

A product of a PHYTEC Technology Holding company

Yocto

Reference Manual

 Document No.: L-813e_2

 Release No.: AM335x PD15.1.x

 i.MX 6 PD15.1.x, PD15.2.x

 Edition: September 2015

Yocto Reference Manual

 © PHYTEC Messtechnik GmbH 2015 L-813e_2

Copyrighted products are not explicitly indicated in this manual. The absence of the trademark (™, or ®)
and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents
and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is considered to be entirely reliable.
However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik
GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages
resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the
right to alter the information contained herein without prior notification and accepts no responsibility for
any damages that might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising
from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH
further reserves the right to alter the layout and/or design of the hardware without prior notification and
accepts no liability for doing so.

© Copyright 2015 PHYTEC Messtechnik GmbH, D-55129 Mainz.
Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and
storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur
without the express written consent from PHYTEC Messtechnik GmbH.

 EUROPE NORTH AMERICA FRANCE

Address: PHYTEC Messtechnik GmbH
Robert-Koch-Str. 39
D-55129 Mainz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW
Bainbridge Island, WA 98110
USA

PHYTEC France
17, place Saint-Etienne
F-72140 Sillé-le-Guillaume
FRANCE

Sales:
+49 6131 9221-32
sales@phytec.de

+1 800 278-9913
sales@phytec.com

+33 2 43 29 22 33
info@phytec.fr

Technical
Support:

+49 6131 9221-31
support@phytec.de

+1 206 780-9047
support@phytec.com

support@phytec.fr

Fax: +49 6131 9221-33 +1 206 780-9135 +33 2 43 29 22 34

Web Site:
http://www.phytec.de
http://www.phytec.eu

 http://www.phytec.com http://www.phytec.fr

 INDIA CHINA

Address: PHYTEC Embedded Pvt. Ltd.
#16/9C, 3rd Main, 3rd Floor, 8th Block,
Opp. Police Station Koramangala,
Bangalore-560095
INDIA

PHYTEC Information Technology (Shenzhen) Co. Ltd.
Suite 2611, Floor 26, Anlian Plaza,
4018 Jin Tian Road
Futian District, Shenzhen
CHINA 518026

Sales:
+91-80-4086 7046/48
sales@phytec.in

+86-755-3395-5875
sales@phytec.cn

Technical
Support:

+91-80-4086 7047
support@phytec.in

support@phytec.cn

Fax: +86-755-3395-5999

Web Site: http://www.phytec.in http://www.phytec.cn

1st Edition September 2015

mailto:sales@phytec.de
mailto:info@phytec.com
mailto:info@phytec.fr
mailto:support@phytec.de
mailto:support@phytec.com
mailto:support@phytec.fr
http://www.phytec.de/
http://www.phytec.eu/
http://www.phytec.com/
http://www.phytec.fr/
mailto:sales@phytec.in
mailto:info@phytec.cn
mailto:support@phytec.in
mailto:support@phytec.cn
http://www.phytec.in/
http://www.phytec.cn/

 Contents

© PHYTEC Messtechnik GmbH 2015 L-813e_2 i

List of Figures .. ii
Conventions, Abbreviations and Acronyms .. iii
1 The Yocto Project ... 1

1.1 Introduction .. 1
1.2 Core Components .. 1
1.3 Vocabulary ... 2

1.3.1 Recipes ... 2
1.3.2 Classes .. 2
1.3.3 Layers... 2
1.3.4 Machine .. 2
1.3.5 Distro ... 2

1.4 Poky .. 3
1.4.1 Bitbake ... 3
1.4.2 Toaster ... 3

1.5 Official Documentation... 3
2 Compatible Linux Distributions.. 4
3 Introduction to the Phytec BSP ... 5

3.1 BSP Structure ... 5
3.1.1 BSP Management ... 5

3.1.1.1 phyLinux... 5
3.1.1.2 Repo .. 5

3.1.2 BSP Meta Data ... 6
3.1.2.1 Poky... 6
3.1.2.2 meta-openembedded .. 6
3.1.2.3 meta-qt5... 6
3.1.2.4 meta-phytec .. 7
3.1.2.5 meta-phytec/meta-phy<SOC> ... 7
3.1.2.6 meta-yogurt .. 7

3.2 Build Configuration... 7
4 Installation.. 8

4.1 Setting up the Host ... 8
4.2 Git Configuration .. 8
4.3 site.conf Setup... 9

5 phyLinux Documentation ... 10
5.1 Get phyLinux...10
5.2 Basic Usage ..10
5.3 Initialization ..11
5.4 Advanced Usage ..12

6 Working with Poky and Bitbake... 13
6.1 Start the Build...13
6.2 Images ..13
6.3 Installing the SDK ..14
6.4 Accessing Development States between Releases ...14
6.5 BSP Features of meta-phytec and meta-yogurt...15

6.5.1 Buildinfo...15

Yocto Reference Manual

ii © PHYTEC Messtechnik GmbH 2015 L-813e_2

6.6 Customizing the BSP.. 17
6.6.1 How to disable the Qt Demo ... 17
6.6.2 How to add additional Software to the BSP Image................................... 18
6.6.3 How to add an additional Layer... 19
6.6.4 How to create your own Layer ... 20
6.6.5 How to know your Kernel and Bootloader Recipe and Version.................... 21
6.6.6 How to configure the Kernel or Bootloader.. 22

6.6.6.1 Howto add a Configuration Fragment to a Recipe....................... 23
6.6.6.2 How to add a Complete default Configuration (defconfig)

to a Recipe... 24
6.6.7 How to patch the Kernel or Bootloader the simple Way 25
6.6.8 How to work with the Kernel and Bootloader using SRC_URI in local.conf 28
6.6.9 How to work with the Kernel and Bootloader using externalsrc 29
6.6.10 Adding existing Software Part 2 .. 29
6.6.11 Inspect Your Configuration .. 30

6.7 Common Tasks.. 31
6.7.1 Debugging a Userspace Application .. 31
6.7.2 Generating Source Mirrors, Working Offline ... 32
6.7.3 Compiling on the Target .. 32
6.7.4 Different Toolchains ... 33
6.7.5 Working with Kernel Modules ... 33

7 Yocto Documentation... 35
8 Revision History.. 36

List of Figures
Figure 1: BSP-Yocto Repository Graph .. 6

 Conventions, Abbreviations and Acronyms

Conventions, Abbreviations and Acronyms

This hardware manual describes the PB-00802-xxx Single Board Computer (SBC) in the
following referred to as phyBOARD-Wega AM335x. The manual specifies the
phyBOARD-Wega AM335x's design and function. Precise specifications for the Texas
Instruments AM335x microcontrollers can be found in the Texas Instrumenten’s AM335x
Data Sheet and Technical Reference Manual.

Conventions
The conventions used in this manual are as follows:
 Text in blue italic indicates a hyperlink within, or external to the document. Click these

links to quickly jump to the applicable URL, part, chapter, table, or figure.
 Text in bold italic indicates an interaction by the user, which is defined on the screen.
 Text in Consolas indicates an input by the user, without a premade text or button to

click on.
 Text in italic indicates proper names of development tools and corresponding controls

(windows, tabs, commands, file paths, etc.) used within the development tool, no
interaction takes place.

 White Text on black background shows the result of any user interaction (command,
program execution, etc.)

This is a warning. It helps you to avoid annoying problems.

You can find useful supplementary information about the topic.

© PHYTEC Messtechnik GmbH 2015 L-813e_2 iii

Yocto Reference Manual

iv © PHYTEC Messtechnik GmbH 2015 L-813e_2

 The Yocto Project

© PHYTEC Messtechnik GmbH 2015 L-813e_2 1

1 The Yocto Project

1.1 Introduction

Yocto is the smallest SI metric system prefix. Like m stands for milli = 10^-3, so is yocto
y = 10^-24. Yocto is also a project working group of the Linux foundation and therefore
backed up by several major companies in the field. On the project website
http://www.yoctoproject.org/ you can read the official introduction:

"The Yocto Project is an open source collaboration project that provides templates, tools
and methods to help you create custom Linux-based systems for embedded products
regardless of the hardware architecture. It was founded in 2010 as a collaboration among
many hardware manufacturers, open-source operating systems vendors, and electronics
companies to bring some order to the chaos of embedded Linux development."

