Using Application-Driven Checkpointing Logic
for Hot Spare High Availability

Antti Kantee
<antti.kantee@cubical.fi>

Cubical Solutions Ltd.
http://www.cubical.fi/

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
Department of Computer Science and Engineering

Author Date

Antti Kantee August 11th, 2004
Pages
85

Title of thesis
Using Application-Driven Checkpointing Logic for Hot Spare High Availability

Professorship Professorship Code
Software Technology T-106
Supervisor

Eljas Soisalon-Soininen

Instructor
Mika Honkanen

For critical services, downtime is not an option. The downtime of a service can be addressed by
replicating the units which provide the service. However, if the session state is important, it is not
enough to simply replicate units: sharing the continuously updated internal state of the units must
also be made possible. If execution can be continued on another unit after the point-of-failure
without any significant loss of state, the unit is said to have a Hot Spare.

Saving the state of a unit so that it can be restored at a later point in time and space is known as
checkpointing. For the checkpointing approach to be a viable option in interactive services, it must
not disrupt the normal program operation in any way noticeable to the user.

The goal of this work is to present a checkpointing facility which can be used in applications
where checkpointing should and can not disrupt normal program operation. To accomplish this, the
responsibility of taking a checkpoint is left up to the application. The implications are twofold:
checkpointing will be done at exactly the right time and for exactly the right set of data, but each
application must be individually modified to support checkpointing. A framework is provided for
the application programmer so that it is possible to concentrate on the important issues when
adding Hot Spare capabilities: what to checkpoint and when to checkpoint. Checkpointing effi-
ciency is further increased by introducing kernel functionality to support incremental checkpoints.

Keywords: hot spares, high availability, checkpointing, application-driven checkpointing, kernel
support for checkpointing

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Tietotekniikan osasto

Tekija Péivays

Antti Kantee 11. elokuuta, 2004
Sivumaara
85

Tyo6n nimi

Sovellusvetoisten tarkistuspisteiden kayttd kuumavarmennetun korkean kadytettdvyyden saavut-
tamiseksi

Professuuri Koodi
Ohjelmistojarjestelmét T-106

Tyon valvoja
Eljas Soisalon-Soininen

|

Ty6n ohjaaja
Mika Honkanen

\

Kriittisilla palveluilla ei ole varaa olla epdkunnossa. Palvelun saatavuutta voidaan parantaa
monistamalla yksikdt, jotka tarjoavat palvelua. Jos istunnon sisdinen tila on tarked, ei pelkka yk-
sikdiden monistaminen riitd: istunnon sisdinen tila tulee my0ds kyeta siirtimaan varayksikdihin.
Jos suoritusta voidaan jatkaa varayksikdssa ilman merkittavaa sisaisen tilan haviéta, sanotaan yk-
sikdn olevan kuumavarmennettu.

Yksikdn tilan tallentamista mahdollista palautusta varten sanotaan tarkistuspisteen ottamiseksi.
Jotta tarkistuspisteen ottaminen interaktiivisessa palvelussa olisi mahdollista, se ei saa héirita nor-
maalia suoritusta haitaksi asti.

Taman tyon padmaarana on luoda tarkistuspisteiden ottamista varten kehys, jonka avulla tark-
istuspisteiden ottaminen tayttdd aiemmin maéaritellyn tehokkuuskriteerin. Ongelman
ratkaisemiseksi tarkistuspisteiden ottaminen jatetddn sovelluksen vastuulle. Taman hyvéna puole-
na on se, ettd oman semanttisen kayttdytymisensa tuntevana sovellus voi ottaa tarkistuspisteen ju-
uri oikealle datajoukolle juuri oikeaan aikaan. Huonona puolena on luonnollisesti se, ettd jokainen
sovellus pitaa yksitellen muokata tukemaan tarkistuspisteiden ottamista. Ty®ssd laaditun ohjel-
mointikirjaston tarkoitus on paastad sovelluksen muokkaaja painimaan keskeisten kysymysten
parissa: milloin tarkistuspiste otetaan ja mita siihen sisaltyy. Tarkistuspisteiden ottamista tehoste-
taan entisestddn muokkaamalla kayttojarjestelmén ydinta niin, ettd se tarjoaa tarkistuspisteiden ot-
tamiseen sopivia rajapintoja.

Avainsanat: kuumavarmennus, korkea kaytettavyys, tarkistuspisteiden ottaminen, sovellusvetoiset
tarkistuspisteet, kayttojarjestelman ytimen tuki tarkistuspisteille

-ili-
Preface

It has been almost exactly a full year since initial discussions on this thesis were held. It
has been a very interesting year, not only from the technical perspective. It has been a very edu-
cational year, not only from the scientific perspective. It has been a year of varying projects, and
occasionally trying to deal with a more high-priority short-term project while still trying to keep
this thesis held together in my mind. Most of all, it has been a year of challenging choices: know-
ing what to focus on when surrounded by a plethora of interesting directions in which to carry the
work is far from a trivial problem with a unique and well-defined solution.

First, 1 would like to thank Cubical Solutions Ltd. for giving me a subject to work on and
funding the work. Especially 1 would like to thank Juha-Matti Liukkonen for giving an initial
idea on how to accomplish the task and providing encouraging support along the way. Also, |
would like to thank him for the trust placed in my work and for not dictating all the answers, but
rather letting me fairly freely investigate the problems and experiment with various possibilities
and discover my own solutions.

This work would probably never have happened without NetBSD being available as open
source. It is the system that got me interested about operating systems and their internals, and
without it | would probably be miserable working with various high-level languages. Therefore, |
want to thank all the people who have ever put effort into NetBSD, and especially those who have
worked hard on making the virtual memory subsystem code and documentation easy to compre-
hend. A very special thank you goes to Chuck Silvers, who gave me pointers and tips on where
to attack the virtual memory subsystem when | was beginning this work.

I also managed to pump out knowledge out of plenty of other people. My friend and co-
worker llpo Ruotsalainen was an invaluable source of technical knowledge on operating system
internals, and also remembered to be sufficiently critical about my work and not just believe
everything | say without any explanation. Nuutti Kotivuori provided insights on how to deal with
the networking problem, or rather why to not deal with it. Ignatios Souvatzis provided proofread-
ing help and gave valuable technical pointers. Marcin Dobrucki invested a huge effort in proof-
reading the work and attacked me with a barrage of general comments.

My family deserves thanks for the support they provided. Their main contribution without
a doubt was making sure I never forgot | am not yet finished. This was accomplished by a simple
technique: constantly asking when | was going to be done. Special thanks go to my lovely little
sister, Jessica, who probably misunderstood something, and went around telling people that I was
finishing my doctoral thesis soon. Or perhaps she was trying to motivate me?

Staff at the Helsinki University of Technology made this work better than what it would
have been without them. Tim Fowler unraveled the mysteries of commas and other aspects in the
English language for me and made sure that the text you are currently reading is error-free in a
grammatical sense. And finally, Professor Eljas Soisalon-Soininen acted as the supervisor of this
work. He provided excellent pointers to scientific work in the area and helped me structure the
text and format it according to existing standards for scientific work.

Helsinki, August 2004
Antti Kantee

-iv-

Table of Contents

1. Introduction .

2. Checkpointing

2.1. Various Approaches to Checkpomtlng

2.2. External state: Dealing with File Descriptors .
2.3. Multithreading and Checkpointing :
2.4. Support for Various Programming Languages .
3. Application-Driven Checkpointing .

3.1. General Approach

3.2. Taking a Checkpoint

3.3. Kernel-Side Implementation .

3.4. Reserving Memory for Checkpointing .

3.5. Checkpoint Structure

3.6. Restoring from a Checkpoint .

4. Support Architecture

4.1. Configuring The Cluster

4.2. Run-Time Actions

4.3. Recovering From Failures .

5. Adapting The Framework

5.1. Adapting The Kernel and Virtual Memory Subsystem

5.2. Adapting Open Source Applications to the Framework .

6. Performance Measurements .
6.1. Analysis of Results .
7. Conclusions .

co o1 U1

13
13
15
15
18
26
28
30
35
39
39
40
40
43
43
48
53
56
59

3-1
3-2:
33
3-4. .
: Application-level Memory Allocator Interface
3-6:
4-1:
4-2:
5-1

31
3-2.
3-3
: Summary of Semantic Differences Between fork() and cptfork()
6-1:

Figures

: TCP/IP Stack Overview.
31
3-2.
3-3
3-4:
3-5:
3-6: :
: Checkpointing Duration - Total Memory S|ze
6-2:
6-3:
6-4:

Architecture Overview . .
Copy-On-Write Memory Space .
Kernel Interface Callgraph .
Memory Allocation .

Checkpoint Structure .
Checkpoint Memory Description.

Checkpointing Duration - Dirty Pages .

Number of Checkpointsvs. Total Memory .
Number of Checkpointsvs. Dirty Memory .

Listings

Pseudo-code for Servicing Network Connections.

Checkpoint Pseudo-Code in Application
Checkpointing Kernel Interface .
struct __cpt_range.

Checkpoint Header Structure .
Service Initiaization.

IP address takeover .
Tetrismain loop .

Tables

Wired vs. Non-Wired Pages and Normal fork()

Copy-On-Write vs. Share vs. Drop, 1 Map Entry .

Share vs. Drop, 20000 Map Entries .

Test Program Parameters

17
19
25
30
31
35

56
57
57

16
18
24
26
29
32
39
41
49

22
22
23
23
53

-Vi-

Glossary of Acronyms

ACK
API .
ARP.
BSD.
Cow
CVsS.
DMA
ELF.
FD .
HA .
ID .
IPC .
MMU
NFS.
PID .
POSIX .
RAID
RISC
SMOP .
TCPCB.
UVM
VM .
VM .
VMA . .
WYSIWYG

Acknowledgement

Application Programming Interface
Address Resolution Protocol
Berkeley Software Distribution
Copy On Write

Concurrent \Versions System

Direct Memory Access

Executable and Linking Format
File Descriptor

High Availability

Identifier

Inter-Process Communication
Memory Management Unit
Network File System

Process Identifier

Portable Operating System Interface

Redundant Array of Inexpensive Disks

Reduced Instruction Set Computer
Simple Matter Of Programming

Tranmission Control Protocol Control Block
Left as an exercise for the reader (see [42])

Virtual Memory

Virtual Memory subsystem
Virtual Memory Area (Linux)
What You See Is What You Get

Using Application-Driven Checkpointing Logic
for Hot Spare High Availability

Antti Kantee
<antti.kantee@cubical.fi>

Cubical Solutions Ltd.
http://www.cubical.fi/

1. Introduction

Hot Spare High Availability support for an application means that if (when) the primary
unit fails due to a fault in either software or hardware, a reserve unit will automatically take over
the responsibilities of the primary unit. Execution will continue in the reserve unit with no or
insignificant loss of internal application state. In a networking context this means that for Hot
Spare support to be accomplished, the relevant pieces of the internal application state must be
succesfully delivered to the spare units over the network at key points during execution. In addi-
tion to delivering the state to a spare unit, the system must have some cluster control mechanism
that will take the necessary steps to transfer control to a reserve unit when the current primary
unit fails. Once the problems involving saving state and restoring state are solved, the rest is
mostly an issue which software professionals tend to call a SMOP?!. Therefore, the bulk of this
work will concentrate on discussing the ideas involving saving and restoring process state, and
simply present the rest of the framework as a collection of necessary support routines.

Hot Spare High Availability

Hot Spare High Availability in itself is not a new idea. In hardware it is not uncommon to
achieve fail-safety by simply duplicating the hardware. A popular example of this kind of
approach is a RAID [1] for guaranteeing non-interrupted disk-service, even in the event of a unit
failure.

However, hardware concepts are difficult to map directly into the world of software,
because software is an abstract entity, while hardware is not.

First of all, as in the case of RAID and most other hardware-based High Availability
approaches, it is possible to place the spare units alongside the primary unit on a reliable bus.
This means that the spare units can always be in a consistent state with the primany unit by
snooping all the external state changes from the reliable bus. Unfortunately this concept cannot

! Simple Matter Of Programming

-2-

be directly mapped into a networking environment, since usually the lower layers, which can be
considered to be the "bus" in networking, do not guarantee reliable delivery of all datagrams.
This problem is usually addressed in upper layers in the protocol stack, but the protocols used
there do not in turn map to multiple endpoints, i.e. they lack a multicast property.

Second, hardware usually fails because it breaks physically, not because there is a logical
fault in it. Software, in contrast, fails either because the underlying hardware breaks, or because
of a logical failure (programming error). Since software cannot prevent or detect hardware
failure?, it must attempt to address situations which it can influence. If software could know at
run-time, that it was going to crash after executing the next instruction, it would simply choose
not to execute it. However, things are unfortunately not that simple, and software must concen-
trate on not making the same mistake again. Due to the deterministic nature of software, execut-
ing the same code with the same input will lead to failure again, and therefore software must
avoid executing same code paths with the same input when recovering from failure. Two pioneer-
ing ideas in this field are Design Diversity [2] and Data Diversity [3].

The classic method for building software with Hot Spare capabilities is to make most of it
someone else’s problem. Database systems usually offer some form of High Availability support
for securing access to data, even in the event of a software/hardware failure. An example of a
solution provided by a database manufacturer is Solid Availability [4].

Using a database solution requires some form of non-transparent application-driven logic,
since it is impossible to magically restore e.g. kernel state from the database. This may have seri-
ous implications for an application which was written with the essential state spread around the
entire program and not nicely contained in one location. However, this is an inherent "problem"
with all application-driven approaches.

In addition to being non-transparent for the application, a full-blown database solution may
be a heavy and resource-consuming approach, especially in scenarios where the application itself
is relatively lightweight.

Cold Spare High Availability

Another approach to fail-safety in software seen in clustering solutions often these days is
Cold Spare High Availability. This means that, similar to the Hot Spare case, the clustering solu-
tion will automatically detect a unit has failed and transfer responsibility to a reserve unit. How-
ever, in striking contrast to Hot Spare support, the application state will be lost and it will be
forced to start over. If we take an analogy to the aforementioned RAID example, Cold Spare®
support would mean that a failing disk would be automatically replaced, but the data on the
replaced disk would be lost. Data would then have to be retrieved from backups, or, in the worst
case, recreated from scratch, causing a disruption in normal operation.

Several vendors provide commercial clustering solutions which offer Cold Spare function-
ality. Examples include SGI’s Fail-Safe [5] for normal Linux-based computers and Sun
Microsystem’s Sun Cluster [6], which is aimed toward heavy high-end servers.

2 Well, at least not completely, although hardware usually shows signs of weakness before it
fails for the final time, and that can be detected with some success.

% Do not be confused by the fact that in RAID termilogy a cold spare actually means a disk that
is sitting e.g. on a shelf and must be manually installed. After replacing the disk the RAID can
rebuild itself, hopefully with no data loss. However, the point of the example was to draw an anal-
ogy, and not to get into a struggle with terminology.

The Role of Checkpointing

Traditionally the use for process checkpointing [7] and migration [8,9] has lain in the
domain of scientific computation, where the application consists of heavy CPU-bound calculation
with little 1/O-type interaction with the outside world or the operating system kernel. Being able
to checkpoint the work periodically is an important element, since calculation jobs typically span
weeks or months. Losing weeks or months worth of calculations due to a machine crash is not a
very entertaining idea. Additionally, in a distributed computing environment, migrating the cal-
culation tasks from servers with a high load to more idle servers can save significant amounts of
wall-time.

To avoid forcing users to invent their own home-grown routines and file formats to be able
to checkpoint their work periodically, some vendors have included checkpointing support in their
operating systems. For example, the UNICOS operating system for the numbercrunching Cray
supercomputers [10] and SGI’s IRIX [11] provide checkpointing utilities and system routines as
part of the operating system. As can be expected, both cases listed above do not support for
example network connections.

A problem in solutions geared towards scientific calculation is that they are not targeted for
applications with real-time or even "user-time" requirements, meaning that taking a checkpoint
can pause the application for an arbitrary period of time, up to several minutes in the worst case.
Even though people are slowly learning that computers make people wait for them, pauses of sev-
eral minutes are not acceptable. An acceptable pause is defined as one undetectable to the human
user, and can range from a microscopic subsecond period to a period of a few seconds, depending
on the application. For example, people are used to the fact that sometimes web pages are a little
slow to load onto the web browser. If they cannot attribute the difference from normal packet loss
or the server being overloaded to the checkpointing routine, we are safe.

Also, the old techniques do not generally support networking on any level. With network-
ing becoming more and more a part of our lives, it is increasingly important to develop techniques
which allow networking applications to be used in a failsafe manner. One problem to solve is the
fact that the networking protocols used on the Internet today were not designed for failsafe com-
puting. Circumventing the inherent limitations is difficult, and the current de-facto standards have
enough "critical mass" behind them to make introducing incompatible solutions a long and ardu-
ous path to follow.

Requirements

The main objective of this work is to develop a checkpointing framework that makes it pos-
sible to provide Hot Spare High Availability for network servers. This puts high demands on the
routines that are used to take a checkpoint, since the server application should not be frozen for
arbitrary periods during execution. An optimal solution from the perspective of this goal will
give an interface that is totally asynchronous from the application that is checkpointed, but of
course still maintains internal consistency for the data that is being checkpointed. Other impor-
tant requirements for our checkpointing facility, not necessarily available in all solutions, are sup-
port for multithreaded programs and, naturally, support for networking 1/0.

ThisWork

I will start with an in-depth discussion of checkpointing techniques in Chapter 2, and view
current solutions from the perspective of various requirements. In Chapter 3 | will go into dis-
cussing application-driven checkpointing, and explain what were the necessary steps to produce a
checkpointing framework that fullfills the requirements. The support architecture is described in
Chapter 4, and adapting the scheme to other systems is considered in Chapter 5. Preformance
measurements are presented in Chapter 6 and the necessary deductions are made. Finally, in
Chapter 7, conclusions about the work as a whole are drawn.

The reader is assumed to have at least some level of prior engagement with operating sys-
tem and especially UNIx® internals. Nevertheless, | have tried to explain most concepts thor-
oughly and in basic terms.

This work has been implemented on the NetBSD operating system [12]. As a side-effect,
most of the terminology (data structures, routine names, etc.) discussed in this work will be from
the BSD family of unix. If you are familiar with some other family of uNiX, such as AT&T Sys-
tem V, you may find that the terminology differs slightly.

2. Checkpointing

Checkpointing is the process of taking a shapshot image of an application so that the appli-
cation can be fully restored from the image at a later point in time and space. This involves sav-
ing the essential pieces of a program’s memory to the image and, in addition, saving information
about the program’s state, such as open files and possibly also the machine register values.

As an area of study, checkpointing has received a fair amount of interest from computer sci-
entists. Ready-made solutions are available from bare-bones solutions [9,13] to very complex
and highly optimized packages [14]. We are especially interested in thread-support [15,16] and
fully asynchronous checkpointing with a bonus from optimizing 1/0O-load. Perhaps surprisingly,
these are in very short supply, and none are suited for exactly what this work aims to accomplish.

2.1. Various Approachesto Checkpointing

Checkpointing can be accomplished using several different approaches. These methods are
not necessarily mutually exclusive with each other, and are not necessarily interchangeable with
each other. Some approaches offer additional features when combined with other approaches.

* pure userspace solutions

« kernel-assisted solutions

« transparent checkpointing

« partial checkpointing

« incremental checkpointing

« application-driven restoration
 compiler-assisted checkpointing

I will proceed to discuss the methods listed above, give an overview of what they are capable of,
and what are the good and bad implications of each approach.

