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1. Introduction

1.1. Background. Spin [1, 2] is a popular open-source model checking tool originally developed
at Bell Labs. This document assumes you are already familiar with Spin. To learn more about
Spin, visit http://spinroot.com.

This version of the manual prepared on: June 7, 2008.
1
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The Message Passing Interface (MPI) [3, 4] is a specification for a library of message-passing
functions, with bindings in C, C++, and Fortran. There are numerous open-source and proprietary
implementations of MPI. MPI is widely used to construct high-performance parallel programs,
especially for scientific computation. This document assumes you are already familiar with MPI. For
more information on MPI, see http://www-unix.mcs.anl.gov/mpi or http://www.mpi-forum.
org.

MPI-Spin [5] is an extension to Spin that can be used to verify models of MPI programs. It
adds to Spin’s input language a number of functions, types, and constants that correspond closely
to many of the primitives described in the MPI Standard.

1.2. License. MPI-Spin works with a (very slightly) modified version of Spin called Spin-M,
which comes with its own copyright and license and must be downloaded separately. The instruc-
tions for dowloading and installing MPI-Spin can be found in §2.

MPI-Spin (but not Spin or Spin-M) is licensed under the GNU General Public License. In
particular, MPI-Spin is distributed without any warranty ; without even the implied warranty of
merchantability or fitness for a particular purpose. See the file LICENSE for details.

2. Download and Installation

To both install and use MPI-Spin, the following must all be in your path: cc, perl, which, make,
and sh. Assuming that is the case, the following process will install MPI-Spin in the directory
foo:

(1) Download, gunzip, and untar mpi-spin. Move mpi-spin into foo, if it isn’t already there.
(2) Download, gunzip, and untar Spin-M. (This is a (very slightly) modified version of Spin.)

Move Spin-M into foo/mpi-spin.
(3) Change into foo/mpi-spin (if you aren’t already there) and type ./setup. The setup script

will try to determine your type of architecture and create an appropriate local.mk file. It
does this by copying one of the files from the directory arch. If it can’t figure out your
architecture, you can specify the choice as a command line argument (e.g., ./setup linux
will copy arch/linux.mk to local.mk). These files are very simple and contain only a few
paths and flags that should be used with your C compiler and pre-processor; you can also
create one of your own, say mysystem.mk, place it in arch, and type ./setup mysystem.

(4) Type make. Everything should compile and build without warnings. If anything goes wrong,
you might want to try some different paths/flags in the previous step.

(5) There should now be a directory foo/mpi-spin/bin containing some executable files, in-
cluding ms and mscc. Either add this directory to your path or copy or move the executable
files to another directory in your path.

If you can’t get something to work, email siegel@cis.udel.edu with as complete a description
of the problem as possible.

3. The Structure of the Input File

An MPI-Spin input file is very much like an ordinary Spin input file, with a few slight differences,
and a number of additional primitives corresponding to MPI primitives.

3.1. Process type definitions. A process type definition describes a process type, but does not
instantiate any processes of that type. It has the form
BEGIN_MPI_PROC(name)
.
.
.

END_MPI_PROC(name)

http://www-unix.mcs.anl.gov/mpi
http://www.mpi-forum.org
http://www.mpi-forum.org
siegel@cis.udel.edu
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To instantiate and run a process of this type, one invokes run name(), just as one does for ordinary
Spin processes. One may instantiate multiple processes of a single type through multiple calls to
run.

An active process type definition has the form

BEGIN_ACTIVE_MPI_PROC(name, number)
.
.
.

END_ACTIVE_MPI_PROC(name)

This is just like an ordinary process type definition, but it automatically instantiates number pro-
cesses of this type in the initial state. There is no need to invoke run.

It is also necessary to instantiate and run an MPI dæmon process. This process is responsible
for carrying out all the actions of the “MPI infrastructure”, such as matching send and receive
requests. This can be done in the active or inactive manner. In the active manner one simply
inserts

ACTIVE_MPI_DAEMON

at some point in the global scope of the model. In the inactive manner one instead inserts

MPI_DAEMON

and then to run the process one invokes RUN_MPI_DAEMON. The inactive approach allows finer control
over which PIDs Spin will assign to the processes, including the MPI dæmon process, as the PIDs
are assigned in the order in which processes are instantiated.

3.2. Example: Multiple-producer single consumer. An example of the use of nonblocking
communication is given in the following MPI/C code, which is extracted from [7, Ex. 2.18]:

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
if (rank != size-1) { /* producer code */
while (1) {

/* produce data */
MPI_Send(buffer->data, buffer->datasize, MPI_CHAR, size-1 tag, comm);

}
} else { /* consumer code */
for (i=0; i < size-1; i++)

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

for (i=0; ; i=(i+1)%(size-1)) {
MPI_Wait(&(buffer[i].req), &status);
/* consume data */
MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

}
}

In this program, multiple producers repeatedly send messages to a single consumer. The con-
sumer posts receive requests for each producer in order of increasing rank, and then waits on each
request in a cyclic order. After a receive request completes, the message is consumed and another
receive request is posted for that producer. Note that overlap between computation and communi-
cation is achieved because the consumer may consume a message from a producer while the MPI
infrastructure carries out the requests to receive data from other producers.
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3.3. A “communication skeleton” model. An MPI-Spin model of this code, in which the data
has been abstracted away entirely, is given as follows:

#include "mpi-spin.prom"

#if (NPRODUCERS != NPROCS - 1)
#error "Wrong NPRODUCERS"
#endif
#define TAG 0
#define SEND_BUFF NULL
#define RECV_BUFF NULL
#define COUNT 0

BEGIN_ACTIVE_MPI_PROC(producer, NPRODUCERS)
MPI_Init(Pproducer, Pproducer->_pid);
do
:: MPI_Send(Pproducer, SEND_BUFF, COUNT, MPI_POINT, NPROCS - 1, TAG)
od;
MPI_Finalize(Pproducer)

END_MPI_PROC(producer)

BEGIN_ACTIVE_MPI_PROC(consumer, 1)
MPI_Request req[NPRODUCERS];
byte i = 0;

MPI_Init(Pconsumer, Pconsumer->_pid);
do
:: i < NPRODUCERS ->

MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT,
Pconsumer->i, TAG, &Pconsumer->req[Pconsumer->i]);

i++
:: else -> i = 0; break
od;
do
:: MPI_Wait(Pconsumer, &Pconsumer->req[Pconsumer->i],

MPI_STATUS_IGNORE);
MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT, Pconsumer->i,

TAG, &Pconsumer->req[Pconsumer->i]);
i = (i + 1)%NPRODUCERS

od;
MPI_Finalize(Pconsumer)

END_MPI_PROC(consumer)

ACTIVE_MPI_DAEMON

Some points to notice about the model are as follows.
First, it begins with a preprocessor directive to include the file mpi-spin.prom. This is the case

for all MPI-Spin models.
An active MPI process type definition is used to define a collection of processes that are to start

running automatically in the initial state (as opposed to having to be started by an explicit call
to run). Such a definition is bracketed by BEGIN_ACTIVE_MPI_PROC and END_ACTIVE_MPI_PROC
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statements. The name of the process type and the number of processes of that type to instantiate
are specified as arguments.