As said, the project wants to provide toolsets for embedded developers. It builds on top of
the long lasting OpenEmbedded project. It is not a Linux distribution. It contains the tools
to create a Linux distribution specially fitted to the product requirements. The most
important step to bring order in the set of tools, is to define a common versioning scheme
and a reference system. All subprojects have then to comply with the reference system and
the versioning scheme.

The release process is similar to the Linux Kernel. Yocto increases its version number every
six month and gives the release a name. The release list can be found here:

https://wiki.yoctoproject.org/wiki/Releases

1.2 Core Components

The most important tools or subprojects of the Yocto Project are:

• Bitbake: build engine, a task scheduler like make, interprets metadata
• OpenEmbedded-Core, a set of base layers, containing metadata of software, no sources
• Yocto Kernel

- Optimized for embedded devices
- Includes many subprojects: rt-kernel, vendor patches
- Infrastructure provided by Wind River
- Alternative: classic kernel - we use classic and not Yocto kernel

• Yocto Reference BSP: beagleboneblack, minnow max
• Poky, the reference system, a collection of projects and tools, used to bootstrap a new

distribution based on Yocto

http://www.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Releases

Yocto Reference Manual

2 © PHYTEC Messtechnik GmbH 2015 L-813e_2

1.3 Vocabulary

1.3.1 Recipes

Recipes contain information about the software project (author, homepage and license). A
recipe is versioned, defines dependencies, contains the URL of the source code, describes
how to fetch, configure and compile the sources. It describes how to package the software,
e.g. into different .deb packages, which then contain the installation path. Recipes are
basically written in Bitbake's own programming language, which has a simple
syntax. However, a recipe can contain Python as well as bash code.

1.3.2 Classes

Classes combine functionality used inside recipes into reusable blocks.

1.3.3 Layers

A layer is a collection of recipes, classes and configuration metadata. A layer can depend
on other layers and can be included or excluded one by one. It encapsulates a specific
functionality and fulfills a specific purpose. Each layer falls into a specific category:

• Base
• Machine (BSP)
• Software
• Distribution
• Miscellaneous

Yocto's versioning scheme is reflected in every layer as version branches. For each Yocto
version, every layer has a named branch in its Git repository. You can add one or many
layers of each category in your build.

A collection of OpenEmbedded layers can be found here, the search function is very
helpful to see if a software package can be retrieved and integrated easily.

http://layers.openembedded.org/layerindex/branch/master/layers/

1.3.4 Machine

Machines are configuration variables, which describe the aspects of the target hardware.

1.3.5 Distro

A distribution describes the software configuration and comes with a set of software
features.

http://layers.openembedded.org/layerindex/branch/master/layers/

 The Yocto Project

© PHYTEC Messtechnik GmbH 2015 L-813e_2 3

1.4 Poky

Poky is the reference system to define Yocto Project compatibility. It combines several
subprojects into releases:

• Bitbake
• Toaster
• OpenEmbedded Core
• Yocto Documentation
• Yocto Reference BSP

1.4.1 Bitbake

Bitbake is the task scheduler. It is written in Python and interprets recipes which contain
code in Bitbake's own programming language, Python and bash code. The official
documentation can be found here.

http://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html

1.4.2 Toaster

Toaster is a web frontend for Bitbake to investigate the build history and statistics. It is
planned that it grows into a build management frontend for Bitbake. It is not yet complete
in its features and under heavy development, but you can already keep an eye on the
project.

http://www.yoctoproject.org/docs/current/toaster-manual/toaster-manual.html#toaster-
manual-intro

1.5 Official Documentation

For more general questions about Bitbake and Poky consult the mega-manual:

http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html

http://www.yoctoproject.org/docs/current/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/current/toaster-manual/toaster-manual.html#toaster-manual-intro
http://www.yoctoproject.org/docs/current/toaster-manual/toaster-manual.html#toaster-manual-intro
http://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html

Yocto Reference Manual

4 © PHYTEC Messtechnik GmbH 2015 L-813e_2

2 Compatible Linux Distributions

To build Yocto you need a compatible Linux host development machine. The list of
supported distributions can be found in the reference manual for the specific Yocto
version. For 1.7 it can be found here:

http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#detailed-supported-
distros

http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/1.7/ref-manual/ref-manual.html#detailed-supported-distros

 Introduction to Phytec's BSP

© PHYTEC Messtechnik GmbH 2015 L-813e_2 5

3 Introduction to the Phytec BSP

3.1 BSP Structure

The BSP consists roughly of three parts. BSP management, BSP meta data and BSP content.
The management consists of repo and phyLinux, the meta data depends on the soc and
describes how to build the software and the content are Phytec's Git repositories and
external sources.

3.1.1 BSP Management

Yocto is an umbrella project. Naturally, this will force the user to base his work on
several external repositories. They need to be managed in a deterministic way. The Repo
tool is one way of managing Git repository tasks in a more comfortable way. Phytec's Yocto
BSP is managed with Repo. This provides us with a method to deliver fixed releases as well
as rolling releases.

3.1.1.1 phyLinux

phyLinux is a wrapper for Repo to handle downloading an setting up the BSP with an "out
of the box" experience.

3.1.1.2 Repo

Repo is a wrapper around the Repo tool set. The phyLinux script will install the wrapper in a
global path. This is only a wrapper, though. Whenever you run repo init ‐u <url>, you
first download the Repo tools from Googles Git server in a specific version to the .repo/repo
directory. Next time you run Repo, all the commands will be available. So be aware of the
fact, that the Repo version in different build directories can drift apart over the years if
you don not run Repo sync. Also if you store stuff for the archives, you need to include the
complete .repo folder.

Repo expects a Git repository which will be parsed from the command line. In case of our
BSP, we called it phy²octo, derived from Phytec's Yocto, phyyocto, phy²octo. In this
repository the whole information about a software BSP release is stored in the form of a
Repo xml manifest. This data structure defines URLs of Git servers, called "remotes", and
Git repositories and their states, called "projects". The Git repositories can be checked out
in different states. The revision field can be a branch, tag or commit id of a repository. So
the state of the software is not necessarily unique, e.g. the HEAD of a branch, and can
change over time. That is the reason we use only tags or commit ids for our releases. The
state of the working directory is therefore unique and does not change.

The manifests for the releases have the same name as the release itself. It is a unique
identifier for the complete BSP. The releases are sorted by SOC platform. That is why you
have to choose the SOC you are using. The selected SOC will define the branch of the
phy²octo Git repository which will be checked out for the manifest selection.

Yocto Reference Manual

3.1.2 BSP Meta Data

We include several third party layers in our BSP to get a complete Linux distribution up and
running without the need of integrating external projects at the beginning. All used
repositories are shown on the left of Figure 1 and are described in the following section.

Figure 1: BSP-Yocto Repository Graph

3.1.2.1 Poky

The Phytec BSP is build on top of Poky. It comes with a specific version of it, defined in
Repo manifest. It comes with a specific version of Bitbake. The OpenEmbedded-core layer
"meta" is used as a base for our Linux system.

3.1.2.2 meta-openembedded

OpenEmbedded is a collection of different layers containing the meta description for a
lot of open source software projects. We ship all OpenEmbedded layers with our BSP, but
not all of them are activated. Our example images pull several software packages
generated from OpenEmbedded recipes.

3.1.2.3 meta-qt5

This layer provides a community supported integration of qt5 in Poky based rootfs and is
integrated in our BSP.

6 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Introduction to Phytec's BSP

© PHYTEC Messtechnik GmbH 2015 L-813e_2 7

3.1.2.4 meta-phytec

This layer contains common features for all our BSPs. And is the core of our BSP,
together with the SOC layers. Only those two parts are required if you want to integrate
our BSP in your existing Yocto workflow.

3.1.2.5 meta-phytec/meta-phy<SOC>

Those layers define the barebox, kernel and software configuration for specific boards. The
boards get defined in the machine config files in conf/machine.

