
Microprocessors are difficult to test-many failure modes
exist and access to internal components is limited.

Design techniques that enhance testability can reduce
the impact of these constraints.

ElEl
-

Testability refers to the ease with which the
presence and perhaps the location of a fault or faults
within a system can be discovered. It has become a
significant factor influencing both the lifetime cost
and initial manufacturing cost of a digital system.
Current design trends emphasize the use of complex
components employing large scale integration. The
key component in many such systems is a micropro-
cessor-a programmable processor consisting of a
small number of integrated circuits or often just a
single IC. The entire digital system takes the form of
a microcomputer comprising a microprocessor which
acts as the central processing unit or system con-
troller, ROM and RAM, and input/output circuits.
Because of the complexity of these components,
problems arise in testing microprocessor-based
systems and in designing them to be easily testable.
A digital system is tested by applying a sequence

of input patterns (tests) which produce erroneous
responses when faults are present. Fault detection
tests, i.e., go/no-go tests, are intended to determine
whether or not a system contains a fault. Fault loca-
tion tests attempt to isolate a fault to a specific com-
ponent, preferably an easily replaceable one.
A system has good testability if a high level of fault

coverage can be achieved at an acceptably low cost.'
F^ault coverage is the fraction of faults that can be
detected or located within the UUT-unit under test.

MLicroprocessor-based systems are difficult to test
for several reasons:

* The number of possible faults is extremely large.
An LSI circuit contains thousands of basic com-
ponents (gates) and interconnecting lines, all in-
dividually subject to failure.

* Access to internal components and lines is
severely limited by the number of I/O connec-

Testability
Considerotions in
Microprocessor-Based
Design
John P. Hayes
University of Southern California
Edward J. McCluskey
Stanford University

tions available. A typical microprocessor may

contain 5000 gates but only 40 I/O pins.
* Because of the large number of possible faults, a

successful test will require a large number of test
patterns.

* The system. designer may not have a complete
description of the ICs used in the UUT. Micro-
processor specifications typically comprise reg-

ister-level block diagrams, a listing of the micro-
processor's instruction set, and some informa-
tion on system timing.

* New and complex failure modes such as pattern
sensitivity occur.

These difficulties can be greatly reduced by using
design techniques specifically aimed at enhancing
testability.
Microprocessor testing is of interest in many dif-

ferent situations-semiconductor component manu-

facturing, test equipment design, system design, and
system maintenance. We will focus on testing from
the design viewpoint. We will also restrict our atten-
tion to functional testing, which is only concerned
with the logical behavior of the UUT.

Testing methods

Every testing procedure involves the generation of
test data (input test patterns and output responses),
application of the test patterns to the UUT, and eval-
uation of the responses obtained. Many different
testing approaches have evolved, distinguished by
the techniques used to generate and process test
data. They can be divided into two broad catego-
ries-concurrent (implicit) and explicit.

0018-916218010300-0017S00.75 1980 IEEE

P P

17

Ng

March 1980

In concurrent approaches, data patterns from nor-
mal computation serve as test patterns, and built-in
monitoring circuits detect faults. Thus testing and
normal computation can proceed concurrently. Pari-
ty checking is the most common form of concurrent
testing.2
In explicit approaches, special input patterns serve

as tests; hence normal computation and testing occur
at different times. Explicit tests can be applied by
test equipment external to theUUT (external testing)
or they can be applied internally (self-testing). Even if
concurrent testing is used for system maintenance,
explicit testing is necessary for manufacture and
system assembly. Specific test pattern generation
procedures are required. The test patterns are pro-
duced either manually, by a design or test engineer,
or automatically, by special hardware- or software-
implemented algorithms called test generation pro-
grams. Manual test generation is widely used. The
set of test patterns with the correct responses is
called a fault dictionary. Testing based on storing
such test data is called stored response testing.
The cost of storing test pattern responses can be

reduced by using a technique called comparison test-
ing. Note that it may still be necessary to store the
test patterns themselves. Comparison testing makes
use of several copies of the UUT, each processing the
same input signals; faults are detected by comparing
the responses of all the units. A response differing
from that of aknown fault-free unit pinpoints a faulty
unit. This technique can be implemented with as few
as two copies of the UUT, one of which-the so-called
gold unit-acts as a reference against which the
other is compared.

Stored response testing may be contrasted with
algorithmic testing, in which the test data is com-
puted each time the UUT is tested. The algorithmic
approach requires some rapid, and therefore simple,
method for determining test data. A common test
pattern source is a high-speed (hardware or software)
counter that generates sequencesof test patterns in a
fixed or pseudo-random order.
Another way of obtaining the good response Ro is

for the test pattern generator to compute it. This ap-
proach is well-suited to testing microprocessors, be-
cause many of the functions to be tested are defined
by algorithms programmed into the UUT.
High-speed test generators, particularly algo-

rithmic testers, can produce huge amounts of re-
sponse data whose analysis and storage can be quite
difficult. Compact testing methods attempt to com-
press the response dataR into a more compact form
f(R), from which theUUT fault status information in
R can be derived. The compression function f can be
implemented with simple circuitry. Thus, compact
testing entails little test equipment and is especially
suited for field maintenance.
A compact testing method called transition count-

ing computes the number of logical transitions (a 0
changing to a 1 and vice versa) occurring in the out-
put response at the test point. Transition counting
has been implemented in a number of-commercial
testers and appears to provide acceptable fault

coverage.3-5 It has the advantage of being insensitive
to normal fluctuations in signal duration and so is
especially useful for testing asynchronous circuits.
Similar compact testing schemes, such as l's count-
ing, have also been proposed.6'7

Recently, Hewlett-Packard Corporation proposed
a compact testing scheme called signature analysis,
intended for testing microprocessor-based systems.8'9
The output response is passed through a 16-bit linear
feedback shift register whose contents f(R) (after all
the test patterns have been applied) are called the
(fault) signature; f(R) is recorded or displayed as a
four-digit hexadecimal number.

