawn).
 XPTS (input) : world x-coordinates of the vertices.
 YPTS (input) : world y-coordinates of the vertices.
 Note: the dimension of arrays XPTS and YPTS must be
 greater than or equal to N.

PGPT -- draw several graph markers

void cpgpt(int n, const float *xpts, const float *ypts, int symbol);

 SUBROUTINE PGPT (N, XPTS, YPTS, SYMBOL)
 INTEGER N
 REAL XPTS(*), YPTS(*)
 INTEGER SYMBOL

Primitive routine to draw Graph Markers (polymarker). The markers
are drawn using the current values of attributes color-index,
line-width, and character-height (character-font applies if the symbol
number is >31). If the point to be marked lies outside the window,
no marker is drawn. The "pen position" is changed to
(XPTS(N),YPTS(N)) in world coordinates (if N > 0).

Arguments:
 N (input) : number of points to mark.
 XPTS (input) : world x-coordinates of the points.
 YPTS (input) : world y-coordinates of the points.
 SYMBOL (input) : code number of the symbol to be drawn at each
 point:
 -1, -2 : a single dot (diameter = current
 line width).
 -3..-31 : a regular polygon with ABS(SYMBOL)
 edges (style set by current fill style).
 0..31 : standard marker symbols.
 32..127 : ASCII characters (in current font).
 e.g. to use letter F as a marker, let
 SYMBOL = ICHAR('F').
 > 127 : a Hershey symbol number.

Note: the dimension of arrays X and Y must be greater than or equal
to N. If N is 1, X and Y may be scalars (constants or variables). If
N is less than 1, nothing is drawn.

PGPT1 -- draw one graph marker

void cpgpt1(float xpt, float ypt, int symbol);

 SUBROUTINE PGPT1 (XPT, YPT, SYMBOL)
 REAL XPT, YPT
 INTEGER SYMBOL

Primitive routine to draw a single Graph Marker at a specified point.
The marker is drawn using the current values of attributes
color-index, line-width, and character-height (character-font applies
if the symbol number is >31). If the point to be marked lies outside
the window, no marker is drawn. The "pen position" is changed to
(XPT,YPT) in world coordinates.

To draw several markers with coordinates specified by X and Y
arrays, use routine PGPT.

Arguments:
 XPT (input) : world x-coordinate of the point.
 YPT (input) : world y-coordinate of the point.
 SYMBOL (input) : code number of the symbol to be drawn:
 -1, -2 : a single dot (diameter = current
 line width).
 -3..-31 : a regular polygon with ABS(SYMBOL)
 edges (style set by current fill style).
 0..31 : standard marker symbols.
 32..127 : ASCII characters (in current font).
 e.g. to use letter F as a marker, let
 SYMBOL = ICHAR('F').
 > 127 : a Hershey symbol number.

PGPTXT -- write text at arbitrary position and angle

void cpgptxt(float x, float y, float angle, float fjust, \
 const char *text);

 SUBROUTINE PGPTXT (X, Y, ANGLE, FJUST, TEXT)
 REAL X, Y, ANGLE, FJUST
 CHARACTER*(*) TEXT

Primitive routine for drawing text. The text may be drawn at any
angle with the horizontal, and may be centered or left- or right-
justified at a specified position. Routine PGTEXT provides a

simple interface to PGPTXT for horizontal strings. Text is drawn

using the current values of attributes color-index, line-width,
character-height, and character-font. Text is NOT subject to
clipping at the edge of the window.

Arguments:

 X (input) : world x-coordinate.
 Y (input) : world y-coordinate. The string is drawn with the
 baseline of all the characters passing through
 point (X,Y); the positioning of the string along
 this line is controlled by argument FJUST.
 ANGLE (input) : angle, in degrees, that the baseline is to make
 with the horizontal, increasing counter-clockwise
 (0.0 is horizontal).
 FJUST (input) : controls horizontal justification of the string.
 If FJUST = 0.0, the string will be left-justified
 at the point (X,Y); if FJUST = 0.5, it will be
 centered, and if FJUST = 1.0, it will be right
 justified. [Other values of FJUST give other
 justifications.]
 TEXT (input) : the character string to be plotted.

PGQAH -- inquire arrow-head style

void cpgqah(int *fs, float *angle, float *barb);

 SUBROUTINE PGQAH (FS, ANGLE, BARB)
 INTEGER FS
 REAL ANGLE, BARB

Query the style to be used for arrowheads drawn with routine PGARRO.

Argument:
 FS (output) : FS = 1 => filled; FS = 2 => outline.
 ANGLE (output) : the acute angle of the arrow point, in degrees.
 BARB (output) : the fraction of the triangular arrow-head that
 is cut away from the back.

PGQCF -- inquire character font

void cpgqcf(int *font);

 SUBROUTINE PGQCF (FONT)
 INTEGER FONT

Query the current Character Font (set by routine PGSCF).

Argument:
 FONT (output) : the current font number (in range 1-4).

PGQCH -- inquire character height

void cpgqch(float *size);

 SUBROUTINE PGQCH (SIZE)
 REAL SIZE

Query the Character Size attribute (set by routine PGSCH).

Argument:
 SIZE (output) : current character size (dimensionless multiple of
 the default size).

PGQCI -- inquire color index

void cpgqci(int *ci);

 SUBROUTINE PGQCI (CI)
 INTEGER CI

Query the Color Index attribute (set by routine PGSCI).

Argument:
 CI (output) : the current color index (in range 0-max). This is
 the color index actually in use, and may differ
 from the color index last requested by PGSCI if

 that index is not available on the output device.

PGQCIR -- inquire color index range

void cpgqcir(int *icilo, int *icihi);

 SUBROUTINE PGQCIR(ICILO, ICIHI)
 INTEGER ICILO, ICIHI

Query the color index range to be used for producing images with
PGGRAY or PGIMAG, as set by routine PGSCIR or by device default.

Arguments:
 ICILO (output) : the lowest color index to use for images
 ICIHI (output) : the highest color index to use for images

PGQCLP -- inquire clipping status

void cpgqclp(int *state);

 SUBROUTINE PGQCLP(STATE)
 INTEGER STATE

Query the current clipping status (set by routine PGSCLP).

Argument:
 STATE (output) : receives the clipping status (0 => disabled,
 1 => enabled).

PGQCOL -- inquire color capability

void cpgqcol(int *ci1, int *ci2);

 SUBROUTINE PGQCOL (CI1, CI2)
 INTEGER CI1, CI2

Query the range of color indices available on the current device.

Argument:
 CI1 (output) : the minimum available color index. This will be
 either 0 if the device can write in the
 background color, or 1 if not.
 CI2 (output) : the maximum available color index. This will be
 1 if the device has no color capability, or a
 larger number (e.g., 3, 7, 15, 255).

PGQCR -- inquire color representation

void cpgqcr(int ci, float *cr, float *cg, float *cb);

 SUBROUTINE PGQCR (CI, CR, CG, CB)
 INTEGER CI
 REAL CR, CG, CB

Query the RGB colors associated with a color index.

Arguments:
 CI (input) : color index
 CR (output) : red, green and blue intensities

 CG (output) in the range 0.0 to 1.0
 CB (output)

PGQCS -- inquire character height in a variety of units

void cpgqcs(int units, float *xch, float *ych);

 SUBROUTINE PGQCS(UNITS, XCH, YCH)
 INTEGER UNITS
 REAL XCH, YCH

Return the current PGPLOT character height in a variety of units.
This routine provides facilities that are not available via PGQCH.

Use PGQCS if the character height is required in units other than

those used in PGSCH.

The PGPLOT "character height" is a dimension that scales with the
size of the view surface and with the scale-factor specified with
routine PGSCH. The default value is 1/40th of the height or width

of the view surface (whichever is less); this value is then
multiplied by the scale-factor supplied with PGSCH. Note that it

is a nominal height only; the actual character size depends on the
font and is usually somewhat smaller.

Arguments:
 UNITS (input) : Used to specify the units of the output value:
 UNITS = 0 : normalized device coordinates
 UNITS = 1 : inches
 UNITS = 2 : millimeters
 UNITS = 3 : pixels
 UNITS = 4 : world coordinates
 Other values give an error message, and are
 treated as 0.
 XCH (output) : The character height for text written with a
 vertical baseline.
 YCH (output) : The character height for text written with
 a horizontal baseline (the usual case).

The character height is returned in both XCH and YCH.

If UNITS=1 or UNITS=2, XCH and YCH both receive the same value.

If UNITS=3, XCH receives the height in horizontal pixel units, and YCH
receives the height in vertical pixel units; on devices for which the
pixels are not square, XCH and YCH will be different.

If UNITS=4, XCH receives the height in horizontal world coordinates
(as used for the x-axis), and YCH receives the height in vertical
world coordinates (as used for the y-axis). Unless special care has

been taken to achive equal world-coordinate scales on both axes, the
values of XCH and YCH will be different.

If UNITS=0, XCH receives the character height as a fraction of the
horizontal dimension of the view surface, and YCH receives the
character height as a fraction of the vertical dimension of the view
surface.

PGQDT -- inquire name of nth available device type

void cpgqdt(int n, char *type, int *type_length, char *descr, \
 int *descr_length, int *inter);

 SUBROUTINE PGQDT(N, TYPE, TLEN, DESCR, DLEN, INTER)
 INTEGER N
 CHARACTER*(*) TYPE, DESCR
 INTEGER TLEN, DLEN, INTER

Return the name of the Nth available device type as a character
string. The number of available types can be determined by calling
PGQNDT. If the value of N supplied is outside the range from 1 to

the number of available types, the routine returns DLEN=TLEN=0.

Arguments:
 N (input) : the number of the device type (1..maximum).
 TYPE (output) : receives the character device-type code of the
 Nth device type. The argument supplied should be
 large enough for at least 8 characters. The first
 character in the string is a '/' character.
 TLEN (output) : receives the number of characters in TYPE,
 excluding trailing blanks.
 DESCR (output) : receives a description of the device type. The
 argument supplied should be large enough for at
 least 64 characters.
 DLEN (output) : receives the number of characters in DESCR,
 excluding trailing blanks.
 INTER (output) : receives 1 if the device type is an interactive
 one, 0 otherwise.

PGQFS -- inquire fill-area style

void cpgqfs(int *fs);

 SUBROUTINE PGQFS (FS)
 INTEGER FS

Query the current Fill-Area Style attribute (set by routine
PGSFS).

Argument:
 FS (output) : the current fill-area style:
 FS = 1 => solid (default)
 FS = 2 => outline
 FS = 3 => hatched
 FS = 4 => cross-hatched

PGQHS -- inquire hatching style

void cpgqhs(float *angle, float *sepn, float* phase);

 SUBROUTINE PGQHS (ANGLE, SEPN, PHASE)
 REAL ANGLE, SEPN, PHASE

Query the style to be used hatching (fill area with fill-style 3).

Arguments:
 ANGLE (output) : the angle the hatch lines make with the
 horizontal, in degrees, increasing
 counterclockwise (this is an angle on the
 view surface, not in world-coordinate space).
 SEPN (output) : the spacing of the hatch lines. The unit spacing
 is 1 percent of the smaller of the height or
 width of the view surface.
 PHASE (output) : a real number between 0 and 1; the hatch lines
 are displaced by this fraction of SEPN from a
 fixed reference. Adjacent regions hatched with the
 same PHASE have contiguous hatch lines.

PGQID -- inquire current device identifier

void cpgqid(int *id);

 SUBROUTINE PGQID (ID)
 INTEGER ID

This subroutine returns the identifier of the currently
selected device, or 0 if no device is selected. The identifier is
assigned when PGOPEN is called to open the device, and may be used

as an argument to PGSLCT. Each open device has a different

identifier.

[This routine was added to PGPLOT in Version 5.1.0.]

Argument:
 ID (output) : the identifier of the current device, or 0 if
 no device is currently selected.

PGQINF -- inquire PGPLOT general information

void cpgqinf(const char *item, char *value, int *value_length);

 SUBROUTINE PGQINF (ITEM, VALUE, LENGTH)
 CHARACTER*(*) ITEM, VALUE
 INTEGER LENGTH

This routine can be used to obtain miscellaneous information about
the PGPLOT environment. Input is a character string defining the
information required, and output is a character string containing the
requested information.

The following item codes are accepted (note that the strings must
match exactly, except for case, but only the first 8 characters are
significant). For items marked *, PGPLOT must be in the OPEN state
for the inquiry to succeed. If the inquiry is unsuccessful, either
because the item code is not recognized or because the information
is not available, a question mark ('?') is returned.

 'VERSION' - version of PGPLOT software in use.
 'STATE' - status of PGPLOT ('OPEN' if a graphics device
 is open for output, 'CLOSED' otherwise).
 'USER' - the username associated with the calling program.
 'NOW' - current date and time (e.g., '17-FEB-1986 10:04').
 'DEVICE' * - current PGPLOT device or file.
 'FILE' * - current PGPLOT device or file.
 'TYPE' * - device-type of the current PGPLOT device.
 'DEV/TYPE' * - current PGPLOT device and type, in a form which
 is acceptable as an argument for PGBEG.

 'HARDCOPY' * - is the current device a hardcopy device? ('YES' or
 'NO').
 'TERMINAL' * - is the current device the user's interactive
 terminal? ('YES' or 'NO').
 'CURSOR' * - does the current device have a graphics cursor?
 ('YES' or 'NO').
 'SCROLL' * - does current device have rectangle-scroll
 capability ('YES' or 'NO'); see PGSCRL.

Arguments:
 ITEM (input) : character string defining the information to
 be returned; see above for a list of possible

 values.
 VALUE (output) : returns a character-string containing the
 requested information, truncated to the length
 of the supplied string or padded on the right with
 spaces if necessary.
 LENGTH (output): the number of characters returned in VALUE
 (excluding trailing blanks).

PGQITF -- inquire image transfer function

void cpgqitf(int *itf);

 SUBROUTINE PGQITF (ITF)
 INTEGER ITF

Return the Image Transfer Function as set by default or by a previous
call to PGSITF. The Image Transfer Function is used by routines

PGIMAG, PGGRAY, and PGWEDG.

Argument:
 ITF (output) : type of transfer function (see PGSITF)

PGQLS -- inquire line style

void cpgqls(int *ls);

 SUBROUTINE PGQLS (LS)
 INTEGER LS

Query the current Line Style attribute (set by routine PGSLS).

Argument:
 LS (output) : the current line-style attribute (in range 1-5).

PGQLW -- inquire line width

void cpgqlw(int *lw);

 SUBROUTINE PGQLW (LW)
 INTEGER LW

Query the current Line-Width attribute (set by routine PGSLW).

Argument:
 LW (output) : the line-width (in range 1-201).

PGQNDT -- inquire number of available device types

void cpgqndt(int *n);

 SUBROUTINE PGQNDT(N)
 INTEGER N

Return the number of available device types. This routine is
usually used in conjunction with PGQDT to get a list of the

available device types.

Arguments:
 N (output) : the number of available device types.

PGQPOS -- inquire current pen position

void cpgqpos(float *x, float *y);

 SUBROUTINE PGQPOS (X, Y)
 REAL X, Y

Query the current "pen" position in world C coordinates (X,Y).

Arguments:
 X (output) : world x-coordinate of the pen position.
 Y (output) : world y-coordinate of the pen position.

PGQTBG -- inquire text background color index

void cpgqtbg(int *tbci);

 SUBROUTINE PGQTBG (TBCI)
 INTEGER TBCI

Query the current Text Background Color Index (set by routine
PGSTBG).

Argument:
 TBCI (output) : receives the current text background color index.

PGQTXT -- find bounding box of text string

void cpgqtxt(float x, float y, float angle, float fjust, \
 const char *text, float *xbox, float *ybox);

 SUBROUTINE PGQTXT (X, Y, ANGLE, FJUST, TEXT, XBOX, YBOX)
 REAL X, Y, ANGLE, FJUST
 CHARACTER*(*) TEXT
 REAL XBOX(4), YBOX(4)

This routine returns a bounding box for a text string. Instead
of drawing the string as routine PGPTXT does, it returns in XBOX

and YBOX the coordinates of the corners of a rectangle parallel
to the string baseline that just encloses the string. The four
corners are in the order: lower left, upper left, upper right,
lower right (where left and right refer to the first and last
characters in the string).

If the string is blank or contains no drawable characters, all
four elements of XBOX and YBOX are assigned the starting point
of the string, (X,Y).

Arguments:
 X, Y, ANGLE, FJUST, TEXT (input) : these arguments are the same as
 the corrresponding arguments in PGPTXT.

 XBOX, YBOX (output) : arrays of dimension 4; on output, they
 contain the world coordinates of the bounding
 box in (XBOX(1), YBOX(1)), ..., (XBOX(4), YBOX(4)).

PGQVP -- inquire viewport size and position

void cpgqvp(int units, float *x1, float *x2, float *y1, float *y2);

 SUBROUTINE PGQVP (UNITS, X1, X2, Y1, Y2)
 INTEGER UNITS
 REAL X1, X2, Y1, Y2

Inquiry routine to determine the current viewport setting.
The values returned may be normalized device coordinates, inches, mm,
or pixels, depending on the value of the input parameter CFLAG.

Arguments:
 UNITS (input) : used to specify the units of the output parameters:
 UNITS = 0 : normalized device coordinates
 UNITS = 1 : inches
 UNITS = 2 : millimeters
 UNITS = 3 : pixels
 Other values give an error message, and are
 treated as 0.
 X1 (output) : the x-coordinate of the bottom left corner of the
 viewport.
 X2 (output) : the x-coordinate of the top right corner of the
 viewport.
 Y1 (output) : the y-coordinate of the bottom left corner of the
 viewport.
 Y2 (output) : the y-coordinate of the top right corner of the
 viewport.

PGQVSZ -- inquire size of view surface

void cpgqvsz(int units, float *x1, float *x2, float *y1, float *y2);

 SUBROUTINE PGQVSZ (UNITS, X1, X2, Y1, Y2)
 INTEGER UNITS
 REAL X1, X2, Y1, Y2

This routine returns the dimensions of the view surface (the maximum
plottable area) of the currently selected graphics device, in
a variety of units. The size of the view surface is device-dependent
and is established when the graphics device is opened. On some
devices, it can be changed by calling PGPAP before starting a new

page with PGPAGE. On some devices, the size can be changed (e.g.,

by a workstation window manager) outside PGPLOT, and PGPLOT detects
the change when PGPAGE is used. Call this routine after PGPAGE to

find the current size.

Note 1: the width and the height of the view surface in normalized
device coordinates are both always equal to 1.0.

Note 2: when the device is divided into panels (see PGSUBP), the

view surface is a single panel.

Arguments:
 UNITS (input) : 0,1,2,3 for output in normalized device coords,
 inches, mm, or device units (pixels)
 X1 (output) : always returns 0.0
 X2 (output) : width of view surface
 Y1 (output) : always returns 0.0
 Y2 (output) : height of view surface

PGQWIN -- inquire window boundary coordinates

void cpgqwin(float *x1, float *x2, float *y1, float *y2);

 SUBROUTINE PGQWIN (X1, X2, Y1, Y2)
 REAL X1, X2, Y1, Y2

Inquiry routine to determine the current window setting.
The values returned are world coordinates.

Arguments:
 X1 (output) : the x-coordinate of the bottom left corner
 of the window.
 X2 (output) : the x-coordinate of the top right corner
 of the window.
 Y1 (output) : the y-coordinate of the bottom left corner
 of the window.
 Y2 (output) : the y-coordinate of the top right corner
 of the window.

PGRECT -- draw a rectangle, using fill-area attributes

void cpgrect(float x1, float x2, float y1, float y2);

 SUBROUTINE PGRECT (X1, X2, Y1, Y2)
 REAL X1, X2, Y1, Y2

This routine can be used instead of PGPOLY for the special case of

drawing a rectangle aligned with the coordinate axes; only two
vertices need be specified instead of four. On most devices, it is
faster to use PGRECT than PGPOLY for drawing rectangles. The

rectangle has vertices at (X1,Y1), (X1,Y2), (X2,Y2), and (X2,Y1).

Arguments:
 X1, X2 (input) : the horizontal range of the rectangle.
 Y1, Y2 (input) : the vertical range of the rectangle.

PGRND -- find the smallest `round' number greater than x

float cpgrnd(float x, int *nsub);

 REAL FUNCTION PGRND (X, NSUB)

 REAL X
 INTEGER NSUB

Routine to find the smallest "round" number larger than x, a
"round" number being 1, 2 or 5 times a power of 10. If X is negative,
PGRND(X) = -PGRND(ABS(X)). eg PGRND(8.7) = 10.0,

PGRND(-0.4) = -0.5. If X is zero, the value returned is zero.

This routine is used by PGBOX for choosing tick intervals.

Returns:
 PGRND : the "round" number.

Arguments:
 X (input) : the number to be rounded.
 NSUB (output) : a suitable number of subdivisions for
 subdividing the "nice" number: 2 or 5.

PGRNGE -- choose axis limits

void cpgrnge(float x1, float x2, float *xlo, float *xhi);

 SUBROUTINE PGRNGE (X1, X2, XLO, XHI)
 REAL X1, X2, XLO, XHI

Choose plotting limits XLO and XHI which encompass the data
range X1 to X2.

Arguments:
 X1, X2 (input) : the data range (X1<X2), ie, the min and max values
 to be plotted.
 XLO, XHI (output) : suitable values to use as the extremes of a graph
 axis (XLO <= X1, XHI >= X2).

PGSAH -- set arrow-head style

void cpgsah(int fs, float angle, float barb);

 SUBROUTINE PGSAH (FS, ANGLE, BARB)
 INTEGER FS
 REAL ANGLE, BARB

Set the style to be used for arrowheads drawn with routine PGARRO.

Argument:
 FS (input) : FS = 1 => filled; FS = 2 => outline.
 Other values are treated as 2. Default 1.

 ANGLE (input) : the acute angle of the arrow point, in degrees;
 angles in the range 20.0 to 90.0 give reasonable
 results. Default 45.0.
 BARB (input) : the fraction of the triangular arrow-head that
 is cut away from the back. 0.0 gives a triangular
 wedge arrow-head; 1.0 gives an open >. Values 0.3
 to 0.7 give reasonable results. Default 0.3.

PGSAVE -- save PGPLOT attributes

void cpgsave(void);

 SUBROUTINE PGSAVE

This routine saves the current PGPLOT attributes in a private storage
area. They can be restored by calling PGUNSA (unsave). Attributes

saved are: character font, character height, color index, fill-area
style, line style, line width, pen position, arrow-head style,
hatching style, and clipping state. Color representation is not saved.

Calls to PGSAVE and PGUNSA should always be paired. Up to 20 copies

of the attributes may be saved. PGUNSA always retrieves the last-saved

values (last-in first-out stack).

Note that when multiple devices are in use, PGUNSA retrieves the

values saved by the last PGSAVE call, even if they were for a

different device.

Arguments: none

PGUNSA -- restore PGPLOT attributes

void cpgunsa(void);

 ENTRY PGUNSA

This routine restores the PGPLOT attributes saved in the last call to
PGSAVE. Usage: CALL PGUNSA (no arguments). See PGSAVE.

Arguments: none

PGSCF -- set character font

void cpgscf(int font);

 SUBROUTINE PGSCF (FONT)
 INTEGER FONT

Set the Character Font for subsequent text plotting. Four different
fonts are available:
 1: (default) a simple single-stroke font ("normal" font)
 2: roman font
 3: italic font
 4: script font
This call determines which font is in effect at the beginning of
each text string. The font can be changed (temporarily) within a text
string by using the escape sequences \fn, \fr, \fi, and \fs for fonts
1, 2, 3, and 4, respectively.

Argument:
 FONT (input) : the font number to be used for subsequent text
 plotting (in range 1-4).

PGSCH -- set character height

void cpgsch(float size);

 SUBROUTINE PGSCH (SIZE)
 REAL SIZE

Set the character size attribute. The size affects all text and graph
markers drawn later in the program. The default character size is
1.0, corresponding to a character height about 1/40 the height of
the view surface. Changing the character size also scales the length
of tick marks drawn by PGBOX and terminals drawn by PGERRX and PGERRY.

Argument:
 SIZE (input) : new character size (dimensionless multiple of
 the default size).

PGSCI -- set color index

void cpgsci(int ci);

 SUBROUTINE PGSCI (CI)
 INTEGER CI

Set the Color Index for subsequent plotting, if the output device
permits this. The default color index is 1, usually white on a black
background for video displays or black on a white background for
printer plots. The color index is an integer in the range 0 to a
device-dependent maximum. Color index 0 corresponds to the background
color; lines may be "erased" by overwriting them with color index 0
(if the device permits this).

If the requested color index is not available on the selected device,
color index 1 will be substituted.

The assignment of colors to color indices can be changed with
subroutine PGSCR (set color representation). Color indices 0-15

have predefined color representations (see the PGPLOT manual), but
these may be changed with PGSCR. Color indices above 15 have no

predefined representations: if these indices are used, PGSCR must

be called to define the representation.

Argument:
 CI (input) : the color index to be used for subsequent plotting
 on the current device (in range 0-max). If the
 index exceeds the device-dependent maximum, the
 default color index (1) is used.

PGSCIR -- set color index range

void cpgscir(int icilo, int icihi);

 SUBROUTINE PGSCIR(ICILO, ICIHI)
 INTEGER ICILO, ICIHI

Set the color index range to be used for producing images with
PGGRAY or PGIMAG. If the range is not all within the range supported

by the device, a smaller range will be used. The number of
different colors available for images is ICIHI-ICILO+1.

Arguments:
 ICILO (input) : the lowest color index to use for images
 ICIHI (input) : the highest color index to use for images

PGSCLP -- enable or disable clipping at edge of viewport

void cpgsclp(int state);

 SUBROUTINE PGSCLP(STATE)

 INTEGER STATE

Normally all PGPLOT primitives except text are ``clipped'' at the
edge of the viewport: parts of the primitives that lie outside
the viewport are not drawn. If clipping is disabled by calling this
routine, primitives are visible wherever they lie on the view
surface. The default (clipping enabled) is appropriate for almost
all applications.

Argument:
 STATE (input) : 0 to disable clipping, or 1 to enable clipping.

25-Feb-1997 [TJP] - new routine.

PGSCR -- set color representation

void cpgscr(int ci, float cr, float cg, float cb);

 SUBROUTINE PGSCR (CI, CR, CG, CB)
 INTEGER CI
 REAL CR, CG, CB

Set color representation: i.e., define the color to be
associated with a color index. Ignored for devices which do not
support variable color or intensity. Color indices 0-15
have predefined color representations (see the PGPLOT manual), but
these may be changed with PGSCR. Color indices 16-maximum have no

predefined representations: if these indices are used, PGSCR must

be called to define the representation. On monochrome output
devices (e.g. VT125 terminals with monochrome monitors), the
monochrome intensity is computed from the specified Red, Green, Blue
intensities as 0.30*R + 0.59*G + 0.11*B, as in US color television
systems, NTSC encoding. Note that most devices do not have an
infinite range of colors or monochrome intensities available;
the nearest available color is used. Examples: for black,
set CR=CG=CB=0.0; for white, set CR=CG=CB=1.0; for medium gray,
set CR=CG=CB=0.5; for medium yellow, set CR=CG=0.5, CB=0.0.

Argument:
 CI (input) : the color index to be defined, in the range 0-max.
 If the color index greater than the device
 maximum is specified, the call is ignored. Color
 index 0 applies to the background color.
 CR (input) : red, green, and blue intensities,
 CG (input) in range 0.0 to 1.0.
 CB (input)

PGSCRL -- scroll window

void cpgscrl(float dx, float dy);

 SUBROUTINE PGSCRL (DX, DY)
 REAL DX, DY

This routine moves the window in world-coordinate space while
leaving the viewport unchanged. On devices that have the
capability, the pixels within the viewport are scrolled
horizontally, vertically or both in such a way that graphics
previously drawn in the window are shifted so that their world
coordinates are unchanged.

If the old window coordinate range was (X1, X2, Y1, Y2), the new
coordinate range will be approximately (X1+DX, X2+DX, Y1+DY, Y2+DY).
The size and scale of the window are unchanged.

Thee window can only be shifted by a whole number of pixels
(device coordinates). If DX and DY do not correspond to integral
numbers of pixels, the shift will be slightly different from that
requested. The new window-coordinate range, and hence the exact
amount of the shift, can be determined by calling PGQWIN after this

routine.

Pixels that are moved out of the viewport by this operation are
lost completely; they cannot be recovered by scrolling back.
Pixels that are ``scrolled into'' the viewport are filled with
the background color (color index 0).

If the absolute value of DX is bigger than the width of the window,
or the aboslute value of DY is bigger than the height of the window,
the effect will be the same as zeroing all the pixels in the
viewport.

Not all devices have the capability to support this routine.
It is only available on some interactive devices that have discrete
pixels. To determine whether the current device has scroll capability,
call PGQINF.

Arguments:
 DX (input) : distance (in world coordinates) to shift the
 window horizontally (positive shifts window to the
 right and scrolls to the left).
 DY (input) : distance (in world coordinates) to shift the
 window vertically (positive shifts window up and
 scrolls down).

PGSCRN -- set color representation by name

void cpgscrn(int ci, const char *name, int *ier);

 SUBROUTINE PGSCRN(CI, NAME, IER)
 INTEGER CI
 CHARACTER*(*) NAME
 INTEGER IER

Set color representation: i.e., define the color to be
associated with a color index. Ignored for devices which do not
support variable color or intensity. This is an alternative to
routine PGSCR. The color representation is defined by name instead

of (R,G,B) components.

Color names are defined in an external file which is read the first
time that PGSCRN is called. The name of the external file is

found as follows:
1. if environment variable (logical name) PGPLOT_RGB is defined,
 its value is used as the file name;
2. otherwise, if environment variable PGPLOT_DIR is defined, a
 file "rgb.txt" in the directory named by this environment
 variable is used;
3. otherwise, file "rgb.txt" in the current directory is used.
If all of these fail to find a file, an error is reported and
the routine does nothing.

Each line of the file
defines one color, with four blank- or tab-separated fields per
line. The first three fields are the R, G, B components, which
are integers in the range 0 (zero intensity) to 255 (maximum
intensity). The fourth field is the color name. The color name
may include embedded blanks. Example:

255 0 0 red
255 105 180 hot pink
255 255 255 white
 0 0 0 black

Arguments:
 CI (input) : the color index to be defined, in the range 0-max.
 If the color index greater than the device
 maximum is specified, the call is ignored. Color
 index 0 applies to the background color.
 NAME (input) : the name of the color to be associated with
 this color index. This name must be in the
 external file. The names are not case-sensitive.
 If the color is not listed in the file, the
 color representation is not changed.
 IER (output) : returns 0 if the routine was successful, 1
 if an error occurred (either the external file
 could not be read, or the requested color was

 not defined in the file).

PGSFS -- set fill-area style

void cpgsfs(int fs);

 SUBROUTINE PGSFS (FS)
 INTEGER FS

Set the Fill-Area Style attribute for subsequent area-fill by
PGPOLY, PGRECT, or PGCIRC. Four different styles are available:

solid (fill polygon with solid color of the current color-index),
outline (draw outline of polygon only, using current line attributes),
hatched (shade interior of polygon with parallel lines, using
current line attributes), or cross-hatched. The orientation and
spacing of hatch lines can be specified with routine PGSHS (set

hatch style).

Argument:
 FS (input) : the fill-area style to be used for subsequent
 plotting:
 FS = 1 => solid (default)
 FS = 2 => outline
 FS = 3 => hatched
 FS = 4 => cross-hatched
 Other values give an error message and are
 treated as 2.

PGSHLS -- set color representation using HLS system

void cpgshls(int ci, float ch, float cl, float cs);

 SUBROUTINE PGSHLS (CI, CH, CL, CS)
 INTEGER CI
 REAL CH, CL, CS

Set color representation: i.e., define the color to be
associated with a color index. This routine is equivalent to
PGSCR, but the color is defined in the Hue-Lightness-Saturation

model instead of the Red-Green-Blue model. Hue is represented
by an angle in degrees, with red at 120, green at 240,
and blue at 0 (or 360). Lightness ranges from 0.0 to 1.0, with black
at lightness 0.0 and white at lightness 1.0. Saturation ranges from
0.0 (gray) to 1.0 (pure color). Hue is irrelevant when saturation
is 0.0.

Examples: H L S R G B
 black any 0.0 0.0 0.0 0.0 0.0
 white any 1.0 0.0 1.0 1.0 1.0
 medium gray any 0.5 0.0 0.5 0.5 0.5
 red 120 0.5 1.0 1.0 0.0 0.0
 yellow 180 0.5 1.0 1.0 1.0 0.0
 pink 120 0.7 0.8 0.94 0.46 0.46

Reference: SIGGRAPH Status Report of the Graphic Standards Planning
Committee, Computer Graphics, Vol.13, No.3, Association for
Computing Machinery, New York, NY, 1979. See also: J. D. Foley et al,
``Computer Graphics: Principles and Practice'', second edition,
Addison-Wesley, 1990, section 13.3.5.

Argument:
 CI (input) : the color index to be defined, in the range 0-max.
 If the color index greater than the device
 maximum is specified, the call is ignored. Color
 index 0 applies to the background color.
 CH (input) : hue, in range 0.0 to 360.0.
 CL (input) : lightness, in range 0.0 to 1.0.
 CS (input) : saturation, in range 0.0 to 1.0.

PGSHS -- set hatching style

void cpgshs(float angle, float sepn, float phase);

 SUBROUTINE PGSHS (ANGLE, SEPN, PHASE)
 REAL ANGLE, SEPN, PHASE

Set the style to be used for hatching (fill area with fill-style 3).
The default style is ANGLE=45.0, SEPN=1.0, PHASE=0.0.

Arguments:
 ANGLE (input) : the angle the hatch lines make with the
 horizontal, in degrees, increasing
 counterclockwise (this is an angle on the
 view surface, not in world-coordinate space).
 SEPN (input) : the spacing of the hatch lines. The unit spacing
 is 1 percent of the smaller of the height or
 width of the view surface. This should not be
 zero.
 PHASE (input) : a real number between 0 and 1; the hatch lines
 are displaced by this fraction of SEPN from a
 fixed reference. Adjacent regions hatched with the
 same PHASE have contiguous hatch lines. To hatch
 a region with alternating lines of two colors,
 fill the area twice, with PHASE=0.0 for one color

 and PHASE=0.5 for the other color.

PGSITF -- set image transfer function

void cpgsitf(int itf);

 SUBROUTINE PGSITF (ITF)
 INTEGER ITF

Set the Image Transfer Function for subsequent images drawn by
PGIMAG, PGGRAY, or PGWEDG. The Image Transfer Function is used

to map array values into the available range of color indices
specified with routine PGSCIR or (for PGGRAY on some devices)

into dot density.

Argument:
 ITF (input) : type of transfer function:
 ITF = 0 : linear
 ITF = 1 : logarithmic
 ITF = 2 : square-root

PGSLCT -- select an open graphics device

void cpgslct(int id);

 SUBROUTINE PGSLCT(ID)
 INTEGER ID

Select one of the open graphics devices and direct subsequent
plotting to it. The argument is the device identifier returned by
PGOPEN when the device was opened. If the supplied argument is not a

valid identifier of an open graphics device, a warning message is
issued and the current selection is unchanged.

[This routine was added to PGPLOT in Version 5.1.0.]

Arguments:

ID (input, integer): identifier of the device to be selected.

PGSLS -- set line style

void cpgsls(int ls);

 SUBROUTINE PGSLS (LS)
 INTEGER LS

Set the line style attribute for subsequent plotting. This
attribute affects line primitives only; it does not affect graph
markers, text, or area fill.
Five different line styles are available, with the following codes:
1 (full line), 2 (dashed), 3 (dot-dash-dot-dash), 4 (dotted),
5 (dash-dot-dot-dot). The default is 1 (normal full line).

Argument:
 LS (input) : the line-style code for subsequent plotting
 (in range 1-5).

PGSLW -- set line width

void cpgslw(int lw);

 SUBROUTINE PGSLW (LW)
 INTEGER LW

Set the line-width attribute. This attribute affects lines, graph
markers, and text. The line width is specified in units of 1/200
(0.005) inch (about 0.13 mm) and must be an integer in the range
1-201. On some devices, thick lines are generated by tracing each
line with multiple strokes offset in the direction perpendicular to
the line.

Argument:
 LW (input) : width of line, in units of 0.005 inch (0.13 mm)
 in range 1-201.

PGSTBG -- set text background color index

void cpgstbg(int tbci);

 SUBROUTINE PGSTBG (TBCI)
 INTEGER TBCI

Set the Text Background Color Index for subsequent text. By default
text does not obscure underlying graphics. If the text background
color index is positive, however, text is opaque: the bounding box
of the text is filled with the color specified by PGSTBG before

drawing the text characters in the current color index set by PGSCI.

Use color index 0 to erase underlying graphics before drawing text.

Argument:
 TBCI (input) : the color index to be used for the background
 for subsequent text plotting:
 TBCI < 0 => transparent (default)
 TBCI >= 0 => text will be drawn on an opaque
 background with color index TBCI.

PGSUBP -- subdivide view surface into panels

void cpgsubp(int nxsub, int nysub);

 SUBROUTINE PGSUBP (NXSUB, NYSUB)
 INTEGER NXSUB, NYSUB

PGPLOT divides the physical surface of the plotting device (screen,
window, or sheet of paper) into NXSUB x NYSUB `panels'. When the
view surface is sub-divided in this way, PGPAGE moves to the next

panel, not the next physical page. The initial subdivision of the
view surface is set in the call to PGBEG. When PGSUBP is called,

it forces the next call to PGPAGE to start a new physical page,

subdivided in the manner indicated. No plotting should be done
between a call of PGSUBP and a call of PGPAGE (or PGENV, which calls

PGPAGE).

If NXSUB > 0, PGPLOT uses the panels in row order; if <0,
PGPLOT uses them in column order, e.g.,

 NXSUB=3, NYSUB=2 NXSUB=-3, NYSUB=2

+-----+-----+-----+ +-----+-----+-----+
| 1 | 2 | 3 | | 1 | 3 | 5 |
+-----+-----+-----+ +-----+-----+-----+
| 4 | 5 | 6 | | 2 | 4 | 6 |
+-----+-----+-----+ +-----+-----+-----+

PGPLOT advances from one panels to the next when PGPAGE is called,

clearing the screen or starting a new page when the last panel has
been used. It is also possible to jump from one panel to another
in random order by calling PGPANL.

Arguments:
 NXSUB (input) : the number of subdivisions of the view surface in
 X (>0 or <0).
 NYSUB (input) : the number of subdivisions of the view surface in
 Y (>0).

PGSVP -- set viewport (normalized device coordinates)

void cpgsvp(float xleft, float xright, float ybot, float ytop);

 SUBROUTINE PGSVP (XLEFT, XRIGHT, YBOT, YTOP)
 REAL XLEFT, XRIGHT, YBOT, YTOP

Change the size and position of the viewport, specifying
the viewport in normalized device coordinates. Normalized
device coordinates run from 0 to 1 in each dimension. The
viewport is the rectangle on the view surface "through"
which one views the graph. All the PG routines which plot lines
etc. plot them within the viewport, and lines are truncated at
the edge of the viewport (except for axes, labels etc drawn with
PGBOX or PGLAB). The region of world space (the coordinate

space of the graph) which is visible through the viewport is
specified by a call to PGSWIN. It is legal to request a

viewport larger than the view surface; only the part which
appears on the view surface will be plotted.

Arguments:
 XLEFT (input) : x-coordinate of left hand edge of viewport, in NDC.
 XRIGHT (input) : x-coordinate of right hand edge of viewport,
 in NDC.
 YBOT (input) : y-coordinate of bottom edge of viewport, in NDC.
 YTOP (input) : y-coordinate of top edge of viewport, in NDC.

PGSWIN -- set window

void cpgswin(float x1, float x2, float y1, float y2);

 SUBROUTINE PGSWIN (X1, X2, Y1, Y2)
 REAL X1, X2, Y1, Y2

Change the window in world coordinate space that is to be mapped on
to the viewport. Usually PGSWIN is called automatically by PGENV,

but it may be called directly by the user.

Arguments:
 X1 (input) : the x-coordinate of the bottom left corner
 of the viewport.
 X2 (input) : the x-coordinate of the top right corner
 of the viewport (note X2 may be less than X1).
 Y1 (input) : the y-coordinate of the bottom left corner
 of the viewport.

 Y2 (input) : the y-coordinate of the top right corner
 of the viewport (note Y2 may be less than Y1).

PGTBOX -- draw frame and write (DD) HH MM SS.S labelling

void cpgtbox(const char *xopt, float xtick, int nxsub, \
 const char *yopt, float ytick, int nysub);

 SUBROUTINE PGTBOX (XOPT, XTICK, NXSUB, YOPT, YTICK, NYSUB)

 REAL XTICK, YTICK
 INTEGER NXSUB, NYSUB
 CHARACTER XOPT*(*), YOPT*(*)

Draw a box and optionally label one or both axes with (DD) HH MM SS
style numeric labels (useful for time or RA - DEC plots). If this
style of labelling is desired, then PGSWIN should have been called

previously with the extrema in SECONDS of time.

In the seconds field, you can have at most 3 places after the decimal
point, so that 1 ms is the smallest time interval you can time label.

Large numbers are coped with by fields of 6 characters long. Thus
you could have times with days or hours as big as 999999. However,
in practice, you might have trouble with labels overwriting themselves
with such large numbers unless you a) use a small time INTERVAL,
b) use a small character size or c) choose your own sparse ticks in
the call to PGTBOX.

PGTBOX will attempt, when choosing its own ticks, not to overwrite

the labels, but this algorithm is not very bright and may fail.

Note that small intervals but large absolute times such as
TMIN = 200000.0 s and TMAX=200000.1 s will cause the algorithm
to fail. This is inherent in PGPLOT's use of single precision
and cannot be avoided. In such cases, you should use relative
times if possible.

PGTBOX's labelling philosophy is that the left-most or bottom tick of

the axis contains a full label. Thereafter, only changing fields are
labelled. Negative fields are given a '-' label, positive fields
have none. Axes that have the DD (or HH if the day field is not
used) field on each major tick carry the sign on each field. If the
axis crosses zero, the zero tick will carry a full label and sign.

This labelling style can cause a little confusion with some special
cases, but as long as you know its philosophy, the truth can be divined.
Consider an axis with TMIN=20s, TMAX=-20s. The labels will look like

 +----------+----------+----------+----------+
 0h0m20s 10s -0h0m0s 10s 20s

Knowing that the left field always has a full label and that
positive fields are unsigned, informs that time is decreasing
from left to right, not vice versa. This can become very
unclear if you have used the 'F' option, but that is your problem !

Exceptions to this labelling philosophy are when the finest time
increment being displayed is hours (with option 'Y') or days.
Then all fields carry a label. For example,

 +----------+----------+----------+----------+
 -10h -8h -6h -4h -2h

PGTBOX can be used in place of PGBOX; it calls PGBOX and only invokes

time labelling if requested. Other options are passed intact to PGBOX.

Inputs:
 XOPT : X-options for PGTBOX. Same as for PGBOX plus

 'Z' for (DD) HH MM SS.S time labelling
 'Y' means don't include the day field so that labels
 are HH MM SS.S rather than DD HH MM SS.S The hours
 will accumulate beyond 24 if necessary in this case.
 'X' label the HH field as modulo 24. Thus, a label
 such as 25h 10m would come out as 1h 10m
 'H' means superscript numbers with d, h, m, & s symbols
 'D' means superscript numbers with o, ', & '' symbols
 'F' causes the first label (left- or bottom-most) to
 be omitted. Useful for sub-panels that abut each other.
 Care is needed because first label carries sign as well.
 'O' means omit leading zeros in numbers < 10
 E.g. 3h 3m 1.2s rather than 03h 03m 01.2s Useful
 to help save space on X-axes. The day field does not
 use this facility.

 YOPT : Y-options for PGTBOX. See above.

 XTICK : X-axis major tick increment. 0.0 for default.
 YTICK : Y-axis major tick increment. 0.0 for default.
 If the 'Z' option is used then XTICK and/or YTICK must
 be in seconds.
 NXSUB : Number of intervals for minor ticks on X-axis. 0 for default
 NYSUB : Number of intervals for minor ticks on Y-axis. 0 for default

 The regular XOPT and YOPT axis options for PGBOX are

 A : draw Axis (X axis is horizontal line Y=0, Y axis is vertical
 line X=0).
 B : draw bottom (X) or left (Y) edge of frame.
 C : draw top (X) or right (Y) edge of frame.

 G : draw Grid of vertical (X) or horizontal (Y) lines.
 I : Invert the tick marks; ie draw them outside the viewport
 instead of inside.
 L : label axis Logarithmically (see below).
 N : write Numeric labels in the conventional location below the
 viewport (X) or to the left of the viewport (Y).
 P : extend ("Project") major tick marks outside the box (ignored if
 option I is specified).
 M : write numeric labels in the unconventional location above the
 viewport (X) or to the right of the viewport (Y).
 T : draw major Tick marks at the major coordinate interval.
 S : draw minor tick marks (Subticks).
 V : orient numeric labels Vertically. This is only applicable to Y.
 The default is to write Y-labels parallel to the axis.
 1 : force decimal labelling, instead of automatic choice (see PGNUMB).

 2 : force exponential labelling, instead of automatic.

 The default is to write Y-labels parallel to the axis

 ****************** EXCEPTIONS *******************

 Note that
 1) PGBOX option 'L' (log labels) is ignored with option 'Z'

 2) The 'O' option will be ignored for the 'V' option as it
 makes it impossible to align the labels nicely
 3) Option 'Y' is forced with option 'D'

PGTEXT -- write text (horizontal, left-justified)

void cpgtext(float x, float y, const char *text);

 SUBROUTINE PGTEXT (X, Y, TEXT)
 REAL X, Y
 CHARACTER*(*) TEXT

Write text. The bottom left corner of the first character is placed
at the specified position, and the text is written horizontally.
This is a simplified interface to the primitive routine PGPTXT.

For non-horizontal text, use PGPTXT.

Arguments:
 X (input) : world x-coordinate of start of string.
 Y (input) : world y-coordinate of start of string.
 TEXT (input) : the character string to be plotted.

PGTICK -- draw a single tick mark on an axis

void cpgtick(float x1, float y1, float x2, float y2, float v, \
 float tikl, float tikr, float disp, float orient, const char *str);

 SUBROUTINE PGTICK (X1, Y1, X2, Y2, V, TIKL, TIKR, DISP,
 : ORIENT, STR)
 REAL X1, Y1, X2, Y2, V, TIKL, TIKR, DISP, ORIENT
 CHARACTER*(*) STR

Draw and label single tick mark on a graph axis. The tick mark is
a short line perpendicular to the direction of the axis (which is not
drawn by this routine). The optional text label is drawn with its
baseline parallel to the axis and reading in the same direction as
the axis (from point 1 to point 2). Current line and text attributes
are used.

Arguments:
 X1, Y1 (input) : world coordinates of one endpoint of the axis.
 X2, Y2 (input) : world coordinates of the other endpoint of the axis.
 V (input) : draw the tick mark at fraction V (0<=V<=1) along
 the line from (X1,Y1) to (X2,Y2).
 TIKL (input) : length of tick mark drawn to left of axis
 (as seen looking from first endpoint to second), in
 units of the character height.
 TIKR (input) : length of major tick marks drawn to right of axis,
 in units of the character height.
 DISP (input) : displacement of label text to
 right of axis, in units of the character height.
 ORIENT (input) : orientation of label text, in degrees; angle between
 baseline of text and direction of axis (0-360.
 STR (input) : text of label (may be blank).

PGUPDT -- update display

void cpgupdt(void);

 SUBROUTINE PGUPDT

Update the graphics display: flush any pending commands to the
output device. This routine empties the buffer created by PGBBUF,

but it does not alter the PGBBUF/PGEBUF counter. The routine should

be called when it is essential that the display be completely up to
date (before interaction with the user, for example) but it is not

known if output is being buffered.

Arguments: none

PGVECT -- vector map of a 2D data array, with blanking

void cpgvect(const float *a, const float *b, int idim, int jdim, \
 int i1, int i2, int j1, int j2, float c, int nc, \
 const float *tr, float blank);

 SUBROUTINE PGVECT (A, B, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR,
 1 BLANK)
 INTEGER IDIM, JDIM, I1, I2, J1, J2, NC
 REAL A(IDIM,JDIM), B(IDIM, JDIM), TR(6), BLANK, C

Draw a vector map of two arrays. This routine is similar to
PGCONB in that array elements that have the "magic value" defined by

the argument BLANK are ignored, making gaps in the vector map. The
routine may be useful for data measured on most but not all of the
points of a grid. Vectors are displayed as arrows; the style of the
arrowhead can be set with routine PGSAH, and the the size of the

arrowhead is determined by the current character size, set by PGSCH.

Arguments:
 A (input) : horizontal component data array.
 B (input) : vertical component data array.
 IDIM (input) : first dimension of A and B.
 JDIM (input) : second dimension of A and B.
 I1,I2 (input) : range of first index to be mapped (inclusive).
 J1,J2 (input) : range of second index to be mapped (inclusive).
 C (input) : scale factor for vector lengths, if 0.0, C will be
 set so that the longest vector is equal to the
 smaller of TR(2)+TR(3) and TR(5)+TR(6).
 NC (input) : vector positioning code.
 <0 vector head positioned on coordinates
 >0 vector base positioned on coordinates
 =0 vector centered on the coordinates
 TR (input) : array defining a transformation between the I,J
 grid of the array and the world coordinates. The
 world coordinates of the array point A(I,J) are
 given by:
 X = TR(1) + TR(2)*I + TR(3)*J
 Y = TR(4) + TR(5)*I + TR(6)*J
 Usually TR(3) and TR(5) are zero - unless the
 coordinate transformation involves a rotation
 or shear.
 BLANK (input) : elements of arrays A or B that are exactly equal to
 this value are ignored (blanked).

PGVSIZ -- set viewport (inches)

void cpgvsiz(float xleft, float xright, float ybot, float ytop);

 SUBROUTINE PGVSIZ (XLEFT, XRIGHT, YBOT, YTOP)
 REAL XLEFT, XRIGHT, YBOT, YTOP

Change the size and position of the viewport, specifying
the viewport in physical device coordinates (inches). The
viewport is the rectangle on the view surface "through"
which one views the graph. All the PG routines which plot lines
etc. plot them within the viewport, and lines are truncated at
the edge of the viewport (except for axes, labels etc drawn with
PGBOX or PGLAB). The region of world space (the coordinate

space of the graph) which is visible through the viewport is
specified by a call to PGSWIN. It is legal to request a

viewport larger than the view surface; only the part which
appears on the view surface will be plotted.

Arguments:
 XLEFT (input) : x-coordinate of left hand edge of viewport, in
 inches from left edge of view surface.
 XRIGHT (input) : x-coordinate of right hand edge of viewport, in
 inches from left edge of view surface.
 YBOT (input) : y-coordinate of bottom edge of viewport, in
 inches from bottom of view surface.
 YTOP (input) : y-coordinate of top edge of viewport, in inches
 from bottom of view surface.

PGVSTD -- set standard (default) viewport

void cpgvstd(void);

 SUBROUTINE PGVSTD

Define the viewport to be the standard viewport. The standard
viewport is the full area of the view surface (or panel),
less a margin of 4 character heights all round for labelling.
It thus depends on the current character size, set by PGSCH.

Arguments: none.

PGWEDG -- annotate an image plot with a wedge

void cpgwedg(const char *side, float disp, float width, \
 float fg, float bg, const char *label);

 SUBROUTINE PGWEDG(SIDE, DISP, WIDTH, FG, BG, LABEL)
 CHARACTER *(*) SIDE,LABEL
 REAL DISP, WIDTH, FG, BG

Plot an annotated grey-scale or color wedge parallel to a given axis
of the the current viewport. This routine is designed to provide a
brightness/color scale for an image drawn with PGIMAG or PGGRAY.

The wedge will be drawn with the transfer function set by PGSITF

and using the color index range set by PGSCIR.

Arguments:
 SIDE (input) : The first character must be one of the characters
 'B', 'L', 'T', or 'R' signifying the Bottom, Left,
 Top, or Right edge of the viewport.
 The second character should be 'I' to use PGIMAG

 to draw the wedge, or 'G' to use PGGRAY.

 DISP (input) : the displacement of the wedge from the specified
 edge of the viewport, measured outwards from the
 viewport in units of the character height. Use a
 negative value to write inside the viewport, a
 positive value to write outside.
 WIDTH (input) : The total width of the wedge including annotation,
 in units of the character height.
 FG (input) : The value which is to appear with shade
 1 ("foreground"). Use the values of FG and BG
 that were supplied to PGGRAY or PGIMAG.

 BG (input) : the value which is to appear with shade
 0 ("background").
 LABEL (input) : Optional units label. If no label is required
 use ' '.

PGWNAD -- set window and adjust viewport to same aspect ratio

void cpgwnad(float x1, float x2, float y1, float y2);

 SUBROUTINE PGWNAD (X1, X2, Y1, Y2)
 REAL X1, X2, Y1, Y2

Change the window in world coordinate space that is to be mapped on
to the viewport, and simultaneously adjust the viewport so that the
world-coordinate scales are equal in x and y. The new viewport is
the largest one that can fit within the previously set viewport
while retaining the required aspect ratio.

Arguments:
 X1 (input) : the x-coordinate of the bottom left corner
 of the viewport.
 X2 (input) : the x-coordinate of the top right corner
 of the viewport (note X2 may be less than X1).
 Y1 (input) : the y-coordinate of the bottom left corner
 of the viewport.
 Y2 (input) : the y-coordinate of the top right corner of the
 viewport (note Y2 may be less than Y1).

PGADVANCE -- non-standard alias for PGPAGE

 SUBROUTINE PGADVANCE

See description of PGPAGE.

PGBEGIN -- non-standard alias for PGBEG

 INTEGER FUNCTION PGBEGIN (UNIT, FILE, NXSUB, NYSUB)
 INTEGER UNIT
 CHARACTER*(*) FILE
 INTEGER NXSUB, NYSUB

See description of PGBEG.

PGCURSE -- non-standard alias for PGCURS

 INTEGER FUNCTION PGCURSE (X, Y, CH)
 REAL X, Y
 CHARACTER*1 CH

See description of PGCURS.

PGLABEL -- non-standard alias for PGLAB

 SUBROUTINE PGLABEL (XLBL, YLBL, TOPLBL)
 CHARACTER*(*) XLBL, YLBL, TOPLBL

See description of PGLAB.

PGMTEXT -- non-standard alias for PGMTXT

 SUBROUTINE PGMTEXT (SIDE, DISP, COORD, FJUST, TEXT)
 CHARACTER*(*) SIDE, TEXT
 REAL DISP, COORD, FJUST

See description of PGMTXT.