3.1.2.6 meta-yogurt

This is our example distribution. It extends the basic configuration of Poky with software
projects described by all the other BSP components. It provides a base for some
development scenarios. A configuration for systemd is provided.

3.2 Build Configuration

The BSP initializes a build folder which will contain all files you create by running Bitbake
commands. It contains a conf folder which handles build input variables.

• bblayers.conf defines activated meta-layers,
• local.lonf defines build input variables specific to your build
• site.conf defines build input variables specific to the development host

The two topmost build input variables are DISTRO and MACHINE they will be
preconfigured in local.conf when you check out the BSP using phyLinux. In short: DISTRO
defines the software configuration, MACHINE defines the hardware configuration.

As DISTRO we deliver "yogurt" with our BSP. This distribution will be preselected and
gives you a starting point for implementing your own configuration.

A MACHINE defines a binary image which supports specific hardware combinations of
module and baseboard. Have a look at the machine.conf file or our webpage for a
description of the hardware.

Yocto Reference Manual

8 © PHYTEC Messtechnik GmbH 2015 L-813e_2

4 Installation

4.1 Setting up the Host

You need to have a running Linux distribution at your hand. It should be running on a
powerful machine, as a lot of compiling will be done on it. Yocto needs a handful of
additional packages on your host. For Ubuntu 14.04 you need:
sudo apt‐get install gawk wget git‐core diffstat unzip texinfo \

gcc‐multilib build‐essential chrpath socat \
libsdl1.2‐dev xterm

For the other distributions you can find information in the Yocto Quickstart:

http://www.yoctoproject.org/docs/latest/yocto-project-qs/yocto-project-qs.html

4.2 Git Configuration

The BSP is heavily based on Git. Git needs some information from you as a user to be able
to identify which changes were done by whom. If you do not have one, create a
~/.gitconfig. Here is an example:

[user]
 name = <Your Name>
 email = <Your Mail>@phytec.de
[core]
 editor = vim
[merge]
 tool = vimdiff
[alias]
 co = checkout
 br = branch
 ci = commit
 st = status
 unstage = reset HEAD ‐‐
 last = log ‐1 HEAD
[push]
 default = current
[color]
 ui = auto
[sendemail]
 smtpserver = idefix.phytec.de
 smtpserverport = 25

http://www.yoctoproject.org/docs/latest/yocto-project-qs/yocto-project-qs.html

 Installation

© PHYTEC Messtechnik GmbH 2015 L-813e_2 9

You should at least set name and email in your Git configuration, otherwise Bitbake will
complain on the first build. You can use the two commands to set them directly without
editing ~/.gitconfig manually:

git config ‐‐global user.email your_email@example.com
git config ‐‐global user.name "name surname"

4.3 site.conf Setup

Before starting the Yocto build, it is advisable to configure the development setup. Two
things are most important: the download directory and the cache directory. It is not a
precondition to do this, but strongly recommended, as it will reduce the compile time of
consequent builds.

The download directory is a place where Yocto stores all sources fetched from the internet.
It can contain tar.gz, Git mirror or anything else. It is very useful to set this to a common
shared location on the machine. Create this directory with 777 access rights. To be able to
share this directory between different users all files need to have group write access. This
will most probably be in conflict with default umask settings. One possible solution would
be to use ACLs for this directory:

sudo apt‐get install acl
sudo setfacl ‐R ‐d ‐m g::rwx <dl_dir>

If you already created a download directory and want to fix the permissions afterwards, you
can do so with:

sudo find /home/share/ ‐perm /u=w ! ‐perm /g=w ‐exec chmod g+w \{\} \;
sudo find /home/share/ ‐perm /u=w ! ‐perm /g=w ‐exec chown g+w \{\} \;
sudo find /home/share/ ‐perm /u=r ! ‐perm /g=r ‐exec chmod g+r \{\} \;

The cache directory stores all stages of the build process. Poky has quite an involved
caching infrastructure. It is also advisable, to create a shared directory, as all builds can
access this cache directory, called shared state cache.

Create the two directories on a drive where you have approximately 50 GB of space and
assign the following two variables in your build/conf/local.conf.

DL_DIR ?= "<your_directory>/yocto_downloads"
SSTATE_DIR ?= "<your_directory>/yocto_sstate"

If you want to know more about configuring your build, have a look at the documented
example settings:

sources/poky/meta‐yocto/conf/local.conf.sample
sources/poky/meta‐yocto/conf/local.conf.sample.extended

mailto:your_email@example.com

Yocto Reference Manual

10 © PHYTEC Messtechnik GmbH 2015 L-813e_2

5 phyLinux Documentation

Documentation for version: PD15.1.0

The phyLinux script is a basic management tool for Phytec Yocto BSP releases written in
Python by Stefan Müller-Klieser. It is mainly a helper to get started with the BSP structure.
You can get all the BSP sources without the need of interacting with Repo or Git.

The phyLinux script has only one real dependency. It requires the wget tool installed on
your host. It will also install the Repo tool in a global path (/usr/local/bin) on your host
PC. You can install it to a different location manually. Repo will be automatically detected
by phyLinux if it is found in the PATH. The Repo tool will be used to manage the different
Git repositories of the Yocto BSP.

5.1 Get phyLinux

The phyLinux script can be found on the PHYTEC ftp server:

ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux

5.2 Basic Usage

For the basic usage of phyLinux, type:

./phyLinux ‐‐help

usage: phyLinux [-h] [-v] [--verbose] {init,info,clean} ...

This Programs sets up an environment to work with The Yocto Project on Phytecs
Development Kits. Use phyLinx <command> -h to display the help text for the
available commands.

positional arguments:
 {init,info,clean} commands
 init init the phytec bsp in the current directory
 info print info about the phytec bsp in the current directory
 clean Clean up the current working directory

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 --verbose

ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux

 phyLinux Documentation

© PHYTEC Messtechnik GmbH 2015 L-813e_2 11

5.3 Initialization

Create a fresh project folder, e.g.:

mkdir ~/yocto

and run phyLinux from the new folder:

./phyLinux init

A clean folder is important, because phyLinux will clean its working directory. So all files
will be removed after the clean up.

Calling phyLinux not from an empty directory will result in the following warning:

This current directory is not empty. It could lead to errors in the BSP configuration
process if you continue from here. At least you have to check your build directory
for settings in bblayers.conf and local.conf, which will not be handled correctly in all
cases. It is advisable to start from an empty directory of call:
$./phyLinux clean
Do you really want to continue from here? [yes/no]:

On the first initialization, the phyLinux script will ask you to install the Repo tool in your
/usr/local/bin directory. During the execution of the init command, you need to choose
your processor platform, Phytec's BSP release number and the hardware you are working
on, e.g.:

* Please choose one of the available Machines:
*
* 1 : beagleboneblack-1 : Hardware Revision A5C 2GiB eMMC
* 2 : phyboard-maia-am335x-1 : PB-00702-002
* 3 : phyboard-wega-am335x-1 : PB-00802-0200C PB-00802-0101C (PEB-AV-01)
* 4 : phyboard-wega-am335x-2 : PB-00802-008 PB-00802-010 (PEB-AV-02)
* 5 : phycore-am335x-1 : PCM-051-12102F0C.A1/KPCM-953 (Kit)
* 6 : phycore-am335x-2 : 1GiB RAM, 1GiB NAND variant
* 7 : phyflex-am335x-1 : PFL-A-03-12113F8I.A1/PBA-B-01

If you cannot identify your board with the information given in the selector, have a look at
the invoice of the product.

After the configuration is done, you can always run

./phyLinux info

to see which BSP and Machine is selected in the current workspace.

Yocto Reference Manual

12 © PHYTEC Messtechnik GmbH 2015 L-813e_2

If you do not want to use the selector, phyLinux also supports command line arguments
for the several settings, e.g.
./phyLinux init ‐p am335x ‐r PD14.1‐rc1 ‐m phycore‐am335x‐1

or view the help command for more information:

./phyLinux init ‐‐help

usage: phyLinux init [-h] [--verbose] [--no-init] [-o REPOREPO] [-x XML]
 [-u URL] [-p PLATFORM] [-r RELEASE]

optional arguments:
 -h, --help show this help message and exit
 --verbose
 --no-init dont execute init after fetch
 -o REPOREPO Use repo tool from another url
 -x XML Use a local XML manifest
 -u URL Manifest git url
 -p PLATFORM Processor platform
 -r RELEASE Release version

After the execution of the init command, phyLinux will print a few important notes and
also information for the next steps in the build process.

