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Abstract

Concurrent programs can suffer from many types of errors, not just the well-
studied problems of deadlocks and simple race conditions on variables. This pa-
per addresses a kind of race condition that arises from reading a variable whose
value is possibly out-of-date. The paper introduces a simple technique for detecting
such stale values, and reports on the encouraging experience with a compile-time
checker that uses the technique.

0 Introduction

Writing correctly behaving software programs is hard. Among many kinds of errors,
errors due to concurrency are notoriously costly. A reason that concurrency errors stand
out is that it is difficult to devise test suites that will provoke the erroneous behaviors.
Therefore, the prospect of using special program checkers for detecting concurrency
errors has many appeals.

Of course, there are costs involved in using a program checker, too. For example,
the checker may take a long time to run, either affecting the running time of the pro-
gram itself, or taking a long time to perform analyses at compile time. Another possible
cost associated with a program checker is that the warning messages it produces may be
difficult to decipher or be too voluminous. If much of the checker’s output is seen by
the user as unquenchable noise, the checker is not likely to see much use. Yet another
cost, which agitates many users, is that the checker may require users to spend time pro-
viding the checker with properties of the program design that otherwise are not directly
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evident. These extra properties are typically provided by adding executable calls into
the checker’s run-time support library or by supplying compile-time annotations.

Previous work has studied ways of detecting or preventing race conditions where
variables have not been consistently protected by locks, and deadlocks. In this paper,
we address a different kind of race condition. The error can occur even when each
shared-variable access is correctly protected by a lock. The error arises when a lock is
held at the time a value is read from a shared variable, but not held at the time the value
is later used. We don’t know of any previous practical checker that detects this kind of
error.

We present a simple checking technique for detecting these stale-value errors. The
technique can be used with either a run-time checker or a compile-time checker. We
have built a compile-time checker based on the technique. We have found this checker
to perform adequately, to require no annotations, and to produce few enough warnings
that all of them can easily be inspected by hand. Moreover, the warnings produced by
our tool have pointed to new errors in some otherwise well-tested programs.

1 Stale values

In this section, we give three examples. The first example shows a simple race condition
that previous techniques address, but our technique does not. The other two examples
show a different kind of race condition, the kind that our technique addresses.

A common paradigm when writing concurrent programs with shared variables is
for a thread to access a shared variable only when the thread holds a designated lock.
When a thread acquires a lock, it is said to enter a critical section; it remains in the
critical section while it holds the lock; and it leaves the critical section when it releases
the lock. A critical section is also called a monitor [10], so we call this programming
paradigm the monitored-value paradigm. The monitored-value paradigm avoids simple
race conditions, that is, the possibility of two or more threads reading and writing a
shared variable at the same time, which can result in data corruption. The monitored-
value paradigm also has the nice property that it can be checked, either at compile time
or at runtime [13, 6, 8, 12]. As an example, consider the following program, where x is
a shared variable and t0 and t1 are local variables:

enter critical section();
t0 := x ;

exit critical section();
t1 := x ;
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Because the first access of x occurs inside the critical section, other threads obeying
the monitored-value paradigm will be excluded from accessing x . However, the sec-
ond access of x occurs outside the critical section and therefore mutual exclusion for
accessing x is not ensured. This means that another thread may be writing the vari-
able x at the time x is being read into t1 by the thread displayed above, which would
constitute a race condition.

Now consider a second, more complicated example:

enter critical section();
t0 := x ;

exit critical section();
t1 := t0;
enter critical section();

t2 := t0;
exit critical section();
t3 := t0;

where x is a shared variable and t0 , t1 , t2 , and t3 are local variables. Here, the
access of shared variable x occurs inside a critical section, so previous checkers would
consider the program free of simple race conditions. However, the snapshot of x ’s value
that is read into t0 in that critical section is used three more times.

The first of these uses, which for pedagogic simplicity is shown here as an assign-
ment to t1 , is justifiable: a programming methodology must support using a snapshot
of a shared variable outside a critical section. If such a snapshot were never allowed
outside a critical section, then a program that printed an account balance stored in a
shared variable would have to remain in the critical section while the printer put the ink
on the paper. But a better program would enter the critical section, store a snapshot of
the shared variable into a local variable, exit the critical section, and then print the value
from the local variable.

