
December 1997

NASA/CR-97-206284

COMET-AR UserÕs Manual

COmputational MEchanics Testbed With Adaptive Refinement

E. Moas, Editor
Applied Research Associates, Inc., Raleigh, North Carolina

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASAÕs scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASAÕs institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

· TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part of peer reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

· TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

· CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

· CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

· SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

· TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to
NASAÕs mission.

Specialized services that help round out the
STI Program OfficeÕs diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

· Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

· E-mail your question via the Internet to

help@sti.nasa.gov

· Fax your question to the NASA Access

Help Desk at (301) 621-0134

· Phone the NASA Access Help Desk at

(301) 621-0390

· Write to:

 NASA Access Help Desk
 NASA Center for AeroSpace Information
 800 Elkridge Landing Road
 Linthicum Heights, MD 21090-2934

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Purchase Order L-44830D

December 1997

NASA/CR-97-206284

COMET-AR UserÕs Manual

COmputational MEchanics Testbed With Adaptive Refinement

E. Moas, Editor
Applied Research Associates, Inc., Raleigh, North Carolina

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Revised 12/1/97 COMET-AR User’s Manual i

Preface

The COMET-AR User’s Manual provides a reference manual for the COmputational MEchanics
Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by
Lockheed Palo Alto Research Laboratory and NASA Langley Research Center under contract
NAS1-18444. The COMET-AR system is an extended version of an earlier software system called
COMET (also developed by Lockheed and NASA). The primary extensions are the adaptive mesh
refinement capabilities and a new “object-like” database interface that makes COMET-AR easier
to extend further.

This User’s Manual provides a detailed description of the

user

interface to COMET-AR from the
viewpoint of a structural analyst. For a more concise treatment of the user interface which includes
walk-through examples, see the COMET-AR Tutorial. For additional details on Adaptive
Refinement (AR) theory and applications, please see the NASA Contractor Report entitled

Adaptive Refinement for Shell Structures

. For information on how to extend COMET-AR in the
direction of adding new elements, new constitutive models or new data objects, consult the
developer-oriented sections of the Generic Element Processor Manual, the Generic Constitutive
Processor Manual, and the High-level DataBase (HDB) Manual. (See section on “Related
COMET-AR Documentation” in Chapter 1 for a list of such references.)

The contents of this document were originally compiled in October 1993 by Gary Stanley of
Lockheed Palo Alto Research Laboratory. Contributors include:

The document was edited and updated in February 1995 by Applied Research Associates, Inc. to
reflect changes and additions to the system.

Contributor Affiliation Phone Number

Bryan HURLBUT Lockheed Palo Alto Research Laboratory

Itzhak LEVIT Lockheed Palo Alto Research Laboratory

William LODEN Lockheed Palo Alto Research Laboratory

Gary STANLEY Lockheed Palo Alto Research Laboratory (415) 424-3218

Bo STEHLIN Lockheed Palo Alto Research Laboratory

Lyle SWENSON Knowledge Management Systems

Version

October 1993

February 1995

 ii COMET-AR User’s Manual Revised 12/1/97

Table of Contents (Brief)

Part I: INTRODUCTION

Chapter 1 Introduction

Part II: PROCEDURES

Chapter 2 Model Definition Procedures

Chapter 3 Basic Solution Procedures

Chapter 4 Adaptive Solution Procedures

Chapter 5 Utility Procedures

Part III: PROCESSORS

Chapter 6 Pre-Processors

Chapter 7 Element Processors

Chapter 8 Constitutive Processors

Chapter 9 Smoothing Processors

Chapter 10 Error Estimation Processors

Chapter 11 Mesh Refinement Processors

Chapter 12 Matrix/Vector Processors

Chapter 13 Special-Purpose Processors

Chapter 14 Post-Processors

Part IV: DATABASE

Chapter 15 Database Summary

Part V: SOLID MODEL INTERFACE

Chapter 16 Solid Model Interface (SMI)

Revised 12/1/97 COMET-AR User’s Manual iii

Table of Contents (Detailed)

Part I: INTRODUCTION

Chapter 1 Introduction

1.1 Overview of COMET-AR
1.2 Purpose of This User’s Manual
1.3 Capabilities and Limitations of COMET-AR
1.4 Organization of COMET-AR
1.5 Execution of COMET-AR (The User Interface)
1.6 How to Use This User’s Manual
1.7 Related COMET-AR Documentation
1.8 Command Language Summary
1.9 Glossary of COMET-AR Terms, Notations, and Symbols
1.10 References

Part II: PROCEDURES

Chapter 2 Model Definition Procedures

2.1 Overview
2.2 Reference Frames and Coordinate Systems
2.3 Generic Model Definition Procedures
2.4 Node Definition Procedures
2.5 Element Definition Procedures
2.6 Material/Fabrication Definition Procedures
2.7 Orientation of Fabrication Reference Frames
2.8 Load Definition Procedures
2.9 Boundary Condition Definition Procedures
2.10 Automatic DOF Suppression and Drilling Stabilization
2.11 Sample Model Definition Procedures (Summary)
2.12 Model Definition via PATRAN and PST
2.13 Global Model to Analysis Model Translation Procedure

Chapter 3 Basic Solution Procedures

3.1 Overview
3.2 Procedure L_STATIC_1
3.3 Procedure NL_STATIC_1

Chapter 4 Adaptive Solution Procedures

4.1 Overview
4.2 Procedure AR_CONTROL

Chapter 5 Utility Procedures

5.1 Overview

 iv COMET-AR User’s Manual Revised 12/1/97

5.2 Procedure ES
5.3 Procedure EST_ERR_1
5.4 Procedure EST_ERR_SM
5.5 Procedure FACTOR
5.6 Procedure FORCE
5.7 Procedure INITIALIZE
5.8 Procedure REF_MESH_1
5.9 Procedure SOLVE
5.10 Procedure STIFFNESS
5.11 Procedure STRESS
5.12 Procedure MASS

Part III: PROCESSORS

Chapter 6 Pre-Processors

6.1 Overview
6.2 Processor AUS (Nodal Force Tabulation)
6.3 Processor COP (Constraint Processor)
6.4 Processor GCP (Generic Constitutive Processor)
6.5 Processor GEP (Generic Element Processor)
6.6 Processor PST (COMET-AR_to_PATRAN)
6.7 Processor REDO (Dataset Reformatter)
6.8 Processor RENO (Node Renumbering)
6.9 Processor RSEQ (Node Renumbering)
6.10 Processor TAB (Tabulation of Nodal Coordinates)
6.11 Processor NODAL
6.12 Processor GM2AM (Geometric to Analysis Model)

Chapter 7 Element Processors

7.1 Overview
7.2 Processor ES (Generic Element Processor)
7.3 Processor ES1 (SRI and ANS Shell Elements)
7.4 Processor ES5 (STAGS Shell Element)
7.5 Processor ES6 (STAGS Beam Element)
7.6 Processor ES1p (Variable-p Lagrange Quadrilateral Shell Elements)
7.7 Processor ES7p (ANS Shell Elts.; Var. Order Quads)
7.8 Processor ES36 (MIN3/6 Triangular Shell Elements)

Chapter 8 Constitutive Processors

8.1 Overview
8.2 Generic Constitutive Processor Description
8.3 Fabrication Definition
8.4 Material Property Definition
8.5 Analysis Control
8.6 Update Command

Revised 12/1/97 COMET-AR User’s Manual v

Chapter 9 Smoothing Processors

9.1 Overview
9.2 Processor SMT (Tessler Smoothing)
9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Chapter 10 Error Estimation Processors

10.1 Overview
10.2 Processor ERR (Generic Error Estimator)
10.3 Processor ERR2 (Error Estimates: Stress Smoothing)
10.4 Processor ERR4 (Error Estimates: Energy Smoothing)
10.5 Processor ERR6 (Error Estimates: Strain Smoothing)
10.6 Processor ERRa (Error Accumulator)
10.7 Processor ERRSM (Error Estimates: Smoothing-Based)

Chapter 11 Mesh Refinement Processors

11.1 Overview
11.2 Processor REF1 (Mesh Refinement: h

c

/h

s

/h

t

/p)

Chapter 12 Matrix/Vector Processors

12.1 Overview
12.2 Processor ASM
12.3 Processor ASMs (Matrix Assembler)
12.4 Processor ITER (Iterative Linear Equation Solver)
12.5 Processor PVSOLV (Direct Linear Equation Solver)
12.6 Processor SKY (Direct Linear Equation Solver)
12.7 Processor SKYs (Direct Linear Equation Solver)
12.8 Processor VEC (Vector Algebra Utility)
12.9 Processor VSS (Vectorized Sparse Solver)

Chapter 13 Special-Purpose Processors

13.1 Overview
13.2 AMPC (Automatic Multipoint Constraint)
13.3 Processor COMET-AR (System Macroprocessor)
13.4 Processor TRIAD (Computational Frame Realignment)

Chapter 14 Post-Processors

14.1 Overview
14.2 Processor ARG (Adaptive Refinement Graphics)
14.3 Processor HDBprt (Database Print Utility)
14.4 Processor PST

 vi COMET-AR User’s Manual Revised 12/1/97

Part IV: DATABASE

Chapter 15 Database Summary

15.1 Overview
15.2 Data Objects
15.3 Database Access
15.4 Database Organization and Evolution

Part V: SOLID MODEL INTERFACE

Chapter 16 Solid Model Interface (SMI)

16.1 Overview
16.2 Solid Model Interface (SMI) Options
16.3 The Discrete SMI Option
16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual

Part I

INTRODUCTION

COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.1 Overview of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.1- 1

Chapter 1 Introduction

1.1 Overview of COMET-AR

COMET-AR is an acronym for Computational Mechanics Testbed with Adaptive Refinement, a
software system developed jointly by Lockheed Palo Alto Research Laboratory and NASA Lang-
ley Research Center to perform automated structural analysis of aerospace vehicles via adaptively
controlled numerical simulation (i.e., finite element modeling with adaptive mesh refinement).

COMET-AR is intended to be a full-capability production code that can be utilized by a wide
spectrum of structural engineers to facilitate the design of a wide variety of aerospace (and other)
vehicles. Currently, it is a research code with some advanced adaptive refinement (AR) capabili-
ties, but also with some significant gaps in generality and quality assurance. It is nonetheless
capable of analyzing some very complicated problems, and has been applied to aircraft shell
structural models possessing hundreds of thousands of degrees of freedom (DOF), achieving solu-
tions that would have required many more DOFs with conventional finite element codes. We wish
to make COMET-AR available to engineers who wish to benefit from its capabilities while partic-
ipating in its development and evolution. This User’s Manual (and the accompanying Tutorial [1])
is a prerequisite for such engineers.

The organization of this introductory chapter to the User’s Manual is summarized in Table 1-1.

It is absolutely essential for the novice user to read Sections 1.4 and 1.5 (on organization and exe-
cution of COMET-AR, respectively) before attempting to read subsequent chapters in this man-
ual, as these sections explain how the parts fit together into a working system.

Table 1-1

Outline of Chapter Chapter 1: Introduction

Section Title

1.1 Overview of COMET-AR

1.2

Purpose of This User’s Manual

1.3 Capabilities and Limitations of COMET-AR

1.4 Organization of COMET-AR

1.5 Execution of COMET-AR (The User Interface)

1.6 How to Use This User’s Manual

1.7 Related COMET-AR Documentation

1.8 Command Language Summary

1.9 Glossary of COMET-AR Terms, Notation, & Symbols

1.10 References

1.1 Overview of COMET-AR 1 Introduction

1.1-2 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.2 Purpose of This User’s Manual

Revised 12/1/97 COMET-AR User’s Manual 1.2- 1

1.2 Purpose of This User’s Manual

The COMET-AR User’s Manual is intended to be a reference manual for both novice and experi-
enced COMET-AR users. The term “user” refers here to a person who wishes to employ COMET-
AR to perform structural analysis without changing or adding to the existing capabilities. A typi-
cal COMET-AR user would have at least some structural analysis experience (hopefully finite ele-
ment structural analysis) but little or no software development experience. (This is in contrast to a
COMET-AR developer, who might be interested in developing or co-developing new capabilities
within COMET-AR and who would be expected to have a software development background. The
User’s Manual is not intended for such a person.)

The term “reference manual” refers here to a comprehensive backup document that is used to look
up information after the user is familiar with the system and acquired some hands-on experience,
either with the help of the COMET-AR User’s Tutorial or by a personal tutorial from an experi-
enced colleague.

The COMET-AR User’s Manual does, however, provide an overview of the system, what it can
do, and how to use it, in this introductory chapter. This is no substitute for the COMET-AR Tuto-
rial and hands-on experience. It is recommended that the prospective user read all of the current
chapter, then gain experience with examples in the Tutorial. Return to the User’s Manual when it
is time to solve a real problem and you need to know all of the options and prepare the detailed
ingredients.

1.2 Purpose of This User’s Manual 1 Introduction

1.2-2 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.3 Capabilities and Limitations of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.3- 1

1.3 Capabilities and Limitations of COMET-AR

A capabilities summary is provided in Table 1.3-1.

A corresponding summary of important limitations associated with each of the above categories is
given in Table 1.3-2.

Table 1.3-1

Summary of COMET-AR Capabilities

Category Capability Description

APPLICATIONS General Shell Structures See, e.g., HSCT model on cover

ANALYSIS TYPES Linear Statics Direct and iterative equation solvers

Nonlinear Statics Arclength-controlled solution algorithm

ELEMENT TYPES Quadrilateral Shell Elements High-performance ANS formulation

Triangular Shell Elements High-perform. MIN3 formulation

Beam and Solid Elements Implemented but untested

MATERIAL MODELS Elastic/Plastic Isotropic White-Besseling plasticity model

Elastic Orthotropic 2D and 3D orthotropy

Composite Laminates Multiple orthotropic shell layers

EXTERNAL LOADS Point, Line, Surface, & Body Includes live pressure loads

BOUNDARY

CONDITIONS

Single-Point and Multi-Point Linear
Constraints

Constraints enforced by direct elimina-
tion of superfluous unknowns

ADAPTIVE MESH
REFINEMENT (AR)

 Error Estimates Smoothing-based Modified Zienkiewicz method

 Refinement Schemes Transition-based h (ht) Quad. & triang. transition patterns

Constraint-based h (hc) Arbitrary element fission/fusion

Uniform p Up to p = 5 for some elements

HARDWARE Most Serial Computers with Unix
O.S.

SUN, DEC, CONVEX, CRAY, and
TITAN, for example

SOFTWARE Command-Language-Driven Fortran
Processors

Solution procedures are written in high-
level command language

Modular/Extendible System Con-
nected by Database

Developer interfaces for new elts, con-
stit. models, and data objects

1.3 Capabilities and Limitations of COMET-AR 1 Introduction

1.3-2 COMET-AR User’s Manual Revised 12/1/97

For information on the capabilities and limitations of COMET-AR in each of these areas, refer to
the appropriate chapter(s) in this User’s Manual. For example, analysis types are described under
the chapter on

Basic Solution Procedures

, element types, material models, external loads, and
boundary conditions are described in the chapter on

Model Definition Procedures

 (and other
chapters referenced therein), and adaptive mesh refinement techniques are described in the chap-
ter on

Adaptive Solution Procedures

 (as well as in the chapters on

Error Estimation

Processors

and

Mesh Refinement

Processors

).

Table 1.3-2

Summary of COMET-AR Limitations

Category Limitations

APPLICATIONS Very little experience with realistic applications

ANALYSIS TYPES Cannot perform dynamic response or eigenvalue analysis

ELEMENT TYPES No beam or solid elements (implemented but not tested)

MATERIAL MODELS Cannot handle finite strains

EXTERNAL LOADS Cannot handle multiple load systems in nonlinear analysis

BOUNDARY CONDS. Cannot handle nonlinear constraint

ADAPTIVE MESH
REFINEMENT (AR)

 Error Estimates Need to be made more robust for built-up structures

 Refinement Schemes Not compatible with all finite element types

HARDWARE Not yet implemented on parallel processing computers

SOFTWARE User interface is not uniformly graphical

1 Introduction 1.4 Organization of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.4- 1

1.4 Organization of COMET-AR

An overview of the COMET-AR software system is shown in Figure 1.4-1. The system is modular
and composed of several layers, although the user only interacts directly with the top one or two
layers.

The top layer consists of command-language procedures written in a simple, high-level language
called CLAMP (Command-Language for Applied Mechanics Processors). These procedures are
used to control the next layer, which consists of independently executable Fortran processors.
Linked into each processor are the architectural utilities: the command-language interpreter
(CLIP) and the high-level database manager (HDB). At the foundation level is the database, which
consists of typically one (but occasionally more) HDB files, each containing a number of datasets
(which we also refer to as data objects).

Figure 1.4-1

Overview of COMET-AR Organization

The function and capabilities available within each layer are described in the following sections.

H D B

C L I P

H D B

C L I P

H D B

C L I P

H D B

C L I P

P r o c e d u r e s

P r o c e s s o r s

D a t a b a s e

Data Objects

 Arch.

Command

Database

 Utilities

 Interface

Interface

U S E R

C O M E T - A R

(Command-Language)

(FORTRAN)

1.4 Organization of COMET-AR 1 Introduction

1.4-2 COMET-AR User’s Manual Revised 12/1/97

1.4.1 COMET-AR Procedures

COMET-AR command-language procedures are either user-written or pre-defined. User-written
procedures are typically employed for model definition unless an alternate pre-processor such as
PATRAN is used to generate the model. Pre-defined procedures are typically employed to per-
form the solution. For example, basic solution procedures exist for linear and nonlinear static
analysis, and a special adaptive solution procedure exists for performing linear analysis with
adaptive mesh refinement. A number of other pre-defined procedures, called utility procedures,
are employed by the solution procedures to perform common functions such as stiffness matrix
formation, factorization, and equation solving. The utility procedures may be used to facilitate
development of new solution procedures as well. A summary of currently available COMET-AR
procedures is given in Table 1.4-1.

The relationship between adaptive solution procedures, basic solution procedures, and utility pro-
cedures is illustrated in Figure 1.4-2.

Table 1.4-1

Summary of Current COMET-AR Procedures

Procedure Description

MODEL DEFINITION Procedures

User-Written Examples of these may be found in the Tutorial

BASIC SOLUTION Procedures

L_STATIC_1 Linear static structural analysis

NL_STATIC_1 Nonlinear static structural analysis with arclength control

ADAPTIVE SOLUTION Procedures

AR_CONTROL Linear and nonlinear static analysis with adaptive mesh refinement

UTILITY Procedures

ES Performs generic element-level functions (via element processors)

EST_ERR_1 Performs error estimation functions (via error estimation processors)

FACTOR Factors assembled matrices, e.g., stiffness (via matrix processors)

FORCE Forms/assembles force vectors (via element and vector processors)

INITIALIZE Initializes database prior to solution (via elt. and constraint processors)

REF_MESH_1 Performs adaptive mesh refinement (via mesh refinement processors)

SOLVE Solves linear equation systems (via matrix processors)

STIFFNESS Forms and assembles stiffness matrix (via elt. and assembly processors)

STRESS Computes element stresses, strains, etc. (via element processors)

1 Introduction 1.4 Organization of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.4- 3

Figure 1.4-2

Hierarchy of COMET-AR Procedure Types

The same utility procedures may be used by a number of different solution procedures and the
same basic solution procedures may be used by a number of different adaptive solution proce-
dures (even though there is only one adaptive solution procedure at the moment).

Descriptions of all of the COMET-AR procedures listed in Table 1.4-1 may be found in Part II of
this manual.

1.4.2 COMET-AR Processors

COMET-AR processors perform the bulk of the computational work within COMET-AR. Each
processor is an independently executable module which is typically driven (i.e., orchestrated) by
one or more of the COMET_AR procedures described in the preceding subsection; however,
some COMET-AR processors are intended to be run interactively by the user, without intervening
procedures. While it is possible for users to write new processors, it is typically not necessary
unless some fundamental new capability is missing that the user can supply. A summary of cur-
rently available COMET-AR processors is given in Table 1.4-2.

Adaptive Solution Procedures

Basic Solution Procedures

Utility Procedures

1.4 Organization of COMET-AR 1 Introduction

1.4-4 COMET-AR User’s Manual Revised 12/1/97

Table 1.4-2

Summary of Current COMET-AR Processors

Processor Function

Pre-Processors

AUS Tabulates specified nodal forces and displacements

COP Constraint processor; tabulates boundary conditions, numbers eqns.

PST PATRAN-to-COMET-AR conversion

REDO Reformats certain datasets from COMET to COMET-AR format

RENO Renumbers nodes for bandwidth optimization; geometric algorithm

RSEQ Renumbers nodes for bandwidth optimization; variety of algorithms

TAB Tabulates nodal coordinates and reference frame transformations

ELEMENT Processors

ES1p Variable-order basic Lagrange quadrilateral shell elements

ES7p Variable-order Assumed Natural Strain (ANS) quad. shell elements

ES36 Anisoparametric MIN3/6 triangular shell elements

CONSTITUTIVE Processors

GCP Generic constitutive processor

ERROR ESTIMATION Processors

ERR2 Stress-smoothing-based error estimates; Zienkiewicz’s method

ERR4 Strain-energy-smoothing-based error estimates; Levit’s method

MESH REFINEMENT Processors

REF1 Adaptive mesh refinement with variety of h techniques (and uniform p)

MATRIX/VECTOR Processors

ASM Assembles element matrices into SKYLINE or COMPACT format

ASMs Assembles element matrices into SKYLINE format for

h

s

-refinement

PVSOLV Direct linear equation solver optimized for vector machines

SKY Direct linear equation solver based on SKYLINE matrices

SKYs Direct and iterative linear equation solvers for hs-refinement

ITER Iterative linear equation solver based on COMPACT matrices

VEC General-purpose vector algebra utility

Post-Processors

ARGx Interactive graphics model and solution post-processor

HDBprt High-level database print utility

PST COMET-AR-to-PATRAN conversion

Special-Purpose Processors

COMET-AR Start-up/control processor for COMET-AR software system

TRIAD Re-aligns computational triads for automatic drilling DOF suppression

1 Introduction 1.4 Organization of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.4- 5

All the current COMET-AR processors are written in FORTRAN (except for parts of the common
architectural utilities embedded within them), but there is no reason why new processors cannot
be written in another language (such as C).

