0

la

WITTENSTEIN

WITTENSTEIN HighlintegritySystems

SAFERTOS USER MANUAL FOR THE CODE
COMPOSER STUDIO TMS570 MPU PRODUCT VARIANT

Report Number: 34-172-MAN-1-005-006
Issue Number: 1.0

Date: 12 May 2011

WITTENSTEIN high integrity systems is a trading name of WITTENSTEIN aerospace & simulation Itd
Proprietary to WITTENSTEIN aerospace & simulation Itd.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY INFORMATION AND ALL INFORMATION, TECHNICAL DATA, DESIGNS, INCLUDING BUT NOT
LIMITED TO DATA DISCLOSED AND/OR PROVIDED HEREIN, IS AND REMAINS THE EXCLUSIVE PROPERTY OF WITTENSTEIN aerospace & simulation Itd. IT IS STRICTLY
PROHIBITED TO DISCLOSE ANY INFORMATION TO THIRD PARTIES WITHOUT THE PRIOR WRITTEN CONSENT OF WITTENSTEIN aerospace & simulation Itd. THE
RECIPIENT OF THIS DOCUMENT, BY IT'S RETENTION AND USE AGREES TO HOLD IN CONFIDENCE ALL PROPRIETARY INFORMATION PROVIDED WITHIN THIS
DOCUMENT.

Copyright WITTENSTEIN aerospace & simulation Itd date as document, all rights reserved.

0

TN
WITTENSTEIN
CONTENTS

(O LA I A S 2
LIST OF FIGURES ... 3
LIST OF TABLESo 4
LIST OF CODE LISTINGS ... oottt 5
LIST OF NOTATION ... 6
REFERENCED DOCUMENTS ... 7
CHAPTER 1 INTRODUGCTION L.oiiiiiiiiiiiiiiiiieeeeeeeee ettt e et e e e e e e e e e e e e eaaataeaaaeeaeeeetaeeaeaeaeees 8
1.1 ABOUT THIS MANUAL ...ttt ettt ettt ettt e aaaaaaaaaaaaaas 9
0 S [= o) = 4o o PSSP 9
1.1.2 Use in Safety Related SYSIEMS..........oouiiiiiiii i e et e e e e e aanees 9
1.1.3 DOCUMENT OVEIVIEW ... 9
CHAPTER 2 SYSTEM DESCRIPTION ...ttt 11
2.1 SYSTEM OVERVIEW ...tttttvutsessnnsnnns 12
2.1.1 Summary of the SAFERTOS Scheduler ... 12
2.1.2 Differences Between SAFERTOS and OPENRTOScoovvviiiiiiiiiiiiiiiiiieeeeeeeeeeee 12
2.1.3 DESIGN GOAIS ...cuiiiiii i it e e e e e e e e a e aaaaarane 13

2.2 CODING CONVENTIONSttttttttttsssnssssssssssnnns 14
2.2.1 ProjecCt DefiNtiONS.ciiiiiiiiiiiiiiiiie ettt 14
2.2.2 MPU DeFfINITIONS ...ttt s e e e e e e e e e e e e e e e eaatta e e e eeeeeennnes 16
2.2.3 NamMiNg CONVENLIONSouuiiiiiiieeii et e e e e e et e e e e e e e e e e ettt e e e eeaeeeeasttaaaeaeaaaeennnes 19

2.3 SYSTEM COMPONENTSetttttttttteteeeeeesssssessnsnsssssnssnnns 21
A T R I 1 S PSR 21

P B N =TS Yod 1= o 11] T PP 24
2.3.3 Communication Between Tasks and INTEImUPLS..........covvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 31

P TR | (=] (U] o] £ TP TOPPPTTR 31
CHAPTER 3 INSTALLATION AND CONFIGURATION ...coiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 33
3.1 INSTALLATION 1. ttuittt ettt ettt e et e e et e et e et s e et e e et s e et e e et e e e e e e eb e e et e e ea e e et e e anea et naesnnaaes 34
3.1.1 Source Code and LIDrari@Scoceiiiiiieiiiiie e 34
3.1.2 HOOK FUNCLONS......ciuiiiiiiii e e e e et e e e et e e e e raa s 34
3.1.3 Configuration CONSTANTSccoiiiiiiiiiaie e e et e e e e e et e e e e e aeeeeeennanns 36
CHAPTER 4 Y e I o o PP 38
4.1 TASK FUNCTIONS .. ettt ettt ettt ettt e et e e et e e et e e e e e et s e e e e e et e e et e e ea e e et e e ebeeeennas 39
4.1.1 XTasKINitiaiZE SCNEAUIET()uuuurrurriiiiiiiiiiiiiiiiieiiiebiiebebbbb bbb ebbeeeebeeeeennnnes 39
A = 1= (O Y- (T PSS 41
4.1.3 XTASKDEIETE() ..rreeerrrennteeeettteeeeeeee ettt 46
4.1.4 XTASKDEIAY() +rrrvvernnnnnnnnnnnnnnneteeeeeeeeseeeee e 48
4.1.5 XTasSkDelayUNLil()cooeuriiiiii i e e e e e e e e 49
SAFERTOS User Manual for the Issue 1.0 Page 2

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

7N
WITTENSTEIN
N I T = 1S S R 101 410 1=) TSP 51
4.1.7 XTASKPIIOMEYSET() +vrrrtvrrrrrnnnnnnnninniiessaeseseeeteeeeseseeseeseeess s 53
4.1.8 XTASKSUSPENA() +rrrrrrrnrnrnnnnnnnnnnnnnnnnnsansssessaesssssssssssssssssssssssssse s ssssssssssssssssnnsnnnnnes 54
4.1.9 XTASKRESUME() ... ceeiiiiiiiiie st e e e e e e e e ettt e e e e e e e e e e et e e e e e e e e eeasraaas 56
4.1.10 xTaskGetCurrentTaskHandIE()oeeeieeiiiiiiiiiiie e 58
4.2 MPU FUNCTIONS ..o 60
4.2.1 XMPUSEtTASKREGIONS() +.rvrvrruuunrnnnnnnnnnnntiiinennuesieaissssasnsssssssssssnssnsssssssssssssssssssssnnsnnnnnes 60
4.2.2 vMPUTaskExecutelnUnprivilegedMOdE()uuuururuummmmmriiiiiiiiiiiiiieiiiiiiininnnnnnnnnnnnnnnne 63
4.3 SCHEDULER CONTROL FUNGCTIONS ...tttttttttttsssssssssnssensssssssssnsnssssssssssssnsssnsnsssssnssmnnnnsnnnmnnnns 67
4.3.1 XTaskStartSChEAUIET()uuei e e e e e e e ea s 67
4.3.2 VvTaskSuspendSCREAUIET()......ccoiiiiiiiiii i e e e e e e ra s 68
4.3.3 XTasSkReSUMESCNEAUIET()uuuuuriieiiiiiiiiiiiiiiiiiieiiiiiie bbb eeeeenenenes 70
4.3.4 XTASKGEITICKCOUNT() ...tttttutuuntnunnintieitiiittiiitittbetiteeeeeesesse b nennnnnnes 71
TS T = TS 1 1 =1 I TR 72
4.3.6 tASKYIELD_FROM_ISR() .tttttuuuuuuuuuunuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnsnnssnssnssssnnnnnnmnsnsmmmmmmnne 73
4.3.7 tASKENTER _CRITICAL() tttttttttieiiiiiiieeiie e ettt e e ettt a e e e e st eeaaaeeeaane 75
4.3.8 tASKEXIT _CRITICAL() .utttttettteaeaaaiitieeiee e e e e e ettt e e e e e e e sttt e e e e e e e s s sesbeaneeeaeeeeaane 77
4.3.9 taskSET_INTERRUPT_MASK_FROM_ISR() ..cuutteriiiieeeiiiiiiiiiieie e e 79
4.3.10 taskCLEAR_INTERRUPT_MASK FROM _ISR() ..uuuuurrrrrmummmmmmnnmnnnnnnnnnnnnnnnnnnnnnnnnnnes 80
4.4 (@ 1811 Lo T N TR 82
4.4 1 XQUEUECTEALE() .errrrrrrnunnnnnnnnnnnnnnnnnnnnnnsssessaesesssssssssssssssssssssssses bbb seeeesebnnes 82
44,2 XQUEUESENT() .errverrunnnnnnnnnnnnnnnnnnnnnsssaessaesssssesssssssssssssssssssssssses s 83
4.4.3 XQUEUERECEIVE() .. uuuuuuuutuuuuuntuuuntiuiteiittteetteeeesssstsessseesse s ss st 85
444 XQUEUEPEEK() .uueieeeeiieiietiee et ettt et e e e e et e e e e e e e e e ettt e s e e e e e e e arrraans 87
4.45 xQueueMessagesSWatiNg().....ccooveurriiiiiiie e 89
446 XQUEUESENUFTOMISR() ..rtttrtuuuuunuunununnnuneuttnenntneuanessassnnssnsesesesenensesnsseeseseesseneeessennenennes 90
447 XQUEUERECEIVEFTOMISR(). . uuuuuuuuuiuiiitiiiiiiiiiiiitiiiitieiteieeebbbbeebeee bbb aesebeebsebeeenenenes 92
4.5 RUN-TIME STATISTICS . tttueetetteeeeati s e ettt s e e ettt e e e eat s e e eeta s e e eeta e aeetaaaeaeetaaeeeetnaeeeasnnens 95
451 XCalCUIATECPUUSAGE() .- uuuueeeeeeeientiaaaeeeeeeeeettta e e e e e e e et e e e e e aeeeeaeeaaa e e e e eaeeeeenennnnnns 95

LIST OF FIGURES

Figure 1 Valid task State tranSItiONScooiiiiiiiiii e et e e e e e eeeeeennns 23
Figure 2 Valid scheduler state tranSitioNS. ... 26
SAFERTOS User Manual for the Issue 1.0 Page 3

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

LIST OF TABLES

Table 2-1 Project DEfiNtIONScoi i e e e e e e e e e e e e e et aaeeeeeeennnes 14
Table 2-2 MPU DefiNItIONSuuiiii e e e e e e e e e e e e e e e aat e e e e e aeeaennnes 16
= Lo I T) = L (S 22
Table 3-1 Application Configuration DefinitioNSccoooiioiiie e 36
SAFERTOS User Manual for the Issue 1.0 Page 4

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

LIST OF CODE LISTINGS

Listing 1 The pdTASK _CODE definition...........uuuiiiiiiiiei et 21
Listing 2 The typical Structure of @ tasKuuuuiiiiiiiiii e 21
Listing 3 A task deleting itself prior to the function terminatingcccccovvviiiiiiii 22
Listing 4 Using queues to implement binary SEMaphOores............ccoovvvviiiiiiiiiiiiiiiieeeeeeeee 29
Listing 5 Using a gatekeeper task to control access t0 a rESOUICEceeeeeeeeieeerriiiieeeeeeeeeesieiannnn 31
Listing 6 Deferring interrupt processing to the task level ..., 32
Listing 7 vApplicationErrorHook() FUNCtion Prototype ... 34
Listing 8 vApplicationTaskDeleteHook() function prototype..........ccevvvvviiiiiiiiiiiiiiiiiieeeeeee 35
Listing 9 vApplicationldleHook() function Prototypeccovuviiiiiiiiiiiiiiiiiieeeeeeeee e 35
Listing 10 vApplicationTickHooK() function prototypeeceiiieeeiiiieiiiiee et 36
Listing 11 Example use of the xTasklnitializeScheduler() API function.............ccccoeeeeei e, 41
Listing 12 Example usage of the xTaskCreate() APl fUNCLION.............ccovvviiiiiiiiiiiiiiie 46
Listing 13 Example use of the xTaskDelete() APl fUNCLIONcoovviiiiiiiiiiiiiiiee 48
Listing 14 Example of using the xTaskDelay() APl funCtioN.............ccoovvviiiiiiiiiiiiiiiieee 49
Listing 15 Example of using the xTaskDelayUntil() APl function.............ccc.oooooiiiiiiennnnien, 51
Listing 16 Example of using the xTaskPriorityGet() APl functionccccooooiiiiiiiiiin e, 52
Listing 17 Example of using the xTaskPrioritySet() API functionccccccovviiiiiiiiiiii 54
Listing 18 Example of using the xTaskSuspend() APl function............ccccccvvviiiiiiiiiiiiie, 56
Listing 19 Example of using the xTaskResume() API fUNCLION..............ccovvviiiiiiiiiiiii 58
Listing 20 Example of using the xTaskGetCurrentTaskHandle() API functionccccevvvvnnnnn. 59
Listing 21 Example of using the xMPUSetTaskRegions() API function............ccccccciieeiiieiiiieniinnnnnn. 63
Listing 22 Example of using the vMPUTaskExecutelnUnprivilegedMode() API function................ 66
Listing 23 Example of using the vTaskSuspendScheduler() and xTaskResumeScheduler() API

L8011 1 70
Listing 24 Example of using the xTaskGetTickCount() API function...........cccccccvvviiiiiiiiiiiiiiiinnnnn. 72
Listing 25 Example of using the taskYIELD() API fUNCLIONcccovviiiiiiiiiiiiiie 73

Listing 26 Example of using the taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros...... 77
Listing 27 Example of wusing the taskSET_INTERRUPT_MASK_FROM_ISR() and

taskCLEAR_INTERRUPT_MASK_FROM_ISR() API MACIOS.uuuuruummuiiiiiiiiiiiiiiininiinnnnenes 80
Listing 28 Example of using the xQueueCreate() APl functionccooiiiiiiiiiiiii e, 83
Listing 29 Example of using the xQueueSend() API funCtioncccoiiiiiiiiiiiiii e, 85
Listing 30 Example of using the xQueueReceive() API funCtioncccccvvvviiiiiiiiiiiiiee 87
Listing 31 Example of using the xQueuePeek() API function............ccccccvvviiiiiiiiiiiee 89
Listing 32 Example of using the xQueueMessagesWaiting() API function................c..ooovviieiinnnnnn. 90
Listing 33 Example of using the xQueueSendFromISR() API functionccccccciiiiiieiiiiiiiiinnnnnn. 92
Listing 34 Example of using the xQueueReceiveFromISR() API function.............ccccoooeviiiiiiiiinnnnnn. 94
Listing 35 Example of using the xCalculateCPUUsage() APl function.ccccccvviieei e, 96
SAFERTOS User Manual for the Issue 1.0 Page 5

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

API
CCSs
FIFO

ISR
MPU

SIL

WHIS

)
A
‘2

WITTENSTEIN

LIST OF NOTATION

Application Programming Interface
Code Composer Studio

First In First Out

Interrupt Service Routine

Memory Protection Unit

Safety Integrity Level

WITTESTEIN high integrity systems

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 6

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)\
‘ ;
a2

WITTENSTEIN

REFERENCED DOCUMENTS

Ref # Document Description
1 IEC 61508:2002 Functional safety of electrical/electronic/programmable
electronic safety-related systems
2 34-172-MAN-2-005-006 SAFERTOS Safety Manual for the CCS TMS570 MPU
Product Variant

SAFERTOS User Manual for the Issue 1.0 Page 7

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
‘2

WITTENSTEIN

CHAPTER 1 INTRODUCTION

SAFERTOS User Manual for the Issue 1.0 Page 8

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

1.1 ABOUT THIS MANUAL

1.1.1 Identification

This is the user manual for the SAFERTOS™ pre-emptive real time scheduler. SAFERTOS is
either supplied as C and assembler code, as a C linkable library or, depending on the processor,
pre-programmed in to the processor ROM.

Incorporating SAFERTOS in to an embedded software application permits that application to be
structured as a set of autonomous tasks. The scheduler selects which task to execute at any point
in time in accordance with the state and relative priority of each created task. CHAPTER 2
elaborates the states in which a task can exist.

SAFERTOS is based on the OPENRTOS™ code base.
1.1.2 Use in Safety Related Systems

SAFERTOS was developed using a formalized process. The initial version was independently
certified by TUV SUD to confirm that the development processes used were as expected when
implementing an IEC 61508 [Reference 1] part 3, Safety Integrity Level (SIL) 3 project. The same
processes have been used to create all subsequent ‘Product Variants’ of SAFERTOS that are
specific to a particular processor and development environment. The requirements used for this
development and the evidence of conformance are contained in the Design Assurance Package
for SAFERTOS. The Design Assurance Package is specific to each ‘Product Variant’ of
SAFERTOS.

Any use of SAFERTOS in any application cannot make any claim related to the conformance of
SAFERTOS to any requirements or process specification (including IEC 61508 [Reference 1])
without first following a recognized system wide conformance verification process. This
conformance evidence must then be presented audited and accepted by a recognized and relevant
independent assessment organization. Without undergoing this process of due diligence no claim
can be made as to the suitability of SAFERTOS to be used in any safety or otherwise commercially
critical application.

1.1.3 Document Overview
1.1.3.1 Scope

It is assumed that system developers are adequately trained or already experienced in their field of
involvement. It is therefore assumed that readers are familiar with the concepts of multitasking
embedded systems (such as multiple tasks, reentrancy and mutual exclusion) and are proficient in
the C programming language. This manual is limited to technical aspects specific to SAFERTOS.

Please refer to the SAFERTOS Safety Manual for the CCS TMS570 MPU Product Variant
[Reference 2] for information on integrating SAFERTOS into safety related applications. The
Safety Manual is available as part of the Design Assurance Package.

SAFERTOS User Manual for the Issue 1.0 Page 9
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

The "%\ symbol is used to emphasize instructions or information to which compliance is deemed to
be essential for the correct and safe integration of SAFERTOS into an application.

1.1.3.2 Following Chapters

CHAPTER 2 provides an overview of SAFERTOS and the description of the SAFERTOS task,
gueue and scheduling mechanisms.

CHAPTER 3 describes the installation and setup required to use SAFERTOS in your application.
More detailed information is included in the SAFERTOS Safety Manual for the CCS TMS570 MPU
Product Variant [Reference 2].

CHAPTER 4 provides an API reference.

% SAFERTOS users must not call functions within the SAFERTOS code base that are not
documented in CHAPTER 4.

SAFERTOS User Manual for the Issue 1.0 Page 10
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
‘2

WITTENSTEIN

CHAPTER 2 SYSTEM
DESCRIPTION

SAFERTOS User Manual for the Issue 1.0 Page 11

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

2.1

2.1.1

0

la

WITTENSTEIN

SYSTEM OVERVIEW

Summary of the SAFERTOS Scheduler

The SAFERTOS pre-emptive real time scheduler has the following characteristics:

2.1.2

Any number of tasks can be created - system RAM constraints are the limiting factor;

Each task is assigned a priority - the maximum number of task priorities available is
determined by the constant configMAX_PRIORITIES (see Section 'Task Priorities' for more
details);

Any number of tasks can share the same priority - allowing for maximum application design
flexibility;

The highest priority task that is able to execute (i.e. that is not blocked or suspended) will
be the task selected by the scheduler to execute;

Tasks of equal priority will each get a share of the processing time available to tasks of that
priority. A time sliced round robin policy is used (see the Section 'The Scheduling Policy");

Queues can be used to send data between tasks, and to send data between tasks and
interrupt service routines (ISR);

Tasks can block for a fixed period;
Tasks can block to wait for a specified time;

Tasks can block with a specified timeout period to wait for queue events (either data being
written to or read from the queue).

