
CPSC 462 – Lab Manual

Microprocessor System Design
Using Coldfire Embedded Processor

Originally developed by Texas A&M students:

Marshall Belew

Delilah Dabbs

Terry Dahlke

Brian Sladecek

 2000-2002, Texas Engineering Experiment Station



ii

Table of Contents

LAB 1:  INTRODUCTION TO THE COLDFIRE DEVELOPMENT ENVIRONMENT................................... 1

1.1 OBJECTIVE ..................................................................................................................................................... 1
1.2 INTRODUCTION .............................................................................................................................................. 1
1.3 DETAILS OF THE BLOCK DIAGRAM................................................................................................................. 1
1.4 MONITOR/DEBUG SOFTWARE ........................................................................................................................ 6
1.5 SETTING UP THE TERMINAL AND THE BOARD............................................................................................... 10

1.5.1 Setup the Coldfire board ..................................................................................................................... 10
1.5.2 Setup the Terminal .............................................................................................................................. 10
1.5.3 Logging Output to a File ..................................................................................................................... 11
1.5.4 Transferring a file from the PC to the MCF5206eLITE...................................................................... 11

1.6 PROCEDURE ................................................................................................................................................. 13
1.7 ASSIGNMENT................................................................................................................................................ 15

LAB 2:  ASSEMBLY PROGRAMMING ON THE MCF5206ELITE BOARD ................................................. 16

2.1 OBJECTIVE ................................................................................................................................................... 16
2.2 INTRODUCTION ............................................................................................................................................ 16

2.2.1 Assembly Commands .......................................................................................................................... 17
2.2.2 Writing a Program............................................................................................................................... 18
2.2.3 Defining Constants .............................................................................................................................. 19
2.2.4 System Calls ........................................................................................................................................ 19
2.2.5 Assembling the Program ..................................................................................................................... 20

2.3 ASSIGNMENT................................................................................................................................................ 21

LAB 3:  C PROGRAMMING WITH EMBEDDED ASSEMBLY CODE .......................................................... 24

3.1 OBJECTIVE............................................................................................................................................................. 24
3.2 INTRODUCTION ...................................................................................................................................................... 24
3.3 PROCEDURE........................................................................................................................................................... 26

3.3.1 – Sample Code ............................................................................................................................................ 26
3.3.2 – Writing Two Useful Functions................................................................................................................. 26

3.5 ASSIGNMENT.......................................................................................................................................................... 27
ATTACHMENT A - USING GCC FOR THE LAB ............................................................................................................... 27

LAB 4:  LED OUTPUT AND TIMING .................................................................................................................. 28

4.1 INTRODUCTION ............................................................................................................................................ 28
4.2 PROCEDURE ................................................................................................................................................. 28
4.3 ASSIGNMENT................................................................................................................................................ 29

LAB 5:  LCD DEVICE DRIVER............................................................................................................................. 30

5.1 OBJECTIVE ......................................................................................................................................................... 30
5.2 INTRODUCTION ................................................................................................................................................ 30
5.3 PROCEDURE....................................................................................................................................................... 30
5.4 ASSIGNMENT.......................................................................................................................................................... 33

LAB 6:  SERIAL COMMUNICATION.................................................................................................................. 37

6.1  OBJECTIVE............................................................................................................................................................ 37
6.2 INTRODUCTION ...................................................................................................................................................... 37
6.3 PROCEDURE........................................................................................................................................................... 37

6.3.1 – Example Header File for your C code....................................................... Error! Bookmark not defined.
6.3.1 Lab Assignment................................................................................................................................... 39
6.3.2 Write up................................................................................................ Error! Bookmark not defined.



iii

REFERENCES.......................................................................................................................................................... 46



Lab 1:  Introduction to the Coldfire Development Environment Page  1

Lab 1:  Introduction to the ColdFire Development
Environment

1.1 Objective
The purpose of this lab is to introduce the M5206eLITE Board and the Monitor/Debug Software.
Basic information about the M5206eLITE hardware is covered, and an introduction to the dBUG
Software is given.

1.2 Introduction
The M5206eLITE is a versatile single board computer based on the MCF5206e ColdFire
Processor.  The ColdFire is a descendant of the Motorola 68000 microprocessor family. The
board may be used as a powerful microprocessor based controller in a variety of applications.
With the addition of a terminal and keyboard, it serves as a complete microcomputer system for
development/evaluation, training and educational use.

It is possible to expand the memory and I/O capabilities of the board by connecting additional
hardware via the Microprocessor Expansion Bus connectors, although it may be necessary to add
bus buffers to accommodate additional bus loading. Since the connectors require use of a printed
circuit board (PCB), we do not make use of this expansion capability in class.

Provisions have been made on the printed circuit board to permit configuration of the board in a
way which best suits an application.  Options available are: up to 32 MB of asynchronous
DRAM (ADRAM), 1 MB Fast SRAM (FSRAM), two timers, two general purpose I/O (GPIO)
chips, and 1 MB of Flash EEPROM.  All of the processor’s signals are also available via
connectors J1 and J2 for expansion purposes.

The M5206eLITE board provides FSRAM, Flash EEPROM, RS232 and all the built-in I/O
functions of the MCF5206e for learning and evaluating the attributes of the MCF5206e.  The
MCF5206e is a member of the ColdFire processor family.  The processor has eight 32-bit data
registers, eight 32-bit address registers, a 32-bit program counter and a 16-bit status register,
which includes the condition codes.  A block diagram of the board is shown in Figure 1 and a
diagram of the  board level system details is shown in Figure 2.  For more detailed information
about this board, refer to the M5206eLITE User’s Manual.  This can be found in Appendix B of
this manual.

1.3 Details of the Block Diagram
Flash Rom
The MCF5206eLITE board comes with one Flash EEPROM chip, which is programmed with the
debugger/monitor firmware (dBUG).  This AM29LV800BB Flash EEPROM is 16-bits wide and
gives a total of 1 MB (512Kx16-word) of flash memory.  The first 128K and the last 128K are
reserved by the Monitor Firmware, however the middle 768K are available to the user.  The chip-
select signal (-CS0) that is generated by the board enables this chip.  In order to avoid accidental



Lab 1:  Introduction to the Coldfire Development Environment Page  2

damage to the dBUG monitor, we will not reprogram the flash memory in class.

ADRAM SIMM Socket
The MCF5206eLITE board is equipped with one 72-pin SIMM socket (CN-1) for ADRAM.
This socket supports ADRAM SIMM’s of 256Kx32, 1Mx32, 4Mx32, and 8Mx32.  No special
configurations are needed, because the dBUG will detect the total memory installed when the
board is powered-up. We do not use this SIMM socket in class.

            THE CN1 Connector Pin Assignment
Pin No. Signal Name Pin No. Signal Name
1 VSS 72 VSS
2 DQ0 71 N.C.
3 DQ16 70 PD4
4 DQ1 69 PD3
5 DQ17 68 PD2
6 DQ2 67 PD1
7 DQ18 66 N.C.
8 DQ3 65 DQ15
9 DQ19 64 DQ31
10 VCC 63 DQ14
11 N.C. 62 DQ30
12 A0 61 DQ13
13 A1 60 DQ29
14 A2 59 VCC
15 A3 58 DQ28
16 A4 57 DQ12
17 A5 56 DQ27
18 A6 55 DQ11
19 A10 54 DQ26
20 DQ4 53 DQ10
21 DQ20 52 DQ25
22 DQ5 51 DQ9
23 DQ21 50 DQ24
24 DQ6 49 DQ8
25 DQ22 48 -N.C.
26 DQ7 47 -W
27 DQ23 46 N.C.
28 A7 45 -RAS1
29 N.C. 44 -RAS0
30 VCC 43 -CAS1
31 A8 42 -CAS3
32 A9 41 -CAS2
33 -RAS3 40 -CAS0
34 -RAS2 39 VSS
35 N.C. 38 N.C.

UART’s

The board also comes with 2 UARTs for serial communications. The UARTs have independent
baud rate generators.  The debugger uses UART1 in order to give the user access to the terminal.
In other words, the UART1 channel is the “TERMINAL” channel used by the debugger for



Lab 1:  Introduction to the Coldfire Development Environment Page  3

communication with the PC.  The signals for channel one are passed through external
Driver/Receivers to make the channel compatible with RS-232, which is available on connector
J9.  The “TERMINAL” baud rate is set at 19200.  The signals for UART2 are not available off
the board.

       The J9 (Terminal) Connector Pin Assignment        The J4 Connector Pin Assignment
Pin No. Direction Signal Name Pin No. Direction Signal Name
1 Output Data Carrier Detect (shorted to 6) 1 3.3V
2 Output Receive Data 2 Output Clear to Send
3 Input Transmit Data 3 Input Request to Send
4 Input Not Connected (shorted to 1 & 6) 4 Output Receive Data
5                                  Signal Grounded 5 Input Transmit Data
6 Output Data Set Ready (shorted to 1 & 4) 6 Signal Ground
7 Input Request to Send
8 Output Clear to Send
9 Not Used

Parallel I/O Ports

The MCF5206eLITE processor offers one 8-bit general-purpose parallel I/O port.  Each pin can
be individually programmed as input or output.  However this port is not directly available to us
on the board, so we do not use it. There are also two memory-mapped bus transceivers that are
controlled via chip select 3 (CS-3).  The first transceiver (U14) drives the 7-segment LED display
and is configured for output only.  The A7 line of the U14 also drives the direction control signal
of the U15 transceiver.  This allows the U15 to be used for both input and output.  The signals for
U15 are provided by the J10 connector, which is referred to as the GPIO.  The value read or
written to J10 appears on bits D16 to D23 of the data bus.  The direction of the data on J10 is
controlled by D31 of the read/write to J10. The GPIO will be used in class. The GPIO value is
also available on an open-collector buffer on J11. This is primarily useful for driving high-
voltage signals.

The J10 Connector Pin Assignment
Pin No. Signal Name
1 DATA 0
2 DATA 1
3 DATA 2
4 DATA 3
5 DATA 4
6 DATA 5
7 DATA 6
8 DATA 7

Timer/Counter

The processor has two built in general-purpose 16-bit timer/counters.  The J1 and J2 connectors
provide the signals for the timer/counters.  J1 and J2 actually provide all of the processor signals.
The details of these connectors are available on the course Web site.