Also, notice that two different process types are defined, one for all of the producers and one for
the sole consumer. One could put all the code into one process type definition, which would corre-
spond more closely to the typical MPI style, but the way we have constructed the model is usually
more efficient and more readable. The model also ends with the line ACTIVE_MPI_DAEMON. This is to
declare and start the MPI dæmon process, which models all components of the MPI infrastructure.
Something like this must be included in any model that will have MPI communication.

There are some differences between the syntax of the MPI functions of MPI-Spin and those for
the C bindings of the MPI functions. First, for almost all of the MPI-Spin functions, the first
parameter is the string consisting of the letter P followed by the proctype name. We will refer to
this string as the proc string. Another difference arises from the way that C code is incorporated
into Promela models. This leads to two different contexts in a model: the C context and the
Promela context. Most of the parameters for the MPI-Spin versions of the MPI functions are in
the C context. In order to refer to process-local Promela variables (e.g., req) in a C context, one
must pre-append the proc string followed by -> to the variable name. To refer to global Promela
variables in the C context, pre-append now. to the variable name.

Notice that the MPI-Spin version of MPI_Init takes an integer argument. This is used to tell
the MPI infrastructure what rank to use for this process. This differs from the usual MPI approach
in which, conceptually, the MPI infrastructure assigns the rank and the user can only query it.
In this example, we are just using the PID assigned to the process by Spin for the rank, which
Spin stores in the process-local Promela variable _pid. That approach may in fact suffice for most
examples, but there may be cases where one wishes to assign ranks in a way that differs from the
way Spin assigns PIDs, and one should be free to do so. Basically, Spin assigns PIDs, starting at 0,
to processes in the order in which they are started. In our model, since all processes are active, this
is the same as the order in which they are declared. Hence the NPRODCUERS producer processes are
assigned PIDs 0 through NPRODUCERS− 1 and the consumer process is assigned PID NPRODUCERS.

Notice that the communication operations in the model use an MPI datatype MPI_POINT, which
does not actually exist in MPI. This datatype is used to represent data that has been abstracted
away completely (“to a point”). Conceptually, the number of bytes required to represent a “point”
is 0. Nevertheless, the count argument used in sends and receives of points is relevant. So, for
example, if one attempts to receive a message consisting of 10 points with a receive that specifies a
maximum of 5 points, a buffer overflow error will be reported by MPI-Spin. The buffer argument
is ignored for points, so we are free to use NULL for the send and receive buffers. This sort of
abstraction is convenient when one wishes to capture only the MPI “communication skeleton” of
the program and is not interested in the data itself.

At present, there is only one communicator in MPI-Spin, namely MPI_COMM_WORLD. This is why
the comm argument has been left out of all the MPI-Spin versions of the MPI functions.

The syntax and semantics of the MPI-Spin functions, as well as a description of all the constants
and types, is given in §5.

4. Executing MPI-Spin

One uses MPI-Spin to verify that one or more properties hold on all executions of an MPI-Spin
model. The process for carrying this out is quite similar to the usual process for verifying properties
of models with Spin. This typically consists of the following steps: (1) generating an analyzer from
the model, (2) compiling the analyzer, and (3) executing the analyzer. If the result of execution
of the analyzer reveals that the property can be violated, one might also want to (4) examine the
trace.
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4.1. Generating the analyzer. To generate the analyzer, one executes the script ms. In doing
so, one must specify the number of MPI processes as well as other bounds.

In the nonblocking mode (which is the default mode, and can be used for any model), the user
must specify upper bounds on (1) the total number of outstanding requests, and (2) the total
number of buffered messages. If the request bound is exceeded during the search, an error is
reported. The buffer bound is treated differently: buffering of messages is simply blocked whenever
the total number of buffered messages equals the buffer bound.

An alternative blocking mode can be used with models that use only blocking MPI communication
constructs. It is usually more efficient for such models. This mode is invoked with the command-
line option -block. In this mode, the user must also specify an upper bound on the number of
buffered messages that can exist for any ordered pair of processes. That bound is specified using
the command-line option -chansize=M, where M is the integer literal upper bound.

The full set of options for ms can be obtained by simply executing ms with no arguments:
ms: generate mpi-spin verifier source code from Promela file
Usage: ms [options] <filename>
Options:
-np=<NPROCS>

number of MPI processes (required)
-block

use channel-based model; for models with only blocking communication
-chansize=<INT>

channel size; required in blocking mode (-block)
-buf=<BUFFER>

bound on number of buffered message (required in nonblocking mode)
-req=<REQUESTS>

bound on number of outstanding requests (required in nonblocking mode)
-sym=[0|1|2]

symbolic arithmetic: 0 (Herbrand, default), 1 (IEEE), or 2 (Real)
-symhash=<SYMBOLIC_HASHTABLE_LENGTH>

hashtable length for symbolic values
-symmax=<SYMBOLIC_MAX_VALUES>

bound on number of symbolic values
-crmax=<CR_MAX_VAL>

bound on number of communication record values
-crhash=<CR_HASHTABLE_LENGTH>

hashtable length for communication record values
-notest

the model contains no MPI_Test*, MPI_*any*, nor MPI_*some*
-nocancel

the model contains no MPI_Cancel
-noprobe

the model contains no MPI_Iprobe nor MPI_Probe
-noanysource

the model contains no MPI_ANY_SOURCE
-dl

nondeterministically choose to synch/buffer sends for full
deadlock detection

-v
verbose mode

<SPIN options>
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any valid option for spin -a

The ms option -dl causes a model to be contructed in which, for every send posted, Spin will
make a nondeterministic choice between forcing the send to be delivered synchronously and allowing
it to be buffered. This is necessary for a conservative verification of properties such as freedom
from deadlock, but entails a (large) cost in terms of the number of states.

4.2. Compiling the analyzer. After executing ms, one usually just executes mscc with no argu-
ments, though one may add any options that can be added when invoking the C compiler on a
standard Spin analyzer (e.g., -DCOLLAPSE for better compression).

4.3. Executing the analyzer. The successful completion of mscc should result in an executable
analyzer pan. One then executes this in the usual way to perform the verification. Again, one
may use any option normally available in Spin, such as -n, which suppresses output of unreachable
code.