5.4 Advanced Usage

phyLinux can be used to transport software states over any medium. The state of the
software is uniquely identified by the manifest.xml. You can create a manifest, send it to
another place and recover the software state with:

./phyLinux init ‐x manifest.xml

You can also create a Git repository containing your software states. The Git repository
needs to have branches other than master, as we reserved the master branch for a different
usage. Use phyLinux to check out the states:

./phyLinux ‐u <url‐of‐your‐git‐repo>

 Working with Poky and Bitbake

6 Working with Poky and Bitbake

6.1 Start the Build

After you downloaded all the meta data with phyLinux init, you have to set up the shell
environment variables. This needs to be done every time you open a new shell for starting
builds. We use the shell script provided by Poky in its default configuration. From the root
of your project directory type:

source sources/poky/oe‐init‐build‐env

The abbreviation for the source command is a single dot.

. sources/poky/oe‐init‐build‐env

The current working directory of the shell should change to build/ and you are now ready
to build your first image. We suggest to start with our hardware bring-up image to see if
everything is working correctly. If you want, you can separate the download process from
the compile process to identify problems of your internet connection. With

bitbake ‐c fetchall phytec‐hwbringup‐image

all external source repositories get pulled into the download directory. With

du ‐sh <DL_DIR>

you can see what the download volume was. Now start the compile process.

bitbake phytec‐hwbringup‐image

The first compile process takes about 40 minutes on a modern Intel Core i7. All subsequent
builds will use the filled caches and should take about 3 minutes.

6.2 Images

If everything went fine, the images can be found under:

cd deploy/images/<MACHINE>

The easiest way to test your image is to jumper your board for booting from SD card and to
flash the build image to the SD card:

sudo dd if=phytec‐hwbringup‐image‐<MACHINE>.sdcard
of=/dev/<your_device> bs=1MB conv=fsync

Here <your_device> could be "sde" for example, depending on your system.

Be very careful when selecting the right drive! Selecting the wrong drive
can erase your hard drive!

The parameter conv=fsync forces a data buffer write to the device before dd returns.

© PHYTEC Messtechnik GmbH 2015 L-813e_2 13

Yocto Reference Manual

14 © PHYTEC Messtechnik GmbH 2015 L-813e_2

After booting you can login using a serial cable or over ssh. There is no root password. That
is because of the debug settings in conf/local.conf. If you comment out the line

#EXTRA_IMAGE_FEATURES = "debug‐tweaks"

the debug settings, like setting an empty root password, will not be applied.

6.3 Installing the SDK

To install the SDK for a machine and image type, you can create an SDK installer with
Bitbake in the BSP itself. Ensure that the correct target machine is set. You also need to
pass the image type you want to create the SDK for:

host$ bitbake <image> ‐c populate_sdk

This takes 1-5 hours depending on the image type and host machine (like building a
BSP). After that you may find the installer in your Yocto directory under:

build/deploy/sdk

Install the SDK with (example):

host$ cd build/deploy/sdk
host$./poky‐glibc‐x86_64‐phytec‐qt4demo‐image‐cortexa8t2hf‐vfp‐neon‐

toolchain‐1.7.sh

Usage example with a simple C file named bumpRTS.c

host$ source /opt/poky/1.7/environment‐setup‐cortexa8t2hf‐vfp‐neon‐poky‐
linux‐gnueabi

host$ make bumpRTS

Creates an arm binary:

host$ file bumpRTS
bumpRTS: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 2.6.32,
BuildID[sha1]=42d4aa389d09ade2023364e4eef9021080f610f9, not stripped

6.4 Accessing Development States between Releases

Special release manifests exist to give you access to current development states of the
Yocto BSP. They will not be displayed in the phyLinux selection menu but need to be
selected manually. This can be done by the following command line:

./phyLinux ‐r dizzy

This will initialize a BSP which will track the latest development state. From now on
running:

repo sync

in this folder will pull all the latest changes from our Git repositories.

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 15

6.5 BSP Features of meta-phytec and meta-yogurt

6.5.1 Buildinfo

The buildinfo task is a feature in our recipes which prints instructions to fetch the source
code from the public repositories. So you do not have to look into the recipes yourself. To
see the instructions, e.g. for the barebox package, execute

$ bitbake barebox ‐c buildinfo

in your shell. This will print something like

(mini) HOWTO: Use a local git repository to build barebox:

To get source code for this package and version (barebox-2014.11.0-phy2), execute

$ mkdir -p ~/git
$ cd ~/git
$ git clone ssh://git@git.phytec.de/barebox-dev barebox
$ cd ~/git/barebox
$ git checkout -b v2014.11.0-phy2-local_development
57b87aedbf0b6ae0eb0b858dd0c83411097c777a

You now have two possible workflows for your changes.

1. Work inside the git repository:
Copy and paste the following snippet to your "local.conf":

SRC_URI_pn-barebox = "git:///${HOME}/git/barebox;branch=${BRANCH}"
SRCREV_pn-barebox = "${AUTOREV}"
BRANCH_pn-barebox = "v2014.11.0-phy2-local_development"

After that you can recompile and deploy the package with

$ bitbake barebox -c compile
$ bitbake barebox -c deploy

Note: You have to commit all your changes. Otherwise yocto doesn't pick them up!

2. Work and compile from the local working directory
To work and compile in an external source directoy you can use the externalsrc.bbclass.
To use it copy and paste the following snippet to your "local.conf":
INHERIT += "phyexternalsrc"
EXTERNALSRC_pn-barebox = "${HOME}/git/barebox"
EXTERNALSRC_BUILD_pn-barebox = "${HOME}/git/barebox"

Yocto Reference Manual

Note: All the compiling is done in the EXTERNALSRC directory. Everytime
you build an Image, the package will be recompiled and build.

NOTE: Tasks Summary: Attempted 1 tasks of which 0 didn't need to be rerun and all
succeeded.
NOTE: Writing buildhistory

As you can see, everything is explained in the output.

Using externalsrc breaks a lot of Yocto's internal dependency mechanism.
It is not guaranteed that any changes to the source directory are
automatically picked up by the build process and incorporated into the
root filesystem or SD card image. You have to always use --force. E.g. to
compile the barebox and redeploy it to deploy/images/<machine>
execute:

bitbake barebox ‐c compile –force
bitbake barebox ‐c deploy

To update the SD card image with a new kernel or image first force the compilation of it
and then force a rebuild of the root filesystem. Use

bitbake phytec‐qt5demo‐image ‐c rootfs –force

Also note that the buildsystem is not modifying the external source directory. If you want
to apply all patches the Yocto recipe is carrying to the external source directory run the
line:

SRCTREECOVEREDTASKS="" BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE
SRCTREECOVEREDTASKS" bitbake <recipe> ‐c patch

16 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Working with Poky and Bitbake

6.6 Customizing the BSP

To get you started with the BSP we summarize some basic tasks from the Yocto official
documentation. It describes how to add additional software to the image, changeg the
kernel and bootloader configuration and integrate patches for kernel and bootloader.

Minor modifications, such as adding software, are done in the file build/conf/local.conf.
There you can overwrite global config variables and make small modifications to recipes.

For major changes you have generally to ways. Either create your own layer and use
bbappends or add everything to Phytec's Distro layer meta-yogurt. How you can create
your own layer is describe in section 6.6.4.

6.6.1 How to disable the Qt Demo

By default the BSP image phytec-qt5demo-image starts a nice Qt5 Demo application on the
display or monitor attached.