PGNCURSE -- non-standard alias for PGNCUR

 SUBROUTINE PGNCURSE (MAXPT, NPT, X, Y, SYMBOL)
 INTEGER MAXPT, NPT
 REAL X(*), Y(*)
 INTEGER SYMBOL

See description of PGNCUR.

PGPAPER -- non-standard alias for PGPAP

 SUBROUTINE PGPAPER (WIDTH, ASPECT)
 REAL WIDTH, ASPECT

See description of PGPAP.

PGPOINT -- non-standard alias for PGPT

 SUBROUTINE PGPOINT (N, XPTS, YPTS, SYMBOL)
 INTEGER N
 REAL XPTS(*), YPTS(*)
 INTEGER SYMBOL

See description of PGPT.

PGPTEXT -- non-standard alias for PGPTXT

 SUBROUTINE PGPTEXT (X, Y, ANGLE, FJUST, TEXT)
 REAL X, Y, ANGLE, FJUST
 CHARACTER*(*) TEXT

See description of PGPTXT.

PGVPORT -- non-standard alias for PGSVP

 SUBROUTINE PGVPORT (XLEFT, XRIGHT, YBOT, YTOP)
 REAL XLEFT, XRIGHT, YBOT, YTOP

See description of PGSVP.

PGVSIZE -- non-standard alias for PGVSIZ

 SUBROUTINE PGVSIZE (XLEFT, XRIGHT, YBOT, YTOP)
 REAL XLEFT, XRIGHT, YBOT, YTOP

See description of PGVSIZ.

PGVSTAND -- non-standard alias for PGVSTD

 SUBROUTINE PGVSTAND

See description of PGVSTD.

PGWINDOW -- non-standard alias for PGSWIN

 SUBROUTINE PGWINDOW (X1, X2, Y1, Y2)
 REAL X1, X2, Y1, Y2

See description of PGSWIN.

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

mailto:tjp%E6%88%A2stro.caltech.edu

Copyright © 1995-2002 California Institute of Technology

Appendix B. PGPLOT Symbols

B.1 Character Encoding

The PGPLOT routines that display text, e.g., PGTEXT, PGMTXT, and PGMTXT, generate a
visible representation of the characters supplied in a Fortran character variable or constant. On
most computer systems, a Fortran character can take any of 256 values, numbered 0-255 (decimal).
PGPLOT interprets the values as follows:

0-31
These are used for the standard graph markers. On most computer systems, they are non-
printable control characters.

32-127
PGPLOT interprets these according to the US-ASCII character set, a subset of the ISO-
Latin character sets, with one exception: character number 94, which should be a
circumflex (^), is displayed as a degree symbol (°). The degree symbol is also available as
character 176, which should be used in preference; eventually the display of character 94
will be corrected.

128-159
These are unassigned; in the ISO-Latin character sets, they are reserved for non-printable
control characters.

160-255
As far as possible, PGPLOT interprets these according to the ISO-Latin-1 character set.
In some cases, required accents are omitted. I hope to rectify the omissions in a later
version of PGPLOT. Note that if your computer system does not use the ISO-Latin-1
character set, the output of a PGPLOT program will not correspond to the characters in
the source code.

The complete character encoding is displayed in Figure B.0. This is for the standard PGPLOT

roman font (font number 2); some of the symbols will differ from font to font.

B.2 Additional Symbols

An escape code allows a large number of additional symbols to be displayed by PGPLOT. Each
symbol is composed of a set of vectors, based on digitized type fonts devised by A. V. Hershey of
the US Naval Postgraduate School, and is assigned a number in the range 0-4000.

Figures B.1 to B.7 show the graphical representation of all the available symbols arranged
according to Hershey's numerical sequence; the blank spaces in this table represent ``space''
characters of various widths. Note that not every number has an associated character. Any
character can be inserted in a text string using an escape sequence of the form \(nnnn), where nnnn
is the 4-digit Hershey number.

● Figure B.1: Symbols 1-527

● Figure B.2: Symnols 528-713

● Figure B.3: Symbols 714-2017

● Figure B.4: Symbols 2018-2192

● Figure B.5: Symbols 2193-2400

● Figure B.6: Symbols 2401-2747

● Figure B.7: Symbols 2748-2932

Next: Appendix C

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1996 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.0: PGPLOT Character Encoding (in font number 2)

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1996 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/figenc.ps
mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.1: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb1.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb1.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.2: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb2.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb2.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.3: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb3.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb3.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.4: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb4.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb4.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.5: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb5.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb5.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.6: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb6.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb6.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Figure B.7: PGPLOT Symbols

http://www.astro.caltech.edu/~tjp/pgplot/figb7.ps
http://www.astro.caltech.edu/~tjp/pgplot/figb7.ps

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Calling PGPLOT from a C or C++ Program

Introduction

PGPLOT is a Fortran subroutine library, and calling Fortran subroutines directly from C or C++ is
a messy, difficult, and unportable exercise. This is due to the lack of a universal set of
interlanguage calling conventions, and to the lack of a standard on how FORTRAN LOGICAL and
CHARACTER types are represented in terms of basic machine types. Furthermore, since C
implements call-by-value argument passing semantics, whereas FORTRAN uses pass-by-
reference, there is the added complication that literal values must be sent indirectly by way of
references to dummy variables.

The CPGPLOT library adds an intermediate level of wrapper functions between C programs and
the PGPLOT library. These functions hide the system dependencies of calling PGPLOT behind a
system-independent interface.

It is essential when using the CPGPLOT interface library to include the library header file
cpgplot.h at the top of all C files containing calls to the library. Without this file, the functions

will not be correctly prototyped and your code will not work.

The CPGPLOT library can be used only with an ANSI-compatible C compiler that understands C
function prototypes.

Using the CPGPLOT library

The names of the C interface library functions are the same as their PGPLOT counterparts, but
are prefixed with a c and written in lower case, e.g., PGTEXT becomes cpgtext.

The header file cpgplot.h declares the types of the arguments of each CPGPLOT routine. The

types can usually be deduced from the FORTRAN subroutine descriptions in Appendix A, as

described below, but cpgplot.h should be consulted in case of doubt.

REAL and INTEGER arguments

Where the PGPLOT routine expects a REAL or INTEGER argument, supply the C routine with a
float or int argument as appropriate. If the Fortran routine uses the argument for input only, it
should be passed by value; but if it is used to return a value, supply a pointer to a variable of the
appropriate type. If the FORTRAN argument is an array, the C argument should be a pointer to an
array. For two-dimensional arrays, supply a pointer to a one-dimensional C array in which the
elements are packed with the first index changing fastest (see example below).

LOGICAL arguments

Where the PGPLOT routine expects a LOGICAL argument, the C routine requires an int argument.
Zero is interpreted as FORTRAN .FALSE. and non-zero as FORTRAN .TRUE., e.g.,

 FORTRAN call C equivalent call(s)

 PGASK(.FALSE.) cpgask(0)
 PGASK(.TRUE.) cpgask(1) or cpgask(2) etc.

CHARACTER arguments

When the FORTRAN routine expects a CHARACTER argument for input, the C routine takes a
normal C pointer to a nul-terminated string (char array, with end-of string marked by '\0').

Arguments that are used to return FORTRAN character strings must be treated with care.
FORTRAN doesn't understand '\0' termination of strings and instead requires that the dimension
of the character array be specified along with the array. The interface handles this transparently
for input-only strings by using strlen() to determine the length of the string, but for return string
arguments it needs to be told the length available in the passed char array. Fortunately all
PGPLOT routines that return such strings also have an argument to return the unpadded length of
the return string. In CPGPLOT, you must initialize this argument with the dimension of the string
array that has been sent. In the prototypes listed in cpgplot.h the length arguments are

distinguishable by virtue of their having the name of the string to which they relate, postfixed with
_length. For example, the PGPLOT routine PGQINF() is prototyped as

 void cpgqinf(char *item, char *value, int *value_length);

where the value_length argument is the length argument for the string argument value.

For example, to write a C function to return 1 if a PGPLOT device is open, or 0 otherwise, one
could write.

 #include "cpgplot.h"
 int pgplot_is_open(void)
 {
 char answer[10]; /* The PGQINF return string */
 int answer_len = sizeof(answer); /* allocated size of answer[] */
 cpgqinf("STATE", answer, &answer_len);
 return strcmp(answer, "YES") == 0;
 }

Note that the dimension, sent as the third argument, is the total number of characters allocated to
the answer[] array. The interface function actually subtracts one from this when it tells PGPLOT
how long the string is. This leaves room for the interface function to terminate the returned string
with a '\0'. All returned strings are terminated in this manner at the length returned by PGPLOT in
the length argument.

Limitations

PGPLOT procedures that take FORTRAN SUBROUTINEs or FUNCTIONs as arguments (e.g.,
PGFUNX, PGCONX) are not represented in the CPGPLOT library. Such procedures cannot be
handled on most systems.

Other Machine Dependencies

Many system vendors say that if you call FORTRAN functions that do any I/O, you should have a
FORTRAN main program, so that the FORTRAN I/O module gets correctly initialized. Since
PGPLOT uses FORTRAN I/O, this applies to C or C++ programs that call PGPLOT. However,
this can be difficult to arrange, and in many systems it is not necessary. Consult the
documentation for your operating system to determine how to write a C or C++ program that calls
subroutines written in Fortran.

When you mix languages, it is usually necessary to include system support libraries for each
language. Again, you will need to consult the documentation for your operating system and
compilers to determine what libaries are needed and where they are located.

On UNIX systems, the compiler usually invokes the linker/loader itself, specifying the necessary
libraries. However, with this method the linker/lodaer will not automatically find the libraries
required by the other compilers involved.

Since FORTRAN usually has to be linked with a lot of support libraries, it is usually most
convenient to use the FORTRAN compiler to link your C program. If your compiler is not the
system-supplied compiler, then it is unlikely that the FORTRAN compiler will cite the correct C
run-time library to the linker. This means that you will have to do it yourself (e.g., the gcc
compiler requires programs to be linked with libgcc.a, e.g.,

 gcc -c blob.c
 f77 -o blob blob.o -lcpgplot -lpgplot -lX11 -lgcc -lm

Example: Solaris

A C program calling PGPLOT; in this case it is easiest to use f77 to do the link:

cc -c -I/usr/local/pgplot ctest.c
f77 -o ctest ctest.o -L/usr/local/pgplot -lcpgplot -lpgplot

(Replace /usr/local/pgplot with your PGPLOT directory.)

A C++ program calling PGPLOT; in this case we need both Fortran and C++ libraries, and it is
easiest to use CC to do the link and to provide the Fortran libraries explicitly:

CC -c c++test.C
CC c++test.o -L/usr/local/pgplot -lcpgplot -lpgplot \
 /usr/local/lang/SUNWspro/SC3.0.1/lib/libM77.a -lX11 -lF77

Note that the names and locations of the Fortran libraries will depend on the version of the
compiler in use.

Example: Digital UNIX

A C program calling PGPLOT:

cc -c -I/usr/local/pgplot ctest.c
f77 -o ctest ctest.o -L/usr/local/pgplot -lcpgplot -lpgplot -lX11
 -lm -nofor_main

Note the use of f77 to do the link step, and the use of the -nofor_main switch.

Examples

The following example shows some simple CPGPLOT calls:

#include "cpgplot.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main()
{
 int i;
 static float xs[] = {1.0, 2.0, 3.0, 4.0, 5.0 };
 static float ys[] = {1.0, 4.0, 9.0, 16.0, 25.0 };
 float xr[60], yr[60];
 int n = sizeof(xr) / sizeof(xr[0]);
 /*
 * Call PGBEG to initiate PGPLOT and open the output device; PGBEG
 * will prompt the user to supply the device name and type.
 */
 if(cpgbeg(0, "?", 1, 1) != 1)
 return EXIT_FAILURE;
 /*
 * Call PGENV to specify the range of the axes and to draw a box, and
 * PGLAB to label it. The x-axis runs from 0 to 10, and y from 0 to 20.
 */
 cpgenv(0.0, 10.0, 0.0, 20.0, 0, 1);
 cpglab("(x)", "(y)", "PGPLOT Example 1: y = x\\u2\\d");
 /*
 * Mark five points (coordinates in arrays XS and YS), using symbol
 * number 9.
 */
 cpgpt(5, xs, ys, 9);
 /*
 * Compute the function at 'n=60' points, and use PGLINE to draw it.
 */
 for(i=0; i<n; i++) {
 xr[i] = 0.1*i;
 yr[i] = xr[i]*xr[i];
 }
 cpgline(n, xr, yr);
 /*
 * Finally, call PGEND to terminate things properly.

 */
 cpgend();
 return EXIT_SUCCESS;
}

A second example shows how a two-dimensional FORTRAN array should be handled:

#include "cpgplot.h"

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main()
{
 static int nx = 40, ny = 40;
 int i, j, k, lw, ci, ls;
 float f[1600], fmin, fmax, alev;
 double x, y;
 static float tr[6] = {0.0, 1.0, 0.0, 0.0, 0.0, 1.0};

 printf("Demonstration of PGPLOT contouring routines\n");

 /* Compute a suitable function. A C array is used to emulate
 a 2D fortran array f(nx,ny). */

 fmin = fmax = 0.0;
 for (j=1; j<=ny; j++) {
 for (i=1; i<=ny; i++) {
 k = (j-1)*nx + (i-1); /* Fortran convention */
 x = tr[0] + tr[1]*i + tr[2]*j;
 y = tr[3] + tr[4]*i + tr[5]*j;
 f[k] = cos(0.3*sqrt(x*2)-0.13333*y)*cos(0.13333*x)+
 (x-y)/(double)nx;
 if (f[k] < fmin) fmin = f[k];
 if (f[k] > fmax) fmax = f[k];
 }
 }

 /* Call PGBEG to initiate PGPLOT and open the output device; PGBEG
 * will prompt the user to supply the device name and type. */

 if(cpgbeg(0, "?", 1, 1) != 1)
 return EXIT_FAILURE;

 /* Clear the screen. Set up window and viewport. */

 cpgpage();
 cpgsvp(0.05, 0.95, 0.05, 0.95);
 cpgswin(1.0, (float) nx, 1.0, (float) ny);
 cpgbox("bcts", 0.0, 0, "bcts", 0.0, 0);
 cpgmtxt("t", 1.0, 0.0, 0.0, "Contouring using PGCONT");

 /* Draw the map. PGCONT is called once for each contour, using
 different line attributes to distinguish contour levels. */

 cpgbbuf();
 for (i=1; i<21; i++) {
 alev = fmin + i*(fmax-fmin)/20.0;
 lw = (i%5 == 0) ? 3 : 1;
 ci = (i < 10) ? 2 : 3;
 ls = (i < 10) ? 2 : 1;
 cpgslw(lw);
 cpgsci(ci);
 cpgsls(ls);
 cpgcont(f, nx, ny, 1, nx, 1, ny, &alev, -1, tr);
 }
 cpgslw(1);
 cpgsls(1);
 cpgsci(1);
 cpgebuf();
 /*
 * Finally, call PGEND to terminate things properly.
 */
 cpgend();
 return EXIT_SUCCESS;
}

Next: Appendix D

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995-1998 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Appendix D. Supported Devices

D.1 Introduction

The following list shows the devices for which PGPLOT device handlers are available, together
with the names by which they are known to PGPLOT. The names of the device types can be
abbreviated so long as there is no ambiguity; in most cases, this means the first two letters are
sufficient. Each installation of PGPLOT is configured with the devices appropriate for that
installation, so not every device is available in every installation of PGPLOT. Not all devices are
available under all operating systems.

D.2 Available Devices

Common Graphics File Formats

● GIF file: /GIF, /VGIF

● Hewlett-Packard HP-GL plotters: /HPGL, /VHPGL

● Portable Pixel Map file: /PPM, /VPPM

● PostScript page description language: /PS, /VPS, /CPS, /VCPS

● X Window dump file: /WD, /VWD.

Workstations

● Workstations running X Window System: /XWINDOW, /XSERVE

● PGDISP or FIGDISP server for X workstations: /XDISP (not recommended)

● VAX workstations running VWS software: /WS (not recommended)

● Workstations running NeXTstep operating system: /NEXT

Personal Computers

The following device types are only available when PGPLOT is installed on a computer of the
appropriate type with the required graphics hardware and software.

● Acorn Archimedes computer: /ARC

● IBM PC, MS-DOS, Microsoft Fortran 5.0: /MSOFT

● IBM PC, MS-DOS, Lahey F77 32-bit Fortran v5.0: /LH

Graphics Terminals

● Tektronix terminals and emulators: /TEK4010, /GF, /RETRO, /GTERM, /XTERM, /

ZSTEM, /V603, /KRM3. /TK4100
● Tektronix-format disk file: /TFILE

● GOC Sigma T5670 terminal: /GOC

● DEC Regis terminals (VT125 etc.): /VT125

Printers

If you have a printer that supports PostScript, use the PostScript format in preference to any of

the following.

● Canon laser printers: /CANON, /BCANON, /VCANON, /VBCANON

● Canon LaserShot printer: /LIPS2, /VLIPS2

● DEC LJ250 Color Companion printer: /CCP

● DEC LA50 and other sixel printers: /LA50

● DEC LN03-PLUS Laser printer: /LN03, /VLN03

● Epson dot-matrix printer: /EPSON

● Genicom 4410 dot-matrix printer: /GENICOM, /GVENICOM

● Hewlett-Packard Desk/Laserjet printers: /HJ

● Hewlett-Packard Laserjet printers: /LJ

● Printronix P300 or P600 dot-matrix printer: /PRINTRONIX

● QUIC printers (QMS and Talaris): /QMS, /VQMS

● Talaris EXCL printers: /EXCL

● Toshiba 3-in-one printer: /TOSHIBA

Pen Plotters

● Gould/Bryans Colourwriter 6320 pen plotter: /CW6320

● Hewlett-Packard HP-GL plotters: /HPGL, /VHPGL

● Hewlett-Packard HP-GL/2 plotters: /HPGL2

● Hewlett-Packard HP7221 pen plotter: /HP7221

● Houston Instruments HIDMP pen plotter: /HIDMP

● Zeta 8 Digital Plotter: /ZETA

Null Device

The null device can be used to suppress graphical output from a program.

● Null device (no output): /NULL

Miscellaneous Devices

● PGPLOT metafile: /PGMF

● TeX PK Font Output files: /TX

● LaTeX picture environment: /LATEX

Special Applications

The following ``device'' drivers can be used to create PGPLOT graphics within an application
that uses either the X-window Motif graphical user interface or a Tcl/Tk user interface. They

cannot be used in other applications.

● Motif widget for X-window system: /XMOTIF

● Tcl/Tk widget for X-window system: /XTK

Next: Appendix E

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995-1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Appendix E. Writing a Device Handler

E.1 Introduction

PGPLOT can be configured for a particular installation by adding or removing ``device handlers''.
A device handler is a subroutine which handles all the device-specific aspects of graphical output
for a particular device or class of devices.

To write a new device handler, it is simplest to start by modifying an existing one. This Appendix
explains what the device handler must do, but it does not explain how to do it---which is, of
course, very hardware-dependent.

E.2 The device dispatch routine GREXEC

All graphical output and input is handled by a ``device dispatch routine'' in PGPLOT, called
GREXEC. Routine GREXEC is called whenever PGPLOT needs to determine device-specific
information or perform graphical I/O. This routine in turn calls on the appropriate device handler.
Reconfiguring PGPLOT involves modifying the GREXEC routine to use a different set of device
handlers; no other changes to PGPLOT are needed.

Usually the Fortran code for GREXEC is created automatically from a list of selected device
handlers during the installation of PGPLOT.

Table E.1: Example Device Dispatch Routine

C*GREXEC -- PGPLOT device handler dispatch routine
C+
 SUBROUTINE GREXEC(IDEV,IFUNC,RBUF,NBUF,CHR,LCHR)
 INTEGER IDEV, IFUNC, NBUF, LCHR
 REAL RBUF(*)
 CHARACTER*(*) CHR
C---
 INTEGER NDEV
 PARAMETER (NDEV=6)
 CHARACTER*10 MSG
C---
 GOTO(1,2,3,4,5,6) IDEV
 IF (IDEV.EQ.0) THEN
 RBUF(1) = NDEV
 NBUF = 1
 ELSE
 WRITE (MSG,'(I10)') IDEV
 CALL GRWARN('Unknown device code in GREXEC: '//MSG)
 END IF
 RETURN
C---
1 CALL NUDRIV(IFUNC,RBUF,NBUF,CHR,LCHR)
 RETURN

2 CALL PSDRIV(IFUNC,RBUF,NBUF,CHR,LCHR,1)
 RETURN
3 CALL PSDRIV(IFUNC,RBUF,NBUF,CHR,LCHR,2)
 RETURN
4 CALL TTDRIV(IFUNC,RBUF,NBUF,CHR,LCHR,1)
 RETURN
5 CALL XWDRIV(IFUNC,RBUF,NBUF,CHR,LCHR,1)
 RETURN
6 CALL XWDRIV(IFUNC,RBUF,NBUF,CHR,LCHR,2)
 RETURN
C
 END

Table E.1 gives an example. The first argument (IDEV) is an integer specifying the type of the
currently selected device. Routine GREXEC calls the appropriate device handler for this type,
passing the remaining arguments to the device handler. If IDEV is zero, GREXEC returns the
number of device types available. Some device handlers handle more than one PGPLOT device
type: e.g., in the above example PSDRIV handles both types PS and VPS. The last argument
passed to the device handler is an integer specifying which of the supported types is required.
This argument is omitted for handlers that support only one type (NUDRIV in the above example).

To reconfigure PGPLOT, GREXEC must be modified as follows: (a) set parameter NDEV to the
number of device types; (b) make sure that the computed-goto statement has NDEV branches; (c)
supply a target for each branch to call the appropriate device handler.

E.3 Device handler interface

A device handler is a Fortran (or Fortran-callable) subroutine. The name of the subroutine must be
of the form xxDRIV, where xx is a two-character code for the device type, usually the first two
letters of the type; this code must (of course) be different for each different device handler.

 SUBROUTINE xxDRIV (OPCODE, RBUF, NBUF, CHR, LCHR, MODE)
 INTEGER OPCODE
 REAL RBUF(*)
 INTEGER NBUF
 CHARACTER*(*) CHR
 INTEGER LCHR
 INTEGER MODE

The first argument (OPCODE) is an integer ``operation code'' which specifies what operation the
device handler is to perform; it is an input parameter to the subroutine (see Table E.2). The MODE
argument is another input parameter that distinguishes between multiple device types supported
by the same handler. The other arguments are used for both input and output, and their meaning
depends on the value of the operation code. Not all arguments are used for every operation code.
RBUF is a floating-point array used to pass numerical data to or from the device handler, and
NBUF indicates how many elements of the array are used. CHR is a character variable used to pass
character data to or from the device handler, and LCHR indicates how many characters are used.
NBUF or LCHR should be set to zero if no data of the corresponding type are passed. If the
function requested by the operation code (OPCODE) is not implemented in the device handler, the

subroutine should set NBUF = -1 before returning.

The device handler subroutine can communicate with PGPLOT only through the arguments. It
should not attempt to reference the PGPLOT common blocks (this is because the internal
structure of the PGPLOT common blocks may change). Data stored internally by the handler
between calls should be placed in static storage (use the Fortran SAVE statement).

Table E.2: Device Handler Operation Codes

Opcode Function

1 Return device type

2 Return maximum dimensions of view surface, and range of color index

3 Return device scale

4 Return device capabilities

5 Return default device/file name

6 Return default size of view surface

7 Return miscellaneous defaults

8 Select device

9 Open workstation

10 Close workstation

11 Begin picture

12 Draw line

13 Draw dot

14 End picture

15 Set color index

16 Flush buffer

17 Read cursor

18 Erase alpha screen

19 Set line style

20 Polygon fill

21 Set color representation

22 Set line width

23 Escape function

24 Rectangle fill

25 Set fill pattern

26 Line of pixels

27 Scaling information

28 Draw marker

29 Query color representation

30 Scroll rectangle

E.4 Handler state

PGPLOT will send commands to the device handler in a set sequence. Inquiry commands (opcodes
1--7 and 29) may be sent at any time, whether or not a device has been selected for output. The
open workstation and close workstation commands are used to open and close a device. The begin
picture and end picture commands are used to start and finish a ``frame'' (one page on a hardcopy
device). Graphical output commands (opcodes 12--13, 16--20, and 22--28) are only used between
begin picture and end picture. The set-color-representation command (opcode 21) can be used at
any time that a device is open. Thus the sequence of commands for a plot consisting of two frames
will be:

(query commands)
open workstation
 (query commands, set color rep)
 begin picture
 (graphical output commands)
 end picture
 (query commands, set color rep)
 begin picture
 (graphical output commands)
 end picture
close workstation

Any violation of this sequence is due to a bug in PGPLOT. Device handlers should attempt to trap
all errors, including I/O errors (e.g., insufficient disk space or insufficient memory), and issue a
warning message rather than terminating execution of the program.

E.5 Summary of operations

OPCODE = 1, Return device type

This is an inquiry function; the handler returns the name by which the the user will refer to the
device type, e.g., 'PS' for a PostScript device handler. This name must be different for each mode
of each device handler installed in PGPLOT, and should preferably be unique in the first two or
three characters. A descriptive character string (displayed by routine PGLDEV) should be
included in parentheses after the name, e.g., 'PS (PostScript file, landscape orientation)'.

Parameters returned by handler:

● CHR(:LCHR): the device type supported by the handler in the specified mode.

OPCODE = 2, Return maximum dimensions of view surface, and range of color index

This is an inquiry function; the handler returns the maximum dimensions of the plot surface, and
the range of color indices available. These will usually be the same as the default dimensions, but
if it is possible to make a larger image, the maximum dimensions may be larger. If there is no set
upper limit to a dimension, the corresponding maximum should be set to -1. All dimensions are in
device coordinates. All devices should support color indices 0 and 1; color and gray-scale devices
will allow color indices >1 up to a device-dependent maximum value (which should not exceed
255). Color index 0 is the background color and is used to erase; if it is not possible to erase by
overwriting in the background color, then requests to write in color index 0 should be ignored.

Parameters returned by handler:

● RBUF(1): Minimum physical x value (set to zero).
● RBUF(2): Maximum physical x value (a value of -1 indicates no effective maximum).
● RBUF(3): Minimum physical y value (set to zero).
● RBUF(4): Maximum physical y value (a value of -1 indicates no effective maximum).
● RBUF(5): Minimum allowed color index (usually 0).
● RBUF(6): Maximum allowed color index (in range 1--255).

OPCODE = 3, Return device scale

This is an inquiry function; the handler returns the device scale in device coordinate units per
inch (1 inch = 25.4 mm). Usually, the units of the device coordinates are pixels, so this also gives
the physical resolution in pixels per inch. For hardcopy devices, the values should be as accurate
as possible, to ensure that an image has the correct scale. For video display terminals and other
devices where the scale is variable, nominal values should be returned.

Parameters returned by handler:

● RBUF(1): x scale in device coordinates per inch.
● RBUF(2): y scale in device coordinates per inch.
● RBUF(3): ``pen diameter'' in device coordinates (i.e., the width of a hardware line); this

value is used by PGPLOT when emulating thick lines and polygon fill (usually 1).

OPCODE = 4, Return device capabilities

This is an inquiry function which is used to inform PGPLOT of the device's capabilities. If the
device lacks a capability in hardware, PGPLOT will try to emulate it.

Parameters returned by handler:

● LCHR : number of characters defined in CHR. Should be at least 10. Additional characters
are assumed to be `N' if they are not supplied by the driver.

● CHR(1:1) = `H' if the device is a hardcopy device, `I' if it is an interactive device. On an
interactive device, the image is visible as it is being drawn, while on a hardcopy device it
cannot be viewed until the workstation is closed.

● CHR(2:2) = `C' if a cursor is available, `X' if a cursor is available and opcode 27 is accepted
by the handler, `N' if there is no cursor. PGPLOT cannot emulate a cursor if none is
available.

● CHR(3:3) = `D' if the hardware can draw dashed lines, `N' if it cannot. PGPLOT emulates
dashed lines by drawing line segments. Software emulation is usually superior to hardware
dashed lines, and not much slower, so CHR(3:3) = `N' is recommended.

● CHR(4:4) = `A' if the hardware can fill arbitrary polygons with solid color, `N' if it cannot.
PGPLOT emulates polygon fill by drawing horizontal or vertical lines spaced by the pen
diameter (see OPCODE = 3).

● CHR(5:5) = `T' if the hardware can draw lines of variable width, `N' if it cannot. PGPLOT
emulates thick lines by drawing multiple strokes. Note that thick lines are supposed to
have rounded ends, as if they had been drawn by a circular nib of the specified diameter.

● CHR(6:6) = `R' if the hardware can fill rectangles with solid color, `N' if it cannot. If this
feature is not available, PGPLOT will treat the rectangle as an arbitrary polygon. In this
context, a `rectangle' is assumed to have its edges parallel to the device-coordinate axes.

● CHR(7:7) = `P' if the handler understands the pixel primitives, 'Q' if it understands the
image primitives (opcode 26), or `N' otherwise (see the description of opcode 26).

● CHR(8:8) = `V' if PGPLOT should issue an extra prompt to the user before closing the
device (in PGCLOS), `N' otherwise. Use `V' for devices where the PGPLOT window is
deleted from the screen when the device is closed.

● CHR(9:9) = `Y' if the handler accepts color representation queries (opcode 29), `N' if it does
not.

● CHR(10:10) = `M' if the device handler accepts opcode 28 to draw graph markers; `N'
otherwise.

● CHR(11:11) = `S' if the device handler accepts opcode 30 to scroll the underlying pixel
map; `N' otherwise.

OPCODE = 5, Return default device/file name

This is an inquiry routine. The device handler returns the device or file name to be used if the
PGPLOT device specification does not include one. (On VMS, the default file name may also be
used to fill in missing fields of the supplied file name, e.g., disk, directory, and file type.)

Parameters returned by handler:

● CHR(:LCHR): default device/file name.

OPCODE = 6, Return default size of view surface

This is an inquiry function; the handler returns the default dimensions of the plot surface in device
coordinates. At present, PGPLOT assumes that the device coordinates of the bottom left corner
are (0,0). Note: on some devices the default size can change during PGPLOT execution; e.g., on
windowing workstations the window manager may allow the user to change the size of the
PGPLOT window. PGPLOT uses this opcode to determine the current the default size before
starting each new page.

Parameters returned by handler:

● RBUF(1): default x-coordinate of bottom left corner (must be zero).
● RBUF(2): default x-coordinate of top right corner.
● RBUF(3): default y-coordinate of bottom left corner (must be zero).
● RBUF(4): default y-coordinate of top right corner.

OPCODE = 7, Return miscellaneous defaults

This is an inquiry routine. The handler returns a scale-factor to be used for the ``obsolete
character set'' used by old GRPCKG routines but not by PGPLOT.

Parameters returned by handler:

● RBUF(1): character scale factor (integer, > 0).

OPCODE = 8, Select device

A PGPLOT device handler may handle more than one open device at once. All graphical I/O
operations apply to the ``active'' device. This opcode is used to select a new active device; note
that opcode 9 (open workstation) also changes the active device.

Parameters passed to handler:

● RBUF(1): plot ID. This is not needed by the handler, and can be ignored.
● RBUF(2): identification number of selected device (as returned by open workstation).

OPCODE = 9, Open workstation

Allocate an I/O channel to the requested device and open the device. Any hardware resets that
need to be done once for a plot session (which could consist of several frames) should be done
here. Allocate buffer, if its size is fixed for the device. No visible I/O should be performed on an
interactive device: e.g., the screen should not be cleared; this should be deferred until the begin
picture call.

Parameters passed to handler:

● RBUF(3): if this is not 0.0, the device specification included the /APPEND flag. If this flag
is specified, the device handler should suppress any initial screen erase so that the new
image is superimposed on any previously displayed image. The device handler may ignore
this if it is inappropriate (e.g., for a hardcopy device).

● CHR(:LCHR): the file/device to be opened. This may be a physical device name or the
name of a disk file.

Parameters returned by handler:

● RBUF(1): identification number for the opened device; PGPLOT will use this number in
subsequent select device calls for this device (see OPCODE = 8).

● RBUF(2): error flag; 1.0 indicates that the workstation was opened successfully; any other
number indicates an error.

OPCODE = 10, Close workstation

Close the device opened by the open workstation command, and deallocate any resources
allocated for the device (e.g., memory, I/O channels).

OPCODE = 11, Begin picture

Prepare the workstation for plotting. This command has two arguments which specify a size for
the view surface overriding the default size; if the device handler is unable to change the size of
the view surface, it may ignore these arguments. On interactive devices, erase the screen. Note:
this command has no way to return an error to the user; if an error occurs (e.g., insufficient memory
for a frame buffer), the handler should issue an error message (with routine GRWARN) and ignore
subsequent output commands, rather than terminating execution of the program.

Parameters passed to handler:

● RBUF(1): maximum x coordinate.
● RBUF(2): maximum y coordinate.

OPCODE = 12, Draw line

Draw a straight line from device coordinates (x1,y1) to (x2,y2) using the current line attributes
(color index, line style, and line width). The coordinates are floating point, and may need to be
rounded to the nearest integer before they are passed to the hardware; they are in the range (0,0) to
the maxima specified with begin picture.

Parameters passed to handler:

● RBUF(1): x1.
● RBUF(2): y1.
● RBUF(3): x2.
● RBUF(4): y2.

OPCODE = 13, Draw dot

Draw a dot at device coordinates (x,y) using the current line attributes (color index and line width).
The result should be an approximation to a filled circle of diameter equal to the line width, or a
dot of minimum size if line width is 0. The coordinates are floating point, and may need to be
rounded to the nearest integer before they are passed to the hardware.

Parameters passed to handler:

● RBUF(1): x.
● RBUF(2): y.

OPCODE = 14, End picture

Terminate the current frame. On hardcopy devices always advance the paper. On interactive
devices, clear the screen only if requested. Deallocate buffers that were created by begin picture
(OPCODE = 11).

Parameters passed to handler:

● RBUF(1): if not 0.0, clear screen.

OPCODE = 15, Set color index

Set the color index for subsequent plotting. The default color index is 1.

Parameters passed to handler:

● RBUF(1): color index; in range defined by OPCODE = 2.

OPCODE = 16, Flush buffer

If the handler is buffering output to an interactive device, it should flush its buffers to ensure that
the displayed image is up to date. Hardcopy devices can ignore this opcode.

OPCODE = 17, Read cursor

This function is not used if OPCODE = 4 indicates that the device has no cursor.

The handler should make the cursor visible at position (x,y), allow the user to move the cursor, and
wait for a key stroke. It should then return the new cursor (x,y) position and the character (key
stroke) typed. (If it is not possible to make the cursor visible at a particular position, the handler
may ignore the requested (x,y) coordinates.) On a device with a mouse or similar device, clicking
mouse-button 1 should return character `A', mouse-button 2 should return `D', and mouse-button 3
should return `X'.

If the hardware permits, the handler should interpret the ``mode'' as specified in the description of
routine PGBAND. The exact appearance of the dynamic ``rubber band'' lines may be hardware
specific; if possible, they should be drawn with the current color index, but they must not erase
previously drawn graphics. Handlers that cannot draw the ``rubber band'' lines should treat all
modes as mode = 0.

Parameters passed to handler:

● RBUF(1): initial x position of cursor.
● RBUF(2): initial y position of cursor.
● RBUF(3): x position of reference point.
● RBUF(4): y position of reference point.
● RBUF(5): mode = 0 (no feedback), 1 (rubber band), 2 (rubber rectangle), 3 (vertical range), 4

(horizontal range). 5 (horizontal line), 6 (vertical line), 7 (cross-hair).

Parameters returned by handler:

● RBUF(1): x position of cursor.
● RBUF(2): y position of cursor.
● CHR(1:1): character typed by user.

OPCODE = 18, Erase alpha screen

If the graphics device is a terminal that displays both graphics and text on the same screen, clear
the text screen, leaving graphics unchanged. All other devices should ignore this opcode.

OPCODE = 19, Set line style

This opcode is not used if OPCODE = 4 indicates that the device does not support hardware
dashing; PGPLOT will use software-generated dashed lines.

Parameters passed to handler:

● RBUF(1): requested line style (integer 1--5).

OPCODE = 20, Polygon fill

This function is not used if OPCODE = 4 indicates that the device does not support hardware
polygon fill. The polygon may be arbitrarily complex (concave or re-entrant); if the hardware
cannot cope with this, the handler should set the OPCODE = 4 response to disable hardware fill. If
hardware fill is enabled, the handler should respond to this function by filling the polygon with the
current color index. To draw an N-sided polygon, PGPLOT uses this opcode N+1 times.

Parameters passed to handler on first call:

● RBUF(1): number of points N in polygon.

Parameters passed to handler on next N calls:

● RBUF(1): x value.
● RBUF(2): y value.

OPCODE = 21, Set color representation

Assign the specified (R,G,B) color, or the best available approximation, to the specified color
index. If colors cannot be changed dynamically, ignore the request.

Parameters passed to handler:

● RBUF(1): color index (integer, in range defined by OPCODE = 2).
● RBUF(2): red component (0.0--1.0).
● RBUF(3): green component (0.0--1.0).
● RBUF(4): blue component (0.0--1.0).

OPCODE = 22, Set line width

This function is not used if OPCODE = 4 indicates that the device does not support hardware
thick lines. Subsequent lines and dots should be drawn with the requested width, or the closest
available approximation. The units of line-width are 0.005 inches. A requested line-width of zero
should give the narrowest line available on the device (``hair line'').

Parameters passed to handler:

● RBUF(1): requested line width, in units of 0.005 inch.

OPCODE = 23, Escape function

This function allows an arbitrary character string to be sent to the device handler. The
interpretation is up to the handler; usually, the string will be sent directly to the device or ignored.
Use of this function should be avoided.

Parameters passed to handler:

● CHR(:LCHR): character string.

OPCODE = 24, Rectangle fill

This function is not used if OPCODE = 4 indicates that the device does not support hardware
rectangle fill.

Parameters passed to handler:

● RBUF(1), RBUF(2): x,y coordinates of lower left corner of rectangle.
● RBUF(3), RBUF(4): x,y coordinates of upper right corner of rectangle.

OPCODE = 25, Set fill pattern

This function is not yet implemented.

OPCODE = 26, Line of pixels or Image

This operation is used for gray-scale and color imaging (e.g., routine PGGRAY). It is used in two
different ways, depending whether OPCODE=4 reports CHR(7:7) = 'P' or 'Q'.

Case P

This function is used to write a horizontal line of pixels on the device screen with specified color
indices; it should be more efficient to do this with one device handler call rather than separate
calls for each pixel. If the device handler implements this operation, it is important that the device
coordinates should be true pixel numbers.

Parameters passed to handler:

● RBUF(1), RBUF(2): x,y coordinates of the first pixel to be written. These should be integer
pixel numbers in the device coordinate system (passed as REAL numbers).

● RBUF(3),...RBUF(NBUF): color indices for n pixels to be filled in, starting at (x,y) and
ending at (x+n-1,y). The values should be valid integer color indices for the device (passed

as REAL numbers). The number of pixels is specified by the argument NBUF: n = NBUF -
2.

Case Q

This case is used for devices like PostScript where PGPLOT cannot address individual device
pixels; the handler, or the device, must map the image array onto hardware pixels, taking care of
clipping. In this case, the first call specifies the parameters of the image, and subsequent calls pass
color indices of image pixels, and a final call indicates the end of the image.

Parameters passed to handler on first call:

● RBUF(1): 0.0 (indicates start of image).
● RBUF(2,3): dimension of the image (image pixels in x and y).
● RBUF(4),...RBUF(7): the current clipping rectangle, in device coordinates.
● RBUF(8),...RBUF(13): a matrix used to transform image coordinates to device coordinates.

Parameters passed to handler on first call:

● RBUF(1): number n of pixels in this call (> 0).
● RBUF(2),...RBUF(n+1): color indices for n pixels.

Parameters passed to handler on last call:

● RBUF(1): -1.0.

OPCODE = 27, Scaling information

This function is only used if OPCODE = 4 indicates a cursor of type X. It is used to tell the device
handler what the user's (world) coordinate system is. The handler may ignore the information, or it
may use it to generate a read-out of the cursor position in the world coordinate system.

Parameters passed to handler:

● RBUF(1)...RBUF(4): should be interpreted as follows: (xd,yd) are device coordinates, as
used by the handler, (xw,yw) are user's world coordinates: xw = [xd - RBUF(1)]/RBUF(2),
yw = [yd - RBUF(3)]/RBUF(4). The device handler may (but is not required to) display the
current cursor location, in world coordinates. The display can be continuous or only while
the PGPLOT cursor is active (during execution of opcode 17). Until opcode 27 is received,
the handler should assume that (xw,yw)=(xd,yd).

OPCODE = 28, Draw marker

This function is only used if OPCODE = 4 indicates that the device handler can draw graph
markers. If it is to be used, the device handler (or hardware) must know how to draw each of the
markers numbered 0 to 31 (see Figure 4.1).

Parameters passed to handler:

● RBUF(1): the number of the marker symbol to be drawn (integer, 0--31).
● RBUF(2), RBUF(3): the x,y coordinates of the center of the marker (device coordinates).
● RBUF(4): scale factor (number of device units per unit of ``marker coordinate space''). The

shapes of the marker symbols are defined in a coordinate system in which the radius of
typical symbols is 10 units or less; for more information, see the Hershey definitions of the
markers (Appendix B).

OPCODE = 29, Query color representation

This function ay be called at any time after open workstation (9) and before close workstation (10).
It will not be called if the handler does not report itself as having this capability. The handler
should attempt to return the actual color representation in use on the device, if it is possible that
this is different from the values requested. Otherwise it should return the values requested in the
last call with opcode 21 (set color representation) for this color index. (Re-calling opcode 21 with
the values returned by opcode 29 should not change the actual color representation!) If the handler
does not have this capability, PGQCR will return R=G=B=0.0 for color index 0 and R=G=B=1.0 for
all other color indices.

Parameters passed to handler:

● NBUF = 1
● RBUF(1) = color index to query (integer, passed as real), in the device range reported by

opcode 2.

Parameters returned by handler:

● NBUF = 4
● RBUF(1) = unchanged from input,
● RBUF(2) = red component [real, 0.0--1.0],
● RBUF(3) = green component [real, 0.0--1.0],
● RBUF(4) = blue component [real, 0.0--1.0].

OPCODE = 30, Scroll rectangle

This function is not used if OPCODE = 4 indicates that the device does not support scrolling. If it
is to be used, then the device handler should be capable of scrolling a rectangular region of the
display-surface, both horizontally and vertically, by an integral number of device coordinates. A
horizontal scroll of positive dx device pixels is defined to mean that all but the rightmost dx pixels
of the rectangle should be copied dx pixels to the right of their original positions. The vacated dx

pixels at the left edge of the rectangle are to be filled with the background color. Vertical scrolling
is defined similarly.

Parameters passed to handler:

● NBUF = 6
● RBUF(1), RBUF(2): x,y coordinates of lower left corner of rectangle.
● RBUF(3), RBUF(4): x,y coordinates of upper right corner of rectangle.
● RBUF(5), RBUF(6): dx,dy coordinate offsets of the scrolled rectangle.

All of these parameters are intended to be integral, and should be rounded to the nearest integer.
Note that RBUF(5) and RBUF(6) are allowed to exceed the lengths of the corresponding sides of
the scrolling region. In such cases the region should be completely filled with the background
color.

Next: Appendix F

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995-1996 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Introduction

These instructions are for Version 5.2.* of PGPLOT.

To install PGPLOT, you need to perform the following steps. These steps are described more
fully below for each operating system.

Read the release notes (file ver520.txt) to see what is new in this version.

1. Copy the distribution file by anonymous ftp from Caltech. This is a gzipped tar archive:
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz.

2. Unpack the distribution file to create the ``PGPLOT distribution'' directory tree. This is
identical for all implementations of PGPLOT and can be placed on any disk that is visible
on the target system, including read-only network-mounted disks.

3. Create a writable directory in which the PGPLOT library and associated files will be
created. One such directory is needed for each different operating system and compiler
combination (``target system'') that you wish to support. This should not be the same
directory as the directory containing the source code.

4. Configure PGPLOT by selecting device drivers from the available list.
5. Execute the supplied scripts and makefiles to create the library and demonstration

programs.
6. Install the optional C binding for PGPLOT, which provides a convenient way to call

PGPLOT subroutines from a program written in C or C++. This requires an ANSI C
compiler (that understands function prototypes) and is not available on all systems.

7. Run the demonstration programs on your selected devices and verify that they run
satisfactorily.

8. Install the optional documentation files.

You will need the following software, which is not distributed with PGPLOT:

● A Fortran-77 compiler for your computer system.

Consult your operating system vendor to see what Fortran-77 compilers are available for
your system. A useful index of Fortran compilers can be found at The Fortran Market web
site (http://www.fortran.com/fortran/compilers.html). The following are widely used;

❍ GNU Fortran compiler (g77): ftp://prep.ai.mit.edu/pub/gnu/ (g77-*).

❍ f2c Fortran-77 to C translator: ftp://ftp.netlib.org/f2c/.

I prefer g77, which works well on the systems I have tried. f2c is unable to compile many of
the PGPLOT device drivers that use non-standard extensions to Fortran-77.

● An ANSI C compiler for your computer system.
● Utilities for retrieving and unpacking the distribution file: ftp (or a Web browser), tar, and

gunzip.
● To use the PGPLOT X-window device drivers: the X Window System for your computer,

including the standard X header files (*.h) and the Xlib library.
● To use the PGPLOT Motif (X-window) widget driver: the X Window System, the Xm and

Xt libraries, and associated header files.
● To use the PGPLOT Tcl/Tk (X-window) widget driver: the X Window System, the tk and

ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz
http://www.fortran.com/fortran/compilers.html
ftp://prep.ai.mit.edu/pub/gnu/
ftp://ftp.netlib.org/f2c/

tcl libraries, and associated header files.

Detailed installation instructions are available for the following operating systems:

● UNIX (all varieties)

● For LINUX systems, see the note about precompiled binaries.

● VMS [OpenVMS VAX or OpenVMS Alpha] (Digital Equipment Corp.)

● Windows 95/98/NT with Absoft Pro Fortran (Absoft Corp.)

● Windows 95/NT with Digital/Compaq Visual Fortran (Compaq Corp.)

● Windows 95/NT with PowerStation Fortran (Microsoft Corp.)

● Windows 95/NT with GNU-Win32 utilities

● For Acorn (RISCOS) machines, see the Fortran Friends web page. A zip file of the RISCOS

version can be downloaded from http://www.argonet.co.uk/users/fortran/Demos/PGplot.zip.

For Windows 95/98/NT/2000 etc., I also recommend using a version of PGPLOT that includes a
driver based on the GrWin graphics library. This can be used with many different compilers. See:

● GrWin Graphics Library by Tamaribuchi, Tsuguhiro.

● PGPLOT for Win32 with Microsoft VC++ v6.0 and Digital Visual Fortran 6.0 by Karl

Glazebrook and Roberto Abraham.

This version has not yet been ported to MS-DOS, OS/2, or MacOS. For notes about earlier
attempts to port PGPLOT to these operating systems, see the files called aaaread.me in the
directories pgplot/sys_dos, pgplot/sys_msdos, pgplot/sys_salford, and pgplot/sys_mac in the tar
file. I appreciate feedback from users.

PGPLOT
Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1995-1998 California Institute of Technology

http://www.argonet.co.uk/users/fortran
http://www.argonet.co.uk/users/fortran/Demos/PGplot.zip
http://spdg1.sci.shizuoka.ac.jp/grwinlib/english/
http://www.pha.jhu.edu/~kgb/PGPLOT-Win32/
mailto:tjp�astro.caltech.edu

Appendix G. Porting PGPLOT

G.1 General Notes

The PGPLOT library consists of the following routines:

1. The ``standard'' routines pgplot/src/pg*.f and pgplot/src/gr*.f. All of these routines should
be compiled and put in the object-module library, although the ``obsolete'' routines may be
omitted (they are not used by current PGPLOT programs and will not be included in future
versions of PGPLOT). The obsolete routines are: grchar, grchr0, grdat2, grgtc0, grinqfont,
grinqli, grinqpen, grlinr, grmark, grmovr, grsetfont, grsetli, grsetpen, grtran, grvect, pgsetc,
pgsize. All routines in the pgplot/src directory are standard Fortran-77 with the following
exceptions:

❍ Several routines use the non-standard INCLUDE statement; if your compiler does
not accept this, you need to replace the INCLUDE statement with the contents of
the named file (pgplot.inc or grpckg1.inc as appropriate).

❍ Some routines have names longer than 6 characters, the maximum allowed by the
Fortran-77 standard: these routines can be omitted: all have shorter aliases that can
be used in preference (e.g., PGPAGE instead of PGADVANCE).

❍ One routine, GRSYXD, uses a non-standard INTEGER*2 statement; you can
replace this with INTEGER, but if you do so you must make the corresponding
change in GRSY00 and PGPACK (see below).

❍ Routine GRCLPL uses function IAND(I,J) for bitwise logical and of two integers;
most compilers recognize this as an intrinsic function and compile it inline, but if
yours does not, you will need to supply this as an external function.

2. The system-dependent routines. Versions of these routines that work for many UNIX
systems are provided in directory pgplot/sys, but for other systems these will need to be
written. Some of the routines are used only by certain device drivers and will not be
needed if you do not use these drivers.

❍ GRDATE -- get date and time as character string
❍ GRFILEIO -- routines GROFIL, GRCFIL, GRWFIL, GRWFCH for binary file I/O
❍ GRFLUN -- free a Fortran logical unit number
❍ GRFMEM -- free memory
❍ GRGCOM -- read with prompt from user's terminal
❍ GRGENV -- get value of PGPLOT environment parameter
❍ GRGLUN -- get a Fortran logical unit number
❍ GRGMEM -- allocate memory
❍ GRGMSG -- print system message
❍ GRIBF1 -- fill buffer with a specified character
❍ GROPTX -- open input/output text file
❍ GRSY00 -- initialize font definition
❍ GRTERMIO -- routines GROTER, GRCTER, GRWTER, GRPTER, GRRTER for I/

O to terminals
❍ GRTRML -- get name of user's terminal
❍ GRTTER -- test whether device is user's terminal
❍ GRUSER -- get user name

3. The device-dispatch routine, grexec.f. This routine includes calls to all the selected

device drivers. It is the only routine that needs to be modified to configure PGPLOT for a
particular installation. It is usally generated automatically from drivers.list. For more
information about this routine, see Appendix E.

4. The device drivers. Most device drivers are included in single files in the pgplot/drivers
directory, with file name XXdriv.f or XXdriv.c. Some C drivers require additional .c or .h
files. The drivers you wish to include in PGPLOT should be compiled and added to the
object library. Many of the device drivers are written in portable, standard Fortran-77, but
others cannot be written portably and either use Fortran-77 with extensions (such as
BYTE and %VAL) or C. Some of the older drivers are sloppily written and could be made
more portable. For driver written in C, it is necessary to pay careful attention to the
system-dependent conventions for calling C subroutines from Fortran programs.

G.2 Porting to UNIX systems

Background

While no two UNIX systems are identical, the overall similarities allow for a single installation
procedure. The procedure, embodied in pgplot/makemake, is implemented as a Bourne shell script
whose job is to create makefiles specific to specific systems. The design goals of the script were:

1. To provide a uniform installation procedure for as many systems as possible.
2. To support PGPLOT compilation in directories other than the distribution directory. If

the disk containing the source code distribution is cross-mounted over a number of
different UNIX systems, this allows one copy of the source code to be used to compile
PGPLOT on each of those systems. It also allows the source-code directory to be placed
on a read-only disk partition or CD-ROM.

3. To allow more than one compiler combination on systems that support multiple compilers.
Separate configuration files are provided for each compiler combination.

4. To avoid code duplication of system-specific routines where possible. The script allows
one to selectively override generic routines with system specific versions.

5. To make the script behave as told by the user, rather than have it try to automatically
determine its configuration from the system that it is run upon. This enables one to make
makefiles for many systems without actually having to log in to those systems.

How to port PGPLOT to a new UNIX system

Create a system directory

The first thing to do when porting to a new system is to create a system directory for the port.
This is where system-specific source-code and system attributes, will be placed. If the generic
name for your system is say xxx, then the system directory must be called pgplot/sys_xxx. The
xxx suffix is the name used by users to to specify a system type to the makemake script.

Create a configuration file

The next thing to do is to create a configuration file within the new system directory. This is a
Bourne shell script containing assignments to the shell variables that determine how makemake
will configure a makefile for your system.

Configuration files are distinguished from other files by a .conf file name extension. If you intend
to support more than one FORTRAN and/or C compiler, then one configuration file will be needed
per compiler combination. By convention, configuration files are named as a_b.conf, where a is the
name of the FORTRAN compiler and b is the name of the C compiler.

The first line must be a short Bourne shell comment that describes how the configuration differs
from other configuration files in the system directory. In most configuration files, the comment
just ellaborates on which FORTRAN and C compilers are being configured. The comment is
displayed alongside the configuration name when makemake users fail to specify a configuration
name.

The easiest way to create a new configuration file is to copy one from another sys_xxx directory,
rename it and then modify the shell variable assignments to suite your system. Note that within
these scripts no spaces are tolerated around the = operator, and that you should enclose the
assignment string within double quotes.