The second use of the snapshot t0 of x (the assignment to t2 ) is more dubious.
This use occurs inside a critical section, yet it is using the value of x from the previous
time the thread was in a critical section. Between the two critical sections, other threads
may acquire the lock and update the value of x , in which case t0 is a stale copy of
x . Sometimes, this is indeed what the programmer intended. For example, it may be
that the program compares t0 with x to see if x has changed, which may enable some
optimization. However, one should be suspicious of such stale values, because they may
well have arisen from accidental uses of the wrong variable. This error would be hard to
catch using testing because it manifests itself only if another thread updates x between
the two critical sections.
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The third use of the snapshot t0 of x (the assignment to t3 ) is also dubious, prob-
ably even more so than the second use. Here, a code reviewer would ask, “Why does
t0 hold the snapshot of x from the first critical section, why not a snapshot from the
second critical section?”.

For our third example, we consider the case where lock acquisitions and releases are
hidden in procedure calls. This is the most common way in which stale value errors
occur in real programs. Some procedures may for example first acquire a lock and
then release it, while others, such as the wait() operation on condition variables (see
e.g. [10, 2]), first release a lock and then re-acquire it.

Here is the code the for consume operation in a producer/consumer application
(see, e.g., [2]), which uses wait() to temporarily exit the critical section to yield to
producers:

enter critical section();
a := arr ;
while (n = 0) {

wait();
}
v := a[nextc];
nextc := (nextc + 1)mod a.length;
n := n − 1;

exit critical section();

In this example, n , arr , and nextc are shared variables, denoting the number of ele-
ments produced but not yet consumed, a reference (pointer) to the array that holds those
elements, and the index into that array where the next element to be consumed is, re-
spectively, and a and v are local variables. The code retrieves the next element to be
consumed into variable v . The array is used as a cyclic buffer, so the increment of
nextc is performed modulo the size of the array.

The consumer code contains an error: the reference arr to the array is copied into
local variable a before the wait() operation, and it is this copy that is used to do
the array operations after the wait() . Hence, if many producers get control during
the wait() call, so many that some producer needs to allocate a larger array, copy the
elements from the previous array into the new one, and update arr to point to the
new array, then the consumer code above will end up using the old array instead of
the new one, which would result in v getting set to the wrong element. Note that this
insidious error cannot be found by previous techniques, because the shared variables are
all accessed under the protection of an appropriate lock.
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In summary, programs can suffer from concurrency errors other than deadlocks and
simple race conditions: we have shown how using stale values of shared variables can
also be a source of error. Next, we turn to the issue of how to detect such errors in
programs automatically.

2 Detecting stale values

In the most simple and common case, stale values are propagated in local variables.
Therefore, our technique tracks the assignments to and uses of local variables. We pro-
ceed by instrumenting the original program with some additional local-variable declara-
tions and program statements. These new declarations and statements are mechanically
added to the original program. To distinguish them from the original program, we call
the additions ghost declarations and statements. Our ghost statements do not change
the functional behavior of the original program, except for the actions taken by a ghost
assertion that fails, which occurs if a possible stale-value error is detected.

We start by introducing, for every local variable t in the original program, a boolean
ghost variable stale t with the following meaning:

Invariant J0: stale t is true if and only if the value of t is considered stale.

Note that we may have some leeway in just exactly what we consider to be stale.
Immediately preceding every read of local variable t in the original program, we

add the following ghost assertion statement:

assert ¬stale t ;

If this assertion fails, the value stored in t is considered stale, and so the checker pro-
duces a warning.

To establish Invariant J0 initially, at the point where t and stale t are declared,
stale t is set to false . That is, we add the ghost statement:

stale t := false;

To maintain Invariant J0, we need to update stale t in two situations: when t is
assigned, it may become fresh (not stale), and when the thread enters a critical section,
t may become stale.

So first, stale t needs to be updated at assignments to t . A simple, somewhat
coarse approach is to add the ghost assignment:

stale t := false;

5



at every assignment

t := E ;

This simple approach would treat the new value of t as fresh regardless of the right-
hand side expression E . A more precise approach, which we have not implemented,
would take E into account. For example, for the assignment statement

t := t + 1;

a more precise approach would not change the value of stale t , since the new value of
t would be as stale as the previous value.