Faults and tests

Every testing procedure diagnoses a particular
class of faults,-although in practice these faults are
not always well-defined. An explicit fault model is
necessary, however, if the fault coverage of a set of
tests is to be determined.

Functional faults. The UUT can be regarded as an
n-input, m-output, s-state finite-state machine-an
(n,m,s,)-machine for short. The functional fault
model, perhaps the m-ost general of the useful fault
models, allows an (n,m,s)-machine to be changed by a
fault to an (n,m,s ')-machine, where s 'does not exceed
s. Under this model a combinational circuit, which is
an (n,m, 1)-machine, always remains combinational
when faults are present. To test a combinational cir-
cuitM for all functional faults, it is necessary and suf-
ficient to apply all 2n possible input patterns to M. In
effect, this exhaustively verifies M's truth table and
thereby provides complete fault coverage. Although
this approach requires a large number of tests, it can
easily and rapidly generate them. This type of testing
can sometimes be applied to the combinational sub-
circuits of a sequential UUT. When the circuit under
test must be treated as sequential (s> 1), complete
detection of functional faults requires a special type
of test called a checking sequence. The theory of
checking sequences is well-developed,10'11 but unless
s is very small, checking sequences are extremely
long and difficult to generate. We now illustrate an
application of the functional fault model to a specific
class of microprocessors.

Testing a simple bit-sliced microprocessor. 12 A bit-
sliced microprocessor is an array of n identical ICs
called slices, each of which is a simple processor for
operands of length k bits, where k is typically 2 or 4.
The interconnections between the n slices- are such
that the entire array forms a processor for nk-bit
operands. The simplicity of the individual processors
and the regularity of the array interconnections make
it feasible to use systematic methods for fault anal-
ysis and test generation. Unfortunately, the more
widely used non-bit-sliced microprocessors do not
share these properties.
Figure 1 shows a circuit model for a 1-bit processor

slice which has most of the features of a commercial
device such as the Am2901.'3 (The main omission is

COMPUTER18

the logic circuitry for implementing carry-look-
ahead.) This circuit consists of six basic modules, two
of which are sequential (registers A and T) and four of
which are combinational (the shifter, the two multi-
plexers, and the ALU). The ALU can perform addi-
tion, subtraction, and the standard logical opera-
tions. Each module may fail according to the forego-
ing functional model, but only one module is allowed
to be faulty at a time. A complete test set for this cir-
cuit must apply all possible input patterns to each
combinational module and a checking sequence to
each sequential module. In addition, the responses of
each module must be propagated to the two primary
output lines. The tests required by the individual
modules are easily generated because of the simplici-
ty of the modules, a direct consequence of the small
operand size (k = 1). The module tests can be over-
lapped in such a way that 114 test patterns suffice for
testing the entire circuit. Note that the six-input
ALU alone requires 64 test patterns. The number of
test patterns produced in this manner is considerably
less than the number generated for comparable pro-
cessors by conventional heuristic techniques.14
Animportant property of this type ofprocessor slice

is the fact that the tests for a single slice can easily be
extended to tests for an array of the slices. In fact, an
array of arbitrary length can be tested by the same
number of tests as a single slice, a property called
C-testability.15 Note that the use of carry-lookahead
eliminates C-testability.

Stuck-line faults. Themost widely used fault model
for logic circuits is the SSL-single stuck-
line-model, which allows any interconnecting line to
be stuck at logical 1 or stuck at 0. In the SSL model
only one line is allowed to be faulty, and the circuit
components-gates, flip-flops, and the like-are
assumed to be fault-free. Clearly SSL faults form a
small subset of functional faults. This model covers
many common physical faults. Several distinct test
generation methods have been developed for SSL
faults,10 with Roth's D-algorithm16'17 the best known
among them. Complete test sets of near-minimal size
can be generated for SSL faults in combinational
logic circuits. However, sequential circuits-even
those of moderate complexity-stiU present serious
problems. Since a microprocessor-based system is a
very complex sequential circuit, it is generally not
feasible to analyze it completely using the classical
gate-level SSL model.

In practice, tests forSSL faults are often restricted
to the following cases:

* faults affecting the external I/O pins of each IC
or the I/O connections of the principal combina-
tional or sequential modules within the IC;

* faults causing the main information transmis-
sion paths, e.g., buses, to become stuck at 1 or 0;
and

* faults causing the major state variables to
become stuck at 1 or 0 (such faults usually corres-
pond directly to SSL faults in the associated
registers and memory elements).

Figure 1. An easily testable 1-bit processor slice.

Note that these SSL-type faults can be identified
from a register-level description of the UUT. They
define a restricted SSL fault model which is widely, if
implicitly, used in testing complex digital systems.
To detect these restricted faults, it is necessary to
verify that the lines and variables in question can be
set to both the 0 and the 1 values. Thus a basic test for
a memory element such as a microprocessor register
is to verify that a word of O's and a word of l's can be
written into and read from it.