Descriptions of all of the COMET-AR processors listed in Table 1.4-2 may be found in Part III of
this manual.

1.4.3 COMET-AR Architectural Utilities

Each COMET-AR processor is linked to two architectural utilities when it is created: CLIP and
HDB (as illustrated in Figure 1.4-3). CLIP [2] is a command-language interpretation utility that
both parses commands targeted for individual processors and executes procedure directives, spe-
cial commands that appear in procedures and may be used to coordinate one or more processors
(see User Interface in Section 1.5). HDB [3] is a high-level database management utility which
processes most of the data objects associated with COMET-AR. HDB actually represents a con-
glomeration of layered database utilities. It invokes a generic database utility called DB to per-
form database transactions with dynamic memory management; DB in-turn invokes a name-
oriented record management system called GAL [4] for all file-based data transactions.

Figure 1.4-3

Relationship Between Processors and Architectural Utilities

H D B

C L I P

 Architectural
 Utilities

Command-Language
Utility

High-Level Database
Utility

Processor

Data Objects

Command Language

1.4 Organization of COMET-AR 1 Introduction

1.4-6 COMET-AR User’s Manual Revised 12/1/97

Documentation on the special input arguments associated with each procedure, and the special
commands associated with each processor, is provided in Parts II and III of this manual. Docu-
mentation on CLIP (and procedure directives) may be found in reference [2].

Documentation on the data objects associated with COMET-AR analysis is provided in Part IV of
this manual. Documentation on the HDB, DB, and GAL utilities may be found in references [3],
[5], and [4].

1.4.4 COMET-AR Database

The COMET-AR database (illustrated in Figure 1.4-4) consists primarily of a main (or central)
disk file, typically (but not necessarily) called

Case

.DBC, where

Case

 represents a user-defined
case name. Such files are also called data libraries, and each contains a number of named datasets
(also called data objects). Most data objects may be viewed as a table of named attributes that
range over some index, such as the number of nodes in the model, the number of elements in the
model, etc. (and most come equipped with their own set of Fortran access utilities to facilitate data
manipulation by other code developers). Some of the data objects currently in COMET-AR con-
tain such things as element definition parameters, element loads, element matrices, nodal coordi-
nates, nodal vectors, system vectors, system matrices, and so on.

Figure 1.4-4

COMET-AR Database

In addition to the central database file (

Case

.DBC), two auxiliary files called

Case

.DBE and

Case

.DBS are often used (at the user’s option in various Solution Procedures) for element and
system matrices. These typically are the most space-consuming data objects, and separating them
from the main database makes it easier to discard them without sacrificing any of the more user-
oriented data, like displacement and stress results, which typically reside in the

Case

.DBC file.

D a t a b a s e

Data Objects

Case.DBC
(Central File)

Case.DBE

Case.DBS

(Element Matrices)

(System Matrices)

Files
(Libraries)

Data

1 Introduction 1.4 Organization of COMET-AR

Revised 12/1/97 COMET-AR User’s Manual 1.4- 7

The hierarchical structure of a COMET-AR data library may be viewed as follows.

A complete description of all data objects and libraries (i.e., files) relevant to performing an anal-
ysis with COMET-AR is given in Part IV of this manual.

Level 1 Level 2 Level 3 Interpretation

Data Library File

Dataset
(= Data Object)

Records associated with node, element, or system attributes

Record (and
Record Groups)

Data associated with node, element, or system attributes

COMET-AR data library (i.e., file) names such as

Case

.DBC, which
appear throughout this manual, are recommended conventions. They are
not mandatory. Most COMET-AR command language procedures and
processors refer to the library identification number (or

ldi

) of a file,
rather than to the file name, so that in general the user may choose
COMET-AR file names arbitrarily.

1.4 Organization of COMET-AR 1 Introduction

1.4-8 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 1

1.5 Execution of COMET-AR (The User Interface)

1.5.1 Getting Started

Before using COMET-AR to perform a structural analysis, the following initialization steps are
necessary. These steps assume the system has been installed on a computer with a UNIX operat-
ing system.

Step 1:

Step 2:

Modify your .cshrc file so that it contains the necessary PATH directions to the
COMET-AR software system, as well as the necessary definition of UNIX environ-
ment variables such as $CSM. The proper modifications should be obtained from a
representative of the COMET-AR software development staff in the Computational
Mechanics Branch of NASA Langley Research Center. If COMET-AR is installed
properly, this step can be accomplished by entering the UNIX-level command:

This step only has to be performed once, preferably by the system software adminis-
trator at your installation.

Create a separate working directory for each new COMET-AR analysis. Copy to that
directory the COMET-AR procedure library database file, called “proclib.gal.” This
step can be accomplished by issuing the UNIX-level command:

which will automatically perform the copy from the appropriate directory. If you are
only using “canned” COMET-AR solution procedures and not adding any of your
own, this step can be replaced by a simple soft link of the name “proclib.gal” to the
actual master version of the file “proclib.gal,” which should be write-protected.

ar_login

ar_proc

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-2 COMET-AR User’s Manual Revised 12/1/97

Step 3:

The following subsections describe the process of performing an analysis with COMET-AR, from
pre-processing through post-processing.

1.5.2 User Interface Overview

A COMET-AR analysis (or simulation, depending on your perspective) consists of three phases.

Each of these phases involves a somewhat different user interface, especially if PATRAN is used
for pre/post-processing, as illustrated in Figure 1.5-1.

In Figure 1.5-1, the .com files are UNIX script files containing COMET-AR procedure calls, the
.clp files are COMET-AR command-language procedures, and GUI denotes a graphical user inter-
face. The ingredients for each phase are explained in detail in the following subsections.

Create the necessary UNIX script file(s), model definition procedures, and/or PAT-
RAN models for the problem at hand, as described in the following subsections

Phase 1

Phase 2

Phase 3

PRE-PROCESSING

SOLUTION

POST-PROCESSING

(Model Definition)

(Result/Model Evaluation)

(Finite Element Analysis)

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 3

Figure 1.5-1 Overview of User Interfaces Involved in Different Analysis Phases

1.5.3 Pre-Processing Phase — Model Definition

In the Pre-Processing Phase, an initial finite element model (i.e., nodes, element types, connectiv-
ity, loads, boundary conditions, material properties, etc.) is defined by the user and stored in a
COMET-AR database. The user interface for this phase depends on whether or not PATRAN is
being employed to generate the initial finite element model; thus, we shall consider the two cases
separately.

1.5.3.1 Pre-Processing Without PATRAN

This is currently the recommended way to define a COMET-AR initial model (as the PATRAN
interface is a recent addition that is not yet considered robust). The user interface requirements for
model definition are shown in Figure 1.5-2.

C O M E T - A R

U s e r

S o l u t i o nPre-Processing Post-Processing

Model .com Soln.com GUI

Case.clp

Soln. Procedure
PATRAN PATRAN

Pre-Processors Post-Processors

Phase Phase Phase

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-4 COMET-AR User’s Manual Revised 12/1/97

Figure 1.5-2 User Interface for Pre-Processing Without PATRAN

Two files must be created by the user: i) the Case.clp file, which is a COMET-AR command-lan-
guage procedure file containing the commands necessary to generate a model with the various
COMET-AR pre-processors (here Case denotes a user-selected case name); and ii) the Model.com
file, a UNIX script file that runs the COMET-AR start-up processor (also called the COMET-AR
macro-processor) which in turn invokes the Case.clp file. The result of executing the Model.com
file is that a COMET-AR database (Case.DBC file) is generated, as well as an optional Model.log
file containing a printed record of the COMET-AR execution. (The first part of the filename,
Model, is an arbitrary user-defined name.)

The steps involved in pre-processing without PATRAN are summarized next. Refer to the
COMET-AR User’s Tutorial for detailed examples.

Step 1:

Construct a Model Definition Procedure (call it Case.clp) to generate the initial
COMET-AR finite element model. Instructions are given in the chapter on Model Def-
inition Procedures, in Part II of this manual. Basic model definition procedures have
input arguments and contain a simple list of processor commands driving various
COMET-AR pre-processors, described in Part III. More sophisticated model defini-
tion procedures involving looping and conditional statements and variables (called
macrosymbols) can be constructed by referring to a separate manual on “CLIP Proce-
dure Directives” [2] or consulting the COMET-AR Tutorial [1] for examples.

U S E R

Model.com

Case.clp

Case.DBC

Model.log

P r e - P r o c e s s o r s

C O M E T - A R

Model Data Objects

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 5

Step 2:

Step 3:

Construct a UNIX script file (call it Model.com) to initiate COMET-AR execution and
invoke the model definition procedure created in Step 1. The form of the Model.com
file is as follows.

The “comet-ar” line executes the COMET-AR start-up/control processor. The ∗ open
directive creates a new database file called Case.DBC to store the model. Then the
∗ add directive compiles the user-written Case.clp procedure file, and the ∗ call direc-
tive invokes it, causing the model to be generated in the database file called
Case.DBC, where Case represents a user-defined name for the case (i.e., problem)
being analyzed. There may be other input arguments to procedure Case; depending on
how the user has written it (see chapter on Model Definition Procedures in Part II for
details). Finally, the ∗ stop directive terminates the COMET-AR execution, making
sure that the database is properly closed.

Execute the Model.com file as you would any UNIX script file and save the printed
output in a Model.log file, e.g., using the following UNIX command:

Model.com >& Model.log &

which would cause the COMET-AR to run in batch (background) mode. After the run
has completed successfully, proceed to either the Solution or Post-Processing phase.

comet-ar
∗ open 1, Case.DBC
∗ add Case.clp
∗ call Case (. . . input arguments . . .)
∗ stop

Sample Model.com File

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-6 COMET-AR User’s Manual Revised 12/1/97

1.5.3.2 Pre-Processing With PATRAN

When using PATRAN to define the initial finite element model, the user still must perform the last
two steps of the “Pre-Processing Without PATRAN” recipe (see previous subsection), but two
new initial steps are necessary: i) PATRAN model definition, and ii) conversion of the PATRAN
database (i.e., Neutral File) to a COMET-AR model definition procedure. The procedure is illus-
trated in Figure 1.5-3.

Figure 1.5-3 User Interface for Pre-Processing With PATRAN

The steps involved in generating a COMET-AR model via PATRAN are outlined in the following
paragraphs.

The PATRAN mode of pre-processing COMET-AR has only been implemented
recently, and may not be quite as robust as the intrinsic form of COMET-AR
pre-processing, which doesn’t involve PATRAN. COMET-AR’s intrinsic (non-
PATRAN) pre-processing capabilities, however, are not adequate for generating
complex models, as they place too much of a burden on the user. A third alterna-
tive is for the user to employ his/her favorite finite element pre-processor and
write a customized data-converter, producing as output a COMET-AR Model
Definition procedure file, the ingredients for which are described in Part II.

U S E R

Case.DBC

C O M E T - A R

Model Data Objects

PATRAN PST

PATRAN
Neutral File

Model.com

Case.clp

Model.log

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 7

Step 1:

Step 2:

Step 3:

1.5.4 Solution Phase

After the model has been successfully defined (see Pre-Processing Phase), the Solution Phase can
begin. During the Solution Phase, the user invokes one of COMET-AR’s standard Solution Proce-
dures, and an analysis is performed that produces various structural response data in the database.
If adaptive mesh refinement has been selected by the user (currently possible only with linear
static analysis), a series of solutions and corresponding updated meshes will be produced, and all
related data (throughout the mesh-update history) will also be available in the database. The pro-
cedure is illustrated in Figure 1.5-4.

Construct a PATRAN model of the new problem, including all finite element informa-
tion: nodes, elements/mesh, loads, boundary conditions, material properties, etc.
Instructions for PATRAN are beyond the scope of this manual. Here we assume that
the prospective COMET-AR user is an experienced PATRAN user (otherwise, refer to
the “Post-Processing Without PATRAN” instructions). The result of the PATRAN run
should be a PATRAN Neutral File containing a complete description of the initial
finite element model.

Run the PATRAN to COMET-AR conversion processor PST to automatically gener-
ate a COMET-AR Model Definition Procedure file, called Case.clp. (This is analo-
gous to Step 1 in the “Pre-Processing Without PATRAN” instructions, where the
Case.clp file was written by the user.) Instructions for running PST in pre-processing
mode are given in the section on Processor PST under the Pre-Processors chapter in
Part III of this manual. Some editing of the Case.clp file may be required by the user
to do such things as selecting the COMET-AR element type name, and defining mate-
rial and fabrication (i.e., section) properties.

Continue by performing Steps 2 and 3 of the “Pre-Processing without PATRAN”
instructions, in which a Model.com file is written to invoke the Case.clp file, and the
former file is executed.

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-8 COMET-AR User’s Manual Revised 12/1/97

Figure 1.5-4 User Interface During the Solution Phase

The user interacts with COMET-AR by writing a UNIX script file, arbitrarily called Soln.com,
which invokes the desired COMET-AR standard solution procedure. If the solution procedure is a
basic (non-adaptive) one such as L_STATIC_1 or NL_STATIC_1, the output mesh will be the
same as the input mesh. If an adaptive solution procedure such as AR_CONTROL is selected, a
number of new, adaptively refined meshes and corresponding solutions will reside on the data-
base. The Case.DBC file will contain most of this data. The Case.DBE and Case.DBS files will
optionally contain the latest version of the element and system stiffness matrices, respectively,
which can be discarded immediately if disk space is a problem.

The steps involved in performing a solution with COMET-AR are summarized next. The main
requirement for the user is to become familiar with using the various COMET-AR Solution Proce-
dures described in Part II of this manual, so that a reasonable choice can be made for both the pro-
cedure type and its associated input arguments.

Step 1:

First duplicate the COMET-AR database file, Case.DBC, generated during pre-processing,
renaming one of the copies to Case_model.DBC. This is just a precaution in case you decide to
repeat the solution from scratch, in which case you will probably want a fresh database file
(with no extraneous solution data) without having to re-generate the model as well. The
Case_model.DBC file provides a backup for this purpose.

U S E R

Soln.com

Case.DBC

Soln.log

C O M E T - A R

Solution Data Objects
Case.DBE

Case.DBS

Solution_Procedure

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 9

Step 2:

Step 3:

Construct a UNIX script file (call it Soln.com) to initiate COMET-AR execution and invoke the
solution procedure of your choice. The form of the Soln.com file is as follows.

The “comet-ar” line executes the COMET-AR start-up/control processor. The first “∗ open”
directive opens the standard COMET-AR procedure database file (proclib.gal), which contains
all of COMET-AR’s solution and utility procedure files in compiled form. The “*set plib”
directive tells COMET-AR where to look for these procedures. The second “*open” directive
opens the COMET-AR database file containing the model definition, which was just created in
the pre-processing phase. This file may contain solution data too if the current run is a re-start,
or continuation. (Some solution procedures open the .DBC file internally and so the second
∗ open directive may not be required in the Soln.com file). Next, the “*call” directive invokes
the user-selected solution procedure to perform an analysis with COMET-AR. The names and
input-argument options for the various COMET-AR solution procedures are described in Part II
of this manual. Finally, the ∗ stop directive terminates the COMET-AR execution, making sure
that the database is properly closed.

Execute the Soln.com file and save the printed output in a Soln.log file, e.g.,

Soln.com >& Soln.log &

which would cause the COMET-AR to run in batch (background) mode. After the run has com-
pleted successfully, proceed to the Post-Processing phase (and/or repeat/re-start the solution).

Sample “Soln.com” File

comet-ar
∗ open/rold 10, proclib.gal
∗ set plib = 10
∗ open 1, Case.DBC . (this line is not always required)
*call Solution_Procedure (. . . input argument s . . .)
∗ stop

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-10 COMET-AR User’s Manual Revised 12/1/97

1.5.5 Post-Processing Phase — Result/Model Evaluation

1.5.5.1 Post-Processing Without PATRAN

Several COMET-AR processors are available for post-processing solution and/or model data (see
Figure 1.5-5). The most powerful is processor ARGx, which is an interactive-graphics color dis-
play processor that may be used to visualize the model and solution in various ways, unlike most
of the other processors in COMET-AR. Unlike most of the other processors in COMET-AR,
ARGx is driven by a graphical user interface (GUI) and is typically used in stand-alone mode.
ARGx is particularly useful for verifying and visualizing the models and solutions generated dur-
ing adaptive mesh refinement.

Figure 1.5-5 User Interface(s) During Post-Processing Phase Without PATRAN

Two other COMET-AR processors can be valuable for post-processing: processor HDBprt, which
allows the user to print selected parts of the database; and processor PST, which allows the user to
find and archive critical solution data such as maximum stresses, and stresses at prescribed loca-
tions in the model, designated either by coordinates, closest node number, or closest element
number. (Processor PST is also the COMET-AR/PATRAN translator.)

The steps for post-processing without PATRAN are summarized as follows. These steps may be
taken in any order.

Case.DBC

C O M E T - A R

Solution Data Objects

ARGxPST HDB

U S E R

GUI

printarchival Display

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 11

Step 1:

Step 2:

Step 3:

1.5.5.2 Post-Processing With PATRAN

PATRAN may be used to post-process a COMET-AR model/solution whether or not PATRAN
was used to generate the initial finite element model. Even if the initial finite element model was
generated with PATRAN, if COMET-AR adaptive mesh refinement is employed to perform the
solution, a new finite element model will be part of COMET-AR’s output, and will have to be
translated to PATRAN as well. The situation is illustrated in Figure 1-10.

COMET-AR processor PST is used first to generate PATRAN Results and Neutral files from the
COMET-AR database. Then, the user may interact directly with PATRAN with its own native user
interface. The steps needed to perform this procedure follow Figure 1.5-6.

Execute the COMET-AR interactive-graphics post-processor, ARGx. This processor
allows you to look at the deformed geometry, color contours of solution quantities,
and to verify load directions and nodal boundary conditions as well. It also has some
graphing (x-y plot) capabilities and will display numerical values at locations indi-
cated by mouse selection. (See the section on Processor ARGx in the chapter on Post-
Processors in Part III of this manual.)

Execute COMET-AR post-processor HDBprt to get list-type printed displays of
selected node and/or element data. In fact, use HDBprt to examine any data objects of
interest. (See the section on Processor HDBprt under Post-Processors chapter in Part
III of this manual.)

Execute Processor PST to archive selected quantities such as the stress at a prescribed
location or node, maximum stress, etc. The selected values are placed in the database
for subsequent post-processing by the user. (See the section on Processor PST under
Post-Processors chapter in Part III of this manual.)

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-12 COMET-AR User’s Manual Revised 12/1/97

Figure 1.5-6 User Interface During Post-Processing Phase With PATRAN

Step 1:

The COMET-AR to PATRAN interface processor PST is a recent addition to
COMET-AR and it may not be as robust as some of the of the processors. Ada-
mant PATRAN users may, therefore, need to contact the development team via
NASA for assistance. Others may find that the COMET-AR processor ARGx
provides most of the necessary graphical display functions (and more) that are
provided by PATRAN. (See the previous subsection for a discussion of
ARGx).

Execute the COMET-AR processor PST in COMET-AR_to_PATRAN mode. This
will translate both model and solution data from the COMET-AR database to the PAT-
RAN Neutral and Result files. If adaptive mesh refinement is being used (e.g., via
solution procedure AR_CONTROL), the finite element model will be changing as
well as the solution. In this case, the original PATRAN Neutral File will no longer be
valid and a new one consistent with the current solution will have to be generated via
PST. COMET-AR saves both model and solution data for all intermediate meshes
generated during adaptive refinement, and the user may translate any of these models/
solutions to PATRAN for post-processing with processor PST. (Refer to the section on
Processor PST under the Post-Processors chapter in Part III of this manual for usage
details.)

U S E R

Case.DBC

C O M E T - A R

Solution Data Objects

PST PATRAN

PATRAN

Neutral File
Results File

1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Revised 12/1/97 COMET-AR User’s Manual 1.5- 13

Step 2:

Step 3:

Execute PATRAN and display the model, results, etc. This step will depend on the
experience-level of the PATRAN user. It is not covered in the COMET-AR manual.

The user can always employ the COMET-AR post-processors described in the preced-
ing subsection in addition to PATRAN. Different COMET-AR users may prefer to use
different post-processors to display results for the same analysis.

1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-14 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.6 How to Use This User’s Manual

Revised 12/1/97 COMET-AR User’s Manual 1.6- 1

1.6 How to Use This User’s Manual

The COMET-AR User’s Manual is partitioned into five parts, as shown in Table 1.6-1.

The correspondence between these parts of this manual and the three phases of a COMET-AR
analysis is shown in Table 1.6-2, which indicates where to look during each phase.

A “road map” for performing COMET-AR analysis in conjunction with the documentation in the
present User’s Manual is provided in Figure 1.6-1.

Table 1.6-1 Organization of the COMET-AR User’s Manual

Part Title Contents

I Introduction Overview of COMET-AR and how to use it.

II Procedures Describes COMET-AR command-language procedures, including user-written
Model Definition Procedures, pre-defined Solution Procedures, and subordinate
Utility Procedures. There is a separate section here for each procedure.

III Processors Describes COMET-AR FORTRAN processors, including pre-processors, element
processors, constitutive processor, matrix/vector processors, post-processors, and
special-purpose processors. There is a separate section for each processor.

IV Database Describes the COMET-AR database, how it is partitioned into data files and data
objects, and how each data object is partitioned into attributes. Also explains how
the database evolves during analyses with adaptive mesh refinement.

V Solid-Model
Interface

Describes two options the user has for defining the underlying geometry of a model
in conjunction with adaptive mesh refinement: i) the discrete solid-model descrip-
tion, based on the initial finite element model, and ii) the continuous solid-model
description, which is more accurate but requires a number of user-written subrou-
tines that are cumbersome for complex structures.

Table 1.6-2 Correspondence Between Documentation and Analysis Phase

Phase Where to Look in this User’s Manual

1) PRE-PROCESSING Consult Part II, under Model Definition Procedures chapter; or if using a PAT-
RAN model, consult Processor PST in Part III.

2) SOLUTION Consult Part II, under Basic Solution Procedures chapter, and/or Adaptive
Solution Procedures (for adaptive mesh refinement).