Differences Between SAFERTOS and OPENRTOS

While SAFERTOS and OPENRTOS share many attributes the development process has
necessitated some notable differences. These are summarized below:

SAFERTOS does not dynamically allocate any memory. All the memory required for the
creation of tasks and queues must be provided by the host application. This has
necessitated some changes to the OPENRTOS API;

SAFERTOS performs validity checks on all parameters passed into its APl and on some
internal data values. As a result more SAFERTOS API functions return a status value than
their OPENRTOS counterparts;

The scheduler will not permit a task stack to overflow during the task context switch
process;

The detection of an error within the scheduler’s internal data or the detection of a potential
stack overflow (during a context switch) will result in the execution of an application defined
callback function. This permits application-specific fail-safe processing to be performed;

OPENRTOS implemented binary and counting semaphores through the provision of a set
of macros. These macros did nothing other than use the existing queue implementation

SAFERTOS User Manual for the Issue 1.0 Page 12
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

and have been removed. CHAPTER 4 provides information on how the documented API
can be manually used to obtain the same functionality;

e SAFERTOS does not provide recursive semaphores, or mutexes with priority inheritance.
This functionality can be added if required,

e SAFERTOS does not support co-routines. OPENRTOS co-routines are light weight tasks
that utilize the same stack;

e OPENRTOS allows components to be optionally excluded through the use of preprocessor
directives. SAFERTOS does not include any conditional compilation options. In most
cases the linker can be used to achieve the same code size reduction;

e OPENRTOS permits the scheduling policy to be optionally set to ‘cooperative’.
SAFERTOS only permits the policy to be ‘preemptive’;

¢ OPENRTOS defines stack sizes in terms of the number of data items the stack can hold
whereas SAFERTOS defines stack sizes in bytes.

From these points it can be seen that for reasons of certification SAFERTOS is a statically
configured subset of OPENRTOS. This is to maintain control over the scope of code test and
analysis that must be performed whilst also reducing reliance upon preprocessor compilation
carried out by the chosen development tools.

2.1.3 Design Goals

The design goal of SAFERTOS is to achieve its stated functionality using a small, simple and
robust implementation.

SAFERTOS User Manual for the Issue 1.0 Page 13
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

2.2 CODING CONVENTIONS

2.2.1 Project Definitions

Each C file that utilizes the SAFERTOS API must include the SafeRTOS_API.h header file.
SafeRTOS_API.h includes projdefs.h, which contains the definitions detailed in the Table 'Project

Definitions'.
Table 2-1 Project Definitions

Definition Value
pdKERNEL_MAJOR_VERSION 4
pdKERNEL_MINOR_VERSION 3
pdTRUE 1
pdFALSE 0
pdPASS 1
pdFAIL 0
errSUPPLIED_BUFFER_TOO_SMALL -1
errINVALID_PRIORITY -2
errQUEUE_FULL -4
errINVALID_BYTE_ALIGNMENT -5
errNULL_PARAMETER_SUPPLIED -6
errINVALID_QUEUE_LENGTH -7
errINVALID_TASK_CODE_POINTER -8
errSCHEDULER_IS_SUSPENDED -9
errINVALID_TASK_HANDLE -10
errDID_NOT_YIELD -11
errTASK_ALREADY_SUSPENDED -12

SAFERTOS User Manual for the Issue 1.0
Code Composer Studio TMS570 MPU
Product Variant

Page 14

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
‘2

WITTENSTEIN

Table 2-1 Project Definitions

Definition Value
enfTASK_WAS_NOT_SUSPENDED -13
errfNO_TASKS_CREATED -14
errfSCHEDULER_ALREADY_RUNNING -15
errINVALID_QUEUE_HANDLE -17
errERRONEOUS_UNBLOCK -18
errQUEUE_EMPTY -19
errINVALID_TICK_VALUE -20
errINVALID_TASK_SELECTED -21
ernfTASK_STACK_OVERFLOW -22
errfSCHEDULER_WAS_NOT_SUSPENDED -23
errINVALID_BUFFER_SIZE -24
errBAD_OR_NO_TICK_RATE_CONFIGURATION -25
errBAD_HOOK_FUNCTION_ADDRESS -26
errfERROR_IN_VECTOR_TABLE -27
errfINVALID_MPU_REGION_CONFIGURATION -28
ernfTASK_STACK_ALREADY_IN_USE -29
errNO_MPU_IN_DEVICE -30
errfEXECUTING_IN_UNPRIVILEGED_MODE -31
errINVALID_portQUEUE_OVERHEAD_BYTES_SETTING -1000
errINVALID_SIZEOF_QUEUE_STRUCTURE -1002

The ‘pd’ prefix denotes that the constant is defined within the projdefs.h header file. projdefs.h also
contains the error code definitions (also listed in the Table 'Project Definitions'), all of which are

prefixed ‘err’.

SAFERTOS User Manual for the Issue 1.0
Code Composer Studio TMS570 MPU
Product Variant

Page 15

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i\

l22

WITTENSTEIN

The SAFERTOS Safety Manual for the CCS TMS570 MPU Product Variant [Reference 2] contains
further information relating to constant and type definitions used by SAFERTOS.

2.2.2 MPU Definitions

To support use of the Memory Protection Unit (MPU), the definitions listed in the Table 'MPU

Definitions' are provided by the SAFERTOS API.

Table 2-2 MPU

Definitions

Definition

Description

MpuUNPRIVILEGED_TASK

One of the valid values for the uxPrivilegeLevel member of the
xMPUTaskParameters structure used when creating a task.

mpuPRIVILEGED_TASK

One of the valid values for the uxPrivilegeLevel member of the
xMPUTaskParameters structure used when creating a task.

MpuREGION_EXECUTE_NEVER

Used to mark an MPU region as not being available for code
execution. One of the wvalid bit settings of the
ulAccessPermissions member of the xMPUMemoryRegion
structure.

mpuREGION_PRIVILEGED_NO_ACCESS_USER_NO_ACCESS

Used to mark an MPU region as having no access permissions
for both Privileged and Unprivileged (User) modes. One of the
valid bit settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mMpuREGION_PRIVILEGED_READ_WRITE_USER_NO_ACCESS

Used to mark an MPU region as having read and write access
permissions for Privileged mode, but no access for Unprivileged
(User) mode. One of the valid bit settings of the
ulAccessPermissions member of the xMPUMemoryRegion
structure.

mMpUREGION_PRIVILEGED_READ_WRITE_USER_READ_ONLY

Used to mark an MPU region as having read and write access
permissions for Privileged mode, but read only access for
Unprivileged (User) mode. One of the valid bit settings of the
ulAccessPermissions member of the xMPUMemoryRegion
structure.

mMpUREGION_PRIVILEGED_READ_WRITE_USER_READ_WRITE

Used to mark an MPU region as having read and write access
permissions for both Privileged and Unprivileged (User) mode.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

mpUREGION_PRIVILEGED_READ_ONLY_USER_NO_ACCESS

Used to mark an MPU region as having read only access
permission for Privileged mode, but no access for Unprivileged
(User) mode. One of the valid bit settings of the
ulAccessPermissions member of the xMPUMemoryRegion
structure.

mMpUREGION_PRIVILEGED_READ_ONLY_USER_READ_ONLY

Used to mark an MPU region as having read only access
permission for both Privileged and Unprivileged (User) mode.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

SAFERTOS User Manual for the Issue 1.0 Page 16

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i\

l22

WITTENSTEIN

Table 2-2 MPU

Definitions

Definition

Description

mpuREGION_STRONGLY_ORDERED

Used to mark an MPU region as being Strongly-ordered. All
accesses to Strongly-ordered memory occur in program order.
All Strongly-ordered regions are assumed to be shared. One of
the valid bit settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mMpuREGION_SHARED_DEVICE

Used to mark an MPU region as having the 'Shared device'
setting. One of the valid bit settings of the ulAccessPermissions
member of the xMPUMemoryRegion structure.

mpuREGION_OUTER_AND_INNER_WRITE_THROUGH_NO_WRI
TE_ALLOCATE

Used to mark an MPU region as having the 'Outer and inner
write-through; no write allocate' setting. One of the valid bit
settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mpUREGION_OUTER_AND_INNER_WRITE_BACK_NO_WRITE_A
LLOCATE

Used to mark an MPU region as having the 'Outer and inner
write-back; no write allocate' setting. One of the valid bit settings
of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

MpuREGION_OUTER_AND_INNER_NONCACHEABLE

Used to mark an MPU region as having the 'Outer and inner
noncacheable' setting. One of the valid bit settings of the
ulAccessPermissions member of the xMPUMemoryRegion
structure.

mpuREGION_OUTER_AND_INNER_WRITE_BACK_WRITE_AND_
READ_ALLOCATE

Used to mark an MPU region as having the 'Outer and inner
write-back; write and read allocate' setting. One of the valid bit
settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mpuREGION_NONSHARED_DEVICE

Used to mark an MPU region as having the 'Nonshared device'
setting. One of the valid bit settings of the ulAccessPermissions
member of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_NONCACHEABLE_INNER_WRITE_BACK_
WRITE_AND_READ_ALLOCATE

Used to mark an MPU region as having the 'Outer
noncacheable; inner write-back, write and read allocate' setting.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_NONCACHEABLE_INNER_WRITE_THROU
GH_NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer
noncacheable; inner write-through, no write allocate' setting.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_NONCACHEABLE_INNER_WRITE_BACK_
NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer
noncacheable; inner write-back, no write allocate' setting. One of
the valid bit settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 17

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

2

WITTENSTEIN

Table 2-2 MPU

Definitions

Definition

Description

mMpUREGION_OUTER_WRITE_BACK_WRITE_AND_READ_ALLO
CATE_INNER_NONCACHEABLER

Used to mark an MPU region as having the 'Outer write-back,
write and read allocate; inner noncacheable' setting. One of the
valid bit settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mpuUREGION_OUTER_WRITE_BACK_WRITE_AND_READ_ALLO
CATE_INNER_WRITE_THROUGH_NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer write-back,
write and read allocate; inner write-through, no write allocate'
setting. One of the valid bit settings of the ulAccessPermissions
member of the xMPUMemoryRegion structure.

mpuREGION_OUTER_WRITE_BACK_WRITE_AND_READ_ALLO
CATE_INNER_WRITE_BACK_NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer write-back,
write and read allocate; inner write-back, no write allocate’'
setting. One of the valid bit settings of the ulAccessPermissions
member of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_THROUGH_NO_WRITE_ALLOCAT
E_INNER_NONCACHEABLE

Used to mark an MPU region as having the 'Outer write-through,
no write allocate; inner noncacheable' setting. One of the valid
bit settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_THROUGH_NO_WRITE_ALLOCAT
E_INNER_WRITE_BACK_WRITE_AND_READ_ALLOCATE

Used to mark an MPU region as having the 'Outer write-through,
no write allocate; inner write-back, write and read allocate'
setting. One of the valid bit settings of the ulAccessPermissions
member of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_THROUGH_NO_WRITE_ALLOCAT
E_INNER_WRITE_BACK_NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer write-through,
no write allocate; inner write-back, no write allocate' setting. One
of the valid bit settings of the ulAccessPermissions member of
the xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_BACK_NO_WRITE_ALLOCATE_IN
NER_NONCACHEABLE

Used to mark an MPU region as having the 'Outer write-back, no
write allocate; inner noncacheable' setting. One of the valid bit
settings of the ulAccessPermissions member of the
xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_BACK_NO_WRITE_ALLOCATE_IN
NER_WRITE_BACK_WRITE_AND_READ_ALLOCATE

Used to mark an MPU region as having the 'Outer write-back, no
write allocate; inner write-back, write and read allocate' setting.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

mMpUREGION_OUTER_WRITE_BACK_NO_WRITE_ALLOCATE_IN
NER_WRITE_THROUGH_NO_WRITE_ALLOCATE

Used to mark an MPU region as having the 'Outer write-back, no
write allocate; inner write-through, no write allocate' setting. One
of the valid bit settings of the ulAccessPermissions member of
the xMPUMemoryRegion structure.

MPUREGION_SHAREABLE

Used to mark an MPU region as being Shareable. Typically only
used for memory that is shared between several processors.
One of the valid bit settings of the ulAccessPermissions member
of the xMPUMemoryRegion structure.

SAFERTOS User Manual for the Issue 1.0 Page 18

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

2

WITTENSTEIN

Table 2-2 MPU Definitions

Definition

Description

MpUREGION_FIRST_SUB_REGION_DISABLE

Disables the first 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

MpuREGION_SECOND_SUB_REGION_DISABLE

Disables the second 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

mMpUREGION_THIRD_SUB_REGION_DISABLE

Disables the third 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

mMpUREGION_FOURTH_SUB_REGION_DISABLE

Disables the fourth 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

mMpUREGION_FIFTH_SUB_REGION_DISABLE

Disables the fifth 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

MpuREGION_SIXTH_SUB_REGION_DISABLE

Disables the sixth 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

MpuREGION_SEVENTH_SUB_REGION_DISABLE

Disables the seventh 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

mMpUREGION_EIGHTH_SUB_REGION_DISABLE

Disables the eighth 1/8th sub region of this MPU region. Useful
when overlapping MPU regions. One of the valid bit settings of
the ulSubRegionControl member of the xMPUMemoryRegion
structure.

2.2.3 Naming Conventions

The following conventions are used throughout the code:

e Parameter names are prefixed with their type as follows:

o Variables of type portCHAR are prefixed c

o Variables of type portSHORT are prefixed s

o Variables of type portLONG are prefixed |

o Variables of type portBASE_TYPE are prefixed x

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 19

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

o Other types (e.g. structures) are also prefixed x
o Items of type void are also prefixed v (pointers to void and void functions)

o Pointers have an additional prefixed p, for example a pointer to a short will have prefix
ps, a pointer to void will have the prefix pv, etc..

o Unsigned variables have an additional prefixed u, for example an unsigned short will
have prefix us

e Function names are also prefixed with their return type using the same convention.

e API functions for which the function prototype is contained in the file ‘task.h’ start with the
word ‘Task’. For example, the prototype for the API function xTaskGetTickCount() is
contained in ‘task.h’ and the function returns a value of type portTickType.

o API functions for which the function prototype is contained in the file ‘queue.h’ start with the
word ‘Queue’. For example, the prototype for the API function xQueueSend() is contained
in ‘queue.h’ and the function returns a value of portBASE_TYPE.

e Macro names are written in all upper case other than a lower case prefix that indicates in
which header file the macro is defined. The exception to this rule are the error codes which
are prefixed ‘err’ but contained in the projdefs.h header file.

SAFERTOS User Manual for the Issue 1.0 Page 20
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)\
‘ ;
a2

WITTENSTEIN

2.3 SYSTEM COMPONENTS

2.3.1 Tasks

Including SAFERTOS in your application allows the application to be structured as a set of
autonomous tasks - the resultant system functionality being the sum of the functionality of the
multiple tasks that make up the application.

Each task executes within its own context with no coincidental dependency on other tasks within
the system or the scheduler itself.

2.3.1.1 Task Functions

Functions that implement a task must be of type pdTASK _CODE, where pdTASK_CODE is
defined as shown by the Listing 'The pdTASK_CODE definition' with an example of such a function
shown in the Listing 'The typical structure of a task'.

A task will typically execute indefinitely and as such be written as an infinite loop, also
demonstrated by the Listing 'The typical structure of a task'.

typedef void (*pdTASK CODE) (void * pvParameters);

Listing 1 The pdTASK_CODE definition

void vATaskFunction(void *pvParameters)
{
/* The function executes indefinitely so enter an infinite loop. */
for(;;)
{
/* -- Task application code goes here. -- */

}

Listing 2 The typical structure of a task
A task is created using the xTaskCreate() API function.
A task is deleted using the xTaskDelete() API function.
% A task function must never terminate by attempting to return to its caller (or by calling exit()) as

doing so will result in undefined behavior. If required a task can delete itself prior to reaching the
function end as illustrated by the Listing 'A task deleting itself prior to the function terminating'.

SAFERTOS User Manual for the Issue 1.0 Page 21
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

/ L
y N
WITTENSTEIN

void vATaskFunction(void *pvParameters)
{

for(;;)

{

/* -- Task application code here. -- */

}

/* The task deletes itself (indicated by the NULL parameter)
before reaching the end of the task function. */
xTaskDelete (NULL);

Listing 3 A task deleting itself prior to the function terminating

The void* function parameter permits a reference to any type to be passed into the task when the
task is created. Where more than one parameter is required a pointer to a structure can be used.
See the API documentation for the xTaskCreate() function for further information.

2.3.1.2 Task States

Only one task can actually be executing at any one time. The scheduler is responsible for
selecting the task to execute in accordance with each task’s relative priority and state.

A task can exist in one of the states described by the Table 'Task States’, with valid transitions
between states depicted by the Figure 'Valid task state transitions'.

Table 2-3 Task States

Task State Description

Running When a task is actually executing it is said to be in the Running state. It is the task selected by the
scheduler to execute and is currently utilizing the processor.

Only one task can be in the Running state at any given time.

Blocked A task is in the Blocked state if it is waiting for an event. It cannot continue until the event occurs and
until that time cannot be selected by the scheduler as the task to enter the Running state.

Tasks in the Blocked state always have a timeout period, after which the task will become unblocked.

Suspended A task will enter the Suspended state when it is the subject of a call to the xTaskSuspend() API
function, and remain in the Suspended state until unsuspended by a call to the xTaskResume() API
function. A timeout period cannot be specified.

Suspended state tasks cannot be selected by the scheduler as the task to enter the Running state.

Ready A task is in the Ready state if it is able to enter the Running state (it is not in the Blocked or Suspended
state) but is not currently the task that is selected to execute.

The only tasks that are available to the scheduler for selection as the task to enter the Running state
are those that are in the Ready state.

Ready is the initial state when a task is created.

SAFERTOS User Manual for the Issue 1.0 Page 22
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

()

la

WITTENSTEIN

Suspended

1
xTaskResume()
called

xTaskSuspend()

xTaskSuspend() called

called

xTaskSuspend()
called

Blocking API function
called

Blocked

Figure 1 Valid task state transitions

Each task executes within its own context. The process of transitioning one task out of the
Running state while transitioning another task into the Running state is called ‘context switching’.

A call to the xTaskSuspend() API function can cause a task in the Running state, Blocked state or
Ready state to enter the Suspended state.

Calls to the xTaskDelay() and xTaskDelayUntil() API functions can cause a task in the Running
state to enter the Blocked state to wait for a temporal event - the event being the expiration of the
requested delay period.

Calls to the xQueueSend() and xQueueReceive() API functions can cause a task in the Running
state to enter the Blocked state to wait for a queue event - the event being either data being added
to or removed from a queue. Section 'Intertask Communication' provides more information on
using Queues.

2.3.1.3 Task Priorities
A priority is assigned to each task when the task is created.

The priority of a task can be queried using the xTaskPriorityGet() API function and changed by
using the xTaskPrioritySet() API function.

Low numeric values denote low priority tasks. The lowest priority value that can be assigned to a
task is 0.

SAFERTOS User Manual for the Issue 1.0 Page 23
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

High numeric values denote high priority tasks. The maximum priority that can be assigned to a
task is (configMAX_PRIORITIES - 1), where configMAX_PRIORITIES is a user specified value as
described in CHAPTER 3 (applies only when source code is supplied).

2.3.2 The Scheduler

The ‘scheduler’ has responsibility for:

e Deciding which task will be the task selected to enter the Running state, and performing the
context switching accordingly.

e Measuring the passage of time.

e Transitioning tasks from the Blocked state into the Ready state upon the expiration of a
timeout period.

2.3.2.1 Measuring Time

The RTI timer interrupt is used to measure time. Refer to the SAFERTOS Safety Manual for the
CCS TMS570 MPU Product Variant [Reference 2] for more information on the timer peripheral
used. On each occurrence of the tick interrupt, the tick hook (callback) function is called (if supplied
by the host application) and can be used to add timebased functionality to the host application See
Section 'vApplicationTickHook()' for more details on the tick hook function.

The time between two consecutive timer interrupts is defined to be one ‘tick’ period. Times are
therefore measured and specified in ‘tick’ units.

The number of milliseconds between each tick is defined by the ulTickRateHz member of the
XPORT_INIT_PARAMETERS structure passed in the call to xTasklnitializeScheduler. Refer to the
Section 'xTasklInitializeScheduler()' for further information.

