
QCTAChart - Technical Analysis Charting
Tools for .Net

Contact Information

Company Web Site: http:// www.quinn-curtis.com

General Information: info@quinn-curtis.com
Sales: sales@quinn-curtis.com

Technical Support Forum

http://www.quinn-curtis.com/ForumFrame.htm

 Revision Date 1/022/2015 Rev. 2.4

Documentation and Software Copyright Quinn-Curtis, Inc. 2015

http://www.quinn-curtis.com/
http://www.quinn-curtis.com/ForumFrame.htm
mailto:sales@quinn-curtis.com
mailto:info@quinn-curtis.com?subject=QCSPCChart%20for%20.Net
http://www.quinn-curtis.com/

Quinn-Curtis, Inc. Tools for .Net END-USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: This Software End-User License Agreement ("EULA") is a legal agreement
between you (either an individual or a single entity) and Quinn-Curtis, Inc. for the Quinn-Curtis, Inc. SOFTWARE
identified above, which includes all Quinn-Curtis, Inc. .Net software (on any media) and related documentation (on
any media). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the terms of this
EULA. If you do not agree to the terms of this EULA, do not install or use the SOFTWARE. If the SOFTWARE
was mailed to you, return the media envelope, UNOPENED, along with the rest of the package to the location where
you obtained it within 30 days from purchase.

1. The SOFTWARE is licensed, not sold.

2. GRANT OF LICENSE.

(A) Developer License. After you have purchased the license for SOFTWARE, and have received the file containing
the licensed copy, you are licensed to copy the SOFTWARE only into the memory of the number of computers
corresponding to the number of licenses purchased. The primary user of the computer on which each licensed copy
of the SOFTWARE is installed may make a second copy for his or her exclusive use on a portable computer. Under
no other circumstances may the SOFTWARE be operated at the same time on more than the number of computers
for which you have paid a separate license fee. You may not duplicate the SOFTWARE in whole or in part, except
that you may make one copy of the SOFTWARE for backup or archival purposes. You may terminate this license at
any time by destroying the original and all copies of the SOFTWARE in whatever form.

(B) 30-Day Trial License. You may download and use the SOFTWARE without charge on an evaluation basis for
thirty (30) days from the day that you DOWNLOAD the trial version of the SOFTWARE. The termination date of
the trial SOFTWARE is embedded in the downloaded SOFTWARE and cannot be changed. You must pay the
license fee for a Developer License of the SOFTWARE to continue to use the SOFTWARE after the thirty (30)
days. If you continue to use the SOFTWARE after the thirty (30) days without paying the license fee you will be
using the SOFTWARE on an unlicensed basis.

Redistribution of 30-Day Trial Copy. Bear in mind that the 30-Day Trial version of the SOFTWARE becomes
invalid 30-days after downloaded from our web site, or one of our sponsor’s web sites. If you wish to redistribute
the 30-day trial version of the SOFTWARE you should arrange to have it redistributed directly from our web site If
you are using SOFTWARE on an evaluation basis you may make copies of the evaluation SOFTWARE as you
wish; give exact copies of the original evaluation SOFTWARE to anyone; and distribute the evaluation
SOFTWARE in its unmodified form via electronic means (Internet, BBS's, Shareware distribution libraries, CD-
ROMs, etc.). You may not charge any fee for the copy or use of the evaluation SOFTWARE itself. You must not
represent in any way that you are selling the SOFTWARE itself. You must distribute a copy of this EULA with any
copy of the SOFTWARE and anyone to whom you distribute the SOFTWARE is subject to this EULA.

(C) Redistributable License. The standard Developer License permits the programmer to deploy and/or distribute
applications that use the Quinn-Curtis SOFTWARE, royalty free. We cannot allow developers to use this
SOFTWARE to create a graphics toolkit (a library or any type of graphics component that will be used in
combination with a program development environment) for resale to other developers.

If you utilize the SOFTWARE in an application program, or in a web site deployment, should we ask, you must
supply Quinn-Curtis, Inc. with the name of the application program and/or the URL where the SOFTWARE is
installed and being used.

 3. RESTRICTIONS. You may not reverse engineer, de-compile, or disassemble the SOFTWARE, except and only
to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation. You may not
rent, lease, or lend the SOFTWARE. You may not use the SOFTWARE to perform any illegal purpose.

 4. SUPPORT SERVICES. Quinn-Curtis, Inc. may provide you with support services related to the SOFTWARE.

ii

Use of Support Services is governed by the Quinn-Curtis, Inc. polices and programs described in the user manual, in
online documentation, and/or other Quinn-Curtis, Inc.-provided materials, as they may be modified from time to
time. Any supplemental SOFTWARE code provided to you as part of the Support Services shall be considered part
of the SOFTWARE and subject to the terms and conditions of this EULA. With respect to technical information you
provide to Quinn-Curtis, Inc. as part of the Support Services, Quinn-Curtis, Inc. may use such information for its
business purposes, including for product support and development. Quinn-Curtis, Inc. will not utilize such technical
information in a form that personally identifies you.

 5. TERMINATION. Without prejudice to any other rights, Quinn-Curtis, Inc. may terminate this EULA if you fail
to comply with the terms and conditions of this EULA. In such event, you must destroy all copies of the
SOFTWARE.

 6. COPYRIGHT. The SOFTWARE is protected by United States copyright law and international treaty provisions.
You acknowledge that no title to the intellectual property in the SOFTWARE is transferred to you. You further
acknowledge that title and full ownership rights to the SOFTWARE will remain the exclusive property of Quinn-
Curtis, Inc. and you will not acquire any rights to the SOFTWARE except as expressly set forth in this license. You
agree that any copies of the SOFTWARE will contain the same proprietary notices which appear on and in the
SOFTWARE.

 7. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE to any country,
person, entity, or end user subject to U.S.A. export restrictions. Restricted countries currently include, but are not
necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria. You warrant and represent that neither
the U.S.A. Bureau of Export Administration nor any other federal agency has suspended, revoked or denied your
export privileges.

8. NO WARRANTIES. Quinn-Curtis, Inc. expressly disclaims any warranty for the SOFTWARE. THE
SOFTWARE AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OR MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE
SOFTWARE REMAINS WITH YOU.

9. LIMITATION OF LIABILITY. IN NO EVENT SHALL QUINN-CURTIS, INC. OR ITS SUPPLIERS BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OF
ANY KIND ARISING OUT OF THE DELIVERY, PERFORMANCE, OR USE OF THE SUCH DAMAGES. IN
ANY EVENT, QUINN-CURTIS’S LIABILITY FOR ANY CLAIM, WHETHER IN CONTRACT, TORT, OR
ANY OTHER THEORY OF LIABILITY WILL NOT EXCEED THE GREATER OF U.S. $1.00 OR LICENSE
FEE PAID BY YOU.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE is provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
The Rights in Technical Data and Computer SOFTWARE clause of DFARS 252.227-7013 or subparagraphs (c)(i)
and (2) of the Commercial Computer SOFTWARE- Restricted Rights at 48 CFR 52.227-19, as applicable.
Manufacturer is: Quinn-Curtis, Inc., 18 Hearthstone Dr., Medfield MA 02052 USA.

11. MISCELLANEOUS. If you acquired the SOFTWARE in the United States, this EULA is governed by the laws
of the state of Massachusetts. If you acquired the SOFTWARE outside of the United States, then local laws may
apply.

Should you have any questions concerning this EULA, or if you desire to contact Quinn-Curtis, Inc. for any reason,
please contact Quinn-Curtis, Inc. by mail at: Quinn-Curtis, Inc., 18 Hearthstone Dr., Medfield MA 02052 USA, or
by telephone at: (508)359-6639, or by electronic mail at: support@Quinn-Curtis.com.

mailto:support@Quinn-Curtis.com

Table of Contents
1. Introduction...1

Financial Data Sources...5
Technical Analysis Charting Tools for .Net Dependencies...6
Directory Structure of QCTAChart for .Net..6
(*** Critical Note ***) Running the Example Programs...8
Chapter Summary...8
Tutorials...9
Customer Support...9

2. QCTAChart and Technical Analysis..13
Primary Chart plotting options...15
Technical Indicator overlays for the Primary chart..34
Secondary windows technical indicators...43
Other Chart Features..59

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library ...69
Charting Tools for .Net Class Summary..69
Technical Analysis Charting Tools for .Net Class Summary..70

4. QCChart2D for .Net ...81
QCChart2D for .Net Class Summary...81
Chart Window Classes...82
Data Classes...82
Scale Classes..83
Coordinate Transform Classes...83
Auto-Scaling Classes..85
Chart Object Classes..85
Mouse Interaction Classes..110
File and Printer Rendering Classes..111
Miscellaneous Utility Classes..111

5. Configuring QCTAChart Datasources..115
Getting Started with a Data Source..116

6. Display Stock Data in the Primary Chart..141
7. Secondary Chart Options...163
8. Financial Chart Objects ..195
9. Point and Figure Charts...223
10. Renko Charts...243
11. File and Printer Rendering Classes...257

Printing a Chart..257
Capturing the Chart as a Buffered Image...263

...267
12. Regionalization for non-USA Markets...269
13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications..283

 (*** Critical Note ***) Running the Example Programs..283
Visual C# for .Net..283
..291
Visual Basic for .Net..291

iv

QCTAChart - Technical Analysis Charting Tools

5

1. Introduction

Technical Analysis of stocks, bonds, commodities and other securities, is the art of predicting future price
movements (for the security) based on the study of past price and volume movements. Starting with
historical Open-high-low-close-volume data for a given security, technical analysis consists of applying
one or more functions to that data, creating an indicator which predicts the future trend of the security,
whether it be up, down or flat. Buy and sell actions for the security are then decided based on the indicator.

That's it in a nutshell. The defining postulate of technical analysis is that the historical market action of a
security takes into account everything publicly known about the security. There is no need for the technical
trader to study a stocks balance sheet, income statement, cash flow, or recent product announcements (the
bread and butter of a competing strategy known as fundamental analysis), because all of these things are
already factored in the stocks price. This assumes that the security trades in a free market, where the price
action is controlled by thousands, or even millions of independent buyers and sellers, all operating using
their own criteria. Don't expect technical analysis to work for securities which have an extremely small
float (penny stocks for example), or are largely controlled by a single trading entity (stock trading scams
where the where the price is manipulated by a coordinated network of brokers, buyers and sellers – think
the Wolf of Wall Street), or in stock exchanges run by countries which to not believe in free market
economics and are willing to manipulate a stock price to their own end.

Technical analysis does not require that the practitioner use charting. It is straightforward to use technical
analysis to produce buy, hold and sell signals, without ever looking at a chart. The computer allows a
skilled programmer to automate the analysis of historical stock data, and produce buy and sell signals using
technical analysis without the user every seeing a Open-high-low-close chart, or a technical indicator chart.
Traders involved in computer-driven trading will execute trades based on a computer generated buy or sell
signal. In this case the program is processing technical indicators derived from the fundamental Open-high-
low-close-volume data, and looking for specific buy and sell signals.

Usually the technical analysis programmer tasked with automating an existing application has to make a
decision about the amount of programming he wants to do. Does he purchase an application package that
implements standard technical analysis charts and then go about defining the charts using some sort of
menu driven interface or wizard. This is probably the most expensive in terms of up front costs, and on-
going subscription fees, and the least flexible, but the cheapest in development costs since a programmer
does not have to get involved creating the displays. Another choice is to use a general purpose spreadsheet
package with charting capability to record, calculate, and display the charts. This is probably a good choice
if your charting needs are simple, and you are prepared to write complicated formulas as spreadsheet
entries, and your data input is not automated. Another choice is writing the software from scratch, using a
charting toolkit like our QCChart2D software as the base, and creating custom technical analysis charts
using the primitives in the toolkit. This is cheaper up front, but may be expensive in terms of development
costs. Often times the third option is the only one available because the end-user has some unique
requirement that the pre-packaged software can’t handle, hence everything needs to programmed from
scratch.

QCTAChart for Technical Analysis

The QCTAChart software package is for those who do want to use charting as part of their decision
making process. We have created a library of technical analysis routines that represents an intermediate
solution. Our technical analysis software still requires an intermediate level programmer, but it does not

1

1. Introduction

require advanced knowledge of technical analysis or of charting. Typically, a user will choose a stock, and a time
frame to analyze. The historical stock data will be displayed as an Open-high-low-close chart (or candlestick chart).
The user will have the option a applying a selection of time-invariant transfer functions to the data, producing
additional charts which will indicate buy or sell signals on inspection. In some cases, an indicator will overlay the
existing Open-high-low-close chart, and in others they will be displayed in a synchronized window under the main
Open-high-low-close chart.

QCTAChart is a template that integrate the QCChart2D charting software with tables, data structures and
specialized rendering routines used for the static and dynamic display of technical analysis charts. The chart
template uses pre-programmed classes that create, manage and display the technical analysis charts and tables. The
template can be further customized using methods and properties. The programmer can customize the plot objects
created in the template, allowing tremendous flexibility in the look of the technical charts.

A QCTAChart has four major major plotting areas: a current financial data window, a zoom window, a primary
chart window, and secondary indicator windows. A typical QCTAChart is shown below. The top window, which is
all text, is the current financial data window. The small chart under that is the zoom control for the next chart,
which is the primary technical chart window. The smaller windows under that the are the secondary technical
indicator windows.

This chart combines a current data table, a zoom window, a Primary candlestick chart displaying a Parabolic SAR
overlay, and a Secondary chart displaying a Slow Stochastic indicator chart.

Primary Chart Window

2

QCTAChart - Technical Analysis Charting Tools

The Primary chart window can display the OHLC stock data for up to three stocks using the following plot options:

• Classic Open-high-low-close

• Candlestick

• Simple line plot of close data

• Mountain (or filled) line plot of close data

• Equi-volume candlestick plot

• Open-High-Low-Close Bar plot

• Point and Figure plot

• Renko plot

• Time frame (starting date/time and frame extent is controlled using a dedicated zoom control window

• Data values for the plot, at the intersection of a mouse controlled vertical cursor with the plot, are displayed
above each chart window

You can also overlay the Primary chart using one or more of the following technical indicators

• Simple moving averages

• Exponential moving averages

• Moving Average Bands

• Bollinger Bands

• Parabolic SAR

Some the other options associated with the Primary chart are:

• Dynamic auto-scaling to displayed data

• Compare up to three different stocks

• Linear, Logarithmic, and Normalized y-axis scale

• Synchronize scrolling (panning) and zooming of all chart windows

• Financial Chart objects which can be dropped into a chart

Horizontal and Vertical data makers

3

1. Introduction

Fibonacci overlay

Labels for Annotation

Trend lines

Arrows

Secondary Chart Window

The Secondary window can display the following technical indicators:

• Average Directional Indicator

• Momentum\\

• Rate of Change (ROC)

• Relative Strength (RSI)

• Stochastic (Fast and Slow)

• Williams %R

• Moving Average Convergence/Divergence (MACD)

• Volume charts

Integrated Data Table

A scrollable table (at the top) which contains current financial data for a user-defined portfolio of stocks. The user
can click on a row and automatically have all of the charts updated to reflect technical indicators for the selected
stock.

Integrated Dialog Boxes

There are Primary Chart, Secondary Chart, Data Table, and General Chart characteristic dialog boxes which are
invoked with small buttons on the main view page. The end-user can customize which stocks and technical
indicators are displayed. Plot attributes (plot type, line and fill colors, line thickness), text fonts and text sizes are all
adjustable.

Serialization

The Primary Chart dialog box has options to Save and Restore the complete setup of a chart which has been
customized by the end-user.

4

QCTAChart - Technical Analysis Charting Tools

Financial Data Sources

Paid Data Sources

A technical analysis charting package means little if you do not have a source of historical data for the securities you
want to analyze. There are many sources of paid historical data. If you work for a large financial company, you may
have access to computer feeds from Thompson Reuters, Bloomberg, Wall Street Journal, Metastock and many
others. You can get historical data in file form, and on-line. Since data in file form must be constantly updated in
order to keep it current, the best source is going to be on-line. Paid, online, data sources are going to cost anywhere
from hundreds, to tens of thousands of dollars per year, depending on how many financial instruments you have
access to (there are tens of thousands), how many historical data sets a day you expect to retrieve, and the frequency
of the historical data (end-of-day (EOD) data, minute by minute, 5-second, or even tick by tick. This software is
designed to work with any frequency of data. What we don't have at this time are drivers for these paid, historical
data feeds. Should you provide us with a specification, for the URL query, and the return data format, we can
probably create a custom data source module for you which will let you read data from that data source for little or
no money.

Free Data Sources

There are several, free, real-time URL sources of historical stock data. These are Yahoo Finance, Google Finance,
and Quandl. The use of historical data from these sources is completely free. What you can't do is download
historical data from them (it's free after all) and then sell, or give it away to someone else. That would be a copyright
violation. But, you can use the data in your stock trading program(s) to make decisions about when to buy or sell
stocks, without paying them any royalties. Most of the historical stock data is end-of-day (EOD) data. It can go back
twenty or thirty years for some stocks. Yahoo and Google also offer intra-day data (stock prices throughout a trading
day) going back up to twenty days. The frequency of the data (whether or not it is minute by minute data, or some
multiple thereof, varies.

There are some issues with the free historical data sources. In most cases, once you go back ten or fifteen years, the
Open-high-low-close-volume format of data degrades to just daily Close-Volume data, and finally to just the close
price for the security. So technical indicators which depend on Open, High, Low and Volume values can't be used
for the time range in those case. Also, historical data is dependent on stock splits, and some data sources normalize
the stock data for stock splits and others don't. When the free data sources do adjust the OHLC data for stock splits,
it often takes a month or two after the split occurs. Until that time, charts of the stock will show a drastic price drop
on the date of the stock split, since that is what the data will show. During that update interval, before the historical
data has been normalized for the stock splits, technical analysis will not be practical. This was more of an issue
fifteen years ago, where high growth stocks split every one or two years, not so much now. Apple (AAPL) recently
split though so watch out for that. Paid data sources such as Thompson Reuters are always going to have better,
more update to date data, with complete Open-high-low-close data and data always properly normalized for stock
splits.

Yahoo Finance

Yahoo Finance is a web site that provides current and historical financial information on USA and many non-USA
markets. This includes quotes on stocks, bonds, commodities and futures. In addition to EOD data, Yahoo Finance
also has an API for retrieving intraday data for stocks . Yahoo Finance is probably the most popular site for market
data in the USA. Our software can access Yahoo Finance for historical data feeds of EOD data, and historical data
feeds up to 20 days of intraday data..

5

http://en.wikipedia.org/wiki/Financial_data_vendor
http://en.wikipedia.org/wiki/Financial_data_vendor

1. Introduction

Google Finance

Google Finance, launched in 2006, was meant to be a competitor to Yahoo Finance. It offered much the same as
Yahoo in terms of current and historical data for stocks, bonds, commodities and stock futures. Unfortunately,
Google announced in 2013 that they were discontinuing most of Google Finance. However, the current, and
historical data quote service, still seems to be working. So use it at your own risk, and only with a reliable backup
data source. In addition to EOD data, Google Finance also has an API for retrieving intraday stock data. Our
software can access Google Finance for historical data feeds of EOD data, and historical data feeds up to 20 days of
intraday data..

Quandl

Quandl is a relatively new data source, started a couple of years ago. The site offers access to several million
financial, economic and social datasets, including EOD data for a large number of USA and non-USA stocks. They
also have a constantly updated, and standardized collection of financial ratio data for the same stocks. Unlike
Google and Yahoo, Quandl does not have a data source for intraday stock data. Quandl seems to be committed to
providing free access to EOD financial data. You will need to register with them if you want to make heavy usage of
their data. In return they give you a key, or taken, which is used in the accessing the Quandl URL address. Our
software can access Quandl for historical data feeds, and for current financial ratio data feeds.

Metastock

Metastock has been in the business of supplying market data, for a subscription fee, for 30 years. Originally they
supplied data on media using a proprietary binary format. Starting with Metastock 12, the shifted to supplying data
to their paying customers using online methods only. Then, starting with Metastock 13, they reversed that policy and
added support for an easy to read CSV file structure for storing stock OHLCV data in a file on a local computer.
Many other companies also use the Metastock CSV file format for their own data, so it has become a standard for
OHLCV data in file format. Our software can read Metastock CSV historical data files, and if the standard
Metastock first line header is part of the file, automatically adjust to any of Metastock column formats.

The QCTAChart is a template that integrate the QCChart2D charting software with tables, data structures and
specialized rendering routines used for the static and dynamic display of technical analysis charts. The chart
template uses pre-programmed classes that create, manage and display the technical analysis charts and tables. The
template can be further customized using methods and properties. The programmers can customize the plot objects
created in the template, allowing tremendous flexibility in the look of the technical charts.

Technical Analysis Charting Tools for .Net Dependencies
The QCTAChart class library builds on the QCChart2D software package. You must use the version of
QCChart2D which ships with the QCTAChart software. It uses the classes found in that software and standard
classes that ship with the Microsoft .Net API. It also makes use of the open source Newtonsoft.Json library for some
JSON parsing (see http://james.newtonking.com/json). No other software is required.

Directory Structure of QCTAChart for .Net
The QCTAChart class library uses the standard directory structure also used by the QCChart2D, QCSPCChart,
and QCRTGraphics software. It adds the QCTAChart directory structure under the Quinn-Curtis\DotNet folder.
For a list of the folders specific to QCChart2D, see the manual for QCChart2D, QCChart2DNetManual.pdf.

6

http://james.newtonking.com/json
http://www.quandl.com/

QCTAChart - Technical Analysis Charting Tools

Drive:

Quinn-Curtis\ - Root directory

DotNet\ - Quinn-Curtis .Net based products directory

Docs\ - Quinn-Curtis .Net related documentation directory

Lib\ - Quinn-Curtis .Net related compiled libraries and components directory

QCChart2D\ - QCChart2D examples for C# and VB – This directory contains many example programs
for C# and VB specific to the QCChart2D charting software, but not
specific to the QCTAChart software

QCTAChart\ - QCTAChart examples for C# and VB

Visual CSharp\ - C# specific directory

QCTAChartNet\ - contains the source code to the QCTAChartNet.dll library (installed only
if the source code has been purchased)

Examples\ - C# examples directory

FinChartObjectsExample – demonstrates the use of the trend line, Fibonacci object,
horizontal and vertical cursors, and annotation labels

IntradayDatasource – demonstrates how to display intraday data obtained from Yahoo
and Google data sources.

PointAndFigureExample – demonstrates a Point and Figure chart, and Renko chart,
which obtains data from the Yahoo-base data source.

QuandlDataSourceExample – display a technical analysis charting using Quandl as the
data source.

YahooDataSourceExample - display a technical analysis charting using Yahoo as the
data source.

GoogleDataSourceExample - display a technical analysis charting using Google as the
data source..

MetastockFileSourceExample - display a technical analysis charting using a Metastock
CSV file as the data source.

TAChartApplication1 – the example used in the Tutorial in Chapter 13

Visual Basic\ - VB specific code

Examples\ - VB examples

Same as the C# examples above

7

1. Introduction

(*** Critical Note ***) Running the Example Programs
The example programs for QCTAChart software are supplied in complete source. In order to save space, they have
not been pre-compiled which means that many of the intermediate object files needed to view the main form are not
present. This means that FinChartView derived control will not be visible on the main Form if you attempt to view
the main form before the project has been compiled. The default state for all of the example projects should be the
Start Page. Before you do view any other file or form, do a build of the project. This will cause the intermediate files
to be built. If you attempt to view the main Form before building the project, Visual Studio sometimes decides that
the FinChartView control placed on the main form does not exist and deletes it from the project.

There are two versions of the for QCTAChart class library: the 30-day trial versions, and the developer version.
Each version has different characteristics that are summarized below:

30-Day Trial Version

The trial version of QCTAChart is downloaded in a file named Trial_QCTAChartR24x. The 30-day trial version
stops working 30 days after the initial download. The trial version includes a version message in the upper left
corner of the graph window that cannot be removed.

Developer Version

The developer version of QCTAChart is downloaded in a file with a name similar to NETTADEVR2x4x561x1.zip
The developer version does not time out and you can use it to create application programs that you can distribute
royalty free. You can download free updates for a period of 2-years. When you placed your order, you were e-
mailed download link(s) that will download the software. Those download links will remain active for at least 2
years and should be used to download current versions of the software. After 2 years you may have to purchase an
upgrade to continue to download current versions of the software. Save your download link.

Chapter Summary
The remaining chapters of this book discuss the QCTAChart package designed to run on any hardware that has
a .Net runtime 3.5 installed on it.

Chapter 2 presents a summary of the technical analysis charts that can be created using the software.

Chapter 3 presents the overall class architecture of the QCTAChart and summarizes all of the classes found in the
software.

Chapter 4 summarizes the important QCChart2D classes that you must be familiar with in order to customize
advanced features of the QCTAChart software.

Chapter 5 describes the data source classes and how they can be customized for your application..

Chapter 6 describes how to create the Primary stock chart in the FinChartView class, and how to add technical
indicator overlays.

8

QCTAChart - Technical Analysis Charting Tools

Chapter 7 describes how to add one or more Secondary technical analysis charts underneath the Primary stock chart.

Chapter 8 describes how to add Financial Chart Objects (trend lines, annotation text, horizontal and vertical data
markers, and Fibonacci overlays to the Primarystock chart.

Chapter 9 describes how to create Point and Figure charts using the software.

Chapter 10 describes how to create Renko charts using the software

Chapter 11 describes how to print the charts, and save them to image files.

Chapter 12 describes how to regionalize the software for non-USA English markets.

Chapter 13 is a tutorial that describes how to use QCTAChart to create Windows applications using Visual
Studio .Net, Visual C# and Visual Basic.

Tutorials
Chapter 13 is a tutorial that describes how to get started with the QCTAChart charting software.

Customer Support
Use our forums at http://www.quinn-curtis.com/ForumFrame.htm for customer support. Please, do not post
questions on the forum unless you are familiar with this manual and have run the examples programs provided. We
try to answer most questions by referring to the manual, or to existing example programs. We will always attempt to
answer any question that you may post, but be prepared that we may ask you to create, and send to us, a simple
example program. The program should reproduce the problem with no, or minimal interaction, from the user. You
should strip out of any code not directly associated with reproducing the problem. You can either your own example
or a modified version of one of our own examples.

9

http://www.quinn-curtis.com/ForumFrame.htm

QCTAChart - Technical Analysis Charting Tools

11

2. QCTAChart and Technical Analysis

Since you are a programmer looking to write a Technical Analysis software package, it is assumed that you
are already familiar with the basic assumptions. So we jump right in to the different chart types and
indicators available in this software toolkit. The main chart types, and indicators were introduced in
Chapter 1 .

Primary Chart plotting options

• Classic Open-high-low-close plot

• Candlestick

• Simple line plot of close values

• Mountain (or filled) close plot

• Equi-volume candlestick plot

• Point and Figure chart

• Renko chart

• Time frame (starting date/time and frame extent is controlled using a dedicated zoom control
window

• Data values for the plot, at the intersection of a mouse controlled vertical cursor with the plot, are
displayed above each chart window

Technical Indicators which can overlay the OHLC plot in the Primary chart

• Simple moving averages

• Exponential moving averages

• Moving Average Bands

• Bollinger Bands

• Parabolic SAR

13

2. QCTAChart and Technical Analysis

Other options for the Primary chart

• Dynamic auto-scaling to displayed data

• Compare up to three different stocks

• Linear, Logarithmic, and Normalized y-axis scale

• Synchronize scrolling (panning) and zooming of all chart windows

Technical Indicators which can can be displayed in separate, secondary windows

• Average Directional Indicator

• Momentum

• Rate of Change (ROC)

• Relative Strength (RSI)

• Stochastic (Fast and Slow)

• Williams %R

• Moving Average Convergence/Divergence (MACD)

• Volume charts

Other Related Charting Features

• An event-based coordinate system suitable use for financial data where data has an irregular time stamps
because weekends, holidays, and other discontinuities.

• Financial Chart objects which can be dropped into a chart

• Horizontal and Vertical data markers

• Fibonacci overlay

• Labels for Annotation

• Trend lines

• Arrows

A scrollable table (at the top) which contains current financial data for a user-defined portfolio of stocks. The user
can click on a row and automatically have all of the charts updated to reflect technical indicators for the selected

14

QCTAChart - Technical Analysis Charting Tools

stock.

Primary Chart plotting options
The Primary Chart displays a plot of one to three stocks in one of several different formats: simple line plot, OHLC
plot, Candlestick plot, Mountain Plot, OHLC Bar plot, Equi-volume Candlestick plot. The y-axis can be configured
for a simple linear scale, a normalized linear scale, and a logarithmic scale. The user can also enable one or more
technical indicator overlays, directly on top of the plot. These overlay indicators include: simple moving averages,
exponential moving averages, moving average bands, Bollinger bands, and the Parabolic SAR. Also, a single stock
can be displayed as a Point and Figure plot, or a Renko plot. Chapter 6 describes the programming of the Primary
Chart display in detail.

Classic Open-high-low-close plot

The classic OHLC chart used in technical analysis. Data can be zoomed and panned using the upper zoom window,
or the scrollbar at the bottom.

The OHLCPlot class displays stock market data in an open-high-low-close format common in financial technical
analysis. Every event item of the plot is a vertical line, representing High and Low values, with two small horizontal
"flags", one left and one right extending from the vertical High-Low line and representing the Open and Close
values. It is most useful when used to display data consisting of 10 to 50 events. Otherwise the vertical lines get too
close together and it degenerates into a big smear with most of the information content lost.

15

2. QCTAChart and Technical Analysis

Candlestick Plot

The classic Candlestick chart used in technical analysis, where the candlestick is filled if the close for that time
period is lower than the open.

The candlestick plot displays stock market data in an open-high-low-close format common in financial technical
analysis. Every item of the plot is represented by a vertical line representing High and Low values, overlapped by a
box representing the Open and Close values. If the Close value is greater than the Open value for a particular
candlestick, the box is filled, otherwise it is unfilled. Like the OHLC plot, the candlestick plot is best used when
there are between 10 and 50 event items in the current time frame, else the details of the candlesticks will be too
small to see.

16

QCTAChart - Technical Analysis Charting Tools

OHLC Bar plot

This OHLC Bar plot is a variant of the candlestick plot. The three colors of the OHLC bar define the four OHLC
values. A dot in the middle means that the Open is higher than the Close.

The OHLC bar plot is a variant of the candlestick plot. Every item of the plot is represented by a multicolored bar
representing Open-High-Low-Close values. If the Open value is greater than the Close value for a particular bar, the
center box has a dot placed in the center, otherwise no dot is present. Like the OHLC plot, the OHLC bar plot is best
used when there are between 10 and 50 event items in the current time frame, else the details will be too small to
see.

17

2. QCTAChart and Technical Analysis

Simple line plot of close values

When you have more then 50 or so data items, it is best to use the line plot type displaying the closing values.

For charts which extend across a large number of event items, a line plot of just the close values is the most legible.

18

QCTAChart - Technical Analysis Charting Tools

When you compare two or three stock, using a normalize y-axis scale, it is best to use the line plot type.

When you compare two or more stocks of different ranges, use the Normalized y-scale. It normalizes the compared
stocks to 0% at the beginning of the full-range time frame. In the example above, the blue line represents the
normalized stock price of Apple, which increased 200% to 300% more than its peers.

19

2. QCTAChart and Technical Analysis

Mountain (or filled) close plot

A filled version of the line plot is called a Mountain plot.

A Mountain plot is just a line plot, with the area under the line filled down to the x-axis.

20

QCTAChart - Technical Analysis Charting Tools

Equi-volume candlestick plot

The Equi-volume plot is a Candlestick plot which uses a variable width for the candlestick box. The item width is set
proportional to the volume for that time period, adding another dimension to the chart.

There is a variant of the Candlestick plot called the Equi-volume plot. The variant is that relative volume
information for each candlestick is encoded in the candlestick width. We do not implement the traditional Equi-
volume, because it uses a very irregular x-axis which will not sync up with our other technical indicator plots.
Instead, we look at the data in the current view of the chart, and assign the maximum candlestick width to the
maximum Volume value (from the OHLCV data) in the current view. That volume is assigned a width of 1.0, and
all other candlesticks are assigned widths less than one, equal to the ratio of Volume/(Maximum Volume). When
you look at a Equi-volume plot, you will immediately see which candlesticks occurred on days with the highest
volume, since they will be the widest. In the example above, the day with the highest volume are 10/13/2014. If you
plot an actual volume plot underneath, you can see the relationship between candlestick width, and volume.

21

2. QCTAChart and Technical Analysis

In the picture above, the fattest candlestick items correspond to the time periods where the trading volume was the
highest.

22

QCTAChart - Technical Analysis Charting Tools

Point and Figure Charts

Point and Figure charts do not plot price against time as other techniques do. Instead it plots price against changes
in direction by plotting a column of Xs as the price rises and a column of Os as the price falls.

Point and Figure plots have been used in technical analysis for more than 100 years. It is unique in that it does not
plot price against time as other techniques do. Instead it plots price against changes in direction by plotting a column
of Xs as the price rises and a column of Os as the price falls. As long the stock price is increasing, and does not
backtrack by more than a multiple (usually 3) of the box size, the price increase is displayed as an increasing
vertical column of Xs, one X for each time the stock price breaks through the top of a box price level. Once the trend
reverses more than a multiple of the box value, the column increments to the right, and changes over to a column of
0's, which are plotted down as long as the stock price continues to drop, without any significant reversals. Many
technicians like it because it filters out much of the normal up and down noise in the stock data, and makes it very
easy to identify trends up or down. As in the example above, it compresses the time frame, so that many years of
data (eight+ in the example above) can be displayed without crowding.

23

2. QCTAChart and Technical Analysis

While not a traditional Point and Figure chart, the floating bar version displays the same information, using
alternating bar colors instead of the Xs and Os.

A good book on the subject is Point and Figure Charting by Thomas J. Dorsey.

More detailed description of our Point and Figure chart implementation is found in Chapter 9, Point and Figure
Charts.

24

QCTAChart - Technical Analysis Charting Tools

Renko Charts

Renko charts do not plot price against time as other techniques do. Instead it plots price against changes in
direction by plotting a column of Xs as the price rises and a column of Os as the price falls.

Renko charts are similar to Point and Figure charts, in that they do not plot price against time as other techniques do.
Instead it plots price against changes in direction by plotting filled boxes (called bricks in Renko terminology) as the
price rises and unfilled boxes as the price falls. As long the stock price is increasing, and does not backtrack by more
than the brick size size, the price increase is displayed as an rising diagonal of bricks. Each time the price rises
enough to warrant a new brick, a new column is started and the brick is plotted in that column. Once the trend
reverses, as each new brick is added on the downside, a new column is started. No column will every contain more
than one brick. The result is a chart similar to the example above, where time scales are irregular and compressed.
The net result is a strong filtering of the OHLC data, eliminating the ever present noise present in market data.

More detailed description of our Renko chart implementation is found in Chapter 10, Renko Charts.

25

2. QCTAChart and Technical Analysis

Panning and zooming of data

The top-most plot is called the Zoom window. It always displays all of the historical data for the primary ticker
item. The user can expand, contract and move the zoom box (the filled transparent blue box) to adjust the view of
the data.

Panning and zooming of OHLC data is can be accomplished several different ways. Above the primary chart you
will see a short zoom chart which displays the full range of the OHLC data. The blue box in that chart represents the
time frame of the data shown in the primary chart. First, you can click and drag on the zoom chart, creating a
rectangle defining a custom time range, and the primary chart will update to reflect that time frame. Second, you
can click and drag on the center of the zoom chart rectangle, and drag the entire rectangle to a new time start and
end value, without changing the extent. And, you can click and drag on the start edge, or the stop edge, of the zoom
rectangle, and expand or contract the zoom rectangle. Third, you can just use the scrollbar at the bottom of the
FinChartView window to scroll through the data using a fixed extent for the time frame.

26

QCTAChart - Technical Analysis Charting Tools

The zoom box of the of the Zoom window now encompasses almost four years of data. Changes to the zoom box
affects both the Primary, and Secondary charts.

27

2. QCTAChart and Technical Analysis

Data Cursor

Data values (Open-high-low-close-volume) for the time period under the cursor are displayed at the top of chart.

The data cursor is a mouse movable vertical line, which tracks the mouse cursor x location, drawn through all of the
chart. Data values associated with the cursor location, appear to the left and above the plot area for each chart. This
applies to the Primary chart, and the Secondary indicator charts. The data cursor values will be color coded to one of
the plots in the associated chart.

28

QCTAChart - Technical Analysis Charting Tools

Data values for the plots are displayed for the Primary and Secondary charts.

29

2. QCTAChart and Technical Analysis

Compare different stocks in the Primary Window

Comparing stocks with similar ranges using a simple linear scale.

Using the built-in setup dialog for the Primary Chart, you can select up to three different stocks for comparison in
the Primary Chart window. This works OK if the stocks being compared are of the same range. If they are different
ranges though, as in the case of plotting Apple (AAPL) or IBM (IBM) against other high tech stocks such as Intel
(INTC) or Texas Instruments (TXN), the high price of IBM will swamp the detail of the lower prices stocks. In that
case you should use a Normalized y-scale, which normalizes all of the stock gains against their initial values at the
start of the data. That is what the chart below uses in comparing IBM vs TXN vs INTC.

30

QCTAChart - Technical Analysis Charting Tools

Comparing stocks with different ranges using a normalized scale.

31

2. QCTAChart and Technical Analysis

Y-Axis Scaling Options for the Primary Chart

A stock, such as Apple (AAPL), with a large range, is best displayed using a logarithmic y-axis scale.

There are three y-axis scaling options: Linear, Logarithmic, and Normalized. The default is the linear y-scale, which
is the default for all Primary charts, and Indicator charts. The linear scale is probably the best one when you are
looking at a single stock. If you are comparing multiple stocks, you will want to use the Normalized scale. The
Logarithmic scale is good for looking at a stock such as Apple (AAPL) which has seen exceptional gains over the
time frame under consideration. You can still see detail in both the low end and high end of the chart. See the chart
above for an example of Logarithmic scale.

32

QCTAChart - Technical Analysis Charting Tools

Dynamic auto-scaling to displayed data

The y-axis scale will auto-scale to the displayed data, no matter where you scroll to, or how many traces are
displayed.

All charts will dynamically auto-scale to the displayed range of data. So even if the stock OHLC source has prices in
the range 10 to 700, if the current three month view has a range of 500-700, the chart will automatically scale for
500 to 700, displaying the data with maximum resolution.

33

2. QCTAChart and Technical Analysis

Synchronize scrolling (panning) and zooming of all chart windows

The scrollbar at the bottom and the Zoom window at the top control the current view of the data.

The Zoom window at the top will shift the time scale left or right, just like the scrollbar, if you click and drag the
zoom box. If you click and drag on the left or right edge of the zoom box it changes the extent of the time scale.

The Primary chart window, and the Secondary indicator charts are synchronized. Only the zoom window above the
Primary chart is fixed. If you pan left or right using the scroll bar, or the zoom chart, or change the chart range using
the zoom chart, all of the charts will show the same time frame, with data values aligned vertically from chart to
chart. A vertical data cursor will display data values for the chart at the top of each charts plot area.

Technical Indicator overlays for the Primary chart

Simple moving averages

Simple moving averages (SMA) are a easy way to filter out random noise, or price fluctuations, from a signal.
Filtering makes it easier to identify short and long term trends in stock movement. A single simple moving average
(MA) is often compared to original signal. When the original signal passes up and through the SMA, that can be
considered a buy signal.

34

QCTAChart - Technical Analysis Charting Tools

It is often considered a buy signal when the stock prices breaks through the 50 day moving average.

It is considered a buy signal when the blue OHLC data passes up and through the 50 point SMA above. The
opposite is also true; it is considered a sell signal if the signal drops below the SMA.

Often times two or more moving averages of different lengths, acting on the same underlying signal, are compared
and conclusions made based on intersection points between the SMA signals. If the shorter of two SMA signals
passes up and through the longer, it is considered a buy signal. If the shorter of the two SMA signals passed down
and through the longer, it is considered a sell signal.

35

2. QCTAChart and Technical Analysis

It is often considered a buy signal if a short term simple moving average passes up and through a long term moving
average.

In the picture above, the red line is a 15 point moving average, and the green line is a 50 point moving average.
When the 15 point moving average pass up and through the 50 point moving average, that is considered a buy
signal.

A SMA signal is simple to calculate. It is the unweighted mean of the previous n data items. The N period SMA for
a time series Y(t) it can be calculated using the formulas

Starting with i = N (the SMA signal starts at the Nth data point)

i = N

SMA[i] = (Y[i] + Y[i-1] + Y[i-2] . . . Y[i-N+1]) / N

When calculating successive values, a new value comes into the sum and an old value drops out, meaning a full
summation each time is unnecessary for this simple case,

i > N

SMA[i] = SMA[i-1] - Y[i-N] / N + Y[i] / N

Exponential moving averages

The disadvantage of simple moving averages (SMA) is that it gives equal weight to all event items. If you are using
a 200 period SMA, then the oldest data point 200 days ago is given the same weight in the calculation as the most

36

QCTAChart - Technical Analysis Charting Tools

recent. Most practitioners of technical analysis are going to want more recent data values to have a greater influence
on the indicator than older values.

The exponential moving average (EMA) mathematically weights more recent data more than older data. Because of
this it can react quicker to changing circumstances. Otherwise, the buy and sell rules are much the same as the SMA.
If the shorter of the EMA signals moves up and through the longer, it considered a buy signal. If the shorter of the
EMA signals moves down and through the longer, it considered a sell signal. It can be used singly or in pairs, same
as the SMA examples.

May traders prefer the exponential moving average (EMA) over the simple moving average (SMA), because the
EMA weighs more recent data more heavily than old data.

A EMA signal is simple to calculate. The EMA for a time series Y(t) it can be calculated using the formula:

Starting with i = N (the EMA signal starts at the Nth data point), the first value is calculated as the simple
moving average (SMA) of the same time period. This gives a starting point for the EMA calculation.

i = N

EMA[i] = SMA[i]

Subsequent calculations use the formula.

i > N

EMA[i] = EMA[i-1] * (1 – alpha) + Y[i] * alpha

37

2. QCTAChart and Technical Analysis

where EMA[i] is the current EMA value

EMA[i-1] is the previous EMA value

alpha is the smoothing constant in the range 0.0 to 1.0

Y[i] is the current value of the source signal

In words, the EMA calculation is the current value of the source signal (the stock closing price), multiplied by the
alpha value, plus the previous value of the EMA calculation, multiplied by (1 – alpha). The net effect is a weighted
moving average where the older the source signal value is, the less it contributes to the current EMA value.

For a given signal, the only unknown in the equation above is the smoothing constant alpha. Financial technicians
use a simple formula to calculate this value. If you specify a N point EMA, this implies that the alpha value is equal
to 2 / (N + 1). For example, a 50 period EMA is equal to 2 / (50 + 1) = 0.0392 . Specifying a 50 period EMA is the
same as specifying a 0.0392 alpha value for the EMA calculation. You won't see the alpha value referenced
anywhere else. We will stick with the standard way to define a financial, technical analysis, EMA, which is to say
that it is a N-point EMA.

Moving Average Bands

Moving Average Bands (or Envelopes) are formed by calculating a SMA (usually a 20-period average) on a source
signal, and then forming two bands above and below the SMA signal by adding and subtracting a percentage
deviation (usually in the range 1% to 10%) from the SMA signal. Moving average bands serve as an indicator of
overbought or oversold conditions, visual representations of price trend, and an indicator of price breakouts.

38

QCTAChart - Technical Analysis Charting Tools

Traders look for when the stock price breaks out of the moving average bands.

Trading Strategies Moving Average Bands

When the stock price does not appear to be trending up or down:

Buy when the Low of the OHLC stock price penetrates the lower envelope and closes back inside the
envelope.

Sell when the stock price High of the OHLC price penetrates the upper envelope and then closes back
down inside the envelope.

When the stock price breaks out above or below the envelop – trending one direction or the other:

Buy when the prices break above the upper envelope

Sell when prices break below the lower envelope

Moving Average Band Formulas

Moving average bands are simple to calculate. Start with a SMA of the signal (usually the Close value of the OHLC)
and a bandwidth of BW. The two bands are:

39

2. QCTAChart and Technical Analysis

for all i

UpperBand[i] = SMA[i] * (1 + BW)

LowerBand[i] = SMA[i] * (1 - BW)

Bollinger Bands

Bollinger Bands (or Envelopes) are similar to Moving Average bands, except they add a little statistical science to
the formation of the indicator. Bollinger Bands still use a SMA calculation for the central line (20 period SMA is
standard). But instead of using a fixed percentage as the band width, it defines the separation between the two bands
using a multiple of the standard deviation signal, calculated using the previous N periods of the closing value of the
OHLC data. The theory is that stock price action follows a normal distribution about the mean, and 95% of a stocks
price movement should fall within two standard deviations, plus and minus, of the mean value. Price action outside
of the +-2 standard deviations band signifies that something unusual happening and that you expect some sort of
break in the current trend.

Traders look for when the stock price breaks out of the Bollinger bands (much the same as Moving Average bands).

The filled area represents the Bollinger bands. Usually Bollinger bands include the SMA line, orange in this case.

40

QCTAChart - Technical Analysis Charting Tools

Trading Strategies Bollinger

Interpretations of Bollinger Bands vary, but one is that when stock prices push up and through the upper band, the
stocks are thought to be overbought. And when stock prices push down through the lower limit, stocks are thought
to be oversold. Therefore:

Sell when the stock prices push upward through the upper limit.

Buy when the stock prices push downward through the lower limit.

There are entire books written about Bollinger Band trading strategies, including one by John Bollinger, "Bollinger
on Bollinger Bands", the man who invented the indicator. So don't expect their practical use to be as cut and dry as
the buy/sell signals described above.

Bollinger Band Formulas

K = Standard deviation multiple - usually equal to 2

for all i

SD = StandardDeviation of the previous N (usually 20) values in the N period SMA

UpperBand[i] = SMA[i] * (1 + K * SD)

LowerBand[i] = SMA[i] * (1 – K * SD)

41

2. QCTAChart and Technical Analysis

Parabolic SAR

The Parabolic SAR is used by traders to set stop loss orders for a stock.

In the example above, the green dots represent the Parabolic SAR indicator

The Parabolic SAR (Parabolic Stop and Reverse) is probably the strangest looking indicator. The Parabolic in the
name comes from the accelerating rise and fall of the indicator around the source signal.

The well known market technician J. Welles Wilder created the indicator and described it in his book New
Concepts in Technical Trading Systems. Published in 1978, the book also describes a number of other Welles
indicators, including the Average True Range, the Directional Movement Index and the Relative Strength Index.

When the parabola is below the price action it is considered bullish, and when i it is above the price action, it is
considered bearish. Since it forecasts one day in advance, traders often use the Parabolic SAR value to set stop limits
for trades that day. For example, in an upward trend, if the stock price falls below the P SAR value for that day, sell
the stock in order to protect gains.