Pattern-sensitive faults. Another useful way to
model faults in LSI circuits is to consider interactions
between logical signals that are adjacent in space or
time. Such a fault occurs when a signal x causes an ad-
jacent signaly to assume an incorrect value. Faults of
this type are termed PSFs-pattern-sensitive faults.
There are many physical failure modes that produce
pattern sensitivity. For example, electrical signals on
conductors in close spatial proximity can interact
with one another. The high component and connec-
tion densities characteristic of LSI aggravate this
problem. Another instance of pattern sensitivity is
the failure of a device to recognize a single 0 (or 1) that
follows a long sequence of l's (or O's) on a particular
line; this time-dependent PSF is a consequence of un-
wanted hysteresis effects. PSFs are particularly
troublesome in high-density RAM ICs. Since micro-
processors often contain moderately large RAMs,
they too are subject to PSFs.18

March 1980

A variety of heuristic procedures have been devel-
oped to detect PSFs in memories.1019-21 Since most
PSF tests were derived empirically, their underlying
fault models are unclear, thus making it difficult to
determine their fault coverage. Attempts have been
made to develop formal fault models for some kinds
of PSFs.22,23

A Galpat test of a one-megabit RAM
woiild take about 30 hours.

PSFs provide a good illustration of the testing
problems caused by rapidly increasing IC component
densities. The widely used Galpat test'0 requires
about 4n2 patterns to check an n-bit RAM. If each
test pattern takes 100 ns to apply, then a 4K-bit
(4096-bit) RAM can be tested by Galpat in about 2
seconds. However, a 1M-bit (1,048,576-bit) RAM-
expected to appear shortly on a single VLSI chip24-
would require about 30 hours at the same 100-ns-per-
test rate.

Testing microprocessor-based systems

In practice, tests for microprocessor-based sys-
tems usually exercise the UUT by applying a repre-
sentative set of input patterns and causing those pat-
terns to traverse a representative set of state transi-
tions. In each case the decision on what constitutes a
representative set is based on heuristic considera-
tions. The faults being diagnosed may not be specifi-

cally identified, but they can often be related to the
fault models discussed above.

Programmed tests. Much of the uniqueness and
power of a microprocessor-based system lies in the
fact that it is program controlled. Thus a natural tool
for system testing is a test program executed by the
UUT's internal microprocessor. Such a program ap-
plies appropriate test patterns to the UUT's major
register-level modules, all of which should be accessi-
ble via the UUT instruction set. Typically, such
modules are exercised by input patterns that have
been derived heuristically and are based on the
modules' functions.
A disadvantage of this approach is the absence of a

suitable register-level fault model establishing a cor-
respondence between instruction or module failures
and the underlying physical faults. Thatte and Abra-
ham2526 have recently done some interesting work
towards such a model.
A test program for a microprocessor is usually

organized into a sequence of steps, each testing a
related group of instructions or componenrts. Once a
group has been proven fault-free, it may then be used
to test other groups. The selection and sequencing of
these steps are complicated by the fact that con-
siderable overlap exists among the components af-
fected by different instructions.
Constructing an 8080 testprogram.27 The 8080, in-

troduced by Intel Corporation in 1973, is one of the
most widely used microprocessors. It is an 8-bit
machine of fairly conventional design.28 A register-
level description (see block diagram, Figure 2) is ade-
quate for applying heuristic fault models such as the
restricted SSL model. The 8080 contains a simple

8-BIT INTERNAL BUS

Figure 2. Architecture of the 8080 microprocessor.

COMPUTER

arithmetic-logic unit and six 8-bit general-purpose
registers; the latter may be paired to form three 16-bit
registers (16 bits is the main memory address size).
Table 1 lists the main steps in an 8080 test pro-

gram.27 The 8080-based UUT is assumed to be con-
nected to an external tester that has access to the I/O
lines comprising the 8080 data, address, and control
buses. First, the tester resets the UUT. Then it in-
crements the 16-bit program counter PC through all
its 65,536 states. The tester does this by placing a
single instruction NOP (no operation) on the data (in-
put) lines of the 8080 under test and causing the 8080
to execute the instruction repeatedly. The effect of
NOP is to increment the PC and cause it to place its
contents on the outgoing address lines where the
tester can observe and check them. This checking can
be done rapidly by comparing the PC state to that of a
hardware or software counter in the tester which is in-
cremented on-line in step with the PC.
The next step is to test the various general-purpose

registers by transferring 8-bit test patterns to and
from them and checking the results. All possible test
patterns may be used, because their number (256) is
small and they are easy to generate algorithmically.
The tests are implemented by several data transfer
instructions-MOV, LXI, PCHL, which are them-
selves also tested. After a pattern is applied to a

Table 1.
The main steps in a test program for an 8080-based

system.

1. Reset the 8080 UUT.
2. Test the program counter PC by incrementing it through all its

states via the NOP instruction.
3. Test the six 8-bit general-purpose registers by transferring all

possible 256 test patterns to each register, in turn, via the PC.
4. Test the stack pointer register by incrementing and

decrementing it through all its states; again access it via the
PC.

5. Test the accumulator by transferring all possible test patterns
to it via previously tested registers.

6. Test the ALU and tlags by exercising all arithmetic, logical,
and conditional branch (flag-testing) instructions.

7. Exercise all previously untested instructions and control lines.

register R, the tester can inspect the contents ofR by
transferring them to the PC via the high-level
register HL. (The PCHL instruction which swaps the
contents of PC and HL is used; the 8080 lacks instruc-
tions for transferring data directly between the PC
and other registers.) Since the PC was tested in the
first step, its contents can be taken to be correct, and
they can be observed directly via the address bus.
(Smith29 discusses some pitfalls of testing 8080
registers in this way.) The remaining steps of the test
program exercise the other components and instruc-
tions of the 8080 in a similar manner. Unfortunately,
little data is available on the fault coverage of this
type of test program.