If you want to stop the demo and use the Linux framebuffer console behind it, connect per
serial or ssh to the target and execute the shell command

target$ systemctl stop qt5demo.service

The command stops the demo temporally. To start it again reboot the board or execute

target$ systemctl start qt5demo.service

You can disable the service permanently, so it does not start on boot, by executing

target$ systemctl disable qt5demo.service

The last command only disables the service. It does not stop it immediately.
To see the current status execute

target$ systemctl status qt5demo.service

If you want to disable the service by default, edit the file build/conf/local.conf and add the
following line:

 # file build/conf/local.conf
SYSTEMD_AUTO_ENABLE_pn‐qt5demo‐autostarter = "disable"

After that rebuild the image by executing

host$ bitbake phytec‐qt5demo‐image

© PHYTEC Messtechnik GmbH 2015 L-813e_2 17

Yocto Reference Manual

6.6.2 How to add additional Software to the BSP Image

To add another software to the image have a look at the OpenEmbedded layer index at:

http://layers.openembedded.org/layerindex/

You can search for a software project name and find out in which layer it can be found. In
the simple case the program is in meta-openembedded or Poky, which means that the
recipe is already in your build tree.
This section describes how to add additional software in this case.
If the package is in another layer, see the next section.

You can also search the list of available recipes by executing

host$ bitbake ‐s | grep <program name> # fill in programm name, like in
host$ bitbake ‐s | grep lsof

When the recipe for the program is already in the Yocto build, you can simply add it by
appending a configuration option to your file build/conf/local.conf. The general syntax to
add additional software to an image is:
file build/conf/local.conf
IMAGE_INSTALL_append = " <package1> <package2>"

Please note the leading whitespace, which is necessary for the append
command.

For example the next line

file build/conf/local.conf
IMAGE_INSTALL_append = " ldd strace file lsof"

installs some little helper programs on the target image.

All configuration options in local.conf apply to all images. So now the tools are included in
both images pyhtec-hwbringup-image and pyhtec-qt5demo-image.

If you can not find your the software in the layers provided in the folder sources/, see the
next section to include another layer into the Yocto build.

References: Yocto 1.7.2 Docu - Customizing Images Using local.conf

18 © PHYTEC Messtechnik GmbH 2015 L-813e_2

http://layers.openembedded.org/layerindex/
http://www.yoctoproject.org/docs/1.7.2/dev-manual/dev-manual.html#usingpoky-extend-customimage-localconf

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 19

6.6.3 How to add an additional Layer

This is a step by step guide how to add another layer to your Yocto build and installe
additional software from it. As an example we include the network security scanner nmap
in the layer meta-security.

First you must locate in the layer which software is hosted.

Checkout the OpenEmbedded MetaData Index and guess a little bit. The network scanner
nmap is in the meta-security layer. See meta-security on layers.openembedded.org.

To integrate it into the Yocto build, you have to checkout out the repository and then
switch to the correct stable branch. Since the BSP is based on the Yocto 'dizzy' build, you
should try to use the 'dizzy' branch in the layer, too, but other branches may also work.

host$ cd sources
host$ git clone git://git.yoctoproject.org/meta‐security
host$ git branch –r

All available remote branches will show up. Usually there should be daisy, dizzy, fido,
master, ...

host$ git checkout fido

As there is no 'dizzy' branch in meta-security, we try the next stable branch from 'dizzy',
which is 'fido'.

Now we add the directory of the layer to the file build/conf/bblayers.conf by appending the
line

file build/conf/bblayers.conf
BBLAYERS += "${BSPDIR}/sources/meta‐security"

to the end of the file. After that you can check if the layer is available in the build
configuration by executing

host$ bitbake‐layers show‐layers

If there is an error like

ERROR: Layer 'security' depends on layer 'perl-layer', but this layer is not enabled in your
configuration

the layer, that you want to add (here meta-security), depends on another layer, which you
need to enable first. E.g. the dependence required here is a layer in meta-openembedded.
(In the Phytec BSP it is in the path sources/meta-openembedded/meta-perl/).
To enable it, also add the following line to build/conf/bblayers.conf:

file build/conf/bblayers.conf
BBLAYERS += "${BSPDIR}/sources/meta‐openembedded/meta‐perl"

http://layers.openembedded.org/layerindex
http://layers.openembedded.org/layerindex/branch/master/layer/meta-security/

Yocto Reference Manual

20 © PHYTEC Messtechnik GmbH 2015 L-813e_2

Now the command bitbake-layers show-layers should print a list of all enabled layers
including meta-security and meta-perl.

After the layer is included, you can install additional software from it as already described
above. The easiest way is to add the following line (here the package nmap).

file build/conf/local.conf
IMAGE_INSTALL_append = " nmap"

to your build/conf/local.conf. Do not forget to rebuild the image, e.g.

host$ bitbake phytec‐qt5demo‐image

6.6.4 How to create your own Layer

Creating your layer should be one of the first tasks when customizing the BSP. You have
two basic options. You could either copy and rename our meta-yogurt, or you can create a
new layer which will contain your changes. Which way is the better solution, depends on
your use case. meta-yogurt is our example of how to create a custom Linux distribution and
will be updated in future. If you want to benefit from those changes and are, in general,
satisfied with the user space configuration, it could be the best solution to create your own
layer on top of Yogurt. If you need to rework a lot of stuff and only need the basic hardware
support from Phytec, better copy meta-yogurt, rename it and adapt it to your needs. You
can also have a look at the OpenEmbedded layer index to find different distribution
layers. If you just need to add your own application to the image, create your own layer.

In the following chapter we assume that we have an embedded project called "racer"
which we will implement using our Yogurt Linux distribution.

First we need to create a new layer. Yocto provides a script for that. If you set up the BSP
and the shell is ready, type:

host$ yocto‐layer create racer

Default options are fine for now. Move the layer to the source directory:
host$ mv meta‐racer ../sources/

Create a Git repository in this layer to track your changes:

host$ cd ../sources/meta‐racer
host$ git init && git add . && git commit ‐s

Now you can add the layer to your build/conf/bblayers.conf

BBLAYERS += "${BSPDIR}/sources/meta‐racer"

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 21

6.6.5 How to know your Kernel and Bootloader Recipe and Version

First you should know, which kernel and version is used for your target machine. Phytec
provides two kernel recipes linux-mainline and linux-ti. The first one provides support for
the Phytec's i.MX6 Modules and is based on the Linux kernel stable releases from
kernel.org. The second one provides support for Phytec's AM335x Modules and is based on
the TI vendor kernel.

The Git repositories URLs are

• linux-ti: git://git.phytec.de/linux-ti
• linux-mainline: git://git.phytec.de/linux-mainline

To know your kernel provider execute the following command:

host$ bitbake virtual/kernel ‐e | grep "PREFERRED_PROVIDER_virtual/kernel"

The command prints the value of the variable PREFERRED_PROVIDER_virtual/kernel. The
variable is used in the internal Yocto build process to select the kernel recipe to use. The
following two lines are two different outputs you might see.

PREFERRED_PROVIDER_virtual/kernel="linux‐mainline"
PREFERRED_PROVIDER_virtual/kernel="linux‐ti"

To know which version is used, execute bitbake –s. For example,

host$ bitbake ‐s | egrep ‐e "linux‐mainline|linux‐ti|barebox"

The parameter -s prints the version of all recipes. The output contains the recipe name on
the left and the version on the right.

barebox :2015.02.0-phy2-r3
linux-mainline :3.19.5-phy4-r0

As you can see the recipe linux-mainline has the version 3.19.5-phy4-r0. In the Phytecs'
linux-mainline Git repository you will find a corresponding tag v3.19.5-phy4. The version of
the barebox recipe is 2015.02.0-phy2.

If your machine has an AM335x Module the output of bitbake ‐s contains a line starting
with linux-ti.

https://kernel.org/

Yocto Reference Manual

6.6.6 How to configure the Kernel or Bootloader

Luckily the bootloader used by Phytec, the barebox, uses the same build system as the
Linux kernel. Therefore all commands in this section can be used to configure the kernel
and bootloader.