Parabolic SAR Formulas

PSARn (Parabolic Stop And Reverse) = today’s value of the Parabolic SAR

PSARn+1 = Tomorrow's value for the PSAR. The PSAR formula forecasts one day in advance

42

QCTAChart - Technical Analysis Charting Tools

EP (Extreme Point) = The highest high of the current uptrend or the lowest low of the current downtrend.

AF (Acceleration Factor) = Determines the sensitivity of the PSAR. AF starts at .02 and increases by .02 every time
the EP rises in a Rising PSAR or EP falls in a Falling PSAR. The maximum value is usually clamped at 0.20. The
starting value, 0.02, step value 0.02 and maximum value 0.20, are all variables in the software and you can choose
anything you want.

PSARn+1 = PSARn + AFn*(EPn - PSARn)

where

AF is calculated according to the rules described above..

Special conditions which override the calculated value

• If in an upward trend, the new PSAR value is calculated and if the result is more than today’s or
yesterday’s lowest price, it must be set equal to the lower of those two days. Some texts (not
Wilder's) say to set it to the closer of the two lows. We use the lower of the two lows in this
software.

• In a downward trend the new PSAR value is calculated and if the result is less than today’s or
yesterday’s highest high price, it must be set equal to the higher of those two days. Some texts (not
Wilder's) say to set it to the closer of the two highwe. We use the higher of the two highs in this
software.

• If the next period’s PSAR value is inside (or beyond) the next period’s price range, a new trend
direction is then signaled. The PSAR must then switch sides.

• Upon a trend switch, the first PSAR value for this new trend is set to the last EP recorded on the
prior same direction trend, EP is then reset accordingly to this period’s maximum, and the
acceleration factor is reset to its initial value of 0.02. On re-calculation of the new SAR after the
switch, some packages will check to see if the new EP changes (rises in an uptrend or falls in a
down trend) first, and boost the acceleration factor on the first calculation, making it 0.04. We
always force the first calculation after a switch-over to use an acceleration factor of 0.02, and on
subsequent calculations within the trend we increase it a step at a time as the EP changes.

Secondary windows technical indicators
Underneath the primary chart you will find zero or more secondary charts. The secondary charts are used to display
technical indicators which are best displayed in their own chart area, usually because they use a y-axis coordinate
system which is not the same as the primary chart. The secondary charts always key on the first stock in the primary
chart, so you cannot monitor one stock in the Primary chart (INTC for example) and another in the secondary charts
(TXN for example). Chapter 7 describes programming the Secondary Chart windows in detail.

43

2. QCTAChart and Technical Analysis

Average Directional Indicator (ADX)

The ADX indicator is used to measure the strength of a trend.

The Average Directional Indicator (ADX) was originally developed by J. Welles Wilder and is described in his book
"New Concepts in Technical Trading System". The ADX is used to measure the strength of a trend. Its related
components, the Minus Directional Indicator (-DI) and Plus Directional Indicator (+DI), are used to measure the
strength of a trend. The ADX indicator is often used in conjunction with the Parabolic SAR indicator, to confirm a
trend. In the chart above, the Primary chart shows the Parabolic SAR indicator, and the bottom chart shows the
ADX indicator (blue line), the -DI indicator (green line) and the +DI indicator (red line);

A stock is said to be in a strong trend if the ADX value is greater than 25 (some use 20 as the threshold). Note, that
the ADX indicator does NOT specify a trend direction. So a strong positive trend, or a strong negative trend, will
result in ADX values greater than 25 (20). So the ADX value can signal traders whether or not they should be using
trend trading strategy.

Assuming you are in an upward trend confirmed by an ADX value of 25 (or 20), a buy signal occurs when +DI
crosses above – DI, with a stop loss place on the low of the day. The buy signal remains as long as this low holds,
even if +DI crosses back below - DI. If the stock price falls below the stop loss low, the buy signal is ended. If the
trade become profitable, traders should uses stop losses (perhaps the Parabolic SAR value) to protect their profit. A
sell signal occurs when - DI crosses above +DI.

ADX, +DI and -DI Formulas

The ADX indicator is a slow moving signal, because it uses long exponential smoothing periods. Also, it uses

44

QCTAChart - Technical Analysis Charting Tools

unique variant of exponential smoothing, called Wilder smoothing. As discussed in the Exponential Moving
Average section, the standard exponential smoothing equation is:

EMA[i] = EMA[i-1] * (1 – alpha) + Y[i] * alpha

alpha is the smoothing constant in the range 0.0 to 1.0

 for regular (non-Wilder) time-based exponential moving average calculations, the alpha value is calculated as:

alpha = 2 / (N + 1)

where N is the number of time periods specified in the smoothing (in a 20 point exponential smooth of a set of data,
the alpha value is calculated as (2 / 21) or 0.0952. But in the case of Wilder smoothing, the formal for alpha is

alpha = 1 / N

so that if the period length is 20, the alpha value of the exponential smoothing equations becomes 0.05.

The ADX indicator also uses something called the True Range, which is a value for each period calculated from the
OHLC for that period and the previous period. The formula is:

for i>0

True Range[i] = Max(Highs[i] – Lows[i], Abs(Highs[i] – Closes[i-1]), Abs(Closes[i-1] – Lows[i]))

Because the + and – signs in front of +DM and -DM can be confused with arithmetic operators, we rename those
indicators pDM and mDM for remaining formulas.

for i>0

pDM[i] = Highs[i] - Highs[i-1] Positive in a rising trend
mDM[i] = Lows[i-1] - Lows[i] Positive in a falling trend

An inside day (where both calculations are negative) both values are set to 0.

If pDM[i] >= mDM, then pDM[i] remains at its calculated value, mDM[i] is set to 0.0.

If pDM[i] < mDM, then mDM[i] remains at its calculated value, mDM[i] is set to 0.0.

Calculate the True Range values for the OHLC data

TR14 = 14 period Wilder EMA of True Range data

Calculate the 14 Period Wilder EMA of the pDM and mDM data

pDM14 = 14 period Wilder EMA of pDM data

mDM14 = 14 period Wilder EMA of mDM data

45

2. QCTAChart and Technical Analysis

Calculate the +DI and -DI indicators

for i > 0

pDI14[i] = pDM14[i] divided by TR14[i]

mDI14[i] = mDM14[i] divided by TR14[i]

Then, calculate the components of the Average Directional Movement Index (ADX):

ADX[i] = 100 * ABS((pDI14[i] - mDI14[i]) / (pDI14[i] + mDI14[i]))

ADX14 = 14 period Wilder EMA of AD data

The actual returned values are the pDI14 array, the mDI14 array and the ADX14 array, all representing 14 period
Wilder EMA of the underlying index.

Special Note

The proper use of the ADX indicator always requires that your historical data start at least 150 periods (days) prior
to the time period you are interested in. Because it takes that long for the exponential smoothing averages to settle
down. Results where your data starts only 50 days before the the time period you are interested will be similar to,
but not the same as the results where a 150 day lead time is used.

Momentum (also known as the Change Indicator)

The Momentum indicator is used to identify the speed (or strength) of a price movement. It is calculated as the
difference between today's closing price and the close N days ago.

46

QCTAChart - Technical Analysis Charting Tools

While the Momentum indicator is positive, it designates an continuing upward trend in prices. A negative upward
trend designates a continuing downward trend.

Trading Strategies Momentum

Action Limits
Set high (overbought) and low (oversold) thresholds for action. No firm algorithm is available for this. Some suggest
setting the thresholds at 67% the high and low peak values on both sides of 0.0.

Buy when
The Momentum indicator drops below the lower threshold and then rises back above it

Sell when
Momentum crosses to above the overbought level and then falls back below it.

On a bearish divergence - with the first peak above the overbought level.

Formula

For i >= N

Momentum[i] = (Close [i] - Close [i-N])

47

2. QCTAChart and Technical Analysis

Money Flow (MFI)

The Money Flow indicator provides more information than the Relative Strength indicator, because it also takes
into account volume.

The Money Flow indicator is considered an oscillator, cycling between 0 and 100. it was create by market
technicians Gene Quong and Avrum Soudack. It uses both the Typical Prices for a period, and the period volume, in
its calculation. It is sometimes referred to as a volume adjusted RSI indicator.

Trading Strategies Money Flow

Action Limits
Set high (overbought) and low (oversold) thresholds for action limits. Recommended value for the high limit is 80,
and the low limit is 20.

Buy when
The Money Flow indicator drops below the lower threshold and then rises back above it.

A reverse of the indicator to the upside while the overall stock trend is down. The money flow reversal is considered
a leading indicator of the future stock trend.

Sell when
The Money Flow indicator crosses to above the overbought level and then falls back below it.

A reverse of the indicator to the downside while the overall stock trend is up. The money flow reversal is considered
a leading indicator of the future stock trend.

48

QCTAChart - Technical Analysis Charting Tools

Formula

Calculate the Typical Price for each period = (High + Low + Close)/3

Calculate the Raw Money Flow for each period = Typical Price x Volume

For each period, calculate as separate values the positive money flow over the previous N periods (usually
14), and the negative money flow over the same time frame.

Calculate the Money Flow Ratio as the ratio (Positive Money Flow)/(Negative Money Flow)

Normalize Money flow ratio for the range 0-100 using:

 Money Flow Index = 100 - 100/(1 + Money Flow Ratio)

Rate of Change (ROC)

The Rate of Change indicator is a normalized version of the Momentum indicator.

49

2. QCTAChart and Technical Analysis

The Rate of Change indicator is essentially a normalized version of the Momentum indicator. It takes the
Momentum value at each time period and divides it by the Close price N days ago, where N is the same value used
in the Momentum calculation. The result is multiplied by 100 to convert from a fraction to a percentage.

Trading Strategies Rate of Change

Buy when

When in an up trend, buy when the ROC value passes upward through zero.

Sell when

When in a down trend sell when the ROC value passes downward through zero

Formula

For i >= N

ROC[i] = 100 * ((Close [i] - Close [i-N])/ Close [i-N])

50

QCTAChart - Technical Analysis Charting Tools

Relative Strength (RSI)

The Relative String Indicator compares the magnitude of gains (up-Closes) versus losses (down-Closes) for the time
period under consideration, in order to determine when a stock is overbought or oversold.

The Relative Strength Indicator (RSI) was originally developed by J. Welles Wilder and is described in his book
"New Concepts in Technical Trading System". It indicates strength or weakness in a security based on the closing
price action within the specified trading period. The RSI is calculated using the ratio of higher closes to lower
closes: stocks which have had more or stronger positive changes have a higher RSI than stocks which have had more
or stronger negative changes. The RSI indicator is normalized so all values are percentages in the range 0 to 100.
Intermediate values in the calculation are smoothed using the Wilder exponential smoothing method, usually using a
14 day period.

Trading Strategies RSI

Action Limits
Recommended action limits for RSI are a high limit of 70, and a low limit of 30.

Trading Strategies Rate of Change

In a non-trending market

Buy when

Buy when the RSI value passes upwards and through the low action limit (30).

51

2. QCTAChart and Technical Analysis

Sell when

Sell when the RSI value passes downward and through the high action limit (70).

In a trending market

Buy when

Buy when the RSI value passes upwards and through the low action limit (40).

Sell when

Sell when the RSI value passes downward and through the high action limit (60).

Formula

For i >= 1

if (Close [i] - Close [i-1]) > 0

U[i] = (Close [i] - Close [i-1])

D[i] = 0;

else if (Close [i-1] - Close [i]) > 0

U[i] = 0

D[i] = (Close [i-1] - Close [i])

else if (Close [i-1] - Close [i]) == 0

U[i] = 0

D[i] = 0

Each U[i] and D[i] value is smoothed using an N period exponential smoothing routine. The result is

U[i]Sm

D[i]Sm

The RS value is calculated as

RS[i] = U[i]Sm / D[i]Sm

and finally, the RSI values is normalized to the range 0 to 100 using the formula

RSI[i] = 100 – (100 / (1 + RS[i]))

52

QCTAChart - Technical Analysis Charting Tools

Stochastic (Fast and Slow)

The bottom chart plots %K vs %D Fast Stochastic

The Stochastic indicator was developed by George Lane, president of Investment Educators Inc, Watseka, IL. It is
based on the assumption that as prices trend upwards, closing prices tend to be in the upper part of the periods
OHLC price range. And the opposite is true, in down trends, closing prices tend to be in the lower part of the periods
OHLC price range.

Formulas

The first line in the Stochastic indicator is the %K line. The %K line is calculated as

%K[i] = 100 * ((Close[i] – L14[i])/(H14[i] – L14[i]))

where Close[i] is the periods closing price, L14[i] is the lowest low for the last Nk periods, and H14[i] is the highest
high for the last Nk periods, where Nk is usually 14 periods. This results in a value of 0 to 100. A %K[i] value of
over 80 means that the closing price is very near the top of the OHLC range, and a value of under 20 means that the
closing price is near the bottom of the OHLC range.

The second line in the Stochastic indicator is the %D line. The %D line is calculated as a simple Nd point moving
average of the %K line, where Nd is usually 3 periods. So it is just a slower, smoother version of %K line. The 3
period smoothed version of %D is known as the Fast Stochastic indicator. If %D is smoothed using a 3 period

53

2. QCTAChart and Technical Analysis

average, then it becomes the Slow Stochastic indicator. The Slow Stochastic indicator is the more widely used. One
confusing item is that both the Fast Stochastic and the Slow Stochastic are referred to as %D.

The bottom chart plots %K vs %D Slow Stochastic. If you compare it to the previous chart you will see that the red
line is more smoothed, and lags a bit.

Trading Strategies Stochastic

Action Limits
Recommended action limits for Stochastic charts are a high limit of 80, and a low limit of 20.

Buy when

Buy when the %K line passes up and through the %D line when the %D line is below the low (20) action limit
value.

Sell when

Sell when the %K line passes down and through the %D line when the %D line is above the high (80) action limit
value.

54

QCTAChart - Technical Analysis Charting Tools

Williams %R

The Williams %R indicator is used to detect overbought and oversold conditions for the given stock.

Williams %R was developed by Larry Williams, a publisher of trading and technical analysis materials, to indicate
overbought and oversold market conditions for a stock. Similar to the Stochastic indicator, it compares a stock's
close to the high-low range over a certain period of time, usually 14 days. For some strange reason the indicator is
normalized in the range 0.0 to -100, so that an overbought condition is represented by the indicator above the -20
line, and an oversold condition represented by the indicator below -80. A value of -100 for the index means that the
close today was at the lowest low of the past N days, and a value of 0 for the index means that a close today was at
the highest high of the past N days. When it is plotted the Williams %R indicator looks the same as the Stochastic
%K indicator, except that the y-axis values are shifted down by 100.

Trading Strategies Stochastic

Action Limits
Recommended action limits for Williams %R charts, are a high limit of -20 (overbought), and a low limit of -80
(oversold). While Williams himself specifies a 10 day period, most users prefer the 14 day period, the same as the
Stochastic %K indicator.

Williams used a 10 trading day period and considered values below -80 as oversold and above -20 as overbought.
Most users seem to use a 14 day period though, consistent with the Stochastic indicator time period.

Buy when

Buy when the %R line passes down and through the low (-80) action limit value.

55

2. QCTAChart and Technical Analysis

Sell when

Sell when the %R line passes up and through the high (-20) action limit value.

Formulas

The Williams %R indicator is calculated as:

%R[i] = -100 * ((Close[i] – H14[i])/(H14[i] – L14[i]))

where Close[i] is the periods closing price, L14[i] is the lowest low for the last N periods, and H14[i] is the highest
high for the last N periods, where N is usually 14 periods. This results in a value of -100 to 0. A %R[i] value of
over -20 means that the closing price is very near the top of the OHLC range, and a value of under -80 means that
the closing price is near the bottom of the OHLC range.

Moving Average Convergence/Divergence (MACD)

MACD is used as a measure of the strength, direction, momentum and length of a trend.

The MACD was developed by Gerald Appel and is discussed in his book, The Moving Average Convergence
Divergence Trading Method. It is a comparison of several moving averages (exponential) derived from a stocks
closing prices.

56

QCTAChart - Technical Analysis Charting Tools

The first EMA uses a 26 day period and is referred to as the long EMA line. The second EMA uses a 12 day period
and is referred to as the short EMA line. The MACD line is calculated by subtracting the long (26) EMA line from
the short (12) EMA line. The signal line is calculated as a 9 day EMA of the MACD line. The two lines actually
plotted in the indicator are the MACD line, and the signal line. The crossover of MACD and signal lines indicates a
buying or selling opportunity. Additionally, a histogram, representing the differences between the MACD line, and
the signal line, is usually part of a MACD chart.

Trading Strategies Stochastic

Buy when

Buy when the MACD line passes up and through the signal line - this corresponds to the histogram going positive.

Sell when

Sell when the MACD line falls below the signal line – this corresponds to the histogram going negative.

Formulas

The MACD indicator is calculated as follows:

The long EMA line is calculated as the EMA(nlong) of the close prices.

The short EMA line is calculated as the EMA(nshort) of the close prices.

The MACD line is calculated as the difference between the long EMA and the short EMA.

The signal line is calculated as the EMA(nsignal) of the MACD line.

The histogram is calculated as the MACD line minus the signal line.

Where nlong, nshort and nsignal represent the exponential smoothing periods for the long EMA, the short
EMA and the signal line, respectively.

Special Note

Some packages use a SMA (Simple Moving Average), rather than an EMA (Exponential Moving Average) in the
calculations. That is not how the MACD is normally defined though.

57

2. QCTAChart and Technical Analysis

Volume charts

Traders expect that major changes in the direction of a trend are accompanied by high volume.

Volume represents the number of shares, or contracts, which traded during a period of time. Since it is part of the
standard OHLCV price packet available in historical data feeds, it gives valuable information about the significance
of the price action of a stock. A price movement in either direction is considered more relevant if is is simultaneous
with a large increase in share volume. If you are monitoring the trend of a stock, and that stock suddenly reverses the
trend, that is the time to check the volume to see if the reversal was accompanied by a sharp increase in the trading
volume. If not, then that can be a sign that there is no conviction by the trend reversal, and you can expect the stock
to reverse back. Volume charts can be smoothed using the standard smoothing techniques to help filter out the noise
of no use to the trader.

Buy when

Buy when the trend moves from negative to positive, if the transition is accompanied by large volume.

Sell when

Sell when the trend moves from positive to negative, if the transition is accompanied by large volume.

58

QCTAChart - Technical Analysis Charting Tools

Other Chart Features

Event-based Coordinate System

This software makes use of a new set of classes have been added to the underlying QCChart2D charting package in
support of an event-based coordinate system. In event-based plotting, the coordinate system is scaled to the number
of event objects. Each event object represents an x-value, and one or more y-values. The x-value can be time based,
or numeric based, while the y-values are numeric based. Since an event object can represent one or more y-values
for a single x-value, it can be used as the source for simple plot types (simple line plot, simple bar plot, simple
scatter plot, simple line marker plot) and group plot types (open-high-low-close plots, candlestick plots, group bars,
stacked bars, etc.). The most common use for event-based plotting will be for displaying time-based data which is
discontinuous: financial markets data for example. In financial markets, the number trading hours in a day may
change, and the actual trading days. Weekends, holidays, and unused portions of the day can be excluded from the
plot scale, producing continuous plots of discontinuous data.

An event-based coordinate system plots data points equally spaced, regardless of the time stamp. Data plots
smoothly transition off-hours, weekends and holidays.

Above is a plot of the OHLC data for INTC (Intel) over the December 2013 Christmas holiday. Note that the only
dates included are the trading dates (12/23, 12/24, 12/26, 12/27, 12/30, 12/31, 1 /2 /2014, etc. The non-trading days
of 12/25, 12/28, 12/29, 1/1/2104 are not included in the charts coordinate system. The coordinate system is defined
by the data contained within. If for some reason you did have data for 12/25/2104, if it was included in the OHLC

59

2. QCTAChart and Technical Analysis

data source, it would be included in the scale.

Financial Chart objects which can be dropped into a chart

There is a small set of technical analysis objects which can be placed in the Primary chart. These are trend lines
(FinTrendLine), a financial Fibonacci object (FinFibonacciPlot), horizontal (FinHLine) and vertical (FinVLine) data
markers, arrows (FinArrow), and two types of labels for annotations. The first label type (FinText) is positioned
using normalized coordinates, and does not scroll when the chart scrolls. The second label type (FinLabel) is
specified using physical coordinates and will scroll when the chart is scrolled.

Trend Line

Drawing a trend line helps determine support and resistance levels for a stock trending upwards or downwards.

Select the Trend option from the toolbar, then click the start and ending point of the trend line in the Primary Chart
window. The trend line can be moved by click-dragging the center of the line. The slope of the line is controlled by
click-dragging the endpoints of the trend line. The price values of the trend line endpoints are also displayed. Once
placed, you can still adjust the position of the line with great precision.

60

QCTAChart - Technical Analysis Charting Tools

Horizontal and Vertical data markers

The horizontal data marker is useful for marking support and resistance levels.

Select the Hline option from the toolbar, click on the chart at the desired location, and a horizontal data marker will
appear. It can be moved in a vertical plane. The y-value of the marker is displayed on the left.

61

2. QCTAChart and Technical Analysis

A vertical data marker is useful for making important time period.

Similarly, the VLine option will place a vertical data marker on the chart, which can be moved in the horizontal
plane. The x-value of the marker is displayed at the top.

62

QCTAChart - Technical Analysis Charting Tools

Fibonacci Overlay

A Fibonacci overlay is used to predict support and resistance levels for a stock.

A Fibonacci overlay is used in some types of technical analysis wave theory to identify support and resistance levels
for a stock. The values on the right of the horizontal lines in the example above (0, 23.6, 38.2, 50.0, 61.8, 100, 161.8
and 261.8) represent percentage values and are calculated using the famous Fibonacci sequence (0, 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, 89, 144, 233). How do the first set of values derive from the second you ask?

Choose a seed value from the Fibonacci sequence of 89.

233/89 = 2.618

144/89 = 1.618

89/89 = 1.00

55/89 = 0.618

34/89 = 0.382

21/89 = 0.236

And the 0.50 level is thrown in for good measure, because market technicians like 50% as a retracement level.

Typically you place the bottom of the Fibonacci rectangle at a local minimum, and the maximum at a local
maximum, and the intermediate values represent price support and resistance levels.

63

2. QCTAChart and Technical Analysis

Select the Fibon option from the toolbar, then click the lower-left corner, and the upper-right corner, of where you
want the Fibonacci overlay. The Fibonacci overlay will be drawn at the selected location, with the Fibonacci levels 0
and 100 at the click points. The overlay can be adjusted by click-dragging the corners, or the center, of the overlay.
If you define the Fibonacci rectangle by clicking the top corner point first, then the bottom corner point, an inverted
Fibonacci sequence will be created, with the 0.0 level at the top, and levels increasing towards 262, downward.

Labels for Annotation

FinText objects do not scroll with the chart x-axis, and are used for text that you always want on the chart,
regardless of the time frame.

There are two types of labels you can use for annotations. The first uses the FinText class. It is placed in the chart
using Normalized graph coordinates. Because of this, it does not scroll, or change position, when the graph y-scale
is changed, or when the graph is panned or zoomed. Because Normalized Graph coordinates do not change even if
the graphs physical coordinate system changes.

64

QCTAChart - Technical Analysis Charting Tools

The FinLabel object will scroll with the chart.

The second type of annotation uses the FinLabel class. It is placed in the chart using Physical graph coordinates.
Because of this, it scrolls, and change position, when the graph y-scale is changed, or when the graph is panned or
zoomed. Because the FinLabel object sticks to the physical coordinates where it was placed.

Select the Text or Label option from the toolbar, then click the position where you want the label. You will then see
a dialog box with options regarding Font, the text string, colors, and justification. When you close the dialog, the
label will be drawn at the click location. The overlay can be adjusted by click-dragging the center of the label.

65

2. QCTAChart and Technical Analysis

Unlike the FinText object, FinLabel objects do scroll when the x-axis scrolls, and are used when you want the label
to track the underlying plot.

66

QCTAChart - Technical Analysis Charting Tools

Arrows for Annotation

Arrow objects include a text annotation (similar to a FinLabel object). Arrow objects will scroll with the data.

The FinArrow object is a line, ending in an arrowhead at one end, and annotation at the other, which can be place in
the primary chart. The line placement and slope, the arrowhead size, the line width, text and font are all user
programmable.

Select the Arrow option from the toolbar, then click the starting (the arrow head), and ending position where you
want the arrow. You will then see a dialog box with options regarding Font, the text string, colors, justification, and
arrowhead size. When you close the dialog, the arrow, and accompanying label will be drawn using the starting and
ending click locations. The arrow can be adjusted by click-dragging the endpoints, or the shaft of the arrow.

67

2. QCTAChart and Technical Analysis

Current Financial Information Data Table

A Yahoo-based data table is shown at the top of the chart, above the zoom window.

The FinChartView window has the option to display a scrollable table which contains current financial data for a
user-defined portfolio of stocks. The user can click on a row and automatically have all of the charts updated to
reflect technical indicators for the selected stock. There are two sources for current financial data: Yahoo Fiance,
and Quandl. The data they provide is similar, yet different. You can select which stocks (rows) and which financial
data items (columns) you want displayed in the table. The table will scroll horizontally and vertically as needed.

68

3. Class Architecture of the Technical Analysis Charting
Tools for .Net Class Library

This chapter presents an overview of the QCTAChart class architecture. It discusses the major design
considerations of the architecture.

Charting Tools for .Net Class Summary
The QCTAChart library is a super set of the QCChart2D library. The classes of the QCChart2D library
are an integral part of the software. A summary of the QCChart2D classes appears below.

QCChart2D Class Summary

Chart view class The ChartView class is a UserControl subclass that manages the graph
objects placed in the graph

Data classes There are data classes for simple xy and group data types. There are
also data classes that handle System.DateTime date/time data and
contour data.

Scale transform classes The scale transform classes handle the conversion of physical
coordinate values to working coordinate values for a single dimension.

Coordinate transform classes

The coordinate transform classes handle the conversion of physical
coordinate values to working coordinate values for a parametric (2D)
coordinate system.

Attribute class The attribute class encapsulates the most common attributes (line color,
fill color, line style, line thickness, etc.) for a chart object.

Auto-Scale classes The coordinate transform classes use the auto-scale classes to establish
the minimum and maximum values used to scale a 2D coordinate
system. The axis classes also use the auto-scale classes to establish
proper tick mark spacing values.

Charting object classes The chart object classes includes all objects placeable in a chart. That
includes axes, axes labels, plot objects (line plots, bar graphs, scatter
plots, etc.), grids, titles, backgrounds, images and arbitrary shapes.

Mouse interaction classes These classes, directly and indirectly System.EventHandler delegates
that trap mouse events and permit the user to create and move data
cursors, move plot objects, display tooltips and select data points in all
types of graphs.

File and printer rendering These classes render the chart image to a printer, to a variety of file
formats including JPEG, and BMP, or to a .Net Image object.

69

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library

Miscellaneous utility classes Other classes use these for data storage, file I/O, and data processing.

For each of these categories see the associated description in the QCChart2D manual (QCChart2DNetManual.pdf).
The QCTAChart classes are in addition to the ones above. They are summarized below.

Technical Analysis Charting Tools for .Net Class Summary

The QCTAChart classes are a super set of the QCChart2D charting software. No attempt should be made to utilize
the QCTAChart classes without a good understanding of the QCChart2D classes. See the
QCChart2DNetManual PDF file for detailed information about the QCChart2D classes.

FinChartView

Com.quinncurtis.chart2dnet.ChartView
FinChartView

The main view class of software, which combines a primary chart, with multiple technical indicators in secondary
charts. Also included is a zoom window which controls zooming and panning of all of the charts and a financial
data table. It can all be managed by the user from dialog boxes with minimal direct programming. Using it, you can
manage a portfolio of securities, from different exchanges, comparing them against one another, and displaying a
variety of technical indicators.

FinPlotParameters

FinPlotParameters
FinADXIndicatorPlot
FinBollingerBandsPlot
FinCandlestickVolumePlot
FinExponentialMovingAveragePlot
FinMABandsPlot
FinMACDIndicatorPlot
FinMomentumIndicatorPlot
FinMoneyFlowIndicatorPlot
FinParabolicSARPlot
FinPointAndFigureChartPlot
FinRateOfChangeIndicatorPlot
FinRenkoChartPlot
FinRSIIndicatorPlot
FinSimpleMovingAveragePlot
FinStochasticIndicatorPlot
FinTickerItemPlot
FinVolumeAndMAPlot
FinVolumePlot
FinWilliamsRIndicatorPlot
FinZoomPlot

The FinPlotParameters is the base class for all of financial plots which can appear in the FinChartView windows. It
includes the stock plots of the data in the primary chart, the technical indicators, and the zoom plot window.

70

QCTAChart - Technical Analysis Charting Tools

Primary Window stock plots

FinTickerItemPlot – The FinTickerItemPlot can be configured to plot historical OHLC data as a
Line, OHLC, OHLC Bar, Candlestick, Candlestick Volume, or a Mountain plot.

FinPointAndFigureChartPlot – Displays a point and figure chart in the primary window.

FinRenkoChartPlot – Displays a Renko chart in the primary window.

Primary Window Overlay Technical Indicators

FinBollingerBandsPlot - The Bollinger Bands technical indicator, displayed as an overlay in the
primary window.

FinExponentialMovingAveragePlot - The Exponential Moving Average technical indicator,
displayed as an overlay in the primary window.

FinMABandsPlot - The Moving Average Bands technical indicator, displayed as an overlay in
the primary window.

FinSimpleMovingAveragePlot - The Simple Moving Average technical indicator, displayed as
an overlay in the primary window.

FinParabolicSARPlot – The Wilder Parabolic SAR technical indicator, displayed as an overlay in
the primary window.

Secondary Window(s) Technical Indicators

FinADXIndicatorPlot – The ADX technical indicator, displayed in a secondary window.

FinMACDIndicatorPlot – The MACD technical indicator, displayed in a secondary window.

FinMomentumIndicatorPlot - The Momentum technical indicator, displayed in a secondary
window.

FinMoneyFlowIndicatorPlot - The Money Flow technical indicator, displayed in a secondary
window.

FinRateOfChangeIndicatorPlot - The Rate of Change technical indicator, displayed in a
secondary window.

FinRSIIndicatorPlot - The RSI technical indicator, displayed in a secondary window.

FinStochasticIndicatorPlot - The Stochastic technical indicator, displayed in a secondary
window.

FinVolumeAndMAPlot - The Volume and Moving Average of Volume technical indicator,
displayed in a secondary window.

FinVolumePlot - The Volume technical indicator, displayed in a secondary window.

FinWilliamsRIndicatorPlot - The Williams R technical indicator, displayed in a secondary
window.

71

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library

Zoom Window
FinZoomPlot - The zoom window, above the primary chart, displays the entirety of the selected
stocks historical data. The user can use this chart to zoom in on specific regions of the historical
data.

FinDataSourceBase

FinDataSourceBase
FinGenericHistoricalDataSource

FinGoogleHistoricalDataSource
FinGoogleURLHistoricalDataSource
FinGoogleCSVFileHistoricalDataSource
FinGoogleURLIntradayDataSource

FinMetaStockHistoricalDataSource
FinMetaStockCSVFileHistoricalDataSource
FinMetaStockURLHistoricalDataSource

FinQuandlHistoricalDataSource
FinQuandlCSVFileHistoricalDataSource
FinQuandlURLHistoricalDataSource

FinYahooHistoricalDataSource
FinYahooCSVFileHistoricalDataSource
FinYahooURLHistoricalDataSource
FinYahooURLIntradayDataSource

FinGenericCurrentDataSource

FinQuandlCurrentDataSource
FinQuandlURLCurrentDataDataSource

FinYahooCurrentDataSource
FinYahooURLCurrentDataSource

The historical data source classes pull OHLCV historical (daily) data from free URL data sources such as
Yahoo, Google, and Quandl. In the Metastock data sources, it supports reading Metastock CSV OHLCV
data from files. Both Yahoo, and Google provide intra-day data feeds in addition to the daily historical data
feeds.

Current financial data can be read from Yahoo and Quandl URL's. Current financial data consists of current
P/E ratio, Yield, Price to Sales ratio, Dept to Equity Ratio, etc. Yahoo and Quandl support similar, yet
different sets of current financial data, and each has to be configured uniquely.

FinGenericHistoricalDataSource – The base class for all historical datasource classes

FinGoogleHistoricalDataSource – The base class for Google historical data feeds. Google has
officially deprecated all of their Finance data feeds. So while they continue to work, they will
probably stop working at some time in the future.

FinGoogleURLHistoricalDataSource – Reads daily historical OHLCV data from the
Google Finance URL

72

QCTAChart - Technical Analysis Charting Tools

FinGoogleCSVFileHistoricalDataSource -Reads historical OHLCV data from Google
data file format.

FinGoogleURLIntradayDataSource – Reads intra-day OHLC data from the Google
Finance URL

FinMetaStockHistoricalDataSource – The base class for Metastock historical data feeds. The
Metastock 7-column and 8-column CSV formats are the most common file formats for historical
stock data.

FinMetaStockCSVFileHistoricalDataSource– Reads historical OHLCV data from any
file formatted using the Metastock 7 column and 8 column CSV file formats.

FinQuandlHistoricalDataSource – The base class for Quandl historical data feeds

FinQuandlCSVFileHistoricalDataSource - Reads daily historical OHLCV data from a
CSV file of Quandl sourced data.

FinQuandlURLHistoricalDataSource - Reads daily historical OHLCV data from the
Quandl Finance URL. CSV, XML and JSON data formats are supported.

FinYahooHistoricalDataSource

FinYahooCSVFileHistoricalDataSource - Reads historical OHLCV data from Yahoo
data file format.

FinYahooURLHistoricalDataSource - Reads daily historical OHLCV data from the
Yahoo Finance URL. CSV, XML and JSON data formats are supported.

FinYahooURLIntradayDataSource – Reads intra-day OHLC data from the Yahoo
Finance URL

FinGenericCurrentDataSource – The base class for all current datasource classes

FinQuandlCurrentDataSource -FinQuandlURLCurrentDataDataSource - Reads current
financial data from the Quandl URL data source. CSV, XML and JSON data formats are
supported.

FinYahooCurrentDataSource - FinYahooURLCurrentDataSource - Reads current financial data
from the Yahoo URL data source. CSV, XML and JSON data formats are supported.

73

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library

Point and Figure Chart Objects

Com.quinncurtis.chart2dnet.LinearAutoScale
FinPointAndFigureAutoScale

Com.quinncurtis.chart2dnet.LinearScale
FinPointAndFigureScale

Com.quinncurtis.chart2dnet.EventCoordinates
FinPointAndFigureCoordinates

Com.quinncurtis.chart2dnet.Axis
FinPointAndFigureYAxis

Com.quinncurtis.chart2dnet..EventAxis
FinPointAndFigureXAxis

Com.quinncurtis.chart2dnet.EventAxisLabels
FinPointAndFigureXAxisLabels

Com.quinncurtis.chart2dnet.GroupPlot
FinPointAndFigurePlot

The Point and Figure charts are unique in many different ways. The x- and y-scales of a Point and Figure coordinate
system are unique. The x-scale is non-linear with respect to time, and the y-scale is non-linear and non-logarithmic
with respect to stock price. So a unique set of classes specific to Point and Figure charts were created for the
software.

FinPointAndFigureAutoScale

Used to auto-scale the plotting area for a Point and Figure chart

FinPointAndFigureScale

A Point and Figure chart uses a unique, non-linear y-scale based on box size. As the y-values increase in the scale
from 0.1 to 1000, the box size changes.

FinPointAndFigureCoordinates

The Point and Figure chart uses an event-based coordinate system which is non-linear (PointAndFigureScale) in the
y-scale, and linear, but not time-based, or event number-based, in the x-scale.

FinPointAndFigureYAxis

Used in a Point and Figure chart to display the y-axis of the Point and Figure coordinate system.

FinPointAndFigureXAxis

Used in a Point and Figure chart to display the x-axis of the Point and Figure coordinate system

74

QCTAChart - Technical Analysis Charting Tools

FinPointAndFigureXAxisLabels

Used in a Point and Figure chart to display the x-axis labels of a PointAndFigureXAxis. The PointAndFigureYAxis
can use the standard NumericAxisLabels class for display of the axis tick mark values.

FinPointAndFigurePlot

Plots the Point and Figure chart as a collection of Xs (uptrends) and Os (downtrends).

New Plot Objects you can use to plot OHLCV data in ChartView, or
FinChartView window

Com.quinncurtis.chart2dnet.GroupPlot
FinCandlestickVolumePlot

 FinOHLCBarPlot

FinCandlestickVolumePlot

This OHLCV plot type uses the volume value, in each OHLCV data item, to control the width of the respective
candlestick plot item.

FinOHLCBarPlot

This OHLCV plot type uses the displays the OHLC data in a vertical floating bar format.

New Financial Chart Objects you can place in a chart

Com.quinncurtis.chart2dnet.SimplePlot
FinFibonacciPlot

Com.quinncurtis.chart2dnet.Marker
FinHLine
FinVLine

Com.quinncurtis.chart2dnet.SimpleLineMarkerPlot
FinTrendLine
FinArrow

Com.quinncurtis.chart2dnet.StringLabel
FinText
FinLabel

FinFibonacciPlot

75

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library

Place a set of Fibonacci levels in a chart as an indicator of retracement prices. Object is moveable and resizeable.

FinHLine

Place a horizontal data marker in a chart, displaying the y-axis value of the data marker on the end. Object is
moveable.

FinVLine

Place a vertical data marker in a chart, displaying the x-axis value of the marker on the end. Object is moveable.

FinTrendLine

Place a trend line in a chart. The object can be moved whole, and the endpoints can be moved independently.

FinText

Place a text label in a chart using Normalized Graph Coordinates, which does not move when the chart scale
changes.

FinLabel

Place a text label in a chart using Physical Graph Coordinates, which will follow the data as the chart is panned and
zoomed.

FinArrow

Place an arrow in a chart. The arrow can be moved whole, and the endpoints can be moved independently. The
arrow can have a text annotation at the tail end of the arrow.

Other useful classes

FinStrings

All of the strings used in the software are defined in a Dictionary object in the static FinStrings class.

FinChartConstants

Consolidates most of the constants used throughout the software

FinChartData

Organizes all of the historical and current financial datasets used in FinChartView window.

FinChartPlotBase

Contains all of the charting objects needed by a chart in FinChartView window. Each chart (Primary chart,
secondary charts, and zoom chart) is its own FinChartPlotBase object.

FinChartSupport

76

QCTAChart - Technical Analysis Charting Tools

A grouping of common support routines for the software.

FinTimeSeriesDataset

Subclasses a EventGroupDataset and adds a historical data source object which will acquire the specified OHLCV
data from from a URL or a file

FinTechPrimaryChartDialog

The dialog box for the Primary chart options.

FinTechSecondaryChartDialog

The dialog box for the Secondary chart options.

FinEditAttributeDialog

Edit a single line attribute with color, line style, line thickness and alpha value options

FinEditAttributeDialog2

Edit one to three attributes with color, line style, and line thickness options

FinEditAttributeDialog3

Edit one to three attributes with color, line style, and line thickness options. The first attribute also includes an alpha
option.

FinEditAttributeDialog4

Edit a group of line and fill attributes for a single object. Includes line color, fill color, line style, line thickness, line
alpha, fill alpha and bar width options.

FinEditChartAttributes

Edit the general characteristics of the primary and secondary charts. Includes the chart size, the button colors,
background colors, plot area style and colors, axes line and text colors, font sizes, and zoom windows, data table
and default date format (US MM/DD/YY format or Euro DD/MM/YY format).

FinEditDataTableDialog

Edit the data table characteristics. Includes the number of rows and columns, the table font and color, and the
background colors and style.

FinEditFillColorsDialog

Edit one to four fill attributes for an objects which use multiple fill colors. The first fill color also has an alpha
option.

FinEditLimitsAttributesDialog

Edit the attributes for the high and low limits used in technical indicator charts. It includes unique colors for the
high and low limits, and common values for r the line style, line thickness, fill mode and fill alpha value.

FinEditLineDialog

77

3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library

Edit a line object which also has text, date, or numeric readouts, such as the FinTrendLine, FinHLine and FinVLine
and FinArrow. Line attributres include the line color, line style, line thickness and grab handles attributes. Text
attributes include general Font options, and numeric precision.

FinEditPointAndFigureDialog

Edit the characteristics of a Point and Figure plot. Includes the upside and downside color attributes, box size mode,
box size value (if fixed), pricing mode, reversal count and plot type.

FinEditRenkoDialog

Edit the characteristics of a Renko plot. Includes the upside and downside color attributes, box size mode, box size
value (if fixed), pricing mode and reversal count.

FinEditScatterPlotAttributeDialog

Edit the characteristics of a scatter plot. Includes the color, symbol, symbol size, line width, symbol fill and alpha
value.

FinEditTextDialog

Edit the characteristics of text object. Includes the text Font, text string, text color, background color options,
clipping options, vertical and horizontal justification options.

78

QCTAChart - Technical Analysis Charting Tools

79

4. QCChart2D for .Net

This chapter is a summary of the information in the QCChart2DNetManual PDF file. It is not meant to
replace that information. Refer to that manual for detailed information concerning these classes.

QCChart2D for .Net Class Summary
The following categories of classes realize these design considerations.

Chart view class The chart view class is a UserControl subclass that manages the
graph objects placed in the graph

Data classes There are data classes for simple xy and group data types. There are
also data classes that handle System.DateTime date/time data and
contour data.

Scale transform classes The scale transform classes handle the conversion of physical
coordinate values to working coordinate values for a single
dimension.

Coordinate transform classes The coordinate transform classes handle the conversion of physical
coordinate values to working coordinate values for a parametric (2D)
coordinate system.

Attribute class The attribute class encapsulates the most common attributes (line
color, fill color, line style, line thickness, etc.) for a chart object.

Auto-Scale classes The coordinate transform classes use the auto-scale classes to
establish the minimum and maximum values used to scale a 2D
coordinate system. The axis classes also use the auto-scale classes to
establish proper tick mark spacing values.

Charting object classes The chart object classes includes all objects placeable in a chart. That
includes axes, axes labels, plot objects (line plots, bar graphs, scatter
plots, etc.), grids, titles, backgrounds, images and arbitrary shapes.

Mouse interaction classes These classes, directly and indirectly System.EventHandler
delegates that trap mouse events and permit the user to create and
move data cursors, move plot objects, display tooltips and select data
points in all types of graphs.

File and printer rendering These classes render the chart image to a printer, to a variety of file
formats including JPEG, and BMP, or to a .Net Image object.

Miscellaneous utility classes Other classes use these for data storage, file I/O, and data processing.

A summary of each category appears in the following section.

81

4. QCChart2D for .Net

Chart Window Classes

System.Windows.Forms.UserControl
ChartView

The starting point of a chart is the ChartView class. The ChartView class derives from the .Net
System.Windows.Forms.UserControl class, where the UserControl class is the base class for the .Net collection
of standard components such as menus, buttons, check boxes, etc. The ChartView class manages a collection of
chart objects in a chart and automatically updates the chart objects when the underlying window processes a paint
event. Since the ChartView class is a subclass of the UserControl class, it acts as a container for other .Net
components too.

Data Classes

ChartDataset
SimpleDataset

TimeSimpleDataset
ElapsedTimeSimpleDataset
ContourDataset

GroupDataset
TimeGroupDataset
ElapsedTimeGroupDataset

The dataset classes organize the numeric data associated with a plotting object. There are two major types of data
supported by the ChartDataset class. The first is simple xy data, where for every x-value there is one y-value. The
second data type is group data, where every x-value can have one or more y-values.

ChartDataset The abstract base class for the other dataset classes. It contains data common to all of the dataset
classes, such as the x-value array, the number of x-values, the dataset name and the dataset type.

SimpleDataset Represents simple xy data, where for every x-value there is one y-value.

TimeSimpleDataset A subclass of SimpleDataset, it is initialized using ChartCalendar dates (a
wrapper around the System.DateTime value class) in place of the x- or y-values.

ElapsedTimeSimpleDataset A subclass of SimpleDataset, it is initialized with TimeSpan objects, or
milliseconds, in place of the x- or y-values.

ContourDataset A subclass of SimpleDataset, it adds a third dimension (z-values) to the x- and
y- values of the simple dataset.

GroupDataset Represents group data, where every x-value can have one or more y-values.

TimeGroupDataset A subclass of GroupDataset, it uses ChartCalendar dates (a wrapper around
the System.DateTime value class) as the x-values, and floating point numbers as
the y-values.

82

QCTAChart - Technical Analysis Charting Tools

ElapsedTimeGroupDataset A subclass of GroupDataset, it uses TimeSpan objects, or milliseconds, as the
x-values, and floating point numbers as the y-values.

Scale Classes
ChartScale

LinearScale
LogScale
TimeScale
ElapsedTimeScale

The ChartScale abstract base class defines coordinate transformation functions for a single dimension. It is useful to
be able to mix and match different scale transform functions for x- and y-dimensions of the PhysicalCoordinates
class. The job of a ChartScale derived object is to convert a dimension from the current physical coordinate system
into the current working coordinate system.

LinearScale A concrete implementation of the ChartScale class. It converts a linear physical
coordinate system into the working coordinate system.

LogScale A concrete implementation of the ChartScale class. It converts a logarithmic
physical coordinate system into the working coordinate system.

TimeScale A concrete implementation of the ChartScale class. converts a date/time
physical coordinate system into the working coordinate system.

ElapsedTimeScale A concrete implementation of the ChartScale class. converts an elapsed time
coordinate system into the working coordinate system.

Coordinate Transform Classes
UserCoordinates

WorldCoordinates
WorkingCoordinates

PhysicalCoordinates
CartesianCoordinates

ElapsedTimeCoordinates
PolarCoordinates
AntennaCoordinates

TimeCoordinates

The coordinate transform classes maintain a 2D coordinate system. Many different coordinate systems are used to
position and draw objects in a graph. Examples of some of the coordinate systems include the device coordinates of
the current window, normalized coordinates for the current window and plotting area, and scaled physical
coordinates of the plotting area.

UserCoordinates This class manages the interface to the System.Drawing classes and contains
routines for drawing lines, rectangles and text using .Net device coordinates.

WorldCoordinates This class derives from the UserCoordinates class and maps a device
independent world coordinate system on top of the .Net device coordinate

83

4. QCChart2D for .Net

system.

WorkingCoordinates

This class derives from the WorldCoordinates class and extends the physical
coordinate system of the plot area (the area typically bounded by the charts
axes) to include the complete graph area (the area of the chart outside of the
plot area).

PhysicalCoordinates This class is an abstract base class derived from WorkingCoordinates and
defines the routines needed to map the physical coordinate system of a plot area
into a working coordinate system. Different scale objects (ChartScale derived)
are installed for converting physical x- and y-coordinate values into working
coordinate values.

CartesianCoordinates

This class is a concrete implementation of the PhysicalCoordinates class and
implements a coordinate system used to plot linear, logarithmic and semi-
logarithmic graphs.

TimeCoordinates This class is a concrete implementation of the PhysicalCoordinates class and
implements a coordinate system used to plot GregorianCalenar time-based
data.