Testing the entire system. A complete micropro-
cessor-based system can be tested by using its
microprocessor as the primary source of test pat-
terns. Consider the problem of testing a system with
a typical bus-oriented architecture (Figure 3.) I/O
device testing is not considered here, since it varies
from device to device. Again we assume that there is
an external tester that has access to the various
system buses. In addition, this external tester is able
to disconnect parts of the system from the buses dur-
ifig testing; this can often be done either electrically
or mechanically. Let us consider the main steps in a
general system testing procedure.30

First, a simple test is performed on the micropro-
cessor to determine if one of its main components, the
program counter PC, is operational. As discussed
earlier, this can be done by making the PC traverse all
its states, causing it to place all possible address pat-
terns on the system address bus. It is necessary to
isolate the microprocessor from the data bus during
this test so that the external tester can supply the in-
structions needed to increment the PC. As in the case
of the 8080 discussed earlier, the tester need only
place a single instruction-NOP-on the micropro-
cessor's data input lines to make the PC increment
continuously. While the PC is incremented-a mode
of operation called free-running, the external tester
monitors and checks the signals appearing on each of

1/0
DEVICES

Figure 3. External testing of a microprocessor-based system.

March 1980

the system's address lines. It is relatively simple to
do this monitoring via- compact testing techniques
like signature analysis.

Next, the system ROMs are tested with the micro-
processor still in free-running mode. During this test
the RAMs are disconnected from the data bus. Since
the microprocessor generates all memory addresses,
it causes every ROM location to be accessed
automatically. The tester monitors the signals which
represent the ROM contents as they appear on the
data bus. Since the ROM contents are fixed, a fixed
signature can easily be associated with each ROM.

At this point the microprocessor, ROMs, and sys-
tem buses have been checked. The remaining parts of
the system are tested via specific exercising pro-
grams, which may be stored in the external tester or
in the UUT's ROMs. TheRAMs can be tested by pro-
grams such as Galpat. The I/O interface circuits nor-
mally resemble memory devices, and therefore can be
tested by memory-oriented check programs. In order
to do this under control of the UUT microprocessor,
the output ports can be jumper-connected to the in-
put ports, a technique called loop-back.31'32 This lets
the CPU send a test pattern to an output port and
read it back (i.e., check it) via an input port.

All the tests outlined so far can be implemented with
a small subset-mostly NOP, LOAD, andSTORE-of
the microprocessor's instruction set. The other in-
structions must still be exercised, which can be done
along the lines of the 8080 tests described in the exam-
ple above.

Design for testability

The difficulty and expense of testing digital I-Cs
and systems constructed of digital ICs have become
so great that there is widespread agreement that ICs
should be designed to facilitate testing. The tech-
niques for designing "testable ICs" fall into two cate-
gories-design guidelines (rules of thumb to be
followed in order to obtain testable circuits) and
systematic procedures or structures aimed at produc-
ing testable circuits. The systematic approaches are
surveyed in a paper by McCluskey.1
Two key concepts, controllability and observabili-

ty, relate to many of the methods for designing test-
able circuits. Controllability may be defined infor-
mally as the ease with which test input patterns can
be applied to the inputs of a subcircuit, S(i), by exer-
cising the primary inputs of the circuit S. Observabil-
ity is the ease with which the responses of S(i) can be
determined by observing the primary outputs of S.
These intuitive concepts have been quantified by
Stephenson and Grason,33 so that measures of con-
trollability and observability- can be determined
directly from a gate- or register-level circuit for S.
These measures can be used to predict the difficulty
of generating test patterns for S.
Logic designers have compiled a set of design

guidelines to simplify testing which generally try to

increase controllability and observability.34-36 The
following list is representative:

* Allow all memory elements to be initialized
before testing begins, preferably via a single
reset line.

* Provide a means for opening feedback loops dur-
ing testing.

* Allow external access to the UUT's clock circuits
to permit the tester to synchronize with, or
disable, the UUT.

* Insert multiplexers to increase the number of in-
ternal points which can be controlled or observed
from the external pins.

An important systematic design technique for in-
creasing the testability of LSI devices, including mi-
croprocessors, is the scan-in/scan-out method
described by Williams and Angell.37 The LSI chip is
designed so that all its memory elements can be
linked to form a shift register, SR, during testing.
The circuit is tested by loading a test pattern into SR
(scan in), allowing the combinational part of the cir-
cuit to respond, and then reading out the response
from SR (scan out). The scan-in/scan-out approach
has several advantages-test generation is reduced
to the relatively easy task of testing a combinational
circuit, and very few extra gates or pins are required.
A version of this technique called LSSD-level-sensi-
tive scan design-is used in the recently introduced
IBM System/38 computer.38

Self-testing systems

So far, our discussion has been concerned with ex-
ternal testing methods in which the bulk of the test
equipment is not a part of the UUT. As digital sys-
tems grow more complex and difficult to test, it

As digital systems grow more complex,
built-in test techniques become

more attractive.

becomes increasingly attractive to build test pro-
cedures into the UUT itself. Some self-testing ability
is incorporated into most computers, mainly via
coding techniques. A few machines have been de-
signed with essentially complete self-testing, notably
telephone switching systems39 and spacecraft com-
puters.40 In the last few years comprehensive self-
testing features have become common in micropro-
cessor-controlled instruments such as logic ana-
lyzers. The Commodore PET, a personal computer
based on the 6502 microprocessor, is delivered with a
self-testing program considered to have fault
coverage sufficient to serve as the sole go/no-go test
used in manufacture.3'
Coding techniques. The great advantage of coding

techniques is their precisely defined level of fault
coverage, attained with little overhead in extra hard-

COMPUTER22

ware or processing time. Some codes can give almost
any desired level of error detection or correction,
although implementation costs generally increase
with the fault coverage desired.2'41 The most widely
used error-detecting and correcting codes are the
parity check codes. They are mainly used for check-
ing data transmission and storage devices. Special
codes have been developed for some types of func-
tional units, particularly arithmetic units.42*

Hardware-implemented self-testing. General logic
circuits, if designed to be self-checking,2'43'44 can offer
advantages similar to those provided by coding tech-
niques. A self-checking logic circuit is one whose out-
put responses constitute an error-detecting code. A
variety of techniques for designing self-checking cir-
cuits are known, many of which are practical.2 In-
deed, it is feasible to build a computer which performs
all testing by means of self-checking circuits and
similar mechanisms. Carter et al.45 show that the cost
of such a computer is relatively low, if current LSI
technology is exploited. They found that complete
self-testing could be achieved in a System/360-type
machine with an increase of less than 10 percent in
component count. A VLSI fault-tolerant computer
proposed by Sedmak and Liebergot46 also makes ex-
tensive use of self-checking circuits.