2.3.2.2 The Scheduling Policy

The scheduler selects as the task to be in the Running state the highest priority task that would
otherwise be in the Ready state. In other words, the task chosen to execute is the highest priority
task that is able to execute. Tasks in the Blocked or Suspended state are not able to execute.

Different tasks can be assigned the same priority. When this is the case the tasks of equal priority
are selected to enter the Running state in turn. Each task will execute for a maximum of one tick
period before the scheduler selects another task of equal priority to enter the Running state.

% While the scheduler will ensure that tasks of equal priority will be selected to enter the Running
state in turn, it is not guaranteed that each such task will get an equal share of processing time.

Contact WITTENSTEIN high integrity systems if your application requires a different scheduling
policy to that described here.

2.3.2.3 Starting the Scheduler

The scheduler is started using the xTaskStartScheduler() API function. See the Listing 'Using a
gatekeeper task to control access to a resource' for an example usage scenario.

SAFERTOS User Manual for the Issue 1.0 Page 24
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

At least one task must be created prior to xTaskStartScheduler() being called.

Calling xTaskStartScheduler() causes the creation of the Idle task. The Idle task never enters the
Blocked or Suspended state. It is created to ensure there is always at least one task that is able to
enter the Running state. The idle task hook (callback) function can be utilized to execute
application specific code within the idle task.

2.3.2.4 Yielding

Yielding is where a task volunteers to leave the Running state by re-entering the ready state.
When a task yields the schedule re-evaluates which task should be in the Running state. If no
tasks of higher or equal priority to the yielding task are in the Ready state then the yielding task
shall again be selected as the task to enter the Running state.

A task can yield by explicitly calling the taskYIELD() macro, or by calling an API function that
changes the state or priority of another task within the application.

2.3.2.5 Scheduler States

The scheduler can exist in one of the states described by the Table 'Scheduler States', with valid
transitions between states depicted by the Figure 'Valid scheduler state transitions'.

Table 2-4 Scheduler States

Scheduler State Description

Initialization This is the initial state, prior to the scheduler being started.
While in the Initialization state the scheduler has no control over the application execution.
Tasks and queues can be created while the scheduler is in the Initialization state.

Active While in the Active state the scheduler controls the application execution by selecting the task that
is in the Running state as described in the Section 'The Scheduling Policy'.

Suspended The Scheduler does not perform any context switching while in the Suspended state. The task that
was in the Running state when the scheduler entered the Suspended state will remain in the
Running state until the scheduler returns to the Active state.

SAFERTOS User Manual for the Issue 1.0 Page 25
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

Initialization

xTaskStartScheduler()

Active

xTaskResumeScheduler() xTaskSuspendScheduler()

Suspended

Figure 2 Valid scheduler state transitions

The scheduler enters the Suspended state following a call to xTaskSuspendScheduler(), and
returns to the Active state following a call to xTaskResumeScheduler().

A code section that must be executed atomically (without interruption from other tasks or
interrupts) to guarantee data integrity is called a critical region. The traditional method of
implementing a critical region of code is to disable then re-enable interrupts as the critical region is
entered then exited respectively. The macros taskENTER_CRITICAL() and taskEXIT_CRITICAL()
are provided for this purpose.

Implementing a critical section through the wuse of taskENTER_CRITICAL() and
taskEXIT_CRITICAL() has the disadvantage of the application being unresponsive to interrupts for
the duration of the critical region. The scheduler suspension mechanism provides an alternative
approach that permits interrupts to remain enabled during the critical region itself.

When the scheduler is in the Suspended state, by calling xTaskSuspendScheduler(), a switch to
another task will never occur. The task executing the critical region is guaranteed to remain as the
task in the Running state until xTaskResumeScheduler() is called.

% Interrupts remain enabled while the scheduler is in the Suspended state. Critical regions
implemented using the scheduler suspension mechanism therefore protect the critical data from
access by other tasks, but not by interrupts. It is safe for an interrupt to access a queue while the
scheduler is in the Suspended state.

% A switch to a higher priority task that enters the Ready state while the scheduler is in the
Suspended state will be held pending until xTaskResumeScheduler() is called. It is therefore still
desirable for the scheduler not to be held in the Suspended state for an extended period. Doing so
will reduce the responsiveness of high priority tasks.

SAFERTOS User Manual for the Issue 1.0 Page 26
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

2.3.2.6 Inter-Task Communication

SAFERTOS provides a queue implementation that permits data to be transferred safely between
tasks. The queue mechanism removes the need for data that is shared between tasks to be
declared globally, or for the application writer to concern themselves with mutual exclusion
primitives when accessing the data.

The queue implementation is flexible and can be used to achieve a number of objectives, including
simple data transfer, synchronization and semaphore type behavior.

2.3.2.7 Queue Characteristics

The following bullet points summarize the queue implementation:
e At any time a queue can contain zero or more ‘items’;

e The size of each item and the maximum number of items that the queue can hold are
configured when the queue is created;

e Items are sent to a queue using the xQueueSend() and xQueueSendFromISR() API
functions;

e Items are read from a queue using the xQueueReceive() and xQueueReceiveFromISR()
API functions;

e A copy of the next item in the queue can be retrieved using the xQueuePeek() API function
- note that this function doesn't remove the item from the queue, it just retrieves a copy of
the item;

e Queues are FIFO buffers - that is, the first item sent to a queue using xQueueSend() (or
xQueueSendFromISR()) is the first item retrieved from the queue when using
xQueueReceive() (or xQueueReceiveFromISR());

e Data transferred through a queue is done so by copy - the data is copied byte for byte into
the queue when the data is sent, and then copied byte for byte out of the queue when the
data is subsequently received.

2.3.2.8 Queue Events
Data being sent to or received from a queue is called a queue ‘event’.

When calling xQueueSend() a task can specify a period during which it should be held in the
Blocked state to wait for space to become available on the queue if it finds the queue to already be
full. The task is blocking on a queue event and will leave the Blocked state automatically when
another task or interrupt removes an item from the queue.

When calling xQueueReceive() or xQueuePeek(), a task can specify a period during which it
should be held in the Blocked state to wait for data to become available from the queue if it finds
the queue to already be empty. Again, the task is blocking on a queue event and will leave the
Blocked state automatically when another task or interrupt writes data to the queue.

If more than one task is blocked waiting for the same event then the task unblocked upon the
occurrence of the event is the task that has the highest priority. Where more than one task of the

SAFERTOS User Manual for the Issue 1.0 Page 27
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

same priority are blocked waiting for the same event then the task unblocked upon the occurrence
of the event will be the task that has been in the Blocked state for the longest time.

2.3.2.9 Data Formatting

The queue sender and receiver must agree on the meaning of the data placed in the queue. This
could be a simple data type, such as a char or long, or a compound data type, such as a structure
containing a number of complex data items. For example, a structure may be used to hold both a
data value and the identity of the task sending the data.

Should the amount of data requiring transfer in each item be large then it may be preferable to
gueue a pointer to the data rather than the data itself. This will be more efficient as only the pointer
value need be copied (typically 4 bytes) rather than each byte of the data itself.

% When data is sent to a queue by copy then the queue implementation ensures access is
consistent and mutual exclusion primitives are not required when accessing the data. When data
is queued by reference (that is, a pointer to the data is queued rather than the data itself) then
each task with access to the referenced data must agree how consistent and exclusive access is to
be achieved.

2.3.2.10 Using Queues as Binary Semaphores

Semaphores are a means for a task to signal that it wishes to have exclusive access to data or
other resources. While the task 'has' the semaphore other tasks know they are excluded from
accessing the protected resource.

To be permitted access to the resource the task must first ‘take' the semaphore, and when it has
finished with the resource 'give' the semaphore back. If it cannot 'take' the semaphore it knows the
resource is already in use by another task and it must wait for the semaphore to become available.
If a task chooses to enter the Blocked state to wait for a semaphore it will automatically be moved
back to the Ready state as soon as the semaphore is available.

Binary semaphore functionality can be implemented as a set of macros that simply call queue
functions. A binary semaphore can be considered to be a queue that can contain, as a maximum,
one item. For efficiency the item size can be zero, thus preventing any data actually being copied
into and out of the queue. The important information is whether or not the queue is empty or full
(the only two states as it can only contain one item), not the value of the data it contains.

When the resource is available the queue (representing the semaphore) is full. To 'take' the
semaphore the task simply receives from the queue - resulting in the queue being empty. To 'give’
the semaphore the task simply sends to the queue, resulting in the queue again being full. If, when
attempting to receive from the queue, it finds the queue is already empty a task knows it cannot
access the resource and can choose whether or not it wishes to enter the Blocked state to wait for
the resource to become available again.

The Listing 'Using queues to implement binary semaphores' provides example semaphore 'Create’,
"Take' and 'Give' macros that use the SAFERTOS queue implementation. Refer to CHAPTER 4
for reference information on the API functions used (xQueueCreate(), xQueueReceive() and
xQueueSend()).

SAFERTOS User Manual for the Issue 1.0 Page 28
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

#define vSemaphoreCreateBinary(pcSemaphoreBuffer, xSemaphore)
{
if (xQueueCreate(pcSemaphoreBuffer, portQUEUE_OVERHEAD BYTES,
semBINARY SEMAPHORE_QUEUE_LENGTH, semSEMAPHORE QUEUE_ITEM LENGTH,
&xSemaphore) == pdPASS)

xSemaphoreGive (xSemaphore) ;

xSemaphore = NULL;

P G S

#define xSemaphoreTake (xSemaphore, xBlockTime) \
xQueueReceive ((xQueueHandle) xSemaphore, NULL, xBlockTime)

#define xSemaphoreGive (xSemaphore) \
xQueueSend((xQueueHandle) xSemaphore, NULL, semGIVE BLOCK TIME)

#define xSemaphoreGiveFromISR(xSemaphore, pxHigherPriorityTaskWoken) \
xQueueSendFromISR((xQueueHandle) xSemaphore, NULL, pxHigherPriorityTaskWoken

Listing 4 Using queues to implement binary semaphores
Counting semaphores can be implemented in a similar fashion.

Where semaphores are used to control access to a resource, consideration should be given to
whether or not including a 'gatekeeper' task would provide a neater application solution. A
'gatekeeper' task is a task that has exclusive access to the kept resource. As an example,
consider an application where more than one task wishes to write messages to stdout. stdout can
be controlled by a gatekeeper task. When a task wants to display a message, instead of writing to
the display directly the message is instead sent to the stdout gatekeeper through a queue. The
gatekeeper spends most of its time Blocked on a queue, but is woken by arriving messages at
which point it removes the message from the queue and writes it to the display before re-entering
the Blocked state. This is demonstrated in the Listing 'Using a gatekeeper task to control access
to a resource'.

SAFERTOS User Manual for the Issue 1.0 Page 29
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A

WITTENSTEIN

/* Declare the TCBs of the tasks created.

static xTCB xGateKeeperTaskTCB =
static xTCB xAnotherTaskTCB =

{0}
{0 1};

/* Declare the stacks for the tasks. */
#pragma DATA ALIGN(cGateKeeperTaskStack, configMINIMAL STACK SIZE)

static signed portCHAR cGateKeeperTaskStack[configMINIMAL STACK SIZE] =

x/

{0 1};

#pragma DATA ALIGN(cAnotherTaskStack, configMINIMAL_ STACK_SIZE)

static signed portCHAR cAnotherTaskStack[configMINIMAL STACK SIZE] =

/* Declare a queue handle. */
static xQueueHandle xPrintQueue;

int main (

{

void)

xTaskParameters xGateKeeperTaskParameters

{

vGateKeeperTask, /*
(signed portCHAR *) "stdout keeper", /*
&xGateKeeperTaskTCB, /*

cGateKeeperTaskStack,
configMINIMALisTACKisIZE,

/*
/*

stack - note this is in BYTES!
not used in this case. */

NULL, /*
2, /*
{ /*

mpuPRIVILEGED TASK,
{

, OUL,
ouUL,
oUL,
, OUL,

0UL,
0UL,
0UL,
0UL,

o o o o

bi

0UL
0UL
0UL
0UL

xTaskParameters xAnotherTaskParameters

{

I
I
}

/*
/*

vAnotherTask, /*
(signed portCHAR *) "Another task", /*
&xAnotherTaskTCB, /*
cAnotherTaskStack, /*
COnfigMINIMALisTACKisIZE, /*

stack - note this is in BYTES!
not used in this case. */

NULL, /*
1, /*
{ /*

mpuPRIVILEGED TASK,
{

/* Initialise the kernel passing in a pointer
xTaskInitializeScheduler (

if(
{

{ 0, ouL, OUL, OUL },
{ 0, ouL, OUL, OUL },
{ 0, ouL, OUL, OUL },
{ 0, oUL, OUL, OUL }

&xPortInit

/* Create the gatekeeper queue.

sizeof (char *). */

/* The task is a privileged task.

{0}

The function to execute. */

The name of the task being created.

The TCB for the task. */

*/

The buffer allocated for use as the task stack. */
The size of the buffer allocated for use as the task

The task parameter,
The priority of the task. */
The MPU task parameters. */

*/

The gatekeeper task is a privileged task. */

The function to execute. */

The name of the task being created.

The TCB for the task. */

*/

No additional region definitions are required. */

The buffer allocated for use as the task stack. */
The size of the buffer allocated for use as the task

The task parameter,
The priority of the task. */
The MPU task parameters. */

*/

*/

/* No additional region definitions are required. */

)

Its length is 5 and itemsize equal to

xQueueCreate (pcQueueMemory,

xTaskCreate (

uxBufferLengthBytes, 5,

to an xPortInit structure.

== pdPASS

/* Create the gatekeeper task. We are not storing the task handle.

/* Create the task that uses stdout.
xTaskCreate (

&xGateKeeperTaskParameters,

&xAnotherTaskParameters,

NULL) ;

*/
NULL) ;

/* Start the scheduler to run the created tasks. */

xTaskStartScheduler (pdFALSE);

*/

sizeof (portCHAR *

*/

)y

&xPrintQueue

)i

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 30

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
‘2

WITTENSTEIN

/* Will not reach here as the scheduler is now running the tasks. */
return 1;

}

/* The gate keeper task implementation. ———=—————=-———--m——mmm */
void vGateKeeperTask(void *pvParameters

{

portCHAR *pcMessage;

for(;;)
{
/* Wait for a message to arrive. */
xQueueReceive (xPrintQueue, &pcMessage, portMAX DELAY) ;

/* Write the message to stdout. */
printf("%s", pcMessage);

}

/* A task that wants to write to stdout. -----------------------—————— */
void vAnotherTask(void *pvParameters)

{

const portCHAR *pcMessagel = "Message to display 1\r\n";

for(;;)

{
/* Task code goes here....
At some point the task wants to write to stdout so generates
the string to send (in this case its Jjust a constant) and
sends it to the gatekeeper task. */

xQueueSend (xPrintQueue, &pcMessagel, 0);

/* Rest of the task code goes here. */

Listing 5 Using a gatekeeper task to control access to a resource
2.3.3 Communication Between Tasks and Interrupts

% Interrupt handlers must not under any circumstances call an API function that could cause a task
to block. For this reason xQueueSend() and xQueueReceive() must not be called from within an
ISR and xQueueSendFromISR() and xQueueReceiveFromISR() must be used in their place.

xQueueSendFromISR() and xQueueReceiveFromISR() (interrupt safe versions of xQueueSend()
and xQueueReceive()) are often used to unblock a task upon the occurrence on an interrupt (see
the Section 'Interrupts' regarding interrupt management). However for efficiency reasons it is not
advised to make multiple calls within a single ISR in order to send or receive lots of small data
items. Instead multiple data items should be packed into a single queue-able object. Alternatively
a simple buffering scheme could be used, followed by a single call to an API function to unblock
the task required to process the buffered data.

2.3.4 Interrupts

In the interest of stack usage predictability and to facilitate system behavioral analysis it is
preferred that interrupt handlers do nothing but collect event data and clear the interrupt source -
and therefore exit very promptly by deferring the processing of the event data to the task level.
Task level processing can be performed with interrupts enabled. This scenario is demonstrated by
the Listing 'Deferring interrupt processing to the task level'.

SAFERTOS User Manual for the Issue 1.0 Page 31
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
‘2

WITTENSTEIN

void vISRFunction(void

{

char cDhata;

portBASE_TYPE xTaskWoken = pdFALSE;

/* Read the data input from the peripheral that triggered the interrupt. */
cData = ReceivedValue;

/* Send the data to the peripheral handler task. */
xQueueSendFromISR(xPrintQueue, &cData, &xTaskWoken);

/* If the peripheral handler task has a priority higher than the interrupted
task request a switch to the handler task. */
taskYIELD FROM ISR(xTaskWoken);

/* Clear interrupt here. If taskYIELD FROM ISR() was called then the interrupt
will return directly to the handler task where cData will be processed contiguous
in time with the ISR exiting. */
}

void vPeripheralHandlerTask(void *pvParameters)

{
portCHAR *pcMessage;

for(;;)
{
/* Wait for a message to arrive. */
xQueueReceive (xPrintQueue, &pcMessage, portMAX DELAY) ;

/* Write the message to stdout. */
printf("%$s", pcMessage);

Listing 6 Deferring interrupt processing to the task level

This scheme has the added advantage of flexible event processing prioritization. Task priorities
are used instead of the prioritization being dependent on the priority assigned to each interrupt
source by the target processor. The prioritization of peripheral handler tasks would normally be
chosen to be higher than ordinary tasks within the same application - thereby allowing the interrupt
handler to return directly into the peripheral handler task for immediate processing.

Refer to the documentation specific to your port for further information on writing interrupt service
routines - in particular whether or not the port you are using permits interrupts to become nested.

% Interrupt service routines that call API functions must not be permitted to execute prior to the
scheduler being started. The easiest method of ensuring this is for interrupts to remain disabled
until after the scheduler is started. Interrupts will automatically be enabled when the first task
starts executing.

% Refer to your port specific documentation for information on whether or not interrupts are
permitted to nest, and the interrupt priorities from which SAFERTOS API functions can be called.

% Calling API function while the scheduler is in the Initializing state will result in interrupts
becoming disabled.

% API functions that do not end in “FromISR” or macros that do not end in “FROM_ISR” must not
be used within an interrupt service routine.

SAFERTOS User Manual for the Issue 1.0 Page 32
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
N

WITTENSTEIN

CHAPTER 3 INSTALLATION AND
CONFIGURATION

SAFERTOS User Manual for the Issue 1.0 Page 33

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

3.1 INSTALLATION

3.1.1 Source Code and Libraries

SAFERTOS is supplied as either a set of source files, a library and set of header files, or,
depending on the processor, pre-programmed in to the processor ROM. If you are using source
files or library and header files, these files must be built as part of your application. Instructions on
including the files in your application are contained in the port specific documentation.

3.1.2 Hook Functions

The host application (the application that uses SAFERTOS) is required to provide two hook (or
callback) functions - vApplicationErrorHook() and vApplicationTaskDeleteHook(). In addition, the
host application can optionally supply vApplicationldleHook() and vApplicationTickHook().

3.1.2.1 vApplicationErrorHook()

vApplicationErrorHook() is called upon the detection of a fatal error - either a corruption within the
scheduler data structures or a potential stack overflow while performing a context switch. It has
the prototype demonstrated in the Listing 'vApplicationErrorHook() Function Prototype'; the
pxErrorHook member of the xPORT_INIT_PARAMETERS structure passed in the call to
xTasklnitializeScheduler must be set to the address of vApplicationErrorHook(). Refer to the
Section 'xTasklnitializeScheduler()' for further information.

void vApplicationErrorHook(xTaskHandle xHandleOfTaskWithError,
signed portCHAR *pcErrorString,
POrtBASE TYPE xErrorCode);

Listing 7 vApplicationErrorHook() Function Prototype

vApplicationErrorHook() enables the host application to perform application specific error handling
to ensure the system is placed into a safe state.