3) POST-PROCESSING Consult Part II, under Post-Processors chapter; in particular, see sections on
processors ARGx, HDBprt, and PST.

1.6 How to Use This User’s Manual 1 Introduction

1.6-2 COMET-AR User’s Manual Revised 12/1/97

Figure 1.6-1 “Road Map” of COMET-AR Use

POST-PROCESSING Without PATRAN

Step Task Doc.

1C Run ARGx for display Sect. 13.2

2C Run HDBprt for listing Sect. 13.3

3C Run PST for archival Sect. 13.4

INITIALIZATION Phase

Step Task Doc.

1 Set up login files Sect. 1.5

2 Copy proclib.gal file Sect. 1.5

PRE-PROCESSING Without PATRAN

Step Task Doc.

1 Write Case.clp file Chaps. 2, 6-8

2 Write Model.com file Sect. 1.5

3 Execute Model.com Sect. 1.5

PRE-PROCESSING With PATRAN

Step Task Doc.

1 Generate PATRAN model

2 Run PST converter Sect. 6.6

3 Go to:

SOLUTION Phase

Step Task Documentation

1 Save Case.DBC file with
model definition data

Sect. 1.5

2 Write Soln.com file to
invoke solution procedure

Sect. 1.5, Chaps. 3 and 4

3 Execute Soln.com Sect. 1.5

POST-PROCESSING With PATRAN

Step Task Doc.

1P Run PST converter Sect. 13.4

2P Run PATRAN for display

3P Go to:

START

STOP

COMET-AR
“Road Map”

1 Introduction 1.7 Related COMET-AR Documentation

Revised 12/1/97 COMET-AR User’s Manual 1.7- 1

1.7 Related COMET-AR Documentation

Table 1.7-1 provides a summary of recommended supplementary documentation to the COMET-
AR User’s Manual.

Table 1.7-1 Summary of Related COMET-AR Documentation

Document Ref. Contents

COMET-AR Tutorial [1] Walk-through examples of using COMET-AR for various
kinds of analysis; recommended for beginners.

COMET-AR HDB Manual [3] Detailed description of high-level database access; recom-
mended for software developers.

COMET-AR DB Manual [5] Detailed description of generic database utilities employed
by HDB; recommended for software developers.

CSM Generic Element
Processor Manual

[8] Contains instructions for adding new element types (i.e.,
processors) to COMET-AR; recommended for element
developers.

CSM Generic Constitutive
Processor Manual

[9] Contains instructions for adding new constitutive models
to COMET-AR; recommended for constitutive model
developers.

CLIP Manuals [2] Detailed description of command/procedure language
employed by COMET-AR.

GAL Manual [4] Detailed description of file-management utilities employed
by HDB (via DB); recommended for software developers.

COMET User’s Manual [6] Counterpart to this manual for the COMET code, which is
an ancestor of COMET-AR; however, does not cover com-
mand-language procedures or database.

COMET Procedure Manual [7] Describes command-language (CLIP) procedures avail-
able in the COMET code from which COMET-AR was
derived.

1.7 Related COMET-AR Documentation 1 Introduction

1.7-2 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 1

1.8 Command Language Summary

As described in Section 1.5, COMET-AR is controlled by the user via a command language,
called CLAMP (Command Language for Applied Mechanics Processors), which is processed by a
software architectural component called CLIP (Command Language Interface Program). Com-
mand input begins immediately after the COMET-AR macro-processor is first executed on the
user’s host operating system (i.e., by entering the macro-processor name, “comet-ar,” in a UNIX
script file). At that point, you have access to a variety of commands which fall into two classes.

1) CLIP Directives: These are generic COMET-AR commands that begin with an
asterisk (∗), such as ∗ OPEN, ∗ CALL, ∗ PROCEDURE, and ∗ ADD; and perform
global control functions, such as opening a database file, calling a command-
language procedure file, creating a command-language procedure, and directing
input from another file (or compiling a procedure). More advanced CLIP directives
form the basis of many standard command-language procedures (see Section 1.4)
and include such things as macro-symbol variable definitions, looping directives
and conditional statements. Users may have to become familiar with the more
advanced features if they are either: i) writing complex Model Definition
Procedures; or ii) participating in the development of COMET-AR by writing
additional Solution Procedures. CLIP directives may be entered while executing
any COMET-AR processor.

2) Processor Commands: These are commands that are specific (i.e., local) to each
of COMET-AR’s independently executable processors (see Section 1.4). One
especially important command is the RUN command, which is processed by the
COMET-AR macro-processor, and is used to run other processors. Once another
processor’s execution has been initiated via the RUN command, the user (or
procedure writer) may enter only: i) commands that are recognized by that
particular processor; or ii) CLIP directives, which are recognized in all COMET-
AR processors (by the underlying CLIP architectural utilities that respond to them).

Processor commands for each of COMET-AR’s processors are described in corresponding sec-
tions of Part III. CLIP directives, which have the same description for all of the procedures
appearing in Part II, and commands that are common to all COMET-AR processors, are summa-
rized in the following subsections.

See the CLIP Manual [2] for a comprehensive description of the CLAMP lan-
guage, including directives (Vol. II), command syntax (Vol. I), and the FOR-
TRAN interface to this language for processor developers (Vol. III). An
intermediate description, somewhat more expanded than presented here but less
detailed than in [2], may be found in reference [6].

1.8 Command Language Summary 1 Introduction

1.8-2 COMET-AR User’s Manual Revised 12/1/97

1.8.1 CLIP Directives

CLIP directives are special commands that are understood and processed by the COMET-AR
architectural utility CLIP, and are not interpreted by individual processors. (A directive is to CLIP
like an ordinary command is to a processor.) Directives may appear in all forms of COMET-AR
input, but some directives, such as the *PROCEDURE directive and nonsequential processing
directives, must be used only within command language procedures (called CLIP procedures).

A directive is distinguished from an ordinary command by beginning with a keyword prefixed by
an asterisk (*). The keyword (verb) may be followed by a verb modifier, qualifiers, and/or param-
eters, as required by the syntax of the particular directive. A brief description of the most impor-
tant directives is given here. For a more complete description, consult Vol. II of reference [2].

The CLIP directives are grouped in Table 1.8-1 by function; detailed descriptions of the directives
are contained in the following subsections.

Table 1.8-1 Summary of CLIP Directives

Directive Function

Database Directives

*OPEN Opens a COMET-AR data file (also called a “library”).

*CLOSE Closes a COMET-AR data library.

*TOC Prints a table of contents of a data library (listing datasets).

*RAT Prints a table of contents of records in a dataset (record access table).

*PRINT Prints contents of a dataset within a data library. (It is often more convenient and
meaningful to employ the PRINT command in “post-processor” HDBprt for object-
oriented datasets.)

*COPY Copies datasets or dataset records within or across data libraries.

*DELETE
*ENABLE

Deletes (i.e., disables) datasets or records within a data library.
Enables previously deleted (i.e., disabled) datasets or records.

*FIND Returns information on datasets or records.

*RENAME Renames datasets or records.

Procedure Management Directives

*SET PLIB Sets procedure library index as source of command procedures.

*PROCEDURE
*END

Initiates definition of a command procedure.
Terminates definition of a command procedure.

*CALL Invokes a command procedure with optional argument replacements.

Non-Sequential Processing Directives (in Procedures Only)

*IF
*ELSE
*ELSEIF
*ENDIF

Conditional branching constructs.

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 3

1.8.1.1 Database-Oriented Directives

Database-oriented procedure directives provide the user with direct access to the COMET-AR
global database from within procedures and other input files. The *OPEN directive is particularly
important, as it must be used to open a database file (i.e., a data library) before any COMET-AR
processors can be engaged. The other directives in this subsubsection are optional. For example,
the *PRINT directive is rarely used; instead the PRINT command within processor HDB is pre-
ferred for obtaining object-oriented printouts. The *TOC directive is often useful for getting an
overview of the data library before using the PRINT command, and may be used interactively
within HDB.

*DO
*ENDDO

Do-Looping constructs.

*WHILE
*ENDWHILE

While-Looping constructs.

*JUMP Transfer control to specified label.

*RETURN Forces exit from command procedure.

MacroSymbol Directives

*DEFINE
*UNDEFINE

Defines a macrosymbol (or macrosymbol array).
Deletes a macrosymbol(s).

*SHOW MACRO Shows current definition of macrosymbol(s).

*GAL2MAC
*MAC2GAL

Defines a macrosymbol from a database record.
Defines a database record from a macrosymbol.

Built-in Macros Common constants, mathematical functions, generic functions, reserved variables,
Boolean functions, logical functions, string concatenation, string matchers, and status
macros.

Miscellaneous Directives

*ADD Redirects input to come from a specified text file; compiles procedures.

*ECHO Turns command/directive print-echo on or off.

*HELP Lists information from a Directive HELP file.

*REMARK Prints a remark (or comment) line.

*SET
*SHOW

Sets various control parameters (e.g., output device index).
Shows various control parameters.

*UNLOAD
*LOAD

Unloads contents of a data library to an ASCII file.
Loads contents of a data library from an “UNLOADED” ASCII file.

Table 1.8-1 Summary of CLIP Directives (Continued)

Directive Function

1.8 Command Language Summary 1 Introduction

1.8-4 COMET-AR User’s Manual Revised 12/1/97

1.8.1.1.1 The *OPEN Directive

The *OPEN directive opens a data library. The directive format is:

where ldi is the library identification number (or “logical device index”) and filename is the exter-
nal name of the permanent library file. If ldi is omitted, it will default to the first free library num-
ber (which is 1 at the beginning of a COMET-AR execution). If filename is omitted, it will default
to fort.ldi. Once a library has been named, it may be referenced by number (i.e., by the ldi), in
subsequent directives such as *CLOSE, *TOC, etc.

The most commonly used qualifiers include NEW, OLD, and READ. The qualifier NEW will
open a new (empty) library. The qualifier OLD will open an existing library (or print an error if
the library does not exist) and the qualifier READ will open an existing library for read-only oper-
ations. If no qualifiers are used, an existing library will be open if it exists or a new one will be
created. In either case, write permission is the default.

1.8.1.1.2 The *CLOSE Directive

The *CLOSE directive closes an open data library. The directive format is:

where ldi is the library identification number, which if omitted, defaults to all active libraries. A
closed library cannot be accessed again until it has been re-opened. There is only one optional
qualifier, DELETE, which deletes the file upon closing. The *CLOSE directive is automatically
invoked internally by COMET-AR in response to the RUN EXIT command.

1.8.1.1.3 The *TOC Directive

The *TOC directive prints a table of contents of datasets within a library. The directive format is:

where ldi is the library identification number. If the optional ids or dsname parameters are omit-
ted, a table of contents of all datasets in the library is printed. A partial table of contents may be
obtained by specifying either ids, a range of dataset sequence numbers, or dsname, a dataset name
which may have a wild character (*) to indicate more than one match is desired. For example:

*TOC 1 1:10

will provide a table of contents information about datasets 1 through 10, while

*OPEN ldi filename /qualifier

*CLOSE ldi /qualifier

*TOC ldi [ids | dsname]

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 5

TOC 1 NODAL.

will provide a table of contents of all nodal datasets, i.e., those whose first name is NODAL.

1.8.1.1.4 The *RAT Directive

The *RAT directive will print a table of contents of records within a given dataset (or datasets).
This is typically referred to as a Record Access Table (or RAT). The directive format is:

where the directive parameters have the same meaning as for the *TOC directive.

1.8.1.1.5 The *PRINT Directive

The *PRINT directive prints the actual data within one or more dataset records. The directive for-
mat is:

where record_name is the name of the record, which may specify a range of records if the dataset
consists of record groups. For example, the directive

PRINT 1 NODAL.DISPLACEMENT NVT.1:10

would cause records NVT.1 through NVT.10 within dataset NODAL.DISPLACEMENT on
library 1 to be printed. A more meaningful way to do this (in general) is to use the PRINT com-
mand in processor HDBprt and request that the nodal displacements for nodes 1 through 10 be
printed (where nodal displacements are stored as a Nodal Vector Table, or NVT, data object (see
Part IV on the COMET-AR database). The optional /OUT=unit qualifier enables the user to re-
direct the printed output to a file which will be named “fort.unit.”

1.8.1.1.6 The *DELETE and *ENABLE Directives

The *DELETE directive disables a specified set of datasets from a library. The directive format is:

where ldi is the library identification number, ids represents a range of dataset sequence numbers,
and (alternatively) dsname represents a dataset name specification, with optional wild characters
(*). Disabled datasets remain in the database, but may not be accessed by subsequent directives or

*RAT ldi [ids | dsname]

*PRINT ldi { ids | dsname } record_name [/OUT=unit]

*DELETE ldi { ids | dsname }

1.8 Command Language Summary 1 Introduction

1.8-6 COMET-AR User’s Manual Revised 12/1/97

processors unless they are enabled. To enable a dataset(s) that has been disabled via the
*DELETE directive, the *ENABLE directive may be used. It has the following format.

Disabled datasets appear in *TOC listings with an asterisk next to the sequence number. After
they have been enabled, the asterisk no longer appears. When a library is copied to another library
(via the *COPY directive), disabled datasets are not copied to the destination library. This pro-
vides a way of truly deleting datasets from the database by creating a new library with only active
datasets. (Another way is the *PACK directive, which deletes and copies datasets in place; how-
ever, this is a rather risky directive. If it is interrupted by a system crash, the whole data library
may be lost.)

1.8.1.1.7 The *COPY Directive

The *COPY directive copies a dataset to a new dataset, either within a single library, or across
libraries. The directive format is:

where ldi_to is the destination library number, dsname_to is the optional destination dataset name
(which defaults to the source dataset name(s)), ldi_from is the source library number, and
ds_name_from (or alternatively ids_from) is the source dataset name (or sequence number range)
specification. For example:

COPY 2 = 1

would copy all datasets from library 1 to library 2;

COPY 2 = 1 NODAL.*

would copy all datasets with first name NODAL from library 1 to library 2; and

COPY 1 NODAL.VELOCITY = 1 NODAL.DISPLACEMENT

would copy the contents of the NODAL.DISPLACEMENT dataset to a new dataset called
NODAL.VELOCITY, both within library 1.

1.8.1.2 Procedure Management Directives

Procedure management directives provide a means of defining and invoking COMET-AR com-
mand-language procedures, which may contain a mixture of other directives and processor com-
mands, constituting a functional unit, that may be parametrized via procedure arguments.

*ENABLE ldi { ids | dsname }

*COPY ldi _to [dsname_to] = ldi_from { ds_name_from | ids_from }

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 7

1.8.1.2.1 The *PROCEDURE and *END Directives

The *PROCEDURE directive initiates the definition of a procedure. The directive format is:

where procedure_name is the name of the procedure. If there is an argument list (argument_list)
the parentheses are mandatory, and there must be a space separating the procedure name and the
first parenthesis. The argument list may contain up to 100 formal arguments in the form:

(arg1 = default1 ; arg2 = default2 ; . . .)

where arg1 and arg2 represent argument names, and default1 and default2 represent their default
values. Default values for arguments are optional (i.e., the =default phrases are optional). Non-
default values for arguments are provided at “run” time, via the *CALL directive. Within proce-
dures, argument names enclosed in square brackets, i.e.,

[arg_name]

are replaced by the assigned or default symbolic values given them via the *CALL or *PROCE-
DURE directives.

Finally, the *END directive is used to terminate a procedure definition (i.e., all procedures must
begin with a *PROCEDURE directive and end with the directive).

1.8.1.2.2 The *CALL Directive

The *CALL directive invokes a COMET-AR procedure. The directive format is:

where procedure_name is the name of the procedure and, as in the *PROCEDURE directive,
there must be at least one space separating the procedure name and the first parenthesis before the
argument list. When calling a procedure, the argument list takes the form:

(arg1 = value1 ; arg2 = value2 ; . . .)

where arg1 and arg2 are argument names (which must also appear in the corresponding *PRO-
CEDURE directive) and value1 and value2 are their user-specified values (or strings). The order
in which the arguments appear in the *CALL directive is arbitrary. Not all procedure arguments
need be explicitly mentioned, in which case they will take on their default values (see description
of the *PROCEDURE directive). Procedures must first be compiled via the *ADD directive (see
Miscellaneous Directives) before they can be called.

*PROCEDURE procedure_name (argument_list)

*END

*CALL procedure_name (argument_list)

1.8 Command Language Summary 1 Introduction

1.8-8 COMET-AR User’s Manual Revised 12/1/97

1.8.1.2.3 The *SET PLIB Directive

The *SET PLIB (Set Procedure Library) directive associates callable procedures with a data
library, indicating that all subsequent procedure calls (via the *CALL directive) will access com-
piled procedures resident on a particular data library. It also indicates that all subsequent proce-
dure compilations, via the *ADD directive, will produce compiled procedures that are to be stored
in the specified data library. The directive format is:

where ldi is the library identification number, and dsname is the name of the dataset in which call-
able procedures are assumed to reside. If ldi is omitted, it defaults to zero, which means that pro-
cedures reside on ordinary ASCII disk files. If dsname is omitted, the default dataset name:
CALLABLE.PROCEDURES will be assumed. In the absence of the *SET PLIB directive, all
callable procedures are assumed to exist as separate ASCII files within the current disk directory.

1.8.1.3 Non-Sequential Processing Directives

Some of the most useful directives are those that provide the means for nonsequential command
and directive processing. The directives in this category may only be used within a procedure.

1.8.1.3.1 The *IF, *ELSEIF, *ELSE, and *ENDIF Directives (Conditional Branching)

This construct is also known as the BLOCK IF directive. The format is:

This construct behaves much like the FORTRAN if-then-else construct. Both the *ELSEIF and
the *ELSE may be omitted. The logical expression must evaluate to either <TRUE> or <FALSE>
(see Macrosymbol Directives) and is typically of the form:

< a relational_qualifier b >

where a and b may be either macrosymbols, numbers, or logical expressions and the
relational_qualifier may be any one of those listed in Table 1.8-2.

*SET PLIB ldi [dsname]

*IF < logical expression > /THEN
:
*ELSEIF <logical expression > /THEN
:
additional ELSEIF’s
:
*ELSE
:
*ENDIF

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 9

The following is an example of a valid BLOCK IF directive construct.

1.8.1.3.2 The *DO/*ENDDO Directives (DO-Loops)

This set of directives provides a FORTRAN-like looping construct. The format is:

where $macro_name is the name of a special type of macrosymbol (see Macrosymbol Directives)
which must, as indicated, start with a $ sign. The integers i1 and i2 specify the initial and final val-
ues for the loop variable, $macro_name. The integer i3 specifies the increment of the loop vari-
able. If i3 is not given, a value of +1 will be assumed, provided i1 < i2. If i1 > i2 a value of –1 is
assumed for i3. Examples of valid *DO loops include:

Table 1.8-2 Relational Qualifiers in Logical Expressions

Expression Evaluates to:

a /EQ b <TRUE> if a = b, else <FALSE>

a /LE b <TRUE> if a ≤ b, else <FALSE>

a /LT b <TRUE> if a < b, else <FALSE>

a /GE b <TRUE> if a ≥ b, else <FALSE>

a /GT b <TRUE> if a > b, else <FALSE>

a /NE b <TRUE> if a ≠ b, else <FALSE>

e1 /AND e2 <TRUE> if both e1 and e2 are <TRUE>, else <FALSE>

e1 /OR e2 <TRUE> if either e1 or e2 are <TRUE>, else <FALSE>

 :
*IF < <mac1> /eq 2 > /THEN
*DEFINE/i mflag = <TRUE>
*ELSEIF <value> /THEN
*DEFINE/i vflag = <TRUE>
*ENDIF
:

*DO $macro_name = i1, i2 [, i3]
:
*ENDDO

*DO $i = 0, 100, 10
:
*ENDDO

1.8 Command Language Summary 1 Introduction

1.8-10 COMET-AR User’s Manual Revised 12/1/97

which will cause the enclosed commands/directives to be executed 10 times, with the macrosym-
bol, $i, incremented by 10 each time; or:

which will cause the enclosed commands/directives to be executed 100 times, with the macrosym-
bol, $i, incremented by one each time; or:

which will cause the enclosed commands/directives to be executed 100 times, with the macrosym-
bol, $i, decremented by one each time.

There is also an alternative form of the *DO loop which uses a label to close the loop. It has the
format:

where label is the label name.

1.8.1.4 Macrosymbol Directives

Macrosymbols are variables that may be used both within COMET-AR procedures and in ordi-
nary (non-procedural) COMET-AR input to processors. Macrosymbols may be defined with the
*DEFINE directive, and deleted via the *UNDEFINE directive. A macrosymbol is decoded into
an actual numerical value or string by enclosing the macrosymbol name in angle brackets, i.e.,

< macro_name >

where macro_name is the name of the macrosymbol, would be decoded to:

macro_value

where macro_value is a numerical value or alphanumeric string, depending on the type of the
macrosymbol. Macrosymbol arrays are macrosymbols with numeric indices. When defining an
element of a macrosymbol array, the index follows the macrosymbol name, surrounded by square
brackets. For example, the phrase:

*DO $i = 1, 100
:
*ENDDO

*DO $i = 100, 1
:
*ENDDO

*DO :label $macroname = i1, i2 [,i3]
:
:label

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 11

< macro_name [i] >

would decode to the value of the ith element of the macrosymbol array with name macro_name.

The *DEFINE and *UNDEFINE directives are described below, in addition to the *GAL2MAC
and *MAC2GAL directives, which transfer data values between macrosymbols and the database.
Also included in this subsubsection is a brief description of the rules for performing macrosymbol
arithmetic and a summary of some useful built-in COMET-AR macrosymbols and functions.

1.8.1.4.1 The *DEFINE and *UNDEFINE Directives

The *DEFINE directive is used to define a macrosymbol or macrosymbol array. The directive for-
mat is:

where *DEFINE may be abbreviated as *DEF.

The macro_name may contain up to 12 characters. In the case of a macrosymbol array, the index
and enclosing brackets are considered part of the name. The first character of a macrosymbol
name must be either a letter or a dollar sign. If the latter, the second character must be a letter.