ElapsedTimeCoordinates This class is a subclass of the CartesianCoordinates class and implements a
coordinate system used to plot elapsed time data.

PolarCoordinates This class is a subclass of the CartesianCoordinates class and implements a
coordinate system used to plot polar coordinate data.

AntennaCoordinates This class is a subclass of the CartesianCoordinates class and implements a
coordinate system used to plot antenna coordinate data. The antenna coordinate
system differs from the more common polar coordinate system in that the radius
can have plus/minus values, the angular values are in degrees, and the angular
values increase in the clockwise direction.

Attribute Class

ChartAttribute
ChartGradient

This class consolidates the common line and fill attributes as a single class. Most of the graph objects have a
property of this class that controls the color, line thickness and fill attributes of the object. The ChartGradient class
expands the number of color options available in the ChartAttribute class.

ChartAttribute This class consolidates the common line and fill attributes associated with a
GraphObj object into a single class.

ChartGradient A ChartGradient can be added to a ChartAttribute object, defining a
multicolor gradient that is applied wherever the color fill attribute is normally
used

84

QCTAChart - Technical Analysis Charting Tools

Auto-Scaling Classes

AutoScale
LinearAutoScale
LogAutoScale

TimeAutoScale
ElapsedTimeAutoScale

Usually, programmers do not know in advance the scale for a chart. Normally the program needs to analyze the
current data for minimum and maximum values and create a chart scale based on those values. Auto-scaling, and the
creation of appropriate axes, with endpoints at even values, and well-rounded major and minor tick mark spacing, is
quite complicated. The AutoScale classes provide tools that make automatic generation of charts easier.

AutoScale This class is the abstract base class for the auto-scale classes.

LinearAutoScale This class is a concrete implementation of the AutoScale class. It calculates
scaling values based on the numeric values in SimpleDataset and
GroupDataset objects. Linear scales and axes use it for auto-scale calculations.

 LogAutoScale This class is a concrete implementation of the AutoScale class. It calculates
scaling values based on the numeric values in SimpleDataset and
GroupDataset objects. Logarithmic scales and axes use it for auto-scale
calculations.

TimeAutoScale This class is a concrete implementation of the AutoScale class. It calculates
scaling values based on the ChartCalendar values in TimeSimpleDataset and
TimeGroupDataset objects. Date/time scales and axes use it for auto-scale
calculations.

ElapsedTimeAutoScale This class is a concrete implementation of the AutoScale class. It calculates
scaling values based on the numeric values in ElapsedTimeSimpleDataset and
ElapsedTimeGroupDataset objects. The elapsed time classes use it for auto-
scale calculations.

Chart Object Classes
Chart objects are graph objects that can be rendered in the current graph window. This is in comparison to other
classes that are purely calculation classes, such as the coordinate conversion classes. All chart objects have certain
information in common. This includes instances of ChartAttribute and PhysicalCoordinates classes. The
ChartAttribute class contains basic color, line style, and gradient information for the object, while the
PhysicalCoordinates maintains the coordinate system used by object. The majority of classes in the library derive
from the GraphObj class, each class a specific charting object such as an axis, an axis label, a simple plot or a
group plot. Add GraphObj derived objects (axes, plots, labels, title, etc.) to a graph using the
ChartView.AddChartObject method.

GraphObj This class is the abstract base class for all drawable graph objects. It contains

85

4. QCChart2D for .Net

information common to all chart objects. This class includes references to
instances of the ChartAttribute and PhysicalCoordinates classes. The
ChartAttribute class contains basic color, line style, and gradient information
for the object, while the PhysicalCoordinates maintains the coordinate system
used by object. The majority of classes in the library derive from the GraphObj
class, each class a specific charting object such as an axis, an axis label, a simple
plot or a group plot

Background This class fills the background of the entire chart, or the plot area of the chart,
using a solid color, a color gradient, or a texture.

Axis Classes

Axis
LinearAxis

PolarAxes
AntennaAxes

ElapsedTimeAxis
LogAxis

T imeAxis

Creating a PhysicalCoordinates coordinate system does not automatically create a pair of x- and y-axes. Axes are
separate charting objects drawn with respect to a specific PhysicalCoordinates object. The coordinate system and
the axes do not need to have the same limits. In general, the limits of the coordinate system should be greater than or
equal to the limits of the axes. The coordinate system may have limits of 0 to 15, while you may want the axes to
extend from 0 to 10.

86

QCTAChart - Technical Analysis Charting Tools

Axis This class is the abstract base class for the other axis classes. It contains data and
drawing routines common to all axis classes.

LinearAxis This class implements a linear axis with major and minor tick marks placed at
equally spaced intervals.

87

4. QCChart2D for .Net

LogAxis This class implements a logarithmic axis with major tick marks placed on
logarithmic intervals, for example 1, 10,100 or 30, 300, 3000. The minor tick
marks are placed within the major tick marks using linear intervals, for example
2, 3, 4, 5, 6, 7, 8, 9, 20, 30, 40, 50,.., 90. An important feature of the LogAxis
class is that the major and minor tick marks do not have to fall on decade
boundaries. A logarithmic axis must have a positive range exclusive of 0.0, and
the tick marks can represent any logarithmic scale.

88

QCTAChart - Technical Analysis Charting Tools

TimeAxis This class is the most complex of the axis classes. It supports time scales
ranging from 1 milliseond to hundreds of years. Dates and times are specified
using the .Net ChartCalendar class. The major and minor tick marks can fall
on any time base, where a time base represents seconds, minutes, hours, days,
weeks, months or years. The scale can exclude weekends, for example, Friday,
October 20, 2000 is immediately followed by Monday, October 23, 2000. A day
can also have a custom range, for example a range of 9:30 AM to 4:00 PM. The
chart time axis excludes time outside of this range. This makes the class very
useful for the inter-day display of financial market information (stock, bonds,
commodities, options, etc.) across several days, months or years.

ElapsedTimeAxis The elapsed time axis is very similar to the linear axis and is subclassed from
that class. The main difference is the major and minor tick mark spacing
calculated by the CalcAutoAxis method takes into account the base 60 of
seconds per minute and minutes per hour, and the base 24 of hours per day. It is
a continuous linear scale.

89

4. QCChart2D for .Net

PolarAxes This class has three separate axes: two linear and one circular. The two linear
axes, scaled for +- the magnitude of the polar scale, form a cross with the center
of both axes at the origin (0, 0. The third axis is a circle centered on the origin
with a radius equal to the magnitude of the polar scale. This circular axis
represents 360 degrees (or 2 Pi radians) of the polar scale and the tick marks that
circle this axis are spaced at equal degree intervals.

90

QCTAChart - Technical Analysis Charting Tools

AntennaAxes This class has two axes: one linear y-axis and one circular axis. The linear axis
is scaled for the desired range of radius values. This can extend from minus
values to plus values. The second axis is a circle centered on the origin with a
radius equal to the range of the radius scale. This circular axis represents 360
degrees of the antenna scale and the tick marks that circle this axis are spaced at
equal degree intervals.

Axis Label Classes

AxisLabels
NumericAxisLabels
StringAxisLabels
PolarAxesLabels
AntennaAxesLabels
TimeAxisLabels
ElapsedTimeAxisLabels

Axis labels inform the user of the x- and y-scales used in the chart. The labels center on the major tick marks of the
associated axis. Axis labels are usually numbers, times, dates, or arbitrary strings.

91

4. QCChart2D for .Net

AxisLabels This class is the abstract base class for all axis label objects. It places numeric
labels, date/time labels, or arbitrary text labels, at the major tick marks of the
associated axis object. In addition to the standard font options (type, size, style,
color, etc.), axis label text can be rotated 360 degrees in one degree increments.

NumericAxisLabels This class labels the major tick marks of the LinearAxis, and LogAxis classes.
The class supports many predefined and user-definable formats, including
numeric, exponent, percentage, business and currency formats.

StringAxisLabels This class labels the major tick marks of the LinearAxis, and LogAxis classes
using user-defined strings.

TimeAxisLabels This class labels the major tick marks of the associated TimeAxis object. The
class supports many time (23:59:59) and date (5/17/2001) formats. It is also
possible to define custom date/time formats.

ElapsedTimeAxisLabels This class labels the major tick marks of the associated ElapsedTimeAxis
object. The class supports HH:MM:SS and MM:SS formats, with decimal
seconds out to 0.00001, i.e. "12:22:43.01234". It also supports a cumulative hour
format (101:51:22), and a couple of day formats (4.5:51:22, 4D 5:51:22).

PolarAxesLabels This class labels the major tick marks of the associated PolarAxes object. The
x-axis is labeled from 0.0 to the polar scale magnitude, and the circular axis is
labeled counter clockwise from 0 to 360 degrees, starting at 3:00.

AntennaAxesLabels This class labels the major tick marks of the associated AntennaAxes object.
The y-axis is labeled from the radius minimum to the radius maximum. The
circular axis is labeled clockwise from 0 to 360 degrees, starting at 12:00.

92

QCTAChart - Technical Analysis Charting Tools

Chart Plot Classes

ChartPlot
ContourPlot

GroupPlot
PieChart
PolarPlot
AntennaPlot
SimplePlot

Plot objects are objects that display data organized in a ChartDataset class. There are six main categories: simple,
group, polar, antenna, contour and pie plots. Simple plots graph data organized as a simple set of xy data points. The
most common examples of simple plots are line plots, bar graphs, scatter plots and line-marker plots. Group plots
graph data organized as multiple y-values for each x-value. The most common examples of group plots are stacked
bar graphs, open-high-low-close plots, candlestick plots, floating stacked bar plots and "box and whisker" plots.
Polar charts plot data organized as a simple set of data points, where each data point represents a polar magnitude
and angle pair, rather than xy Cartesian coordinate values. The most common example of polar charts is the display
of complex numbers (a + bi), and it is used in many engineering disciplines. Antenna charts plot data organized as a
simple set of data points, where each data point represents a radius value and angle pair, rather than xy Cartesian
coordinate values. The most common example of antenna charts is the display of antenna performance and
specification graphs. The contour plot type displays the iso-lines, or contours, of a 3D surface using either lines or
regions of solid color. The last plot object category is the pie chart, were a pie wedge represents each data value. The
size of the pie wedge is proportional to the fraction (data value / sum of all data values).

ChartPlot This class is the abstract base class for chart plot objects. It contains a reference
to a ChartDataset derived class containing the data associated with the plot.

93

4. QCChart2D for .Net

ContourPlot This class is a concrete implementation of the ChartPlot class and displays a
contour plot using either lines, or regions filled with color.

Group Plot Classes

GroupPlot
ArrowPlot

BoxWhiskerPlot
BubblePlot
CandlestickPlot

CellPlot
ErrorBarPlot

FloatingBarPlot
FloatingStackedBarPlot
GroupBarPlot
GroupVersaPlot

HistogramPlot
LineGapPlot
MultiLinePlot
OHLCPlot

StackedBarPlot
StackedLinePlot

GroupVeraPlot

Group plots use data organized as arrays of x- and y-values, where there is one or more y for every x.. Group plot
types include multi-line plots, stacked line plots, stacked bar plots, group bar plots, error bar plots, floating bar plots,

94

QCTAChart - Technical Analysis Charting Tools

floating stacked bar plots, open-high-low-close plots, candlestick plots, arrow plots, histogram plots, cell plots, "box
and whisker" plots, and bubble plots.

GroupPlot This class is an abstract base class for all group plot classes.

ArrowPlot This class is a concrete implementation of the GroupPlot class and it displays a
collection of arrows as defined by the data in a group dataset. The position, size,
and rotation of each arrow in the collection is independently controlled

BubblePlot This class is a concrete implementation of the GroupPlot class and displays
bubble plots. The values in the dataset specify the position and size of each
bubble in a bubble chart.

95

4. QCChart2D for .Net

BoxWhiskerPlot This class is a concrete implementation of the GroupPlot class and displays box
and whisker plots. The BoxWhiskerPlot class graphically depicts groups of
numerical data through their five-number summaries (the smallest observation,
lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation).

CandlestickPlot This class is a concrete implementation of the GroupPlot class and displays
stock market data in an open-high-low-close format common in financial
technical analysis.

96

QCTAChart - Technical Analysis Charting Tools

CellPlot This class is a concrete implementation of the GroupPlot class and displays cell
plots. A cell plot is a collection of rectangular objects with independent
positions, widths and heights, specified using the values of the associated group
dataset.

ErrorBarPlot This class is a concrete implementation of the GroupPlot class and displays
error bars. Error bars are two lines positioned about a data point that signify the
statistical error associated with the data point

FloatingBarPlot This class is a concrete implementation of the GroupPlot class and displays
free-floating bars in a graph. The bars are free floating because each bar does
not reference a fixed base value, as do simple bar plots, stacked bar plots and
group bar plots.

97

4. QCChart2D for .Net

FloatingStackedBarPlot This class is a concrete implementation of the GroupPlot class and displays
free-floating stacked bars. The bars are free floating because each bar does not
reference a fixed base value, as do simple bar plots, stacked bar plots and group
bar plots.

GroupBarPlot This class is a concrete implementation of the GroupPlot class and displays
group data in a group bar format. Individual bars, the height of which
corresponds to the group y-values of the dataset, display side by side, as a group,
justified with respect to the x-position value for each group. The group bars
share a common base value.

StackedBarPlot This class is a concrete implementation of the GroupPlot class and displays
data as stacked bars. In a stacked bar plot each group is stacked on top of one
another, each group bar a cumulative sum of the related group items before it.

GroupVeraPlot The GroupVersaPlot is a plot type that can be any of the eight group plot types:
GROUPBAR, STACKEDBAR, CANDLESTICK, OHLC, MULTILINE,
STACKEDLINE, FLOATINGBAR and FLOATING_STACKED_BAR. Use it

98

QCTAChart - Technical Analysis Charting Tools

when you want to be able to change from one plot type to another, without
deleting the instance of the old plot object and creating an instance of the new.

HistogramPlot This class is a concrete implementation of the GroupPlot class and displays
histogram plots. A histogram plot is a collection of rectangular objects with
independent widths and heights, specified using the values of the associated
group dataset. The histogram bars share a common base value.

LineGapPlot This class is a concrete implementation of the GroupPlot class. A line gap chart
consists of two lines plots where a contrasting color fills the area between the
two lines, highlighting the difference.

99

4. QCChart2D for .Net

MultiLinePlot This class is a concrete implementation of the GroupPlot class and displays
group data in multi-line format. A group dataset with four groups will display
four separate line plots. The y-values for each line of the line plot represent the
y-values for each group of the group dataset. Each line plot share the same x-
values of the group dataset.

OHLCPlot This class is a concrete implementation of the GroupPlot class and displays
stock market data in an open-high-low-close format common in financial
technical analysis. Every item of the plot is a vertical line, representing High and
Low values, with two small horizontal "flags", one left and one right extending
from the vertical High-Low line and representing the Open and Close values.

100

QCTAChart - Technical Analysis Charting Tools

StackedLinePlot This class is a concrete implementation of the GroupPlot class and displays
data in a stacked line format. In a stacked line plot each group is stacked on top
of one another, each group line a cumulative sum of the related group items
before it.

Polar Plot Classes

PolarPlot
PolarLinePlot
PolarScatterPlot

Polar plots that use data organized as arrays of x- and y-values, where an x-value represents the magnitude of a point
in polar coordinates, and the y-value represents the angle, in radians, of a point in polar coordinates. Polar plot types
include line plots and scatter plots.

PolarPlot This class is an abstract base class for the polar plot classes.

101

4. QCChart2D for .Net

PolarLinePlot This class is a concrete implementation of the PolarPlot class and displays data
in a simple line plot format. The lines drawn between adjacent data points use
polar coordinate interpolation.

PolarScatterPlot This class is a concrete implementation of the PolarPlot class and displays data
in a simple scatter plot format.

Antenna Plot Classes

AntennaPlot
AntennaLinePlot
AntennaScatterPlot
AntennaLineMarkerPlot

GraphObj
AntennaAnnotation

Antenna plots that use data organized as arrays of x- and y-values, where an x-value represents the radial value of a
point in antenna coordinates, and the y-value represents the angle, in degrees, of a point in antenna coordinates.
Antenna plot types include line plots, scatter plots, line marker plots, and an annotation class.

AntennaPlot This class is an abstract base class for the polar plot classes.

102

QCTAChart - Technical Analysis Charting Tools

AntennaLineMarkerPlot

AntennaLinePlot This class is a concrete implementation of the AntennaPlot class and displays
data in a simple line plot format. The lines drawn between adjacent data points
use antenna coordinate interpolation.

AntennaScatterPlot This class is a concrete implementation of the AntennaPlot class and displays
data in a simple scatter plot format.

AntennaLineMarkerPlot This class is a concrete implementation of the AntennaPlot class and displays
data in a simple line markder plot format.

AntennaAnnotation This class is used to highlight, or mark, a specific attribute of the chart. It can
mark a constant radial value using a circle, or it can mark a constant angular
value using a radial line from the origin to the outer edge of the scale.

Pie and Ring Chart Classes

It uses data organized as arrays of x- and y-values, where an x-value represents the numeric value of a pie wedge,
and a y-value specifies the offset (or "explosion") of a pie wedge with respect to the center of the pie.

103

4. QCChart2D for .Net

PieChart The pie chart plots data in a simple pie chart format. It uses data organized as
arrays of x- and y-values, where an x-value represents the numeric value of a pie
wedge, and a y-value specifies the offset (or "explosion") of a pie wedge with
respect to the center of the pie.

RingChart The ring chart plots data in a modified pie chart format known as a ring chartt. It
uses data organized as arrays of x- and y-values, where an x-value represents the
numeric value of a ring segment, and a y-value specifies the offset (or
"explosion") of a ring segment with respect to the origin of the ring.

104

QCTAChart - Technical Analysis Charting Tools

Simple Plot Classes

SimplePlot
SimpleBarPlot
SimpleLineMarkerPlot
SimpleLinePlot
SimpleScatterPlot
SimpleVeraPlot

Simple plots use data organized as a simple array of xy points, where there is one y for every x. Simple plot types
include line plots, scatter plots, bar graphs, and line-marker plots.

SimplePlot This class is an abstract base class for all simple plot classes.

SimpleBarPlot This class is a concrete implementation of the SimplePlot class and displays
data in a bar format. Individual bars, the maximum value of which corresponds
to the y-values of the dataset, are justified with respect to the x-values.

105

4. QCChart2D for .Net

SimpleLineMarkerPlot

This class is a concrete implementation of the SimplePlot class and it displays
simple datasets in a line plot format where scatter plot symbols highlight
individual data points.

SimpleLinePlot This class is a concrete implementation of the SimplePlot class it displays
simple datasets in a line plot format. Adjacent data points are connected using a
straight, or a step line.

SimpleScatterPlot This class is a concrete implementation of the SimplePlot class and it displays
simple datasets in a scatter plot format where each data point is represented
using a symbol.

106

QCTAChart - Technical Analysis Charting Tools

SimpleVersaPlot The SimpleVersaPlot is a plot type that can be any of the four simple plot
types: LINE_MARKER_PLOT, LINE_PLOT, BAR_PLOT, SCATTER_PLOT.
It is used when you want to be able to change from one plot type to another,
without deleting the instance of the old plot object and creating an instance of
the new.

Legend Classes

LegendItem
BubblePlotLegendItem
Legend

StandardLegend
BubblePlotLegend

Legends provide a key for interpreting the various plot objects in a graph. It organizes a collection of legend items,
one for each plot objects in the graph, and displays them in a rectangular frame.

Legend This class is the abstract base class for chart legends.

LegendItem This class is the legend item class for all plot objects except for bubble plots.
Each legend item manages one symbol and descriptive text for that symbol. The
StandardLegend class uses objects of this type as legend items.

BubblePlotLegendItem This class is the legend item class for bubble plots. Each legend item manages a
circle and descriptive text specifying the value of a bubble of this size. The
BubblePlotLegend class uses objects of this type as legend items.

StandardLegend This class is a concrete implementation of the Legend class and it is the legend
class for all plot objects except for bubble plots. The legend item objects display
in a row or column format. Each legend item contains a symbol and a
descriptive string. The symbol normally associates the legend item to a
particular plot object, and the descriptive string describes what the plot object
represents.

BubblePlotLegend This class is a concrete implementation of the Legend class and it is a legend
class used exclusively with bubble plots. The legend item objects display as
offset, concentric circles with descriptive text giving the key for the value
associated with a bubble of this size.

Grid Classes

Grid
PolarGrid
AntennaGrid

107

4. QCChart2D for .Net

Grid lines are perpendicular to an axis, extending the major and/or minor tick marks of the axis across the width or
height of the plot area of the chart.

Grid This class defines the grid lines associated with an axis. Grid lines are
perpendicular to an axis, extending the major and/or minor tick marks of the axis
across the width or height of the plot area of the chart. This class works in
conjunction with the LinearAxis, LogAxis and TimeAxis classes.

PolarGrid This class defines the grid lines associated with a polar axis. A polar chart grid
consists of two sets of lines. The first set is a group of concentric circles,
centered on the origin and passing through the major and/or minor tick marks of
the polar magnitude horizontal and vertical axes. The second set is a group of
radial lines, starting at the origin and extending to the outermost edge of the
polar plot circle, passing through the major and minor tick marks of the polar
angle circular axis. This class works in conjunction with the PolarAxes class.

AntennaGrid Analogous to the PolarGrid, this class draws radial, and circular grid lines for
an Antenna chart.

Chart Text Classes

ChartText
ChartTitle

AxisTitle
ChartLabel

NumericLabel
TimeLabel
StringLabel
ElapsedTimeLabel

The chart text classes draw one or more strings in the chart window. Different classes support different numeric
formats, including floating point numbers, date/time values and multi-line text strings. International formats for
floating point numbers and date/time values are also supported.

ChartText This class draws a string in the current chart window. It is the base class for the
ChartTitle, AxisTitle and ChartLabel classes. The ChartText class also
creates independent text objects. Other classes that display text also use it
internally.

ChartTitle This class displays a text string as the title or footer of the chart.

AxisTitle This class displays a text string as the title for an axis. The axis title position is
outside of the axis label area. Axis titles for y-axes are rotated 90 degrees.

ChartLabel This class is the abstract base class of labels that require special formatting.

108

QCTAChart - Technical Analysis Charting Tools

NumericLabel This class is a concrete implementation of the ChartLabel class and it displays
formatted numeric values.

TimeLabel This class is a concrete implementation of the ChartLabel class and it displays
formatted ChartCalendar dates.

ElapsedTimeLabel This class is a concrete implementation of the ChartLabel class and it displays
numeric values formatted as elapsed time strings (12:32:21).

StringLabel This class is a concrete implementation of the ChartLabel class that formats
string values for use as axis labels.

Miscellaneous Chart Classes

Marker
ChartImage
ChartShape
ChartSymbol

Various classes are used to position and draw objects that can be used as standalone objects in a graph, or as
elements of other plot objects.

Marker This class displays one of five marker types in a graph. The marker is used to
create data cursors, or to mark data points.

ChartImage This class encapsulates a System.Drawing.Image class, defining a rectangle in
chart coordinates that the image is placed in. JPEG and other image files can be
imported using the System.Drawing.Image class and displayed in a chart.

ChartShape This class encapsulates a System.Drawing.Drawing2D.GraphicsPath class,
placing the shape in a chart using a position defined in chart coordinates. A chart
can display any object that can be defined using
System.Drawing.Drawing2D.GraphicsPath class.

ChartSymbol This class defines symbols used by the SimplePlot scatter plot functions. Pre-
defined symbols include square, triangle, diamond, cross, plus, star, line,
horizontal bar, vertical bar, 3D bar and circle.

109

4. QCChart2D for .Net

Mouse Interaction Classes
MouseListener

MoveObj
FindObj
DataToolTip

DataCursor
MoveData

MagniView
MoveCoordinates
ChartZoom

Several classes implement delegates for mouse events. The MouseListener class implements a generic interface for
managing mouse events in a graph window. The DataCursor, MoveData, MoveObj, ChartZoom, MagniView
and MoveCoordinates classes also implement mouse event delegates that use the mouse to mark, move and zoom
chart objects and data.

MouseListener This class implements .Net delegates that trap generic mouse events (button
events and mouse motion events) that take place in a ChartView window. A
programmer can derive a class from MouseListener and override the methods
for mouse events, creating a custom version of the class.

MoveObj This class extends the MouseListener class and it can select chart objects and
move them. Moveable chart objects include axes, axes labels, titles, legends,
arbitrary text, shapes and images. Use the MoveData class to move objects
derived from SimplePlot.

FindObj This class extends the MouseListener class, providing additional methods that
selectively determine what graphical objects intersect the mouse cursor.

DataCursor This class combines the MouseListener class and Marker class. Press a mouse
button and the selected data cursor (horizontal and/or vertical line, cross hairs, or
a small box) appears at the point of the mouse cursor. The data cursor tracks the
mouse motion as long as the mouse button is pressed. Release the button and the
data cursor disappears. This makes it easier to line up the mouse position with
the tick marks of an axis.

MoveData This class selects and moves individual data points of an object derived from the
SimplePlot class.

DataToolTip A data tooltip is a popup box that displays the value of a data point in a chart.
The data value can consist of the x-value, the y-value, x- and y-values, group
values and open-high-low-close values, for a given point in a chart.

ChartZoom This class implements mouse controlled zooming for one or more simultaneous
axes. The user starts zooming by holding down a mouse button with the mouse
cursor in the plot area of a graph. The mouse is dragged and then released. The
rectangle established by mouse start and stop points defines the new, zoomed,
scale of the associated axes. Zooming has many different modes. Some of the
combinations are:

 One x or one y axis
 One x and one y axes

110

QCTAChart - Technical Analysis Charting Tools

 One x and multiple y axes
 One y and multiple x axes
 Multiple x and y axes

MagniView This class implements mouse controlled magnification for one or more
simultaneous axes. This class implements a chart magnify class based on the
MouseListener class. It uses two charts; the source chart and the target chart.
The source chart displays the chart in its unmagnified state. The target chart
displays the chart in the magnified state. The mouse positions a MagniView
rectangle within the source chart, and the target chart is re-scaled and redrawn
to match the extents of the MagniView rectangle from the source chart.

MoveCoordinates This class extends the MouseListener class and it can move the coordinate
system of the underlying chart, analogous to moving (chaging the coordinates
of) an internet map by "grabbing" it with the mouse and dragging it.

File and Printer Rendering Classes
ChartPrint
BufferedImage

ChartPrint This class implements printing using the .Net System.Drawing.Printing print-
related services. It can select, setup, and output a chart to a printer.

BufferedImage This class will convert a ChartView object to a .Net Image object. Optionally,
the class saves the buffered image to an image file.

Miscellaneous Utility Classes
ChartCalendar
CSV
Dimension
Point2D
GroupPoint2D
DoubleArray
DoubleArray2D
BoolArray
Point3D
NearestPointData
TickMark
Polysurface
Rectangle2D

ChartCalendar This class contains utility routines used to process ChartCalendar date objects.

CSV This is a utility class for reading and writing CSV (Comma Separated Values) files.

Dimension This is a utility class for handling dimension (height and width) information using
doubles, rather than the integers used by the Size class.

111

4. QCChart2D for .Net

Point2D This class encapsulates an xy pair of values as doubles (more useful in this software than
the .Net Point and PointF classes.

GroupPoint2D This class encapsulates an x-value, and an array of y-values, representing the x and y
values of one column of a group data set.

DoubleArray This class is used as an alternative to the standard .Net Array class, adding routines for
resizing of the array, and the insertion and deletion of double based data elements.

DoubleArray2D This class is used as an alternative to the standard .Net 2D Array class, adding routines
for resizing of the array, and the insertion and deletion of double based data elements.

BoolArray This class is used as an alternative to the standard .Net Array class, adding routines for
resizing of the array, and the insertion and deletion of bool based data elements.

Point3D This class encapsulates an xyz set of double values used to specify 3D data values.

NearestPointData This is a utility class for returning data that results from nearest point calculations.

TickMark The axis classes use this class to to organize the location of the individual tick marks of
an axis.

Polysurface This is a utility class that defines complex 3D shapes as a list of simple 3-sided polygons.
The contour plotting routines use it.

Rectangle2D This is a utility class that extends the RectangleF class, using doubles as internal storage.

112

QCTAChart - Technical Analysis Charting Tools

A diagram depicts the class hierarchy of the QCChart2D for .Net library.

ChartObj
Arrow
ChartCalendar
CSV
Dimension
Point3D
NearestPointData
Polysurface
ChartScale

LinearScale
LogScale
TimeScale
PointAndFigureScale

UserCoordinates
WorldCoordinates

WorkingCoordinates
PhysicalCoordinates

CartesianCoordinates
PolarCoordinates
AntennaCoordinates

TimeCoordinates
PointAndFigureCoordinates

ChartDataset
SimpleDataset

TimeSimpleDataset
ElapsedTimeSimpleDataset
ContourDataset

GroupDataset
TimeGroupDataset
ElapsedTimeGroupDataset

AutoScale
LinearAutoScale
LogAutoScale
TimeAutoScale
ElapsedTimeAutoScale
PointAndFigureAutoScale

MouseListener
MoveObj
FindObj
DataToolTip
ChartZoom
MagniView
MoveCoordinates

DataCursor
MoveData

ChartAttribute
ChartGradient
ChartPrint
BufferedImage

System.Windows.Forms.UserControl
ChartView

Rectangle2D
Point2D
Point3D
GroupPoint2D
DoubleArray
DoubleArray2D
BoolArray
Polysurface

GraphObj
AntennaAnnotation
TickMark
Axis

LinearAxis
PolarAxes
AntennaAxes

LogAxis
TimeAxis
PointAndFigureXAxis
PointAndFigureYAxis

ChartText
ChartTitle
AxisTitle

 ChartLabel
NumericLabel

BarDatapointValue
TimeLabel
ElapsedTimeLabel
StringLabel

AxisLabels
NumericAxisLabels
TimeAxisLabels
ElapsedTimeAxisLabels
StringAxisLabels
PolarAxesLabels
AntennaAxesLabels
PointAndFigureYAxisLabels

Grid
PolarGrid
AntennaGrid

LegendItem
BubblePlotLegendItem
Legend

StandardLegend
BubblePlotLegend

ChartPlot
SimplePlot

SimpleLinePlot
SimpleBarPlot
SimpleScatterPlot
SimpleLineMarkerPlot
SimpleVersaPlot

GroupPlot
ArrowPlot
BubblePlot
CandlestickPlot
CellPlot
ErrorBarPlot
FloatingBarPlot
FloatingStackedBarPlot
GroupBarPlot
HistogramPlot
LineGapPlot
MultiLinePlot
OHLCPlot
StackedBarPlot
StackedLinePlot
BoxWhiskerPlot
GroupVersaPlot

PieChart
PolarPlot

PolarLinePlot
PolarScatterPlot

AntennaPlot
AntennaLinePlot

113

4. QCChart2D for .Net

AntennaScatterPlot
AntennaLineMarkerPlot

Background
ChartImage

ChartShape
ChartSymbol
Marker
ChartZoom

114

5. Configuring QCTAChart Datasources
FinDataSourceBase

FinGenericHistoricalDataSource
FinGoogleHistoricalDataSource

FinGoogleURLHistoricalDataSource
FinGoogleCSVFileHistoricalDataSource
FinGoogleURLIntradayDataSource

FinMetaStockHistoricalDataSource
FinMetaStockCSVFileHistoricalDataSource
FinMetaStockURLHistoricalDataSource

FinQuandlHistoricalDataSource
FinQuandlCSVFileHistoricalDataSource
FinQuandlURLHistoricalDataSource

FinYahooHistoricalDataSource
FinYahooCSVFileHistoricalDataSource
FinYahooURLHistoricalDataSource
FinYahooURLIntradayDataSource

FinGenericCurrentDataSource

FinQuandlCurrentDataSource
FinQuandlURLCurrentDataDataSource

FinYahooCurrentDataSource
FinYahooURLCurrentDataSource

Before you can chart stocks, you need to acquire the historical OHLCV data for the stocks you want to
consider. You might already have this information in files (one for each stock – usually in Metastock CSV
7- or 8-column format), or you might just want to grab data from a URL which supports the download of
historical data (Yahoo, Google, or Quandl). Just keep in mind, while these data sources are free, you are not
permitted to resell their data. So, you can write a program which acquires and displays the data, and resell
that program. In that case, your customer would be accessing the data directly from the source (Yahoo,
Google, and Quandl). You cannot introduce a charge, one time or recurring, to your customer for these free
data feeds. You should familiarize yourself with the rules and regulations of these data feeds:

Yahoo - https://info.yahoo.com/guidelines/us/yahoo/ydn/ydn-3955.html

Google – since the Google Finance API has been deprecated, they have removed most all information
about it from their site. Logically enough, you will find the remaining information by searching Google for
"Google Finance API".

Quandl - http://www. quandl .com/about/terms

Metastock – Almost every historical stock data source sells data in the form of files using the Metastock
ASCII CSV 7- or 8-column format.

These data sources support US, and non-US markets. Using this software you can customize the ticker
symbol so that you can grab data from any source supported by the data source. That includes stock

115

http://www.quandl.com/about/terms
http://www.quandl.com/about/terms
http://www.quandl.com/about/terms
https://info.yahoo.com/guidelines/us/yahoo/ydn/ydn-3955.html

5. Configuring QCTAChart Datasources

markets in Europe, India, China and Japan. You will need to do some research to determine exactly what exchange
symbol needs to be combined with the ticker symbol in order for it to work.

The most common format used in retrieving data from a URLs is the CSV (comma separated value) format. Saying
that a URL uses a CSV format does not mean that all CSV formats are compatible. Each reader for a CSV data
source must be custom configured for source, whether it is Yahoo, Google, or Quandl. Other formats include JSON
and XML. Just like CSV data sources, the JSON and XML formats are not compatible across data sources; the
JSON and XML data presentation from Yahoo is completely different that that of Quandl.. Our Yahoo and Quandl
data readers for Yahoo, Google and Quandl are not going to be compatible with other data sources. There are bound
to be strong similarities though, and we can be contracted to create a data reader for other data sources (CSV, XML,
JSON or any other) using the same basic building blocks.

Getting Started with a Data Source

There are two types of data sources. The first is used to acquire historical stock data. The major sources of free
historical data are Google, MetaStock, Quandl, and Yahoo. There are classes for reading data from a file, and others
for reading direct from a URL.

Historical Data Source Classes

Google Historical Data Sources
FinGoogleURLHistoricalDataSource
FinGoogleCSVFileHistoricalDataSource
FinGoogleURLIntradayDataSource

MetaStock Historical Data Source
FinMetaStockCSVFileHistoricalDataSource

Quandl Historical Data Sources
FinQuandlCSVFileHistoricalDataSource
FinQuandlURLHistoricalDataSource

Yahoo Historical Data Sources
FinYahooCSVFileHistoricalDataSource
FinYahooURLHistoricalDataSource
FinYahooURLIntradayDataSource

There are some differences between the data source classes, specifically when dealing with securities not found on
the standard North American exchanges. If you can enter a simple stock ticker into the Yahoo quote engine, and
have it find a specific stock, you can easily use the Yahoo historical data source. The same is true of Google. In
these cases you are working with the stock ticker. There are exceptions though. While Yahoo is able to display on its
own web sites historical data for some consolidated averages, the Dow 30 Industrial Average (Yahoo ticker symbol
^DJI), it will not permit external users to download the same data.

The first thing you need to do is to select a portfolio of stocks. For the purposes of this tutorial, we will acquire
historical data for the following US stocks:

AAPL – Apple

INTC - Intel

IBM – IBM (International Business Machines)

TXN – Texas Instruments

116

QCTAChart - Technical Analysis Charting Tools

AMAT – Applied Materials

CSCO – Cisco Systems

So you create a couple of string arrays.

C#

String[] idStrings = { "Intel", "IBM", "Tex Inst", "App Mat", "CSCO", "Apple", "QQQ" };
String[] tickerStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ" };

VB

Private idStrings As [String]() = { "Intel", "IBM", "Tex Inst", "App Mat", "CSCO",
"Apple", "QQQ"}
Private tickerStrings As [String]()={"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ"}

The variable names are not important. The first array (idStrings) holds an array of strings which represent the
displayed strings for the stocks. The second array holds the actual ticker look-up strings.

The idStrings can be anything that you want, though for practical reasons you should keep them short. If you want to
use abbreviated versions of the actual stock name, you can do that. Or you can use the ticker strings. The
tickerStrings ticker strings must be perfectly accurate, or else the stock look-up will fail.

URL-Based Data Sources

Yahoo URL-Based Data Source

To create a historical data source, instantiate one (FinYahooURLHistoricalDataSource below) using the default
constructor. Add the stock names, and ticker symbols using the AddTickerLookupItem method.

C#

FinYahooURLHistoricalDataSource finStockHistoricalData = new
FinYahooURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
 finStockHistoricalData.AddTickerLookupItem(idStrings[i],tickerStrings[i]);

VB

Private finStockHistoricalData As New FinYahooURLHistoricalDataSource()

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings[i],tickerStrings[i])
Next

Google URL-Based Data Source

To create a historical data source, instantiate one (FinGoogleURLHistoricalDataSource below) using the default
constructor. Add the stock names, and ticker symbols using the AddTickerLookupItem method.

C#

FinGoogleURLHistoricalDataSource finStockHistoricalData = new
FinGoogleURLHistoricalDataSource();

117

5. Configuring QCTAChart Datasources

for (int i = 0; i < idStrings.Length; i++)
 finStockHistoricalData.AddTickerLookupItem(idStrings[i],tickerStrings[i]);

VB

Private finStockHistoricalData As New FinGoogleURLHistoricalDataSource()

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
Next

Quandl URL-Based Data Source

If you use the Quandl (FinQuandlURLHistoricalDataSource) data source, you may need to specify a Quandl data
source folder when calling the constructor. All North American stocks are found in the Quandl WIKI folder. So the
FinQuandlURLHistoricalDataSource code looks like.

C#

String[] idStrings ={"Apple", "Intel", "IBM","Tex. Inst.","App. Mat.", "Cisco"};
String[] tickerStrings ={ "AAPL", "INTC", "IBM", "TXN", "AMAT", "CSCO"};

FinQuandlURLHistoricalDataSource finStockHistoricalData =
new FinQuandlURLHistoricalDataSource("WIKI");

for (int i = 0; i < idStrings.Length; i++)

finStockHistoricalData.AddTickerLookupItem(idStrings[i],tickerStrings[i]);

VB

Dim idStrings As [String]() = {"Apple","Intel","IBM","Tex. Inst.","App. Mat.","Cisco"}
Dim tickerStrings As [String]() = {"AAPL","INTC","IBM","TXN","AMAT","CSCO"}

Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource("WIKI")

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))

C#
FinQuandlURLHistoricalDataSource finStockHistoricalData =

new FinQuandlURLHistoricalDataSource();

VB
Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource()

Special Note – You need to get a Quandl token from the Quandl web site
(https://www. quandl .com/) if you plan to access the Quandl databases more than a fifty
times a day. The token can be obtained from Quandl and it is free. You will have to
provide some simple registration information to the Quandl web site in return for the
token. Once you have received the token, you set it in the software using the
FinChartConstants.QuandlToken static property.

Sign up here: https://www. quandl .com/users/sign_up

Once you sign up, you can view your unique token here: https://www. quandl .com/help/api

If that link doesn't work, look for Auth Token on this Quandl web page: https://www. quandl .com/help/api
and follow the directions. You must be signed up with Quandl though.

118

https://www.quandl.com/help/api
https://www.quandl.com/help/api
https://www.quandl.com/help/api
https://www.quandl.com/help/api
https://www.quandl.com/help/api
https://www.quandl.com/help/api
https://www.quandl.com/users/sign_up
https://www.quandl.com/users/sign_up
https://www.quandl.com/users/sign_up
https://www.quandl.com/
https://www.quandl.com/
https://www.quandl.com/

QCTAChart - Technical Analysis Charting Tools

C#
FinChartConstants.QuandlToken="9YVaMHshys5vKnqr4kak"; // SIMILAR TO BUT NOT A VALID TOKEN

VB
FinChartConstants.QuandlToken="9YVaMHshys5vKnqr4kak" ' SIMILAR TO BUT NOT A VALID TOKEN

If you specify WIKI in the constructor, the software assumes that all ticker symbols you enter are found in the
Quandl WIKI folder. WIKI is also the default value, so if you use the empty constructor for
FinQunadlURLHistoricalDataSource, it is the same as specifying "WIKI".

This example defaults to the “WIKI” data source folder.

C#
FinQuandlURLHistoricalDataSource finStockHistoricalData =

new FinQuandlURLHistoricalDataSource();

VB
Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource()

WIKI is not the only Quandl data source supported. The software also supports non-North American stocks. You
can specify the following non-US markets:

 NSE National Stock Exchange India
 BSE Bombay Stock Exchange
 FSE Frankfurt Stock Exchange
 HKEX Hong Kong Stock Exchange
 LSE London Stock Exchange
 SSE Boerse Stuttgart Stock Exchange
 TSE Tokyo Stock Exchange

If you specify one of these other data sources, you MUST get the ticker name exactly right, or else the stock data
will fail to load. Ticker names are found on the Quandl web site: http://www. quandl .com/help/api-for-stock-data,
under the heading Stock Price Data Source. Click on the links for a detailed description of what stocks are
available, and their ticker symbols.

For example, if you wanted to access data on the NSE (India) exchange, you could do so using the following
initialization:

C#

String[] idStrings =
{"NIFTY Index","Oil India","Spanco","Northgate","MVL Ind.", "Zee News" };

String[] tickerStrings ={"SPCNXNIFTY ","OIL","SPANCO","NORTHGATE", "MVLIND", "ZEENEWS"};

FinQuandlURLHistoricalDataSource finStockHistoricalData =
new FinQuandlURLHistoricalDataSource("NSE");

for (int i = 0; i < idStrings.Length; i++)
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);

VB

Dim idStrings As [String]() =
{"NIFTY Index","Oil India","Spanco", "Northgate","MVL Ind.","Zee News"}

Dim tickerStrings As [String]() =
 {"SPCNXNIFTY","OIL","SPANCO","NORTHGATE","MVLIND","ZEENEWS"}

Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource(NSE)

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))

119

http://www.quandl.com/help/api-for-stock-data
http://www.quandl.com/help/api-for-stock-data
http://www.quandl.com/help/api-for-stock-data

5. Configuring QCTAChart Datasources

There is one issue which makes importing data from the Quandl data sources complicated, though it is a
complication we take care of automatically. The Quandl exchanges all use unique column formats for their data. Not
only that, most of the exchanges do not even use a standardized column format for the data within the given
exchange. So what our software does is read the column headings for each downloaded stock, and assign the
resulting column of data to the associated element of an OHLCV (Open-High-Low-Close-Volume) element in our
own own software. This is further complicated by the fact that the exchanges all use different wording for the same
column heads. For example, for the daily Volume value, you find column headings of: "Volume", "Adj. Volume",
"Share Volume", "SharesTraded", "Total Trade Quantity", "No. of Shares", "Traded Volume". We tried to seek out
every variant and take it into account. A complete list of the different column headings we found are listed below.
We didn't check every stock of every exchange and may have missed one. If so, let us know.

OHLCV Stock Data Column Head

Date Date

Open Open, Adj. Open, Previous Close, Last Close, Previous Day Price

High High, Adj. High

Low Low, Adj. Low

Close Close, Adj. Close, Last Traded, Nominal Price, Price

Volume Volume, Adj. Volume, Share Volume, SharesTraded, Total Trade Quantity, No. of Shares, Traded
Volume

If the stock data has both a non-adjusted column (Close for example) and the equivalent adjusted column (Adj.
Close for example), the adjusted column is used, to better take into account stock splits. In some cases (Open and
Last Close for example) the equivalence is not exact. Never less, the column headings returned for a given stock are
deemed important for that exchange, and we map them as depicted in the table above.

The FinYahooURLHistoricalDataSource and FinQuandlURLHistoricalDataSource data source classes also include
support for reading data in XML and JSON formats. The underlying structures of the Yahoo and Quandl XML and
JSON file formats are too complicated and verbose to list out. But reading them is simple. Just set the DataFormat
property of the Yahoo or Quandl data source object to the desired data format.

Important Note: Yahoo limits the download of historical data using JSON and XML protocols
to one year of data. If you request more than one year, the download will simply fail. Right
now, if you request more than one year of data when using JSON or XML, the request is
truncated to one year. Should this Yahoo-based limitation change, we will change the
truncation to the newer values.

C#

FinQuandlURLHistoricalDataSource finStockHistoricalData =
new FinQuandlURLHistoricalDataSource();

finStockHistoricalData.DataFormat = FinChartConstants.JSON_FORMAT;

VB

Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource()
finStockHistoricalData.DataFormat = FinChartConstants.JSON_FORMAT

or

C#

120

QCTAChart - Technical Analysis Charting Tools

finStockHistoricalData.DataFormat = FinChartConstants.XML_FORMAT;

VB

finStockHistoricalData.DataFormat = FinChartConstants.XML_FORMAT

The default is DataFormat = FinChartConstants.CSV_FORMAT.

Local File-Based Data Sources

The file-based data sources include Metastock, Yahoo and Quandl. They are instantiated much the same as the
URL-based data sources, with the following differences. In the constructor, you specify a source directory (folder)
as part of the initialization. And the ticker strings are the filenames of the stock data files in the specified folder.

Metastock File-Based Data Source

If you have data in local file acquired from a stock service, most likely it is in MetaStock ASCII (non-binary)
format. You can initialize the FinMetaStockCSVFileHistoricalDataSource using code similar to that below. The
source directory (folder) is specified as a parameter in the FinMetaStockCSVFileHistoricalDataSource constructor.

C#

String[] idStrings = {"Apple","Intel","IBM", "Tex. Inst.", "App. Mat.", "Cisco"};
String[] stockFilenames = {"AAPL","INTC", "IBM", "TXN", "AMAT", "CSCO" };

// Absolute folder example
// String folder = @"c:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\ Metastock Data";

// Relative folder example
String folder = @"..\..\..\..\..\..\DataFiles\MetastockData";

FinMetaStockCSVFileHistoricalDataSource finStockHistoricalData =
new FinMetaStockCSVFileHistoricalDataSource(folder);

for (int i = 0; i < idStrings.Length; i++)
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], stockFilenames[i]);

Important Note: In C#, you can get rid of the double backslashes in the folder specification by
preceding the string with the @ symbol. That is a C# thing and does not apply to VB.

For example:

String folder = @"..\..\..\..\..\..\DataFiles\MetastockData";

VB

Dim idStrings As [String]() = {"Apple","Intel","IBM","Tex. Inst.","App. Mat.","Cisco"}
Dim stockFilenames As [String]() = {"AAPL","INTC","IBM","TXN","AMAT","CSCO"}

Dim folder As [String] ="c:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\MetastockData"

Dim finStockHistoricalData As New FinMetaStockCSVFileHistoricalDataSource(folder)

121

file://Quinn-Curtis//DotNet//QCTAChart//MetastockData
file://Quinn-Curtis//DotNet//QCTAChart//MetastockData
file://Quinn-Curtis//DotNet//QCTAChart//MetastockData

5. Configuring QCTAChart Datasources

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), stockFilenames(i))
Next

In this case, the historicalTickerLookup specifies the filenames of the files in the specified folder. The filenames are
specified without an extension. The extension is assumed to be CSV. So, if your stock data file uses a different
extension, you should make a copy of it and change the copy's extention to CSV. In order for the example above to
work, you need to have valid historical stock data files in the folder "C:\Quinn-Curtis\MetastockData".