% vApplicationErrorHook() must not return.
1 vApplicationErrorHook() is called from within either the SVC or RTI Tick handlers.
3.1.2.1.1vApplicationErrorHook() Parameters

xHandleOfTaskWithError ~ The handle to the task that was in the Running state when the error

occurred.

pcErrorString A text string related to the error. This may be an error message or the
name of the task that was in the Running state when the error
occurred.

SAFERTOS User Manual for the Issue 1.0 Page 34

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

xErrorCode Can take the following values:
e errINVALID_TICK_VALUE
e errINVALID_TASK_SELECTED
e ernfTASK_STACK_OVERFLOW

3.1.2.2 vApplicationTaskDeleteHook()

vApplicationTaskDeleteHook() is called when a task is deleted. Its purpose is to inform the host
application that the memory allocated by the application for use by the task is once again free for
use for other purposes. It has the prototype demonstrated by the Listing
‘'VApplicationTaskDeleteHook() function prototype'; the pxTaskDeleteHook member of the
XPORT_INIT_PARAMETERS structure passed in the call to xTasklnitializeScheduler must be set
to the address of vApplicationTaskDeleteHook(). Refer to the Section 'xTasklnitializeScheduler()'
for further information.

void vApplicationTaskDeleteHook (xTaskHandle xTaskBeingDeleted);

Listing 8 vApplicationTaskDeleteHook() function prototype
3.1.2.2.1vApplicationTaskDeleteHook() Parameters
xTaskBeingDeleted The handle of the task that was deleted.
3.1.2.3 vApplicationldleHook()

vApplicationldleHook() is called repeatedly by the scheduler idle task to allow application specific
functionality to be executed within the idle task context. It is common to use the idle task hook to
perform low priority application specific background tasks, or simply put the processor into a low
power sleep mode.

If vApplicationldleHook() is provided by the host application, the pxldleHook member of the
XPORT_INIT_PARAMETERS structure passed in the call to xTasklInitializeScheduler must be set
to the address of vApplicationldleHook(); otherwise, pxldleHook must be set to NULL. Refer to the
Section 'xTaskInitializeScheduler()' for further information.

vApplicationldleHook() has the prototype demonstrated by the Listing 'vApplicationldleHook()
function prototype'.

void vApplicationIdleHook(void);

Listing 9 vApplicationldleHook() function prototype

SAFERTOS User Manual for the Issue 1.0 Page 35
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

% Code contained within vApplicationldleHook() must never call an API function that could result in
the idle task entering the blocked state.

% Should vApplicationldleHook() be used to place the processor into a low power mode then the
mode chosen must not prevent tick interrupts from being serviced.

3.1.2.4 vApplicationTickHook()

vApplicationTickHook() is called on each execution of the SysTick handler to allow application
specific functionality to be executed on a periodic basis. It is possible to use the tick hook to
implement an application timer.

If vApplicationTickHook() is provided by the host application, the pxTickHook member of the
XPORT_INIT_PARAMETERS structure passed in the call to xTasklnitializeScheduler must be set
to the address of vApplicationTickHook(); otherwise, pxTickHook must be set to NULL. Refer to
the Section 'xTasklnitializeScheduler()' for further information.

vApplicationTickHook() has the prototype demonstrated by the Listing 'vApplicationTickHook()
function prototype'.

void vApplicationTickHook(void);

Listing 10 vApplicationTickHook() function prototype
3.1.3 Configuration Constants

The host application is required to supply a header file called SafeRTOSConfig.h in which the
constants described within the Table 'Application Configuration Definitions' must be defined.

Table 3-1 Application Configuration Definitions

Definition Type Description

configMAX_PRIORITIES unsigned portBASE_TYPE The maximum number of unique priorities. The
maximum priority that can be assigned to a task is
(configMAX_PRIORITIES - 1)

configMINIMAL_STACK_SIZE | unsigned long The minimum valid size for a task's stack. Must be set
to at least 256 as this is the minimum power of 2 that
provides sufficient space to store 2 copies of the task
context when ulAdditionalStackCheckMarginBytes is
set to zero. Depending on the value of
ulAdditionalStackCheckMarginBytes that the host
application sets, this constant may need to be changed.

NOTE: This constant is not used directly by the kernel
itself, but is provided for use by the host application.

SAFERTOS User Manual for the Issue 1.0 Page 36
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
‘2

WITTENSTEIN

Table 3-1 Application Configuration Definitions

Definition Type Description

configCPU_CLOCK_HZ unsigned long The frequency at which the timer peripheral used to
generate the tick interrupt is running. NOTE: This
constant is not used directly by the kernel itself, but is
provided for use by the host application.

configTICK_RATE_HZ unsigned long This defines the desired number of tick interrupts per
second.

Further configuration is performed at run time by callng the APl function
xTasklInitializeScheduler().

i xTasklInitializeScheduler() must be the first SAFERTOS API function to be called, and must only
be called once.

SAFERTOS User Manual for the Issue 1.0 Page 37
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
‘2

WITTENSTEIN

CHAPTER 4 API REFERENCE

SAFERTOS User Manual for the Issue 1.0 Page 38

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

4.1 TASK FUNCTIONS

\
A
TN

WITTENSTEIN

4.1.1 xTasklnitializeScheduler()

void xTaskInitializeScheduler (const xPORT INIT PARAMETERS * const pxPortInitParameters);

4.1.1.1 Summary

Initializes all scheduler private data and passes application specific configuration data to the

scheduler and portable layer.
task.

4.1.1.2 Parameters

This removes any reliance on the C startup code to perform this

xTasklnitializeScheduler() takes a single parameter, a pointer to an XPORT_INIT_PARAMETERS
structure. The members of the XPORT _INIT_PARAMETERS structure are as follows:

ulCPUCIlockHz

ulTickRateHz

pxTaskDeleteHook

pXErrorHook

pxldleHook

pxTickHook

The speed of the system clock that has been configured by
the host application. This value is used to generate the
kernel tick.

The desired frequency of the kernel tick.

A pointer to the host application defined delete hook which
is called when a task is deleted. Must be set to a valid
address.

A pointer to the host application defined error hook which is
called when an error is detected by the kernel. Must be set
to a valid address.

A pointer to the host application defined idle hook which is
called on every loop of the idle task. This is permitted to be
NULL if no idle hook function is required.

A pointer to the host application defined tick hook which is
called on every execution of the SysTick handler. This is
permitted to be NULL if no tick hook funciton is required.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0 Page 39

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

ulAdditionalStackCheckMarginBytes

pcldleTaskStackBuffer

ulldleTaskStackSizeBytes

xldleTaskMPUParameters

pulVectorTableBase
4.1.1.3 Return Values

pdPASS

\
A
TN

WITTENSTEIN

When moving a task out of the Running state the task
context is saved onto the task stack. If following the save
there would remain fewer than
ulAdditionalStackCheckMarginBytes free bytes on the task
stack the application error hook will be called. Therefore
the higher the ulAdditionalStackCheckMarginBytes value
the more sensitive the stack overflow checking becomes -
zero is a valid value and will result in the least sensitive
stack overflow checking.

Note that when a potential stack overflow is detected the
error hook is called without having actually saved the task
context.

Pointer to the start of (lowest address) the buffer that
should be used to hold the stack of the idle task.

The size in bytes of the buffer pointed to by the
pcldleTaskStackBuffer parameter. This is effectively the
size in bytes of the idle task stack.

The MPU region parameters and privilege level of the idle
task. Note that the idle task must be a privileged task.

The location of the vector table.

The scheduler was initialized successfully.

errEXECUTING_IN_UNPRIVILEGED_MODE The processor was put into unprivileged mode

errNULL_PARAMETER_SUPPLIED

4.1.1.4 Notes

before xTasklnitializeScheduler() was called.

The value of pxPortInitParameters was found to
be NULL.

i xTasklInitializeScheduler() must be the first SAFERTOS API function to be called, and must only

be called once.

i xTasklnitializeScheduler() cannot be called from Unprivileged mode.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0 Page 40

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

A\
‘28

WITTENSTEIN

4.1.1.5 Example

/* Allocate a buffer for use by the idle task as its stack. The size required
will depend on the application. Note that the buffer is aligned according to
it's size which must be a power of 2. */

#pragma DATA ALIGN(cIdleTaskStack, configMINIMAL STACK SIZE)

static signed portCHAR cIdleTaskStack[configMINIMAL STACK SIZE] = { 0 };

int main(void)
{
/* The structure passed to xTaskInitializeScheduler () to configure the kernel
with the application defined constants and call back functions. */
xPORT_INIT PARAMETERS xPortInit =
{
configCPU_CLOCK_HZ, /* ulCPUClockHz */
configTICK RATE_HZ, /* ulTickRateHz */

/* Hook functions. */

prvApplicationTaskDeleteHook, /* pxTaskDeleteHook */
prvApplicationErrorHook, /* pxErrorHook */
prvApplicationIdleHook, /* pxIdleHook */
prvApplicationTickHook, /* pxTickHook */
mainSTACK_CHECK_MARGIN, /* ulAdditionalStackCheckMarginBytes */

/* Idle Task parameters. */
cIdleTaskStack, /* pcldleTaskStackBuffer */
configMINIMAL STACK SIZE, /* ulldleTaskStackSizeBytes */

{ /* xIdleTaskMPUParameters */
mpuPRIVILEGED TASK, /* The idle task is a privileged task. */
{
, 0uL, oOuL, OUL }, /* No additional region definitions are required. */
0UL, OUL, OUL },
0UL, OUL, OUL },
0UL, 0UL, OUL }

o o oo

}

mainVECTOR_TABLE_LOCATION /* pulVectorTableBase */

/* Setup the hardware. */
prvSetupHardware () ;

/* Initialize the scheduler, passing in a pointer to the xPortInit
structure, before calling any other API functions. */
if (xTaskInitializeScheduler(&xPortInit) == pdPASS)
{
/* Other SafeRTOS API functions can be called from this point on. */

Listing 11 Example use of the xTasklnitializeScheduler() API function

4.1.2 xTaskCreate()

portBASE_TYPE xTaskCreate(xTaskParameters * const pxTaskParameters, xTaskHandle *pxCreatedTask);

4.1.2.1 Summary

Creates a new task. The created task is placed into the Ready state.

SAFERTOS User Manual for the Issue 1.0 Page 41
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.1.2.2 Parameters

xTaskCreate() takes 2 parameters - pxTaskParameters which is a pointer to an xTaskParameters
structure, and pxCreatedTask which is used to pass back a handle by which the created task can
be referenced, for example when changing the priority of the task or subsequently deleting the
task. The members of the xTaskParameters structure are as follows:

pdTASK_CODE pvTaskCode

const signed portCHAR * pcTaskName

XTCB * pxTCB

signed portCHAR * pcStackBufferr

unsigned portLONG ulStackDepthBytes

void * pvParameters

unsigned portBASE_TYPE uxPriority

xMPUTaskParameters xMPUParameters

Pointer to the function that implements the task.

A descriptive name for the task. This is mainly
used to facilitate debugging.

Pointer to the TCB provided by the host
application for this task.

Pointer to the start of the memory to be used as
the task stack.

The size in bytes of the memory pointed to by
the pcStackBuffer pointer. The minimum
allowable size for the stack buffer is port-
dependent and documented within the port-
specific documentation.

Task functions take a void * parameter - the
value of which is set by pvParameters when the
task is created.

The priority of the task. Can take any value
between 0 and (configMAX_PRIORITIES - 1).
The lower the numeric value of the assigned
priority the lower the relative priority of the task.

A structure containing the MPU related task
parameters.

The members of the xMPUTaskParameters structure are as follows:

unsigned portBASE_TYPE uxPrivilegeLevel

xMPUMemoryRegion xRegions[
mpuNUM_CONFIGURABLE_REGIONS]

The privilege level of the task - must be either
MpuUNPRIVILEGED_TASK or
mMpuPRIVILEGED_TASK

An xMPUMemoryRegion structure for each of
the configurable MPU regions available to the
task. For the TMS570,
mMmpuNUM_CONFIGURABLE_REGIONS equals
4.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 42

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

The members of the xMPUMemoryRegion structure are as follows:

void * pvBaseAddress The lowest address of the memory region. Must
be a multiple of the size of the region.

unsigned portLONG ulLengthIinBytes The length of the region (in bytes). Must be a
power of 2 and at least 32 bytes.

unsigned portLONG ulAccessPermissions Contains the attribute settings of this region -
refer to the TMS570 documentation for a full
discussion of the available MPU region attribute
settings.

unsigned portLONG ulSubregionControl Specifies whether individual sub regions are
disabled - refer to the TMS570 documentation
for a full discussion of the available MPU region
attribute settings.

4.1.2.3 Return Values
pdPASS The task was created successfully.

errNULL_PARAMETER_SUPPLIED There are a number of reasons why this error
code could be returned:

1. The value of pxTaskParameters was
found to be NULL;

2. The value of pcStackBuffer was found to

be NULL;
3. The value of pxTCB was found to be
NULL.
errfINVALID_TASK_CODE_POINTER The pvTaskCode parameter was found to be
NULL.
errINVALID_PRIORITY The uxPriority parameter was greater than or

equal to configMAX_PRIORITIES.

errfINVALID_BYTE_ALIGNMENT The pcStackBuffer value is not aligned
according to ulStackDepthBytes.

SAFERTOS User Manual for the Issue 1.0 Page 43
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

errfINVALID_MPU_REGION_CONFIGURATION One of a number of problems was identified with
this task's MPU region definitions:

1. One of the regions is smaller than 32
bytes;

2. The size of one of the regions is not a
power of 2;

3. The base address of a region was not
aligned correctly according to it's size.

errfSUPPLIED_BUFFER_TOO_SMALL ulStackDepthBytes was less than the number of
bytes required to hold two copies of the task
context as well as
ulAdditionalStackCheckMarginBytes. With
ulAdditionalStackCheckMarginBytes set to O,
the minimum value that ulStackDepthBytes can

take is 256.
errfINVALID BUFFER_SIZE ulStackDepthBytes is not a power of 2.
ernfTASK_STACK_ALREADY_IN_USE The memory pointed to by pcStackBuffer is

already being used as the stack of another task.
The handle to the created task is returned in the pxCreatedTask parameter.
4.1.2.4 Notes

A task can be created while the scheduler is in the Initialization state, or from another task while
the scheduler is in the Running or Suspended state.

Creating a task while the scheduler is in the Active state can cause the task being created to enter
the Running state prior to xTaskCreate() returning. This will occur if the task being created has a
priority higher than the task calling xTaskCreate().

% Calling xTaskCreate() while interrupts are disabled will not prevent the task being created
entering the Running state should it have a priority higher than the task calling xTaskCreate(). The
task being created will commence execution with interrupts enabled. Interrupts will once again be
disabled when the task calling xTaskCreate() once again enters the Running state.

% Calling xTaskCreate() while the scheduler was in the Suspended state would defer any
necessary context switch until such time that the scheduler re-entered the Active state.

% xTaskCreate() must not be called from an interrupt service routine.

% |t is strongly recommended that all tasks are created during the system initialization phase, that
is after a successful call to xTasklInitializeScheduler() but before a call to xTaskStartScheduler().

SAFERTOS User Manual for the Issue 1.0 Page 44
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

WITTENSTEIN

4.1.2.5 Example

/* Define the priority at which the task is to be created. */
#define TASK_PRIORITY 1

/* Declare the TCB of the task that is to be created. */
static xTCB xTaskTCB = { 0 };

/* Declare the buffer to be used by the task's stack. This buffer is protected
by an MPU region so the alignment must follow the MPU alignment rules, and
basically be aligned to the same power of two value as their length in bytes. */
#define STACK SIZE 512

#pragma DATA ALIGN(cTaskStack, STACK_SIZE)

static signed portCHAR cTaskStack[STACK SIZE] = { 0 };

/* Define a structure used to demonstrate a parameter being passed into a task
function. */
typdef struct A STRUCT
{
char cStructMemberl;
char cStructMember?2;
} xStruct;

/* Define a variable of the type of the structure just defined. A reference to
this variable is passed in as the task parameter. */
xStruct xParameter = { 1, 2 };

/* The task being created. */
void vTaskCode(void * pvParameters)
{

xStruct *pxParameters;

/* Cast the parameter to the expected type. */
pxParameters = (xStruct *) pvParameters;

/* The parameter can now be accessed. */
if (pxParameters->cStructMemberl != 1
{
/* Etc. */
}

/* Enter an infinite loop to perform the task processing. */
for(;i)
{

/* Task code goes here. */

}

/* Function that creates a task. It is strongly recommended that this function
is called while the scheduler is in the Initialization state, although it could
be called from another task while the scheduler was in the Running or Suspended
state. */

void vAnotherFunction(void)

{

xTaskHandle xHandle;

/* The structure passed to xTaskCreate() to create the task. */
xTaskParameters xNewTaskParameters =

{

vTaskCode, /* The function that implements the task being created. */
(signed portCHAR *) "Demo task", /* The name of the task being created. */
&xTaskTCB, /* The TCB for the task. */
cTaskStack, /* The buffer allocated for use as the task stack. */
STACK_SIZE, /* The size of the buffer allocated for use as the task stack. */
NULL, /* The task parameter will be initialised later. */
TASK_PRIORITY, /* The priority to be assigned to the task being created. */
{ /* The MPU task parameters. */
mpuPRIVILEGED TASK, /* This task is a privileged task. */
{
{ o0, ouL, ouL, ouUL }, /* No additional region definitions are required. */
{ 0, oUL, OUL, OUL },
{ 0, oUL, OUL, OUL },
{ 0, OUL, OUL, OUL }

SAFERTOS User Manual for the Issue 1.0 Page 45
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

n\
T

WITTENSTEIN

/* Add a pointer to the structure of parameters. */
xNewTaskParameters.pvParameters = &xParameter;

/* Create the task defined by the vTaskCode function, storing the handle. */
if (xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS
{
/* The task was not successfully created. The return value could have
been checked to find out why. */

else

/* The task was created successfully. If this function is called from a
task, the scheduler is in the Active state, and the task just created
has a priority higher than the calling task then vTaskCode will have
executed before this task reaches this point. */

}

/* The handle can now be used in other API functions, for example to change
the priority of the task. */

if (xTaskPrioritySet(xHandle, 1) != pdPASS

{

/* The priority was not changed. */

/* The priority was changed. */

Listing 12 Example usage of the xTaskCreate() API function

4.1.3 xTaskDelete()

portBASE_TYPE xTaskDelete(xTaskHandle pxTaskToDelete);

4.1.3.1 Summary

Deletes the task referenced by the pxTaskToDelete parameter.

4.1.3.2 Parameters

pxTaskToDelete The handle of the task to be deleted.
The handle to a task is obtained via the pxCreatedTask parameter to the
xTaskCreate() API function when the task is created or by a subsequent call

to xTaskGetCurrentTaskHandle().

A task may delete itself by passing NULL as the pxTaskToDelete
parameter.

4.1.3.3 Return Values

pdPASS The task was successfully deleted.

errINVALID_TASK_HANDLE The pxTaskToDelete parameter was not found to reference a
valid task.

SAFERTOS User Manual for the Issue 1.0 Page 46

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

4.1.3.4 Notes

Deleting a task will cause the task delete hook function to be called (see the Section
'VApplicationTaskDeleteHook()'). This lets the host application know that the memory that was
used by the task is now free for reuse.

The handle of the deleted task will be invalidated and cannot therefore be used in further API
function calls. Attempting to do so will result in the API function returning an error.

1 xTaskDelete() must not be called while the scheduler is in the Initialization state (prior to the
scheduler being started).

% XTaskDelete() must not be called to delete the calling task while the scheduler is in the
Suspended state as while the scheduler is suspended a switch away from the task being deleted
cannot be performed.

i xTaskDelete() must not be called from an interrupt service routine.