The macro_name and definition_text must be separated either by an equal sign (=) or by a double-
equal sign (==). The latter is used to force global scope (i.e., to define the macrosymbol as a glo-
bal macrosymbol that has meaning at all procedure levels). Permissible macrosymbol types are
listed in Table 1.8-3.

The D, E, F, and G types are analogous to the field specifications appearing in FORTRAN FOR-
MAT statements, as are the optional w (width) and d (decimal) specifications. All macrosymbols

 *DEFINE [/type] macro_name { = | == } definition_text

Table 1.8-3 Macrosymbol Type Identifiers

Type Meaning

A Unprotected character string

D[w.d] Double-floating-point

E[w.d] Single-floating-point, engineering (exponential) notation

F[w.d] Single-floating point, decimal (non-exponential) notation

G[w.d] Single-floating point, engrg/decimal notation as needed

I Integer

N Nearest integer

P Protected character string

1.8 Command Language Summary 1 Introduction

1.8-12 COMET-AR User’s Manual Revised 12/1/97

decode to character strings when enclosed in angle brackets (< >); hence, numeric macrosymbols
may be used to construct character strings by concatenation with other character strings by decod-
ing them (e.g., A<i> would decode to A1 if the value of the macrosymbol i = 1).

Only 731 user-defined macrosymbols may be active at any one time. This restriction applies to
macrosymbol arrays as well. Each time of the array is considered to be one macrosymbol. One
cannot then define an array of length 732. To overcome this restriction, the user may wish to purge
macrosymbols that are not longer needed. This is done via the *UNDEFINE directive, which has
the format:

where macro_name_list is a list of macrosymbols to be undefined, and the optional GLOBAL
qualifier will delete all macrosymbols of the specified name(s) at all procedure levels, up to the
highest (global) level. If the GLOBAL qualifier is omitted, macrosymbols above the current pro-
cedural level will not be deleted.

1.8.1.4.2 The *SHOW MACROS Directives

The *SHOW MACROS directive is used to print the current values of macrosymbols via:

where macro_name(s) designates the names; the /BI qualifier denotes built-in macrosymbols. If
no macrosymbol names are specified, all user-defined macrosymbols are printed by default.

1.8.1.4.3 The *GAL2MAC and *MAC2GAL Directives

This pair of directives provides the user with a means of creating a macrosymbol from a global
dataset record (*GAL2MAC) or creating a global dataset record from a macrosymbol
(*MAC2GAL). These directives may be abbreviated as *G2M and *M2G, respectively. The
directive formats are:

and

where macro_name is the input (*M2G) or output (*G2M) macrosymbol name, n_items is the
number of items to be read into (*M2G) or written into (*G2M), and offset is the integer offset
from the beginning of the dataset record being written to (*M2G) or copied from (*G2M). In
either case, the macro_type refers to the data type of the resulting entity (i.e., *G2M requires the

*UNDEFINE [/GLOBAL] macro_name_list

*SHOW MACROS [macro_name(s) /BI]

*G2M record_id /NAME=macro_name /TYPE=macro_type /M=n_items /IOFF=offset

*M2G record_id /NAME=macro_name /TYPE=macro_type /M=m_items /IOFF=offset

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 13

macrosymbol type and *M2G requires the record type), and m_items refers to the maximum num-
ber of items to be transferred. Regarding defaults, m_items defaults to 100 if the /M qualifier is not
specified, offset defaults to 0 if the /IOFF qualifier is not specified, and macro_type defaults to the
macrosymbol (*M2G) or dataset record (*G2M) data type.

The record_id consists of three items separated by either commas or spaces. There are two per-
missible forms for record_id:

ldi ds_name record_name

or
ldi ids record_name

where ldi is the library identification number, ds_name is the dataset name and ids is the dataset
sequence number.

The parameter record_name may assume several forms. It may be omitted (only with the *G2M
directive), in which case a macrosymbol array containing each item of every record will be cre-
ated. If there is only a single item to be read then the macrosymbol array becomes a simple (un-
subscripted) macrosymbol. The record_name may also consist of a KEY and a CYCLE or
CYLES. For example, the record_name:

ES_NAME.1

with KEY=ES_NAME and CYCLE=1, will cause only one record to be transferred, while:

ES_NAME.1:10

with KEY=ES_NAME and CYCLES = 1 through 10 will cause records named ES_NAME.1,
ES_NAME.2,..., ES_NAME.10 to be transferred. When using the *M2G directive, the
record_name must be specified.

1.8.1.4.4 Macrosymbol Arithmetic

Macrosymbols may be used to perform arithmetic operations, producing new macrosymbols or
explicit in-line numbers. Such macrosymbol operations are often used in command language pro-
cedures, either to control the runstream, or in preparation for numeric processor input. A summary
of the basic binary arithmetic operations that may be performed on macrosymbols is given in
Table 1.8-4.

1.8 Command Language Summary 1 Introduction

1.8-14 COMET-AR User’s Manual Revised 12/1/97

An example of using macrosymbol arithmetic to define a new macrosymbol would be:

DEF/G c = < (<a> + (2.))^3 >

which defines a new floating point macrosymbol, c, to be equal to the sum of a plus twice b, all
raised to the power 3, where a and b are previously-defined numeric macrosymbols. Outer angle
brackets < > around arithmetic expressions are mandatory to force arithmetic evaluation. Inside
the expression, parentheses may be used to indicate operational precedence, but angle brackets-
must be used to enclose macrosymbol names and force them to be decoded into numeric values.

1.8.1.4.5 Built-In Macrosymbols

COMET-AR has a number of built-in macrosymbols (and macrosymbol functions) which are
described in detail in [2]. Two of the most commonly used built-in macrosymbols are TRUE and
FALSE, which decode to 1 and 0, respectively (i.e., <TRUE>=1 and <FALSE>=0). A summary of
the most commonly used built-in macrosymbols (constants and functions) is given in Table 1.8-5.

Table 1.8-4 Arithmetic Operations With Macrosymbols

Operation Description

< <a> + > Addition of two numeric macrosymbols, a and b

< <a> - > Subtraction of numeric macrosymbols, b from a

< <a> * > Multiplication of two numeric macrosymbols, a and b

< <a> / > Division of numbered macrosymbol a by b

< <a>% > Integer division of numeric macrosymbol a by b

< <a>^ > Numeric macrosymbol a raised to the power b

<function(<a>,,...)> Evaluation of a macrosymbol function with macrosymbol arguments a, b, etc.

Table 1.8-5 Summary of Commonly Used Built-in Macrosymbols

Macrosymbol Description

ABS(a) Computes the absolute value of a

COS(a) Computes the cosine of the angle a (radians)

COSD(a) Computes the cosine of the angle a (degrees)

D2R Conversion factor for degrees-to-radians = .01745329...

FALSE Integer value associated with false logical expression = 0

IFELSE(a;b;c;d) Compares a and b; if equal (or matching string) then it evaluates to c;
else it evaluates to d

LOG(a) Computes natural log (base e) of a

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 15

Other built-in macrosymbols may be found in Volume II (Directives) of reference [2].

1.8.1.5 Miscellaneous Directives

1.8.1.5.1 The *ADD Directive

The *ADD directive redirects command input to a file, much like a FORTRAN INCLUDE state-
ment. It is also used to “compile” command language procedures before they can be called via the
*CALL directive. The directive format is:

where filename is the name of the file from which COMET-AR will begin reading input data. The
added file may contain procedure definitions, calls to procedures defined in a file other than file-
name, and other *ADD directives. It may also contain processor input data (i.e., commands, data
lines, etc.). For example, a user may want to use some pre-processor to generate files containing
nodal locations and element connectivity. Once these files have been generated, they may be used
as input for COMET-AR processors, such as TAB and ESi, by issuing the *ADD directive at the
appropriate points in the runstream (i.e., model definition procedure).

When using the *ADD directive to compile a command-language procedure, the filename refers
to the name of the file containing the procedure, and the output will be a compiled (i.e., callable)
version of the procedure in a new file, whose name will be the procedure name appearing in the
*PROCEDURE directive. Alternatively, if the *SET PLIB directive has been used, then the com-

MAX(a;b) Computes maximum of a and b

MIN(a;b) Computes minimum of a and b

MOD(a;b) Computes modulus (remainder) of a divided by b

PI Value of the constant π = 3.14159...

SIGN(a;b) Computes absolute value of a times sign of b

SIN(a) Computes the sine of the angle a (radians)

SIND(a) Computes the sine of the angle a (degrees)

SQRT(a) Computes square root of a

TAN(a) Computes tangent of angle a (radians)

TAND(a) Computes the tangent of the angle a (degrees)

TRUE Integer value associated with true logical expression = 1

*ADD filename

Table 1.8-5 Summary of Commonly Used Built-in Macrosymbols (Continued)

Macrosymbol Description

1.8 Command Language Summary 1 Introduction

1.8-16 COMET-AR User’s Manual Revised 12/1/97

piled (callable) procedure will be output to a record group in the indicated data library, with
record name equal to the procedure name.

The input procedure file (associated with filename) can contain more than one command-language
procedure. In this case, the output will be multiple compiled procedure files, or alternatively, mul-
tiple record groups on the data library indicated by the *SET PLIB directive.

The *ADD directive is thus useful for creating and updating selected procedures in a procedure
data library (or procedure library). For example, you may make a copy of the standard COMET-
AR procedure library (“proclib.gal”), which contains all of the procedures described in Part II of
this manual, and then add additional procedures (e.g., for model definition), or update and replace
existing procedures (e.g., solution procedures), by employing the *SET PLIB directive followed
by the *ADD directive to compile and store/replace the new/modified procedures.

1.8.1.5.2 The *ECHO,ON and *ECHO,OFF Directives

These directives cause command and directive input to be either echoed or not echoed as it is
being processed. The directive format is:

where the optional MA and MD lead to detailed decoded printout of macrosymbol expressions.

1.8.1.5.3 The *HELP Directive

This directive provides on-line help on selected directives. The directive format is:

where directive_name is the name of a valid directive (without the ∗ prefix). The COMET-AR
“Help File” must be properly installed before using the *HELP directive.

1.8.1.5.4 The *SET and *SHOW Directives

The *SET directive allows a number of intrinsic parameters to be changed from their default val-
ues. The *SET PLIB directive described under the Procedure Management directives, is one
example of this generic directive. For a comprehensive list of other *SET directives, consult refer-
ence [2] (Volume II). Similarly, the *SHOW directive may be used to show the current settings.
The following two *SHOW directives are extremely useful:

*ECHO,ON [,MA,MD] or *ECHO,OFF

*HELP directive_name

*SHOW MACROS [macro_name(s) /BI]

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 17

which prints the current values of macrosymbols indicated by macro_name(s), the /BI qualifier
denotes built-in macrosymbols; and

which lists the procedure arguments in the current procedure, and prints their values (i.e., replace-
ment text). Consult reference [2] for other options on the *SHOW directive.

1.8.1.5.5 The *REMARK Directive

The *REMARK directive is used to print out a remark while processing a COMET-AR procedure
or ordinary command input file. The directive format is:

where remark may be any alphanumeric string and may contain embedded macrosymbol evalua-
tions, including macrosymbol arithmetic. For example, the following is a valid remark:

*REMARK The result of multiplying <a> * is < <a>∗ >.

where a and b are previously-defined macrosymbols. If the values of a and b were 10 and 25, the
above remark would lead to the following printed line at run-time.

The result of multiplying 10. * 25. is 250.

The *REMARK directive is useful for designing the output of a user-written command procedure.
Such directives also appear in many standard COMET-AR solution procedures, indicating the
current status of the solution as well as printing certain key parameters during the course of the
run. By turning the command and directive echo off (with the *ECHO,OFF directive), the user
will see only processor-based output and *REMARK-based output in the COMET-AR log file.

1.8.2 Processor Commands

Processor commands are input lines directed to specific COMET-AR processors, and are
described in detail in Part II (Processors) of this manual. Processor commands typically begin
with keywords (i.e., verbs), and may contain various qualifiers, keyword phrases and plain data,
on one or multiple lines of input. While most processors have their own independent command
language (in addition to the directives which are available while running any processor), there are
a few common processor commands and conventions.

Since all COMET-AR processors employ the same command parser (CLIP), most of the basic
syntactical conventions are uniform. The most important ones are described here.

*SHOW ARGUMENTS

*REMARK remark

1.8 Command Language Summary 1 Introduction

1.8-18 COMET-AR User’s Manual Revised 12/1/97

1.8.2.1 Continuation Lines

Processor commands that require a single “logical” line of input may be continued on multiple
“physical” lines by using a double-dash continuation mark (--). For example:

ELEMENT = 100 NODES = 1024, 1025, 2011, 2012, 2222, 3125, 4712 --

 3025, 3022

would be interpreted as a single logical line by the receiving processor (in this case ESi).

1.8.2.2 Integer Sequence Format

Another common syntactical feature employed by COMET-AR processors is the “implied integer
do-loop” convention, which expands expressions of the form:

i:j:k

to:

i, i+k, i+2k, i+3k, . . ., j

where i, j, and k represent integers; the default value of k is 1.

1.8.2.3 Separators: Commas, Spaces, and Semicolons

In general, commas and spaces are interchangeable as item separators. Refer to specific processor
command descriptions. Semicolons must only be used in the following three situations:

1) to separate procedure arguments;
2) to separate arguments in macrosymbol functions; and
3) to separate multiple logical lines on the same physical line.

An example of case 3 would be:

FORM STIFFNESS ; FORM MASS ; FORM FORCE

which essentially enters three separate FORM commands on the same physical line.

1.8.3 Common Processor Commands

The following commands are common to all COMET-AR processors. All others are described in
conjunction with specific processors in Part III of this manual.

1 Introduction 1.8 Command Language Summary

Revised 12/1/97 COMET-AR User’s Manual 1.8- 19

1.8.3.1 The RUN Command

The RUN command is used to invoke a specific COMET-AR processor after running another
COMET-AR processor. The command format is:

where processor_name is the name of the processor to be run. To use the RUN command, the user
must initiate the COMET-AR execution with the COMET-AR macroprocessor described in
Part III under the chapter on Special-Purpose Processors. Thereafter, the RUN command may be
employed from within any COMET-AR processor, as it will cause control to first be transferred
back to the COMET-AR macroprocessor before running the indicated processor. An exception to
this rule is when the RUN command is issued to re-run the current processor without first issuing
a STOP command, in which case control will remain with the current processor without interven-
tion by the macroprocessor.

The RUN command may or may not actually cause execution of an independent processor,
depending on how the COMET-AR macroprocessor is configured. Those COMET-AR processors
that are embedded within the COMET-AR macroprocessor (a decision that can be made by the
system administrator) will not be run as independent processors, but will simply be called as sub-
routines from within the COMET-AR macroprocessor. All other COMET-AR processors (which
are external to the macroprocessor) are considered external processors, and will be executed inde-
pendently by the macroprocessor upon issuance of the RUN command.

1.8.3.2 The STOP Command

The STOP command is used to properly terminate execution of the current COMET-AR proces-
sor. The command format is simply:

In general, use the STOP command for one processor before running another processor with the
RUN command. It is especially important to issue a STOP command for the last processor in the
current COMET-AR runstream.

1.8.3.3 The SET (or RESET) Command

Most COMET-AR processors have a command of the form:

to set (or reset) various parameters to non-default values prior to issuing an action command.

RUN processor_name

STOP

SET Parameter =Value(s) or RESET Parameter =Value(s)

1.8 Command Language Summary 1 Introduction

1.8-20 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.9 Glossary

Revised 12/1/97 COMET-AR User’s Manual 1.9- 1

1.9 Glossary of COMET-AR Terms, Notations, and
Symbols

Tables 1.9-1 to 1.9-3 define COMET-AR terms, notations, and math symbols.

Table 1.9-1 Glossary of COMET-AR Terms

Term Meaning

Adaptive Refinement Refers to adaptive mesh refinement, wherein an initial finite element mesh is
updated automatically to adapt to solution needs in a more-or-less optimal fash-
ion, satisfying user accuracy requirements.

AR Acronym for Adaptive Refinement.

AUTO_DOF_SUP An analysis option that automatically suppresses extraneous DOFs that are not
supported by element stiffness (e.g., drilling DOFs).

AUTO_DRILL An analysis option that automatically adds artificial drilling stiffness only to those
nodal DOFs that require it.

AUTO_TRIAD An analysis option that automatically re-aligns the computational frames at nodes
so that extraneous drilling DOFs can automatically be suppressed (via the
AUTO_DOF_SUP option).

*call directive A command-language directive used to call (i.e., invoke) another command-lan-
guage procedure.

Case An application problem. Case refers to the user-defined name for the application
problem.

CLAMP Acronym for Command Language for Applied Mechanics Processors; combina-
tion of procedure directives and processor commands that are parsed by the CLIP
architectural utility in COMET-AR.

CLIP Acronym for Command Language Interpretation Program; the architectural utility
that parses COMET-AR’s command language (see also CLAMP).

.clp files COMET-AR command language procedure files; it is conventional to use .clp as a
suffix for such files (unless they are embedded in a procedure library).

.com files UNIX script files that are used to execute COMET-AR.

COMET-AR Acronym for COmputational MEchanics Testbed.

COMET-AR User Someone interested in performing an analysis with COMET-AR.

COMET-AR Developer Someone participating in the extension of COMET-AR capabilities.

Command In a command language: an instruction consisting of one or more items to be
interpreted by the program that receives it.

Command Language An interpretable language consisting of a stream of commands that controls the
execution of a software system.

Computational Frame Reference frame that defines DOF directions at each node.

Corotational Frame Reference frame attached to each element; defines bulk rigid body motion, and
facilitates treatment of large rotations in beams/shells.

1.9 Glossary 1 Introduction

1.9-2 COMET-AR User’s Manual Revised 12/1/97

Database One or more data files representing the definition of a COMET-AR model and/or
solution.

Data Library A term used to refer to a COMET-AR data file within a database.

Data Object A tabular data structure that contains both data attributes, and utilities that per-
form operations on the data (see HDB).

DBC Suffix used for main COMET-AR database file, as in Case.DBC.

DBE Suffix used for COMET-AR file containing element matrices.

DBS Suffix used for COMET-AR file containing system matrices.

DOF(s) Degree(s) of freedom.

Drilling DOF The DOF associated with rotation about the normal vector to the surface of a plate
or shell element; in many shell element formulations, this DOF has no stiffness
associated with it.

Drilling stiffness The stiffness associated with the drilling DOF of a shell element. Many shell ele-
ments have no intrinsic stiffness associated with this DOF; some add artificial
stiffness to stabilize it during the solution.

Element Abbreviated term for finite element.

Error estimates Typically refers to estimates of the discretization error in the solution for a given
finite element mesh.

EltNam Element name; the concatenation of the element processor name and the element
type name, with an underscore (_) in between.

Generic Constitutive
Processor (GCP)

A COMET-AR processor within which all constitutive models are implemented.
The GCP appears both as a stand-alone processor (for material/fabrication defini-
tion) and as a utility library invoked by the Generic Element Processor (during the
solution phase). May also be used for stand-alone analysis at a material point.

Generic Element
Processor (GEP)

A software template (or “shell”) for all COMET-AR structural element proces-
sors; provides a common generic user and developer interface to such processors.
Also referred to as ES. Individual element processors have names that begin with
ES (e.g., ES7p).

Global Frame Fixed reference frame in which nodal coordinates are defined.

h refinement Mesh refinement based on element subdivision.

hc refinement Form of h refinement based on constraints to enforce inter-element compatibility
between refined (i.e., subdivided) elements and unrefined elements.

hs refinement Form of h refinement based on superposition of fine mesh regions on top of coarse
mesh regions; a hierarchical version of hc ref.

ht refinement Form of ht refinement based on the use of mesh transition patterns to connect
refined element regions to unrefined element regions.

HDB High-level database utility employed by COMET-AR to manage data objects
within data files.

LDI (or ldi) Acronym for logical device index.

Table 1.9-1 Glossary of COMET-AR Terms (Continued)

Term Meaning

1 Introduction 1.9 Glossary

Revised 12/1/97 COMET-AR User’s Manual 1.9- 3

Local Frame Reference frame attached to each element integration point; defines directions in
which elt. strains are originally computed.

Logical Device Index Positive integer used to identify data libraries currently attached to COMET-AR
processors; used internally as a substitute for the data library’s file name.

Macro-Processor The COMET-AR processor that is used to start up the COMET-AR system, and
from which other COMET-AR processors are executed (via the RUN command);
may embed one or more other COMET-AR processors as internal processors for
efficiency.

Procedure A command language program written in COMET-AR’s intrinsic language:
CLAMP (sometimes referred to as CLIP, which is actually the utility that parses
the CLAMP language).

Procedure Argument A parameter specified in the header of a command-language procedure that may
be used to replace text within the procedure.

Procedure Library A special data library (i.e., file) that contains compiled COMET-AR command
language procedures, ready to be invoked by users.

mesh A given finite element discretization of an application problem.

*open Command-language directive used to open old or new COMET-AR database files
(i.e., data libraries), as in “*open ldi, dbname,” where ldi denotes the logical
device index and dbname denotes the file name.

RUN command Special command recognized by COMET-AR to execute an individual COMET-
AR processor, as in RUN processor_name.

Runstream The collective set of UNIX script files and COMET-AR procedure files used as
input to perform a particular analysis.

shell element A structural element used to model thin or thick shell structures.

smoothing-based Refers to error estimates that are based on comparing a discontinuous finite ele-
ment stress field with a “smooth” version by nodal averaging.

Stress Frame User-selected reference frames to be used for stress/strain output at element inte-
gration points, nodes, or centroids.

*stop directive Command-language directive used to terminate COMET-AR, when executing the
COMET-AR macro-processor.

User See COMET-AR User.

Table 1.9-1 Glossary of COMET-AR Terms (Continued)

Term Meaning

1.9 Glossary 1 Introduction

1.9-4 COMET-AR User’s Manual Revised 12/1/97

Table 1.9-2 Glossary of COMET-AR Notation Conventions

Notation Example Meaning

Curly brackets { a, b, c, d } Used to identify a list of related elements.

Square brackets (1) [a, b, c, d] When used in processor command syntax definitions,
terms within square brackets are optional.