2.1.1. Userspace Checkpointing

The main advantage in constructing a checkpointing facility purely by using userspace
functionality is the possibility of using standard interfaces such as POSIX and X/Open and there-
fore making the solution widely portable.

A common technique to accomplish this is to request a core dump when we wish to take a
checkpoint [9]. The core file created by the system is an exact memory dump of the process
including information such as the process stack, heap and program counter value. The machine
information for the last stack frame can be saved and restored using setjmp() and longjmp(). Core
files are mostly meant for post-mortem debugging of programs, but it is possible to (ab)use the
facility like this also. Using the information in the core file it is possible to resume the program at
the exact same point as where the checkpoint was taken. However, a core file only includes the
user-visible state of a process and does not include information "hidden" in the kernel.

Kernel-side state is kept by applying a library layer in between the running program and the
libc system call stubs. This way, the checkpointing facility can track the system calls made and
the arguments given to them and record the necessary information for later use. For example, if a
program were to open() a file and then Iseek() to set the current file descriptor offset, the library
would record this information into its internal data structures. At restore-time the library would
call the respective system calls again with correct arguments to set up the environment. This way

-6-

it is possible to "save" kernel state without groveling through the internal data structures of the
kernel. This type of method is called system call augmentation and is used by various different
checkpoint facilities such as A. Wennmacher’s chkpt library [17].

Doing checkpointing work purely by means of userspace routines is not the most efficient
way possible [18] to take checkpoints. The routines used by userspace checkpointing must dupli-
cate or simulate information or routines which already exist in the kernel, and that may amount to
significant overhead.

2.1.2. Kerne-Assisted Checkpointing

This type of checkpointing "allows™ the creator of the checkpointing facility to modify the
kernel to provide routines which better suit the goals of the checkpointing facility [14,19]. This
of course immediately implies that one must have access to the kernel sources for the approach to
be possible in the first place; porting the checkpointing facility to a commercial vendor’s UNIX
will be difficult at best. The inherent loss of portability due to the non-standard internals of uniIx
kernels is made up for by two different aspects.

First of all, we have direct access to all the information in the kernel, and not just the infor-
mation provided by various interfaces to userspace. Therefore, for instance in the case of file
descriptors, we do not need to necessarily save all information by using the system call augmenta-
tion technique. We can look directly inside st ruct fil e and save f _of f set directly from
the kernel when taking a checkpoint. The feasibility of this approach is further discussed in
Chapter 2.2.2.

Second, and slightly related what was already discussed above, it is possible to provide
interfaces necessary for efficient checkpointing, even if none like them have existed in traditional
kernels. For example, by using a user-level checkpointing facility it is almost impossible to guar-
antee that the PID of the restore application will be the same as before the checkpoint. This is
because on a UNIX system a user program has no interface by which it could influence its process
ID; it has to accept whatever fork() gives. By modifying the kernel and reserving a range purely
for checkpointable software it should be possible to guarantee that the process ID remains the
same even after restoration.

2.1.3. Transparent Checkpointing

Transparent checkpointing [9,11,17,20] means that the process of checkpointing is trans-
parent to the program being checkpointed. This means that the programmer does not need to
worry making checkpoints, the checkpointing facility will choose the time and place to check-
point automatically. This also implies that checkpointing can be most of the time added as an af-
terthought. Unfortunately, transparent checkpointing suffers from some disadvantages which
relate to not knowing what the application is trying to accomplish. For example, if the applica-
tion involves outside 1/0, the checkpointing facility cannot know when the application has
reached a consistent state in 1/0, and would be a good candidate for a checkpoint.

Various techniques can be used to choose when to checkpoint. The simplest of these is
interval-based checkpointing, where the checkpoint is taken always after t ticks from the clock.

The opposite of transparent checkpointing is application-driven checkpointing, where the
application decides when to checkpoint and what to checkpoint. Of course hybrids are possible,

-7-

such as the application deciding when to checkpoint, but the framework deciding what to check-
point, and so forth [17].

2.1.4. Partial Checkpointing

The checkpointing framework can either opt to checkpoint the entire address space, or just
portions of it. Checkpointing everything is easier, as a manner of speaking, since it avoids the
problem of worrying what is important data and what is not.

The price paid for checkpointing the entire virtual address space is naturally an unnecessar-
ily large checkpoint file, since part of the checkpoint will include information that is not really
related to the application state. To take a wild example, suppose that the application uses a large
amount of memory at startup which it has requested through malloc() and free()’d it a little while
later. The memory has not necessarily been freed back to the operating system by the user-level
allocator library, and will therefore be included in the checkpoint.

Using some form of application-directed checkpointing, the application can provide hints to
the checkpointing facility on what to checkpoint. In the example above, the application could tell
the checkpointing facility that there is no need to checkpoint the temporary memory space [20].

2.1.5. Incremental Checkpointing

Incremental checkpointing can be used to try to mitigate the effects of the huge 1/0-load of
writing the entire VM space to disk. Instead of writing out the entire checkpoint-space each time
a checkpoint is taken, the idea is to write only the changed portions of the checkpoint-space. The
most common granularity to do this is per memory page.

Almost all checkpointing facilities attempt to do incremental checkpointing, since it is a
very cheap way of boosting performance [14,19,20].

2.1.6. Application-Driven Restoration

One possibility is to not checkpoint the exact machine state at all, but to rely on the applica-
tion-code to rebuild it during restoration from the information stored in the checkpoint-file. The
rationale for this being possible is simple: the application managed to get itself into the state from
which the checkpoint was taken already once before, so it should be able to do it again. Of
course, "shortcuts" using the checkpointed data must be programmed into the application code for
this to work.

During restore, the application goes over the contents of the checkpoint file, and does the
necessary operations to restore application and machine state. For application state, it is mostly a
guestion of reloading the data structure contents from the checkpoint file back to memory. For
machine state the operations include, for example, creating the necessary threads the application
had running and replaying, per system call augmentation [17], some system calls to get the sys-
tem state back to what the application expects. To "replay" the program counter back to the point
before the failure the application should have code to successfully navigate back to the start of the
main event loop.

-8-

2.1.7. Compiler-Assisted Checkpointing

The idea behind this approach is that the compiler will decide when the program should be
checkpointed. The approach is transparent to the programmer, but application recompilation is
required with a compiler* which supports compiler-assisted checkpointing [21]. The idea can
also be extended to do further code analysis which enables the creation of checkpoints that are re-
storable in a heterogeneous environment [22].

2.2. External State: Dealing with File Descriptors

As noted in literature [13], the problem of general migration of file descriptors from one
machine to another is an extremely difficult one. Most implementations simply give up or offer
very limited support for general file descriptor migration [9]. If we have to deal with buffering
layers in the application or libraries (such as stdio), the problem may be even more difficult. In
this section, | will first discuss why general file descriptor migration is difficult by going over two
examples on how the file descriptor state is spread throughout the kernel. After that | will present
a very simple idea for creating persistent file descriptors inside a single host.

2.2.1. File Descriptorsinside and Out

Purely from the application point-of-view, a file descriptor is nothing more than an opaque
ID number used to access resources such as files and network communication endpoints. The
operating system provides certain routines to manipulate file descriptor attributes, such as Iseek()
used to position the read/write pointer for regular files and setsockopt() to control socket options,
while fentl() provides generic control over file descriptors. Once the calls are done, the state is
kept inside the kernel so that the application does not need to worry about it. Should the applica-
tion want to worry about it, the kernel provides query routines for accessing the state.

Making sure that the application restored from a checkpoint will have the same set of file
descriptors is fairly easy, and simply involves copying struct fil edesc and its contents
from the process structure. This is easy because the file descriptors are associated with the
process. However, this does us practically no good, since the backing data structures behind file
descriptors are very hard to move over.

2.2.2. Regular Files

On most UNIX[23] systems, including 4.4BSD [24] descendants, all open files are described
using a generic vnode [25] data structure. For example, files on the BSD native FFS filesystem
are accessed from the kernel through the filesystem-independent vnode-layer, which then calls®
the filesystem-specific routines to do the actual operations.

With serialization in mind, the amount and type of data contained within a vnode is nothing
short of frightening. As can be seen from the vnode paper [25], a vnode is very integrally linked

4 The word "compiler” is meant to be understood in the broad sense as all the tools beloning to
the suite. The checkpoint-generating tool does not necessarily have to be an integral part of the
compiler.

5 Actually the "calls" from the vnode-layer are done through a pre-initialized function pointer ta-
ble, so perhaps "bouncing™ would be a more descriptive word.

-9-

into the system and to other vnodes in ways which do not depend at all on the process context.
Copying one vnode would therefore require a lot of non-opaque data copying. Additionally, to
make things worse (as a manner of speaking), the vnodes are coupled with the virtual memory
data structures and therefore backing up a raw vnode will also require involvement with the vir-
tual memory subsystem. | therefore conclude that it will be too difficult to grab the data struc-
tures related to a file from within the kernel and transport them to backup storage.

2.2.3. TCP Sockets

To understand what needs to be taken into account when thinking of checkpointing TCP
sockets, one must first understand how TCP works and especially how TCP support is imple-
mented. An implementation description of the BSD networking subsystem, which is still mostly
accurate even these days, is provided in TCP/IP Illustrated Vol. 2 [26]. However, there have been
some changes to modern-day NetBSD, and the following discussion is based on the current status
of the kernel sources from around early 2004. For readers unfamiliar with the TCP/IP implemen-
tation of BSD operating systems, it may help to try to look up the relevant parts from TCP/IP
Illustrated [26] also, since it provides a much more detailed description.

For starters, let us review what layers a standard TCP/IP networking stack is constructed of.
This overview is presented in Figure 2-1. Enclosed in parenthesis are the specific cases we will
look at. | will consider state in each layer starting from the bottom and working my way up. It is
important to remember that processing done in each layer is completely orthogonal to processing
done in other layers, so it is possible to replace one layer completely and have the entire network-
ing stack still work. Also, it should be kept in mind that the following discussion is from the
point of view of the correct operation of TCP.

TCP/IP Stack Overview

application layer (sockets)

transport layer (TCPv4)

network layer (IPv4)

physical layer (ethernet)

Figure2-1

-10-

Ethernet

The physical or link layer consists of the actual hardware talking with the network and the
device driver involved in controlling the network adapter.

Data is received from the network by the adapter and that data is transferred to operating
system memory most often by using DMA. When data is available for the operating system to
process, an interrupt is flagged. As the operating system serves the interrupt request, it hands the
data received of to the interface input function, which happens to be ether_input() in this case.
The ethernet input routine does common processing for ethernet frames, such as validity checking
and ethernet header stripping, and passes the received frame of to the upper layer input routine.
In this case the correct routine, as identified by the frame header, is the IP input routine, which is
aptly named ip_input(). This is not done by a direct call, but a soft interrupt using the sched-
netisr() macro, so that the operating system can process the request when it has time to do so,
instead of doing it immediately.

When sending data, the picture looks pretty much the same, except data flow is taking place
in the opposite direction. Data received from the upper layer comes through the ether output()
routine, which does some processing according to the network family type®, and then adds the
packet to the interface send queue. If the interface is not currently transmitting, the device driver
if_start() method is called to offload packets from the send queue to the DMA transmit buffers
and instruct the device to start transmitting. When the device has completed transmitting, it flags
an interrupt, which the driver acknowledges. It also checks if there are packets in the send queue
by calling its if_start() routine.

There is no state involved on this layer: the networking hardware works as it is instructed to
on a per-frame basis. There is no fundamental difference between packets disappearing because

they are dropped somewhere along the network and disappearing because of a local machine
crash.

IP

The IP layer is not particularly interesting from our point of view, since we situate our-
selves as the end hosts and do care not about routing. What basically happens for receive is that
IP fragments are assembled, and data is passed upwards to tcp input() through the function
pointer array in inetsw. Conversely, output is handled by, if necessary, fragmenting the IP data-
grams and then passing them downward to the if_output() routine, which in our case is ether_out-
put(), as already mentioned above.

IP is a datagram protocol and there is no actual state we wish to keep. If, for example, we
lose half of an already received fragmented datagram, it does not matter. One of the functions of
TCP is to cope with the possibility of packets being lost. Therefore the same as was said for eth-
ernet applies also here.

TCP

The TCP layer code is not for the fainthearted. In this discussion | will skip the functional-
ity that is related to establishing the connection and keeping it alive and move straight on to pro-
cessing data and the respective ACKs.

®e.9. IPv4, IPv6 or Appletalk

-11-

As mentioned in the previous section, data is passed onto the TCP layer from below by
calling tcp_input(). Most people have probably seen shorter functions in their lifetime:
tcp_input() is nearing 2000 lines of code. If we assume that we have received a valid TCP seg-
ment and have located the corresponding tcpch’ for the connection, we can skip forward to data
and ACK processing. If an ACK was received, the code checks how much data was ACKed,
adjusts the send buffer, updates the congestion window and turns off retransmission timers if all
outstanding data is now ACKed. If data was received in-order, it is appended directly to the
receiver socket buffer and ACKed. Else, if the received segment is within the receive window, the
data is processed via the reassembly routine tcp_reass(). The reassembly routine will take care of
processing and ACKing the input data once the missing pieces are received from the peer.

Data transmission in the TCP layer happens through the tcp_output() function. It is a much
more humane function than tcp_input(), and only a mere 800 lines in length. It is used for all
transmission, such as transmitting ACKs, advertising the receive window size and opening/clos-
ing connections, but in we will only consider data transmission in this discussion. Normally
sending data does not force TCP to transmit anything. If the window size (minimum of send win-
dow and congestion window sizes) is zero, no data is sent, but it is left in the socket buffer. If
data can be sent, processing is done, the retransmission timers set (if not already set), and the data
is passed down onto ip_output().

Since TCP is the layer that takes care of retransmissions of data, we need to be very careful
if we wish to not lose after data has passed to this layer. If we consider only the data transmission
portion of TCP (as we have done above), we still need to save data at a terrifying granularity. To
avoid losing any incoming data, we must checkpoint all data before we ACK it. The other choice
would be to defer ACKing until we know the application has processed the data and done a
checkpoint after that, but this does not strike as a particularly sane approach. For outgoing data
the simplification of the situation is slightly better: we can remove data from the retransmission
buffer as soon as we get an ACK from our peer. If we crash immediately afterwards and resend
that data again after restore, it will look just like the ACK was been dropped. Even though simply
taking care of data restransmission is difficult, it does not come even close to addressing the quag-
mire as a whole. Having to take care of state transitions, window sizes and segment numbers is a
whole other deal. The tcpcb structure has dozens of members; it is doubtful that they would have
been put in there just for their good looks.

Sockets

The purpose of the socket layer is to abstract the details of the underlying networking pro-
tocols from the application. It is used through the system call layer by the application for trans-
mitting and receiving data. Some of the system calls are specially designed for sockets, such as
sendto() and recvfrom(), but also more general-purpose calls operating on file descriptors, such as
read() and writev(), can be used. In addition, there are system calls meant for creating and con-
trolling the sockets, such as accept(), socket() and friends. Finally, there are ones for communi-
cating with the protocol stacks hidden below, such as setsockopt() and getpeername().

From the viewpoint of checkpointing TCP connections, a critical part is the socket buffer.

For outgoing data, data in the socket buffer represents data that has already been written to the

socket by the application, but not yet been transmitted by the lower layers of the protocol stack.
" tepeb stands for TCP Control Block. The tcpeb identifies a TCP connection and stores all the

state related that connection. It is the essence of what we wish to save from the TCP layer for
checkpointing.

-12-

But from the point-of-view of the application, the data is already sent. For incoming data, data in
the socket buffer has already been dealt with by the transport layer, but has not yet been read by
the application. However, from the point-of-view of the TCP peer we are communicating with,
the data has already been safely delivered. Therefore, if we lose any data in the socket buffers,
we are in trouble. The main problem is, once again, that we do not know when the application is
going to process the data. If we checkpoint data in the socket buffer, and simply assume that we
can remove it after the application has read it, we can still go wrong. If a failure happens before
or after the application has processed the data, but before the application checkpoints itself, data
will be lost.

The MIT Chaosnet networking facility [27] features a separate receipt and acknowledge-
ment for data which has been received by the system and which has been read by the application,
respectively®. This is a step in the right direction, but does still not completely solve the related
problems.

2.2.4. TCP Socket Failsafe

For reasons mentioned above | conclude that it is extremely difficult to checkpoint TCP
sockets even with support from the kernel. The main reason for this is that ACKing incoming
data is hidden from the application, and TCP on the other hand does not know how or when the
application will process the data and checkpoint the results. The only generally smart solution for
this is building an application-level protocol resilient to failures using for example a two-phase
commit protocol. But if we have to modify the application-level protocol, we can surely also
teach the application to reconnect in the case that the TCP connection is lost, and the whole issue
of a persistent TCP socket across checkpoints becomes void.

2.2.5. Persistent TCP Sockets with Modified Endpoints

We are free to modify our local TCP stack as much as we wish. However, we must remain
compatible with the standard TCP implementation on the opposite end due to our requirements.
If it would be possible to modify both ends to be checkpointing-compliant, the problem would
have been solved by techniques presented in various packages [28,29,30].

2.2.6. Persistent File Descriptors Within a Single Host

The trivial solution for accomplishing "temporal™ file descriptor migration is extremely
simple. The uNIx kernel already provides facilities for making copies of file descriptors, because
they are needed by routines such as fork(). We can take those facilities into use. At checkpoint-
time, the file descriptors are simply copied to the kernel-side state of the init process, a process
that is available on all UNIX systems. If more than one process is doing checkpointing, the file
descriptors also need to be given special IDs so that there will not be duplicate ID numbers
between processes. During restore, the respective file descriptors are then copied from init to the
process doing restore.

8 In case data is read immediately, the acknowledgement serves as an implicit receipt for effi-
ciency reasons.

-13-

It is important to notice that this solution does not actually involve taking a snapshot of the
file descriptor backing state: it simply involves copying the file descriptor table. This solution
will not be persistent against machine reboots and will not survive if init is killed and restarted®.
It is indeed the fact that file descriptors have backing data structures spread throughout the kernel
that makes general file descriptor checkpointing a difficult problem.

2.3. Multithreading and Checkpointing

Writing threading programs is a fairly new programming paradigm that has gained momen-
tum only in recent years. The main reason for this is probably that threading facilities were not
available long ago. In principle the idea is simple: instead of only one execution context execut-
ing within a process, create multiple execution contexts running simultaneously!®. The main
advantage is being able to spread execution to multiple CPUs in certain situations and reducing
execution wall-time. It is also possible to use the thread context for storing execution context,
instead of creating and allocating separate data structures for that task.

Unfortunately, thread programming seems to be a misunderstood art. Most threaded pro-
grams do not really need to use threads, and are just written that way because the programmer
was sloppy and did not bother to structure the program well enough to suit a non-threaded
approach. Threads themselves are of course not a bad thing, but using them usually makes pro-
grams much more complex leaving room for extra bugs. Locking problems, timing-dependant
bugs and debugging difficulties are all issues that anyone who has ever written a threading pro-
gram has run into.