On-chip electrical monitors,47'48 are a different ap-
proach to the design of self-checking hardware. This
technique, which has been applied to ECL-type LSI
chips, uses special electrical circuits that can detect
small changes in parameters such as current or resis-
tance. A monitor circuit is typically connected to
each I/O line of the chip, and the combined output
signals from the on-chip monitors are connected to an
extra output pin. On-chip monitors of this kind detect
short-circuits, open circuits, and similar interconnec-
tion faults. This promising testing method is new and
has seen little application so far.

It is also possible to make an IC self-testing by
building into it all the circuitry required for a com-
pact testing technique like signature analysis. A
relatively small amount of extra logic suffices-
basically a counter for test pattern generation and a
feedback shift register for signature generation. The
fault-free signatures may be stored in an on-chip
ROM for comparison with the signatures produced
during testing. An experiment simulating this ap-
proach and using a modified version of the Am2901
microprocessor slice is described by Zweihoff et al.49

Programmed self-testing. Although it is feasible to
rely entirely on hardware checking circuits for self-
testing, it is often more economical to use self-testing
software, especially when off-the-shelf components
with little or no built-in checking circuitry are used.
The heuristic test programs discussed in the preced-
ing section can readily be modified for self-testing.
The role of the external tester is taken over by the

*See also the paper by D. K. Pradhan and J. J. Stiffler, "Error-
Correcting Codes and Self-Checking Circuits," in this issue.

microprocessor under test. Thus, the microprocessor
is responsible not only for executing the test pro-
grams, but also for scheduling their execution and in-
terpreting their results. In self-testing systems, test
program execution is usually interleaved with nor-
mal program execution and is designed to interfere
with the latter as little as possible.
We conclude with an example of a microprocessor

system designed to achieve a high level of self-
testing-and some fault tolerance-at a low cost.

A self-testing microprocessor-based system. 32 This
machine, developed at E-Systems Inc., was designed
as a communications controller. The system includes
a CPU, ROMs, RAMs, and I/O interface circuits, all
of which are tested automatically by a self-test pro-
gram. This program is stored in a 1K-byteROM with-
in theCPU itself. It is executed in background mode,
being invoked during normal processing by a low-
priority interrupt signal. All major subsystems are
tested in sequence, starting with the CPU. Detection
of a fault causes an indicator light to be turned on in
an LED display panel.
Figure 4 shows the CPU structure. It contains two

microprocessors, one of which serves as a standby
spare in the event of the failure of the active (control-
ling) microprocessor. The active microprocessor
must access and reset a timer T at regular intervals.
Failure to do so causes a time-out circuit to transfer
control of the systems to the back-up microprocessor
and to turn on the CPU fault light. If the back-up
microprocessor is working properly, it subsequently
resets T, causing the fault indicator to be turned off.
The memory and I/O circuits are tested using the

general approaches discussed earlier. The ROMs are
tested by accessing a block of words from each ROM
and summing them in the CPU. The accumulated
word is then compared to a check word stored in the
ROM. If they differ, the appropriate ROM fault in-
dicator is switched on. Ifdesired, theROM status can
be written into RAM, thus allowing the system to

Figure 4. The CPU of a self-testing system.

March 19802 23

identify and bypass the faulty block in the ROM.
This enables the system to operate even with a ROM
fault present.
To test a RAM, eachRAM locationXis read in turn

and its contents saved in a CPU register. Then two
checkerboard patterns are applied to X in the stan-
dard way. IfX passes the test, its original contents
are restored from the temporary register and the next
RAM word is tested.

I/O tests are performed using the loop-back pro-
cedure described earlier, in which output ports are
connected to input ports one at a time underCPU con-
trol. Test patterns are transmitted through the re-
sulting closed data path and checked for accuracy.

Multimicroprocessor systems. If a system con-
tains a number of microprocessors in the form of a
multiprocessor or computer network, then it may be
possible-and advantageous-to use the micropro-
cessors to test one another. Fault-tolerant computers
such as the UC Berkeley Prime system50 employ this
approach to self-testing. Although few self-testing
systems of this type have been built, some interest-
ing and relevant theory has been developed. Much of
this is concerned with measuring system self-testa-
bility by means of graph-theoretical models.10'51'52
The applicability of these models to existing systems

TERMINALS
PURCHASE FULL OWNERSHIP AND LEASE PLANS

PURCHASE PER MONTH
DESCRIPTION PRICE 12 MOS. 24 MOS. 36 MOS.