Square brackets (2) RUN [proc_arg] When appearing within command-language proce-
dure, surrounding procedure argument names, square
brackets indicate string replacement; i.e., the entire
phrase [proc_arg] will be replaced by the value or
string associated with the procedure argument
“proc_arg” when the procedure was called (via the
*call directive).

Vertical bars GLOBAL { X | Y | Z } When appearing in processor command syntax, or
procedure argument syntax definitions, vertical bars
indicate mutually exclusive options. In the example at
left, only one of the terms X, Y or Z may be used with
the GLOBAL phrase (e.g., GLOBAL X, GLOBAL Y,
or GLOBAL Z).

Table 1.9-3 Glossary of COMET-AR Math Symbols

Symbol Meaning

C Constitutive matrix relating incremental strain to incremental stress.

D Damping matrix for finite element model.

d Displacement array for finite element model.

E Total absolute error in strain energy norm of finite-element solution.

Total relative error in strain energy norm; absolute error in finite element solution
normalized by square root of total strain energy.

Ee Element absolute error in energy norm (square root of strain energy).

Element relative error in energy norm; element absolute error normalized by some
measure of element strain energy norm.

f Force vector for finite element model.

K Stiffness matrix for finite element model.

M Mass matrix for finite element model.

m Shell (or beam) element bending-moment stress-resultants.

n Shell (or beam) element force (membrane) stress-resultants.

Na Element shape function corresponding to element node “a.”

Nel Number of elements in the model.

q Shell element transverse-shear-force stress-resultants.

Nen Number of element nodes (per element).

Ê

Êe

1 Introduction 1.9 Glossary

Revised 12/1/97 COMET-AR User’s Manual 1.9- 5

U Total strain energy.

Ue Element strain energy for element “e.”

Total strain energy emanating from finite-element solution.

Total strain energy emanating from smoothed finite-element solution.

Strain energy density (strain energy per unit “volume”).

Strain energy density emanating from finite element solution.

Strain energy density emanating from smoothed finite element solution.

ε Element strain array.

εFE Same as ε, but FE makes “Finite-Element” explicit.

εSM Nodally smoothed version of ε, obtained by post-processing.

ε Shell (or beam) element reference-surface (membrane) strains.

κ Shell (or beam) element change-of-curvature (bending) strains.

γ Shell element transverse-shear strains.

σ Element stress array.

σFE Same as σ, but FE makes “Finite-Element” explicit.

σSM Nodally smoothed version of σ, obtained by post-processing.

Ω Problem domain represented by finite element model.

Ωε Element domain (for element e); may be volume, area, or line.

Table 1.9-3 Glossary of COMET-AR Math Symbols (Continued)

Symbol Meaning

UFE

USM

Û

ÛFE

ÛSM

1.9 Glossary 1 Introduction

1.9-6 COMET-AR User’s Manual Revised 12/1/97

1 Introduction 1.10 References

Revised 12/1/97 COMET-AR User’s Manual 1.10- 1

1.10 References

[1] Stehlin, B., et al., The COMET-AR Tutorial, preliminary NASA Contract Report, February
1993.

[2] Felippa, C., The Computational Structural Mechanics (CSM) Testbed Architecture,
Volume I: Language, Volume II: Directives, and Volume III: Fortran Interface, NASA CRs
178383, 178384, and 178385, February 1989.

[3] Stanley, G. and Swenson, L., HDB: High-Level (Object Oriented) Database Utilities for
COMET-AR, preliminary NASA CR, August 1992.

[4] Wright, M., Regelbrugge, M., and Felippa, C., The Computational Structural Mechanics
(CSM) Testbed Architecture, Volume IV: The Global Database Manager GAL-DBM,
NASA CR 178387, January 1989.

[5] Stehlin, B., DB/MEM: Generic Database Utilities for COMET-AR, preliminary NASA CR,
May 1992.

[6] Stewart, C., The Computational Structural Mechanics (CSM) Testbed User’s Manual,
NASA TM 100644, October 1989.

[7] Stewart, C., The Computational Structural Mechanics (CSM) Testbed Procedures
Manual, preliminary NASA TM, May 1990.

[8] Stanley, G. and Nour-Omid, The Computational Structural Mechanics (CSM) Testbed
Generic Structural-Element Processor Manual, NASA CR 181728, May 1990.

[9] Hurlbut, The Computational Structural Mechanics (CSM) Testbed Generic Constitutive
Processor Manual, NASA CR, May 1990.

1.10 References 1 Introduction

1.10-2 COMET-AR User’s Manual Revised 12/1/97

Revised 12/1/97 COMET-AR User’s Manual

Part II

PROCEDURES

In this part of the COMET-AR User’s Manual, we describe available high-level comand-language
procedures written in the CLAMP (Command Language for Applied Mechanics Processors) which
may be invoked by the user. Some of these procedures, such as Model Definition procedures, can
be written by the user. Others, such as Solution Procedures and Utility Procedures, are “canned”
and so may be invoked directly by the user to perform various analysis functions.

COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 2.1- 1

Chapter 2 Model Definition Procedures

2.1 Overview

Model Definition Procedures are command-language (CLIP) procedures that generate all of the
data associated with the initial mesh of a structural model. For reasonably simple models, Model
Definition Procedures are typically written by the user. For more complicated models, these pro-
cedures may be generated automatically (or bypassed) by using PATRAN as a pre-processor,
followed by the PATRAN-to-COMET-AR converter (PST) described in Part III. The main pur-
pose of this chapter is to describe the ingredients of a typical Model Definition Procedure, so that
the user may either construct a new one, or modify/interpret an existing one (some existing Model
Definition Procedures are summarized in Section 2.11). This chapter may also be valuable to users
employing PATRAN to generate the model, as certain COMET-AR modeling conventions must
be understood in order to use the PATRAN-to-COMET-AR converter (see Section 2.12). The
organization of this chapter is summarized in Table 2.1-1.

Many of these sections refer to various COMET-AR processors described in Part III of this manual.
Refer to the COMET-AR Tutorial for explicit examples of how to construct a Model Definition
Procedure.

Table 2.1-1 Outline of Chapter 2: Model Definition Procedures

Section Title

2.1 Overview

2.2 Reference Frames and Coordinate Systems

2.3 Generic Model Definition Procedures

2.4 Node Definition Procedures

2.5 Element Definition Procedures

2.6 Material/Fabrication Definition Procedures

2.7 Orientation of Fabrication Reference Frames

2.8 Load Definition Procedures

2.9 Boundary Condition Definition Procedures

2.10 Automatic DOF Suppression and Drilling Stabilization

2.11 Sample Model Definition Procedures (Summary)

2.12 Model Definition via PATRAN (and PST Translator)

2.13 Procedure GM2AM

2 Model Definition Procedures 2.1 Overview

2.1-2 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

Revised 12/1/97 COMET-AR User’s Manual 2.2- 1

2.2 Reference Frames and Coordinate Systems

There are several reference frames and associated coordinate systems that the COMET-AR user
should become familiar with before defining a model.f The most important of these are summa-
rized in Table 2.2-1.

Each of the reference frames in Table 2.2-1 is orthogonal (i.e., the corresponding x, y, and z axes
are mutually perpendicular and form a right-handed system, or triad). An illustration of these var-
ious reference frames and how they relate to one another in a simple model is given in Figure 2.2-1.

Table 2.2-1 COMET-AR Reference Frames

Reference
Frame

Coordinate
Axes

Role in COMET-AR

Global xg, yg, zg
Fixed frame used for defining initial nodal coordinates; also the
default frame for orienting nodal DOFs.

Computational
(Nodal)

xc, yc, zc

Used for orienting nodal DOFs; may vary from node to node, or may
be fixed. Selected during the Node Definition phase. (Default: Glo-
bal Frame).

Corotational
(Element)

xe, ye, ze

Used internally by generic element processor to track element “rigid
body” motion, and subtract it from total deformations before com-
puting strains. Varies from element to element, but constant within a
given element.

Local
(Integ. Point)

xl, yl, zl

Used by elements to express strains and stresses at element integra-
tion points unless an alternate Stress Frame is selected by the user.
May vary from integration point to integration point.

Stress
(Integ. Point)

xs, ys, zs

Rotated version of the Local Frame used for database stress and
strain output; selected via STR_DIR argument in solution proce-
dures.

Fabrication
(Integ. Point)

xf, yf, zf

Used to orient material fabrications, such as laminated composite
layups, in space. May vary from integration point to integration
point. Selected via the FAB_DIR subcommand of the DEFINE ELE-
MENTS command in the generic element processor.

Material
(Integ. Point)

xm, ym, zm

Used to orients individual material fibers comprising a fabrication,
e.g., each layer in a composite laminate is oriented via a fiber angle,
θmf, between the Fabrication Frame and the Material Frame of that
layer.

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2-2 COMET-AR User’s Manual Revised 12/1/97

Figure 2.2-1 Example of COMET-AR Reference Frames

x
x

xe

yeze

yc

xc
xc

xc

xc

yc

yc
yc

zc

zc

zc

xl

xl

yl

yl

zl

zl

xg
yg

zg

xf

yf
zf

xm
xm

xm

ym

ym

ym

xl

yl

=zl xf

xf

xf

yf

=zf

yf

=yf

zm

Fabrication

Global

Material

Computational

Corotational

Computational

Local

zc

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

Revised 12/1/97 COMET-AR User’s Manual 2.2- 3

2.2.1 Global Frame

The Global Frame is represented by a fixed Cartesian coordinate system, xg, yg, zg, that is the
default system used to define nodal coordinates and to orient nodal (or computational) reference
frame DOFs in the initial configuration of the structural model. The user may also employ a global
cylindrical coordinate system to define nodal coordinates and computational frames in TAB (see
Section 6.10). Alternate nodal DOF reference frames may be defined in TAB as well.

2.2.2 Computational Frame

The Computational Frame is represented by a nodally varying orthogonal triad, xc, yc, zc, and is
used to express the components of the nodal (displacement) DOFs, including both translations and
rotations. These nodal frames are typically defined by the user (in Processor TAB) to facilitate the
definition of boundary conditions and/or the interpretation of displacement results. The default
Computational Frame at a node is the Global Frame. Alternate Computational Frames may be
defined via the ALTREF command in Processor TAB, or if a cylindrical coordinate system has
been selected for node definition, that cylindrical system may be used to automatically generate a
local, cylindrically-aligned triad as the Computational Frame at each node.

2.2.3 Corotational Frame

The Corotational Frame is represented by a separate orthogonal triad, xe, ye, ze, that is attached to
each element in the model. This triad is defined automatically (by the Generic Element Processor,
ES) in the initial element configuration, and rotates with the “rigid body” part of the element defor-
mation. During element strain computation, this rigid body motion is subtracted from the nodal
displacements leaving “deformational displacements” whose rotatational components are much
smaller than the total nodal rotations. This enables arbitrarily large total rotations to be handled by
shell elements that are based on only moderate (or even infinitesimal) rotation theories. The Coro-
tational Frame is also used to form element stiffness and force arrays within an element processor,
although all element stiffness and force arrays are output to the database in computational compo-
nents, xc, yc, zc.

For shell (2D) and solid (3D) elements, the Corotational Frame is defined as an orthogonal triad
aligned with an average plane passing through the first three or four element corner points for tri-
angular and quadrilateral planform elements, respectively (see Figure 2.2-1). For beam (1D)
elements, the Corotational Frame is initially oriented via the beam element reference node.

The Computational Frame at a given node is defined in the initial config-
uration and fixed throughout the motion of the structural model (i.e., it
does not rotate to follow the deformed configuration). This must be taken
into account when specifying nodal boundary conditions.

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2-4 COMET-AR User’s Manual Revised 12/1/97

2.2.4 Local Frame

The Local Frame is represented by an orthogonal triad, xl, yl, zl, that is attached to each element
integration point in the initial configuration. This triad represents the intrinsic directions (at an ele-
ment integration point) used to express strain and stress components within an element processor.
The orientation of the Local Triad may vary from integration point to integration point within an
element (see Figure 2.2-1) or may be the same at all integration points for some elements (e.g., tri-
angular shell elements). The definition of xl, yl, zl is dependent on element type and described
within specific element processors (see Chapter 7, Element Processors). Before strains and stresses
are output to the database, they may be transformed to an alternate “Stress Frame.”

2.2.5 Stress Frame

The Stress Frame is a rotated version of the Local Frame used exclusively to express strain and
stress components stored in the database (for post-processing). The user may select the Stress
Frame via the STR_DIR argument provided by Solution Procedures (see also the RESET
STR_DIR command in the section on Processor ES). Current options include using the element
Local Frame (the default option) or using the Fabrication Frame.

2.2.6 Fabrication Frame

The Fabrication Frame is represented by an orthogonal triad, xf, yf, zf, that orients the fabrication
definition (i.e., cross-section/materials) at each element integration point. For example, a layered-
shell fabrication is illustrated in Figure 2.2-1 which has a Fabrication Frame with the xf, yf axes in
the lamina plane, and the zf axis normal to the laminate (i.e., the element reference surface). For
beam fabrications, the zf axis is parallel to the beam axis; and for solid fabrications, the xf, yf, zf
axes coincide with the material axes. Fabrications and associated materials are defined via the
Generic Constitutive Processor (see Chapter 8, Constitutive Processors) and that the orientation
and eccentricity of the fabrication are defined as element properties via the FAB_DIR and
FAB_ECC subcommands under the DEFINE ELEMENTS command in the Generic Element Pro-
cessor (see Chapter 7, Element Processors).

2.2.7 Material Frame

The Material Frame is represented by an orthogonal triad, xm, ym, zm, that orients the material
properties within a given fabrication. For layered-shell fabrications, the Material xm,ym axes are in
a plane that is parallel to the Fabrication xf,yf axes, but rotated by a layer angle, θmf. For beam and
solid fabrications, the Material and Fabrication frames are parallel.

For shell elements, the surface-normal directions of the Local, Stress, Fab-
rication, and Material Frames all coincide (i.e., zl=zs=zf=zm).

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

Revised 12/1/97 COMET-AR User’s Manual 2.2- 5

2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2-6 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.3 Generic Model Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.3- 1

2.3 Generic Model Definition Procedures

A Model Definition Procedure is a command-language (CLIP) procedure written by the user (or a
pre-processing converter such as Processor PST) to generate a model in the COMET-AR database.
This section describes the generic format of Model Definition Procedures, with more details given
in subsequent sections. This format is not rigid, but it does establish the required ingredients and
provide guidelines and a template for the user. For more detailed examples, refer to Section 2.11,
Sample Model Definition Procedures or to the COMET-AR Tutorial. A generic Model Definition
Procedure is shown in Box 2.3-1.

In Box 2.3-1, Case represents the case name, a user-selected name for the model being defined.
The phrase model_arg_i represents the ith user-defined procedure argument name, and
model_def_i represents the corresponding default value (a number or character string). Such pro-
cedure arguments allow the use of arbitrary parameters that provide a convenient parametrization
of the model. For example, the procedure may include such arguments as model dimensions, mate-
rial properties (or numbers), element type, and initial mesh density.

Box 2.3-1 Generic Model Definition Procedure

*PROCEDURE Case (model_arg_1=model_def _1; . . . model_arg_n=model_def_n)

. Open New Database

 ∗ OPEN Case.DBC

. Node Definition

. Nodal Coordinates and Computational Frames are defined here with Processor TAB.

. Typically done via a sub-procedure; e.g., *CALL NodeDefn (. . .)

. Element Definition

. Element Types, Nodal Connectivity, Fabrication Numbers, and Fabrication Frames/Eccentricity
 are defined here with Element (ESi) Processors.
. Typically done via a sub-procedure; e.g., *CALL EltDefn (. . .)

. Material/Fabrication Definition

. Fabrication and Material Properties are defined with the Generic Constitutive Processor (GCP).

. Typically done via a sub-procedure; e.g., *CALL MatlDefn (. . .)

. Load Definition

. Nodal (Concentrated) Loads and Element (Distributed) Loads are defined here with Processors
 AUS and ESi, respectively;
. Typically done via a sub-procedure; e.g., *CALL LoadDefn (. . .)

. Boundary Condition Definition

. Nodal Boundary Conditions are defined here via Processor COP.

. Typically done via a sub-procedure; e.g., *CALL BCsDefn (. . .)

*END

2 Model Definition Procedures 2.3 Generic Model Definition Procedures

2.3-2 COMET-AR User’s Manual Revised 12/1/97

The first statement in a Model Definition Procedure is typically an *OPEN directive which creates
a new computational database file. The database file name should start with the Case name and end
with the suffix .DBC. This ensures compatibility with Solution Procedures such as
AR_CONTROL.

As shown in Box 2.3-1, after creating an initial database file (Case.DBC), the Model Definition
Procedure is typically composed of the following five functions: 1) Node Definition; 2) Element
Definition; 3) Material/Fabrication Definition; 4) Load Definition; and 5) Boundary Condition
Definition. For convenience (and readability) each of these model definition functions may be
treated as a subprocedure (i.e., a lower-level procedure called from within the main model defini-
tion procedure) as described in the following subsections.

Once the entire Model Definition Procedure (including all internal sub-procedures) has been writ-
ten by the user (or the PATRAN converter), it must be compiled and invoked from within a
“Model.com” file as explained in Section 1.5.3, Execution of COMET-AR/Pre-Processing Phase.

While it is the responsibility of the user to create the initial
Case.DBC file, it is not mandatory to include the ∗ OPEN directive
in the model definition procedure. Instead, the ∗ OPEN can be placed
within the Model.com (UNIX script) file that invokes the model def-
inition procedure (see Section 1.5, Execution of COMET-AR).

2 Model Definition Procedures 2.4 Node Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.4- 1

2.4 Node Definition Procedures

The Node Definition part of a Model Definition Procedure is described in this section. Node Def-
inition includes the definition of nodal coordinates and computational frames, and is performed via
Processor TAB, and followed by Processor REDO (to reformat certain datasets). The necessary
Processor commands can either be added directly (in-line) to the Model Definition Procedure or
placed in a sub-procedure. The example in Box 2.4-1 employs a sub-procedure.

In the procedure shown in Box 2.4-1, (arbitrarily called NodeDefn), a number of Model Definition
Procedure argument values have been transferred from above (i.e., model_arg_j1 ...
model_arg_jn). These values are now referred to with the local arguments node_arg_1 ...
node_arg_n and may be employed within the Node Definition Procedure by using square brackets
for symbolic replacement (e.g., [node_arg_1]).

The TAB Processor appearing in the above procedure is used to define both nodal coordinates (via
the JLOC command), and nodal computational reference frames (via the ALTREF and JREF com-

Box 2.4-1 Sample Node Definition Sub-Procedure

*PROCEDURE NodeDefn (node_arg_1 [=model_val_j1]; ... node_arg_n [=model_val_jn])

 . Basic Node Definition

RUN TAB

. Nodal Summary

 START nn

. Nodal Coordinates

 JLOC

1 x1 y1 z1

2 x2 y2 z2

:

nn xnn ynn znn

. Nodal Computational Frames

 . See ALTREF and JREF commands under Processor TAB

STOP

 . Reformat Model Summary and Nodal Datasets

RUN REDO

CSM ; NCT ; NTT

STOP

*END

2 Model Definition Procedures 2.4 Node Definition Procedures

2.4-2 COMET-AR User’s Manual Revised 12/1/97

mands). The TAB START command must first be used to specify the total number of nodes in the
initial model (nn). The JLOC (“joint location”) command is followed by a nodal coordinate line
for each node, which includes the node number followed by the coordinate values. In the example
shown in Box 2.3-1, global Cartesian coordinates are employed; however, there are other options
available in TAB (e.g., cylindrical).

After nodal coordinates and computational reference frames are defined with Processor TAB, the
user must employ Processor REDO to reformat certain datasets from the old (COMET-BL) data
structures to the new (COMET-AR) data structures. The standard commands required to do this
are shown in Box 2.3-1.

Refer to Section 6.10 on Processor TAB for details on both nodal coordinate and
computational frame definition, including the START, JLOC, JREF, and ALTREF
commands shown in Box 2.4-1. Refer to Section 6.7 for details regarding the REDO
commands shown in Box 2.3-1.

2 Model Definition Procedures 2.5 Element Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.5- 1

2.5 Element Definition Procedures

2.5.1 General Description

The Element Definition part of a Model Definition Procedure is described in this section. Element
Definition includes the definition of element node, fabrication, and (optionally) solid-model geom-
etry connectivity for all element types to be present in the model. These functions are all performed
by structural element processors (ESi) that share a common user- and database-interface known as
the Generic Element Processor (or ES) described in Section 7.2. The commands for element defi-
nition can either be added directly to the Model Definition Procedure or placed in a sub-procedure.
The example in Box 2.5-1 employs a sub-procedure.

Box 2.5-1 Sample Element Definition Sub-Procedure

*PROCEDURE EltDefn (elt_arg_1 [= model_val_j1]; ... elt_arg_n [= model_val_jn])

RUN ESi1 . Define Elements of First Type (Name = ESi1_EltTyp1)

RESET ELEMENT_TYPE = EltTyp1

DEFINE ELEMENTS [/P=p]

 FAB_ID = 1 ; FAB_DIR = GLOBAL X

ELEMENT = 1 NODES = n1
1, n2

1, . . ., nnen
1

ELEMENT = 2 NODES = n1
2, n2

2, . . ., nnen
2

:

ELEMENT = nel1 NODES = n1
nel1, n2

nel1, . . ., nnen
nel1

END DEFINE ELEMENTS

RUN ESi2 . Define Elements of Second Type (Name = ESi2_EltTyp2)

RESET ELEMENT_TYPE = EltTyp2

DEFINE ELEMENTS [/P=p]

ELEMENT = 1 NODES = n1
1, n2

1, . . ., nnen
1

ELEMENT = 2 NODES = n1
2, n2

2, . . ., nnen
2

:

ELEMENT = nel2 NODES = n1
nel2, n2

nel2, . . ., nnen
nel2

END DEFINE ELEMENTS

: : :

STOP

*END

2 Model Definition Procedures 2.5 Element Definition Procedures

2.5-2 COMET-AR User’s Manual Revised 12/1/97

In the procedure shown in Box 2.5-1, (arbitrarily called EltDefn), a number of Model Definition
Procedure argument values have been transferred from above (i.e., model_arg_j1 ...
model_arg_jn). These values are now referred to with the local arguments elt_arg_1 ... elt_arg_n
and may be employed within the Element Definition Procedure by using square brackets for sym-
bolic replacement (e.g., [elt_arg_1]).