Many checkpointing facilities do not support threaded programs [9,20]. This can be attrib-
uted either to the fact that the facilities were written before threads were really used, or to the fact
that including threading support in the facility is not exactly a trivial task. When only one thread
is used, we can be sure where it is currently executing. When multiple threads are being used, we
cannot be certain where they precisely are executing unless we stop them and know that they are
suspended. If we simply check their state and allow them to run, they might end up in a "bad"
state before we managed to store their status in the checkpoint. For example, we have no way of
restoring threads that are blocking inside the kernel waiting for something (short of replaying the
action that made them block in the first place, of course). Therefore, threaded checkpointing
solutions opt to suspend checkpointed threads to a nice state in userspace [15,16].

2.4. Support for Various Programming L anguages

The computer hardware speaks only machine language. It does not care if the program was
written in assembly, C or Java. The same goes for the operating system between the hardware
and the program in question. For application-transparent checkpointing, it does not matter which
language the application was written in, since all the operating system and computer hardware
will care for is the machine language resulting from compilation (or interpretation). However, for
application-driven checkpointing, the programming language will probably make all the differ-
ence in the world. Some hybrids are also possible, where the programming language is used to

® On the other hand, UNIX implementations will generally reboot when init dies, so it is of little
real concern.

10 Or so it would seem, unless you have multiple CPUs, and your threading facilitity is written in
a fashion that using multiple CPUs is possible.

-14-

stop all application threads, but after that the entire program memory image is checkpointed
transparently [31].

Application-driven checkpointing is a much more fathomable concept in "WY SIWYG"
languages, such as C, where code clearly maps to machine language. In some modern program-
ming languages, written code may have unexpected results after being compiled, such asi ++
contacting Yahoo instead of incrementing an integer by one'l. Adding application-driven support
to programs written in such languages may be tricky business because of hidden side-effects.

Despite what | mentioned above, some object-oriented high-level 1anguages actually make
application-driven checkpointing easier. Serialization or marshalling is the act of converting an
object to an octet-stream. This octet-stream can be them transmitted over network, stored to disk,
encrypted, played on the radio, or done to as one pleases. Aslong the original stream is delivered
to the reverse operation at some other point in space and time, the original object that was serial-
ized will be restored. Not all objects can of course be magically serialized without any work, but
this provides interesting options nevertheless. Examples of programming languages with native
serialization support are Java with the interface java.io.Serializable [32] and Python with Pickle
[33].

11 Do not despair, this | S atrue example starring the wonderful C++ language!

-15-

3. Application-Driven Checkpointing

Before going on to discuss the actual implementation and the reasonings behind our check-
pointing facility, I will once again list the requirements for it.

« support for threaded programs

« checkpointing must not stop execution for long periods

» checkpointing must be efficient, since we wish to checkpoint often
« external state (fd, socket) must be kept as much as feasible

It is difficult to ascertain the exact requirements for relative terms, such as efficiency, and they
should treated more as guidelines than requirements. However, binary requirements, such as
thread support, are absolute requirements.

3.1. The General Approach

First of all, it should be noted that there are several components in a process checkpoint,
and they can be divided in different ways [7]. However, | wish to define a simple division and
only separate process data and metadata. Data involves memory used by application. This mem-
ory is reserved from the heap, memory reserved from the stack does not count as data in this defi-
nition (neither does it count as metadata). Metadata is all the other state related to the process,
such as structures describing open files and existing threads.

| already went over the problems related to checkpointing multithreading programs in
Chapter 2.3. To recapture the essence of the problem, it is extremely hard if not impossible to
checkpoint multithreaded programs without stopping them if we are sticking to tradional check-
pointing methods. The problem is tied to the saving the machine state of all threads. If we try to
record the exact value for the program counter and machine registers for all threads, we are
almost certainly going to lose. The classic example for this are threads which are currently block-
ing (or simply even executing on a multiprocessor system) inside a system call. Even if we were
able to restart threads at the exact same position they were interrupted, we will not be able to sim-
ulate the kernel return value. Teaching the entire software (including libraries) that all system
calls can return funny values is not an option.

Instead of trying to record the entire machine state of the thread, a different approach is
taken for recording this metadata. Only the fact that the thread existed and what it was working
on is recorded. It is then up to the user-level code to rebuild the thread during restoration based
on the information recorded in the checkpoint. This way threads cannot be restored in an incon-
sistent state with respect to e.g. the kernel, because the thread is rebuilt similarly to using system
call augmentation (see discussion in Chapter 2.1.1).

For example, suppose a thread was involved in listening on a network socket and creating
new threads'? to service incoming network connections (illustrated in Listing 3-1). Instead of
recording the program counter for the thread, stack contents and various other bits, such as if the
thread was currently inside the kernel waiting to accept a new connection, the recorded metadata
is much simpler. We need to only indicate that the thread existed, and had called service loop()
with the argument my _socket . When execution is restored from the checkpoint, the user-level
restoration code will, after first creating my_socket based on data recorded elsewhere in the
checkpoint, create a thread and call service_loop(). The application code itself will automagically

12 They could also be taken out from a pool, if performance was critical. But the fact where they
come from is orthogonal to this discussion.

-16-

take care that e.g. the machine state and stack contents are correct and that the kernel state is cor-
rect.

Pseudo-code for Servicing Network Connections
servi ce_|l oop(my_socket)
{
t hread new_t hread,;
for (;:) {
listen_for_connection(my_socket); /* kernel */
new t hread = get thread();
execut e_servi ce(new_t hread);
}
}

Listing 3-1

For checkpointing application data, we can use a non-conventional approach. Instead of
checkpointing the entire address-space and cutting certain regions from it by user-directed check-
pointing [20], the exact opposite is done. By default, exactly nothing of the address space is
included in the checkpoint. When the application has some data it wishes to save, it adds it to the
checkpointable area. Naturally, since this is the only persistent part of the application memory
space, it must contain all the relevant pieces necessary for correct operation.

Even though prior research [34] has shown that leaving fault tolerance management entirely
up to the application may be extremely difficult to manage, | believe it is the right way to go; the
requirements are mostly incompatible with transparent checkpointing. The aim is to provide
enough framework to the application programmer, so that managing the checkpointing code will
not be a colossal problem.

The consistency of the data inside the checkpoint can be taken care by using normal syn-
chronization mechanisms for concurrent access. Threading programs should already use some
form of synchronization for shared data. However, some degree of careful analysis is required,
since even threading programs do not lock data local to themselves. If that data is crucial to the
checkpoint, it must be made sure that it does not end up in a checkpoint in an inconsistent state.

It is of course important to note that the checkpointing routines are only the "enabling tech-
nology" used for achieving Hot Spare support. The routines can be nicely divided into two sub-
categories, which will be discussed next. | will discuss the implementation of the in-kernel
checkpointing routines and the kernel interface to them. The user-level interface is not discussed
in-depth, but a concise description can be found in Appendix A in the form of uNix-style manual
pages. An overview of the architecture for checkpointing is presented in Figure 3-1.

An interesting implication of Figure 3-1 is the fact that the kernel part and the userspace-
interface are totally orthogonal. The kernel part only provides optimizations for checkpointing,
and if we want to leave it out, we are free to do so, provided of course that we modify the Hot
Spare library to do semantically equivalent operations using standard interfaces. Of course with
our specific goals for checkpointing leaving the kernel portion out is not an option, but it could be

-17-

Architecture Overview

OS kernel

checkpointing support

A
system calls
hot spare library
application
Figure3-1

done e.g. for programs involving scientific calculation. Also, this fact helps benchmark the bene-
fit of kernel modifications. The comparisons are presented later on in Chapter 6.

Finally, I want to note that application-driven checkpointing it itself is nothing new. Com-
puter games usually use application-driven checkpointing for saving the current situation in the
game so that it can be later restored.

« For single-player games this is fairly simple, the game host simply dumps all the rele-
vant data structures from memory onto disk.

e For multiplayer games this is slightly more tricky. Multiplayer games can be divided
into peer-to-peer model games and client-server model games.

For client-server games the server contains the authoritative game state, and therefore it
can dump the state it contains in a similar fashion to single-player games. When restor-
ing from a savegame that information will be redistributed to the participating clients.

In the peer-to-peer everyone sees basically the same situation, but there is no authorita-
tive state in the game. In other words the game looks always a bit different depending
on from which screen you are looking at it. The choices are to make all hosts dump the
state at almost the same time, and use that information from the individual hosts at
restore-time, or make one host act as the master save the game state only from it. Since
forcing everyone to save the game state and using all individual statedumps for restora-
tion has consistency problems, the popular model is to assign a master for savegames.

-18-

Since games are the classic employers of application-driven checkpointing, great care was
put into testing the technology throughly enough, so that it could be concluded with enough cer-
tainty that the technology really works. Especially the NetHack savegame mechanism was tested
again and again in the course of writing this thesis, and it proved to be very stable and very reli-
able. Unfortunately the person who played the game was not as stable and reliable, and death
came swiftly and often.

3.2. Taking a Checkpoint

In our case checkpointing consists simply of writing the contents of the special memory
areas to backing storage. The definition of "special memory area" includes data the application
wishes to save, and metadata describing various objects such as threads, sockets and file descrip-
tors. Machine state at the time of taking the checkpoint is irrelevant, since it will be "recon-
structed" from the contents of the checkpoint. The pseudocode to take a checkpoint is sketched in
Listing 3-2. In principle the steps taken are pretty simple, but there are lots of details that should
be discussed and the reasoning behind them explained.

Checkpoint Pseudo-Codein Application

i f (checkpoint_now) {
| ock_cpt _area();

/* Take snapshot and wite changes to backi ng storage. */
hs_cpt (procst ate->fl ags);

unl ock_cpt _area();

Listing 3-2

3.2.1. Taking an Atomic Snapshot of the Checkpoint Memory Space

On uNix systems, the fork() system call creates a process, which is almost an exact dupli-
cate of the calling process the only main difference being the process ID number. Historically,
the fork() call really did copy the entire address space of a process when executed. However, this
was mostly wasteful, since fork() was frequently used in conjugation with the exec() system call,
which replaced the entire address space with a binary image from the disk. Therefore a technique
called copy-on-write, or COW for short, was employed in AT&T System V uNIx*® 4. It means

13 BSD UNIX took a different route for a while. Reportedly because of bugs in the VAX 11/780
microcode, copy-on-write was difficult to implement for 3BSD, and thefore a solution called
vfork()[35] was crafted. The idea is that a child will use the address space of the parent until it
exec()s or exits. The parent is suspended during that time. The point | want to bring out here, is
that variations of fork() have been hacked up for speed-gain already way back in the prehistoric
days.

1% The concept of copy-on-write itself is much older and dates back to the 1960’s. One of the
first systems to provide copy-on-write support for memory regions was TENEX [36].

-19-

that both the parent and child process will continue to access the same memory until one of them
does a write to that memory. The write is trapped and the operating system takes a copy-on-write
page fault during which it copies the contents of the page in question making sure that the process
that did not do a write will continue to see the original datum, while the process which made the
write will see the new version of the datum on the page. This functionality is illustrated in Figure
3-2 with two processes having the same memory mapped copy-on-write. The process writing to
memory causes a copy-on-write page fault. When the fault is resolved, a new physical page is
allocated and the contents of the faulting page are copied over to it. After the fault, both pro-
cesses can continue to use the memory unaware of modifications made by each other.

Copy-On-Write Memory Space

process 1 process 2
writes to memory no write

virtual page 1 before before virtual page 1
T — physical page 1 %

virtual page 2 virtual page 2

after physical page 2

virtual page 3 virtual page 3

physical page 3

virtual page n virtual page n

| | |
L - - - - | L - - - - |

Figure 3-2

The copy-on-write property of fork() is close to what we are looking for: it will give us both
asynchronous checkpointing ability and an atomic snapshot of the checkpoint-range. fork() has
already been succesfully used for asynchronous checkpointing [20]. In addition, copy-on-write
has been a popular way to increase operation speed in several other areas of computer science,
such as databases [37].

In addition to asynchronous and atomic checkpointing, support for incremental checkpoints
is high on the priority list. The desire to frequently take checkpoints will be an extremely expen-
sive desire, if we must write large amounts of data to the reserve unit each time. When wishing to
do incremental checkpointing, userspace checkpointing facilities commonly mprotect() the mem-
ory space to read-only. They then register a SI GSEGV handler, which allows them to track write
violations in the user program and do incremental checkpointing on a page-level granularity [20].
Once again, this solution works, but it seems like a duplicated effort, since the kernel, and even
better yet, the memory management hardware tracks the memory pages for write accesses. Also,
the solution is needlessly expensive in terms of required processing time. For each trapped write,
the userspace signal handler must be invoked to process the trap and update the list of dirty pages.
Some solutions optimize incremental checkpointing to a sub-page granularity [38], but those are
ignored in this work, since by doing application-driven checkpointing we can influence the spatial
locality of frequently written data.

-20-

Different design consider ations

I considered not forking at all, and simply making the checkpoint memory space mapped
twice inside the process. The first mapping would be the "normal* mapping, which is used by the
application as if nothing funny were going on. The second mapping would be the place where
atomic snapshots of the memory area would be taken to using copy-on-write similarly to as in
fork(), and would be used by a special checkpointing thread to copy the contents of the check-
point memory space to backing store. This approach proved to be tricky for several reasons.
First, the code to handle copy-on-write from one VM space to another is readily available in the
operating system kernel. Teaching the page fault code to handle this special case would require
extra effort. Also, tracking the true location of the memory, not the remapped location, would
require effort, even though in the best case the translation would consist of simply offsetting the
address.

Another consideration was to map the checkpoint memory directly to the VM space of
another process. The other process in this case would be a pre-created daemon, whose task would
be to wait for checkpointing requests, and then write the atomic snapshot memory to backing
store. This would have solved the problem of having to teach the page fault code anything spe-
cial. It would have also solved the problem of having to keep track of the original location of the
checkpoint memory, since the memory could now have been mapped 1:1 address-wise. However,
as an extra task compared with the previous, some sort of IPC would be required to inform the
daemon process that it should write the contents of the memory to the reserve units. Also, the
daemon would need to inform the application that is has completed its work for now, and a new
checkpoint can be taken.

Both approaches pose two additional problems. First, we must manually unmap the mem-
ory once we have finished checkpointing. Granted, this is not an insurmountable problem. How-
ever, a larger problem arises from the fact that we are limited to one concurrent checkpoint opera-
tion.

The possibility of only one concurrent checkpoint becomes a problem if we consider for
example a scenario, where we are taking incremental checkpoints, and we start taking a very large
checkpoint (e.g. full checkpoint), which we wish to follow by a tiny one, or a few, almost imme-
diately. Since we are already busy writing the large checkpoint to backing storage, we a unable to
start taking another checkpoint. The possibilities would be to either wait until the previous
checkpoint has completed or "drop" the checkpoint completely. Both approaches have their
implications, but they will not be discussed here. Writing several incremental checkpoints con-
currently may speed up the process a little. Also, it may be possible to use the later incremental
checkpoints even though not all pieces in between have been received in the reserve unit. One
example of such a case is when the later checkpoint data completely overlays the memory areas
missing from an earlier incremental checkpoint (this is better explained when discussing the
checkpoint format in Chapter 3.5.5). Of course, it would be possible to use several backup mem-
ory spaces inside the process or start multiple daemons, and then use those resources in a round-
robin fashion, but that would require to keep track of the busy resources and add some more com-
plexity.

One final idea considered was to checkpoint to file-backed memory mapped with
MAP_FI LE instead of anonymous memory. The idea was to add a special flag to mmap(), which

would instruct the virtual memory system to not flush the contents of the memory to the file
except when explicitly requested by issuing msync(). At that point, the contents would be made

-21-

copy-on-write, and the VM subsystem would flush the changed contents to the file. The contents
of the file would then be synced to a reserve unit. As usual, this has both good and bad implica-
tions. Starting on good aspects, it would not be possible to overload the 1/O subsystem: when
msync() would be called, the pages modified since the last sync would be scheduled for writing to
disk. Subsequent calls would simply schedule the pages changed since the last call to be synced
to disk. This also means that the virtual memory subsystem would automatically track changes
for us. However, the downsides are several. First of all, this scenario would force us to flush the
contents of the memory to disk (possibly RAM disk for mitigating the overhead) instead of sim-
ply transmitting them over the network straight away®®. Second, the checkpoint file would be a
highly contended resource. Both the process responsible for transferring the contents to the
reserve unit and the application require exclusive access to the entire file'®. This would naturally
limit the granularity of checkpoints, since at least half of the time exclusive access is required by
the processing related to the spare unit. Additionally, some sort of IPC would be required to com-
municate when a sync to the file or from the file has begun and ended. Finally, calling msync()
erases the incremental information, which existed only internally in the virtual memory subsys-
tem. Some additional effort would be required to preserve that information, since processing the
full checkpoint instead of the differences from the previous checkpoint can be a demanding oper-
ation, especially if the checkpoint is large.

Theroutetaken

Several weaknesses of various schemes were pointed out above. Mostly they involve the
performance of checkpointing routines. Because checkpointing has not traditionally been a high-
performance operation with a light footprint, some have taken radically different routes such as
post-mortem memory content extraction [39] to provide High Availability. My solution tries to
address the checkpointing performance problem as far as practical and avoid using other methods.
It involves modifying the kernel to export the necessary interfaces to userspace programs, and
adding a fork() call with slightly differing semantics. | call this cptfork(). Even though forking is
fairly costly, | believe this to be best approach, when taking into consideration programming
effort and difficulty against efficiency. The need for efficiency is addressed a little in the various
micro-optimizations presented next.

3.2.2. The Semantics of cptfork()

First it should be noted, that due to the high frequency of access to the checkpoint memory
area, it makes sense to wire the region to memory. In plain English this means that the check-
point memory area will not be paged to secondary memory even during a shortage of main mem-
ory. Even though one could argue, that memory shortage on a (real-time’ish) production server is
the result of hardware misconfiguration, it turns out that wiring the memory will help us also in
other ways. First of all, it simplifies the in-kernel code a fair deal, since we do not have to worry
if the page is in memory or on swap, it simply is always in memory. Second, memory manage-
ment hardware often provides support for asking whether has a page been modified since the dirty

15 This could be worked around by using as networked filesystem such as NFS. However, since
the aim of this work is to increase service reliability, NFS would probably not be the best choice for
the task.

181t might be possible to sync and transfer the checkpoint in parts, but that would greatly
increase the logic required to provide a consistent checkpoint.

-22-

flag was last cleared!’. This information is used by the pagedaemon when it is looking for eligi-
ble candidate pages to be swapped out. Since the pagedaemon cannot remove wired pages from
memory, it does not need that information, and we can use it as we wish. This information can be
easily queried from the machine dependent memory management code via the machine indepen-
dent pmap [41] interface.

A side-effect of wiring pages down is that they get copied during fork(). The rationale is
that wired pages should not create page faults, since that will delay execution until the fault is
resolved. Therefore it is impossible to trap writing to the page to make the actual copy at write-
time. However, for the cptfork() case we know that we will not mind taking a couple of extra
page faults, since the code accessing the memory area in the application is not that critical with
respect to speed’®. Also, since our fork()-frequency is high, we wish to avoid copying the data
over and over again. Table 3-1 presents a simple comparison given by a program run on a
2.0GHz Pentium 4. The program allocates 16MB of memory and forks 400 times. Even though
not a very scientific measurement, the advantage of not copying is seen quite clearly.