Configuration file variables

Some of the supported variables are obligatory, while others are optional. The required variables
and their meanings are:

XINCL
The argument used to tell the C compiler where the X11/ include directory can be found. If
your machine doesn't have X-windows, assign the empty string "". e.g.,

 XINCL=""
 XINCL="-I/usr/local/include"
 XINCL="-I/usr/openwin/include"

FCOMPL
The command used to invoke the FORTRAN compiler. e.g.,

 FCOMPL="f77"
 FCOMPL="fort77"
 FCOMPL="fortran"
 FCOMPL="frt"
 FCOMPL="gf77"
 FCOMPL="xlf"

FFLAGC
Any FORTRAN compiler flags required for compiling and linking the PGPLOT library.
Note that this should not include the "-c" or "-o" options, which are automatically added,
where needed, by the makemake script. Examples of possible flags to include, are
optimization level flags and flags pertinent to creating shared libraries (where possible).
This is usually an option to generate position-independent code (e.g., "+z", "-fpic", "-K
PIC"). An option to check for undeclared variables (e.g., "-u") may be specified, but is not
required. An option to use static rather than automatic storage (e.g., "-static") is not
required but may be used: PGPLOT should work correctly with either static or automatic
storage. e.g.,

 FFLAGC="-u -O"
 FFLAGC="-u -PIC -O"
 FFLAGC="-u -pic -O"
 FFLAGC="-u"
 FFLAGC='-Wf"-o novector -i64"'

FFLAGD
In most cases this should be the same as FFLAGC. It is used instead of FFLAGC when
compiling and linking the PGPLOT demo programs. The main potential difference has to
do with the fact that many of the demo programs exploit the '\' character to introduce
special plot symbols within PGPLOT text. Unfortunately many compilers treat this as an
escape character. To avoid this, FFLAGD should include a flag to tell the compiler to turn
off special treatment of this character. Options for shared libraries (position-independent
code) are not required. e.g.,

 FFLAGD=""
 FFLAGD="-O0"
 FFLAGD="-assume backslash"
 FFLAGD="-u -!bs"
 FFLAGD="-u -O"
 FFLAGD="-u -backslash -O0"
 FFLAGD="-u -qnoescape"
 FFLAGD="-xl -u -O"

CCOMPL
The command used to invoke the chosen C compiler on your system. If you intend to use
the C wrapper library cpgplot, then this should be an ANSI-C compiler. Otherwise a pre-

ANSI K&R C compiler will be sufficient. e.g.,

 CCOMPL="/usr/ucb/cc"
 CCOMPL="c89"
 CCOMPL="cc"
 CCOMPL="gcc"

CFLAGC
Any C compiler flags that are needed to compile PGPLOT. Note that this should not
include the "-c" or "-o" options, which are automatically added, where needed, by the
makemake script. Examples of possible flags to include, are optimization level flags and
flags pertinent to creating shared libraries (where possible; the option usually required is
the one that generates "position-independent code"). Also, if your system exports
FORTRAN symbols to the linker postfixed with an underscore then you should include the
-DPG_PPU flag. e.g.,

 CFLAGC=""
 CFLAGC="+z -O -D_HPUX_SOURCE"
 CFLAGC="-DPG_PPU -pic -O"

LIBS
This should specify the loader flags required to cite any external libraries that are
required when linking any of the demo and server programs. In most cases this is just the X-

windows library, cited as "-Ldirectory_name -lX11" where directory_name is the name of
the directory in which the library resides. e.g.,

 LIBS=""
 LIBS="-L/usr/lib/X11R5 -lX11"
 LIBS="-L/usr/openwin/lib -lX11"

RANLIB
Many older UNIX systems require newly created or modified libraries to be post-processed
for better access speed. On such systems, you should set RANLIB="ranlib". On other
systems you should set RANLIB="echo ranlib".

The following are optional. If they are not pertinent to your system configuration, you must omit
them from the configuration script.

MOTIF_INCLUDE, MOTIF_LIBS
On systems where Motif is installed the MOTIF_INCLUDE and MOTIF_LIBS
configuration variables should contain flags telling the C compiler and loader where to find
the include files and libraries associated with Motif. This should include files related to
X11, Xt and Xm. Note that the XINCL and LIBS variables are not consulted when
compiling and linking Motif code, e.g.,

 MOTIF_INCL="-I/usr/dt/include $XINCL"
 MOTIF_LIBS="-L/usr/dt/lib -lXm -L/usr/openwin/lib -lXt $LIBS"

SYSDIR
On entering the configuration script, this variable contains the directory name of the
system directory in which the configuration file resides. If you have multiple compiler
combinations which require a different set of system-specific routines, then you should
create a subdirectory in the system directory, for each combination, and redirect SYSDIR
in each configuration file, to point at the relevant directory. eg. SYSDIR="$SYSDIR/
f77_cc/".

PGBIND_FLAGS
If you wish to have the PGPLOT C wrapper library compiled for your system, then you
will need to assign this variable. Its arguments are the configuration flags to the PGPLOT
pgbind command. To see the available options, compile the pgbind program in pgplot/cpg/
with an ANSI-C compiler and invoke it with no arguments.

SHARED_LIB
If your system supports shared libraries, you should specify the name to give the shared
library here.

SHARED_LD
If your system supports shared libraries, then you should specify the command and its
leading arguments, which when all the PGPLOT object files are appended as trailing
arguments, will create a shared library. You can use the SHARED_LIB variable specified
above as an argument to this command, by referring to it as $SHARED_LIB.

MCOMPL
The command used to invoke the chosen Objective C compiler on your system. This is only
required if any of the system code that you supply is written in Objective C. Few people
have Objective C compilers, so you should stick to using just C and FORTRAN if at all
possible.

MFLAGC

The compiler flags to use with MCOMPL. Note that this should not include the "-c" or "-o"
options, which are automatically added, where needed, by the makemake script.

Creating system-dependent files

While every effort was made to write PGPLOT in standard FORTRAN-77, some routines,
particularly those that provide interfaces to terminals and other graphics devices, had to be
written using either FORTRAN extensions or C code. Versions of these routines that work on
many systems are included in the pgplot/sys/ directory. When the makemake script looks for the
system dependent routines, it looks first in the specific pgplot/sys_xxx directory then in the
default pgplot/sys/ directory, so you can override one or more of the default versions, by placing
your own versions in the new system directory. The new versions can be in C, FORTRAN or, if
unavoidable, Objective C (postfixed with .f, .c or .m respectively).

Points to consider when determining whether new versions of the default system routines are
required include.

FORTRAN routines
All of the *.f files in pgplot/sys/ use FORTRAN extensions, or rely upon unportable
assumptions such as unformatted I/O record sizes. If you are not familiar with the specifics
of your FORTRAN compiler, then probably the best thing to do here, is to simply try to
compile PGPLOT without overriding any of the default FORTRAN code, and see what the
compiler or linker chokes upon.

Problems that might only show up at run time include:

❍ PGPLOT crashes when trying to read its FONT file. This probably means that
grsy00.f, which relies upon being able to read large unformatted record sizes, will
need to be re-written. This is a difficult problem to fix. The simplest way is to
replace both pgplot/sys/grsy00.f and pgplot/fonts/pgpack.f with versions that read
and write a useable file format. Both files should be placed in your local system
directory. makemake will pick them up from there and compile them in place of the
default versions.

❍ When PGPLOT prompts for terminal input, the cursor is placed on the line after
the prompt. This is only a cosmetic problem, but if you can find a way to suppress
the carriage return at the end of the prompt string, the appearance will be better.

An optional routine that makemake only compiles if it finds a version in your system
directory, is a replacement for the common IAND() intrinsic function. This is used by
pgplot/src/grclpl.f and if your compiler doesn't have the IAND intrinsic, you should place a
function to replace it in your system directory. Its purpose is simply to return the bitwise
logical AND of two FORTRAN integers.

C routines
Where C routines have been used, you should be aware that there is no guaranteed way to
portably call C from FORTRAN. The C routines in pgplot/sys/ support the two most
common conventions, both of which are based on the convention used in the original BSD
f77 compiler. In the BSD f77 convention, FORTRAN symbols are converted to lower-case
and postfixed with an underscore when exported to the linker, all arguments are passed by
pointer, and the lengths of any string arguments are silently appended to the end of the
argument list. A common modification to the BSD f77 convention, is to omit the trailing
underscore. If you need the trailing underscore, (this is the most common convention), then
you must include -DPG_PPU in the configuration file CFLAGS assignment.

If neither of the above conventions are supported by your compiler, then you will have to
copy the C routines to the new system directory and modify them to support the calling
conventions on your system.

Where C routines have been provided, they are usually based on the availability of
POSIX.1. If your machine doesn't support POSIX yet, then you will have some changes to
make - particularly as regards terminal I/O routines. If your system is of BSD decent, then
try the BSD compatible terminal I/O routines in the pgplot/sys_convex/ system directory.

Wrapper routines for C drivers
As mentioned above there is no portable way to call C from FORTRAN, yet there are
several drivers that are written in C in the pgplot/drivers/ directory. A prominent example
is the X-windows drivers pgplot/drivers/xwdriv.c. Such drivers only understand the two
calling conventions mentioned above. Unlike the system routines, the drivers are
complicated, so for maintenance reasons it would be unwise to modify copies of them just
to support a new calling convention. Instead, makemake checks to see if there are any C
wrapper functions in the system directory. These are routines that act as intermediaries
between FORTRAN and the unmodified drivers, and makemake arranges to have both the
original driver code and wrapper code compiled and linked. In order that makemake detect
such wrapper functions, for driver code called xxdriv.c, the wrapper function should be
called xxwrap.c, where the two letter prefix xx names a particular driver.

The same mechanism can be used for Objective C drivers, in which case the file would be
called xxwrap.m. However as mentioned before you should try to stick to C and FORTRAN
code if possible.

Note that there is no requirement that you support all of the drivers in the pgplot/drivers/
directory. Many of them are targeted at specific systems, and others are for rare devices.
When first porting PGPLOT, you should probably first stick to a small simple subset until
PGPLOT appears to be working reliably, then re-run makemake with a larger selection of
drivers uncommented to test more of them.

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Graphics Subroutine Library

Contents

● Contents

● Introduction

● Examples

● Copyright

● Status

● Obtaining PGPLOT

● Documentation:

❍ User's manual (draft)

❍ Annotated list of subroutines

❍ Subroutine synopses

❍ Known problems in PGPLOT version 5.2.

❍ Wish-list for future improvements.

❍ Some frequently asked questions.

● Calling PGPLOT from other languages

● Interactive drawing programs and other PGPLOT extensions

● Reporting problems

New Web Addresses

The web address for PGPLOT changed in October 2000. The new web address is

http://www.astro.caltech.edu/~tjp/pgplot/

and the ftp address for downloading PGPLOT is

ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz

Introduction

The PGPLOT Graphics Subroutine Library is a Fortran- or C-callable, device-independent
graphics package for making simple scientific graphs. It is intended for making graphical images of
publication quality with minimum effort on the part of the user. For most applications, the program
can be device-independent, and the output can be directed to the appropriate device at run time.

The PGPLOT library consists of two major parts: a device-independent part and a set of device-
dependent ``device handler'' subroutines for output on various terminals, image displays, dot-
matrix printers, laser printers, and pen plotters. Common file formats supported include PostScript
and GIF.

PGPLOT itself is written mostly in standard Fortran-77, with a few non-standard, system-

ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz

dependent subroutines. PGPLOT subroutines can be called directly from a Fortran-77 or Fortran-
90 program. A C binding library (cpgplot) and header file (cpgplot.h) are provided that allow
PGPLOT to be called from a C or C++ program; the binding library handles conversion between C
and Fortran argument-passing conventions.

PGPLOT has been tested with UNIX (most varieties, including Linux, SunOS, Solaris, HPUX,
AIX, Irix, and MacOS X/Darwin) and OpenVMS operating systems. I am unable to provide support
for DOS, Microsoft Windows, but I do distribute code provided by users for use with these
operating systems.

Examples

Some example graphs showing some of the capabilities of PGPLOT, and source code in Fortran
and C for a simple example, can be found in the PGPLOT Portfolio. Caution: this page contains

several large graphics files.

Copyright

PGPLOT is not public-domain software. However, it is freely available for non-commercial use.
The source code and documentation are copyrighted by California Institute of Technology, and
may not be redistributed or placed on public Web servers without permission. The software is
provided ``as is'' with no warranty.

Status

The current version of PGPLOT is 5.2.2.

● Changes in Version 5.0.0 Released 1994-12-30.

● Changes in Version 5.0.1 Released 1995-02-16.

● Changes in Version 5.0.2 Released 1995-06-14.

● Changes in Version 5.0.3 Released 1995-12-29; sys_mac directory updated 1996-01-23;

sys_arc directory updated 1996-03-27.
● Changes in Version 5.1.0 Released 1996-05-10.

● Changes in Version 5.1.1 Released 1996-11-04; sys_arc directory updated 1996-11-06.

● Changes in Version 5.2.0 Released 1997-06-16.

● Changes in Version 5.2.1 Released 2000-12-07.

● Changes in Version 5.2.2 Released 2001-02-26.

● Known problems in PGPLOT version 5.2.

● Wish-list for future improvements.

● Some frequently asked questions.

Installation

For instructions for obtaining PGPLOT from my ftp site and for details of supported operating
systems, read the installation instructions.

If you cannot use ftp, PGPLOT is available on tape for a fee. Consult tjp·astro.caltech.edu.

Documentation

The manual PGPLOT Graphics Subroutine Library by T. J. Pearson is being updated for version
5.2 of PGPLOT. A draft of the manual is available: see the Table of Contents.

A PostScript file of the manual will be made available when it is completed. A PostScript file of
the old manual (version 4.9, 0.27 Mbyte, gzipped) is still available, but it does not include the many

changes made in version 5.0.

Calling PGPLOT From Other Languages

PGPLOT is distributed with subroutine interfaces for C and Fortran-77; these interfaces can also
be used with C++ and Fortran-90.

Several users have contributed bindings for PGPLOT that allow the PGPLOT functions to be
called from other languages. Several of these bindings allow PGPLOT to be used interactively.

ADA
Martin Stift has an ADA and ADA95 interface to PGPLOT.

C++
CCPL is an interesting graphing library interface for use with C++. A graph is generated
by sending data to a stream, e.g., pout << line_plot(my_data) << endp;. Author: Matt

Howlett (University of Tasmania). URL: http://ccpl.sourceforge.net.

GLISH
A PGPLOT binding for GLISH has been developed as part of the aips++ project by a

consortium led by the National Radio Astronomy Observatory; it is currently in beta
release.. For details, see the aips++ web page.

OCTAVE
PGPLOT may be called from the Octave language for numerical computations via

Matwrap from Gary Holt.

PERL
PGPERL by Karl Glazebrook provides an interface between the Perl language and the

PGPLOT FORTRAN library. For further information, see the WWW page http://www.aao.

gov.au/local/www/kgb/pgperl/.

PYTHON

mailto:tjp�astro.caltech.edu
http://www.astro.caltech.edu/~tjp/pgplot/old_manual.ps.gz
mailto:stift@fedelma.astro.univie.ac.at
http://fedelma.astro.univie.ac.at/web/pg/info.html
http://www.ids.org.au/~mhowlett/
http://www.ids.org.au/~mhowlett/
http://ccpl.sourceforge.net/
http://www.cv.nrao.edu/glish/
http://aips2.nrao.edu/aips++/docs/html/aips++.html
http://www.che.wisc.edu/octave/
http://www.klab.caltech.edu/~holt/matwrap/index.html
mailto:holt@klab.caltech.edu
mailto:kgb@aaoepp.aao.gov.au
http://www.aao.gov.au/local/www/kgb/pgperl/
http://www.aao.gov.au/local/www/kgb/pgperl/

Nick Patavalis (npat at efault.net) has developed an interface between PGPLOT and the
Python and NumPy languages. See http://efault.net/npat/hacks/ppgplot. Scott Ransom

(ransom@cfa.harvard.edu) has written another wrapper layer that simplifies use of this

interface. See ftp://cfa-ftp.harvard.edu/pub/ransom/.

RUBY
Ruby/PGPLOT is a PGPLOT interface to the Ruby language, written by Masahiro Tanaka.

SCHEME
Koji Ejiri has made a Gauche binding for PGPLOT. Gauche is a Scheme interpreter.

TCL/TK
Tcl/Tk interfaces for PGPLOT have been developed by three groups:

❍ Nick Elias of the US Naval Observatory has released ptcl, a package that registers

PGPLOT functions as Tcl commands. Information is available at http://www.

InfoMagic.com/~nme2/ptcl/ptcl.html. ptcl has been ported to OpenVMS by Gilles

Ratel.
❍ The Sloan Digital Sky Survey project has developed a Tcl interface to PGPLOT

as part of its DERVISH package. See the Dervish Home Page for a description of

the interface (under ``Plotting''). For more information contact Eileen Berman.

❍ PGTK by Brian Toby. This includes a driver for a Tk canvas widget. The driver

tkdriv distributed with PGPLOT is more powerful and is recommended for people

using a Unix X-window system.
YORICK

A PGPLOT interface to the Yorick language has been written by Alexey Goldin

(alexey@oddjob.uchicago.edu). See http://flight.uchicago.edu/goldin/yorick-pgplot/.

Interactive Drawing Programs and Other PGPLOT Extensions

The following list does not include the many application-specific programs that have been written
using PGPLOT.

● BUTTON by N. Cardiel and J. Gorgas of the Universidad Complutense de Madrid is a
package of subroutines to facilitate the creation of interactive Fortran programs using
graphics buttons. For further information, see the WWW page http://www.ucm.es/OTROS/

Astrof/button/button.html.

● GENPLOT by Dale Gary.

● PGXTAL. Devinder Sivia has written some 3D plotting routines for use with PGPLOT.

For details, see http://www.isis.rl.ac.uk/dataanalysis/dsplot/. This package makes use of

undocumented internal features of PGPLOT (something I strongly counsel against) and
may not work with all versions of PGPLOT.

● PLOTDAT, by Vincent Jacobs (vjacobs@physics.rutgers.edu, is fully interactive and

features legends, three dimensional histograms, an "echo" scripting mechanism, parsing to
add Greek or other "fancy" characters to plots, and extensive online help. Please visit the
site: http://www.physics.rutgers.edu/~vjacobs/PLOTDAT/plotdat.html.

● PONGO by Paul Harrison. This is supported by Starlink: see http://star-www.rl.ac.uk/.

Starlink also maintains a version of PGPLOT layered on the GKS library.

● QDP/PLT by Allyn Tennant. PLT is an interactive plotting and fitting subroutine layered

on PGPLOT, and QDP provides a command interface to this routine. QDP/PLT is used by

http://efault.net/npat/hacks/ppgplot
mailto:ransom@cfa.harvard.edu
ftp://cfa-ftp.harvard.edu/pub/ransom/
http://www.ir.isas.ac.jp/~masa/ruby/index-e.html#pgplot
http://www.ruby-lang.org/
mailto:masa@ir.isas.ac.jp
mailto:nme@nofs.navy.mil
http://www.infomagic.com/~nme2/ptcl/ptcl.html
http://www.infomagic.com/~nme2/ptcl/ptcl.html
http://www.sdss.org/
http://www-sdss.fnal.gov:8000/dervish/doc/www/dervish.home.html
mailto:berman@fnal.gov
mailto:brian.toby@nist.gov
ftp://icf.llnl.gov/pub/Yorick/yorick-ad.html
mailto:alexey@oddjob.uchicago.edu
http://flight.uchicago.edu/goldin/yorick-pgplot/
http://www.ucm.es/OTROS/Astrof/button/button.html
http://www.ucm.es/OTROS/Astrof/button/button.html
mailto:dg@sundog.caltech.edu
mailto:dss@isise.rl.ac.uk
http://www.isis.rl.ac.uk/dataanalysis/dsplot/
mailto:vjacobs@physics.rutgers.edu
http://www.physics.rutgers.edu/~vjacobs/PLOTDAT/plotdat.html
http://star-www.rl.ac.uk/
http://star-www.rl.ac.uk/star/docs/sun15.htx/sun15.html
mailto:allyn.tennant@msfc.nasa.gov

some tasks within the FTOOLS package available from the NASA Laboratory for High

Energy Astrophysics.
● STAP by Mingsheng Han. STAP is an interactive command driven statistic and plotting

program: for information, see http://www.astro.wisc.edu/~han/stap/stap.html.

● TVB by Georges GONCZI (Observatoire de Nice, France) is a semi-interactive tool which

gives access to the whole graphic possibilities of PGPLOT without having to learn it and
without having to know any special language. See http://www.obs-nice.fr/tvb/tvb.html.

● WIP by James Morgan. WIP is an interactive package with a simple to use interface

designed to produce high quality graphical output. WIP was developed as part of the
Berkeley-Illinois-Maryland Association (BIMA) project. For further information, see the
WWW page http://bima.astro.umd.edu/bima/wip/wip.html.

Reporting problems

If you have questions about PGPLOT, please send them to Tim Pearson, preferably by e-mail to
tjp·astro.caltech.edu, or by FAX to +1 (626) 568-9352. If you have a problem with installation,

please include information about your operating system version, Fortran and C compilers, and the
version of PGPLOT you are trying to install. If you think you have found a bug in PGPLOT, a
simple test program in Fortran or C that demonstrates the problem is very helpful. I maintain a
mailing list for announcements about PGPLOT, and I will add your name to the list if you send me
your e-mail address.

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1995-2002 California Institute of Technology

http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html
mailto:han@adcode.astro.wisc.edu
http://www.astro.wisc.edu/~han/stap/stap.html
mailto:gonczig@obs-nice.fr
http://www.obs-nice.fr/tvb/tvb.html
mailto:morgan�astro.umd.edu
http://bima.astro.umd.edu/bima/wip/wip.html
mailto:tjp�astro.caltech.edu
mailto:tjp�astro.caltech.edu

 PROGRAM SIMPLE
 INTEGER I, IER, PGBEG
 REAL XR(100), YR(100)
 REAL XS(5), YS(5)
 DATA XS/1.,2.,3.,4.,5./
 DATA YS/1.,4.,9.,16.,25./
 IER = PGBEG(0,'?',1,1)
 IF (IER.NE.1) STOP
 CALL PGENV(0.,10.,0.,20.,0,1)
 CALL PGLAB('(x)', '(y)', 'A Simple Graph')
 CALL PGPT(5,XS,YS,9)
 DO 10 I=1,60
 XR(I) = 0.1*I
 YR(I) = XR(I)**2
 10 CONTINUE
 CALL PGLINE(60,XR,YR)
 CALL PGEND
 END

255 250 250 snow 248 248 255 ghost white 248 248 255 GhostWhite 245 245 245 white
smoke 245 245 245 WhiteSmoke 220 220 220 gainsboro 255 250 240 floral white 255
250 240 FloralWhite 253 245 230 old lace 253 245 230 OldLace 250 240 230 linen 250
235 215 antique white 250 235 215 AntiqueWhite 255 239 213 papaya whip 255 239
213 PapayaWhip 255 235 205 blanched almond 255 235 205 BlanchedAlmond 255 228
196 bisque 255 218 185 peach puff 255 218 185 PeachPuff 255 222 173 navajo white
255 222 173 NavajoWhite 255 228 181 moccasin 255 248 220 cornsilk 255 255 240
ivory 255 250 205 lemon chiffon 255 250 205 LemonChiffon 255 245 238 seashell 240
255 240 honeydew 245 255 250 mint cream 245 255 250 MintCream 240 255 255 azure
240 248 255 alice blue 240 248 255 AliceBlue 230 230 250 lavender 255 240 245
lavender blush 255 240 245 LavenderBlush 255 228 225 misty rose 255 228 225
MistyRose 255 255 255 white
 0 0 0 black
 47 79 79 dark slate gray
 47 79 79 DarkSlateGray
 47 79 79 dark slate grey
 47 79 79 DarkSlateGrey 105 105 105 dim gray 105 105 105 DimGray 105 105 105 dim
grey 105 105 105 DimGrey 112 128 144 slate gray 112 128 144 SlateGray 112 128 144
slate grey 112 128 144 SlateGrey 119 136 153 light slate gray 119 136 153
LightSlateGray 119 136 153 light slate grey 119 136 153 LightSlateGrey 190 190 190
gray 190 190 190 grey 211 211 211 light grey 211 211 211 LightGrey 211 211 211 light
gray 211 211 211 LightGray
 25 25 112 midnight blue
 25 25 112 MidnightBlue
 0 0 128 navy
 0 0 128 navy blue
 0 0 128 NavyBlue 100 149 237 cornflower blue 100 149 237 CornflowerBlue
 72 61 139 dark slate blue
 72 61 139 DarkSlateBlue 106 90 205 slate blue 106 90 205 SlateBlue 123 104 238
medium slate blue 123 104 238 MediumSlateBlue 132 112 255 light slate blue 132 112
255 LightSlateBlue
 0 0 205 medium blue
 0 0 205 MediumBlue
 65 105 225 royal blue
 65 105 225 RoyalBlue
 0 0 255 blue
 30 144 255 dodger blue
 30 144 255 DodgerBlue
 0 191 255 deep sky blue
 0 191 255 DeepSkyBlue 135 206 235 sky blue 135 206 235 SkyBlue 135 206 250 light
sky blue 135 206 250 LightSkyBlue
 70 130 180 steel blue
 70 130 180 SteelBlue 176 196 222 light steel blue 176 196 222 LightSteelBlue 173
216 230 light blue 173 216 230 LightBlue 176 224 230 powder blue 176 224 230

PowderBlue 175 238 238 pale turquoise 175 238 238 PaleTurquoise
 0 206 209 dark turquoise
 0 206 209 DarkTurquoise
 72 209 204 medium turquoise
 72 209 204 MediumTurquoise
 64 224 208 turquoise
 0 255 255 cyan 224 255 255 light cyan 224 255 255 LightCyan
 95 158 160 cadet blue
 95 158 160 CadetBlue 102 205 170 medium aquamarine 102 205 170
MediumAquamarine 127 255 212 aquamarine
 0 100 0 dark green
 0 100 0 DarkGreen
 85 107 47 dark olive green
 85 107 47 DarkOliveGreen 143 188 143 dark sea green 143 188 143 DarkSeaGreen
 46 139 87 sea green
 46 139 87 SeaGreen
 60 179 113 medium sea green
 60 179 113 MediumSeaGreen
 32 178 170 light sea green
 32 178 170 LightSeaGreen 152 251 152 pale green 152 251 152 PaleGreen
 0 255 127 spring green
 0 255 127 SpringGreen 124 252 0 lawn green 124 252 0 LawnGreen
 0 255 0 green 127 255 0 chartreuse
 0 250 154 medium spring green
 0 250 154 MediumSpringGreen 173 255 47 green yellow 173 255 47 GreenYellow
 50 205 50 lime green
 50 205 50 LimeGreen 154 205 50 yellow green 154 205 50 YellowGreen
 34 139 34 forest green
 34 139 34 ForestGreen 107 142 35 olive drab 107 142 35 OliveDrab 189 183 107
dark khaki 189 183 107 DarkKhaki 240 230 140 khaki 238 232 170 pale goldenrod 238
232 170 PaleGoldenrod 250 250 210 light goldenrod yellow 250 250 210
LightGoldenrodYellow 255 255 224 light yellow 255 255 224 LightYellow 255 255 0
yellow 255 215 0 gold 238 221 130 light goldenrod 238 221 130 LightGoldenrod 218
165 32 goldenrod 184 134 11 dark goldenrod 184 134 11 DarkGoldenrod 188 143 143
rosy brown 188 143 143 RosyBrown 205 92 92 indian red 205 92 92 IndianRed 139
69 19 saddle brown 139 69 19 SaddleBrown 160 82 45 sienna 205 133 63 peru 222
184 135 burlywood 245 245 220 beige 245 222 179 wheat 244 164 96 sandy brown 244
164 96 SandyBrown 210 180 140 tan 210 105 30 chocolate 178 34 34 firebrick 165
42 42 brown 233 150 122 dark salmon 233 150 122 DarkSalmon 250 128 114 salmon
255 160 122 light salmon 255 160 122 LightSalmon 255 165 0 orange 255 140 0 dark
orange 255 140 0 DarkOrange 255 127 80 coral 240 128 128 light coral 240 128 128
LightCoral 255 99 71 tomato 255 69 0 orange red 255 69 0 OrangeRed 255 0 0
red 255 105 180 hot pink 255 105 180 HotPink 255 20 147 deep pink 255 20 147
DeepPink 255 192 203 pink 255 182 193 light pink 255 182 193 LightPink 219 112 147
pale violet red 219 112 147 PaleVioletRed 176 48 96 maroon 199 21 133 medium
violet red 199 21 133 MediumVioletRed 208 32 144 violet red 208 32 144 VioletRed

255 0 255 magenta 238 130 238 violet 221 160 221 plum 218 112 214 orchid 186 85
211 medium orchid 186 85 211 MediumOrchid 153 50 204 dark orchid 153 50 204
DarkOrchid 148 0 211 dark violet 148 0 211 DarkViolet 138 43 226 blue violet 138
43 226 BlueViolet 160 32 240 purple 147 112 219 medium purple 147 112 219
MediumPurple 216 191 216 thistle 255 250 250 snow1 238 233 233 snow2 205 201 201
snow3 139 137 137 snow4 255 245 238 seashell1 238 229 222 seashell2 205 197 191
seashell3 139 134 130 seashell4 255 239 219 AntiqueWhite1 238 223 204
AntiqueWhite2 205 192 176 AntiqueWhite3 139 131 120 AntiqueWhite4 255 228 196
bisque1 238 213 183 bisque2 205 183 158 bisque3 139 125 107 bisque4 255 218 185
PeachPuff1 238 203 173 PeachPuff2 205 175 149 PeachPuff3 139 119 101
PeachPuff4 255 222 173 NavajoWhite1 238 207 161 NavajoWhite2 205 179 139
NavajoWhite3 139 121 94 NavajoWhite4 255 250 205 LemonChiffon1 238 233 191
LemonChiffon2 205 201 165 LemonChiffon3 139 137 112 LemonChiffon4 255 248 220
cornsilk1 238 232 205 cornsilk2 205 200 177 cornsilk3 139 136 120 cornsilk4 255 255
240 ivory1 238 238 224 ivory2 205 205 193 ivory3 139 139 131 ivory4 240 255 240
honeydew1 224 238 224 honeydew2 193 205 193 honeydew3 131 139 131 honeydew4
255 240 245 LavenderBlush1 238 224 229 LavenderBlush2 205 193 197
LavenderBlush3 139 131 134 LavenderBlush4 255 228 225 MistyRose1 238 213 210
MistyRose2 205 183 181 MistyRose3 139 125 123 MistyRose4 240 255 255 azure1 224
238 238 azure2 193 205 205 azure3 131 139 139 azure4 131 111 255 SlateBlue1 122 103
238 SlateBlue2 105 89 205 SlateBlue3
 71 60 139 SlateBlue4
 72 118 255 RoyalBlue1
 67 110 238 RoyalBlue2
 58 95 205 RoyalBlue3
 39 64 139 RoyalBlue4
 0 0 255 blue1
 0 0 238 blue2
 0 0 205 blue3
 0 0 139 blue4
 30 144 255 DodgerBlue1
 28 134 238 DodgerBlue2
 24 116 205 DodgerBlue3
 16 78 139 DodgerBlue4
 99 184 255 SteelBlue1
 92 172 238 SteelBlue2
 79 148 205 SteelBlue3
 54 100 139 SteelBlue4
 0 191 255 DeepSkyBlue1
 0 178 238 DeepSkyBlue2
 0 154 205 DeepSkyBlue3
 0 104 139 DeepSkyBlue4 135 206 255 SkyBlue1 126 192 238 SkyBlue2 108 166 205
SkyBlue3
 74 112 139 SkyBlue4 176 226 255 LightSkyBlue1 164 211 238 LightSkyBlue2 141
182 205 LightSkyBlue3

 96 123 139 LightSkyBlue4 198 226 255 SlateGray1 185 211 238 SlateGray2 159 182
205 SlateGray3 108 123 139 SlateGray4 202 225 255 LightSteelBlue1 188 210 238
LightSteelBlue2 162 181 205 LightSteelBlue3 110 123 139 LightSteelBlue4 191 239
255 LightBlue1 178 223 238 LightBlue2 154 192 205 LightBlue3 104 131 139
LightBlue4 224 255 255 LightCyan1 209 238 238 LightCyan2 180 205 205
LightCyan3 122 139 139 LightCyan4 187 255 255 PaleTurquoise1 174 238 238
PaleTurquoise2 150 205 205 PaleTurquoise3 102 139 139 PaleTurquoise4 152 245
255 CadetBlue1 142 229 238 CadetBlue2 122 197 205 CadetBlue3
 83 134 139 CadetBlue4
 0 245 255 turquoise1
 0 229 238 turquoise2
 0 197 205 turquoise3
 0 134 139 turquoise4
 0 255 255 cyan1
 0 238 238 cyan2
 0 205 205 cyan3
 0 139 139 cyan4 151 255 255 DarkSlateGray1 141 238 238 DarkSlateGray2 121 205
205 DarkSlateGray3
 82 139 139 DarkSlateGray4 127 255 212 aquamarine1 118 238 198 aquamarine2 102
205 170 aquamarine3
 69 139 116 aquamarine4 193 255 193 DarkSeaGreen1 180 238 180 DarkSeaGreen2 155
205 155 DarkSeaGreen3 105 139 105 DarkSeaGreen4
 84 255 159 SeaGreen1
 78 238 148 SeaGreen2
 67 205 128 SeaGreen3
 46 139 87 SeaGreen4 154 255 154 PaleGreen1 144 238 144 PaleGreen2 124 205 124
PaleGreen3
 84 139 84 PaleGreen4
 0 255 127 SpringGreen1
 0 238 118 SpringGreen2
 0 205 102 SpringGreen3
 0 139 69 SpringGreen4
 0 255 0 green1
 0 238 0 green2
 0 205 0 green3
 0 139 0 green4 127 255 0 chartreuse1 118 238 0 chartreuse2 102 205 0
chartreuse3
 69 139 0 chartreuse4 192 255 62 OliveDrab1 179 238 58 OliveDrab2 154 205 50
OliveDrab3 105 139 34 OliveDrab4 202 255 112 DarkOliveGreen1 188 238 104
DarkOliveGreen2 162 205 90 DarkOliveGreen3 110 139 61 DarkOliveGreen4 255 246
143 khaki1 238 230 133 khaki2 205 198 115 khaki3 139 134 78 khaki4 255 236 139
LightGoldenrod1 238 220 130 LightGoldenrod2 205 190 112 LightGoldenrod3 139
129 76 LightGoldenrod4 255 255 224 LightYellow1 238 238 209 LightYellow2 205
205 180 LightYellow3 139 139 122 LightYellow4 255 255 0 yellow1 238 238 0
yellow2 205 205 0 yellow3 139 139 0 yellow4 255 215 0 gold1 238 201 0 gold2
205 173 0 gold3 139 117 0 gold4 255 193 37 goldenrod1 238 180 34 goldenrod2 205

155 29 goldenrod3 139 105 20 goldenrod4 255 185 15 DarkGoldenrod1 238 173 14
DarkGoldenrod2 205 149 12 DarkGoldenrod3 139 101 8 DarkGoldenrod4 255 193
193 RosyBrown1 238 180 180 RosyBrown2 205 155 155 RosyBrown3 139 105 105
RosyBrown4 255 106 106 IndianRed1 238 99 99 IndianRed2 205 85 85 IndianRed3
139 58 58 IndianRed4 255 130 71 sienna1 238 121 66 sienna2 205 104 57 sienna3
139 71 38 sienna4 255 211 155 burlywood1 238 197 145 burlywood2 205 170 125
burlywood3 139 115 85 burlywood4 255 231 186 wheat1 238 216 174 wheat2 205 186
150 wheat3 139 126 102 wheat4 255 165 79 tan1 238 154 73 tan2 205 133 63 tan3
139 90 43 tan4 255 127 36 chocolate1 238 118 33 chocolate2 205 102 29 chocolate3
139 69 19 chocolate4 255 48 48 firebrick1 238 44 44 firebrick2 205 38 38
firebrick3 139 26 26 firebrick4 255 64 64 brown1 238 59 59 brown2 205 51 51
brown3 139 35 35 brown4 255 140 105 salmon1 238 130 98 salmon2 205 112 84
salmon3 139 76 57 salmon4 255 160 122 LightSalmon1 238 149 114 LightSalmon2
205 129 98 LightSalmon3 139 87 66 LightSalmon4 255 165 0 orange1 238 154 0
orange2 205 133 0 orange3 139 90 0 orange4 255 127 0 DarkOrange1 238 118 0
DarkOrange2 205 102 0 DarkOrange3 139 69 0 DarkOrange4 255 114 86 coral1 238
106 80 coral2 205 91 69 coral3 139 62 47 coral4 255 99 71 tomato1 238 92 66
tomato2 205 79 57 tomato3 139 54 38 tomato4 255 69 0 OrangeRed1 238 64 0
OrangeRed2 205 55 0 OrangeRed3 139 37 0 OrangeRed4 255 0 0 red1 238 0 0
red2 205 0 0 red3 139 0 0 red4 255 20 147 DeepPink1 238 18 137 DeepPink2 205
16 118 DeepPink3 139 10 80 DeepPink4 255 110 180 HotPink1 238 106 167 HotPink2
205 96 144 HotPink3 139 58 98 HotPink4 255 181 197 pink1 238 169 184 pink2 205
145 158 pink3 139 99 108 pink4 255 174 185 LightPink1 238 162 173 LightPink2 205
140 149 LightPink3 139 95 101 LightPink4 255 130 171 PaleVioletRed1 238 121 159
PaleVioletRed2 205 104 137 PaleVioletRed3 139 71 93 PaleVioletRed4 255 52 179
maroon1 238 48 167 maroon2 205 41 144 maroon3 139 28 98 maroon4 255 62 150
VioletRed1 238 58 140 VioletRed2 205 50 120 VioletRed3 139 34 82 VioletRed4
255 0 255 magenta1 238 0 238 magenta2 205 0 205 magenta3 139 0 139 magenta4
255 131 250 orchid1 238 122 233 orchid2 205 105 201 orchid3 139 71 137 orchid4 255
187 255 plum1 238 174 238 plum2 205 150 205 plum3 139 102 139 plum4 224 102 255
MediumOrchid1 209 95 238 MediumOrchid2 180 82 205 MediumOrchid3 122 55 139
MediumOrchid4 191 62 255 DarkOrchid1 178 58 238 DarkOrchid2 154 50 205
DarkOrchid3 104 34 139 DarkOrchid4 155 48 255 purple1 145 44 238 purple2 125 38
205 purple3
 85 26 139 purple4 171 130 255 MediumPurple1 159 121 238 MediumPurple2 137 104
205 MediumPurple3
 93 71 139 MediumPurple4 255 225 255 thistle1 238 210 238 thistle2 205 181 205
thistle3 139 123 139 thistle4
 0 0 0 gray0
 0 0 0 grey0
 3 3 3 gray1
 3 3 3 grey1
 5 5 5 gray2
 5 5 5 grey2
 8 8 8 gray3

 8 8 8 grey3
 10 10 10 gray4
 10 10 10 grey4
 13 13 13 gray5
 13 13 13 grey5
 15 15 15 gray6
 15 15 15 grey6
 18 18 18 gray7
 18 18 18 grey7
 20 20 20 gray8
 20 20 20 grey8
 23 23 23 gray9
 23 23 23 grey9
 26 26 26 gray10
 26 26 26 grey10
 28 28 28 gray11
 28 28 28 grey11
 31 31 31 gray12
 31 31 31 grey12
 33 33 33 gray13
 33 33 33 grey13
 36 36 36 gray14
 36 36 36 grey14
 38 38 38 gray15
 38 38 38 grey15
 41 41 41 gray16
 41 41 41 grey16
 43 43 43 gray17
 43 43 43 grey17
 46 46 46 gray18
 46 46 46 grey18
 48 48 48 gray19
 48 48 48 grey19
 51 51 51 gray20
 51 51 51 grey20
 54 54 54 gray21
 54 54 54 grey21
 56 56 56 gray22
 56 56 56 grey22
 59 59 59 gray23
 59 59 59 grey23
 61 61 61 gray24
 61 61 61 grey24
 64 64 64 gray25
 64 64 64 grey25
 66 66 66 gray26

 66 66 66 grey26
 69 69 69 gray27
 69 69 69 grey27
 71 71 71 gray28
 71 71 71 grey28
 74 74 74 gray29
 74 74 74 grey29
 77 77 77 gray30
 77 77 77 grey30
 79 79 79 gray31
 79 79 79 grey31
 82 82 82 gray32
 82 82 82 grey32
 84 84 84 gray33
 84 84 84 grey33
 87 87 87 gray34
 87 87 87 grey34
 89 89 89 gray35
 89 89 89 grey35
 92 92 92 gray36
 92 92 92 grey36
 94 94 94 gray37
 94 94 94 grey37
 97 97 97 gray38
 97 97 97 grey38
 99 99 99 gray39
 99 99 99 grey39 102 102 102 gray40 102 102 102 grey40 105 105 105 gray41 105 105
105 grey41 107 107 107 gray42 107 107 107 grey42 110 110 110 gray43 110 110 110
grey43 112 112 112 gray44 112 112 112 grey44 115 115 115 gray45 115 115 115 grey45
117 117 117 gray46 117 117 117 grey46 120 120 120 gray47 120 120 120 grey47 122
122 122 gray48 122 122 122 grey48 125 125 125 gray49 125 125 125 grey49 127 127
127 gray50 127 127 127 grey50 130 130 130 gray51 130 130 130 grey51 133 133 133
gray52 133 133 133 grey52 135 135 135 gray53 135 135 135 grey53 138 138 138 gray54
138 138 138 grey54 140 140 140 gray55 140 140 140 grey55 143 143 143 gray56 143
143 143 grey56 145 145 145 gray57 145 145 145 grey57 148 148 148 gray58 148 148
148 grey58 150 150 150 gray59 150 150 150 grey59 153 153 153 gray60 153 153 153
grey60 156 156 156 gray61 156 156 156 grey61 158 158 158 gray62 158 158 158 grey62
161 161 161 gray63 161 161 161 grey63 163 163 163 gray64 163 163 163 grey64 166
166 166 gray65 166 166 166 grey65 168 168 168 gray66 168 168 168 grey66 171 171
171 gray67 171 171 171 grey67 173 173 173 gray68 173 173 173 grey68 176 176 176
gray69 176 176 176 grey69 179 179 179 gray70 179 179 179 grey70 181 181 181 gray71
181 181 181 grey71 184 184 184 gray72 184 184 184 grey72 186 186 186 gray73 186
186 186 grey73 189 189 189 gray74 189 189 189 grey74 191 191 191 gray75 191 191
191 grey75 194 194 194 gray76 194 194 194 grey76 196 196 196 gray77 196 196 196
grey77 199 199 199 gray78 199 199 199 grey78 201 201 201 gray79 201 201 201 grey79

204 204 204 gray80 204 204 204 grey80 207 207 207 gray81 207 207 207 grey81 209
209 209 gray82 209 209 209 grey82 212 212 212 gray83 212 212 212 grey83 214 214
214 gray84 214 214 214 grey84 217 217 217 gray85 217 217 217 grey85 219 219 219
gray86 219 219 219 grey86 222 222 222 gray87 222 222 222 grey87 224 224 224 gray88
224 224 224 grey88 227 227 227 gray89 227 227 227 grey89 229 229 229 gray90 229
229 229 grey90 232 232 232 gray91 232 232 232 grey91 235 235 235 gray92 235 235
235 grey92 237 237 237 gray93 237 237 237 grey93 240 240 240 gray94 240 240 240
grey94 242 242 242 gray95 242 242 242 grey95 245 245 245 gray96 245 245 245 grey96
247 247 247 gray97 247 247 247 grey97 250 250 250 gray98 250 250 250 grey98 252
252 252 gray99 252 252 252 grey99 255 255 255 gray100 255 255 255 grey100

#ifndef cpgplot_h #define cpgplot_h

#ifdef __cplusplus extern "C" { #endif

typedef int Logical;

void cpgarro(float x1, float y1, float x2, float y2); void cpgask(Logical flag); void
cpgaxis(const char *opt, float x1, float y1, float x2, float y2, float v1, float v2, float
step, int nsub, float dmajl, float dmajr, float fmin, float disp, float orient); int cpgband
(int mode, int posn, float xref, float yref, float *x, float *y, char *ch_scalar); void
cpgbbuf(void); int cpgbeg(int unit, const char *file, int nxsub, int nysub); void cpgbin
(int nbin, const float *x, const float *data, Logical center); void cpgbox(const char
*xopt, float xtick, int nxsub, const char *yopt, float ytick, int nysub); void cpgcirc
(float xcent, float ycent, float radius); void cpgclos(void); void cpgconb(const float
*a, int idim, int jdim, int i1, int i2, int j1, int j2, const float *c, int nc, const float *tr,
float blank); void cpgconf(const float *a, int idim, int jdim, int i1, int i2, int j1, int j2,
float c1, float c2, const float *tr); void cpgconl(const float *a, int idim, int jdim, int
i1, int i2, int j1, int j2, float c, const float *tr, const char *label, int intval, int minint);
void cpgcons(const float *a, int idim, int jdim, int i1, int i2, int j1, int j2, const float
*c, int nc, const float *tr); void cpgcont(const float *a, int idim, int jdim, int i1, int i2,
int j1, int j2, const float *c, int nc, const float *tr); void cpgctab(const float *l, const
float *r, const float *g, const float *b, int nc, float contra, float bright); int cpgcurs
(float *x, float *y, char *ch_scalar); void cpgdraw(float x, float y); void cpgebuf
(void); void cpgend(void); void cpgenv(float xmin, float xmax, float ymin, float ymax,
int just, int axis); void cpgeras(void); void cpgerr1(int dir, float x, float y, float e,
float t); void cpgerrb(int dir, int n, const float *x, const float *y, const float *e, float
t); void cpgerrx(int n, const float *x1, const float *x2, const float *y, float t); void
cpgerry(int n, const float *x, const float *y1, const float *y2, float t); void cpgetxt
(void); void cpggray(const float *a, int idim, int jdim, int i1, int i2, int j1, int j2, float
fg, float bg, const float *tr); void cpghi2d(const float *data, int nxv, int nyv, int ix1,
int ix2, int iy1, int iy2, const float *x, int ioff, float bias, Logical center, float
*ylims); void cpghist(int n, const float *data, float datmin, float datmax, int nbin, int
pgflag); void cpgiden(void); void cpgimag(const float *a, int idim, int jdim, int i1, int
i2, int j1, int j2, float a1, float a2, const float *tr); void cpglab(const char *xlbl, const
char *ylbl, const char *toplbl); void cpglcur(int maxpt, int *npt, float *x, float *y);
void cpgldev(void); void cpglen(int units, const char *string, float *xl, float *yl);
void cpgline(int n, const float *xpts, const float *ypts); void cpgmove(float x, float
y); void cpgmtxt(const char *side, float disp, float coord, float fjust, const char
*text); void cpgncur(int maxpt, int *npt, float *x, float *y, int symbol); void cpgnumb
(int mm, int pp, int form, char *string, int *string_length); void cpgolin(int maxpt, int
*npt, float *x, float *y, int symbol); int cpgopen(const char *device); void cpgpage
(void); void cpgpanl(int nxc, int nyc); void cpgpap(float width, float aspect); void
cpgpixl(const int *ia, int idim, int jdim, int i1, int i2, int j1, int j2, float x1, float x2,
float y1, float y2); void cpgpnts(int n, const float *x, const float *y, const int

*symbol, int ns); void cpgpoly(int n, const float *xpts, const float *ypts); void cpgpt
(int n, const float *xpts, const float *ypts, int symbol); void cpgpt1(float xpt, float
ypt, int symbol); void cpgptxt(float x, float y, float angle, float fjust, const char
*text); void cpgqah(int *fs, float *angle, float *barb); void cpgqcf(int *font); void
cpgqch(float *size); void cpgqci(int *ci); void cpgqcir(int *icilo, int *icihi); void
cpgqclp(int *state); void cpgqcol(int *ci1, int *ci2); void cpgqcr(int ci, float *cr, float
*cg, float *cb); void cpgqcs(int units, float *xch, float *ych); void cpgqdt(int n, char
*type, int *type_length, char *descr, int *descr_length, int *inter); void cpgqfs(int
*fs); void cpgqhs(float *angle, float *sepn, float *phase); void cpgqid(int *id); void
cpgqinf(const char *item, char *value, int *value_length); void cpgqitf(int *itf); void
cpgqls(int *ls); void cpgqlw(int *lw); void cpgqndt(int *n); void cpgqpos(float *x,
float *y); void cpgqtbg(int *tbci); void cpgqtxt(float x, float y, float angle, float fjust,
const char *text, float *xbox, float *ybox); void cpgqvp(int units, float *x1, float *x2,
float *y1, float *y2); void cpgqvsz(int units, float *x1, float *x2, float *y1, float *y2);
void cpgqwin(float *x1, float *x2, float *y1, float *y2); void cpgrect(float x1, float
x2, float y1, float y2); float cpgrnd(float x, int *nsub); void cpgrnge(float x1, float x2,
float *xlo, float *xhi); void cpgsah(int fs, float angle, float barb); void cpgsave(void);
void cpgunsa(void); void cpgscf(int font); void cpgsch(float size); void cpgsci(int ci);
void cpgscir(int icilo, int icihi); void cpgsclp(int state); void cpgscr(int ci, float cr,
float cg, float cb); void cpgscrl(float dx, float dy); void cpgscrn(int ci, const char
*name, int *ier); void cpgsfs(int fs); void cpgshls(int ci, float ch, float cl, float cs);
void cpgshs(float angle, float sepn, float phase); void cpgsitf(int itf); void cpgslct(int
id); void cpgsls(int ls); void cpgslw(int lw); void cpgstbg(int tbci); void cpgsubp(int
nxsub, int nysub); void cpgsvp(float xleft, float xright, float ybot, float ytop); void
cpgswin(float x1, float x2, float y1, float y2); void cpgtbox(const char *xopt, float
xtick, int nxsub, const char *yopt, float ytick, int nysub); void cpgtext(float x, float
y, const char *text); void cpgtick(float x1, float y1, float x2, float y2, float v, float
tikl, float tikr, float disp, float orient, const char *str); void cpgupdt(void); void
cpgvect(const float *a, const float *b, int idim, int jdim, int i1, int i2, int j1, int j2,
float c, int nc, const float *tr, float blank); void cpgvsiz(float xleft, float xright, float
ybot, float ytop); void cpgvstd(void); void cpgwedg(const char *side, float disp, float
width, float fg, float bg, const char *label); void cpgwnad(float x1, float x2, float y1,
float y2);

#ifdef __cplusplus } #endif

#endif

GIF (Graphics Interchange Format)

GIF is a widely supported format for raster graphics, defined by Compuserve, Inc. The program xv
(by John Bradley, bradley@cis.upenn.edu) can be used to display GIF files on UNIX and VMS
workstations. PGPLOT uses the GIF87a variant, with up to 8 bits per pixel (256 colors).

The GIF specification incorporates the Lempel-Zev-Welch (LZW) compression algorithm which is
the subject of a patent awarded to Unisys. Use of this technology, and in particular creation of GIF
format files using this PGPLOT device driver, may require a license from Unisys.

Device type code
/GIF (landscape orientation), /VGIF (portrait orientation).

Default file name
pgplot.gif
A GIF file can contain only a single image, so for multi-page plots PGPLOT creates
additional files. If the supplied file name contains the character #, the file name is derived
by replacing this character with the current page number. If the supplied file name does not
contain a #, PGPLOT appends an underscore and the page number for the second and
subsequent pages, e.g.,

 PGBEG file name: File names used:
 pgplot#.gif pgplot1.gif, pgplot2.gif, pgplot3.gif, ...
 pgplot.gif pgplot.gif, pgplot.gif_2, pgplot.gif_3, ...

If the supplied file name is ``-'', the output is sent to the standard output stream, so that it
can, for example, be piped into a viewing program. This will only work for single-page
plots.

Default view surface dimensions
/GIF: 850 by 680 pixels (nominally 10.0 by 8.0 inches)
/VGIF: 680 by 850 pixels (nominally 8.0 by 10.0 inches)
These defaults can be overridden by specifying environment variables, or by calling
routine PGPAP. The maximum size is limited only by available memory.

Resolution
PGPLOT assumes that the device resolution is 85 pixels/inch, but the actual resolution
will vary depending on the display device.

Color capability
Color indices 0--255 are accepted, with standard defaults for color indices 0--15. If the
color representation of a color index is changed, it affects all pixels drawn in that color on
the current page.

Input capability
None.

Environment variables
PGPLOT_GIF_WIDTH : width of image in pixels (default 850)
PGPLOT_GIF_HEIGHT : height of image in pixels (default 680)

File format
GIF files are binary files.

Author
Remko Scharroo, Tim Pearson, 1994.

Transparent Background Images

The GIF87a images produced by PGPLOT do not have a way of specifying a transparent
background. You can mark the background as transparent if you convert the file to GIF89a format
using giftrans and specify that color index 0 should be transparent.

● Giftrans source code for Unix is available from the European FTP site

● Giftrans documentation (nroff format) is available from the European FTP site

● Giftrans.exe executable for DOS is available from European FTP site

To use giftrans, just type

giftrans -t index GIF87a-file > GIF89a-file

This converts the GIF87a-file to a GIF89a-file, with the index entry in the colormap made
transparent. Invoke giftrans with the -? option to see a complete usage description.

ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.c
ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.1
ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.exe

Hewlett-Packard HPGL Plotters

HPGL (Hewlett-Packard Graphics Language) is a vector-graphics format for control of pen-
plotters and laser-printers manufactured by Hewlett-Packard Co., and some other manufacturers.
This PGPLOT device handler produces files that should be acceptable to most HPGL and
HPGL/2 devices, specifically the HP7475A Plotter.

Device type code
/HPGL (landscape orientation), /VHPGL (portrait orientation).

Default file name
pgplot.hpgl

Default view surface dimensions
/HPGL: 16640 by 11040 pixels (16.38 by 10.87 inches)
/VHPGL: 110400 by 16640 pixels (nominally 10.87 by 16.38 inches)
These dimensions are chosen for 17 by 11-inch paper.

Resolution
The nominal resolution is 1016 pixels/inch, but the actual resolution will vary depending
on the display device.

Color capability
Color indices 1--6 are accepted, and are interpreted as pen numbers.

Input capability
None.

Environment variables
If environment variable PGPLOT_GL_TERMINAL has value YES (or any string
beginning with Y or y), it is assumed that the output device is a plotter connected before
the terminal using the Y-cable (HP part #17455A), in which case the plotter is ``turned on''
and xon/xoff handshaking is enabled using escape sequences. Otherwise, it is the user's
responsibility to add control codes, if needed. If there is more than one plot and the plot is
on a terminal, a prompt will be generated, allowing the page to be advanced.

File format
HPGL files are plain text.

Author
B. H. Toby, T. J. Pearson, 1988-1994.

PPM (Portable Pixel Map)

The PPM raster format was defined by Jef Poskanzer, whose Portable Bitmap Utilities (available
on the Internet) can be used to translate it into a variety of other formats. The program xv (by John
Bradley, bradley@cis.upenn.edu) can be used to display PPM files on UNIX and VMS
workstations. PGPLOT uses the P6 variant, with 24 bits (8 each for R, G, B) for each pixel. The
format is not efficient in use of storage, so for most purposes the GIF format is preferred.

Device type code
/PPM (landscape orientation), /VPPM (portrait orientation).