4.4. Properties. By default, MPI-Spin checks a number of generic properties that are expected
to hold in any model. These include:

(1) the program cannot deadlock (though -dl is needed for a full check)
(2) there are never two outstanding requests with buffers that intersect nontrivially
(3) the total number of outstanding requests never exceeds the request bound,
(4) when MPI_Finalize is called there are no request objects allocated for and there are no

buffered messages destined for the calling process, and
(5) the size of an incoming message is never greater than the size of the receive buffer
(6) MPI_Init is called before any other MPI function, MPI_Init and MPI_Finalize are called

at most once (each), and no MPI function other than MPI_Initialized or MPI_Finalized
is called after MPI_Finalize.

In addition, program-specific properties may be specified as assertions in the code. Finally, complex
temporal properties, including liveness properties, may be specified as never claims, which may be
generated using spin -f in the usual way.

4.5. Example.
ex218_mpsc$ ms -DNPRODUCERS=2 -np=3 -buf=1 -req=4 mpsc.prom
MPI-Spin version 1.0 of 20-Sep-2007
ex218_mpsc$ mscc
ex218_mpsc$ ./pan -n
hint: this search is more efficient if pan.c is compiled -DSAFETY
(Spin Version 4.2.9 -- 8 February 2007)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 80 byte, depth reached 2167, errors: 0
1739 states, stored
2642 states, matched
4381 transitions (= stored+matched)
7705 atomic steps

hash conflicts: 0 (resolved)
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2.827 memory usage (Mbyte)

MPI-Spin memory usage (bytes): 127153

4.6. Examining traces. If an error is discovered, the trail can be played back in the usual way for
doing this with Spin models that use embedded C code. Namely, one executes ./pan -r possibly
with additional arguments to control how much information is included in the trace. Recall that
to find a minimal trace with Spin, one can compile the analyzer with -DREACH and add the flag -i
to the invocation of pan. This same technique can be used with MPI-Spin.

For example, if we try to perform the same verification of the producer-consumer model but
specify a request bound of 3 (instead of 4), an error will be found because there is an execution in
which 4 outstanding request can exist at one time. The following edited transcript illustrates how
to discover this fact with MPI-Spin:

simple$ ms -DNPRODUCERS=2 -np=3 -buf=1 -req=3 mpsc.prom
simple$ mscc -DREACH
simple$ ./pan -i -n
.
.
.
pan: assertion violated MPI: error: request bound exceeded: 3 (at depth 43)
pan: wrote mpsc.prom.trail
(Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 56 byte, depth reached 43, errors: 1
22 states, stored
0 states, matched
22 transitions (= stored+matched)
22 atomic steps

hash conflicts: 0 (resolved)
.
.
.
pan: wrote mpsc.prom.trail
pan: reducing search depth to 9
.
.
.
State-vector 56 byte, depth reached 43, errors: 18

101 states, stored
130 states, matched
231 transitions (= stored+matched)
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159 atomic steps
.
.
.
simple$ ./pan -r -n
MPI-Spin initialized.

Rank 2: MPI_Irecv[buffer=0x0,datatype=MPI_POINT,count=0,source=0,tag=0,handle=0]
Inserting recv request in position 0.

Rank 1: MPI_Isend[buffer=0x0,datatype=MPI_POINT,count=0,dest=2,tag=0,handle=0]

Inserting send request in position 0.

Rank 2: MPI_Irecv[buffer=0x0,datatype=MPI_POINT,count=0,source=1,tag=0,handle=1]
Inserting recv request in position 2.

Rank 0: MPI_Isend[buffer=0x0,datatype=MPI_POINT,count=0,dest=2,tag=0,handle=0]
.
.
.
pan: assertion violated MPI: error: request bound exceeded: 3 (at depth 11)
spin: trail ends after 11 steps

The trace shows an execution in which first process 2 posts a receive with source 0, then process 1
posts a send, then process 2 posts a receive with source 1, then process 0 posts a send, landing the
system in the error state.

5. MPI Primitives Implemented in MPI-Spin

5.1. General MPI functions.

5.1.1. MPI_Init. Prepare the calling process for MPI communication.

MPI_Init(proc, rank)
proc the letter P followed by the proctype name, e.g. Pproducer
rank a C expression that evaluates to the integer rank for MPI to associate to this process

This function declares that the calling Spin process is an MPI process with the specified rank. It
should be called once by each such process, before the process calls any other MPI function. Note
that the rank can be different from the Spin PID, although it is often a function of the PID, as in

MPI_Init(Pproducer, Pproducer->_pid - 1)

You must take care not to assign the same rank to two different processes. (MPI-Spin will complain
if you try.) You must also ensure that the set of assigned ranks is {0, 1, . . . , NPROCS− 1}.

5.1.2. MPI_Finalize. Declare MPI communication to be finished on the calling process.

MPI_Finalize(proc)
proc the letter P followed by the proctype name, e.g. Pproducer

This function should be called once by each MPI process. It must be called after MPI_Init. No
MPI function should be called after MPI_Finalize, with the exception of MPI_Initialized and
MPI_Finalized. When MPI_Finalize is called, MPI-Spin will check that there are no buffered
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messages destined for the calling process and that there are no outstanding communication requests
for the calling process.

5.1.3. MPI_Comm_rank. Get the rank of the calling process.

MPI_Comm_rank(proc, rank)
proc the letter P followed by the proctype name, e.g. Pproducer
rank a C expression evaluating to the address of an integer type variable

This puts the rank of the calling process into the specified variable. It is usually easier to use
the C expression macro RANK(proc) instead, as in

if :: c_expr{ RANK(Pproducer) > 1 } -> ... fi

5.1.4. MPI_Comm_size. Get the number of processes in the communicator.

MPI_Comm_size(proc, size)
proc the letter P followed by the proctype name, e.g. Pproducer
size a C expression evaluating to the address of an integer variable

Since the number of processes is always specified before executing MPI-Spin, it is usually easier
to just use the macro NPROCS, as in

if :: c_expr{ RANK(Pproducer) == NPROCS - 1 } -> ... fi

5.1.5. MPI_Initialized. Determine whether this process has been initialized.

MPI_Initialized(proc)
proc the letter P followed by the proctype name, e.g. Pproducer

This is a boolean-valued Promela expression which has the value true iff the process has previously
called MPI_Init. It remains true regardless of whether the process has called MPI_Finalize.

5.1.6. MPI_Finalized. Determine whether this process has been finalized.

MPI_Finalized(proc)
proc the letter P followed by the proctype name, e.g. Pproducer

This is a boolean-valued Promela expression which has the value true iff the process has previously
called MPI_Finalize.