Second, stale t needs to be updated on entry to a critical section: if t ’s current
value comes from a previous critical section, then stale t should be set to true . To
accomplish this, we need to introduce another ghost variable, from critical t . Ideally,
from critical t is true just when t has received its current value inside a critical
section from a shared variable. We will settle for something simpler:

Invariant J1: from critical t is true if and only if the last write to t occurred inside
a critical section.

Initially, from critical t is false . To maintain Invariant J1, we add an update of
from critical t whenever there’s an assignment to t . If the assignment occurs in a
critical section, we add:

from critical t := true; (G0)

otherwise, we add:

from critical t := false; (G1)

With from critical t and Invariant J1 at our disposal, we put the finishing touches
on maintaining Invariant J0: on entry to a critical section, we add the following ghost
statement:

if from critical t then stale t := true end (G2)

This maintains Invariant J0, because if on entry to a critical section the last assignment
to t occurred in a (previous) critical section, then the current value of t is now to be
considered stale.
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For example, consider the following code fragment, where x is a shared variable, t
is a local variable, and B(t) is some boolean expression that mentions t .

enter critical section();
t := x ;

exit critical section();
if B(t) then

t := 0;
end;
enter critical section();

x := t + 1;
exit critical section();

Instrumenting this code according to our technique yields the following program, where
ghost statements are shown with comments:

enter critical section();
if from critical t then stale t := true end; // G2
t := x ;
stale t := false; // the assignment to t gives it a fresh value
from critical t := true; // G0: the assignment to t occurs inside a

critical section
exit critical section();
assert ¬stale t ; // about to read B(t), which mentions t
if B(t) then

t := 0;
stale t := false; // the assignment to t gives it a fresh value
from critical t := false; // G1: the assignment to t does not occur in-

side a critical section
end;
enter critical section();

if from critical t then stale t := true end; // G2
assert ¬stale t ; // about to read t
x := t + 1;

exit critical section();

Note that the ghost assertion in the second critical section will fail if the expression B(t)
in the if statement evaluates to false. This corresponds to the case where, upon entry to
the second critical section, t contains a value produced in the first critical section. In

7



other words, the instrumented code has a failing assertion where the original code would
have used a stale value.

This concludes the general description of our technique. The technique can be im-
plemented in a dynamic checker. That is, by instrumenting the original program with
the ghost statements above, one can detect possible stale-value errors through failing
ghost assertions. Our technique can also be implemented in a compile-time checker,
where a warning is produced if the checker detects a possibility or certainty that a ghost
assertion will fail.

3 Implementation

We have implemented our technique in a compile-time checker. We built the checker
as an extension to the Compaq Extended Static Checker for Java (ESC/Java) [9, 11].
ESC/Java translates a program into a verification condition, a logical formula that, ide-
ally, is valid if and only if the program is free of the kinds of errors under consideration.
The verification condition is then passed to an automatic theorem prover, which searches
for counterexamples. Each counterexample is turned into a message that warns the pro-
grammer of a possible error in the program. ESC/Java performs modular checking,
checking one method body at a time, much like a compiler performs separate compila-
tion. The heart of ESC/Java’s analysis comes down to checking the validity of assertions,
which makes it a good engine for our stale-value detection technique. In this section,
we describe some specific considerations of our implementation and how it pertains to
Java.

A major design consideration that we omitted from the previous section is the fact
that programs have more than one lock. In Java, locks may be dynamically allocated and
assigned, so a syntactic scan of the enter critical section() statement that acquires a
lock is not in general sufficient to determine which lock is being acquired. Aiming for a
simple initial design, our checker mostly ignores which lock is being acquired. That is,
when in the description above we said “on entry to a critical section”, our checker adds
the same ghost statements regardless of which lock is acquired. This simple design may
result in more stale-value warnings than a more elaborate design. However, in trying
out this simple initial design, we found the number of reported warnings to be so low
that it did not seem worth the time to design something more elaborate, except at calls
to synchronized methods, as we describe next.