Wired vs. Non-Wired Pages and Normal fork()

user (s) | system (s) | wall (m:s)

wired 0.09 22.76 0:24.93
not wired 0.05 0.25 0:01.71
Table 3-1

Additionally, making mappings copy-on-write does not come without a cost. As the parent
process continues to modify memory pages, a copy-on-write fault is taken by the operating sys-
tem each time to ensure that the child sees the original contents of the memory. While this is
absolutely necessary for pages inside the checkpoint ranges, it is totally unnecessary for pages
outside the checkpoint ranges. The alternative options to be considered for some speed-gain are
either dropping the mappings completely, or making them shared among the parent and child. Ta-
ble 3-2 presents a simple comparison of a program, which allocates 16MB of memory and forks
400 times. After each fork, the parent process writes to every tenth page while the child sleeps.

Copy-On-Write vs. Share vs. Drop, 1 Map Entry

user (s) | system(s) | wall (m:s) | page reclaims
copy-on-write 0.28 3.02 0:03.53 169005
share 0.08 0.08 0:00.22 6089
drop 0.07 0.09 0:00.24 6089
Table 3-2

17 Some RISC processors, such as UltraSPARC [40] of the SPARCV9 architecture, do not sup-
port modification information in the hardware, but rather it has to be tracked by the software using
protection traps. This may be an issue, because the operating system will most likely opt to not
protect wired pages for efficiency reasons. Therefore, the system will not accurately emulate the
modification information, and it will not be available for our use. If this scheme is to be considered
for such an architecture, the machine dependent memory management module may need some
additional modification.

18 1f an application such as ntpd, where instant access to memory really is necessary for the cor-
rect operation of the program, is considered for adaption, we may need to re-visit this claim.

-23-

Last, Table 3-3 shows a comparison between map entry dropping and sharing for a process,
which allocates 20000 pages of memory in 20000 separate map entries, and forks 400 times. It is
evident that there is nothing to be gained from dragging the mappings around for nothing, even in
a shared state. It should be noted that 20000 map entries is an extremely high number, and even
very heavy processes, such as Mozilla, will usually have a maximum of only a few hundred map
entries. However, for benchmarking purposes having (ridiculously) many map entries factors out
irrelevant overhead.

Share vs. Drop, 20000 Map Entries
user (s) | system(s) | wall (m:s)

share 0.03 10.19 0:15.79
drop 0.06 1.09 0:01.23
Table 3-3

The measurements indicate that dropping unused mappings would be a win for efficiency.
However, as it turns out, writing the Hot Spare Library from Figure 3-1 is a demanding task, if we
simply drop all*® non-checkpoint memory ranges from the child. So while dropping unnecessary
mappings completely would be desireable for efficiency, currently we just share all the mappings
that are not in the checkpoint-ranges. Sharing has one additional advantage: the child-processes
doing checkpointing can share e.g. resources allocated in a pool-style.

Finally, we wish to gather information about page modifications which have happened
since our last checkpoint. | already mentioned that some MMU hardware tracks this information,
and for the rest, we will have to think of something clever. Now, we can simply make cptfork()
go over the checkpoint memory space and ask the memory management code if the page was
modified since the last time. If a page is found to be modified, the information is stored in a list
in the child process’s st ruct proc. The respective information is then cleared from the mem-
ory management hardware so that subsequent writes will be correctly noticed and clean memory
will not be checkpointed again.

Summary of Semantic Differences Between fork() and cptfork()

different in cptfork() reason
Do not copy wired map entries, mark We can afford to take write
them copy-on-write. faults even on wired pages,

saves us from doing a lot of
extra copying.

Share non-checkpoint mappings. Resources sharing in Hot Spare
Library. More efficient than
copy-on-write.

Go over pages in checkpoint region, Accomplish kernel-supported
save information on dirty pages. incremental checkpointing.

Table 3-4

19 Well, almost all, as we must carry mappings such as text and stack over for the program to be
able to run at all.

-24-

3.2.3. The Complete Kernel Interface

The kernel interface for supporting the checkpointing facility is fairly simple, and has
mostly been discussed already. The system call interface of Figure 3-1 is presented concisely in
Listing 3-3.

Checkpointing Kernel I nterface

struct cpt_range {
void *addr;
size t len;

}s

pid_t cptfork(void);
ssize_t cptctl(struct cpt_range *ranges, size_t nranges,
int op);

Listing 3-3

The cptfork() call was already described in Chapter 3.2.2, and will not be discussed again.
I will proceed to discuss the flagging and querying of memory ranges with special semantics in
cptfork(). These two items are accomplished by using the cptctl() system call. First, the possible
operations (op) for modifying checkpoint ranges are:

CPT_I NSTALL Add checkpointable memory-ranges.
CPT_PURGE Remove checkpointable memory-ranges.
CPT_PURGE _ALL Remove all memory-ranges. Other arguments are ignored.

For incremental checkpointing, it is possible to query the changed memory ranges through the
same interface.

CPT_QUERY Return memory areas modified between previous cptfork() calls.

The problem with querying the modified ranges is that the application does not know how many
ranges have changed, and yet it must preallocate memory to which the kernel copies the informa-
tion about modified ranges. There are a few ways to solve the problem.

The first option is for the application to simply guess how many ranges there will be, allo-
cate memory accordingly, and make the call. If the nranges parameter indicating the amount of
memory ranges reserved indicates a range too small, the kernel will return the number of ranges
really needed, so the application can take corrective action, and re-call the query routine. The
number of ranges will not change between the calls in the same child, so the second call is always
guaranteed to succeed. The amount of memory required to store the modified ranges in the worst
case (every other page modified) can be easily calculated.

1. 2"bytes entry bytes _

=% *1 * 9P = 2(M+p)~(M+1) h tec 3-1

2 om bytes ~ page entry % 3-1)
page

-25-

Dealing with the worst-case estimate is not too overwhelming: if we assume 256MB of check-
point-memory, a 4kB page-size and a 32bit architecture (n = 28, m = 12, p = 3), we will need
256kB of memory according to Eqg. 3-1. The amount of memory required for transferring infor-
mation about checkpoint ranges is clearly several orders of magnitude smaller.

The second option would be to provide the amount of modified ranges already when the
cptfork() call returns. However, while this is an attractive option from the perspective of the user-
land application, it is fairly difficult to accomplish in the kernel. This is due to the order we must
do the in-kernel processing of cptfork() to avoid race conditions. Therefore, the first option pre-
vailed.

The usage intended for the kernel interface is presented in the call flowgraph in Figure 3-3.
This interface is used by the Hot Spare Library, and should not concern an application program-
mer.

Kernel Interface Callgraph

memory allocation

program runs

checkpointing

next
checkpoint

AN
program continues

incremental
\ p

write changes to backing storage

Figure 3-3

-26-

The exact semantics of all the calls are concisely presented in a manual page style in Ap-
pendix A, and the interested reader is encouraged to look there instead of trying to figure them out
by using the bits and pieces of information in the text.

3.3. Kernel-side Implementation

Modifying the kernel to support the checkpointing interface was a fairly straightforward
procedure, which consisted mainly of modifying the virtual memory subsystem UVM [42] to
support our special semantics for cptfork(). In addition, code for digging usage information out
of the MMU via the pmap interface [41] was added. | will proceed to discuss important details in
implementing each interface function.

One imporant thing to note is that the kernel-side does not treat the memory ranges as an
array, but rather a list. Therefore, internally the kernel uses st ruct __ cpt _range instead of
struct cpt_range. This makes it easier to add an arbitrary amount of entries in an arbitrary
order, and still keep the list in order with respect to range addresses. Additionally, we can store
the relevant st ruct vm page’s® related to each range within the structure. While currently
we need exactly one lookup per checkpoint, further optimizations may be possible in the future if
we have the lookups from the previous checkpoint available. The structure is presented in Listing
3-4.

struct _ cpt_range

#i f def _KERNEL

struct _ cpt_range {
struct cpt_range cptr; /* range for this elenment */
struct vm page **page; /* vm page pointer array */

LI ST_ENTRY(__cpt _range) entries;
b
#endi f /* _KERNEL */

Listing 3-4

3.3.1. cptctl()

The operations defined for this call can divided into two groups: operations related to modi-
fying the checkpoint-safe memory ranges, and querying the dirty memory ranges. | will discuss
them as separate cases.

M odifying the checkpointable ranges

The vm_map describing an address space is divided into vm_map_entry’s, of which each
describes a contiguous portion of the map with the same characteristics, such as same protection
level, inheritance or flags. Adding checkpointable ranges modifies the flags of relevant map
entries to include the bit UVM MAP_CPT. This signals that the map entry is involved in

2 Astruct vm page describes a physical page of memory.

-27-

checkpoint-safe memory. We will see in Chapter 3.3.2 how this is used in uvmspace fork().
Finally, we mark the map as having checkpointable ranges by flagging it with VM _MAP_CPT.
This information can be used by programs such as pmap?! [43] for printing information about the
map.

If the range we are trying to mark checkpointable does not exactly match any map entry, we
need to divide the existing map entry, or, in UVM terms, clip it. On the other hand, the range may
not be included in a single map entry. In that case we need to follow the chain of map entries
ordered by virtual address from the first entry of the range to the last, and modify every one in
between. Of course it may also be necessary to clip the first and last entry.

In addition to marking the map entries checkpointable, we also wish to add the ranges to
our internal bookkeeping. This information, or rather the pointer to the head of the ordered list
containing it in the form of struct __cpt_range’s, is placed into struct proc, the
structure describing a process.

Currently the implementation of the bookkeeping list is of the simplest form possible. This
means that it will only add ranges to the correct location without any coalescing and remove
ranges only which exactly match ranges added. The rationale for this is that we can do all the
above tricks in the userspace library also, and therefore simplify the kernel-side a bit. For exam-
ple, removing half a range can be done by first removing the complete range and immediately
after that adding the half-range. This is, of course, not atomic with respect to the process. How-
ever, that is not a problem, since, as mentioned already numerous times before, we will need a
locking mechanism in userspace to control checkpointing for consistent snapshots in multi-
threaded programs. The same locks can be used to control modifying the memory ranges.

Removing ranges from the kernel is the approximate reverse operation of adding them.
Therefore the implementation description will be skipped.

Querying dirty pages
As we will see in Chapter 3.3.2, most of the implementation work related to this operation

is already done in cptfork(). The call itself is simply involved in copying the dirty ranges from the
kernel storage to userspace, and does therefore not warrant discussion.

3.3.2. cptfork()

Even though this function does plenty of work, implementation was fairly easy, since most
of the work is done by standard components. To give an outline, the following is done:

* go over checkpoint ranges and store information about dirty pages
« call fork1(), which eventually calls uvmspace fork()

« in uvmspace _fork() adjust inheritance

« in uvmspace_fork() do not copy wired mappings
e return in parent

« child will return through its own path from fork1()

211t is important not to confuse the program and the interface to the machine-dependent portion
of the virtual memory system, despite the fact that they have the same name.

-28-

Constructing the Dirty-List

To be able to query page modification information, we must first locate the relevant physi-
cal memory pages. Locating the relevant vm_page based on the virtual address is a surprisingly
demanding task. The approximate resolution chain is the following: proc -> vmspace -> vm_map
-> vm_map_entry -> vm_amap -> vm_aref -> vm_anon -> vm_page. It is imporant to note that
-> in the above does not denote a pointer resolution, but can be, for example, the result of a
lookup call or simply accessing a structure member. The call-sequence is approximately the same
as used by UVM during the page fault routine, with the exception that we can make some simpli-
fying assumptions: we know all our memory is anonymous and wired. The details of resolution
are available in [42] and the kernel sources, and will not be discussed further.

Now we need to go over the range-list stored in the proc structure, and call pmap_is_modi-
fied() for each page contained in each range. This will give us the information on if the page is
currently dirty, and we can form ranges for dirty-pages based on that information. These ranges
will be stored into a linked list and the head placed into the proc structure for later querying.
Also, pmap_clear_modify() is called for dirty vm_page’s so that we have fresh information avail-
able for the next checkpoint.

Modifications to uvmspace_fork()

The backend of all fork-style calls (such as fork(), vfork() and __clone()) is a kernel-inter-
nal function called fork1(). All fork-style calls deal with similar issues, such as create new
process structures and link them properly into the family tree. The subtle differences can be han-
dled by giving different arguments to the forkl1() call. The uvmspace_fork() function called by
forkl1() is the function we are more interested about, since it handles the details of creating a new
virtual address space for the child process.

The process of forking from the perspective of UVM is described in Chapters 4.6 and 4.7
of [42]. What uvmspace_fork() does is go over the sorted list of vm_map_entry’s in the vm_map
one-by-one and look at what should be done with them: copy, share or drop. Our job is fairly
easy. During each round we check if the U/M_MAP_CPT flag indicating checkpoint-memory is
set. If it is, we treat the entry as a VM_| NHERI T_COPY entry with the exception of making it
copy-on-write, not copying it directly (see Table 3-4 for a rationale). If it is not, we share the
mapping, unless it is part of the stack, in which case we want it copy-on-write. After we have
gone through all of the parent’s vm_map_entry’s, the child’s vm_map is properly set up and we
can return to do the rest of the in-kernel processing for both processes and eventually return to
userspace. When the child process reaches userspace, it will begin to write the checkpoint to
backing storage.

3.4. Reserving Memory for Checkpointing

Programs usually request anonymous memory from the system by using the malloc(3)
library call. It takes care of requesting pages from the operating system??, tracking memory
usage, and using various algorithms to avoid memory fragmentation. The standard library call,
however, is not interested in where it grants the memory request from. This is fine for normal
programs, since they do not care where they get memory from, as long as they get a continuous

22 By using mmap(2) or shrk(2) and brk(2).

-29-

chunk of memory of (at least) the requested length. However, for our checkpointing scheme, we
need to control where the application reserves memory from, in case it wants to use that memory
for checkpointing.

Additionally, for application-driven checkpointing, it would be nice to be able to influence
the locality of data so that for data which changes often, such as counters used for billing pur-
poses, would be stored on the same page and not spread throughout the memory area. This
should result in only a few pages changing for incremental checkpointing instead of the entire
page range being modified.

The interface we desire is presented in Listing 3-5. The complete operation is explained
from the application programmer’s viewpoint in the manual page in Appendix A.

Application-level Memory Allocator |nterface

i nt hs_mall oc_create(int class, size_t initial);
void * hs _nalloc(int class, size t len);
voi d hs_free(int class, void *addr);

Listing 3-5

Now the application can influence locality by defining and using various classes. Alloca-
tion from the same class influences locality. The id for the class is user-defined, so that it can be
embedded in the code for easier programming:

ctr = hs_mal | oc(HSCLASS COUNTERS, 4);

The initial size parameter defines how much checkpoint-memory the allocator requests from the
system initially. If the allocator depletes the initial supply of checkpoint-memory from any given
class, it can request more from the system.

Now the only task is the actual memory allocator, which can allocate memory from given
regions. The idea is to request a large chunk of checkpoint-safe memory from the system and
give it to the hs_malloc for distributing to applications. There are several good reasons for adding
this "extra" tier to the checkpoint memory allocation scheme. First of all, allocating memory by
using several system calls for each allocation is extremely slow and there is no reason to inflict a
huge performance penalty on applications wishing to reserve checkpoint memory. Second, we
can much better control memory usage efficiency and fragmentation if we use software that has
been designed to address those exact problems.

A very simple memory allocator was written to address this problem. It is a power-of-two
allocator, which features O(1) allocation with bucketsizes being powers of two. All internal allo-
cator bookkeeping is stored in memory regions that the allocator contexts are initialized with.
This means they are are safely transported over spare units where the memory allocator will con-
tinue to work as nothing had happened.

Finally, to make sure the act of memory allocation is as clear to the reader as possibly can
be, the above discussion is presented in Figure 3-4.

-30-

Memory Allocation

kernel

kernel

userspace

hs_malloc library

context
lists
application

Figure3-4

hs malloc_create()

3.5. Checkpoint Structure

The checkpoint is where all the critical information concerning the state of the check-
pointed application is stored. It resembles a normal object file format fairly much, consisting of a
general header and various sections with different purposes. In fact, the checkpoint format is very
similar to an ELF [44] object file when looked at on a high level.

The checkpoint file can be viewed as a dump of the data reinforced by serialized represen-
tations of various metadata. We will soon see what serializing the metadata means specifically
for each individual case, but as a general note it can be said to include enough information for the
system to be able to reconstruct the original state, in-kernel state included, from the information
present.

One design-level choice to make is the decision on whether the checkpoint-format should
be machine-independent enough for it to be possible to restore the same checkpoint on a different
machine type. The fact that the memory area contents are already very machine-specific?® made
it easy to choose the simpler alternative: the serialization routines assume that checkpointing and
restoration happens on symmetric machines.

23 Byte order and pointer sizes are the most prominent examples. While in theory it would be
possible for the application to handle this data in a machine independent fashion through an
abstraction layer, it is a performance hit and complication that no real C program wants to deal
with.

-31-

To give an overview of what is in the checkpoint, the following sections describing the
checkpoint are present:

« general header describing the sections contained in the checkpoint

« thread section describing threads used

« file descriptor section describing fd’s and sockets

« signals section describing signal treatment and registered handlers

* memory section, describing and containing the checkpoint-safe memory

I will proceed to discuss the various different sections, their contents, their construction and the
inner truths related to each one.

It is important to note that currently the checkpoint components are not meant to be an end
to all means. It has been constructed from the ground up by adding the features required to
checkpoint various different kinds of programs. The structure should be flexible enough to allow
adding new section types with very little difficulty, and users are encouraged to do so instead of
trying to overload the current sections to describe something which they were not meant to
describe. Nevertheless, if some section types are missing information which clearly belongs in
there and which is required for the correct operation of the application targeted for check-
pointability modification, the correct action is of course to amend the section description instead
of defining a new one.

A graphical overview of the general structure of a checkpoint is given in Figure 3-5.

Checkpoint Structure

checkpoint header

thread section header

thread header 1
"l thread data 1
thread header 2

i thread header n w\\ thread data 2

fd header1 | fddatal

fd section header —

fd header 2
s fddata2
other headers " fdheadern !

Figure 3-5

3.5.1. Checkpoint Header

The checkpoint header describes the rest of the sections found in the checkpoint, including
information such as size and location. Additionally the header contains some metadata on the
checkpoint, such as magic number, version information, total size, application-specific ID?*, and

24 Before the data saved in a checkpoint can be used by the application, both the version infor-

mation and application-specific ID must match. This way we can be sure that the checkpoint is
really constructed for the application attempting to use it.

-32-

generation number for incremental checkpoints after the last full checkpoint.

The structure itself is pretty straight-forward, and | believe discussing it will be best served
by simply letting the implementation speak for itself. The general idea of the header structure is
presented in Listing 3-6. Some fields are left out to save space, but the main idea should be evi-
dent even without them.

The structure is identical to the in-memory (or on-disk) layout, and the checkpoint is used
by overlaying the structure over the top of the beginning of the checkpoint, and accessing the
structure members.