There must be a separate element processor (ESi) RUN statement for each element type appearing
in the model. In this example, ESi1 denotes the element processor containing the first element type
EltTyp1. ESi2 denotes the element processor containing the second element type, EltTyp2.

After each RUN ESi statement, a RESET ELEMENT_TYPE command must be used to select the
element type (EltTyp) within element processor ESi (as element processors may have multiple ele-
ment types). Then the DEFINE ELEMENTS command is used to initiate the definition of element
node and fabrication connectivity for elements of the specified type in the model (the optional /P=p
qualifier must be appended to the command if the element processor contains a specific element
type that permits variable polynomial orders, e.g., Processor ES7p). Subcommands under the
DEFINE ELEMENTS apply to all elements that appear in subsequent ELEMENT subcommands
and include: FAB_ID, which selects a fabrication (i.e., cross-section/material) type number; and
FAB_DIR, which indicates how the fabrication is to be oriented. (Other optional subcommands
that do not appear in the above example include the specification of element GROUP numbers and
solid-model SURFACE connectivity).

The ELEMENT subcommand is then used to define node (and optionally solid-model line) con-
nectivity, via the NODE phrase (and optional LINE phrase). The elements may be defined in an
arbitrary order, as their position in the database is determined by the ELEMENT=eltnum phrase.
For details on the DEFINE ELEMENTS command (and its subcommands) refer to the section on
Processor ES. For details on individual element processors and element types, refer to the appro-
priate sections on Processor ESi (where i denotes the variable part of the name).

The combination of the element processor name (ESi) and the element type name within that pro-
cessor (EltTyp) is called the “Element Name” (or EltNam), i.e.,

EltNam = ESi_EltTyp

The element name (EltNam) appears as a prefix in all element datasets. For example, the ele-
ment definition dataset is called:

EltNam.DEFINITION...mesh

where mesh is the current mesh number. This combined element name provides a unique label-
ing of element types within COMET-AR and allows different element processors to have ele-
ments with the same element type name (EltTyp) since element processor names are always
unique. Individual element processors (ESi) may contain multiple element types; thus, the com-
bined name (EltNam) is both necessary and sufficient for unambiguous selection of an element
type by the user.

2 Model Definition Procedures 2.5 Element Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.5- 3

After defining all elements for all element types relevant to the current model, a STOP command
should appear before the ∗ END directive in the Element Definition Procedure.

2.5.2 Available Element Processors and Types in COMET-AR

A summary of element processors and element types currently available in COMET-AR is given
in the Table 2.5-1.

Detailed descriptions (and usage guidelines) for each of the above elements may be found within
the corresponding sections in Chapter 7. Additional solid element processors are implemented but
untested.

Table 2.5-1 Summary of COMET-AR Element Processors/Types

Element
Processor

Element
Type

Description

ES1 EX41-46
EX91-96

EX47
EX97

Assorted 4-node selectively-reduced integrated shell elements.
Assorted 9-node selectively reduced integrated shell elements.
Basic 4-node ANS shell element.
Basic 9-node ANS shell element.

ES1p SHELL Variable-order polynomial, assumed-displacement Lagrange (LAG) isoparametric
quadrilateral shell elements:
 p=1: 4-node bilinear geometry and displacements
 p=2: 9-node biquadratic geometry and displacements
 p=3: 16-node bicubic geometry and displacements

ES5 E410 STAGS 4-node Kirchhoff-type shell element.

ES6 E210 STAGS 2-node Euler beam element.

ES7p SHELL Variable-order polynomial Assumed Natural-coordinate Strain (ANS) quadrilateral
shell elements:
 p=1: 4-node bilinear geometry, const./linear strains
 p=2: 9-node biquadratic geometry, linear/quadratic strains
 p=3: 16-node bicubic geometry, quadratic/cubic strains

ES36 MIN3 Anisoparametric 3-node triangular shell element.

MIN6 Extension of MIN3 to curved geometry (under development).

2 Model Definition Procedures 2.5 Element Definition Procedures

2.5-4 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.6- 1

2.6 Material/Fabrication Definition Procedures

2.6.1 General Description

The Material/Fabrication Definition part of a Model Definition Procedure is described in this sec-
tion. Material/Fabrication Definition includes the definition of fabrication properties (cross-section
geometries and associated material numbers and orientations associated primarily with beam and
shell elements); and material properties (material constants associated with specific constitutive
models). The definition of both sets of properties is performed via the Generic Constitutive Pro-
cessor (GCP) described in Chapter 8. The commands for material/fabrication definition can either
be added directly to the Model Definition Procedure, or placed in a sub-procedure. The example in
Box 2.6-1 employs a sub-procedure.

In the procedure shown in Box 2.6-1 (arbitrarily called MatlDefn), a number of Model Definition
Procedure argument values have been transferred from above (i.e., model_arg_j1 ...
model_arg_jn). These values are now referred to with the local arguments matl_arg_1 ...
matl_arg_n and may be employed within the Material/Fabrication Definition Procedure by using
square brackets for symbolic replacement (e.g., [matl_arg_1]). Typically, these procedure argu-
ments will be used to pass user-selected material properties, fabrication properties, or just material/

Box 2.6-1 Sample Material/Fabrication Definition Sub-Procedure

*PROCEDURE MatlDefn (matl_arg_1 [= model_val_j1]; ... matl_arg_n [= model_val_jn])

 . Run Generic Constitutive Processor (GCP) and Define all Fabrication & Material Props.

RUN GCP

FABRICATION

. Definition of one or more fabrications (FABID=1, 2, ...) goes here.

 :

ENDFAB

MATERIAL

. Definition of one or more materials (MATID=1, 2, ...) goes here.

 :

ENDMAT

STOP

*END

2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

2.6-2 COMET-AR User’s Manual Revised 12/1/97

fabrication numbers enabling the user to select from a variety of property sets pre-defined within
procedure MatlDefn.

There are two relevant top-level commands within the GCP for fabrication and material property
definition: FABRICATION and MATERIAL. The FABRICATION command is used to initiate
the definition of one or more sets of fabrication properties. Each set of fabrication properties has
an associated fabrication type (e.g., SHELL) and fabrication number (e.g., FABID=1, 2, ...). The
available GCP subcommands to define properties for specific fabrication types are described in
Section 8.3. All fabrication types have one thing in common: they refer to one or more material
numbers (MATIDs), the properties for which are defined via the MATERIAL command.

The MATERIAL command is used to initiate the definition of one or more sets of material prop-
erties. Each set of material properties is associated with a specific material type (e.g., ISOEL:
isotropic elastic) and material number (e.g., MATID=1, 2, ...). The available GCP subcommands
to define constitutive properties for specific material types are described in Section 8.4. The GCP
supports either direct input of material property data, or the tabulation of predefined material prop-
erties in a material database.

2.6.2 Available Fabrication Types in COMET-AR

A summary of fabrication types currently available in COMET-AR is given in Table 2.6-1.

In the Element Definition Procedure (see Section 2.5) elements refer to fabri-
cation numbers (FABIDs) and not directly to material numbers (MATIDs)
when they are defined (via the FAB_ID subcommand of the DEFINE ELE-
MENTS command within the Generic Element Processor). In turn, fabrica-
tions refer to material numbers within the FABRICATION command of the
Generic Constitutive Processor. The hierarchy is: materials belong to fabrica-
tions which in turn belong to elements.

The separation of the Generic Constitutive Processor from element proces-
sors (ESi) as an independent module is a unique feature of COMET-AR. It
makes existing and new material/fabrication types accessible to all element
types simultaneously, avoids duplication of effort (and errors) by element
developers, and allows constitutive developers and element developers to
focus independently on their areas of expertise.

2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.6- 3

Detailed descriptions for each of the above fabrication types may be found in Section 8.3.

2.6.3 Available Material Types in COMET-AR

A summary of material types currently available in COMET-AR is given in Table 2.6-2.

Detailed descriptions for each of the above material types may be found in Section 8.4.

Table 2.6-1 Summary of COMET-AR Fabrication Types (within the GCP)

Fabrication Type Description

BEAM Homogeneous beam element cross-section properties; includes geometric properties
(area, moments of inertia, eccentricities) and an associated material number
(MATID).

SHELL Layered (composite) shell through-thickness properties; includes geometric proper-
ties (number of layers, layer thicknesses, layer fiber angles) and associated material
numbers (MATIDs) for each layer.

SOLID Three-dimensional solid continuum; includes only a material number (MATID), no
geometric properties.

Table 2.6-2 Summary of COMET-AR Material Types (within the GCP)

Material
Type

Description

ISOEL Isotropic elastic material; includes standard material constants (and optional tem-
perature and moisture dependent parameters).

ORTEL Orthotropic elastic material; includes standard material constants.

PLASTIC_WB White-Besseling (mechanical sublayer) elastic-plastic constitutive model for ini-
tially isotropic materials (temperature-independent).

2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

2.6-4 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

Revised 12/1/97 COMET-AR User’s Manual 2.7- 1

2.7 Orientation of Fabrication Reference Frames

2.7.1 General Description

Fabrication (and embedded material) reference frames (xf, yf, zf) are defined during element defi-
nition via the FAB_DIR subcommand of the generic element processor’s DEFINE ELEMENTS
command (see Section 2.5). The various options for orienting the fabrication frame are summa-
rized in Table 2.7-1.

The above options are selected via the element processor FAB_DIR subcommand, i.e.,

Table 2.7-1 Fabrication Frame Orientation Options

Option Input_Data Interpretation

ELEMENT None The fabrication frame is parallel to the element local frame. xf = xl, yf = yl, zf =
zl. This option is useful only for very simple models with rectangular meshes.

GLOBAL { X | Y | Z } The fabrication frame is such that the xf axis is parallel to the global X (i.e., xg),
Y (i.e., yg) or Z (i.e., zg) axis. The zf axis is taken parallel to the element normal
(zf) axis (for shells). The yf axis follows from the right-hand rule. This option is
useful for simple cylindrical structures where one of the global axes aligns with a
structural direction of interest.

POINT x [, θ] The element local zl axis is used for zf. The yf axis is obtained by taking the
cross-product of the vector connecting the reference point x to the current ele-
ment integration point, with zl. The yf axis follows from the right-hand rule. The
angle θ is an arbitrary in-plane rotation (about zf) that may be performed after the
triad has been projected to the element tangent plane (xl - yl). This option is use-
ful for axisymmetric shell structures, especially where annular plates are
involved.

VECTOR v [, θ] The element local zl axis is used for zf. The yf axis is obtained by crossing the
reference vector v with zm and xm follows from the right-hand rule. This option
is extremely powerful for general shell structures, where a different reference
vector may be defined for each substructure, typically along a generator. The
arbitrary in-plane angle, θ, may be used, e.g., to define a helical laminated com-
posite winding on a cylindrical shell.

PLANE u, v [, θ] First, a preliminary xf', yf', zf' triad is constructed by taking xf' parallel to u, cross-
ing u with v to obtain zf', and crossing zf' with xf to obtain yf. For shells, this triad
is then projected onto the element tangent plane by rotating zf' into the element
normal axis zl to obtain xf, yf, zf. Finally, an optional in-plane rotation θ is pro-
vided. The PLANE option is useful for general 3D models.

BEAM node Node number of beam element reference point.

FAB_DIR = Option, Input_Data

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7-2 COMET-AR User’s Manual Revised 12/1/97

where Option is the option name, and Input_Data are the associated parameters.

For shell elements, the options listed in Table 2.7-1 employ the local element normal vector (par-
allel to zl) to construct a tangent plane. The user may specify an additional arbitrary “in-plane”
angle to rotate the fabrication frame after it has been aligned with the shell element local tangent
plane (which can be useful for fiberwound composites on curved surfaces). The above options are
not limited to shell elements. They may also be used with 3D solid elements, in which case the use
of the element local normal (zl) axis is optional.

These fabrication reference frame options may be used to vary the orientation from element to ele-
ment, or among groups of elements, as indicated in Figure 2.7-1.

Figure 2.7-1 Orientation of Fabrication and Related Reference Frames

Finally, the fabrication reference frame may also be used for stress output, i.e., the element stress
reference frame can be equated to the fabrication reference frame by setting the stress direction
solution procedure argument to FAB_DIR:

The following subsections describe the fabrication frame orientation options in more detail.

STR_DIR = FAB_DIR

xf

yf
zf

xf

yf

zf=zl

yl

xl

Fabrication Frame

Local (Elt. Integ. Pt.) Frame

Global Frame

(xf, yf, zf)

xg

yg

zg

(xl, yl, zl)

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

Revised 12/1/97 COMET-AR User’s Manual 2.7- 3

2.7.2 The FAB_DIR = ELEMENT Option

The ELEMENT option for defining fabrication reference frames is the default option and is
invoked by issuing the DEFINE ELEMENTS subcommand.

with no additional parameters required. The result is that the fabrication frame is equivalenced to
the local element integration point frame, i.e., xf = xl, yf = yl, and zf = zl.

2.7.3 The FAB_DIR = GLOBAL Option

The GLOBAL option is invoked by issuing the DEFINE ELEMENTS subcommand.

where specification of X, Y, or Z indicates that the fabrication xf axis is parallel to the global xg,
yg or zg axis. For shell elements, the fabrication zf axis is automatically parallel to the shell element
normal vector (i.e., to the zl axis), and the yf axis completes a right-handed orthogonal triad. For
solid elements (with the /3D qualifier), the yf and zf axes are defined by cyclic permutation of the
global axis selected for xf. The GLOBAL definition option is illustrated geometrically and mathe-
matically in Figure 2.7-2.

Figure 2.7-2 FAB_DIR = GLOBAL Option

FAB_DIR = ELEMENT

FAB_DIR = GLOBAL { X | Y | Z } [/3D]

z f zl=

y f z f x f×=

xg, yg or zgx f =

Construction

xg

yg

zg

xf

xf yf

yf

zf

zf

Cylindrical Shell
Example: = zl

= zl

= xf

(FAB_DIR = GLOBAL Z)

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7-4 COMET-AR User’s Manual Revised 12/1/97

2.7.4 The FAB_DIR = POINT Option

The POINT option is invoked by issuing the DEFINE ELEMENTS subcommand.

where x denotes the global coordinates of an arbitrary reference point, i.e., x = xg, yg, zg, from
which a vector is connected to the current element integration point. This vector is then crossed
with the element normal vector (zl = zf) to obtain the yf direction, and the xf direction is obtained
via the right-hand rule. An optional in-plane rotation of θ is then performed about the zf direction
to obtain the final orientation of the fabrication frame. The construction is illustrated in
Figure 2.7-3. The POINT option is particularly useful for annular and circular plate structures.

Figure 2.7-3 FAB_DIR = POINT Option

FAB_DIR = POINT x [, θ]

z f zl=

y f

z f x x–()×
z f x x–()×

---------------------------------=

x f y f z f×=

x' f x f θcos y f θsin+=

y' f x– f θsin y f θcos+=

Additional In-Plane Rotation

Basic Construction

x

x
x

x - x

zf=zl

xf

yf

xg

yg

zg

xf

xf

yf yf

θ

Example:

 Annular Plate

zf

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

Revised 12/1/97 COMET-AR User’s Manual 2.7- 5

2.7.5 The FAB_DIR = VECTOR Option

The VECTOR option is invoked by issuing the DEFINE ELEMENTS subcommand

where v denotes the global components of a an arbitrary reference vector, i.e., v = vxg, vyg, vzg,
which is crossed with the element normal vector (zl = zf) to obtain the yf direction; the xf direction
is obtained via the right-hand rule. An optional in-plane rotation of θ is then performed about the
zf direction to obtain the final orientation of the fabrication frame. This option may be used to gen-
erate fabrication frame triads for general shell structures. It is particularly useful for assemblages
of shells of revolution, where the axes of revolution (i.e., the shell generators) provide natural ref-
erence vectors, v. The construction is illustrated in Figure 2.7-4.

Figure 2.7-4 FAB_DIR = VECTOR Option

FAB_DIR = VECTOR v [, θ]

zm zl=

ym

v zm×
v zm×

--------------------=

xm ym zm×=

x' f x f θcos y f θsin+=

y' f x– f θsin y f θcos+=

Basic Construction

Additional In-Plane Rotation

xg

xf

xf

xf

yg

yf

yf

yf

zf

zf

zf

zg

v

xf

xf

yf yf

θ

zf

Stacked Shell of RevolutionExample:

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7-6 COMET-AR User’s Manual Revised 12/1/97

2.7.6 The FAB_DIR = PLANE Option

The PLANE option is invoked by issuing the DEFINE ELEMENTS subcommand.

where u and v denote the global components of two arbitrary reference vectors, i.e., u = uxg, uyg,
uzg, and v = vxg, vyg, vzg, which together represent a plane in 3D space. Tentatively, the xf and yf
directions are located in this plane with zf normal to it. For shells, this tentative triad is then rotated
into the element tangent plane (at each integration point) by projecting the initial zf axis into the
local element normal (zl) axis. As with the POINT and VECTOR options, an optional in-plane
rotation of θ may be performed about the zf direction to obtain the final orientation of the fabrica-
tion frame. The PLANE option may be used to generate fabrication frame triads for general shell
and 3D solid structures. If the /3D qualifier is used, the normal projection step is bypassed. The
construction is illustrated in Figure 2.7-5.

Figure 2.7-5 FAB_DIR = PLANE Option

FAB_DIR = PLANE u, v [, θ] [/3D]

x f
u
u

--------=

z f
u v×
u v×

-----------------=

y f z f x f×=

x' f x f θcos y f θsin+=

y' f x– f θsin y f θcos+=

x f Rlx f←

z f Rlz f←

y f Rly f←

Additional In-Plane Rotation

Projection (for Shell Elts)

u=xf

v

zf

yf

zf

yf xf

xf

xf

yf yf

θ

zf

xf
yf

zl

Shell

Solid

Toroidal Solid or ShellExample: Basic Construction

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

Revised 12/1/97 COMET-AR User’s Manual 2.7- 7

2.7.7 The FAB_DIR = BEAM Option

The BEAM option is invoked by issuing the DEFINE ELEMENTS subcommand.

where node denotes the node number of a beam element reference point, with coordinates, x = xg,
yg, zg, which in conjunction with the two end points (i.e., nodes) of a beam element define the ele-
ment’s corotational frame (xe, ye, ze). For straight beam elements, the fabrication/cross-section
frame (xf, yf, zf) is then coincident with the corotational frame, as is the element stress frame (xl,
yl, zl). For curved beam elements, the reference point must be defined in the same plane as the first
three beam element nodes, and only the z axes of the element corotational and fabrication/stress
frames will coincide, as illustrated in Figure 2.7-6.

Figure 2.7-6 FAB_DIR = BEAM Option

FAB_DIR = BEAM node

y f ' x x– 1=

z f

x f y f '×
x f y f '×

-----------------------=

y f z f x f×=

x f

x2 x1–

x2 x1–
---------------------=

xg

yg

zg

 Straight Beam Curved Beam

xe
xl,xf

ze,zl,zf

ze
ze

xeye
ye’

ye

ye’ yl ,yf

xx

, zf

, xf, yf

y f ' x x– 1=

z f

x2 x1–() y f '×
x2 x1–() y f '×

---------------------------------------=

y f z f x f×=

x f xl êξ= =

(Cross-Section)

zf

yf

1

2

1

2
ref.ref.

3

xf

2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7-8 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.8 Load Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.8- 1

2.8 Load Definition Procedures

2.8.1 General Description

The Load Definition part of a Model Definition Procedure is described in this section. Load Defi-
nition includes the definition of element (distributed) and/or nodal (concentrated) loads. Element
loads are defined via the Generic Element Processor (i.e., Processors ESi). Nodal loads are defined
via Processor AUS, which builds a simple table in the old (COMET-BL) format, and Processor
REDO, which converts the AUS table to a new dataset compatible with the COMET-AR database.
The commands for load definition can either be added directly to the Model Definition Procedure
or placed in a sub-procedure as illustrated in Box 2.8-1.

Box 2.8-1 Sample Load Definition Sub-Procedure

*PROCEDURE LoadDefn (load_arg_1 [= model_val_j1]; ... load_arg_n [= model_val_jn])

 . Define Element (Distributed) Loads for Selected Element Processors/Types/Locations

RUN ESi

RESET ELEMENT_TYPE = EltTyp

DEFINE LOADS /TYPE=LoadTyp

ELEMENTS=elt_range ; Boundaries=bndy_range ; NODE=nod_range

 LOAD = load values

:::

END_DEFINE_LOADS

: : :

STOP

 . Define Nodal (Concentrated) Loads for Selected Nodes and DOFs

RUN AUS

SYSVEC : APPL LoadName 1 1 . (LoadNam e= FORCE or DISP)

i = dof_number_1 : j = node_number_1 : load_value_1

i = dof_number_2 : j = node_number_2 : load_value_2

:

RUN REDO

NVT APPL.LoadName.1.1 NODAL.SPEC_LoadName.1

STOP

*END

2 Model Definition Procedures 2.8 Load Definition Procedures

2.8-2 COMET-AR User’s Manual Revised 12/1/97

In the above procedure (arbitrarily called LoadDefn), a subset of Model Definition Procedure argu-
ment values have been transferred from above (i.e., model_arg_j1 ... model_arg_jn). These values
are now referred to with the local arguments load_arg_1 ... load_arg_n and may be employed
within the Load Definition Procedure by using square brackets for symbolic replacement (e.g.,
[load_arg_1]). These arguments typically are used to pass load magnitude and/or type parameters
from the main Model Definition procedure.

For element (distributed) load definitions, a separate element processor (ESi) must be RUN for
each element type that is to be loaded. Only those element types that have been employed within
the Element Definition Procedure (see previous section) are relevant here. After specifying the ele-
ment type within the processor (via the RESET ELEMENT_TYPE command) a DEFINE LOADS
command is needed for each separate load type that is to be applied. Element load types refer to
pressure, line loads, body loads, and temperatures, as summarized in the following subsection.
They are stored in the database as distributed loads (i.e., per unit length, area or mass) and during
the solution phase are converted into consistent nodal forces by the element processor(s). In
Box 2.8-1, the user may specify a selected range of elements (and/or groups), element boundaries,
and element boundary nodes, before specifying the load values via a LOAD command. For details
on the DEFINE LOADS command, refer to Section 7.2, Generic Element Processor.