5.1.7. MPI_Get_count. Determine the number of data elements received.

MPI_Get_count(status, datatype, countPtr)
status C expression of type MPI_Status* pointing to status object

datatype integer type C expression giving the MPI datatype of the elements
countPtr C expression evaluating to address of integer type variable to be filled in

This function is used after a message has been received. The status object that was filled in
when the receive operation can then be queried to determine the number of data elements in the
message. This value is returned into the variable pointed to by countPtr.

5.1.8. MPI_Pack. Copy data in inbuf into the outbuf.
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MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position)
inbuf C expression of type void* pointing to inbuf

incount number of elements in inbuf (C expression of integer type)
datatype type of each element
outbuf C expression of type void* pointing to outbuf
outsize size (in bytes) of outbuf
position on entry points to part of outbuf for data, incremented on exit

5.1.9. MPI_Unpack. Copy data from the inbuf into the outbuf.

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype)
inbuf C expression of type void* pointing to inbuf
insize size (in bytes) of inbuf

position on entry points to data in inbuf to be copied, incremented on exit
outbuf C expression of type void* pointing to outbuf

outcount number of elements in outbuf
datatype type of each element

5.2. MPI blocking point-to-point functions.

5.2.1. MPI_Send. Execute a standard-mode blocking send.

MPI_Send(proc, buffer, count, datatype, dest, tag)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of send buffer
count C expression of integer type evaluating to number of elements in send buffer

datatype one of the MPI datatypes; C expression of integer type
dest the rank of the destination process; C expression of integer type
tag tag to associate to the message; C expression of integer type

All of the integer parameters are unsigned and are limited to the range [0, 250]. Predefined
datatypes include MPI_POINT, MPI_BYTE, MPI_INT, and MPI_SYMBOLIC.

5.2.2. MPI_Recv. Execute a blocking receive.

MPI_Recv(proc, buffer, count, datatype, source, tag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of receive buffer
count C expression of integer type giving upper bound on number of elements to receive

datatype one of the MPI datatypes; C expression of integer type
source the rank of the source process; C expression of integer type

tag the tag of the message to receive; C expression of integer type
status C expression of type MPI_Status* pointing to status object

All of the integer parameters are unsigned and are limited to the range [0, 250]. Predefined
datatypes include MPI_POINT, MPI_BYTE, MPI_INT, and MPI_SYMBOLIC. For source one may use
the special wildcard value MPI_ANY_SOURCE. For tag one may use the special wildcard value
MPI_ANY_TAG. The status may be MPI_STATUS_IGNORE if the status is not needed.

5.2.3. MPI_Sendrecv. Execute a blocking send and receive.
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MPI_Sendrecv(proc, sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, status)

proc the letter P followed by the proctype name, e.g. Pproducer
sendbuf C expression of type void* pointing to beginning of send buffer

sendcount C expression of integer type evaluating to number of elements in sendbuf
sendtype datatypes for elements in sendbuf

dest the rank of the destination process; C expression of integer type
sendtag tag to associate to message sent; C expression of integer type
recvbuf C expression of type void* pointing to beginning of receive buffer

recvcount C expression of integer type giving upper bound on number of elements to receive
recvtype one of the MPI datatypes; C expression of integer type
source the rank of the source process; C expression of integer type
recvtag the tag of the message to receive; C expression of integer type
status C expression of type MPI_Status* pointing to status object

This combines one call to MPI_Send and one call to MPI_Recv in a single call. The semantics are
equivalent to the case where the infrastructure forks off two processes, one to execute the send and
one to execute the receive. The function returns only after both operations have completed. It is
useful to avoid deadlock in many commonly-occuring scenarios.

5.2.4. MPI_Sendrecv_replace. Execute a blocking send and receive with one buffer.

MPI_Sendrecv_replace(proc, buffer, count, datatype, dest, sendtag,
source, recvtag, status)

proc the letter P followed by the proctype name, e.g. Pproducer
buffer pointer to buffer used for send and receive
count number of elements to be sent and upper bound on number to receive

datatype datatype for send and receive
dest the rank of the destination process; C expression of integer type

sendtag tag to associate to message sent; C expression of integer type
source the rank of the source process; C expression of integer type
recvtag the tag of the message to receive; C expression of integer type
status C expression of type MPI_Status* pointing to status object

Like MPI_Sendrecv, except a single buffer is used for both the send and receive. The user calls
this with the buffer containing the outgoing message. Upon return, the buffer will hold the incoming
message. The infrastructure takes care of any temporary buffering required to ensure nothing is
overwritten.

5.3. MPI collective functions.

5.3.1. MPI_Barrier. Block until all procs reach barrier.

MPI_Barrier(proc)
proc the letter P followed by the proctype name, e.g. Pproducer

5.3.2. MPI_Allreduce. Apply reduction operation across procs and return result to all.
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MPI_Allreduce(proc, sendbuf, recvbuf, count, datatype, op)
proc the letter P followed by the proctype name, e.g. Pproducer

sendbuf pointer to send buffer
recvbuf pointer to receive buffer
count number of elements in send buffer (and receive buffer)

datatype type of each element
op reduction operation, e.g., MPI_SUM

Apply reduction operation across all processes to the vectors in the send buffers. The result is
returned to all processes in the receive buffers.

5.3.3. MPI_Reduce. Apply reduction operation across procs and return result to root.

MPI_Allreduce(proc, sendbuf, recvbuf, count, datatype, op, root)
proc the letter P followed by the proctype name, e.g. Pproducer

sendbuf pointer to send buffer
recvbuf pointer to receive buffer
count number of elements in send buffer (and receive buffer)

datatype type of each element
op reduction operation, e.g., MPI_SUM

root integer C expression specifying root

Apply reduction operation across all processes to the vectors in the send buffers. The result
is returned to the root’s receive buffer. The receive buffer arguments on non-root processes are
ignored.

5.3.4. MPI_Bcast. Broadcast message to all procs.

MPI_Bcast(proc, buffer, count, datatype, root)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer pointer to send buffer on root, receive buffer on other procs
count number of elements in buffer (same on all procs)

datatype type of element to send or receive
root integer C expression specifying root

5.4. MPI nonblocking standard-mode point-to-point functions.

5.4.1. MPI_Isend. Post a non-persistent send request.

MPI_Isend(proc, buffer, count, datatype, dest, tag, request)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of send buffer
count C expression of integer type evaluating to number of elements in send buffer

datatype one of the MPI datatypes; C expression of integer type
dest the rank of the destination process; C expression of integer type
tag tag to associate to the message; C expression of integer type

request C expression of type MPI_Request* giving address of request handle variable

All of the integer parameters are unsigned and are limited to the range [0, 250]. Predefined
datatypes include MPI_POINT, MPI_BYTE, MPI_INT, and MPI_SYMBOLIC.