Lab 1:  Introduction to the Coldfire Development Environment Page  4

     The J1 Connector Pin Assignment                      The J2 Connector Pin Assignment
Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name
1 A0 80 BKPT 1 D16 80 N.C.
2 A1 79 DS0 2 D17 79 N.C.
3 A2 78 DSCLK 3 D18 78 N.C.
4 A3 77 DS1 4 D19 77 N.C.
5 GND 76 GND 5 GND 76 GND
6 A4 75 -RESET 6 D20 75 N.C.
7 A5 74 TCK 7 D21 74 N.C.
8 A6 73 SDA 8 D22 73 N.C.
9 A7 72 TT1 9 D23 72 SCL
10 A8 71 TT0 10 D24 71 TOUT1
11 A9 70 ATM 11 D25 70 -JTAG
12 A10 69 -TS 12 D26 69 N.C.
13 A11 68 -ATA 13 D27 68 VCC
14 A12 67 -TA 14 D28 67 VCC
15 A13 66 SIZ0 15 D29 66 VCC
16 A14 65 SIZ1 16 D30 65 VCC
17 A15 64 R/-W 17 D31 64 N.C.
18 GND 63 GND 18 GND 63 GND
19 A16 62 CLK 19 A24 62 N.C.
20 A17 61 -HIZ 20 A25 61 N.C.
21 A18 60 N.C. 21 A26 60 N.C.
22 A19 59 -CS0_OFF 22 A27 59 N.C.
23 A20 58 -DREQ0 23 N.C. 58 TIN1
24 A21 57 -ILP2 24 N.C. 57 -DREQ1
25 A22 56 -ILP1 25 N.C. 56 N.C.
26 A23 55 -ILP0 26 N.C. 55 -CTS2
27 D0 54 -BR 27 PST1 54 -RTS2
28 D1 53 -BR_HW 28 -TEA 53 TXD2
29 GND 52 GND 29 GND 52 GND
30 D2 51 -BG_HW 30 PST2 51 RXD2
31 D3 50 -CS3 31 PST3 50 -CTS1
32 D4 49 -CS2 32 -BG 49 -RTS1
33 D5 48 -CS1 33 DDATA0 48 TXD1
34 D6 47 -CS0 34 DDATA1 47 RXD1
35 D7 46 PST0 35 DDATA2 46 -DRAMW
36 D8 45 D15 36 DDATA3 45 -CAS3
37 D9 44 D14 37 -BD 44 -CAS2
38 D10 43 D13 38 -RAS0 43 -CAS1
39 D11 42 D12 39 -RAS1 42 -CAS0
40 GND 41 GND 40 GND 41 GND

Registers and Memory Map

The MCF5206eLITE has built-in logic and 4 chip-select pins (-CS0 to –CS3) that are used to
enable external memory and I/O devices.  In addition the ADRAM uses two –RAS lines (-RAS0
and –RAS1) as chip-selects.  There are registers to specify the address range, type of access, and
the method of –TA generation for each chip-select.  –TA is the acknowledgment that is sent to
indicate the presence of a new device.  The registers are then programmed by dBUG to map the
external memory and I/O devices.  In order to declare user defined memory spaces you have to



L

re-compile and up-load the dBUG software.  This concept is further explained in Lab 4: Memory
Interface.  The board uses –CS0 to enable the Flash ROM, -CS2 for FSRAM, and –CS3 for
GPIO space.  The following table is a memory map of the MCF5206eLITE, which shows the
address ranges that correspond to each signal and device.

M5206eLITE Memory Map
Address Range Signal and Device
$00000000 - $003FFFFF -RAS1, -RAS2, 4M bytes of ADRAM’s
$10000000 - $100003FF Internal Module Registers
$20000000 - $20001FFF Internal SRAM (8K bytes)
$30000000 - $300FFFFF* -CS2, External FSRAM (1M byte – 256Kx32)
$40000000 - $4000FFFF -CS3, 64K bytes of GPIO
$FFE00000 - $FFEFFFFF -CS0, 1M byte of Flash EEPROM (512Kx16)

I2C Bus         MCF5206e         UART1 XCEIVER
U13  Terminal
I2C Real
Time Clock
U17
ab 1:  Introduction to the Coldfire Development Environment

7 Segment
Display

7 Segment
Display
Driver U14

FSRAM
256Kx32

U5 & U6

I/O PORTS

ADDR BUS

DATA BUS

CONTROL BUS

s

8x GPIO
lines J10
Flash 1Mbit
512Kx16

U4

10x GPIO
lines J11
Asynchronous
DRAM
72pin SIMM

CN1
RS232

J9
To
Expansion Connector
Figure 1.  Block Diagram of the Board
Page  5



Lab 1:  Introduction to the Coldfire Development Environment

1.4 Monitor/Debug Software
The M5206eLITE Computer Board has a resident firmware p
contained programming and operating environment.  The firm
the user with monitor/debug, disassembly, program download
firmware (stored in one 512Kx16 Flash EEPROM device) pr
programming and operating environment.

The user interacts with dBUG through pre-defined command
from the PC. The user interface to dBUG is the command lin
implemented to achieve an easy and intuitive command line i
communicating with a dumb 80x24 terminal, so since we are
emulator. For serial communications, dBUG requires the emu
parity, and one stop bit, 8N1.  The baud rate is 19200 baud, w
up.

The command line prompt is “dBUG>”.  Any dBUG comman
Command lines cannot exceed 80 characters. It echoes each c
the need for any “local echo” on the terminal side.

In general, dBUG is not case sensitive.  Commands may be e
depending upon the user’s equipment and preference.  Only s
case be used.

Most commands can be recognized by using an abbreviated f
entering “h” is the same as entering “help”.  Thus, it is not ne
name.

DBUG>

MCF5206e

CN1

J3

J4J5

J8

J9

BACKGROUND DEBUG (DMB) Connector

I2C BUS/
MBus

5V RS232

72 pin ADRAM S

+5V, GND
Power Supply @ 1.5A

Figure 2.  System Configuration
7 Segment
Display
Page  6

ackage that provides a self-
ware, named “dBUG”, provides
, and I/O control functions. The

ovides a self-contained

s that are entered via an RS232 line
e.  A number of features have been
nterface. dBUG assumes that it is
 using a PC, we use the terminal
lator be set to eight data bits, no
hich can be changed after power-

d may be entered from this prompt.
haracter as it is typed, eliminating

ntered either in upper or lower case,
ymbol names require that the exact

orm of the name.  For instance,
cessary to type the entire command

M5206eLITE

J1 J2

J10 J11

GPIO 5V & O.C.

MICROPROCESSOR
EXPNSION BUS I/O

IMM



Lab 1:  Introduction to the Coldfire Development Environment Page  7

The commands DI, GO, MD, STEP, and TRACE are used repeatedly when debugging.
Therefore dBUG allows for repeated execution of these commands with minimal typing.  After a
command is entered, simply press <RETURN> to invoke the command again.  The command is
executed as if no command line parameters were provided. NOTE: STEP and TRACE may not
work correctly with repeated execution.

An additional function called the “TRAP 15 handler” allows the user program to utilize various
routines within dBUG.  There are four TRAP #15 functions, which include OUT_CHAR,
IN_CHAR, CHAR_PRESENT, and EXIT_TO_dBUG.

OUT_CHAR – sends a character, which is in the lower 8
bits of D1, to the terminal.

IN_CHAR – return an input character from the terminal to
D1.

CHAR_PRESENT – checks if an input character is present
to receive.

EXIT_TO_dBUG – transfers program control back to dBUG.

Examples of the TRAP #15 functions can be found on pages 34-36 of the M5206eLITE on-line
User’s Manual.

After the system initialization on power up or reset, the board waits for a command-line input
from the user terminal.  When a proper command is entered, the operation continues in one of the
two basic modes.  If the command causes execution of the user program, the dBUG firmware
may or may not be re-entered depending on the operation of the user’s code.  In the alternate
case, the command entry mode is entered.

For commands that accept an optional <width> to modify the memory access size, the valid
values are:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W.

The core ColdFire register set is maintained by dBUG.  These are listed below:
A0 – A7
D0 – D7
PC
SR

All control registers on ColdFire are readable only via the supervisor-programming mode, and
thus not accessible via dBUG.  User code my change these registers, but caution must be
exercised as changes may render dBUG useless.



Lab 1:  Introduction to the Coldfire Development Environment Page  8

A reference to “SP” actually refers to “A7”. The user memory is located at addresses $30020000
- $300FFFFF, $300FFFFF is the maximum address of the FSRAM memory installed on the
board.  The user should limit his/her activities to this area of the memory map.  Address range
$30000000 - $3001FFFF is used by dBUG.

If a command causes the system to access an unused address, a bus trap error will occur.  This
results in the terminal printing out a trap error message and the contents of all the MCF5206e
core registers.  Control is then returned to the dBUG monitor.

Several keys are used as command line edit and control functions.  These functions include:
<RETURN> - will enter the command line and cause processing to begin
<Delete> or CTRL-H – will delete the last character entered
CTRL-D – Go down in the command history buffer
CTRL-U – Go up in the command history buffer
CTRL-R – Recall and execute the last command entered

A list of dBUG commands can be found in Table 1.  For an individual description of each of
these commands, refer to pages 18-33 of the M5206eLITE on-line User’s Manual located in
Appendix B of this manual.



Lab 1:  Introduction to the Coldfire Development Environment Page  9

Table 1.  dBUG Commands

COMMAND
DESCRIPTION SYNTAX

AS ASSEMBLE AS <addr><instruction>
BLOCK COMPARE BC<FIRST><SECOND><LENGTH>

BLOCK FILL BF<WIDTH>BEGIN END DATA

BM BLOCK MOVE BM BEGIN END DEST
BS BLOCK SEARCH BS<WIDTH> BEGIN END DATA
BR BREAKPOINT BR ADDR <-R><-C COUNT>

<-T TRIGGER>
DATA DATA CONVERT DATA VALUE
DI DISASSEMBLE DI <ADDR>
DL DOWNLOAD SERIAL DL <OFFSET>
GO EXECUTE GO <ADDR>
GT Go TILL BREAKPOINT GT <ADDR>
HELP HELP HELP <COMMAND>
IRD INTERNAL REGISTER DISPLAY IRD <MODULE.REGISTER>
IRM INTERNAL REGISTER MODIFY IRM MODULE.REGISTER><DATA>
MD MEMORY DISPLAY MD <WIDTH><BEGIN><END>
MM MEMORY MODIFY MM <WIDTH>ADDR<DATA>
RESET RESET RESET
RD REGISTER DISPLAY RD <REG>
RM REGISTER MODIFY RM REG DATA
SET SET CONFIGURATIONS SET OPTION<VALUE>
SHOW SHOW CONFIGURATIONS SHOW OPTION
STEP STEP(OVER) STEP <NUM>
SYMBOL SYMBOL MANAGEMENT SYMBOL <SYMB><-a SYMB VALUE>

<-R SYMB><-C|L|S>
TRACE TRACE(INTO) TRACE <NUM>
UPDBUG UPDATE DBUG UPDBUG
UPUSER UPDATE USER FLASH UPUSER
VERSION SHOW VERSION VERSION

The STEP and TRACE commands may only work correctly with a single iteraction (i.e. do not
give them a numerical argument).