Default file name
pgplot.ppm
A PPM file can contain only a single image, so for multi-page plots PGPLOT creates
additional files. If the supplied file name contains the character #, the file name is derived
by replacing this character with the current page number. If the supplied file name does not
contain a #, PGPLOT appends an underscore and the page number for the second and
subsequent pages, e.g.,

 PGBEG file name: File names used:
 pgplot#.ppm pgplot1.ppm, pgplot2.ppm, pgplot3.ppm, ...
 pgplot.ppm pgplot.ppm, pgplot.ppm_2, pgplot.ppm_3, ...

If the supplied file name is ``-'', the output is sent to the standard output stream, so that it
can, for example, be piped into a viewing program. This will only work for single-page
plots.

Default view surface dimensions
/PPM: 850 by 680 pixels (nominally 10.0 by 8.0 inches)
/VPPM: 680 by 850 pixels (nominally 8.0 by 10.0 inches)
These defaults can be overridden by specifying environment variables, or by calling
routine PGPAP. The maximum size is limited only by available memory.

Resolution
PGPLOT assumes that the device resolution is 85 pixels/inch, but the actual resolution
will vary depending on the display device.

Color capability
Color indices 0--255 are accepted, with standard defaults for color indices 0--15. If the
color representation of a color index is changed, it affects only pixels drawn subsequently,
so the number of different colors that can be used in an image is not limited to 256.

Input capability
None.

Environment variables
PGPLOT_PPM_WIDTH : width of image in pixels (default 850)
PGPLOT_PPM_HEIGHT : height of image in pixels (default 680)

File format
PPM files are binary files.

Author
Remko Scharroo, Tim Pearson, 1994.

PGPLOT driver for PostScript printers

The PostScript page description language is widely used for desktop publishing. PostScript files
can be printed on many laser printers and photo-typesetters, and they can also be viewed on most
workstations (e.g., use ghostview on UNIX workstations, pageview on Sun workstations, view/
format=ps/interface=decw on VMS workstations). A single-page PGPLOT PostScript file is valid
``encapsulated PostScript'' and can be included in another file by way of a page-composition
program. PGPLOT generates level-1 PostScript which is accepted by all PostScript printers.
PostScript is a trademark of Adobe Systems Incorporated.

Device type code

● /PS (monochrome landscape mode, long edge of paper horizontal).
● /CPS (color landscape mode, long edge of paper horizontal).
● /VPS (monochrome portrait mode, short edge of paper horizontal).
● /VCPS (color portrait mode, short edge of paper horizontal).

``Color'' PostScript files can be printed on monochrome printers: the colors will be rendered as
shades of grey. Use the monochrome codes (/PS, /VPS) when you know that the file is to be printed
only on monochrome printers.

Default file name

● pgplot.ps

If a file name of - is specified (e.g., -/PS) the PostScript file is sent to the standard output stream
(stdout in UNIX).

Default view surface dimensions

10.5 inches horizontal by 7.8 inches vertical (landscape mode); 7.8 inches horizontal by 10.5 inches
vertical (portrait mode). These dimensions can be changed with environment variables.

Resolution

The driver uses coordinate increments of 0.001 inch, giving an ``apparent'' resolution of 1000
pixels/inch. The true resolution is device-dependent; e.g., on an Apple LaserWriter it is 300 pixels/
inch (in both dimensions).

Color capability

Color indices 0--255 are supported, and the color representation can be changed with routine
PGSCR. With device types /PS and /VPS, color index 0 is white (erase or background color),
indices 1--13 are black, 14 is light grey, and 15 is dark grey; while with device types /CPS and /
VCPS, color index 0 is white (erase or background color), index 1 is black, and indices 2--15 have
the standard PGPLOT color assignments.

File format

The file contains variable length records (maximum 132 characters) containing PostScript
commands. The commands use only printable ASCII characters, and the file can be examined or
modified with a text editor.

Obtaining hardcopy

Use the operating system print or copy command to send the file to a suitable PostScript printer.

Environment variables

PGPLOT_PS_WIDTH (default 7800)
PGPLOT_PS_HEIGHT (default 10500)
PGPLOT_PS_HOFFSET (default 350)
PGPLOT_PS_VOFFSET (default 250)

These variables tell PGPLOT how big an image to produce. The defaults are appropriate
for 8.5 x 11-inch paper. The maximum dimensions of a PGPLOT image are WIDTH by
HEIGHT, with the lower left corner offset by HOFFSET horizontally and VOFFSET
vertically from the lower left corner of the paper. The units are milli-inches. The ``top'' of
the paper is the edge that comes out of the printer first.

PGPLOT_IDENT
If this variable is defined (with any value), the user name, date and time are written in the
bottom right corner of each page.

PGPLOT_PS_BBOX
Normally, PGPLOT computes the bounding box for the entire plot (the smallest rectangle
that includes all the graphics) as it creates the PostScript file, and writes this information
in a %%BoundingBox comment in the file trailer. Some programs that read encapsulated
PostScript files expect to find the %%BoundingBox comment in the file header, not the
trailer, and may not display the plot correctly. To fix this problem, you may need to move
the comment from the trailer to the header with a text editor or special program.
Alternatively, you can define PGPLOT_PS_BBOX = MAX. This tells PGPLOT to put a %
%BoundingBox comment in the header of the PostScript file; the bounding box is one
which encompasses the whole plottable area, not a minimal one, because PGPLOT does
not know the correct bounding box until it has finished writing the file.

PGPLOT_PS_DRAW_BBOX
If this variable is set, the bounding box (the smallest rectangle that includes all the
graphics) is drawn on each page.

PGPLOT_PS_VERBOSE_TEXT
If this variable is set, the text of each plotted character string is included in the PostScript
file as a comment before the sequence of vectors that represents the string. This makes the
file slightly larger, but it can be useful if you want to edit the PostScript file.

PGPLOT_PS_EOF
Normally the output file does not contain special end-of-file characters. But if environment
variable PGPLOT_PS_EOF is defined (with any value) PGPLOT writes a control-D job-
separator character at the beginning and at the end of the file. This is appropriate for
Apple LaserWriters using the serial interface, but it may not be appropriate for other
PostScript devices.

PGPLOT_PS_MARKERS
Specify NO to suppress use of a PostScript font for the graph markers; markers are then
emulated by line-drawing. If this option is not requested, PGPLOT graph markers are

scaled geometrically with the character-height attribute and the line-width attribute is
ignored. This is different from most of the other drivers, where the line-width used for
markers is set by the line-width attribute rather than the character-height attribute.
Requesting this option makes the PostScript driver behave like the other drivers, but it
also makes the PostScript files larger.

Document Structuring Conventions

The PostScript files conform to Version 3.0 of the Adobe Document Structuring Conventions (see
ref.3) and to version 3.0 of the encapsulated PostScript file (EPSF) format. This should allow the
files to be read by other programs that accept the EPSF format. Note, though, that multi-page
plots are not valid EPSF files. The files do not contain a screen preview section. A device-
independent screen preview can be added to PGPLOT files with the program ps2epsi by George
Cameron, available with the GhostScript PostScript interpreter from Aladdin Enterprises.

Note that a valid EPSF file should have a %%BoundingBox comment in the header of the file. By
default, PGPLOT puts the comment in the trailer of the file, where some but not all programs will
find it. You may need to move this comment into the file header using a text editor or special
program. See also the discussion of the environment variable PGPLOT_PS_BBOX above.

References

1. Adobe Systems, Inc.: PostScript Language Reference Manual. Addison-Wesley, Reading,
Massachusetts, 1985.

2. Adobe Systems, Inc.: PostScript Language Tutorial and Cookbook. Addison-Wesley,
Reading, Massachusetts, 1985.

3. Adobe Systems, Inc.: PostScript Language Reference Manual, Second Edition. Addison-
Wesley, Reading, Massachusetts, 1990.

Author

T. J. Pearson, 1991--1995.

http://www.cs.wisc.edu/~ghost/index.html

X Window Dump

X Window dump files can be displayed on X Window workstations using the xwud utility and
converted to a printable form using the xpr utility. These utilities are available in most X Window
installations.

The X Window system can produce dump files in a variety of formats. PGPLOT uses an image
format of ``ZPixmap'' with 8 bits per pixel.

Device type code
/WD (landscape orientation), /VWD (portrait orientation).

Default file name
pgplot.xwd
An X Window dump file can contain only a single image, so for multi-page plots PGPLOT
creates additional files. If the supplied file name contains the character #, the file name is
derived by replacing this character with the current page number. If the supplied file name
does not contain a #, PGPLOT appends an underscore and the page number for the second
and subsequent pages, e.g.,

 PGBEG file name: File names used:
 pgplot#.xwd pgplot1.xwd, pgplot2.xwd, pgplot3.xwd, ...
 pgplot.xwd pgplot.xwd, pgplot.xwd_2, pgplot.xwd_3, ...

Default view surface dimensions
/WD: 850 by 680 pixels (nominally 10.0 by 8.0 inches)
/VWD: 680 by 850 pixels (nominally 8.0 by 10.0 inches)
These defaults can be overridden by specifying environment variables, or by calling
routine PGPAP. The maximum size is limited only by available memory.

Resolution
PGPLOT assumes that the device resolution is 85 pixels/inch, but the actual resolution
will vary depending on the display device.

Color capability
Color indices 0--255 are accepted, with standard defaults for color indices 0--15. If the
color representation of a color index is changed, it affects all pixels drawn in that color on
the current page.

Input capability
None.

Environment variables
PGPLOT_WD_WIDTH : width of image in pixels (default 850)
PGPLOT_WD_HEIGHT : height of image in pixels (default 680)

File format
X Window Dump files are binary files.

Author
Scott Allendorf, 1995.

X Window Workstations

Author
M. C. Shepherd, 1994.

Supported device
All workstations running the X Window System (Version 11 Release 4 and above) under
UNIX, VMS and OpenVMS.

Device type codes
❍ /XWINDOW opens a window that disappears when PGEND is called.
❍ /XSERVE opens a window that persists for reuse after PGEND is called.

Default device name

The default X display name defined by one's environment.
Under UNIX this is given by the DISPLAY environment variable.
Under VMS it is the device last created with CREATE/DISPLAY.

Device name specification
window@host:display.screen

The device name specifies the X-window display to use, the screen of that display and the
PGPLOT window number to use.

The window number is a small integer used to identify individual windows created by
PGPLOT. You can either specify the number of an existing inactive window to reuse, or
provide a new number to assign to a new window. If the number is omitted or specified as
zero, then either the last window to become inactive will be reused, or a new window will
be created and assigned the lowest unused window number. The number of each window is
displayed in the title of the window.

The host part of the specification is the address of the host on which the display resides. If
a DECNET address is used, the host name should be separated from the display number by
two colons instead of one.

The display part of the specification is the number of the display server on the given host.
Usually this is 0, but if you have multiple X terminals connected to the same machine, then
each terminal is generally assigned a different display number.

The screen number is also usually 0, but if your display has multiple screens, then each is
identified by a small integer.

For example "2@foo.wherever.edu:0.0/xw" opens PGPLOT window 2 as a /xwindow
window on host foo.wherever.edu. Note that the @ symbol is optional if the display name
is omitted. Thus "2/xw" opens window 2 on the default display.

Default view surface dimensions
The default geometry of each window is specified in pixels, using the following hierarchy

of specifications. Missing details at each level are supplied by those below.
1. X resource: pgxwin.win#.geometry: WIDTHxHEIGHT+X+Y
2. X resource: pgxwin.Win.geometry: WIDTHxHEIGHT+X+Y
3. Environment variable: PGPLOT_XW_WIDTH [fractional display width]
4. Width=867, height=669 and aspect=8.5/11.

Once displayed, the window can be resized with the mouse, but the drawing area is only
resized to reflect this when the next page is started.

Resolution
Depends on monitor.

Color capability
Colormaps of types PseudoColor, StaticColor, GrayScale, StaticGray, and TrueColor are
supported. By default, the first available colormap from one of the following lists is used.

❍ For color displays: PseudoColor, StaticColor, TrueColor.
❍ For gray-scale displays: GrayScale, StaticGray.
❍ For monochrome displays: The default colormap of the screen.

Thus, where possible a read/write colormap is chosen. This allows color representation
changes via PGCTAB, PGSCR and PGSHLS to be applied immediately to previously
drawn graphics, which makes it possible to interactively fiddle the colors when used in
conjunction with PGBAND.

If the first available colormap type happens to match that of the default colormap of the
screen, and enough colors are available therein, then that colormap is used. Otherwise,
allocation of a private colormap is attempted. If this fails, the device is treated as
monochrome. The default color-map type can be overriden via the pgxwin.Win.visual
resource described below. However, if the requested colormap type is not available, the
driver reverts to its default colormap search strategy.

By default the driver tries to allocate 100 colors. This number usually makes it possible to
have two windows displayed simultaneously without having to allocate a private colormap.
This helps to avoid colormap flashing as the pointer is moved between windows. You can
override this default with a number in the range 2 to 255 by using the pgxwin.Win.
maxColors X resource.

Input capability
The cursor is usually controlled by a mouse. Cursor input is achieved by moving the cursor
into the window, and pressing either a mouse button or a keyboard key to select a given
position in the window and return a key value. The mouse buttons are mapped to return
characters A, D, and X. The cursor can also be moved horizontally and vertically with the
keyboard arrow keys: each keystroke moves the cursor by one pixel, or 10 pixels if the
SHIFT key is depressed. Rubber-banding is supported: see routine PGBAND. With Click-
to-focus window managers you may have to explicitly click on the window to enable
keyboard input in the PGPLOT window.

X resources
The following optional X window resources can be used to specify configuration options.
On POSIX-compliant systems, these should be placed in a file called .Xdefaults in your
home directory. Under VMS they should be placed in DECW$USER_DEFAULTS:DECW
$XDEFAULTS.DAT. Note that by default DECW$USER_DEFAULTS is defined as SYS
$LOGIN. Resource specification is discussed further in the "Potential problems" section

further below.

The following resource descriptions show how a resource line should be constructed in
one's resource file. Where default values are available they are indicated. Otherwise the
value is indicated symbolically and instructions are given for substituting appropriate
values.

pgxwin.Win.geometry: WIDTHxHEIGHT+X+Y
This specifies the size and position of a window in pixels. Any of the above
components can be omitted. The X and Y values specify the position of the top left
corner of the window wrt the top left corner of the screen, if positive, or the bottom
right corner wrt the bottom right corner, if negative.

pgxwin.Win.iconGeometry: +X+Y
This specifies the position of the iconized form of a window, in pixels. The X and Y
values specify the position of the top left corner of the window wrt the top left
corner of the screen, if positive, or the bottom right corner wrt the bottom right
corner, if negative.

pgxwin.Win.acceptQuit: False
Most window managers provide a way for the user to destroy a window using the
mouse, often via an option in a pull down menu. By default PGPLOT takes steps to
ignore this action when a window is actually being used by a PGPLOT program.
To re-enable it, set:
pgxwin.Win.acceptQuit: True

pgxwin.Win.iconize: False
By default, PGPLOT /XSERVE windows remain mapped when PGEND is called or
when the program is terminated. If instead you wish the window to be iconized until
opened by a new PGPLOT program, set:
pgxwin.Win.iconize: True

pgxwin.Win.maxColors: 100
This specifies the maximum number of colors that PGPLOT tries to allocate for
each X window. Reducing the number of colors allocated makes it more likely that
each window will share the same colormap and thus stop ``colormap flashing''. Note
that the value of the maxColors option must not be less than that of the minColors
resource described below.

pgxwin.Win.minColors: 16
To reject colormaps with fewer than a given number of color entries, specify the
minimum number of colors required.

pgxwin.Win.visual: default
If you have a preference for the type of colormap to use, specify the name of the
preferred type. PGPLOT will then try that type first. The following type names
are recognized:

■ default - Use the colormap search strategy described in the "Color
Capability" section.

■ monochrome - Use black and white.
■ PseudoColor - Read/write color visual.

■ DirectColor - (This is treated as an alias for TrueColor).
■ StaticColor - Read-only color visual.
■ TrueColor - Read-only color visual (3 primary colortables).
■ GrayScale - Read/write gray-scale visual.
■ StaticGray - Read-only gray-scale visual.

pgxwin.Win.crosshair: False

To augment the default active PGPLOT cursor with cross hairs, set:
pgxwin.Win.crosshair: True

pgxwin.server.visible: True
To hide the PGPLOT server window set
pgxwin.server.visible: False

pgxwin.server.iconGeometry: +X+Y
This specifies the position of the server window icon on the X display, in display
pixels. The X and Y values specify the position of the top left corner of the window
wrt the top left corner of the screen, if positive, or the bottom right corner wrt the
bottom right corner, if negative.

Note that resource specifications that start with pgxwin.Win apply to all PGPLOT /
xwindow and /xserve windows. To target options at specific windows, replace the Win
component of the specification with win#, where # is the number of the PGPLOT window.
For example:

 pgxwin.Win.crosshair: True
 pgxwin.win2.crosshair: False

stipulates that all windows except PGPLOT window 2 will use a crosshair for the default
cursor. Note that Win is spelt with an upper case initial 'W', whereas win# is spelt with an
initial lower-case 'w'. This is important because all resource names are case sensitive.

A better example of the utility of targeting options at specific windows is the following:

 pgxwin.Win.geometry: 500x500+600+360
 pgxwin.win1.geometry: 500x500+600+33

This example places the first PGPLOT window in one position on the display, and all
other windows in a second location - thus avoiding obscuring the first by the second etc..

Similarly if one wanted to dedicate one window to line graphics, one could designate a
specific window number to have a reduced number of colors.

 pgxwin.win10.maxColors: 16

This window would then be selected using a device specification of "10/xserve".

The /XWINDOW and /XSERVE window server (pgxwin_server).

All PGPLOT /xwindow and /xserve windows on a single display are created and
maintained by a separate server program called pgxwin_server. If PGPLOT has been
installed correctly then this program is automatically started by the /xw and /xs driver
when first called upon. pgxwin_server then continues to serve windows to subsequent
PGPLOT programs and remains running indefinitely. In order that it be possible to kill the
server, an icon window for it is displayed. Window managers generally provide a way to
interactively kill windows, and if this is applied to the server window, then the server will
close any inactive /xserve windows, and if no active /xw or /xs windows remain, then the
server will shut itself down cleanly. Note that inactive windows are distinguishable from
active windows by the appearance of a skull-and-crossbones cursor.

If pgxwin_server fails to start automatically, see the "Potential problems" section below on
how to remedy this. However, if for some reason it is necessary to run pgxwin_server
manually, you'll need to know the following. In particular, under VMS, before you can run
the server you will first need to register it as a foreign command, by typing:

pgxwin_server:=="$directory_name:pgxwin_server.exe"

If your default display is correctly set then simply typing:

pgxwin_server

with no arguments should start the server, and the server icon should appear on the
display. If an alternate display is desired then the default display can be overridden with
the -display argument. Other options to override selected X resources from the command-
line are also available. To see them type:

pgxwin_server -help

Potential problems.
The server fails to start.

If the server fails to start automatically then this means that the /xw and /xs driver
was unable to find the pgxwin_server executable. It first looks in the directory
specified in your PGPLOT_DIR environment variable (or LOGICAL
PGPLOT_DIR variable under VMS). Under UNIX, if it fails to find the executable
there, it then looks for the executable in each component directory cited in your
PATH environment variable. To fix the problem, first determine where the person
who compiled PGPLOT installed pgxwin_server and then either place this
directory name in your PGPLOT_DIR variable or, under UNIX, add it to your
PATH.

If you are still unable to get the server to start automatically, please send me Email
at mcs·astro.caltech.edu. In the meantime, you can work around the problem by

starting the server by hand, as described previously.

X resource options are ignored.
First check check both the spelling and case of your resource names. Resource
names are case sensitive and must appear exactly as indicated above.

The X resource database is compiled by the pgxwin_server program when it is

mailto:mcs�astro.caltech.edu

started. Resources set after it has been started are ignored and pgxwin_server will
need to be restarted before they are acquired. There are a number of places in
which the server can find resources, and your specifications will not be seen if they
appear in the wrong place. pgxwin_server attempts to follow the rules laid down by
the X Toolkit. First it looks for a RESOURCE_MANAGER property on the root
window of your display. This contains a list of resource names and values and
comes into being when the standard xrdb program is applied to a resource file. It is
common for xrdb to be applied automatically to your Xdefaults file, or to a system
supplied xdefaults file when the X server is first started. If this is the case then
changes to your Xdefaults file will be ignored until the server is restarted or you
explicitly re-run the xrdb command.

If - and only if - the RESOURCE_MANAGER property does not exist, then under
UNIX pgxwin_server looks for a file called .Xdefaults in your home directory, and
under VMS it looks for a file called DECW$USER_DEFAULTS:DECW
$XDEFAULTS.DAT. If it finds this file, it initializes its resource database from it.
It then also looks to see if the XENVIRONMENT environment variable contains a
valid file name and if so reads resources from that file, overriding any contrasting
resources from your Xdefaults file.

To be sure that changes to resources in your Xdefaults are seen by pgxwin_server
you should use the xrdb command to install them on the display:

UNIX:

 (cd;xrdb .Xdefaults)

VMS:

 $ xrdb -nocpp decw$user_defaults:decw$xdefaults.dat

If the xrdb command is not defined on your system, then first execute:

 $ @DECW$UTILS:DECW$DEFINE_UTILS.COM

Then terminate pgxwin_server by quiting its icon and ask for /xw or /xs again to
restart it.

PGDISP or FIGDISP server for X Window workstations

The figdisp server is part of Figaro: it maintains a ``line graphics'' window which can be addressed
by PGPLOT using the /XDISP device type. The pgdisp server is a subset of figdisp that shows
only the line graphics window. Both server programs run in the background and keep the PGPLOT
window open. (Most users will prefer to use /XSERV instead of /XDISP).

Author
Sam Southard, Jr., 1991.

Device type code
/XDISP.

Starting PGDISP

To start up the pgdisp server (in the background), use

% pgdisp [options] &

You can change the size of the server window with the mouse. You can also use standard -
geometry and -display options with pgdisp. PGPLOT will adapt to the size selected, but it is not
possible to change the size of a graph after it has been displayed. To remove the server, select
Quit from its menu. If the pgdisp program is not in a directory in your path, you will need to use
the full file name (or create an alias), e.g.,

% /usr/local/pgplot/pgdisp [options] &

Redirecting the Display

Before starting pgdisp, both the Figaro and the X11 environment must be set up. The X11
environment consists of setting the DISPLAY environment variable appropriately. For example:

% setenv DISPLAY :0

or

% setenv DISPLAY lo-fan:0.0

The first example would cause the display to appear on the local machine. Other values which can
be used to accomplish this are "unix:0.0" and "lhost:0.0", where lhost is the name of the local host.

Multiple Copies

If you wish to start up a second copy of pgdisp, type the line

% pgdisp -id # [options] &

where # represents any integer. Note that there cannot be a copy of figdisp and a copy of pgdisp
running on the same screen with the same id. To send graphics to a particular pgdisp window,
specify the id number before /XDISP, e.g., "1/XDISP". The default is 0.

Options

The PGDISP window uses a default of 16 colors (2 if on a monochrome screen or it can't get 16
colors for some reason), but this can be changed with the lineColors resource. You need more than
16 colors for PGPLOT gray-scales; I recommend 64. More than 64 colors is likely to steal too
many from other windows.

The window can be resized arbitrarily. The initial size is determined by the figdisp.lg.geometry
resource. Since PGPLOT automatically scales to use the entire window, the line graphics window
should not be resized while a program is accessing it. If this is done, the display server will not
crash, but the output will look odd, and cursor positioning may be incorrect.

The window title is updated to show the position of the cursor when the cursor is in the line
graphics window.

Command Line Option X resource Default Notes

-display disp .display none The display on which the
 display server should run.

-id # .id 0 The id number of this copy of
 figdisp or pgdisp. An
 arbitrary number of copies of
 figdisp/pgdisp may be run at
 the same time, as long as each
 one's id number is unique.

-geometry WxH[+x+y] 512x512 This flag corresponds to
 .bm.geometry in figdisp and
 .lg.geometry in pgdisp

-lgGeometry WxH[+x+y] .lg.geometry 512x512 The line graphics window
 geometry.

-lineColors # .lineColors 16 The number of colors to use for
 line graphics.

-visual .visual Any The visual to use. Accepted
 values include the X11 visuals
 PseudoColor and GrayScale, as
 well as Default (only the

 default visual is allowed) and
 Any (any visual is allowed) for
 either pgdisp or figdisp.
 Pgdisp also allows the X11
 visual classes StaticGray,
 StaticColor, DirectColor, and
 TrueColor.

-lgCrosshair .lg.Crosshair Specify to get
 cross-hair cursor.

VMS Workstations Running VWS software

Supported device
This driver should work with all VAX/VMS workstations running VWS software; it
requires the UISSHR shareable image provided by DEC.

Device type code
/WS.

Default device name
PGPLOT. Output is always directed to device SYS$WORKSTATION; the ``device name''
provided by the user is used to label the PGPLOT window.

Default view surface dimensions
Depends on monitor. PGPLOT uses a window which is nominally 11 inches wide by 8.5
inches tall, i.e., the same size as you would get in a hardcopy. If you prefer a vertical
orientation, execute the following command before running the program:

$ DEFINE PGPLOT_WS_ASPECT PORTRAIT

Substitute LANDSCAPE for PORTRAIT to revert to horizontal orientation.
Resolution

Depends on monitor.
Color capability

VAX workstations can have 1, 4, or 8 bitplanes. On 1-plane devices, there are only two
colors (background = white, color index 1 = black). On 4-plane devices, color indices 0--11
are available (4 indices are reserved for text windows and pointers). On 8-plane systems,
color indices 0--249 are available (6 indices are reserved for text windows and pointers).

Input capability
The cursor is controlled by the mouse or the keypad available on the controlling (DEC-
like) keyboard. The user positions the cursor, and then types any key on the controlling
keyboard. The mouse buttons are ignored (at present).

Author
S. C. Allendorf, 1990.

NeXT Workstations

Supported device
Any computer running NeXTstep.

Device type code
/next.

Default device name
none

Default view surface dimensions
The default screen size is 720 by 535 pixels (about 8 by 6 inches on a 19 inch monitor). The
aspect ratio was selected to match the /PS device. The window can be resized larger or
smaller.

Resolution
The screen resolution is 92 dpi. The driver generates PostScript commands with a
resolution 10 times greater than the screen resolution. This allows the window to be
resized and/or a hardcopy to be made with no loss of resolution.

Color capability
On all devices, color indices 0-15 are supported. The default colors are 0 is white, 1 is
black, 14 is light gray, 15 dark gray. On monochrome devices, color indices 2-13 default to
black. If the driver detects a color server, then color indices 0-255 are allowed and color
indices 2-13 default to the standard PGPLOT colors.

Input capability
The PGPLOT cursor is supported. When a cursor read is requested the the viewer becomes
the active application and the active plot window becomes the key window. This allows
the user to terminate the cursor read by either a mouse click (which generates an 'A'
character) or by pressing a key on the keyboard.

File format
By using the print command, in the main menu, you can send the contents of the current
window to a file. This file can then be printed on any PostScript printer.

Obtaining hardcopy
If you click on the print item in the main menu, then the standard NeXT print panel comes
up. This allows the contents of the current window to be sent to a printer, disk file or
previewer.

References
1. Adobe Systems, Inc.: PostScript Language Reference Manual. Addison-Wesley, Reading,

Massachusetts, 1985.
2. Adobe Systems, Inc.: PostScript Language Tutorial and Cookbook. Addison-Wesley,

Reading, Massachusetts, 1985.
3. Adobe Systems, Inc.: PostScript Language Reference Manual, Second Edition. Addison-

Wesley, Reading, Massachusetts, 1990.
4. Adobe Systems, Inc.: Programming the Display PostScript System with NeXTstep.

Addison-Wesley, Reading, Massachusetts, 1992.
Author

A. F. Tennant, 1992.

Acorn Archimedes

This driver will cause the system to leave the Desktop, but leave the screen mode provided it has
the normal 16 colours.

This routine must be compiled with Fortran release 2, and linked with the Fortran Friends
graphics and utils libraries.

Resolution: Depends on graphics mode. Ensure that the current mode is suitable before running the
PGPLOT program.

MS-DOS Machines

Supported device
IBM PCs and compatibles running Microsoft Fortran 5.0. This driver will put the display
into graphics mode. To avoid `erasing' the screen when the program exits, the display will
be left in graphics mode. Therefore, you will need some other program to restore to the
display to a (faster) text mode.

Device type code
/MSOFT.

Default device name
none (the device name, if specified, is ignored).

Default view surface dimensions
depends on monitor, typical 7 x 10 inches.

Resolution
Depends on graphics card. Tested with a 640 x 300 EGA card. Driver should work with
other graphics cards, however, expect to tweak it a bit.

Color capability
Color indices 0--15 are accepted. This version maps the PGPLOT color indices into the
IBM color indices with the default color most closely corresponds to the PGPLOT default
color. Thus, PGPLOT index 2 (red) maps to IBM index 12 (light red).

Input capability
?

Author
A. F. Tennant.

MS-DOS machines running Lahey F77 32-bit FORTRAN

This PGPLOT driver is for IBM PC's and clones running MS-DOS and Lahey F77 32-bit Fortran
v5.0. The driver will put the display into graphics mode, and calls to `close' the workstation
(PGEND) will set it back into the previous mode (generally erasing the display, so don't do it until
you are really finished).

This routine must be compiled and linked with the Lahey graphics library GRAPH3 supplied with
Lahey Fortran v4.0 or greater.

Supported device
IBM PC's and compatibles.

Device type code
/LH

Default device name
None (the device name, if specified, is ignored).

Default view surface dimensions
Depends on monitor, typically 7x10 inches.

Resolution
Depends on graphics card. Tested with a 640x480 VGA card. Driver should work with other
graphics cards.

Color capability
Color indices 0-15 are accepted. The PGPLOT color indices are mapped into the IBM
color indices for with the default color most closely corresponds to the PGPLOT default
color. Thus, PGPLOT index 2 (red) maps to IBM index 12 (light red).

Input capability
Graphics cursor implemented using Microsoft Mouse or compatible, accessed through DOS
calls.

File format
None.

Tektronix Terminals and Emulators

Supported device
1. Tektronix 4006/4010 storage-tube terminal; can be used with emulators, but the

options below take advantage of features not present in the basic Tektronix
terminal.

2. GraphOn Corporation 200-series terminals. These emulate a Tektronix-4010 with
enhancements (selective erase, rectangle fill, switch between Tek and VT100
modes).

3. Digital Engineering, Inc., Retrographics modified VT100 terminal (VT640).
4. IRAF GTERM Tektronix terminal emulator, with color extensions.
5. Xterm window on an X-window server. Emulates a Tektronix-4014, with extensions

(switch between Tek and VT100 windows).
6. ZSTEM 240 and ZSTEM 4014 terminal emulators for the IBM PC and clones.

ZSTEM supports Tektronix 4014 emulation and the 4105 color escape sequences.
ZSTEM can be obtained from: KEA Systems Ltd., 2150 West Broadway, Suite 412,
Vancouver, British Columbia, Canada, V6K 4L9.

7. Visual-603 and 630 terminals. These are VT100/220 compatible terminals with
Tektronix 4010/4014 emulation (Visual Technology Incorporated, 1703 Middlesex
Street, Lowell, Mass 01851). The Visual 630 has the capability of displaying dual
text and graphics. This feature is not used in this driver. Graphics mode is entered
automatically when the graph is drawn but only exited when PGPAGE or PGEND
is called. Therefore, for multiple plots interspersed with text I/O, use PGPAGE at
the end of each plot. This will prompt for a carriage return before switching. If this
is not done, intervening text will appear on the graphics screen. Graphics mode can
be entered and exited from the setup menu, or by SHIFT-PF1. Graphics extensions
include rectangle fill, selective erase and switch between Tek and VT100 modes.

8. IBM PC's and compatibles running MS-Kermit 3 as a terminal emulator. The video
board is assumed to have sufficient memory to retain the graphics image in memory
when switched to text. This will be true for VGA and EGA, but some early PCs
might not be able to do this. If Kermit is using full VGA resolution (ie SET
TERMINAL GRAPHICS VGA), there is not usually enough memory to store the
full 480 vertical lines, so the bottom few lines may disappear. Tektronix
enhancements include selective erase, colours, rectangle fill, and switching
between text and graphics mode. The cursor may be operated with the mouse.
Tested with Kermit version 3.1.

9. Tektronix 4100 series color terminals (and emulators, e.g., Versaterm-PRO for
Macintosh).

Device type codes
1. /TEK4010 Tektronix-4010 terminal
2. /GF GraphOn terminal
3. /RETRO Retrographics VT640 terminal
4. /GTERM GTERM terminal emulator
5. /XTERM XTERM terminal emulator
6. /ZSTEM ZSTEM terminal emulator
7. /V603 Visual V603 terminal
8. /KRM3 Kermit 3 on IBM-PC
9. /TK4100 Tektronix 4100 series terminals

Default device name
The logged-in terminal: /dev/tty (UNIX), TT: (VMS).

Default view surface dimensions

Depends on monitor; nominally 8in (horizontal) by 6in (vertical).
Resolution

A standard Tektronix terminal displays a screen of 1024 pixels (horizontal) by 780 pixels
(vertical), with a nominal resolution of 130 pixels per inch. The actual resolution may be
less.

Color capability
❍ /TEK4010, /XTERM: none; only color index 1 is available; selective erase is not

possible. Requests to draw in color index 0 are ignored.
❍ /GF, /RETRO, /V603: color indices 0 (erase, black) and 1 (bright: usually white,

green or amber) are supported. It is not possible to change color representation.
❍ /GTERM: color indices 0 to 15 are available and default to the standard PGPLOT

colors. The color representation can be changed.
❍ /ZSTEM: color indices 0 to 7 are available and default to the indicated in the

ZSTEM setup menu (which default to the standard PGPLOT colors). The color
representation cannot be changed.

❍ /KRM3: color indices 0 to 7 are the standard PGPLOT colors. Indices 8 to 14 are
also available, but are BRIGHT versions of 1 to 7, and thus non-standard. Color
representation can't be changed.

❍ /TK4100: color indices 0-15.
Input capability

Depending on the emulation, the graphics cursor may be a pointer, a small cross, or a
crosshair across the entire screen. The user positions the cursor using thumbwheels,
mouse, trackball, or the arrow keys on the keyboard. The user indicates that the cursor has
been positioned by typing any printable ASCII character on the keyboard. Most control
characters (eg, ^C) are intercepted by the operating system and cannot be used.

File format
Binary byte stream. Under Unix, the output may be directed to a file; under VMS, this is
not possible: the output device must be a terminal.

Tektronix-4014 Disk File

Supported device
disk file which may be printable on a Tektronix-compatible device. This driver uses the
extended (12-bit) addressing of the Tektronix-4014. (This driver is for VMS systems; on
Unix systems the regular Tektronix driver (/TEK) can produce a disk file.)

Device type code
/TFILE.

Default device name
PGPLOT.TFPLOT.

Default view surface dimension
Depends on printer; nominally 400 pixels/inch giving 10.24 in (horizontal) x 7.80 in
(vertical).

Resolution
The coordinate system used for Tektronix emulation is 4096 x 3120 pixels.

Color capability
Only color index 1 is supported. Primitives drawn in `erase' mode (color index 0) are
ignored (not erased). It is not possible to change color representation.

Input capability
None.

File format
Binary, variable length records (maximum 1024 bytes); no carriage-control attribute.

Obtaining hardcopy
depends on the available printer. Note: the file cannot easily be displayed on a Tektronix-
compatible terminal because it contains control characters which may be interpreted by
the operating system. The terminal must be set to PASSALL mode before the file can be
displayed.

Author
T. J. Pearson, 1987; Darvid R. Chang, 1995.

GOC (Sigma) Terminal

Supported device
Sigma, T5670 terminal.

Device type code
/GOC.

Default file name
TT (logical name, usually equivalent to the logged in terminal).

Default view surface dimensions
38 cm display.

Resolution
The full view surface is 768 by 512 pixels.

Color capability
Color indices 0 (erase) and 1 are supported.

Input capability
Cursor is a cross-hair and can be moved using the joystick or the cursor keys to the left of
the keyboard. Terminate cursor motion and send the cursor position to the program by
typing any printable character on the keyboard.

File format
It is not possible to send GOC plots to a disk file.

Obtaining hardcopy
A hardcopy of the plot may be obtained using a Tektronix hardcopy unit attached to the
terminal.

Author
Allyn F. Tennant, 1986.

DEC Regis Terminals

Author
T. J. Pearson, 1988.

Supported devices
Digital Equipment Corporation VT125, VT240, or VT241 terminal; other REGIS devices
may also work.

Device type code
/VT125.

Default file name
TT:PGPLOT.VTPLOT. This usually means the terminal you are logged in to (logical
name TT), but the plot can be sent to another terminal by giving the device name, e.g.,
TTC0:/VT, or it can be saved in a file by specifying a file name (in this case a disk name
must be included as part of the file name).

Default view surface dimensions
Depends on monitor.

Resolution
The default view surface is 768 (horizontal) by 460 (vertical) pixels. On most Regis devices,
the resolution is degraded in the vertical direction giving only 230 distinguishable raster
lines. (There are actually 240 raster lines, but 10 are reserved for a line of text.)

Color capability
Color indices 0--3 are supported. By default, color index 0 is black (the background color).
Color indices 1--3 are white, red, and green on color monitors, or white, dark grey, and light
grey on monochrome monitors. The color representation of all the color indices can be
changed, although only a finite number of different colors can be obtained (see the manual
for the terminal).

Input capability
The graphics cursor is a blinking diamond-crosshair. The user positions the cursor using
the arrow keys and PF1--PF4 keys on his keyboard [Note: NOT the keyboard of the
terminal on which he is plotting, if that is different.] The arrow keys move the cursor in the
appropriate direction; the size of the step for each keystroke is controlled by the PF1--PF4
keys: PF1 = 1 pixel, PF2 = 4 pixels, PF3 = 16 pixels, PF4 = 64 pixels. [The VT240 terminal
has a built-in capability to position the cursor, but PGPLOT does not use this as it is not
available on the VT125.] The user indicates that the cursor has been positioned by typing
any character other than an arrow or PF1--PF4 key [control characters, eg, ctrl-C, and
other special characters should be avoided, as they may be intercepted by the operating
system].

File format
A REGIS plot file is formatted in records of 80 characters or less, and has no carriage-
control attributes. The records are grouped into ``buffers,'' each of which begins with a
command to put the terminal into graphics mode and ends with a command to put it back
into text mode. The terminal is in graphics mode only while a buffer is being transmitted,
so a user's program can write to the terminal at any time (in text mode) without worrying if
it might be in graphics mode.

Obtaining hardcopy
A hardcopy of the plot can be obtained using a printer attached to the VT125/VT240
terminal (see the instruction manual for the terminal). A plot stored in disk file can be
displayed by issuing a TYPE command (e.g., TYPE PGPLOT.VTPLOT) on a VT125 or
VT240.

Canon Laser Printer

Supported device
Canon LBP-8/A2 Laser printer. Conforms to ISO 646, 2022, 2375 and 6429 specifications.
VDM (graphics) conforms to proposed American National Standard VDM mode.

Device type code
/CAnon or /BCAnon (landscape mode); /VCAnon (portrait mode). Device type /CANON or /
VCANON uses vector instructions for printing, while type /BCANON produces a bitmap.
The default bitmap size is 1556 blocks and takes 5 min (parallel) or 15 min (serial 9600
baud) to print. Thus for simple line graphs /CANON produces much smaller files (typically
<100 blocks) that that plot in <30 sec. However, for complex graphs, for example those
obtained with PGGRAY, /BCANON will produce the smaller file and plot faster.

Default file name
PGPLOT.CAN.

Default view surface dimensions
24 cm by 19 cm (landscape); 19 cm by 24 cm (portrait).

Resolution
300 pixels per inch in both directions.

Color capability
Color indices 0 (erase) and 1 (black) are supported. Note: hardware polygon fill is used and
colors 0--11 control the fill pattern.

Input capability
None.

File format
Variable length records with Carriage control of LIST.

Obtaining hardcopy
If printer is connected to a terminal line (RS-232 option) then printing the file on the
corresponding queue should suffice. If the printer is connected using the Centronics
interface, which appears the to VAX as an LP device, then it is important to ensure that (1)
all 8 bit characters are passed to the printer (2) lines longer than 132 bytes are not
truncated, and (3) no extra formatting commands (e.g. form-feeds) are sent to the printer.
This can be done with the VMS command:

$ SET PRINT/PASSALL/LOWER/CR device

Note, some interface boards have a option to append a carriage return after a formfeed or
LF character, it is suggested that this be disabled. The file should be printed with the /
PASSALL qualifier i.e.,

$ PRINT/PASSALL filename

Note: SET PRINT/PASSALL and PRINT/PASSALL do not do the same things and hence
PASSALL is required in both locations.

Author
Allyn F. Tennant, 1988; Martin Shepherd, 1991.

Canon LaserShot printer (LIPS2/2+)

Supported device
Canon LaserShot (LIPS2/2+). Conforms to ISO646, 2022, 2375 and 6429 specifications.
VDM (graphics) conforms to proposed American National Standard VDM mode.

Device type code
/LIPS2 (landscape), /VLIPS2 (portrait).

Default file name
PGPLOT.LPS

Default view surface dimensions
23 cm by 18 cm (landcsape), 18 cm by 23 cm (portrait).

Resolution
240 pixels per inch in both directions.

Color capability
Color indices 0 (erase) and 1 (black) are supported. Note: hardware polygon fill is used and
colors 0-11 control the fill pattern.

Input capability
None.

File format
Variable length text records.

Obtaining hardcopy
Use lpr (unix) or print (dos) command.

Author
M. Hamabe, 1994.

DEC LJ250 Color Companion Printer

Supported device
DEC LJ250 Color Companion printer.

Device type code
/CCP (portrait) or /CCL (landscape). Note: To choose portrait mode, you must execute a
DCL command of the following form before executing your program:

$ DEFINE PGPLOT_CC_MODE PORTRAIT

Default device name
PGPLOT.CCPLT.

Default view surface dimensions
8.0 inches by 10.5 inches.

Resolution
90 dots/inch.

Color capability
Color indices 0--15 are supported. It is not (yet) possible to change color representation.

Input capability
None.

File format
DEC color sixel format.

Obtaining hardcopy
Use the VMS PRINT command.

Author
S. C. Allendorf, 1989.

DEC Sixel Printers (LA50)

Supported device
DEC LA50 printer; may also work on LA100 or LN03.

Device type code
/LA50.

Default device name
LA50:PGPLOT.LAPLOT.

Default view surface dimensions
9.5 in (horizontal) by 6 in (vertical).

Resolution
72 (x) by 144 (y) pixels/inch.

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None.

File format
Variable-length records, with list carriage-control, maximum 80 bytes.

Obtaining hardcopy
If the LA50 is connected to the user's VT2xx or VT3xx terminal then the printer can be
accessed by sending the file directly to the terminal: use PGPLOT device TT:/LA50 or
DEFINE PGPLOT_LA50 TT: (be sure to do a SET TERM/FORM if page spacing is
important). If the LA50 is attached to a different terminal port, e.g., TXZ99:, which
preferably has been set spooled, use PGPLOT device TXZ99:/LA50 or DEFINE
PGPLOT_LA50 TXZ99:.

Author
B. H. Toby, 1988.

DEC LN03 Laser Printer

Supported device
the LN03-PLUS Laser Printer.

Device type code
/LN03 (landscape orientation); /LVN03 (portrait).

Author
Sid Penstone, 1989.

EPSON FX100 Dot Matrix Printer (EPDRIV)

Author
PSB, 1987; AFT, 1988.

Genicom Printer

Supported device
Genicom 4410 dot-matrix printer.

Device type code
/GENICOM (landscape); /VGENICOM (portrait).

Default device name
PGPLOT.PRPLOT.

Default view surface dimensions
Landscape: 10.25 in (horizontal) by 7.8 in (vertical). Portrait: 7.8 in (horizontal) by 10.25 in
(vertical).

Resolution
144 (x) x 140 (y) pixels/inch (reversed for portrait mode).

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None.

File format
Variable-length records, maximum 197 bytes, with embedded carriage-control characters.
A full-page plot occupies 600 512-byte blocks.

Obtaining hardcopy
Use the command PRINT/PASSALL.

Author
J. H. Trice, 1990.

Hewlett-Packard Deskjet or Laserjet

Supported device
Hewlett-Packard LaserJet, LaserJet+, or LaserJet II. DeskJet, DeskJet Plus, DeskJet 500.

Device type code
/HJ.

Default device name
PGPLOT.HJPLT.

Default view surface dimensions
Depends on which driver settings are chosen, via environment variables
PGPLOT_HJ_MODE, PGPLOT_HJ_MAR, PGPLOT_HJ_SIZE, and
PGPLOT_HJ_PAGE.

Resolution
Depends on which driver settings are chosen, via logical names PGPLOT_HJ_MODE or
PGPLOT_HJ_RES.

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None.

File format
See the LaserJet andDeskJet Printer Technical Reference Manuals for details of the file
format.

Obtaining hardcopy
VMS: use the command PRINT/PASSALL.

Environment variables
use DEFINE in VMS, setenv in Unix to define the following environment variables or
logical names. PGPLOT_HJ_MODE = xxxx where xxxx is one of the entries in the
following table. PHOT puts out bitmaps suitable for inclusion in TeX output if you are
using the Arbortext DVIHP program. The only options that will work with unexpanded
LaserJet are HJ08 and HJ09. The other seven options require a LaserJet Plus or LaserJet
II. Do NOT attempt to send grayscale plots to the drivers that use the optimized bitmap
dumps. Terrible things will happen.

 Option Equiv Size (H x V) Resolution
 ------ ----- --------------------- ----------
 HJ01 LHOR 10.25 by 8.00 inches 300 DPI
 HJ02 PHOR 8.00 by 10.25 inches 300 DPI
 HJ03 PHOT 8.00 by 10.25 inches 300 DPI
 HJ04 LHBR 6.54 by 4.91 inches 300 DPI
 HJ05 PHBS 5.65 by 5.65 inches 300 DPI
 HJ06 LMBR 10.25 by 8.00 inches 150 DPI
 HJ07 PMBR 8.00 by 10.25 inches 150 DPI
 HJ08 PMBS 4.48 by 4.48 inches 150 DPI
 HJ09 PLBS 6.00 by 6.00 inches 100 DPI

The following logical names will override the PGPLOT_HJ_MODE settings, if used.
PGPLOT_HJ_RES =

 H or HIGH for 300 bpi

 M or MEDIUM for 150 bpi
 L or LOW for 100 bpi
 V or VERYLOW for 75 bpi

PGPLOT_HJ_MAR = ``xx.xx,yy.yy'' where ``xx.xx'' and ``yy.yy'' are the vertical and
horizontal margin dimensions in inches. The number of characters, including spaces
preceding and following the comma, should not exceed five. PGPLOT_HJ_SIZE = ``xx.xx,
yy.yy'' where ``xx.xx'' and ``yy.yy''are the vertical and horizontal plot dimensions in
inches. The number of characters, including spaces preceding and following the comma,
should not exceed five. PGPLOT_HJ_TEX: if this is defined with any value, TeX mode
(see above) will be used. PGPLOT_HJ_NOFF: if this is defined with any value, the form
feed needed to eject the final page will be omitted. This is useful for spooled printers -- it
prevents wasted (blank) pages. PGPLOT_HJ_PAGE = L (or LANDSCAPE) for Landscape
mode, P (or PORTRAIT) for Portrait mode. PGPLOT_HJ_OPT = O (or OPTIMIZE) so
that bitmap will be ``optimize,'' pr C (or COMPRESS) so that bitmap will be ``compressed.''
Optimized mode minimizes the memory usage for the LaserJet devices. This sometimes
leads to a larger file than if optimization is not used. Optimized mode may not be used with
the DeskJet devices. Compressed mode decreases the size of the bitmap file for later model
HP devices, particularly the DeskJet devices.

Author
S. C. Allendorf, 1989; B. H. Toby, 1991.

Hewlett-Packard LaserJet Printer

Author
S. C. Allendorf, 1989.

Supported device
Hewlett Packard LaserJet, LaserJet+, or LaserJet II.

Device type code
/LJnn where nn is a number 01--09.

Default device name
PGPLOT.LJPLT.

Default view surface dimensions
Depends on which version of the driver is chosen via the logical name
PGPLOT_LJ_MODE.

 Driver Equivalence Size (H x V)
 ------ ----------- ---------------------
 LJ01 LHOR 10.50 by 8.00 inches
 LJ02 PHOR 8.00 by 10.50 inches
 LJ03 PHOT 8.00 by 10.50 inches
 LJ04 LHBR 6.54 by 4.91 inches
 LJ05 PHBS 5.65 by 5.65 inches
 LJ06 LMBR 10.50 by 8.00 inches
 LJ07 PMBR 8.00 by 10.50 inches
 LJ08 PMBS 4.48 by 4.48 inches
 LJ09 PLBS 6.00 by 6.00 inches

Resolution
Depends on which version of the driver is chosen via the logical name
PGPLOT_LJ_MODE.

 Driver Equivalence Resolution
 ------ ----------- ----------
 LJ01 LHOR 300 DPI
 LJ02 PHOR 300 DPI
 LJ03 PHOT 300 DPI
 LJ04 LHBR 300 DPI
 LJ05 PHBS 300 DPI
 LJ06 LMBR 150 DPI
 LJ07 PMBR 150 DPI
 LJ08 PMBS 150 DPI
 LJ09 PLBS 100 DPI

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None. To choose one of the specific LaserJet drivers, you must execute a DCL command of
the following form before executing your program:

$ DEFINE PGPLOT_LJ_MODE LJnn

where nn is a number 01--09 NDEV inclusive. You may also use one of the equivalent
names listed above. These equivalent names are an attempt to make the driver names make
sense. They are decoded as follows: 1st character: P for protrait orientation or L for
landscape orientation. 2nd character: H for high resolution (300 dpi) or M for medium
resolution (150 dpi) or L for low resolution (100 dpi). 3rd character: B for a straight bitmap
dump or O for an optimized bitmap dump. 4th character: R for a rectangular view surface or
S for a square view surface. A few notes are in order. First, not all of the possible
combinations above are supported (currently). The driver that goes by the name of PHOT
is a driver that puts out bitmaps suitable for inclusion in TeX output if you are using the
Arbortext DVIHP program. The only drivers that will work with unexpanded LaserJet are
LJ08 and LJ09. The other seven drivers require a LaserJet Plus or LaserJet II. Finally, do
NOT attempt to send grayscale plots to the drivers that use the optimized bitmap dumps.
Terrible things will happen.

Printronix Printers

Supported device
Printronix P300 or P600 dot-matrix printer.

Device type code
/PRINTRONIX.

Default device name
PGPLOT.PXPLOT.

Default view surface dimensions
13.2 in (horizontal) by 10.25 in (vertical).

Resolution
60 (x) x 72 (y) pixels/inch.

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None.

File format
Variable-length records, maximum 135 bytes, with embedded carriage-control characters.
A full-page plot occupies 200 512-byte blocks.

Obtaining hardcopy
(VMS) Use the command PRINT/PASSALL.

Author
T. J. Pearson, 1987.

QUIC Printers

Supported device
Any printer that accepts the QUIC page description language (QMS and Talaris
800/1200/1500/2400). 4-bit mode is used.

Device type code
/QMS (landscape orientation); /VQMS (portrait orientation).

Default file name
PGPLOT.QMPLOT, PGPLOT.QPPLOT.

Default view surface dimensions
10.25 inches horizontal by 7.75 inches vertical (landscape mode); 7.75 inches vertical by
10.25 inches horizontal (portrait mode); margins of 0.5 inches on top and left of page.

Resolution
The driver uses coordinate increments of 1/1000 inch. The true resolution is device-
dependent; it is typically 300 dots per inch.

Color capability
Color indices 0 (erase), and 1 (black) are supported. Requests for other color indices are
converted to 1. It is not possible to change color representation.

Input capability
None.

File format
ASCII text, variable length records (max 130 bytes).

Obtaining hardcopy
(VMS) PRINT/QUEUE=QMS file.type (site-dependent).

Author
P. P. Murphy, 1987.

Talaris EXCL Devices

Supported device
Any Talaris printer that accepts the EXCL page description language. 7-bit mode is used.

Device type code
/EXCL (landscape orientation); /VEXCL (portrait orientation).

Default file name
PGPLOT.EXPLOT.

Default view surface dimensions
10.25 inches horizontal by 7.75 inches vertical (landscape mode); 7.75 inches horizontal by
10.25 inches vertical (portrait mode).

Resolution
The driver uses coordinate increments of 1/1000 inch. The true resolution is device-
dependent; at time of writing, it is typically 300 dots per inch.

Color capability
Color indices 0 (erase), and 1 (black) are supported. Requests for other color indices are
converted to 1. It is not possible to change color representation.

Input capability
None.

File format
Ascii, variable length records (max 80 bytes).

Author
A. L. Fey, 1989; P. J. Scott, 1989.

Toshiba ``3-in-one'' Printer (TODRIV)

Author
T. J. Pearson, 1987.

Supported device
Toshiba ``3-in-one'' printer, model P351.

Device type code
/TOSHIBA.

Default device name
PGPLOT.TOPLOT.

Default view surface dimensions
10.5 in (horizontal) by 8.0 in (vertical).

Resolution
180 pixels/inch.

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Input capability
None.

File format
Variable-length records, maximum 132 bytes, with embedded carriage-control characters.
A full-page plot occupies 901 512-byte blocks.

Obtaining hardcopy
(VMS) Use the command PRINT/PASSALL.

Colorwriter 6320 Plotter

Supported device
Gould (now Bryans) Colourwriter 6320 or any device obeying Gould Plotter Language.

Device type code
/CW6320.

Default device name
$PLOTTER1 (a logical name).

Default view surface dimensions
280 mm by 360 mm (A3).

Resolution
0.025 mm.

Color capability
Up to 10 pens. Default is pen 1 which is picked up on initialization without a call to PGSCI.
Calls to PGSCI are interpreted as the pen number and colors therefore depend on how the
pens have been loaded into the stalls. If a call is made for a pen higher than 10 the selected
pen defaults to 1.

Input capability
Possible but not supported.

File format
Ascii character strings. It is possible to send the data to a file which can then be copied to
the plotter or on a terminal.

Author
Len Pointon (Jodrell Bank), 1988.

Hewlett-Packard HP-GL/2 Plotters

HP-GL (Hewlett-Packard Graphics Language) is a vector-graphics format for control of pen-
plotters and laser-printers manufactured by Hewlett-Packard Co., and some other manufacturers.
This PGPLOT device handler produces files that should be acceptable to most HP-GL/2 devices,
specifically the HP LaserJet 3.

Device type code
/HPGL2.

Default file name
pgplot.hpplot

Default view surface dimensions
8128 by 10160 pixels (8.00 by 10.0 inches).