For nodal (concentrated) load definition, processor AUS is used to construct a table of specified
nodal force values and/or a table of specified nodal displacement values. Each of these tables con-
tains a column for each node in the model, and a row for each nodal DOF in the model (e.g., six
rows for shell element models). Only those nodal DOFs that are to be loaded are mentioned in the
AUS command stream. Unspecified nodal DOFs are assumed to be unloaded (i.e., unspecified
forces are assumed to be zero, and unspecified displacements are assumed to be free unless con-
strained by boundary conditions. Processor REDO must be executed after creating specified nodal
force and/or displacement tables with AUS to convert these tables to the standard COMET-AR
nodal vector dataset format (via the NVT command). See Section 6.7 on Processor REDO for
details.

Specified nodal displacements are relevant only for nodal DOFs that are designated
SPCnz (i.e., specified nonzero) during boundary condition definition (see Section
2.9, Boundary Condition Definition Procedures).

Specified nodal forces are not recommended for use with adaptive mesh refinement.
Such concentrated forces can lead to singularities in the solution, and should be
replaced where possible by local element distributed loads. In contrast, specified
nodal displacement are fine for adaptive analysis, as they can simply be interpolated
when attached elements are subdivided by the adaptive algorithm.

2 Model Definition Procedures 2.8 Load Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.8- 3

2.8.2 Available Load Types in COMET-AR

A summary of element load types currently available in COMET-AR is given in Table 2.8-1.

Detailed instructions for defining each of the above element load types may be found in Section
7.2, Generic Element Processor. Each of the above element load types is specified at element
nodes and interpolated along an element line, surface, or volume (depending on the load type) via
the element’s intrinsic shape functions.

Nodal (concentrated) load types are summarized in Table 2.8-2.

Table 2.8-1 Summary of COMET-AR Element (Distributed) Load Types

Load Type Description

LINE Force and/or moment vectors per unit length; specified at nodes on selected element edges.

PRESSURE Normal force per unit area; specified at nodes on selected element surfaces; may be “dead”
(fixed direction) or “live” (follower) force.

SURFACE General traction vectors (force and/or moment per unit area) specified at nodes on selected
element surfaces.

BODY Body force vector per unit mass; specified at element nodes.

TEMP Thermal loads; temperature values specified at element nodes. (Currently untested)

Not all element processors/types have all of the above load types
implemented. Check the subsection on Element Processor Limitations
under the appropriate ESi processor section in Chapter 7 for specific
element-load status information.

Table 2.8-2 Summary of COMET-AR Nodal (Concentrated) Load Types

Load Type Description

FORCE Concentrated forces and/or moments at selected nodal DOFs.

DISPLACEMENT Concentrated displacements (translations and/or rotations) at selected nodal DOFs.

2 Model Definition Procedures 2.8 Load Definition Procedures

2.8-4 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.9- 1

2.9 Boundary Condition Definition Procedures

2.9.1 General Description

The Boundary Definition part of a Model Definition Procedure is described in this section. Bound-
ary Condition Definition includes the designation of active (free) and inactive (suppressed or
specified non-zero) nodal DOFs, as well as the definition of multi-point constraints (MPCs) which
constrain selected nodal DOFs to be linear combinations of other nodal DOFs. All such boundary
conditions are defined via Processor COP (the Constraint Processor), which is described in
Section 6.2. The COP commands for boundary condition definition can either be added directly to
the Model Definition Procedure or placed in a sub-procedure as illustrated in Box 2.9-1.

Box 2.9-1 Sample Boundary Condition Definition Sub-Procedure

*PROCEDURE BCsDefn (bcs_arg_1 = bcs_def_1 ; . . . bcs_arg_n =bcs_def_n)

 . Run Constraint Processor to Define all Boundary Conditions

RUN COP

MODEL

SELECT NEW DOFDAT ldi, conset, mesh . (e.g., 1, 1, 0)

CONSTRAIN

 . Designate suppressed (specified zero) nodal DOFs

ZERO NODE = node11 , node21 , nodeinc1 DOF = dofnam11 , dofnam21 , ...

ZERO NODE = node12, node22 , nodeinc2 DOF = dofnam12 , dofnam22 , ...

:::

 . Designate specified non-zero nodal DOFs

NONZERO NODE = node11, node21, nodeinc1 DOF = dofnam11, dofnam21, ...

NONZERO NODE = node11, node21, nodeinc1 DOF = dofnam11, dofnam21, ...

:::

 . Define Multi-Point/DOF Constraints

MPC :::

:::

DONE

STOP

*END

2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

2.9-2 COMET-AR User’s Manual Revised 12/1/97

In the procedure shown in Box 2.9-1 (arbitrarily called BCsDefn), a subset of Model Definition
Procedure argument values have been transferred from above into the local arguments bcs_arg_1
... bcs_arg_n and may be employed within the Boundary Condition Definition Procedure by using
square brackets for symbolic replacement (e.g., [bcs_arg_1]). These arguments are typically used
to pass boundary condition option parameters from the main Model Definition procedure.

After running the Constraint Processor (COP), the MODEL and SELECT commands are used to
create a nodal DOF dataset, NODAL.DOF..conset.mesh, on the database file connected to logical
device index ldi. The CONSTRAIN command then initiates the definition of specified zero and
nonzero nodal DOFs, via the ZERO and NONZERO subcommands, respectively. In these subcom-
mands, node1, node2, and nodeinc represent a range (first, last, and increment) of global node
numbers, and dofnami represents a valid DOF name (e.g., d1, d2, d3, theta1, theta2, or theta3). The
MPC subcommand is used to define any multipoint constraints present. Finally, the DONE com-
mand is used to terminate the constraint (boundary condition) definition and the STOP command
is used to terminate processor COP.

2.9.2 Available Boundary Condition and DOF Types in COMET-AR

A summary of boundary condition types now available in COMET-AR is given in Table 2.9-1. All
boundary conditions refer to nodal DOFs. There are no element, edge, or surface-oriented bound-
ary conditions except as created by the user in the Boundary Condition Procedure.

A summary of nodal DOF types currently recognized by COMET-AR is given in Table 2.9-2.

Table 2.9-1 Summary of COMET-AR Nodal Boundary Condition Types

BC Type Description

ZERO
(or SPCz)

Nodal DOFs that are totally suppressed. These may be specified via Processor COP’s
ZERO subcommand, or generated automatically via the Automatic DOF Suppression
option discussed in the next section.

NONZERO
(or SPCnz)

Nodal DOFs that are set to some prescribed value by the user. The node and DOF num-
bers should be specified via Processor COP’s NONZERO subcommand. The actual pre-
scribed (base) values should be set in the Load Definition Procedure, via Processor AUS
(see the previous section).

MPC
(Multi-Point
Constraint)

Nodal DOFs that are expressed as a linear combination of other nodal DOFs (either at the
same or at different nodes). These dependent DOFs are later eliminated from the equation
system through an assembly transformation (see Processor ASM). The node/DOF num-
bers and the coefficients appearing in the linear constraint may all be specified by the user
via Processor COP’s MPC subcommand.

FREE
(or Active)

Nodal DOFs that are neither specified as zero or nonzero and which do not appear as a
dependent variable in a multipoint constraint, are considered free and constitute
unknowns in the assembled equation system.

2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

Revised 12/1/97 COMET-AR User’s Manual 2.9- 3

Detailed instructions for associating any of the boundary condition types listed in Table 2.9-1 with
any of the nodal DOF types listed in Table 2.9-2 may be found in Section 6.3 on Processor COP.

Table 2.9-2 Summary of COMET-AR Potential Nodal DOF Types

DOF Name Description

d1, d2, d3 Translational displacements in the Computational Frame’s xc, yc, zc direc-
tions, respectively.

theta1, theta2, theta3 Rotational displacement about the Computational Frame’s xc, yc, zc axes,
respectively.

The default set of DOFs at all nodes is 6, i.e., 3 translations and 3 rotations: d1, d2,
d3, theta1, theta2, theta3. While COP provides a special command to change or
expand/reduce this default DOF pattern, the non-default options have not been suf-
ficiently tested in COMET-AR.

Any nodal DOFs that are not mentioned in a ZERO or NONZERO COP subcom-
mand are assumed to be free (i.e., active). Processor COP also has a FREE
command to release any nodal DOFs that have been unintentionally constrained by
previous ZERO or NONZERO commands.

Multi-point constraints (MPCs) in COMET-AR are currently restricted to be linear
and explicit. There must be a clear distinction between dependent and independent
DOFs appearing in a linear constraint equation, so that the (one) dependent DOF in
a given constraint equation can be eliminated from the assembled equation system
(as opposed to the use of Lagrange multipliers or penalty methods, which add DOFs
or stiffness to the equation system). If there are any multi-point constraints present,
the user must select Processor ASM as the assembly processor option when invok-
ing a Solution Procedure.

During adaptive mesh refinement (AR), new nodes are automatically generated by
the refinement processor (e.g., REF1) and appropriate boundary conditions for each
new node are deduced from the boundary condition types associated with neighbor-
ing nodes on attached element boundaries. Unless a user-written solid model
interface is employed (see Chapter 16) this boundary condition deduction process is
not fool-proof. For the time being, the user should monitor the constraints assigned
to AR-generated nodal DOFs via the COMET-AR graphical post-processor, ARGx.

2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

2.9-4 COMET-AR User’s Manual Revised 12/1/97

In addition to basic boundary condition definition, COMET-AR provides some
automatic DOF suppression options to eliminate unstable nodal DOFs, i.e., nodal
DOFs that are not supported by element stiffness such as shell drilling rotations, or
rotations in general at nodes connected only to solid elements. For more information
on this capability, see Section 2.10, Automatic DOF Suppression and Drilling
Stabilization.

Nodal DOFs that are constrained to be either zero, non-zero, or a linear combination
of other DOFs (i.e., MPC) may or not have an equation number assigned to them in
the assembled matrix equation system. The decision as to which option to employ
is typically made internally, within particular COMET-AR solution and/or utility
procedures.

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

Revised 12/1/97 COMET-AR User’s Manual 2.10- 1

2.10 Automatic DOF Suppression and Drilling
Stabilization

The model boundary conditions defined by the user may not be sufficient to remove all extraneous
DOFs (i.e., DOFs for which there is negligible element stiffness present). Then the assembled
equation system may be nearly (or completely) singular, hence unsolvable. To avoid this pitfall,
COMET-AR provides an automatic DOF suppression capability (AUTO_DOF_SUP) for the gen-
eral situation, and two special-purpose options (AUTO_DRILL and AUTO_TRIAD) for treating
extraneous drilling rotational DOFs associated with shell elements that may be missed by the
AUTO_DOF option. The selection of one or more of these options is not made by the user until
the solution phase, and AUTO_DOF_SUP, AUTO_DRILL and AUTO_TRIAD appear as solution
procedure arguments.

2.10.1 Basic Automatic DOF Suppression Option (AUTO_DOF_SUP)

The basic automatic DOF suppression option, AUTO_DOF_SUP, suppresses all nodal DOFs that
do not have sufficient element stiffness in the corresponding computational directions. For exam-
ple, all rotational DOFs may be suppressed at nodes that are connected only to solid elements
(which typically have only translational stiffness); selected drilling rotational DOFs may be sup-
pressed at nodes connected to shell elements if the element normal vectors are sufficiently close to
one of the computational axes at the node (see Figure 2.10-1).

Figure 2.10-1 Examples of DOFs Suppressed by AUTO_DOF_SUP Option

α

xc

yc

zc

ne2
ne1

e2e1

xc

yc
zc

dxc

dyc

dzc

θxc

θyc

θzc

free

free

free

free

fixed

free 
 
 
 
 
 
 
 
 
 
 

dxc

dyc

dzc

θxc

θyc

θzc

free

free

free

fixed

fixed

fixed 
 
 
 
 
 
 
 
 
 
 

a) Shell Drilling DOFs

b) Rotational DOFs at Solid-Element Nodes

(α < tolerance)

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10-2 COMET-AR User’s Manual Revised 12/1/97

The basic steps involved in automatic DOF suppression via the AUTO_DOF_SUP option are sum-
marized in Table 2.10-1. The user performs the first two steps; COMET-AR does the rest.

2.10.2 Stabilization of Drilling DOFs (AUTO_DRILL/AUTO_TRIAD/AUTO_MPC)

2.10.2.1 General Description

Many of the shell elements in COMET-AR intrinsically have only 5 DOFs per node: 3 translations
and 2 rotations. The 3rd, or “drilling,” rotational DOF, which is a rotation about the shell element
normal direction, does not appear in the shell theory and thus has no intrinsic stiffness associated
with it. This rank-deficiency can lead to singularities in the assembled stiffness matrix, preventing
a solution of the equation system with conventional equation solvers. In some cases, the problem
can be easily remedied, such as when the Computational Frame at each node is defined such that
one of the computational axes (xc, yc, or zc) is nearly aligned with the element nodal normal and
the drilling DOF can be suppressed a priori (e.g., via the AUTO_DOF_SUP option described
above). At nodes where shell elements intersect at sufficiently large angles, rank-deficiency is
avoided without having to suppress any DOFs, as the drilling rotation in one element is resisted by
the bending stiffness in the adjacent element.

Table 2.10-1 Steps in AUTO_DOF_SUP Algorithm

Step Description

1 The user defines all physical boundary conditions for the model, as described in the section on Bound-
ary Condition Definition Procedures. This leads to the creation of a NODAL.DOF dataset with nodal
DOF boundary condition types set to FREE, ZERO, NONZERO, or MPC.

2 The user selects the AUTO_DOF_SUP option from one of the COMET-AR Solution Procedures (e.g.,
L_STATIC_1 or AR_CONTROL).

3 The solution procedure creates an auxiliary nodal DOF dataset, which is called ELT_NODAL.DOF,
for elements to indicate which nodal DOFs they support with stiffness. This dataset is initialized such
that all nodal DOFs are set to SPCz (i.e., suppressed).

4 The solution procedure executes all relevant element processors, and for each element, nodal DOFs
that have stiffness in one of the computational directions are switched to FREE in the
ELT_NODAL.DOF dataset. If there is no stiffness contribution from the element, the nodal DOF set-
ting is left as-is.

5 After processing all elements, the ELT_NODAL.DOF dataset reflects a setting of FREE for all nodal
DOFs that have supporting element stiffness, and SPCz for all nodal DOFs that have negligible stiff-
ness.

6 The ELT_NODAL.DOF dataset is then merged with the NODAL.DOF dataset, so that all nodal
DOFs that are set to SPCz in the ELT_NODAL.DOF dataset are also set to SPCz (i.e., suppressed) in
the NODAL.DOF dataset.

7 The resulting NODAL.DOF dataset contains all of the user’s original boundary condition assign-
ments plus any extra DOF suppressions contributed from the ELT_NODAL.DOF dataset. Superflu-
ous nodal DOFs have been automatically suppressed.

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

Revised 12/1/97 COMET-AR User’s Manual 2.10- 3

For more general situations (see Figure 2.10-2) where smooth shell regions exist in which the com-
putational axes can not be conveniently aligned with the element drilling rotation, additional
measures are necessary. Three mutually exclusive options are available within COMET-AR:

1) AUTO_DRILL : the addition of artificial drilling stiffness at the element level (for
certain element processors); or

2) AUTO_TRIAD : automatic re-direction of the computational axes so that the
drilling rotation can be suppressed afterwards by the AUTO_DOF_SUP option; or

3) AUTO_MPC : automatic generation of multipoint constraints (MPC—actually
multi-DOF constraints) at a point to suppress drilling DOFS regardless of the
directions of the computational axes.

Figure 2.10-2 Motivation for Drilling DOF Stabilization

2.10.2.2 Automatic Drilling Stiffness Option (AUTO_DRILL)

Artificial drilling stiffness is available in most COMET-AR shell element processors that do not
have intrinsic drilling stiffness (e.g., ES1p and ES7p). In these processors the addition of artificial
drilling stiffness is triggered via the AUTO_DRILL solution procedure argument. This option
insures that drilling stiffness is added at the element level, but only where needed.

For built-up shell structures, it is neither necessary nor desirable to add artificial drilling rotational
stiffness at nodes where elements intersect at moderately large angles, e.g., along the panel/stiff-
ener juncture line in a blade-stiffened panel (see Figure 2.10-3). At such nodes, sufficient rotational
stiffness is already provided in all three computational directions by the assembly of bending stiff-
nesses from the contributing adjacent elements. If the ratio of the thicknesses for the intersecting
elements is large, the addition of artificial drilling stiffness from the thicker element may over-
whelm the bending stiffness in the attached element and adversely affect accuracy. The

NEEDED Not Needed

xc
yc

zc

Drilling Rotation Vectors

Stiffened Suppressible

Drilling Stabilization:

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10-4 COMET-AR User’s Manual Revised 12/1/97

AUTO_DRILL option thus turns nodal drilling stiffness flags on selectively, based on whether the
structure is smooth or junctured at each node, as illustrated in Figure 2.10-3.

Figure 2.10-3 Effect of Automatic Drilling Stiffness Selection Option

When the AUTO_DRILL option is selected by the user (at the solution procedure level) two things
happen: 1) artificial drilling stiffness flags are defined for each node in the model, indicating where
drilling stiffness is needed; and 2) during element stiffness formation, shell elements attached to
nodes that are flagged for drilling stiffness add a “small” diagonal stiffness contribution to the nor-
mal rotational component at those nodes. An optional drilling stiffness magnitude parameter and
an optional drilling stiffness angle tolerance parameter are provided in conjunction with the
AUTO_DRILL argument appearing in COMET-AR Solution Procedures.

2.10.2.3 The AUTO_TRIAD Option

The AUTO_TRIAD option is an alternative to AUTO_DRILL that bypasses the need for artificial
drilling stiffness and some of the numerical difficulties associated with it (especially in nonlinear
analysis). With this option, computational triads (xc, yc, zc) are re-oriented at all nodes not subject
to boundary conditions, such that one of the computational axes is aligned with the average element
normal at the node. The effect of AUTO_TRIAD is illustrated by example in Figure 2.10-4. At the
“black” node the computational triad {xc, yc, zc} is originally aligned with the global triad {xg, yg,
zg}. The AUTO_TRIAD option then replaces that triad with the new triad {xc, yc, zc} such that
the new zc axis is aligned with the average element normal at the node, which in the figure is close
enough to the individual element normals that the “drilling” rotation about the zc axis can be sup-
pressed automatically by the AUTO_DOF_SUP option.

Some element processors, such as ES36, have artificial drilling stiffness hardwired in the ele-
ment formulation. For such elements, the AUTO_DRILL option is irrelevant, as the drilling
stiffness is added at the element level whether or not the option is selected.

Add Drill Stiffness

Skip Drill Stiffness

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

Revised 12/1/97 COMET-AR User’s Manual 2.10- 5

Figure 2.10-4 Illustration of AUTO_TRIAD Option at a Node

The AUTO_TRIAD option must be used in conjunction with the
AUTO_DOF_SUP option, so that the corresponding drilling rotational
DOFs are automatically suppressed at all nodes where insufficient
drilling stiffness exists.

Computational triads at nodes with any DOFs assigned boundary con-
ditions (e.g., suppressed or specified nonzero) are skipped by the
AUTO_TRIAD option. The user is responsible for stabilizing drilling
DOFs at these nodes.

Concentrated nodal forces (or moments) should not be employed in
conjunction with the AUTO_TRIAD option, as the computational tri-
ads may be inadvertently re-directed by the program, changing the
interpretation of the force components. User-defined multi-point con-
straints should also not be used in conjunction with the AUTO_TRIAD
option for the same reasons.

xg

yg

zg

xc

yc

zc

xc

yc

zc

Average nodal normal: (Drilling rotation about this axis
 can be suppressed.)

Original
Computational Triad:

Updated
Computational Triad:

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10-6 COMET-AR User’s Manual Revised 12/1/97

2.10.2.4 The AUTO_MPC Option

The AUTO_MPC option is the most direct and robust way to eliminate unstable drilling rotational
DOFs. It automatically generates an explicit, multi-DOF constraint equation, suppressing the drill-
ing rotation for each node where there is insufficient stiffness to stabilize (i.e., resist) that particular
motion. The nature of the constraint equation is shown both geometrically and algebraically in Fig-
ure 2.10-5. Here, represent unit vectors in three mutually perpendicular computational
directions: xc, yc, zc, respectively; θxc, θyc, θzc represent the corresponding rotational DOFS at the
node; represents the average unit normal vector at the node (i.e., the drilling direction); and θdrill
represents the corresponding drilling rotation. The drilling constraint involves all three rotational
DOFS about the computational axes (xc, yc, zc), and the computational frame at such nodes may
be totally arbitrary, with both loads and boundary conditions present as well. This is in contrast to
the AUTO_TRIAD option, where the computational frames are automatically modified by the
code; or to the basic AUTO_DOF_SUP option where the user is responsible for properly aligning
one of the computational axes with the drilling axis at nodes that do not lie on shell/shell or shell/
beam juncture lines.

Figure 2.10-5 The AUTO_MPC Option for Stabilizing Drilling Rotations

When post-processing displacement results obtained with the
AUTO_TRIAD option, remember that nodal displacements will be
expressed with respect to the re-directed computational axes and may
need to be transformed back to the global frame. These transformations
are automatically performed by COMET-AR post-processors, such as
ARGx.

The AUTO_MPC option is the most all-purpose and robust of the drill-
ing stabilization options. The only disadvantage of the AUTO_MPC
option over other AUTO options is that is newer and is less tested.

êxc êyc êzc, ,

n̂

θxc

θyc

θzc θdrill

êxc êyc

êzc n̂

θdrill θxc n̂ exc⋅() θyc n̂ eyc⋅() θzc n̂ ezc⋅()+ + 0= = Constraint Equation:

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

Revised 12/1/97 COMET-AR User’s Manual 2.10- 7

2.10.3 Usage Guidelines/Limitations for AUTO_DOF/DRILL/MPC/TRIAD

The guidelines/limitations listed in Table 2.10-2 should be considered when selecting any of the
above options at the solution procedure level and when defining the model.