% xTaskDelete() must not be used to delete the idle task unless at least one other task has been
created that is guaranteed never to enter the Blocked or Suspended state.

% Once a task has been deleted the memory allocated for use as the task stack and the task TCB
can be reused. If the same task stack memory buffer and task TCB are passed into another call to
xTaskCreate() (to create a new task) then the handle of the deleted task and the handle of the
newly created task will be identical.

SAFERTOS User Manual for the Issue 1.0 Page 47
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
2

4.1.3.5 Example

void vAnotherFunction(void

{

xTaskHandle xHandle;

xTaskParameters xNewTaskParameters =

{
/* Populate the structure with the values
required for the task being created.*/

/* Create a task, storing the handle. */

if(xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS

{
/* The task was not created successfully. The return value could have
been checked to find out why. */

else

/* Use the handle obtained when the task was created to delete the

task. */

if (xTaskDelete(xHandle) != pdPASS

{
/* The task could not be deleted. The return value could have been
checked to find out why. */

}

/* Delete ourselves. */
xTaskDelete (NULL) ;

/* The task was deleted and execution will never reach here. */

Listing 13 Example use of the xTaskDelete() API function

4.1.4 xTaskDelay()

portBASE_TYPE xTaskDelay(portTickType xTicksToDelay);

4.1.4.1 Summary

Places the calling task into the Blocked state for a fixed number of tick periods. The task therefore
delays for the requested number of ticks before being transitioned back into the Ready state.

4.1.4.2 Parameters
xTicksToDelay The number of ticks for which the calling task should be held in the Blocked state.

4.1.4.3 Return Values

pdPASS The calling task was held in the Blocked state for the
specified number of ticks.

errSCHEDULER_IS_SUSPENDED The scheduler was in the Suspended state when
xTaskDelay() was called. The scheduler cannot select a
different task to enter the Running state when it is suspended
and therefore is unable to transition the calling task into the
Blocked state.

SAFERTOS User Manual for the Issue 1.0 Page 48
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)\
‘ ;
a2

WITTENSTEIN

4.1.4.4 Notes

The actual time between a task calling xTaskDelay() to enter the Blocked state, and then
subsequently being moved back to the Ready state, can only be specified to the available time
resolution. If xTaskDelay() is called a fraction of a tick period prior to the next tick increment then
this fraction will count as one of the tick periods for which the task is to be held in the Blocked
state.

Specifying a delay period of 0 ticks will not cause the task to enter the Blocked state but will cause
the task to yield. It has the same effect as calling taskYIELD().

% xTaskDelay() must only be called from an executing task and therefore must not be called while
the scheduler is in the Initialization state (prior to the scheduler being started).

i xTaskDelay() must not be called from within an interrupt service routine.

% Calling xTaskDelay() while interrupts are disabled will not prevent the task from entering the
Blocked state and a different task being selected as the task to enter the Running state. Each task
maintains its own interrupt state and therefore the task entering the Running state could have
interrupts enabled. Interrupts would once again be disabled when the task calling xTaskDelay() re-
entered the Running state.

4.1.4.5 Example

void vAnotherTask(void * pvParameters)
{

for(;i)

{

/* Perform some processing here. */

/* Delay for a fixed period. */
if(xTaskDelay(20) == pdPASS)
{
/* The scheduler was not suspended. */

}

/* 20 ticks will have passed since calling xTaskDelay() prior to reaching here. */

Listing 14 Example of using the xTaskDelay() API function.

4.1.5 xTaskDelayuUntil()

portBASE TYPE xTaskDelayUntil(portTickType *pxPreviousWakeTime, portTickType xTimelIncrement);

4.1.5.1 Summary

Places the calling task into the Blocked state until an absolute time is reached.

SAFERTOS User Manual for the Issue 1.0 Page 49
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.1.5.1.1 Differences Between xTaskDelay() and xTaskDelayUntil()

xTaskDelay() will cause the calling task to enter the Blocked state for the specified number of ticks
from the time xTaskDelay() was called. Therefore xTaskDelay() specifies a delay period relative
to the time at which the function is called. xTaskDelayUntil() instead specifies the absolute (exact)
time at which it wishes to re-enter the Ready state.

xTaskDelayUntil() can be used by cyclical tasks to ensure a constant execution frequency. It is
difficult to use xTaskDelay() for this purpose as the time taken between cycles of the task will not
be fixed (the task may take a different path though the code between calls, or may get interrupted
or pre-empted a different number of times each time it executes) making it impossible to specify a
relative delay period with any accuracy.

4.1.5.2 Parameters

pxPreviousWakeTime Pointer to a variable that holds the time at which the task was last
unblocked. The variable must be initialized with the current time prior to
its first use (see the example below). Following this the variable is
automatically updated within xTaskDelayUntil().

xTimelncrement The cycle time period. The task will be unblocked at time
(*pxPreviousWakeTime + xTimelncrement).

4.1.5.3 Return Values

pdTRUE The calling task was held in the Blocked state until the
specified time.

errfSCHEDULER_IS_SUSPENDED The scheduler was in the Suspended state when
xTaskDelayUntil() was called. The scheduler cannot select
a different task to enter the Running state when it is
suspended and therefore is unable to transition the calling
task into the Blocked state.

errNULL_PARAMETER_SUPPLIED The value of pxPreviousWakeTime was found to be NULL.
errDID_NOT_YIELD The parameters passed into the function were valid, but the
time at which the task specified that it should re-enter the

Ready state has already passed.

The task did not enter the Blocked state and a yield was not
performed.

4.1.5.4 Notes

1 xTaskDelayUntil() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% xTaskDelayUntil() must not be called from within an interrupt service routine.

SAFERTOS User Manual for the Issue 1.0 Page 50
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

a A
WITTENSTEIN
% Calling xTaskDelayUntil() while interrupts are disabled will not prevent the task from entering the
Blocked state and a different task being selected as the task to enter the Running state. Each task
maintains its own interrupt state and therefore the task entering the Running state could have

interrupts enabled. Interrupts would once again be disabled when the task calling
xTaskDelayUntil() re-entered the Running state.

4.1.5.5 Example

/* A function that performs an action every 50 ticks. */
void vCyclicTaskFunction(void * pvParameters

{

portTickType xLastWakeTime;

const portTickType xFrequency = 50;

/* Initialize the xLastWakeTime variable with the current time. */
xLastWakeTime = xTaskGetTickCount () ;

/* Enter the loop that defines the task behavior. */
for(;;)
{
/* Wait for the next cycle. */
if (xTaskDelayUntil (&xLastWakeTime, xFrequency) != pdTRUE)
{
/* The scheduler is not suspended and a valid portTickType * was
supplied to xTaskDelayUntil(), so it must have taken longer than 50
ticks to perform a cycle of this task. */

}

/* Perform task action here. This code will be executed every 50 ticks.
xLastWakeTime is automatically updated by the xTaskDelayUntil () function
so need not be modified once it has been initialized. */

Listing 15 Example of using the xTaskDelayUntil() API function

4.1.6 xTaskPriorityGet()

portBASE TYPE xTaskPriorityGet(xTaskHandle pxTask, unsigned portBASE TYPE *puxPriority);
4.1.6.1 Summary

Queries the priority of a task.

4.1.6.2 Parameters

pxTask The handle of the task being queried.

The handle to a task is obtained via the pxCreatedTask parameter to the
xTaskCreate() API function when the task is created.

A task may query its own priority by passing NULL as the pxTask parameter.

puxPriority Pointer to the variable that will be set to the priority of the task being queried.

SAFERTOS User Manual for the Issue 1.0 Page 51
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i)
I
WITTENSTEIN
4.1.6.3 Return Values
pdPASS *puxPriority was set to the priority of the task being queried.
errNULL_PARAMETER_SUPPLIED puxPriority was found to be NULL.
errfINVALID_TASK_HANDLE pxTask was found not to be a valid task handle.

4.1.6.4 Notes

! xTaskPriorityGet() must not be called from within an interrupt service routine.

4.1.6.5 Example

void vAFunction(void

{

unsigned portBASE_TYPE uxCreatedPriority, uxOurPriority;

xTaskHandle xHandle;

xTaskParameters xNewTaskParameters =

{
/* Populate the structure with the values
required for the task being created.*/

/* Create a task, storing the handle. */

if (xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS

{
/* The task was not created successfully. The return value
* could have been checked to find out why. */

else
{
/* Use the handle to query the priority of the created task. */
if (xTaskPriorityGet (xHandle, &uxCreatedPriority) != pdPASS
{
/* Could not obtain the task priority. The return value could have
been checked to find out why. */
}
/* Query our own priority. */
if(xTaskPriorityGet (NULL, &uxOurPriority) != pdPASS
{
/* Could not obtain our own priority - should never get here when
using NULL. */
}
/* Is our priority higher than the priority of the task just created? */
if (uxOurPriority > uxCreatedPriority
{
/* Yes. */
}
}
}
Listing 16 Example of using the xTaskPriorityGet() API function
SAFERTOS User Manual for the Issue 1.0 Page 52

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.1.7 xTaskPrioritySet()

portBASE TYPE xTaskPrioritySet(xTaskHandle pxTask, unsigned portBASE TYPE uxNewPriority);
4.1.7.1 Summary

Changes the priority of a task.

4.1.7.2 Parameters

pxTask The handle of the task being modified.

The handle to a task is obtained via the pxCreatedTask parameter to the
xTaskCreate() API function when the task is created.

A task may change its own priority by passing NULL as the pxTask parameter.
uxNewPriority The priority to which the task identified by the pxTask parameter should be set.
4.1.7.3 Return Values
pdPASS The priority of the task was changed.
errINVALID_TASK _HANDLE pxTask was found not to be a valid task handle.

errINVALID_PRIORITY The value of uxNewPriority was greater than the highest available
task priority (configMAX_PRIORITIES - 1).

4.1.7.4 Notes
i xTaskPrioritySet() must not be called from within an interrupt service routine.

I xTaskPrioritySet() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% It is not recommended that xTaskPrioritySet() be used to modify the priority of the idle task. The
idle task never enters the Blocked or Suspended state so will completely starve lower priority tasks
of execution time should its priority not be the lowest (or be equal to the lowest) priority in the
application.

% It is possible for more than one task to be in the Blocked state while waiting for an event to occur
on the same queue. When this is the case the set of tasks that are waiting for the same event are
referenced in priority order. When the queue event occurs it is the task that is referenced first that
is moved out of the Blocked state and into the Ready state - thus ensuring (due to the priority
ordering) that it is the highest priority task that is unblocked. Using xTaskPrioritySet() to change
the priority of a task that is one of a set of tasks blocked to wait for an event does not force the
series in which the tasks are referenced to be reordered. This could lead to a queue event
transitioning a task into the Ready state when there is a task of higher priority waiting for the same
event.

SAFERTOS User Manual for the Issue 1.0 Page 53
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
2

% Calling xTaskPrioritySet() can result in a context switch being performed. Each task maintains
its own interrupt state, therefore calling xTaskPrioritySet() while interrupts are disabled could cause
a context switch to a task that has interrupts enabled. Interrupts would once again be disabled
when the task calling xTaskPrioritySet() next entered the Running state.

% Calling xTaskPrioritySet() while the scheduler was in the Suspended state would defer any
necessary context switch until such time that the scheduler re-entered the Active state.

4.1.7.5 Example

void vAFunction(void

{

xTaskHandle xHandle;

xTaskParameters xNewTaskParameters =

{
/* Populate the structure with the values
required for the task being created.*/

/* Create a task, storing the handle. */

if(xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS

{
/* The task was not created successfully. The return value could have
been checked to find out why. */

else

/* Use the handle to raise the priority of the created task. */
vTaskPrioritySet (xHandle, TASK PRIORITY + 1);

/* Use a NULL handle to modify our own priority. */
vTaskPrioritySet (NULL, 1);

Listing 17 Example of using the xTaskPrioritySet() API function

4.1.8 xTaskSuspend()

portBASE TYPE xTaskSuspend(xTaskHandle pxTaskToSuspend);
4.1.8.1 Summary

Places a task into the Suspended state.

4.1.8.2 Parameters

pxTaskToSuspend The handle of the task being suspended.

The handle to a task is obtained via the pxCreatedTask parameter to the
xTaskCreate() API function when the task is created.

A task may suspend itself by passing NULL as the pxTaskToSuspend
parameter.

SAFERTOS User Manual for the Issue 1.0 Page 54
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

4.1.8.3 Return Values
pdPASS

errfSCHEDULER_IS_SUSPENDED

errINVALID_TASK_HANDLE

ernfTASK_ALREADY_SUSPENDED

4.1.8.4 Notes

\
A
TN

WITTENSTEIN

The task was successfully suspended.

The scheduler was in the Suspended state when
xTaskSuspend() was called. The scheduler cannot select a
different task to enter the Running state when it is
suspended and therefore would be unable to select a new
task to run if a task suspended itself.

pxTaskToSuspend was found not to be a valid task handle.

The task referenced by the pxTaskToSuspend handle was
already in the Suspended state.

i XTaskSuspend() must not be called from within an interrupt service routine.

% xTaskSuspend() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% xTaskSuspend() must not be used to suspend the idle task unless at least one other task has
been created that is guaranteed never to enter the Blocked or Suspended state.

% Calling xTaskSuspend() can result in a context switch being performed. Each task maintains its
own interrupt state, therefore calling xTaskSuspend() while interrupts are disabled could cause a
context switch to a task that has interrupts enabled. Interrupts would once again be disabled when
the task calling xTaskSuspend() next entered the Running state.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0 Page 55

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

A\

TN

WITTENSTEIN

4.1.8.5 Example
void vAFunction(void
{
xTaskHandle xHandle;
xTaskParameters xNewTaskParameters =
{

/* Populate the structure with the values

required for the task being created.*/
}

/* Create a task, storing the handle. */

if(xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS

{
/* The task was not created successfully. The return value could have
been checked to find out why. */

else

/* Use the handle to suspend the created task. */

if (xTaskSuspend(xHandle) != pdPASS)

{
/* Could not suspend the task. The return value could have been
checked to find out why. */

}

/* The created task will not run during this period, unless another
task calls xTaskResume (xHandle). */

/* Suspend ourselves. */
xTaskSuspend(NULL) ;

/* We cannot reach here unless another task calls xTaskResume () with
the handle to the task from which this function was called as the
parameter. */

Listing 18 Example of using the xTaskSuspend() API function

4.1.9 xTaskResume()

POrtBASE TYPE xTaskResume (xTaskHandle pxTaskToResume);

4.1.9.1 Summary

Transition a task from the Suspended state to the Ready state. The task must have previously
been suspended using a call to xTaskSuspend().

4.1.9.2 Parameters

pxTaskToResume The handle of the task being resumed - transitioned out of the Suspended
state.

The handle to a task is obtained via the pxCreatedTask parameter to the
xTaskCreate() API function when the task is created.

SAFERTOS User Manual for the Issue 1.0 Page 56
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.1.9.3 Return Values

pdPASS The task was successfully resumed - transitioned out of
the Suspended state.

errNULL_PARAMETER_SUPPLIED pxTaskToResume was found to be NULL.

errfINVALID_TASK _HANDLE pxTaskToResume was found not to be a valid task handle
(and not NULL).

ernfTASK_WAS_NOT_SUSPENDED The task referenced by the pxTaskToResume handle was
not in the Suspended state.

4.1.9.4 Notes

A task can block to wait for a queue event, specifying a timeout period. It is legitimate to move
such a Blocked task into the Suspended state using a call to xTaskSuspend(), then out of the
Suspended state and into the Ready state using a call to xTaskResume(). Following this scenario,
the next time the task enters the Running state it will check whether or not its timeout period has
(in the mean time) expired. If the timeout period has not expired the task will once again enter the
Blocked state to wait for the queue event for the remainder of the originally specified timeout
period.

A task can also block to wait for a temporal event using the xTaskDelay() or xTaskDelayUntil() API
functions. It is legitimate to move such a Blocked task into the Suspended state using a call to
xTaskSuspend(), then out of the Suspended state and into the Ready state using a call to
xTaskResume(). Following this scenario, the next time the task enters the Running state it shall
exit the xTaskDelay() or xTaskDelayUntil() function as if the specified delay period had expired,
even if this is not actually the case.

1 xTaskResume() must not be called from within an interrupt service routine.

" xTaskResume() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% Calling xTaskResume() can result in a context switch being performed. Each task maintains its
own interrupt state, therefore calling xTaskResume() while interrupts are disabled could cause a
context switch to a task that has interrupts enabled. Interrupts would once again be disabled when
the task calling xTaskResume() next entered the Running state.

% Calling xTaskResume() while the scheduler was in the Suspended state would defer any
necessary context switch until such time that the scheduler re-entered the Active state.

SAFERTOS User Manual for the Issue 1.0 Page 57
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

/2

WITTENSTEIN

4.1.9.5 Example
void vAFunction(void
{
xTaskHandle xHandle;
xTaskParameters xNewTaskParameters =
{

/* Populate the structure with the values

required for the task being created.*/
}

/* Create a task, storing the handle. */

if(xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS

{
/* The task was not created successfully. The return value could have
been checked to find out why. */

else

/* Use the handle to suspend the created task. The return value should
be checked to ensure the task is successfully suspended. */
xTaskSuspend (xHandle);

/* The suspended task will not run during this period, unless another
task calls xTaskResume(xHandle). */

/* Resume the suspended task again. */

if (xTaskResume (xHandle) != pdPASS

{
/* Could not resume the task. The return value could have been
checked to find out why. */

}

/* The created task is again available to the scheduler. */

Listing 19 Example of using the xTaskResume() API function

4.1.10 xTaskGetCurrentTaskHandle()

xTaskHandle xTaskGetCurrentTaskHandle (void);

4.1.10.1 Summary

Returns the handle of the currently executing task.
4.1.10.2 Parameters

None.

4.1.10.3 Return Values

xTaskGetCurrentTaskHandle() always returns the handle of the currently executing task.

SAFERTOS User Manual for the Issue 1.0 Page 58
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
2

4.1.10.4 Notes

% Between successful calls to xTasklnitializeScheduler() and xTaskStartScheduler(),
xTaskGetCurrentTaskHandle() will return the last, highest priority task created or NULL if no tasks
have been created.

4.1.10.5 Example

void vAFunction(void)
{
xTaskHandle xMyTaskHandle;

/* Get this task's handle. */
xMyTaskHandle = xTaskGetCurrentTaskHandle () ;

/* Perform some operation. */

Listing 20 Example of using the xTaskGetCurrentTaskHandle() API function

SAFERTOS User Manual for the Issue 1.0 Page 59
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.2 MPU FUNCTIONS

4.2.1 xMPUSetTaskRegions()

portBASE TYPE xMPUSetTaskRegions(xTaskHandle pxTaskToModify, const xMPUTaskParameters * const pxMPUParameters);

4.2.1.1 Summary

Reassigns the MPU region definitions associated with the task. The SAFERTOS Safety Manual for
the CCS TMS570 MPU Product Variant [Reference 2] contains further detailed information relating

to the definition of MPU regions.

4.2.1.2 Parameters

xMPUSetTaskRegions() takes 2 parameters - pxTaskToModify which is the handle of the task
whose MPU regions are being modified and pxMPUParameters which is a pointer to an
XMPUTaskParameters structure containing the new region definitions. The members of the

xMPUTaskParameters structure are as follows:

unsigned portBASE_TYPE uxPrivilegeLevel

xMPUMemoryRegion xRegions[
mpuNUM_CONFIGURABLE_REGIONS]

The privlege level of the task -
XMPUSetTaskRegions does not access this
member of the structure, so it's value is not
important.

An xMPUMemoryRegion structure for each of
the configurable MPU regions available to the
task. For the TMS570,
mMmpuNUM_CONFIGURABLE_REGIONS equals
4.

The members of the xXMPUMemoryRegion structure are as follows:

void * pvBaseAddress

unsigned portLONG ulLengthinBytes

unsigned portLONG ulAccessPermissions

uinsigned portLONG ulSubRegionControl

The lowest address of the memory region. Must
be a multiple of the size of the region.