Resolution
The nominal resolution is 1016 pixels/inch, but the actual resolution will vary depending
on the display device.

Color capability
Color indices 1--6 are accepted, and are interpreted as pen numbers.

Input capability
None.

Author
Colin J. Lonsdale, 1990.

Hewlett Packard HP 7221 pen plotter

Device type code
/HP7221

Default file name
pgplot.hpplot

Houston Instruments HIDMP Pen Plotter (HIDRIV)

Supported device
Houston Instruments pen plotters implementing the HIDMP control commands.

Device type code
/HIDMP.

Default device name
pgplot.hiplot.

Default view surface dimensions
2099 × 1599 ``pixels'' (10.5 × 8 inches).

Resolution
The nominal resolution is 200 pixels per inch; the actual resolution depends on the pen
used.

Color capability
Only color index 1 is supported; erase in color index 0 is not possible. The color is
determined by the pen installed on the plotter.

Input capability
None.

File format
ASCII text.

Author
T. J. Pearson, 1987.

ZETA Plotter (ZEDRIV)

Supported device
Zeta 8 Digital Plotter.

Device type code
/ZEta.

Default file name
PGPLOT.ZET.

Default view surface dimensions
11 inches by 11 inches. Current version does not allow larger plots although the manual
indicates plots up to 144 feet are possible.

Resolution
This version is written for the case where the resolution switch is set to 0.025 mm. Actual
resolution depends on thickness of pen tip.

Color capability
Color indices 1 to 8 are supported corresponding to pens 1--8. It is not possible to erase
lines.

Input capability
None.

File format
Variable length records.

Obtaining hardcopy
On Starlink print the file on the queue associated with the Zeta plotter. If the Plotter is
attached to a terminal line, then TYPEing the file at the terminal will produce a plot. On
Starlink:

$ PRINT/NOFEED/QUE=ZETA PGPLOT.ZET

To stop a Zeta plot job, once it has been started, use the buttons on the plotter. Press
PAUSE, NEXT PLOT and CLEAR. Only after this sequence is it safe to delete the job
from the ZETA Queue. Failing to press the NEXT PLOT button will not correctly advance
the paper. Failing to press CLEAR but, deleteing the current job can prevent the following
plot from being plotted.

Author
Allyn F. Tennant, 1986.

Null Device (no graphical output)

The ``null'' device can be used to suppress all graphic output from a program.

Device type code
/NULL.

Default device name
None (the device name, if specified, is ignored).

Default view surface dimensions
Undefined (the device pretends to be a hardcopy device with 1000 pixels/inch and a view
surface 8in high by 10.5in wide.)

Resolution
Undefined.

Color capability
Color indices 0--255 are accepted.

Input capability
None.

Environment variables
PGPLOT_DEBUG : if this environment variable is defined, with any value, some statistics
are reported on standard output.

Author
T. J. Pearson, 1988--1994.

PGPLOT metafile driver

Beta-test version released with PGPLOT v5.2.0

Author
T. J. Pearson, 1997.

Supported device
This PGPLOT driver creates a disk file in the private PGPLOT metafile format. [Do not
confuse this format with other formats, such as the Windows Metafile format.]Files in this
format can be read into a PGPLOT program with subroutine pgrdmf and displayed on
another PGPLOT device.

The device driver is written in standard Fortran-77 and can be used with all operating
systems for which PGPLOT is available.

The PGPLOT metafile is a plain ASCII text file; it can be transferred from one machine to
another using standard channels (e.g., ftp, e-mail). The first five characters in the file must
be %PGMF to identify the file type. PGPLOT metafiles can contain more than one picture
(``page''). PGPLOT metafiles may be concatenated: the resulting file is also a valid
PGPLOT metafile. Files can be substantially compressed by using standard utilities such
as gzip.

It should be fairly easy to write translation programs to convert files from this format to
another graphics format.

Device specification
filename/PGMF
-/PGMF

Supply any file name suitable for use on the host operating system. The default file name
is pgplot.pgmf. If the file already exists, it will be overwritten (unless the operating system
can create multiple versions of the file).

If the filename is ``-'', the file will be sent to the standard output and can be piped into
another program (on operating systems that support this).

Default view surface dimensions
The default view surface is 6400×4800 units, with a nominal scale and resolution of 1000
units per inch (about 40 units per mm). The actual scale can be changed when the metafile
is displayed. The default can be overridden by calling pgpap in the PGPLOT program, or,
if pgpap is not used, by setting environment variables (logical names in VMS):

❍ PGPLOT_PGMF_WIDTH (default 6400)
❍ PGPLOT_PGMF_HEIGHT (default 4800)

These variables specify width and height in metafile units.

Color capability
Color indices 0-255 are available; color indices 0-15 have the standard PGPLOT default

color representations, with white background (color index 0) and black foreground (color
index 1). The RGB representation of any color index can be changed by calling pgscr. The
default representations of color indices 0 and 1 can be changed with PGPLOT environment
variables, e.g.

❍ PGPLOT_BACKGROUND (default white)
❍ PGPLOT_FOREGROUND (default black)

Input capability
None (non-interactive device).

Limitations
1. Only one PGPLOT device of this type may be opened at once.
2. The driver does not yet support the image functions (routines pgimag, pggray, etc.).

TeX PK Font file

Supported device
PK Font files for TeX.

Device type code
/TX

Default file names
pgplot.RESpk, pgplot.tfm where the RES is a default value of 300 but may be set to
something else. If RES=300, then the default file names would be pgplot.300pk and pgplot.
tfm. If more than 15 font characters are produced, then the file names become
pgplot_2.300pk and pgplot_2.tfm, etc., for each set of 15 characters output (i.e., for each
PK font produced).

Default view surface dimensions
2.8 x 2.8 inches. May be overridden by the environment variables
PGPLOT_TX_YINCHES, and PGPLOT_TX_XINCHES

$DEFINE PGPLOT_TX_XINCHES "5.0"
$DEFINE PGPLOT_TX_YINCHES "4.5"

would provide a view surface of 5.0 inches horizontally by 4.5 inches vertically.
Resolution

300 dots per inch. May be overridden by the logicals PGPLOT_TX_XRESOL and
PGPLOT_TX_YRESOL:

$DEFINE PGPLOT_TX_XRESOL "78.0"
$DEFINE PGPLOT_TX_YRESOL "78.0"

will produce a font at 78 dots per inch resolution. This would be good for a Vaxstation
2000 workstation. The default 300 dots per inch is good for a laser printer such as a
QMS1200 LaserGrafix or an HP2000 LaserJet.

Color capability
Color indices 0 (erase, white) and 1 (black) are supported. It is not possible to change color
representation.

Output Orientation
Portrait. (Can be overridden by setting the environment variable PGPLOT_TX_ORIENT
= LANDSCAPE.)

Input capability
None.

File formats
TeX PK Font file format, and TeX TFM file format. The files are output as FORTRAN,
DIRECT ACCESS, UNFORMATTED, 512 BYTE RECORDS so that we can have
compatability with the VAX and our UNIX machine. A raw bitmap copy is also possible if
you define the logical PGPLOT_TX_BITFILE:

$ DEFINE PGPLOT_TX_BITFILE "MINIMAL"

will produce a file copy of the portion of the bitmap which is within the minimal bounding
box of the character.

$ DEFINE PGPLOT_TX_BITFILE "ALL"

will produce a file copy of the complete bitmap of the graphics character.
Obtaining hardcopy

Use the command DUMP to view the output files, or run TeX and include the character of
this new font and DVI the output and print the resulting binary file to the correct printer
(with PASSALL, NOFEED, or whatever is required for printing binary output to your
specific printer). Also, the PKTYPE and TFTOPL TeX debugging programs will allow
you to view your output font characteristics.

TeX Example
Assume you have produced a graph into a PK Font and that the output file names are
pgplot.300pk and pgplot.tfm then the following lines in your TeX code would include the
graph corresponding to the letter A of the TeX PK font "PGPLOT" in the middle of your
paper:

 \font\myfntname=pgplot
 This is sentence one of the TeX file.
 Now I will include the character.
 \centerline{\myfntname A }
 This is the last sentence.
 \bye

The above example for LaTeX would be:

 This is the first sentence.
 Now I will include the character as a figure.
 \begin{figure}
 \newfont{\myfntname}{pgplot}
 \centerline{\myfntname A}
 \caption{Letter A of PGPLOT font}
 \end{figure}
 This is the last sentence.

Of course, you must tell TeX and the DVI driver where to find your fonts. On our VAX, we
have defined a search list so that if you define the logical TEX_USER_FONTS to be your
directory where you keep your fonts, then TeX and the DVI driver will find the pgplot.tfm
file and the pgplot.300pk file. So,

 $DEFINE TEX_USER_FONTS SYS$USERDISK:[USERNAME.FONTS]

would cause TeX and the DVI driver to search the normal search path and also the
directory SYS$USERDISK:[USERNAME.FONTS] for any fonts that you specified in your
TeX file. (Here is an exception for UNIX. Our UNIX TeX and DVI programs will look in
your current directory automatically for the fonts and then will check the system library if
it cannot find the fonts in your directory.)

Notes
You must change the resolution for different output devices (our DVI driver, DVIHP, for
our HP2000 LaserJet would use a resolution of 300 dots per inch; while our DVI driver for
the Vaxstation 2000 workstation would need a resolution of 78 dots per inch. The pgplot.

tfm file would of course be the same in both cases, but the DVI drivers would look for
pgplot.300pk and pgplot.78pk respectively). If you produce an image which is too large (by
defining logicals PGPLOT_TX_XINCHES and PGPLOT_TX_YINCHES) then some DVI
drivers will leave the page blank where the graph of the character belongs (can sometimes
use \hsize and \vsize to help with this). Finally, if your device driver only works with PXL
files (like our PRINTRONIX DVI driver), then you may want to run the PKTOPX program
to convert the PK Font into a PXL Font which your device driver needs.

Author
Bob Forrest, Electrical Engineering Dept., Texas A&M University; College Station,Texas
77843 (forrest@ee.tamu.edu).

LaTeX Picture Environment

Supported device
This driver creates a text file containing commands for drawing in the LaTeX picture
environment, bracketted by \begin{picture} and \end{picture}. The file can be included in a
LaTeX document.

If you have the option of including a PostScript file in your LaTeX document, then that
will usually give much better results than using this driver, which has very limited
capabilities.

Device type code
/LATEX

Default file name
pgplot.tex

Default view surface dimensions
The default picture size is 6 inches by 6 inches (which corresponds to 1728×1728 units
where a unit is 0.25pt = 1/288 inch). The picture size can be changed by using PGPAP in
the PGPLOT program.

Resolution
The driver rounds coordinates to multiples of 0.25pt (1/288 inch).

Color capability
None.

Obtaining hardcopy
Embed the file in a LaTeX document and use the normal LaTeX tools to process it, e.g.,

\documentstyle{article}
\begin{document}
\input pgplot.tex
\end{document}

Limitations
The LaTeX picture environment has a very limited set of primitives. In particular, diagonal
lines must be composed out of dots. This can lead to very large files. For some graphs
(especially with a lot of shaded areas), the capacity of many LaTeX systems can easily be
exceeded.

Author
Originally written by Grant McIntosh (gmcint@relay.drev.dnd.ca), February 1995.

X Motif widget driver

Author
M. C. Shepherd, 1996.

Supported device
Restricted to Motif applications on workstations running the X Window System (Version
11 Release 4 and above).

Availability
Released as a beta-test driver in PGPLOT 5.1.0.
Updated for general use in PGPLOT 5.2.0. See the changes section for revision details.

Device type code
/XMOTIF

Device name specification
The device name used to refer to an already created and realized XmPgplot widget is the
name that was given to the widget as the first argument of XtVaCreateManagedWidget()
when the widget was created. The full device specification used to open a given widget to
PGPLOT with cpgbeg() or cpgopen() can also be obtained through the xmp_device_name()

convenience function.

Default view surface dimensions
By default the size of an XmPgplot widget window is 256×256 pixels. This can be
overridden by setting the XmNheight and XmNwidth X resources when creating the widget.

Resolution
This depends on the monitor on which the windows are to be displayed.

Color capability
Colormaps of types PseudoColor, StaticColor, GrayScale, StaticGray, and TrueColor are
supported. By default, colors are allocated from the colormap used by the parent window of
the widget, unless it has too few colors, in which case the window uses the black and white
pixels of the screen to implement a monochrome window.

Note that with PseudoColor and GrayScale colormaps, colors of already drawn graphics
will respond to changes to their color representations, whereas with other colormap types,
color representation changes will only effect the colors of subsequently drawn graphics.

Input capability
The cursor is usually controlled by a mouse. Cursor input is achieved by moving the cursor
into the window of the widget, and pressing either a mouse button or a keyboard key to
select a given position in the window and return a key value. The mouse buttons are
mapped to return characters A, D, and X.

An asynchronous alternative to the cpgcurs() and cpgband() procedures is provided. This

provides the same functionality as cpgband() except that once armed, cursor input is

delivered to the application via callback functions.

Facilities are also provided to support applications that want to handle cursor input
themselves via XtAddEventHandler(). This includes optional augmentation of the X cursor
with rubber-bands, and functions for converting between X-window coordinates and world
coordinates.

Multiple open device capability
The XmPgplot driver places no restrictions on the number of XmPgplot widgets that can be
open to PGPLOT simultaneously. Note, however that PGPLOT does set limits on the total
number of open devices. Currently (April 96) this limit is 8.

Required files from the PGPLOT installation
C include files:

XmPgplot.h
This header file should be included by all application source code files
from which XmPgplot widget functions or resources are used.

cpgplot.h
Since Motif is usually used from C, the include file for the C PGPLOT
wrapper library should also be included in all Motif applications that make
calls to the PGPLOT library.

UNIX PGPLOT libraries:
libXmPgplot.a

This library contains the Motif PGPLOT widget and its PGPLOT driver.
The main PGPLOT library only contains a stub version of the driver so
when linking Motif applications, it is essential that libXmPgplot.a appear
before the main PGPLOT library. For example, a snapshot of the link line
under UNIX would be:

 -lXmPgplot -lcpgplot -lpgplot -lXm -lXt -lX11

libcpgplot.a and libpgplot.a
The PGPLOT C wrapper library and the FORTRAN PGPLOT library.

VMS PGPLOT libraries:
XMPGPLOT.OBJ

This object file contains the compiled Motif PGPLOT widget and its
PGPLOT driver. Note that the main PGPLOT library only contains a stub
version of the driver and that programs that use the Motif widget must link
with XMPGPLOT.OBJ in addition to the the main PGPLOT library.

GRPCKG.OLB and CPGPLOT.OLB
The PGPLOT C wrapper library and the static version of the main
PGPLOT library. The shareable PGPLOT library can not be used when the
Motif driver is required.

XMOTIF.OPT
This file can be used to link PGPLOT applications that use the XmPgplot
widget driver. It is a linker options file that lists the PGPLOT, Motif, X-
toolkit and X11 libraries. It should be used like:

 LINK PROGRAM,PGPLOT_DIR:PGMOTIF.OPT/OPT

Configuration
The configuration of individual widgets is controlled by X resources. It is usually most
convenient to set such resources in the call to XtVaCreateManagedWidget() when each
PGPLOT widget is created, but they can also be placed in app-defaults files or, on POSIX-
compliant systems, the .Xdefaults file in your home directory. Under VMS this file is
called DECW$USER_DEFAULTS:DECW$XDEFAULTS.DAT. Note that by default DECW
$USER_DEFAULTS is defined as SYS$LOGIN.

Configuration of the widget colormap and visual.
XmPgplot widgets allocate colors from the Visual and Colormap specified via the
XmNcolormap and XmNvisual resources. These default to CopyFromParent, as
they do in most other widgets. As a result, XmPgplot widgets normally allocate
colors from the default colormap and visual of the screen. If the default colormap of
the screen is insufficient for your needs and you need to allocate a private
colormap then I suggest that you register the result with the top-level widget of the
application rather than with a specific XmPgplot widget. This will then be
inherited by all widgets in the application, including XmPgplot widgets. The steps
to perform to allocate a private colormap and assign it to the top-level widget of
the application are as follows:

■ Call XtVaAppinitialize() as you normally would.
For the sake of the example, let's say that you store the returned top-level
widget in a variable called w_top.

■ Call XtDisplay(w_top) to acquire the Display Xlib context object.
■ Use the normal Xlib functions to find an appropriate visual and allocate the

required private colormap.
■ Register the selected colormap and visual to the top-level widget:

 XtVaSetValues(w_top,
 XmNcolormap, colormap,
 XmNvisual, visual,
 NULL);

Alternatively if you really want to assign private colormaps to individual
XmPgplot widgets then note that to get the window manager to automatically
install the colormap of a widget window, one has to set the
WM_COLORMAP_WINDOWS property on the top-level window of the host
application. The X toolkit provides the function XtSetWMColormapWindows() to
do this.

Other X resources that effect the way that colors are allocated are:

XmpNminColors
This has a default value of 2. Its value determines the minimum acceptable
number of colors in a colormap. If fewer colors are available than this
number, then the color allocation code will give up and fall back on using
just the black and white colors of the screen to draw PGPLOT graphics.

XmpNmaxColors
This has a default value of 100. It specifies how many colors to attempt to
allocate per widget. Thus if you have two PGPLOT widgets sharing a
colormap that has only 100 free colors then you would need to make the
XmpNmaxColors resource values of the two widgets add up to no more than
100.

Configuring how widget resizes are handled.
When geometry management widgets are resized by users, their child widgets
generally also get resized. This means that the PGPLOT widget can get resized at
unpredictable times. However PGPLOT assumes that the size of its view surface
remains unchanged between the start of one page and the start of the next. To
handle this XmPgplot widgets use an off screen pixmap for buffering and backing
store. This is kept fixed in size for the duration of each page, and is only resized to
fit the window when cpgpage() is called. If the widget window is resized to a

smaller size, then part of the plot will become obscured until the next page is
started. The XmPgplot widget driver supports two optional ways to improve this
situation.

Scrolled PGPLOT windows.
If you arrange for the parent widget of a XmPgplot widget to be a Motif
ScrolledWindow widget then the PGPLOT widget will automatically adopt
the scroll-bars of its parent and arrange that they scroll the underlying
pixmap relative to the window. Then if the window is resized to a smaller
size the scroll bars can be used to see the obscured part of the plot.

Using a resize callback.
Another way to handle the situation is to register a callback to be called
whenever the PGPLOT widget gets resized. For this to be useful you
should have the callback call the PGPLOT cpgpage() procedure so as to

synchronize the size of the pixmap with the window, and then re-draw any
graphics that you want to re-appear there. Registering such a callback is
just a matter of calling XtAddCallback() with the PGPLOT widget as the
first argument, XmNresizeCallback as the second argument, your callback
function as the third argument and an optional client-context data argument
as the final argument. The callback function should be declared like:

void whatever(w, client_data, call_data)
Where the arguments are declared and interpreted as:

Widget w
The XmPgplot widget that has been resized.

XtPointer client_data
This is the client_data pointer that was registered with
XtAddCallback(). It should be cast back to its actual type
before use.

XtPointer call_data
This argument is always NULL.

Cursor input functions
The standard PGPLOT cpgcurs() and cpgband() cursor-input functions are not

recommended for use in Motif applications because they block the toolkit event loop.

Instead an alternative callback system, designed to mimic cpgband() but without blocking

the event loop, has been provided. Arming and disarming the cursor is achieved through
two functions:

int xmp_arm_cursor(widget, mode, xref, yref, callback, client_data)
This function augments the X cursor with the type of rubber-band specified in the
mode argument. It also optionally registers a callback function to be passed the
world coordinates and character of key-press and button-press events. The cursor
can subsequently be disarmed via a call to xmp_disarm_cursor(). The cursor is
automatically disarmed when the device is closed to PGPLOT by cpgclos() or

cpgend(), and whenever the cursor is re-armed.

Note that when the cursor is augmented, the rubber band is redrawn every time that
the PGPLOT buffer is flushed. This happens after every call to PGPLOT
functions unless sensible use is made of cpgbbuf() and cpgebuf() to buffer sequential

calls. Be sure to use these functions properly if you don't want your PGPLOT code
to be slow.

The arguments of xmp_arm_cursor() are:

Widget widget
The target PGPLOT widget. The widget must be open to PGPLOT.

int mode
The type of cursor to display, from:
XMP_NORM_CURSOR

The un-augmented X cursor.
XMP_LINE_CURSOR

A line drawn between (xref,yref) and the pointer.
XMP_RECT_CURSOR

A rectangular cursor with opposing vertices at (xref,yref) and the
pointer.

XMP_YRNG_CURSOR
Two horizontal lines, one through xref and the other through the
pointer.

XMP_XRNG_CURSOR
Two vertical lines, one through yref and the other through the
pointer.

XMP_HLINE_CURSOR
A horizontal line through the pointer.

XMP_VLINE_CURSOR
A vertical line through the pointer.

XMP_CROSS_CURSOR
A cross-hair cursor centered on the pointer.

float xref, yref
The cursor reference position in the current world-coordinate system. If the
world coordinate system is subsequently changed the reference position
will not be recomputed.

XtCallbackProc callback - The cursor-input callback function, or 0 if not required.
This is used just like any other Xt callback function, except that its
call_data argument is a pointer to a struct of the following declaration, cast
to (XtPointer).

 typedef struct {
 float x,y; /* The world-coordinate position of the cursor */
 char key; /* The key pressed by the user. Mouse buttons */
 /* are encode as 'A','D','X' (left to right) */
 } XmpCursorCallbackStruct;

The callback function will be called whenever a key (if the widget has
keyboard input focus) or pointer button is pressed while the pointer is in the
associated PGPLOT widget.

void *client_data - Client context data.
This pointer will be passed verbatim to the callback function whenever a
cursor-input event is reported.

The return value of xmp_arm_cursor() is 0 if successful or 1 if the specified widget
is not an open PGPLOT widget or the callback argument is NULL.

int xmp_disarm_cursor(widget)
This function can be called to undo the effect of a previous call to xmp_arm_cursor
() for the specified widget. Note that this function can be called even when the
cursor has not been previously armed or when the widget is not open to PGPLOT.

The xmp_disarm_cursor() function returns 0 if successful or 1 if the specified
widget is not a PGPLOT widget.

Advanced cursor-input
On its own xmp_arm_cursor() provides a convenient but limited cursor-input
facility, designed to mimic cpgband(). What it doesn't provide is a general means of

responding to the full variety of X-window events. For example, it doesn't report
Motion events via its callback. This section describes the facilities available for
establishing one's own cursor-input handlers.

To display a rubber band cursor without using its callback facility, call
xmp_arm_cursor() with its callback argument specified as 0. This tells the widget's
cursor event handler not to select for button-press and key-press events and
disables the special interpretation of mouse-buttons and Tab keys with respect to
keyboard-focus management .

To register input event handlers externally to xmp_arm_cursor() use the standard
XtAddEventHander(). In order to convert from the reported X-window coordinates
to PGPLOT world-coordinates, use the xmp_pixel_to_world() function described

later.

For example, having created a Label widget w_label and a PGPLOT widget
w_plot, the following code would result in a world-coordinate readout of the cursor
being displayed in the label whenever the cursor was moved over the PGPLOT
widget.

 XtAddEventHandler(w_plot, PointerMotionMask, False,

 report_cursor, (XtPointer)w_label);
 ...

 static void report_cursor(Widget w, XtPointer context,
 XEvent *event, Boolean *continue_dispatch)
 {
 Widget w_label = (Widget) context;
 char text[80];
 float wx, wy;
/*
 * Convert from X-window coordinates to world coordinates.
 */
 if(xmp_pixel_to_world(w, event->xmotion.x, event->xmotion.y,
 &wx, &wy) == 0) {
 sprintf(text, "X=%-10g Y=%-10g", wx, wy);
 XtVaSetValues(w_label,
 XtVaTypedArg, XmNlabelString, XmRString,
 text, strlen(text)+1, NULL);
 }
 *continue_dispatch = True;
 }

Keyboard focus issues
A widget that receives keyboard input is said to have the keyboard input focus.
Only one widget can have this at one time. If you want to be told of keyboard input
when an XmPgplot cursor is armed, then read on about the awkward issue of how an
XmPgplot widget receives the input focus. Alternatively, if you only care about
receiving cursor input from button presses, then you should set the
XmNtraversalOn widget resource to False, otherwise some button-presses will be
lost to focus management.

When a Motif application has the keyboard input focus, the Motif library decides
which of the application's widgets will receive keyboard input. This is independent
of the method used by the window manager for top-level windows. Motif supports
two schemes, either of which can be selected by setting the value of the
XmNkeyboardFocusPolicy resource of the top-level widget to one of the following
values:

1. XmEXPLICIT (The default focus policy).

This implements a click-to-focus model whereby the user must explicitly
set the input focus either by pressing the TAB key repeatedly until the
required widget is reached, or by moving the pointer into the widget
window and pressing a mouse button.

Unfortunately, this means that when a PGPLOT widget doesn't have the
keyboard input focus, the first button press is used to acquire the input
focus, rather than being reported as cursor-input. Similarly, once the widget
has the keyboard input focus, TAB characters are used to move the input
focus to the next widget rather than being delivered as cursor input. This is
confusing to users, so it is better to either use the XmPOINTER focus

policy, or to tell the widget that keyboard input is not desired, as described
above.

In order to allow users to determine in advance whether an XmPgplot
widget has input focus, the border of the widget is changed from the
background color of its parent to white. This color was chosen so as to be
distinct from the default black background color of XmPgplot widgets. The
color and other aspects of highlighting can be changed via the highlighting
resources of the Primitive widget.

Note that X conventions discourage applications from moving the keyboard
focus unless under user direction. However, in cases where the user presses
a button who's primary function is to activate an XmPgplot cursor for user
input, you might consider actively setting the keyboard input focus to the
respective XmPgplot widget via a statement of the following form,

 XmProcessTraversal(widget, XmTRAVERSE_CURRENT);

placed just after the call to xmp_arm_cursor(widget, ..). This statement has
no effect if the focus policy is not XmEXPLICIT.

2. XmPOINTER

In this scheme the widget in which the pointer lies is the one that receives
keyboard input, and button presses are always unambiguously treated as
cursor input. This avoids all keyboard focus complications. However, some
users don't like it because they like to be able to move the pointer out of the
window in which they are typing.

Note that the above resource values can either be hard-coded via the call to
XtVaAppInitialize() or specified in the application's app-defaults file.

If having read this, you still want to be told about keyboard input in addition to
mouse-button input, but you don't like the way xmp_arm_cursor() manages the
keyboard input focus, then you can write your own using the facilities described
above under "Advanced cursor-input".

Coordinate conversion functions
The following functions are designed for use with custom event handlers. They perform
conversions between widget X-window coordinates and PGPLOT world coordinates.

int xmp_pixel_to_world(widget, px, py, wx, wy)
This function takes the X-window coordinates of a pixel within a PGPLOT widget
and returns the corresponding PGPLOT world coordinates. If the widget is not
open to PGPLOT the reported world coordinates will be 0.0,0.0. The function
arguments are:

Widget widget
The target PGPLOT widget.

int px, py
The pixel coordinates to be converted. These are interpretted with respect
to the origin at the top left corner of the widget window. This is the normal
coordinate system used by X windows.

float *wx, *wy
On output the variables pointed to by wx and wy will be assigned the
PGPLOT world coordinates that correspond to pixel px, py.

The function returns 0 on success or 1 if the widget is invalid.

int xmp_world_to_pixel(widget, wx, wy, px, py)
This function takes the PGPLOT world coordinates of a point on the viewsurface
of a PGPLOT widget and returns the X-window coordinates of the nearest pixel. If
the widget is not open to PGPLOT the reported coordinates will be 0,0. The
function arguments are:

Widget widget
The target PGPLOT widget.

float wx, wy
The PGPLOT world coordinates to be converted.

int *px, *py
On output the variables pointed to by px and py will be assigned the X-
window coordinates of the pixel nearest to world coordinate wx, wy.

The function returns 0 on success or 1 if the widget is invalid.

Widget identification functions
Two convenience functions are provided for determining the name and PGPLOT id
associated with a particular PGPLOT widget.
int xmp_device_name(Widget widget)

This function returns a device-name string suitable for use with the cpgopen() or

cpgbeg() functions to open the specified XmPgplot widget to PGPLOT. An

example of how this can be used with cpgopen() is shown later. The returned string

is part of the specified widget and must be treated as read-only by the caller.

The form of the returned string is "widget_name/XMOTIF" where widget_name is
the name that was given to the widget when it was created.

If the specified widget is not a PGPLOT widget then an error message will be
emitted and the returned device name will be "/null".

int xmp_device_id(Widget widget)
When a PGPLOT device is opened with the cpgopen() function, PGPLOT returns

an integral identifier. This may then be used, via the cpgslct() function, to select

which of the open PGPLOT devices is to be the current graphics device. The
xmp_device_id() convenience function returns the PGPLOT identifier associated
with the given XmPgplot widget. This can be useful in callbacks, where the Widget
argument passed to the callback function can then be used to select the widget as
the current PGPLOT device.

If the Widget argument passed to the xmp_device_id() function either hasn't been
opened to PGPLOT or hasn't been re-opened after being closed, then
xmp_device_id() emits an error message and returns 0.

Inherited widget resources.
XmPgplot widgets inherit all of the X resources of the Core and Primitive Motif widget
classes.

Note that the XmNbackground and XmNforeground resources change the color
representations of pgplot color indexes 0 and 1. The default background is black and the
default foreground is white. Thus to create an XmPgplot widget with these colors
swapped, one could type:

 plot = XtVaCreateManagedWidget("plot", xmPgplotWidgetClass, parent,
 XmNheight, 400,
 XmNwidth, 400,
 XmpNmaxColors, 50,
 XmNtraversalOn, False,
 XtVaTypedArg, XmNbackground, XmRString, "white", strlen("white")+1,
 XtVaTypedArg, XmNforeground, XmRString, "black", strlen("black")+1,
 NULL);

How to create and use a Motif PGPLOT widget with PGPLOT
Motif PGPLOT widgets are created just like other widgets, by calling
XtVaCreateManagedWidget. The first argument to XtVaCreateManagedWidget must be
the device name by which you wish to refer to the widget in cpgbeg() or cpgopen(), and the

second argument must be xmPgplotWidgetClass. The third argument specifies the parent
widget. If you want the widget to have scroll bars then this should be a Motif ScrollBar
widget. The remaining arguments are a list of X resource-value pairs terminated by a
NULL argument. These should be used to configure the widget, via the resources listed
earlier.

A non-variadic "convenience" function for creating a PGPLOT widget is also available,
called XmCreatePgplot() and the equivalent function to create both a PGPLOT widget and
an associated ScrollBar widget is called XmCreateScrolledPgplot(). Note that in both
cases you should apply XtManageChild() to the returned widget.

Before a PGPLOT widget can be used from PGPLOT it has to be opened by calling cpgbeg

() or cpgopen(). This can be done any time after the PGPLOT widget has been realized.

Note that PGPLOT now supports multiple open PGPLOT devices via cpgopen(), cpgslct()

and cpgclos(). You can thus create and have multiple PGPLOT widgets open to PGPLOT

simultaneously. If you do this, be sure to call cpgslct() in each callback to ensure that the

intended PGPLOT widget is addressed. The id to pass to cpgslct() to select a given

XmPgplot widget can be obtained via the xmp_device_id() convenience function.

Please see the previous sections on configuration, resize options and how to get cursor
input.

An example of creating a PGPLOT widget as the child of a scroll bar widget is as follows:

 #include <stdio.h>
 #include <X11/Intrinsic.h>
 #include <Xm/Xm.h>
 #include <Xm/ScrolledW.h>

 #include "XmPgplot.h"
 #include "cpgplot.h"

 int main(int argc, char *argv[])
 {
 XtAppContext app; /* Application context */
 Widget w_top; /* The top-level widget of the application */
 Widget w_scroll; /* Scroll-bar widget */
 Widget w_pgplot1; /* PGPLOT widget */
 /*
 * Initialize Motif and request a pointer following
 * keyboard-focus policy.
 */
 XtSetLanguageProc(NULL, NULL, NULL);
 w_top = XtVaAppInitialize(&app, "Pgplot", NULL, 0,
 &argc, argv, NULL,
 XmNkeyboardFocusPolicy, XmPOINTER,
 NULL);
 /*
 * Create a ScrollBar widget.
 */
 w_scroll = XtVaCreateManagedWidget("pgplot_scrollbar",
 xmScrolledWindowWidgetClass, w_top,
 NULL);
 /*
 * Create a PGPLOT widget as a child of the scroll-bar widget.
 * Give it an initial size of 300x300 pixels and allow it to
 * allocate up to 60 colors from the colormap used by the parent
 * widget.
 */
 w_pgplot1 = XtVaCreateManagedWidget("pgplot1",
 xmPgplotWidgetClass, w_scroll,
 XmNheight, 300,
 XmNwidth, 300,
 XmpNmaxColors, 60);
 /*
 * Create and display the application windows.
 */
 XtRealizeWidget(w_top);
 /*
 * Open w_pgplot1 as the current PGPLOT device.
 */
 if(cpgopen(xmp_device_name(w_pgplot1)) <= 0) {
 fprintf(stderr, "Failed to open PGPLOT widget: %s\n",
 xmp_device_name(w_pgplot1));
 exit(1);

 };
 /*
 * Proceed with the Xt event loop.
 */
 XtAppMainLoop(app);
 /* NOT REACHED */
 return 0;
 };

This example doesn't actually do anything useful except create a PGPLOT widget with
scroll-bars and open it to PGPLOT. To make the example useful you would have to
arrange for something to draw into the PGPLOT widget. This could be a work procedure, a
callback registered to a communication stream for logging incoming data, or a push-button
callback.

The pgmdemo demo program provides a much more complete example. The source code for
it can be found in the PGPLOT distribution in pgplot/drivers/xmotif/pgmdemo.c. It is
compiled automatically when the xmdriv driver is uncommented in drivers.list during
PGPLOT installation.

Changes in the PGPLOT 5.2.0 release.
The rubber-band and cursor input facilities have been reworked. The changes include:

❍ Setting the XmNtraversalOn widget resource to False now correctly disables

keyboard-focus management. Previously this resource was ignored.
❍ xmp_arm_cursor now allows one to specify 0 for its callback argument. This allows

people to use the rubber-band cursor augmentation facility without incuring the
side-effects of its callback facility. This paves the way for programmers to use
XtAddEventHandler to register more advanced cursor-event handlers than would

otherwise be possible.
❍ There are two new coordinate conversion functions for use by those who want to

write their own X-window event handlers.
❍ The cursor used to be disarmed whenever the world coordinate system of a widget

changed. It no longer is.
❍ It used to be the case that if graphics were drawn while the rubber-band cursor was

displayed, the new graphics could overwrite parts of the cursor. To counter this the
rubber-band cursor is redrawn every time the PGPLOT buffer is flushed. This will
slow down graphical output unless you use cpgbbuf() and cpgebuf() prudently to

buffer sequential pgplot calls.
❍ Various bugs have been fixed that had been causing the rubber-band cursor to be

left un-erased in certain obscure situations, or to leave a "bristly" edge in the
highlight border where the cursor shouldn't have been drawn in the first place, or to
flip to the bottom when the mouse pointer exited the top of a widget.

❍ The XmNbackground and XmNforeground resources were being overriden by the
default pgplot background and foreground colors whenever a widget was opened to
pgplot. This made these resources useless. They now work correctly. If not
specified, the default background and foreground colors will be black and white (as
before) rather than taking on the conventional blue and black Motif colors. See the
Inherited widget resources section for more details.

Martin Shepherd (mcs·astro.caltech.edu).

mailto:mcs�astro.caltech.edu

X-Window Tk widget driver

Author
M. C. Shepherd, 1997.

Supported device
Restricted to Tcl/Tk (Tk4.0 and above) applications on workstations running the X
Window System.

Device type code
/XTK

Compatibility
So far, the driver has been tested by the author on a Sparc running Solaris 2.5.1 and the
following combinations of Tcl and Tk:

❍ Tcl7.5b3 and Tk4.1b3
❍ Tcl8.0a2 and Tk8.0a2

No changes were needed to upgrade between the above versions, so it is probably safe to
assume that all intervening versions will work as well. Future incompatibilities will be
accommodated as needed and distributed with later versions of PGPLOT.

The driver is unlikely to work fully with versions of Tk prior to Tk4.0. At the very least,
the changed definitions of the xview and yview commands will prevent the use of

scrollbars with the widget.

Device name specification
Tk PGPLOT widgets are created with a Tcl command called pgplot. The first argument of
this command is the Tk path-name to give the new widget. This doubles as the PGPLOT
device name of the widget.

Default view surface dimensions
pgplot widgets adopt a default size of 256×256 pixels. This can be changed via the -width

and -height configuration options during or after creation of the widget.

Resolution
Depends on monitor.

Multiple device capability
Applications are allowed to create multiple PGPLOT Tk widgets and open them
simultaneously to PGPLOT. If you do this, be sure to reduce the default number of colors
allocated by each widget by using the -maxcolors configuration option. Otherwise you will

run out of colors very quickly and some of your widgets will be forced to use monochrome
colors. Also be sure that all asynchronous callbacks call cpgslct() to select the appropriate

widget for PGPLOT output.

Color capability
Colors are allocated from the colormap of the top-level window of the application.
Colormaps of types PseudoColor, StaticColor, GrayScale, StaticGray, and TrueColor are

supported. The value of the -maxcolors configuration option specifies the number of colors

that each widget should attempt to allocate. This defaults to 100. The actual number
allocated will be less than this if there are fewer color cells left in the application's color
table. If fewer colors than the value of the -mincolors configuration option are available,

then monochrome is used.

Note that changes to the representation of a given PGPLOT color index will change the
colors of previously drawn graphics if a PseudoColor or GrayScale colormap is being used.
For other colormaps, only subsequently drawn graphics will take on the new colors.

See the section on private colormaps for further information.

Input capability
The standard Tk event binding mechanism can be used to select for any combination of
keyboard and button press events received by a PGPLOT Tk widget. To facilitate
combining this with PGPLOT, PGPLOT Tk widgets provide Tcl commands for converting
between widget X coordinates and PGPLOT world coordinates. They also provide
facilities for augmenting the X cursor with rubber-band cursors. These facilities are
described later.

Cursor input can also be acquired via cpgband() and cpgcurs(), but these functions are not

recommended because they block the Tk event loop.

Scroll capability
There are two types of scrolling available.

Tk window scrolling.
The widget window will be smaller than the PGPLOT view surface if:

■ cpgpage() has not been called since the user resized the window to a smaller

size.
■ cpgpap() has been used to request a larger physical size than that of the

widget.

In such cases a Tk scrollbar could be used to scroll the visible area of the view
surface. For this purpose the widget provides the conventional xview and yview

commands and the -xscrollcommand and -yscrollcommand configuration options.

PGPLOT Scroll area
The PGPLOT scroll-area option is supported. See the PGPLOT documentation on
cpgscrl() for details.

Associated files
tkpgplot.h

This header file is intended for use by the C part of a Tcl/Tk application. It
includes prototypes of the package-initialization function of the PGPLOT Tk
widget and a few optional convenience functions for communicating with the
widget directly via C.

libtkpgplot.a
This library file contains the Tk PGPLOT widget and its PGPLOT driver. The

main PGPLOT library only contains a stub version of the driver, so it is essential
to present libtkpgplot.a to the linker before the main PGPLOT library. For
example, a snapshot of the link line under Solaris would look something like:

 -ltkpgplot -lcpgplot -lpgplot -lTk4.1 -ltcl7.5 -lX11 -ldl

cpgplot.h
The include file for the C PGPLOT wrapper library should also be included in all
files that make calls to the PGPLOT library from C.

libcpgplot.a and libpgplot.a
The PGPLOT C wrapper library and the FORTRAN PGPLOT library.

Configuration
As is customary in Tk, PGPLOT widgets can be configured both when they are created,
and thereafter by using the path name of the widget as a command. For example, the
following Tcl command creates a PGPLOT widget called .plot, and gives it an initial size
of 10x10 cm, up to 16 colors and a 3D border width of 2 pixels.

 pgplot .plot -width 10c -height 10c -maxcolors 16 -bd 2

Having done this the following command would change the X-window cursor of the widget
to a small cyan crosshair cursor.

 .plot configure -cursor {crosshair black cyan}

The following is a list of the configurable options of PGPLOT widgets:

-background color
-bg color

Set or change the background color of the widget. Note that this also changes the
color associated with PGPLOT color index 0. This command takes a standard Tk
color specification as its only argument. The default foreground color is black.

-foreground color
-fg color

Set or change the color that is associated with PGPLOT color index 1. This
command takes a standard Tk color specification as its only argument. The default
foreground color is white.

-cursor tk-cursor-specification
This changes the cursor image that will be displayed when the cursor is within the
PGPLOT widget. It takes a standard Tk cursor specification as its only argument.
The default cursor is the cursor of the parent widget. This does not affect any
rubber-band cursor that has been established.

-borderwidth width
-bd width

This sets the width of the 3D border that is drawn around the widget. The single
argument is a standard Tk width specification. The default width is zero, which
results in no border being drawn.

-relief raised|sunken|flat|ridge|groove
This specifies how the 3D border is to appear. It takes a single argument naming
one of the standard Tk reliefs. The default is raised.

-height height

This specifies the height of the PGPLOT window displayed in the widget. It takes
a standard Tk width specification as its only argument. The default is 256 pixels.

-width width
This specifies the width of the PGPLOT window displayed in the widget. It takes
a standard Tk width specification as its only argument. The default is 256 pixels.

-highlightbackground color
This sets the color of the widget's highlight border when the widget does not have
the keyboard input focus. It takes a standard Tk color specification as its sole
argument. The default color is grey, chosen to match the default background color
of most standard Tk widgets.

-highlightcolor color
This sets the color of the widget's highlight border when the widget has the
keyboard input focus. It takes a standard Tk color specification as its sole
argument. The default color is white, such that it stands out against the default
black background of the PGPLOT window.

-highlightthickness width
This sets the width of the widget's highlight border. The single argument is a
standard Tk width specification. By default the highlight thickness is zero. If you
intend to adopt Tk's default click-to-focus input model and you intend to select for
keypress events in the widget then be sure to set this thickness to a finite width,
such as 2. Otherwise users will not be able to tell when the widget has the keyboard
input focus.

-takefocus
This selects whether the widget will be given the keyboard input focus when Tab
or Shift-Tab is pressed in a neighboring widget. The default is 0, which means that
the widget will not receive the input focus unless it is explicitly set using the Tk
focus command. If you intend to select for keyboard input in the widget (as opposed
to mouse button input), then be sure to reconfigure this to 1. You should then also
establish event bindings such that once the widget has the keyboard input focus,
Tab and Shift-Tab will move the input focus in the conventional manner. For
example:

 pgplot .plot -takefocus 1
 bind .plot <Tab> {focus [tk_focusNext %W]}
 bind .plot <Shift-Tab> {focus [tk_focusPrev %W]}

-xscrollcommand prefix
Whenever the visible part of the PGPLOT view surface underlying a PGPLOT
widget is changed, either by resizing the widget or by scrolling horizontally with
the xview widget command, the specified command prefix is augmented with two
extra arguments and evaluated. The two arguments are floating point numbers
which denote the left and right edges of the visible part of the view surface. 0 refers
to the leftmost edge of the view surface, and 1 refers to the rightmost edge. This is
designed for use with Tk scrollbar widgets. For example, given a horizontal scroll
bar called .hscroll and a PGPLOT widget called .plot, the following commands
would connect the scrollbar and the PGPLOT widget.

 .plot configure -xscrollcommand {.hscroll set}
 .hscroll configure -command {.plot xview}

-yscrollcommand prefix
This is the Y-axis equivalent of the -xscrollcommand configuration option.

-mincolors
This specifies the smallest acceptable number of colors before a widget switches to
monochrome. The default is 2. If fewer colors than this number are available, a
black and white colormap will be adopted and grey-scale images will be dithered.
This option is only consulted when a widget is created. Changes made thereafter
using the configure command will be ignored.

-maxcolors
This specifies the number of colors that the widget will attempt to allocate for
itself. The default is 100. On computers with 8-bit frame-buffers, colors are a scarce
resource so be sure to set this number as low as possible. For example, if you don't
intend to use cpgimag() or cpggray() to draw images, then the default of 100 colors

is likely to be much more than you need. In this case setting -maxcolors to 16 will
give access to all 16 of PGPLOT's pre-defined line colors, while reducing the
likelihood that either your application or somebody else's will run out of colors.
This is especially important if you intend to use more than one PGPLOT widget
within your application. This option is only consulted when a widget is created.
Changes made thereafter using the configure command will be ignored.

Other widget commands.
After a PGPLOT widget has been created, the following commands can be applied to that
widget, using the normal Tk syntax of:

 widget_path_name command_name arguments...

configure option arguments...
This allows widget configuration options to be changed after a PGPLOT widget
has been created. The supported options and their arguments have already been
described in the Configuration section.

cget option
This allows the current value of the specified configuration option to be queried.
The return string is formatted in the same fashion as the arguments of the
corresponding "pathName configure option" command.

xview ...
This is used to scroll the widget horizontally. It can take any of the following
forms, as used by Tk scrollbar widgets.
xview moveto fraction

Where fraction is the fractional width of the PGPLOT view surface that
lies to the left of the left edge of the widget.

xview scroll increment units
Move the view surface increment pixels to the right. Negative values move
the view surface to the left.

xview scroll increment pages
Move the view surface increment widget-widths to the right. Negative
values move the view surface to the left.

yview ...
This is used to scroll the widget vertically. It takes the same forms as described for
the xview command except that positive increments are defined as moving the
widget downwards instead of to the right.

setcursor mode x y ci

This is used to augment the normal X-window cursor of a PGPLOT widget with
one of a selection of rubber-band cursors. The mode argument selects the type of
cursor to use and the x and y arguments are used to set the origin of cursors that
have anchor points. The ci argument is a PGPLOT color index, and is used to
specify the color used to draw the cursor. The mode argument must be one of the
following names:

■ norm
No cursor augmentation.

■ line
A line drawn between the specified anchor point and the position of the
cursor.

■ rect
An open rectangle with vertices at the specified anchor point and the
position of the cursor.

■ yrng
Two horizontal lines extending the width of the view surface, one passes
through the Y coordinate of the specified anchor point and the other passes
through the cursor. This was designed for selecting the end of a Y-axis
range whose start has already been selected.

■ xrng
Two vertical lines extending the height of the view surface, one passes
through the x coordinate of the specified anchor point and the other passes
through the cursor.

■ hline
A horizontal line that passes through the cursor and extends the width of
the view surface. This was designed for selecting the start of a Y-axis
range.

■ vline
A vertical line that passes through the cursor and extends the height of the
view surface. This was designed for selecting the start of an X-axis range.

■ cross
A crosshair cursor that passes through the cursor and extends the width and
height of the view surface.

Note that this command will have no effect if the widget has not been opened to
PGPLOT.

Also note that when the cursor is augmented, the rubber band is redrawn every time
that the PGPLOT buffer is flushed. This happens after every call to PGPLOT
functions unless sensible use is made of cpgbuf() and cpgebuf() to buffer sequential

calls. Be sure to use these functions properly if you don't want your PGPLOT code
to be slow.

clrcursor
This is used to remove any cursor augmentation that was previously established
with the setcursor command.

world ...
This returns the floating point PGPLOT world coordinates that correspond to
specified integer X-window coordinates (such as those reported in the %x and %y
fields of Tk event bindings). It can take any of the following forms:
world x xoffset

This returns the X-axis PGPLOT world coordinate that corresponds to an
offset of xoffset pixels in from the left edge of the PGPLOT window.

world y yoffset
This returns the Y-axis PGPLOT world coordinate that corresponds to an
offset of yoffset pixels in from the top edge of the PGPLOT window.

world xy xoffset yoffset
This returns the PGPLOT X and Y-axis world coordinate pair that
corresponds to an offset of xoffset pixels in from the left edge of the
PGPLOT window and an offset of yoffset pixels in from the top edge of the
PGPLOT window.

Note that if the widget is not open to PGPLOT, 0.0 will be returned for all pixel
coordinates.

pixel ...
This returns the integer X-window coordinates that correspond to specified
floating point PGPLOT world coordinates. It can take any of the following forms:
pixel x worldx

This returns the horizontal X-window pixel coordinate that corresponds to
the given X-axis world coordinate.

pixel y worldy
This returns the vertical X-window pixel coordinate that corresponds to a
given Y-axis world coordinate.

pixel xy worldx worldy
This returns the X-window pixel-coordinate pair that corresponds to the
given world coordinates.

Note that if the widget is not open to PGPLOT, 0 will be returned for all world
coordinates.

id
This returns the integer id that was returned by cpgopen() when the widget was last

connected to PGPLOT. This can then be used with cpgslct() to select the widget to

be the target for subsequent PGPLOT output. If the widget has not been opened, 0
is returned.

Handling widget resizes.
When an application is resized by the user, some or all of its nested widgets are resized to
fit the new area. This means that a PGPLOT widget can get resized at unpredictable times,
whereas PGPLOT assumes that the size of its view surface remains unchanged between
the start of one page and the start of the next. To cope with this, pgplot widgets draw to an
off screen pixmap which is kept fixed in size for the duration of each page, and is only
resized to fit the window when cpgpage() is called. Thus when the widget is smaller than

the pixmap, only part of the PGPLOT view surface will be visible. There are two ways to
deal with this:

1. One way is to provide the widget with scrollbars, so that the user can interactively
change which part of the PGPLOT window is visible. For example:

 pgplot .plot -maxcolors 16
 scrollbar .xscroll -command {.plot xview} -orient horizontal
 scrollbar .yscroll -command {.plot yview} -orient vertical
 .plot configure -xscrollcommand {.xscroll set}
 .plot configure -yscrollcommand {.yscroll set}

2. The other is to establish a Tk event binding to redraw the plot whenever the user

resizes the window. Provided that your redraw command calls cpgpage(), the new

view surface will then match the current size of the widget.

 pgplot .plot -maxcolors 16 -bd 2 -relief sunken
 bind .plot <Configure> {your_redraw_command}

Cursor facilities
The standard PGPLOT cursor functions (cpgband() and cpgcurs()) were not designed with

event-driven programs in mind, and they are not appropriate for use in Tk because they
block the Tk event loop. This section describes how to display rubber-band cursors using
pgplot widget commands and how to asynchronously respond to user input via the Tk bind
command.

The Tk bind command arranges for user-specified Tcl code to be executed whenever a
given X-window event occurs. Events such as ButtonPress, KeyPress and Motion events
have associated X and Y X-Window coordinates at which the event occurred. These can be
converted to PGPLOT world coordinates with the world command provided by pgplot

widgets. For example the following code arranges that whenever any mouse button is
pressed when the pointer is in the given PGPLOT widget, a procedure called
report_button_press is invoked. This procedure then converts the X-window pixel
coordinates to world coordinates and reports them to stdout.

Tcl button-press example

 pgplot .plot -maxcolors 16
 ...
 bind .plot <ButtonPress> {report_button_press %W %b %x %y}
 ...
 proc report_button_press {plot button xpixel ypixel} {
 set x [$plot world x $xpixel]
 set y [$plot world y $ypixel]
 puts stdout "You pressed mouse-button $button at X=$x Y=$y"
 }

The rubber-band cursors that would normally be provided by the cpgband() PGPLOT

function, are also available via the setcursor command of pgplot widgets. These augment

the normal X Window cursor of the widget, and remain attached to the cursor until the
clrcursor command is next invoked on the widget.

The following is a complex example that shows how one might arrange for the user to
select an X-axis range using rubber-band cursors and Tk bindings. The code acts as
follows. xrange_step1 takes a PGPLOT widget and a callback-command as its arguments.
It displays a vertical line cursor in this widget and arranges that when the user next
presses mouse-button 1, xrange_step2 will be called. xrange_step2 changes the cursor to an
X-axis range cursor with one of its two vertical lines anchored where the user pressed
button 1. It then rebinds button 1 to invoke xrange_finish when the user selects the other
end of the range. xrange_finish deletes the cursor and the associated event binding by
calling on xrange_cancel, then it evaluates the command that was originally passed to
xrange_step1 via its cmd argument and tacks on the two selected world-coordinate limits

as trailing arguments.

Tcl range-selection example

 proc xrange_step1 {plot cmd} {
 $plot setcursor vline 0 0 3
 bind $plot <1> "xrange_step2 %W cmd %x"
 }

 proc xrange_step2 {plot cmd x} {
 set xa [$plot world x $x]
 $plot setcursor xrng $xa 0 3
 bind $plot <1> "xrange_finish %W $cmd $xa %x"
 }

 proc xrange_finish {plot xa x} {
 set xb [$plot world x $x]
 xrange_cancel $plot
 eval $cmd $plot $xa $xb
 }

 proc xrange_cancel {plot} {
 bind $plot <1> {}
 $plot clrcursor
 }

The following is an example of how this could be used. A more complete example is
provided later.

 pgplot .plot -maxcolors 16
 ...

 proc report_xrange {plot xa xb} {
 puts "You selected X-axis range $xa -> $xb"
 }

 xrange_step1 $plot report_xrange

Finally, the following example shows how one can provide a continuous readout of the
world coordinates of the cursor whenever the cursor is in the target PGPLOT widget. It
creates two label widgets in which to display the X and Y coordinates, places them left to
right above a PGPLOT widget and then arranges for the positions reported by Motion
events to be translated to world coordinates and placed in the labels.

Tcl cursor-readout example

 # Create two labels side-by-side in a frame.

 frame .f
 label .f.x -width 12 -anchor w
 label .f.y -width 12 -anchor w
 pack .f.x .f.y -side left -anchor w

 # Create the PGPLOT widget and place it below the labels.

 pgplot .plot -maxcolors 16
 pack .f .plot -side top

 # Arrange to update the labels whenever the cursor moves
 # in the PGPLOT window.

 bind .plot <Motion> {
 .f.x configure -text "X=[.plot world x %x]"
 .f.y configure -text "Y=[.plot world y %y]"
 }

Note that this example will display X=0.0 and Y=0.0 until the widget is opened to
PGPLOT. Up to that point no world coordinates exist so the world command returns 0.0
for all input coordinates.

Private colormaps
The Tk pgplot widget allocates colors from the colormap of the top level widget that
encloses it. By default this is also the default colormap of the screen, which is being
competed for by most of the other X-window programs that are being displayed. To avoid
running out of colors you can do two things:

1. Set the value of the pgplot -maxcolors configuration option to as small a value as

you actually need.
2. Allocate a private colormap for the top level widget of your application.