C:
 \Quinn-Curtis\DotNet\QCTAChart\MetastockData

AAPL.CSV
INTC.CSV
IBM.CSV
TXN.CSV
AMAT.CSV
CSCO.CSV

MetaStock data files ASCII data files are usually in either an 7-column format, or a 8-column format. They usually
include a line of column headings. A typical 7-column formatted file looks like:

<ticker>, <date>, <open>, <high>, low>, <close>, <vol>

INTC, 20140110, 25.5, 25.85, 25.5, 25.53, 30620900

INTC, 20140113, 25.6, 25.99, 25.42, 25.5, 40304800

INTC, 20140114, 26, 26.55, 25.9, 26.51, 74158100

INTC, 20140115, 26.72, 27.12, 26.61, 26.67, 58315200

INTC, 20140116, 26.64, 26.74, 26.33, 26.54, 49521700

INTC, 20140117, 25.36, 25.86, 25.25, 25.85, 112538000

While we have inserted tabs to make the table more readable, the source data file will not include tabs at the comma
breaks.

The 8-column format adds an <interval> column, in this case specifying that the interval is daily.

<ticker>, <period>, <date>, <open>, <high>, <low>, <close>, <vol>

INTC, D, 20140110, 25.5, 25.85, 25.5, 25.53, 30620900

INTC, D, 20140113, 25.6, 25.99, 25.42, 25.5, 40304800

INTC, D, 20140114, 26, 26.55, 25.9, 26.51, 74158100

INTC, D, 20140115, 26.72, 27.12, 26.61, 26.67, 58315200

INTC, D, 20140116, 26.64, 26.74, 26.33, 26.54, 49521700

INTC, D, 20140117, 25.36, 25.86, 25.25, 25.85, 112538000

In the example above the data is still EOD (End of Day) data. If the data consisted of intraday data, then each item
would include an extended <date>, which incorporated the time of day. There are several variants of the date/time
fields, and include:"<DATE>", "<DTYYYYMMDD>", "<DTYYMMDD>", and "<TIME>".

122

QCTAChart - Technical Analysis Charting Tools

If the example above was intra-day data, then the file would need to include a time-of-day column. It looks like most
providers simply drop the period column. So the file looks like:

<ticker>, <date>, <time> <open>, <high>, <low>, <close>, <vol>

INTC, 20140110, 1250, 31.40, 31.41, 31.38, 31.00 3991974

INTC, 20140110, 1245, 31.41, 31.42, 31.40, 31.41, 100552

INTC, 20140110, 1240, 31.42, 31.44, 31.41, 31.41, 85763

INTC, 20140110, 1235, 31.42, 31.44, 31.41, 31.42, 216606

INTC, 20140110, 1230, 31.42, 31.44, 31.42, 31.42, 101789

We have also seen instances where the time-of-day value is appended directly to to the data value, without adding a
new column.

<ticker>, <date>, <open>, <high>, <low>, <close>, <vol>

INTC, 201401101250, 31.40, 31.41, 31.38, 31.00 3991974

INTC, 201401101245, 31.41, 31.42, 31.40, 31.41, 100552

INTC, 201401101240, 31.42, 31.44, 31.41, 31.41, 85763

INTC, 201401101235, 31.42, 31.44, 31.41, 31.42, 216606

INTC, 201401101230, 31.42, 31.44, 31.42, 31.42, 101789

Because they have a unique string length, the software can automatically take into account the following MetaStock
<date> formats: yyMMdd, yyyyMMdd and yyyyMMddHHmm. If a <time> field is present, the software can also
differentiate between HHmm and HHmmss time formats.

Assuming that the column headings are used correctly, our software should be able to identify the format and load
the data appropriately. The actual MetaStock format definition does not require that the columns appear in the order
above. The software takes that into account too.

Not all MetaStock data sources include the header row though. In that case the software defaults to the MetaStock 7-
column format described above.

Yahoo, Google and Quandl also permit the download of EOD (End-of day) data in CSV format. Unfortunately the
formats are similar to, yet different from, the MetaStock format. So in if you have data downloaded from one of
those providers, you need to use the custom data source classes we created specifically for them.

while the Google format looks like:

Date,Open,High,Low,Close,Volume

11-Jul-14,31.26,31.45,31.04,31.25,20053217

10-Jul-14,30.60,31.33,30.44,31.26,32458765

123

5. Configuring QCTAChart Datasources

9-Jul-14,30.84,30.98,30.69,30.89,28302427

8-Jul-14,31.00,31.08,30.70,30.79,37614506

7-Jul-14,31.09,31.20,30.92,31.03,22237033

3-Jul-14,31.08,31.36,31.02,31.14,20437633

2-Jul-14,30.99,31.05,30.80,30.98,16831171

Note that they use different Date formats, and that the Yahoo data files also includes an adjusted close column after
the Volume column. The Google date format uses a .Net d-MMM-yy format, while the Yahoo date format uses a
.Net yyyy-MM-dd format.

Yahoo File-Based Data Source

If you download historical data directly from Yahoo, and save it to disk, the CSV format is the same as accessing
directly from the URL. But, since you want to access it from a data file, you initialize things similar to the way
described in the Metastock example. You can initialize the FinYahooCSVFileHistoricalDataSource using code
similar to that below. The source directory (folder) is specified as a parameter in the
FinYahooCSVFileHistoricalDataSource constructor.

C#

FinChartData finChartData = null;

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

String[] idStrings = { "INTC", "IBM","TXN","AMAT","CSCO","AAPL","QQQ"};

String[] stockFilenames ={"INTC","IBM","TXN","AMAT","CSCO","AAPL","QQQ"};
FinYahooCSVFileHistoricalDataSource finStockHistoricalData = null;

stopDate.Add(ChartObj.DAY_OF_YEAR,-1);
startDate.Add(ChartObj.YEAR,-15);

// Absolute path
// String datafolder = @"C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Yahoo";
// Relative path
String datafolder = @"..\..\..\..\..\..\DataFiles\Yahoo";

finStockHistoricalData = new FinYahooCSVFileHistoricalDataSource(datafolder);

for (int i = 0; i < stockFilenames.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], stockFilenames[i]);
}

finChartData =
new FinChartData (finStockHistoricalData, stockFilenames, startDate, stopDate);

InitFinChartView(finChartData);

VB

Private finChartData As FinChartData = Nothing

Private startDate As New ChartCalendar()
Private stopDate As New ChartCalendar()

Private idStrings As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ"}

124

QCTAChart - Technical Analysis Charting Tools

Private stockFilenames As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL",
"QQQ"}
Private finStockHistoricalData As FinYahooCSVFileHistoricalDataSource = Nothing

stopDate.Add(ChartObj.DAY_OF_YEAR, -1)
startDate.Add(ChartObj.YEAR, -8)

' Absolute path
' Dim datafolder As [String] = "C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Yahoo"
' Relative path
Dim datafolder As [String] = "..\..\..\..\..\..\DataFiles\Yahoo"

finStockHistoricalData = New FinYahooCSVFileHistoricalDataSource(datafolder)

For i As Integer = 0 To stockFilenames.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), stockFilenames(i))
Next

finChartData =
New FinChartData(finStockHistoricalData, stockFilenames, startDate, stopDate)

InitFinChartView(finChartData)

The Yahoo format looks like:

Date,Open,High,Low,Close,Volume,Adj Close
2014-12-18,36.75,37.02,36.43,37.02,31086000,37.02
2014-12-17,35.62,36.33,35.33,36.24,31637700,36.24
2014-12-16,35.86,36.50,35.56,35.56,31166300,35.56
2014-12-15,36.39,36.78,35.90,35.92,30633400,35.92
2014-12-12,36.45,36.82,36.22,36.23,29322500,36.23
2014-12-11,36.50,37.21,36.44,36.70,25088200,36.70
2014-12-10,36.93,37.02,36.30,36.42,27499900,36.42
2014-12-09,36.67,37.09,36.30,36.89,28487300,36.89
2014-12-08,37.46,37.73,36.94,37.20,28134800,37.20
2014-12-05,37.57,37.90,37.52,37.67,20527600,37.67
2014-12-04,37.40,37.46,37.04,37.46,23359100,37.46
2014-12-03,37.68,37.89,37.41,37.43,30660800,37.43

Special Note on Adjusted Values
If our software sees an Adjusted Close column, it checks to see if the Adjusted Close value is different than the
Close values. If so, it assumes that Adjusted Close value is the Close value normalized for stock splits. It then re-
calculates adjusted values for the Open, High, Low and Volume (using Adjusted Close/Close), so that they represent
the same normalization as the Adjusted Close. The adjusted values are then plotted in the charts. This keeps stock
splits from introducing discountinuties in the OHLC data on the date of the stock split.

Quandl File-Based Data Source

If you download historical data directly from Quandl, and save it to disk, the CSV format is the same as accessing
directly from the URL. But, since you want to access it from a data file, you initialize things similar to the way
described in the Metastock and Yahoo examples. You can initialize the FinQuandlCSVFileHistoricalDataSource
using code similar to that below. The source directory (folder) is specified as a parameter in the
FinQuandlCSVFileHistoricalDataSource constructor. The default file names used by Quandl are the ticker symbol
prefaced by the Quandl data source, WIKI in the example below.

C#

125

5. Configuring QCTAChart Datasources

FinChartData finChartData = null;

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

String[] idStrings = { "AAPL", "INTC", "IBM", "TXN", "AMAT", "CSCO" };
// In the case of files, the ticker lookup specifies the file name, not the ticker
symbol, file extension csv is assumed.
String[] stockFilenames = { "WIKI-AAPL", "WIKI-INTC", "WIKI-IBM", "WIKI-TXN", "WIKI-
AMAT", "WIKI-CSCO" };

 // Since this is a file, it will truncate the file data to these dates
stopDate.Add(ChartObj.DAY_OF_YEAR, -1);
startDate.Add(ChartObj.YEAR, -8);

// Absolute path
 // String datafolder = @"C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Quandl WIKI";
// Relative path
String datafolder = @"..\..\..\..\..\..\DataFiles\Quandl WIKI";
FinQuandlCSVFileHistoricalDataSource finStockHistoricalData = new
FinQuandlCSVFileHistoricalDataSource(datafolder);

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], stockFilenames[i]);
}
finChartData = new FinChartData(finStockHistoricalData, idStrings, startDate, stopDate);

InitFinChartView(finChartData);

VB

Private finChartData As FinChartData = Nothing

Private startDate As New ChartCalendar()
Private stopDate As New ChartCalendar()

Private idStrings As [String]() = {"AAPL", "INTC", "IBM", "TXN", "AMAT", "CSCO"}
' In the case of files, the ticker lookup specifies the file name, not the ticker symbol,
file extension csv is assumed.
Private stockFilenames As [String]() = {"WIKI-AAPL", "WIKI-INTC", "WIKI-IBM", "WIKI-TXN",
"WIKI-AMAT", "WIKI-CSCO"}

stopDate.Add(ChartObj.DAY_OF_YEAR, -1)
startDate.Add(ChartObj.YEAR, -8)

' Absolute path
' Dim datafolder As [String] = "C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Quandl WIKI"
' Relative path
Dim datafolder As [String] = "..\..\..\..\..\..\DataFiles\Quandl WIKI"
Dim finStockHistoricalData As New FinQuandlCSVFileHistoricalDataSource(datafolder)

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), stockFilenames(i))
Next

finChartData = New FinChartData(finStockHistoricalData, idStrings, startDate, stopDate)

InitFinChartView(finChartData)

The Quandl WIKI format looks like:

Date,Open,High,Low,Close,Volume,Ex-Dividend,Split Ratio,Adj. Open,Adj. High,Adj. Low,Adj. Close,Adj.
Volume
2014-12-18,36.78,37.02,36.43,37.02,31301981.0,0.0,1.0,36.78,37.02,36.43,37.02,31301981.0
2014-12-17,35.62,36.33,35.33,36.24,31043291.0,0.0,1.0,35.62,36.33,35.33,36.24,31043291.0
2014-12-16,35.82,36.5,35.56,35.56,30868335.0,0.0,1.0,35.82,36.5,35.56,35.56,30868335.0
2014-12-15,36.39,36.783,35.9,35.92,30292187.0,0.0,1.0,36.39,36.783,35.9,35.92,30292187.0

126

QCTAChart - Technical Analysis Charting Tools

2014-12-11,36.44,37.21,36.44,36.7,24821993.0,0.0,1.0,36.44,37.21,36.44,36.7,24821993.0
2014-12-10,36.93,37.02,36.3,36.42,27257663.0,0.0,1.0,36.93,37.02,36.3,36.42,27257663.0
2014-12-09,36.68,37.09,36.3,36.89,28460487.0,0.0,1.0,36.68,37.09,36.3,36.89,28460487.0
2014-12-05,37.52,37.9,37.52,37.67,19019870.0,0.0,1.0,37.52,37.9,37.52,37.67,19019870.0
2014-12-04,37.39,37.46,37.04,37.46,23391744.0,0.0,1.0,37.39,37.46,37.04,37.46,23391744.0
2014-12-02,37.26,37.6,37.18,37.6,28352943.0,0.0,1.0,37.26,37.6,37.18,37.6,28352943.0
2014-12-01,37.23,37.62,36.9,37.17,30715970.0,0.0,1.0,37.23,37.62,36.9,37.17,30715970.0
2014-11-28,37.0,37.69,36.94,37.25,19128510.0,0.0,1.0,37.0,37.69,36.94,37.25,19128510.0
2014-11-26,36.31,36.99,36.28,36.9,24054283.0,0.0,1.0,36.31,36.99,36.28,36.9,24054283.0

Since the Quandl data includes Adjusted Open, Adjusted High, Adjusted Low, Adjusted Close and Adjusted
Volume, those values are used, rather than the unadjusted open-high-low-close-volume data.

Google File-Based Data Source

If you download historical data directly from Google, and save it to disk, the CSV format is the same as accessing
directly from the URL. But, since you want to access it from a data file, you initialize things similar to the way
described in the Metastock example. You can initialize the FinGoogleCSVFileHistoricalDataSource using code
similar to that below. The source directory (folder) is specified as a parameter in the
FinGoogleCSVFileHistoricalDataSource constructor.

C#

FinChartData finChartData = null;

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

String[] idStrings ={"INTC","IBM","TXN","AMAT","CSCO","AAPL","QQQ"};

String[] stockFilenames ={"INTC","IBM","TXN","AMAT","CSCO","AAPL","QQQ"};
FinGoogleCSVFileHistoricalDataSource finStockHistoricalData = null;

stopDate.Add(ChartObj.DAY_OF_YEAR,-1);
startDate.Add(ChartObj.YEAR,-15);

// Absolute path
// String datafolder = @"C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Google";
// Relative path
String datafolder = @"..\..\..\..\..\..\DataFiles\Google";

finStockHistoricalData =FinGoogleCSVFileHistoricalDataSource(datafolder);

for (int i = 0; i < stockFilenames.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], stockFilenames[i]);
}

finChartData =
new FinChartData (finStockHistoricalData, stockFilenames, startDate, stopDate);

InitFinChartView(finChartData);

VB

Private finChartData As FinChartData = Nothing

Private startDate As New ChartCalendar()
Private stopDate As New ChartCalendar()

127

5. Configuring QCTAChart Datasources

Private idStrings As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ"}

Private stockFilenames As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL",
"QQQ"}
Private finStockHistoricalData As FinGoogleCSVFileHistoricalDataSource = Nothing

stopDate.Add(ChartObj.DAY_OF_YEAR, -1)
startDate.Add(ChartObj.YEAR, -8)

' Absolute path
' Dim datafolder as [String] = "C:\Quinn-Curtis\DotNet\QCTAChart\DataFiles\Google"
' Relative path
Dim datafolder As [String] = "..\..\..\..\..\..\DataFiles\Google"

finStockHistoricalData = New FinGoogleCSVFileHistoricalDataSource(datafolder)

For i As Integer = 0 To stockFilenames.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), stockFilenames(i))
Next

finChartData =
New FinChartData(finStockHistoricalData, stockFilenames, startDate, stopDate)

InitFinChartView(finChartData)

The Google format looks like:

Date,Open,High,Low,Close,Volume
22-Dec-14,36.39,37.26,36.39,37.21,29227071
19-Dec-14,37.02,37.16,36.23,36.37,76786814
18-Dec-14,36.75,37.02,36.43,37.02,32128124
17-Dec-14,35.62,36.33,35.33,36.24,31637748
16-Dec-14,35.86,36.50,35.56,35.56,31166334
15-Dec-14,36.39,36.78,35.90,35.92,30633423
12-Dec-14,36.45,36.82,36.22,36.22,29322529
11-Dec-14,36.50,37.21,36.44,36.70,25090084
10-Dec-14,36.93,37.02,36.30,36.42,27499869
9-Dec-14,36.67,37.09,36.30,36.89,28487318
8-Dec-14,37.46,37.73,36.94,37.20,28134819
5-Dec-14,37.57,37.90,37.52,37.67,20527600
4-Dec-14,37.40,37.46,37.04,37.46,23397863
3-Dec-14,37.68,37.89,37.41,37.43,30660821
2-Dec-14,37.18,37.60,37.18,37.60,28361104
1-Dec-14,37.21,37.62,36.90,37.17,30904004
28-Nov-14,37.04,37.69,36.94,37.25,19128510
26-Nov-14,36.37,36.99,36.28,36.90,24062025

Unlike the Yahoo and Quandl data, the Google data does not include any adjusted value columns. This is because all
Google data items represent adjusted values in the raw download.

How to acquire the historical data values used in the charts.

You may want to acquire the historical OHLCV data values used in the creation of the charts. The values are stored
internally in the FinChartData data structures. A typical initialization of the FinChartData class is shown below.

FinChartData finChartData = null;

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

128

QCTAChart - Technical Analysis Charting Tools

String[] idStrings = { "Intel", "IBM", "Tex Inst", "App Mat", "CSCO", "Apple", "QQQ" };
String[] tickerStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ" };

FinYahooURLCurrentDataSource finStockData = null;
FinYahooURLHistoricalDataSource finStockHistoricalData = null;

...

stopDate.Add(ChartObj.DAY_OF_YEAR, -1);
startDate.Add(ChartObj.YEAR, -10);
finStockData = new FinYahooURLCurrentDataSource();
finStockHistoricalData = new FinYahooURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
}

finChartData =
 new FinChartData(finStockHistoricalData, finStockData, idStrings, startDate, stopDate);

Assuming that the primary chart has already been displayed, an indication that the data has already been read from
the URL or file, you can retrieve the data using code similar to below.

 Retrieve the data using the stocks ID, as specified in the idString array above, "Intel" in this case.

FinTimeSeriesDataset ds = this.ChartData.GetTimeSeriesDatsetById("Intel");

 Retrieve the data using the stocks index, since Intel was the first item in the idStrings array above, it has an index
of 0.

FinTimeSeriesDataset ds = this.ChartData.GetTimeSeriesDatsetByIndex(0);

Retrieve the data using the stocks ticker symbol, as specified in the tickerStrings array above.

FinTimeSeriesDataset ds = this.ChartData.GetTimeSeriesDatsetByTicker("INTC");

The FinTimeSeriesData is a subclass of the EventGroupDataset class, and can be used with all of the group plotting
routines found in the QCChart2D software package. For OHLCV data, the plot types you will most likely be using
are OHLCPlot and CandlestickPlot. You would reference the FinTimeSeriesDataset (ds in the example below) in
the OHLC or CandlestickPlot constructor, as in the example below.

ChartAttribute defaultattrib=new ChartAttribute(Color.Black,1,DashStyle.Solid, Color.White);
defaultattrib.SetFillFlag(true);
ChartAttribute fillattrib=new ChartAttribute(Color.Black, 1, DashStyle.Solid, Color.Red);
fillattrib.SetFillFlag(true);
CandlestickPlot thePlot1 = new CandlestickPlot(pTransform1, ds, 0.5, defaultattrib, fillattrib);
thePlot1.SetFastClipMode(ChartObj.FASTCLIP_X);
chartVu.AddChartObject(thePlot1);

The FinChartData.GetTimeSeriesDataset... routines assume that the data has already been acquired, i.e. they do
not trigger a call to the underlying URL, or file, to read the data. If you are not displaying the data in a chart, you
will probably need to force a read of the data, using the FinChartData.GetFinChartData() method. For example, for a
read of the URL data, and then retrieve the data as a FinTimeSeriesData object.

finChartData.GetFinChartData();
FinTimeSeriesDataset ds = this.ChartData.GetTimeSeriesDatsetById("Intel");

The FinTimeSeriesDataset class is a subclass of the EventGroupDataset class. That is because for each x-value (a
date/time value) in the group data set, there are multiple y-values (Open-high-low-close-volume) As such, it cannot
be directly input to the plotting clases which expect a data set derived from a SimpleDataset. Plotting classes in the
simple category are the SimpleLinePlot, SimpleLineMarkerPlot, SimpleBarPlot and SimpleScatterPlot classes.

129

5. Configuring QCTAChart Datasources

These classes expect a dataset which has a single y-value for each x-value. But it may be that you want to just plot a
simple line plot of close values for a stock. Or you might need to plot a bar plot of the volume values for a stock. In
that case, you need to convert the source EventGroupDataset to an EventSimpleDataset. One of the methods in the
EventGroupDataset class is a conversion utility for doing that. It takes one argument, shich is the index of which
value you want to convert (Open = 0, High = 1, Low = 2, Close = 3, and Volume = 4). The example below creates a
EventSimpleDataset of Close (index # 3) values for the stock Intel.

finChartData.GetFinChartData();
FinTimeSeriesDataset ds = this.ChartData.GetTimeSeriesDatsetById("Intel");

EventSimpleDataset esds = ds.ConvertToEventSimpleDataset(3);

You can then reference the esds dataset in the creation of the constructors of the SimpleLinePlot,
SimpleLineMarkerPlot, SimpleBarPlot and SimpleScatterPlot.

 ChartAttribute attrib2 = new ChartAttribute(Color.Blue, 1, 0);
 SimpleLinePlot thePlot2 = new SimpleLinePlot(pTransform1, esds, attrib2);
 thePlot2.SetFastClipMode(ChartObj.FASTCLIP_X);
 chartVu.AddChartObject(thePlot2);

The descriptions above describe how you can retrieve historical stock data from the FinChartData class used to
supply the charts with data. You can also retrieve historical data directly from the historical data source class you
use. In the example above, this was the FinYahooURLHistoricalDataSource, declared and initited using code similar
to below.

String[] idStrings = { "Intel", "IBM", "Tex Inst", "App Mat", "CSCO", "Apple", "QQQ" };
String[] tickerStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ" };

FinYahooURLHistoricalDataSource finStockHistoricalData = null;

...

finStockHistoricalData = new FinYahooURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
}

At this point, you can retrieve historical data directly from the historical data source, using the GetHistoricalData
method call. In this case you pass in the stock ID, a start and ending data, and a frequency indicator ("d" for daily,
"w" for weekly, "m").

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

stopDate.Add(ChartObj.DAY_OF_YEAR, -1); // yesterday
startDate.Add(ChartObj.YEAR, -10); // 10 years ago

EventGroupDataset egds =
finStockHistoricalData.GetHistoricalData("Intel", startDate, stopDate, "d");

EventSimpleDataset esds =
egds.ConvertToEventSimpleDataset(3); // third index are close values

The quote frequency parameter only applies to the FinYahooURLHistoricalDataSource. The other URL data source
only return EOD (End-of-day) data.

130

QCTAChart - Technical Analysis Charting Tools

Current Financial Data

The previous discussion has been about historical data. There is another type of data which the software will display,
and that is current financial data. Current financial data is not charted, but is instead optionally displayed in a table at
the top of the FinChartView window. This data is available by URL only, and only from the Yahoo and Quandl data
sources. It contains only stocks found on the US exchanges; it can't be used for other exchanges.

Quandl Current Data Source
FinQuandlURLCurrentDataDataSource

Yahoo Current Data Source
FinYahooURLCurrentDataSource

The Show Table check box option in the upper left corner of the FinChartView window toggles on/off the current
financial data table.

You need to create a stock look-up table, the same as was needed for the historical stock data.

C#
FinChartData finChartData = null;

131

5. Configuring QCTAChart Datasources

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

String[] idStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL","QQQ" };
String[] tickerStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO","AAPL", "QQQ" };

stopDate.Add(ChartObj.DAY_OF_YEAR, -1);
startDate.Add(ChartObj.YEAR, -5);
FinYahooURLCurrentDataSource finStockData = new FinYahooURLCurrentDataSource();
FinYahooURLHistoricalDataSource finStockHistoricalData = new
FinYahooURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
}
finChartData = new FinChartData(finStockHistoricalData, finStockData, idStrings,
startDate, stopDate);

InitFinChartView(finChartData);

VB

Dim finChartData As FinChartData = Nothing
Dim startDate As New ChartCalendar()
Dim stopDate As New ChartCalendar()

Dim idStrings As [String]() = {"INTC","IBM","TXN","AMAT","CSCO","AAPL", "QQQ"}
Dim tickerStrings As [String]() = {"INTC","IBM","TXN","AMAT","CSCO","AAPL","QQQ"}

stopDate.Add(ChartObj.DAY_OF_YEAR, -1)
startDate.Add(ChartObj.YEAR, -5)
Dim finStockData As New FinYahooURLCurrentDataSource()
Dim finStockHistoricalData As New FinYahooURLHistoricalDataSource()

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 finStockData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
Next
finChartData = New FinChartData(finStockHistoricalData, finStockData, idStrings,
startDate, stopDate)

InitFinChartView(finChartData)

If you want a current data financial chart, call the FinChartData constructor which has a current data source
parameter. The stock lookup table specifies all of the stocks you want displayed as rows in the current data table.

You can add all of the supported column items for a given current data source using the AddAllColumnItems
method of the FinChartData class.

C#
 finChartData.AddAllColumnItems();

VB
 finChartData.AddAllColumnItems()

Or, you can also specify the column items you want displayed. You use the AddColumnItem method for that.

C#

finChartData.AddColumnItem("Name");
finChartData.AddColumnItem("PERatio");
finChartData.AddColumnItem("Volume");
finChartData.AddColumnItem("Bid");

132

QCTAChart - Technical Analysis Charting Tools

finChartData.AddColumnItem("BidRealTime");
finChartData.AddColumnItem("ChangeFromYearHigh");
finChartData.AddColumnItem("ChangeFromYearLow");
finChartData.AddColumnItem("DividendShare");
finChartData.AddColumnItem("DividendYield");
finChartData.AddColumnItem("EPSEstimateNextYear");
finChartData.AddColumnItem("EarningsShare");

VB

finChartData.AddColumnItem("Name")
finChartData.AddColumnItem("PERatio")
finChartData.AddColumnItem("Volume")
finChartData.AddColumnItem("Bid")
finChartData.AddColumnItem("BidRealTime")
finChartData.AddColumnItem("ChangeFromYearHigh")
finChartData.AddColumnItem("ChangeFromYearLow")
finChartData.AddColumnItem("DividendShare")
finChartData.AddColumnItem("DividendYield")
finChartData.AddColumnItem("EPSEstimateNextYear")
finChartData.AddColumnItem("EarningsShare")

Important Note: The Yahoo and the Quandl current financial data sources have different column items in them. So
you must take into account which current data source you are using when using the AddColumnItem method. Yahoo
has the following column items available for display:

Code Indicator Description

Name Stock Name

Open Open

DaysHigh Days High

DaysLow Days Low

PreviousClose PreviousClose

Ask Ask

Bid Bid

YearLow Year Low

YearHigh Year High

AskRealtime Ask Realtime

BidRealtime Bid Realtime

Volume Volume

LastTradePriceOnly Last Trade Price Only

LastTradeDate Last Trade Date

LastTradeTime Last Trade Time

DaysRange Days Range

PERatio PE Ratio

PEGRatio PEG Ratio

PercentChange Percent Change

Change Change

Change_PercentChange Change_Percent Change

YearRange Year Range

Currency Currency

133

5. Configuring QCTAChart Datasources

ChangeRealtime Change Realtime

AfterHoursChangeRealtime After Hours Change Realtime

DividendShare Dividend per Share

EarningsShare Earnings per Share

DividendYield Dividend Yield

MarketCapitalization Market Capitalization

EBITDA EBITDA

BookValue Book Value

PriceSales Price/Sales

PriceBook Price/Book

ShortRatio Shor tRatio

AverageDailyVolume Average Daily Volume

EPSEstimateCurrentYear EPS Estimate Current Year

EPSEstimateNextYear EPS Estimate Next Year

EPSEstimateNextQuarter EPS Estimate Next Quarter

PriceEPSEstimateCurrentYear Price EPS Estimate Current Year

PriceEPSEstimateNextYear Price EPS Estimate Next Year

OneyrTargetPrice One yr Target Price

ChangeFromYearLow Change From Year Low

PercentChangeFromYearLow Percent Change From Year Low

LastTradeRealtimeWithTime Last Trade Realtime With Time

ChangePercentRealtime Change Percent Realtime

ChangeFromYearHigh Change From Year High

PercentChangeFromYearHigh Percent Change From Year High

LastTradeWithTime Last Trade With Time

DaysRangeRealtime Days Range Realtime

FiftydayMovingAverage Fifty day Moving Average

TwoHundreddayMovingAverage Two Hundred day Moving Average

ChangeFromTwoHundreddayMovingAverage Change From Two Hundred day Moving Average

PercentChangeFromTwoHundreddayMovingAverage Percent Change From Two Hundred day Moving
Average

ChangeFromFiftydayMovingAverage Change From Fifty day Moving Average

PercentChangeFromFiftydayMovingAverage Percent Change From Fifty day Moving Average

ExDividendDate Ex Dividend Date

DividendPayDate Dividend Pay Date

TickerTrend TickerTrend

DaysValueChange Days Value Change

DaysValueChangeRealtime Days Value Change Realtime

Symbol Symbol

134

QCTAChart - Technical Analysis Charting Tools

The Quandl financial current data source includes the following items:

Code Indicator Description

FLOAT Number of Shares Outstanding

INSIDER Insider Holdings

CAPEX Capital Expenditures

NET_MARG Net Margin

INV_CAP Invested Capital

P_S Price to Sales Ratio

ROC Return on Capital

STOCK_PX Stock Price

MKT_DE Market Debt to Equity Ratio

CORREL Correlation with the Market

PE_FWD Forward PE Ratio

REV_GRO Previous Year Growth in Revenues

EBIT_1T EBIT for Previous Period

DIV Dividends

EPS_FWD Forward Earnings Per Share

CHG_NCWC Change in Non-Cash Working Capital

CASH_FV Cash as Percentage of Firm Value

INST_HOLD Institutional Holdings

EFF_TAX Effective Tax Rate

CASH_ASSETS Cash as Percentage of Total Assets

FIXED_TOT Ratio of Fixed Assets to Total Assets

BETA_VL Value Line Beta

BV_ASSETS Book Value of Assets

BV_EQTY Book Value of Equity

FCFF Free Cash Flow to Firm

CASH_REV Cash as Percentage of Revenues

MKT_CAP Market Capitalization

EFF_TAX_INC Effective Tax Rate on Income

EV_SALES EV To Sales Ratio

TOT_DEBT Total Debt

INTANG_TOT Ratio of Intangible Assets to Total Assets

PE_G PE to Growth Ratio

REINV_RATE Reinvestment Rate

BOOK_DC Book Debt to Capital Ratio

EPS_GRO_EXP Expected Growth in Earnings Per Share

EV_EBIT EV to EBIT Ratio

PE_CURR Current PE Ratio

MKT_DC Market Debt to Capital Ratio

NCWC_REV Non-Cash Working Capital as Percentage of Revenues

REV_12M Trailing 12-month Revenues

REV_GRO_EXP Expected Growth in Revenues

135

5. Configuring QCTAChart Datasources

Code Indicator Description

REV_TRAIL Trailing Revenues

ROE Return on Equity

EV_EBITDA EV to EBITDA Ratio

EBITDA Earnings Before Interest Taxes Depreciation and Amortization

BETA 3-Year Regression Beta

DEPREC Depreciation

EV_SALESTR EV to Trailing Sales Ratio

EPS_GRO Growth in Earnings Per Share

P_BV Price to Book Value Ratio

NET_INC_TRAIL Trailing Net Income

PE_TRAIL Trailing PE Ratio

OP_MARG Pre-Tax Operating Margin

FIRM_VAL Firm Value

STDEV 3-year Standard Deviation of Stock Price

TRAD_VOL Trading Volume

CASH Cash

DIV_YLD Dividend Yield

REV_LAST Revenues

NET_INC Net Income

EV_BV EV to Book Value Ratio

REINV Reinvestment Amount

EBIT Earnings Before Interest and Taxes

EV_CAP EV to Invested Capital Ratio

PAYOUT Payout Ratio

HILO Hi-Lo Risk

ALLFINANCIALRATIOS All Financial Ratios

SGA Sales General and Administration Expenses

EV Enterprise Value

NCWC Non-Cash Working Capital

How to add data items to the Quandl current financial data.

C#

FinQuandlURLCurrentDataSource finStockData = new FinQuandlURLCurrentDataSource();
FinQuandlURLHistoricalDataSource finStockHistoricalData =

new FinQuandlURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], historicalTickerLookup[i]);
 finStockData.AddTickerLookupItem(idStrings[i], currentDataStockLookup[i]);
}
finChartData = new FinChartData(finStockHistoricalData, finStockData, idStrings,
startDate, stopDate);

 // items are case invariant

 finChartData.AddColumnItem("Date");
 finChartData.AddColumnItem("Float");

136

QCTAChart - Technical Analysis Charting Tools

 finChartData.AddColumnItem("Insider");
 finChartData.AddColumnItem("Capex");

 finChartData.AddColumnItem("Net_marg");
 finChartData.AddColumnItem("Inv_cap");
 finChartData.AddColumnItem("P_s");
 finChartData.AddColumnItem("Roc");
 finChartData.AddColumnItem("Stock_px");
 finChartData.AddColumnItem("Mkt_de");
 finChartData.AddColumnItem("Correl");
 finChartData.AddColumnItem("Pe_fwd");
 finChartData.AddColumnItem("Rev_gro");

 finChartData.AddColumnItem("Ebit");
 finChartData.AddColumnItem("Ebit_1t");
 finChartData.AddColumnItem("Ebitda");
 finChartData.AddColumnItem("Eff_tax");
 finChartData.AddColumnItem("Ev");
 finChartData.AddColumnItem("Ev_cap");
 finChartData.AddColumnItem("Ev_salestr");
 finChartData.AddColumnItem("Ev_ebit");
 finChartData.AddColumnItem("Ev_ebitda");

VB

Dim finStockData As New FinQuandlURLCurrentDataSource()
Dim finStockHistoricalData As New FinQuandlURLHistoricalDataSource()

For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), historicalTickerLookup(i))
 finStockData.AddTickerLookupItem(idStrings(i), currentDataStockLookup(i))
Next
finChartData = New FinChartData(finStockHistoricalData, finStockData, idStrings,
startDate, stopDate)

' items are case invariant

finChartData.AddColumnItem("Date")
finChartData.AddColumnItem("Float")
finChartData.AddColumnItem("Insider")
finChartData.AddColumnItem("Capex")

finChartData.AddColumnItem("Net_marg")
finChartData.AddColumnItem("Inv_cap")
finChartData.AddColumnItem("P_s")
finChartData.AddColumnItem("Roc")
finChartData.AddColumnItem("Stock_px")
finChartData.AddColumnItem("Mkt_de")
finChartData.AddColumnItem("Correl")
finChartData.AddColumnItem("Pe_fwd")
finChartData.AddColumnItem("Rev_gro")

finChartData.AddColumnItem("Ebit")
finChartData.AddColumnItem("Ebit_1t")
finChartData.AddColumnItem("Ebitda")
finChartData.AddColumnItem("Eff_tax")
finChartData.AddColumnItem("Ev")
finChartData.AddColumnItem("Ev_cap")
finChartData.AddColumnItem("Ev_salestr")
finChartData.AddColumnItem("Ev_ebit")
finChartData.AddColumnItem("Ev_ebitda")

How to acquire the current data values used in the charts.

You may want to acquire the current data values used in the creation of the charts table. The values are stored
internally in the FinChartData data structures. A typical initialization of the FinChartData class is shown below.

137

5. Configuring QCTAChart Datasources

FinChartData finChartData = null;

ChartCalendar startDate = new ChartCalendar();
ChartCalendar stopDate = new ChartCalendar();

String[] idStrings = { "Intel", "IBM", "Tex Inst", "App Mat", "CSCO", "Apple", "QQQ" };
String[] tickerStrings = { "INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ" };

FinYahooURLCurrentDataSource finStockData = null;
FinYahooURLHistoricalDataSource finStockHistoricalData = null;

...

stopDate.Add(ChartObj.DAY_OF_YEAR, -1);
startDate.Add(ChartObj.YEAR, -10);
finStockData = new FinYahooURLCurrentDataSource();
finStockHistoricalData = new FinYahooURLHistoricalDataSource();

for (int i = 0; i < idStrings.Length; i++)
{
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
}

finChartData =
 new FinChartData(finStockHistoricalData, finStockData, idStrings, startDate, stopDate);

 finChartData.AddColumnItem("Date");
 finChartData.AddColumnItem("Float");
 finChartData.AddColumnItem("Insider");
 finChartData.AddColumnItem("Capex");

 finChartData.AddColumnItem("Net_marg");
 finChartData.AddColumnItem("Inv_cap");
 finChartData.AddColumnItem("P_s");
 finChartData.AddColumnItem("Roc");
 finChartData.AddColumnItem("Stock_px");
 finChartData.AddColumnItem("Mkt_de");
 finChartData.AddColumnItem("Correl");
 finChartData.AddColumnItem("Pe_fwd");
 finChartData.AddColumnItem("Rev_gro");

Assuming that the primary chart has already been displayed, an indication that the current data has already been read
from the URL or file, you can retrieve the data using code similar to below.

String [,] currentdatastrings = finChartData.ReadStockData();

The result is a 2D array of string, where the rows and columns are the same as the rows and columns of the data
table. The rows represent stocks, and the columns represent the individual column items you configured the chart
for. In the example above, you would retrieve the Pe_fwd string (column item index 11) of the stock with the ID
“Tex Inst" (idStrings index 2) using the following code.

int stockindex = 2;
int columnid = 11;
String Pe_fwd_string = currentdatastrings[stockindex, columnid];

Alternatively, you can retrieve the current data items directly from the data source, using the ReadStockData
method. In this case you create a StringArray containing the column items you want, and also specify the ID string
of the stock you want the column items for, “Intel” in this case.

StringArray columitems = new StringArray();

columitems.Add("Name");
columitems.Add("PERatio");

138

QCTAChart - Technical Analysis Charting Tools

columitems.Add("Volume");
columitems.Add("Bid");
columitems.Add("BidRealtime");
columitems.Add("ChangeFromYearHigh");
columitems.Add("ChangeFromYearLow");
columitems.Add("DividendShare");
columitems.Add("DividendYield");
columitems.Add("EPSEstimateNextYear");
columitems.Add("EarningsShare");

StringArray dataitems = finStockData.ReadStockData("Intel", columitems);

139

6. Display Stock Data in the Primary Chart

FinChartView

Com.quinncurtis.chart2dnet.ChartView
FinChartView

The FinChartView class is the main view class of software, which combines a primary chart, with multiple
technical indicators in secondary charts. It also includes a zoom window which controls zooming and
panning of all of the charts and a financial data table. The user can manage all of the windows using dialog
boxes with minimal direct programming. Using it, you can manage a portfolio of securities comparing
them against one another, and displaying a variety of technical indicators.

The Primary chart of the FinChartView is reserved for plotting OHLC stock data, and a number of
technical indicators overlays. Below is a list of the basic options.

• Plot a single stock as a OHLC, Candlestick, Line, OHLC Bar, Candlestick Volume, Mountain plot,
Point and Figure, or Renko chart.

• Plot up to three stocks against one another. Usually this is done using line plots.

• The y-axis of the Primary chart plotting area can be scaled using linear, logarithmic, or normalized
scaling. Linear is usually used for plotting a single stock which show price movement in a
relatively small range. Logarithmic is used when a stock shows a large change in value over time
(Apple for example). Normalized is used when comparing stocks which will usually have a
different range of values.

There are two ways you can setup the Primary chart for a combination of these options. The first is to
explicitly setup the Primary chart in your program. The second is to do a basic setup, and then permit the
user to customize the chart using the built-in Primary chart dialog.

Adding Stocks to the Primary Chart

The first thing you must do is attach the FinChartData you created in the previous chapter, to the
FinChartView, using the FinChartView method InitFinChartView. This adds a portfolio of stocks you can
choose from, to the current view. Typically you will be working in a subclass of the FinChartView class.
So the methods of FinChartView are called without a direct class reference, or by using this as the class
reference.

C#
 this.InitFinChartView(finChartData);

VB
 Me.InitFinChartView(finChartData)

Then, add a Primary chart to the view.

141

6. Display Stock Data in the Primary Chart

The FinChartView can hold one data table, one Zoom chart, one Primary chart, and as many Secondary charts as
are practical give the space limitations. With the exception of the Primary chart, all other items are optional.

C#

this.FinZoomFlag = true;
this.AddPrimaryChart("TXN", FinChartConstants.PRIMARYCHART_LINEAR, ChartObj.OHLC);
this.MainTitleString = "Texas Instruments is about to Pop!";
this.AddBollingerBandsToPrimaryChart();

VB

Me.FinZoomFlag = True
Me.AddPrimaryChart("TXN", FinChartConstants.PRIMARYCHART_LINEAR, ChartObj.OHLC)
Me.MainTitleString ="Texas Instruments is about to Pop!"
Me.AddBollingerBandsToPrimaryChart()

The FinZoomFlag reference seen above is not needed, because it is set True by default. If you do not want the zoom
chart above the Primary chart, set the FinZoomFlag to False. Call AddPrimaryChart, specifying the ticker symbol.
The example above specifies "TXN" as the stock to display. This is the id, or key, value in the stock lookup table.
So if you entered "Tex. Inst." as the id value in the lookup table, you must use "Tex Inst." in the call to
AddPrimaryChart.

142

file:///F:/Quinn-Curtis_TAChart_Development/DotNet/docs/

QCTAChart - Technical Analysis Charting Tools

The AddPrimaryChart method call adds TXN as the views base plot object. The initial y-axis scale is set to a linear
scale. The chart is given the title "Texas Instruments is Ready to Pop!". BollingerBands are an overlay indicator for
the primary chart, so the AddBollingerBandsToPrimaryChart call adds Bollinger Bands to the primary chart.

If you want to add a second stock to the chart, use the AddTickerItemToPrimaryChart.

C#
 this.AddTickerItemToPrimaryChart("INTC");

VB
 Me.AddTickerItemToPrimaryChart("INTC")

When you display two or three stocks in a chart using a linear scale and one of the OHLC plot types, it often
produces a poor chart. Because the combined range of all three stocks causes the auto-scaling of the y-axis to be so
large it obscures the detail in the OHLC values. When comparing different stocks it is better to use a line plot, and a
normalized scale.

C#
this.AddPrimaryChart("TXN",

FinChartConstants.PRIMARYCHART_NORMALIZED, ChartObj.LINE_PLOT);
this.AddTickerItemToPrimaryChart("INTC", ChartObj.LINE_PLOT);

VB
Me.AddPrimaryChart("TXN",

FinChartConstants.PRIMARYCHART_NORMALIZED, ChartObj.LINE_PLOT)
Me.AddTickerItemToPrimaryChart("INTC", ChartObj.LINE_PLOT)

In this example, both TXN and INTC have been added to the chart. The plot types have been changed to line plots
(ChartObj.LINE_PLOT), and the scale to normalized (FinChartConstants.PRIMARYCHART_NORMALIZED) or
logarithmic (FinChartConstants.PRIMARYCHART_LOG) in order to make comparisons easier.

The primary chart, and the technical indicators, by default they are applied to the first of the stocks added to the
chart. If you want to explicitly set the current stock to one of the other stocks in the portfolio, set CurrentStockIndex
to the index of the stock you want, or

C#
 this.CurrentStockIndex = 1;

VB
 Me.CurrentStockIndex = 1

or set CurrentTickerString to the stock key.

C#
 this.CurrentTickerString = "INTC";

VB
 Me.CurrentTickerString = "INTC"

Simple Moving Average

Simple moving averages (SMA) are an easy way to filter out random noise, or price fluctuations, from a signal.
Filtering makes it easier to identify short and long term trends in stock movement. A single simple moving average
(MA) is often compared to original signal. When the original signal passes up and through the SMA, that can be
considered a buy signal. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

143

6. Display Stock Data in the Primary Chart

public FinSimpleMovingAveragePlot AddSimpleMovingAverageToPrimaryChart(
 int maperiod
)

public FinSimpleMovingAveragePlot AddSimpleMovingAverageToPrimaryChart()

VB

Public Function AddSimpleMovingAverageToPrimaryChart (_
 maperiod As Integer _
) As FinSimpleMovingAveragePlot

Public Function AddSimpleMovingAverageToPrimaryChart As FinSimpleMovingAveragePlot

If you use the AddSimpleMovingAverageToPrimaryChart call without parameters, it uses the default values, and the
current selected stock.

Parameters

maperiod
Type: Int32
Default Value: 50
period of the moving average

C#
double longmaperiod = 50;
double shortmaperiod = 9;
this.AddSimpleMovingAverageToPrimaryChart(longmaperiod);
this.AddSimpleMovingAverageToPrimaryChart(shortmaperiod);

VB

Dim longmaperiod As Double = 50
Dim shortmaperiod As Double = 9
Me.AddSimpleMovingAverageToPrimaryChart(longmaperiod)
Me.AddSimpleMovingAverageToPrimaryChart(shortmaperiod)

Exponential Moving Average

The exponential moving average (EMA) mathematically weights more recent data more than older data. Because of
this it can react quicker to changing circumstances. Otherwise, the buy and sell rules are much the same as the SMA.
If the shorter of the EMA signals moves up and through the longer, it considered a buy signal. If the shorter of the
EMA signals moves down and through the longer, it considered a sell signal. It can be used singly or in pairs, same
as the SMA examples. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

public FinExponentialMovingAveragePlot AddExponentialMovingAverageToPrimaryChart(
 int maperiod
)

public FinExponentialMovingAveragePlot AddExponentialMovingAverageToPrimaryChart()

VB

Public Function AddExponentialMovingAverageToPrimaryChart (_
 maperiod As Integer _
) As FinExponentialMovingAveragePlot

Public Function AddExponentialMovingAverageToPrimaryChart As
FinExponentialMovingAveragePlot

144

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Parameters

maperiod
Type: Int32
Default Value: 50
period of the exponential moving average

If you use the AddExponentialMovingAverageToPrimaryChart call without parameters, it uses the default values,
and the current selected stock.