Lab 1:  Introduction to the Coldfire Development Environment Page  10

1.5 Setting up the Terminal and the Board
Be sure to read the Assignment section below before proceeding so that you will know exactly
what is required. You will need to capture the output of the following steps into a file called
“debugger.txt”on your PC.

1.5.1 Set up the ColdFire board - already done by instructor
Note: the computer MUST be off when working with the parallel port connections.

− Plug serial connection from COM2 on computer to J9 on Coldfire.
− Connect BDM ribbon cable into J3 on Coldfire.
− Connect parallel extension cable from BDM to computer parallel port.
− Connect J8 (Coldfire power) to a 5 volt 1.5 amp source.
− Power the computer, but leave the Coldfire board powered down for now.

1.5.2 Setup the Terminal
Go to Start->Accessories->HyperTerminal->HyperTerminal

Window:  New Connection
For ‘Name’ use “ColdFire”
Click OK

Window: Connect To
For ‘Connect using’ select COM2
Click OK

Window: COM2 Properties
For ‘Bits per second’ select 19200
       ‘Data bits’ select 8
       ‘Parity’ select None
       ‘Stop bits’ select 1
       ‘Flow Control’ select  Xon / Xoff

Power on or reset the ColdFire board.
If the MCF5206eLITE is powered on and properly connected, hitting the ENTER key should
always give you the dBUG> prompt.

Hard Reset
FSRAM Size: 1M

Copyright 1997-1999 Motorola, Inc.  All Rights Reserved.
ColdFire MCF5206e EVS Debugger v1.4.7 (Mar  2 1999 13:04:24)
Enter 'help' for help.

dBUG>



Lab 1:  Introduction to the Coldfire Development Environment Page  11

1.5.3 Logging Output to a File
Use the following steps to transfer the output of a program to a file.

1. Choose the “Capture Text” option from the HyperTerminal “Transfers” menu.

2.  Choose the file that you want to save to.
Warning:  If you want to use a file that does not exist you have to
explicitly create one.  To create a new file, right-click in the file
browser area and choose “New->Text Document”.

3.  In order to stop the data transfer, go to the “Capture Text” option under the
“Transfer” menu and select “Stop”.  This command will also allow you to pause
your data transfer.

4.  Your new file can be viewed using the Notepad.

The dBUG command set has a help facility. If you want to see a list of all the available
commands, type “help” at the dBUG prompt. If you want specific help on a particular
command, type “help” followed by the command name. For example, “help rd” will give
you the syntax of the register dump command.

1.5.4 Transferring a file from the PC to the MCF5206eLITE
Programs are downloaded to the ColdFire board from the PC.  For the following example,
the file “TEST.x68” containing MCF5606e assembly code can be found on the C drive of
your computer. You need to assemble the program and convert it to a S-Record before
transferring it to the MCF5206eLITE board.

Assembling and converting into S-Record
1. Open a command prompt

2. The assembler is located in the directory C:\68k, make sure the path is set to this
directory

3. Assemble the TEST.x68 file by typing:

x68k –L TEST

4. Now the S-Record needs to be created from the.BIN which should be generated from
the previous command, you do this by typing the following:

s68k  TEST

5. This will create a new file called TEST.REC, you can view this file in wordpad.

The next step is to transfer the file to the  MCF5206eLITE

1. Start a terminal session.



Lab 1:  Introduction to the Coldfire Development Environment Page  12

2. At the dBUG> prompt, type “dl” and press Enter.  This tells the assembler to store
the instructions you input starting at the memory location specified in the TEST.x68
program with the “ORG” (origin) command.  This is location 30020000.  If a
program does not specify the starting memory location, you can do so by including
it with the “dl” command, as in “dl 30020000”.  Note that if the program has an
“ORG” statement and you also add a location in the “dl” command, the two values
will be added together, probably putting the program out of memory and generating
an error message during the transfer below.

3. Now choose the “Send Text File” option from the “Transfers” menu.  When the
dialog box appears, choose the appropriate drive, directory and file name then press
Enter.  The program will automatically stop the transfer when it reaches the end of
the file.  You will not see any indication that they file is being transferred.  Also,
this may take a few minutes, so be patient.

4. To view the transferred data type “di 30020000” at the dBUG> prompt.
5. Compare the contents of “TEST.x68” with the disassembled code displayed in the

terminal window.  Verify that the transfer was done correctly.



Lab 1:  Introduction to the Coldfire Development Environment Page  13

1.6 Procedure
1. Put the following assembly code into memory, starting at memory location 30020000, using
the assembler command (AS).

CLR.L    D0
CLR.L    D1
CLR.L    D2
CLR.L    D3
CLR.L    D4
CLR.L    D5
CLR.L    D6
CLR.L    D7
MOVE.L   #$0000,D0
TRAP     #15
.

2. Now type DI 30020000 to invoke the disassembler and verify the code that you just typed.

dBUG> di 30020000
30020000: 4280                 CLR.L     D0
30020002: 4281                 CLR.L     D1
30020004: 4282                 CLR.L     D2
30020006: 4283                 CLR.L     D3
30020008: 4284                 CLR.L     D4
3002000A: 4285                 CLR.L     D5
3002000C: 4286                 CLR.L     D6
3002000E: 4287                 CLR.L     D7
30020010: 203C 0000 0000       MOVE.L    #0x00000000,D0

3. Dump the register set.

dBUG> rd
PC: 00000000 SR: 2700 [t.Sm.111...xnzvc]
An: 0000FFFF 00000000 00000000 00000000 00000000 00000000 00000000 300FFFF0
Dn: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

4. Using the register modify command (RM), change the value of the program counter (PC) to
$30020000 and change the values of registers D0-D7 to $FFFF0000. Set the values of registers
A0 through A6 to $0000FFFF.

dBUG> rm pc 30020000
dBUG> rm d0 ffff0000
dBUG> rm d1 ffff0000
dBUG> rm d2 ffff0000
dBUG> rm d3 ffff0000
dBUG> rm d4 ffff0000
dBUG> rm d5 ffff0000
dBUG> rm d6 ffff0000
dBUG> rm d7 ffff0000
dBUG> rm a1 0000ffff
dBUG> rm a2 0000ffff
dBUG> rm a3 0000ffff
dBUG> rm a4 0000ffff
dBUG> rm a5 0000ffff
dBUG> rm a6 0000ffff

5. Dump the contents of the register set again.

dBUG> rd



Lab 1:  Introduction to the Coldfire Development Environment Page  14

PC: 30020000 SR: 2700 [t.Sm.111...xnzvc]
An: 0000FFFF 0000FFFF 0000FFFF 0000FFFF 0000FFFF 0000FFFF 0000FFFF 300FFFF0
Dn: FFFF0000 FFFF0000 FFFF0000 FFFF0000 FFFF0000 FFFF0000 FFFF0000 FFFF0000

6. Now, run the program that you input above (in Step 1) by typing the command “GO”. This
command begins execution at the memory address contained in the program counter.

7. Look at the register again and note the effect that your program has had on the registers.
dBUG> rd
PC: 30020018 SR: 2704 [t.Sm.111...xnZvc]
An: 00000000 0000FFFF 0000FFFF 0000FFFF 0000FFFF 0000FFFF 0000FFFF 300FFFE8
Dn: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

8. Using the memory modify command, enter the following words starting at address $30010000:
ADAD ADAD ADAD DADA 0000 FFFF F0F0 CCCC

dBUG> mm 30010000
30010000:  [08EA]  ADAD
30010002:  [EF9F]  ADAD
30010004:  [CDC7]  ADAD
30010006:  [10D6]  DADA
30010008:  [90F7]  0000
3001000A:  [B7CF]  ffff
3001000C:  [8BE3]  f0f0
3001000E:  [8CA4]  cccc
30010010:  [0A7F]  .

9. Verify the data that you just entered by using the memory display command. Use the
parameters of the command to group the data as it is grouped above and display only the values
that you just typed in.

dBUG> md 30010000 30010010

30010000:  ADAD ADAD ADAD DADA 0000 FFFF F0F0 CCCC ................

10. Using the memory modify command, write the string “CPSC462!” into the block of memory
beginning at address $30010000.

dBUG> mm.b 30010000
30010000:  [AD]  43
30010001:  [AD]  50
30010002:  [AD]  53
30010003:  [AD]  43
30010004:  [AD]  34
30010005:  [AD]  36
30010006:  [DA]  32
30010007:  [DA]  21
30010008:  [00]  .

11. Use the memory display command to show the string you just typed in byte format. Once
again, set the arguments of the command to show only the data you have entered.

dBUG> md.b 30010000 30010007
30010000:  43 50 53 43 34 36 32 21 00 00 FF FF F0 F0 CC CC CPSC462!........

12. Invoke the assembler at memory location 30020000 and type in the following code:



Lab 1:  Introduction to the Coldfire Development Environment Page  15

MOVE.L #$7,D0
MOVE.L #$9,D1
ADD.L  D0,D1
loop:  BRA loop

13. Run the program you entered in the last step. If you entered the program correctly, your board
should get stuck in an infinite loop at memory address 30020000E.

Press the ABORT (s1) button on your board to interrupt the program's execution. Dump the
register set, and return to the dBUG prompt.

dBUG> go 30020000

Hard Reset
FSRAM Size: 1M

Copyright 1997-1999 Motorola, Inc.  All Rights Reserved.
ColdFire MCF5206e EVS Debugger v1.4.7 (Mar  2 1999 13:04:24)
Enter 'help' for help.

dBUG> rd
PC: 00000000 SR: 2700 [t.Sm.111...xnzvc]
An: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 300FFFF0
Dn: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

14. Set the program counter to 30020000 and registers D0 and D1 to 0F00AAAA using any of
the commands you have already learned.

dBUG> rm pc 30020000
dBUG> rm d0 0F00AAAA
dBUG> rm d1 0F00AAAA
dBUG> rd
PC: 3005FFFF SR: 2700 [t.Sm.111...xnzvc]
An: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 300FFFF0
Dn: 0F00AAAA 0F00AAAA 00000000 00000000 00000000 00000000 00000000 00000000

15. Trace through the program one step at a time until you have crossed the branch instruction at
least three times.

1.7 Assignment
1. Demonstrate that you are able to transfer a file from the PC to MCF3206e memory and that

you are able to log the output of the dBUG to a file on the PC.

2. Turn in a printout of the file “debugger.txt”.

3. Give a brief (1-2 paragraph) summary of the each of the components listed in the Block
Diagram.

4. Use each of the following debugger commands and capture the output of each to a file.  Turn
in a printout of this captured output and briefly explain how each of the commands works.

BM BS

5.  How can you specify the number of instructions to be traced by dBUG’s trace command?



Lab 2:  Assembly Programming on the MCF5206eLITE Board

Lab 2:  Assembly Programming on the MCF5206eLITE
Board

2.1 Objective
The following exercises will introduce you to some of the basics of assembly language
programming on the M5206eLITE microprocessor.  Read through the lab in its entirety before
you begin.  The 68000 assembly language instructions provided in your textbook are mostly
identical the MCF5206eLITE instructions.  If you need further explanation about certain
assembly language instructions, consult the ColdFire Microprocessor Family Programmer’s
Reference Manual in Appendix C.