The latter option is easily available via the -colormap configuration argument of the Tcl/
Tk toplevel command. This means that you can either create your own separate top level
widget with its own colormap, or you can request a private colormap for the main window
when the application starts. For example, using the standard Tcl/Tk window shell:

 wish -colormap new

will allocate wish its own private colormap. If you start your application via the standard
Tk_Main() function and pass it the command-line arguments of your program then it too
will accept the -colormap option from the command-line.

How to use the driver from C
The most efficient way to use the Tk PGPLOT driver is to handle user-interaction using a
Tcl/Tk script and delegate drawing operations to Tcl-callable C functions. This section
gives a complete example to illustrate how this is done. If you want to try this code,
extract the following C-code fragments (eg. using cut and paste), assemble them into a .c

file and compile the result as described later.

The main() function of the example program delegates starting up Tcl/Tk to the standard
Tk main function. This in turn calls the example customization function Demo_AppInit().
The customization function calls Tkpgplot_init() to create the Tcl pgplot command, then
creates two other new Tcl commands. The first is simply a wrapper around cpgopen(). The

second is a wrapper around an example drawing function that draws a plot of x² versus x.

C example program

 #include <tk.h>
 #include <stddef.h>
 #include <stdlib.h>
 #include "tkpgplot.h" /* Needed solely for tkpgplot_Init() */
 #include "cpgplot.h" /* Needed for cpg*() pgplot functions */

 /* Prototype local functions. */

 static int Demo_AppInit(Tcl_Interp *interp);
 static int usage_error(Tcl_Interp *interp, char *usage);
 static int tcl_pgopen(ClientData data, Tcl_Interp *interp,
 int argc, char *argv[]);
 static int tcl_draw_plot(ClientData data, Tcl_Interp *interp,
 int argc, char *argv[]);

 int main(int argc, char *argv[])
 {
 Tk_Main(argc, argv, Demo_AppInit);
 return 0;
 }

 static int Demo_AppInit(Tcl_Interp *interp)
 {
 if(Tcl_Init(interp) == TCL_ERROR ||
 Tk_Init(interp) == TCL_ERROR ||
 Tkpgplot_Init(interp) == TCL_ERROR)
 return TCL_ERROR;
 Tcl_CreateCommand(interp, "pgopen", tcl_pgopen, NULL, 0);
 Tcl_CreateCommand(interp, "draw_plot", tcl_draw_plot, NULL, 0);
 return TCL_OK;
 }

 /*
 * Implement the example pgopen Tcl command. This takes a single
 * PGPLOT device specification argument and returns the
 * corresponding PGPLOT id for use with cpgslct().
 */
 static int tcl_pgopen(ClientData data, Tcl_Interp *interp,
 int argc, char *argv[])
 {
 char result[20];
 int id;
 /*

 * Make sure that the right number of arguments have been provided.
 */
 if(argc != 2)
 return usage_error(interp, "pgopen device");
 /*
 * Attempt to open the PGPLOT device specified in argv[1].
 */
 id = cpgopen(argv[1]);
 if(id <= 0) {
 Tcl_AppendResult(interp, "Unable to open device: ", argv[1], NULL);
 return TCL_ERROR;
 };
 /*
 * Turn off new-page prompting.
 */
 cpgask(0);
 /*
 * Return the PGPLOT id of the device via the Tcl result string.
 */
 sprintf(result, "%d", id);
 Tcl_AppendResult(interp, result, NULL);
 return TCL_OK;
 }

 /*
 * Implement the example Tcl draw_plot command. This takes three
 * arguments. The id of the PGPLOT device to plot to, the leftmost
 * X-axis value to display and the rightmost X-axis value to
 * display.
 */
 static int tcl_draw_plot(ClientData data, Tcl_Interp *interp,
 int argc, char *argv[])
 {
 double xa, xb; /* The X-axis range to plot */
 int id; /* The PGPLOT id of the target device */
 int i;
 /*
 * Make sure that the right number of arguments have been provided
 * and that the PGPLOT id makes sense.
 */
 if(argc != 4 || (id=atoi(argv[1])) <= 0)
 return usage_error(interp, "draw_plot id xmin xmax");
 /*
 * Decode the two X-axis world-coordinate limits.
 */
 if(Tcl_GetDouble(interp, argv[2], &xa) == TCL_ERROR ||
 Tcl_GetDouble(interp, argv[3], &xb) == TCL_ERROR)
 return TCL_ERROR;
 /*
 * Select the PGPLOT device and draw the plot.
 */
 cpgslct(id);
 cpgpage();

 cpgswin(xa, xb, 0.0, 1.0);
 cpgsci(1);
 cpgbox("BCNST", 0, 0, "BCNST", 0, 0);
 cpgsci(2);
 cpgmove(0.0, 0.0);
 for(i=1; i<100; i++) {
 float x = i/100.0;
 cpgdraw(x, x*x);
 }
 return TCL_OK;
 }

 /*
 * The final function is just a utility function for reporting
 * command-usage errors and returning the standard Tcl error code.
 */
 static int usage_error(Tcl_Interp *interp, char *usage)
 {
 Tcl_AppendResult(interp, "Usage: ", usage, NULL);
 return TCL_ERROR;
 }

Having assembled the above C fragments into a single file called demo.c the file can be
compiled and linked (on a Sun running Solaris 2.5.1) as follows:

 cc -c -O demo.c -I/usr/local/pgplot -I/usr/local/include

 f77 -o demo demo.o -ltkpgplot -lcpgplot -lpgplot -ltk4.1 -ltcl7.5 -lX11 -lnsl -lsocket -ldl

The actual compilation and linking steps will differ from machine to machine. However
note that the main PGPLOT library is written in FORTRAN. For this reason it is usually
easiest to link the program using a fortran compiler as shown above. This is easier than
having to figure out what FORTRAN support libraries to cite when linking with a C
compiler.

Having compiled and linked the example program, we now need a Tcl script to show how to
use the commands that it implements. The following script creates a PGPLOT widget,
opens it to PGPLOT and draws the example plot in it. It also arranges that whenever the
user resizes the application, the plot will be redrawn to take advantage of the new size.

Tcl example script

Give the application window a title.

wm title . {Example plot}

Show a usage label.

label .usage -text {Mouse-button 1 selects range, 2 cancels, 3 unzooms}
.usage configure -bd 2 -relief groove -bg yellow
pack .usage -side top -anchor c -fill x

Create a PGPLOT widget.

pgplot .plot -maxcolors 4 -width 500 -height 500
pack .plot -side top -expand true -fill both

Open the widget to PGPLOT.

pgopen .plot/xtk

Arrange for the plot to be redrawn whenever the user resizes it.

bind .plot <Configure> {draw_plot [%W id] 0.0 1.0}

Reproduce the previously explained range-selection functions.

proc xrange_step1 {plot cmd} {
 $plot setcursor vline 0 0 3
 bind $plot <1> "xrange_step2 %W $cmd %x"
}

proc xrange_step2 {plot cmd x} {
 set xa [$plot world x $x]
 $plot setcursor xrng $xa 0 3
 bind $plot <1> "xrange_finish %W $cmd $xa %x"
}

proc xrange_finish {plot cmd xa x} {
 set xb [$plot world x $x]
 xrange_cancel $plot
 eval $cmd $plot $xa $xb
}

proc xrange_cancel {plot} {
 bind $plot <1> {}
 $plot clrcursor
}

This function is called to draw a zoomed version of the plot.

proc zoom_plot {plot xa xb} {
 draw_plot [$plot id] $xa $xb
 start_zoom $plot

}

This procedure sets up the cursor to allow users to zoom
in on the plot.

proc start_zoom {plot} {
 xrange_step1 $plot zoom_plot
 bind $plot <2> "start_zoom $plot"
 bind $plot <3> {draw_plot [%W id] 0.0 1.0}
}

Start the ball rolling.

start_zoom .plot

To try the above script, cut and paste it into a file called demo.tcl and run it by typing:

 demo demo.tcl

If the pgplot widget complains that there aren't sufficient colors left in the default
colormap, then rerun the demo with a private colormap as follows:

 demo demo.tcl -colormap new

In addition, if you just run the program without specifying a script file:

 demo

then you will be given a wish shell prompt at which you can type Tcl/Tk commands,
including those defined by the example program.

A more complicated demonstration program comes with the PGPLOT distribution and is
automatically compiled if the Tk driver is selected. To run it, change to the pgplot
installation directory and type:

 pgtkdemo pgtkdemo.tcl

or

 pgtkdemo pgtkdemo.tcl -colormap new

if it complains about there being insufficient colors. Note that this demo uses different
resize strategies for its two PGPLOT widgets. The topmost pgplot widget displays a grey-

scale image and is slow to redraw, so this has been given scrollbars. If you resize the
application to a smaller size, then you will be able to use the scroll bars to see any part of
the partially obscured image. If you want to replot the image with the same size as the

shrunk widget, simply select an image function from the option menu. The other pgplot
widget displays a line graph which is quick to redraw, so when the application is resized
by the user, the graph is redrawn to take advantage of the new size.

Frequently asked questions and answers
The following is a collection of problems that you might initially encounter and
suggestions for how to resolve them.

Why does the first plot that I draw appear to have the wrong size?
You probably attempted to plot in the widget before it had been displayed for the
first time, so the pgplot widget created a view surface that had the default, or
specified size of the widget rather than the size that the widget was subsequently
given by the Tk geometry manager. To ensure that the widget has been displayed
and given its final size before drawing into it, place the following Tcl command
before your first plotting command:

 update idletasks

How do I stop a pgplot widget from complaining about there being insufficient colors?
See the private-colormaps section.

Martin Shepherd (mcs·astro.caltech.edu).

mailto:mcs�astro.caltech.edu

PGPLOT version 5.2.0

This version includes bug fixes, improvements in existing routines, new routines, and new device
drivers. All changes are intended to be compatible: existing programs should run unchanged and
produce the same output (except for a few bug fixes).

Tested Systems

Version 5.2.0 has been tested with the following operating systems and compilers. Drivers tested
include: GI, GL, NU, PG, PP, PS, TT, TK, VT, WD, X2, XM, XW (but not all combinations of
drivers and systems have been tested exhaustively).

● Solaris 2.5.1 (SunOS 5.5.1), Sun Fortran (f77) 3.0.1, Sun C (cc) 3.0.1 (tested on SPARC Ultra-
1) [sol2 f77_cc].

● Solaris 2.5.1 (SunOS 5.5.1), GNU Fortran (g77) 0.5.18, GNU C (gcc) 2.7.2.1 (tested on
SPARC Ultra-1) [sol2 g77_gcc].

● SunOS 4.1.3, Sun Fortran (f77), GNU C (gcc) (tested on Sun SPARCStation 2) [sun4
f77_gcc].

● OpenVMS AXP V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.1 (tested
on DEC 3000/M600).

● OpenVMS VAX V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.2 (tested
on VAXstation 4000-90).

New PGPLOT routines

The following routines are documented in the list of subroutines, and will be explained more fully

in the manual.

pgaxis

Draw a linear or logarithmic axis (more options will be added in later versions).
pgconf

Shade area between two contours.
pgerr1

Draw a single error bar (useful for systems which cannot pass a scalar to a routine that
expects an array).

pgpt1

Draw a single graph marker (useful for systems which cannot pass a scalar to a routine that
expects an array).

pgsclp, pgqclp

Set/query clipping status (used by PGBOX and PGAXIS to ensure that axes are not clipped
against the viewport).

pgqdt, pgqndt

Inquiry routines used to determine the list of device types available in a PGPLOT
installation; useful for building menus, etc.

pgscrl

Scroll a rectangular region of the screen; useful for making animated displays without
redrawing the whole screen; currently only supported on X Window and related devices.

pgtick

Used by pgaxis to draw single labelled tick mark; may be called directly, e.g., for special
non-linear axes.

Modified PGPLOT routines

Internal changes that do not affect the API are not listed. Several routines have been modified to
improve their descriptions or improve speed.

pgctab

The behavior of the arguments "brightness" and "contrast" has been changed slightly. The
color indices set by this routine will be slightly changed from earlier versions of PGPLOT,
except when these arguments have their "default" values (0.5 and 1.0). The routine is
designed for use in an interactive environment in which the user can explore the effect of
changing these parameters; in the new version they behave somewhat more as one might
expect.

pgqinf

Added ability to determine whether a device supports pgscrl.

New device drivers

pgdriv (device type /PGMF)

Creates a disk file in a private PGPLOT Metafile format. This is a portable file format
using only printable ASCII characters. It is intended to replace the old metafile (created by
MFDRIV) which uses a binary, machine-dependent format. Subroutines are being prepared
to allow a PGPLOT program to read and display files written in this format (an example
program is provided in directory pgplot/pgmf). The driver uses only standard Fortran-77
and so should be portable to all operating systems on which PGPLOT is supported.

tkdriv (device type /XTK)

For plotting in PGPLOT Tcl/Tk widgets under the X Window System (UNIX systems
only). An example program is included. Feedback on this driver would be appreciated: send
e-mail to Martin Shepherd (mcs·astro.caltech.edu).

Modified device drivers

lxdriv

LaTeX picture environment driver. Fixed bug: picture size can now be adjusted with
PGPAP. (Note: The PostScript driver gives much better results than this one, if your
LaTeX environmant allows PostScript files to be included in LaTeX documents.)

xmdriv

Motif widget driver. Added support for scrolling; improved cursor handling; bug fixes.
xwdriv

X Window driver. Added support for scrolling; bug fixes. The PGPLOT cursor can now be
moved horizontally and vertically with the keyboard arrow keys, which can be more
precise than using the mouse. Each keystroke moves the cursor by one pixel, or 10 pixels if
the SHIFT key is depressed.

Deprecated drivers

mailto:mcs�astro.caltech.edu

The following drivers are probably no longer useful, and their use is discouraged. They have been
moved from pgplot/drivers to pgplot/drivers/old. If you still need any of these drivers, please
contact Tim Pearson.

imdriv, vidriv
Imagen printers.

irdriv
Silicon Graphics workstations: use the X-window drivers instead.

svdriv
Sun workstations running SunView: use the X-window drivers instead.

Changes to installation procedures

The installation instructions have been rewritten. There are two changes you should be aware of:

1. All the UNIX configuration files (pgplot/sys_*/*.conf) have been modified to add new
parameters that may be required for the new widget drivers. If you have made
modifications to configuration files and haven't sent them back to Tim Pearson, you will
need to change them again.

2. If you need to modify a configuration file for your system, it is now recommended that you
make a new configuration file called "local.conf" in the build directory, by editing a
configuration file for a related system. makemake will now read this file if you do not
specify a configuration on the makemake command line.

New and modified demonstration programs

pgdemo1
Now uses new routine pgpt1 when a single marker is to be drawn.

pgdemo2
Modified text-sample page.

pgdemo3
Added demo of new routine pgconf. Demo of pgvect has been moved to pgdemo15.

pgdemo4
Demo of pgimag: modified to use slightly more realistic transformation matrices, to show
the use of pgctab, and to show how the color palette may be modified interactively.

pgdemo6
Now uses new routine pgpt1 when a single marker is to be drawn.

pgdemo13
Now uses new routine pgpt1 when a single marker is to be drawn.

pgdemo15
New demo for routine pgvect (formerly in pgdemo3).

pgdemo16
New demo for bar and column charts. This uses a general-purpose subroutine that may get
included in a future version of pgplot, although not exactly in this form.

pgdemo17
New demo, from Dr Martin Weisser, showing animated rotation of a molecular structure.

Changes to C binding

The program that creates the PGPLOT C binding (pgbind) can now generate a binding for MS-
Powerstation (Windows).

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Installation Instructions: UNIX systems

Note: The following instructions refer to two directories, the distribution (source) directory which
will contain the PGPLOT source code directory tree, and the target directory in which the
machine-specific libraries, data files, and demonstration programs will be created. It is
recommended that you create new, empty directories for these. They should not be the same
directory. In the examples below, these directories are named

/usr/local/src/pgplot (distribution directory)
/usr/local/pgplot (target directory)

but you can use any convenient names. Unusual (root) privileges are not required to install
PGPLOT, assuming you have write access to the directories. A single distribution directory can
be used to install versions of PGPLOT for different architectures in different target directories.

Copy the distribution file

Copy the distribution file by anonymous ftp from Caltech. Use anonymous ftp (user: anonymous,
password: your id username@machine) to node ftp.astro.caltech.edu.

The distribution file is a UNIX tar file compressed with gzip. Issue the following ftp commands to
retrieve the file:

 cd pub/pgplot
 binary
 get pgplot5.2.tar.gz

The text files in this directory are also included in the tar file.

The distribution file can also be fetched from URL ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.

tar.gz.

Decompress the files

Use gunzip and tar to decompress the archive and extract its contents. This will create directory
pgplot (and subdirectories) in the current directory. Make sure that your current directory is where
you want to create the ``PGPLOT distribution'' directory tree.

 cd /usr/local/src
 gunzip -c pgplot5.2.tar.gz | tar xvof -

This example will create /usr/local/src/pgplot and subdirectories.

Create the target directory

ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz

Create a writeable directory in which the PGPLOT library and associated files will be created.
One such directory is needed for each different operating system and compiler combination
(``target system'') that you wish to support, e.g.,

 mkdir /usr/local/pgplot

Do not try to create the PGPLOT library in the distribution directory.

Select device drivers

Configure PGPLOT by selecting device drivers from the available list. First copy the file drivers.
list from the distribution directory to the target directory, and then use a text editor to select
device drivers. This file contains one line for each available device driver: delete the exclamation
mark (!) at the beginning of the line to include the driver, or ensure that an exclamation mark is
present if you want to exclude the driver. Many of the drivers can be used only on certain
operating systems (see notes in drivers.list), so include only the drivers you plan to use. PGPLOT
can later be reconfigured by restarting the installation at this step. Most installations should
include: the null device (/NULL), PostScript printers (/PS, /VPS, /CPS, and /VCPS), Tektronix
terminals (/TEK, /XTERM, and possibly other variants), and, if the X window system is available
on the target, the X window drivers (/XWINDOW, /XSERVE). You may also wish to include drivers
for GIF files (/GIF, /VGIF) or some of the other printers.

 cd /usr/local/pgplot
 cp /usr/local/src/pgplot/drivers.list .
 vi drivers.list (or use your preferred editor)

Note: If you select either the Motif widget driver (XMDRIV) or the Tk/Tcl widget driver
(TKDRIV), the installation procedure will install additional files and demonstration programs. Do
not select these drivers unless you are planning to develop programs that will use them. For
further information see the appropriate documentation:

● XMDRIV

● TKDRIV

Create the makefile

The PGPLOT installation procedure for UNIX uses a script, called makemake, to generate a
standard UNIX makefile for your operating system, compilers, and list of selected PGPLOT device
drivers. Operating-system and compiler information is obtained from a configuration file.
Configuration files are available for the following systems. If your configuration is not one of
those listed, or if you have trouble using the generated makefile, see below for information about
creating your own configuration file.

Note that the configuration files are for particular compilers, on particular operating systems. If,
for example, you have set up your system so that the command f77 invokes the GNU g77 compiler,
then you cannot use a configuration file designed for, say, a SPARC f77 compiler. You will have to
create a special configuration file.

In the following table, Arg#2 is a code for the operating system, and Arg#3 is a code for the

Fortran and C compilers. For more information about the supported systems, see the file pgplot/
sys_*/aaaread.me, where * stands for one of the options for Arg#2.

 Arg#2 Arg#3
 ------ ------
 aix xlf_cc
 alliant fortran_cc
 bsd g77_gcc
 convex fc_cc
 cray cf77_cc
 epix2 f77_cc (Control Data EP/IX 2.x)
 freebsd f77_cc
 fujitsu uxpm_frt_cc
 fujitsu uxpv_frt_cc
 hp fort77_c89
 hp fort77_gcc
 irix f77_cc
 linux absoft_gcc
 linux f77_gcc
 linux g77_elf
 linux g77_gcc
 next af77_cc
 next f2c_cc
 next g77_cc
 next gf77_cc
 osf1 f77_cc
 osf1 f77_cc_shared
 sol2 f77_cc (Solaris 2.x, SunOs 5.x)
 sol2 f77_gcc
 sol2 f90_cc
 sol2 g77_gcc
 sun4 f77_acc (SunOS 4.x)
 sun4 f77_cc
 sun4 f77_gcc
 ultrix f77_cc

If your system is one of those listed, proceed as follows:

Make the target directory your current default directory, e.g.,

 cd /usr/local/pgplot

Execute the script makemake from the distribution directory: e.g.,

 /usr/local/src/pgplot/makemake /usr/local/src/pgplot sun4

The first argument supplied to makemake is the name of the distribution directory. Note that when
you run makemake, your current default directory should be the target directory, i.e., the directory
in which you want to put the compiled library.

The second argument is the name of the operating system (Arg#2 from the above table); if you omit
it or supply an unrecognized name, makemake will indicate the allowed values.

On some operating systems, where more than one Fortran or C compiler is available, a third
argument is required (Arg#3 from the above table); usually this is composed of the two compiler
names separated by an underscore. If you omit it, makemake will indicate the allowed values.

Once you have supplied valid arguments, makemake may complain that it can't find the drivers.list
file. Go back to step 4!

Example

% ../pgplot/makemake ../pgplot sol2 f77_gcc
For additional information, read file ../pgplot/sys_sol2/aaaread.me
Reading configuration file: ../pgplot/sys_sol2/f77_gcc.conf
Selecting uncommented drivers from ./drivers.list
Found drivers GIDRIV NUDRIV PPDRIV PSDRIV TKDRIV TTDRIV WDDRIV XMDRIV XWDRIV
Creating make file: makefile
Determining object file dependencies.
%

The script makemake generates a file makefile for subsequent use, a Fortran file grexec.f that calls
the selected device drivers, and a text file rgb.txt that contains color definitions for use by routine
PGSCRN. (If you already have a file rgb.txt, possibly modified with your own custom definitions,
makemake does not modify it.) It also copies two Fortran include files that will be needed during
compilation. So at this stage you will have at least the following files:

 drivers.list
 grexec.f
 grpckg1.inc
 makefile
 pgplot.inc
 rgb.txt

You should check that these files have been created, and you should also check that the list of
drivers that makemake says that it found corresponds to those you selected in drivers.list.

If your UNIX system is not one of the supported systems listed above, create your own
configuration file in the target directory, with name local.conf. It is best to copy one of the
configuration files provided (from pgplot/sys_*/*.conf, and then edit it following the comments in
the file. The makemake procedure will use local.conf if it exists in the current directory, and if you
do not specify Arg#3. Note that you must still specify Arg#2 (operating system). For more
information about configuration files, see Porting PGPLOT, or consult tjp·astro.caltech.edu.

Use `make' to compile the code

Now use the UNIX make command to compile the PGPLOT library following the instructions in
makefile:

mailto:tjp�astro.caltech.edu

 make

By default, make will generate: an object-module library, libpgplot.a; a shareable library (if
possible on the selected operating system), the binary PGPLOT font file grfont.dat, the
demonstration programs pgdemo*, and a documentation file pgplot.doc. In addition, if the /
XWINDOW and/or /XSERVE driver was selected in step 4, it will generate a program
pgxwin_server, and if the /XDISP driver was selected, it will generate a program pgdisp.

If this step proceeds satisfactorily, you may want to type

 make clean

to remove unneeded intermediate files. You will then have the following files in the current
directory:

 drivers.list
 grexec.f
 grfont.dat (binary font file)*
 libpgplot.a (PGPLOT library)*
 libpgplot.so (shared library, optional)*
 makefile
 pgdemo1 ... pgdemo16 (demonstration programs)
 pgdisp (required by /XDISP driver)*
 pgplot.doc (ASCII documentation file)
 pgxwin_server (required by /XWINDOW driver)*
 rgb.txt (color name database)*

If you requested XMDRIV or TKDRIV, you will also have some of the following files:

 pgmdemo (executable demo program)
 libXmPgplot.a (object library required by PGPLOT/Motif applications)*
 XmPgplot.h (header file required by PGPLOT/Motif applications)*
 libtkpgplot.a (object library required by PGPLOT/Tk applications)*
 pgtkdemo (executable demo program)
 pgtkdemo.tcl (script used by demo program)
 tkpgplot.h (header file required by PGPLOT/Tk applications)*

If you want to copy the compiled version of PGPLOT to another directory, you must copy at least
the files marked with an asterisk (*). The documentation file contains the PGPLOT subroutine
descriptions, which are also available in the manual.

Install the C binding

Optionally, install and test the C binding for PGPLOT. This requires an ANSI C compiler (that
understands function prototypes) and is not available on all systems.

 make cpg

This creates three files:

 cpgplot.h (ANSI C header file)
 libcpgplot.a (library containing the C binding)
 cpgdemo (demonstration program)

Note: The installation procedure does not create a shared library for the C binding. If you want
one, you can create it by hand using the appropriate commands for your system, e.g. for some
versions of Linux,

 ld -shared -o libcpgplot.so --whole-archive libcpgplot.a

Run the demonstration programs

Run the demonstration programs on your selected devices and verify that they run satisfactorily.

Before running any PGPLOT program, you must ensure that the environment variable
PGPLOT_DIR is correctly defined. This is the name of the directory in which PGPLOT will look
for the files grfont.dat and rgb.txt (unless environment variables PGPLOT_FONT and
PGPLOT_RGB are defined to override this default behavior), and, if needed, the X-window server
program pgxwin_server:

UNIX csh: setenv PGPLOT_DIR /usr/local/pgplot/
UNIX sh: PGPLOT_DIR="/usr/local/pgplot/"; export PGPLOT_DIR

It is also convenient, but not essential, to define a default PGPLOT device with environment
variable PGPLOT_DEV, e.g.

UNIX csh: setenv PGPLOT_DEV /xwindow

Other PGPLOT environment variables are described in the manual.

When using a UNIX shared library (e.g., on Solaris 2.x), you may also need to put the PGPLOT
directory in your loader search path, defined in environment variable LD_LIBRARY_PATH.

To run a program, type its name (with directory if the current directory is not in your path):

 ./pgdemo1

All the demonstration programs prompt for a device name and type. Type a question mark ? to see
a list of the available device types and verify that PGPLOT has been configured properly.

Points to check for: the PGPLOT program correctly reads the font file and displays superscripts,
subscripts and special characters (pgdemo2); the PGPLOT program can read the color database
(pgdemo10); on interactive devices, the cursor works correctly (pgdemo5, pgdemo6).

To test the PGPLOT Motif widget driver, run pgmdemo in the same way as the other
demonstration programs. You must first ensure that an X-window display is available and that
environment variable PGPLOT_DIR is correctly defined.

To test the PGPLOT Tk/Tcl widget driver, type

 pgtkdemo pgtkdemo.tcl

See the documentation for the driver for more information.

Note: The installation procedure does not install the Tk demo correctly on Digital Unix (4.0B).
The demos program pgtkdemo is unable to read command-line arguments. Use the following
commands to compile and link the demo:

 cc -c -I`pwd` -I/usr/local/include pgtkdemo.c

 cc -o pgtkdemo pgtkdemo.o -L`pwd` -ltkpgplot -lcpgplot -lpgplot \
 -L/usr/local/shlib/alpha -ltk -ltcl -lX11 -lUfor -lfor -lm

(i.e., omit -Dmain=MAIN__ and use cc instead of f77 for the link step.)

Install documentation files (optional)

The standard installation procedure creates an ASCII text file containing synopses of all the
PGPLOT subroutines: pgplot.doc.

A documentation file in HTML format that can be displayed with a Web browser or an HTML
reader can be created by typing:

 make pgplot.html

This file is created by executing a perl program to extract the documentation from the source
code. If you do not have perl installed on your system, you can access the file at URL http://www.

astro.caltech.edu/~tjp/pgplot/subroutines.html. You may need to edit the first line of file pgplot/

makehtml to include the correct commands for invoking perl on your system.

A documentation file in LaTeX format (Appendix A of the manual) can be created by typing

 make pgplot-routines.tex

This file is also created by executing a perl program to extract the documentation from the source
code. You may need to edit the first line of file pgplot/maketex to include the correct commands
for invoking perl on your system. To print this file, you will need to run LaTeX to create a dvi file
and a dvi interpreter to print it, e.g. (on Unix systems)

 latex pgplot-routines
 dvips pgplot-routines -o

Install the library of obsolete routines (optional)

The library libpgobs.a includes some obsolete PGPLOT routines. If you have old programs that
use these routines, you can install the library by

 make libpgobs.a

However, these routines will not be included in future versions of PGPLOT, so you should rewrite
your programs to avoid their use.

PGPLOT
Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1995-1999 California Institute of Technology

mailto:tjp�astro.caltech.edu

PGPLOT Installation Instructions: LINUX systems

Version 5.2.0

For LINUX systems, I recommend installing from the source code, following the standard UNIX

instructions. This will ensure that the library is compiled with the same version of the compilers
that you will use with application programs, and allows you to select which PGPLOT device
drivers are included in the library.

Precompiled versions are available for some varieties of LINUX, however, containing a limited set
of device drivers. I did not create these myself, and if you have problems with them, I suggest that
you obtain the source distribution.

If anyone wishes to make other binary packages, I would appreciate it if they would consult me
first.

Linux for Astronomy

PGPLOT is included on the Linux for Astronomy CD-ROMs, available from The Random Factory.

Debian

G. John Lapeyre (lapeyre@physics.arizona.edu) has put source code and binary packages on his

Web page at http://physics.arizona.edu/~lapeyre/pgplot/. They are also available at the official

Debian site, http://cgi.debian.org/www-master/debian.org/Packages/unstable/math/pgplot.html and

mirrors.

ELF

Evgeny Stambulchik (fnevgeny@plasma-gate.weizmann.ac.il) has created a precompiled ELF

package:

● http://sunsite.unc.edu/pub/Linux/devel/lang/fortran/pgplot5.2.0.bin.lsm

● http://sunsite.unc.edu/pub/Linux/devel/lang/fortran/pgplot5.2.0.bin.tgz

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

http://www.randomfactory.com/lfa.html
mailto:lapeyre@physics.arizona.edu
http://physics.arizona.edu/~lapeyre/pgplot/
http://cgi.debian.org/www-master/debian.org/Packages/unstable/math/pgplot.html
mailto:fnevgeny@plasma-gate.weizmann.ac.il
http://sunsite.unc.edu/pub/Linux/devel/lang/fortran/pgplot5.2.0.bin.lsm
http://sunsite.unc.edu/pub/Linux/devel/lang/fortran/pgplot5.2.0.bin.tgz
mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Installation Instructions: VMS systems

Version 5.2.0

Note: The following instructions refer to two directories, the distribution (source) directory which
will contain the PGPLOT source code directory tree, and the binary directory in which the
machine-specific libraries, data files, and demonstration programs will be created. It is
recommended that you create new, empty directories for these. They should not be the same
directory. In the examples below, these directories are named

USR:[LOCAL.PGPLOT] (distribution directory)
USR:[LOCAL.PGBIN] (binary directory)

but you can use any convenient names. Unusual (system) privileges are not required to install
PGPLOT, assuming you have write access to the directories. In a mixed VAX-Alpha cluster, you
can use a single distribution directory, but you will need two binary directories, one for each
architecture. The distribution directory may be deleted after the installation has been competed,
but it will be needed if you later decide to select different device drivers..

1. Copy the distribution file

Copy the distribution file by anonymous ftp from Caltech. Use anonymous ftp (user: anonymous,
password: your id username@machine) to node ftp.astro.caltech.edu.

The distribution file is a UNIX tar file compressed with Gzip. Issue the following ftp commands to
retrieve the file:

 cd pub/pgplot
 binary
 get pgplot5.2.tar.gz pgplot.tar-gz

(Note that you need to provide a VMS-compatible output file name in the get command.)

2. Decompress the files

You will need two programs to decompress and extract the contents of the distribution file: gunzip
and vmstar. These programs are not part of VMS, but are widely available on the Internet, e.g., at

http://www.openvms.digital.com/openvms/freeware/cd.html

Use gunzip to decompress the distribution file, e.g.,

 $ gunzip pgplot.tar-gz

http://www.openvms.digital.com/openvms/freeware/cd.html

Then use vmstar to extract the contents of the archive:

 $ set default USR:[LOCAL}
 $ vmstar/extract/verbose pgplot.tar
 OR $ vmstar xvf pgplot.tar
 $ delete pgplot.tar;

This will create a subdirectory [.PGPLOT] (and lower-level subdirectories) in the current
directory, e.g., USR:[LOCAL.PGPLOT...]. Make sure that your current directory is where you
want to create the ``PGPLOT distribution'' directory tree.

3. Create the binary directory

Create a writable directory in which the PGPLOT library and associated files will be created. One
such directory is needed for each different binary system; e.g., you may want separate directories
for VAX and Alpha.

 $ create/directory USR:[LOCAL.PGBIN]
 $ set default USR:[LOCAL.PGBIN]

Do not try to create the PGPLOT library in the source (``distribution'') directory.

4. Select device drivers

Configure PGPLOT by selecting device drivers from the available list. First copy the file drivers.
list from the distribution directory to the binary directory, and then use a text editor to select
device drivers. This file contains one line for each available device driver: delete the exclamation
mark (!) at the beginning of the line to include the driver, or ensure that an exclamation mark is
present if you want to exclude the driver. Many of the drivers can be used only on certain
operating systems (see notes in drivers.list), so include only the drivers you plan to use. PGPLOT
can later be reconfigured by restarting the installation at this step. Most installations should
include: the null device (/NULL), PostScript printers (/PS, /VPS, /CPS, and /VCPS), Tektronix
terminals (/TEK, /XTERM, and possibly other variants), and, if the X window system
(DECwindows) is available, the X window drivers (/XWIN, /XSERV). You may also wish to include
drivers for GIF files (/GIF, /VGIF) or some of the other printers.

 $ copy USR:[LOCAL.PGPLOT]drivers.list []
 $ edit drivers.list

5. Compile the library and demonstration programs

Execute the script install.com from the VMS subdirectory of the distribution directory, e.g.:

 $ @USR:[LOCAL.PGPLOT.SYS_VMS]install USR:[LOCAL.PGPLOT]

The first argument supplied to install is the name of the distribution directory. The script will
attempt to determine your machine architecture (VAX or Alpha) and compile appropriate code.
The script has been tested under several versions of VMS, but if you have problems, you may need

to edit the script.

The install script issues messages as it proceeds: it usually takes quite a long time. It should
generate the following files:

 DRIVERS.LIST
 GREXEC.F
 GRFONT.DAT
 GRPCKG.OLB
 GRPSHR.EXE
 GRPSHR.OLB
 PGDEMO1.EXE ... PGDEMO16.EXE
 PGXWIN_SERVER.EXE
 RGB.TXT

The script assumes that you have the current DEC Fortran and C compilers installed. A C compiler
is required for XWDRIV and X2DRIV and the associated programs PGXWIN_SERVER and
PGDISP, and for generating the C wrapper library CPGPLOT.OLB. If you don't have the DEC C
compiler, the script will have to be modified.

The script may fail if you redefine any of the common DCL commands like PURGE or DELETE.

Note: Demonstration program pgdemo14 is compiled incorrectly by the DEC Fortran 6.2 compiler
when optimization is enabled; the symptom is that the labels like "Number of Vertices:" do not
appear on the screen. The problem is solved by disabling optimization.

6. Compile the optional components

C wrapper library

To install the optional C wrapper library, proceed as follows.

 $ @USR:[LOCAL.PGPLOT.SYS_VMS]install USR:[LOCAL.PGPLOT] CPG

This creates three files:

 CPGPLOT.H (ANSI C header file)
 CPGPLOT.OLB (library containing the C binding)
 CPGDEMO.EXE (demonstration program)

PGDISP program

The PGDISP program is required if you selected the /XDISP device driver. Use of this driver is
not recommended: you should use the standard X Window driver (/XWIN or /XSERV) instead.

 $ @USR:[LOCAL.PGPLOT.SYS_VMS]install USR:[LOCAL.PGPLOT] PGDISP

This adds one file, PGDISP.EXE. The PGDISP program sometimes gives compilation problems.

Most of these are non-fatal warnings that can be ignored.

Motif support and example files

If you plan to develop Motif applications that use the PGPLOT widget, or if you want to inspect a
sample Motif application, you will need to do this step. You must first: (a) ensure that the Motif
header files and libraries are installed on your system; (b) select XMDRIV in drivers.list before
installing the PGPLOT library; and (c) install the C wrapper library. Execute the following
command:

 $ @USR:[LOCAL.PGPLOT.SYS_VMS]install USR:[LOCAL.PGPLOT] PGMDEMO

This creates five files:

 PGMDEMO.EXE (executable demo program)
 PGMOTIF.OPT (linker options file for linking PGPLOT/Motif applications)
 PGXWIN.OBJ (object module required by PGPLOT/Motif applications)
 XMPGPLOT.OBJ (object module required by PGPLOT/Motif applications)
 XMPGPLOT.H (header file required by PGPLOT/Motif applications)

(This step may not work on all VMS systems: there are many differences between the various
available versions of the DEC C compiler and DECwindows Motif. If you get error messages, you
may need to modify file [local.pgplot.sys_vms]make_pgmdemo.com.)

7. Define logical names

Before running any PGPLOT program, you must ensure that the following logical names are
correctly defined. The logical names may be placed in the process table or the system table. It may
be convenient to place the definitions in LOGIN.COM.

GRPSHR
This should point to the PGPLOT shared library, GRPSHR.EXE, with complete directory
information, e.g.,

 $ define GRPSHR PGPLOT_DIR:GRPSHR.EXE

If this logical name is not defined, RUN will look for GRPSHR.EXE in the system library
directory (SYS$LIBRARY).

PGPLOT_DIR
This is the name of the directory in which PGPLOT will look for the files grfont.dat and
rgb.txt (unless logical names PGPLOT_FONT and PGPLOT_RGB are defined to override
this default behavior), and, if needed, the X-window server program pgxwin_server:

 $ define PGPLOT_DIR USR:[LOCAL.PGBIN]

PGPLOT_DEV
It is also convenient, but not essential, to define a default PGPLOT device with logical

name PGPLOT_DEV, e.g.

 $ define PGPLOT_DEV "/xwin"

LNK$LIBRARY
If you develop PGPLOT programs, you can arrange for the linker to automatically scan the
PGPLOT library by naming GRPSHR.OLB in one of the LNK$LIBRARY* logical names, e.
g.

 $ define LNK$LIBRARY PGPLOT_DIR:GRPSHR.OLB

If you do not do this, you will need to include this library (note: GRPSHR.OLB, not
GRPSHR.EXE) in your LINK commands.

Other PGPLOT logical names (environment variables) are described in the manual.

8. Run the demonstration programs

Run the demonstration programs on your selected devices and verify that they run satisfactorily.

To run a program, use the RUN command:

 $ run pgdemo1
 $ run pgdemo2
 ...
 $ run cpgdemo ! optional component
 $ run pgmdemo ! optional component

All the demonstration programs prompt for a device name and type. Type a question mark ? to see
a list of the available device types and verify that PGPLOT has been configured properly.

Points to check for: the PGPLOT program correctly reads the font file and displays superscripts,
subscripts and special characters (pgdemo2); the PGPLOT program can read the color database
(pgdemo10); on interactive devices, the cursor works correctly (pgdemo5, pgdemo6).

9. Install the documentation files

Unlike the UNIX installation procedure, the VMS installation procedure does not generate
documentation. A list of subroutine synopses is available in a variety of formats by anonymous ftp
from ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/:

● pgplot.doc (plain ASCII file)

● pgplot.hlp (VMS help format)

● pgplot.html (HTML [WWW] format)

● pgplot.ps (PostScript)

The help file can be installed in a VMS help library with a DCL command like the following:

ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/
ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/pgplot.doc
ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/pgplot.hlp
ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/pgplot.html
ftp://ftp.astro.caltech.edu/pub/pgplot/DOC/pgplot.ps

 $ library/insert/help pgplot.hlb pgplot.hlp

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Installation Instructions: Windows 95/98/NT
with Absoft Pro Fortran

PGPLOT version 5.2.0

Supported system: Microsoft Windows 95/98 or Windows NT with Absoft Pro Fortran 6.0, from
Absoft Corporation, 2781 Bond Street, Rochester Hills, MI 48309, USA.

http://www.absoft.com

I am presently installing and testing PGPLOT under this system, and full instructions should be
available soon. Contact me for additional information. I am grateful to Absoft Corporation for
providing a copy of the compiler.

Most of the PGPLOT code, including the standard drivers (PostScript, GIF), should work without
change on this system. There is currently no driver to display PGPLOT graphics in a Windows
screen window; this is obviously a major drawback. However, I cannot yet predict when such a
driver will be available. Anyone interested in providing such a driver should contact me to avoid
duplication of effort.

PGPLOT

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1999 California Institute of Technology

http://www.absoft.com/
mailto:tjp�astro.caltech.edu

PGPLOT Installation Instructions: Windows 95/NT
with Compaq Visual Fortran

PGPLOT version 5.2.2

The following notes are based on information received from Phil Seeger. Please send any
suggestions for improvement to Tim Pearson.

Supported system: Microsoft Windows 95 or Windows NT with Compaq Visual Fortran 5.0.
Information about the compiler can be found at http://www.digital.com/fortran/index.html.

Note: The Compaq Visual Fortran driver for Windows uses an extension (quickwin) which prevents
the PGPLOT library from being dynamically loadable. So, although PGPLOT itself works, code
generated with it cannot be made into a shared-object. Among other things, this means it cannot be
used with PGPERL.

Installation Instructions

1. Download PGPLOT by your favorite method from URL:
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz.

2. Uncompress the file (gunzip) and extract the files from the tar archive (tar cv). Versions of
gunzip and tar for Windows are available on the Web. One program that will handle both
steps is WinZip. It is available from http://www.winzip.com and many other web sites.

The files in the tar archive are organized in a hierarchical directory structure, with the top
level directory called PGPLOT. You will need the files from the following directories:

 x:\PGPLOT
 \CPG
 \DRIVERS
 \EXAMPLES
 \FONTS
 \PGMF
 \SRC
 \SYS_WIN

The other SYS_* directories can be ignored.

3. Then follow the installation instructions in PGPLOT\SYS_WIN\AAAREAD.ME:

 PGPLOT 5.2.0 for Windows95/98/NT
 and Microsoft / Digital / Compaq Fortran
 P. A. Seeger, August 27, 1998
 (document revised July 15, 2000)
 e-mail: PASeeger@aol.com

mailto:tjp%E6%88%A2stro.caltech.edu
http://www.compaq.com/fortran/index.html
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz
http://www.winzip.com/

 (Based on C. T. Dum, May 1995)

The following notes describe the porting of Tim Pearson's PGPLOT 5.2.0
to Microsoft Windows95/98 (or WindowsNT), using Microsoft Developer Studio
and the corresponding Fortran compiler. The 32-bit Windows systems
are easy to use, but most importantly remove the severe memory restrictions
of DOS. The size of applications which can be linked with PGPLOT.LIB is
limited only by total physical and virtual memory. The graphics libraries
MSFLIB (Microsoft) or DFLIB (Digital/Compaq) also include many additional
(system) functions known from C. Even for an old-fashioned command-line
Fortran programer (like PAS), it is relatively easy to add features like
dialog boxes and custom menus.

Once PGPLOT.LIB is built, applications are most easily compiled using
the Microsoft Developer Studio. The application type must be "QuickWin",
or it must be compiled with command line option "/MW". Programs execute
in a text window, with the graphical output in up to 8 separate child
windows. Cursor functions (including rubber-band modes) are implemented
by moving the mouse and typing a keyboard key. There are three versions
of the Developer Studio. You MUST have the same version for Fortran and
for C++ in order to mix languages. Although the Fortran code is the same,
the user interface is slightly different. The versions are
 Developer Studio 4.0, Microsoft PowerStation Fortran 4.0
 Developer Studio 5.0, Digital Visual Fortran 5.0
 Developer Studio 6.0, Digital Visual Fortran 6.0
 or Compaq Visual Fortran 6.1
NOTE: applications developed in these Fortrans will NOT execute under
 DOS or Windows 3.x (no, not even with WIN32s installed).

The steps in building PGPLOT.LIB are the following:

1. Download PGPLOT 5.2.0 by your favorite method. I decompressed ver.
 5.0.3 on VAX-VMS system, and ver. 5.1.beta from a Unix machine
 ("uncompress" followed by "tar -xcf"). But I have now acquired
 WinZip (Nico Mak Computing, Inc., www.winzip.com) which performs Gunzip
 and tar in the PC (very good program - I even sent them the $29 fee!).
 Just make the file name "PGPLOT52.TGZ" and open it in WinZip.

2. Create an appropriate subdirectory structure; e.g.
 x:\PGPLOT
 \SRC
 \SYS_WIN
 \DRIVERS
 \FONTS
 \EXAMPLES
 where x: is either C: or another hard disk in your system. Extract
 files from the corresponding subdirectories of the downloaded .TGZ file.
 Note: The copy of GRGFIL.F from the \SRC folder must be omitted in favor
 of the copy in \SYS_WIN to get an appropriate default directory.
 (Personal preference note: I also copy \APPLICAT\PLOT10\PLOT10.F into
 the \SRC subdirectory.)

 The files in \SYS_WIN should include

 AAAREAD.ME (this file)
 AAAREAD.ME2 (information for C programmers)
 GIDRIV.F (Fortran90 version of GIF driver, without "C" calls)
 GRDOS.F
 GREXEC.F
 GRGFIL.F (replace the version in \SRC)
 GRSY00.F (not system dependent)
 PGBIND.MAK (see AAAREAD.ME2 for discussion)
 W9DRIV.F (the driver itself, with attached subroutines)

 The file W9DRIV.F as included is appropriate for Digital or Compaq.
 To convert to Microsoft, replace the fourth line
 USE DFLIB
 with
 USE MSFLIB
 This same change must be made in subroutines GRW900 and GRW901.

3. If you did not use C: in step 2, create a directory C:\PGPLOT and copy
 RGB.TXT to it from x:\PGPLOT. You also need to compile and execute the
 program PGPACK from subdirectory x:\PGPLOT\FONTS to convert file
 GRFONT.TXT to binary file GRFONT.DAT. To run PGPACK in the Windows
 environment, put this statement before the READs:
 OPEN (5, FILE='x:\pgplot\fonts\grfont.txt')
 Likewise the OPEN statement for the output can be modified:
 OPEN (2, FILE='c:\pgplot\grfont.dat')
 The output file is different for Microsoft and Digital/Compaq. (The
 directory with these two files can be elsewhere if identified by
 environment variable PGPLOT_DIR, or the full [path]filenames can be
 given in environment variables PGPLOT_RGB and PGPLOT_FONT.)

4. In the Developer Studio, in the File/New menu, Create a new Project
 Workspace of Type "Static Library", Name PGPLOT, Location
 x:\MSDEV\PROJECTS\ (ver. 4) or
 x:\Program Files\DevStudio\MyProjects\ (ver. 5) or
 x:\Program Files\Microsoft Visual Studio\MyProjects\ (ver. 6).
 Use the Insert/"Files into Project..." (ver. 4) or
 Project/Add to Project/Files... (vers. 5/6)
 and the search box to associate the following files with the project:
 x:\PGPLOT\SRC*.F
 x:\PGPLOT\SYS_WIN*.F
 x:\PGPLOT\DRIVERS\LXDRIV.F,NUDRIV.F,PSDRIV.F
 (The dependent *.INC files will be included automatically.)

5. Build the project. For Digital/Compaq, the following compiler option
 is required for GIDRIV.F (because Digital changed the default for length
 of direct-access records from bytes to 4-byte words):
 /assume:byterecl
 This option is set as follows:
 Project/Settings/Fortran tab
 Settings For: All Configurations
 Source files: Gidriv.f
 Category: Fortran Data
 ver. 5, check: Use Bytes as Units for Unformatted Files

 ver. 6, Data Options
 check: Use Bytes as RECL= unit for Unformatted Files
 The remaining default compiler options are suitable; in particular,
 the Debug configuration is not optimized, but the Release configuration
 uses full optimization. (If the choice of "Release" is not apparent,
 use Build/Set Active Configuration...) From the Build menu, choose
 "Build PGPLOT.LIB". Expect 7 Warning messages with ver. 4, or 2 with
 vers. 5/6. When both Debug and Release have successfully completed, I
 like to copy the Release version of the library so that subsequent
 applications can find it more easily:
 ver. 4, from x:\MSDEV\PROJECTS\PGPLOT\RELEASE
 to x:\MSDEV\LIB
 ver. 5, from x:\Program Files\DevStudio\MyProjects\PGPLOT\RELEASE
 to x:\Program Files\DevStudio\DF\LIB
 ver. 6,
 from x:\Program Files\Microsoft Visual Studio\MyProjects\PGPLOT\RELEASE
 to x:\Program Files\Microsoft Visual Studio\DF98\LIB

6. Run the examples. In the same Project Workspace, use File/New and the
 Projects tab (or if using ver. 4, Insert/Project...) to create a
 "QuickWin Application", Name EXAMPLES. Then use Project/Dependencies
 (ver. 4, Build/Subprojects...) to specify that PGPLOT is a subproject of
 EXAMPLES. One at a time, use Project/Add to Project/Files... (ver. 4,
 Insert/Files into Project...) to select a file from x:\PGPLOT\EXAMPLES.
 (The previous file may be deleted from the FileView window when success-
 fully completed.) From the Build menu, choose "Execute EXAMPLES.EXE".
 The first page of the first test (PGDEMO1.F) should be a parabola. If
 there is no text on the plot, then you have not successfully created or
 located the file GRFONT.DAT (see step 3 above). If windows are created
 but neither graphics nor text appear, the problem may be that the
 display is set to a mode which doesn't use the SVGA color registers;
 decrease the color palette to 16M or fewer colors. After successfully
 testing the library, you may delete all of the PGPLOT folders from
 x:\MSDEV\PROJECTS (ver. 4) or from
 x:\Program Files\DevStudio\MyProjects\ (ver. 5) or from
 x:\Program Files\Microsoft Visual Studio\MyProjects\ (ver. 6).

7. Drivers for Windows95/NT, PostScript, GIF, LaTeX, and the Null driver
 are included by default. If you add additional drivers (which may
 require debugging to eliminate perceived syntax errors etc.) to the
 library, then the CASE structure in subroutine GREXEC.F must also be
 modified to reflect the changes; also, NDEV must reflect the total
 number of drivers. The default graphic window size for device type
 "/W9" is 800*600 with 236 colors (SVGA); 20 colors are reserved for
 system use. The default can be changed by setting an environment
 variable (either in AUTOEXEC.BAT, or from a command line before
 starting the application) as follows:
 SET PGPLOT_VIDEO=VGA (or V), 640 * 480
 SVGA (or S), 800 * 600
 XGA (or X), 1024 * 768
 ZGA (or Z), 1280 * 1024
 Modes may also be selected by using alternate device types
 "/WV", "/WS", "/WX", or "/WZ". Modes exceeding the capability of your

 Windows screen driver will be reduced to the maximum available. For
 an example of the 236-color modes, see PGDEMO4. For an example of
 different resolutions, try using "Menu/WV" for the first window and
 "Graphs/WX" for the second window in PGDEMO13. (Note the use of the
 device specification to name the window.)

8. The cursor is emulated by an interrupt driven mouse routine (see
 GRW901 in file W9DRIV.F). The cursor moves continuously whenever
 the window is selected, but the position is not returned to the
 calling program until a key has been struck, and the character is
 also returned. Control then returns to the "text" window for any
 additional input or processing. If you lose track, there is a status
 message at the bottom of the frame window which tells you which
 window is waiting for input (except, see Note in previous section).
 The color of the cursor may be dim against some backgrounds
 (especially green in the default palette), but you can usually see it
 at the tip of the mouse arrow while you move it around. You might
 try using PGBAND mode 7 for the cursor to improve visibility. See
 especially programs PGDEMO5 and PGDEMO6.

9. Plots can be clipped and copied to other applications, such as Word.
 Unfortunately, black is black and white is white, so printing uses a
 lot of ink and the white lines tend to disappear. One option is to
 exchange palette colors 0 and 1 in PGPLOT with
 CALL PGSCR(0, 1., 1., 1.) !black becomes white
 CALL PGSCR(1, 0., 0., 0.) !white becomes black
 before making the version to be printed; another is to cut and paste
 to a utility (I use Paint-Shop-Pro) in which you can adjust the color
 palette; and a third way is to specify either the "filename.ps/PS" or
 "filename.gif/GI" device and write a file. (Note: this might be a
 good use for a custom menu entry in your application.) Yet another
 option is to create a second device window and change the color
 palette only in that window. (See PGDEMO13 for an example of multiple
 simultaneous windows.)

10. Finally, this port has been thoroughly tested (starting with earlier
 versions of PGPLOT, and using the Microsoft compiler), but no
 responsibility for any damages is accepted (by either [PAS], [CTD],
 or even [TJP])! User input concerning "features" of the driver or
 this document is welcomed.

*** Frequently Asked Questions ***

A. "A window is created, but nothing appears in it."
 Most new graphics driver cards do not emulate color registers when
 they run in "True Color (32 bit)" mode. You will have to reset the
 Display Properties (Settings tab) to a smaller number of colors, such
 as "High Color (16 bit)."

B. "Graphs appear, but no labels."
 Review step 3 above. The version of file GRFONT.DAT for your compiler
 must be in directory C:\PGPLOT\.

C. "All of the demo programs work, except PGDEMO3 gives a Linker error."
 There is a bug in PGDEMO3 that is only picked up by these compilers.
 About 27 lines from the end of PGDEMO3.F, the statement
 CALL PGVSTD(0.05,0.95,0.05,0.95)
 must be replaced with
 CALL PGVSTD

D. "I can't read the hardcopy files created with "/GI".
 Review step 5 above. Some applications (namely Paint-Shop-Pro) will
 read files written when the code is compiled without this option, but
 most will not. If you read the file in Paint-Shop-Pro and then save
 it, other applications will be able to read it.

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997-2002 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Installation Instructions: Windows 95/NT
with PowerStation Fortran

Version 5.2.0

The following notes are based on information received from P. A. Seeger, C. T. Dum, and Joe
Walston. Please send any suggestions for improvement to Tim Pearson.

Supported system: Microsoft Windows 95 or Windows NT with Microsoft PowerStation Fortran
4.0. Note: applications developed in this Fortran will not execute under DOS or Windows 3.x (no,
not even with WIN32s).

Once PGPLOT.LIB is built, applications are most easily compiled using the Microsoft Developer
Studio. The application type must be "QuickWin", or it must be compiled with command line
option "/MW". Programs execute in a text window, with the graphical output in up to 8 separate
child windows. Cursor functions (including rubber-band modes) are implemented with the mouse.

Installation Instructions

1. Download PGPLOT by your favorite method from URL:
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz.

2. Uncompress the file (gunzip) and extract the files from the tar archive (tar cv). Versions of
gunzip and tar for Windows are available on the Web. One program that will handle both
steps is WinZip. It is available from http://www.winzip.com and many other web sites.