C#

double longmaperiod = 50;
double shortmaperiod = 9;
this.AddExponentialMovingAverageToPrimaryChart(longmaperiod);
this.AddExponentialMovingAverageToPrimaryChart(shortmaperiod);

VB

Dim longmaperiod As Double = 50
Dim shortmaperiod As Double = 9
Me.AddExponentialMovingAverageToPrimaryChart(longmaperiod)
Me.AddExponentialMovingAverageToPrimaryChart(shortmaperiod)

Moving Average Bands

Moving Average Bands (or Envelopes) are formed by calculating a SMA (usually a 20-period average) on a source
signal, and then forming two bands above and below the SMA signal by adding and subtracting a percentage
deviation (usually in the range 1% to 10%) from the SMA signal. Moving average bands serve as an indicator of
overbought or oversold conditions, visual representations of price trend, and an indicator of price breakouts. More
details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

public FinMABandsPlot AddMABandsToPrimaryChart(
 int maperiod,
 double bandwidth
)

public FinMABandsPlot AddMABandsToPrimaryChart()

VB

Public Function AddMABandsToPrimaryChart (_
 maperiod As Integer, _
 bandwidth As Double _
) As FinMABandsPlot

Public Function AddMABandsToPrimaryChart As FinMABandsPlot

If you use the AddMABandsToPrimaryChart call without parameters, it uses the default values, and the current
selected stock.

145

http://msdn.microsoft.com/en-us/library/system.int32.aspx

6. Display Stock Data in the Primary Chart

Parameters

maperiod
Type: Int32
Default Value: 20
The moving average period

bandwidth
Type: Double
Default Value: 0.03
The bandwidth value, the percentage value (0.0 to 1.0) above and below to draw the MA bands.

C#
double maperiod = 20;
double bandwidth = 0.03;
this.AddMABandsToPrimaryChart(maperiod, bandwidth);

VB
Dim maperiod As Double = 20
Dim bandwidth As Double = 0.03
Me.AddMABandsToPrimaryChart(maperiod, bandwidth)

Bollinger Bands

Bollinger Bands (or Envelopes) are similar to Moving Average bands, except they add a little statistical science to
the formation of an indicator. Bollinger Bands still use a SMA calculation for the central line (20 period SMA is
standard). But instead of using a fixed percentage as the band width, it defines the separation between the two bands
using a multiple of the standard deviation of the signal, calculated using the previous N periods of the closing value
of the OHLC data. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

public FinBollingerBandsPlot AddBollingerBandsToPrimaryChart(
 int maperiod,
 int smoothing,
 double bandwidth,
 bool fillmode
)
public FinBollingerBandsPlot AddBollingerBandsToPrimaryChart()

VB

Public Function AddBollingerBandsToPrimaryChart (_
 maperiod As Integer, _
 smoothing As Integer, _
 bandwidth As Double, _
 fillmode As Boolean _
) As FinBollingerBandsPlot

Public Function AddBollingerBandsToPrimaryChart As FinBollingerBandsPlot

If you use the AddBollingerBandsToPrimaryChart call without parameters, it uses the default values, and the current
selected stock.

Parameters

maperiod
Type: Int32
Default Value: 20
The period of the moving average to use.

smoothing

146

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Type: Int32
Default Value: FinChartConstants.MA_CALC = 1
The smoothing method to use. Specify FinChartConstants.MA_CALC for a simple moving average, and
EXP_MOVING_AVERAGE_TIMEPERIOD

bandwidth
Type: Double
Default Value: 2
The number of standard deviations to use in defining the bands.

fillmode
Type: Boolean
Default Value: true
Set to true to fill the area between the bands.

C#
this.AddBollingerBandsToPrimaryChart();

VB
Me.AddBollingerBandsToPrimaryChart()

Paraboloc SAR

The well known market technician J. Welles Wilder created the indicator and described it in his book New
Concepts in Technical Trading Systems. Published in 1978, the book also describes a number of other Welles
indicators, including the Average True Range, the Directional Movement Index and the Relative Strength Index.
More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

public FinParabolicSARPlot AddParabolicSARToPrimaryChart(
 int parsarstartindex,
 double sarstepstart,
 double sarstepincr,
 double sarstepmax
)

public FinParabolicSARPlot AddParabolicSARToPrimaryChart()

VB

Public Function AddParabolicSARToPrimaryChart (_
 parsarstartindex As Integer, _
 sarstepstart As Double, _
 sarstepincr As Double, _
 sarstepmax As Double _
) As FinParabolicSARPlot

Public Function AddParabolicSARToPrimaryChart As FinParabolicSARPlot

If you use the AddParabolicSARToPrimaryChart call without parameters, it uses the default values, and the current
selected stock.

Parameters

parsarstartindex
Type: Int32
Default Value: 5

147

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.boolean.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx

6. Display Stock Data in the Primary Chart

The Par SAR start index
sarstepstart

Type: Double
Default Value: 0.02
The Par SAR step start value

sarstepincr
Type: Double
Default Value: 0.02
The Par SAR step increment.

sarstepmax
Type: Double
Default Value: 0.2
The Par SAR step max value.

C#
int parsarstartindex = 5;
double sarstepstart = 0.02;
double sarstepincr = 0.02;
double sarstepmax = 0.20;
this.AddParabolicSARToPrimaryChart(parsarstartindex, sarstepstart, startstepincr,
sarstepmax);

VB
Dim parsarstartindex As Integer = 5
Dim sarstepstart As Double = 0.02
Dim sarstepincr As Double = 0.02
Dim sarstepmax As Double = 0.2
Me.AddParabolicSARToPrimaryChart(parsarstartindex, sarstepstart, startstepincr,
sarstepmax)

Primary Chart Dialog

Exactly the same thing can be achieved, without programming, using the Primary Chart Dialog, which is invoked
using the P button in the upper right-hand corner of the Primary Chart. Start with a minimum Primary Chart, with
just the plot for a single stock, and customize it from there.

C#
this.AddPrimaryChart("TXN", ChartObj.OHLC);

VB
Me.AddPrimaryChart("TXN", ChartObj.OHLC)

148

http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx

QCTAChart - Technical Analysis Charting Tools

Plotted Datasets
Up to three stocks can be compared in the Primary chart. All technical indicators reference the first of the three
stocks.

149

6. Display Stock Data in the Primary Chart

First – First of the plotted stocks
Index – The first plot item in the chart, selected from the available stocks in the attached

FinChartData object
Plot Type – The plot type for the first plot – Line, OHLC, OHLC Bar, Candlestick, Candlestick

Volume, Mountain, Point and Figure, or Renko
Attributes – Set the attributes of the plot. The actual dialog depends on the Plot Type. This

includes color, line thickness, fill color, and item width. In the case of the more complex
plot types, such as the Point and Figure plot, and the Renko plot, it also includes plot
specific items such as pricing mode, box size, reversal count and other parameters.

Line Plot Attributes

Attribute options for line plots
Line/Text Color – Primary color of the line object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Line Alpha – The transparency of the line – use value in the range (0..255)

OHLC Attributes

150

QCTAChart - Technical Analysis Charting Tools

Attribute options for OHLC plots
Line/Text Color – Primary color of the OHLC object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Line Alpha – The transparency of the line – use value in the range (0..255)
Item Width – Adjacent values in a plot are separated by a value of 1.0. Enter the item width as a value in
the range of (0.0 to 1.0)

Candlestick, Candelstick Volume, Mountain, Bar Plot Attributes

Attribute options for plots
Line/Text Color – Primary line, or outline color of the plot object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Line Alpha – The transparency of the line – use value in the range (0..255)
Item Width – Adjacent values in a plot are separated by a value of 1.0. Enter the item width as a value in
the range of (0.0 to 1.0)
Fill Color – The color of any fill associated with the object
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

Scatter Plot Attributes

151

6. Display Stock Data in the Primary Chart

Attribute options for Scatter plots
Color – Primary color of the scatter plot object
Symbol – The symbol used in the scatter plot (Square, Up Triangle, Down Triangle, Diamond, Cross, Plus,
Star, Line, Hbar, Vbar, and Circle)
Size (Pts) – Size of the scatter plot symbol in points
Line Width – The width of the line used to draw the scatter plot symbols.
Fill – A flag which if checked specifies that the scatter plot symbol should be filled.
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

OHLC Bar Attributes

Attribute options for OHLC Bar Attributes
Color – Select the color for the Top, Middle, Bottom, and the Dot.
Fill Alpha – The transparency of the fill color – use value in the range (0..255). The same alpha value is
used for the Top, Middle, Bottom and Dot colors.

152

QCTAChart - Technical Analysis Charting Tools

Renko Attributes

Attribute options for Renko plots
Upside - Color used for boxes in an up-trend.
Downside – Color used for boxes in an down-trend.
Box Size – The fixed box size used in calculting and drawing the Renko chart.
Pricing Mode – Selects if the High/Low method or the Close method is used in the Renko chart
calculation.
Reversal Count – Specifies the fixed reversal count used in the Renko chart calculations

Point and Figure Attributes

Attribute options for Point and Figure Plots
Upside - Color used for text or boxes in an up-trend.
Downside – Color used for text or boxes in an down-trend.
Box Size Mode – Specifies the box size calculation mode used in calculating the Box size for the Point and

153

6. Display Stock Data in the Primary Chart

Figure chart – Traditional, Percentage or Fixed, or Fixed ATR.
Box Size – The fixed box size used in calculting and drawing the Point and Figure chart.
Pricing Mode – Selects if the High/Low method or the Close method is used in the Point and Figure chart
calculation.
ATR Period – If the Box Size Mode is Fixed ATR, then the value of ATR Period specifies the number of
OHLC events used in the calculation.
Reversal Count – Specifies the fixed reversal count used in the Point and Figure chart calculations
Plot Type – Specifies the plot type of the Point and Figure chart – Traditional (Xs and Os), or Bars.

Second – Second of the plotted stocks

Index – The second plot item in the chart, selected from the available stocks in the attached
FinChartData object

Plot Type – The plot type for the second plot – Line, OHLC, OHLC Bar, Candlestick, Candlestick
Volume or Mountain plot

Attributes – Set the attributes of the plot.

Third – Third of the plotted stocks

Index – The third plot item in the chart, selected from the available stocks in the attached
FinChartData object

Plot Type – The plot type for the third plot – Line, OHLC, OHLC Bar, Candlestick, Candlestick
Volume or Mountain plot

Attributes – Set the attributes of the plot.

Y-Scale

Scaling options for the y-axis

154

QCTAChart - Technical Analysis Charting Tools

Linear – Set the y-axis scale to linear, best when looking at a single stock with limited range
Logarithmic – Set the y-axis scale to logarithmic, best when looking at a single stock with a wide range
Normalized – Set the y-axis scale to normalized, best when comparing multiple stocks, particularly if they

have different ranges.

Simple Moving Average

Calculatate and plot as an overlay of the stock plot, one or two simple moving averages of the first plotted dataset.

First – Enable the first simple moving average
Period – The period of the first moving average.

Second– Enable the second simple moving average
Period - The period of the second moving average.

Attributes – Set the attributes of the plot.

Simple Moving Average (SMA) Indicator Attributes

155

6. Display Stock Data in the Primary Chart

Attribute options for Simple Moving Average (SMA)
First SMA – First of two SMA objects
Second SMA - Second of two SMA objects

Color – Primary color for the first SMA object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Exponential Moving Average

Calculate and plot as an overlay of the stock plot, one or two exponential moving averages of the first plotted
dataset.

First – Enable the first exponential moving average
Period – The period of the first exponential average.

Second– Enable the second exponential moving average
Period - The period of the second exponential average.

Attributes – Set the attributes of the plot.

Exponential Moving Average (EMA) Indicator Attributes

Attribute options for Exponential Moving Average (EMA)
First EMA – First of two EMA objects
Second EMA - Second of two SMA objects

Color – Primary color for the first EMA object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

156

QCTAChart - Technical Analysis Charting Tools

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Bollinger Bands

Options for the Bollinger Bands overlay plot

Enable – Enable the Bollinger Bands plot
Period – The period of the moving average used in the Bollinger Bands smoothing
Bandwidth (SD) – The bandwidth, in Standard Deviations, of the Bollinger Bands plot
Fill – Check and the area between the Bollinger Bands is filled with a trasparent color
Attributes – Set the attributes of the plot.

Bollinger Bands Indicator Attributes

Attribute options for Bollinger Bands
Bands

Color – Primary line, or outline color of the plot object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Fill – Check and the area between the Bollinger Bands high and low lines is filled using Color.
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

Central Line
Color – The color of the central line of the Bollinger Bands
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

157

6. Display Stock Data in the Primary Chart

Moving Average Bands

Options for the Moving Average Bands overlay plot

Enable – Enable the Moving Average Bands plot
Period – The period of the moving average used in the Moving Average Bands smoothing
Bandwidth % – The bandwidth, as a percentage of the moving average value of the source signal
Fill – Check and the area between the Moving Average Bands is filled with a trasparent color
Attributes – Set the attributes of the plot.

Moving Average Bands Indicator Attributes

Attribute options for Moving Average Bands
Bands

Color – Primary line, or outline color of the plot object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Fill – Check and the area between the moving average high and low lines is filled using Color.
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

Parabolic SAR

Options for the Parabolic SAR overlay plot

158

QCTAChart - Technical Analysis Charting Tools

Enable – Enable the Parabolic SAR plot
Start Index – starting index value for the Parabolic SAR plot
Step Start – the starting step size for the for the Parabolic SAR plot
Step Increment – The size of the increment to the step step size when it changes
Step Max – The maximum allowable value of the step size
Attributes – Set the attributes of the plot.

Parabolic SAR Indicator Attributes

Attribute options for Parabolic SAR
Color – Primary color of the Parabolic SAR plot object
Symbol – The symbol used in the Parabolic SAR (Square, Up Triangle, Down Triangle, Diamond, Cross,
Plus, Star, Line, Hbar, Vbar, and Circle(
Size (Pts) – Size of the Parabolic SAR symbol in points
Line Width – The width of the line used to draw the Parabolic SAR symbols.
Fill – A flag which if checked specifies that the Parabolic SAR symbol should be filled.
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

Main Title

The main title of the chart. It is displayed above the Primary Chart, Zoom window, and the current data table. If the
title is empty, the space for the title is used by the charts.

Main Title Text Color – The button to the right of the Main Title text box. Click to change the color of the title
text.

159

6. Display Stock Data in the Primary Chart

Add Stock Option

Add Stock – You can add a new stock to the attached stocks by entering in a Stock ID value and a Ticker Symbol.

Stock ID – The string you wish to be used in the display of the stock: "Intel" for example, without the quotes.
Ticker Symbol – The acual ticker symbol used by the exchange: "INTC" for Intel, without the quotes.

Press the Add Stock Button once the Stock ID and Ticker Symbol are entered.

Delete Stock Option

Select a one of current stocks in the drop down combo box list, then select the Delete Stock button. The stock will
be removed from all of the stock lists. If the deleted stock is the primary stock (First) in the Plotted Datasets section,
the current stock referenced by that list will revert back to the first stock in the First Plotted Datasets combo box. If
the deleted stock is reference the Second or Third Plotted Datasets, those lists will revert back to the No Index
selction in the associated combo box. Once only one stock is left, you will not be able to delete the final stock; there
must always be at least one stock available for selection.

Reset to Defaults

Reset the dialog to its defaults.

Secondary Charts

Open up the Secondary charts dialog.

160

QCTAChart - Technical Analysis Charting Tools

Load

Invoke an Open dialog in order to load a previously saved setup file.

Save

Invoke a Save dialog in order to save the current setup to a file.

Cancel – Close dialog and cancel any changes

OK – Close dialog and apply changes to the chart.

161

7. Secondary Chart Options

FinChartView

Com.quinncurtis.chart2dnet.ChartView
FinChartView

Underneath the primary chart you can display additional, technical indicator, charts. The secondary charts
are used to display technical indicators which are best displayed in their own chart area, usually because
they use a y-axis coordinate system which is not the same as the primary chart. The secondary charts
always key on the first stock in the primary chart, so you cannot monitor one stock in the Primary chart
(INTC for example) and another in the secondary charts (TXN for example).

Many of the secondary chart technical indicators display multiple lines, or bar plots, as part of their
display. Also, many use explicit alarm limits to notify the user that a buy or sell signal is taking place.

The secondary indicators are extensively described in Chapter 2. Below is a current list of the secondary
indicators available for display in the software.

• Average Directional Indicator

• Momentum

• Rate of Change (ROC)

• Relative Strength (RSI)

• Stochastic (Fast and Slow)

• Williams %R

• Moving Average Convergence/Divergence (MACD)

• Volume charts

There are two ways you can setup secondary charts for a combination of these indicators. The first is to
explicitly setup the Secondary charts in your program. The second is to do a basic setup, and then permit
the user to customize the chart using the built-in Secondary chart dialog.

Adding Secondary Charts to the FinChartView

The first thing you must do is add the Primary chart to the FinChartView. This is described in the previous
chapter. For purposes of this chapter, assume that a simple OHLC plot has been added to the Primary chart,
with a Bollinger Bands overlay. The zoom window and the current financial data table is enabled.

C#
InitFinChartView(finChartData);
this.EnableFinChartTable = true;
this.FinZoomFlag = true;
this.AddPrimaryChart("TXN", ChartObj.OHLC);

163

7. Secondary Chart Options

this.MainTitleString = "Texas Instruments is about to Pop!";
this.AddBollingerBandsToPrimaryChart();

VB
InitFinChartView(finChartData)
Me.EnableFinChartTable = True
Me.FinZoomFlag = True
Me.AddPrimaryChart("TXN", ChartObj.OHLC)
Me.MainTitleString ="Texas Instruments is about to Pop!"
Me.AddBollingerBandsToPrimaryChart()

The Primary chart identifies which stock is used for the technical indicators added as secondary charts. Now you can
add additional indicators as Secondary charts.

Average Directional Indicator

The Average Directional Indicator (ADX) was originally developed by J. Welles Wilder and is described in his book
"New Concepts in Technical Trading System". The ADX is used to measure the strength of a trend. Its related
components, the Minus Directional Indicator (-DI) and Plus Directional Indicator (+DI), are used to measure the
strength of a trend. The ADX indicator is often used in conjunction with the Parabolic SAR indicator, to confirm a
trend. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

164

QCTAChart - Technical Analysis Charting Tools

C#
public FinADXIndicatorPlot AddADXIndicatorChart(
 int stockindex,
 int maperiod,
 int smoothingmode
)

public FinADXIndicatorPlot AddADXIndicatorChart()

VB
Public Function AddADXIndicatorChart (_
 stockindex As Integer, _
 maperiod As Integer, _
 smoothingmode As Integer _
) As FinADXIndicatorPlot

Public Function AddADXIndicatorChart As FinADXIndicatorPlot

Parameters

stockindex
Type: Int32
The stock index.
Default Value: 0

maperiod
Type: Int32
The moving average period

smoothingmode
Type: Int32
The smoothing mode. Use one of the smoothing mode constants: MA_CALC = 1,
EXPMA_TIMEPERIOD_CALC = 2, WILDER_EXPMA_CALC

Return Value

Returns the FinADXIndicatorPlot object for the secondary chart.

Limit Value

A stock is said to be in a strong trend if the ADX value is greater than 25 (some use 20 as the threshold). Note, that
the ADX indicator does NOT specify a trend direction. So a strong positive trend, or a strong negative trend, will
result in ADX values greater than 25 (20). So the ADX value can signal traders whether or not they should be using
trend trading strategy. The AddADXIndicatorChart method also places a transparent filled background at the 25
limit level. You can change the default limit level by changing the defaultHighLimitValue static property of the
FinADXIndicatorPlot class.

C#
FinADXIndicatorPlot.defaultHighLimitValue = 80;

FinADXIndicatorPlot adxchart = this.AddADXIndicatorChart();

VB
FinADXIndicatorPlot.defaultHighLimitValue = 80
Dim adxchart As FinADXIndicatorPlot = this.AddADXIndicatorChart()

Changing the FinADXIndicatorPlot.defaultHighLimitValue property will affect all ADX plots, regardless of

165

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx

7. Secondary Chart Options

whether they are created programmatically, or using the Secondary chart dialog.

Another way to change the limits, which only affects the specific FinADXIndicatorPlot object is:

C#
FinADXIndicatorPlot adxchart = this.AddADXIndicatorChart();
adxchart.HighLimitValue = 80;

VB
Dim adxchart As FinADXIndicatorPlot = this.AddADXIndicatorChart()
adxchart.HighLimitValue = 80

Plot Object Colors

If you want to change the colors of the lines in the ADX chart, use methods found in the FinADXIndicatorPlot class.
Change the ADX line atributes using code similar to below.

C#

FinADXIndicatorPlot adxplot = this.AddADXIndicatorChart();
// ADX line attributes
 adxplot.AdxLinePlotAttribute.PrimaryColor = Color.Red;
 adxplot.AdxLinePlotAttribute.LineWidth = 1;

// ADX DM+ line attributes
 adxplot.AdxDMPLinePlotAttribute.PrimaryColor = Color.Green;
 adxplot.AdxDMPLinePlotAttribute.LineWidth = 1;

// ADX DM- line attributes
 adxplot.AdxDMMLinePlotAttribute.PrimaryColor = Color.Yellow;
 adxplot.AdxDMMLinePlotAttribute.LineWidth = 1;

VB
Dim adxplot As FinADXIndicatorPlot = Me.AddADXIndicatorChart()
' ADX line attributes
adxplot.AdxLinePlotAttribute.PrimaryColor = Color.Red
adxplot.AdxLinePlotAttribute.LineWidth = 1

' ADX DM+ line attributes
adxplot.AdxDMPLinePlotAttribute.PrimaryColor = Color.Green
adxplot.AdxDMPLinePlotAttribute.LineWidth = 1

' ADX DM- line attributes
adxplot.AdxDMMLinePlotAttribute.PrimaryColor = Color.Yellow
adxplot.AdxDMMLinePlotAttribute.LineWidth = 1

166

QCTAChart - Technical Analysis Charting Tools

Momentum

The Momentum indicator is used to identify the speed (or strength) of a price movement. It is calculated as the
difference between today's closing price and the close N days ago. More details are found in Chapter 2:
Introduction to QCTAChart and Technical Analysis.

C#
public FinMomentumIndicatorPlot AddMomentumIndicatorChart(
 int maperiod
)

public FinMomentumIndicatorPlot AddMomentumIndicatorChart()

VB
Public Function AddMomentumIndicatorChart (_
 maperiod As Integer _
) As FinMomentumIndicatorPlot

Public Function AddMomentumIndicatorChart As FinMomentumIndicatorPlot

167

7. Secondary Chart Options

Parameters

maperiod
Type: Int32
Default Value: 10
The moving average period

Return Value

Returns the FinMomentumIndicatorPlot object for the secondary chart.

FinMomentumIndicatorPlot momentumchart = this.AddMomentumIndicatorChart();

Limit Values

Set high (overbought) and low (oversold) thresholds for action. No firm algorithm is available for this. Some suggest
setting the thresholds at 67% the high and low peak values on both sides of 0.0. The AddMomentumIndicatorChart
method places a transparent filled background at theses levels. You can change the default limit level using the
FinMomentumIndicatorPlot.defaultLowLimitFraction and FinMomentumIndicatorPlot.defaultHighLimitFraction
static properties, as shown below..

C#
FinMomentumIndicatorPlot.defaultLowLimitFraction = 0.55;
FinMomentumIndicatorPlot.defaultHighLimitFraction = 0.55;
FinMomentumIndicatorPlot momentumchart = this.AddMomentumIndicatorChart();

VB
FinMomentumIndicatorPlot.defaultLowLimitFraction = 0.55
FinMomentumIndicatorPlot.defaultHighLimitFraction = 0.55
Dim momentumchart As FinMomentumIndicatorPlot = Me.AddMomentumIndicatorChart()

Changing the static limit properties will affect all Momentum plots, regardless of whether they are created
programmatically, or using the Secondary chart dialog.

Another way to change the limits, which only affects the specific FinMomentumIndicatorPlot object is:

C#
FinMomentumIndicatorPlot momentumchart = this.AddMomentumIndicatorChart();
momentumchart.HighLimitFraction = 0.55;
momentumchart.LowLimitFraction = 0.55;

VB
Dim momentumchart As FinMomentumIndicatorPlot = Me.AddMomentumIndicatorChart()
momentumchart.HighLimitFraction = 0.55
momentumchart.LowLimitFraction = 0.55

Plot Object Colors

If you want to change the colors of the lines in the Momentum chart, use methods found in the
FinMomentumIndicatorPlot class. Change the Momentum line attributes using code similar to below.

C#
FinMomentumIndicatorPlot momentumchart = this.AddMomentumIndicatorChart();
momentumchart.MomentumLinePlotAttribute.PrimaryColor = Color.Purple;
momentumchart.MomentumLinePlotAttribute.LineWidth = 2;

VB

168

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Dim momentumchart As FinMomentumIndicatorPlot = Me.AddMomentumIndicatorChart()
momentumchart.MomentumLinePlotAttribute.PrimaryColor = Color.Purple
momentumchart.MomentumLinePlotAttribute.LineWidth = 2

Money Flow

The Money Flow indicator is considered an oscillator, cycling between 0 and 100. It uses both the Typical Prices for
a period, and the period volume, in its calculation. It is sometimes referred to as a volume adjusted RSI indicator.
More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#
public FinMoneyFlowIndicatorPlot AddMoneyFlowIndicatorChart(
 int maperiod
)

public FinMoneyFlowIndicatorPlot AddMoneyFlowIndicatorChart()

VB
Public Function AddMoneyFlowIndicatorChart (_

169

7. Secondary Chart Options

 maperiod As Integer _
) As FinMoneyFlowIndicatorPlot

Public Function AddMoneyFlowIndicatorChart As FinMoneyFlowIndicatorPlot

Parameters

maperiod
Type: Int32
Default Value: 14
The period used in the Money Flow calculation.

Return Value

Returns the FinMoneyFlowIndicatorPlot object for the secondary chart.

C#

FinMoneyFlowIndicatorPlot mfchart = this.AddMoneyFlowIndicatorChart();

VB
Dim mfchart As FinMoneyFlowIndicatorPlot = Me.AddMoneyFlowIndicatorChart()

Limit Values

Set high (overbought) and low (oversold) thresholds for action. No firm algorithm is available for this. Some suggest
setting the thresholds at 67% the high and low peak values on both sides of 0.0. The AddMoneyFlowIndicatorChart
method places a transparent filled background at theses levels. You can change the default limit level using the
FinMoneyFlowIndicatorPlot.defaultLowLimitFraction and FinMoneyFlowIndicatorPlot.defaultHighLimitFraction
static properties, as shown below..

C#
FinMoneyFlowIndicatorPlot.defaultLowLimitValue = 25;
FinMoneyFlowIndicatorPlot.defaultHighLimitValue = 75;
FinMoneyFlowIndicatorPlot mfchart = this.AddMoneyFlowIndicatorChart();

VB
FinMoneyFlowIndicatorPlot.defaultLowLimitValue = 25
FinMoneyFlowIndicatorPlot.defaultHighLimitValue = 75
Dim mfchart As FinMoneyFlowIndicatorPlot = Me.AddMoneyFlowIndicatorChart()

Changing the static limit properties will affect all Money Flow plots, regardless of whether they are created
programmatically, or using the Secondary chart dialog.

Another way to change the limits, which only affects the specific FinMoneyFlowIndicatorPlot object is:

C#
FinMoneyFlowIndicatorPlot mfchart = this.AddMoneyFlowIndicatorChart();
mfchart.HighLimitValue = 80;
mfchart.LowLimitValue = 20;

VB
Dim mfchart As FinMoneyFlowIndicatorPlot = Me.AddMoneyFlowIndicatorChart()
mfchart.HighLimitValue = 80
mfchart.LowLimitValue = 20

170

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Plot Object Colors

If you want to change the colors of the lines in the Money Flow chart, use methods found in the
FinMoneyFlowIndicatorPlot class. Change the Money Flow line attributes using code similar to below.

C#
FinMoneyFlowIndicatorPlot mfchart = this.AddMoneyFlowIndicatorChart();
mfchart.MoneyFlowLinePlotAttribute.PrimaryColor = Color.Purple;
mfchart.MoneyFlowLinePlotAttribute.LineWidth = 2;

VB
Dim mfchart As FinMoneyFlowIndicatorPlot = Me.AddMoneyFlowIndicatorChart()
mfchart.MoneyFlowLinePlotAttribute.PrimaryColor = Color.Purple
mfchart.MoneyFlowLinePlotAttribute.LineWidth = 2

Rate of Change (ROC)

The Rate of Change indicator is essentially a normalized version of the Momentum indicator. It takes the
Momentum value at each time period and divides it by the Close price N days ago, where N is the same value used
in the Momentum calculation. The result is multiplied by 100 to convert from a fraction to a percentage. More
details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

171

7. Secondary Chart Options

C#
public FinRateOfChangeIndicatorPlot AddRateOfChangeIndicatorChart(
 int maperiod
)

public FinRateOfChangeIndicatorPlot AddRateOfChangeIndicatorChart()

VB
Public Function AddRateOfChangeIndicatorChart (_
 maperiod As Integer _
) As FinRateOfChangeIndicatorPlot

Public Function AddRateOfChangeIndicatorChart As FinRateOfChangeIndicatorPlot

Parameters

maperiod
Type: Int32
Default Value: 12
The moving average period

Return Value

Returns the FinRateOfChangeIndicatorPlot object for the secondary chart.

C#

FinRateOfChangeIndicatorPlot rocchart = this.AddRateOfChangeIndicatorChart();

VB

Dim rocchart FinRateOfChangeIndicatorPlot = Me.AddRateOfChangeIndicatorChart()

Limit Value

The ROC chart uses 0.0 as the crossover point. When in an up trend, buy when the ROC value passes upward
through zero. When in a down trend sell when the ROC value passes downward through zero. No special limit lines
are drawn.

Plot Object Colors

If you want to change the colors of the lines in the ROC chart, use methods found in the
FinRateOfChangeIndicatorPlot class. Change the ROC line attributes using code similar to below.

C#
FinRateOfChangeIndicatorPlot rocchart = this.AddRateOfChangeIndicatorChart();
rocchart.RateOfChangeLinePlotAttribute.PrimaryColor = Color.Purple;
rocchart.RateOfChangeLinePlotAttribute.LineWidth = 2;

VB
Dim rocchart As FinRateOfChangeIndicatorPlot = Me.AddRateOfChangeIndicatorChart()
rocchart.RateOfChangeLinePlotAttribute.PrimaryColor = Color.Purple
rocchart.RateOfChangeLinePlotAttribute.LineWidth = 2

172

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Relative Strength (RSI)

The Relative Strength Indicator (RSI) was originally developed by J. Welles Wilder and is described in his book
"New Concepts in Technical Trading System". It indicates strength or weakness in a security based on the closing
price action within the specified trading period. The RSI is calculated using the ratio of higher closes to lower
closes: stocks which have had more or stronger positive changes have a higher RSI than stocks which have had more
or stronger negative changes. The RSI indicator is normalized so all values are percentages in the range 0 to 100.
Intermediate values in the calculation are smoothed using the Wilder exponential smoothing method, usually using a
14 day period. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#
public FinRSIIndicatorPlot AddRSIIndicatorChart(
 int maperiod
)

public FinRSIIndicatorPlot AddRSIIndicatorChart()

VB
Public Function AddRSIIndicatorChart (_
 maperiod As Integer _
) As FinRSIIndicatorPlot

Public Function AddRSIIndicatorChart As FinRSIIndicatorPlot

173

7. Secondary Chart Options

Parameters

maperiod
Type: Int32
Default Value: 14
The moving average period

Return Value

Returns the FinRSIIndicatorPlot object for the secondary chart.

Limit Values

Set high (overbought) and low (oversold) thresholds for action limits. Recommended action limits for RSI are a high
limit of 70, and a low limit of 30. You can change thedefault limit level using the
FinRSIIndicatorPlot.defaultLowLimitValue and FinRSIIndicatorPlot.defaultHighLimitValue static properties, as
shown below.

C#
FinRSIIndicatorPlot.defaultHighLimitValue = 65;
FinRSIIndicatorPlot.defaultLowLimitValue = 35;
FinRSIIndicatorPlot rsichart = this.AddRSIIndicatorChart();

VB
FinRSIIndicatorPlot.defaultHighLimitValue = 65
FinRSIIndicatorPlot.defaultLowLimitValue = 35
Dim rsichart As FinRSIIndicatorPlot = Me.AddRSIIndicatorChart()

Another way to change the limits, which only affects the specific FinRSIIndicatorPlot object is:

C#
FinRSIIndicatorPlot rsichart = this.AddRSIIndicatorChart();
rsichart.HighLimitValue = 65;
rsichart.LowLimitValue = 35;

VB
Dim rsichart As FinRSIIndicatorPlot = Me.AddRSIIndicatorChart()
rsichart.HighLimitValue = 65
rsichart.LowLimitValue = 35

Plot Object Colors

If you want to change the colors of the lines in the RSI chart, use methods found in the FinRSIIndicatorPlot class.
Change the RSI line attributes using code similar to below.

C#
FinRSIIndicatorPlot rsichart = this.AddRSIIndicatorChart();
rsichart.RSILinePlotAttribute.PrimaryColor = Color.Purple;
rsichart.RSILinePlotAttribute.LineWidth = 2;

VB
Dim rsichart As FinRSIIndicatorPlot = Me.AddRSIIndicatorChart()
rsichart.RSILinePlotAttribute.PrimaryColor = Color.Purple
rsichart.RSILinePlotAttribute.LineWidth = 2

Stochastic (Fast and Slow)

The Stochastic indicator was developed by George Lane, president of Investment Educators Inc, Watseka, IL. It is
based on the assumption that as prices trend upwards, closing prices tend to be in the upper part of the periods

174

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

OHLC price range. And the opposite is true, in down trends, closing prices tend to be in the lower part of the periods
OHLC price range. More details are found in Chapter 2: Introduction to QCTAChart and Technical Analysis.

C#

public FinStochasticIndicatorPlot AddStochasticIndicatorChart(
 int mode,
 int maperiod,
 int fastma,
 int slowma
)

public FinStochasticIndicatorPlot AddStochasticIndicatorChart(
 int mode
)

public FinStochasticIndicatorPlot AddStochasticIndicatorChart()

VB

Public Function AddStochasticIndicatorChart (_
 mode As Integer, _
 maperiod As Integer, _
 fastma As Integer, _
 slowma As Integer _
) As FinStochasticIndicatorPlot

Public Function AddStochasticIndicatorChart (_

175

7. Secondary Chart Options

 mode As Integer _
) As FinStochasticIndicatorPlot

Public Function AddStochasticIndicatorChart As FinStochasticIndicatorPlot

Parameters

mode
Type: Int32
Default: FinChartConstants.STOCHASTIC_OSCILLATOR_SLOW
The type of Stochastic Indicator. Use FinChartConstants.STOCHASTIC_OSCILLATOR_SLOW, or
FinChartConstants.STOCHASTIC_OSCILLATOR_FAST

maperiod
Type: Int32
Default: 14
The stochastic K moving average period

fastma
Type: Int32
Default: 3
The fast Stochastic D moving average period

slowma
Type: Int32
Default: 3
The slow Stochastic D moving average period

Return Value

Returns the FinStochasticIndicatorPlot object for the secondary chart.

Limit Values

Set high (overbought) and low (oversold) thresholds for action limits. Recommended action limits for Stochatic
charts are a high limit of 80, and a low limit of 20. You can change thedefault limit level using the
FinStochasticIndicatorPlot.defaultLowLimitValue and FinStochasticIndicatorPlot.defaultHighLimitValue static
properties, as shown below.

C#
FinStochasticIndicatorPlot.defaultHighLimitValue = 80;
FinStochasticIndicatorPlot.defaultLowLimitValue = 20;
FinStochasticIndicatorPlot stochchart = this.AddStochasticIndicatorChart();

VB
FinStochasticIndicatorPlot.defaultHighLimitValue = 80
FinStochasticIndicatorPlot.defaultLowLimitValue = 20
Dim stochchart FinStochasticIndicatorPlot = Me.AddStochasticIndicatorChart()

Another way to change the limits, which only affects the specific FinStochasticIndicatorPlot object is:

C#
FinStochasticIndicatorPlot stochchart = this.AddStochasticIndicatorChart();
stochchart.HighLimitValue = 65;
stochchart.LowLimitValue = 35;

VB
Dim stochchart As FinStochasticIndicatorPlot = Me.AddStochasticIndicatorChart()

176

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

stochchart.HighLimitValue = 65
stochchart.LowLimitValue = 35

Plot Object Colors

If you want to change the colors of the lines in the Stochastic chart, use methods found in the
FinStochasticIndicatorPlot class. Change the Stochastic line atributes using code similar to below.

C#
FinStochasticIndicatorPlot stochchart = this.AddStochasticIndicatorChart();

// Stochastic line attributes
 stochchart.StochasticAttribute.PrimaryColor = Color.Red;
 stochchart.StochasticAttribute.LineWidth = 1;

// Fast Stochastic line attributes
 stochchart.StochasticFastAttribute.PrimaryColor = Color.Green;
 stochchart.StochasticFastAttribute.LineWidth = 1;

// Slow Stochastic line attributes
 stochchart.StochasticSlowAttribute.PrimaryColor = Color.Green;
 stochchart.StochasticSlowAttribute.LineWidth = 1;

VB
Dim stochchart As FinStochasticIndicatorPlot = Me.AddStochasticIndicatorChart()

' Stochastic line attributes
 stochchart.StochasticAttribute.PrimaryColor = Color.Red
 stochchart.StochasticAttribute.LineWidth = 1

'Fast Stochastic line attributes
 stochchart.StochasticFastAttribute.PrimaryColor = Color.Green
 stochchart.StochasticFastAttribute.LineWidth = 1

' Slow Stochastic line attributes
 stochchart.StochasticSlowAttribute.PrimaryColor = Color.Green
 stochchart.StochasticSlowAttribute.LineWidth = 1

Williams %R

 Williams %R was developed by Larry Williams, a publisher of trading and technical analysis materials, to indicate
overbought and oversold market conditions for a stock. Similar to the Stochastic indicator, it compares a stock's
close to the high-low range over a certain period of time, usually 14 days. For some strange reason the indicator is
normalized in the range 0.0 to -100, so that an overbought condition is represented by the indicator above the -20
line, and an oversold condition represented by the indicator below -80. A value of -100 for the index means that the
close today was at the lowest low of the past N days, and a value of 0 for the index means that a close today was at
the highest high of the past N days. When it is plotted the Williams %R indicator looks the same as the Stochastic
%K indicator, except that the y-axis values are shifted down by 100. More details are found in Chapter 2:
Introduction to QCTAChart and Technical Analysis.

177

7. Secondary Chart Options

C#

public FinWilliamsRIndicatorPlot AddWilliamsRIndicatorChart(
 int maperiod
)

public FinWilliamsRIndicatorPlot AddWilliamsRIndicatorChart()

VB

Public Function AddWilliamsRIndicatorChart (_
 maperiod As Integer _
) As FinWilliamsRIndicatorPlot

Public Function AddWilliamsRIndicatorChart As FinWilliamsRIndicatorPlot

Parameters

maperiod
Type: Int32
Default: 14
The moving average period

178

http://msdn.microsoft.com/en-us/library/system.int32.aspx

QCTAChart - Technical Analysis Charting Tools

Return Value

Returns the FinWilliamsRIndicatorPlot object for the secondary chart.

Limit Values

Set high (overbought) and low (oversold) thresholds for action limits. Recommended action limits for Williams %R
are a high limit of -20, and a low limit of -80. You can change thedefault limit level using the
FinWilliamsRIndicatorPlot.defaultLowLimitValue and FinWilliamsRIndicatorPlot.defaultHighLimitValue static
properties, as shown below.

C#
FinWilliamsRIndicatorPlot.defaultHighLimitValue = -25;
FinWilliamsRIndicatorPlot.defaultLowLimitValue = -75;
FinWilliamsRIndicatorPlot willimanshart = this.AddWilliamsRIndicatorChart();

VB
FinWilliamsRIndicatorPlot.defaultHighLimitValue = -25
FinWilliamsRIndicatorPlot.defaultLowLimitValue = -75
Dim willimanshart As FinWilliamsRIndicatorPlot = Me.AddWilliamsRIndicatorChart()

Changing the static limit properties will affect all Williams %R plots, regardless of whether they are created
programmatically, or using the Secondary chart dialog.

Another way to change the limits, which only affects the specific FinWilliamsRIndicatorPlot object is:

C#
FinWilliamsRIndicatorPlot willimanshart = this.AddWilliamsRIndicatorChart();
willimanschart.HighLimitValue = -25;
willimanschart.LowLimitValue = -75;

VB
Dim willimanshart As FinWilliamsRIndicatorPlot = Me.AddWilliamsRIndicatorChart()
willimanschart.HighLimitValue = -25
willimanschart.LowLimitValue = -75

Plot Object Colors

If you want to change the colors of the lines in the Williams %R chart, use methods found in the
FinWilliamsRIndicatorPlot class. Change the Williams %R line attributes using code similar to below.

C#
FinWilliamsRIndicatorPlot willimanschart = this.AddWilliamsRIndicatorChart();
willimanschart.WilliamsRLinePlotAttribute.PrimaryColor = Color.Purple;
willimanschart.WilliamsRLinePlotAttribute.LineWidth = 2;

VB
Dim willimanschart As FinWilliamsRIndicatorPlot = Me.AddWilliamsRIndicatorChart()
willimanschart.WilliamsRLinePlotAttribute.PrimaryColor = Color.Purple
willimanschart.WilliamsRLinePlotAttribute.LineWidth = 2

Moving Average Convergence/Divergence (MACD)

The MACD was developed by Gerald Appel and is discussed in his book, The Moving Average Convergence
Divergence Trading Method. It is a comparison of several moving averages (exponential) derived from a stocks
closing prices.

The first EMA uses a 26 day period and is referred to as the long EMA line. The second EMA uses a 12 day period
and is referred to as the short EMA line. The MACD line is calculated by subtracting the long (26) EMA line from

179

7. Secondary Chart Options

the short (12) EMA line. The signal line is calculated as a 9 day EMA of the MACD line. The two lines actually
plotted in the indicator are the MACD line, and the signal line. The crossover of MACD and signal lines indicates a
buying or selling opportunity. Additionally, a histogram, representing the differences between the MACD line, and
the signal line, is usually part of a MACD chart. More details are found in Chapter 2: Introduction to QCTAChart
and Technical Analysis.

C#
public FinMACDIndicatorPlot AddMACDIndicatorChart(
 int macdlong,
 int macdshort,
 int signalperiod,
 int smoothingmode
)

public FinMACDIndicatorPlot AddMACDIndicatorChart()

VB
Public Function AddMACDIndicatorChart (_
 macdlong As Integer, _
 macdshort As Integer, _
 signalperiod As Integer, _
 smoothingmode As Integer _

180

QCTAChart - Technical Analysis Charting Tools

) As FinMACDIndicatorPlot

Public Function AddMACDIndicatorChart As FinMACDIndicatorPlot

Parameters

macdlong
Type: Int32
Default: 26
The long moving average period

macdshort
Type: Int32
Default: 12
The short moving average period.

signalperiod
Type: Int32
Default: 9
The signal period.

smoothingmode
Type: Int32
Default: FinChartConstants.EXP_MOVING_AVERAGE_TIMEPERIOD
Use one of the smoothing mode constants: FinChartConstants.MA_CALC for a simple moving average,
and EXP_MOVING_AVERAGE_TIMEPERIOD for an exponential moving average.

Return Value

Returns the FinMACDIndicatorPlot object for the secondary chart.

Limit Values

There are no limit lines for a MACD indicator chart.

Plot Object Colors

If you want to change the colors of the lines in the MACD chart, use methods found in the MACD class. Change
the MACD line attributes using code similar to below.

C#
// MACD line attribute
FinMACDIndicatorPlot macdchart = this.FinMACDIndicatorPlot();
macdchart.MACDAttribute.PrimaryColor = Color.Purple;
macdchart.MACDAttribute.LineWidth = 2;

// MACD signal line attribute
macdchart.MACDSignalAttribute.PrimaryColor = Color.Purple;
macdchart.MACDSignalAttribute.LineWidth = 2;

// MACD histogram attribute
macdchart.MACDHistogramAttribute.PrimaryColor = Color.Purple;
macdchart.MACDHistogramAttribute.LineWidth = 2;

VB
' MACD line attribute
Dim macdchart As FinMACDIndicatorPlot = Me.FinMACDIndicatorPlot()
macdchart.MACDAttribute.PrimaryColor = Color.Purple
macdchart.MACDAttribute.LineWidth = 2

' MACD signal line attribute
macdchart.MACDSignalAttribute.PrimaryColor = Color.Purple

181

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx

7. Secondary Chart Options

macdchart.MACDSignalAttribute.LineWidth = 2

' MACD histogram attribute
macdchart.MACDHistogramAttribute.PrimaryColor = Color.Purple
macdchart.MACDHistogramAttribute.LineWidth = 2

Volume charts

Volume represents the number of shares, or contracts, which traded during a period of time. Since it is part of the
standard OHLCV price packet available in historical data feeds, it gives valuable information about the significance
of the price action of a stock. A price movement in either direction is considered more relevant if is is simultaneous
with a large increase in share volume. If you are monitoring the trend of a stock, and that stock suddenly reverses the
trend, that is the time to check the volume to see if the reversal was accompanied by a sharp increase in the trading
volume. If not, then that can be a sign that there is no conviction by the trend reversal, and you can expect the stock
to reverse back. Volume charts can be smoothed using the standard smoothing techniques to help filter out the noise
of no use to the trader.

182

QCTAChart - Technical Analysis Charting Tools

C#

public FinVolumeAndMAPlot AddVolumeAndMAChart(
 int maperiod,
 int smoothingmode
)

public FinVolumeAndMAPlot AddVolumeAndMAChart()

public FinVolumePlot AddVolumeChart()

VB

Public Function AddVolumeAndMAChart (_
 maperiod As Integer, _
 smoothingmode As Integer _
) As FinVolumeAndMAPlot

Public Function AddVolumeAndMAChart As FinVolumeAndMAPlot

Public Function AddVolumeChart As FinVolumePlot

If you just want the volume, without the moving average line, use:

public AddVolumeChart AddVolumeChart()

Parameters

maperiod
Type: Int32
Default: 13
period of the moving average

smoothingmode
Type: Int32
Default: FinChartConstants.MA_CALC
Specify FinChartConstants.MA_CALC for a simple moving average, and
EXP_MOVING_AVERAGE_TIMEPERIOD for an exponential moving average.

Return Value

Returns the FinVolumeAndMAPlot object for the secondary chart.

Limit Values

There are no limit lines for a Volume indicator chart.

Plot Object Colors

If you want to change the colors of the lines in the Volume and MA chart, use methods found in the
FinVolumeAndMAPlot class. Change the FinVolumeAndMAPlot line attributes using code similar to below.