Checkpoint Header Structure

struct hs_cpthdr {
unsi gned char ident[HS NIDENT]; /* ident information */

hs_si ze_T cptsi ze; / * checkpoi nt size */
hs_size T hdrsi ze; /* size of all headers */
hs_size T app-id; /* app-specific ID */
gen_T generation; /* generation nunber */
gen_T incr; /* increnment nunber */

[* variable size */

hs _size T thrhdr_off; /* thread headers of fset */
hs_si ze_T thrhdr_num /* nunber of headers */
hs_size T thrhdr_si ze; /* total size of headers */

/* constant size */
hs_size T nenmhdr _off; /* range headers offset */
hs_size T mermhdr _num [* nunber of headers */

/* begin (possibly) increnental headers */

/* constant size */

hs_size_T memdi ff_off; /* menory diff offset */
hs _size T nendi ff_num /* nunmber of headers */

Listing 3-6

The type hs_si ze_T found in Listing 3-6 is currently defined as an unsigned 32bit inte-
gral type. While this will not allow to take into use the full potential of a 64bit platform, | feel
that it is more than enough?. If the checkpoint sizes start exceeding 4 gigabytes, the application
may already need to be tweaked somewhere. But if some day 32bits is simply not enough, it is an
easy enough task to define hs_si ze_ T to some other value, bump the version number (located
in the ident-array) and recompile the application.

25 Yes, those are the famous last words. | apologize.

-33-

3.5.2. Threads

A thread header describes one thread in the system at the time the checkpoint was taken. It
contains enough information for it to be possible to rebuild the thread at restore-time.

As you can probably recall from the discussion in Chapter 3.1, every important thread in
the application is probably based on some worker-concept and executing a specific task in a loop.
For application-driven checkpointing, we need to restructure the code so that the loop is mostly
contained in a function of its own, and then call that function with the correct arguments. We
therefore define a worker to have the following prototype:

void worker(void * /*arg*/);

The argument will naturally be typecast by the application code to the correct type for correct
argument processing.

The Hot Spare Library needs to serialize only two elements: worker function address and
the argument address. Since we record the absolute address of the function to call, the binaries
used must be identical on both systems. We could play fancy tricks such as recording the symbol
name and groveling through the binary to find it, but it is too complex since we are anyway bound
by the requirements of symmetric systems. Additional information recorded in the thread header
is knowledge on the thread attributes, and what type of thread was in question? if it was a thread
at all.

For single-threaded software a "thread" is also registered. However, a new thread is not
created during restoration: the program simply jumps to the correct location and starts executing
the application code.

3.5.3. FileDescriptors

The file descriptor section header describes one (important) file descriptor present in the
system during checkpoint-time. There are several different type of file descriptors: normal files,
pipes, sockets, crypto descriptors, and so forth. Not all of them are supported. The application-
dependant serialization information depends entirely on the type of file descriptor we wish to seri-
alize. For example, for a file the important facts are the filename used to open the descriptor, the
mode it was opened in, and the current seek offset into the file. None of that information applies
to a networking socket. Therefore we provide several different routines for registering several
different types of file descriptors in the Hot Spare Library.

It should be noted that while the serialization information of a single thread was always of a
static length, the file descriptor information varies from file descriptor to file descriptor. This is
because for example the paths to regular files can greatly vary in length. Of course this does not
affect the user in any way, but the restoration code has to be careful on where to locate the next
chunk of serialized information.

Finally, another difference to threads is that the information related to file descriptors is not
static. The location of the worker function and argument will not change?’ during execution, but
information such as file offset will constantly change if the file is accessed. Therefore the library
provides an option to "refresh” the information related to a file descriptor during each checkpoint
by asking the kernel. For a normal file this would consitute of calling Iseek(), while for

26 Only pthreads are currently supported.
27 Although the contents of the argument might well change.

-34-

networking sockets it would most likely be a matter of getpeername() and getsockname(). As
there is a minor cost-penalty for doing this, it is not done for all file descriptors, but rather the
choice of which descriptors are critical in this respect is left up to the application programmer.

Of course there is one huge downside to querying the information at checkpoint-time: since
the entity doing the checkpoint and the application itself are not (necessarily) synchronized, the
state that gets written into the checkpoint does not necessarily reflect the state present in the mem-
ory dump. The application programmer is encouraged to very carefully think how important the
exact file descriptor state is, and possibly even take steps to record the state in the lock-protected
checkpoint-area, where it will be guaranteed to be correct. However, doing so will probably open
a whole other can-of-worms™, and currently there is no easy solution to the problem.

3.5.4. Signals

Signals look fairly much like a hybrid between threads and file descriptors from the view-
point of the checkpoint file. The state related to signals can change runtime if new signal masks
or handlers are installed or removed, but the length of the information in serialized form stays the
same. We can simply use struct sigacti on as the serialized form of signal information
and dismiss any further tricks, since we are operating between symmetric environments. What
was said about metadata and data synchronization for file descriptors in the previous chapter
applies also here.

Signals in multithreaded programs are nothing less than a whole bucket-of-worms™, and
the whole concept is not well defined. The properties and semantics vary greatly between imple-
mentations. All implementations agree that signals extended from single-threaded processes to
multithreaded-processes should be compatible with the original uNix model, but unfortunately no
one can agree on the definition of "compatible™ [45]. Therefore | made a consciuous decision to
support signal state migration only for single-threaded programs inside the Hot Spare Library. If
the application programmer wishes to migrate signal information for threaded programs, she is of
course free to do so in application code.

3.5.5. Memory and Memory Area Headers

To understand what we need to store here, we must first understand the checkpoint-safe
memory allocation scheme from Chapter 3.4. We need to describe two different elements.

« The memory areas need to be described, so that it is easily possible for the memory to
be mapped at the same location as it was at in the original process. For each mmap() +
cptetl() allocation done by hs malloc() (Figure 3-4), we need to record the address the
memory was granted at. Technically it is possible to keep new regions as "incremental”
information, and supply the full spectrum of regions only as part of full checkpoints.

« Naturally, the contents of the checkpoint-safe memory need to be described. In addition
to the actual contents, we need to describe the content location in the checkpoint-file and
in memory. Restoration will then be a simple memcpy() from the checkpoint to the real
position in memory?®. Since the context structure for the hs_malloc() backend is located
always in the checkpoint memory area, simply taking care that the memory area is
migrated over the checkpoint will make hs_malloc() and hs_free() function properly.

28 Assuming, of course, that the checkpoint is mapped into memory.

-35-

The structure for describing memory areas in a checkpoint is presented in Figure 3-6.

Checkpoint Memory Description

memory area
memory area memory diff
. memory .

descriptor descriptor

memory area \ memory diff
descriptor descriptor
memory area ,

' memory area | memory diff
' descriptor | @ descriptor

memory

memory contents memory contents
contents \J

Figure 3-6

Since the picture is somewhat complex, | will explain it a bit more throughly. The boxes in the
middle are memory areas. They are described by the checkpoint headers on the left. The ellipses
within those boxes are the pieces of memory which have changed ("dirty pages') since the last
incremental checkpoint. The contents of those dirty areas are included in the checkpoint. Their
location and contents in the checkpoint are described by the diff headers on the right. For full
checkpoints the intersection between memory areas and the memory diffs would smply be the
entire memory area. For incremental checkpoints it will hopefully not be so. The bar at the bot-
tom depi cts the contents of memory present in the checkpoint.

3.6. Restoring from a Checkpoint

Next | will discuss the process of "uncheckpointing” a program, i.e. resuming execution
from a checkpoint. The assumption with the following is that the processing of the checkpoint is
done from the context of the spare program, which should become the master. There are several
good reasons for doing this, and the fact that it probably is the easiest way to go is by no means
the least of them: we must somehow transfer the information gained from processing the check-
point to the new master in any case, so why not simply arrange things so that the step can be
skipped.

Most of the process described in the following chapters should be manifest without any dis-
cussion whatsoever, but for the sake of completeness | will go through it.

-36-

3.6.1. Getting Text into Shape

The easiest way to do anything naturally is to make someone else do it for you. Since the
operating system already does a decent job in setting up a running program from an image, we
might as well let it handle this case also. We set the program up by simply executing the binary
with special arguments. These arguments tell the checkpointing facility that instead of starting
execution from scratch, it is supposed to go into a mode in which it processes checkpoints. | will
explicitly note that the executable portion of the program is of course not part of the checkpoint,
but rather a binary?® that exists on the spare system.

3.6.2. Restoring Memory

In Chapter 3.5.5 | pointed out that we must save two mostly separate pieces of information
into the checkpoint: the memory areas available to the program, and the memory itself. Restoring
the memory is simply a matter of looking at the memory area descriptors, re-allocating the appro-
priate-length chunks at the appropriate places®, and copying the memory contents into place. |
already mentioned earlier, that simply restoring the memory contents will make hs _free() function
properly in a post-restore situation.

The main difference between memory areas and the memory contents is that the memory
areas should be allocated only once for each individual area, while the memory present in incre-
mental checkpoints should be written to the correct location for each checkpoint processed. How-
ever, note that checkpoints later in the chain might present new memory areas not present earlier.
Currently there unfortunately is no way to ultimately free checkpoint-safe memory. Leaving it
unused should provide a similar effect, though, since the contents will show up only in full check-
points, which hopefully will not be taken very frequently.

3.6.3. Restoring File Descriptors

We start restoring the file descriptors by closing all of the file descriptors used in the
process of reading the checkpoints. Then we simply go over the file descriptors in the latest
checkpoint, and do the necessary system calls to get them into a state in which they were during
checkpoint.

3.6.4. Signals

As mentioned in Chapter 3.5.4, the serialized signal information present in the checkpoint
is struct sigaction. We can therefore simply call sigaction() for each signal section
present in the checkpoint.

2 Actually, it is the binary, or at least a copy of the binary, not just any similar-looking binary.
30 Note: for the scheme to work, the memory must be allocated at exactly the same location in

the virtual address space. mmap() can be persuaded to map anonymous memory to a certain loca-
tion.

-37-

3.6.5. Restoring Threads

We must do this piece of the restoration effort last. The reason is that for non-threaded pro-
grams we will lose our execution context for doing processing. Like the other stages, this oneis
not magical either. For non-threaded programs it is simply a matter of calling the worker func-
tion. For threaded programs we must create the threads before we can call the respective worker
functions.

Finally

After threads have been restored and the program has been instructed to execute code from
the worker loop, restoration is complete from the point of view of the process. For everything to
work, we still must do some tricks to make the network think the new machine running the ser-
viceis at the old address. That processis described in the next chapter, Chapter 4.

-38-

-39-

4. Support Architecture

The purpose of the support architecture is to transfer the state-dumps to spare machines,
accurately and quickly detect a failing primary unit, and to ensure that the service migration to the
Hot Spare unit takes place in a timely fashion. As already stated in the Introduction, all this is
pretty straightforward programming work, but the steps are stated here for the sake of complete-
ness.

4.1. Configuring The Cluster

Currently cluster-configuration implementation is oversimplistic. It involves only two
hosts: the master and the spare. The initialization data is the IP address of the counterpart and a
flag indicating if the host is the master or spare. This is done by calling hsinit(), which processes
the argument vector given to the process at startup, and either calls master or spare init code. An
example of the application initialization code can be found in Listing 4-1. More details on
hsinit() can be found in Appendix A.

Service Initialization

i nt
mai n(i nt argc, char *argv[])
{

int rv;

rv = hsinit(argc, argv);

if ('rv)

exit(1); /* flag error */

argc -= rv;

argv += rv;

/* continue with normal initialization */
}

Listing 4-1

The current mechanism is not very flexible. It does not for example support configuring
multiple spares per service, but there no technical reason to not permit the administrator from
doing so. Also, once the master has failed, there is no runtime-mechanism to tell the new master
once new spares have been configured. A mechanism for forcing migration to the spare without a
violent shutdown to handle for example hardware upgrades would also be good idea. These are
all good targets for future work. Implementing all of them should be nothing more difficult than a
Simple Matter Of Programming. Also, it should be noted that further enhancements for the sup-
port architecture can be carried out totally orthogonally with respect to the checkpointing mecha-
nism itself.

-40-

4.2. Run-Time Actions

The efforts that should be undertaken at runtime can be classified into two different
tasksets:

* migrating the state from the master to the spare
* monitoring the status of the master for failures

Migrating State

The key to not losing much state when a failure occurs is constantly migrating state over.
This involves two different steps:

« deciding (in application code) it is time to checkpoint
» moving the checkpoint over to the spare

Basically the Hot Spare Library attempts to make this as easy as possible for the application pro-
grammer. A sketch of the modified application code was presented already in Listing 3-2. The
details of transferring the contents of the checkpoint is handled by entirely by the Hot Spare
Library function hs cpt(). The flags given to the function control some attributes of the check-
pointing process, such as should a complete checkpoint be taken, and should the checkpointing
process be asynchronous. Once again, a complete list is available in Appendix A.

Detecting Failures

When the spare is not not busy receiving checkpoints, it should devote its time to monitor-
ing the status of the master. The mechanism for reliably detecting failures in distributed environ-
ments is far from a simple one [46]. We have no way of knowing if the remote process is just
slow to respond, suffering from network lag, caught in a temporal anomaly, or simply down.
Since the focal point of this thesis is not detecting failures, an efficient detection algorithm is left
as the responsibility of the user. The additional bonus gained from this is the possibility of the
user defining an application-influenced detection algorithm. The detection function can be regis-
tered using hs_detreg(). It will be called with the registered argument from the spare unit in a
loop, until it returns 0 for failure. At this point it is assumed that the primary unit will have failed
and a handover, which will be described in Chapter 4.3, should be done.

For non-demanding applications, a routine based on a simple ICMP ping is provided. It is
called hs_detping(), and is fully described in Appendix A.

4.3. Recovering From Failures

At this point we have determined that the master unit has failed, and that the spare unit
should take over. This happens when the application-defined failure detection routine returns 0.
We have two basic tasks which we must complete before we are ready to continue execution:

* acquire the necessary network address
« process the latest checkpoint

Acquiring the networ k address

If we assume we are running on top of IPv4 (which we will do for simplicity), the task of
acquiring the IP address of the now-failed server is a question of two issues: we must inform the
operating system running on the spare that it now ‘““contains’ the IP address of the failed master,

-41-

| P address takeover

#!/bin/sh

#

args: $1 - interface name
$2 - address to alias
#

config_NetBSD ()

{
ifconfig ${1} alias ${2}
hwaddr = ‘“ifconfig ${1} | awk '/address/{print $2}"°
arp -s ${2} ${hwaddr} pub
gratarp ${1} ${hwaddr} ${2}
}

case ‘unanme’ in
Net BSD)
config NetBSD $1 $2
rest are uninpl enent ed
FreeBSD) exit 1;;
Li nux) exit 1;;
esac
exit O

Listing 4-2

and we must inform the local network that the link-layer address related to the IP address has
changed. The former is accomplished simply by configuring the IP address as an alias to one of
the existing network interfaces. The latter is done by a gratuitous ARP message, which informs
all peers on the local network of the new link-layer address belonging to the IP address and makes
them update their ARP tables. If a gratuitous ARP packet would not be sent, other hosts would
continue to use a locally cached address until it expires. The cached address of course points to
the old master which we seek to replace. One issue to note is that there is usually no tool distrib-
uted as the standard component of an operating system for sending a gratuitous ARP to the net-
work. A specific tool was quickly hacked together for that purpose using libnet [47].

The IP address configuration on a operating system via the routing socket API is infa-
mously hairy and operating system dependant. To avoid much trouble, it was decided that the IP
address takeover should be done from a shell script, which is executed when the takeover hap-
pens. Even though some might argue that calling a shell script from a C program is not pretty, |
counter-argue that it is prettier than writing routing socket code. An example of the script can be
found in Listing 4-2.

-42-

Processing the checkpoint

To keep things simple, we overlay the memory area contents of the checkpoints into mem-
ory as we receive them®. Therefore the task of processing the rest the checkpoint involves
"re"-opening file descriptors present in the checkpoint, restoring signal handling status, and creat-
ing the necessary threads. We must open the file descriptors before we steal the IP address, but
create the execution contexts (threads) after we obtain the IP to avoid race conditions. This work

is handled by the Hot Spare Library, and the application only needs to sit back end enjoy the
show.

31 Of course we order the checkpoints before processing.

-43-

5. Adapting The Framework

The tasks required to adapt the framework can be examined from two different viewpoints.
First of all, as discussed in Chapter 3.1 and shown in Figure 3-1, the kernel component of the
architecture is system-specific, while the userspace support library is written in a portable fashion.
Second, the application of Figure 3-1 must be adapted to support the entire framework. In this
chapter | discuss adapting both the kernel-portion of the checkpointing framework to other oper-
ating systems as well as already existing applications to the Hot Spare Library programming API.

5.1. Adapting TheKernel and Virtual Memory Subsystem

I will discuss adapting the kernel portion to three other popular operating systems in the
following order: FreeBSD, Linux and Chorus. In other words, | will start from the one most simi-
lar to NetBSD and advance to the alternative furthest away.

While proprietary operating system vendors have published documents on the designs of
their virtual memory subsystems [48], and could be theoretically included in the discussion, they
are left out, since without access to the source code is not possible to provide a fairly detailed
analysis.

As is discussed throughout Chapter 3.2, the job of the kernel module is to provide an
atomic, cheap snapshot, with the possibility of quering the kernel for the differences to the previ-
ous snapshot. This is accomplished by tying the module to the fork() system call for easy copy-
on-write support in addition to a few VM tweaks to be able to query the differences. While this
approach was easy to implement for NetBSD, it might be that it is far from the simplest method
for other platforms. However, this mechanism is the only one that will be considered, and where
not effective, a better mechanism is left outside the scope of this work.

The discussion will also be on a very general level, and will not bore into implementation
details, such as structure locking. It is also important to note that no guarantee of the implemen-
tation succeeding as described below is given. The following text is only meant to serve as an ini-
tial feasibility study and to give an idea where to start attempting the implementation.

The work necessary can be divided into small subportions, just like the original implemen-
tation on NetBSD:

* provide a call to install/remove checkpoint memory ranges

« provide a mechanism to query dirty pages from userspace

« map virtual addresses to structures used for querying page modification information
« query/reset page modification information during cptfork()

» modify memory region inheritance characteristics for cptfork()

Since discussing adding system calls is a fairly non-interesting business, | will concentrate the
discussion on the real issues at hand: how to query the differences and modify memory region
inheritance properties.

5.1.1. FreeBSD

FreeBSD [49] is a direct descendant of BSD UNIX and has the same roots as NetBSD.
However, the two operating systems have diverged a lot and do not share the same virtual mem-
ory management code. The article explaining FreeBSD VM design [50] has been written on a

-44-

general level. For most parts, the description in Chapter 5 of the 4.4BSD Book [24] is still accu-
rate, and can be used to help understand the innards of the VM especially when it comes to cen-
tral data structures®®. The following discussion is written against FreeBSD 5.2.1.

The concept of a process

As is described in lengthy comments in sys/ pr oc. h, the basic resource unit for a task is
still st ruct proc. Like in NetBSD, it contains the virtual memory space context, and there-
fore is the natural choice for storing the checkpoint ranges and dirty information. Because the
structure between the two operating systems is similar enough, we can even recycle the original
definition of the in-kernel range structure described in Listing 3-4.

Tagging map entries

To add checkpoint-safe ranges, we need to inform the system that some map entries require
special inheritance treatment during cptfork(). Since UVM was fairly heavily influenced by the
4.4BSD VM, most of the virtual memory structures are the same. We can flag the appropriate
vm_map_entry’s as having special properties that will be properly handled during cptfork(). The
correct map entry can be found by traversing a linked list®® of map entries starting from the
process vm_map. The FreeBSD VM provides generic clipping routines, which can be used to
divide the map entry if the start and end of a map entry do not match the checkpoint-range.