LA36 DECwriter 11...........$1,595 $153 $ 85 $ 57
LA34 DECwriter IV 1,295 124 69 47
LA120 DECwriter Ill KSR 2,295 220 122 83
VT100 CRT DECscope 1,895 182 101 68
VT132 CRT DECscope 2,295 220 122 83
DT80/1 DATAMEDIA CRT 1,895 182 101 68
T1745 Portable Terminal 1,595 153 85 57
T1765 Bubble Memory Terminal 2,795 268 149 101
T1810 RO Printer 1,895 182 101 68
T1820 KSR Printer 2,195 210 117 79
T1825 KSR Printer 1,695 162 90 61
ADM3A CRT Terminal 875 84 47 32
OUME Letter Quality KSR ... 3,195 306 170 115
QUME Letter Quality RO 2,795 268 149 101-
HAZELTINE 1410 CRT....... 745 71 40 27
HAZELTINE 1500 CRT 1,095 105 58 39
HAZELTINE 1552 CRT....... 1,295 124 69 47
DataProducts 2230 Printer . 7,900 757 421 284
DATAMATE Mini Floppy 1,750 168 93 63

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
1W0o PURCHASE OPTION AFTER 36 MONTHS

ACCESSORIES AND PERIPHERAL EOUIPMENT
ACOUSTIC COUPLERS * MODEMS * THERMAL PAPER
RIBBONS * INTERFACE MODULES * FLOPPY DISK UNITS

PROMPT DELVERY * EFFICIENT SERVICE

Reader Service Number 4

is limited, mainly due to the fact that the testing func-
tion in most systems is highly centralized. This situa-
tion is likely to change as multimicroprocessor
systems become more common, allowing a high-level
testing capability to be distributed throughout a
system. -

Acknowledgments

The manuscript for this article was prepared using
a DEC Tops-20 system. Final copy and figure prepa-
ration was done by Lydia Christopher, whose contri-
bution is gratefully acknowledged. This article is an
abbreviated version of Stanford University Com-
puter Systems Laboratory Technical Report No. 179.
This work was sponsored in part by the Air Force

Office of Scientific Research under Grants AFOSR
77-3325 and 77-3352, by the Joint Services Elec-
tronics Program under Contract F44620-76-C-0061,
and by the National Science Foundation under Grant
MCS76-05327.

References

1. E. J. McCluskey, "Design for Maintainability and
Testability," Proc. Government Microcircuits Ap-
plications Conf. (GOMAC), Monterey, Calif., Nov.
1978, pp. 44-47.

2. J. Wakerly, ErrorDetecting Codes, Self-Checking Cir-
cuits andApplications, American Elsevier, New York,
1978.

3. N. P. Lyons, "FAULTRACK: Universal Fault Isola-
tion Procedure for Digital Logic, " 1974 IEEE Intercon
Technical Program, New York, Mar. 1974, paper no.
40/2.

4. J. P. Hayes, "Transition Count Testing-of Combina-
tional Logic Circuits," IEEE Trans. Computers, Vol.
C-25, No. 6, June 1976, pp. 613-620.

5. J. Losq, "Efficiency of Random Compact Testing,"
IEEE Trans. Computers, Vol. C-27, No. 6, June 1978,
pp. 516-525.

6. J. P. Hayes, "Check Sum Methods for Test Data Com-
pression," J. Design Automation and Fault-Tolerant
Computing, Vol. 1, No. 1, Oct, 1976, pp. 3-17.

7. K. P. Parker, "Compact Testing: Testing with Com-
pressed Data," Proc. 1976 Int'l Symp. Fault-Tolerant
Computing, Pittsburgh, June 1976, pp. 93-98.*

8. G. Gordon and H. Nadig, "Hexadecimal Signatures
Identify Troublespots in Microprocessor Systems,"
Electronics, Vol. 50, No. 5, Mar. 3, 1977, pp. 89-96.

9. A. Stefanski, "Free Running Signature Analysis Sim-
plifies Troubleshooting," EDN, Vol. 24, No. 3, Feb. 5,
1979, pp. 103-105.

10. M. A. Breuer and A. D. Friedman, Diagnosis and
ReliableDesign ofDigitalSystems, Computer Science
Press, Woodland Hills, Calif., 1976.

11. F. C. Hennie, "Fault Detecting Experiments for Se-
quential Circuits," Proc. 5th Ann. Symp. Switching
Theory and Logical Design, Nov. 1964, pp. 95-110.

12. T. Sridhar and J. P. Hayes, "Testing Bit-Sliced Micro-
processors," Digest of Papers-Ninth Ann. Int'l
Symp. Fault-Tolerant Computing, Madison, Wisc.,
June 1979, pp. 211-218.*

COMPUTER

13. The Am2900 Family Data Book, Advanced Micro
Devices, Sunnyvale, Calif., 1976.

14. R. McCaskill, "Test Approaches for Four Bit Micro-
processor Slices," Digest of Papers-Memory and
LSI-1976 Semiconductor Test Symp., Cherry Hill,
N.J., Oct. 1976, pp. 22-26.*

15. A. D. Friedman, "Easily Testable Iterative Systems,"
IEEE Trans. Computers, Vol. C-22, No. 12, Dec. 1973,
pp. 1061-1064.

16. G. F. Putzolu and J. P. Roth, "A Heuristic Algorithm
for the Testing of Asynchronous Circuits," IEEE
Trans. Computers, Vol. C-20, No. 6, June 1971, pp.

639-647.
17. J. P. Roth, "Diagnosis of Automata Failures: A

Calculus and a Method," IBMJ. Research and Devel-
opment, Vol. 10, No. 7, July 1966, pp. 278-291.

18. D. Hackmeister and A. C. L. Chiang, "Microprocessor
Test Technique Reveals Instruction Pattern Sensitiv-
ity," ComputerDesign, Vol. 14, No. 12, Dec. 1975, pp.

81-85.
19. W. Barraclough, A. C. L. Chiang, and W. Sohl, "Tech-

niques for Testing the Microprocessor Family," Proc.
IEEE, Vol. 64, No. 6, June 1976, pp. 943-950.

20. W. G. Fee, LSI Testing, 2nd ed., IEEE Computer
Society, Long Beach, Calif., 1978.*

21. E. R. Hnatek, "4-kilobit Memories Present a

Challenge to Testing," ComputerDesign, Vol. 14, No.
5, May 1975, pp. 117-125.