C#
FinVolumeAndMAPlot vmachart = this.AddVolumeAndMAChart();
vmachart.VolumePlotAttribute.PrimaryColor = Color.Purple;
vmachart.VolumeMAPlotAttribute.LineWidth = 2;

VB
Dim vmachart As FinVolumeAndMAPlot = Me.AddVolumeAndMAChart()

183

http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx

7. Secondary Chart Options

vmachart.VolumePlotAttribute.PrimaryColor = Color.Purple
vmachart.VolumeMAPlotAttribute.LineWidth = 2

Secondary Chart Dialog

Exactly the same thing can be achieved, without programming, using the Secondary chart dialog, which is invoked
using the S button in the lower right-hand corner of the Primary Chart. Start with no, or a single Secondary chart,
and customize it from there.

this.AddPrimaryChart("TXN", ChartObj.OHLC);

FinChartPlotBase rsichart = this.AddRSIIndicatorChart();

184

QCTAChart - Technical Analysis Charting Tools

Volume Indicators

Plot a volume bar plot, or a volume bar plot with a moving average of the volume as a line plot.

Volume – Enable a Volume bar plot

Volume and MA – Enable a Volume bar plot with a moving average line plot of volume
Period– The period of the moving average
Smoothing – The moving average type: Specify Simple moving average, exponential moving

average, or Wilder exponential moving average

Attributes – Plot object attributes

Attribute options for Volume Indicator
Volume Bars – Volume Indicator Bars
MA Line - Volume Moving Average line

Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Money Flow

Create a Money Flow indicator chart

185

7. Secondary Chart Options

Enable – Enable the Money Flow Indicator chart
Period– The period used in the Money Flow calculation
Limits– Display limits in the chart
Attributes – Plot object attributes

Attribute options for Money Flow Indicator
Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Stochastic

Create a Stochastic indicator chart

Period – The period used in the Stochastic %K calculation

Fast (%D) – Enable the display of the Fast Stochastic line plot
Period - The period of the Fast Stochastic calculation

Slow (%D) – Enable the display of the Slow Stochastic line plot

186

QCTAChart - Technical Analysis Charting Tools

Period - The period of the Slow Stochastic calculation

Limits– Display limits in the chart

Attributes – Plot object attributes

Attribute options for Stochastic Indicator
Stochastic %K – Stochastic %K line
Fast %D - Stochastic Fast %D line
Slow %D - Stochastic Slow %D line

Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Relative Strength (RSI)

Create a RSI indicator chart

Enable – Enable the RSI Indicator chart
Period– The period used in the RSI calculation
Limits– Display limits in the chart
Attributes – Plot object attributes

187

7. Secondary Chart Options

Attribute options for RSI Indicator
Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Williams (%R) Indicator

Create a Williams (%R) indicator chart

Enable – Enable the Williams (%R) indicator chart
Period– The period used in the Williams (%R) calculation
Limits– Display limits in the chart
Attributes – Plot object attributes

Attribute options for Williams (%R) Indicator

188

QCTAChart - Technical Analysis Charting Tools

Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

MACD

Create a MACD indicator chart

Enable – Enable the MACD indicator chart
Fast Period – The fast period used in the MACD chart
Slow Period – The slow period used in the MACD chart
Smoothing – The moving average type: Specify Simple moving average, exponential moving average, or

Wilder exponential moving average
Attributes – Plot object attributes

Attribute options for MACD Indicator
Fast MACD Line
Slow MACD Line
Signal MACD Line

Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

189

7. Secondary Chart Options

Rate of Change – Create a Rate of Change indicator chart
Enable – Enable the Rate of Change indicator chart
Period– The period used in the Rate of Change calculation
Attributes – Plot object attributes

Attribute options for Rate of Change Indicator
Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Average Directional Change (ADX)

Create a ADX indicator chart

Enable – Enable the ADX indicator chart
Period – The fast period used in the ADX chart
Smoothing – The moving average type: Specify Simple moving average, exponential moving average, or

Wilder exponential moving average
Limits– Display limits in the chart
Attributes – Plot object attributes

190

QCTAChart - Technical Analysis Charting Tools

Attribute options for ADX Indicator
ADX Line
DM+ Line
DM- Line

Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Momentum

Create a Momentum indicator chart

Enable – Enable the Momentum indicator chart
Period– The period used in the Momentum calculation
Limits– Display limits in the chart
Attributes – Plot object attributes

191

7. Secondary Chart Options

Attribute options for Momentum Indicator
Color – Primary color for the object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Limit Attributes – Limit attributes

Attribute options for Limit Attributes
High Limit
Low Limit

Color – Primary line, or outline color of the plot object
Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)
Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)
Fill – Check and the area between the chart edge and the limit line is filled using Color.
Fill Alpha – The transparency of the fill color – use value in the range (0..255)

192

QCTAChart - Technical Analysis Charting Tools

Reset to Defaults

Reset the dialog to its defaults.

Compressed Mode

Check this and the space between adjacent Secondary indicator charts is miimized.

Uncompressed

193

7. Secondary Chart Options

Compressed

Cancel – Close dialog and cancel any changes

OK – Close dialog and apply changes to the chart.

194

8. Financial Chart Objects

There is a small set of technical analysis objects which can be placed in the Primary chart. These are trend
lines (FinTrendLine), a financial Fibonacci object (FinFibonacciPlot), horizontal (FinHLine) and vertical
(FinVLine) data markers, and two types of labels for annotations. The first label type (FinText) is
positioned using normalized coordinates, and does not scroll when the chart scrolls. The second label type
(FinLabel) is specified using physical coordinates and will scroll when the chart is scrolled.

Trend Line

The trend line is used to mark the start and end of a trend for a stock.

Define the trend line by first selecting the Trend option from the toolstrip at the left of the graph. Then, left-
click the mouse in succession at the starting and ending point (not a click and drag, rather two distinct

195

8. Financial Chart Objects

single clicks). There is no need to be exact, since you can adjust the trend line after it is created. The trend line will
connect the two points where you clicked.

You can also define a trend line by right clicking on the chart and selecting Add | Trend Line from the pop-up
menus. Then left click for the starting, and left click for the ending, positions of the trend line.

Once placed, you can still adjust the position of the line with great precision.. You can refine the position, moving it
by left-click-dragging the center of the line. The slope of the line can be changed by left-click-dragging on either
endpoint of the trend line. The price values of the trend line endpoints are also displayed.

You can edit the trend line properties by left-double-clicking on it. That will invoke the trend line edit dialog, seen
below.

196

QCTAChart - Technical Analysis Charting Tools

Attribute options for the Trend Line Dialog

Line Attributes

Color – Primary color for the object

Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Show Handles – Check and the grab handles of the trend line are displayed at the endpoints.

Text Attributes

Font – Edit the text Font and Font Size

197

8. Financial Chart Objects

Numeric precision – Set the numeric precision of the text labels.

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite
what is underneath.

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area
bounded by the axes)

Horizontal Justify – Sets horizontal text justification of the trend line start label. The justification
of the trend line end label is set to the opposite value.

Vertical Justify – Sets vertical text justification of the trend line start label. The justification of
the trend line end label is set to the opposite value.

You can add a trend line programmatically using the FinChartView AddFinTrendLineToPrimaryChart method. You
MUST add it after the FinChartView.BuildChart call.

Prototypes

C#

public FinTrendLine AddFinTrendLineToPrimaryChart(
 bool update,
 ChartEvent ev1,

198

QCTAChart - Technical Analysis Charting Tools

 ChartEvent ev2
)

Public FinTrendLine AddFinTrendLineToPrimaryChart(
 bool update
)

VB

Public Function AddFinTrendLineToPrimaryChart (_
 update As Boolean, _
 ev1 As ChartEvent, _
 ev2 As ChartEvent _
) As FinTrendLine

Public Function AddFinTrendLineToPrimaryChart (_
 update As Boolean _
) As FinTrendLine

where AddFinTrendLineToPrimaryChart has the following characteristics.

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The starting position of the trend line.

ev2
Type: ChartEvent
The ending position of the trend line.

Return Value
Returns the FinTrendLine object created.

Examples

In this case, a default trend line is created in the middle of the current display, and it is up to the user to reposition
the endpoints of the trend line using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

this.AddFinTrendLineToPrimaryChart(true);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart();

Me.AddFinTrendLineToPrimaryChart(True)

199

8. Financial Chart Objects

In this case, the trendline is defined using OHLC events. The user can still reposition the trend line once it is
displayed on the chart.

C#

EventGroupDataset rawStockData = this.GetCurrentTickerData();

ChartEvent tlev1 = rawStockData.GetEvent(30);
ChartEvent tlev2 = rawStockData.GetEvent(70);
FinTrendLine fintrendline1 = this.AddFinTrendLineToPrimaryChart(true, tlev1, tlev2);

VB

Dim rawStockData As EventGroupDataset = Me.GetCurrentTickerData()

Dim tlev1 As ChartEvent = rawStockData.GetEvent(30)
Dim tlev2 As ChartEvent = rawStockData.GetEvent(70)
Dim fintrendline1 As FinTrendLine = Me.AddFinTrendLineToPrimaryChart(True, tlev1, tlev2)

Horizontal Data Marker

The horizontal data marker can be used to mark support and resistance levels.

Define the horizontal data marker line by first selecting the HLine option from the toolstrip at the left of the graph.
Then, left-click the mouse at the vertical position where you want the horizontal cursor. There is no need to be exact,
since you can adjust the cursor position after it is created.

200

QCTAChart - Technical Analysis Charting Tools

You can also define a horizontal cursor by right clicking on the chart and selecting Add | Horizontal Cursor from
the pop-up menu. Then left click for the position of the horizontal cursor.

Once placed, you can still adjust the position of the line with great precision.. You can refine the position, moving it
by left-click-dragging any part of the line. The price value of the horizontal cursor is displayed on the left.

You can edit the horizontal cursor properties by left-double-clicking on it. That will invoke the horizontal cursor edit
dialog, seen below.

Attribute options for the Horizontal Cursor Dialog

Line Attributes

Color – Primary color for the object

Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Show Handles – Check and the grab handles of the trend line are displayed at the endpoints.

Text Attributes

Font – Edit the text Font and Font Size

201

8. Financial Chart Objects

Numeric precision – Set the numeric precision of the text labels.

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite
what is underneath.

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area
bounded by the axes)

Horizontal Justify – Sets horizontal text justification of the trend line start label. The justification
of the trend line end label is set to the opposite value.

Vertical Justify – Sets vertical text justification of the trend line start label. The justification of
the trend line end label is set to the opposite value.

You can add a horizontal line programmatically using the FinChartView AddFinHLineToPrimaryChart method.
You MUST add it after the FinChartView.BuildChart call.

Prototypes

C#

public FinHLine AddFinHLineToPrimaryChart(
 bool update,

202

QCTAChart - Technical Analysis Charting Tools

 ChartEvent ev1
)

public FinHLine AddFinHLineToPrimaryChart(
 bool update
)

VB

Public Function AddFinHLineToPrimaryChart (_
 update As Boolean, _
 ev1 As ChartEvent _
) As FinHLine

Public Function AddFinHLineToPrimaryChart (_
 update As Boolean _
) As FinHLine

where AddFinHLineToPrimaryChart has the following characteristics.

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The starting position of the cursor.

Return Value
Returns the FinHLabel object created.

Examples

In this example, a horizontal cursor is created in the middle of the current display, and it is up to the user to
reposition it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

this.AddFinHLineToPrimaryChart(true);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Me.AddFinHLineToPrimaryChart(True)

In this example, a horizontal cursor is created at a position defined by an OHLC stock value. The user can still
reposition it using the mouse.

C#

203

8. Financial Chart Objects

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

EventGroupDataset rawStockData = this.GetCurrentTickerData();
ChartEvent hlev1 = rawStockData.GetEvent(60);
FinHLine finhline1 = this.AddFinHLineToPrimaryChart(true, hlev1);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Dim rawStockData As EventGroupDataset = Me.GetCurrentTickerData()
Dim hlev1 As ChartEvent = rawStockData.GetEvent(60)
Dim finhline1 As FinHLine = Me.AddFinHLineToPrimaryChart(True, hlev1)

Vertical Data Marker

Define the vertical data cursor line by first selecting the VLine option from the toolstrip at the left of the graph.
Then, left-click the mouse at the horizontal position where you want the vertical cursor. There is no need to be exact,
since you can adjust the cursor position after it is created.

You can also define a vertical cursor by right clicking on the chart and selecting Add | Vertical Cursor from the
pop-up menu. Then left click for the position of the vertical cursor.

204

QCTAChart - Technical Analysis Charting Tools

Once placed, you can still adjust the position of the line with great precision.. You can refine the position, moving it
by left-click-dragging any part of the line. The price value of the horizontal cursor is displayed on the left.

You can edit the horizontal cursor properties by left-double-clicking on it. That will invoke the horizontal cursor edit
dialog, seen below.

Attribute options for the Vertical Cursor Dialog

Line Attributes

Color – Primary color for the object

Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Show Handles – Check and the grab handles of the trend line are displayed at the endpoints.

Text Attributes

Font – Edit the text Font and Font Size

205

8. Financial Chart Objects

Custom Date Format– Set a custom date format using the standard .Net date formatting rules.
The default is mm/dd/yy

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite
what is underneath.

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area
bounded by the axes)

Horizontal Justify – Sets horizontal text justification of the trend line start label. The justification
of the trend line end label is set to the opposite value.

Vertical Justify – Sets vertical text justification of the trend line start label. The justification of
the trend line end label is set to the opposite value.

You can add a vertical line programmatically using the FinChartView AddFinVLineToPrimaryChart method. You
MUST add it after the FinChartView.BuildChart call.

Prototypes

C#

public FinVLine AddFinVLineToPrimaryChart(
 bool update,
 ChartEvent ev1
)
public FinVLine AddFinVLineToPrimaryChart(

206

QCTAChart - Technical Analysis Charting Tools

 bool update
)

VB

Public Function AddFinVLineToPrimaryChart (_
 update As Boolean, _
 ev1 As ChartEvent _
) As FinVLine

Public Function AddFinVLineToPrimaryChart (_
 update As Boolean _
) As FinVLine

where AddFinHLineToPrimaryChart has the following characteristics.

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The starting position of the cursor.

Return Value
Returns the FinVLabel object created.

Examples

In this example, a vertical cursor is created in the middle of the current display, and it is up to the user to reposition
it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

this.AddFinVLineToPrimaryChart(true);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Me.AddFinVLineToPrimaryChart(True)

In this example, a vertical cursor is created at a position defined by an OHLC stock value. The user can still
reposition it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

EventGroupDataset rawStockData = this.GetCurrentTickerData();
ChartEvent vlev1 = rawStockData.GetEvent(60);
FinVLine finvline1 = this.AddFinVLineToPrimaryChart(true, vlev1);

207

http://msdn.microsoft.com/en-us/library/system.boolean.aspx

8. Financial Chart Objects

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Dim rawStockData As EventGroupDataset = Me.GetCurrentTickerData()
Dim vlev1 As ChartEvent = rawStockData.GetEvent(60)
Dim finvline1 As FinVLine = Me.AddFinVLineToPrimaryChart(True, vlev1)

Fibonacci Overlay

Define the Fibonacci overlay by first selecting the Fibonacci option from the toolstrip at the left of the graph. Then,
left-click the mouse in succession at the lower-left and upper-right corners of the desired Fibonacci overlay (not a
click and drag, rather two distinct single clicks). There is no need to be exact, since you can adjust the Fibonacci
overlay after it is created.

You can also define a Fibonacci overlay by right clicking on the chart and selecting Add | Fibonacci from the pop-
up menus. Then left click for the lower-left corner of the Fibonacci overlay, and left click again for the upper-right
corner of the overlay.

The 0 to 100% section of the Fibonacci overlay will be drawn using the first and second mouse clicks. It defines the
0% level at the first click, and the 100% level at the second click. If the first click is higher than the second click,
then the Fibonacci overlay will be inverted, with the 100% level at the top, and the 0% level at the bottom. Also,
there are two Fibonacci levels above 100%, which are 161.8% and 261.8%. They will be displayed if they are within

208

QCTAChart - Technical Analysis Charting Tools

the plot area window, otherwise they will be clipped out of the chart.

Once placed, you can still adjust the position of the Fibonacci overlay with great precision.. You can refine the
position, moving it by left-click-dragging anywhere in the rectangle defined by the Fibonacci overlay. The width
and height of the Fibonacci overlay can be changed by left-click-dragging on any of the small grab rectangle at the
0.0% and 100% locations on the overlay.

A Fibonacci overlay is used in some types of technical analysis wave theory to identify support and resistance levels
for a stock. The values on the right of the horizontal lines in the example above (0, 23.6, 38.2, 50.0, 61.8, 100, 161.8
and 261.8) are represent percentage values and are calculated using the famous Fibonacci sequence (0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 233).

You can edit the trend line properties by left-double-clicking on it. That will invoke the Fibonacci overlay edit
dialog, seen below.

Attribute options for the Fibonacci Dialog

Line Attributes

Color – Primary color for the object

Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

209

8. Financial Chart Objects

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Show Handles – Check and the grab handles of the trend line are displayed at the 0% and 100%
levels of the Fibonacci chart..

Text Attributes
Font – Edit the text Font and Font Size

Numeric precision – Set the numeric precision of the text labels.

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite
what is underneath.

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area
bounded by the axes)

Horizontal Justify – Sets horizontal text justification of the trend line start label. The justification
of the trend line end label is set to the opposite value.

Vertical Justify – Sets vertical text justification of the trend line start label. The justification of
the trend line end label is set to the opposite value.

You can add a Fibonacci rectangle programmatically using the FinChartView AddFinFibonacciPlotToPrimaryChart
method. You MUST add it after the FinChartView.BuildChart call.

210

QCTAChart - Technical Analysis Charting Tools

Prototypes

C#
public FinFibonacciPlot AddFinFibonacciPlotToPrimaryChart(
 bool update,
 ChartEvent ev1,
 ChartEvent ev2
)
public FinFibonacciPlot AddFinFibonacciPlotToPrimaryChart(
 bool update
)

VB

Public Function AddFinFibonacciPlotToPrimaryChart (_
 update As Boolean _
) As FinFibonacciPlot

Public Function AddFinFibonacciPlotToPrimaryChart (_
 update As Boolean, _
 ev1 As ChartEvent, _
 ev2 As ChartEvent _
) As FinFibonacciPlot

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The lower-left corner of the Finbonacci rectangle.

ev2
Type: ChartEvent
The upper-right corner of the Finbonacci rectangle.

Return Value

Returns the FinFibonacciPlot object created.

Examples

In this case, a Fibonacci plot is created in the middle of the current display, and it is up to the user to reposition it
using the mouse.

C#

this.BuildChart();

this.AddFinFibonacciPlotToPrimaryChart(true);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart();

211

8. Financial Chart Objects

Me.AddFinFibonacciPlotToPrimaryChart(True)

In this case, the Fibonacci plot is defined using OHLC events. The user can still reposition it using the mouse .

C#

ChartEvent fibev1 = rawStockData.GetEvent(120);
FinFibonacciPlot fibplot = this.AddFinFibonacciPlotToPrimaryChart(true, fibev1, fibev2);

VB

Dim rawStockData As EventGroupDataset = Me.GetCurrentTickerData()

Dim fibev1 As ChartEvent = rawStockData.GetEvent(120)
Dim fibev2 As ChartEvent = rawStockData.GetEvent(100)
Dim fibplot As FinFibonacciPlot =

Me.AddFinFibonacciPlotToPrimaryChart(True, fibev1, fibev2)

Labels for Annotation

In this example, the FinText object provides a bold title for the chart.

There are three types of objects you can use for annotations. The first uses the FinText class. It is placed in the chart
using Normalized graph coordinates. Because of this, it does not scroll, or change position, when the graph y-scale
is changed, or when the graph is panned or zoomed. Because Normalized Graph coordinates do not change even if
the graphs physical coordinate system changes. The other two are the FinLabel and FinArrow objects, which are
placed using physical coordinates and do scroll with the plot.

212

QCTAChart - Technical Analysis Charting Tools

FinText

First, select the Text option from the toolstrip on the left of the chart. Next, select a position by left clicking on the
chart at the xy-position where you want the text to appear..The following dialog will appear.

.

Font – Edit the text Font and Font Size

Text – The text string to display as a label

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite what is
underneath.

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area bounded by
the axes)

Horizontal Justify – Sets horizontal text justification of the numeric label.

Vertical Justify – Sets vertical text justification of the numeric label.

Set the font you want to use, and the text string and press OK. The text string will appear at the selected xy-position.

You can also define a text object by right-clicking the mouse on the chart. When you right-click, hold the mouse
button down, which brings up a local menu. Select Add|Text from the menu and release. The dialog will appear
where you can set the font and text string. Then, left-click on the chart where you want the text to appear.

213

8. Financial Chart Objects

The text object can be moved into position by left-click-dragging anywhere on the text.

The FinText object does not change position, even if the graph scaling changes.

You can add a trend line programmatically using the FinChartView AddFinTextToPrimaryChart method. You
MUST add it after the FinChartView.BuildChart call.

Prototypes

C#
public FinText AddFinTextToPrimaryChart(
 bool update,
 ChartEvent ev1,
 string text
)
public FinText AddFinTextToPrimaryChart(
 bool update,
 ChartEvent ev1,
 string text,

int postype
)

public FinText AddFinTextToPrimaryChart(
 bool update,
 string text
)

VB

 public FinText AddFinTextToPrimaryChart(
 update As Boolean, _
 ev1 As ChartEvent, _
 text As String _
) As FinText

 public FinText AddFinTextToPrimaryChart(
 update As Boolean, _
 ev1 As ChartEvent, _
 text As String _

postype As Inteter
) As FinText

Public Function AddFinTextToPrimaryChart (_
 update As Boolean, _
 text As String _
) As FinText

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The position of the text.

text
Type: String
The text string.

postype
Type: int

214

QCTAChart - Technical Analysis Charting Tools

Specify whether than text is placed using Normalized Graph Coordinates
(ChartObj.NORM_GRAPH_POS) or normalized Plp, ChartObj.NORM_PLOT_PAS).

Return Value
Returns the FinText object created.

Examples

In this example, a FinText object is created in the middle of the current display, and it is up to the user to reposition
it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

this.AddFinTextToPrimaryChart(true,"FinText Object");

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Me.AddFinVLineToPrimaryChart(True ,"FinText Object")

In this example, a FinText object is created at a Normalized Plot Area position (0.5, 0.2). The user can still
reposition it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

FinText fintext1 = this.AddFinTextToPrimaryChart(true, new Point2D(0.5, 0.2), "Scroll to
the beginning", ChartObj.NORM_PLOT_POS);

VB

Me.BuildChart()

Dim fintext1 As FinText = Me.AddFinTextToPrimaryChart(True, New Point2D(0.5, 0.2),"Scroll
to the beginning", ChartObj.NORM_PLOT_POS)

FinLabel

The second type of annotation uses the FinLabel class. It is placed in the chart using Physical graph coordinates.
Because of this, it scrolls, and change position, when the graph y-scale is changed, or when the graph is panned or
zoomed. Because the FinLabel object sticks to the physical coordinates where it was placed.

The FinLabel object is used to attach annotations to the minimum and maximum values in 2010.

Create a Label annotation for the chart, much the same as a Text annotation. Select the Label option from the tools
strip on the right, or from the right-click pop-up menu.

215

8. Financial Chart Objects

The label object can be moved into position by click-dragging anywhere on the text.

The FinLabel object uses the same dialog box described under the previous FinText description.

You can add a trend line programmatically using the FinChartView AddFinLabelToPrimaryChart method. You
MUST add it after the FinChartView.BuildChart call.

C#

public FinLabel AddFinLabelToPrimaryChart(
 bool update,
 ChartEvent ev1,
 string text
)

public FinLabel AddFinLabelToPrimaryChart(
 bool update,
 string text
)

VB

Public Function AddFinLabelToPrimaryChart (_
 update As Boolean, _
 ev1 As ChartEvent, _
 text As String _
) As FinLabel

Public Function AddFinLabelToPrimaryChart (_
 update As Boolean, _
 text As String _
) As FinLabel

216

QCTAChart - Technical Analysis Charting Tools

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The position of the text.

text
Type: String
The text string.

Return Value
Returns the FinLabel object created.

Examples

In this example, a FinLabel object is created in the middle of the current display, and it is up to the user to reposition
it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);
this.ChartLayoutMode = FinChartView.STANDARD_LAYOUT;

this.BuildChart();

FinLabel finlabel = this.AddFinLabelToPrimaryChart(true,"FinLabel Item");

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

FinLabel finlabel = this.AddFinLabelToPrimaryChart(True,"FinLabel Item");

In this example, a FinLabel object is created and placed at the Physical coordinate position represented by stock
event (12). The user can still reposition it using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

 FinLabel finlabel = this.AddFinLabelToPrimaryChart(true,
rawStockData.GetEvent(12),"FinLabel Item");

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart()

Dim finlabel As FinLabel=
Me.AddFinLabelToPrimaryChart(True, rawStockData.GetEvent(12),"FinLabel Item")

217

8. Financial Chart Objects

FinArrow

First, select the Arrow option from the toolstrip on the left of the chart. Next, select the arrowhead location by left
clicking on the chart at the xy-position where you want the arrow head to appear. Left click again for the tail end of
the arrow. The following dialog will appear.

.

218

QCTAChart - Technical Analysis Charting Tools

Line Attributes

Color – Primary color for the object

Line Style – The line style of the line (Solid, Dash, Dot, DashDot, DashDotDot)

Line Thickness – The line width in pixels of the line – use value in range of (1,2,3,4...15)

Arrowhead Size – The size of the arrowhead in points

Show Handles – Check and the grab handles of the trend line are displayed at the endpoints.

Text Attributes

Font – Edit the text Font and Font Size

Text – The text string to display as a label

Text Color – Select the color of the text

Background – Select the background color of the text

Use Background – Check this box if you want the background rectangle of the text to overwrite
what is underneath.

219

8. Financial Chart Objects

Plot Area Clipping – Check this box if you want the text to clip to the plotting area (the area
bounded by the axes)

Auto Justify Text – Sets horizontal and vertical text justification of the numeric label depending
on the angle of rotation of the arrow

Horizontal Justify – Sets horizontal text justification of the numeric label.

Vertical Justify – Sets vertical text justification of the numeric label.

Set the font you want to use, and the text string and press OK. The text string will appear at the selected xy-position.

You can also define a FinArrow object by right-clicking the mouse on the chart. When you right-click, hold the
mouse button down, which brings up a local menu. Select Add|Arrow from the menu and release. The dialog will
appear where you can set the font and text string. Then, left-click for where the arrowhead should be, and left-click
again for where the tail should be.

The FinArrow object can be moved into position by left-click-dragging on one of the endpoints.

You can add a trend line programmatically using the FinChartView AddFinTextToPrimaryChart method. You
MUST add it after the FinChartView.BuildChart call.

C#

public FinArrow AddFinArrowToPrimaryChart(
 bool update,
 ChartEvent ev1,

 ChartEvent ev2,
 string text
)

public FinArrow AddFinArrowToPrimaryChart(
 bool update,
 string text
)

VB

 public FinArrow AddFinArrowToPrimaryChart(
 update As Boolean, _
 ev1 As ChartEvent, _

 ev2 As ChartEvent, _
 text As String _
) As FinArrow

Public Function AddFinArrowToPrimaryChart (_
 update As Boolean, _
 text As String _
) As FinArrow

Parameters

update
Type: Boolean
Force an immediate update of the chart, rebuilding in the process.

ev1
Type: ChartEvent
The arrowhead position in the chart

ev2

220

QCTAChart - Technical Analysis Charting Tools

Type: ChartEvent
The arrow tail position of the arrow.

text
Type: String
The text string.

Return Value
Returns the FinArrow object created.

Examples

In this case, a default arrow created in the middle of the current display, and it is up to the user to reposition the
endpoints of the using the mouse.

C#

this.AddPrimaryChart("TXN", ChartObj.OHLC);

this.BuildChart();

this.AddFinArrowToPrimaryChart(true);

VB

Me.AddPrimaryChart("TXN", ChartObj.OHLC)

Me.BuildChart();

Me.AddFinArrowToPrimaryChart(True)

In this case, the arrow is defined using OHLC events. The user can still reposition the arrow once it is displayed on
the chart.

C#

EventGroupDataset rawStockData = this.GetCurrentTickerData();

ChartEvent aev1 = rawStockData.GetEvent(10);
ChartEvent aev2 = rawStockData.GetEvent(15);
FinArrow finarrow1 = this.AddFinArrowToPrimaryChart(true, aev1, aev2, "Look here");

VB

Dim rawStockData As EventGroupDataset= Me.GetCurrentTickerData()

Dim aev1 As ChartEvent = rawStockData.GetEvent(10)
Dim aev2 As ChartEvent = rawStockData.GetEvent(15)
Dim finarrow1 As FinArrow = Me.AddFinArrowToPrimaryChart(True, aev1, aev2,"Look here")

221

9. Point and Figure Charts

Point and Figure plots have been used in technical analysis for more than 100 years. A P&F chart is
unusual in that it does not plot price against time as other techniques do. Instead it plots price against
changes in direction. It does so by plotting a column of Xs as the price rises and a column of Os as the price
falls. As long the stock price is increasing, and does not backtrack by more than a multiple (usually 3) of
the box size, the price increase is displayed as an increasing vertical column of Xs, one X for each time the
stock price breaks through the top of a box price level. Once the trend reverses more than a multiple of the
box value, the column increments to the right, and changes over to a column of 0's, which are plotted down
as long as the stock price continues to drop, without any significant reversals. Electrical and control
systems engineers will recognize this as a programmable form of hysteresis. Many technicians like it
because it filters out much of the normal up and down noise in the stock data, and makes it very easy to
identify trends up or down. As in the example above, it compresses the time frame, so that many years of
data (seven in the example above) can be displayed without crowding.

A good book on the subject is Point and Figure Charting by Thomas J. Dorsey.

Our version of the Point and Figure charts includes most of the features found in advanced versions. It
marks the years of the columns along the x-axis. Months are indicated in-column using numbers 1 to 9 and
letters A, B, and C as most implementations do.

Point and Figure y-Axis Scale Modes

There are four common methods used to scale the y-axis: traditional, percentage, fixed, and fixed ATR. The
traditional mode is the most common. The traditional y-axis scale described above,with changes in box
size at values of 1, 5, 20, 100..., is generally meant for a stock price range of 5 to 100. It uses mostly
integer based numeric values because these are easier to calculate and plot by hand – a legacy of the 100
year history of point and figure charts. But many stocks have a much broader range, especially in non-US
markets where the valuation of the stocks in the local currency can be in the thousands. In these cases, a
percentage based method is preferrable. When the percentage method is used, each box size is a fixed
percentage larger than the preceding box size. The two fixed modes (fixed, and fixed ATR) are useful if the
stocks are moving in a relatively narrow range, overlapping one of the traditional mode break-points (1, 5,
20, 100, 200, etc.), and you want to force a constant fixed box size to keep the box size from changing at
the breakpoints.

Traditional Box Size

The box-size for the y-axis is increases as the price increase, even within the same column, and follows the
traditional box size convention:

Price Box size

0.0 to <=0.25 0.0625

>0.25 to <=1 0.125

>1 to <=5 0.25

>5 to <=20 0.5

223

9. Point and Figure Charts

>20 to <=100 1.0

>100 to <=200 2.0

>200 to <=500 4.0

>500 to <=1000 5.0

>1000 to <=25000 50.0

> 25000 500.0

In the traditional scaling mode, we use these breakpoints, even though they do not look symetrical across decade
ranges.

Under Price, the range is exclusive of the first value and inclusive of the second value. So the second range is
actually 0.26 to 1.0, and the third range is actually 1.01 to 5.0, and so on.

If you look at the y-axis tick marks in the chart above, you will notice that the in the range of 12 to 20, the box size,
represented by the tick spacing, is 0.5. Once the values reach a range greater than 20, the box size shifts to 1.0. This
is in accordance with the Price / Box Size table above. If the prices in the chart increased above 100, the box size
would change to 2.0.

Percentage Box Size

In the percentage method is used, each box size is a fixed percentage larger than the preceding box size. In the chart

224

QCTAChart - Technical Analysis Charting Tools

below, the P&F chart above has been recast using a percentage y-scale.

Note that the box size, and hence the tick mark spacing, increases by a fixed percentage (3% in this case), from the
starting, or minimum y-axis value. This permits charts with a wide dynamic range (Apple for example) to be plotted,
keeping the same relative resolution at the minimum and maximum values of the chart.

Fixed Box Size

Another method is to just force the chart to your own choice of a fixed box size. In the example below the chart is
recast using a fixed box size of 1. The box size can be a whole number (1,2,3,4...) or a fraction (0.5, 0.75, 1.33...)

225

9. Point and Figure Charts

Fixed Box Size using ATR (Average True Range)

The fixed box size has the drawback in that it is not auto-ranging. A stock where the values in the time frame of
interest are in the hundreds (IBM or Apple) will need a much larger fixed box size, than other stocks with values in
the teens. The traditional and percentage methods take this into account with their non-linear scales. A variant of
the fixed box size mode calculates fixed box size as a function of the Average True Range, where the Average True
Range (defined by J. Welles Wilder) is defined as below.

The true range for a given time period is maximum of several calculated ranges:

True Range = Max (Current High less the current Low,

Abs(Current High - previous Close),

Abs(Current Low - previous Close))

226

QCTAChart - Technical Analysis Charting Tools

The Average True Range is a moving average (14-day Moving Average in this case) of the most recent and pervious
13 values. The fixed box size is set to the value of the Average True Range calculated using the most recent data.
Below is the P&F chart we have been using as an example, configured for a fixed box size calculated using the
Average True Range.

In this case the fixed box size was calculated to be approximately 0.78.

Point And Figure Dialog Box

The P&F box size mode can be set using the Attribute dialog for the chart, found in the Primary Chart Dialog page.

227

9. Point and Figure Charts

Select the Attribute box (the blue box above) and the P&F dialog will appear.

Point And Figure Colors

Select the Upside and/or Downside Attributes buttons to change the Point and Figure colors.

At that point an Attributes Dialog box will appear.

228

QCTAChart - Technical Analysis Charting Tools

When working with the Traditional Xs and Os Point and Figure plot, you want the text Line/Text Color set to the
color you want for the X's and Os. The Fill mode should be left unchecked. The other fields should remain
unchanged.

In code, this looks like:

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

plotobj.PlotUpAttribute = new ChartAttribute(Color.Green, 1, DashStyle.Solid);
plotobj.PlotDownAttribute = new ChartAttribute(Color.IndianRed, 1, DashStyle.Solid);

VB

Dim plotobj As FinPointAndFigureChartPlot= Me.AddPrimaryChartPointAndFigure()

plotobj.PlotUpAttribute = new ChartAttribute(Color.Green, 1, DashStyle.Solid)
plotobj.PlotDownAttribute = new ChartAttribute(Color.IndianRed, 1, DashStyle.Solid)

If you plan to use the bar version of the Point and Figure plot, you will need to set the Line/Text Color to Black, and
the Fill Color to the color your want; also check the Fill box.

229

9. Point and Figure Charts

The resulting chart will look like:

In code, this looks like:

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

plotobj.PlotUpAttribute = new ChartAttribute(Color.Black, 1, DashStyle.Solid,
Color.Green);
plotobj.PlotDownAttribute = new ChartAttribute(Color.Black , 1, DashStyle.Solid,
Color.IndianRed);

VB
Dim plotobj As FinPointAndFigureChartPlot= Me.AddPrimaryChartPointAndFigure()

plotobj.PlotUpAttribute = new ChartAttribute(Color.Black, 1, DashStyle.Solid, Color.Green)
plotobj.PlotDownAttribute = new ChartAttribute(Color.Black , 1, DashStyle.Solid,
Color.IndianRed)

Box Size Mode

The Box Size Mode combo box is used to select the P&F box size mode: Traditional, Percentage, Fixed, or Fixed
ATR.

230

QCTAChart - Technical Analysis Charting Tools

If you select Traditional or Fixed ATR, the Box Size field is ignored. If you select a Box Size Mode of Percentage,
then the percentage used in the calculation is the value of Box Size converted to percent. For example, a Box Size of
1 represents 1 percent (0.01). A value of 0.5 represents 0.5 percent (0.005). If you select a box Size of Fixed, the box
size is set to the value of Box size.

If the Box Size Mode is set to Fixed ATR, the ATR look-back period is specified using the ATR Period combo
box, seen below.

If you want to set the Box Size Mode property under program control, set the appropriate
FinPointAndFigureChartPlot property, as returned by the AddPrimaryChartPointAndFigurecall in your program.

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_PERCENTAGE;

VB

Dim FinPointAndFigureChartPlot As plotobj = Me.AddPrimaryChartPointAndFigure()

plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_PERCENTAGE

Specify the BoxSizeMode using one of the following FinChartConstants constants:

FinChartConstants.POINT_AND_FIGURE_YSCALE_TRADITIONAL
FinChartConstants.POINT_AND_FIGURE_YSCALE_PERCENTAGE
FinChartConstants.POINT_AND_FIGURE_YSCALE_FIXED
FinChartConstants.POINT_AND_FIGURE_YSCALE_ATRFIXED

If you choose the POINT_AND_FIGURE_YSCALE_FIXED box size mode, you can set the related fixed box
property using the BoxSize property.

plotobj.BoxSize = 3;

If you choose the POINT_AND_FIGURE_YSCALE_ATRFIXED box size mode, you can set the related ATR
look-back period using the ATRPeriod property.

plotobj.ATRPeriod = 14

231

9. Point and Figure Charts

Point And Figure Price Mode

The price input to the chart takes one of three forms. You can plot the chart using Close prices only. Or you can use
the most popular method which uses the days High and Low values. The third method is similar to the first option,
but instead of using the Close price, the Typical Price is used, where the Typical price is defined as: (High value +
Low value + Close value) / 3.

High Low Method

Here is the basic psuedo-code algorithm for the High-Low method.

IF (you are currently in an X-column, i.e. prices have been rising)

{

IF (High breaks out of the current box into a new, higher box)

draw the new X and ignore the Low

ELSE IF (Low triggers a 3-box reversal)

Start a new column and fill in Os down to to current Low

ELSE

Do nothing

}

ELSE IF (you are currently in an O-column, i.e. prices have been falling)

{

IF (Low breaks out of the current box into a new, lower box)

draw the new O 's

ELSE IF (High triggers a 3-box reversal)

Start a new column and fill in Xs up to to current High

ELSE

Do nothing

}

Close Method

Here is the basic psuedo-code algorithm for the Close method

IF (you are currently in an X-column, i.e. prices have been rising)

{

IF (Close breaks out of the current box into a new, higher box)

232

QCTAChart - Technical Analysis Charting Tools

draw the new X

ELSE IF (Close triggers a 3-box reversal)

Start a new column and fill in Os down to to current Close

ELSE

Do nothing

}

ELSE IF (you are currently in an O-column, i.e. prices have been falling)

{

IF (Close breaks out of the current box into a new, lower box)

draw the new O 's

ELSE IF (Close triggers a 3-box reversal)

Start a new column and fill in Xs up to to current Close

ELSE

Do nothing

}

Typical Price Method

The Typical Price for each OHLC event is calculated as: (High value + Low value + Close value) / 3.

Here is the basic psuedo-code algorithm for the Typical Price method

IF (you are currently in an X-column, i.e. prices have been rising)

{

IF (Typical Price breaks out of the current box into a new, higher box)

draw the new X

ELSE IF (Typical Price triggers a 3-box reversal)

Start a new column and fill in Os down to to current Typical Price

ELSE

Do nothing

}

ELSE IF (you are currently in an O-column, i.e. prices have been falling)

233

9. Point and Figure Charts

{

IF (Typical Price breaks out of the current box into a new, lower box)

draw the new O 's

ELSE IF (Typical Price triggers a 3-box reversal)

Start a new column and fill in Xs up to to current Typical Price

ELSE

Do nothing

}

The P&F Price mode can be set using the Attribute dialog for the chart, found in the Primary Chart Dialog page.

Select the Attribute box (the blue box above) and the P&F dialog will appear. Set the Pricing Mode combon box to
the value you want.

If you want to set the Pricing Mode property under program control, set the appropriate
FinPointAndFigureChartPlot parameter, as returned by the AddPrimaryChartPointAndFigurecall in your program.

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

plotobj.PricingMode = FinChartConstants.POINT_AND_FIGURE_PRICE_CLOSE;

VB

Dim plotobj As FinPointAndFigureChartPlot = Me.AddPrimaryChartPointAndFigure()

234

QCTAChart - Technical Analysis Charting Tools

plotobj.PricingMode = FinChartConstants.POINT_AND_FIGURE_PRICE_CLOSE

Specify the PricingMode using one of the following FinChartConstants constants:

FinChartConstants.POINT_AND_FIGURE_PRICE_CLOSE
FinChartConstants.POINT_AND_FIGURE_PRICE_HIGHLOW
FinChartConstants.POINT_AND_FIGURE_PRICE_TYPICAL

Reversal Count

The reversal count is the number of boxes the price of a stock must change, in order to trigger a P&F reversal. A
reversal is when the chart transitions from Xs and Os, (and vise-versa), and a new column is started in the chart.
Typically this value is three, but it can be anything from 1 to N.

The reversal count is set using the Reversal Count field of the Point and Figure Attributes dialog box.

If you want to set the Reversal Count property under program control, set the appropriate
FinPointAndFigureChartPlot parameter, as returned by the AddPrimaryChartPointAndFigurecall in your program.

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

VB

 Dim plotobj As FinPointAndFigureChartPlot = Me.AddPrimaryChartPointAndFigure()

 Specify the ReversalCount value to value reasonable to your range of data, an integer in the range 1 to 10.

 plotobj.ReversalCount = 2;

Plot Type

We created a Point and Figure variant which uses colored bars, instead of Xs and O's. See the example below.

235

9. Point and Figure Charts

The plot type (Traditional or Bars) t is set using the Plot Type combo box of the Point and Figure Attributes dialog
box.

If you want to set the Plot Type property under program control, set the appropriate FinPointAndFigureChartPlot
property, as returned by the AddPrimaryChartPointAndFigurecall in your program.

C#

FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL;

VB

FinPointAndFigureChartPlot plotobj = Me.AddPrimaryChartPointAndFigure()

plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL

 Specify the PfPlotType value to one of the following FinChartConstants constants:

236

QCTAChart - Technical Analysis Charting Tools

FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL
FinChartConstants.POINT_AND_FIGURE_PLOT_BARS

Combining Point and Figure Charts with Secondary Chart Technical Indicators

The Point and Figure plot (and the Renko plot) is a special case in the FinChartView Primary chart. This is because
it uses a unique coordinate system which does not match up with the more traditional linear sequential event-based
coordinate system used in the standard FinChartView Primary plot types (Line, OHLC, Candlestick, Bar, and
Mountain). As you see in the examples, the coordinate system is non-linear with respect to time in the x-axis, and
also non-linear in the y-axis (in the Traditional and Percentage modes). Since its x-axis coordinate system is unique
to the underlying data, it will not sync, exactly (when zooming, panning and scrolling) with the other Secondary
chart technical indicator plots displayed in the FinChartView. Instead, only the starting and ending dates will sync.
All other dates between the endpoints will be out of sync.

When a Point and Figure chart, or a Renko chart, is displayed in the Primary chart window, the technical indicators
in the secondary window(s) will only be in-sync at the endpoints.

Creating a Point and Figure chart

237

9. Point and Figure Charts

The Point and Figure charting routines are integrated in the FinChartView class. So, you create a FinChartData
object with a portfolio of stocks, use that to initialize the FinChartView, and then add a Point and Figure chart as the
Primary Chart for the FinChartView, using AddPrimaryChartPointAndFigure. See the example
PointAndFigureExample.PointAndFigureUserControl1.

C#

public void InitializeChart()
{
 this.PreferredSize = new Size(800, 600);
 String[] idStrings = { "BA", "INTC", "IBM", "TXN", "AMAT", "CSCO" };
 String[] tickerStrings = { "BA", "INTC", "IBM",
 "TXN", "AMAT", "CSCO" };

 ChartCalendar startdate = new ChartCalendar(2008, ChartObj.JULY, 2);
 ChartCalendar enddate = new ChartCalendar(2014, ChartObj.AUGUST, 25);

 FinYahooURLCurrentDataSource finStockData = new FinYahooURLCurrentDataSource();
 FinYahooURLHistoricalDataSource finStockHistoricalData =

new FinYahooURLHistoricalDataSource();

 for (int i = 0; i < idStrings.Length; i++)
 {
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 }
 FinChartData finChartData = new FinChartData(finStockHistoricalData,

 finStockData, idStrings, startdate, enddate);

 // Add all of the column items to the table
 finChartData.AddAllColumnItems();
 // Initially turn the table off.
 this.EnableFinChartTable = false;

 // Assign FinChartView's data
 InitFinChartView(finChartData);

 // only needed if you are reinitalizing the charts
 this.ResetTechnicalCharts();
 // main title
 this.MainTitleString = "Point and Figure Chart!";
 // Choose the stock for the initial chart,
 // from the stocks entered into finChartData
 this.CurrentTickerString = "INTC";
 // Set zoom flag true
 FinPointAndFigureChartPlot plotobj = this.AddPrimaryChartPointAndFigure();

 plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL;
 // Build the chart using the given parameters
 this.BuildChart();

}

VB

Public Sub InitializeChart()
 Me.PreferredSize = New Size(800, 600)
 Dim idStrings As [String]() = {"BA","INTC","IBM","TXN","AMAT","CSCO"}
 Dim tickerStrings As [String]() = {"BA","INTC","IBM","TXN","AMAT","CSCO"}

 Dim startdate As New ChartCalendar(2008, ChartObj.JULY, 2)
' ChartCalendar enddate = new ChartCalendar(2014, ChartObj.AUGUST, 25);
 Dim enddate As New ChartCalendar()
' Todday
 Dim finStockData As New FinYahooURLCurrentDataSource()
 Dim finStockHistoricalData As New FinYahooURLHistoricalDataSource()

238

QCTAChart - Technical Analysis Charting Tools

 For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 finStockData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 Next
 Dim finChartData As New FinChartData(finStockHistoricalData, finStockData, idStrings,
startdate, enddate)

' Add all of the column items to the table
 finChartData.AddAllColumnItems()
' Initially turn the table off.
 Me.EnableFinChartTable = False

' Assign FinChartView's data
 InitFinChartView(finChartData)

' only needed if you are reinitalizing the charts
 Me.ResetTechnicalCharts()
' main title
 Me.MainTitleString ="Point and Figure Chart!"
' Choose the stock for the initial chart, from the stocks entered into finChartData
 Me.CurrentTickerString ="INTC"

 Dim plotobj As FinPointAndFigureChartPlot = Me.AddPrimaryChartPointAndFigure()
' Assigne the up and down colors
 plotobj.PlotUpAttribute = New ChartAttribute(Color.Green, 1, DashStyle.Solid,
Color.Green)
 plotobj.PlotDownAttribute = New ChartAttribute(Color.Red, 1, DashStyle.Solid, Color.Red)
 plotobj.BoxSize = 3
 plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_TRADITIONAL
' plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_PERCENTAGE;
' plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_FIXED;
' plotobj.BoxSizeMode = FinChartConstants.POINT_AND_FIGURE_YSCALE_ATRFIXED;

'plotobj.PricingMode = FinChartConstants.POINT_AND_FIGURE_PRICE_CLOSE;
 plotobj.PricingMode = FinChartConstants.POINT_AND_FIGURE_PRICE_HIGHLOW
' plotobj.PricingMode = FinChartConstants.POINT_AND_FIGURE_PRICE_TYPICAL;

 plotobj.ReversalCount = 3

 plotobj.ATRPeriod = 14
 plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL
' plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_BARS;
' Build the chart using the given parameters
 Me.BuildChart()

 End Sub

If you want to ditch the Xs and Os, and go with the alternate version which uses filled bars instead, use the
following code instead. Set the BoxFillAttributes property with the second color for the bars, and the
PfDisplayMode property to 1.