5.4.2. MPI_Irecv. Post a non-persistent receive request.
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MPI_Irecv(proc, buffer, count, datatype, source, tag, request)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of receive buffer
count C expression of integer type giving upper bound on number of elements to receive

datatype one of the MPI datatypes; C expression of integer type
source the rank of the source process; C expression of integer type

tag the tag of the message to receive; C expression of integer type
request C expression of type MPI_Request* giving address of request handle variable

All of the integer parameters are unsigned and are limited to the range [0, 250]. Predefined
datatypes include MPI_POINT, MPI_BYTE, MPI_INT, and MPI_SYMBOLIC. For source one may use
the special wildcard value MPI_ANY_SOURCE. For tag one may use the special wildcard value
MPI_ANY_TAG.

5.4.3. MPI_Wait. Block till request completes.

MPI_Wait(proc, request, status)
proc the letter P followed by the proctype name, e.g. Pproducer

request C expression of type MPI_Request* giving address of request handle variable
status C expression of type MPI_Status* pointing to status object

This statement is enabled iff the request has been completed or successfully canceled. It then
fills in the fields of the status object with the appropriate values, and, for a non-persistent request,
deallocates the request object and sets the request handle to MPI_REQUEST_NULL. For a persistent
request, it resets the request object (making it inactive) but does not modify the request handle
or deallocate the request object.

If the value of the request handle is already MPI_REQUEST_NULL, or if the request is inactive,
then this function is always enabled and the status will be set to empty (the status object with
source = MPI_ANY_SOURCE, tag = MPI_ANY_TAG, and count = 0).

Note: a request that has been successfully canceled is considered to be complete for the purposes
of MPI_Wait and all other “completion operations.”

5.4.4. MPI_Test. Determine whether the request has completed.

MPI_Test(proc, request, flag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

request C expression of type MPI_Request* giving address of request handle variable
flag a Promela variable of integer type

status C expression of type MPI_Status* pointing to status object

This function is always enabled. It returns 0 into the flag variable if request is not complete.
If the request has completed, it sets flag to 1 and proceeds exactly as in the case of MPI_Wait
(5.4.3). Note that flag is a Promela variable and not a C expression. This allows one to use a
Promela variable of type bit (or bool), which cannot be referred to in a C expression.

Just as in the case of MPI_Wait, if the value of the request handle is already MPI_REQUEST_NULL,
or if the request is inactive, then this will set flag to 1 and the status will be set to empty.

Note: a request that has been successfully canceled is considered to be complete for the purposes
of MPI_Test and all other completion operations. In this case flag will be set to 1 and the status
object to canceled.

5.4.5. MPI_Request_free. Deallocate request object.
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MPI_Request_free(proc, request)
proc the letter P followed by the proctype name, e.g. Pproducer

request C expression of type MPI_Request* giving address of request handle variable

If the request has completed, been successfully canceled, or is inactive, this operation deallocates
the request object. Otherwise, the request object is effectively marked to be deallocated as soon
as it completes, is successfully canceled, or becomes inactive. In either case, the request handle
variable is immediately set to MPI_REQUEST_NULL.

Note: the request may not be MPI_REQUEST_NULL, and MPI-Spin will complain (with an asser-
tion violation) if it is.

5.4.6. MPI_Request_get_status. Get the status of a request without destroying it.

MPI_Request_get_status(proc, request, flag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

request C expression of type MPI_Request* giving address of request handle variable
flag a Promela variable of integer type (usually bit or bool)

status C expression of type MPI_Status* pointing to status object

If the request has completed, this function fills in the status fields and sets flag to 1. The
request is not deallocated and the request handle is not modified. If the request has not completed
(or is inactive), it sets flag to 0 and status to undefined.

An assertion violation occurs if the request is MPI_REQUEST_NULL.
The special constant MPI_STATUS_IGNORE can be used for the status argument if the status is

not needed.
If the request has been successfully canceled then this will set flag to 1 and the status fields will

be set to certain value which indicate a canceled request. A subsequent call to MPI_Test_cancelled
(§5.4.16) on the status object can be used to determine whether the request was canceled.

5.4.7. MPI_Waitany. Wait for at least one request in an array to complete then process it.

MPI_Waitany(proc, count, requestArray, index, status)
proc the letter P followed by the proctype name, e.g. Pproducer
count C expression of integer type giving number of requests in array

requestArray array of requests of length count; C expression of type MPI_Request*
index pointer to a byte variable which will be set; C expression of type uchar*
status C expression of type MPI_Status* pointing to status object

This function blocks until at least one of the active requests has completed, then chooses one
such request, sets index to the index of the chosen request in the request array, and proceeds as in
the case of MPI_Wait (§5.4.3) with the chosen request.

A request that has been successfully canceled is considered to be complete for these purposes.
Some or all of the requests may be inactive or MPI_REQUEST_NULL. If all requests are inactive

or MPI_REQUEST_NULL then this function returns without blocking with status set to empty and
index set to MPI_UNDEFINED.

5.4.8. MPI_Testany. Determine if a request in an array has completed and if so process it.
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MPI_Testany(proc, count, requestArray, index, flag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

count C expression of integer type giving number of requests in array
requestArray array of requests of length count; C expression of type MPI_Request*

index pointer to a byte variable which will be set; C expression of type uchar*
flag a Promela variable of integer type (usually bit or bool)

status C expression of type MPI_Status* pointing to status object

Determines without blocking whether at least one of the given active requests has completed. If
so, one such request is selected, flag is set to 1, index is set to the index in the request array of
the chosen request, and the request is processed in the manner of MPI_Wait (§5.4.3). If none of the
requests has completed, flag is set to 0, index to MPI_UNDEFINED, and status to undefined.

If all requests are inactive or MPI_REQUEST_NULL, flag is set to 1, index to MPI_UNDEFINED, and
status to empty.

A request that has been successfully canceled is considered to be complete for these purposes.

5.4.9. MPI_Waitall. Wait for all requests in an array to complete, then process them.

MPI_Waitall(proc, count, requestArray, statusArray)
proc the letter P followed by the proctype name, e.g. Pproducer
count C expression of integer type giving number of requests in array

requestArray array of requests of length count; C expression of type MPI_Request*
statusArray array of status objects; C expression of type MPI_Status*

This function blocks until all active requests have completed, then sets all the corresponding
statuses in the status array. It has the same effect as executing MPI_Wait on each request/status
in any order.

If there’s no need to know the statuses, the constant MPI_STATUSES_IGNORE can be used for the
statusArray argument.

A request that has been successfully canceled is considered complete for these purposes.
Some or all of the requests may be inactive or MPI_REQUEST_NULL. This function is enabled as

soon as all active requests have completed. All statuses associated to inactive or null requests are
set to empty.