2.2 Introduction
The ColdFire Family programming model consists of two register groups: User and Supervisor.
Programs executing in the user mode use only the registers in the user group. System software
executing in the supervisor mode can access all registers and use the control registers in the
supervisor group to perform supervisor functions.

Figure 2.1 illustrates the user programming model.  The model is the same as for the M68000
Family microprocessors described in your textbook.  It consist of the following registers:

• 16 general purpose 32-bit registers (D0-D7,A0-A7)
• 32-bit program counter(PC)
• 8-bit condition code register (CCR)

31      15                         7                           0
DO
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6

A7

PC

CCR

Figure 2.1 – User Programming Model
DATA

RE
ADDRESS
REGISTERS
STACK
POINTER
Page  16

PROGRAM
COUNTER

CONDITION
CODE
REGISTER



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  17

Each data register is 32 bits wide.  Byte and word operands occupy the lower 8- and 16-bit
portions of integer data registers, respectively.  Longword operands occupy the entire 32 bits of
integer data registers.  Because address registers and stack pointers are 32 bits wide, address
registers cannot be used for byte-size operands.  When an address register is a source operand,
either the low-order word or the entire longword operand is used, depending on the operation
size.

ColdFire supports a single hardware stack pointer (A7) for explicit references or implicit ones
during stacking for subroutine calls and returns and exception handling.  The PC contains the
address of the currently executing instruction.  The CCR is the least significant byte of the
processor status register (SR).  Bits 4-0 represent indicator flags based on results generated by
processor operations.

4 3 2 1 0
X N Z V C

• X – extend bit
• N – negative bit; set if most significant bit of the result is set
• Z – zero bit; set if the result equals zero
• V – overflow bit; set if an arithmetic overflow occurs
• C – carry bit; set if a carryout of the MSB occurs for an addition

Full access to the SR is only allowed in supervisor mode.  The following diagram is a layout of
the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T 0 S M 0 I2 I1 I0 0 0 0 X N Z V C

Figure 2.2 – Status Register

2.2.1 Assembly Commands
In order to complete this lab, you will need to familiarize yourself with some of the basic
assembly instructions.  Four of them have been provided here, but a complete list of all the
available instructions can be found in Appendix C.

TRACE
ENABLE

SUPERVISOR/USER STATE

MASTER/INTERRUPT STATE

CARRY

OVERFLOW

ZERO

NEGATIVE

EXTEND

INTERRUPT
PRIORITY MASK

SYSTEM BYTE
USER BYTE

CONDITION CODE REGISTER (CCR)



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  18

LEA (Load Effective Address) – Loads the effective address into the specified
address register.  This instruction affects all 32 bits of the address register.  A
more detailed description of this instruction can be found on page 4-44 of the
Programmer’s Reference Manual.

MOVE (Move Data from Source to Destination) – Moves the data at the source to
the destination location and sets the condition codes according to the data.  The
size of the operation may be specified as byte, word, or longword. A more
detailed description of this instruction can be found on page 4-53 of the
Programmer’s Reference Manual.

CMPI (Compare Immediate) – Subtracts the immediate data from the destination
operand and sets the condition codes according to the result; the destination
location is not changed.  The size of the operation and the immediate data is
specified as a longword. A more detailed description of this instruction can be
found on page 4-31 of the Programmer’s Reference Manual.

Bcc (Branch Conditionally) – If the specified condition is true, program execution
continues at location (PC) + displacement.  The program counter contains the
address of the instruction word for the Bcc instruction, plus two.  The
displacement is the two’s complement integer that represents the relative distance
from the current program counter to the destination program counter.  Condition
code cc specifies one of the following conditional tests:

E =
GE >=
GT >
LE <=
LT <
NE !=

A more detailed description of this instruction can be found on page 4-15 of the
Programmer’s Reference Manual in Appendix C.

2.2.2 Writing a Program
First of all, it is important that every line that does not have a label begin with a TAB character.
Lines with labels should also have a TAB immediately after the label.  Also, comment strings
should begin with the “*” character.  It can be used on any line in the program and all text after a
“*” is ignored by the assembler.

Every assembly program needs to be located somewhere in memory.  In the cross assembler this
is accomplished by the ORG statement.  For example:

ORG $30020000



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  19

will locate a code section at the address $30020000.  There can be several ORG instructions in a
program, one for each module.  The only restriction is that the addresses are in increasing order
from the beginning of the program.  ORG $30030000 followed by ORG $30020000 will not be
accepted.

The END instruction is needed to tell the assembler where to stop assembling.  This also requires
an address argument.  You can use the address of the first ORG as the argument to the END.
There should only be one END per program file.

2.2.3 Defining Constants
The assembler provides an EQU instruction for declaring constants much like the #define
directive in C.  For example:

BUFFER EQU $30030000

Declares a constant called “BUFFER” which is equal to $30030000.  Everywhere in the program
where “BUFFER” is referenced, the assembler will replace it with the constant value $30030000.

Note:  The lack of a prefix indicates a decimal number, a percent sign (%)
indicates a binary number, and a dollar sign ($) indicates a hexadecimal
number.

To create data constants in memory, the assembly instruction DC is used.  It can either be byte,
word or longword.  For example:

PROMPT DC.B $16

Creates a data constant named PROMPT that is set to $16.  You can also declare space for
variables with the DS instruction.  For example:

INPUT DS.L 1
STRING DS.B 30

Declares space for 1 longword at the address of label “INPUT” and an array of 30 bytes at the
address of “STRING”.

2.2.4 System Calls
System calls are used to perform input/output functions that are already available through the
MCF5206eLITE hardware.  For system calls on this cross assembler, you must use the TRAP
#15 instruction.

TRAP (Trap) – Causes a TRAP #<vector> exception.  The
instruction adds the immediate operand (vector) of the instruction
to 32 to obtain the vector number.



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  20

The four TRAP functions were introduced in Lab #1.  For example:

MOVE.L #$0000,DO
TRAP #15

Is used for a normal exit to the dBUG.  The codes associated with OUT_CHAR, IN_CHAR,
CHAR_PRESENT, and EXIT_TO_dBUG are #$0013, #$0010, #$0014, and #$0000
respectively.  A very thorough explanation of traps can be found on pages 463 – 465 of your
textbook.

2.2.5 Assembling the Program
The cross-assembler software is located in the directory on the C:\68k drive of the PC’s.  After
you write your program in a DOS text file, save it with the filename extension “.x68” in this
directory.  This will enable the cross-assembler to find the program. Make sure that your
FILENAME is in caps.

You should save your program in C:\cpsc462. Before assembling , make sure that the path is set
correctly. To set the path, goto Control Panel->System->Environment and in the box where it
says Variable, type PATH and in the box where it says Value, type c:\68k and press Set button.

Open a DOS prompt, change directory to C:\cpsc462.

Then assemble the program by typing:
x68k -L FILENAME

If this is successful it will create a .BIN and .LIS listing.

Uploading and Running the M5206eLITE
Once you have assembled the program successfully, you will need to upload it to the
M5206eLITE board. In order to upload your file to the board you will need to create an s-record.
You do this by typing the following:

s68k FILENAME

This will create a new file called filename.rec, which is created from the .BIN file.  Type at the
dBUG> dl
then go to the "TRANSFER" menu and select "SEND TEXT FILE" then select the file
"FILENAME.rec."

Note: If your program does not have a ORG statement that tells the loader where to put it in
memory, then type
dBUG>dl 30020000 (i.e you are explicitly specifying the address where to dump the code, in this
case its $30020000)



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  21

2.3 Assignment
1.  Writing a Subroutine in Assembly
You will program a subroutine that starts at address $30021000 to copy a block of memory (in
bytes) from one location to another without using any extra memory for temporary storage.  In
your program, assume that before entering the subroutine the following addresses are loaded into
the registers:

A0 = The starting address of the source block
A1 = The length of the block to be copied
A2 = The starting address of the destination block

For Example:
In order to copy a memory block of 8 bytes from location $30020000 to $30020024, the user
should only have to enter the starting address of the source block, the length of that block, the
starting address of the destination block, and type ‘GO’.  Before you run the subroutine, you
want to dump the memory at both the source and destination address. Then Lines 2-4 will set
the registers A0, A1, and A2 to the starting address, length, and destination address
respectively.  Line 5 will run your subroutine. After you run the subroutine, you want to
dump the memory at both the source and destination address to verify that the memory was
moved to the proper location.  The following is an example of what your terminal screen
should look like when you are running the program.

1. dBUG> MD 30020000
30020000: 0534 00FF 1357 0031 FFFF 3210 0000 1111
30020010: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
30020020: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

2. dBUG> GO
3. dBUG> MD 30020000
30020000: 0534 00FF 1357 0031 FFFF 3210 0000 1111
30020010: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
30020020: FFFF FFFF 0534 00FF 1357 0031 FFFF FFFF

Also, your subroutine should take care of all possible special cases.
The special cases are:

Case 1: (A0+A1) < A2 The subroutine should operate normally. Set the
carry bit to zero, and the negative bit to zero.

Case 2: A0 < A2 <= (A0+A1) This will cause part of the data to be overwritten
before it is moved unless you find a way to move it
in a different order. Set the carry bit to one and the
negative bit to zero.



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  22

Case 3: A0 = A2 In this case, it should move nothing at all.  Set both
the carry and the negative bit to one.

In order to set the carry and negative bits you have to use the MOVE statement.  However,
you have to find a way to set just the carry and negative bits without changing the values of
the other CCR bits.

2.  Integrating A Calling Function
Write a calling function that will set the values of A0, A1, and A2. Your calling function
should store these values onto the program stack (A7).  Upon return, the values should be
popped off of the stack.  The last value on the stack should be the information from the status
register.

You will modify your subroutine to read the address values from the stack.  When the
subroutine is finished, it should return back to the main program.  When branching to and
from the subroutine, you will need to use the BSR and RTS instructions.  The statement: BSR
$30020500 will branch to the subroutine that is located at $30020500.  When the subroutine
reaches a RTS statement is will return to the calling program.

3.  Demonstrate your program to the T.A.

4. Turn in a hard of your subroutine (Question 1) and the calling function (Question 2).

Notes:
• When you are using instructions like CPMA or ADDA , make sure that you also specify the

length(.B or .W or .L), like CMPA.L  A0,A1 or ADDA.L A0,A1  (sometimes after
disassembling you might see DC.W instead of the instruction you typed in, usually this
happens if you miss out the length)

• Some 68k commands are partially compatible with the Coldfire, so when you disassemble it
and it looks no way similar to what you typed, then its probably not compatible. This might
mean that the opcode is too large or too small. Look in the Coldfire instruction set manual to
compare the instruction you are trying to use. Normally for small programs the x68k compiler
should work fine.