The files in the tar archive are organized in a hierarchical directory structure, with the top
level directory called PGPLOT. You will need the files from the following directories:

 x:\PGPLOT
 \CPG
 \DRIVERS
 \EXAMPLES
 \FONTS
 \PGMF
 \SRC
 \SYS_WIN

The other SYS_* directories can be ignored.

The directory PGPLOT\SYS_WIN contains system-specific files for this operating
system and compiler:

 GRDOS.F
 GREXEC.F
 GRGFIL.F

mailto:tjp%E6%88%A2stro.caltech.edu
ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz
http://www.winzip.com/

 GRSY00.F
 W9DRIV.F (screen driver)
 PGBIND.MAK

3. Then follow the instructions in PGPLOT\SYS_WIN\AAAREAD.ME (below). These
instructions apply to both Microsoft PowerStation Fortran and Compaq/Digital Visual
Fortran. Note that for PowerStation Fortran, you must edit the file W9DRIV.F.

 PGPLOT 5.2.0 for Windows95/98/NT
 and Microsoft / Digital / Compaq Fortran
 P. A. Seeger, August 27, 1998
 (document revised July 15, 2000)
 e-mail: PASeeger@aol.com
 (Based on C. T. Dum, May 1995)

The following notes describe the porting of Tim Pearson's PGPLOT 5.2.0
to Microsoft Windows95/98 (or WindowsNT), using Microsoft Developer Studio
and the corresponding Fortran compiler. The 32-bit Windows systems
are easy to use, but most importantly remove the severe memory restrictions
of DOS. The size of applications which can be linked with PGPLOT.LIB is
limited only by total physical and virtual memory. The graphics libraries
MSFLIB (Microsoft) or DFLIB (Digital/Compaq) also include many additional
(system) functions known from C. Even for an old-fashioned command-line
Fortran programer (like PAS), it is relatively easy to add features like
dialog boxes and custom menus.

Once PGPLOT.LIB is built, applications are most easily compiled using
the Microsoft Developer Studio. The application type must be "QuickWin",
or it must be compiled with command line option "/MW". Programs execute
in a text window, with the graphical output in up to 8 separate child
windows. Cursor functions (including rubber-band modes) are implemented
by moving the mouse and typing a keyboard key. There are three versions
of the Developer Studio. You MUST have the same version for Fortran and
for C++ in order to mix languages. Although the Fortran code is the same,
the user interface is slightly different. The versions are
 Developer Studio 4.0, Microsoft PowerStation Fortran 4.0
 Developer Studio 5.0, Digital Visual Fortran 5.0
 Developer Studio 6.0, Digital Visual Fortran 6.0
 or Compaq Visual Fortran 6.1
NOTE: applications developed in these Fortrans will NOT execute under
 DOS or Windows 3.x (no, not even with WIN32s installed).

The steps in building PGPLOT.LIB are the following:

1. Download PGPLOT 5.2.0 by your favorite method. I decompressed ver.
 5.0.3 on VAX-VMS system, and ver. 5.1.beta from a Unix machine
 ("uncompress" followed by "tar -xcf"). But I have now acquired
 WinZip (Nico Mak Computing, Inc., www.winzip.com) which performs Gunzip
 and tar in the PC (very good program - I even sent them the $29 fee!).
 Just make the file name "PGPLOT52.TGZ" and open it in WinZip.

2. Create an appropriate subdirectory structure; e.g.

 x:\PGPLOT
 \SRC
 \SYS_WIN
 \DRIVERS
 \FONTS
 \EXAMPLES
 where x: is either C: or another hard disk in your system. Extract
 files from the corresponding subdirectories of the downloaded .TGZ file.
 Note: The copy of GRGFIL.F from the \SRC folder must be omitted in favor
 of the copy in \SYS_WIN to get an appropriate default directory.
 (Personal preference note: I also copy \APPLICAT\PLOT10\PLOT10.F into
 the \SRC subdirectory.)

 The files in \SYS_WIN should include
 AAAREAD.ME (this file)
 AAAREAD.ME2 (information for C programmers)
 GIDRIV.F (Fortran90 version of GIF driver, without "C" calls)
 GRDOS.F
 GREXEC.F
 GRGFIL.F (replace the version in \SRC)
 GRSY00.F (not system dependent)
 PGBIND.MAK (see AAAREAD.ME2 for discussion)
 W9DRIV.F (the driver itself, with attached subroutines)

 The file W9DRIV.F as included is appropriate for Digital or Compaq.
 To convert to Microsoft, replace the fourth line
 USE DFLIB
 with
 USE MSFLIB
 This same change must be made in subroutines GRW900 and GRW901.

3. If you did not use C: in step 2, create a directory C:\PGPLOT and copy
 RGB.TXT to it from x:\PGPLOT. You also need to compile and execute the
 program PGPACK from subdirectory x:\PGPLOT\FONTS to convert file
 GRFONT.TXT to binary file GRFONT.DAT. To run PGPACK in the Windows
 environment, put this statement before the READs:
 OPEN (5, FILE='x:\pgplot\fonts\grfont.txt')
 Likewise the OPEN statement for the output can be modified:
 OPEN (2, FILE='c:\pgplot\grfont.dat')
 The output file is different for Microsoft and Digital/Compaq. (The
 directory with these two files can be elsewhere if identified by
 environment variable PGPLOT_DIR, or the full [path]filenames can be
 given in environment variables PGPLOT_RGB and PGPLOT_FONT.)

4. In the Developer Studio, in the File/New menu, Create a new Project
 Workspace of Type "Static Library", Name PGPLOT, Location
 x:\MSDEV\PROJECTS\ (ver. 4) or
 x:\Program Files\DevStudio\MyProjects\ (ver. 5) or
 x:\Program Files\Microsoft Visual Studio\MyProjects\ (ver. 6).
 Use the Insert/"Files into Project..." (ver. 4) or
 Project/Add to Project/Files... (vers. 5/6)
 and the search box to associate the following files with the project:
 x:\PGPLOT\SRC*.F

 x:\PGPLOT\SYS_WIN*.F
 x:\PGPLOT\DRIVERS\LXDRIV.F,NUDRIV.F,PSDRIV.F
 (The dependent *.INC files will be included automatically.)

5. Build the project. For Digital/Compaq, the following compiler option
 is required for GIDRIV.F (because Digital changed the default for length
 of direct-access records from bytes to 4-byte words):
 /assume:byterecl
 This option is set as follows:
 Project/Settings/Fortran tab
 Settings For: All Configurations
 Source files: Gidriv.f
 Category: Fortran Data
 ver. 5, check: Use Bytes as Units for Unformatted Files
 ver. 6, Data Options
 check: Use Bytes as RECL= unit for Unformatted Files
 The remaining default compiler options are suitable; in particular,
 the Debug configuration is not optimized, but the Release configuration
 uses full optimization. (If the choice of "Release" is not apparent,
 use Build/Set Active Configuration...) From the Build menu, choose
 "Build PGPLOT.LIB". Expect 7 Warning messages with ver. 4, or 2 with
 vers. 5/6. When both Debug and Release have successfully completed, I
 like to copy the Release version of the library so that subsequent
 applications can find it more easily:
 ver. 4, from x:\MSDEV\PROJECTS\PGPLOT\RELEASE
 to x:\MSDEV\LIB
 ver. 5, from x:\Program Files\DevStudio\MyProjects\PGPLOT\RELEASE
 to x:\Program Files\DevStudio\DF\LIB
 ver. 6,
 from x:\Program Files\Microsoft Visual Studio\MyProjects\PGPLOT\RELEASE
 to x:\Program Files\Microsoft Visual Studio\DF98\LIB

6. Run the examples. In the same Project Workspace, use File/New and the
 Projects tab (or if using ver. 4, Insert/Project...) to create a
 "QuickWin Application", Name EXAMPLES. Then use Project/Dependencies
 (ver. 4, Build/Subprojects...) to specify that PGPLOT is a subproject of
 EXAMPLES. One at a time, use Project/Add to Project/Files... (ver. 4,
 Insert/Files into Project...) to select a file from x:\PGPLOT\EXAMPLES.
 (The previous file may be deleted from the FileView window when success-
 fully completed.) From the Build menu, choose "Execute EXAMPLES.EXE".
 The first page of the first test (PGDEMO1.F) should be a parabola. If
 there is no text on the plot, then you have not successfully created or
 located the file GRFONT.DAT (see step 3 above). If windows are created
 but neither graphics nor text appear, the problem may be that the
 display is set to a mode which doesn't use the SVGA color registers;
 decrease the color palette to 16M or fewer colors. After successfully
 testing the library, you may delete all of the PGPLOT folders from
 x:\MSDEV\PROJECTS (ver. 4) or from
 x:\Program Files\DevStudio\MyProjects\ (ver. 5) or from
 x:\Program Files\Microsoft Visual Studio\MyProjects\ (ver. 6).

7. Drivers for Windows95/NT, PostScript, GIF, LaTeX, and the Null driver
 are included by default. If you add additional drivers (which may

 require debugging to eliminate perceived syntax errors etc.) to the
 library, then the CASE structure in subroutine GREXEC.F must also be
 modified to reflect the changes; also, NDEV must reflect the total
 number of drivers. The default graphic window size for device type
 "/W9" is 800*600 with 236 colors (SVGA); 20 colors are reserved for
 system use. The default can be changed by setting an environment
 variable (either in AUTOEXEC.BAT, or from a command line before
 starting the application) as follows:
 SET PGPLOT_VIDEO=VGA (or V), 640 * 480
 SVGA (or S), 800 * 600
 XGA (or X), 1024 * 768
 ZGA (or Z), 1280 * 1024
 Modes may also be selected by using alternate device types
 "/WV", "/WS", "/WX", or "/WZ". Modes exceeding the capability of your
 Windows screen driver will be reduced to the maximum available. For
 an example of the 236-color modes, see PGDEMO4. For an example of
 different resolutions, try using "Menu/WV" for the first window and
 "Graphs/WX" for the second window in PGDEMO13. (Note the use of the
 device specification to name the window.)

8. The cursor is emulated by an interrupt driven mouse routine (see
 GRW901 in file W9DRIV.F). The cursor moves continuously whenever
 the window is selected, but the position is not returned to the
 calling program until a key has been struck, and the character is
 also returned. Control then returns to the "text" window for any
 additional input or processing. If you lose track, there is a status
 message at the bottom of the frame window which tells you which
 window is waiting for input (except, see Note in previous section).
 The color of the cursor may be dim against some backgrounds
 (especially green in the default palette), but you can usually see it
 at the tip of the mouse arrow while you move it around. You might
 try using PGBAND mode 7 for the cursor to improve visibility. See
 especially programs PGDEMO5 and PGDEMO6.

9. Plots can be clipped and copied to other applications, such as Word.
 Unfortunately, black is black and white is white, so printing uses a
 lot of ink and the white lines tend to disappear. One option is to
 exchange palette colors 0 and 1 in PGPLOT with
 CALL PGSCR(0, 1., 1., 1.) !black becomes white
 CALL PGSCR(1, 0., 0., 0.) !white becomes black
 before making the version to be printed; another is to cut and paste
 to a utility (I use Paint-Shop-Pro) in which you can adjust the color
 palette; and a third way is to specify either the "filename.ps/PS" or
 "filename.gif/GI" device and write a file. (Note: this might be a
 good use for a custom menu entry in your application.) Yet another
 option is to create a second device window and change the color
 palette only in that window. (See PGDEMO13 for an example of multiple
 simultaneous windows.)

10. Finally, this port has been thoroughly tested (starting with earlier
 versions of PGPLOT, and using the Microsoft compiler), but no
 responsibility for any damages is accepted (by either [PAS], [CTD],
 or even [TJP])! User input concerning "features" of the driver or

 this document is welcomed.

*** Frequently Asked Questions ***

A. "A window is created, but nothing appears in it."
 Most new graphics driver cards do not emulate color registers when
 they run in "True Color (32 bit)" mode. You will have to reset the
 Display Properties (Settings tab) to a smaller number of colors, such
 as "High Color (16 bit)."

B. "Graphs appear, but no labels."
 Review step 3 above. The version of file GRFONT.DAT for your compiler
 must be in directory C:\PGPLOT\.

C. "All of the demo programs work, except PGDEMO3 gives a Linker error."
 There is a bug in PGDEMO3 that is only picked up by these compilers.
 About 27 lines from the end of PGDEMO3.F, the statement
 CALL PGVSTD(0.05,0.95,0.05,0.95)
 must be replaced with
 CALL PGVSTD

D. "I can't read the hardcopy files created with "/GI".
 Review step 5 above. Some applications (namely Paint-Shop-Pro) will
 read files written when the code is compiled without this option, but
 most will not. If you read the file in Paint-Shop-Pro and then save
 it, other applications will be able to read it.

Using the C binding

The PGPLOT C binding (cpgplot) allows the Fortran PGPLOT library to be called from C
programs, using C calling conventions. The following instructions apply to

● C programs compiled with MS Visual C++ V4.0;
● calling PGPLOT compiled with MS Powerstation Fortran V4.0;
● under MS Windows-95 or Windows-NT.

Other compilers may use different calling conventions and will require a different version of the C
binding.

To build the cpgplot binding library, you will need the following files:

 PGPLOT\CPG\PGBIND.C
 PGPLOT\SYS_WIN\PGBIND.MAK
 PGPLOT\CPG\PGBIND_PROTOTYPES

These files can be located anywhere convenient.

To build the library, from a console (DOS) window type

 NMAKE /F PGBIND.MAK

This will create cpgplot.lib and cpgplot.h.

The makefile compiles pgbind.c (no unusual compiler flags are needed) to produce the pgbind
program. It then produces the C wrapper functions (one file per wrapper) and the cpgplot.h header
file using:

 pgbind ms -w -h pgbind_prototypes

The cpg*.c files are then compiled and gathered into a library.

To use cpgplot in your programs, you should include cpgplot.h at the top of all C files that use
cpgplot functions, and link your programs with both of cpgplot.lib and pgplot.lib.

For further information about using the C binding, see file

 PGPLOT\CPG\CPGPLOT.DOC

or the Web page

 http://www.astro.caltech.edu/~tjp/pgplot/cbinding.html

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997-2002 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Installation Instructions: GNU-Win32

The GNU-Win32 tools are ports of the popular GNU development tools to Windows NT/95 for the

x86 and PowerPC processors.

To install PGPLOT in this environment, using g77 and gcc, follow the UNIX installation

instructions, using the following configuration file. (Better support will be provided in a future

version of PGPLOT.)

The GNU g77 FORTRAN compiler and Gnu gcc C compiler.
#--
 XINCL=""
 MOTIF_INCL=""
 FCOMPL="g77"
 FFLAGC="-Wall -O"
 FFLAGD="-fno-backslash"
 CCOMPL="gcc"
 CFLAGC="-DPG_PPU -O2"
 CFLAGD="-O2"
 PGBIND_FLAGS="bsd"
 LIBS=""
 RANLIB="ranlib"
 PGPLOT_LIB="-L\`pwd\` -lpgplot"
 CPGPLOT_LIB="-L\`pwd\` -lcpgplot -lpgplot"

This was contributed by David Billinghurst (David.Billinghurst@riotinto.com.au), who writes:

To date I have only used PSDRIV.

There is a problem making libpgplot.a. I suspect a gnuwin32 bug. To work around it edit the
makefile generated by makemake. Change

libpgplot.a : $(PG_ROUTINES) $(PG_NON_STANDARD) $(GR_ROUTINES) \
 $(DISPATCH_ROUTINE) $(DRIVERS) $(SYSTEM_ROUTINES)
 ar ru libpgplot.a \
 `ls $(PG_ROUTINES) \
 $(PG_NON_STANDARD) $(GR_ROUTINES) $(DISPATCH_ROUTINE) \
 $(DRIVERS) $(SYSTEM_ROUTINES) | sort | uniq`
 $(RANLIB) libpgplot.a

to

libpgplot.a : $(PG_ROUTINES) $(PG_NON_STANDARD) $(GR_ROUTINES) \
 $(DISPATCH_ROUTINE) $(DRIVERS) $(SYSTEM_ROUTINES)
 ar ru libpgplot.a $^
 $(RANLIB) libpgplot.a

http://www.cygnus.com/misc/gnu-win32/
mailto:David.Billinghurst@riotinto.com.au

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT

Annotated List of Routines

Version 5.2

Many of the routines that set the values of parameters used by PGPLOT have corresponding inquiry
routines that can be used to determine the current parameter values. Most of these routines have names
starting PGQ... and are indicated in italics.

Opening, Closing, and Selecting Devices

Use PGOPEN to open a graphical device or file and select it for PGPLOT output, PGCLOS to close the
device when graphical output is completed, and PGSLCT to switch subsequent output to a different open
device. PGBEG is an alternative to PGOPEN, retained for compatibility with existing programs. PGEND
can be used to close all open devices.

● PGOPEN : open a graphics device

● PGBEG : open a graphics device

● PGSLCT : select an open graphics device

● PGCLOS : close the selected graphics device

● PGEND : close all open graphics devices

● PGQID : inquire current device identifier

The following routines can be used to determine what types of graphics device are available - the list of
types is installation-dependent.

● PGLDEV : list available device types on standard output

● PGQNDT : inquire number of available device types (New in version 5.2)

● PGQDT : inquire name of nth available device type (New in version 5.2)

After a graphics device has been opened, the following routines may be used to determine some of its
device-dependent characteristics.

● PGQINF : inquire PGPLOT general information

● PGQCOL : inquire color capability

Controlling the View Surface

Use PGPAGE to start a new page, or PGERAS to clear the screen without starting a new page. On
interactive devices, PGPLOT prompts the user before starting a new page unless told not to via PGASK.

● PGPAGE : advance to new page

● PGERAS : erase all graphics from current page

● PGASK : control new page prompting

The size of the view surface is device-dependent and is established when the graphics device is opened.
Use PGQVSZ if you need to know the absolute size of the view surface. On some devices, it can be
changed by calling PGPAP before starting a new page with PGPAGE. On some devices, the size can be
changed (e.g., by a workstation window manager) outside PGPLOT, and PGPLOT detects the change
when PGPAGE is used.

● PGPAP : change the size of the view surface

● PGQVSZ : inquire size of view surface

PGPLOT can divide the view surface into two or more panels; to request this, call PGSUBP after opening
the device or before starting a new page. When the view surface is divided into panels, PGPAGE advances
to the next panel, only clearing the screen or starting a new page after all the panels have been filled. It is
also possible to move to a specific panel by calling PGPANL.

● PGSUBP : subdivide view surface into panels

● PGPANL : switch to a different panel on the view surface

To improve efficiency by buffering graphical output, group a sequence of PGPLOT routines between
PGBBUF and PGEBUF calls. To force a screen update, call PGUPDT.

● PGBBUF : begin batch of output (buffer)

● PGEBUF : end batch of output (buffer)

● PGUPDT : update display

Windows and Viewports

Specify the viewport to indicate where on the device's view surface you want the graph to appear.

● PGSVP : set viewport (normalized device coordinates)

● PGVSIZ : set viewport (inches)

● PGVSTD : set standard (default) viewport

● PGQVP : inquire viewport size and position

Specify the window to define the range of your world-coordinate space that will be visible in the viewport.

● PGSWIN : set window

● PGWNAD : set window and adjust viewport to same aspect ratio

● PGQWIN : inquire window boundary coordinates

Normally all PGPLOT primitives except text are ``clipped'' at the edge of the viewport; use PGSCLP to

disable or re-enable clipping.

● PGSCLP : enable or disable clipping at edge of viewport (New in version 5.2)

● PGQCLP : inquire clipping status (New in version 5.2)

Primitives

Lines

Straight lines and curves made up of straight-line segments can be specified either segment by segment
(PGMOVE, PGDRAW) or by a list of points to be joined together (PGLINE).

● PGMOVE : move pen (change current pen position)

● PGDRAW : draw a line from the current pen position to a point

● PGQPOS : inquire current pen position

● PGLINE : draw a polyline (curve defined by line-segments)

Polygons and Filled Areas

Closed polygons, circles, and rectangles canbe outlined, filled with solid color, or shaded using hatching,
depending on the current fill-area attributes.

● PGPOLY : draw a polygon, using fill-area attrutes

● PGCIRC : draw a circle, using fill-area attributes

● PGRECT : draw a rectangle, using fill-area attributes

Graph Markers

Use PGPT1 to mark a single point, PGPT to mark several points with the same symbol, or PGPNTS to
mark several points with different symbols.

● PGPT1 : draw one graph marker (New in version 5.2)

● PGPT : draw several graph markers

● PGPNTS : draw several graph markers, not all the same

Text

The basic routine for drawing text is PGPTXT. PGTEXT provides a simplified interface for the
commonest case.

● PGTEXT : write text (horizontal, left-justified)

● PGPTXT : write text at arbitrary position and angle

In order to correctly position text on a graph, it may be necessary to determine the space occupied by a

text string without actually drawing it.

● PGLEN : find length of a string in a variety of units

● PGQTXT : find bounding box of text string

Arrows

An arrow is made up of a line (for the shaft) and a polygon (for the head), but can be regarded as a separate
primitive.

● PGARRO : draw an arrow

Attributes

Color

● PGSCI : set color index

● PGQCI : inquire color index

● PGSCR : set color representation

● PGQCR : inquire color representation

● PGSCRN : set color representation by name

● PGSHLS : set color representation using HLS system

Line Attributes

● PGSLS : set line style

● PGQLS : inquire line style

● PGSLW : set line width

● PGQLW : inquire line width

Text and Marker Attributes

● PGSCF : set character font

● PGQCF : inquire character font

● PGSCH : set character height

● PGQCH : inquire character height

● PGQCS : inquire character height in a variety of units

● PGSTBG : set text background color index

● PGQTBG : inquire text background color index

Fill-Area Attributes

● PGSFS : set fill-area style

● PGQFS : inquire fill-area style

● PGSHS : set hatching style

● PGQHS : inquire hatching style

Arrow Attributes

● PGSAH : set arrow-head style

● PGQAH : inquire arrow-head style

Saving and Restoring Attributes

● PGSAVE : save PGPLOT attributes

● PGUNSA : restore PGPLOT attributes

Axes, Boxes, and Labels

To label a graph with axes or a box around the viewport, use PGBOX (or PGTBOX if one or both
coordinates are to be treated as a time or angle). More complete control over axes is possible with
PGAXIS, including drawing axes that are not parallel to the edges of the viewport. If you need complete
control over how an axis is labeled, e.g., for non-linear or curved axes, draw the axis with line-drawing
routines and then label it with PGTICK.

● PGBOX : draw labeled frame around viewport

● PGTBOX : draw frame and write (DD) HH MM SS.S labelling

● PGAXIS : draw an axis (New in version 5.2)

● PGTICK : draw a single tick mark on an axis (New in version 5.2)

To place labels around the edges of the viewport, use PGLAB or PGMTXT.

● PGLAB : write labels for x-axis, y-axis, and top of plot

● PGMTXT : write text at position relative to viewport

XY Plots

Error Bars

● PGERRB : horizontal or vertical error bars

● PGERR1 : single horizontal or vertical error bar (New in version 5.2)

● PGERRX : horizontal error bars

● PGERRY : vertical error bars

Curves Defined by Functions

● PGFUNT : function defined by X = F(T), Y = G(T)

● PGFUNX : function defined by Y = F(X)

● PGFUNY : function defined by X = F(Y)

Histograms

● PGBIN : histogram of binned data

● PGHI2D : cross-sections through a 2D data array

● PGHIST : histogram of unbinned data

Contour Maps

● PGCONB : contour map of a 2D data array, with blanking

● PGCONF : fill between two contours (New in version 5.2)

● PGCONL : label contour map of a 2D data array

● PGCONS : contour map of a 2D data array (fast algorithm)

● PGCONT : contour map of a 2D data array (contour-following)

● PGCONX : contour map of a 2D data array (non rectangular)

Images

● PGIMAG : color image from a 2D data array

● PGSCIR : set color index range

● PGQCIR : inquire color index range

● PGCTAB : install the color table to be used by PGIMAG

● PGGRAY : gray-scale map of a 2D data array

● PGPIXL : draw pixels

● PGSITF : set image transfer function

● PGQITF : inquire image transfer function

● PGWEDG : annotate an image plot with a wedge

Vector Plots

● PGVECT : vector map of a 2D data array, with blanking

Interactive Graphics

● PGCURS : read cursor position

● PGBAND : read cursor position, with anchor

● PGLCUR : draw a line using the cursor

● PGNCUR : mark a set of points using the cursor

● PGOLIN : mark a set of points using the cursor

● PGSCRL : scroll window (New in version 5.2)

Miscellaneous Routines

● PGNUMB : convert a number into a plottable character string

● PGRND : find the smallest `round' number greater than x

● PGRNGE : choose axis limits

● PGETXT : erase text from graphics display

● PGIDEN : write username, date, and time at bottom of plot

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

Known Problems in PGPLOT

Version 5.2.0

General Problems

● Text. There is no way to display a subscript of a superscript or a superscript of a
subscript. This is due to a design flaw in PGPLOT. I don't think there is any way that I
can fix this problem with the current escape codes \u and \d: there is no way to distinguish
a \d meaning end-of-superscript from a \d meaning start-of-subscript-of-superscript. I will
try to address this in a future version of PGPLOT, if I can think of a way of doing so while
retaining backwards compatibility. I think that I will have to introduce new bracketting
delimiters, like HTML ^{...} and </sub>...</sub> or TeX's ^{...} and _{...}.

● There is no printed manual yet!

● CPGPLOT (C binding):
❍ Routines that require the name of a subroutine as an argument (PGCONX,

PGFUNX, PGFUNY, PGFUNT, etc.) are not handled by the C binding.
❍ CPGPLOT requires an ANSI C compiler.

Problems with Specific Subroutines

● PGBIN: the first and last bins (in CENTER mode) or the last bin (in non-center mode) are
plotted incorrectly; a redesign is needed, because the arguments to PGBIN don't provide
enough information to do the job.

● PGBOX (and PGENV): if the axis range is small compared with the absolute values of the
endpoints, an integer overflow can occur (VMS) or the axis can be labeled incorrectly
(UNIX). Example: range 2200.0 to 2200.01.

● PGCONF: has some algorithmic problems noted in the subroutine synopsis.

● PGCONL: with arrays larger than 100×100 pixels, the routine does not place labels
precisely as advertised. This is a design flaw. It arises because the contouring routines do
a segment of the array at a time (not more than 100×100). This breaks continuous contours
and interferes with the labeling sequence. I tried to mitigate this in 5.0.3 by increasing the
segment from 50x50 to 100×100, but this only helps a bit. I'll try to do something about
this in a later version. Ideally I would like to allocate a temporary work array equal in size
to the array to be contoured, but that is not very portable. I also need to make labeling and
blanking (PGCONL and PGCONT) work together; at present you can have either one but
not both. PGCONL implicitly requires that PGCINT be greater than PGCMIN; this is an
unnecessary restriction.

● PGNUMB: this routine does not always honor a request for decimal format (1) but will use
an exponential format instead.

● PGQDT: note that some PGPLOT installations include ``stub'' drivers that should not be
called. PGQDT returns a blank TYPE string and TLEN=0 for such drivers. If you use
PGQDT in a program, you should test for this condition before using the information
returned by PGQDT.

System Problems

● OSF1 (sys_osf1):
❍ All the Fortran drivers that use the %VAL() mechanism for passing an address fail

under DEC UNIX (OSF/1); these drivers will work if you change the declarations of
certain pointer variables from INTEGER to INTEGER*8. In several of the drivers, I
have included comments to indicate what should be changed.

❍ Cpgdemo does not link on OSF/1: error message cpgdemo.o: main: multiply defined;
Unresolved: MAIN__ The best solution to this is to use the flag -nofor_main on the
f77 command used to link the program (thanks to David Terrett).

● Silicon Graphics (sys_irix):
❍ In IRIX 6.2, the library names have changed. If the installation fails to find the X11

library, Edit the .conf file in the pgplot/sys_irix directory and change

 LIBS="-lX11_s"

to

 LIBS="-lX11"

and then rerun makemake.
❍ A user has reported that PGNUMB does not generate correct code for numbers in

exponential format. This affects axes drawn with PGBOX etc. when labels require
a multiplying power of 10. This appears to be a due to a bug in the SGI Fortran
compiler. It can apparently be fixed by specifying -backslash when compiling the
pgplot library. Edit the .conf file and change

FFLAGC="-u -O2"

to

FFLAGC="-u -O2 -backslash"

❍ The installation procedure for cpgdemo fails. ld reports unresolved __main. The
command is

f77 -o cpgdemo cpgdemo.o -L`pwd` -lcpgplot -lpgplot -lX11_s

A work-around is to link using cc instead:

cc -o cpgdemo cpgdemo.o -L`pwd` -lcpgplot -lpgplot -lX11_s -lftn -lm

● VMS (sys_vms):
❍ Installation procedure should compile only required drivers.
❍ Installation procedure assumes that a C compiler (CC) is available. It should be

modified to skip the C compilations when this is not true.

Device drivers

● GIdriv (GIF driver):
❍ GIF uses the LZW compression system which is patented by Unisys; a license may

be required to use this driver.
❍ Uses space-inefficient algorithm.
❍ It might be nicer to insert page-number before the .gif extension instead of after, but

what if there is no extension?
● HPGL drivers:

❍ In some porgrams, the HPGL plot will be filled with many horizontal lines. I think
this is caused by using PGERAS, which is trying to fill the page with black, when it
should be filling in the background color. As the HPGL has no erase capability, the
PGERAS call should really be ignored. Unfortunately I have no easy way to test
the HPGL driver; if someone would like to work with me on this problem, or can
point me to a viewer for HPGL files for UNIX machines, please contact me.

● HJdriv, LJdriv (Hewlett-Packard PCL)
❍ I have no way to test these drivers, and I am not at all sure that they work on any

systems except VMS. I don't know whether to recommend one or the other. I would
appreciate feedback.

● GOdriv, VBdriv, ZEdriv
❍ These drivers require a routine grge00 that is not available on UNIX systems. They

should be rewritten to improve portability. Do not select these drivers on UNIX
systems.

● PSdriv (PostScript handler):
❍ The round terminals of thick lines are not clipped at the edge of the window (this

bug affects all handlers that do hardware thick lines).
● TTdriv (/TK4100):

❍ set-color-representation doesn't work correctly; colors are not reset on exit (should
they be?).

● VTdriv (VT125 handler):
❍ Cursor input does not work correctly. Unfortunately I do not have any good way to

test this.
● X2DRIV, PGDISP: Note that this driver is no longer supported and the following problems

will not be fixed; use the X-Window driver (/XSERV) instead.
❍ "pgdisp -lineColor 2" crashes immediately.
❍ figdisp_comm.c fails to compile in systems that lack "values.h" (e.g., ConvexOS

10.1).
❍ The driver tries to start up "figdisp" instead of "pgdisp"; you can change this in the

code (figdisp_comm.c) if you wish.
❍ PGDISP cannot be compiled with DECC on VAX/VMS (not AXP).
❍ Compilation of pgdisp on AXP makes warning messages:

 %LINK-W-MULDEF, symbol DECC$NTOHS multiply defined
 in module DECC$SHR file SYS$COMMON:[SYSLIB]DECC$SHR.EXE;1
 %LINK-W-MULDEF, symbol DECC$HTONS multiply defined
 in module DECC$SHR file SYS$COMMON:[SYSLIB]DECC$SHR.EXE;1

● XWdriv (X Window driver):
❍ Does not compile with some non-ANSI compilers (e.g., Convex?) that do not have

"string.h".
❍ Does not support the old XEdriv methods of specifying a label for the PGPLOT

window title bar.

● VTdriv (Dec REGIS driver):

This driver has problems on VMS. There is a special VMS variant of this driver in the
[PGPLOT.DRIVERS] directory. Rename file VTDRIV-VMS.F to VTDRIV.F (replacing
the file of that name, which is designed for UNIX), and recompile the library. This driver
will accept a device specification of the form "/VT" to display on the terminal, or "file/
VT" to create a disk file that you can display with TYPE. The driver still has some
problems, however: (1) it is limited to 4 colors, even if your REGIS device can display
more; (2) I think the cursor doesn't work on most REGIS devices, although I believe it
works on a real VT125 terminal (a rare beast indeed); (3) if you direct output to a file, the
driver still thinks the output is an interacrtive device and issues a prompt for each new
page. I do not plan to fix any of these problems, as REGIS is now an obsolete graphics
language.

● Tektronix drivers (TTdriv, TFdriv) and disk files:

If you want your graphics to display in an XTERM window, you should use a device
specification "/XTERM" (or possibly "terminal/XTERM" if you have acces to a 'terminal'
other than the one you are running the program in. Device type "/TEK", designed for a real
Tektronix terminal, does not generate the code required to switch an XTERM into
Tektronix mode. You can use /TEK with an XTERM if you first switch the terminal into
Tektronix mode by hand, using the control-middle-mouse-button menu.

Device spec "file/TFILE" produces a disk file in Tektronix format. There are two points to
note: (1) it does not include the code to switch an XTERM, so you can only display it in an
XTERM if the XTERM is already in Tektronix mode. (2) It uses the Tektronix extended
(high-resolution) addressing mode, and apparently XTERM doesn't recognize this, so the
plot is slightly garbled.

There are many variants of the Tektronix format, and this variety is exacerbated on VMS
where you cannot use the same code to write to a terminal as you would use to write a disk
file.

I will try to address this problem in a future version of PGPLOT. Basically, I need to
modify the I/O routines used by the Tektronix drivers so that they can be used to write a
disk file as well as send output to a terminal. This would give you the option of a disk file
with any of the Tektronix variants (/TEK, /XTERM, etc.).

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Wishlist

This is a list of requested improvements that I am considering for possible implementation in
future versions of PGPLOT. No promises are implied! If you have other suggestions, or want me to
give high priority to any of the suggestions, please let me know.

A double precision version of the library
Maintaining two parallel versions of the library is time-consuming, and I do not wish to do
so unless there is a clear need. None of the graphical operations in PGPLOT require
double precision calculations to achieve the accuracy warranted by current graphics
devices, so it is mainly a matter of convenience for programmers who maintain their data in
double precision for other reasons. Some users have reported success using Fortran
compiler qualifiers to cause REAL variables and constants to be compiled as double
precision; but note that you must also change some of the C support code and drivers.

Rotated coordinate systems
Extend the world-to-device-coordinate transformation to allow rotation as well as scaling
and translation. This would allow world-coordinate axes that are not parallel to the edge
of the viewport, and would hence cause complications for routines like PGBOX that label
the viewport in world-coordinate space.

Positioning workstation windows
Unfortunately there is no way from within a PGPLOT program to control the location of
PGPLOT X-windows. I will consider adding a new subroutine to the API to specify this,
but there are some potential problems: how should other devices (not X-window) interpret
this? and some X-window managers do not honor position requests.

Opaque symbols
An option to make the graph symbols opaque, so that underlying graphics do not show
through (e.g., a circle symbol would consist of a filled disk in the background color,
surrounded by a ring in the current color, instead of just the ring). There should be solid
and open versions of each symbol.

User-defined symbols
A method of defining new symbols that can be used as graph-markers like the built-in ones.

Bar and column charts
An example program is included in PGPLOT v5.2.0 (pgdemo16), and I intend to include the
subroutine in the main pgplot library in a future version. Comments on the design of this
subroutine are solicited.

Surface Plots of 2-D arrays and functions
To do this properly requires full three-dimensional graphics capability, which is beyond
the scope of PGPLOT. However, a restricted implementation might be possible.
Meanwhile, see demo program pgdemo7.f.

Variable line width
Allow line width to be a real/float parameter rather than an integer (this would require new
routines: PGSLW and PGQLW would not be changed).

Control of dashed-line appearance
The ability to set the scaling of the dashed (or dotted or dash-dotted etc.) line-styles and
alter the dash pattern.

Color
Provide a way to determine whether the active device is true-color or pseudo-color (with a
dynamic lookup table).

String input
Put a prompt on a plot and then read back a number or string with echo, editing, etc. A

prototype subroutine to do this is include in pgdemo14 in version 5.1.0; more work is
needed before it can be included in the PGPLOT library.

Journalling
PGPLOT should be able to save the plotting instructions used to create the current picture
so that they can be used to regenerate the picture on another device (e.g., PostScript copy
of the current X window display). Eileen Berman has implemented something along these
lines by calling the metafile driver in parallel with the active device driver, but this has
some problems that need to be sorted out before it can be generally implemented.

Improved cursor input
Extension of PGCURS/PGBAND to return more information about the key-stroke, e.g.,
whether it came from the keyboard or the mouse, and the state of modifier keys (shift,
control, etc.); for devices for which this is possible. New routine to return cursor position
immediately, without waiting for a keystroke or other event.

Support for PostScript or other native fonts
Allow use of arbitrary PostScript fonts on PostScript devices (and possibly X-window
fonts on X-window devices).

One or more mono-spaced fonts
Useful for lining things up in columns. (Implementation of tab-stops in text might help here
too.)

Eight-Bit Character Set
At present, the PGPLOT routines for displaying text only handle the 7-bit US-ASCII
character set (decimal codes 32-126); some other characters can be obtained with escape
sequences. I propose to implement all the printable characters of the 8-bit ISO 8859-1
(Latin-1) character set, and possibly provide a way to specify a different character set. I
will also add the `gothic' Hershey fonts for those who find them appealing. Some people
have requested ways to define their own fonts or add symbols to the font file; I will look
into methods of accommodating this.

Additional Characters
e.g., Greek cursive pi (varpi).

Alternate syntax for text
A request has been made for an alternate syntax for subscripts, superscripts, etc.;
possibilities include LaTeX/TeX or HTML. This would only be desirable if it follows an
already established standard.

 Current: e\ui\gp\d
 LaTeX: e^{i\pi}
 HTML: e^{iπ}

Ability to change color within a text string
e.g., with an escape code to specify the color index.

Improved support for C
Shared version of libcpgplot; support for PGERRX etc.; better documentation. Meanwhile,
you can make a shared version of libcpgplot using commands like the following (the ld
options are highly system dependent)

ar -xv libcpgplot.a
ld -o libcpgplot.so -z text -G -i cpg*.o -L . -l pgplot
rm -f cpg*.o

Improved Contouring Routines
❍ Routine to label contours with blanking (i.e., a version of PGCONL for use with

PGCONB instead of PGCONT).

❍ Methods for smoothing data (interpolation to finer grid) before contouring.
❍ Contouring a non-rectangular grid [e.g, with x and y coordinates of each element

supplied by user].
❍ Better control over labeling in PGCONL, especially orientation of text (e.g., uphill,

downhill, up page, etc.).
Improved Imaging Routines

❍ A method to specify an arbitrary transfer function.
❍ Imaging with non-rectangular pixels (like PGCONX), e.g., for polar grid; or

arbitrary irregular grid [difficult].
❍ Interpolation between pixels.
❍ True-color images: Provide a way to specify separate R, G, B components for each

pixel, on devices that permit this, rather than limiting colors to a 256-entry look-up
table.

Axes
A user has requested the option of putting tick marks at non-integer multiples of the
interval, e.g., 0.5 - 2.5 - 4.5 - 6.5.
A user has requested logarithmic axes with bases other than 10.
Log axes that span 1 decade or less not labeled very well.
A more intelligent version of PGLAB that could figure out where to put its labels without
overlapping with numeric labels on the axis would be nice.
More control over the format of numeric labels is needed; e.g., to specify a fixed number of
decimal places.
A means to suppress labels at either end of an axis when they would overlap an adjacent
plot; e.g,., options in PGBOX.

Date Axis
An option in PGAXIS to treat a world-coordinate as a time or date (e.g., Modified Julian
Date) and label the axis with, e.g.:
hours, minutes, seconds
year and day
year, month and day
month and year
day of week.

Legends
A convenient way to produce a legend for a plot: i.e. a list of symbols, line-styles, etc. with
associated text. A general solution is quite difficult.

VMS Installation Procedure
This does not contain a way to extract the documentation from the source code.

Circles and Arcs
Add a circle/arc primitive to the driver interface. Add a PGARC routine for drawing partial
circles (specified by center, radius, and two angles).

Window titles
Add a subroutine to modify the window title on X-window and similar devices that put a
title bar on PGPLOT windows.

Query routine: number of open devices
A new routine to return the number of open devices and their PGPLOT IDs.

PGPAP
This routine should indicate to the caller when it has failed to allocate a view surface of
the requested size.

Cubic splines
PGPLOT draws curves by linear interpolation between a set of points (straight-line
segments). I plan to add a routine to draw a smoother curver through the points, e.g., a
cubic spline. Smoothing measured data, i.e., drawing a smooth curve that does not pass
through all the points, is beyond the scope of PGPLOT. The choice of the best way to

smooth the data depends on the characteristics of the data, and you should smooth the data
with an appropriate method before passing them to PGPLOT.

Device Drivers

Driver for CGM (Computer Graphics Metafile)
This is an official standard interchange format, but not widely adopted. David Billinghurst
has contributed a driver, layered on CD from NIST. I am testing this driver, and hope to
include it in a future version of PGPLOT.

Driver for FIG format
It would be nice to have an editable graphics format, but PGPLOT will not be able to
easily take advantage of XFIG's capability, for two reasons: (1) text will appear in the
output file as vectors, not characters, and so will be difficult to edit; (2) PGPLOT doesn't
structure the file into hierarchical `objects', which would be convenient for editing.
Extensions to PGPLOT might make these features possible.

GIF driver
Add option for transparent background.

GIF/PPM/XWD drivers
Rewrite in C for improved portability (these drivers all use dynamic memory allocation,
which is not possible in standard Fortran-77).

PostScript driver
❍ Put bounding-box info at head of file [difficult in Fortran].
❍ Method of automatically printing PostScript output, or piping to another program.

PostScript and other drivers
Mechanism (e.g., environment variable) to set paper size to e.g., A4 instead of US-letter.
Ideally this should work with all printer drivers.

X-Window driver (/XW, /XS)
❍ Ability to change mapping of mouse-clicks onto A, D, X; different mapping for

modified button-press events (e.g., control+mouse).
❍ Copy some colors from the default color map to private color map when appropriate

to ameliorate problems of color map switching.
❍ Readout of current cursor position. This is not possible to do except while the

cursor is in the current PGPLOT window. This may be addressed in the Motif
driver.

❍ User-selectable run-time cross-hair cursor (currently can be selected by changing
Xdefaults or under program control). May also be addressed in Motif driver.

PGPLOT

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1995-1999 California Institute of Technology

mailto:tjp�astro.caltech.edu

PGPLOT Frequently Asked Questions

1. Problems with subscripts, superscripts, and Greek letters

2. Color Map Problems (X-Window)

3. Encapsulated PostScript

4. Changing the Background Color

5. License requirements for GIF

6. Solaris can't find libpgplot.so

7. Why doesn't PGPLOT redraw the plot when the window size is changed?

8. Will PGPLOT ever do three-dimensional graphics?

9. Will PGPLOT be rewritten to use Fortran-90 constructions?

10. Does PGPLOT have a Y2K problem?

11. My compiler complains about use of %VAL in some drivers

12. Can PGPLOT be used in a Web-based CGI application?

13. How do I compile PGPLOT for Linux using the Absoft Fortran compiler?

14. Is there a double precision version of PGPLOT?

15. My publisher has requested that I provide my PostScript color image in CMYK rather than

RGB format. Can I do that with PGPLOT?

Problems with subscripts, superscripts, and Greek letters

I am trying to use escape sequences for subscripts and superscripts and greek letters, however the
output is as follows:

 call pglab('h/D','\ge\ur\d','TE\u011\d')

The y-axis label turns out to be 'geurd', and similar results occur for the title.

Many UNIX Fortran compilers treat a backslash (\) in a literal Fortran string as a UNIX escape
character, converting '\n' to the code for new-line, for example. If you have one of these compilers,
and if you want to use '\' as a PGPLOT escape character, you must do either one or other of the
following (but not both):

1. Double all backslashes in literal strings in your code (e.g., change '\ge\ur\d' to '\\ge\\ur\\d');
the compiler will translate '\\' to '\'.

2. Enable the compiler option that suppresses this behavior. Most UNIX compilers have such
an option, but it isn't always well documented. Some possibilities for various compilers
are:

 -assume backslash

 -backslash
 -qnoescape
 -xl (Solaris f77)
 -!bs (f2c)
 -fno-backslash (g77)

If you can't find the option, or can't make it work, consult your compiler supplier.
3. An ingenious way to write a program that will work with most compilers is the following:

define

 CHARACTER BACKSL
 PARAMETER (BACKSL = '\\')

and then use concatenation, e.g.

 call pglab('h/D', BACKSL//'ge'//BACKSL//'ur'//BACKSL//'d',
 'TE'//BACKSL//'u011'//BACKSL//'d')

This rapidly leads to unreadable code.

Color Map Problems (X-Window)

I am seeing an unusual situation when running PGPLOT (using the X-Window device) when a
previous executable is using up a lot of the available colors. I am running Netscape and PGPLOT
on an ncd 19c (color). when Netscape starts first, it grabs alot of the colors so when i do a pgbegin
from my application (or run one of the supplied pgdemo programs) the entire terminal screen is
blacked out and then the PGPLOT window appears. in fact when i do a pgbegin from my
application and before calling any other PGPLOT routine, the entire termianl screen is blacked
out and i can only get my windows to appear again by clicking with the mouse over the area where
i know a terminal exists. then everything appears as normal and the nnormal PGPLOT window
appears. have you seen this problem before?

Colors are a limited resource on X displays: most are 8-bit devices that can display only 256
different colors simultaneously. Different client programs have to divide the available colors
between them. If no colors are available for a new window, it either has to make do by sharing
colors that are already in use by other windows (in which case it shouldn't change them), or it has
to allocate a ``private color map'' which will display the correct colors, but only while the cursor
is in that window: colors of other windows will be incorrect. The problem is much less severe for
24-bit displays which have many more colors available.

Netscape is particularly bad: it appears to grab all the available colors, forcing PGPLOT to use a
private color map, which produces the result you see. You can tell Netscape to use less colors (see
its documentation, under Help:Frequently Asked Questions:Netscape Navigator for X: item 14). Or
you can open the PGPLOT window before the Netscape window: this forces Netscape to use less
colors (create an /XSERVE window and keep it around for your PGPLOT programs). You can also
tell PGPLOT to allocate less colors for each window (using X resources: see xwdriv), which may

reduce conflicts with other applications, but not with greedy ones like Netscape.

PGPLOT initializes its color map to all black until you start plotting in the window. This
exacerbates the problem, and we will try to improve this in a future version.

Encapsulated PostScript

What is the difference between a file produced by PGPLOT using /ps and an encapsulated
PostScript file, or is there none?

A PostScript (ps) file produced by PGPLOT is a valid encapsulated PostScript file, except for the
following:

1. It must be a single page. Multi-page plots are not valid EPS.
2. The ``BoundingBox'' comment is at the end of the file, not the beginning. [The reason for

this is that PGPLOT doesn't know what the bounding-box will be until it has finished
creating the file.] If the program that is trying to read the file complains, you can move this
comment from the end of the file to the beginning. It is simplest to use the UNIX script
``pscaps'' in the PGPLOT directory:

 pscaps yourfile.ps

This modifies the file(s) in place.
3. Some EPS files include a ``screen-preview'' section to allow them to be displayed by

programs that cannot interpret PostScript. The format of this is machine-dependent
(different for Macintosh and DOS, for example). PGPLOT does not write a screen-preview
section.

All PGPLOT PostScript files, both single-page and multi-page, are labelled at the beginning %!
PS-Adobe-3.0 EPSF-3.0 Some programs, including GhostView for Windows, apparently have
problems if a multi-page file has an EPSF header. If necessary, change the first line of the
PostScript file to read %!PS-Adobe-3.0. Some users have reported that the CUPS printing system
on Linux prints all pages superimposed on a single page unless this change is made. This sounds
like a bug in CUPS, or in the configuration files. Other versions of CUPS, e.g., in MacOS X, do not
have this problem.

For more information about PGPLOT PS files, see the manual.

Changing the Background Color

I am using PGPLOT to plot stuff on an X-Window machine. The color scheme by default is white
on a black background. I was able to change the color of the image using PGSCI, but how does on
control the color of the background?

The background is color index 0. You can change what color it is by using PGSCR or PGSCRN.

You can also change background and foreground (color indices 0 and 1) with environment variables
at run time, e.g., to draw in black on white instead of white on black:

 setenv PGPLOT_BACKGROUND white
 setenv PGPLOT_BACKGROUND black

although a call to PGSCR or PGSCRN in the program will override these.

License requirements for GIF

The drivers.list file indicates that using the GIF driver may require a license from Unisys. Do you
have any further information on the licensing requirements?

I cannot give you an authoritative statement on this. The furore seems to have died down a bit, but
I believe that Unisys still requires a license, certainly for commercial use. See, for example,

http://www.unisys.com/LeadStory/lzwfaq.html

You can find much more about this by searching for, say, "unisys", "gif", and "compuserve".

At least one new graphics format to replace GIF is under development: PNG (Portable Network
Graphics), but I don't intend to add this to PGPLOT until it is clear that it is going to be widely
adopted. See, e.g.,

http://www.wco.com/~png/

http://www.group42.com/png.htm

Solaris can't find libpgplot.so

When I run pgdemo*, for example pgdemo1, I get the error-message
ld.so.1: pgdemo1: fatal: libpgplot.so: can't open file: errno=2 Killed
What could be the reason? libpgplot.a is seen by the program.

This is a ``feature'' of shared libraries under Solaris 2.x.

Under Solaris, as with most UNIX systems, you link a program with PGPLOT with a command like
the following:

f77 -o example example.f -L/usr/local/pgplot -lpgplot

The -L option tells the linker where to look for the library. Unfortunately, this information is not
recorded in the executable file, and the run-time shared library loader thus doesn't know where to
find the PGPLOT library. There are a number of solutions to this problem:

http://www.unisys.com/LeadStory/lzwfaq.html
http://www.wco.com/~png/
http://www.group42.com/png.htm

1. Link the program statically:

f77 -o example example.f -L/usr/local/pgplot -Bstatic -lpgplot \
 -Bdynamic -lX11

This will result in a big executable (and you also have to specify the -LX11 option to
include the X11 library).

2. Add the directory of the PGPLOT library to the list of directories in your
LD_LIBRARY_PATH environment variable, e.g.,

setenv LD_LIBRARY_PATH /usr/local/pgplot:/usr/openwin/lib:/usr/dt/lib
f77 -o example example.f -lpgplot

The LD_LIBRARY_PATH variable is read both by the compile-time linker and the run-
time linker so you no longer have to use -L. The only disadvantage of this method is that if
somebody else wants to use your program they will also have to modify their
LD_LIBRARY_PATH before running it.

3. Place the directory of the PGPLOT library in your LD_RUN_PATH environment variable.

setenv LD_RUN_PATH /usr/local/pgplot
f77 -o example example.f -L/usr/local/pgplot -lpgplot

The contents of the LD_RUN_PATH variable are recorded in the executable and
thereafter used as the path to search for shared libraries. In this case you still have to use -
L or set your LD_LIBRARY_PATH appropriately to tell the linker where to find the
library at link time, but thereafter anybody will be able to run the program without
modifying their LD_LIBRARY_PATH or LD_RUN_PATH variables.

4. Use the -R switch of f77 in place of setting LD_RUN_PATH. This can be more problematic
because f77 quietly appends the path of its run-time libraries to the LD_RUN_PATH
variable, and this is ignored when -R is used. As a result you have to remember to specify
the directory of the f77 libraries (usually /opt/SUNWspro/lib):

f77 -o example example.f -R/usr/local/pgplot:/opt/SUNWspro/lib \
 -L/usr/local/pgplot -lpgplot -lX11

[Thanks to Martin Shepherd.]

Why doesn't PGPLOT redraw the plot when the window size is
changed?

PGPLOT cannot automatically redraw the plot at a new scale when the window size is changed. If
you use the PGPLOT X-window driver (device /XSERV or /XWIN), PGPLOT, in concert with the
X-server, maintains an off-screen pixmap (a pixel-by-pixel copy of the screen picture) which is
used to redraw the picture when it is de-iconized, uncovered, resized, etc. However the pixmap
cannot be rescaled. PGPLOT does not keep a record of the elements comprising the plot (vectors,
polygons, etc.) which could be used to redraw the plot at a new scale; such a record could
potentially require a very large amount of memory and slow down the PGPLOT process. If you

want your application to redraw the plot, you should call PGPAGE and re-issue the subroutine
calls required to draw the plot. If you do not have to recalculate your data this should be quite
quick. If the window has been resized, PGPLOT becomes aware of the new size when PGPAGE is
called. There is one problem though: how does your application tell that the window has been
resized and that the plot must be redrawn? This is an "asynchronous event" (it could happen at any
time during the execution of your program) and it is difficult for a standard Fortran program, with
a single thread of execution, to respond to such an event, and it is also difficult to get access to the
X-events from the program.

Will PGPLOT ever do three-dimensional graphics?

No. A comprehensive 3D capability (including projection, hidden-line and hidden-surface removal,
and lighting) is beyond the scope of PGPLOT. Some of the PGPLOT demonstration programs do
rudimentary 3D graphics, but they take care of projection and hidden-line removal themselves, and
pass only 2D data to PGPLOT. For 3D graphics a number of packages are available, such as
OpenGL and PHIGS.

Will PGPLOT be rewritten to use Fortran-90 constructions?

I do not plan to rewrite PGPLOT in Fortran-90. I do not think that Fortran-90 has yet taken over
from Fortran-77 (e.g., there are no free compilers), and I do not have the resources to maintain two
versions.

You should be able to call PGPLOT routines from f90 with no problem. I recommend that you
compile PGPLOT with an f77 compiler, and link it into your f90 program. I would hope that your
f90 compiler can handle the argument passing conventions of f77, but this may depend on which
compilers you use. Alternatively, you can compile PGPLOT with the f90 compiler, but you will be
unable to use some of the drivers which use non-standard extensions to Fortran-77. I intend to
address this by rewriting these drivers in C rather than Fortran-90.

Does PGPLOT have a Y2K problem?

I am checking our software for Year2000 compliancy and was wondering if I should be concerned
about any functions in pgplot.

No, you should not be concerned. The only routine in PGPLOT that does anything with dates is
PGQINF, which can return the current date, obtained from the operating system, to the caller. It
uses a 4-digit year. There should be no Y2K problem unless the underlying operating system has a
problem. No Y2K problems with PGPLOT have been reported.

My compiler complains about use of %VAL in some drivers

My Fortran-77 compiler doesn't understand the syntax %VAL() that is used in some of the
PGPLOT device drivers. What should I do?