Locating modified pages

To be able to query differences, we need to first locate the appropriate memory structures
which can be used for querying and clearing page modification information from the system.
Being a Berkeley-derived implementation, FreeBSD uses the same pmap module interface as
NetBSD, and therefore we need to locate the page structures for the given interval. Page struc-
tures can be found from a vm_object by using the following call:

vm page_t 3* vm page_| ookup(vm obj ect t, vm pindex_t);

The required vm_object is found from a vm_map_entry, which in turn can be found as described
previously. After this pindex can be easily calculated:

OFF_TO I DX((vaddr - entry->start) + entry->offset)

The result is passed to the lookup routine along with the vm object of the entry to obtain the
memory page structure we were looking for.

cptfork()

The structure of fork-style calls is also very similar to NetBSD: after the syscall entry point
the backend function fork1() is called with the correct flags to take care of work common to all
flavours of fork(). As in NetBSD, fork1() is related mostly to creating and linking the necessary

32 A more up-to-date discussion will probably by found in the upcoming FreeBSD book [51],
but that is unfortunately not yet available.

33 More efficient ways, such as using a splay tree, of finding the right vm_map_entry related to a
virtual address are present in the system, but using them might have unwanted side-effects. Should
this scheme be adapted to FreeBSD, more efficient methods should of course be investigated.

3 struct vm page * is typedef’d to vm page_t in the FreeBSD VM, as is in the 4.4BSD
VM. NetBSD has dropped this, probably because _t is supposed to be reserved for POSIX.

-45-

data structures, and the more interesting part is creating the new virtual address space for the child
process.

The function vmspace_fork() looks very much like uvmspace_fork() we looked at in Chap-
ter 3.3.2. It goes over each vm_map_entry in the vm_map one-by-one and decides what it should
do with them. It can be modified to support cptfork() semantics very easily.

FreeBSD already provides a somewhat generic fork()-style interface to userspace: rfork().
Instead of adding a separate system call for cptfork(), perhaps it is worthwhile to consider adding
a flag to rfork() instead, and accomplishing the task by r f or k(RFCPT) .

Conclusion

FreeBSD is a relative of NetBSD. It seems like an extremely straightforward job to use the
exact same techniques for adding checkpointing kernel support to FreeBSD.

5.1.2. Linux

Linux [52] is a freely available, widely ported uNix-like operating system kernel. It has
been written from scratch, and is not a direct descendant of UNIX. The Linux kernel has a ten-
dency to go through a lot of change between versions. The following discussion is based on the
2.4.20 version of the kernel. The reason for this is that reasonable documentation [53,54] exists
for that version.

The following study is written inspecting the i386 architecture. Extending the discussion to
any given architecture that Linux supports should be fairly straightforward.

The concept of a process

Since Linux is very much uNix-like, it features a concept similar to a process. In Linux,
the relevant data structure is called st ruct task_struct. Since the virtual address space is
tied to this structure, it is an excellent candidate to store the checkpoint range information.
Directly recycling the same in-kernel structures as on BSD systems is not possible, but an adap-
tion should be possible by simply renaming the entries.

Tagging map entries

Linux uses a very similar structure to what we saw with BSD virtual memory managers
earlier, but it is called vm_area_struct instead of vm_map_entry. The VM area related to each
virtual memory address can be easily found using the find_vma() call. Some form of fixup-rou-
tines must also be created to address the situation where checkpoint-memory might be requested
for a VMA where the beginning and end do not match the checkpoint-range. There seems to be
no generic clipping mechanism present, but plenty of examples from the kernel-side implementa-
tion in various VM routines such as mlock() and mprotect(). Of course in the case you happened
to get out of bed on the wrong foot the day you are adapting the scheme to Linux, you might just
want to replace them all with a generic routine.

Locating modified pages

While Linux does not feature the exact same pmap layer for the VM, a very similar facility
is provided. Once again the structures describing a physical page for a given virtual address need

-46-

to be resolved so that modification information can be queried and cleared. The following macros
are important to our cause:

PageDi rt y(page)
Cl ear PageDi rt y(page)

A page table lookup routine to find the st ruct page, which can be used to query the modifi-
cation information, is called follow_page() and takes the address space and the virtual address as
arguments.

cptfork()

The backend fork-routine is called do_fork() in Linux. It does not feature a generic flag
argument, but perhaps cl one_f | ags could be "persuaded” to contain the information that we
are doing cptfork(), and therefore avoid modifying the around 50 existing calls to do_fork()
present in the Linux kernel sources. This flag need to be passed on to copy_page range(), where
the actual inheritance of a given VMA can be decided.

Of course, one option is to implement cptfork() as a flag for __clone(), similar to what was
suggested with FreeBSD and rfork(). That way there would be no need to feel bad about abusing
cl one_fl ags.

Conclusion

Even though Linux and NetBSD are not directly related, it should be possible to implement
checkpointing kernel support using the same approach.

5.1.3. Chorus

Chorus [55] is a distributed operating system developed originally at INRIA. The source
code for the latest and final version of Chorus was made open source lately. Since Chorus is
freely downloadable open source [56] and not a descendant of UNIX, it is an interesting target for
adaption analysis. The principles of the Chorus virtual memory subsystem are well documented
[57,58,59]. In addition, Chorus has been the target of much research interest, including fault tol-
erance [60,61] studies.

Since Chorus is a bit different from UNIX-style systems and uses mostly own terminology, |
will start with a quick overview of the relevant pieces of Chorus VM terminology:

context: Address space

region: A region is a continuous strip of memory with the same characteristics. It
belongs to an address space. A region could be considered to be similar to a
vm_map_entry in BSD terminology.

segment: A segment is a memory storage object, which can be mapped into a region.
Read/write requests will be translated to operations in the segment mapper. A
segment is similar to a vm_object in BSD terminology.

-47-

Chorus provides a choice between multiple memory models. The choices available are
(named after the subdirectories in souce code):

flm: This is a totally flat memory model. It means that everything in the system from the
kernel to all actors (see next section for the definition of an actor) share a common
address space. Addresses used map directly to physical addresses and there is no
support for paging.

prm: The protected memory model is one step up towards real virtual memory support
from the flat model. It provides multiple address spaces similar to normal virtual
memory: one for the kernel and supervisors and one each for each actor. No support
for swapping or demand paging is provided in this model.

vm: This model provides real virtual memory support. In addition to providing multiple
address spaces similar to the prm model, this also provides support for mapping
pages to secondary storage, and therefore paging and swapping.

For our model to work, we need to have memory protection capabilities. Therefore the flat model
is out of the question. Both the protected model and real virtual memory seem applicable. But as
it turns out, having full virtual memory support may prove useful to gain support for segments
and mappers.

The concept of a process

In Chorus threads share a common address space if they are encompassed within an entity
called an actor. Actors are roughly divided into two classes depending on if they are operating in
priviledged mode. Ones operating in priviledged mode are called supervisor actors and share the
same address space. A non-priviledged actor is conceptually very similar to a user process.
Because Chorus is a distributed operating system, an actor may be present on any one of the
nodes, or sites, which make up one system. However, an actor, and therefore an address space, is
always tied to exactly one site.

Locating modified pages

First of all we need to prevent our pages from getting used by the swapper. This can be
done by setting the ppl sNot Swapabl e flag in PhysPage->ppFlags. The relevant PhysPage
objects related to a certain virtual memory range can be queried using PgTable::find. Once the
PhysPage objects are found, it is a trivial task to check their modification information by calling
the isModified() member function, store the result, and, if necessary, to clear the modification
information using the modifiedClr() method.

Tagging map entries

Instead of having to tag existing map entries, perhaps in Chorus it would be simplest to
already map checkpoint-safe memory from the kernel in the first place. In Chorus you can allo-
cate ranges by using:

rgnAl | ocat e(KnCap *actor Cap, KnRgnDesc *rgnDesc);

Indication that we wish to reserve checkpoint-safe memory can be done using the options field in
KnRgnDesc by setting it to K_CPT. We must of course modify the in-kernel portion of rgnAllo-
cate() to accept this new option.

-48-

cptfork()

Chorus lacks one major component required for cptfork(): address space duplication using
copy-on-write. It does provide in-kernel support for duplicating actor address spaces via the
rgnDup() call:

i nt rgnDup(KnCap *taCap, KnCap *saCap, VnFl ags Fl ags);

Unfortunately the only possible inheritance values to the call are K | NHERI TSHARE and
K_I NHERI TCOPY. Contrary to what could be expected when coming from a UNIX virtual mem-
ory background, K_| NHERI TCOPY copies the regions straight away instead copy-on-write.

Also, the standard actor-level interface rgnDup() uses the same inheritance for all regions
inside the address space instead of consulting the region for their preferred inheritance. However,
the member function Context::dup() does permit the possibility of using the inheritance stored in
regions themselves.

Conclusion

Due to the fact that Chorus is not a relative of uNix at all, modifying the system to support
my Hot Spare High Availability model was not immediately possible. Most of the functionality
required for support is present in Chorus, but it lacks possibility to duplicate address spaces using
copy-on-write. Either this functionality must be added, or some other trick must be used. It
might be possible to use® the mapper interface and local caches of segments to take a totally dif-
ferent route, but I am not promising anything on this front.

5.2. Adapting Open Source Applicationsto the Framework

A case-study of modifying existing open source programs to use the interfaces provided by
the Hot Spare Library is presented next. The choice of applications was actually quite a difficult
one. The difficulty can be attributed to two different factors:

e Most of the networking daemons and protocols use TCP and effectively are pro-
grammed to lose state if the connection breaks. Some TCP-using applications such as
web servers do not mind TCP connections dropping every now and then, but they are
not an interesting target, since all their state is either in files on the filesystem or in data-
bases, which usually have intrinsic fail-safe properties.

« Applications which use UDP or equivalent and do not suffer from terminal problems if
the connection drops usually have some kind of ad-hoc fail-safe mechanism built in.
This generally involves saving the state to files which are formatted in an ad-hoc appli-
cation-specific manner. A popular example is dhcpd, which stores granted leases in
files, so that it can remember them across restarts (crash, system reboot, ...).

To avoid overly complicating matters, a very simple and widely known program was chosen as
the first exaple: Tetris from the BSDgames package®. While Tetris is not a network application,
it is a good example, since it is known to all, and the state and granularity to be preserved is very
obvious. Also, the visual impact of Tetris migrating from one machine to another in a demo situ-
ation is considerable.

35 Or abuse?

% Creating a clustered Tetris solution was suggested by Marcin Dobrucki, obviously as a joke,
but he should be more careful around humor impaired people.

-49-

The second example program is something more serious: sqlite. It was selected because it
features an in-core database, has a suitable license, and is not immense and bloated.

We do not need to use our adaption examples for measuring performance, that is dealt with
another application in Chapter 6.

5.2.1. Tetris

Tetris from the BSDgames package is a fairly small program. The version against which
this discussion is written can be found from the NetBSD CVS Repository in src/games/tetris with
the tag net bsd- 1- 6- PATCHOO02. It constitutes of less than 2000 lines of code.

The state of the tetris game can be broken into the following elements:

* score

e current piece

* next piece

« state (pieces already placed) on the board

There are two good choices for checkpointing places: at the beginning of each cycle when a new
piece appears at the top, or each time a piece moves. The latter option introduces much overhead
into the game, and the former would be a natural choice. Since it can be argued that the latter is
"better" (better granularity), and it does not kill performance, it was chosen.

The worker loop

The main loop of tetris is, not surpringly, a simple one. It is presented in Listing 5-1 as
pseudo-code.

Tetrismain loop

for (55) {
draw piece_in_current _position();
get _input();
if (no_input) {
i f (can_nove_piece_down) {
move_down() ;
} else {
pl ace_pi ece_permanent!|y();
sScor e++;
elide();
i f (new _piece_does not fit)
ganme_over();
}
} else {
process_i nput();

}

Listing 5-1

-50-

Since the main loop is practically the entire game after initialization, it makes a very good candi-
date to be registered as the worker function. The only thing we need to do is take the loop out of
main(), and place it into its own function. This is done because we need to call the main loop
directly if we wish to do a restore from a checkpointed situation. If the program would go
through main() also when restoring from a checkpoint, it would initialize its runtime state to zero,
and defeat any purpose of Hot Spare checkpointing.

In addition to moving the main loop into the worker function, we also move some screen-
related intialization there. This is done because we need to set up the screen also on the spare if
the program execution is handed over. Normally the Hot Spare Library provides routines for all
necessary state-saving functionality, but since it was written with daemons, not interactive appli-
cations, in mind, it does not provide routines to save screen state. Nonetheless, this serves as an
example of the fact that when the Hot Spare Library does not provide the necessary routines, it is
possible for the application to define them in its own domain.

Finally, the code that takes care of returning screen setup to a sane state needs to be moved
into the worker function after the main loop. The spare program has no knowledge it should fall
back to main(), since the worker function was called directly from the Hot Spare Library, and will
exit after returning from the worker function.

Saving state

Since this version of tetris was written in the early 90°s, it was written like most programs
of old: state is kept in the data segment as global variables. This is unacceptable for us, since we
need to store critical data in areas which will be included in the checkpoint.

The task of moving the information from the data segment to checkpoint-safe memory is a
fairly simple one: we simply "collect" the state from global scope in the source module
tetris.c,andcreate struct tetstate, inwhich all the variables essential to the state are
placed. This structure is then hs_malloc()’d when tetris is initially started. All the references to
the state variables must be fixed to point inside the checkpoint-safe structure. It can be accom-
plished either by using cheap tricks with the preprocessor:

#define inportant_var cptsafe->inportant_var

or by a simple search-and-replace operation with a text editor or shell utility. Most of the time
taking the effort to do an actual search-and-replace pays off and avoids unwanted and weird side-
effects, although the bulk of the differences may then amount to changes in variable referencing.

Normally multithreaded programs avoid using global state and pass the context of the call
as a parameter. In this case the program state will most likely already be readily contained, and
no modifications such as with tetris and other older non-threaded programs should be required.

In addition to the memory and worker "thread" state, the game registers a few signal han-
dlers. Although they could be registered via the hs sigreg() facility, they are an integral part of
the screen setup code. Since we run that code anyway, the signals get proper treatment even with-
out explicitly including them in the checkpoint.

Conclusions

Adapting tetris from the BSDgames package for application-driven checkpointing was a
simple job. It was accomplished in just a few hours time after first looking at the source code.
The factors that amounted to the ease of checkpointing adaption were the limited size and

-51-

instantly clear intuition on what to checkpoint. The non-threaded programming approach and
consequent lack of state grouping were the only difficulties encountered.

5.2.2. SQLite

SQLite [62] is a small library which implements an SQL engine. It features in-core data-
base support, and therefore is a feasible choice as a Hot Spare adaption target. SQLite is public
domain, i.e. everyone is without restrictions free to use and modify it as they wish. The following
description is written against version 2.8.13 of the software.

When started without any command line arguments, sglite gives a command-line interface
to an in-core database. This section of sqlite was targeted for modification. Granted, it is not a
very sensible frontend if we think about High Availability applications, but serves a quick demo
purpose that the database backend can be modified for Hot Spare High Availability support.

The worker loop

Since we are modifying the command line frontend, the sensible worker loop to register is
the loop that reads commands from the terminal and processes them. In sqlite this loop is:

static void process_input(struct callback _data *p, FILE *in);

Since it is called from multiple locations, we do not wish to change the signature of that function.
Rather, we define a separate function bounce(), which simply calls process input() with the cor-
rect input.

Saving state

When it comes to saving state, we are better off with sqlite than we were with tetris. All
database data and almost all the rest of the relevant state is allocated through internal functions:
sgliteMalloc(), sgliteFree() and friends. Out-of-the-box these functions call the platform malloc()
function, but it does not require much black magic to make them call hs_malloc() instead. Cur-
rently all calls to sgliteMalloc() use the hs malloc() backend, but giving checkpoint-safe memory
to all callers may not be necessary. Also, currently everything is allocated in one huge class, and
the benefits gained from spatial locality are not put into use. If this is to be optimized, the mem-
ory allocation behaviour of sglite should be analyzed much more closely.

In addition to reserving memory for database use, a minor set of state was contained as
globals in the terminal frontend module. This state was given similar treatment as what was done
with tetrisand st ruct tetstate.

Conclusions

Similar to tetris, sqlite adaption was not difficult. It was done in hours after first looking at
the code®’. It can be argued though, that the adaption was more in the style of a wide-angle disin-
tegration beam than careful optimization. Careful and optimized adaption is bound to take longer
than a few hours. Also, thorough testing may bring out problems in the current patchset. Never-
theless, the technology was proven also in this case.

37 Included in that time is writing a malloc implementation from scratch. The deadline was
approaching ...

-52-

-53-

6. Performance M easurements

In this chapter | present some key benchmarks related to the system described in this work.
Since we are interested in the performance of the checkpointing module and less interested in the
operating system and network performance, the checkpointing process does not transmit the pro-
cesses anywhere for restoration. Checkpoint data is simply written into / dev/ nul | .

For the purpose of benchmarking, a special program was written, so that the parameters
could be modified easily. The program provides the following knobs for controlling the check-
point:

Test Program Parameters

parameter desired effect

amount of checkpoint-safe memory Main factor in checkpoint size.
This especially affects non-
incremental checkpoints.

amount of memory regions More headers and more process-
ing. region_size = mem /
num_regions

number of file descriptors / threads / signals More header information. This

is practically just data that is
constant and always included in
a checkpoint. The real data will
drown out this metadata fairly

quickly.

percentage of pages to modify Incremental checkpoint size,
should not affect full check-
points.

contiguousness factor This will affect how many con-

tiguous pages are modified. If
set to 1, one page will be modi-
fied, one skipped. If set to 2,
two pages will be modified and
one skipped. This is done until
the correct percentage of pages
has been modified.

checkpoint interval Maximum desired amount of
time that passes from one call of
hs cpt() to the next. Affects the
amount of traffic between mas-
ter and spare, and also how
much time the master has to
spend checkpointing instead of
doing useful work.

Table 6-1

-54-

A short summary on what was tested is presented below. The general idea of the tests and
analysis is to find out how checkpointing affects the application programmer, and to find suitable
guidelines on how often it is possible to checkpoint.

» checkpoint duration from the application point-of-view
« as a factor of all checkpoint-safe memory
« as a factor of dirty pages
« which factor has the greatest influence on checkpointing time
» checkpoint-safe memory total size
« percentage of dirty pages
* page modification patterns
« how much CPU does checkpointing use
« dirty percentage limit after which it is better to write full checkpoints instead of deltas
« limit below which it is better to do checkpointing in application context (no fork())

All the tests were run on an old 300MHz K6-2 desktop PC with 128MB of RAM.

Checkpoint-Safe Memory Size

The first test examines how the checkpointing time from the application point-of-view is
influenced by the amount of checkpoint-safe memory registered. This amounts to the time in
between calling hs_cpt() and returning from the function. Between checkpoints the parent modi-
fies 10% in sets of four contiguous pages and sleeps for one second. The test uses four hsmalloc
regions. The results are presented in Figure 6-1.

Checkpointing Duration - Total Memory Size

Checkpoint time (microseconds)

L | | | |

14000 |- 1 ' cptfork() —o— -
/ fork(), no wired memory - — -

12000 | ' fork(), wired memory - o - 4
Dk synchronous, local pipe — = —

10000 -

8000
6000
4000
2000

0 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Checkpointable size (kilobytes)

Figure6-1

-55-

For taking a synchoronous checkpoint in application context the system was modified
somewhat. Writing the checkpoint to / dev/ nul | also in the case of a synchronous checkpoint
would be unfair, since transfer speed to the spare is the limiting factor. For application context
synchronous checkpoints the preferred way is getting the checkpoint contents as quick as possible
somewhere else, so that the application can continue with its normal tasks. | discussed shared-
memory approaches for this in Chapter 3.2.1. For benchmarking purposes | opted to write to a
local pipe, since it is faster than transmitting the data over the network. In this case the other end
of the pipe just reads data to empty the pipe buffer, but in real life it would naturally also take care
of making sure the data reaches the spare units.