• Here  is a outline of how your program might look like, this is just an example, you are free
to write it the way you want to.

MAIN EQU $30020000 ADDRESS WHERE THE MAIN PROGRAM WILL RESIDE
MOVEMEM EQU     $30021000 ADDRESS WHERE THE MOVEMEM SUBROUTINE WILL
RESIDE

MEMFROM EQU     $30022000       BEGINNING ADDRESS OF MEMORY BLOCK TO BE COPIED
LENGTH EQU     $00000008       LENTGH OF MEMORY BLOCK TO BE COPIED
MEMTO   EQU     $30022012       BEGINNING ADDRESS OF MEMORY BLOCK COPYING TO



Lab 2:  Assembly Programming on the MCF5206eLITE Board Page  23

ORG MAIN THE MAIN PROGRAM..i.e THE CALLING FUNCTION

BSR MOVEMEM BRANCH TO THE SUBROUTINE

EXIT            MOVE.L  #$0000,D0       SELECT EXIT_TO_dBUG
TRAP #15                MAKE THE TRAP CALL AND EXIT TO dBUG

*---------------------------------------------
*       MOVEMEM SUBROUTINE
*---------------------------------------------

ORG MOVEMEM

* INITIALIZE THE UPPER AND LOWER BOUNDS
LEA LENGTH,A4           Move the length into A4
LEA     MEMFROM,A0             Load the beginning address into A0
LEA MEMTO,A2                  Load the beginning copy to address into A2

CLR.L   D0 CLEAR D0 - USED FOR TEMPORARY MEMORY STORAGE

* YOUR BLOCK MOVING ALGO SHOULD BE HERE
.............
.............
.............

RTS

*---------------------------------------------
*       DATA SEGMENT
*---------------------------------------------

ORG MEMFROM THIS PIECE OF CODE JUST FILLS UP
* THE MEMORY BLOCK WITH SOME DATA SO THAT
* YOU KNOW WHAT IS BEING MOVED

MOVE.L  D0,D1                   FILL MEMORY WITH A RECOGNIZABLE
MOVE.L  D1,D2                   PATTERN.
MOVE.L  D2,D3
MOVE.L  D3,D4
MOVE.L  D4,D5
MOVE.L  D5,D6
MOVE.L  D7,D0

END MAIN



Lab 3:  C Programming with Embedded Assembly Code Page  24

Lab 3:  C Programming with Embedded Assembly Code

3.1 Objective
The focus of this lab will be to integrate assembly code into a C program. Microprocessor system
designers are starting to use high-level languages instead of assembly language to control
hardware interfaces. However the utilization of assembly still allows for much faster execution
for high-availability systems.  This lab will introduce you to the basic concepts of using the high-
level language C for systems programming.

3.2 Introduction
From previous labs, you know that the M5206e family supports three basic data sizes: the byte
(8), word (16) and longword (32), which can either by signed or unsigned.  However, the C
language supports four basic data types: int (integer), char (character), float (real), and double
(double-precision floating point).  Just like the M5206e data types can be signed or unsigned, the
C data types can be signed, unsigned, longword (long) or word (short).  Long and short indicate
the number of bits that will be assigned, which will be either 32 or 8 respectively.  The following
table was taken from page 147 of your textbook.  It gives a better description of the C data types.

Data TypeData TypeData TypeData Type C nameC nameC nameC name WidthWidthWidthWidth
(bits)(bits)(bits)(bits)

RangeRangeRangeRange

Integer Int 16 -32,768 to 32,767

Short Integer Short
int

8 -128 to 127

Long integer Long int 32 -2,147,483 to
2,147,483,647

Unsigned integer Unsigned
int

16 0 to  65,535

Character Char 8 0 to 255

Single-precision
floating point

Float 32 10-38 to 10+38

Double-precision
floating point

Double 64 10-300 to 10+300

Once you have compiled the C code, it is converted into assembly.  However, you can directly
embed assembly code into your program.  The following C instruction will embed the assembly
instruction “MOVEA.L   A0,A1” into a C program.  The “__asm__” is a C directive that tells the
compiler the following text is an assembly instruction.

__asm__ (“ MOVEA.L %A0,%A1” );

Also instead of directly embedding each line of assembly, you can write an assembly file and link
it to your C program.  Then you can call your assembly subroutine like any other C subroutine.
Here is an example of a C program (test.c) that calls an assembly function (_writeme (P)) located



Lab 3:  C Programming with Embedded Assembly Code Page  25

in testasm.s):

test.c

int _writeme(int *P);

int main(void) {

int *P=0x30010000;
_writeme(P);

return 0;
}

testasm.s

_writeme:
move.l 4(%sp),%A0
move.l #0xff013,%D0
move.l %D0,(%A0)
rts

.globl _writeme

The first line of the C program is a prototype for function ‘_writeme’.  The underscore in the
name tells GCC that we are using an imported assembly function.  The arguments of _writeme is
a pointer of type ‘int’.  The main program declares the pointer, and assigns it to a memory
location.  Note that in most programming practices, we do not assign pointers to absolute
memory locations.  In systems programming, we can break this rule.  The argument ’P’ passed to
_writeme is the absolute address that we are going to access from the assembly program.

The first line of the assembly program is a label.  The compiler turns this label into an address for
use in a jump subroutine.  The arguments from the calling C program are pushed onto the
program stack (sp).  We do NOT pop the value from the stack, this is taken care of once the
procedure returns.  We merely access it by copying a long word (0x30010000) into A0,
starting from the 5th byte of the stack pointer.  The last line is a compiler directive that exports
_writeme to the compiler’s symbol list.  _writeme from the C program will now be the same
_writeme in the assembly program.

Notice also that we have used the ‘%’ symbol in front of the register.  This is a syntax used by
GCC for accessing all registers.  GCC is capable of recognizing two different syntax variations:
MIT and Motorola.  Motorola is the preferred and most widely used syntax for 68000 chipsets.
Refer to Appendix F for discrepancies.

The following code is the compiled version of test.c:



Lab 3:  C Programming with Embedded Assembly Code Page  26

test.c compiled version

.file "test.c"
gcc2_compiled.:
__gnu_compiled_c:
.text

.even
.globl main
main:

link.w %a6,#-4
jsr __main
move.l #805371904,-4(%a6)
move.l -4(%a6),-(%sp)
jsr _writeme
addq.l #4,%sp
clr.l %d0
jbra .L1
.even

.L1:
unlk %a6
rts

3.3 Procedure

3.3.1 – Sample Code
Copy and save test.c and testasm.s.  Compile and link the files using the ‘make’ command with
the given makefile.  See the TA for the makefile source code.

The output file is test.x.  This is an s-record, much like lab 2’s .rec type of file.  Upload this to
the board and execute it.  Use the debugger to find the answer to question 1.

3.3.2 – Writing Two Useful Functions
For this lab you need to write two subroutines in assembly language that will function similarly
to printf and scanf statements.  Then write a C program that calls these assembly subroutines.
The C program should prompt the user to input a word or a sentence, and then ask them to verify
their input by typing it again.  Then the program should tell the user if their inputs match.  Do not
worry about implementing %c, %d, %f type values.  Assume all input is of type string.  See
section 3.4 Question 4 for further instructions.

Example:
Enter a word:
prompt>  hello
re-enter your word:
prompt>  hello
Correct!
Enter a word:
prompt>  hello
re-enter your word:
prompt>  good-bye
Incorrect!



Lab 3:  C Programming with Embedded Assembly Code Page  27

3.5 Assignment
1.  What address does the first line of testasm.s get mapped to?

2.  We want to use the command ‘movea.l (a0)+,d0’ .  How does this look in Motorola syntax?
MIT syntax?

3.  What are some reasons to use absolute addressing?

4.  From the assignment given in Section 3.3.4, turn in the following three files: your assembly
code , your C code, and the modified makefile.

Attachment A - Using GCC for the lab

GCC stands for GNU C Compiler.  GNU is pronounced “ganoo”, and cleverly stands for
“GNU’s Not UNIX”.  It is a command-line driven compiler that is executed using a makefile.  A
makefile is nothing more than a script that puts together command-line options.  We will use
GCC to compile both C and assembly.

From an MS-DOS prompt, type ‘c:\coldfire\setenv.bat’.  This will set up your path for using
GNU’s make command.

Three files are required to compile test.x: test.c, testasm.s, my5206elite.ld, and makefile.  The
given makefile can be modified to work with any program to be uploaded to the 5206.  The file
called my5206elite.ld is a text file that contains the memory map for the board.  The board comes
with 1 megabyte of physical memory.

In the directory that contains these files, type ‘make test’.  Make will first look at target ‘test’ and
check to see if the dependent targets are created:

test: test.o testasm.o
$(CC) $(LDFLAGS) -o test.x test.o testasm.o

if not, it will then compile test.c and testasm.s into the two target object files test.o and testasm.o.
The output file is s-record test.x.

The memory map ensures that the program will start at user address 0x30020000.



Lab 4:  LED Output and Timing Page  28

Lab 4:  LED Output and Timing

4.1 Introduction
The goal of this lab is to learn how to do basic output with the 7-segment LED display, how to do
timing loops, and how to do basic input/output with the functions you wrote in Lab 3.

The MCF5206eLITE board contains an 8-segment LED display that contains the standard seven
segments plus a decimal point. The goal of this lab is for you to learn how to do basic output to
this display, and how to generate accurate timing using loops. You will also use the string I/O
functions you wrote in Lab 3.

The LED appears as a byte at address 0x40000000. The segments are turned on by writing a 1
into the corresponding bit of the byte. You must determine the correspondence by reading the
schematics and experimentation.  The 8-bit general-purpose I/O (GPIO) interface is located at
address 0x40000001. Both the LED and GPIO interfaces are controlled with the same write
signal, rather than separate byte write enables. Therefore this memory location actually looks like
a word (e.g. unsigned short int) at 0x40000000, with the high byte being the LED and the low
byte the GPIO.

4.2 Procedure
The read and write enable for the LED and GPIO are controlled via chip select 3 (CS3), as part of
the ColdFire’s chip select logic. This logic is explained in detail in the ColdFire Microprocessor
User’s Manual. Your code must have the following chip select initialization before you can write
to the LED:

#define MBAR 0x10000000

/* Chip select 3 address, mask, control registers */
#define CSAR3 (*(unsigned short* volatile) (MBAR + 0x00000088))
#define CSMR3 (*(unsigned long *volatile) (MBAR + 0x0000008C))
#define CSCR3 (*(unsigned short* volatile) (MBAR + 0x00000092))
…
main(void)
{

/* CS3 0x40000000 - 0x4000FFFF */
CSAR3 = 0x4000; /* start at 0x40000000 */
CSMR3 = 0x00000000; /* 64kb of address space */
CSCR3 = 0x0183; /* 2-byte wide with autoacknowledge */

<insert rest of program >
}

You will see in the MCF5206eLITE board manual that by default the GPIO address space starts
at 0x40000000.  However it is not set up for the fact that the LED and GPIO cannot acknowledge
the CPU and it does not have byte write enable. That is why the above code is needed for your
program to work correctly.