5.4.10. MPI_Testall. Determine if all requests in an array have completed and if so process them.

MPI_Testall(proc, count, requestArray, flag, statusArray)
proc the letter P followed by the proctype name, e.g. Pproducer

count C expression of integer type giving number of requests in array
requestArray array of requests of length count; C expression of type MPI_Request*

flag a Promela variable of integer type (usually bit or bool)
statusArray array of status objects; C expression of type MPI_Status*

This function determines without blocking whether all active requests in the list have completed.
If they have, it sets flag to 1 and fills in the status array with the appropriate values. Otherwise,
it sets flag to 0.

A request that has been successfully canceled is considered complete for these purposes.
Some or all of the requests may be inactive or MPI_REQUEST_NULL. This functions sets flag to

1 if all active requests have completed. All statuses associated to inactive or null requests are set
to empty.

5.4.11. MPI_Waitsome. Wait until at least one request completes then process the completed ones.
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MPI_Waitsome(proc, incount, requestArray, outcount, indexArray, statusArray)
proc the letter P followed by the proctype name, e.g. Pproducer

incount the length of requestArray; C expression of integer type
requestArray array of requests of length incount; C expression of type MPI_Request*

outcount location for number of completed requests; C expression of type uchar*
indexArray location for indices of completed requests; C expression of type uchar*
statusArray array of status objects; C expression of type MPI_Status*

This function becomes enabled what at least one of the active requests in the list has completed.
It then processes all those requests that have completed. It returns, in outcount, the number of
completed requests, and it fills in the first outcount entries in indexArray with the indices of the
completed requests. It also fills in the first outcount entries of statusArray with the statuses of
the completed requests.

If all the requests are inactive or MPI_REQUEST_NULL, this returns immediately with outcount
set to MPI_UNDEFINED.

The constant MPI_STATUSES_IGNORE can be used if the statuses are not needed.

5.4.12. MPI_Testsome. Process all completed requests in an array.

MPI_Testsome(proc, incount, requestArray, outcount, indexArray, statusArray)
proc the letter P followed by the proctype name, e.g. Pproducer

incount the length of requestArray; C expression of integer type
requestArray array of requests of length incount; C expression of type MPI_Request*

outcount location for number of completed requests; C expression of type uchar*
indexArray location for indices of completed requests; C expression of type uchar*
statusArray array of status objects; C expression of type MPI_Status*

If at least one of the active requests in the list has completed, this returns in outcount the
number of such requests and the corresponding information in indexArray and statusArray. If
all the requests are inactive or MPI_REQUEST_NULL, this sets outcount to MPI_UNDEFINED. If there
is at least one active request but none of the active requests has completed, this sets outcount to
0.

The constant MPI_STATUSES_IGNORE can be used if the statuses are not needed.

5.4.13. MPI_Iprobe. Determines if there is an incoming message matching the given parameters.

MPI_Iprobe(proc, source, tag, flag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

source rank of source (integer C expr) or MPI_ANY_SOURCE
tag message tag (integer C expr) or MPI_ANY_TAG

flag Promela variable of integer type (usually boolean)
status pointer to status object (C expr of type MPI_Status*)

Sets flag to 1 if there is a visible message or send request destined for this process whose source
and tag parameters match those specified in the arguments to this function. Otherwise sets flag
to 0. It does not block. If flag is set to 1 then the status object is also filled in.

5.4.14. MPI_Probe. Block until there is an incoming message matching the given parameters.

MPI_Probe(proc, source, tag, flag, status)
proc the letter P followed by the proctype name, e.g. Pproducer

source rank of source (integer C expr) or MPI_ANY_SOURCE
tag message tag (integer C expr) or MPI_ANY_TAG

status pointer to status object (C expr of type MPI_Status*)



18 STEPHEN F. SIEGEL

Like MPI_Iprobe, only this one blocks until a matching message or request is detected, rather
than setting a flag.

5.4.15. MPI_Cancel. Attempt to cancel a communication request.

MPI_Cancel(proc, request)
proc the letter P followed by the proctype name, e.g. Pproducer

request pointer to request handle variable (C expr of type MPI_Request*

This attemtps to cancel the request associated with request. If the request has already com-
pleted or been canceled, this is effectively a no-op. A completion operation (e.g., MPI_Wait) still
needs to be invoked on the request. The status object can then be queried to determine whether the
communication was canceled. Note that it is possible to cancel a send request after it becomes vis-
ible. Hence it is possible to cancel a send request after a probe on the receiver side has successfully
probed the request.

5.4.16. MPI_Test_cancelled. Examine status to determine if request was really canceled.

MPI_Test_cancelled(status, flag)
status pointer to status object (C expr of type MPI_Status*)
flag Promela variable of integer type (usually boolean)

This determines whether the communication that resulted in the given status completed normally
or was canceled. If it was canceled, the flag is set to 1, else it is set to 0.

5.4.17. MPI_Send_init. Create an inactive persistent send request.

MPI_Send_init(proc, buffer, count, datatype, dest, tag, request)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of send buffer
count C expression of integer type evaluating to number of elements in send buffer

datatype one of the MPI datatypes; C expression of integer type
dest the rank of the destination process; C expression of integer type
tag tag to associate to the message; C expression of integer type

request C expression of type MPI_Request* giving address of request handle variable

This initiates a persistent send request. The parameters have the same meaning as the ones
for MPI_Isend (§5.4.1). However, in the case of a persistent request, the new request is inactive,
i.e., is not associated with any ongoing communication operation. To activate the request, one
must invoke MPI_Start. Also, after calling one of the completion operations (e.g., MPI_Wait), the
persistent request is not deallocated. Instead, it is returned to the inactive state, so it can be
started again. To deallocate a persistent request, one must use MPI_Request_free (§5.4.5).

5.4.18. MPI_Recv_init. Create an inactive persistent receive request.

MPI_Recv_init(proc, buffer, count, datatype, source, tag, request)
proc the letter P followed by the proctype name, e.g. Pproducer

buffer C expression of type void* pointing to beginning of receive buffer
count C expression of integer type giving upper bound on number of elements to receive

datatype one of the MPI datatypes; C expression of integer type
source the rank of the source process; C expression of integer type

tag the tag of the message to receive; C expression of integer type
request C expression of type MPI_Request* giving address of request handle variable

This creates an inactive persistent receive request. See the notes on persistent requests in §5.4.17.
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5.4.19. MPI_Start. Make an inactive persistent request active.

MPI_Start(proc, request)
proc the letter P followed by the proctype name, e.g. Pproducer

request C expression of type MPI_Request* giving address of request handle variable

Starts an inactive persistent request. If the request is already active, an error is reported.

5.4.20. MPI_Startall. Make all requests in an array of inactive requests active.

MPI_Startall(proc, count, requestArray)
proc the letter P followed by the proctype name, e.g. Pproducer

count number of requests in array (C expr of integer type)
requestArray array of requests of length count; C expression of type MPI_Request*

Applies MPI_Start to each of the requests in the array.