The length of the region (in bytes). Must be a
power of 2 and at least 32 bytes.

Contains the attribute settings of this region -
refer to the TMS570 documentation for a full
discussion of the available MPU region attribute
settings.

Specifies whether individual sub regions are
disabled - refer to the TMS570 documentation
for a full discussion of the available MPU region
attribute settings.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 60

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.2.1.3 Return Values

pdPASS The task's regions were successfully updated. If
it was the current task's regions that were being
modified, then a context switch will have been

performed.

errNULL_PARAMETER_SUPPLIED The value of pxMPUParameters was found to
be NULL.

errfINVALID_TASK _HANDLE pxTaskToModify was found not to be a valid

task handle (and not NULL).

errfINVALID_MPU_REGION_CONFIGURATION One of a number of problems was identified with
the new set of MPU region definitions:

1. One of the regions is smaller than 32
bytes;

2. The size of one of the regions is not a
power of 2;

3. The base address of a region was not
aligned correctly according to it's size.

4.2.1.4 Notes

% xXMPUSetTaskRegions() must only be called from an executing task and therefore must not be
called while the scheduler is in the Initialization state (prior to the scheduler being started).

4 If xMPUSetTaskRegions() is used to modify the MPU regions of the currently executing task,
then xMPUSetTaskRegions() performs a context switch to apply the new region settings. If the call
to xMPUSetTaskRegions() is made whilst the scheduler is suspended, then the new MPU region
configuration will not be effective until the scheduler is resumed and the task is once again
selected to run.

4 If xMPUSetTaskRegions() is used to modify the MPU regions of the currently executing task and
the call is made from within a critical section, then the critical section would not prevent the context
switch occurring. Each task maintains its own interrupt status and therefore the context switch
could cause a task that has interrupts enabled being selected to run.

4.2.1.5 Example

This example creates a task with an initial set of MPU regions. The created task subsequently calls
xMPUSetTaskRegions() to modify the region settings.

SAFERTOS User Manual for the Issue 1.0 Page 61
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

WITTENSTEIN

/* Define the priority at which the task is to be created. */

#define TASK PRIORITY 1

/* Declare the TCB of the task that is to be created.

static xTCB xTaskTCB = { 0 };

/* Declare the buffer to be used by the task's stack.
by an MPU region so the alignment must follow the MPU alignment rules, and
basically be aligned to the same power of two value as their length in bytes. */

#define STACK_SIZE 512

#pragma DATA ALIGN(cTaskStack,

STACK_SIZE)
static signed portCHAR cTaskStack[STACK SIZE] =

/* Function that creates a task.
is called while the scheduler is in the Initialization state, although it could
be called from another task while the scheduler was in the Running or Suspended

state. */

void vAFunction(void
{

xTaskHandle xHandle;

/* The structure passed to xTaskCreate ()

xTaskParameters xNewTaskParameters

{
vTaskCode,

(signed portCHAR *) "Demo task",

&xTaskTCB,
cTaskStack,
STACK_SIZE,
NULL,
TASK_PRIORITY,
{

mpuPRIVILEGED_TASK,

{

0, ouL,
0, ouL,
0, ouL,
0, ouL,

0UL,
0UL,
0UL,
0UL,

0UL
0UL
0uUL
0uUL

b
b
b

{0

*/

This buffer is protected

}i

It is strongly recommended that this function

to create the task. */

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

The
The
The
The
The

No parameters are being passed to this task.

function that implements the task being created.

name of the task being created. */
TCB for the task. */
buffer allocated for use as the task stack.

*/

*/

size of the buffer allocated for use as the task stack. */

*/

The priority to be assigned to the task being created.

The
Thi

No

MPU task parameters. */
s task is a privileged task. */

additional region definitions are required.

/* Create the task defined by the vTaskCode function, storing the handle. */

if (xTaskCreate(&xNewTaskParameters,

{

&xHandle

) != pdPASS

/* The task was not successfully created. The return value could have
been checked to find out why. */

else

/* The task was created successfully.

/* The task being created. */

void vTaskCode(void * pvParameters)

{

/* Access parameters defined by the linker. */

extern unsigned portLONG ulTaskDataBlockStartAddr;

#define TASK DATA BLOCK SIZE
#define ALL SUBREGIONS ENABLED

0x80
0x00

)
)

xMPUTaskParameters xNewMPURegionDefinition =

{

If this function is called from a
task, the scheduler is in the Active state, and the task just created
has a priority higher than the calling task then vTaskCode will have
executed before this task reaches this point. */

*/

mpuPRIVILEGED_TASK, /* xMPUSetTaskRegions () does not change the privilege level of the task. */
{
{ 0, OUL, OUL, OUL }, /* Reallocate MPU region 4 to give access to the */
{ 0, 0OUL, OUL, OUL }, /* variables within the defined section. */
SAFERTOS User Manual for the Issue 1.0 Page 62

Code Composer Studio TMS570 MPU

Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

n\
T

WITTENSTEIN

ulTaskDataBlockStartAddr,
TASK_DATA BLOCK_SIZE,
(mpuREGION_PRIVILEGED READ WRITE_USER_READ_WRITE |
mpuREGION OUTER_AND INNER WRITE BACK NO WRITE ALLOCATE),
ALL_SUBREGIONS_ENABLED

b
{ 0, 0UL, OUL, OUL }

/* No parameters are being used for this task. */
(void)pvParameters;

/* For some reason, the task needs to modify it's own MPU region settings. */
if (pdPASS != xMPUSetTaskRegions(NULL, &xNewMPURegionDefinition)

/* The MPU Region definitions could not be applied. The return value
could have been checked to find out why. */

/* As the task modified it's own MPU regions, a context switch will have
occurred by the time this point is reached. */

/* Enter an infinite loop to perform the task processing. */
for(;i)
{

/* Task code goes here. */

}

Listing 21 Example of using the xMPUSetTaskRegions() API function

4.2.2 vMPUTaskExecutelnUnprivilegedMode()

void vMPUTaskExecuteInUnprivilegedMode (void);

4.2.2.1 Summary

Sets the privilege level of the task to 'Unprivileged'.

4.2.2.2 Parameters

None.

4.2.2.3 Return Values

None.

4.2.2.4 Notes

% The SAFERTOS API does not provide a means of setting the task's privilege level to 'Privileged’,
therefore calling vMPUTaskExecutelnUnprivilegedMode() results in an action that cannot be
reversed.

% vMPUTaskExecutelnUnprivilegedMode() must only be called from an executing task and

therefore must not be called while the scheduler is in the Initialization state (prior to the scheduler
being started).

SAFERTOS User Manual for the Issue 1.0 Page 63
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
2

4.2.2.5 Example

This example creates a privileged task. The created task subsequently calls
vMPUTaskExecutelnUnprivilegedMode() to set it's privilege level to 'Unprivileged'.

SAFERTOS User Manual for the Issue 1.0 Page 64

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A

WITTENSTEIN

/* Define the priority at which the task is to be created. */
#define TASK PRIORITY 1

/* Declare the TCB of the task that is to be created. */
static xTCB xTaskTCB = { 0 };

/* Declare the buffer to be used by the task's stack. This buffer is protected
by an MPU region so the alignment must follow the MPU alignment rules, and
basically be aligned to the same power of two value as their length in bytes. */
#define STACK_SIZE 512

#pragma DATA ALIGN(cTaskStack, STACK_SIZE)

static signed portCHAR cTaskStack[STACK_SIZE] = { 0 };

/* Function that creates a task. It is strongly recommended that this function
is called while the scheduler is in the Initialization state, although it could
be called from another task while the scheduler was in the Running or Suspended
state. */

void vAFunction(void

{

xTaskHandle xHandle;

/* The structure passed to xTaskCreate() to create the task. */
xTaskParameters xNewTaskParameters =
{

vTaskCode, /* The function that implements the task being created. */
(signed portCHAR *) "Demo task", /* The name of the task being created. */
&xTaskTCB, /* The TCB for the task. */
cTaskStack, /* The buffer allocated for use as the task stack. */
STACK_SIZE, /* The size of the buffer allocated for use as the task stack. */
NULL, /* No parameters are being passed to this task. */
TASK_PRIORITY, /* The priority to be assigned to the task being created. */
{ /* The MPU task parameters. */
mpuPRIVILEGED_TASK, /* This task is a privileged task. */

{

0, 0UL, OUL, OUL }, /* No additional region definitions are required. */
0, OUL, OUL, OUL },

0, OUL, OUL, OUL },

0, OUL, OUL, OUL }

/* Create the task defined by the vTaskCode function, storing the handle. */
if (xTaskCreate(&xNewTaskParameters, &xHandle) != pdPASS
{
/* The task was not successfully created. The return value could have
been checked to find out why. */

else

/* The task was created successfully. If this function is called from a
task, the scheduler is in the Active state, and the task just created
has a priority higher than the calling task then vTaskCode will have
executed before this task reaches this point. */

/* The task being created. */

void vTaskCode(void * pvParameters)

{
/* No parameters are being used for this task. */
(void)pvParameters;

/* Perform some initial processing that requires Privileged mode. */
/* Privileged mode is no longer required, so switch to Unprivileged mode
prior to entering the main task body. */

vMPUTaskExecuteInUnprivilegedMode () ;

/* Enter an infinite loop to perform the task processing. */
for(;;)

SAFERTOS User Manual for the Issue 1.0 Page 65
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i‘\

TN

WITTENSTEIN

/* Task code goes here. */

Listing 22 Example of using the vMPUTaskExecutelnUnprivilegedMode() API function

SAFERTOS User Manual for the Issue 1.0
Code Composer Studio TMS570 MPU
Product Variant

Page 66

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.3 SCHEDULER CONTROL FUNCTIONS

4.3.1 xTaskStartScheduler()

portBASE TYPE xTaskStartScheduler (portBASE TYPE xUseKernelConfigurationChecks);

4.3.1.1 Summary

Starts the scheduler by transitioning the scheduler from the Initialization state into the Active state.

Starting the scheduler causes the highest priority task that was created while the scheduler was in
the Initialization state to enter the Running state.

4.3.1.2 Parameters

xUseKernelConfigurationChecks

A Boolean which indicates whether the kernel configuration

parameters should be checked or not.

4.3.1.3 Return Values

errfEXECUTING_IN_UNPRIVILEGED_MODE

errfNO_TASKS_CREATED

errfSCHEDULER_ALREADY_RUNNING

errBAD_OR_NO_TICK_RATE_CONFIGURATION

errBAD_HOOK_FUNCTION_ADDRESS

errfERROR_IN_VECTOR_TABLE

The processor was put into unprivileged
mode before xTaskStartScheduler() was
called.

A task was not created prior to calling
xTaskStartScheduler().

The scheduler is already in the Active state.

Either the ulCPUClockHz or ulTickRateHz
parameter was found to be 0. These
parameters should have been initialized by
setting the corresponding member of the
XPORT_INIT_PARAMETERS structure
passed to xTasklnitializeScheduler().

The address supplied for one of the
application hook functions was found to be
invalid. These parameters should have been
initialized by setting the corresponding
member of the xPORT_INIT_PARAMETERS
structure passed to
xTasklInitializeScheduler().

SAFERTOS requires exclusive access to the
SysTick, PendSV and SVCall interrupts - one
of these handlers could not be found at the
expected location within the interrupt vector
table.

SAFERTOS User Manual for the
Code Composer Studio TMS570 MPU
Product Variant

Issue 1.0

Page 67

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

()

la

WITTENSTEIN

errNO_MPU_IN_DEVICE

Any of the error codes reported by xTaskCreate()

The microprocessor has not reported the
expected number of available MPU regions.

xTaskStartScheduler() calls xTaskCreate() to
create the idle task with the parameters that
were supplied in the call to
xTasklInitializeScheduler(). If any of those
parameters prevent the idle task from being
created, the error code from xTaskCreate()
will be returned.

xTaskStartScheduler() will not return if the scheduler is started successfully.

4.3.1.4 Notes

i xTaskStartScheduler() must not be called from within an interrupt service routine.

% xTaskStartScheduler() cannot be successfully called when the processor is in Unprivileged

mode.

% Consult the port specific documentation for details of the architecture specific requirements that
must be fulfilled prior to calling xTaskStartScheduler() - for example the processor mode from

which the function can be called.

4.3.1.5 Example

See the Listing 'Using a gatekeeper task to control access to a resource'.

4.3.2 vTaskSuspendScheduler()

void vTaskSuspendScheduler (void);

4.3.2.1 Summary

Transitions the scheduler from the Active state to the Suspended state.

A context switch will not occur while the scheduler is in the Suspended state but instead be held
pending until the scheduler re-enters the Active state.

4.3.2.2 Parameters

None.

4.3.2.3 Return Values

None.

4.3.2.4 Notes

Suspending the scheduler allows a task to execute without the risk of interference from other tasks.

SAFERTOS User Manual for the Issue 1.0 Page 68

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

Calls to vTaskSuspendScheduler() can be nested. The same number of calls must be made to
xTaskResumeScheduler() as have previously been made to vTaskSuspendScheduler() before the
scheduler will leave the Suspended state and re-enter the Active state.

i vTaskSuspendScheduler() must not be called from an interrupt service routine.
% Interrupts remain enabled while the scheduler is suspended.

% The tick count value will not increase while scheduler is in the Suspended state (although tick
interrupts are not missed).

% vTaskSuspendScheduler() must only be called from an executing task and therefore must not be
called while the scheduler is in the Initialization state (prior to the scheduler being started).

% The count of nested calls to vTaskSuspendScheduler() will eventually overflow - with the
maximum value that can be held in the type defined as portBASE_TYPE being the maximum
nesting count that can be maintained.

SAFERTOS User Manual for the Issue 1.0 Page 69
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

A\

2

WITTENSTEIN

4.3.2.5 Example

/* A function that suspends then resumes the scheduler. */
void vDemoFunction(void)
{
/* This function suspends the scheduler. When it is called from
* vTaskl the scheduler is already suspended, so this call creates a
* nesting depth of 2. */
vTaskSuspendScheduler () ;

/* Perform an action here. */

/* As calls to vTaskSuspendScheduler () are nested resuming the scheduler
* does not cause the scheduler to re-enter the active state at this time. */
xTaskResumeScheduler () ;

}

void vTaskl(void * pvParameters
{

for(;i)

{

/* Perform some actions here. */

At some point the task wants to perform a long operation during
which it does not want to get swapped out, or it wants to access data
which is also accessed from another task (but not from an interrupt).
It cannot use taskENTER CRITICAL()/taskEXIT_CRITICAL() as the

length of the operation may cause interrupts to be missed */

* ok ok b ok

/* Prevent the scheduler from performing a context switch. */
vTaskSuspendScheduler () ;

/* Perform the operation here. There is no need to use critical
* sections as the task has all the processing time other than that
* utilized by interrupt service routines.*/

/* Calls to vTaskSuspendScheduler can be nested so it is safe to
* call a function which also calls vTaskSuspendScheduler. */
vDemoFunction () ;

/* The operation is complete. Set the scheduler back into the Active
* state. */

if (xTaskResumeScheduler () == pdTRUE)
{
/* A context switch occurred as we resumed the scheduler. */
}
else
{
/* A context switch did not occur as we resumed the scheduler.
* Maybe we want to perform one here? */
taskYIELD() ;

Listing 23 Example of using the vTaskSuspendScheduler() and xTaskResumeScheduler()
API functions

4.3.3 xTaskResumeScheduler()

pPOortBASE TYPE xTaskResumeScheduler (void);
4.3.3.1 Summary

Transitions the scheduler out of the Suspended state into the Active state.

SAFERTOS User Manual for the Issue 1.0 Page 70
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

4.3.3.2 Parameters
None.

4.3.3.3 Return Values

pdTRUE The scheduler was transitioned into the Active state.
The transition caused a pending context switch to
occur.

pdFALSE Either the scheduler was transitioned into the Active

state and the transition did not cause a context
switch to occur, or the scheduler was left in the
Suspended state due to nested calls to
vTaskSuspendScheduler().

errfSCHEDULER_WAS NOT_SUSPENDED The scheduler was not in the Suspended state.
4.3.3.4 Notes

Calls to xTaskResumeScheduler() transition the scheduler out of the Suspended state following a
previous call to vTaskSuspendScheduler(). Calls to vTaskSuspendScheduler() can be nested.
The same number of calls must be made to xTaskResumeScheduler() as have previously been
made to vTaskSuspendScheduler() before the scheduler will leave the Suspended state and re-
enter the Active state.

i xTaskResumeScheduler() must not be called from within an interrupt service routine.

1 xTaskResumeScheduler() must only be called from an executing task and therefore must not be
called while the scheduler is in the Initialization state (prior to the scheduler being started).

% Calling xTaskResumeScheduler() can result in a context switch being performed. Each task
maintains its own interrupt state, therefore calling xTaskResumeScheduler() while interrupts are
disabled could cause a context switch to a task that has interrupts enabled. Interrupts would once
again be disabled when the task calling xTaskResumeScheduler() next entered the Running state.

4.3.3.5 Example

See the Listing 'Example of using the vTaskSuspendScheduler() and xTaskResumeScheduler()
API functions'.

4.3.4 xTaskGetTickCount()

portTickType xTaskGetTickCount (void);

4.3.4.1 Summary

Returns the current tick value.

SAFERTOS User Manual for the Issue 1.0 Page 71
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)\
‘ ;
a2

WITTENSTEIN

4.3.4.2 Parameters

None.

4.3.4.3 Return Values

xTaskGetTickCount() always returns the current tick count value.
4.3.4.4 Notes

Time is measured in ticks. xTaskGetTickCount() effectively returns the time since the scheduler
was started.

" XTaskGetTickCount() must not be called from an interrupt service routine.

% The tick value will eventually overflow, returning to zero. The frequency at which this occurs is
dependent both on the type chosen to hold the tick value (refer to the SAFERTOS Safety Manual
for the CCS TMS570 MPU Product Variant [Reference 2] for information about portTickType) and
the frequency of the tick interrupt.

1 xTaskGetTickCount() will always return zero prior to a successful call to xTaskStartScheduler().

4.3.4.5 Example

void vAFunction(void)
{

portTickType xTimel, xTime2, xExecutionTime;

/* Get the time when the function started. */
xTimel = xTaskGetTickCount () ;

/* Perform some operation. */

/* Get the time following the execution of the operation. */
xTime2 = xTaskGetTickCount () ;

/* Approximately how long did the operation take? */
xExectutionTime = xTime2 - xTimel;

Listing 24 Example of using the xTaskGetTickCount() API function

4.3.5 taskYIELD()

Macro: taskYIELD()
4.3.5.1 Summary
Yield, as described in the Section 'Yielding'.

Yielding is where a task volunteers to leave the Running state by re-entering the ready state before
using all of its time slice.

SAFERTOS User Manual for the Issue 1.0 Page 72
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i)
7S
WITTENSTEIN
4.3.5.2 Parameters
None.
4.3.5.3 Return Values
None.
4.3.5.4 Notes

i taskYIELD() must only be called from an executing task and therefore must not be called while
the scheduler is in the Initialization state (prior to the scheduler being started).

% Calling taskYIELD() while the scheduler is suspended will not result in a yield being performed
until such a time that the scheduler re-enters the Active state. The yield is held pending.

i taskYIELD() must not be called from an interrupt service routine.

% Calling taskYIELD() from within a critical section will result in the yield being performed
immediately.

4.3.5.5 Example

void vATask(void * pvParameters)
{

for(;i)

{

/* Perform some actions. */

/* We are not desperate for processing time now. If there are any tasks of
* equal priority to this task that are in the Ready state then let them execute
* now even though we have not used all of our time slice. */
taskYIELD() ;
/* If there were any tasks of equal priority to this task in the Ready state
then they will have executed before we reach here. If there were no other
tasks of equal priority in the Ready state we would have just continued.