22. J. P. Hayes, "Detection of Pattern Sensitive Faults in
Random Access Memories," IEEE Trans. Computers,
Vol. C-24, No. 2, Feb. 1975, pp. 150-157.

23. R. Nair, S. M. Thatte, and J. A. Abraham, "Efficient
Algorithms for Testing Semiconductor Random-
Access Memory," IEEE Trans. Computers, Vol. C-27,
No. 6, June 1978, pp. 572-576.

24. R. P. Capece, "Tackling the Very Large Scale Prob-
lems of VLSI," Electronics, Vol. 51, No. 24, Nov. 23,
1978, pp. 111-125.

25. S. M. Thatte and J. A. Abraham, "User Testing of Mi-
croprocessors," Digest of Papers-Exploding
Technology, Responsible Growth-COMPCON
Spring 79, Eighteenth IEEE Computer Society Int7
Con., San Francisco, Feb./Mar. 1979, pp. 108-114.*

26. S. M. Thatte and J. A. Abraham, "A Methodology for
Functional Level Testing of Microprocessors," Digest
of Papers-Eighth Ann. Int'l Conf Fault-Tolerant
Computing, Toulouse, June 1978, pp. 90-95.*

27. A. C. L. Chiang and R. McCaskill, "Two New Ap-
proaches Simplify Testing of Microprocessors," Elec-
tronics, Vol. 49, No. 2, Jan. 22, 1976, pp. 100-105.

28. Intel8080MicrocomputerSystems User's Manual, In-
tel, Santa Clara, Calif., Sept. 1975.

29. D. H. Smith, "Exercising the Functional Structure
Gives Microprocessors a Real Workout," Electronics,
Vol. 50, No. 4, Feb. 17, 1977, pp. 109-112.

30. "A Designer's Guide to Signature Analysis," Applica-
tion Note 222, Hewlett-Packard, Palo Alto, Calif.,
Apr. 1977.

31. E. S. Donn and M. D. Lippman, "Efficient and Effec-
tive piC Testing Requires Careful Planning," EDN,
Vol. 24, No. 4, Feb. 2, 1979, pp. 97-107.

32. D. P. Fulghum, "Automatic Self-Test of a Micro-Pro-
cessor System," Proc. AUTOTESTCON '76, Arling-
ton, Texas, Nov. 1976, pp. 47-52. (Abstracts in IEEE
Trans. Aerospace and Electronic Systems, Vol. AES-
13, No. 2, Mar. 1977.)

March 1980

RASTER DISPLAY SYSTEM DESIGN NOTE 3.

How to use a
60Hz raster scan
display for high

resolution,
flicker-free graphics

Actual photograph of vectors displayed by Lexidata 3400. Note how
1280 x 1024 resolution virtually eliminates stair-step distortion
of diagonal lines.

Do it with a Lexidata System 3400 image
and graphics processor.

Do these characteristics
describe your vector graphics
application?

* Large number of vectors
must be displayed
simultaneously.

* Selectable erasure of any
part of display.

* High-speed vector
drawing.

* Flicker-free display.
The Lexidata System 3400

has everything you need to
apply state-of-the-art
refreshed raster scan
technology to your most
demanding vector graphics
application. And at a price
that is competitive with other,
less capable display methods.
The 3400 offers resolu-

tions up to 1280 pixels x 1024
lines. It is the only video
processor that can generate a

pixel in nine nanoseconds,
yielding a 60 Hz refresh rate
for flicker-free images. It is
also among the fastest
processors available, handling
burst data transfers from the
host computer at up to two
megabytes per second.
Now you can use a raster

scan display to draw vectors
that aren't jagged when they
should be straight and don't
flicker when they should be
rock steady You can draw
them fast since the 3400's
microprocessor cycle time

can change your mind just as
fast since a raster display lets
you selectively erase any

portion of the screen without
redrawing the entire image.
The System 3400 is easy

to use. It is supported by a
comprehensive image
processing operating system
and host computer interface
drivers for such systems as

DEC PDP-11 and VAX, Data
General Eclipse and Nova,
Interdata and Hewlett-
Packard. A repertoire of over
three dozen standard and
optional features assures the
ideal mix of hardware and
software tools for any

application.

GET MORE INFORMATION
The System 3400 is a
powerful and versatile
display processor, equally
adept at line-drawing and
tonal-imaging applications
using black-and-white, gray-
scale, and color displays. Find
out how this system can
improve the performance and
reduce the cost of your com-
puter graphics processing by
writing to the address below
or calling (617) 273- 2700.

aLEXIDATA
37 NORTH AVENUE, BURLINGTON, MA 01803

33. J. E. Stephenson and J. Grason, "A Testability Mea-
sure for Register Transfer Level Digital Circuits,"
Proc. 1976 Int'l Symp. Fault-Tolerant Computing,
Pittsburgh, June 1976, pp. 101-107.*

34. R. G. Bennetts and R. V. Scott, "Recent Develop-
ments in the Theory and Practice of Testable Logic
Design," Computer, Vol. 9, No.6, June 1976, pp. 47-63.

35. "Designing Digital Circuits for Testability," Applica-
tion Note 210-4, Hewlett-Packard, Palo Alto, Calif.,
Jan. 1977.

36. J. Mancone, "Testability Guidelines," Electronics
Test, Vol. 2, No. 3, Mar. 1979, pp. 14-16.

37. M. J. Y. Wiliams and J. B. Angell, "Enhancing Test-
ability of Large-Scale Integrated Circuits via Test
Points and Additional Logic," IEEE Trans. Comput-
ers, Vol. C-22, No. 1, Jan. 1973, pp. 46-60.