5.5. Types.
(1) MPI_Request: a handle for a request object
(2) MPI_Status: an object with fields for source, tag, count, “cancelation”, error
(3) MPI_Symbolic: a symbolic arithmetic expression
(4) MPI_Op: a reduction operation, e.g. MPI_SUM

5.6. Constants.
(1) MPI_ANY_SOURCE: used to receive messages from any source
(2) MPI_ANY_TAG: used to receive messages with any tag
(3) MPI_STATUS_IGNORE: used for status argument when you don’t care about status
(4) MPI_STATUSES_IGNORE: like above but in place of an array of statuses
(5) MPI_REQUEST_NULL: a handle that doesn’t refer to any request object
(6) MPI_BYTE: an MPI datatype corresponding to Promela’s byte, C’s unsigned char
(7) MPI_SHORT: an MPI datatype corresponding to Promela/C’s short (2 bytes)
(8) MPI_INT: an MPI datatype corresponding to Promela/C’s int (4 bytes)
(9) MPI_POINT: a virtual datatype that takes up 0 bytes

(10) MPI_SYMBOLIC: a new datatype corresponding to MPI_Symbolic (4 bytes)
(11) MPI_UNDEFINED: a constant used to represent an undefined value
(12) MPI_OP_NULL: undefined reduction operation
(13) MPI_MAX: maximum reduction operation
(14) MPI_MIN: minimum reduction operation
(15) MPI_SUM: sum reduction operation
(16) MPI_PROD: product reduction operation
(17) MPI_LAND: logical and reduction operation
(18) MPI_BAND: bit-wise and reduction operation
(19) MPI_LOR: logical or reduction operation
(20) MPI_BOR: bit-wise or reduction operation
(21) MPI_LXOR: logical xor reduction operation
(22) MPI_BXOR: bit-wise xor reduction operation
(23) MPI_MAXLOC: max value and location reduction operation
(24) MPI_MINLOC: min value and location reduction operation

6. Using Symbolic Algebra in MPI-Spin

Symbolic expressions can be incorporated into an MPI-Spin model using the type MPI_Symbolic
together with a number of constants and functions for that type. Integer, real, and boolean values
can all be represented symbolically.
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6.1. Creating symbolic expressions. Integer and boolean concrete values can be transformed
into symbolic values. For example, the following constants of type MPI_Symbolic are always avail-
able in either C or Promela mode:

• SYM_ZERO: zero (0)
• SYM_ONE: one (1)
• SYM_FALSE: the boolean value false
• SYM_TRUE: the boolean value true

Moreover, the following C function returns a symbolic expression for any given integer:

6.1.1. SYM_intConstant. Return an integer as a symbolic expression.

SYM_intConstant(int n)
n any integer

Note that this function, and in fact all the functions that operate on symbolic expressions, can
only be used in C mode.

A symbolic constant can be thought of as a symbol such as xi. Such an expression is returned
by the following function:

6.1.2. SYM_symbolicConstant. Return the symbolic constant xi.

SYM_symbolicConstant(int i)
i nonnegative integer index for the symbolic constant

Conceptually, the symbolic constants x0, x1, . . . exist and this function just returns one of them.
In other words, it is perfectly fine to call this function twice with the same value for i; the function
will just return the same symbolic constant xi each time.

6.2. Operations on symbolic expressions. New symbolic expressions can be formed from old
ones by applying the functions described here. When applied to real-valued symbolic expressions,
the exact behavior of these operations depends on the value of the arithmetic mode when the
operation is called. There are three modes, numbered 0, 1, and 2: (0) Herbrand, (1) IEEE, and (2)
Real.

In Herbrand mode (0), all operations are treated as uninterpreted functions. Hence no simplifi-
cations or reorderings are performed at all.

In IEEE mode (1), certain manipulations are performed that are guaranteed to preserve the
evaluation of the expression in any IEEE754-compliant arithmetic. Roughly speaking, this IEEE
standard specifies that the result of floating-point addition, multiplication, subtraction, division,
and negation must be the same as the result obtained by first performing the operation exactly and
then rounding (using one of several specified rounding functions). Some consequences of this are the
following: (1) addition and multiplication are commutative, (2) 1x = x = x1, 0 + x = x = x + 0,
and x − x = 0 for any floating-point value x, and (3) x/x = 1 for non-zero x. In IEEE mode,
the operations below take advantage of these (and other similar) facts to simplify the expressions
returned whenever possible.

In Real mode (2), manipulations are performed that are guaranteed to preserve the evaluation
of the expression when treated as an expression of real numbers, i.e., with full precision arithmetic.

The following functions take numeric (real- or integer-valued) symbolic expressions as arguments
and return a numeric symbolic expression:
MPI_Symbolic SYM_add(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_subtract(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_multiply(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_divide(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_sqrt(MPI_Symbolic operand); /* square root */
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MPI_Symbolic SYM_abs(MPI_Symbolic operand); /* absolute value */

The following operations return a boolean-valued symbolic expression. The paramters p and q
represent boolean-valued symbolic expressions, while x and y represent numeric symbolic expres-
sions.

MPI_Symbolic SYM_equals(MPI_Symbolic x, MPI_Symbolic y); /* x == y */
MPI_Symbolic SYM_nequals(MPI_Symbolic x, MPI_Symbolic y); /* x != y */
MPI_Symbolic SYM_lessThan(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_greaterThan(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_lessThanOrEquals(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_greaterThanOrEquals(MPI_Symbolic x, MPI_Symbolic y);
MPI_Symbolic SYM_conjunct(MPI_Symbolic p, MPI_Symbolic q); /* p && q */
MPI_Symbolic SYM_negate(MPI_Symbolic p); /* !p */

6.3. Reasoning about symbolic expressions.

6.3.1. SYM_isEqualTo. Determine whether condition implies equality.

int SYM_isEqualTo(MPI_Symbolic pc, MPI_Symbolic x, MPI_Symbolic y)
pc a boolean-value symbolic expression
x any symbolic expression
y any symbolic expression

Let p1 denote the proposition pc ⇒ x = y and let p0 denote the proposition pc ⇒ x 6= y.
This function returns one of three values: 1, 0, or −1. A value of 1 means that p1 is a theorem.
A value of 0 means that p0 is a theorem. A value of −1 means “don’t know,” i.e., the (simple)
theorem-proving techniques used to implement this function could prove neither p0 nor p1. Note
that a returned value of −1 may be returned either because neither p0 nor p1 is a theorem (as is
the case, for example, if pc ≡ true, and x and y are distinct symbolic constants), or because one
of them is a theorem but the theorem-proving techniques were too weak to discover this fact.