The results are what was expected. When dealing with wired pages, fork() was already
proven to be shockingly expensive in Table 3-1 of Chapter 3.2.2. This is because it copies all
wired memory to the child process. As you can see, the results go "off the scale™ fairly early.

Without wiring pages fork() is the cheaptest alternative from the application point-of-view.
It starts out slightly heavier base cost than cptfork(), but quickly catches up and follows an almost
constant trend after that. The difference in base cost can be accounted to the fact that fork()
marks all regions copy-on-write, while cptfork() shares most of them. However, the price to pay
for doing a full asynchronous checkpoint with fork() is of course the amount of data to be sent
over to the spare.

The cost of doing cptfork() is very close to linear with an added base cost for doing com-
mon tasks required when fork()ing. The linear cost can be explained by having to go through all
pages marked checkpoint-safe and checking them for modification information before allowing
the parent of the cptfork()ing process to return.

Taking synchronous checkpoint by writing to a pipe starts out about as cheap as the non-
wired fork()ing alternatives, but exhibits high costs when the checkpoint size is even slightly
increased. One factor for the huge expense of writing to a pipe is the processor we a running on:
a K6-2 lacks on-chip L2 cache, and therefore the memory copies involved in the scheme have
high costs. The pipe performance for a platform can be measured with tools such as Imbench
[63], and it can be seen that the pipe performance of a Pentium 4 is tens of times greater. This
should be taken into account when optimizing the checkpointing routines for a given platform?®,

Varying Amount of Dirty Pages

To see how the amount of dirty pages affects checkpointing cost from the application per-
spective, a test which modifies a varying number of pages was run. The test reserved 4MB of
memory in four hsmalloc regions, a did modifications in sets of four contiguous pages. In the
case where 95% of the pages were modified, 25 contiguous pages were used instead to make the
test runnable. The main purpose of this test was to see if it becomes clearly cheaper to take a full
checkpoint instead of using the cptfork() approach at some point. The test results are presented in
Figure 6-2.

The asynchronous approach exhibits a clearly linear trend in addition to the cptfork() base-
cost. The same can be said about normal fork(), except that the linear coefficient is much smaller
in the latter case. | am not totally sure where the linear coefficient comes from, but my educated

38 Of course as you move to higher performance platforms, most of the other components of the
system will also increase in performance. For example, cptfork() will most likely take much less
time on a higher performance machine. Similarly, your application will probably be more resource-
hungry.

-56-

Checkpointing Duration - Dirty Pages

Checkpoint time (microseconds)
8000 T T

cptfork() —o—
7000 fork(), no wired memory - o

6000
5000
4000
3000
2000

1000 —

0 1 1 1 1
0 20 40 60 80 100

Dirty Pages (percent)

Figure 6-2

guess is that accessing pages influeces various caches in the system. The cptfork() case takes
more performance penalty from this, because it does more lookups than a normal fork(). If nearly
all pages are modified, cptfork() is 5ms slower than plain fork(). This difference is significant,
since the longer the checkpoint memory area is locked, the longer other threads can be blocked.

6.1. Analysisof Results

Ultimately we wish to know which approach is the cheapest for each given situation. It is
clear that application context checkpointing is not worthwhile unless there is extremely little data
to checkpoint, perhaps only a page of memory or so*°. The adaption example of Tetris in Chapter
5.2.1 fits this description. Once the checkpoint size gets into the range of tens of kilobytes and
beyond, asynchronous checkpoints stall the application for much less.

While doing full asynchoronous checkpoints employing fork() is a win from the point-of-
view of the application, that is only half of the truth. The cost of transferring the checkpoint to
spare units becomes a huge factor for applications which wish to register a myriad of memory, but
only modify it seldom. This limits the granularity of full checkpoints. Available bandwidth will
most likely be saturated by information which remains the same from one checkpoint to another.

39 Assuming of course small, kilobyte-sized pages. Megabyte-sized "large pages"” are right out.

-57-

Number of Checkpointsvs. Total Memory

Maximum #of checkpoints per second
50 I I

45 |-
40 |
35+
30
25
20
15 +
10 —

5L — -

incremental checkpo‘ nt

full checkpoint — — — 7

0 1 1 L [R —
1000 2000 3000 4000 5000 6000 7000
Checkpointable memory size (kilobytes)

Figure 6-3

Number of Checkpointsvs. Dirty Memory

Maximum #of checkpoints per second, performance factor
25 T T

incremental check'poi nt
full checkpoint — — —

20

15

10

0 20 40 60 80 100
Dirty memory percentage

Figure 6-4

-58-

I have presented some calculations (not measurements) on the maximum number of check-
points per seconds in Figure 6-3 and Figure 6-4. The modification percentage and memory size
for the figures is 10% and 10MB, respectively. The calculations presented are of course simpli-
fied versions of the real problem. They simply represent how much time it takes to transfer the
memory contents related to a checkpoint over a 100Mbps network*. Other factors such as how
long the checkpointing act itself takes, or how much metadata is present are considered insignifi-
cant enough to not skew the calculations.

One "fatal flaw" in Figure 6-4 is that it assumes that the number of dirty pages per check-
point halves when the frequency of checkpoints is doubled. This is of course not so, and the only
certain thing we can say about the number of dirty pages if we halve time is that the upper bound
is the same as in the original. The number will likely decrease somewhat, but will not likely
halve. But that was ignored, and because of the suitably chosen value for checkpointable memory
size, Figure 6-4 doubles also as a performance factor graph.

Looking at all the graphs presented in this chapter, it is clear that cptfork() is the most per-
formant alternative as long as there is enough memory in the checkpoint range, and if not too big
a portion of that memory space is modified in between checkpoints. After reaching a high
enough modification percentage a full checkpoint becomes cheaper. Unfortunately we do not
know the amount of dirty pages before making the decision to checkpoint using cptfork(). After
taking a hit from the overhead of doing cptfork(), it is too late to change our mind.

We could address the problem presented in the previous paragraph by recording page modi-
fication information already when the page is modified. Since our checkpointable memory ranges
are marked copy-on-write, the operating system takes page faults to copy pages which are being
modified. In addition to gaining knowledge on modification statistics before making any expen-
sive decisions such as cptfork(), there would be other benefits.

e There would be no need to do a lookup for all the pages in checkpoint memory ranges
during cptfork(), as the modification information could be already recorded in a simple
form, such as a bitmap. This would effectively cut down the checkpoint-time from
O(total_pages) to O(pages_maodified).

e The scheme would also work on platforms which do not have page modification infor-
mation in their MMU.

While this seems like an excellent optimization, it is only presented here as an idea. The actual
feasibility investigation and implemention is left as an excellent candidate for future work on the
subject.

40 Even though GigE is commonplace these days, 100Mbps was dominant with the vintage of
equipment | ran the benchmarks on. Bigger equipment will probably bring bigger software, and if
you multiply the network speed and checkpoint memory size size by ten, you get back to where you
started from.

-59-

7. Conclusions

This work set out to investigate the possibility of using a checkpointing approach for Hot
Spare High Availability in environments where the application is time-critical and freezing it for
an arbitrary period during execution for taking the checkpoint is not acceptable.

The key idea in the approach was to make checkpointing the responsibility of the applica-
tion, since it best knows what it is doing with its state as opposed to an external facility, which
must treat all data as opaque. The efficiency of the architecture was enhanced by adding a kernel
component, which serves the application-level library by providing information on which pieces
(memory pages) have changed since the last checkpoint.

If the application itself contains vast amounts of redundant state, using application-guided
checkpointing to carve out the necessary bits will increase performance dramatically. Incremental
checkpointing will enhance performance more and more as the ratio of modifications between
checkpoints to the entire checkpointable memory area decreases.

The Hot Spare Library was written to be both portable and flexible. It provides most of the
functionality necessary for standard applications, but since checkpointing is application-driven,
the application itself is free to handle anything else it needs to checkpoint.

The only non-portable component of the system is inherently the kernel module. The ker-
nel component was shown to be based on a portable idea, and ideas for adapting it to other sys-
tems were given.

The biggest part of the work for someone who wishes to use an application-driven scheme
is of course adapting the application. It was shown that for a small application the work was just
a matter of hours. For a large application, the time depends greatly on how familiar one is with
the application before starting the modification task, and how the application was written. The
task varies from “trivial” to “impossible without rewriting the entire application™, and it is
impossible to give an accurate estimate without knowing the particular application.

This work did not address the problem that unfortunately makes the approach invalid for
most network services: migrating applications which depend on a persistent TCP connection is
not possible*!. There are two ways to fix the problem: either teach the application and protocol
that the connection may be broken if migration takes place, or modify TCP on both endpoints to
cope with migration. Unfortunately, neither approach is non-intrusive from several perspectives,
and the modifications are far from trivial, either logistically or technically.

As a concluding remark it can be said that the application-driven approach was found to be
a working one, and under the right circumstances and right software it can be an extremely attrac-
tive option for providing Hot Spare High Availability.

411 do not know if it is any condolence that the TCP problem makes just about any checkpoint-
ing approach inapplicable.

-60-

References

1.

10.

11.

12.
13.

14.

15.

16.

17.
18.

David A. Patterson, Garth Gibson, and Randy H. Katz, A Case for Redundant Arrays of
Inexpensive Disks (RAID), pp. 109-116, Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference On Management of Data (1988).

Brian Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions on
Software Engineering, SE-1, NO. 2 (June 1975).

Paul E. Ammann and John C. Knight, “Data Diversity: An Approach to Software Fault Tol-
erance,” IEEE Transactions on Computers, VOL. 37, NO. 4 (April 1988).

Solid Information Technology, Solid Availability White Paper.
http://www.solidtech.com/pdf/Solid_Awvailability Whitepaper.pdf.

Silicon Graphics, Linux FailSafe Functional Specification and Architecture (March 20th,
2000). http://oss.sgi.com/projects/failsafe/docs/spec_arch.html.

Sun Microsystems, The Sun Cluster Enterprise Architecture, Technical White Paper.
http://wwws.sun.com/software/cluster/wp-arch/wp.pdf.

Yi-Min Wang, Yennum Huang, Kiem-Phong Vo, Pi-Yu Chung, and Chandra Kintala,
Checkpointing and Its Applications, pp. 22-31, 25th International Symposium on Fault-Tol-
erant Computing (June 1995).

Jeremy Casas, Dan Clark, Ravi Konuru, Steve Otto, Robert Prouty, and Jonathan Walpole,
MPVM: A Migration Transparent Version of PVM, Oregon Gradute Institute of Science &
Technology (February 1995).

M. Litzkow, M. Solomon, Supporting Checkpointing and Process Migration Outside The
UNIX Kernel, pp. 283-290, Winter Usenix Conference (1992).

Attig, Norbert and Sander, Volker, Automatic Checkpointing of NQS Batch Jobs on CRAY
UNICOS Systems, pp. 250-255, Proceedings of the Cray User Group Meeting, Montreux
(March 1993).

Silicon Graphics, “IRIX Checkpoint and Restart Operation Guide,” Document Number:
007-3236-009.

The NetBSD Project, The NetBSD Operating System. http://www.NetBSD.org/.

Jonathan M. Smith and John loannidis, “Notes on the Implementation of a Remote Fork
Mechanism,” Technical Report CUCS-365-88, Columbia University (1988).

E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, The Performance of Consistent Check-
pointing, Proceedings of the 11th IEEE Symposium on Reliable Distributed Systems (Octo-
ber 1992).

William R. Dieter and James E. Lumpp, Jr., A User-level Checkpointing Library for POSIX
Threads Programs (1999).

William R. Dieter and James E. Lumpp, Jr., User-level Checkpointing for LinuxThreads
Programs, Usenix Annual Technical Conference Freenix Track (June 2001).

A. Wennmacher, Als waehre nichts geschehen, pp. 135-137, iX (January 1999).

“Wanted: An Application Aware Checkpointing Service,” WARP Report W2-94, University
of St Andrews.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

-61-

Stuart I. Feldman and Channing B. Brown, IGOR: A System for Program Debugging via
Reversible Execution, pp. 112-123, Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and distributed debugging (1998).

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li, Libckpt: Transparent Check-
pointing under Unix, Winter Usenix Conference (January 1995).

Chung-Chi Jim Li, Elliot M. Stewart, and W. Kent Fuchs, “Compiler-assisted Full Check-
pointing,” Software - Practice and Experience, Vol 24, No. 10, pp. 871-886 (October 1994).

Balkrishna Ramkumar and Volker Strumpen, Portable Checkpointing for Heterogeneous
Architectures, Proceeding of the 27th Fault-Tolerant Computing Symposium (June 1997).

D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” Communications of
ACM, Vol 17, No. 7, pp. 365-375 (July 1974).

Marshall K. McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman, The
Design and Implementation of the 4.4BSD Operating System, Addison-Wesley (1996).

S. R. Kleiman, Vnodes: An Architecture for Multiple File System Types in Sun UNIX, pp.
238-247, Summer Usenix Conference, Atlanta, GA (1986).

Gary R. Wright and W. Richard Stevens, TCP/IP Illustrated Volume 2: The Implementa-
tion, Addison Wesley (1995). ISBN 0-201-63354-X.

David A. Moon, “Chaosnet,” A.l. Memo No. 628, MIT Artificial Intelligence Laboratory
(June, 1981).

Bryan Kuntz and Karthik Rajan, MIGSOCK: Migratable TCP Socket in Linux, Master’s
Thesis, Carnegie Mellon University (February 2002).

Alex C. Snoeren and Hari Balakrishnan, And End-to-End Approach to Host Mobility, Pro-
ceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing
and Networking (August 2000).

Victor C. Zandy and Barton P. Miller, Reliable Sockets, Department of Computer Sciences,
University of Wisconsin (2001).

Jon Howell, Straightforward Java Persistence Through Checkpointing, Department of
Computer Science, Darthmouth Collage (August 6, 1998).

Sun Microsystems, “java.io Interface Serializable,” Java2 Platform, Standard Edition,
v1.4.2 API Specification.

Guido van Rossum and Fred L. Drake, Jr., “pickle -- Python object serialization,” Python
Library Reference.

Paula McGrath and Brendan Tangney, “Scrabble - A Distributed Application with an
Emphasis on Continuity,” IEEE Software Engineering Journal, Vol 5, Issue 3, pp. 160-164
(May 1990).

Why implement traditional vfork(). http://www.netbsd.org/Documentation/ker-
nel/vfork.html.

Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, Raymond S. Tomlinson, and Bolt
Beranek, “TENEX, A Paged Time Sharing System for the PDP-10,” Communications of
the ACM, Volume 15, Number 3 (March 1972).

37.

38.

39.

40.

41.

42.

43.
44,

45,

46.
47.

48.

49,

50.

ol.

52.
53.
54.
55.

56.

57.
58.

-62-

Kenneth Oksanen, Real-time Garbage Collection of a Functional Persistent Heap, Licenti-
ate’s Thesis, Helsinki University of Technology (1999).

Hyochang NAM, Jong KIM, Sung Je HONG, and Sunggu LEE, Probabilistic Checkpoint-
ing, pp. 48-57, 27th International Symposium on Fault-Tolerant Computing (June 1997).

Florin Sultan, Aniruddha Bohra, Yufei Pan, Stephen Smaldone, lulian Neamtiu, Pascal Gal-
lard, and Liviu Iftode, “Nonintrusive Failure Detection and Recovery for Internet Services
Using Backdoors,” DCS-TR-524, Rutgers University (December 2003).

Sun Microsystems, UltraSPARC User’s Manual (July 1997).

pmap(9) - machine-dependent portion of the virtual memory system. NetBSD Kernel
Developer’s Manual.

C. Cranor, Design and Implementation of the UVM Virtual Memory System, PhD thesis,
Washington University (August 1998).

A. Brown, pmap(1) - display process memory map. NetBSD General Commands Manual.

SCO Group, System V Application Binary Interface, Chapter 4: Object Files (17 December
2003 snapshot).

David R. Butenhof, Programming with POSIX® threads, Addison-Wesley (May 1997).
ISBN 0-201-63392-2.

Anurag Aggarwal and Diwaker Gupta, Failure Detectors for Distributed Systems (2002).

Chad Catlett and George Foot, libnet - "libpwrite" Network Routine Library. http:/lib-
net.sourceforge.net/.

Richard McDougall and Jim Mauro, “Part Il: The Solaris Memory System” in Solaris
Internals: Core Kernel Architecture, Sun Microsystems Press (October 2000). ISBN
0-13-022496-0.

The FreeBSD Project, The FreeBSD Operating System. http://www.FreeBSD.org/.

Matthew Dillon, Design elements of the FreeBSD VM system.
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/vm-design/.

Marshall K. McKusick and George Neville-Neil, The Design and Implementation of the
FreeBSD Operating System, Addison-Wesley (August 2004). ISBN 0-201-70245-2.

The Linux Kernel Archives. http://www.kernel.org/.
Mel Gorman, Understanding The Linux Virtual Memory Manager (February 2004).
Mel Gorman, Code Commentary On The Linux Virtual Memory Manager (July 2003).

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C.
Kaiser, S. Langlois, P. Léonard, and W. Neuhauser, Overview of the CHORUS Distributed
Operating Systems (1991).
Chorus Operating System Open Source. http://www.experimentalstuff.com/Technolo-
gies/ChorusOS/index.html.

Jean-Marie Rifflet, Programming Under ChorusOS, University of Paris VII (Nov 2000).

V. Abrossimov, M. Rozier, and M. Gien, Virtual Memory Management in Chorus, Proceed-
ings of the Workshop on Progress in Distributed Operating Systems and Distributed System
Management (April 1989).

59.

60.

61.

62.
63.

-63-

V. Abrossimov, M. Rozier, and M. Shapiro, Generic Virtual Memory Management for
Operating System Kernels, Proceedings of the 12th ACM Symposium on Operating System
Principles (September 1989).

Sunil Kittur and Francois Armand, Fault Tolerance in a Distributed CHORUSMiX System,
Usenix Annual Technical Conference (January 1996).

Vadim Abrossimov, Frédéric Herrmann, Jean-Christophe Hugly, Frédéric Ruget, Eric Pouy-
oul, and Michel Tombroff, Fast Error Recovery in CHORUSOS. The Hot-Restart Technol-
ogy, Chorus Systems Inc. Technical Report (August 1996).

QLite: An Embeddable SQL Database Engine. http://www.sqlite.org/.

Larry McVoy and Carl Staelin, Imbench: Portable Tools for Performance Analysis, Usenix
Annual Technical Conference (January 1996).

Appendix A: Manual Pages

cptctl(2): .
cptfork(2): .
hs_init(3): .
hs det(3): . .
hs _cpipe(3): .
hs _malloc(3): .
hs _cpt(3): .
hs fd(3): . .
hs _thread(3): .
hs sig(3): .
gratarp(8): .