Unfortunately some of the PGPLOT device drivers require dynamically-allocated memory and
cannot be written using standard Fortran-77; in these cases the drivers are written either in C or in
non-standard Fortran. If your compiler does not understand the %val() extension (used for passing
an argument by value instead of address, and used in PGPLOT to pass a dynamically-allocated
array to a subroutine), you will be unable to use these drivers unless you rewrite them. There are
standard mechanisms in both C and Fortran-90 for handling dynamically-allocated memory, and I
may in a future version replace these drivers with C or Fortran-90 versions.

Can PGPLOT be used in a Web-based CGI application?

Yes! Several people have used PGPLOT in a Web CGI application to generate plots in GIF format
on-the-fly. In most UNIX systems, the CGI script is required to send the plot to standard output; in
PGPLOT, use a device specification "-/GIF" in PGOPEN or PGBEG. Alternatively, the script
may create a temporary named GIF file and return HTML code for a Web page that includes the
GIF file using an IMG tag. If the Web server is a Windows system, it may be a little more
complicated. Bernhard Rupp has put some hints for using a Fortran PGPLOT program in a CGI
script on his web page: http://www-structure.llnl.gov/Xray/comp/gif_prog.htm.

How do I compile PGPLOT for Linux using the Absoft Fortran
compiler?

The following information is from Absoft support (support@absoft.absoft.com). It will be included

in PGPLOT 5.2.1.

We've had source modifications for using PGPLOT with our Fortran compilers on Linux available
on our ftp site for some time now. We provide three different configuration files (fold to upper, fold
to lower, and fold to lower/append an underscore) so that the end user can choose the name space
that fits his/her project. We also include an absoft_src directory under sys_linux that contains the
necessary source mods to build the library. The installation procedure is

1. tar -xzvf pgplot5.2.tar.gz
2. cd pgplot
3. tar -xzvf pgplot_absoft50_linux.tar.gz
4. makemake [where]/pgplot linux absoftucs_gcc (or absoftg77_gcc or absoftlcs_gcc).

You can download our modifications from:

ftp://ftp.absoft.com/pub/linux/profortran5.0/pgplot_absoft50_linux.tar.gz

http://www-structure.llnl.gov/Xray/comp/gif_prog.htm
mailto:support@absoft.absoft.com
ftp://ftp.absoft.com/pub/linux/profortran5.0/pgplot_absoft50_linux.tar.gz

Is there a double precision version of PGPLOT?

PGPLOT is only available in single precision (Fortran REAL). All floating-point arguments
passed to PGPLOT routines should be of type REAL, not DOUBLE PRECISION or REAL*8, for
example. Higher precision is not needed internally by PGPLOT, given the limited resolution of
most graphics devices.

If the data that you wish to plot are DOUBLE PRECISION quantities, you need to convert them to
REAL before passing them to PGPLOT. If this is very inconvenient, you can in principle compile
PGPLOT in double precision (some Fortran compilers have an option to do this), but you also
need to change the C support routines, so I do not recommend this.

The above remarks apply to Fortran: for C, arguments should be float, not double. In some cases
the function prototypes will direct the C compiler to automatically convert double to float for you,
but this does not happen with array arguments.

I may in future distribute two versions of the library for REAL and DOUBLE PRECISION; if I do,
the double precision routines would have different names.

My publisher has requested that I provide my PostScript color image
in CMYK rather than RGB format. Can I do that with PGPLOT?

PGPLOT uses the "device RGB" color model in PostScript files. All PostScript interpreters
should convert RGB to CMYK when the output device requires it, so there is no real need for a
CMYK option in PGPLOT. Some publishers prefer CMYK because they believe that it gives better
color fidelity. However, consistency of color is difficult to achieve using either RGB or CMYK
because different devices use different methods to represent color, and different devices produce
different ranges of colors. You will see differences, e.g., between a printout and an on-screen
display of a PGPLOT PostScript file. If color fidelity is important, I recommend that you import
the PGPLOT file into a graphics application such as Adobe Photoshop on a PC or Macintosh with
color management software (modern versions of Windows and MacOS are good about this, but Unix
is not). After adjusting the colors to your liking, save the file in PDF or PS format from that
program, using any options recommended by your publisher.

PGPLOT

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1996-1999 California Institute of Technology

mailto:tjp�astro.caltech.edu

PGPLOT Examples

PGPLOT is designed to make it easy to generate simple graphs, while providing full capability for more
complex graphs.

As an example of a simple graph, here is a graph of the function y = xexp(-x), which was drawn with six
PGPLOT subroutine calls.

This figure is a GIF file. With no change to the source code, the program can also generate files in other

formats, such as PostScript.

Here is the Fortran code required to draw this graph, with comments to explain the purpose of each
subroutine call. The question mark as an argument to PGOPEN allows the user to specify a file name and
file format at run time.

http://www.astro.caltech.edu/~tjp/pgplot/example1.ps.gz

 PROGRAM EX1
 INTEGER PGOPEN, I
 REAL XS(9), YS(9), XR(101), YR(101)

C Compute numbers to be plotted.

 DO 10 I=1,101
 XR(I) = 0.1*(I-1)
 YR(I) = XR(I)**2*EXP(-XR(I))
 10 CONTINUE
 DO 20 I=1,9
 XS(I) = I
 YS(I) = XS(I)**2*EXP(-XS(I))
 20 CONTINUE

C Open graphics device.

 IF (PGOPEN('?') .LT. 1) STOP

C Define coordinate range of graph (0 < x < 10, 0 < y < 0.65),
C and draw axes.

 CALL PGENV(0., 10., 0., 0.65, 0, 0)

C Label the axes (note use of \u and \d for raising exponent).

 CALL PGLAB('x', 'y', 'PGPLOT Graph: y = x\u2\dexp(-x)')

C Plot the line graph.

 CALL PGLINE(101, XR, YR)

C Plot symbols at selected points.

 CALL PGPT(9, XS, YS, 18)

C Close the graphics device.

 CALL PGCLOS

 END

The same program can be written in C, using the cpgplot library.

#include "cpgplot.h"
#include "math.h"

int main()
{
 int i;
 float xs[9], ys[9];
 float xr[101], yr[101];

 /* Compute numbers to be plotted. */

 for (i=0; i<101; i++) {
 xr[i] = 0.1*i;
 yr[i] = xr[i]*xr[i]*exp(-xr[i]);
 }
 for (i=0; i<9; i++) {
 xs[i] = i+1;
 ys[i] = xs[i]*xs[i]*exp(-xs[i]);
 }

 /* Open graphics device. */

 if (cpgopen("?") < 1)
 return 1;

 /* Define coordinate range of graph (0 < x < 10, 0 < y < 0.65),
 and draw axes. */

 cpgenv(0., 10., 0., 0.65, 0, 0);

 /* Label the axes (note use of \\u and \\d for raising exponent). */

 cpglab("x", "y", "PGPLOT Graph: y = x\\u2\\dexp(-x)");

 /* Plot the line graph. */

 cpgline(101, xr, yr);

 /* Plot symbols at selected points. */

 cpgpt(9, xs, ys, 18);

 /* Close the graphics device */

 cpgclos();
 return 0;
}

More complex graphs supported by PGPLOT include

● Scatter plots

● Function plots

● Contour maps

● Images

● Histograms

All these graphs are also available in a single PostScript file (3 pages).

Further examples can be found in the directory pgplot/examples distributed with PGPLOT.

PGPLOT

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1997 California Institute of Technology

http://www.astro.caltech.edu/~tjp/pgplot/example2.ps.gz
mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT Version 5.0

All changes are intended to be backwards-compatible: i.e., existing programs should run correctly
when recompiled, and recompilation should not be necessary. Some programs may give slightly
different results, owing to the bug fixes described below.

New installation procedure

The installation procedure for UNIX systems has changed substantially, to allow automatic
generation of the makefile and the device dispatch routine (grexec.f).

New C binding

This release of PGPLOT includes an experimental C binding for calling PGPLOT from C

programs. It consists of two files, a header file cpgplot.h that should be included in C programs
that call PGPLOT, and a system-dependent wrapper library that encapsulates the manipulations
necessary to call Fortran subroutines from C programs (e.g, converting C null-terminated char
arrays to Fortran character strings). The wrapper library requires an ANSI-compliant C compiler,
and is not available on all systems (interlanguage calls are very difficult or impossible on some
systems).

Changes to device drivers

● PostScript: the PostScript device driver (device types /PS, /VPS, /CPS, and /VCPS) has

been changed to handle the new PGIMAG routine. Use /CPS or /VCPS for color images.

One side-effect is that the monochrome types (/PS and /VPS) now honor color
representation changes requested by PGSCR, although they substitute a grey level for the

requested color.
● X-Window: the X-Window driver has had major changes to speed it up, make it more

portable, and add new features. The window is now resizable, and it is possible to specify
that it stay up after the PGPLOT program exits. The driver provides support for the new
cursor features in PGBAND. The number of colors reserved and the default placement of

the window can be specified in X resources.
● GIF (Graphics Interchange Format): a new driver to create GIF files (type /GIF or /VGIF).

● PPM (Portable Pixmap): a new driver to create PPM files (type /PPM or /VPPM).

● Many of the other drivers have been cleaned up to make them more portable.

New routines

For details of all the PGPLOT routines, see file pgplot.doc or pgplot.html that the installation

procedures puts in the pgplot directory. The file pgplot.html can be viewed with Mosaic (e.g.,
Mosaic /usr/local/pgplot/pgplot.html).

● PGSCIR, PGQCIR: set/query the range of color indices used by routines PGGRAY and

PGIMAG.

● PGERAS: erase screen without advancing to new page.

● PGCONL: for labelling contours drawn with PGCONT.

● PGBAND: new cursor routine, with many more features than PGCURS including cross-

hairs and rubber-bands (on devices that support this; currently only X-window).
● PGIMAG: new routine (like PGGRAY) for color images.

● PGCTAB: for generating a color table for use with PGIMAG.

● PGSITF/PGQITF: set/query the image transfer function used by routines PGGRAY and

PGIMAG.

● PGPANL: to move to a different panel when the view surface has been divided into panels

with PGBEG or PGSUBP.

The pgdem* programs in pgplot/examples have been enhanced to demonstrate the new routines,
and there are new demos programs (10--12).

Enhanced routines

● PGBOX: new options for forcing decimal or exponential labeling.

● PGBEG (PGBEGIN): now parses device specifications differently, so that file names

including slash characters do not need to be quoted.
● PGCONX: contours are now traced in a consistent direction (clockwise or anticlockwise).

● PGGRAY: enhanced to allow use of linear, log, or square-root mapping of array value onto

image brightness (see PGSITF).

● PGPIXL: new algorithm makes smaller PS files that print faster.

● PGPAGE: no longer beeps when prompting for next page.

Bugs fixed

● PGNUMB: the FORM argument was ignored, but is now used as documented.

● PGPAP (PGPAPER) was boken in 4.9H; it now works as documented, and can be used to

change size between pages.
● PGQCR: now works as advertised (on most devices).

● Calling PGSCR before starting a new page (or defining PGPLOT_BACKGROUND or

PGPLOT_FOREGROUND) no longer creates a blank page in the graphics file.
● Filled polygons are now correctly clipped against the window on all devices; formerly they

were not clipped on PostScript and X-Window devices.
● The unit of line-width in PGSLW is now 0.005 inch on all devices.

● Sometimes markers centered exactly on the edge of the window were not drawn when they
should have been.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT changes in Version 5.0.1

This version corrects several minor bugs; corrects a serious error in PGGRAY; adds functionality
to the X window driver; adds a new driver for X window dump files.

pgplot
aaaread.me

Split into files aaaread.me, install.txt, whatsnew.txt, changes.txt.
drivers.list

Add warning that use of GIDRIV may require a license. Add /WD and /VWD (X-
window dump files). Add comments to discourage people from trying to use PC
drivers on UNIX systems. Revise /VERS and /VVERS.

makehtml
New perl script now generates syntactically correct html with cross-references
[Diab Jerius].

makemake
Add instructions for SVdriv and WDdriv. Make it work with bash as well as sh. No
longer makes pgplot.html by default. Remove VVdriv.

pgplot/drivers
gidriv.f

Avoid integer overflow (caused driver to crash on VAX/VMS). Add warning that
use of this driver may require a license from Unisys.

tfdriv.f
Correct error in usage of GRFMEM.

svdriv.c, svblock.c
Restored from v4.9H (note: this driver for SunView is no longer supported: use
XWdriv instead).

vedriv.f
Merge landscape and portrait modes in one driver.

vvdriv.f
Deleted.

wddriv.f
New file: generates X-window dump file [Scott Allendorf].

xwdriv.c, pgxwin_server.c
Fixes to datatypes of properties: corrects bugs found on Cray and Dec-Alpha
(OSF/1). Support for all visual types, including TrueColor. Ability to set different
attributes for each window via X resources. On VMS, checks that pgxwin_server
has E or R access.

x2driv.c, figdisp_comm.c
Suppress warning messages produced by DECC compiler.

bcdriv.f, ccdriv.f, hjdriv.f, ladriv.f, ljdriv.f, todriv.f, txdriv.f
Eliminate use of routine gribf1.

pgplot/examples
pgdemo2.f

Add a test of an invisible polygon.
pgplot/fonts

aaaread.me
Note that pgunpack and pgdchar are unsupported.

pgplot/src
grcurs.f

Correct bug: start new picture if necessary.
grldev.f

Change ``Legal PGPLOT device types are:'' to ``Device types available:''.
grmker.f

Fix bug: viewport grew as symbols were plotted!
pgband.f, pgcurs.f

Issue message if device is not open.
pggray.f, grgray.f

PGGRAY now uses a color ramp between the colors assigned to color index 0
(background) and color index 1 (foreground). This should restore the old behavior:
the ramp runs from black to white on devices with black background and white
foreground, and from white to black on devices with white background and black
foreground.

pgpage.f
If this routine detects that the size of the view surface has been changed (e.g., by a
workstation window manager), it now rescales the viewport in proportion. Formerly
the size of the viewport (in absolute units, e.g., mm) was not changed and so the
viewport might extend outside the view surface. This only affects programs that do
not reset the viewport for each page.

pgpoly.f, grpocl.f
Correct bug: an invisible polygon generated a spurious error message.

pgqcs.f, pglen.f, pgqvsz.f
Fix minor formatting errors in header comments.

pgqinf.f
Change version to 5.0.1.

pgslw.f, pgqlw.f, grslw.f
Correct header comments (line width unit is 0.005 inch).

pgplot/sys
gribf1.f

Deleted (also system-dependent variants).
grfileio.c

Add O_TRUNC to cause truncation when an existing file is overwritten.
pgplot/sys_convex

fc_cc.conf
Added -lX11.

pgplot/sys_cray
aaaread.me

Removed note about /XWIN: it now works.
grfileio.c

add O_TRUNC to cause truncation when an existing file is overwritten.
pgplot/sys_linux

aaaread.me
New file: note that many drivers cannot be compiled; note about disabling
backslash interpretation.

f77_gcc.conf
Corrected to use ranlib, and revised list of libraries.

pgplot/sys_next
pgview/PGView.m

[Allyn Tennant] Correct resize bar.
af77_src/grfileio.c

add O_TRUNC to cause truncation when an existing file is overwritten.
pgplot/sys_sol2

aaaread.me

Added warning about non-ANSI C compilers.
pgplot/sys_sun

aaaread.me
Added note about SunView driver.

pgplot/sys_vms
build.com

Add PGQITF, PGSITF, PGPANL to transfer vector.
grfileio.c

Suppress warning messages produced by DECC compiler. Add O_TRUNC to cause
a new version of the file to be created instead of overwriting (usual VMS behavior).

grlgtr.f
Convert supplied string to uppercase before attempting to translate it as a logical
name.

make_demos.com
Correct comment.

make_font.com
Change protection of grfont.dat.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT changes in Version 5.0.2

This version implements fill-area styles 3 and 4 (hatching and cross-hatching). This affects
polygons drawn with PGPOLY, PGCIRC, and PGRECT. Hatching is selected by CALL PGSFS(3),

and cross-hatching is selected by CALL PGSFS(4); see also PGQFS. There is a new user-callable

routine (PGSHS) to control the angle and spacing of hatch lines, and a corresponding new inquiry

routine (PGQHS). There is also one new internal routine (PGHTCH). Drivers have been modified

so that they all interpret self-intersecting polygons the same way: a point is inside the polygon if
an infinite ray with the point as origin crosses an odd number of polygon edges (``EvenOddRule''
in X-window terminology). Example program PGDEMO1 has been revised to show the new fill-
area styles.

Routine PGERRB has acquired new options that allow symmetric, two-sided error bars to be

drawn with one call instead of two.

There are two new drivers, LXDRIV, to create a LaTeX picture environment (this is only useful

for very simple plots), and HGDRIV, to create a plot in HPGL2 format. The PostScript driver has

been updated to record a correct bounding box for each page, and optionally include comments
describing text strings. Note that the bounding-box is now written at the end of the file, i.e., after
PGPLOT has figured out what it should be. Some programs that import PostScript require the
bounding-box in the file header. The script pgplot/pscaps.sh can be used to move the bounding-box
information into the header.

There are four bug-fixes: (1) in routine PGSUBP which was not setting the viewport correctly; (2)
in routine PGCONL (actually PGCL) which was writing contour labels at the wrong angle; (3) in
routine GRPARS which was incorrectly attempting to overwrite the supplied device spec when
doing logical-name translation [VMS only]; (4) in routine GRFA which would sometimes
incorrectly fill a re-entrant polygon.

Support is added for the FreeBSD operating system and for PCs running MS-DOS with Salford
Software Fortran (pgplot/sys_salford) or Microsoft PowerStation Fortran (pgplot/sys_msdos).

All the UNIX configuration files have been modified to add a CFLAGD parameter that controls
linking of C programs that call PGPLOT.

pgplot
aaaread.me

Updated for version 5.0.2.
ver500.txt, ver501.txt

Earlier release notes (renamed and reformatted).
ver502.txt

Release notes for this release (this file).
copyright.notice

Updated.
drivers.list

Updated for new drivers.
install.txt

Updated.
makemake

Add PGHTCH, PGSHS, PGQHS to routine list; remove GRSFS. Modify to avoid
use of shell functions that are not supported by some old versions of the Bourne
shell.

pscaps.sh
(New file.) Script to modify a PostScript file by moving the BoundingBox comment
from trailer to header. This will convert a single-page PGPLOT PostScript file
into valid Encapsulated PostScript.

pgplot/cpg
cpgplot.doc

Added further instructions on linking C and Fortran.
libgcc_path.sh

A new script that tries to generate the correct linking commands for use with mixed
Fortran and gcc.

pgplot/drivers
ccdriv.f, ladriv.f, lndriv.f

Remove backslashes and PDP-11 octal constants from code to improve portability
(but these drivers are probably still specific to VMS).

epdriv.f
Remove some VMS dependencies; has not been tested under UNIX, however.

hgdriv.f
(New file.) Driver for HPGL2 graphics, from Colin Lonsdale.

ljdriv.f
(Bug fix.) Add a SAVE statement for non-static compilers.

lxdriv.f
(New file.) Driver for LaTeX picture environment, from Grant McIntosh.

pgxwin_server.c
Add omitted include: X11/Xos.h.

psdriv.f
(New feature.) If the supplied file name is '-', the driver send the PostScript output
to standard output. (Note: this will only work when Fortran unit 6 is connected to
standard output.) A correct PageBoundingBox comment is now included for each
page. Plotted text can be included in the PostScript file as comments if
environment variable PGPLOT_PS_VERBOSE_TEXT is set.

tfdriv.f
Improved optimization [David R. Chang]. Note that this driver is for VMS systems
where the regular Tektronix driver (ttdriv.f) can send output to a terminal but
cannot create a disk file.

xwdriv.c
Change polygon fill rule from ``WindingRule'' to ``EvenOddRule'' to match other
drivers. Suppress message about starting server (when it starts successfully).
Update comments.

pgplot/examples
pgdemo1.f

Revise example 6 to show all four fill-area styles, and example 7 to use the new
options in PGERRB.

pgdemo2.f
Revise to exercise hatching styles.

pgdemo3.f
Change internal subroutine name PLOT to avoid possible conflicts with other

libraries.
pgdemo12.f

Call PGBEG as a function rather than a subroutine.
pgplot/pgdisp

initlgwin.c
Change polygon fill rule from ``WindingRule'' to ``EvenOddRule'' to match other
drivers.

pgplot/src
grfa.f

(Bug fix.) Fixed bug in filling re-entrant polygons (thanks to Andrew Carman).
grlin3.f

Prevent a possible `sqrt of negative number' error.
gropen.f

(Bug fix.) Avoid a zero-length string problem. Explicitly initialize variable to zero.
grpars.f

(Bug fix.) No longer overwrites supplied string with logical name translation; avoid
a zero-length string problem.

grpckg1.inc
Remove unused variable GRFASL.

grsfs.f
(File deleted.)

grtext.f
Now sends text as a comment to output when requested.

pgbeg.f
Initialize hatching attributes. Explicitly initialize variable to zero.

pgbox.f
(Aesthetic improvement.) Move labels outwards slightly when inverted ticks are
requested; adjust position of `MV' y labels.

pgcl.f (support routine for pgconl)
(Bug fix.) The contour labels were written at the wrong angle when x and y scales
differed (thanks to Gerry Haines for discovering this); also labels could be drawn
outside the window.

pgerrb.f
(Enhancement.) Add options 5 and 6 for drawing symmetric two-sided error-bars.

pghtch.f
(New file.) Routine for hatching (shading) polygon.

pgmtxt.f
(Bug fix.) The routine could try to use a zero-length character substring, which is
not allowed by the Fortran-77 standard.

pgplot.inc
Add hatching attributes.

pgpoly.f
Add support for hatching.

pgqfs.f
Add file styles 3 and 4 (hatching).

pgqinf.f
Change version to 5.0.2. Avoid some zero-length string problems.

pgqhs.f
(New file.) Routine to inquire hatching style.

pgrect.f
Add support for hatching.

pgsave.f
Save hatching style.

pgsfs.f
Add file styles 3 and 4 (hatching).

pgshs.f
(New file.) Routine to set hatching style.

pgsubp.f
(Bug fix.) Rescale viewport when panel size changes.

pgplot/sys_dos
*.f

Split grdos.for into separate files for easier maintenance.
pgplot/sys_freebsd

aaaread.me, f77_cc.conf, iand.c
(New directory.) Support for FreeBSD operating system (Jean-Marc Zucconi).

pgplot/sys_hp
aaaread.me

(New file.) Add notes about optimization.
fort77_gcc.conf

(New file.) Configuration file for use with gcc compiler (not tested).
pgplot/sys_msdos

aaaread.me, etc.
(New directory.) Support files for MS Power Station 32-bit Fortran (from C. T.
Dum).

pgplot/sys_osf1
aaaread.me

(Modified.) Add note about shareable library.
f77_cc_shared.conf

(New file.) For making a shareable library.
pgplot/sys_salford

aaaread.me, *.f
(New directory.) New system-specific files for MS-DOS with Salford Software
Fortran (from Michael Michelson).

pgplot/sys_sun4
*.conf

Change -pic to -PIC (a large global offset table is needed if many drivers are
selected).

pgplot/sys_ultrix
f77_cc.conf

Add "-lX11" in LIBS and "-Olimit 600" (for optimizing complex routines) in
CFLAGC (Jaiyong Lee).

pgplot/sys_vms
build.com

Add PGSHS, PGQHS to transfer vector. Do not attempt to link with UIS on an AXP
machine.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT version 5.0.3

Tested Systems

Version 5.0.3 has been tested with the following operating systems and compilers. Drivers tested
include: GI, GL, NU, PP, PS, TT, VT, WD, X2, XW (but not all combinations of drivers and
systems have been tested exhaustively).

● HP-UX version A.09.01, HP Fortran/9000 (fort77), HP C (c89).
● OpenVMS AXP V6.1, DEC FORTRAN V6.2, DEC C V4.0 (tested on DEC 3000/M600).
● OpenVMS VAX V6.1, DEC FORTRAN V6.2, DEC C V4.0 (tested on VAXstation 4000-90).

Note: the PGDISP server cannot be compiled on this system.
● Solaris 2.4 (SunOS 5.4), Sun Fortran 2.0.1, Sun C 2.0.1 (tested on SPARCstation 10).
● SunOS 4.1.4, Sun Fortran 1.3.1, cc (tested on SPARCstation IPX). Note: the C-binding

cannot be compiled with this non-ANSI C compiler.
● SunOS 4.1.4, Sun Fortran 1.3.1, GNU gcc v2.7.0 (tested on SPARCstation IPX).
● IRIX 6.0.1, Power Indigo2, f77 -mips4, cc -64 (reported by Tomasz Plewa).

Changes in Version 5.0.3

Routine PGQCS has a new option to determine the character height in world coordinates, and a
bug that would give wrong values on devices with non-square pixels has been corrected.

Routine PGTBOX has a new option `X' to label the HH field modulo 24. Thus, a label such as 25h
10m would come out as 1h 10m.

Graphical output from the GIF and PPM drivers can now be directed to the standard output by
specifying a file name ``-'', e.g., ``-/gif''. This allows output to be piped to a viewing program, e.g.,
``pgprog | xv -''. This will only work for single-page plots.

In this version I have started work to change the character coding of PGPLOT text strings from
US-ASCII to ISO Latin-1. Unfortunately I do not have digitized versions of most of the required
glyphs, so this work is not complete. Programs which use characters with decimal codes in the
range 128-255 will now display differently: in most cases, the glyph will be an approximation to
the ISO Latin-1 character (e.g., an unaccented letter instead of the correctly accented one).

A new escape sequence, \., has been added for a centered dot (·).

A bug has been fixed that affected PostScript and possibly some other drivers: they would ignore a
change to the color-representation of the currently selected color index.

Some changes have been made in the way PGPLOT writes BoundingBox comments in PostScript
files.

Two bugs in polygon fill have been fixed: PGPOLY would issue an error message about a polygon
with less than 3 vertices on some occasions when a polygon was completely outside the viewport;

and polygon fill was ignored completely on some devices if the y-axis ran downwards instead of
upwards.

There is one new driver (HGDRIV), for HP-GL/2 devices.

Minor corrections have been made in several other subroutines and text files.

pgplot
aaaread.me

Changed version number to 5.0.3.
copyright.notice

Changed version number to 5.0.3.
drivers.list

Added HGDRIV.
install.txt

Updated.
makehtml

This is a perl script used for making the html documentation file. Some systems had
trouble executing this script. I have now modified it to invoke perl by the #!
mechanism. You may have to modify the first line of the script to specify the
location of perl on your system.

makemake
Now includes the ``non-standard'' routines in the documentation files (pgplot.doc,
pgplot.html). Also modified the non-standard routines to get cross-references to
their aliases in the HTML file. The list of include file dependencies is now
generated by searching the code. Special code for the Motif widget has been added.
Added HGDRIV.

ver503.txt
(New file.) Release notes.

pgplot/drivers
hgdriv.f

(New file.) Driver from Colin J. Lonsdale for HP-GL/2 devices. I have not tested
this. It is an alternative to GLDRIV: you should probably not include both in your
PGPLOT configuration.

lxdriv.f
Removed a non-standard DATA initialization.

psdriv.f
Changed interpretation of environment variables PGPLOT_PS_BBOX and
PGPLOT_PS_DRAW_BBOX; see the documentation.

xwdriv.c
Fix an error in display of large images.

gidriv.f, ppdriv.f, wddriv.f
Added comments to indicate what must be changed on operating systems like
OSF/1 that use 64-bit addresses.

pgplot/examples
pgdemo1.f

Fixed error in scatter plot, and rewrote random number routines.
pgdemo2.f

Exercise a few more escape sequences.
pgplot/src

grdtyp.f, grldev.f
Changed to totally ignore a PGPLOT driver that reports a zero-length device type.
This is to allow for stub drivers (more to come on this).

grfa.f
Fix bug: polygon fill was ignored on devices for which fill must be emulated in
PGPLOT if the y-axis was reversed.

grfa.f, grrec0.f
Changed to avoid use of a real variable as a do-loop index (not allowed by some
compilers).

grscr.f
Fix bug that affected some drivers: if you change the color representation of the
current color, these drivers did not notice.

grsyds.f
Changed to allow 304 = 256+48 characters in a font rather than 128+48 (the `48' are
the greek characters). Added \. escape sequence.

grsymk.f
Changed to allow 304 = 256+48 characters in a font rather than 128+48. This is in
preparation for using the ISO-Latin-1 character set rather than US-ASCII.
Unaccented glyphs have been assigned for most of the ISO-Latin-1 accented
characters.

pgcl.f
Under rare circumstances could crash with both arguments to atan2 equal to zero.
[This is an internal routine used by PGCONL].

pgpoly.f
Fixed a bug in the clipping algorithm that affected some polygons that lie entirely
outside the viewport.

pgqcs.f
Added option UNITS=4 to determine the character height in world coordinates,
and fixed a bug that would give wrong values on devices with non-square pixels.

pgqhs.f
Corrected comments (arguments are output, not input).

pgqinf.f
Changed version number to 5.0.3. Changed cursor test to determine whether the
driver reports a cursor, rather than assuming that all interactive devices have
cursors.

pgtbox.f
New option `X' to label the HH field modulo 24 [Neil Killeen].

pgimag.f
Minor changes to header comments.

pgswin.f, pgwnad.f
These routines now check whether a window of zero width or zero height has been
requested, in order to prevent a nasty divide-by-zero error.

pg*.f (many files)
Many of the top-level PG routines have been modified to issue a warning message
(by calling PGNOTO) if no device is open. This is in preparation for multiple open
devices.

pgplot/sys
grfileio.c

Recognize file name ``-'' as standard output.
pgplot/sys_dos

msdriv.f
Revised device driver for PCs running DOS with Microsoft Fortran 5.0, from Harry
Lehto. This replaces msdriv.f, msdriv.koyama, and msdriv.lehto.

pgplot/sys_linux
aaaread.me

Add notes on use of Gnu g77 compiler [Brian Toby].
g77_gcc.conf

(New file.) Configuration file for Gnu g77 compiler [Brian Toby].
pgplot/sys_mac

(New directory.) Macintosh OS, LS Fortran 2.1. See file aaaread.me.
pgplot/sys_msdos

aaaread.me
Added information about a serious bug in the Microsoft Powerstation Fortran
compiler [from C. T. Dum].

pgplot/sys_osf1
aaaread.me

Added notes about the 64-bit address problem: some PGPLOT device drivers must
be modified to be used with this operating system.

grgmem.c
This is a variant of pgplot/sys/grgmem.c that returns the pointer as an INTEGER*8
(64-bit-address).

pgplot/sys_sun4
*.conf

Changed shared library version number from 1.6 to 1.7.
pgplot/sys_vms

grfileio.c
Now recognizes file name ``-'' as standard output.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1995 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT version 5.1.0

Tested Systems

Version 5.1.0 has been tested with the following operating systems and compilers. Drivers tested
include: GI, GL, NU, PP, PS, TT, VT, WD, X2, XM, XW (but not all combinations of drivers and
systems have been tested exhaustively).

● SunOS 4.1.3_U1, Sun Fortran (f77) 1.3.1, GNU C (gcc) 2.7.0 (tested on SPARC 5).
● Solaris 2.5 (SunOS 5.5), Sun Fortran (f77) 3.0.1, Sun C (cc) 3.0.1 (tested on SPARC IPX).
● Solaris 2.5 (SunOS 5.5), Sun Fortran (f77) 3.0.1, GNU C (gcc) 2.7.2 (tested on SPARC IPX,

SPARC Ultra-1).
● OpenVMS AXP V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.1 (tested

on DEC 3000/M600).
● OpenVMS VAX V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.2 (tested

on VAXstation 4000-90).

Changes in Version 5.1.0

New Features

1. A major change in this version allows a program to have more than one PGPLOT device
open at once. The devices can be of the same type, e.g., two windows on an X-window
workstation, or of different types, e.g., a Tektronix terminal emulator and a PostScript file.
Up to 8 devices may be open at once. To support this new feature, four new routines have
been added: PGOPEN, PGQID, PGSLCT, and PGCLOS, and many routines have been

modified internally.

At present, support for multiple devices of the same type is not complete. Each PGPLOT device
driver needs to be modified to support multiple devices of the same type (i.e., served by the same
driver), or to explicitly prohibit opening more than one device. Some of the older drivers have not
yet been modified, and these drivers may give incorrect results if you attempt to use them to open
two devices. There should never be any problem with unlike devices served by different drivers, e.
g., /XTERM and /PS.

2. A new driver (xmdriv) and support routines have been provided by Martin Shepherd to

facilitate use of PGPLOT in a Motif application. Note that this is an experimental driver:
feedback would be appreciated.

3. The C function prototypes (cpgplot.h) and C binding are now compatible with C++ as well

as C.

Bugs Fixed

A bug has been fixed in GRPOCL (support routine for PGPOLY). This could cause overflow and
incorrect plots if the world-coordinate values were greater than about 1E18 (on most machines). A
rounding-error has been fixed in GRFA (support routine for PGPOLY); this could cause gaps

between polygons that should abut.

A bug has been fixed in GRPIXL (support routine for PGPIXL); this should improve speed.

Two bugs have been fixed in the X-window driver (XWDRIV): it would sometimes cause color
maps to be set incorrectly; it allowed only 255 colors, not 256.

Drivers Removed

The following device drivers have been moved into directory pgplot/drivers/old, and cannot be
selected in a normal installation. I believe that no-one is still using these drivers: ardriv.f (Args
image display), grdriv.f (Grinnell image display), ikdriv (Ikon pixel engine), lidriv (Liacom display),
pkdriv.f and pzdriv.f (Peritek image displays), vedriv.f (Versatec V80 printer).

List of Changes

pgplot
aaaread.me, copyright notice, makedoc, makehtml

Updated date and version number.
drivers.list

Added XMDRIV (Motif driver). Do not select this unless you have the necessary
Motif support and plan to write Motif applications that call PGPLOT. Removed
obsolete drivers as noted above.

makemake
Added new subroutines. Added targets pgplot.hlp (VMS help file); pgplot-routines.
tex (LaTeX); pgmdemo (example Motif application). Name changes: pgdisp is now
pgdispd (directory); pgview is now pgview.app (NeXT).

makehelp
(New file.) Script to generate VMS help file.

maketex
(New file.) Script to generate LaTeX documentation.

pgdispd
Changed name of directory from pgdisp to pgdispd to avoid problems if you try to
compile PGPLOT in the source directory.

ver510.txt
(New file.) List of changes since previous version.

pgplot/cpg
cpgdemo.c

Added a third page to exercise more routines.
cpgplot.h

Deleted file (note that this file needs to be created as part of the installation).
pgbind.c

Added C++ wrapper to the generated cpgplot.h file. Added support for const
qualified declarations in the function prototypes.

pgplot/drivers
gidriv.f, ppdriv.f, psdriv.f, ttdriv, wddriv.f, x2driv.c

Modified to prevent concurrent access.
gidriv.f, ppdriv.f, psdriv.f, wddriv.f

On some systems the decoding of environment variables PGPLOT_xx_WIDTH,
HEIGHT failed owing to a bad Fortran format. Rewritten to avoid this problem.

nudriv.f
Modified to allow concurrent access (up to 8 devices).

xmdriv.c, pgxwin.c, pgxwin.h
New files: PGPLOT driver for Motif applications (from Martin Shepherd).

xwdriv.c
Fix bug in handling query-color-representation.

pgxwin_server.c
Fix bug: 256 colors allowed, not 255.

pgplot/drivers/old
New directory: several obsolete drivers (and associated drivers.list) have been moved from
pgplot/drivers into this directory. These drivers should not be used; contact Tim Pearson
if you still have a need for any of them.

pgplot/drivers/xmotif
New directory: support routines and example program for Motif applications.

pgplot/examples
Some of the example programs have been modified to use PGOPEN/PGCLOS instead of
PGBEG/PGEND.
pgdemo1.f

Changed the pseudo-random number generator to avoid integer overflows.
pgdemo6.f

`+' key now cycles between cursor modes (rubber-band, cross-hair, etc.)
pgdemo13.f

(New program) Demonstration of two open devices.
pgdemo14.f

(New program) This program demonstrates a method of coding a user interface in
PGPLOT. It requires the /XSERV device. For a more professional approach to
graphical user interfaces, consider using the PGPLOT Motif driver.

pgplot/src
(Many pg routines)

Changed the C function prototypes to use the const qualifier where appropriate.
This makes it easier to use the function prototypes with C++. Most arguments
declared float * or char * are now const float * or const char * (except for returned
values).

grpckg1.inc
Modified to allow up to 8 concurrent devices.

grfa.f
Rounding-error fix (thanks to Remko Scharroo; twice).

grinit.f
New routine: initializes common block (avoids BLOCK DATA).

grpixl.f
Minor bug fix (Remko Scharroo).

grpocl.f
Rewrite to avoid potential overflow (thanks to Tomasz Plewa).

pgplot.inc
Modified to allow up to 8 concurrent devices; many variables changed from scalars
to arrays, with new names.

pgask.f, pgband.f, pgbbuf.f, pgbeg.f, pgbox.f, pgcirc.f, pgebuf.f, pgend.f, pgerrb.f, pgerrx.f,
pgerry.f, pggray.f, pghi2d.f, pgiden.f, pgimag.f, pglen.f, pgmtxt.f, pgncur.f, pgnoto.f, pgpage.
f, pgpanl.f, pgpap.f, pgpoly.f, pgptxt.f, pgqah.f, pgqch.f, pgqcir.f, pgqcs.f, pgqfs.f, pgqhs.f,
pgqinf.f, pgqitf.f, pgqtbg.f, pgqtxt.f, pgqvp.f, pgqvsz.f, pgqwin.f, pgrect.f, pgsah.f, pgsch.f,
pgscir.f, pgsfs.f, pgshs.f, pgsitf.f, pgstbg.f, pgsubp.f, pgsvp.f, pgswin.f, pgvsiz.f, pgvstd.f,

pgvw.f, pgwnad.f
Modified to allow multiple concurrent devices.

pgclos.f
(New routine.) Closes the currently selected graphics device.

pginit.f
(New internal routine.) Initialize PGPLOT (this is to avoid an illegal initialization
of data in COMMON).

pgopen.f
(New routine.) Open (and select) a graphics device; unlike PGBEG, this does not
close any previously opened device.

pgqid.f
(New routine.) Returns the identifier of the currently selected graphics device, for
use with PGSLCT.

pgslct.f
(New routine.) Selects one of the open devices for graphics output.

pgqinf.f
Changed version number to 5.1.0.

pgshs.f
Added checks on validity of arguments.

pgplot/sys_*
Changes to configuration files to support compilation of the Motif driver and example
programs.

pgplot/sys_arc
Contents of directory updated for version 5.1.0 by Dave Crennell. See file AAAREADME.

pgplot/sys_linux
The current version of gcc does not require system-specific variants of any files. The
variants for f2c have been moved into a subdirectory pgplot/sys_linux/f77_src and the
configuration files have been modified accordingly.

pgplot/sys_mac
Contents of directory updated for version 5.0.3 by J. S. Salmento. See file aaaread.me.

pgplot/sys_msdos
Contents of directory updated for version 5.1.0 by C. T. Dum. See file aaaread.me.

pgplot/sys_next
Contents of directory updated for version 5.1.0 and NeXtStep 3.0 by Allyn Tennant.
Configuration file for GNU Fortran (g77) added. See file aaaread.me.

pgplot/sys_sol2
Added -R options to the ld commands in the configuration files; these help the demo
programs to find the PGPLOT shared library at run time (assuming you haven't moved it
after compilation.)

pgplot/sys_sun4
Changed version number from 1.7 to 1.8 in all .conf files.

pgplot/sys_vms
build.com, compile.com

Added new routines to shared library transfer vector. Added instructions for
linking with Motif library when needed.

grlgtr.f
This routine formerly converted all PGPLOT device specifications to uppercase
for VMS. It now preserves case (VMS file and device names are not case-sensitive,
but some PGPLOT device specifications can be).

install.com
Added new target (pgmdemo) to compile/install the Motif demonstration program.

make_cpg.com
Corrected to use the version of cpgplot.h in the current directory; set correct

protection on generated files.
make_pgdisp.com

Changed name of directory from PGDISP to PGDISPD.
make_pgmdemo.com

(New file.) Used in compilation of the Motif example program.
pgplot/sys_win

New directory: from Phil Seeger. Port of version 5.1.0 to MS PowerStation Fortran/
Windows95 (or WindowsNT) environment. See file aaaread.me.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1996 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT version 5.1.1

Tested Systems

Version 5.1.1 has been tested with the following operating systems and compilers. Drivers tested
include: GI, GL, NU, PP, PS, TT, VT, WD, X2, XM, XW (but not all combinations of drivers and
systems have been tested exhaustively).

● SunOS 4.1.3_U1, Sun Fortran (f77) 1.3.1, GNU C (gcc) 2.7.0 (tested on SPARC 5).
● Solaris 2.5 (SunOS 5.5), Sun Fortran (f77) 3.0.1, Sun C (cc) 3.0.1 (tested on SPARC IPX).
● Solaris 2.5 (SunOS 5.5), Sun Fortran (f77) 3.0.1, GNU C (gcc) 2.7.2 (tested on SPARC IPX,

SPARC Ultra-1).
● OpenVMS AXP V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.1 (tested

on DEC 3000/M600).
● OpenVMS VAX V6.1, DEC FORTRAN V6.2, DEC C V4.0, DECwindows Motif 1.2 (tested

on VAXstation 4000-90).

Changes in Version 5.1.1

All changes are bug fixes or minor improvements. The most notable bug fixes are:

● PGOPEN, PGBEG: a device specification like '? ' (question mark with one or more trailing
spaces) causes PGOPEN to issue a blank prompt for device specification. This was an
unintended change in 5.1.0, and has been fixed in version 5.1.1.

● PGBEG: in version 5.1.0, the ordering of panels changed from row order to column order.
The way the sign of the NXSUB argument was interpreted was precisely the opposite of
the documented interpretation (NXSUB > 0 should give row order, and < 0 should give
column order). PGSUBP has always been wrong, but PGBEG acquired the incorrect
behavior in version 5.1.0. Both PGBEG and PGSUBP now behave as documented.

● The PostScript driver was ignoring environment variables used to set the paper size. It
now recognizes these variables. In addition, it will accept requests via routine PGPAP to
change the paper size, even if the size requested is larger than the default size. (You can
still set the default size with environment variables PGPLOT_PS_WIDTH and
PGPLOT_PS_HEIGHT.) There are two side-effects of this change: (1) When PGPAP is
used, a portrait-mode graph is placed in the lower left corner of the paper (offset by the
amount specified by environment variables PGPLOT_PS_HOFFSET and
PGPLOT_PS_VOFFSET; a landscape-mode graph is placed in the same corner of the
paper, but in this case it appears to be the top left corner! (2) When PGPAP is used, the
bounding-box cannot be guessed when the file is opened, so you should not use the
PGPLOT_PS_BBOX environment variable; if you do not set this variable, a correct
bounding box will be written in the file trailer (see the discussion in the note on the

PostScript printer driver).

List of Changes

pgplot
aaaread.me

Revised for version 5.1.1.
copyright.notice

Version number changed.
makemake

It now issues a message encouraging the installer to read the appropriate README
file.

ver511.txt [new file]
List of changes (this file).

pgplot/drivers
psdriv.f

Bug fixes: PGPLOT_PS_HOFFSET and PGPLOT_PS_VOFFSET were not
decoded correctly (bug introduced in v5.1.0); bounding box could be incorrect
(probably only on systems with non-static allocation of Fortran variables). Driver
now honors all requests to change the paper size with PGPAP. Optimization:
suppressed attempts to draw zero-length continuation line segments (thanks to
Remko Scharroo).

vtdriv-vms.f
This is an alternative to vtdriv.f. It uses VMS-specific Fortran, but may work
better than vtdriv.f on VMS systems.

xwdriv.c, pgxwin_server.c
Bug fix: images were displayed incorrectly on (some?) X-servers with more than 8
bits per pixel.

pgplot/examples
pgdemo2.f

Added example of Cyrillic text on page 3.
pgplot/src

grdtyp.f, grpars.f
Bug fix: improved minmatch routine for device types to allow, e.g., /HPGL even if /
HPGL2 is also an option.

grpocl.f
Bug fix: (this is a support routine for polygon fill with PGPOLY, etc.) A polygon
with one vertex exactly aligned with the edge of the window was not clipped
correctly (thanks to Remko Scharroo for the bug fix).

pgopen.f
Bug fix and improvement in header comments. V5.1.0 introduced a bug: a device
argument of '? ' with one or more trailing spaces did not issue the correct prompt.

pgqinf.f
Change version to 5.1.1.

pgsave.f
Correction in header comments.

pgsubp.f
This routine was interpreting a negative NXSUB argument incorrectly. According
to the documentation, positive NXSUB should step through the panels in row order,
while negative NXSUB should step through them in column order; but the routine
was interpreting positive NXSUB as column order and negative as row order. The
behavior has been corrected to match the documentation. (In version 5.1.0, pgbeg
was changed to call pgsubp, thus introducing this bug in pgbeg as well.)

pgtbox.f
The positioning of labels relative to the axis has been improved; the displacement
of labels from the axis should now be the same as in PGBOX. Problems were most
noticeable when a large character size was requested. (Thanks to Neil Killeen for

the fix.)
pgvect.f

The routine was ignoring the first row and column of the array when finding the
scale-factor for the vector length. (Thanks to David Singleton for pointing this out.)

pgplot/sys_arc
F77/ACDriver

Revised to allow a concurrent hardcopy device (Dave Crennell).
F77/GRexecAC

Correct typo (Dave Crennell).
pgplot/sys_fujitsu

This new directory replaces sys_vp2200. The files are from David Singleton.
aaaread.me

Revised.
uxpm_frt_cc.conf

Configuration file for Fujitsu UXP/M, frt FORTRAN compiler and /usr/ucb/cc
compiler.

uxpv_frt_cc.conf
Configuration file for Fujitsu UXP/V, frt FORTRAN compiler and /usr/ucb/cc
compiler.

pgplot/sys_hp
*.conf

Added support for compiling the Motif driver (xmdriv) [mcs].
pgplot/sys_linux

aaaread.me
Added notes on Linux variants and problems.

g77_elf.conf [new file]
Configuration file for Linux systems that use ELF binaries.

pgplot/sys_sol2
aaaread.me

Added notes about use of Sun f90 compiler and GNU g77 compiler. Added note
about problem with the ucb version of "ld".

f90_cc.conf [new file]
For Solaris f90 1.1 Fortran compiler (from Ricardo Piriz).

g77_gcc.conf [new file]
For GNU g77 Fortran compiler (with gcc).

pgplot/sys_vp2200
Directory removed.

pgplot/sys_vms
aaaread.me [new file]

Includes some notes on incompatibilities between versions of Motif, C compiler,
and VMS.

grlgtr.f
This has been rewritten: it now treats logical names as case-insensitive, and uses
$TRNLNM instead of obsolete $TRNLOG.

makedoc.com [new file]
A DCL command procedure to extract the documentation from the source code.

Tim Pearson, California Institute of Technology, tjp戢stro.caltech.edu

Copyright © 1996 California Institute of Technology

mailto:tjp%E6%88%A2stro.caltech.edu

PGPLOT version 5.2.1

This version is a maintenance release. It introduces no new subroutines or functionality.

Tested Systems

Version 5.2.1 has been tested on the following systems.

● Solaris 2.5.1 (SunOS 5.5.1), GNU Fortran (g77) and C (gcc) 2.8.1 [sol2 g77_gcc]; tested on
SPARC Ultra-1; device drivers CGDRIV GIDRIV GLDRIV NUDRIV PPDRIV PSDRIV
TKDRIV TTDRIV WDDRIV XMDRIV XWDRIV.

Changes to configuration files and system support

New systems

sys_cygwin
sys_gnuwin32
sys_solx86

Modified systems

See the appropriate pgplot/sys_*/aaaread.me file for details of changes. Many configuration files
(not listed here) have been modified to correct errors and add new configuration variables.

sys_aix
Modified aaaread.me, xlf_cc.conf; added g77_gcc.conf.

sys_hp
Added g77_gcc.conf.

sys_linux
Added f95_gcc.conf (and directory f95_src), fort77_gcc.conf, g77_elf.conf, g77_gcc_aout.
conf, nag_gcc.conf and directory nag_src.

sys_osf1
Added g77_gcc.conf.

sys_win
Added gidriv.f and pgpack.f (special versions of these routines for Windows).

Modified support routines

sys/grgetc.c
Removed unused variables.

sys/grgmem.c
Modified to work with 64-bit systems (or other systems in which a pointer does not fit in an
int).

Changes to device drivers

New device drivers

cgdriv
Driver for CGM (Computer Graphics Metafile).

pndriv
Driver for PNG (Portable Network Graphics format). Note: to install this, you must have
libpng.

xadriv
This is a widget driver, like xmdriv, that uses the X-athena widget set instead of the Motif
widget set. See the documentation for xmdriv for further information.

Modified device drivers

Many.

Changes to PGPLOT subroutines

pgqinf
Returns new version number (5.2.1).

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 1999 California Institute of Technology

mailto:tjp�astro.caltech.edu

PGPLOT version 5.2.2

This version is a maintenance release. It introduces no new subroutines or functionality.

Modified configuration files

Configuration files for aix, linux, and solaris have been updated.

Windows support

The files sys_win/aaaread.me and sys_win/gidriv.f have been modified.

Modified device drivers

Minor bugs in the X-window device drivers have been corrected.

Changes to PGPLOT subroutines

pgqinf: returns new version number (5.2.2).

Tim Pearson, California Institute of Technology, tjp·astro.caltech.edu

Copyright © 2001 California Institute of Technology

mailto:tjp�astro.caltech.edu

From: Koji Ejiri <eji@s9.dion.ne.jp> Date: January 27, 2006 1:59:31 PM PST To:
tjp@astro.caltech.edu Subject: Gauche/PGPLOT

Hi, I'm Koji Ejiri.

I make Gauche binding for PGPLOT. Gauche is one of Scheme interpreter.

 * Gauche

 http://www.shiro.dreamhost.com/scheme/gauche/index.html

= Download

 * tarball

 http://www.kono.cis.iwate-u.ac.jp/~kojieji/Gauche-pgplot-0.1.0.tar.gz

 * Subversion repository

 http://www.cozmixng.org/repos/pgplot

 * check out

 % svn co http://www.cozmixng.org/repos/pgplot .

= Install

Following programs need to install before to install Gauche/PGPLOT.

 * PGPLOT
 * Gauche
 * libpng
 * g77

I think you can install Gauche/PGPLOT if you type following command.

 % gauche-package install --install-as=root /path/to/Gauche-pgplot-X.X.X.tar.gz

= product requirements

Following OS I checked to install Gauche/PGPLOT.

 * FreeBSD
 * Debian GNU/Linux

It is first time for me to make a package program. Please tell me when some problems
find.

Sincerely -- Koji Ejiri e-mail: eji@s9.dion.ne.jp

	caltech.edu
	PGPLOT Graphics Subroutine Library
	PGPLOT Acknowledgments
	PGPLOT Chapter 1: Introduction
	PGPLOT Chapter 2: Simple Use of PGPLOT
	PGPLOT Figure 2.1
	PGPLOT Chapter 3: Windows and Viewports
	PGPLOT Chapter 4: Primitives
	PGPLOT Figure 4.1
	PGPLOT Figure 4.2
	PGPLOT Figure 4.3
	PGPLOT Chapter 5: Attributes
	PGPLOT Figure 5.1
	PGPLOT Figure 5.2
	PGPLOT Chapter 6: Higher-Level Routines
	PGPLOT Chapter 7: Interactive Graphics
	PGPLOT Subroutine Descriptions
	PGPLOT Appendix B: PGPLOT Symbols
	PGPLOT Figure B.0
	PGPLOT Figure B.1
	PGPLOT Figure B.2
	PGPLOT Figure B.3
	PGPLOT Figure B.4
	PGPLOT Figure B.5
	PGPLOT Figure B.6
	PGPLOT Figure B.7
	PGPLOT Appendix C: Calling PGPLOT from a C or C++ Program
	PGPLOT Appendix D: Supported Devices
	PGPLOT Appendix E: Writing a Device Handler
	PGPLOT Installation Instructions
	PGPLOT Appendix G: Porting PGPLOT
	PGPLOT Graphics Subroutine Library
	http://www.astro.caltech.edu/~tjp/pgplot/simple.f
	http://www.astro.caltech.edu/~tjp/pgplot/rgb.txt
	http://www.astro.caltech.edu/~tjp/pgplot/cpgplot.h
	GIDRIV
	GLDRIV
	PPDRIV
	PGPLOT PSDRIV driver
	WDDRIV
	PGPLOT XWDRIV driver
	X2DRIV
	WSDRIV
	NEDRIV
	ACDRIV
	MSDRIV
	LHDRIV
	TTDRIV
	TFDRIV
	GODRIV
	VTDRIV
	CADRIV, BCDRIV, VADRIV
	LSDRIV
	CCDRIV
	LADRIV
	LNDRIV, LVDRIV
	EPDRIV
	GCDRIV, GVDRIV
	HJDRIV
	LJDRIV
	PXDRIV
	QMDRIV
	EXDRIV
	TODRIV
	CWDRIV
	HGDRIV
	HPDRIV
	HIDRIV
	ZEDRIV
	NUDRIV
	PGPLOT PGDRIV driver
	TXDRIV
	PGPLOT LXDRIV driver
	PGPLOT XMDRIV driver
	PGPLOT TKDRIV driver
	PGPLOT Version 5.2.0
	PGPLOT Installation Instructions: UNIX systems
	PGPLOT Installation Instructions: LINUX
	PGPLOT Installation Instructions: VMS
	PGPLOT Installation: Windows 95/98/NT with Absoft Pro Fortran
	PGPLOT Installation: Windows 95/NT with Compaq Visual Fortran
	PGPLOT Installation Instructions: Windows 95/NT with PowerStation Fortran
	PGPLOT Installation Instructions: GNU-Win32
	PGPLOT Subroutine List
	PGPLOT Known Problems
	PGPLOT Wishlist
	PGPLOT Frequently Asked Questions
	PGPLOT Examples
	PGPLOT What's New in Version 5.0
	PGPLOT changes in Version 5.0.1
	PGPLOT changes in Version 5.0.2
	PGPLOT version 5.0.3
	PGPLOT version 5.1.0
	PGPLOT version 5.1.1
	PGPLOT Version 5.2.1
	PGPLOT Version 5.2.2
	http://www.astro.caltech.edu/~tjp/pgplot/ejiri.txt
	http://www.astro.caltech.edu/~tjp/pgplot/example1.gif