To configure the kernel or bootloader execute one of the following commands

host$ bitbake ‐c menuconfig virtual/kernel # Using the virtual provider
name

host$ bitbake ‐c menuconfig linux‐ti # Or use the recipe name
directly (If you use an AM335x Module)

host$ bitbake ‐c menuconfig linux‐mainline # Or use the recipe name
directly (If you use an i.MX6 Module)

host$ bitbake ‐c menuconfig barebox # Or change the configuration
of the bootloader

After that you can recompile and redeploy the kernel or bootloader by executing

host$ bitbake virtual/kernel ‐c compile ‐f # Or 'barebox' for the
bootloader

host$ bitbake virtual/kernel ‐c deploy # Or 'barebox' for the
bootloader

host$ bitbake phytec‐hwbringup‐image # To update the kernel/bootloader
and modules in the rootfs and SD‐Card.

In the last command you can replace the image name with the name of an image of your
choice. The new images and binaries are in build/deploy/images/<machine>/.

The build configuration is not permanent yet.
Executing e.g. bitbake virtual/kernel ‐c clean will remove
everything.

To make your changes permanent in the build system, you have to integrate your
configuration modifications into a layer. For the configuration you have two options:
Either include only a configuration fragment (a minimal diff between the old and new
configuration) or a complete default configuration (defconfig) after your modifications.

22 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 23

6.6.6.1 Howto add a Configuration Fragment to a Recipe

The following steps can be used for both kernels and bootloader.
Just replace the recipe name linux-mainline in the commands with linux-ti, or barebox for
the bootloader.

Restore a clean build. Otherwise the diff of the configuration maybe wrong:

host$ bitbake linux‐mainline ‐c clean
host$ bitbake linux‐mainline ‐c menuconfig

Make your configuration changes in the menu and generate a config fragment with

host$ bitbake linux‐mainline ‐c diffconfig

which prints the path of the written file:

Config fragment has been dumped into:
 /home/<path>/build/tmp‐glibc/work/phyflex_imx6_2‐phytec‐linux‐
gnueabi/linux‐mainline/3.19.5‐phy4‐r0/fragment.cfg

All config changes are in the file fragment.cfg. It should only consist of some lines.

The following example shows how to create a bbappend file and how to add the necessary
lines for the config fragment. You just have to adjust the directories and names for the
specific recipe: linux-mainline, linux-ti, or barebox.

sources/<layer>/recipes-kernel/linux/linux-mainline_%.bbappend # For the recipe linux-

mainline
sources/<layer>/recipes-kernel/linux/linux-ti_%.bbappend # For the recipe linux-ti
sources/<layer>/recipes-bsp/barebox/barebox_%.bbappend # For the recipe barebox

Replace the string layer with your own layer created as shown above (e.g meta-racer), or
just use meta-yogurt.

First create the directory for the config fragment and give it a new name (here
enable-r8169.cfg') and move the fragment to the layer.

host$ mkdir ‐p sources/meta‐yogurt/recipes‐kernel/linux/features
 # copy the path from the output of *diffconfig*
host$ cp /home/<path>/build/tmp‐glibc/work/phyflex_imx6_2‐phytec‐linux‐

gnueabi/linux‐mainline/3.19.5‐phy4‐r0/fragment.cfg \sources/meta‐
yogurt/recipes‐kernel/linux/features/enable‐r8169.cfg

Yocto Reference Manual

Then open the bbappend file (in this case sources/meta-yogurt/recipes-kernel/linux/linux-
mainline_%.bbappend) with your favorite editor and add the following lines

 # contents of the file linux‐mainline_%.bbappend
FILESEXTRAPATHS_prepend := "${THISDIR}/features:"
SRC_URI_append = " \
 file://enable‐r8169.cfg \
"

Do not forget to use the correct bbappend filenames: linux-ti_%.bbappend
for the linux-ti recipe and barebox_%.bbappend for the bootloader in the
folder recipes-bsp/barebox/ !

After saving the bbappend file, you have to rebuild the image. Yocto should pick up the
recipe changes automatically and generate a new image:

host$ bitbake phytec‐hwbringup‐image # Or another image name

6.6.6.2 How to add a Complete default Configuration (defconfig) to a Recipe

This approach is as above, but instead of adding a fragment a defconfig is used.

First create the necessary folders in the layer, you want to use. Your own layer or
meta-yogurt.E.g.:

host$ mkdir ‐p sources/meta‐yogurt/recipes‐kernel/linux/features/
For both linux‐mainline and linux‐ti

host$ mkdir ‐p sources/meta‐yogurt/recipes‐bsp/barebox/features/
Or for the bootloader

Then you have to create a suitable defconfig file. Make your configuration changes using
menuconfig and then save the defconfig file to the layer. E.g.:
For example:

host$ bitbake linux‐mainline ‐c menuconfig # Or use recipe name linux‐
ti or barebox

host$ bitbake linux‐mainline ‐c savedefconfig # Create file
'defconfig.temp' in the work directory

host$ bitbake linux‐mainline ‐c devshell # Start the devshell
host(devshell)$ cd .. # Goto work directory
host(devshell)$ cp defconfig.temp ~/<your yocto build>/sources/meta‐

yogurt/recipes‐kernel/linux/features/defconfig
Copy new defconfig to layer

host(devshell)$ exit # Exit devshell again

24 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Working with Poky and Bitbake
Then, as above, edit the bbappend file in the layer (here sources/meta-yogurt/recipes-
kernel/linux/linux-mainline_%.bbappend) and add the following lines:

contents of the file linux‐mainline_%.bbappend
FILESEXTRAPATHS_prepend := "${THISDIR}/features:"
SRC_URI_append = " \
 file://defconfig \
"

Do not forget to use the correct bbappend filenames: linux-ti_%.bbappend
for the linux-ti recipe and barebox_%.bbappend for the bootloader in the
folder recipes-bsp/barebox/ !

After that rebuild your image as the changes are picked up automatically.

host$ bitbake phytec‐hwbringup‐image # Or another image name

6.6.7 How to patch the Kernel or Bootloader the simple Way

Apart from using the standard versions of kernel and bootloader which are provided in the
recipes, you can modify the source code, or use our own repositories to build your
customized kernel.

Pro Contra

No overhead, no extra
configuration

Changes are easily overwritten by Yocto
(Everything is lost!!)

Toolchain does not have to
recompile everything

It is possible to alter the source code, before Bitbake configures and compiles the recipe.
You have to start with a clean build, so all working directories are on your disk. Just build
any image and you are fine.

Use Bitbake's devshell command to jump into the source directory of the recipe. Here it is
the barebox recipe:

host$ bitbake barebox ‐c devshell # or linux‐mainline, linux‐ti

After executing the command, a shell window opens. The current working directory of the
shell will be changed to the source directory of the recipe. Here you can use your favorite
editor, e.g. vim, or emacs, or anything graphical, to alter the source code. When you are
finished exit the devshell by typing exit.

After leaving the devshell you can recompile the package.

 host$ bitbake barebox ‐c compile ‐‐force # or linux‐mainline, linux‐ti

© PHYTEC Messtechnik GmbH 2015 L-813e_2 25

Yocto Reference Manual
The extra argument --force is important, because Yocto does not recognize that the source
code was changed.

You cannot execute the Bitbake command in the devshell. You have to leave
it first.

If the build fails, execute the devshell command again and fix it. If the build is successful,
you can deploy the package and create a new SD card image.

host$ bitbake barbox ‐c deploy # new barebox in e.g.
deploy/images/phyflex‐imx6‐2/barebox.bin

host$ bitbake phytec‐hwbringup‐image # new sdcard image in e.g.
deploy/images/phyflex‐imx6‐2/phytec‐hwbringup‐image‐phyflex‐imx6‐
2.sdcard

If you execute a clean e.g bitbake barebox -c clean, or if Yocto refetches the
source code, all your changes are lost!!!

To avoid this, you can create a patch and add it to a bbappend file. It is the same workflow
as in the section about changing the configuration.