Lab 4:  LED Output and Timing Page  29

You are to write a C program that does the following:
1. Prompt the user and then read a hexadecimal number from the terminal. The number may

include a decimal point. You must handle both upper and lower case alphabetical characters.
The number may optionally be preceded by “0x” or “$” that must be stripped off. You must
use the input and output functions written in Lab 3.

2. Write the number on the LED in an unambiguous and readily understandable fashion,
displaying each character for one second, starting with the most significant character.
Generate your delays using a delay subroutine. This subroutine should take the number of
milliseconds as an argument, and then execute the appropriate number of iterations of a loop
to generate a delay. Your loop should be parameterized by a compile-time constant giving the
ColdFire clock frequency, which is 54 MHz. That way the code can be readily modified for a
processor of different speed. The display time should be as close to one second as you can
make it. Some instruction timings are listed in the ColdFire Microprocessor User’s Manual.

3. Prompt the user again when the number display is complete. Exit the program if the user
types “exit”.

4.3 Assignment
1. Implement your program and demonstrate it to the TA.
2. Document and justify how you display each character. Explain how each is unambiguous and

readily understandable.
3. Document how you made your character timing very close to one second.
4. Explain what each statement in the chip select code given above does. The documentation is

given in the ColdFire Microprocessor User’s Manual.



Lab 6:  Keypad Entry Page  30

Lab 5:  LCD Device Driver

5.1 OBJECTIVE
The purpose of this lab is to write a device driver interfacing an LCD character display to the
GPIO. The device driver provides a high-level interface to communicate with a hardware device,
and hides many of the details of using it. You will write a simple interactive program using the
driver.

5.2 INTRODUCTION
In order to implement this lab, you will use the GPIO interface of the MCF5206e.  As discussed
in Lab 4, the GPIO is located at address 0x40000001, after the proper chip select initialization
code has been executed. This forms a word with the LED display. You will use the GPIO to
communicate with the Optrex LCD DMC20434 character display.

5.3 PROCEDURE
You will first write a device driver for the LCD. This will consist of a library of subroutines and
state variables that hide the details of communicating with the LCD. You will then write a client
program using the device driver.

The Device Driver
A device driver is a set of subroutines which simplify the interface with I/O devices so that client
programs can communicate with them. For this lab you will write an LCD device driver and a
client program using its functions. Your device driver will handle the bit control and read/write
operations while your client program will simply call the subroutines and pass data in
parameters.

The LCD device driver must implement the subroutines given below. The parameters will be
passed on the stack, and any strings should be passed by reference (i.e. address).

• Reset() - This function should not only clear the display, but perform all necessary steps
to initialize the display after a system reset. The cursor mode after a reset should be
blinking.

• CursorPosition(x) - Moves the cursor to column x on the display. Must not affect any
data already displayed.

• ShiftDisplay(x,y) - x is the character 'r' or 'l' specifying a right or left shift, respectively. y
is an integer which specifies how many characters to shift the display. This should be able
to shift any number from 1 to 80 in decimal.

• Backspace() - Should behave just like the "Backspace" key on your keyboard. i.e., it
moves the cursor back one space and deletes the character at that position.

• Write(string) - Writes a null-terminated character string to the display at the current
position. string should be the address of a null-terminated array of ASCII characters.

• CursorControl(x) - x will be the letter 'b' for blinking, 'l' for line or 'x' to turn off the



Lab 6:  Keypad Entry Page  31

cursor.
• DisplayOff() - Deactivates the display.
• DisplayOn() - Reactivates the display with the same settings as when it was turned off

with DisplayOff. This means the cursor should be in the same mode and the same text
should be visible as before.

Client Program
Now it will be necessary to develop an application which uses the device driver subroutines. The
client should be a command line user interface that reads 4-character command strings with
parameters and parses those to determine which subroutine to call. The following commands
should be recognized: rset, cpos, shft, bksp, writ, crsr, dpof, dpon. These correspond to the
device driver subroutines. Whenever a command is entered that does not match one of these, the
client should respond with ``What?''. Here is an example of how these commands should work.

dBUG> GO 30020000

LCD_CONTROL> rset [Initialize the display]
LCD_CONTROL> crse b [bad instruction]
What?
LCD_CONTROL> crsr b [Set the cursor to blink]
LCD_CONTROL> shft l 3 [Shift the display left 3 characters]
LCD_CONTROL> cpos 5 [Move the cursor to position 5]
LCD_CONTROL> writ Hello [Type ``Hello'' on the display]
LCD_CONTROL> DPOF [Turn off the display]
LCD_CONTROL> DPON [Turn on the display]
LCD_CONTROL> quit [Return to dBUG]

dBUG>

The interface should also be case-insensitive.

You may use the I/O subroutines that you implemented in Lab 3, or you may use I/O subroutines
from the C library. The TA can give you advice on I/O subroutines available in dBUG.

5.3.1 Interface Design
The first step in implementing the LCD device is to figure out how it will be interfaced with the
MCF5206eLITE board. Since your parallel port is only 8-bits wide, the LCD must run in 4-bit
mode. In this mode you use 4 data I/O lines, 1 Enable Clock, 1 Read/Write control, and 1
Register Select. One pin is not used. The TA will already connect the LCD to the GPIO for you.

You should be very careful with the LCD and GPIO interfaces. All the old LCD
modules were burned out by students who hooked up the power supply
backwards, etc. If you are not certain, ask the TA.

The direction of the bidirectional GPIO is controlled by bit 7 of the LED byte. When this bit is 0,
the GPIO is writing to the LCD. When the bit is 1, it reads from the LCD.

When you write to the GPIO and LED bytes, the data is latched in the MC74LCX646DT
bidirectional latch/drivers. (You can find out more about these chips by looking for the 646 data



Lab 6:  Keypad Entry Page  32

sheet at http://www.ti.com). It then remains stable on the GPIO outputs as long as the direction
control (bit 7 of the LED) is 0. When the GPIO is read, the value returned is the value that is on
the GPIO inputs at that instant. The data is also latched, but each read gets the new instantaneous
value. The LCD driver can be implemented by doing only output to the LCD, so you can just
write to the LED and GPIO bytes without worrying about the details of latching.

Your first interface challenge is to implement the basic write cycle timing. This requires obeying
the timing requirements of the interface, using timing loops similar to what you wrote in Lab 4.
For long delays you can use your existing routine. For shorter delays you may choose to
implement a separate timing routine. The LCD will always work using delays longer than the
minimum, but you should not use delays so large that the LCD appears slow to a human. The
details of the LCD initialization and command sequences, and the timing of read and write cycles
are all given in the Optrex module manual. The manual of the Hitachi controller chip is also
available, but is only supplemental.

One simple way to debug your code is to write it to the LED instead of the GPIO using long time
delays, so that you can watch the sequence of signals. You can then shift it to the GPIO and
speed it up.



Lab 6:  Keypad Entry Page  33

5.4 Assignment
1. How much larger are the time delays that you are using compared to the minimum required

by the Optrex module?

2. The LCD controller has a Busy bit that you can read to determine if the LCD is ready for the
next command. How would you change your program to use this, rather than using time
delays to wait? If you use the Busy bit, do you still need timing loops in your program? Why?
Would this reduce the amount of CPU time used by the device driver?

3. Demonstrate your device driver and client program to the TA and turn in your code.



Lab 6:  Keypad Entry Page  34

Lab 6:  Keypad Entry

6.1 OBJECTIVE
The goal of this lab is to learn how to interface an input device to the microcomputer, in this case
a keypad. The processor will poll it to determine whether a key press is available. The keypad
data will be used to generate a tone using the timer module.

6.2 INTRODUCTION
In order to implement this lab, several modules on the MCF5206e must be used.  This board
offers one 8-bit general-purpose I/O port, two built in general-purpose 16-bit timer/counters, and
two 80-pin connectors for accessing the bus.

6.2.1 INTERFACING HARDWARE

You will get the chance to build some external hardware to interface the keypad to the GPIO.
The primary problem is that keys bounce when pressed and released, and your hardware must
filter out the bouncing to indicate when a key value is stable and ready for the processor. One of
the timer modules of the MCF5206e will be used to drive a speaker interfaced with the board.
The input from the keypad will be used to set the frequency of the timer and cause different tones
at different clock periods.

6.2.2 OVERVIEW

This lab will give you the opportunity to build the necessary hardware to interface with the board
and generate the appropriate tones to the speaker.

6.3 PROCEDURE
This lab consists of two parts, the first part of this lab involves building the keypad interface, and
the second part involves generating the speaker tone.

6.3.1 Keypad Interface Design

The keypad is a 4x4 array of keys that implements a switchpoint matrix. When a key is pressed,
the corresponding row and column wires are connected. The key bounces for a number of
milliseconds when it is pressed or released, and this bouncing must be filtered out, so that only
one key press or release is seen by the processor.

The keypad interface hardware must perform two basic functions. The first is to scan the keypad
to detect when a key is pressed. The second is to debounce the key press, and present the key
information to the GPIO along with a valid bit specifying that the key value is valid.

The simplest way to scan the keypad is to hook the column pins to pullup resistors, so that they
float high when no keys are pressed.  Then pull the rows low one at a time. If a key is pressed on
the row pulled low, then the corresponding column will be pulled low, with bouncing.  The



Lab 6:  Keypad Entry Page  35

reason for using pullup resistors and active-low rows is that the TTL logic you will use can sink
much more current when pulling a wire low than it can source current when pulling a wire high.
It is possible for more than one key on a row to be pressed simultaneously, but you can assume
that only one key is pressed at a time. You can then take the four-bit column value and encode it
as a two-bit value. You then present the key data (4-bit row number, 2-bit column value) and
valid bit to the GPIO. This leaves you one spare GPIO pin.

Remember that bit 7 of the LED must be a 1 in order for the GPIO to be an input device. When
you read from the GPIO address, the processor gets the value that was on the GPIO input pins at
that moment.

Your logic must sequence through the keypad rows fast enough that you don't miss keys being
pressed, but sequencing too fast can cause you design problems.  You can assume that users do
not press keys faster than 3-10 per second.  You can generate any necessary clocks from a crystal
oscillator, dividing it down to the necessary frequencies.

When you detect that a key has been pressed, you must wait until it stops bouncing, and then put
it on the GPIO input and then assert the valid bit. You must have a valid key before asserting the
valid bit so that the CPU does not accidentally read an invalid key. When pressed, the key contact
will rapidly open and close for a number of milliseconds before staying closed. Similarly when
the key is released. As soon as you detect a key being released, you must negate the valid bit
before the valid key value is removed from the GPIO. This prevents the CPU from accidentally
reading an invalid key as it is released. The valid key value and valid bit should remain stable as
long as the key is pressed.