There will not be any tasks of higher priority that are in the Ready state as
if there were this task would not be in the Running state in the first place. */

EE

Listing 25 Example of using the taskYIELD() API function

4.3.6 taskYIELD_FROM_ISR()

Macro: taskYIELD FROM ISR(xSwitchRequired)

4.3.6.1 Summary

A version of taskYIELD() that can be called from within an interrupt service routine.

SAFERTOS User Manual for the Issue 1.0 Page 73
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

4.3.6.2 Parameters

xSwitchRequired Set to zero if a context switch is not required, or a non zero value if a context
switch is required.

4.3.6.3 Return Values
None.
4.3.6.4 Notes

Calling either xQueueSendFromISR() or xQueueReceiveFromISR() within an interrupt service
routine can potentially cause a task to leave the Blocked state - necessitating a context switch
should the unblocked task have a priority higher than the interrupted task.

A context switch is performed transparently (within the API functions) when either xQueueSend()
or xQueueReceive() cause a task of higher priority than the calling task to exit the Blocked state.
This behavior is desirable from a task, but not from an interrupt service routine. Therefore
xQueueSendFromISR() and xQueueReceiveFromISR(), rather than performing the context switch
themselves, instead set the content of the pxHigherPriorityTaskWoken parameter to a value
indicative of whether a context switch is required. If a context switch is required the application
writer can use taskYIELD_FROM_ISR() to perform the context switch at the most appropriate time
- normally at the end of the interrupt handler.

See the Sections 'xQueueSendFromISR()' and 'xQueueReceiveFromISR()' which describe the
xQueueSendFromISR() and xQueueReceiveFromISR() functions respectively for more
information.

% taskYIELD_FROM_ISR() must only be called from within an interrupt service routine that
conforms to the requirements for such routines described in the Safety Manual for the CCS
TMS570 MPU Product Variant [Reference 2].

% Interrupt service routines that call taskYIELD_FROM_ISR() must not be permitted to execute
prior to the scheduler being started.

i taskYIELD_FROM_ISR() must not be called from within a critical section.
4.3.6.5 Example
See the Listings 'Deferring interrupt processing to the task level', 'Example of using the

xQueueSendFromISR() API function' and 'Example of using the xQueueReceiveFromISR() API
function'.

SAFERTOS User Manual for the Issue 1.0 Page 74
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.3.7 taskENTER_CRITICAL()

Macro: taskENTER CRITICALY()
4.3.7.1 Summary

Critical sections are entered by calling taskENTER_CRITICAL() and exited by calling
taskEXIT_CRITICALY().

Preemptive context switches can only occur from within an interrupt, so as long as interrupts
remain disabled the task that called taskENTER_CRITICAL() is guaranteed to remain in the
Running state until the critical section is exited. Note however that interrupts that have a priority
greater than configSYSTEM_INTERRUPT_PRIORITY could interrupt the task.

It is safe for critical sections to become nested because the kernel keeps a count of the nesting
depth. The critical section will only be exited when the nesting depth returns to zero - which is
when one call to taskEXIT_CRITICAL() has been executed for every preceding call to
taskENTER_CRITICALY().

Critical sections must be kept very short otherwise they will adversely affect interrupt response
times. Every call to taskENTER_CRITICAL() must be closely paired with a call to
taskEXIT_CRITICALY().

Whilst it is possible to call most SAFERTOS API functions from within a critical section, the host
application developer must take into account the fact that some API functions could cause a
context switch to another task where interrupts are enabled even if called from within a critical
section. For this reason, it is recommended that SAFERTOS API functions should not be called
from within a critical section.

For more information on interrupts see the Interrupt section in the Safety Manual for the CCS
TMS570 MPU Product Variant [Reference 2].

4.3.7.2 Parameters

None.

4.3.7.3 Return Values

None.

4.3.7.4 Notes

Calls to taskENTER_CRITICAL() can be nested. The same number of calls must be made to
taskEXIT_CRITICAL() as have previously been made to taskENTER_CRITICAL() before the
critical region is exited and interrupts are enabled.

% The longer a critical region takes to execute the less responsive the application will be to

interrupts. Therefore all calls to taskENTER_CRITICAL() should be closely followed by a matching
call to taskEXIT_CRITICAL().

SAFERTOS User Manual for the Issue 1.0 Page 75
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

% Each call to taskENTER_CRTICAL() must have a corresponding call to taskEXIT_CRITICAL().
i taskENTER_CRITICAL() must not be called from an interrupt service routine.

1 Critical sections implemented using the taskENTER_CRITICAL() and taskEXIT_CRITICAL()
macros must be kept short in order that the system responsiveness to interrupts is maintained.
The actual acceptable length is application dependent.

1 Calling taskENTER_CRITICAL() will only disable interrupts with priorities less than, or equal to
configSYSTEM_INTERRUPT_PRIORITY. Should the host application require a mechanism to
disable higher level interrupts, great care should be taken.

% Consult the documentation specific to the port being used for further information on interrupt
handling.

% Calling APl functions from within a critical section implemented using the
taskENTER_CRITICAL() macro will not prevent the API function causing a context switch, and as
each task maintains its own interrupt status the context switch could be to a task that has interrupts
enabled. Refer to the Section 'vTaskSuspendScheduler()’ for an alternative method of
implementing critical regions.

% The count of nested calls to taskENTER_CRITICAL() will eventually overflow - with the
maximum value that can be held in the type defined as portBASE_TYPE being the maximum
nesting count that can be maintained.

SAFERTOS User Manual for the Issue 1.0 Page 76
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
TN

4.3.7.5 Example

/* A function that also uses a critical region. */

void vDemoFunction(void)

{
/* This function uses taskENTER CRITICAL() to implement a critical region.
It is itself called from within a critical region within vTaskl, so this
call creates a nesting depth of 2. */
taskENTER CRITICAL() ;

/* Perform an action here. */

/* As calls to taskENTER_CRITICAL() are nested this call does not result in
interrupts with priority less than or equal to
configSYSTEM INTERRUPT PRIORITY being enabled. */
taskEXIT_CRITICAL();
}

void vTaskl(void * pvParameters
{

for(;i)

{

/* Perform some actions here. */

/* At some point the task wants to perform an operation within a
critical region so calls taskENTER CRITICAL() to disable interrupts with
priority less than or equal to configSYSTEM INTERRUPT PRIORITY . */
taskENTER7CRITICAL();

/* Perform the operation here. This part of the code must be kept short
as interrupts with priority less than or equal to
configSYSTEM INTERRUPT PRIORITY cannot execute. */

/* Calls to taskENTER CRITICAL() can be nested so it is safe to call a
function which also calls taskENTER CRITICAL. */
vDemoFunction () ;

/* The operation is complete. Exit the critical region. */
taskEXIT_CRITICAL() ;

Listing 26 Example of using the taskENTER_CRITICAL() and taskEXIT_CRITICAL()
macros

4.3.8 taskEXIT_CRITICAL()

Macro: taskEXIT_CRITICAL()
4.3.8.1 Summary
Critical sections are exited by calling taskEXIT_CRITICAL().

Preemptive context switches can only occur from within an interrupt, so as long as interrupts
remain disabled, the task is guaranteed to remain in the Running state until taskEXIT_CRITICAL()
is called.

It is safe for critical sections to become nested because the kernel keeps a count of the nesting
depth. The critical section will only be exited when the nesting depth returns to zero - which is
when one call to taskEXIT_CRITICAL() has been executed for every preceding call to
taskENTER_CRITICAL().

SAFERTOS User Manual for the Issue 1.0 Page 77
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

Critical sections must be kept very short otherwise they will adversely affect interrupt response
times. Every call to taskENTER_CRITICAL() must be closely paired with a call to
taskEXIT_CRITICALY().

Whilst it is possible to call most SAFERTOS API functions from within a critical section, the host
application developer must take into account the fact that some API functions could cause a
context switch to another task where interrupts are enabled even if called from within a critical
section. For this reason, it is recommended that SAFERTOS API functions should not be called
from within a critical section.

For more information on interrupts see the Interrupt section in the Safety Manual for the CCS
TMS570 MPU Product Variant [Reference 2].

4.3.8.2 Parameters

None.

4.3.8.3 Return Values

None.

4.3.8.4 Notes

Calls to taskENTER_CRITICAL() can be nested. The same number of calls must be made to
taskEXIT_CRITICAL() as have previously been made to taskENTER_CRITICAL() before the
critical region is exited and interrupts are enabled.

% The longer a critical region takes to execute the less responsive the application will be to
interrupts. Therefore all calls to taskENTER_CRITICAL() should be closely followed by a matching
call to taskEXIT_CRITICAL().

% Each call to taskENTER_CRTICAL() must have a corresponding call to taskEXIT_CRITICAL().

i taskEXIT_CRITICAL() must not be called from an interrupt service routine.

% Critical sections implemented using the taskENTER_CRITICAL() and taskEXIT_CRITICAL()
macros must be kept short in order that the system responsiveness to interrupts is maintained.
The actual acceptable length is application dependent.

1 Calling taskENTER_CRITICAL() will only disable interrupts with priorities less than, or equal to
configSYSTEM_INTERRUPT_PRIORITY. Should the host application require a mechanism to
disable higher level interrupts, great care should be taken.

% Consult the documentation specific to the port being used for further information on interrupt
handling.

% Calling APl functions from within a critical section implemented using the
taskENTER_CRITICAL() macro will not prevent the API function causing a context switch, and as
each task maintains its own interrupt status the context switch could be to a task that has interrupts

SAFERTOS User Manual for the Issue 1.0 Page 78
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

enabled. Refer to the Section 'vTaskSuspendScheduler()' for an alternative method of
implementing critical regions.

1 Calling taskEXIT_CRITICAL() prior to the scheduler starting will not necessarily cause interrupts
to be enabled.

4.3.8.5 Example
See the Listing 'Example of using the taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros'.

4.3.9 taskSET_INTERRUPT_MASK_FROM_ISR()

Macro: taskSET_INTERRUPT MASK_FROM_ISR()
4.3.9.1 Summary

This macro has no effect in ports that do not support interrupt nesting. It is retained to ensure
compatibilty with the standard SafeRTOS API.

4.3.9.2 Parameters
None.

4.3.9.3 Return Values
Always returns 0.
4.3.9.4 Notes

% taskSET _INTERRUPT_MASK_FROM_ISR() is only usable from within an interrupt service
routine.

% taskSET _INTERRUPT_MASK FROM_ISR() should not be called unless closely paired with a
call to task CLEAR_INTERRUPT_MASK_FROM_ISR(), with
taskSET_INTERRUPT_MASK FROM_ISR() being called first and the return value of
taskSET_INTERRUPT_MASK FROM_ISR() being used as the parameter in the call to
taskCLEAR_INTERRUPT_MASK_FROM_ISR().

% On ports where interrupt nesting is not possible taskSET _INTERRUPT_MASK_FROM_ISR()
has no effect.

SAFERTOS User Manual for the Issue 1.0 Page 79
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)
A
‘2

WITTENSTEIN

4.3.9.5 Example

void vAnExampleISR(void)
{
unsigned portBASE TYPE uxOriginalPriority;

/* This interrupt handler wants to call API functions but must do so as if it were in a
* critical section. At the end of the critical section, restore the original interrupt mask.*/
uxOriginalPriority = taskSET_INTERRUPT MASK FROM ISR();
{
/* Perform uninterrupted API calls. */
}
taskCLEAR INTERRUPT MASK FROM ISR(uxOriginalPriority);

/* Can now be interrupted by higher priority interrupts which still call API functions. */

Listing 27 Example of using the taskSET_INTERRUPT_MASK_FROM_ISR() and
taskCLEAR_INTERRUPT_MASK_FROM_ISR() APl macros.

4.3.10 taskCLEAR_INTERRUPT_MASK_FROM_ISR()

Macro: taskCLEAR_INTERRUPT_MASK FROM_ ISR(uxOriginalPriority)
4.3.10.1 Summary

This macro has no effect in ports that do not support interrupt nesting. It is retained to ensure
compatibilty with the standard SafeRTOS API.

4.3.10.2 Parameters
uxQOriginalPriority Not used in this port.
4.3.10.3 Return Values

None.

4.3.10.4 Notes

% taskCLEAR_INTERRUPT_MASK_FROM_ISR() is only usable from within an interrupt service
routine.

% On ports where interrupt nesting is not used taskCLEAR_INTERRUPT_MASK_FROM_ISR()
has no effect.

% taskCLEAR_INTERRUPT_MASK_FROM_ISR() should not be called unless closely paired with
a call to taskSET_INTERRUPT_MASK_FROM_ISR(), with
taskSET_INTERRUPT_MASK FROM_ISR() being called first and the return value of
taskSET_INTERRUPT_MASK FROM_ISR() being used as the parameter in the call to
taskCLEAR_INTERRUPT_MASK_FROM_ISR().

SAFERTOS User Manual for the Issue 1.0 Page 80
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

&)
2

4.3.10.5 Example

See the Listing 'Example of using the taskSET _INTERRUPT _MASK FROM ISR() and
taskCLEAR_INTERRUPT_MASK_FROM_ISR() API macros'.

SAFERTOS User Manual for the Issue 1.0 Page 81

Code Composer Studio TMS570 MPU
Product Variant
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

4.4 QUEUE

\
A
TN

WITTENSTEIN

FUNCTIONS

4.4.1 xQueueCreate()

POrtBASE TYPE xQueueCreate(signed portCHAR *pcQueueMemory,

4.4,1.1 Summary

Creates a queue.

unsigned portBASE TYPE uxBufferLength,
unsigned portBASE TYPE uxQueueLength,
unsigned portBASE TYPE uxItemSize,
xQueueHandle *pxQueue

4.4.1.2 Parameters

pcQueueMemory

uxBufferLength

uxQueuelLength
uxltemSize

pxQueue

Pointer to the start of the memory to be used to hold the queue.

The length of the memory pointed to by the pcQueueMemory parameter. This
must be equal to:

(uxQueuelLength * uxltemSize) + portQUEUE_OVERHEAD_BYTES

where uxQueuelength and uxltemSize are the values passed into the
respective parameters of the xQueueCreate() function and
portQUEUE_OVERHEAD_BYTES is a constant available through the inclusion
of SafeRTOS_API.h.

The maximum number of items the queue can hold at any time.

The size in bytes of each item the queue will hold.

Used to pass back a handle by which the created queue can be referenced, for
example when sending data to or reading data from the queue.

4.4.1.3 Return Values

pdPASS

errINVALID_BYTE_.

The queue was created successfully.

ALIGNMENT The alignment of the pcQueueMemory value was not
correct for the target hardware.

errINVALID_QUEUE_LENGTH uxQueuelLength was found to equal zero.
errfINVALID_BUFFER_SIZE uxBufferLengthBytes was found to not equal (
uxQueuelLength * uxltemSize) +

portQUEUE_OVERHEAD_BYTES

errNULL_PARAMETER_SUPPLIED Either pcQueueMemory or pxQueue was NULL.

SAFERTOS User Manual for the Issue 1.0 Page 82
Code Composer Studio TMS570 MPU

Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

A\

2

WITTENSTEIN

4.4.1.4 Notes

Queues can be created prior to the scheduler being started and from within a task after the
scheduler has been started.

4.4.1.5 Example

/* Define the data type that will be queued. */
typedef struct A Message
{
portCHAR ucMessagelID;
portCHAR ucDatal 20];
} AMessage;

/* Define the queue parameters. */
#define QUEUE_LENGTH 5
#define QUEUE_ITEM SIZE sizeof (AMessage)

/* Declare the buffer used by the queue. Queue buffers need to always be

correctly aligned and dimensioned - but the alignment only needs to be correct

for the standard ARM byte alignment not for an MPU region alignment. This is

because the queue buffer is only accessed from privileged code within the

kernel itself. */

#define REQUIRED BUFFER SIZE ((QUEUE_LENGTH * QUEUE_ITEM SIZE) + portQUEUE_OVERHEAD BYTES
#pragma DATA ALIGN(cQueueBuffer, 8)

portCHAR cQueueBuffer|[REQUIRED BUFFER_SIZE 1:

int main(void)
{

xQueueHandle xQueue;

if (xQueueCreate (
cQueueBuffer,
REQUIRED_BUFFER_LENGTH,
QUEUE_LENGTH,
QUEUE_ITEM SIZE,
&xHandle
) != pdPASS)

/* The queue could not be created. The return value could have been
checked to find out why. */
}

return 1;

Listing 28 Example of using the xQueueCreate() API function

4.4.2 xQueueSend()

POrtBASE TYPE xQueueSend(xQueueHandle pxQueue, const void * const pvItemToQueue, portTickType xTicksToWait);

4.4.2.1 Summary

Sends an item to a queue.

SAFERTOS User Manual for the Issue 1.0 Page 83
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.4.2.2 Parameters
pxQueue The handle of the queue to which the data is to be sent.

The handle of a queue is obtained from the pxQueue parameter of the call to
xQueueCreate() that created the queue.

pvitemToQueue A pointer to the data to be sent to the queue.

xTicksToWait The number of ticks for which the calling task should be held in the Blocked
state to wait for space to become available on the queue should the queue
already be full. A value of zero will prevent the calling task from entering the
Blocked state.

4.4.2.3 Return Values

pdPASS Data was successfully sent to the queue. The calling task
may have been temporarily blocked to wait for space to
become available on the queue.

errfSCHEDULER_IS_SUSPENDED The scheduler was in the Suspended state when
xQueueSend() was called. As xQueueSend() can
potentially cause the calling task to enter the Blocked state
it cannot be called when the scheduler is suspended.

errfINVALID_QUEUE_HANDLE The pxQueue parameter was either NULL or did not
reference a valid queue.

errNULL_PARAMETER_SUPPLIED pvitemToQueue was found to be NULL. pvitemToQueue is
only permitted to be NULL when the queue item size (set
when the queue was created) is zero.

errQUEUE_FULL The queue is already full and the send cannot therefore
complete. The calling task may have been temporarily
blocked to wait for space to become available.

4.4.2.4 Notes

% xQueueSend() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% xQueueSend() can potentially be a lengthy operation (partly dependent on the size of the data
being sent to the queue). It is therefore recommended that xQueueSend() is not called from within
a critical region.

% If xQueueSend() were called from within a critical section then the critical section would not
prevent the calling task from blocking. Each task maintains its own interrupt status and therefore
the calling task blocking could cause a switch to a task that has interrupts enabled.

SAFERTOS User Manual for the Issue 1.0 Page 84
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

a A
WITTENSTEIN
4.4.2.5 Example
This example sends an item to the queue created in the Listing 'Example of using the

xQueueCreate() API function'. It assumes the queue handle is passed into the task using the
tasks parameter.

void vATask(void *pvParameters)
{

xQueueHandle xQueue;

AMessage xMessage;

/* The queue handle is passed into this task as the task parameter. */
xQueue = (xQueueHandle) pvParameters;

for(;i)

{
/* Create a message to send on the queue. */
xMessage.ucMessageID = SEND EXAMPLE;

/* Send the message to the queue, waiting for 10 ticks for space become available
* should the queue already be full. */
if (xQueueSend(xQueue, &xMessage, 10) != pdPASS
{
/* We could not send to the queue. The return value could have been
checked to find out why. */

Listing 29 Example of using the xQueueSend() API function

4.4.3 xQueueReceive()

portBASE _TYPE xQueueReceive (xQueueHandle pxQueue, void *const pvBuffer, portTickType xTicksToWait);

4.4.3.1 Summary

Retrieves an item from a queue.

4.4.3.2 Parameters

pxQueue The handle of the queue from which the data is to be received.

The handle of a queue is obtained from the pxQueue parameter of the call to
xQueueCreate() that created the queue.

pvBuffer A pointer to the memory into which the data received from the queue should be
copied.

2\ The length of the buffer must be at least equal to the queue item size (set when
the queue was created).