You have to create the patch in the devshell. Execute these commands in the devshell.

host$ bitbake barebox ‐c devshell # Or linux‐mainline, linux‐
ti

host(devshell)$ git status # Show changes files
host(devshell)$ git add <file> # Add a special file to the

saging area
host(devshell)$ git commit ‐m "important modification" # Creates a

commit with a not so useful commit message
host(devshell)$ git format‐patch ‐1 ‐o ~/ # Creates a patch of the

last commit and saves it in your home folder
/home/<user>/0001‐important‐modification.patch # Git prints the path of

the written patch file
host(devshell)$ exit

After you have created the patch, you must create a bbappend file for it.
The locations for the three different recipes - linux-mainline, linux-ti and barebox – are:

sources/<layer>/recipes-kernel/linux/linux-mainline_%.bbappend # For the recipe linux-
mainline

sources/<layer>/recipes-kernel/linux/linux-ti_%.bbappend # For the recipe linux-ti
sources/<layer>/recipes-bsp/barebox/barebox_%.bbappend # For the recipe barebox

The following example is for the recipe barebox. You have to adjust the paths.

26 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Working with Poky and Bitbake

First create the folders and move the patch to it. Then create the bbappend file.

host$ mkdir ‐p sources/meta‐yogurt/recipes‐bsp/barebox/features # Or
use your own layer instead of *meta‐yogurt*

host$ cp ~/0001‐important‐modification.patch sources/meta‐yogurt/recipes‐
bsp/barebox/features # copy patch

host$ touch sources/meta‐yogurt/recipes‐bsp/barebox/barebox_%.bbappend

Pay attention to your current work directory. You have to execute the
commands in the BSP top level directory. Not in the build directory!

After that use your favorite editor to add the following snipped into the bbappend file
(here sources/meta-yogurt/recipes-bsp/barebox/barebox_%.bbappend).

contents of the file barebox_%.bbappend
FILESEXTRAPATHS_prepend := "${THISDIR}/features:"
SRC_URI_append = " \
 file://0001‐important‐modification.patch \
"

Save the file and rebuild the barebox recipe with

host$ bitbake barebox ‐c clean # Or linux‐ti, linux‐mainline
host$ bitbake barebox

If the build is successful, you can rebuild the final image with

host$ bitbake phytec‐hwbringup‐image # Or another image name

Further Resources:

The Yocto Project has already some documentation for software developers. You should
especially check the Kernel Development Manual for more information about how to
configure the kernel.

• Yocto - Kernel Development Manual
• Yocto - Development Manual
• http://www.yoctoproject.org/docs/1.7.2/dev-manual/dev-manual.html#modifying-

temporary-source-code

© PHYTEC Messtechnik GmbH 2015 L-813e_2 27

http://www.yoctoproject.org/docs/1.7.2/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.7.2/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.7.2/dev-manual/dev-manual.html#modifying-temporary-source-code

Yocto Reference Manual

6.6.8 How to work with the Kernel and Bootloader using SRC_URI in local.conf

Here we present a second option to make kernel and bootloader changes.

Pro Contra

All changes are saved with Git Many working directories in
build/tmp-glibc/work/<machine>/<package>/

 You have to commit every change before recompiling

 For each change the toolchain compiles everything
from scratch (avoidable with ccache)

First you need a local clone of the Git repository of either barebox or kernel. If you do not
have one, use the commands:

host$ mkdir ~/git
host$ cd ~/git
host$ git clone git://git.phytec.de/barebox
host$ cd barebox
host$ git checkout ‐b v2015.02.0‐phy remotes/origin/v2015.02.0‐phy

Add the following snippet to the file build/conf/local.conf.

Use your own path to the git repository
NOTE: Branche name in variable "BRANCH_pn‐barebox" should be the same
as the
branch which is used in the repository folder. Otherwise your commits
won't be recognized later.
BRANCH_pn‐barebox = "v2015.02.0‐phy"
SRC_URI_pn‐barebox = "git:///${HOME}/git/barebox;branch=${BRANCH}"
SRCREV_pn‐barebox = "${AUTOREV}"

You also have to set the correct BRANCH name in the file.
Either you create your own branch in the Git repository, or you use the default (here
"v2015.02.0-phy"). Now you should recompile the barebox from your own source.

host$ bitbake barebox ‐c clean
host$ bitbake barebox ‐c compile

Build should be successful because the source was not changed yet.

You can alter the source in ~/git/barebox, or for example the default defconfig (e.g.
~/git/barebox/arch/arm/configs/imx_v7_defconfig).
After you are satisfied with your changes, you have to make a dummy commit for Yocto.
If you don't do that, Yocto will not notice that the source code was modified.

28 © PHYTEC Messtechnik GmbH 2015 L-813e_2

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 29

So, execute something like

host$ git status # show modified files
host$ git diff # show changed lines
host$ git commit ‐a ‐m "dummy commit for yocto" # This command is

important!
in your repository folder (e.g. ~/git/barebox/).

Try to compile your new changes. Yocto will automatically notice that the source code was
changed and fetches and configures everything from scratch.

host$ bitbake barebox ‐c compile

If the build fails, go back to the source directory, fix the problem and recommit your
changes. If the build was successful, you can deploy the barebox and even create a new SD
card image.

host$ bitbake barbox ‐c deploy # new barebox in e.g.
deploy/images/phyflex‐imx6‐2/barebox‐phyflex‐imx6‐2.bin

host$ bitbake phytec‐hwbringup‐image # new sd‐card image in e.g.
deploy/images/phyflex‐imx6‐2/phytec‐hwbringup‐image‐phyflex‐imx6‐2.sdcard

If you want to make additional changes, just make another commit in the repository and
rebuild the barebox again.

6.6.9 How to work with the Kernel and Bootloader using externalsrc

This is a third option how to customize the kernel and bootloader source code. It is only
useful for the development process. After your changes to the kernel are completed, you
should put the patches into a bbappend in your layer, or write yourself a recipe for your
repository.

For more information about the externalsrc class see chapter 6.5.1.

6.6.10 Adding existing Software Part 2

Now that you have created your own layer, you have a second option to add existing
software to existing image definitions. Our standard image is defined in meta-yogurt in

meta-yogurt/recipes-images/images/phytec-hwbringup-image.bb

In your layer you can now modify the recipe with a bbappend without modifying any BSP
code:

meta‐racer/recipes‐images/images/phytec‐hwbringup‐image.bbappend

The append will be parsed together with the base recipe. As a result, you can easily
overwrite all variables set in the base recipe, which is not always what you want. If we want
to include additional software we need to append to the IMAGE_INSTALL variable:

IMAGE_INSTALL_append = " rsync"

Yocto Reference Manual

30 © PHYTEC Messtechnik GmbH 2015 L-813e_2

6.6.11 Inspect Your Configuration

Poky includes several tools to inspect your build layout. You can inspect the commands of
the layer tool:

host$ bitbake‐layers

It can for example be used to view in which layer a specific recipe gets modified:

host$ bitbake‐layers show‐appends

You should now see an entry for the phytec-hwbringup-image.bb recipe which has an
append in the meta-racer layer.

You are now ready to create kernel patches and configurations and add them with appends
in your layer.

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 31

6.7 Common Tasks

6.7.1 Debugging a Userspace Application

The phytec-qt5demo-image can be cross debugged without any change. For cross
debugging you just have to match the host sysroot with the image in use. So you need to
create a toolchain for your image with:

bitbake ‐c populate_sdk phytec‐qt5demo‐image

Additionally, if you want to have full debug and backtrace capabilities for all programs and
libraries in the image, you could add

DEBUG_BUILD = "1"

to the conf/local.conf. This is not necessary in all cases. The compiler options will then be
switched from FULL_OPTIMIZATION to DEBUG_OPTIMIZATION. Have a look at the Poky
source code for the default assignment of DEBUG_OPTIMIZATION.

To start a cross debug session, install the SDK as mentioned previously, source the SDK
environment and run Qtcreator in the same shell. If you do not use Qtcreator you can
directly call the arm-<..>-gdb debugger instead, which should be in your path after
sourcing the environment script.

If you work with Qtcreator, have a look in the appropriate documentation delivered with
your product (either QuickStart, or Application Guide) for information on how how to set
up the toolchain.

When starting the debugger with your user space application you will get a SIGILL, an
illegal instruction from the libcrypto. Openssl probes for the system capabilities by trapping
illegal instructions, which will trigger GDB. You can ignore this and hit continue, "c"
command. You can permanently ignore this stop by adding

handle SIGILL nostop

to your GDB startup script, or in the Qtcreator GDB configuration panel. Secondly you might
need to disable a security feature by adding

set auto‐load safe‐path /

to the same startup script, which will enable automatic loading of libraries from any
location.