The #1 challenge in this design is the asynchronous nature of the key press and bouncing.  They
could happen at any time relative to your scanning the keypad rows. You must also decide
whether you want to try and stop scanning the rows when a key is pressed, or else scan nonstop.

The TTL data sheets are available at http://www.ti.com under the Digital Logic links. You should
look at the LS logic family (e.g. 74LS04 is a hex inverter chip), as this is what we have.

We also have Motorola (now ON Semiconductor) MC14490 debouncer chips. Their
documentation can be found at http://www.onsemi.com.

Solutions typically take 8-12 chips, depending on what chips are available.

6.3.2 Software Implementation

System Initialization
You need to set up the chip select for the GPIO as in prior assignments.

Keypad Processing
You need to write a program that periodically polls the GPIO to determine if there is a valid key
value present, and if so, record it. A new key value should only be recorded if there was a period
of time when there was no key present. This allows the detection of multiple presses of the same
key. A key sequence is terminated with the '#' key. You must pull fast enough that you do not
miss key presses.



Lab 6:  Keypad Entry Page  36

Timer Programming
The number entered on the keypad is the frequency in Hertz that should be put out on the
speaker. The speaker is hooked to the Tout pin of Timer 2 (labeled TOUT1). The timer must be
programmed so that it puts out a square wave of the appropriate frequency. The speaker will
approximate this as a sine wave. Until the first time a value is entered, the speaker should not put
out any tone. The timer module description can be found in the Coldfire User's Manual. Your
strategy should be to set up the timer module so that each new tone only involves modification of
the timer reference register. This process will also require conversion of the number you typed
into the suitable reference value.

6.4 Assignment
1. Implement and demonstrate the lab to the TA. Show how you can type a sequence of

numbers on the keypad, terminate it with '#', and the corresponding tone in Hertz is produced
on the speaker.

2. Turn in schematics and software.

3. What frequencies are audible to the human ear from your speaker?

4. Draw a design to debounce the keypad without using the debouncer chip. Explain how it
works.



Lab 7: Software-Based Keypad Entry Page  37

Lab 7:  Software-Based Keypad Entry

7.1  Objective
The goal of this lab is to reimplement the Lab 6 keypad, using the least amount of hardware and
using software interrupts.

7.2 Introduction
In Lab 6 you were required to implement keypad scanning hardware so that it would signal a
valid bit on the GPIO when a 4 or 6-bit key value was present on the GPIO. You polled the GPIO
in software to determine if a key was ready, and then processed it. In this lab you will implement
as much of the keypad scanning in software as you can. There were two functions of the
hardware in Lab 6. The first was to scan the keypad, using signals generated from a clock. The
second function was to debounce a key press or release.  In this lab, you will perform as much of
those functions in software as possible.

Rather than using timing loops or busy waiting to check for the valid bit, you will use software
interrupts to trigger the periodic scanning and polling of the keypad.

7.3 Procedure
Debouncing a key in software is relatively straightforward. When you read the GPIO, if you see a
key pressed (e.g. at least one column line pulled low), then you remember what that key was, and
then check some suitable time later to see if it is still pressed.  If so, it is a valid key press.
Similarly, when you see that key released, you record that the key is released and wait a suitable
period of time before checking that key again, so that it stops bouncing. Software debouncing
eliminates the need for debouncing hardware or valid bit.

One can still do row scanning in hardware, but simplify it by scanning at a faster rate.  In the
hardware solution the goal was to have the row times be long enough that the key had a chance to
stop bouncing during a row time. That eliminated the need for the hardware to remember which
key was pressed. However in software it is easy to remember which key was pressed, so row
scanning can be much faster, and a key can be checked on a later scan to see if it is still pressed
and stopped bouncing.

Rather than busy waiting or using timing loops to periodically access the GPIO, you should use
Timer 1 (Timer 2 is used for your speaker output) to generate an interrupt after some time delay.
The interrupt routine should then poll the GPIO. This is performed by programming the timer to
generate an interrupt when it reaches the reference value, rather than just toggling the TOUT line.

To write an interrupt routine you must do two things. The first is to write an assembly-code
interrupt handler wrapper routine that calls the actual C interrupt-handling code, and the second
is to specify the interrupt vector. The timers are autovectored devices. You must program the



Lab 7: Software-Based Keypad Entry Page  38

appropriate interrupt control register (ICR) to specify an appropriate interrupt priority level,
which in turn specifies the interrupt vector. Your code must initialize that vector location to point
to your interrupt handler wrapper.

Because interrupt handlers are not called by a procedure, they do not use RTS to return. Instead
they use RTE. However the C compiler cannot generate an RTE. The solution is to write your
interrupt handler in assembly code, with the code being nothing more than a JSR to your C
function that actually implements the interrupt handling, followed by an RTE.

You have two basic options for keypad scanning.  The first is the have the timer generate regular
interrupts, at which time you do keypad processing. This is similar to a typical polling procedure.
The second option is to schedule future interrupts depending on what is observed. So in the first
approach, you might increment to the next row on one interrupt, then observe that row several
times on following interrupts, then increment to the next row on the next interrupt, and so on. In
the latter approach, you might increment to the next room and check for a key pressed. If a key is
pressed, you could schedule an interrupt, and then check the key again when the interrupt occurs.

The hardware changes for converting to software-based key debouncing are straightforward: you
simply feed the keypad columns directly into the GPIO, eliminating the debouncing hardware. To
do row scanning in software is more challenging. You need to write out the two-bit row value to
the 74LS139 decoder, and have it hold that value until the next time it is changed. The latter can
be done by using a 74LS74 dual flip-flop or similar circuit, with 2 GPIO pins providing the data,
and 1 pin being used to clock the flip-flops.

The challenge is that when writing to the flip-flops, the other GPIO pins are writing to the keypad
columns. If one column is pulling low while a GPIO output is pulling high, a short-circuit occurs.
One can avoid this by making sure that the GPIO pins are pulling low, but a software error can
result in hardware damage. The solution is to put a series resistor between the GPIO pin and the
keypad column, so that even if the GPIO is high and the keypad is low, excessive current will not
flow. The problem is that if the resistor value is too high, then the keypad column may not be
able to sink enough current for the GPIO to see that value as a zero.  The GPIO is implemented
by a 74LS646. It will source as much as 0.4 mA with a 0V input, and requires the input voltage
to be below 0.5V. This implies that the resistor must be less than 1250 ohms. But the 74LS139
that is sinking the current via the column has a non-zero resistance, so the resistor must be even
smaller. A value of 470 ohms is probably safe. The resistance of the 74LS646 output driver is at
least 50 ohms, so this would limit the short-circuit current to less than 10 mA. The output values
would not be correct, but that is not important.

In the case of the flip-flops, when the GPIO is reading, then the flip-flop data and clock inputs
would be floating. The problem with this is that TTL interprets a floating input as high. Since the
flip-flops are clocked on the rising edge of the clock input, if the input had been low and then
floats high, it would be clocked accidentally. However one cannot use a pulldown resistor to
keep it low. The reason is that the clock input can source as much as 3.2 mA when low, which
would require a small resistor to keep it low. But the 74LS646 cannot source that much current
when driving a high value, so the pulldown resistor would overwhelm it. The solution is to keep



Lab 7: Software-Based Keypad Entry Page  39

the clock value normally high, and then to pulse it low and then high to clock values into the flip-
flops. Then a pullup resistor of about 4.7 kohms can keep the clock high when it is floating.
Similarly for the data inputs. Unlike the keypad columns, incorrect software programming will
not cause any hardware damage, just incorrect operation.

7.3.1 Lab Assignment

1. Implement and demonstrate the lab to the TA. Show how you can type a sequence of
numbers on the keypad, terminate it with '#', and the corresponding tone in Hertz is
produced on the speaker.

2. Turn in schematics and software.

3. Explain why you chose the particular interrupt scheme and timing to scan and debounce
your keypad.



Lab 7: Software-Based Keypad Entry Page  40

Lab 8:  Serial Communication

8.1  Objective
In this lab you will be introduced to the basics of communications through the serial interface
provided by the MCF5206eLite evaluation board.   This lab will utilize the serial communication
ability of the MCF5206eLite to transmit data from MCF5206eLite board to the PC’s
HyperTerminal.  Before beginning the lab, be sure to read chapter 9 (The Serial Input/Output
Interface) in your text book dealing with the operations of serial communications with DUARTs,
as well as the synchronous serial data transmissions and serial interface standards sections.  It
may also be beneficial at this to time read the preparatory material located in Appendix A of this
lab in order to fully understand what the provided code is doing.  Additionally there is sample
code dealing with the UARTs and serial communications provided by Motorola in the appendix
of this lab.

8.2 Introduction
The MCF5206e has two independent built in UARTs (Universal Asynchronous/Synchronous
Receiver/Transmitters) available to the user that act independently.  Each of these UARTs
utilizes the system clock, which eliminates the need for an independent crystal.  Some of the
features of these UARTs are:
• The UARTs can be clocked by the system clock or an external clock
• Full duplex asynchronous/synchronous receiver/transmitter channel
• A Quadruple buffered receiver (bytes)
• A Double buffered transmitter (bytes)
• An independently programmable baud rate for both transmitter and receiver, dependant upon

the internal or external clock
• Programmable data format
• Programmable channel modes
• Modem Control Signals (CTS & RTS)
The above features help to reduce the cost of MCF5206eLite board as well as making it more
reliable and usable.  By having the UARTs clocked by the system clock we no longer need to
have a separate crystal on board for the UARTs.  Ensuring that the system works in full duplex
mode creates the fastest transfers possible using the serial connections.  The buffered
input/output limits the number of calls that must be made to the processor for menial repeats of
data.  The programmable baud rate generator allows the MCF5206eLite to be able to
communicate with a number of other hardware at a variable speed.



Lab 7: Software-Based Keypad Entry Page  41

The signals from UART1 are available through the DB9 connector on the MCF5206eLite board.
The  connections are as follows:

UART1 DB9 Pin Connections
Pin number Direction (I/O) Signal Name

1 Output Data Carrier Detect (shorted to pin 1 & 6)
2 Output Receive Data RxD
3 Input Transmit Data TxD
4 Output Not Connected (shorted to pins1&6)
5 NA Signal Ground
6 Output Data Set Ready (shorted to pins1& 4)
7 Input Request to Send
8 Output Clear to Send
9 NA Not Used

Connectors J2 and J4 on the MCF5206eLite are also available to the user for serial
communications.  Connector J2 provides connection to the signals from both UARTs.  Here are
the necessary pin connections on J2 for serial communications:

UART 1 & 2 J2 Pin Connections
Signal Name Pin Number

47 RxD1
48 TxD1
49 RTS1
50 CTS1
51 RxD2
52 GND
53 TxD2
54 RTS2
55 CTS2
57 DREQ1
58 TIN1

For this lab however, it will probably be easier and quicker to use the J4 or DB9 connectors.  The
pin connections for J4 are as listed below:

UART1 J4 Pin Connections
Pin Number Direction Signal Name

1 NA 3.3V
2 Output Clear to Send (CTS)
3 Input Request to Send (RTS)
4 Output Receive Data (RxD)
5 Input Transmit Data (TxD)
6 NA Signal Ground



Lab 7: Software-Based Keypad Entry Page  42

8.3 Procedure

8.3.1 – Example Header File for your C code.
Here is an example of the header file that you will need to use in your serial communications C code.  This
is only intended to be a starting point so there may be additions that need to be made.