A Point and Figure chart using bars, rather than Xs and Os.

C#

plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL;
// plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_BARS;

VB

plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_TRADITIONAL
' plotobj.PfPlotType = FinChartConstants.POINT_AND_FIGURE_PLOT_BARS

239

QCTAChart - Technical Analysis Charting Tools

241

10. Renko Charts

Renko charts are similar to Point and Figure charts, in that they do not plot price against time as other
techniques do. Instead it plots price against changes in direction by plotting filled boxes (called bricks in
Renko terminology) as the price rises and unfilled boxes as the price falls. As long the stock price is
increasing, and does not backtrack by more than the brick size size, the price increase is displayed as an
rising diagonal of bricks. Each time the price rises enough to warrant a new brick, a new column is started
and the brick is plotted in that column. Once the trend reverses, as each new brick is added on the
downside, a new column is started. No column will every contain more than one brick. The result is a chart
similar to the example above, where time scales are irregular and compressed. The net result is a strong
filtering of the OHLC data, eliminating the ever present noise present in market data.

Special Note

You can display the Renko Chart in the Primary Chart of the FinChartView window. At the same time, you
can display the Technical Indicator charts in the Secondary Chart windows. Since the Renko chart uses a
different x-axis scale than the Technical Indicator charts, the Primary and Secondary x-axis scales will not
line up date for date. Only the starting and ending dates will match. Everything else in between will be
different.

243

10. Renko Charts

Renko y-Axis Scale Modes

Unlike Point and Figure charts, which in the Traditional and Percentage scale modes use a non-linear y-axis, Renko
charts always use a linear y-axis scale. Also, Renko charts always use a fixed box size. The box size can be set by
the user, or it can be automatically calculated using the ATR for a given look-back period.

Fixed Box Size

The user has the option of specifying a fixed box sise. In the example below the chart is recast using a fixed box size
of 2. The box size can be a whole number (1,2,3,4...) or a fraction (0.5, 0.75, 1.33...)

Fixed Box Size using ATR (Average True Range)

The fixed box size has the drawback in that it is not auto-ranging. A stock where the values in the time frame of
interest are in the hundreds (IBM or Apple) will need a much larger fixed box size, than other stocks with values in
the teens. A variant of the fixed box size mode calculates fixed box size as a function of the Average True Range,
where the Average True Range (defined by J. Welles Wilder) is defined as below.

244

QCTAChart - Technical Analysis Charting Tools

The true range for a given time period is maximum of several calculated ranges:

True Range = Max (Current High less the current Low,

Abs(Current High - previous Close),

Abs(Current Low - previous Close))

The Average True Range is a moving average (14-day Moving Average in this case) of the most recent and pervious
13 values. The fixed box size is set to the value of the Average True Range calculated using the most recent data.
Below is the Renko chart we have been using as an example, configured for a fixed box size calculated using the
Average True Range.

In this case the fixed box size was calculated to be approximately 0.6.

Renko Chart Dialog Box

The Renko box size mode can be set using the Attribute dialog for the chart, found in the Primary Chart Dialog
page.

245

10. Renko Charts

Select the Attribute box (the green box above) and the Renko dialog will appear.

Renko Colors

Select the Upside and/or Downside Attributes buttons to change the Renko colors.

At that point an Attributes Dialog box will appear.

246

QCTAChart - Technical Analysis Charting Tools

If you want to use a solid box for the upside color, set the Line/Text Color, and the Fill Color to the color you
want, and check both Line and Fill. The other fields should remain unchanged. You would do the same for the
Downside color. The resulting chart would look like one of the two preceding charts, where the upside uses a solid
green box, and the downside uses a solid red box. If you want one or both of the boxes to be unfilled, uncheck the
Fill checkbox. In the example below, the Fill checkbox for the Upside Color has been unchecked.

247

10. Renko Charts

In code, this looks like:

C#

 FinRenkoChartPlot plotobj = this.AddPrimaryChartRenko();

// Green box outline, no fill
 plotobj.PlotUpAttribute = new ChartAttribute(Color.Green, 1, DashStyle.Solid);

// IndianRed box outline, and IndiantRed box fill
 plotobj.PlotDownAttribute = new ChartAttribute(Color.IndianRed,1,DashStyle.Solid,
Color.IndianRed);

VB

FinRenkoChartPlot plotobj = Me.AddPrimaryChartRenko()

' Green box outline, no fill
 plotobj.PlotUpAttribute = new ChartAttribute(Color.Green, 1, DashStyle.Solid)

' IndianRed box outline, and IndiantRed box fill
 plotobj.PlotDownAttribute = new ChartAttribute(Color.IndianRed,1,DashStyle.Solid,
Color.IndianRed)

Box Size Mode

The Box Size Mode combo box is used to select the Renko box size mode: Fixed, or Fixed ATR.

If you select a Box Size Mode of Fixed, the box size is set to the value of the Box Size field..

If the Box Size Mode is set to Fixed ATR, the Box Size field is ignored and the ATR look-back period is specified
using the ATR Period combo box, seen below.

If you want to set the Box Size Mode property under program control, set the appropriate FinRenkoChartPlot
property, as returned by the AddPrimaryChartPointAndFigurecall in your program.

C#

FinRenkoChartPlot plotobj = this.AddPrimaryChartRenko();

plotobj.BoxSizeMode = FinChartConstants.RENKO_YSCALE_FIXED;

248

QCTAChart - Technical Analysis Charting Tools

VB

Dim plotobj As FinRenkoChartPlot = Me.AddPrimaryChartRenko()

plotobj.BoxSizeMode = FinChartConstants.RENKO_YSCALE_FIXED

Specify the BoxSizeMode using one of the following FinChartConstants constants:

FinChartConstants.RENKO_YSCALE_FIXED
FinChartConstants.RENKO_YSCALE_ATRFIXED

If you choose the RENKO_YSCALE_FIXED box size mode, you can set the related fixed box property using the
BoxSize property.

plotobj.BoxSize = 2;

If you choose the RENKO_YSCALE_ATRFIXED box size mode, you can set the related ATR look-back period
using the ATRPeriod property.

plotobj.ATRPeriod = 14

Renko Price Mode

The price input to the chart takes one of three forms. You can plot the chart using Close prices only. Or you can use
the most popular method which uses the days High and Low values. The third method is similar to the first option,
but instead of using the Close price, the Typical Price is used, where the Typical price is defined as: (High value +
Low value + Close value) / 3.

High-Low Method

Here is the basic algorithm for the High-Low method.

IF (High breaks out of the current box into a new, higher box)

Advance one column and draw the new box using the upside color and ignore the Low

ELSE (Low breaks out of the current box into a new, lower box)

Advance one column and draw the new box using the downside color

ELSE

Do nothing

The High-Low method produces more fluctuations in the resulting chart than the Close method.

Close Method

Here is the basic algorithm for the Close method

IF (Close breaks out of the current box into a new, higher box)

249

10. Renko Charts

Advance one column and draw the new box using the upside color

ELSE (Close breaks out of the current box into a new, lower box)

Advance one column and draw the new box using the downside color

ELSE

Do nothing

Typical Price Method

The Typical Price for each OHLC event is calculated as: (High value + Low value + Close value) / 3.

IF (Typical Price breaks out of the current box into a new, higher box)

Advance one column and draw the new box using the upside color

ELSE (Typical Price breaks out of the current box into a new, lower box)

Advance one column and draw the new box using the downside color

ELSE

Do nothing

The Renko Price mode can be set using the Attribute dialog for the chart, found in the Primary Chart Dialog page.

Select the Attribute box (the blue box above) and the Renko dialog will appear. Set the Pricing Mode combo box to
the value you want.

If you want to set the Pricing Mode property under program control, set the appropriate FinRenkoChartPlot

250

QCTAChart - Technical Analysis Charting Tools

parameter, as returned by the AddPrimaryChartRenko call in your program.

C#

FinRenkoChartPlot plotobj = this.AddPrimaryChartRenko();

plotobj.PricingMode = FinChartConstants.RENKO_PRICE_CLOSE;

VB

Dim plotobj As FinRenkoChartPlot = Me.AddPrimaryChartRenko()

plotobj.PricingMode = FinChartConstants.RENKO_PRICE_CLOSE

Specify the PricingMode using one of the following FinChartConstants constants:

 FinChartConstants.RENKO_PRICE_CLOSE
 FinChartConstants.RENKO _PRICE_HIGHLOW
 FinChartConstants.RENKO _PRICE_TYPICAL

Combining Renko Charts with Secondary Chart Technical Indicators

The Renko plot (and the Point and Figure plot) is a special case in the FinChartView Primary chart. This is because
it uses a unique coordinate system which does not match up with the more traditional linear sequential event-based
coordinate system used in the standard FinChartView Primary plot types (Line, OHLC, Candlestick, Bar, and
Mountain). As you see in the examples, the coordinate system is non-linear with respect to time in the x-axis. Since
its x-axis coordinate system is unique to the underlying data, it will not sync, exactly (when zooming, panning and
scrolling) with the other Secondary chart technical indicator plots displayed in the FinChartView. Instead, only the
starting and ending dates will sync. All other dates between the endpoints will be out of sync.

251

10. Renko Charts

When a Renko chart, or a Point and Figure chart is displayed in the Primary chart window, the technical indicators
in the secondary window(s) will only be in-sync at the endpoints.

Creating a Renko chart

The Renko charting routines are integrated in the FinChartView class. So, you create a FinChartData object with a
portfolio of stocks, use that to initialize the FinChartView, and then add a Renko chart as the Primary Chart for the
FinChartView, using AddPrimarcyChartRenko. See the example PointAndFigureExample.RenkoPlotUserControl1.

C#

public void InitializeChart()
{

 this.PreferredSize = new Size(800, 600);
 // Define the ticker symbols
 String[] idStrings = { "BA", "INTC", "IBM", "TXN", "AMAT", "CSCO" };
 String[] tickerStrings = { "BA", "INTC", "IBM", "TXN", "AMAT", "CSCO" };

 ChartCalendar startdate = new ChartCalendar(2008, ChartObj.JULY, 2);
 ChartCalendar enddate = new ChartCalendar(); // Today

 FinYahooURLCurrentDataSource finStockData = new FinYahooURLCurrentDataSource();
 FinYahooURLHistoricalDataSource finStockHistoricalData = new

252

QCTAChart - Technical Analysis Charting Tools

FinYahooURLHistoricalDataSource();

 for (int i = 0; i < idStrings.Length; i++)
 {
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 }
 finStockHistoricalData.AddCurrencyLookupItem("TXN", "#");
 FinChartData finChartData = new FinChartData(finStockHistoricalData, finStockData,
idStrings, startdate, enddate);

 // Add all of the column items to the table
 finChartData.AddAllColumnItems();
 // Initially turn the table off.
 this.EnableFinChartTable = false;

 // Assign FinChartView's data
 InitFinChartView(finChartData);

 // only needed if you are reinitalizing the charts
 this.ResetTechnicalCharts();
 // main title
 this.MainTitleString = "Renko Chart!";
 // Choose the stock for the initial chart, from the stocks entered into finChartData
 this.CurrentTickerString = "TXN";
 // Set zoom flag true

 FinRenkoChartPlot plotobj = this.AddPrimaryChartRenko();
 // Assign the up and down colors
 plotobj.PlotUpAttribute = new ChartAttribute(Color.Green, 1, DashStyle.Solid,
Color.Green);
 plotobj.PlotDownAttribute = new ChartAttribute(Color.IndianRed, 1, DashStyle.Solid,
Color.IndianRed);
 // Build the chart using the given parameters
 this.BuildChart();
}

VB

Public Sub InitializeChart()

 Me.PreferredSize = New Size(800, 600)
' Define the ticker symbols
 Dim idStrings As [String]() = {"BA","INTC","IBM","TXN","AMAT","CSCO"}
 Dim tickerStrings As [String]() = {"BA","INTC","IBM","TXN","AMAT","CSCO"}

 Dim startdate As New ChartCalendar(2008, ChartObj.JULY, 2)
 Dim enddate As New ChartCalendar()
' Today
 Dim finStockData As New FinYahooURLCurrentDataSource()
 Dim finStockHistoricalData As New FinYahooURLHistoricalDataSource()

 For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 finStockData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 Next
 finStockHistoricalData.AddCurrencyLookupItem("TXN","#")
 Dim finChartData As New FinChartData(finStockHistoricalData, finStockData, idStrings,
startdate, enddate)

' Add all of the column items to the table
 finChartData.AddAllColumnItems()
' Initially turn the table off.
 Me.EnableFinChartTable = False

' Assign FinChartView's data
 InitFinChartView(finChartData)

253

10. Renko Charts

' only needed if you are reinitalizing the charts
 Me.ResetTechnicalCharts()
' main title
 Me.MainTitleString ="Renko Chart!"
' Choose the stock for the initial chart, from the stocks entered into finChartData
 Me.CurrentTickerString ="TXN"
' Set zoom flag true

 Dim plotobj As FinRenkoChartPlot = Me.AddPrimaryChartRenko()
' Assign the up and down colors
 plotobj.PlotUpAttribute = New ChartAttribute(Color.Green, 1, DashStyle.Solid,
Color.Green)
 plotobj.PlotDownAttribute = New ChartAttribute(Color.IndianRed, 1, DashStyle.Solid,
Color.IndianRed)
' Build the chart using the given parameters
 Me.BuildChart()

End Sub

254

255

QCTAChart - Technical Analysis Charting Tools

11. File and Printer Rendering Classes

ChartPrint
BufferedImage

com.quinn-curtis.chart2dnet.ChartView
FinChartView

Charts create using the ChartView, and FinChartView classes can be printed, and saved to an image file using the
techniques described in the QCChart2D manual, QCChart2DNetManual.pdf. This chapter repeats that information,
substituting examples extracted from the for QCTAChart examples.

High quality B&W and color printing is an important feature of the charting library. The resulting graph renders on
the printer using the resolution of the output device, for both text and graphical elements of the chart, and does not
transfer a grainy image from the computer to the printer. The QCChart2D for .Net software uses the Microsoft .Net
PrintDocument component to implement printing. Since the aspect ratio of the printed page is different from the
aspect ratio of common displays, options are included that allow different modes for positioning and sizing the chart
on the printed page.

The BufferedImage class converts a chart into a .Net Bitmap object, or saves the chart to a file in any of the
graphics formats supported by the System.Drawing.Imaging.ImageFormat class. The image file is placeable in a
web page or an application program.

Printing a Chart

Class ChartPrint

ChartObj
ChartPrint

The ChartPrint class uses the Microsoft .Net PrintDocument component to implement printing. The class selects,
setups, and outputs a chart to a printer.

ChartPrint constructor

[Visual Basic]
Overloads Public Sub New(_
 ByVal component As ChartView,_
 ByVal nsizemode As Integer _
)
[C#]
public ChartPrint(
 ChartView component,
 int nsizemode
);

component Specifies the ChartView object to be printed.

nsizemode Specifies the printer mapping mode. Use one of the mapping mode constants:

257

ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemInt32ClassTopic.htm
mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemInt32ClassTopic.htm
mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html

11. File and Printer Rendering Classes

PRT_MAX Print the view so that paper is used maximally. Text prints proportional
to other objects, aspect ratio is NOT maintained

PRT_EXACT Print the view at the same size as the screen, at least as far as .Net
maintains a one to one correspondence in the printing engine. The
aspect ration of the view is maintained.

PRT_RECT Print the view to the specified rectangle, specified using the
SetPrintRect method and normalized coordinates.

Call the ChartPrint.DoPrintDialog method after creating the ChartPrint object. Then call the
ChartPrint.DoPrintPage method, rendering the chart to the printer. If the DoPrintDialog method is not called
prior to DoPrintPage, the DoPrintPage method automatically invokes the DoPrintDialog method. Subsequent
calls to DoPrintPage will not invoke the DoPrintDialog method.

ChartPrint example (extracted from the example program YahooDataSourceExample.Form1)

[C#]

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Drawing.Imaging;
using com.quinncurtis.chart2dnet;
using com.quinncurtis.tachartnet;

namespace YahooDataSourceExample
{
 public partial class Form1 : Form
 {
 ChartPrint printobj = null;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void pageSetupToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (yahooDatasourceExampleUserControl11 != null)
 this.PageSetup(yahooDatasourceExampleUserControl11, sender, e);
 }

 private void printerSetupToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (yahooDatasourceExampleUserControl11 != null)
 this.PrinterSetup(yahooDatasourceExampleUserControl11, sender, e);

 }

 private void printPreviewToolStripMenuItem_Click(object sender, EventArgs e)

258

QCTAChart - Technical Analysis Charting Tools

 {
 if (yahooDatasourceExampleUserControl11 != null)
 this.PrintPreview(yahooDatasourceExampleUserControl11, sender, e);

 }

 private void printToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (yahooDatasourceExampleUserControl11 != null)
 this.PrintPage(yahooDatasourceExampleUserControl11, sender, e);
 }

 private void saveImageToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (yahooDatasourceExampleUserControl11 != null)
 this.SaveAsFile(yahooDatasourceExampleUserControl11, sender, e);
 }

 // This routine displays a dialog box, in response to an event, that prompts
 // the user for the name and file type of the image to be saved. The file type is
 // derived from the file extension.
 // The chart represented by "this" object is saved to the file using
// the specified format.
 public void SaveAsFile(ChartView chartview, object sender, System.EventArgs e)
 {
 String filename = this.Name;
 SaveFileDialog imagefilechooser = new SaveFileDialog();
 imagefilechooser.Filter =
 "Image Files(*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG)|

.BMP;.JPG;*.GIF;*.TIFF;*.PNG|All files (*.*)|*.*";
 imagefilechooser.FileName = filename;
 if (imagefilechooser.ShowDialog() == DialogResult.OK)
 {
 filename = imagefilechooser.FileName;
 FileInfo fileinformation = new FileInfo(filename);
 String fileext = fileinformation.Extension;
 fileext = fileext.ToUpper();
 ImageFormat fileimageformat;
 if (fileext == ".BMP")
 fileimageformat = ImageFormat.Bmp;
 else if ((fileext == ".JPG") || (fileext == ".JPEG"))
 fileimageformat = ImageFormat.Jpeg;
 else if ((fileext == ".GIF"))
 fileimageformat = ImageFormat.Gif;
 else if ((fileext == ".TIF") || (fileext == ".TIFF"))
 fileimageformat = ImageFormat.Tiff;
 else if ((fileext == ".PNG"))
 fileimageformat = ImageFormat.Png;
 else
 fileimageformat = ImageFormat.Bmp;

 BufferedImage savegraph = new BufferedImage(chartview, fileimageformat);
 savegraph.Render();
 savegraph.SaveImage(filename);
 }
 }

 // This routine invokes the chart objects PageSetupItem method
 public void PageSetup(ChartView charview, object sender, System.EventArgs e)
 {
 if (charview != null)
 {
 if (printobj == null)
 {
 printobj = new ChartPrint(charview);
 }
 else
 printobj.PrintChartView = charview;
 printobj.PageSetupItem(sender, e);
 }
 }

259

11. File and Printer Rendering Classes

 // This routine invokes the chart objects printer setup dialog method
 public void PrinterSetup(ChartView charview, object sender, System.EventArgs e)
 {
 if (charview != null)
 {
 if (printobj == null)
 {
 printobj = new ChartPrint(charview);
 }
 else
 printobj.PrintChartView = charview;
 printobj.DoPrintDialog();
 }
 }

 // This routine invokes the chart objects PrintPreviewItem method
 public void PrintPreview(ChartView charview, object sender, System.EventArgs e)
 {
 if (charview != null)
 {
 if (printobj == null)
 {
 printobj = new ChartPrint(charview);
 }
 else
 printobj.PrintChartView = charview;
 printobj.PrintPreviewItem(sender, e);
 }
 }

// This routine prints a chart by invoking the chart objects DocPrintPage method
 public void PrintPage(ChartView charview, object sender, System.EventArgs e)
 {
 if (charview != null)
 {
 if (printobj == null)
 {
 printobj = new ChartPrint(charview);
 printobj.DoPrintDialog();
 }
 else
 printobj.PrintChartView = charview;

 printobj.DocPrintPage(sender, e);
 }
 }
 }
}

[Visual Basic]

Imports System.IO
Imports System.Drawing.Imaging
Imports com.quinncurtis.chart2dnet
Imports com.quinncurtis.tachartnet

Public Class Form1

 Private printobj As ChartPrint = Nothing

 Private Sub pageSetupToolStripMenuItem_Clickx(ByVal sender As Object, ByVal e As
EventArgs)
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.PageSetup(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub

260

QCTAChart - Technical Analysis Charting Tools

 ' This routine displays a dialog box, in response to an event, that prompts
 ' the user for the name and
 ' file type of the image to be saved. The file type is derived from the file
extension.
 ' The chart represented by "this" object is saved to the file using the specified
format.
 Public Sub SaveAsFile(ByVal chartview As ChartView, ByVal sender As Object, ByVal e As
System.EventArgs)
 Dim filename As [String] = Me.Name
 Dim imagefilechooser As New SaveFileDialog()
 imagefilechooser.Filter = "Image Files(*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG)|
.BMP;.JPG;*.GIF;*.TIFF;*.PNG|All files (*.*)|*.*"
 imagefilechooser.FileName = filename
 If imagefilechooser.ShowDialog() = DialogResult.OK Then
 filename = imagefilechooser.FileName
 Dim fileinformation As New FileInfo(filename)
 Dim fileext As [String] = fileinformation.Extension
 fileext = fileext.ToUpper()
 Dim fileimageformat As ImageFormat
 If fileext = ".BMP" Then
 fileimageformat = ImageFormat.Bmp
 ElseIf (fileext = ".JPG") OrElse (fileext = ".JPEG") Then
 fileimageformat = ImageFormat.Jpeg
 ElseIf (fileext = ".GIF") Then
 fileimageformat = ImageFormat.Gif
 ElseIf (fileext = ".TIF") OrElse (fileext = ".TIFF") Then
 fileimageformat = ImageFormat.Tiff
 ElseIf (fileext = ".PNG") Then
 fileimageformat = ImageFormat.Png
 Else
 fileimageformat = ImageFormat.Bmp
 End If

 Dim savegraph As New BufferedImage(chartview, fileimageformat)
 savegraph.Render()
 savegraph.SaveImage(filename)
 End If
 End Sub

 ' This routine invokes the chart objects PageSetupItem method
 Public Sub PageSetup(ByVal charview As FinChartView, ByVal sender As Object, ByVal e
As System.EventArgs)
 If charview IsNot Nothing Then
 If printobj Is Nothing Then
 printobj = New ChartPrint(charview)
 Else
 printobj.PrintChartView = charview
 End If
 printobj.PageSetupItem(sender, e)
 End If
 End Sub

 ' This routine invokes the chart objects printer setup dialog method
 Public Sub PrinterSetup(ByVal charview As FinChartView, ByVal sender As Object, ByVal
e As System.EventArgs)
 If charview IsNot Nothing Then
 If printobj Is Nothing Then
 printobj = New ChartPrint(charview)
 Else
 printobj.PrintChartView = charview
 End If
 printobj.DoPrintDialog()
 End If
 End Sub

 ' This routine invokes the chart objects PrintPreviewItem method
 Public Sub PrintPreview(ByVal charview As FinChartView, ByVal sender As Object, ByVal
e As System.EventArgs)
 If charview IsNot Nothing Then

261

11. File and Printer Rendering Classes

 If printobj Is Nothing Then
 printobj = New ChartPrint(charview)
 Else
 printobj.PrintChartView = charview
 End If
 printobj.PrintPreviewItem(sender, e)
 End If
 End Sub

 ' This routine prints a chart by invoking the chart objects DocPrintPage method
 Public Sub PrintPage(ByVal charview As FinChartView, ByVal sender As Object, ByVal e
As System.EventArgs)
 If charview IsNot Nothing Then
 If printobj Is Nothing Then
 printobj = New ChartPrint(charview)
 charview.ControlObjectsVisible = False
 printobj.DoPrintDialog()
 charview.ControlObjectsVisible = True
 Else
 printobj.PrintChartView = charview
 End If

 printobj.DocPrintPage(sender, e)
 End If
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 End Sub

 Private Sub pageSetupToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles pageSetupToolStripMenuItem.Click
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.PageSetup(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub

 Private Sub printerSetupToolStripMenuItem_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles printerSetupToolStripMenuItem.Click
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.PrinterSetup(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub

 Private Sub printPreviewToolStripMenuItem_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles printPreviewToolStripMenuItem.Click
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.PrintPreview(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub

 Private Sub printToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles printToolStripMenuItem.Click
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.PrintPage(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub

 Private Sub saveImageToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles saveImageToolStripMenuItem.Click
 If YahooDatasourceExampleUserControl11 IsNot Nothing Then
 Me.SaveAsFile(YahooDatasourceExampleUserControl11, sender, e)
 End If
 End Sub
End Class

262

QCTAChart - Technical Analysis Charting Tools

Capturing the Chart as a Buffered Image

Class BufferedImage

ChartObj
 BufferedImage

The BufferedImage class creates a Bitmap object that renders a FinChartView object into an image buffer. The
rendering takes place when the BufferedImage.Render method or BufferedImage.SaveImage method is called.

BufferedImage constructor

[VB]
Overloads Public Sub New(_
 ByVal component As ChartView,_
 ByVal imgformat As ImageFormat _
)

[Visual Basic]
Overloads Public Sub New(_
 ByVal component As ChartView _
)

[C#]
public BufferedImage(
 ChartView component,
 ImageFormat imgformat
);

public BufferedImage(
 ChartView component
);

component The ChartView object that is the source for the chart image.

imageformat An image format object specifying the format of the rendered image.

The BufferedImage.GetBufferedImage method converts the chart to the .Net Bitmap object specified by the
imageformat object and returns a reference the resulting bitmap.

BufferedImage example (extracted from the example program YahooDataSourceExample.Form1)

[C#]

// This routine displays a dialog box, in response to an event, that prompts
// the user for the name and
// file type of the image to be saved.
// The file type is derived from the file extension.
// The chart represented by "this" object is saved to the file
// using the specified format.
public void SaveAsFile(FinChartView chartview, object sender, System.EventArgs e)
{

263

mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemDrawingImagingImageFormatClassTopic.htm
mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html
mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html
ms-help://MS.NETFrameworkSDK/cpref/html/frlrfSystemDrawingImagingImageFormatClassTopic.htm
mk:@MSITStore:C:%5Csourceforge%5Csrc%5CGui%5Cbin%5CRelease%5Cdoc%5CDocumentation.chm::/com.quinncurtis.chart2dnet.ChartView.html

11. File and Printer Rendering Classes

String filename = this.Name;
SaveFileDialog imagefilechooser = new SaveFileDialog();
imagefilechooser.Filter =

"Image Files(*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG)|*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG|All files
(*.*)|*.*";

imagefilechooser.FileName = filename;
if (imagefilechooser.ShowDialog() == DialogResult.OK)
{

filename = imagefilechooser.FileName;
FileInfo fileinformation = new FileInfo(filename);
String fileext = fileinformation.Extension;
fileext = fileext.ToUpper();
ImageFormat fileimageformat;
if (fileext == ".BMP")

fileimageformat = ImageFormat.Bmp;
else if ((fileext == ".JPG") || (fileext == ".JPEG"))

fileimageformat = ImageFormat.Jpeg;
else if ((fileext == ".GIF"))

fileimageformat = ImageFormat.Gif;
else if ((fileext == ".TIF") || (fileext == ".TIFF"))

fileimageformat = ImageFormat.Tiff;
else if ((fileext == ".PNG"))

fileimageformat = ImageFormat.Png;
else

fileimageformat = ImageFormat.Bmp;

BufferedImage savegraph = new BufferedImage(chartview, fileimageformat);
savegraph.Render();
savegraph.SaveImage(filename);

}
}

[VB]

' This routine displays a dialog box, in response to an event, that prompts
' the user for the name and
' file type of the image to be saved. The file type is derived from the file
‘ extension.
' The chart represented by "this" object is saved to the file using the specified
‘ format.

Public Sub SaveAsFile(ByVal chartview As FinChartView, _
ByVal sender As Object, ByVal e As System.EventArgs)

 Dim filename As [String] = Me.Name
 Dim imagefilechooser As New SaveFileDialog()
 imagefilechooser.Filter = _
"Image Files(*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG)|*.BMP;*.JPG;*.GIF;*.TIFF;*.PNG|All files
(*.*)|*.*"
 imagefilechooser.FileName = filename
 If imagefilechooser.ShowDialog() = DialogResult.OK Then
 filename = imagefilechooser.FileName
 Dim fileinformation As New FileInfo(filename)
 Dim fileext As [String] = fileinformation.Extension
 fileext = fileext.ToUpper()
 Dim fileimageformat As ImageFormat
 If fileext = ".BMP" Then
 fileimageformat = ImageFormat.Bmp
 Else
 If fileext = ".JPG" Or fileext = ".JPEG" Then
 fileimageformat = ImageFormat.Jpeg
 Else
 If fileext = ".GIF" Then
 fileimageformat = ImageFormat.Gif
 Else
 If fileext = ".TIF" Or fileext = ".TIFF" Then
 fileimageformat = ImageFormat.Tiff
 Else
 If fileext = ".PNG" Then
 fileimageformat = ImageFormat.Png
 Else

264

QCTAChart - Technical Analysis Charting Tools

 fileimageformat = ImageFormat.Bmp
 End If
 End If
 End If
 End If
 End If
 Dim savegraph As New BufferedImage(chartview, fileimageformat)
 savegraph.Render()
 savegraph.SaveImage(filename)
 End If
End Sub 'SaveAsFile

265

QCTAChart - Technical Analysis Charting Tools

267

12. Regionalization for non-USA Markets

FinStrings

We have provided a structure for adjusting the software for different cultures and languages. All of the pre-
defined strings in the software have been moved to the static class FinStrings, which can be modified at
run-time. You can create multiple sets of strings, one for each unique region you sell to, and initialize the
software to that set at run-time. While something similar is often done using resource files in the final .Net
application program, it was not possible to add a user-customizable resource file to a pre-compiled library,
like our QCTAChartNet dll.

Apart from the strings, there are a couple other areas which benefit from regionalization. First is the use of
the "," (comma) in some locales as the decimal separator, in place of the "." (period). Our software uses the
standard numeric conversion routines found in .Net, for converting numeric values to strings, and these
automatically take into account the proper format for the region recognized by the computer. So, you
shouldn't have to do anything there.

Also, date/time values are subject to regional differences; specifically the order of the month-day-year in
short form strings of the form 10/1/2011 ("M/dd/yyyy" US English format), compared to 1/10/2011
(("dd/M/yyyy" European format). The default is the US English format ("M/dd/yyyy"). If you want to use
the European format, set the FinChartView property EuroDateFormat true.

C#
 this.EuroDateFormat = true;

VB
 Me.EuroDateFormat = True

We use a .Net Dictionary object to store key/value pairs for storing the strings used in the software. This
object is defined in the FinStrings class as:

 public static Dictionary<String, String> stringLookupTable = new Dictionary<String, String>();

The key for each string in the dictionary is the original English language string. The default value for each
key/value pair is also the English language string. Everywhere in the software we retrieve the appropriate
string value from the stringLookupTable using the English language key, but the string retrieved can be
anything you want. You can change the default value associated with a key, using code similar to below:

FinStrings.SetStringItem("Line Width", "Ancho de línea");

where "Line Width" is the English language key, and "Ancho de línea" is the Dictionary value for the "Line
Width" key. If you call this at the beginning of your program, all string references in the software,
originally "Line Width" will be changed to "Ancho de línea".

If at any point you want to retrieve the string value associated with a key, use the FinStrings.GetStringItem
method.

269

12. Regionalization for non-USA Markets

C#

String lineWidthString = FinStrings.GetStringItem("Line Width");

VB

Dim lineWidthString As String = FinStrings.GetStringItem("Line Width")

There is a long list of strings you can set in this manner. Many of them are associated with the current value tables
(Yahoo and Quandl based) which can be displayed at the top of the FinChartView window. If you do not plan to use
those tables, you don't need change those strings. Most of the other strings are associated with the dialog boxes the
end-user can customize the software with.

Note that the Yahoo and Quandl table strings use English language keys which do not include spaces. The keys do
not include spaces, but the actual string value does. For example

DaysHigh Days High

DaysLow Days Low

PreviousClose Previous Close

Also, the values may include an embedded newline character, which forces the Yahoo and Quandl table headers to
display using multiple lines. These are designated in the strings using the substring "<CR>".

ChangeFromYearLow Change From<CR>52-Week Low

PercentChangeFromYearLow % Change From<CR>52-Week Low

LastTradeRealtimeWithTime Last Trade R-T<CR>With Time

If you change any of the string values, and want to include a line break, you can insert either the <CR> sub string,

C#

String newChangeFromYearLowString = "Change From<CR>52-Week Low";

VB

Dim newChangeFromYearLowString As String = "Change From<CR>52-Week Low"

or or the new line character "\n"

C#

String newChangeFromYearLowString = "Change From\n52-Week Low";

FinStrings.SetStringItem("ChangeFromYearLowString" , newChangeFromYearLowString);

VB

Dim newChangeFromYearLowString As String = "Change From\n52-Week Low"

FinStrings.SetStringItem("ChangeFromYearLowString" , newChangeFromYearLowString)

270

QCTAChart - Technical Analysis Charting Tools

Key Item <String> Value <String>

General Chart and Dialog Box Items

Default Chart Fontname Microsoft Sans Serif

Default Dialog Fontname Microsoft Sans Serif

ADX ADX

DM+ DM+

DM- DM-

Boll. Bands Boll. Bands

LL LL

UL UL

MA MA

%b %b

BandWidth BandWidth

Show Table Show Table

T T

S S

Full Scale Full Scale

P P

O O

H H

L L

C C

V V

OI OI

Ticker Ticker

Stop Program ? Stop Program ?

Invalid Ticker Symbol Invalid Ticker Symbol

High High

Low Low

Close Close

Open Interest Open Interest

Tool Strip Tool Strip

Label Label

Text Text

HLine HLine

VLine VLine

Trend Trend

Fibon Fibon

Off Off

On On

Color Color

Line Style Line Style

Solid Solid

Dash Dash

DashDot DashDot

DashDotDot DashDotDot

271

12. Regionalization for non-USA Markets

Dot Dot

Line Thickness Line Thickness

Alpha Value Alpha Value

Apply Apply

OK OK

Cancel Cancel

Edit Attribute Edit Attribute

Edit Attributes Edit Attributes

Edit Table Attributes Edit Table Attributes

Edit Fill Colors Edit Fill Colors

Edit Limit Attributes Edit Limit Attributes

Edit Indicator Limit Attributes Edit Indicator Limit Attributes

Edit Renko Plot Attributes Edit Renko Plot Attributes

Edit Point and Figure Attributes Edit Point and Figure Attributes

Edit Line Attributes Edit Line Attributes

Edit Line Plot Attributes Edit Line Plot Attributes

Edit Bar Plot Attributes Edit Bar Plot Attributes

Edit OHLC Plot Attributes Edit OHLC Plot Attributes

Edit Candlestick Plot Attributes Edit Candlestick Plot Attributes

Edit OHLC Bar Plot Attributes Edit OHLC Bar Plot Attributes

Edit Scatter Plot Attributes Edit Scatter Plot Attributes

Ticker #1 Plot Attributes Ticker #1 Plot Attributes

Primary Chart Dialog Primary Chart Dialog

Secondary Charts Dialog Secondary Charts Dialog

Attributes Attributes

Fill Fill

Fill Alpha Fill Alpha

Line/Text Color Line/Text Color

Fill Color Fill Color

Line Alpha Line Alpha

Item Width Item Width

Line Line

Chart Size Chart Size

Size Size

h h

w w

x x

Misc. Colors Misc. Colors

Button Button

Zoom Area Zoom Area

Main Title Main Title

Background Colors Background Colors

Chart Area Chart Area

Style Style

Color #1 Color #1

Color #2 Color #2

Plot Area Plot Area

Axes Axes

X-Axes X-Axes

272

QCTAChart - Technical Analysis Charting Tools

Line Color Line Color

Line Width Line Width

Text Color Text Color

Y-Axes Y-Axes

Fonts Fonts

Base Font Base Font

Font Sizes Relative to Base Font Size Font Sizes Relative to Base Font Size

X-Axis Labels X-Axis Labels

Y-Axis Labels Y-Axis Labels

Y-Axis Titles Y-Axis Titles

Tooltips Tooltips

Annotations Annotations

Zoom Window Zoom Window

Data Table Data Table

Table Grid Table Grid

Rows Rows

Columns Columns

Font Font

Colors Colors

Striped Striped

Low Limit Low Limit

High Limit High Limit

Numeric precision Numeric precision

Line Attributes Line Attributes

Text Attributes Text Attributes

Show Handles Show Handles

Upside Upside

Downside Downside

Box Size Mode Box Size Mode

Traditional Traditional

Percentage Percentage

Fixed Fixed

Fixed ATR Fixed ATR

Box Size Box Size

Pricing Mode Pricing Mode

High/Low High/Low

Typical Price Typical Price

Reversal Count Reversal Count

ATR Period ATR Period

Plot Type Plot Type

Traditional (Xs and Os) Traditional (Xs and Os)

Bars Bars

Volume Bars Volume Bars

MA Line MA Line

Symbol Symbol

Size (Pts) Size (Pts)

Background Background

Use Background Use Background

Plot Area Clipping Plot Area Clipping

273

12. Regionalization for non-USA Markets

Horizontal Justify Horizontal Justify

Left Left

Right Right

Center Center

Vertical Justify Vertical Justify

Bottom Bottom

Top Top

Plotted Datasets Plotted Datasets

Index Index

First First

Second Second

Third Third

Y-Scale Y-Scale

Linear Linear

Logarithmic Logarithmic

Normalized Normalized

Simple Moving Average Simple Moving Average

Period Period

Exponential Moving Average Exponential Moving Average

Bollinger Bands Bollinger Bands

Enable Enable

Bandwidth (SD) Bandwidth (SD)

Moving Average Bands Moving Average Bands

Bandwidth % Bandwidth %

Parabolic SAR Parabolic SAR

Start Index Start Index

Step Start Step Start

Step Increment Step Increment

Step Max Step Max

Add Stock Add Stock

Reset to Defaults Reset to Defaults

Secondary Charts Secondary Charts

Volume Indicators Volume Indicators

Volume and MA Volume and MA

Smoothing Smoothing

Money Flow Money Flow

Limits Limits

Oscillators Oscillators

Stochastic Stochastic

Relative Strength (RSI) Relative Strength (RSI)

Williams %R Williams %R

MACD MACD

Fast Period Fast Period

Slow Period Slow Period

Signal Period Signal Period

Rate of Change Rate of Change

Average Directional Change (ADX) Average Directional Change (ADX)

Momentum Momentum

Compressed Mode Compressed Mode

274

QCTAChart - Technical Analysis Charting Tools

Limit Attributes Limit Attributes

EMA EMA

MACD Signal MACD Signal

Histogram Histogram

HL HL

ROC ROC

RSI RSI

SMA SMA

Sochastic %K Sochastic %K

Period (%K) Period (%K)

Stoch. %K Stoch. %K

Fast %D Fast %D

Slow %D Slow %D

MA Volume MA Volume

First SMA First SMA

Second SMA Second SMA

First EMA First EMA

Second EMA Second EMA

Bands Bands

Central Line Central Line

Volume Indicator Attributes Volume Indicator Attributes

Exponential MA Indicator Attributes Exponential MA Indicator Attributes

Simple MA Indicator Attributes Simple MA Indicator Attributes

Bollinger Bands Indicator Attributes Bollinger Bands Indicator Attributes

Moving Average Bands Indicator Attributes Moving Average Bands Indicator Attributes

Stochastic Indicator Attributes Stochastic Indicator Attributes

MACD Indicator Attributes MACD Indicator Attributes

Parabolic SAR Plot Parabolic SAR Plot

Money Flow Indicator Attributes Money Flow Indicator Attributes

Fast Fast

Slow Slow

Signal Signal

ADX Line ADX Line

ADX Indicator Attributes ADX Indicator Attributes

Rate of Change Indicator Attributes Rate of Change Indicator Attributes

Momentum Indicator Attributes Momentum Indicator Attributes

RSI Indicator Attributes RSI Indicator Attributes

Williams %R Indicator Attributes Williams %R Indicator Attributes

Middle Middle

Unable to retreive item Unable to retreive item

using lookup symbol using lookup symbol

Ticker data file for item Ticker data file for item

not found at location not found at location

Stock ID Stock ID

Ticker Symbol Ticker Symbol

Delete operation failed; you must
have at least one stock.

Delete operation failed; you must have at
least one stock.

275

12. Regionalization for non-USA Markets

Technical analysis toolbox Technical analysis toolbox

Show the data table Show the data table

Edit data table options Edit data table options

Secondary chart technical indicators
dialog

Secondary chart technical\n indicators
dialog

Full scale mode on/off Full scale mode on/off

Primary chart dialog Primary chart dialog

Refresh Refresh

Yahoo-Table Items

Name Name

Open Open

DaysHigh Days High

DaysLow Days Low

PreviousClose Previous Close

Ask Ask

Bid Bid

YearLow Low 52-Week

YearHigh High 52-Week

AskRealtime Ask Real-Time

BidRealtime Bid Real-Time

Volume Volume

LastTradePriceOnly Last Trade<CR>Price Only

LastTradeDate Last Trade Date

LastTradeTime Last Trade<CR>Time

DaysRange Days Range

PERatio P/E Ratio

PEGRatio PEG Ratio

PercentChange % Change

Change Change

Change_PercentChange Change In %

YearRange Range 52-Week

Commission Commission

Currency Currency

ChangeRealtime Change Real-Time

AfterHoursChangeRealtime After Hours<CR>Change Real-Time

DividendShare Dividend/Share

EarningsShare Earnings/Share

DividendYield Dividend Yield

MarketCapitalization Market<CR>Capitalization

EBITDA EBITDA

BookValue Book Value

PriceSales Price/Sales

PriceBook Price/Book

ShortRatio Short Ratio

TradeDate Trade Date

AverageDailyVolume Average Daily<CR>Volume

276

QCTAChart - Technical Analysis Charting Tools

EPSEstimateCurrentYear EPS Estimate<CR>Current Year

EPSEstimateNextYear EPS Estimate<CR>Next Year

EPSEstimateNextQuarter EPS Estimate<CR>Next Quarter

PriceEPSEstimateCurrentYear Price/EPS Estimate<CR>Current Year

PriceEPSEstimateNextYear Price/EPS Estimate<CR>Next Year

FloatShares Float Shares

OneyrTargetPrice One Year<CR>Target Price

OrderBookRealtime Order Book<CR>Real-Time

MarketCapRealtime Market Cap<CR>Real-Time

ChangeFromYearLow Change From<CR>52-Week Low

PercentChangeFromYearLow % Change From<CR>52-Week Low

LastTradeRealtimeWithTime Last Trade R-T<CR>With Time

ChangePercentRealtime Change % Real-Time

LastTradeSize Last Trade<CR>Size

ChangeFromYearHigh Change From<CR>52-Week High

PercebtChangeFromYearHigh % Change From<CR>52-Week High

LastTradeWithTime Last Trade<CR>With Time

DaysRangeRealtime Days Range<CR>Real-Time

FiftydayMovingAverage Moving Average<CR>50-Day

TwoHundreddayMovingAverage Moving Average<CR>200-Day

ChangeFromTwoHundreddayMovingAverage Change From 200-D<CR>Moving Average

PercentChangeFromTwoHundreddayMovingAverag
e

 % Change From 200-D<CR>Moving Average

ChangeFromFiftydayMovingAverage Change From 50-D<CR>Moving Average

PercentChangeFromFiftydayMovingAverage % Change From 50-D<CR> Moving Average

ExDividendDate Ex Dividend Date

DividendPayDate Dividend Pay Date

PERatioRealtime P/E Ratio<CR>Real-Time

TickerTrend Ticker Trend

DaysValueChange Days Value Change

DaysValueChangeRealtime Days Value Change<CR>Real-Time

StockExchange Stock Exchange

Quandl Table Items

Date Date

Float Float

Beta 3-Year Regression Beta

Stdev 3-year Standard Devia-<CR>tion of Stock Price

Book_dc Book Debt to <CR>Capital Ratio

Bv_eqty Book Value of Equity

Bv_assets Book Value of Assets

Capex Capital Expenditures

Cash Cash

Cash_fv Cash as Percentage<CR> of Firm Value

Cash_rev Cash as Percentage<CR> of Revenue

Cash_assets Cash as Percentage <CR>of Total Assets

Chg_ncwc Change in Non-Cash<CR> Working Capital

Correl Correlation with<CR> the Market

277

12. Regionalization for non-USA Markets

Pe_curr Current PE Ratio

Deprec Depreciation

Div_yld Dividend Yield

Div Dividends

Ebit Earnings Before<CR> Interest and Taxes

Ebit_1t EBIT for<CR> Previous Period

Ebitda EBITDA

Eff_tax Effective Tax Rate

Eff_tax_inc Effective Tax Rate<CR> on Income

Ev Enterprise Value

Ev_cap EV to Invested<CR> Capital Ratio

Ev_salestr EV to Trailing<CR> Sales Ratio

Ev_ebit EV to <CR>EBIT Ratio

Ev_ebitda EV to <CR>EBITDA Ratio

Ev_sales EV To <CR>Sales Ratio

Eps_gro_exp Expected Growth <CR>in Earnings/Share

Rev_gro_exp Expected Growth<CR> in Revenues

Fcff Free Cash Flow<CR> to Firm

Firm_val Firm Value

Fixed_tot Ratio of Fixed Assets<CR> to Total Assets

Eps_fwd Forward Earnings/Share

Pe_fwd Forward PE Ratio

Eps_gro Growth in Earnings/Share

Rev_gro Previous Year Growth<CR> in Revenues

Hilo Hi-Lo Risk

Insider Insider Holdings

Inst_hold Institutional Holdings

Intang_tot Ratio of Intangible <CR>Assets to Total Assets

Inv_cap Invested Capital

Mkt_cap Market Capitalization

Mkt_de Debt to <CR>Equity Ratio

Mkt_dc Debt to <CR>Capital Ratio

Net_inc Net Income

Net_marg Net Margin

Ncwc Non-Cash <CR>Working Capital

Ncwc_rev Non-Cash Working Capital<CR> as Percentage of
Revenues

Payout Payout Ratio

P_bv Price to Book <CR>Value Ratio

Pe_g PE to Growth Ratio

Op_marg Pre-Tax <CR>Operating Margin

P_s Price to <CR>Sales Ratio

Reinv Reinvestment Amount

Reinv_rate Reinvestment Rate

Rev_last Revenues

Roc Return on Capital

Roe Return on Equity

Sga Sales General and<CR> Administration Expenses

Stock_px Stock Price

278

QCTAChart - Technical Analysis Charting Tools

Tot_debt Total Debt

Trad_vol Trading Volume

Rev_12m Trailing 12-month<CR> Revenues

Net_inc_trail Trailing Net Income

Pe_trail Trailing PE Ratio

Rev_trail Trailing Revenues

Beta_vl Value Line Beta

Ev_bv EV to Book <CR>Value Ratio

The FinStrings module is used to define default, and static strings, for the various QCTAChart classes, when those
classes are initialized. Trying to set the FinString strings using SetStringItem after any of the charts have been
instantiated will not have the desired effect. Since the charts classes are normally instantiated in the main Form file,
you must change any strings before that intialization takes place. The best way to do that is to initialize the string in
a static method in the main Form file. You will find an example in the TimeVariableControlCharts.Form1.cs file.
Call the static method using an initialization of a static variable in the global variables section of the class. This will
guarantee that the strings get initialized first. Since the FinStrings class is static, you can call it anytime. It does not
need instantiation.