SAFERTOS User Manual for the Issue 1.0 Page 85
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

xTicksToWait The number of ticks for which the calling task should be held in the Blocked state
to wait for data to become available from the queue should the queue already be
empty. A value of zero will prevent the calling task from entering the Blocked state.

4.4.3.3 Return Values

pdPASS Data was successfully received from the queue. The
calling task may have been temporarily blocked to wait for
data to become available.

errfSCHEDULER_IS SUSPENDED The scheduler was in the Suspended state when
xQueueReceive() was called. As xQueueReceive() can
potentially cause the calling task to enter the Blocked state
it cannot be called when the scheduler is suspended.

errfINVALID QUEUE_HANDLE The pxQueue parameter was either NULL or did not
reference a valid queue.

errNULL_PARAMETER_SUPPLIED pvBuffer was found to be NULL. pvBuffer is only permitted
to be NULL when the queue item size (set when the queue
was created) is zero.

errQUEUE_EMPTY The queue is already empty so the receive cannot
complete. The calling task may have been temporarily
blocked to wait for data to become available on the queue.

4.4.3.4 Notes

% xQueueReceive() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% xQueueReceive() can potentially be a lengthy operation (partly dependent on the size of the
data being retrieved from the queue). It is therefore recommended that xQueueReceive() is not
called from within a critical region.

4 If xQueueReceive() were called from within a critical section then the critical section would not
prevent the calling task from blocking. Each task maintains its own interrupt status and therefore
the calling task blocking could cause a switch to a task that has interrupts enabled.

4.4.3.5 Example
This example receives an item from the queue created in the Listing 'Example of using the

xQueueCreate() API function'. It assumes the queue handle is passed into the task using the
tasks parameter.

SAFERTOS User Manual for the Issue 1.0 Page 86
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

void vAnotherTask(void *pvParameters
{

xQueueHandle xQueue;

AMessage xMessage;

/* The queue handle is passed into this task as the task parameter. */
xQueue = (xQueueHandle) pvParameters;

for(;;)
{
/* Wait for the maximum period for data to become available on the queue. */
if (xQueueReceive (xQueue, &xMessage, portMAX DELAY) != pdPASS)
{
/* We could not receive from the queue. The return value could have been
* checked to find out why. */

/* xMessage now contains the received data. */

Listing 30 Example of using the xQueueReceive() API function

4.4.4 xQueuePeek()

portBASE_TYPE xQueuePeek (xQueueHandle pxQueue, void * const pvBuffer, portTickType xTicksToWait);

4.4.4.1 Summary
Retrieves a copy of the next item in a queue without removing it from the queue.
4.4.4.2 Parameters

pxQueue The handle of the queue from which the data is to be received.

The handle of a queue is obtained from the pxQueue parameter of the call to

xQueueCreate() that created the queue.

pvBuffer A pointer to the memory into which the data received from the queue should be

copied.

2\ The length of the buffer must be at least equal to the queue item size (set when

the queue was created).

xTicksToWait The number of ticks for which the calling task should be held in the Blocked state
to wait for data to become available from the queue should the queue already be
empty. A value of zero will prevent the calling task from entering the Blocked state.

SAFERTOS User Manual for the Issue 1.0
Code Composer Studio TMS570 MPU
Product Variant

Page 87

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

4.4.4.3 Return Values

pdPASS Data was successfully received from the queue. The
calling task may have been temporarily blocked to wait for
data to become available.

errfSCHEDULER_IS _SUSPENDED The scheduler was in the Suspended state when
xQueuePeek() was called. As xQueuePeek() can
potentially cause the calling task to enter the Blocked state
it cannot be called when the scheduler is suspended.

errfINVALID QUEUE_HANDLE The pxQueue parameter was either NULL or did not
reference a valid queue.

errNULL_PARAMETER_SUPPLIED pvBuffer was found to be NULL. pvBuffer is only permitted
to be NULL when the queue item size (set when the queue
was created) is zero.

errQUEUE_EMPTY The queue is already empty so the receive cannot
complete. The calling task may have been temporarily
blocked to wait for data to become available on the queue.

4.4.4.4 Notes

% xQueuePeek() must only be called from an executing task and therefore must not be called
while the scheduler is in the Initialization state (prior to the scheduler being started).

% xQueuePeek() can potentially be a lengthy operation (partly dependent on the size of the data
being retrieved from the queue). It is therefore recommended that xQueuePeek() is not called from
within a critical region.

% If xQueuePeek() were called from within a critical section then the critical section would not
prevent the calling task from blocking. Each task maintains its own interrupt status and therefore
the calling task blocking could cause a switch to a task that has interrupts enabled.

4.4.45 Example
This example receives an item from the queue created in the Listing 'Example of using the

xQueueCreate() API function'. It assumes the queue handle is passed into the task using the
tasks parameter.

SAFERTOS User Manual for the Issue 1.0 Page 88
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

void vAnotherTask(void *pvParameters)
{

xQueueHandle xQueue;

AMessage xMessage;

/* The queue handle is passed into this task as the task parameter. */
xQueue = (xQueueHandle) pvParameters;

for(;;)
{
/* Wait for the maximum period for data to become available on the
queue. */
if (xQueuePeek (xQueue, &xMessage, portMAX DELAY) != pdPASS)
{
/* We could not receive from the queue. The return value could
have been checked to find out why. */

/* xMessage now contains the received data. Note that the item is
still in the queue for another task to retrieve. */

Listing 31 Example of using the xQueuePeek() API function

4.4.5 xQueueMessagesWaiting()

portBASE TYPE xQueueMessagesWaiting(const xQueueHandle pxQueue, unsigned portBASE TYPE *puxMessagesWaiting);
4.4.5.1 Summary

Queries the number of items that are currently within a queue.

4.4.5.2 Parameters

pxQueue The handle of the queue being queried.

The handle of a queue is obtained from the pxQueue parameter of the call
to xQueueCreate() that created the queue.

puxMessagesWaiting Address of the variable into which the number of items in the queue will be
written.

4.4.5.3 Return Values

pdPASS The number of items in the queue was successfully written
to the variable at address puxMessagesWaiting.

errNULL_PARAMETER_SUPPLIED Either pxQueue or puxMessagesWaiting was NULL.
errINVALID_QUEUE_HANDLE pxQueue did not reference a valid queue.
4.4.5.4 Notes

i XxQueueMessagesWaiting() must not be called from within an interrupt service routine.

SAFERTOS User Manual for the Issue 1.0 Page 89
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

)\
‘ ;
a2

WITTENSTEIN

4.4.5.5 Example

void vAFunction(xQueueHandle xQueue)
{
unsigned portBASE TYPE uxNumberOfItems;

/* How many items are currently in the queue? */
if (xQueueMessagesWaiting(xQueue, &uxNumberOfItems) != pdPASS
{

/* Could not query the queue. The return value could have been checked to find out why. */

/* uxNumberOfItems is now set to the number of items currently within xQueue. */

Listing 32 Example of using the xQueueMessagesWaiting() API function

4.4.6 xQueueSendFromISR()

portBASE_TYPE xQueueSendFromISR(xQueueHandle pxQueue,

const void *const pvItemToQueue,
pPOrtBASE TYPE *pxHigherPriorityTaskWoken
)i

4.4.6.1 Summary

A version of xQueueSend() that can be called from an ISR. Unlike xQueueSend(),
xQueueSendFromISR() does not permit a block time to be specified.

4.4.6.2 Parameters
pxQueue The handle of the queue to which the data is to be sent.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

pvitemToQueue A pointer to the data to be sent to the queue.

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken will be set to pdTRUE if sending to the
gueue caused a task to unblock, and the unblocked task has a
priority higher than the current Running state task, otherwise
*pxHigherPriorityTaskWoken will remain unchanged.

The value of *pxHigherPriorityTaskWoken can be used to determine
whether or not a context switch should be performed prior to the
interrupt exiting, as demonstrated in the Listing 'Example of using
the xQueueSendFromISR() API function'.

4.4.6.3 Return Values

pdPASS Data was successfully written to the queue.

SAFERTOS User Manual for the Issue 1.0 Page 90
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

errfINVALID QUEUE_HANDLE pxQueue was either NULL or did not reference a valid
queue.

errNULL_PARAMETER_SUPPLIED pvitemToQueue or pxHigherPriorityTaskWoken was found
to be NULL. It is only valid for pvitemToQueue to be NULL
if the queue item size (set when the queue was created) is
zero.

errQUEUE_FULL The queue is already full and the send cannot therefore
complete.

4.4.6.4 Notes

Calling xQueueSendFromISR() within an interrupt service routine can potentially cause a task to
leave the Blocked state - necessitating a context switch if the unblocked task has a priority higher
than that of the interrupted task. The context switch will ensure that the interrupt returns directly to
the highest priority Ready state task. However, unlike the xQueueSend() API function,
xQueueSendFromISR() will not itself cause a context switch to occur.

A context switch is performed transparently (within the API function itself) when xQueueSend()
causes a task of higher priority than the calling task to exit the Blocked state. While this behavior
is desirable during the execution of a task it might be undesirable during the execution on an
interrupt if the interrupt service routine had not yet completed its processing. Therefore
xQueueSendFromISR(), rather than performing the context switch itself, instead returns a value in
the pxHigherPriorityTaskWoken parameter to indicate whether a context switch is required. This is
demonstrated in the Listing 'Example of using the xQueueSendFromISR() API function'.

% xQueueSendFromISR() should only be called from within an interrupt service routine.
% xQueueSendFromISR() must not be called prior to the scheduler being started. Therefore an

interrupt that calls xQueueSendFromISR() must not be allowed to execute prior to the scheduler
being started.

SAFERTOS User Manual for the Issue 1.0 Page 91
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

n\
TN

WITTENSTEIN

4.4.6.5 Example

void vAnExampleISR(void)

{

portCHAR cIn;

portBASE TYPE xHigherPriorityTaskWoken;

/* We have not yet woken a task. */
xHigherPriorityTaskWoken = pdFALSE;

/* By way of example, assume this interrupt empties a FIFO, sending

each character it obtains onto a queue. Sending each character individually
in this manner would in reality be inefficient and should normally be avoided. */
while (prvCharactersInFIFO() == pdTRUE)

{
cIn = prvGetNextCharacterFromFIFO () ;

/* Send the character onto the queue. xHigherPriorityTaskWoken will get
set to pdTRUE if the send operation causes a task to unblock, and the
unblocked task has a priority higher than the current Running state task.
It does not matter how many times this is called. For simplicity the return
value is ignored. It is assumed that the queue xQueue has already been
created and is expecting to receive single bytes. */

xQueueSendFromISR(xQueue, &cIn, &xHigherPriorityTaskWoken);

}

/* Ensure the interrupt is cleared before leaving the function. */

/* Now the buffer is empty and we have cleared the interrupt we pass

xHigherPriorityTaskWoken to taskYIELD_FROM ISR() - which will cause a context
switch only if xHigherPriorityTaskWoken was set to pdTRUE by one of the calls to
xQueueSendFromISR (). */

taskYIELD FROM ISR(xHigherPriorityTaskWoken);

Listing 33 Example of using the xQueueSendFromISR() API function

4.4.7 xQueueReceiveFromISR()

portBASE_TYPE xQueueReceiveFromISR (xQueueHandle pxQueue,
void *const pvBuffer,
portBASE_TYPE *pxHigherPriorityTaskWoken);

4.4.7.1 Summary

A version of xQueueReceive() that can be called from an ISR. Unlike xQueueReceive(),
xQueueReceiveFromISR() does not permit a block time to be specified.

4.4.7.2 Parameters
pxQueue The handle of the queue from which data is to be received.

The handle of a queue is obtained from the pxQueue parameter of
the call to xQueueCreate() that created the queue.

SAFERTOS User Manual for the Issue 1.0 Page 92
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0

la

WITTENSTEIN

pvBuffer A pointer to the buffer into which the data received from the queue
will be copied.

!\ The length of the buffer must be at least equal to the queue item
size (set when the queue was created).

pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken will be set to pdTRUE if receiving from
the queue caused a task to unblock, and the unblocked task has a
priority higher than the current Running state task, otherwise
*pxHigherPriorityTaskWoken will remain unchanged.

The value of *pxHigherPriorityTaskWoken can be used to determine
whether or not a context switch should be performed prior to the
interrupt exiting, as demonstrated in the Listing 'Example of using
the xQueueReceiveFromISR() API function'.

4.4.7.3 Return Values
pdPASS Data was successfully received from the queue.
errNULL_PARAMETER_SUPPLIED pxHigherPriorityTaskWoken or pvBuffer was found to be

NULL. It is only valid for pvBuffer to be NULL if the queue
item size (set when the queue was created) is zero.

errfINVALID_QUEUE_HANDLE pxQueue was either NULL or did not reference a valid
queue.

errQUEUE_EMPTY The queue is already empty so the receive cannot
complete.

4.4.7.4 Notes

Calling xQueueReceiveFromISR() within an interrupt service routine can potentially cause a task to
leave the Blocked state - necessitating a context switch if the unblocked task has a priority higher
than that of the interrupted task. The context switch will ensure that the interrupt returns directly to
the highest priority Ready state task. However, unlike the xQueueReceive() API function,
xQueueReceiveFromISR() will not itself cause a context switch to occur.

A context switch is performed transparently (within the API function itself) when xQueueReceive()
causes a task of higher priority than the calling task to exit the Blocked state. While this behavior
is desirable during the execution of a task it might be undesirable during the execution on an
interrupt if the interrupt service routine had not yet completed its processing. Therefore
xQueueReceiveFromISR(), rather than performing the context switch itself, instead sets the
variable pointed to by pxHigherPriorityTaskWoken to a value to indicate whether a context switch
is required. This is demonstrated in the Listing 'Example of using the xQueueReceiveFromISR()
API function'.

SAFERTOS User Manual for the Issue 1.0 Page 93
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

n\
TN

WITTENSTEIN
2\ xQueueReceiveFromISR() should only be called from within an interrupt service routine.
2\ xQueueReceiveFromISR() must not be called prior to the scheduler being started. Therefore an
interrupt that calls xQueueReceiveFromISR() must not be allowed to execute prior to the scheduler

being started.

4.4.7.5 Example

/* vISR is an interrupt service routine that empties a queue of values,
sending each to a peripheral. It might be that there are multiple
tasks blocked on the queue waiting for space to write more data to
the queue. */

void vISR(void)

{

portCHAR cByte;

pPOortBASE TYPE xHigherPriorityTaskWoken;

/* No tasks have yet been woken. */
xHigherPriorityTaskWoken = pdFALSE;

/* Loop until the queue is empty. */
while (xQueueReceiveFromISR(xQueue, &cByte, &xHigherPriorityTaskWoken) == pdPASS
{
/* Write the received byte to the peripheral. */
OUTPUT_BYTE (TX_REGISTER_ADDRESS, cByte);
}

/* Clear the interrupt source. */

/* Now the queue is empty and we have cleared the interrupt we pass
xHigherPriorityTaskWoken to taskYIELD_FROM_ISR() - which will cause a context
switch only if xHigherPriorityTaskWoken was set to pdTRUE by one of the calls to
xQueueReceiveFromISR() . */

taskYIELD FROM ISR(xHigherPriorityTaskWoken);

Listing 34 Example of using the xQueueReceiveFromISR() API function

SAFERTOS User Manual for the Issue 1.0 Page 94
Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

\
A
TN

WITTENSTEIN

4.5 RUN-TIME STATISTICS

4.5.1 xCalculateCPUUsage()

portBASE TYPE xCalculateCPUUsage (xTaskHandle xHandle, xPERCENTAGES * const pxPercentages);
4.5.1.1 Summary

Calculates the percentage of CPU time consumed by a given task. The overall value (% of total
run-time) and the periodic value (% since last calculated, or since the task was created if this is the
first time xCalculateCPUUsage() has been called for this task) are returned. If the overall value or
the periodic value is greater than the corresponding maximum value stored in the supplied
structure, the stored maximum value is updated.

4.5.1.2 Parameters

xCalculateCPUUsage() takes 2 parameters - xHandle which is the handle of the task whose CPU
usage is to be calculated and pxPercentages which is a pointer to an XPERCENTAGES structure
where the results should be stored. The members of the XPERCENTAGES structure are as
follows:

XPERCENT xOverall A structure which will contain the current percentage of the total run-time,
together with the maximum value attained.

XPERCENT xPeriod A structure which will contain the current percentage of the period time,
together with the maximum value attained.

The members of the XPERCENT structure are as follows:

unsigned portLONG ulCurrent The current percentage.

unsigned portLONG ulMax The maximum percentage value attained.
4.5.1.3 Return Values

pdPASS The task's CPU percenatge values were successfully
updated.

errfINVALID_PERCENTAGE_HANDLE The value of pxPercentages was found to be NULL.

errINVALID_TASK_HANDLE xHandle was found to be an invalid task handle (and not
NULL).
SAFERTOS User Manual for the Issue 1.0 Page 95

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

0\
TN

WITTENSTEIN

errfRTS_CALCULATION_ERROR One of a number of problems was identified with the
percentage calculations:

1. The total run-time is zero;
2. The period time is less than or equal to the total
run-time;

The calculation(s) in error will be indicated by the field
ulCurrent having a value of OXFFFFFFFF.

4.5.1.4 Notes

i XxCalculateCPUUsage() should not be used before the scheduler is started, as the run-time
statistics will not have been updated.

% xCalculateCPUUsage() only updates the ulMax members of the XPERCENTAGES structure if
the corresponding value of ulCurrent is greater than the existing ulMax value - it is recommended
that the host application initialise the ulMax members to zero before calling retrieving the task's
run-time statistics for the first time.

4.5.1.5 Example
This example shows a task that performs actions at a regular periodic interval, using a call to

xTaskDelayUntil(). After performing its main processing functions (not shown), it calls
xCalculateCPUUsage() to update its xTaskPercentages data item for the target task.

#define mainRTS TASK CYCLE RATE (user defined value

xTaskHandle xRTSTaskHandle; /* The handle of the task for which run-time statistics are to be calculated.
In this example, it is assumed that this variable will already have been
initialised when the target task is created. The target task could be the one
shown below, or any other task, which prvRunTimeStatsTask () has access to. */

static void prvRunTimeStatsTask(void
{
static xPERCENTAGES xTaskPercentages = { 0 };
static portTickType xLastTime;
xLastTime = xTaskGetTickCount () ;

/* This loop performs the main function of the task. */

for(;;)
{
/* Delay until the next period. */
(void)xTaskDelayUntil(&xLastTime, mainRTS_TASK CYCLE_RATE);
/* Do normal task processing here. */
/* Now calculate CPU usage. */
if (pdPASS == xCalculateCPUUsage (xRTSTaskHandle, &xTaskPercentages))
{
/* xTaskPercentages has been successfully updated with the latest values. */
}
}
}
Listing 35 Example of using the xCalculateCPUUsage() API function.
SAFERTOS User Manual for the Issue 1.0 Page 96

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

i\
T~

WITTENSTEIN

CONTACT INFORMATION

User feedback is essential to the continued maintenance and development of SAFERTOS. Please
provide all software and documentation comments and suggestions to the most convenient contact
point listed below.

Address: WITTENSTEIN high integrity systems
Brown’s Court, Long Ashton Business Park
Yanley Lane, Long Ashton
Bristol, BS41 9LB

England
Phone: +44 (0)1275 395 600
Fax: +44 (0)1275 393 630
Email: support@HighlIntegritySystems.com
Website www.HighlIntegritySystems.com
All Trademarks acknowledged.
SAFERTOS User Manual for the Issue 1.0 Page 97

Code Composer Studio TMS570 MPU
Product Variant

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROPRIETARY AND SUBJECT TO THE RESTRICTIONS ON THE COVER PAGE. Copyright date as document date.

mailto:support@HighIntegritySystems.com
http://www.highintegritysystems.com/