/*****************************************************************
UART1

*****************************************************************/

#define UMR11 (*(unsigned char* volatile) (MBAR + 0x00000140))
#define UMR21 (*(unsigned char* volatile) (MBAR + 0x00000140))
#define USR1 (*(unsigned char* volatile) (MBAR + 0x00000144))
#define UCSR1 (*(unsigned char* volatile) (MBAR + 0x00000144))
#define UCR1 (*(unsigned char* volatile) (MBAR + 0x00000148))
#define URB1 (*(unsigned char* volatile) (MBAR + 0x0000014C))
#define UTB1 (*(unsigned char* volatile) (MBAR + 0x0000014C))
#define UIPCR1 (*(unsigned char* volatile) (MBAR + 0x00000150))
#define UACR1 (*(unsigned char* volatile) (MBAR + 0x00000150))
#define UISR1 (*(unsigned char* volatile) (MBAR + 0x00000154))
#define UIMR1 (*(unsigned char* volatile) (MBAR + 0x00000154))
#define UBG11 (*(unsigned char* volatile) (MBAR + 0x00000158))
#define UBG21 (*(unsigned char* volatile) (MBAR + 0x0000015C))
#define UIVR1 (*(unsigned char* volatile) (MBAR + 0x00000170))
#define UIP1 (*(unsigned char* volatile) (MBAR + 0x00000174))
#define UOP11 (*(unsigned char* volatile) (MBAR + 0x00000178))
#define UOP01 (*(unsigned char* volatile) (MBAR + 0x0000017C))

/* #define UMR11 (*(unsigned char* volatile) (MBAR + 0x00000140))

is similar to an Assembly routine

UMR11 EQU $00000140

Both definitions “ equate” or “ define” a register called UMR11
with a memory

location at Hex address {MBAR + 00000140}.
*/

/****************************************************************
UART2

****************************************************************/

#define UMR12 (*(unsigned char* volatile) (MBAR + 0x00000180))
#define UMR22 (*(unsigned char* volatile) (MBAR + 0x00000180))
#define USR2 (*(unsigned char* volatile) (MBAR + 0x00000184))
#define UCSR2 (*(unsigned char* volatile) (MBAR + 0x00000184))
#define UCR2 (*(unsigned char* volatile) (MBAR + 0x00000188))
#define URB2 (*(unsigned char* volatile) (MBAR + 0x0000018C))
#define UTB2 (*(unsigned char* volatile) (MBAR + 0x0000018C))
#define UIPCR2 (*(unsigned char* volatile) (MBAR + 0x00000190))
#define UACR2 (*(unsigned char* volatile) (MBAR + 0x00000190))
#define UISR2 (*(unsigned char* volatile) (MBAR + 0x00000194))
#define UIMR2 (*(unsigned char* volatile) (MBAR + 0x00000194))
#define UBG12 (*(unsigned char* volatile) (MBAR + 0x00000198))
#define UBG22 (*(unsigned char* volatile) (MBAR + 0x0000019C))
#define UIVR2 (*(unsigned char* volatile) (MBAR + 0x000001B0))
#define UIP2 (*(unsigned char* volatile) (MBAR + 0x000001B4))
#define UOP12 (*(unsigned char* volatile) (MBAR + 0x000001B8))
#define UOP02 (*(unsigned char* volatile) (MBAR + 0x000001BC))



Lab 7: Software-Based Keypad Entry Page  43

/***************************************************************
UART Register Settings

***************************************************************/

#define RESET_TX (0x30) /* Reset Transmitter*/
#define RESET_RX (0x20) /* Reset Receiver*/
#define RESET_MR (0x10) /* Reset Mode Register Pointer*/
#define PARITY_NONE (0x10) /* Parity: None*/
#define BPC_8 (0x03) /* 8 Bits Per Character*/
#define NORMAL_CM (0x00) /* Normal Channel Mode*/
#define STOP_BITS_2 (0x0F) /* 2 Stop Bits*/
#define TIMER_MODE (0xDD) /* Timer mode */
#define TX_ENABLED (0x04) /* Transmitter Enabled*/
#define RX_ENABLED (0x01) /* Receiver Enabled*/
#define TX_READY (0x04) /* Transmitter Ready*/
#define RX_READY (0x01) /* Receiver Ready*/

Step 1:
Using this header, we begin our C code for the serial communications transfer by
initializing the transmitter, receiver and mode register pointers in the UCR.  This
initialization can be accomplished by:

UCR1  = RESET_TX;
UCR1  = RESET_RX;
UCR1  = RESET_MR;

Step 2:
The next step in the serial communications program would be to initialize the rest of the
registers needed.  Here is an example of how and what to do.

UISR1   = 0; /*This disables all interrupts */
UMR11 = PARITY_NONE | BPC_8;  /* NO Parity, 8 Bits per Character*/
UMR21 = NORMAL_CM | STOP_BITS_2;  /* Normal Channel Mode, 2 Stop its
UCSR1 = TIMER_MODE;
UBG11 = 0x00;
UBG21 = (SYSCLK/(32))/BaudRate;

** Note: UMR11 and UMR21 both point to the same address.  Resetting the mode register pointer (UCR1
register) sets the pointer to UMR1. After writing to UMR1 the pointer points to UMR2. You should
initialize UMR2 immediately after initializing UMR1. See Appendix A for algorithms used to initialize the
UARTs.



Lab 7: Software-Based Keypad Entry Page  44

Step 3:
Finally it is time to go ahead and enable the transmitter and the receiver which is done as
follows.
UCR1 = TX_ENABLED; /* Enable Transmitter */
UCR1 = RX_ENABLED; /* Enable Receiver */

Step 4:
Now that you have all of the registers initialized, you can actually transmit information
from the MCF5206eLite board to the PC and back.  You, of course, you have to write
these routines first.  Here is the code to transmit a character from the MCF5206eLite to
the PC.

First the character must be put into the transmit buffer.

void UartPutc(int c)
{

while(!(USR1 & TX_READY));
URB1 = (byte)c;

}

Where ‘c’ is the character that is to be sent.



Lab 7: Software-Based Keypad Entry Page  45

8.3.1 Lab Assignment
Write a C program that will transmit a string of characters from the MCF5206eLite board to the PC using UART1.
Print this message on the screen through the HyperTerminal.

8.3.2 Write up
1. Turn in a printout of the code used to transmit the string from the MCF5206eLite to the PC’s

HyperTerminal.

2. Make a list of the registers used in the transfer of the string and what values that they need to be set to.
(i.e. what registers need to be initialized and what initialization values are used.  This list of registers
should include what registers are used to initialize the UARTs, what registers are used to transfer the
string, and what registers are used in the control of the data flow.)

3. What additional registers are needed to receive information into the UARTs and what would they be
initialized to?

4. What size buffers are included in the UARTs.  What are these buffers used for.

BONUS

For the bonus points in this lab, connect two MFC5206eLite boards together to function as a dumb terminal.
Whatever is typed into the first PC and MFC5206eLite should appear on the screen of the second PC and
vice versa.



References Page  46

References

1. Clements, Alan. “Microprocessor Systems Design,” Third Edition, PWS Publishing
Company, 1997.

2. Coldfire Microprocessor Family Programmer’s Reference Manual.  Motorola
Revision 1.

3. MCF5206 Coldfire Integrated Microprocessor User’s Manual.  Motorola 1997.

4. MCF5206eLITE Evaluation Board User’s Manual.  Motorola Revision 2.

5. Motorola’s Coldfire HomePage - http://www.mot.com/coldfire

6. PDACS II Homepage –

7. http://www.cs.tamu.edu/course-info/cpsc483/common/99c/g4/g4.html

http://www.mot.com/
http://www.cs.tamu.edu/course-info/cpsc483/common/99c/g4/g4.html

	Lab 1:  Introduction to the ColdFire Development Environment
	1.1	Objective
	1.2	Introduction
	1.3	Details of the Block Diagram
	1.4	Monitor/Debug Software
	
	
	
	
	
	COMMAND




	DESCRIPTION
	
	
	
	
	BC


	BF





	The STEP and TRACE commands may only work correctly with a single iteraction (i.e. do not give them a numerical argument).�1.5	Setting up the Terminal and the Board
	1.5.1	Set up the ColdFire board - already done by instructor
	1.5.2	Setup the Terminal
	1.5.3	Logging Output to a File
	1.5.4	Transferring a file from the PC to the MCF5206eLITE

	1.6	Procedure
	1.7	Assignment

	Lab 2:  Assembly Programming on the MCF5206eLITE Board
	2.1	Objective
	2.2	Introduction
	2.2.1	Assembly Commands
	2.2.2	Writing a Program
	2.2.3	Defining Constants
	2.2.4	System Calls
	2.2.5	Assembling the Program

	2.3	Assignment

	Lab 3:  C Programming with Embedded Assembly Code
	3.1 Objective
	3.2 Introduction
	3.3 Procedure
	3.3.1 – Sample Code
	3.3.2 – Writing Two Useful Functions

	3.5 Assignment
	Attachment A - Using GCC for the lab
	L

	Lab 4:  LED Output and Timing
	4.1	Introduction
	4.2	Procedure
	4.3	Assignment

	Lab 5:  LCD Device Driver
	5.1 OBJECTIVE
	5.2 INTRODUCTION
	5.3 PROCEDURE
	The Device Driver
	Client Program
	5.3.1 Interface Design

	5.4 Assignment

	Lab 6:  Keypad Entry
	6.1 OBJECTIVE
	6.2 INTRODUCTION
	6.2.1 INTERFACING HARDWARE
	6.2.2 OVERVIEW

	6.3 PROCEDURE
	6.3.1 Keypad Interface Design
	6.3.2 Software Implementation

	6.4 Assignment

	Lab 7:  Software-Based Keypad Entry
	7.1  Objective
	7.2 Introduction
	7.3 Procedure
	7.3.1	Lab Assignment


	Lab 8:  Serial Communication
	8.1  Objective
	8.2 Introduction
	8.3 Procedure
	8.3.1 – Example Header File for your C code.
	8.3.1	Lab Assignment
	8.3.2	Write up


	References