C#

 public partial class Form1 : Form
 {
 ChartPrint printobj = null;
 static bool initStringsComplete = InitStrings();

 static bool InitStrings()
 {
 // This string is used in the Primary Chart Dialog table as the group box
 // title for the y-axis scaling modes

 FinStrings.SetStringItem("Y-Scale", "Y-Axis Scale");
 return true;
 }

 public Form1()
 {
 InitializeComponent();
 }

.

.
}

VB

 public partial class Form1 : Form
{
 ChartPrint printobj = null;
 static bool initStringsComplete = InitStrings();

 static bool InitStrings()
{
// This string is used in the Primary Chart Dialog table as the group box title for the
y-axis scaling modes

 FinStrings.SetStringItem("Y-Scale","Y-Axis Scale");
 return true;
}

279

12. Regionalization for non-USA Markets

 public Form1()
{
 InitializeComponent();
}

.

.

.

280

QCTAChart - Technical Analysis Charting Tools

281

13. Using Technical Analysis Charting Tools for .Net to
Create Windows Applications

The primary view class of the QCTAChart library is the FinChartView class. The FinChartView class
derives from the QCChart2D ChartView class, which in turn derives from the .Net
System.Windows.Forms.UserControl class. It has the properties and methods of the underlying Chart View
and UserControl classes.

 (*** Critical Note ***) Running the Example Programs
The example programs for QCTAChart software are supplied in complete source. In order to save space,
they have not been pre-compiled which means that many of the intermediate object files needed to view the
main form are not present. This means that FinChartView derived control will not be visible on the main
Form if you attempt to view the main form before the project has been compiled. The default state for all of
the example projects should be the Start Page. Before you do view any other file or form, do a build of the
project. This will cause the intermediate files to be built. If you attempt to view the main Form before
building the project, Visual Studio sometimes decides that the FinChartView control placed on the main
form does not exist and deletes it from the project.

Follow the following steps in order to incorporate the QCTAChart classes into your program. This is not
the only way to add charts to an application. In general, any technique that works with UserControl derived
classes will work. We found the technique described below to be the most flexible.

Visual C# for .Net

If you do not already have an application program project, create one using the Visual Studio project
wizard (File | New | Project | Visual C# Projects | Windows Application). On the left, select a project type
of Visual C# Projects. Give the project a unique name (our version of this example is
TAChartApplication1).

283

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

You will end with a basic Form based application. For purposes of this example, the chart is placed in the initial,
default form.

 Resize Form1 to approximately the size you want your application to run in.

284

QCTAChart - Technical Analysis Charting Tools

 Right click on Reference in the Solution Explorer window and select Add Reference. Browse to the
Quinn-Curtis/DotNet/lib subdirectory and select and add the following three DLL library files:
QCTAChartNet.dll, QCChart2DNet.dll and Newtonsoft.Json.dll.

 QCTAChartNet.dll – Quinn-Curtis financial technical analysis classes
QCChart2DNet.dll - Quinn-Curtis core charting classes
Newtonsoft.Json.dll – Newtonsoft JSON utility classes

285

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

 Add a Inherited User Control class to the project (Project | Add User Control). Enter a class name of
UserTAChartControl1.

286

QCTAChart - Technical Analysis Charting Tools

 You will be asked to browse to a class to inherit from. Browse to the Quinn-Curtis\DotNet\lib folder and
select the QCTAChartNet.dll file. The Inheritance Picker will then ask you to select the component you
want to inherit from. In this case there is only one option, which is FinChartView. Then click OK and the
UserTAChartControl1 class should be added to you project.

View the UserTAChartControl1.cs code.

This adds a local version of the control to the project. The C# form code should now look like:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace TAChartApplication1
{
 public partial class UserTAChartControl1 : com.quinncurtis.tachartnet.FinChartView
 {
 public UserTAChartControl1()
 {
 InitializeComponent();
 }
 }
}

Note that the file uses a class modifier of partial. This means that there is more code associated with the class in the
related UserTAChartControl1.Designer.cs file. Normally you will not need to edit that file.

 Critical Step: Make sure you add the following lines to the top of the UserTAChartControl1.cs code to
resolve the QCTAChart and other graphics classes used in the example.

287

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

using System.Drawing.Drawing2D;
using com.quinncurtis.chart2dnet;
using com.quinncurtis.tachartnet;

 Build the Solution (Build | Build Solution). This will compile the UserTAChartControl1class and make
it accessible as a component on the Toolbox. If the project fails to compile, go back and check the previous
steps.

You can create as many custom chart controls as your application requires. Each custom chart control will
inherit from FinChartView

 Right click on the UserTAChartControl1 class form and view the underlying C# code. We placed all of
the chart customization code in the InitializeChart method. Until this method is called, the
UserTAChartControl1 class appears as an empty shell. Your can call this method from the
UserTAChartControl1 class constructor;

 public UserTAChartControl1()
 {
 InitializeComponent();

 // Have the chart fill parent client area
 this.Dock = DockStyle.Fill;

 if (!IsDesignerHosted)
 {
 this.PreferredSize = new Size(800, 700);
 InitializeChart();
 }
 }

 or from somewhere outside of the class to avoid problems associated debugging errors in user controls at
design time.

Add an empty InitializeChart method to the class as a placeholder. And also the IsDesignerHosted method,
which we use in all of the examples to keep the control from trying to initialize when in Designer Mode.

 public bool IsDesignerHosted
 {
 get
 {
 if (LicenseManager.UsageMode == LicenseUsageMode.Designtime)
 return true;

 Control ctrl = this;
 while (ctrl != null)
 {
 if ((ctrl.Site != null) && ctrl.Site.DesignMode)
 return true;
 ctrl = ctrl.Parent;
 }
 return false;
 }
 }

 public void InitializeChart()
 {

 }

 Go to the main form, Form1. You can use either of the two following method to place the
UserTAChartControl1class on the form.

1. In the Form1 source file, add a variable of type UserTAChartControl1 in the declaration section,
and in the Form1 constructor, instantiate the class and add it to the Form1 controls list:

288

QCTAChart - Technical Analysis Charting Tools

or (preferred)

2. Go to the toolbox and select the UserTAChartControl1 from the Windows Forms list. Drop it
onto the main form and size it.

 Define the chart by customizing the UserTAChartControl1.InitializeChart method. See the
TAChartApplication1.UserTAChartControl1.cs file for the complete code listing.

 FinChartData finChartData = null;

 public void InitializeChart()
 {
 InitializeChartData();
 InitializeTable();
 InitializeTechnicalIndicators();
 }

 public void InitializeChartData()
 {

 ChartCalendar startDate = new ChartCalendar();
 ChartCalendar stopDate = new ChartCalendar();

 String[] idStrings = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", "QQQ" };
 String[] tickerStrings = {"INTC","IBM","TXN", "AMAT", "CSCO", "AAPL", "QQQ" };
 FinYahooURLCurrentDataSource finStockData = null;
 FinYahooURLHistoricalDataSource finStockHistoricalData = null;

 // Yesterday
 stopDate.Add(ChartObj.DAY_OF_YEAR, -1);

 // starting date is 8 years ago
 startDate.Add(ChartObj.YEAR, -8);

 // Create a current data source for the table
 finStockData = new FinYahooURLCurrentDataSource();
 // Create a historical data source
 finStockHistoricalData = new FinYahooURLHistoricalDataSource();

 // Add a portfolio of stock items to the data sources
 for (int i = 0; i < idStrings.Length; i++)
 {
 finStockHistoricalData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 finStockData.AddTickerLookupItem(idStrings[i], tickerStrings[i]);
 }
// Initialize a FinChartData object, using data sources,
// idStrings, start and ending dates.
 finChartData = new FinChartData(finStockHistoricalData, finStockData,
idStrings, startDate, stopDate);

 // Init the parent FinChartView with the FinChartData object
 InitFinChartView(finChartData);

 }

 public void InitializeTable()
 {
 // These fields are unique to the Yahoo current data source.

 // Different ones must be used if you are using
 // the Quandl current data source.

 if (finChartData != null)
 {
 // tabe does not display initially
 this.EnableFinChartTable = false;
 // 8 columns across

289

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

 this.TableDisplayColumns = 8;
 // 5 rows down
 this.TableDisplayRows = 5;
 // Use all of the available columns
 finChartData.AddAllColumnItems();

 }
 }

 public void InitializeTechnicalIndicators()
 {

 // only needed if you are reinitalizing the charts
 this.ResetTechnicalCharts();
 this.MainTitleString = "The market is ready to make a major move!";
 // Specify starting ticker, if you don't want the first ticker
 this.CurrentTickerString = "IBM";
 // Show zoom window at top
 this.FinZoomFlag = true;

 // Initialize the primary chart window
 FinPlotParameters plotobj = this.AddPrimaryChart("TXN", ChartObj.OHLC);

 // Add parabolic SAR indicator to primary chart
 FinParabolicSARPlot parasarplot = this.AddParabolicSARToPrimaryChart();

 // Volume secondary chart
 FinVolumePlot volumeplot = this.AddVolumeChart();
 // Add RTI indicator as secondary chart
 FinRSIIndicatorPlot rsiplot = this.AddRSIIndicatorChart();
 // Use standard (non-compressed) layout
 this.ChartLayoutMode = FinChartView.STANDARD_LAYOUT;
 // Build the chart
 this.BuildChart();

 }

 You should be able to compile the project without error. No chart will be visible yet.

 You should now be able to compile, run and view the entire project. Any changes you make in the
UserTAChartControl1 form will be reflected in the application. If you still have problems go back and
study the many example programs we have provided.

290

QCTAChart - Technical Analysis Charting Tools

Visual Basic for .Net

If you do not already have an application program project, create one using the Visual Studio project wizard (File |
New | Project | Visual C# Projects | Windows Application). On the left, select a project type of Visual Basic
Projects. Give the project a unique name (our version of this example is TAChartApplication1).

291

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

 Resize Form1 to approximately the size you expect your application to be.

292

QCTAChart - Technical Analysis Charting Tools

 In the Solution, right-click on TAChartApplication1 and select Add Reference. Browse to the Quinn-
Curtis\DotNet\lib folder and add the DLL library files: QCChart2DNet.dll, QCTAChartNet.dll and
Newtonsoft.Json.dll.

 QCTAChartNet.dll – Quinn-Curtis financial technical analysis classes
QCChart2DNet.dll - Quinn-Curtis core charting classes
Newtonsoft.Json.dll – Newtonsoft JSON utility classes

 Add a User Control class to the project (Project | Add User Control). Enter a class name of
UserTAChartControl1. Select the template Inherited User Control. We use the Inherited User Control
because it makes it easier to specify the FinChartView as the base class of the user control. The VB Inherits
clause for a inherited user control shows up in the normally hidden UserTAChartControl1.Designer.vb file.

293

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

 When you click Add, you will see the Inheritance Picker. Select Browse, browse to the Quinn-
Curtis\DotNet\lib folder, and select the QCTAChart.DLL file and select Open.

294

QCTAChart - Technical Analysis Charting Tools

 Select the FinChartView component which should be the only one listed.

 Select OK. This will create a class named UserTAChartControl1, derived from FinChartView , and add
it to the project. At this time the only code in the UserTAChartControl1.vb main class file is:

Public Class UserTAChartControl1

End Class

 Critical Step: Make sure you add the following lines to the top of the UserTAChartControl1.vb code to
resolve the QCChart2D, QCTAChart and other graphics classes used in the example.

Imports System.ComponentModel
Imports com.quinncurtis.chart2dnet
Imports com.quinncurtis.tachartnet

 Build the Solution (Build | Build Solution). This will compile the UserTAChartControl1 class and make
it accessible as a component on the Toolbox. If the project fails to compile you need to go back and check
the previous steps.

You can create as many User Controls as your application requires. Each custom chart control will inherit
from the com.quinncurtis.tachartnet.FinChartView control. Or

 (Optional) You can create inherited controls from the UserTAChartControl1 class that you already
created. Create an inherited control by selecting Project | Add Inherited Control. Give the inherited
control a unique name, i.e. UserChartInheritedControl1. When you select Open, choose
UserTAChartControl1 in the Inheritance Picker. The result is new control added to the project. Build the
solution and the UserChartInheritedControl1 control is added to the Toolbox in addition to the

295

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

UserTAChartControl1.

 Look at the UserTAChartControl1 class. The chart is created in the InitializeChart method. Until this
method is called, the UserTAChartControl1 appears as an empty shell. Sometimes it helps to call this
method from somewhere outside of the class to avoid problems associated debugging errors in user controls
at design time. Click on the UserTAChartControl1 form in design mode and a load event will be added to
the code. You can add the InitializeChart call there. We have also added the IsDesignerHosted method to
prevent the chart from initializing if the control is in Designer Mode, as opposed to Runtime Mode.

 Public ReadOnly Property IsDesignerHosted() As Boolean
 Get
 If LicenseManager.UsageMode = LicenseUsageMode.Designtime Then
 Return True
 End If

 Dim ctrl As Control = Me
 While ctrl IsNot Nothing
 If (ctrl.Site IsNot Nothing) AndAlso ctrl.Site.DesignMode Then
 Return True
 End If
 ctrl = ctrl.Parent
 End While
 Return False
 End Get
 End Property

 Private Sub UserTAChartControl1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 ' Have the chart fill parent client area
 Me.Dock = DockStyle.Fill

 If Not IsDesignerHosted Then
 Me.PreferredSize = New Size(800, 700)
 InitializeChart()
 End If
 End Sub

 Public Sub InitializeChart()

 End Sub

Go to the main form, Form1. Go to the toolbox and select the UserTAChartControl1 from the Windows
Forms list. Drop it onto the main form and size it. This will automatically create an instance of the
UserTAChartControl1 class and initialize it.

 Define the chart by customizing the UserTAChartControl1.InitializeChart method. See the actual
TAChartApplication1.UserTAChartControl1.vb file for all of the actual code.

 Public Sub InitializeChart()
 InitializeChartData()
 InitializeTable()
 InitializeTechnicalIndicators()
 End Sub

 Public Sub InitializeChartData()

 Dim startDate As New ChartCalendar()
 Dim stopDate As New ChartCalendar()

 Dim idStrings As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", _
 "QQQ"}
 Dim tickerStrings As [String]() = {"INTC", "IBM", "TXN", "AMAT", "CSCO", "AAPL", _
 "QQQ"}
 Dim finStockData As FinYahooURLCurrentDataSource = Nothing
 Dim finStockHistoricalData As FinYahooURLHistoricalDataSource = Nothing

296

QCTAChart - Technical Analysis Charting Tools

 ' Yesterday
 stopDate.Add(ChartObj.DAY_OF_YEAR, -1)

 ' starting date is 8 years ago
 startDate.Add(ChartObj.YEAR, -8)

 ' Create a current data source for the table
 finStockData = New FinYahooURLCurrentDataSource()
 ' Create a historical data source
 finStockHistoricalData = New FinYahooURLHistoricalDataSource()

 ' Add a portfolio of stock items to the data sources
 For i As Integer = 0 To idStrings.Length - 1
 finStockHistoricalData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 finStockData.AddTickerLookupItem(idStrings(i), tickerStrings(i))
 Next
' Initialize a FinChartData object, using data sources, idStrings, start and ending dates.
 finChartData = New FinChartData(finStockHistoricalData, finStockData, idStrings,
startDate, stopDate)

 ' Init the parent FinChartView with the FinChartData object
 InitFinChartView(finChartData)

 End Sub

 Public Sub InitializeTable()
' These fields are unique to the Yahoo current data source.
' Different ones must be used if you are using
 ' the Quandl current data source.
 If finChartData IsNot Nothing Then
 ' tabe does not display initially
 Me.EnableFinChartTable = False
 ' 8 columns across
 Me.TableDisplayColumns = 8
 ' 5 rows down
 Me.TableDisplayRows = 5
 ' Use all of the available columns

 finChartData.AddAllColumnItems()
 End If
 End Sub

 Public Sub InitializeTechnicalIndicators()

 ' only needed if you are reinitalizing the charts
 Me.ResetTechnicalCharts()
 Me.MainTitleString = "The market is ready to make a major move!"
 ' Specify starting ticker, if you don't want the first ticker
 Me.CurrentTickerString = "IBM"
 ' Show zoom window at top
 Me.FinZoomFlag = True

 ' Initialize the primary chart window
 Dim plotobj As FinPlotParameters = Me.AddPrimaryChart("TXN", ChartObj.OHLC)

 ' Add parabolic SAR indicator to primary chart
 Dim parasarplot As FinParabolicSARPlot = Me.AddParabolicSARToPrimaryChart()

 ' Volume secondary chart
 Dim volumeplot As FinVolumePlot = Me.AddVolumeChart()
 ' Add RTI indicator as secondary chart
 Dim rsiplot As FinRSIIndicatorPlot = Me.AddRSIIndicatorChart()
 ' Use standard (non-compressed) layout
 Me.ChartLayoutMode = FinChartConstants.STANDARD_LAYOUT

 ' Build the chart
 Me.BuildChart()

297

13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications

 End Sub

 You should be able to compile the project without error.

 You should now be able to compile, run and view the entire project. Any changes you make in the
UserTAChartControl1 form is reflected in the application. If you still have problems go back and study
the many example programs we have provided.

298

QCTAChart - Technical Analysis Charting Tools

301

QCTAChart - Technical Analysis Charting Tools

Index
Arrows..

arrows..4, 14, 60, 67, 95
AutoScale...

AutoScale...85, 113
Average Directional Indicator...

Average Directional Indicator. . .4, 14, 44, 163, 164
Average True Range...

Average True Range....42, 147, 226, 227, 244, 245
Axis..

Axis......69, 81, 85, 86, 87, 88, 89, 90, 91, 92, 108,
109, 110, 112, 113

AxisLabels..
AxisLabels...91, 92, 113

AxisTitle...
AxisTitle..108, 113

Background..
Background......................................69, 81, 86, 114

BarDatapointValue...
BarDatapointValue..113

Bollinger Bands..
Bollinger Bands.....3, 13, 15, 40, 41, 71, 143, 146,

157, 163, 274, 275
Box Size Mode...

Box Size Mode. .78, 153, 154, 226, 227, 230, 231,
244, 245, 248, 249, 273

BufferedImage..
BufferedImage. 111, 113, 257, 259, 261, 263, 264,

265
Candlestick...

Candlestick 2, 3, 13, 15, 16, 17, 21, 22, 59, 70, 71,
75, 93, 94, 95, 96, 98, 113, 129, 141, 150, 151,
154, 237, 251, 272

Candlestick, Candlestick...........................150, 154
 151, 154

CartesianCoordinates..
CartesianCoordinates.............................83, 84, 113

ChartAttribute...
ChartAttribute..................................84, 85, 86, 113

ChartCalendar...
ChartCalendar..................82, 85, 89, 109, 111, 113

ChartImage...
ChartImage..109, 114

ChartLabel..
ChartLabel...108, 109, 113

ChartPlot...
ChartPlot..93, 94, 113

ChartPrint...
ChartPrint.111, 113, 257, 258, 259, 260, 261, 262,

279
printing...111, 257, 258

ChartPrint..257
ChartScale..

ChartScale..83, 84, 113
ChartShape...

ChartShape...109, 114
ChartSymbol...

ChartSymbol..109, 114
ChartText..

ChartText...108, 113
ChartTitle...

ChartTitle...108, 113
ChartView..

ChartView8, 82, 85, 110, 111, 113, 257, 263, 264,
265, 283

Classic Open-high-low-close..
Classic Open-high-low-close.....................3, 13, 15

Create Windows Applications..
Create Windows Applications..................iv, 9, 283

CSV..
CSV...111, 113

current financial data table..
current financial data table........................131, 163

Customer Support...
customer support..iv, 9

data cursors...
data cursors..69, 81, 109
data m..3, 14, 60, 195
data markers...61

DataCursor..
DataCursor...110, 113

Dataset..
ChartDataset..82, 93, 113

DataToolTip...
DataToolTip...110, 113

Developer License..
Developer License...ii

Equi-volume candlestick plot...
Equi-volume candlestick plot..............3, 13, 15, 21

event-based coordinate system..
event-based coordinate system 14, 59, 74, 237, 251

Exponential moving averages...
exponential moving averages......3, 13, 15, 36, 156

Fibonacci overlay...
Fibonacci overlay............4, 9, 14, 63, 64, 208, 209

FinADXIndicatorPlot...
FinADXIndicatorPlot....................70, 71, 165, 166

Financial Chart objects...
Financial Chart Objects......3, iv, 9, 14, 60, 75, 195

Financial Data Sources...
financial data sources...............................iv, 5, 133

FinArrow..
FinArrow.....60, 67, 75, 76, 78, 212, 218, 220, 221

FinBollingerBandsPlot...
FinBollingerBandsPlot..........................70, 71, 146

FinChartView...
FinChartView 8, 26, 68, 70, 75, 76, 124, 125, 126,

127, 128, 131, 132, 141, 142, 163, 164, 198,
202, 206, 210, 214, 216, 217, 220, 237, 238,
239, 243, 251, 252, 253, 257, 261, 262, 263,
264, 269, 270, 283, 287, 288, 289, 290, 293,
295, 297

FinDataSourceBase..

303

FinDataSourceBase.....................................72, 115
FindObj...

FindObj..110, 113
FinExponentialMovingAveragePlot.....................................

FinExponentialMovingAveragePlot......70, 71, 144
FinFibonacciPlot...

FinFibonacciPlot............60, 75, 195, 210, 211, 212
 75

FinGenericCurrentDataSource..
FinGenericCurrentDataSource..............72, 73, 115

FinGenericHistoricalDataSource..
FinGenericHistoricalDataSource.................72, 115

FinGoogleCSVFileHistoricalDataSource
FinGoogleCSVFileHistoricalDataSource ...72, 73,

115, 127, 128
FinGoogleHistoricalDataSource...

FinGoogleHistoricalDataSource..................72, 115
FinGoogleURLHistoricalDataSource...................................

FinGoogleURLHistoricalDataSource72, 115, 116,
117, 118

FinGoogleURLIntradayDataSource......................................
FinGoogleURLIntradayDataSource....72, 73, 115,

116
FinHLine..

FinHLine....60, 75, 76, 78, 195, 202, 203, 204, 207
FinLabel...

FinLabel60, 65, 66, 67, 75, 76, 195, 212, 215, 216,
217

FinMABandsPlot..
FinMABandsPlot...................................70, 71, 145

FinMACDIndicatorPlot..
FinMACDIndicatorPlot.................70, 71, 180, 181

FinMetaStockCSVFileHistoricalDataSource........................
FinMetaStockCSVFileHistoricalDataSource....72,

73, 115, 116, 121
FinMetaStockHistoricalDataSource......................................

FinMetaStockHistoricalDataSource......72, 73, 115
FinMetaStockURLHistoricalDataSource..............................

FinMetaStockURLHistoricalDataSource....72, 115
FinMomentumIndicatorPlot..

FinMomentumIndicatorPlot. .70, 71, 167, 168, 169
FinMoneyFlowIndicatorPlot...

FinMoneyFlowIndicatorPlot. 70, 71, 169, 170, 171
FinParabolicSARPlot..

FinParabolicSARPlot.............70, 71, 147, 290, 297
FinPointAndFigureChartPlot..

FinPointAndFigureChartPlot70, 71, 229, 230, 231,
234, 235, 236, 238, 239

FinQuandlCSVFileHistoricalDataSource.............................
FinQuandlCSVFileHistoricalDataSource....72, 73,

115, 116, 125, 126
FinQuandlCurrentDataSource...

FinQuandlCurrentDataSource...............72, 73, 115
FinQuandlHistoricalDataSource...

FinQuandlHistoricalDataSource............72, 73, 115
FinQuandlURLCurrentDataDataSource...............................

FinQuandlURLCurrentDataDataSource......72, 73,
115, 131

FinQuandlURLHistoricalDataSource...................................

FinQuandlURLHistoricalDataSource..72, 73, 115,
116, 118, 119, 120, 136, 137

FinRateOfChangeIndicatorPlot...
FinRateOfChangeIndicatorPlot.............70, 71, 172

FinRenkoChartPlot...
FinRenkoChartPlot......70, 71, 248, 249, 250, 251,

253, 254
FinRSIIndicatorPlot..

FinRSIIndicatorPlot.......70, 71, 173, 174, 290, 297
FinSimpleMovingAveragePlot...

FinSimpleMovingAveragePlot..............70, 71, 144
FinStochasticIndicatorPlot..

FinStochasticIndicatorPlot.....70, 71, 175, 176, 177
FinStrings...

FinStrings.....................................76, 269, 270, 279
FinText...

FinText60, 64, 66, 75, 76, 195, 212, 213, 214, 215,
216, 220

FinTrendLine..
FinTrendLine.....60, 75, 76, 78, 195, 198, 199, 200

FinVLine..
FinVLine....60, 75, 76, 78, 195, 206, 207, 208, 215

FinVolumeAndMAPlot..
FinVolumeAndMAPlot.........................70, 71, 183

FinVolumePlot...
FinVolumePlot.......................70, 71, 183, 290, 297

FinWilliamsRIndicatorPlot...
FinWilliamsRIndicatorPlot............70, 71, 178, 179

FinYahooCSVFileHistoricalDataSource...............................
FinYahooCSVFileHistoricalDataSource.....72, 73,

115, 116, 124, 125
FinYahooCurrentDataSource..

FinYahooCurrentDataSource................72, 73, 115
FinYahooHistoricalDataSource..

FinYahooHistoricalDataSource.............72, 73, 115
FinYahooURLCurrentDataSource..

FinYahooURLCurrentDataSource......72, 73, 115,
129, 131, 132, 138, 238, 252, 253, 289, 296,
297

FinYahooURLHistoricalDataSource....................................
FinGoogleURLHistoricalDataSource................117
FinYahooURLHistoricalDataSource...72, 73, 115,

116, 117, 120, 129, 130, 132, 138, 238, 252,
253, 289, 296, 297

FinYahooURLIntradayDataSource.......................................
FinYahooURLIntradayDataSource.....72, 73, 115,

116
Fixed Box Size...

FIXED box size 153, 154, 223, 225, 226, 227, 231,
244, 245, 249

Fixed Box Size using ATR (Average True Range)...............
Fixed Box Size using ATR (Average True Range)

..226, 244
FloatingBarPlot...

FloatingBarPlot......................................94, 97, 113
Free Data Sources...

free data sources..5
Google Finance...

Google Finance..............................5, 6, 72, 73, 115

304

QCTAChart - Technical Analysis Charting Tools

GraphObj..
GraphObj.................................84, 85, 86, 102, 113

Grid..
Grid..69, 81, 107, 108, 113

GroupBarPlot..
GroupBarPlot...94, 98, 113

GroupDataset..
GroupDataset...................................82, 83, 85, 113

GroupPlot...
GroupPlot.93, 94, 95, 96, 97, 98, 99, 100, 101, 113

High-Low Method..
High-Low method......................................232, 249

HistogramPlot...
HistogramPlot..94, 99, 113

Image Rendering...
BufferedImage...........111, 113, 257, 263, 264, 265

Labels for Annotation...
Labels for Annotation..........4, 14, 60, 64, 195, 212

Legend..
Legend...107, 110, 113

LegendItem...
LegendItem..107, 113

Linear, Logarithmic, and Normalized y-axis scale................
Linear, Logarithmic, and Normalized y-axis scale

..3, 14
LinearAxis..

LinearAxis.....................................87, 92, 108, 113
LinearAxis..86

LinearScale...
LinearScale..83, 113

LineGapPlot..
LineGapPlot...94, 99, 113

Local File-Based Data Sources...
Local File-Based Data Sources..........................121

LogAxis..
LogAxis...................................86, 88, 92, 108, 113

LogScale...
LogScale..83, 113

Markers...
Marker. 59, 93, 102, 103, 105, 106, 107, 109, 110,

113, 114
Metastock...

Metastock.5, 6, 7, 72, 73, 115, 116, 121, 122, 123,
124, 125, 127

Momentum...
Momentum...4, 14, 46, 47, 49, 50, 56, 70, 71, 163,

167, 168, 169, 171, 191, 192, 274, 275
 46

Mountain (or filled) line plot of close data............................
Mountain (or filled) line plot of close data............3

MouseListener..
MouseListener...................................110, 111, 113

MoveData...
MoveData..110, 113

MoveObj...
MoveObj..110, 113

Moving Average Bands..
Moving Average Bands...3, 13, 15, 38, 39, 40, 71,

145, 146, 158, 274, 275
Moving Average Convergence/Divergence (MACD)...........

Moving Average Convergence/Divergence
(MACD)................................4, 14, 56, 163, 179

MultiLinePlot...
MultiLinePlot.......................................94, 100, 113

NumericAxisLabels..
NumericAxisLabels...............................91, 92, 113

NumericLabel...
NumericLabel....................................108, 109, 113

OHLCPlot...
OHLCPlot......................................15, 94, 100, 113

Open-High-Low-Close Bar plot..
Open-High-Low-Close Bar plot............................3

Open-High-Low-Close plots...15
OHLCPlot..15

Paid Data Sources...
Paid data sources...5

Parabolic SAR..
parabolic SAR....2, 3, 13, 15, 42, 44, 71, 158, 159,

164, 274, 275, 290, 297
Percentage Box Size...

Percentage Box Size..224
PhysicalCoordinates...

PhysicalCoordinates..................83, 84, 85, 86, 113
Point And Figure Dialog Box...

Point And Figure Dialog Box............................227
Point and Figure plot..

Point and Figure plot. 3, 15, 23, 78, 150, 153, 223,
229, 237, 251

Point And Figure Price Mode...
Point And Figure Price Mode............................232

Point and Figure y-Axis Scale Modes...................................
Point and Figure y-Axis Scale Modes...............223

Primary Chart Dialog..
Primary Chart Dialog...4, 141, 148, 227, 234, 245,

250, 272, 276, 279
Printing...

printing...iv, 111, 257, 258
QCChart2DNet.DLL..

Newtonsoft..285, 293
 - Quinn-Curtis core charting classes........285, 293
 and Newtonsoft...285

QCSPCChartNet.DLL..
QCTAChartNet.dll..7
QCTAChartNet.dll, QCChart2DNet.dll............285

QCChart2DNet.dll................................285, 293
 QCTAChartNet.dll – Quinn-Curtis

financial technical analysis classes285, 293
Quandl..

Quandl 5, 6, 7, 68, 72, 73, 115, 116, 118, 119, 120,
121, 123, 125, 126, 127, 128, 131, 133, 135,
136, 137, 270, 277, 289, 297

Rate of Change (ROC)..
Rate of Change (ROC)..............4, 14, 49, 163, 171

Redistributable License...
Redistributable License...ii

Regionalization...
12. Regionalization..269
regionalization..iv, 269
 267

305

Relative Strength (RSI)...
Relative Strength (RSI). . .4, 14, 51, 163, 173, 187,

274
Renko Chart Dialog Box...

Renko Chart Dialog Box...................................245
Renko plot..

Renko Plot.........3, 15, 78, 150, 153, 237, 251, 272
Renko Price Mode..

Renko Price mode......................................249, 250
Renko y-Axis Scale Modes...

Renko y-Axis Scale Modes...............................244
 244

Reversal Count...
Reversal Count............78, 150, 153, 154, 235, 273

Scatter Plots..
scatter plots......................69, 81, 93, 101, 102, 105

Secondary Chart Dialog..
Secondary chart dialog....163, 166, 168, 170, 179,

184
Simple line plot of close data..

Simple line plot of close data................................3
Simple moving averages...

simple moving averages 3, 13, 15, 34, 36, 143, 155
SimpleBarPlot...

SimpleBarPlot..105, 113
SimpleDataset...

SimpleDataset..82, 85, 113
SimpleLineMarkerPlot...

SimpleLineMarkerPlot......................105, 106, 113
SimpleLinePlot...

SimpleLinePlot..................................105, 106, 113
SimplePlot..

SimplePlot...................93, 105, 106, 109, 110, 113
SimpleScatterPlot...

SimpleScatterPlot..............................105, 106, 113
StackedBarPlot...

StackedBarPlot......................................94, 98, 113
StackedLinePlot..

StackedLinePlot...................................94, 101, 113
StandardLegend..

StandardLegend...107, 113
Stochastic (Fast and Slow)..

Stochastic (Fast and Slow)........4, 14, 53, 163, 174
StringAxisLabels..

StringAxisLabels...................................91, 92, 113
StringLabel...

StringLabel..108, 109, 113
Synchronize scrolling (panning)...

Synchronize scrolling (panning)................3, 14, 34
Templates...

template...2, 6
TickMark..

TickMark...111, 112, 113
TimeAxis..

T imeAxis...86
TimeAxis...........................86, 89, 91, 92, 108, 113

TimeAxisLabels...
TimeAxisLabels.....................................91, 92, 113

TimeCoordinates..
TimeCoordinates...................................83, 84, 113

TimeGroupDataset..
TimeGroupDataset...........................82, 83, 85, 113

TimeLabel..
TimeLabel..108, 109, 113

TimeScale...
TimeScale..83, 113

TimeSimpleDataset..
TimeSimpleDataset...............................82, 85, 113

ToolTips...
DataToolTip...110, 113

Traditional Box Size...
traditional box size...223

Trend lines..
trend lines......................................4, 9, 14, 60, 195

Trial License...
Trial License..ii

True Range...
True Range............42, 45, 147, 226, 227, 244, 245

Tutorial...
tutorial...iv, 7, 9, 116

Typical Price Method...
Typical Price Method................................233, 250

URL-Based Data Sources...
URL-based data sources............................117, 121

UserControl..
UserControl.............................69, 81, 82, 113, 283
UserTA..287

UserCoordinates...
UserCoordinates..83, 113

Visual Basic..9
Visual Basic.......................................7, 9, 260, 291
 291

Visual C#..9
Visual Basic...291
Visual C#...9, 283, 291

Volume charts...
Volume charts............................4, 14, 58, 163, 182
 182

Williams %R..
Williams %R4, 14, 55, 56, 163, 177, 179, 274, 275

Windows Applications..
Windows Applications..................................9, 283

WorkingCoordinates...
WorkingCoordinates..............................83, 84, 113

WorldCoordinates...
WorldCoordinates..................................83, 84, 113

Yahoo Finance..
Yahoo Finance...5, 6, 73

zooming..
Zoom..110, 113, 114
zooming.........3, 14, 26, 34, 70, 110, 141, 237, 251
 114

..
..

..
...
49, 72, 74, 75, 82, 83, 86, 91, 94, 99, 101, 111,
113, 114, 115, 116, 119, 122, 123, 136, 149,
152, 153, 156, 157, 185, 193, 198, 202, 206,

306

QCTAChart - Technical Analysis Charting Tools

212, 214, 217, 219, 220, 238, 258, 259, 264
 Data Sources..

 data sources. iv, 5, 7, 72, 115, 116, 117, 119, 120,

121, 123, 131, 133, 289, 297
" 15

307

	Contact Information
	Table of Contents
	1. Introduction
	QCTAChart for Technical Analysis
	Financial Data Sources
	Paid Data Sources
	Free Data Sources
	Yahoo Finance
	Google Finance
	Quandl
	Metastock

	Technical Analysis Charting Tools for .Net Dependencies
	Directory Structure of QCTAChart for .Net
	(*** Critical Note ***) Running the Example Programs
	30-Day Trial Version
	Developer Version

	Chapter Summary
	Tutorials
	Customer Support

	2. QCTAChart and Technical Analysis
	Primary Chart plotting options
	Technical Indicators which can overlay the OHLC plot in the Primary chart
	Other options for the Primary chart
	Technical Indicators which can can be displayed in separate, secondary windows
	Other Related Charting Features
	Primary Chart plotting options
	Classic Open-high-low-close plot
	Candlestick Plot
	OHLC Bar plot
	Simple line plot of close values
	Mountain (or filled) close plot
	Equi-volume candlestick plot
	Point and Figure Charts
	Renko Charts
	Panning and zooming of data
	Data Cursor
	Compare different stocks in the Primary Window
	Y-Axis Scaling Options for the Primary Chart
	Dynamic auto-scaling to displayed data
	Synchronize scrolling (panning) and zooming of all chart windows

	Technical Indicator overlays for the Primary chart
	Simple moving averages
	Exponential moving averages
	Moving Average Bands
	Trading Strategies Moving Average Bands

	Moving Average Band Formulas
	Bollinger Bands
	Trading Strategies Bollinger
	Bollinger Band Formulas

	Parabolic SAR
	Parabolic SAR Formulas

	Secondary windows technical indicators
	Average Directional Indicator (ADX)
	ADX, +DI and -DI Formulas

	
	Momentum (also known as the Change Indicator)
	Trading Strategies Momentum
	Formula

	Money Flow (MFI)
	Trading Strategies Money Flow
	Formula

	Rate of Change (ROC)
	Trading Strategies Rate of Change
	Formula

	Relative Strength (RSI)
	Trading Strategies RSI
	Trading Strategies Rate of Change
	Formula

	Stochastic (Fast and Slow)
	Formulas
	Trading Strategies Stochastic

	Williams %R
	Trading Strategies Stochastic
	Formulas

	Moving Average Convergence/Divergence (MACD)
	Trading Strategies Stochastic
	Formulas

	Volume charts

	Other Chart Features
	Event-based Coordinate System
	Financial Chart objects which can be dropped into a chart
	Trend Line
	Horizontal and Vertical data markers
	Fibonacci Overlay
	Labels for Annotation
	Arrows for Annotation

	Current Financial Information Data Table

	3. Class Architecture of the Technical Analysis Charting Tools for .Net Class Library
	Charting Tools for .Net Class Summary
	QCChart2D Class Summary

	Technical Analysis Charting Tools for .Net Class Summary
	FinChartView
	FinPlotParameters
	FinDataSourceBase
	Point and Figure Chart Objects
	FinPointAndFigurePlot
	New Plot Objects you can use to plot OHLCV data in ChartView, or FinChartView window
	New Financial Chart Objects you can place in a chart
	Other useful classes

	4. QCChart2D for .Net
	QCChart2D for .Net Class Summary
	Chart Window Classes
	System.Windows.Forms.UserControl
	ChartView

	Data Classes
	ChartDataset
	SimpleDataset
	TimeSimpleDataset
	ElapsedTimeSimpleDataset
	ContourDataset
	GroupDataset
	TimeGroupDataset
	ElapsedTimeGroupDataset

	Scale Classes
	ChartScale
	LinearScale
	LogScale
	TimeScale
	ElapsedTimeScale

	Coordinate Transform Classes
	UserCoordinates
	WorldCoordinates
	WorkingCoordinates
	PhysicalCoordinates
	CartesianCoordinates
	ElapsedTimeCoordinates
	PolarCoordinates
	AntennaCoordinates
	TimeCoordinates
	Attribute Class
	ChartAttribute
	ChartGradient

	Auto-Scaling Classes
	AutoScale
	LinearAutoScale
	LogAutoScale
	TimeAutoScale
	ElapsedTimeAutoScale

	Chart Object Classes
	Axis Classes
	Axis
	Axis Label Classes
	AxisLabels
	NumericAxisLabels
	StringAxisLabels
	PolarAxesLabels
	AntennaAxesLabels
	TimeAxisLabels
	ElapsedTimeAxisLabels
	Chart Plot Classes
	ChartPlot
	ContourPlot
	GroupPlot
	PieChart
	PolarPlot
	AntennaPlot
	SimplePlot
	Group Plot Classes
	GroupPlot
	ArrowPlot
	BoxWhiskerPlot
	BubblePlot
	CandlestickPlot
	CellPlot
	ErrorBarPlot
	FloatingBarPlot
	FloatingStackedBarPlot
	GroupBarPlot
	GroupVersaPlot
	HistogramPlot
	LineGapPlot
	MultiLinePlot
	OHLCPlot
	StackedBarPlot
	StackedLinePlot
	GroupVeraPlot
	Polar Plot Classes
	PolarPlot
	PolarLinePlot
	PolarScatterPlot
	Antenna Plot Classes
	AntennaPlot
	AntennaLinePlot
	AntennaScatterPlot
	AntennaLineMarkerPlot
	GraphObj
	AntennaAnnotation
	Pie and Ring Chart Classes
	Simple Plot Classes
	SimplePlot
	SimpleBarPlot
	SimpleLineMarkerPlot
	SimpleLinePlot
	SimpleScatterPlot
	SimpleVeraPlot
	Legend Classes
	LegendItem
	BubblePlotLegendItem
	Legend
	StandardLegend
	BubblePlotLegend
	Grid Classes
	Grid
	PolarGrid
	AntennaGrid
	Chart Text Classes
	ChartText
	ChartTitle
	AxisTitle
	ChartLabel
	NumericLabel
	TimeLabel
	StringLabel
	ElapsedTimeLabel
	Miscellaneous Chart Classes
	Marker
	ChartImage
	ChartShape
	ChartSymbol

	Mouse Interaction Classes
	MouseListener
	MoveObj
	FindObj
	DataToolTip
	DataCursor
	MoveData
	MagniView
	MoveCoordinates
	ChartZoom

	File and Printer Rendering Classes
	ChartPrint
	BufferedImage

	Miscellaneous Utility Classes
	ChartCalendar
	CSV
	Dimension
	Point2D
	GroupPoint2D
	DoubleArray
	DoubleArray2D
	BoolArray
	Point3D
	NearestPointData
	TickMark
	Polysurface
	Rectangle2D
	A diagram depicts the class hierarchy of the QCChart2D for .Net library.

	5. Configuring QCTAChart Datasources
	FinYahooCurrentDataSource
	FinYahooURLCurrentDataSource
	Getting Started with a Data Source
	Historical Data Source Classes
	URL-Based Data Sources
	Yahoo URL-Based Data Source
	Google URL-Based Data Source
	Quandl URL-Based Data Source
	Important Note: Yahoo limits the download of historical data using JSON and XML protocols to one year of data. If you request more than one year, the download will simply fail. Right now, if you request more than one year of data when using JSON or XML, the request is truncated to one year. Should this Yahoo-based limitation change, we will change the truncation to the newer values.

	Local File-Based Data Sources
	Metastock File-Based Data Source
	Important Note: In C#, you can get rid of the double backslashes in the folder specification by preceding the string with the @ symbol. That is a C# thing and does not apply to VB.
	Yahoo File-Based Data Source
	Quandl File-Based Data Source
	Google File-Based Data Source
	How to acquire the historical data values used in the charts.

	Current Financial Data
	How to acquire the current data values used in the charts.

	6. Display Stock Data in the Primary Chart
	FinChartView
	Adding Stocks to the Primary Chart
	Simple Moving Average
	Parameters

	Exponential Moving Average
	Parameters

	Moving Average Bands
	Parameters

	Bollinger Bands
	Parameters

	Paraboloc SAR
	Parameters

	Primary Chart Dialog
	Y-Scale
	Simple Moving Average
	Exponential Moving Average
	Bollinger Bands
	Moving Average Bands
	Main Title
	Add Stock Option
	Delete Stock Option
	Reset to Defaults
	Secondary Charts
	Load
	Save

	7. Secondary Chart Options
	FinChartView
	Adding Secondary Charts to the FinChartView
	Average Directional Indicator
	Parameters
	Return Value
	Limit Value
	Plot Object Colors

	Momentum
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Money Flow
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Rate of Change (ROC)
	Parameters
	Return Value
	Limit Value
	Plot Object Colors

	Relative Strength (RSI)
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Stochastic (Fast and Slow)
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Williams %R
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Moving Average Convergence/Divergence (MACD)
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	
	Volume charts
	Parameters
	Return Value
	Limit Values
	Plot Object Colors

	Secondary Chart Dialog
	Volume Indicators
	Money Flow
	Stochastic
	Relative Strength (RSI)
	Williams (%R) Indicator
	MACD
	Average Directional Change (ADX)
	Momentum
	Reset to Defaults
	Compressed Mode

	8. Financial Chart Objects
	Trend Line
	Prototypes
	Parameters
	Examples

	Horizontal Data Marker
	Prototypes
	Parameters
	Examples

	Vertical Data Marker
	Prototypes
	Parameters
	Examples

	Fibonacci Overlay
	Prototypes
	Parameters
	Examples

	Labels for Annotation
	FinText
	Prototypes
	Parameters
	Examples

	FinLabel
	Parameters
	Examples

	FinArrow
	Parameters
	Examples

	9. Point and Figure Charts
	Point and Figure y-Axis Scale Modes
	Traditional Box Size
	Percentage Box Size
	Fixed Box Size
	Fixed Box Size using ATR (Average True Range)

	Point And Figure Dialog Box
	Point And Figure Colors
	Box Size Mode
	Point And Figure Price Mode
	Reversal Count
	Plot Type
	Combining Point and Figure Charts with Secondary Chart Technical Indicators

	Creating a Point and Figure chart

	10. Renko Charts
	
	Renko y-Axis Scale Modes
	Fixed Box Size
	Fixed Box Size using ATR (Average True Range)

	Renko Chart Dialog Box
	Renko Colors
	Box Size Mode
	Renko Price Mode
	Combining Renko Charts with Secondary Chart Technical Indicators

	Creating a Renko chart

	11. File and Printer Rendering Classes
	ChartPrint
	BufferedImage
	com.quinn-curtis.chart2dnet.ChartView
	FinChartView
	Printing a Chart
	Class ChartPrint
	ChartPrint constructor

	Capturing the Chart as a Buffered Image
	Class BufferedImage
	BufferedImage constructor

	
	12. Regionalization for non-USA Markets
	General Chart and Dialog Box Items
	Yahoo-Table Items
	Quandl Table Items

	13. Using Technical Analysis Charting Tools for .Net to Create Windows Applications
	(*** Critical Note ***) Running the Example Programs
	Visual C# for .Net
	
	Visual Basic for .Net