The symbol pc is used because it stands for path condition. The path condition, a concept from
symbolic execution, represents the condition that must have held in order for execution to have
followed the path that it did. The most common application of this function deals with modeling
conditional branches in models that keep track of the path condition. Typically, if the original code
contains a branch of the type

if (x==y) {...} else {...}

then the model would begin by invoking this function. If the value returned is 1 or 0 then the
appropriate branch is taken. If the value returned is −1 then the model must make a nondetermin-
istic choice between 0 and 1, update the path condition appropriately, and then take the branch.
During verification, all possible nondeterministic choices will be explored and hence all possible
executions of the program will be explored (and possibly some infeasible executions as well). For
details on this approach, see [6].

6.3.2. SYM_isLessThan. Determine whether condition implies x < y.

int SYM_isLessThan(MPI_Symbolic pc, MPI_Symbolic x, MPI_Symbolic y)
pc a boolean-value symbolic expression
x any symbolic expression
y any symbolic expression

Like above, but with p1 denoting pc⇒ x < y and p0 denoting pc⇒ x ≥ y.
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7. Examples

A number of examples can be found in the examples directory of MPI-Spin. Most of them can
be executed by simply typing make. The best way to learn to use MPI-Spin is to examine the
source and make files for these examples.

7.1. Examples from MPI—The Complete Reference. The subdirectory of examples called
MPI-TheCompleteReference contains examples from the popular MPI text [7]. Many correctness
properties were verified for these examples, and, in two cases, faults were disovered. The following
is a summary of these results.
Example 2.17: Use of nonblocking communications in Jacobi computation. There is a fault in the
code that is revealed by certain configurations. The problem occurs when on at least one process,
m = 1, which will happen whenever n < 2p. Then two sends are posted from the same buffer
(the single column of local matrix B on at least one process). For all configurations we examined
outside of this problematic region, we are able to verify that the sequential and parallel versions
are Herbrand equivalent, using the symbolic execution method. (The sequential version is given as
Example 2.12 earlier in the book.)

Example 2.18: Multiple producer, single-consumer code using nonblocking communication. We
are able to verify four properties:

p0: freedom from deadlock and standard assertions,
p1: every message produced is eventually consumed,
p2: no producer becomes permanently blocked,
p3: for a fixed producer, messages are consumed in the order produced.

Example 2.19: Multiple producer, single-consumer code, modified to use test calls. There is a
bug. The code

i = 0;
while (1) { /* main loop */

for (flag=0; !flag; i=(i+1)%(size-1)) {
MPI_Test(&(buffer[i].req), &flag, &status);

}
consume_and_post(i);

}

(where consume_and_post(i) stands in for code that consumes from buffer[i] and then posts
another receive request to process i) is incorrect: the statement i=(i+1)%(size-1) is erroneously
executed after the call to MPI_Test sets flag to true but before exiting the loop and calling
consume_and_post(i). The correct code should look something like the following:

i = 0;
while (1) { /* main loop */

flag = 0;
while (1) {
MPI_Test(&(buffer[i].req), &flag, &status);
if (flag) break;
i=(i+1)%(size-1);

}
consume_and_post(i);
i=(i+1)%(size-1);

}
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The fault was revealed in attempting to verify p0 in a small configuration. The failure reported by
MPI-Spin was an attempt to exceed the specified bound on the number of outstanding requests.
The configuration consisted of 3 processes, no buffering, and an upper bound of 4 outstanding
requests. After correcting the bug, we verified all 4 properties over a range of configurations.

Example 2.20: An example using MPI_REQUEST_FREE. We verified freedom from deadlock and
standard assertions.

Example 2.21: Message ordering for nonblocking operations. Verified freedom from deadlock,
standard assertions, and that the messages were always matched with the correct receives.

Example 2.22: Order of completion for nonblocking operations. Freedom from deadlock, standard
assertions, and that in either process, the two requests could complete in either order.

Example 2.23: An illustration of progress semantics. Freedom from deadlock, standard asser-
tions, and the correct values are received by both receives.

Example 2.24: An illustration of buffering for nonblocking messages. Freedom from deadlock,
standard assertions, and the correct values are received by both receives.

Example 2.25: Out of order communication with nonblocking messages. The code in the book
clearly does not correspond to the discussion given in the text. I took the code from the first edition
instead. Freedom from deadlock, standard assertions, and the correct values are received by both
receives.

Example 2.26: Producer-consumer code using waitany. This is the third version of the multiple-
producer single-consumer example to be considered in the book. It replaces the busy-wait test
loop in Example 2.19 with a single call to MPI_Waitany. As pointed out in the book, this has the
disadvantage that it allows “starvation”—the consumer can repeatedly consume messages from one
process while ignoring messages sent by all other procesess. This is reflected in the analysis:

p0: still holds
p1: fails. Spin finds a counterexample which ends up in an infinite loop in which producer 1

has sent a message and the request has completed, but the consumer repeatedly chooses
the message from process 0 in the MPI_Waitany.

p2: also fails, even with progress assumptions and weak fairness. Spin produces a counterex-
ample in which producer 1 sends a message, this is matched by the receive posted by the
consumer, completes, producer 1 posts the second send, this one isn’t matched (because
the MPI_Waitany in the consumer repeatedly returns the producer 0 match), and it doesn’t
complete (the MPI infrastructure has decided to block this completion until a matching
receive is posted), so the producer blocks at the wait. Meanwhile the consumer repeatedly
selects the match for producer 0.

p3: still holds.

Example 2.27: Main loop of Jacobi computation using waitall. Exact same results as for Example
2.17.

Example 2.28: A client-server code where starvation is prevented. (Note client-server should be
producer-consumer.) Fourth version of the multiple-producer single-consumer example. It replaces
the MPI_Waitany of Example 2.26 with an MPI_Waitsome. This is to correct the starvation problem.
All 4 properties hold.
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Example 2.29: Use a blocking probe to wait for an incoming message. There’s an i used for
two different variables but otherwise the program appears to be correct. We verified freedom from
deadlock and the standard assertions and that the values are received into i and x.

Example 2.30: A similar program to the previous example, but with a problem. An incorrect use
of probe, and, sure enough, Spin catches the bug.

Example 2.31: Code using MPI_CANCEL. I had to add a line to wait for the completion of the
request in process 1 after posting the second receive. Without that, you can terminate with an
unfreed request object still floating around. Otherwise everything seems to be OK.

Example 2.32: Jacobi computation, using persistent requests. Everything works very well (mod-
ulo the usual error).

Example 2.33: Starvation-free producer-consumer code. This is the 5th and final version of
the multiple-producer, single-consumer system. Like the third version, Example 2.26, this uses an
MPI_Waitany at each loop iteration to select and process one completed receive request. However,
unlike that version, starvation is prevented by a judicious use of MPI_REQUEST_NULL.
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