If you need to have native debugging you might want to install the debug symbols on the
target. You can do this by adding the following line to your conf/local.conf :

EXTRA_IMAGE_FEATURES += "dbg‐pkgs"

For cross debugging this is not required as the debug symbols will be loaded from the host
side and the dbg-pkgs are included in the SDK of your image anyway.

Yocto Reference Manual

32 © PHYTEC Messtechnik GmbH 2015 L-813e_2

6.7.2 Generating Source Mirrors, Working Offline

Modify your site.conf (or local.conf if you do not use a site.conf) as follows:

#DL_DIR ?= "" don't set it! It will default to a directory inside /build
SOURCE_MIRROR_URL = "file:///home/share/yocto_downloads/ \n"
INHERIT += "own‐mirrors
BB_GENERATE_MIRROR_TARBALLS = "1"

Now run a

bitbake ‐c fetchall <image>

for all images and for all machines you want to provide sources for. This will create all
necessary tar archives. We can remove all SCM subfolders, as they are duplicated with the
tarballs.

rm ‐rf build/download/git2/
etc...

Please consider that we used a local source mirror for generating the dl_dir, and because
of that, some archives will be linked locally.

First we need to copy all files, resolving symbolic links into the new mirror directory:

rsync ‐vaL <dl_dir> ${TOPDIR}/../src_mirror/

Now we clean the /build directory by deleting everything except /build/conf/ but including
/build/conf/sanity. We change site.conf as follows:

SOURCE_MIRROR_URL = "file://${TOPDIR}/../src_mirror \n"
INHERIT += "own‐mirrors"
BB_NO_NETWORK = "1"
SCONF_VERSION = "1"

The BSP directory can now be compressed with

tar cfJ <filename>.tar.xz <folder>

where filename and folder should be the full BSP name.

6.7.3 Compiling on the Target

To your local.conf add:

IMAGE_FEATURES_append = “ tools‐sdk dev‐pkgs”

 Working with Poky and Bitbake

© PHYTEC Messtechnik GmbH 2015 L-813e_2 33

6.7.4 Different Toolchains

There are several ways to create a toolchain installer in Poky. First of all you can run:

bitbake meta‐toolchain

This will generate a toolchain installer in build/deploy/sdk which can be used for cross
compiling of target applications. However, the installer does not include libraries added to
your image, so it is a bare GCC compiler only. This is suited for bootloader and kernel
development.

Secondly, you can run

bitbake ‐c populate_sdk <your_image>

This will generate a toolchain installer containing all necessary development packages of
the software installed on the rootfs of the target. This installer can be handed over to the
user space application development team and includes all necessary parts to develop an
application. If the image contains the Qt libraries, all of those will be available in the
installer, too.

The third option would be to create the ADT (Application Development Toolkit) installer. It
will contain the cross-toolchain and additionally some tools to aid the software
developers, e.g. an Eclipse plugin and a QEMU target simulator.

bitbake adt‐installer

The ADT is untested for our BSP at the time of printing this Yocto Reference Manual.

6.7.5 Working with Kernel Modules

You will come to the point where you either need to set some options for a kernel module
or you want to blacklist a module. Those things are handled by udev and go into *.conf files
in /etc/modprobe.d/*.conf.

If you want to specify an option at buildtime, there are three relevant variables. If you just
want to auto load a module which has e.g. no auto load capabilities, add it to

KERNEL_MODULE_AUTOLOAD += "your‐module"

either in the kernel recipe or in the global variable scope.

If you need to specify options for a module you can do so with:

KERNEL_MODULE_AUTOLOAD += "your‐module"
KERNEL_MODULE_PROBECONF += "your‐module"
module_conf_your‐module = "options your‐module

parametername=parametervalue"

Yocto Reference Manual

34 © PHYTEC Messtechnik GmbH 2015 L-813e_2

If you want to blacklist a module from auto loading, you can do it intuitively with:

KERNEL_MODULE_AUTOLOAD += "your‐module"
KERNEL_MODULE_PROBECONF += "your‐module"
module_conf_your‐module = "blacklist your‐module"

 Yocto Documentation

© PHYTEC Messtechnik GmbH 2015 L-813e_2 35

7 Yocto Documentation

The most important piece of the documentation for a BSP user is probably the developer
manual.

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html

Especially the chapter about common tasks is a good starting point.

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#extendpoky

The complete documentation is available in one single html page, which is good for
searching for a feature or a variable name:

http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#extendpoky
http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

Yocto Reference Manual

36 © PHYTEC Messtechnik GmbH 2015 L-813e_2

8 Revision History

Date Version # Changes in this manual
14.08.2015 Manual

 L-813e_1

First edition.
Describes the Phytec BSP release PD15.1.0 for i.MX 6 and
AM335x products.

16.09.2015 Manual
 L-813e_2

Second edition.
Describes the Phytec BSP release PD15.1.x and PD15.2.x for
i.MX 6 and PD15.1.x for AM335x products.

 Suggestions for Improvement

© PHYTEC Messtechnik GmbH 2015 L-813e_2

Document: Yocto Reference Manual
Document number: L-813e_2, September 2015

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:
Customer number:

Name:

Company:

Address:

Return to:
 PHYTEC Messtechnik GmbH
 Postfach 100403
 D-55135 Mainz, Germany
 Fax : +49 (6131) 9221-33

Published by

© PHYTEC Messtechnik GmbH 2015 Ordering No. L-813e_2
 Printed in Germany

	List of Figures
	Conventions, Abbreviations and Acronyms
	1 The Yocto Project
	1.1 Introduction
	1.2 Core Components
	1.3 Vocabulary
	1.3.1 Recipes
	1.3.2 Classes
	1.3.3 Layers
	1.3.4 Machine
	1.3.5 Distro

	1.4 Poky
	1.4.1 Bitbake
	1.4.2 Toaster

	1.5 Official Documentation

	2 Compatible Linux Distributions
	3 Introduction to the Phytec BSP
	3.1 BSP Structure
	3.1.1 BSP Management
	3.1.1.1 phyLinux
	3.1.1.2 Repo

	3.1.2 BSP Meta Data
	3.1.2.1 Poky
	3.1.2.2 meta-openembedded
	3.1.2.3 meta-qt5
	3.1.2.4 meta-phytec
	3.1.2.5 meta-phytec/meta-phy<SOC>
	3.1.2.6 meta-yogurt

	3.2 Build Configuration

	4 Installation
	4.1 Setting up the Host
	4.2 Git Configuration
	4.3 site.conf Setup

	5 phyLinux Documentation
	5.1 Get phyLinux
	5.2 Basic Usage
	5.3 Initialization
	5.4 Advanced Usage
	6.1 Start the Build
	6.2 Images
	6.3 Installing the SDK
	6.4 Accessing Development States between Releases
	6.5 BSP Features of meta-phytec and meta-yogurt
	6.5.1 Buildinfo

	6.6 Customizing the BSP
	6.6.1 How to disable the Qt Demo
	6.6.2 How to add additional Software to the BSP Image
	How to add an additional Layer
	6.6.4 How to create your own Layer
	6.6.5 How to know your Kernel and Bootloader Recipe and Version
	6.6.6 How to configure the Kernel or Bootloader
	6.6.6.1 Howto add a Configuration Fragment to a Recipe
	6.6.6.2 How to add a Complete default Configuration (defconfig) to a Recipe

	6.6.7 How to patch the Kernel or Bootloader the simple Way
	6.6.8 How to work with the Kernel and Bootloader using SRC_URI in local.conf
	6.6.9 How to work with the Kernel and Bootloader using externalsrc
	6.6.10 Adding existing Software Part 2
	6.6.11 Inspect Your Configuration

	6.7 Common Tasks
	6.7.1 Debugging a Userspace Application
	6.7.2 Generating Source Mirrors, Working Offline
	6.7.3 Compiling on the Target
	6.7.4 Different Toolchains
	6.7.5 Working with Kernel Modules

	7 Yocto Documentation
	8 Revision History