38. E. B. Eichelberger and T. W. Wiliams, "A Logic De-
sign Structure for LSI Testability," J. Design Auto-
mation and Fault-Tolerant Computing, Vol. 2, No. 2,
May1978, pp. 165-178.

39. R. W. Downing, J. S. Novak, and L. S. Tuomenoksa,
"No. 1 ESS Maintenance Plan," Bell System
Technical J., Vol. 43, No.5, Sept. 1964, pp. 1961-2019.

40. A. Avizienis et al., "The STAR (Self-Testing and Re-
pairing) Computer: An Investigation of the Theory
and Practice of Fault-Tolerant Computer Design,"
IEEE Trans. Computers, Vol. C-20, No. 11, Nov. 1971,
pp. 1312-1321.

41. W. W. Peterson and E. J. Weldon, Error-Correcting
Codes, MIT Press, Cambridge, Mass., 1972.

42. T. R. N. Rao, Error Coding for Arithmetic Processes,
Academic Press, New York, 1974.

43. D. A. Anderson and G. Metze, "Design of Totally Self-
Checking Check Circuits for m-out-of-n Codes, " IEEE
Trans. Computers, Vol. C-22, No. 3, Mar. 1973, pp.
263-269.

44. W. C. Carter and P. R. Schneider, "Design of
Dynamicaly Checked Computers," Proc. IFIP Con-
gress, Vol. 2, Edinburgh, 1968, pp. 878-883.

45. W. C. Carter et al., "Cost Effectiveness of Self-Check-
ing Computer Design," Digest of Papers-Seventh
Ann. Int'l Conf Fault-Tolerant Computing, Los
Angeles, June 1977, pp. 117-123.*

46. R. M. Sedmak and H. L. Liebergot, "Fault Tolerance
of a General Purpose Computer Implemented by Very
Large Scale Integration," Digest of Papers-Eighth
Ann. Int'l Conf Fault Tolerant Computing, Toulouse,
June 1978, pp. 137-143.*

47. F. B. D'Ambra et al., "On Chip Monitors for System
Fault Isolation," Digest of Technical Papers-1978
IEEE Int'l Solid-State Circuits Conf, San Francisco,
Feb. 1978, pp. 218-219.

48. S. H. Sangani and B. Valitski, "In-Situ Testing of
Combinational and Memory Circuits Using a Compact
Tester," Digest of Papers-Eighth Ann. Int'l Conf
Fault-Tolerant Computing, Toulouse, June 1978, p.
214.*

49. G. Zweihoff, B. Koenemann, and J. Mucha, "Experi-
mente mit einem Simulationsmodell fur Selbst-Test-
ende IC's" ("Experiments with a Simulation Modelfor
Self-Testing IC's"), NTG-Fachberichte, Band 68, Apr.
1979, pp. 105-108.

50. H. B. Baskin, B. R. Borgerson, and R. Roberts,
"PRIME-A Modular Architecture for Terminal-Or-
iented Systems," AFIPS Conf Proc., Vol. 40, 1972
SJCC, pp. 431-437.

51. F. P. Preparata, G. Metze, and R. T. Chien, "On the
Connection Assignment Problem of Diagnosable Sys-
tems," IEEE Trans. Electronic Computers, Vol.
EC-16, No. 6, Dec. 1967, pp. 848-854.

52. J. D. Russell and C. R. Kime, "System Fault Diag-
nosis: Masking, Exposure, and Diagnosability With-
out Repair," IEEE Trans. Computers, Vol. C-24, No.
12, Dec. 1975, pp. 1155-1161.

*This proceedings, digest, or tutorial is available from the IEEE
Computer Society Publications Office, 5855 Naples Plaza, Suite 301,
Long Beach, CA 90803.

John P. Hayes is an associate professor
of electrical engineering and computer
science at the University of Southern
California. Before coming to USC in
1972 he was a member of the Opera-
tions Research Group at the Shell Bene-

_lux Computing Centre in The Hague,
Netherlands. Currently involved in
teaching and research in fault-tolerant
computing, computer architecture, and

microprocessor-based systems, Hayes is the author of the
book Computer Architecture and Organization (McGraw-
Hill, 1978), and editor of the computer architecture and
systems department of Communications of the ACM. He
was technical program chairman of the 1977 International
Conference on Fault-Tolerant Computing.
Hayes received the BE degree from the National Univer-

sity of Ireland (Dublin) in 1965, and the MS and PhD
degrees from the University of Illinois in 1967 and 1970, all
in electrical engineering. While at the University of Illinois
he participated in the design of the Illiac III computer.

Edward J. McCluskey is a professor of
electrical engineering and computer
science at Stanford University, where
he started the Digital Systems Labor-
atory (now the Computer Systems Lab-
oratory), a joint research organization
of the electrical engineering and com-

puter science departments. He also
started a computer engineering pro-
gram, a joint MS degree program, and

the Computer Forum-an industrial affiliates program.
McCluskey received the AB summa cum laude in mathe-

matics and physics from Bowdoin College in 1953, and the
BS, MS, and ScD in electrical engineering from MIT in
1953, 1953, and 1956, respectively. The first president of
the IEEE Computer Society and a past member of the
AFIPS Executive Committee, he is currently a member of
the IEEE Fellows Committee. He has been general chair-
man of the Computer Architecture Symposium, the Fault-
Tolerant Computing Symposium, and the Operating
Systems Symposium. A member of the editorial boards of
DigitalProcesses, Annals oftheHistoryofComputing, and
theJournal ofDesign Automation and Fault Tolerant Com-
puting, he is editor of Elsevier North-HoUand's computer
design and architecture series. McCluskey was formerly an
associate editor of the IEEE Transactions on Computers
and the Journal of the ACM.

COMPUTER26