Another design consideration in our checker is that Java has a modifier called syn-
chronized that can be applied to methods. Although this modifier looks like it is
part of the signature of the method, it is simply a convenient way to turn the body of
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a particular method implementation into a critical section. Nevertheless, by looking at
this method modifier from call sites, we have incorporated some special behavior in our
checker.

A call to a synchronized method will enter and exit a critical section. If the
called method is declared in the same abstraction as the caller—meaning in a superclass
or subclass of the class enclosing the call—and the call site is not itself in a critical
section, then our checker will treat the call as entering and exiting a critical section for
the purpose of checking for stale-value errors. This has two implications.

The first implication regards entry to the call. Our checker treats local variables
mentioned in actual parameters of the call as though they were read by the callee. To
catch errors where the values of these local variables would be considered stale inside
the critical section of the callee, we add ghost statement (G2) just before evaluating the
actual parameters.

The second implication regards return from the call. Any result value of the called
method is returned from within a critical section. Therefore, we may need to update
from critical t if some local variable t receives a value derived from the result value
of the call. In particular, for any assignment of an expression E to a local variable t ,
if E contains a call to a synchronizedmethod of the same abstraction, then we add
(G0) instead of (G1) at the time t is updated.

A final design consideration is the use of condition variables and the wait() opera-
tion that can be applied to these. The wait() operation temporarily exits a critical sec-
tion, waiting for a corresponding signal() operation. On return from the call to wait() ,
our checker models the re-entry to the critical section by adding ghost statement (G2).

We mention one more fine detail that pertains to our checker. When above we men-
tion an assignment of true to stale t , our checker actually assigns an arbitrary value
to stale t . The reason for this is as follows: When ESC/Java encounters an assertion
assert E , it generates a warning if E is not always true, and continues checking if E
is not always false. For the further checking downstream of this point, the checker will
assume ¬E . By assigning to stale t an arbitrary value, one obtains the functionality
of checking the condition ¬stale t correctly and retains the benefit of being able to do
downstream checking.

We have described the various ghost statements above for local variables. It would
make sense also to treat formal parameters in this way, since a formal parameter in Java
method body can be used as a local variable. In fact, one can also imagine giving the
same treatment to the temporary variables that ESC/Java introduces to hold values of
intermediate subexpressions. However, our implementation treats only local variables.

Finally, we show how our checker would find a real error, and the error message
produced. If our checker handled the pseudo-code syntax of the third example from
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Section 1, it would instrument it as follows (ghost statments have comments):

enter critical section();
if from critical a then stale a := arbitrary end; // G2
if from critical v then stale v := arbitrary end; // G2
a := arr ;
stale a := false; // the assignment to a gives it a fresh value
from critical a := true; // G0
while (n = 0) {

wait();
if from critical a then stale a := arbitrary end;

// G2: the call to wait() exits and re-enters
the critical section

if from critical v then stale v := arbitrary end; // ditto
}
assert ¬stale a; // about to read a
v := a[nextc];
stale v := false; // the assignment to v gives it a fresh value
from critical v := true; // G0
assert ¬stale a; // about to read a
nextc := (nextc + 1)mod a.length;
n := n − 1;

exit critical section();

Analysis of the flow of this code will fail to prove that stale a is false at the first
assertion. If this example were in a file ProduceConsume.java, then our checker
would produce a warning like:

ProduceConsume.java:82: Warning: Possible use of
stale value of monitored entity (StaleValue)

v = a[nextc];
ˆ

where 82 is the source line number where the error was found, and the caret indicates
the position within the line.

4 Experience

We have applied our stale-value checker to several concurrent Java programs. We have
found that the checker produces a modest number of warnings, including some real
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warnings
program kloc false alarms benign races bugs
pachyclient 11 6 0 1
mercator 27 9 0 0
webl 23 5 0 0
ambit 3 2 0 0
cluster 3 0 0 0
jigsaw 125 20 1 0
sys man A 325 1 0 3
sys man B 100 0 0 0
Total 617 43 1 4

Table: The results of running our checker over various programs. The table shows the
program sizes and the number of warnings produced. The warnings are broken up into
three categories. We are unsure of the categorization for ambit and jigsaw, because we
did not consult the authors of the code.

errors in the programs.
The Table shows the results from running our checker. The columns are: the name

of the program being tested; the number of thousands of lines of code; the number of
false alarms generated by the tool; the number of warnings that indicated benign races;
and the numbers of warnings that indicated bugs in the code.