XX

<<-—

S<

<TTXX—T~—

CPTCTL (2)

NAME

Cubical Solutions Hotspare CPTCTL (2)

cpt ct 1 - control checkpoint memory areas

LIBRARY

Hot Spare Library (libcshs, -Icshs)

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/cpt. h>

ssize t

cptctl(struct cpt_range [fanges, size t nranges,int op);

DESCRIPTION

The cpt ct | () function is used to control checkpointable memory ranges included in the kernel.
The ranges are used by the cpt f or k() call for performing asynchronous and atomic snapshot-
ting of the memory ranges.

The structure describing a memory range is a very simple (address,lenght)-pair:

struct cpt_range {
voi d [Caddr;

size t

b

| en;

The r anges parameter should point to a memory area either containing an array of st r uct
cpt _range or an area to which such structures should be copied, depending on if op moves
data to or from the kernel, respectively.

The nr anges parameters describes the size of the array in terms of the number of structures.

In addition to installing and removing checkpoint memory ranges, the ct pct | () call can be
used for querying memory page modifications which happened in between the two previous
calls to cpt f or k(). The action taken is controlled by the op parameter:

CPT_INSTALL
CPT_PURGE

CPT_PURGE_ALL

CPT_QUERY

Add checkpoint-safe memory ranges to the kernel.

Remove previously installed checkpoint-safe memory ranges from the
kernel.

Remove all checkpoint-safe memory ranges from the kernel. This
operation ignores the other parameters.

Query the kernel for a list of dirty pages. The return values for this call
are different from others. It returns the amount of dirty ranges detected
by the previous call to cpt f or k(). If the caller does not provide
enough space, no copying is done. In this case the caller should
reserve more memory. In case of an error, =1 is returned and errno is
set to indicate the error.

There are a few strict guidelines which must be followed when installing or purging memory

ranges:

* Memory must be wired by the caller before attempting install.

» Ranges must be truncated to page boundaries.

* When purging specific memory areas, the exact same range-descriptions must be given.

* Installed memory ranges cannot overlap and will not be merged. Increasing the size of a
range is done by first removing the original range(s), and adding a larger range encompass-
ing the one(s) just removed.

Cubical Solutions Ltd.

Jun 22, 2004 |

CPTCTL (2) Cubical Solutions Hotspare CPTCTL (2)

» If an error is returned when installing or purging ranges, nothing can be assumed about the
remaining in-kernel values. The caller should proceed by using CPT_PURGE_ALL and
starting over.

RETURN VALUES
Upon succesful completion, cptctl () returns zero for all other call-types except

CPT_QUERY. For the description of the return values of CPT_QUERY, see the description of
the parameter itself. Otherwise, —1 is returned and errno is set to indicate the error.

ERRORS
The ct pct | () function will fail if:
[EFAULT] There is something wrong with the given address ranges, such as they are
not wired, or the ranges do not belong to the process memory space.
[El NVAL] An invalid argument was given, such as an invalid value for op.
SEE ALSO

cpt fork(2)

Cubical Solutions Ltd. Jun 22, 2004 1l

CPTFORK (2) Cubical Solutions Hotspare CPTFORK (2)

NAME

cpt f or k — create process to checkpoint memory ranges

LIBRARY

Hot Spare Library (libcshs, -Icshs)

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/cpt. h>
pid_t

cpt fork(voi d);

DESCRIPTION

The cpt f or k() system call is used to create a copy-on-write snapshot area of regions critical to
the checkpointing process. It acts similarly to normal f or k(), except that memory regions other
than the ones marked with cpt ct | () or stack are shared.

During the call, an analysis of the regions added with cpt ct | () is done. This involves finding
out which pages have been modified since the last call to cpt f or k(). These ranges can be
queried from the kernel with the cpt ct | () call using the CPT_QUERY op.

After returning, the parent process is expected to continue normal execution, while the child is
expected to write the checkpoint data to backing storage. After doing so, the child can exit nor-
mally by calling _exi t (2).

Normally created processes need the parent process to wai t (2) for them before they are
removed from a zombi state. This is not necessary for processes created by cpt f or k(), since
the kernel assigns their parent process to i ni t , which handles the call to wai t (2).

RETURN VALUES

Upon succesful completion, cpt f or k() returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ERRORS

The cpt f or k() function will fail if and no child process will be created if:

[EAGAI N] The system-imposed limit on the total number of processes under execu-
tion would be exceeded. This limit is configuration-dependent.

[EAGAI N] The limit RLI M T_NPROC on the total number of processes under
execution by this user id would be exceeded.

[ENOVEM] There is insufficient swap space for the new process.

SEE ALSO

cptctl (2),fork(2)

Cubical Solutions Ltd. Jun 22, 2004 v

HSINIT (3) Cubical Solutions Hotspare HSINIT (3)

NAME
hs_i ni t — Hot Spare Library Initialization

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_init(int argc, char [argv[]);

DESCRIPTION
The hs_i ni t () function is used to initialize the system for checkpointing. Parameters are
given via the standard command line arguments, which are to be passed to hs_i ni t () before
the application is allowed to do its normal processing. The internal processing is done up to the
first argument separator. After that the program can proceed to parse normal arguments. An
example of a valid style of argument vector to a program would be: -a -b -c¢ -- -a
ctual -p rogram-a rgs.

This interface may change in the future, if the spare functionality configuration becomes more
complex and outgrows simple command line arguments.

The valid flags to the program which can be passed onto hs_i ni t () are:

>a address The address of the opposite component is determined by addr ess. For the
master, this is the address where it sends checkpoints to. For the spare this
flag is optional, but if supplied, it signifies the only address where check-
points are accepted from.

>m Signifies that the process acts as the master. You must supply either this or
>S.

>N ncon The value ncon indicates the possible number of simultaneous (asyn-
chronic) checkpointing operations. The value should be at least 1 in all
cases.

>p port The value of port indicates the network port that is used for connections.

The checkpoint transfer has a better chance of working if this value is the
same for both the master and spare.

>S Signifies that the process acts as a spare. You must supply either this or > m

You must register the failure detection function with hs_det r eg() before calling hs_i ni t ().
RETURN VALUES

In case of a critical error in either the spare or master value processing, -1 is returned.

For a master unit, this function returns the number of arguments processed. The value is to be
added to and subtracted from argv and argc, respectively.

For a spare unit, this function does not return. It goes directly into library internal code waiting
to receive checkpoints, and jumps to executing the program if/when a restoration occurs.

SEE ALSO
hs_det (3)

Cubical Solutions Ltd. Jun 22, 2004 Vv

HSDET (3) Cubical Solutions Hotspare HSDET (3)

NAME
hs_det — master unit failure detection functions

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>

voi d

hs_detreg(int (detfunc)(void), void [funcarg);
i nt

hs_det pi ng4(voi d [uncar g);

i nt

hs_detfil e(voi d [f uncarg);

DESCRIPTION
This class of functions is used to determine if the master unit has failed and if the spare unit
should take over. The function hs_det r eg() is used to register a detection function, which
takes a pointer argument. This argument can be used to pass on information such as the network
address of the master, perhaps along with some application-specific knowledge. The registered
function should return 0 as long as it thinks that the master is alive. The registered function is
called internally by the Hot Spare Library.

As simple examples of a detection function, hs_det pi ng4() and hs_detfi |l e() are pro-
vided. The former uses ICMP4 to try to detect when the master has failed. The argument is
simply a character pointer to a string containing the master host IP address. The latter is meant
mostly for debugging purposes. It signals master failure as soon as a filesystem node is created
to location identified by filename supplies as a character string in f uncar g. Before returning
hs_det fi | e() unlink’s the filesystem node.

SEE ALSO
hs_cpt (3)

CAVEATS

It is extremely difficult to determine with complete certainty if the master is not responding just
because it is slow (e.g. network lag), or because it really is down.

Cubical Solutions Ltd. Jun 22, 2004 VI

HSCPIPE (3) Cubical Solutions Hotspare HSCPIPE (3)

NAME
hs_cpi pe - pool of pipes between master and spare

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_cpi pe_i nit(int ncon);
i nt
hs_cpi pe_l oad(i nt fd);
i nt
hs_cpi pe_| oadt cp4(const struct sockaddr _in [arget);
i nt
hs_cpi pe_l oadfil e(const char [fil enane);

DESCRIPTION
This set of functions is used to inform the checkpointing subsystem about usable filedescriptors
for writing the checkpoint to a safe place. All descriptors are treated equal, and the checkpoint-
ing library will simply select one of the available ones when a checkpoint should be written.
This module does internal bookkeeping on which descriptors are in use and which are available,
so the user can just register the descriptors and not worry about it after that.

hs_cpi pe_init() is used to initialize the pool of checkpointing pipes. The maximum
amount of pipes that can be loaded into the system is given by ncon.

It is possible to load any pre-opened file descriptor as a checkpointing pipe by using
hs cpipe_load(). As a conveniece factor, hs_cpipe_ | oadtcp4() and
hs_cpi pe_| oadfi | e() are provided. The former opens a TCP connection to the location
indicated by the argument, while the latter opens a filesystem node for writing. If succesful, the
file descriptor opened is added to the pool for both functions.

This subsystem must be initialized and at least one checkpointing pipe loaded for hs_cpt () to
work.

RETURN VALUES
Upon succesful completion, these functions return zero. In case of failure, a non-zero value is
returned.

SEE ALSO
hs_cpt (3)

BUGS
The abstraction for hs_cpi pe_| oadt cp4() could be smarter.

Cubical Solutions Ltd. Jun 22, 2004 VI

HSMALLOC (3) Cubical Solutions Hotspare HSMALLOC (3)

NAME
hs_mal | oc - reserve checkpointable memory

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs malloc _create(int class,size t initial);
void O

hs_mal |l oc(int cl ass, size_ t size);

voi d
hs free(int class, void [Caddr);

DESCRIPTION
These functions are used for allocating and freeing checkpoint-safe memory for use by the
application. In case of system-supported checkpointing, the functions also inform the kernel of
new checkpoint-safe ranges.

Memory allocation is divided into classes. The main idea of classes is to enable applications to
group logically similar data with a reasonably good spatial locality and therefore minimize the
amount of dirty pages for incremental checkpointing. The class value should be supplied by the
caller. This is to make programming easier, since the programmer can use constants such as
MYCLASS COUNTERS in the code, and not have to do lookups every time wanting to reserve or
free memory.

The hs_mal | oc_cr eat e() function creates an allocation class with the cl ass value given
as the first call parameter. The value of i ni ti al is used for reserving the given amount of
memory for the class to be given to callers of hs_mal | oc(). Each time after running out of
space the amount of space allocated for distribution for memory allocation requests from the
class in question is doubled. A reasonable attempt should be made to make the amount of mem-
ory initially requested close to the maximum ever needed for that particular class.

The hs_mal | oc() call operates similarly to normal mal | oc(3) with the exception that mem-
ory is reserved from the areas allocated for each class.

In case reserved memory is not longer needed, it can be freed by calling hs_f ree(). It is the
hs_malloc equivalent of the libc function f r ee(3).

RETURN VALUES
Upon succesful completion, hs_rmal | oc_cr eat e() returns zero. In case of failure, a non-
zero value is returned.

The hs_mal | oc() function returns a pointer to the reserved memory area if succesful. This
pointer can be directly used by the caller. In case of allocation failure, NULL is returned.

SEE ALSO
cptctl (2),cptfork(2),free(3) malloc(3)

Cubical Solutions Ltd. Jun 22, 2004 VI

HSCPT (3) Cubical Solutions Hotspare HSCPT (3)

NAME
hs_cpt - take and migrate a checkpoint

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_cpt (int fl ags);

DESCRIPTION
The function hs_cpt () is the application-visible interface to checkpointing at runtime. It ulti-
mately takes care of the transporting the relevant pieces of memory areas allocated with
hs_mal | oc() and other information such as details on file descriptors and signal handling to
the spare machine. If kernel-support for checkpointing is present, this includes querying the ker-
nel for changes.

The exact function of the checkpointing operation is controlled by the flags given. The follow-
ing flags are supported:

HSCPT_ASYNC Take an asynchronous checkpoint. The function will return “immedi-
ately" after calling it, and the return value will not reflect if the checkpoint
was succesfully delivered to the spare. If this flag is not given, the func-
tion returns only after the checkpoint has been succesfully transmitted to
the spare.

HSCPT_I NCR Take an incremental checkpoint. Only the portions of memory allocated
with hs_mal | oc() that have changed since the previous call to
hs_cpt () will be transmitted. If kernel-support for checkpointing is not
present, this flag will have no effect.

RETURN VALUES
Upon succesful completion, hs_cpt () returns zero. In case of failure, a non-zero value is
returned.

SEE ALSO
cptfork(2),hs_mal I oc(3), hs_fd(3), hs_si g(3), hs_t hread(3)

BUGS
Since hs_cpt () is a call for application-driven checkpointing, there should be a way to register
application-defined hooks that will be called once information required for incremental check-
pointing is available. Such a call may appear in the future.

Cubical Solutions Ltd. Jun 22, 2004 IX

HSFD (3) Cubical Solutions Hotspare HSFD (3)

NAME
hs_f d - save filedescriptors to checkpoints

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_fdreg_filefd(int fd, const char [path);
i nt
hs_fdreg _sockudp4(int s,int flags);
i nt
hs _fdreg socktcp4 |isten(int s);
i nt
hs fd deregister(int fd);

DESCRIPTION

This family of functions is used to register and deregister file descriptors that should be saved
when checkpointing. Since it is difficult to save and restore file descriptors based purely on the
file descriptor number, the user is asked for some input on how s/he wishes the descriptors to be
treated. All functions guarantee that the restored descriptor numbers will be identical to the
ones registered (and as a corollary, if the user registers multiple descriptors with the same num-
bers, trouble will result) implying that the save/restore process is mostly transparent from an
application point-of-view.

The intention is that the caller first fully initializes the file descriptors and only after that calls
these functions. This way the appropriate functions can query the kernel for the parameters
which are required to be user-supplied.

The hs_fdreg fil efd() function is used to register a file descriptor pointing to a normal
file. The argument f d specifies the file descriptor number, and for the restoration code to be
able to re-open the file, the filename has to be given in the pat h argument. The file desciptor
seek offset is saved at checkpoint-time, and is restored to the same value during recovery.

The hs_f dreg_sockudp4() function is used to register a UDP socket. The f | ags given to
it as a bitmask control what is queried from the socket and what is restored:

HSFD_UDP4 GETNAME Query socket local address with get socknane(), and
bi nd() the socket to the same values during restore. You
usually want to supply this flag.

HSFD_UDP4 GETPEER Use get peer nane() to query the remote end of the socket.
This can be used only for sockets for which connect () has
been called. It is an error to specify this flag even if the
socket is not connected; during restoration connect () will
simply not be called in that case.

HSFD_UDP4 CPTREFRESH If either of name or peer flags are supplied, the queried
information will be re-queried from the kernel at checkpoint-
time. This can be used if the socket is "recycled" a lot, but
supplying it needlessly is course discouraged, since it creates
extra overhead.

Cubical Solutions Ltd. Jun 22, 2004 X

HSFD (3) Cubical Solutions Hotspare HSFD (3)

Usually callers will want to ensure that the local end of the socket is bound to port outside the
anon range. If the socket is used for receiving, the justification is obvious. For sending data, the
reasoning is a bit more tricky. If a socket is not bound when data is first sent, it is bound to a
port in the anon range. However, when restoring another application may have already "stolen"
that port if it is in the anon-range (mind you, a port is a per-machine resource, not a per-applica-
tion resource).

The hs_f dreg_sockt cp4_li st en() function can be used to register TCP sockets that are
in a listen-state. The kernel will be queried from the address and the port of the socket, and it
will be initialized in a state ready to accept connections at restore-time. Note that there is cur-
rently no way to preserve TCP connections across failure points.

File descriptors which are no longer needed can be deregistered by calling the
hs_f d_der egi st er () function. Notice that this will only deregister the fd from the hotspare
library. Doing cleanup such as closing the descriptor is still the responsibility of the application.

RETURN VALUES
Upon succesful completion, hs_fdreg_filefd(), hs_fdreg_sockudp4(),
hs fdreg socktcp4 |isten(),andhs_fd_deregi st er () return zero. In case of fail-
ure, a non-zero value is returned.

SEE ALSO
hs_cpt (3)

BUGS
There is no way to modify the parameters of the descriptor once it is registered. The work-
around is to deregister it and immediately afterwards register it with the updated parameters.

For asynchronous checkpoints information queried from the kernel might not reflect the state of
the memory at the time of the checkpoint any longer. Caution is advised.

The interface is not properly abstracted.

Cubical Solutions Ltd. Jun 22, 2004 Xl

HSTHREAD (3) Cubical Solutions Hotspare HSTHREAD (3)

NAME
hs_t hr ead - register and deregister worker threads

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_t hreadreg(void (Owrker)(void O, void [arg);
i nt
hs_t hreadder eg(voi d (Oworker)(void), void Carg);

DESCRIPTION
These functions are used to register and deregister worker threads, which should be created
when the program is restored. If the program is not threaded and exactly one thread is regis-
tered, no threads will be created. The function wor ker () will simply be called directly.

When deregistering workers with hs_t hr eadder eg(), both the function name and the argu-
ment must match. The rationale for this is that it is possible to register multiple workers using
the same function but with arguments containing different state.

RETURN VALUES
Upon succesful completion, hs_t hr eadr eg() and hs_t hr eadder eg() return zero. In case
of failure, a non-zero value is returned.

SEE ALSO
hs_cpt (3)

Cubical Solutions Ltd. Jun 22, 2004 Xl

HSSIG (3) Cubical Solutions Hotspare HSSIG (3)

NAME
hs_si g - register and deregister signal actions

LIBRARY
Hot Spare Library (libcshs, -Icshs)

SYNOPSIS
#i ncl ude <cshs/cshs. h>
i nt
hs_si greg(i nt si gnunj;
i nt
hs_si gder eg(i nt si gnum);

DESCRIPTION
The hs_si gr eg() function is used to identify signals which should preserve treatment across a
restore from a checkpoint. Currently si gacti on() is used to dig out information about the
signal treatment. It is executed only when the signal is registered, so if signal handling changed
during execution (should be a pretty unlikely event), the signal should be de-registered with
hs_si gder eg() and then re-registered.

RETURN VALUES
Upon succesful completion, hs_si greg() and hs_si gder eg() return zero. In case of fail-
ure, a non-zero value is returned.

SEE ALSO
hs_cpt (3), si gacti on(2)

Cubical Solutions Ltd. Jun 22, 2004 X1

GRATARP (8) Cubical Solutions Hotspare GRATARP (8)

NAME
gr at ar p — send a gratuitous ARP to the local network

SYNOPSIS
gratarpinterface MAC address | Pv4_address

DESCRIPTION
The program gr at ar p is used to send a gratuitous ARP message to the network. It instructs
everyone on the local network with the IP address in ARP cache to modify the value in cache.
This is useful if we need to migrate the IP address from one interface to another, possibly on dif-
ferent machines, and want everyone to instantaneously send data to the right address and not
wait for a timeout.

The gratuitous ARP broadcast is sent through i nt er f ace, with MAC_addr ess indicating the
new link-level address for | P_addr ess.

EXIT STATUS
The gr at ar p utility exits 0 on success, and >0 if an error occurs.

SEE ALSO
bpf (4), 1 i bnet (3)

CAVEATS
gr at ar p uses low-level networking interfaces and requires root priviledges. gr at ar p can be
used to wreak total havoc in the local network, and it should be very carefully decided who has
the rights to execute it, if it is made setuid root.

Cubical Solutions Ltd. Jun 22, 2004 X1V