Here are brief descriptions of our test programs: pachyclient is an applet to assist
in reading mail; mercator is a web crawler; webl is the implementation of the language
WebL; ambit is the implementation of a language used to describe agents; cluster finds
groups of related web pages; jigsaw is the World-wide web Consortium’s reference
implementation web server; sys man A and sys man B are proprietary programs for
managing configurations of computers and peripherals.

We are encouraged by these results, because even with no annotations we obtained
fewer than 1 warning per 10,000 lines of code, and yet found 4 previously unknown
bugs.

Our prototype checker is rather slow. It can check about 2000 source lines per
minute. The speed could be greatly improved, because our prototype contains code
intended for more heavy-weight checking. We believe that a special-purpose checker
could be nearly as fast as the type checker.
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5 Related work

Much work and several different techniques have targeted the detection and preven-
tion of simple race conditions. For example, Warlock [13] uses static data flow tech-
niques; ESC uses program verification techniques [6]; and the Race Condition Checker
for Java [8], the programming language Guava [0], and the work by Boyapati and Ri-
nard [3] use type checking techniques. Eraser [12] and Nondeterminator-2 [4] analyze
dynamic executions, finding races beyond those evident in the given execution. Some
recent work by Choi et al. [5] improves precision and performance by some combination
of static and dynamic techniques.

The meta-level compilation technique in metal [7] has been used to implement
checks for various locking-related errors. In some sense, our technique is similar in
flavor to some of these checks, in that we search for things that look suspicious. Perhaps
metal would be a good framework in which to implement our technique. The SLAM
Toolkit [1], which uses model-checking and theorem-proving techniques, also finds var-
ious locking-related errors in software.

Our technique is complementary to these tools, languages, and techniques: we find
errors they don’t, and vice versa.

We don’t know of any previous practical checker that detects stale-value errors, but
there is a previous technique that can find them: program verification. For illustration,
consider the following program:

enter critical section();
t := a.length;

exit critical section();
enter critical section();

s := 0; i := 0;
while (i < t) {

s := s + a[i ];
i := i + 1;

}
exit critical section();

where a is a shared variable and t , s , and i are local variables. This program con-
tains a stale-value error, since the use of t occurs in a different critical section than its
definition from a shared variable. Our technique will find this error.

The loop in the second critical section relies on the invariant t ≤ a.length , which
the first critical section establishes. But a program verifier that supports monitors would
not allow the property to be inferred in the second critical section, because the value of
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a.length seen by the current thread can change arbitrarily while outside the monitor.
Such a program verifier would not be able to prove the access a[i ] correct, thus finding
the error.

The Extended Static Checkers for Modula-3 [6] and for Java [9] use program verifi-
cation technology and can find errors involving monitors and shared variables. However,
these two checkers do not take into consideration the effects of other threads between
critical sections, because doing so would place an additional burden on the tool user to
declare monitor invariants [10] in order to suppress otherwise-spurious warnings. In the
design of these checkers, this additional annotation burden was perceived to outweigh
the benefit of finding the additional errors, and thus the checkers consider only those
executions where the values of shared variables remain unchanged between critical sec-
tions [6, 11].

6 Summary and future work

In summary, we have discussed a kind of race condition, a stale-value error, that can
arise in concurrent programs. We have introduced a simple method for detecting many
stale-value errors. The technique can be used in either a dynamic checker or a compile-
time checker. In either case, the technique does not require user annotations. We have
implemented the technique in a compile-time checker for Java. We have applied the
checker to several hundred thousands of lines of code and have found it to produce a
small number of warnings that are nevertheless of high quality.

A possible improvement on our technique is to replace the boolean stale t by a
counter age t with the following meaning:

Invariant J2: If from critical t is true , then age t is the number of critical sections
that have been entered since the variable t was last assigned.

To maintain this invariant, age t is zeroed when t is assigned, and incremented on each
entry to a critical section. When the variable t is used, we can then add the assertion

assert ¬from critical t ∨ age t = 0;

This allows the warnings to be ordered by age. We suspect that warnings with higher
age will be more relevant.
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