Details on the parameters available with the AUTO_DOF, AUTO_DRILL, AUTO_MPC, and
AUTO_TRIAD options are provided under the description of the solution procedures in which
they appear as arguments (see, e.g., L_STATIC_1 or AR_CONTROL).

Table 2.10-2 Usage Guidelines for AUTO_DOF, AUTO_DRILL , AUTO_MPC, and
AUTO_TRIAD Options

Number Guideline

1 AUTO_DOF_SUP should always be selected as a safeguard

2 AUTO_MPC is the recommended option for ensuring that unstable drilling DOFs are properly sup-
pressed, for both linear and nonlinear, adaptive and non-adaptive analysis. Proviso: While the
AUTO_MPC approach is in principle the most robust, the software is newer than the other AUTO
options and hence may still have some bugs.

3 AUTO_DRILL should be selected only for linear analysis, and not in conjunction with iterative equa-
tion solvers.

4 AUTO_MPC or AUTO_TRIAD are alternatives to AUTO_DRILL for nonlinear analysis.

5 AUTO_TRIAD must be used in conjunction with AUTO_DOF_SUP.

6 AUTO_TRIAD should not be used if concentrated nodal forces are present.

7 AUTO_TRIAD does not process nodes for which any DOFs have been assigned boundary conditions;
the user is responsible for drilling DOF suppression at such nodes.

8 If the computational frames align closely with the average shell-element normals throughout the model,
then neither AUTO_DRILL nor AUTO_TRIAD is necessary, only AUTO_DOF_SUP.

2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10-8 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.11 Sample Model Definition Procedures (Summary)

Revised 12/1/97 COMET-AR User’s Manual 2.11- 1

2.11 Sample Model Definition Procedures (Summary)

A number of existing model definition procedures, listed in Table 2.11-1, are available for the
interested reader to peruse (or cannibalize) on the computer. These procedures have been devel-
oped during the course of research on adaptive finite element methods sponsored by NASA
Langley Research Center. They range from extremely simple geometries, such as an L-shaped
domain, to moderately simple geometries, such as an I-stiffened panel. For the definition of more
complicated models (such an aircraft structure) it is advisable for the user to employ an automatic
mesh generation package, such as PATRAN, in conjunction with the PATRAN-to-COMET-AR
converter (see Section 6.6) rather than manually write a command-language procedure such as
those described in the preceding sections.

The above model definition files may be found on the computer in the directory:

where comet-ar-root represents the name of the root directory under which the COMET-AR soft-
ware system has been installed.

Table 2.11-1 Some Existing COMET-AR Model Definition Procedures

File Name Model Name Description

bsp.clp Blade-Stiffened Panel Flat plate with 4 axial blade stiffeners

bspx.clp Cut Blade-Stiffened Panel Same as bsp, but with one cut-off stiffener

crp.clp Cracked Plate Flat plate with partial crack

fkp.clp Flat “Knight’s Panel” Flat version of kp (panel with circular hole)

isp.clp I-Stiffened Panel Flat/curved panel with 4 “I” stiffeners

kp.clp Knight’s Panel Composite cylindrical panel with circular hole

lsd.clp L-Shaped Domain Flat plate with square cutout; 1/4 model

pc.clp Pinched Cylinder Cylindrical shell with opposing point/line loads

pwh.clp Plate with Hole Flat plate with circular hole, under tension

scb.clp Short Cantilevered Beam Rectangular plate, clamped at one end

steele_cyl.clp Steele’s Cylinder Axisymmetric model of cylindrical shell

steele_tor.clp Steele’s Toroid Axisymmetric model of toroidal shell

comet-ar-root /prc/applications

2 Model Definition Procedures 2.11 Sample Model Definition Procedures (Summary)

2.11-2 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.12 Model Definition via PATRAN and PST

Revised 12/1/97 COMET-AR User’s Manual 2.12- 1

2.12 Model Definition via PATRAN and PST

For most realistic structural models, it is not feasible to construct a model definition procedure
manually. Instead, the commercially available PATRAN pre-processing code may be used to gen-
erate the model, and the COMET-AR-to-PATRAN conversion processor (PST) is used to translate
the PATRAN data to the corresponding model-definition procedure or directly to a COMET-AR
database. A description of PATRAN and its usage is beyond the scope of this manual, but Proces-
sor PST is described in Section 6.6. Examples of the use of PATRAN and PST to generate a
COMET-AR model, as well as on the subsequent solution and post-processing of that model with
COMET-AR, may be found in the COMET-AR Tutorial Manual.

2 Model Definition Procedures 2.12 Model Definition via PATRAN and PST

2.12-2 COMET-AR User’s Manual Revised 12/1/97

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

Revised 12/1/97 COMET-AR User’s Manual 2.13- 1

2.13 Global Model to Analysis Model Translation
Procedure

2.13.1 General Description

This section describes the GM2AM Utility Procedure which calls the GM2AM processor to gen-
erate an initial analysis model database from a given 16-node surface-element geometry model and
user refinement specifications. The purpose of the GM2AM procedure is to execute the two-phase
generation of an initial analysis model from a given 16-node geometry model automatically, by
invoking a processor (also called GM2AM) transparently to the user (see Section 6.12 for details
on the processor). The GM2AM procedure listing is shown in Box 2.13-1.

Box 2.13-1 Global Model to Analysis Model Translation Procedure

*procedure GM2AM (case = GENERIC ;--
 step = 0 ;--
 load_set = 1 ;--
 constraint_set = 1 ;--
 ldi_am = 2 ;--
 ldi_gm = 1)

. Execute the INITIALIZE phase

. --------------------------------------
 run GM2AM
 INITIALIZE
 *add gm2am.add
 stop

. Open databases files

. -------------------------
 *open [ldi_am] [case].MODEL.DBC
 *open [ldi_gm] [case].DBG

. Initialize element and GCP datasets in the analysis database

. --
 *add init_elt.clp
 *copy [ldi_am] = [ldi_gm], FABRICATIONS
 copy [ldi_am] = [ldi_gm], MATL.

. Execute the REFINE phase

. ---------------------------------
 run GM2AM
 SET LDI_AM = [ldi_am]
 SET LDI_GM = [ldi_gm]
 SET STEP = [step]
 SET LOAD_SET = [load_set]
 SET CONSTRAINT_SET = [constraint_set]
 REFINE
 *add gm2am.add
 stop
 *close [ldi_am]
 *close [ldi_gm]

*end

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

2.13-2 COMET-AR User’s Manual Revised 12/1/97

In addition to supplying the procedure input arguments, the user must also prepare an “add file,”
called “gm2am.add,” which contains user specifications for converting geometric elements into
analysis elements to be used as the initial mesh of an adaptive refinement (AR) sequence. See
Section 6.12 (Processor GM2AM) for details on the preparation of the “gm2am.add” file.

2.13.2 Argument Summary

Procedure GM2AM may be invoked with the COMET-AR ∗ CALL directive, employing the argu-
ments summarized in Table 2.13-1.

2.13.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 2.13-2 are defined in more detail.
The arguments are listed alphabetically. Refer to Section 6.12 for details on the options.

2.13.3.1 Case Argument

This argument sets the case name prefix for both the geometry and analysis database files.

Argument syntax:

where case is the file name prefix. The following is the database file naming convention expected
by this procedure.

Table 2.13-1 Procedure GM2AM Input Arguments

Argument Default Value Description

CASE Generic Specifies the case name for the geometry and analysis databases

CONSTRAINT_SET 1 Specifies the constraint set number

LDI_AM 2 Specifies the logical device unit for the analysis database file

LDI_GM 1 Specifies the logical device unit for the geometry database file

LOAD_SET 1 Specifies the load set number

STEP 0 Specifies the load- or time-step number

CASE = case

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

Revised 12/1/97 COMET-AR User’s Manual 2.13- 3

2.13.3.2 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element and nodal data in both
the geometry and the analysis meshes. This number should appear as the second cycle number in
names of all element and nodal datasets.

Argument syntax:

where conset is the constraint set number (Default value: 1).

2.13.3.3 LDI_AM Argument

This argument sets the logical device index associated with the analysis database file.

Argument syntax:

where ldi_am is the logical device index (a positive integer) of the [case].MODEL.DBC file.
(Default value: 2).

2.13.3.4 LDI_GM Argument

This argument sets the logical device index associated with the geometry model database file.

Argument syntax:

where ldi_gm is the logical device index (a positive integer) of the [case].DBG file. (Default
value: 1).

2.13.3.5 LOAD_SET Argument

This argument defines the load set number associated with the element and nodal data in both the
geometry and the analysis meshes. This number should appear as the first cycle number in names
of all element and nodal datasets.

Database Name Convention

GEOMETRY case.DBG

ANALYSIS case.MODEL.DBC

CONSTRAINT_SET = conset

LDI_AM = ldi_am

LDI_GM = ldi_gm

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

2.13-4 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where ldset is the load set number (Default value: 1).

2.13.3.6 STEP Argument

This argument defines the solution step number associated with the element and nodal data in both
the geometry and the analysis meshes. This number should appear as the first cycle number in
names of all element and nodal datasets.

Argument syntax:

where step is the solution step number (Default value: 0).

2.13.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the GM2Am proces-
sor. These dataset requirements are detailed in Section 6.12 on Processor GM2AM.

2.13.5 Current Limitations

GM2AM is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the GM2AM processor, refer to Section 6.12 for details.

2.13.6 Status and Error Messages

GM2AM does not print any status or error messages directly. All messages will be produced by
the GM2AM processor; refer to Section 6.12 for specific processor messages.

2.13.7 Examples and Usage Guidelines

In this example, a complete initial analysis mesh will be generated starting with a 16-node geom-
etry elements database named PCL.DBG and the analysis database will be named
PCL.MODEL.DBC.

LOAD_SET = ldset

STEP = step

 *call GM2AM (CASE = PCL)

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

Revised 12/1/97 COMET-AR User’s Manual 2.13- 5

The user refinement specifications should be provided through the “gm2am.add” file (see
Section 6.12, Processor GM2AM, for details). For example, this file may contain the following
refinement specifications.

Sample gm2am.add Input File

The above “add” file instructs the GM2AM processor to refine every 16-node geometry element
present in the geometry database into a 3x3 mesh of 9-node ANS elements in the analysis mesh.

2.13.8 References

None.

 SET ELEMENT_NAME = ES1_EX97
 SET P = 2
 SET NEL_X = 3
 SET NEL_Y = 3
 PROCESS_GMELTS = 0

2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

2.13-6 COMET-AR User’s Manual Revised 12/1/97

3 Basic Solution Procedures 3.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 3.1- 1

Chapter 3 Basic Solution Procedures

3.1 Overview

This chapter describes existing COMET-AR command-language procedures that perform basic
finite element solutions (i.e., independent of adaptive mesh refinement). A section is dedicated to
each of the currently available procedures listed in Table 3.1-1, including linear static and nonlin-
ear static analysis. Before employing these solution procedures, the user must have first generated
a model, as described in the preceding chapter. Then the procedure may be invoked with a simple
*CALL directive, after running the COMET-AR macroprocessor (see Chapter 1).

Procedures L_STATIC_1 and NL_STATIC_1 solve the structural equations corresponding to a
given finite element mesh. To do this, they employ a number of lower-level (utility) procedures,
which in-turn, invoke various processors (described in Part II: Processors).

Table 3.1-1 Outline of Chapter 3: Basic Solution Procedures

Section Procedure Function

3.1 Overview Introduction

3.2 L_STATIC_1 Performs linear static analysis

3.3 NL_STATIC_1 Performs nonlinear static analysis

All the basic solution procedures described here are also
accessible through adaptive solution procedures, such as
AR_CONTROL, which perform adaptive mesh refinement
in addition to solving the basic equations.

3 Basic Solution Procedures 3.1 Overview

3.1-2 COMET-AR User’s Manual Revised 12/1/97

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 1

3.2 Procedure L_STATIC_1

3.2.1 General Description

Procedure L_STATIC_1 is a solution procedure for performing linear static analysis. It is auto-
matically invoked by the adaptive refinement AR_CONTROL_1 procedure to perform linear
static analysis for a given mesh.

The L_STATIC_1 procedure is merely a simple cover procedure invoking a sequence of utility
procedures to perform the linear static analysis task, as shown below in Figure 3.2-1. Each of
these utility procedures is discussed in Chapter 5, Utility Procedures.

Figure 3.2-1 L_STATIC_1 Algorithm for Linear Finite Element Static Analysis

3.2.2 Argument Summary

Procedure L_STATIC_1 may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 3.2-1.

INITIALIZE

FORCE

STIFFNESS

FACTOR

SOLVE

STRESS

FORCE

initialization of datasets, computation of nodal

computation of element stiffness matrices and

decomposition of the system matrix—

linear equation solution (direct or iterative)

stress recovery (optional)

internal force computation (optional)

external force vector computation

assembly of the system stiffness matrix

Crout, Cholesky etc.

triads, reordering of nodal points, etc.
⇒

⇒
⇒

⇒
⇒

⇒
⇒

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-2 COMET-AR User’s Manual Revised 12/1/97

Table 3.2-1 Procedure L_STATIC_1 Input Arguments

Argument Default Value Description

ASM_PROCESSOR ASM Matrix/vector assembly processor

AUTO_DOF_SUP <true> Automatic DOF suppression switch

AUTO_DRILL <false> Automatic drilling stiffness augmentation switch

AUTO_MPC <false>

AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in
the assembled system matrix prior to factorization

FIXED_FRAME OFF Fixed-frame option for hierarchical hs-refinement

INTERNAL <false> Compute internal force vector switch

LDI_C 1 Logical unit for main COMET-AR database file
(Case.DBC)

LDI_E 2 Logical unit for element-matrix file (Case.DBE)

LDI_S 3 Logical unit for system-matrix file (Case.DBS)

LOAD_SET 1 Load set number to be used as the external force vector

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MAX_ITER 100 Maximum iterations for iterative solvers

MESH 0 Mesh number to be analyzed

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

PRINT <false> Print solution vector switch

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

RENO_PROCESSOR RENO Node renumbering processor

RENUMBER_OPT 0 Node renumbering option

SKY_PROCESSOR SKY Linear equation solver processor name

SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers

STR_DIRECTION 0 Stress directions for post-processing

STR_LOCATION INTEG_PTS

STEP 0 Solution step number

STRESS <false> Stress, strain, & strain-energy computation switch

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 3

3.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.2-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to subor-
dinate procedures and processors where the actual options are determined. For example, the defi-
nition of REFINE_TECHNIQUE depends on which refinement processor the user selects via the
REFINE_PROCESSOR argument, so the relevant options can be found in the corresponding
refinement processor sections in Part III.

3.2.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. Current options include ASM
(for ht and hc types of mesh refinement) and ASMs (for hs mesh refinement only). (Default value:
ASM.)

3.2.3.2 AUTO_DOF_SUP Argument

Automatic DOF (degree-of-freedom) suppression switch. This capability automatically sup-
presses extraneous DOFs and is especially useful during adaptive mesh refinement. It is described
in more detail in Section 2.10, Automatic DOF Suppression and Drilling Stabilization.

Argument syntax:

where

In most cases, it is recommended that the user leave the default setting intact.

ASM_PROCESSOR = asm_processor

AUTO_DOF_SUP = option [, angle_tol]

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>, all
DOFs (in the computational frame) that are unsupported by element stiffness
will be suppressed throughout the adaptive refinement process. (Default value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; see Sec-
tion 2.10 for details. (Default value: depends on element type)

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-4 COMET-AR User’s Manual Revised 12/1/97

3.2.3.3 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling rota-
tional stiffness to nodal DOFs that would otherwise be unstable computationally. See Section
2.10, Automatic DOF Suppression and Drilling Stabilization, and individual element processor
sections in Chapter 7, Element Processors, for more information.

Argument syntax:

where

3.2.3.4 AUTO_TRIAD Argument

Automatic computational triad (i.e., DOF direction) re-alignment option. This option is an alter-
native to AUTO_DRILL that causes re-alignment of the computational triads at all nodes that
require drilling DOF stabilization, as long as no boundary conditions have been defined there. The
computational axes are re-aligned such that one of them is parallel to the average element surface-
normal at the node. Then, extraneous (unstable) drilling rotational DOFs can be subsequently sup-
pressed via the AUTO_DOF_SUP option. (See Section 2.10, Automatic DOF Suppression and
Drilling Stabilization, for more information.)

Argument syntax:

AUTO_DRILL = option [, angle_tol, scale_fac]

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabiliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Section 2.10 for details. (Default value: depends on element
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See Chapter 7 for interpretation. (Default value: depends on
element type)

AUTO_DRILL is not recommended for nonlinear
analysis.

AUTO_TRIAD = option [, angle_tol]

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 5

where

3.2.3.5 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

where:

3.2.3.6 FIXED_FRAME Argument

Sets a flag that is relevant only for hs-refinement.

Argument syntax:

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

Parameter Description

option Automatic triad re-alignment option switch: {<true> | <false>}. If <true>, computa-
tional triads will be re-aligned with the average element normal at all nodes that
require drilling DOF stabilization unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

AUTO_TRIAD should only be used in conjunction
with AUTO_DOF_SUP and cannot be used in con-
junction with user-defined point forces and/or multi-
point constraints.

CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (Default value: 1)

FIXED_FRAME = {<true> | <false>}

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-6 COMET-AR User’s Manual Revised 12/1/97

3.2.3.7 INTERNAL Argument

This argument sets the internal force computation switch.

Argument syntax:

where flag is the switch option. (Default value: <false>. Do not compute internal force.)

3.2.3.8 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC_1, and must be named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the Case.DBC file. (Default value:1)

3.2.3.9 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally named Case.DBE.

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the Case.DBE file. If ldi_e is not
equal to ldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for
the current mesh will be stored on a separate Case.DBE file; however, if ldi_e = ldi_c, then all ele-
ment matrices will be stored on the Case.DBC file, i.e., a separate Case.DBE file will not be cre-
ated. (Default value: 2)

3.2.3.10 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally named Case.DBS.

INTERNAL = flag

LDI_C = ldi_c

LDI_E = ldi_e

If a separate Case.DBE file is created, it will be
deleted and re-created with each new adaptive mesh.

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 7

Argument syntax:

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not
equal to ldi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the
current mesh will be stored on a separate Case.DBS file; however, if ldi_s = ldi_c, then all system
matrices will be stored on the Case.DBC file, i.e., a separate Case.DBS file will not be created.
(Default value: 3)

3.2.3.11 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax:

where FULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

3.2.3.12 MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). Relevant only if SKY_PROCESSOR is set equal to the name of an iterative
solver.

Argument syntax:

where max_iter is the maximum number of iterations allowed. (Default value: 100)

3.2.3.13 MESH Argument

This argument sets the number of the mesh to analyze.

LDI_S = ldi_s

If a separate Case.DBS file is created, it will be
deleted and re-created with each new adaptive mesh.

MATRIX_UPDATE = {FULL | PARTIAL}

MAX_ITER = max_iter

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-8 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where mesh is the mesh number. (Default value: 0)

3.2.3.14 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

where mtx_buffer_size is the size of the buffer in logical variables. (Default value: 500000)

3.2.3.15 PRINT Argument

This argument sets the solution printout switch.

Argument syntax:

where flag is the switch option. (Default value: <false>)

3.2.3.16 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(REFi) specified via the REFINE_PROCESSOR argument.

Argument syntax:

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to ht, hc, hs, or p
(among others). See documentation under specific REFi processors for details. (Default value: ht)

MESH = mesh

MTX_BUFFER_SIZE = mtx_buffer_size

PRINT = flag

REFINE_TECHNIQUE = refine_technique

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 9

3.2.3.17 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used to opti-
mize matrix equation solving (time and/or storage).

Argument syntax:

where renumber_processor is the processor name. Current options are summarized below.

Consult the appropriate sections in Chapter 6, Pre-Processors, for more details.

3.2.3.18 RENUMBER Argument

Sets a flag determining whether or not to perform equation renumbering (e.g., bandwidth, skyline,
or sparsity optimization) both initially and whenever the mesh is updated by adaptive refinement.

Argument syntax:

where renumber_flag may be set either to <true> or <false>. (Default value: <true>)

3.2.3.19 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER = <true>).

Argument syntax:

where renumber_option indicates the renumbering option and depends on the particular renum-
bering processor chosen. See processors RENO, RSEQ, etc., in Chapter 6, Pre-Processors.
(Default value: 0)

RENO_PROCESSOR = renumber_processor

renumber_processor Description

RENO Node renumbering using a geometric algorithm (Default)

RSEQ Node renumbering via a variety of order-optimization algorithms

RENUMBER = renumber_flag

RENUMBER_OPT = renumber_option

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-10 COMET-AR User’s Manual Revised 12/1/97

3.2.3.20 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

where sky_processor is the name of the matrix solution processor. Current options are summa-
rized below.

Consult the appropriate sections in Chapter 12, Matrix/Vector Processors, for more details.

3.2.3.21 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver, if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

where solver_conv_tol is the convergence tolerance. (Default value: 1.e-6)

3.2.3.22 STR_DIRECTION Argument

This argument sets the stress reference frame (xs,ys,zs) for post-processing and/or error estimation
purposes.

SKY_PROCESSOR = sky_processor

sky_processor Description

SKY Direct solution of skyline matrices by Crout LDU decomposition (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs-refinement
only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers.

VSS Vectorized sparse solver (very fast and also space-saving).

SOLVER_CONV_TOL = solver_conv_tol

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 11

Argument syntax:

where str_direction denotes the stress/strain direction. Current options are summarized below:

3.2.3.23 STRESS Argument

Flag determining whether or not element stresses, strains, and strain energy densities are to be
computed and stored in the database (Default value: <true>).

Argument syntax:

3.2.4 Database Input/Output Summary

A complete model definition database is required as input for the L_STATIC_1 procedure (see
Chapter 2, Model Definition Procedures). After the analysis, the solution data will be output to the
database for the mesh analyzed; the mesh index will appear as the third index in all dataset names.
While most datasets will be stored in the main COMET-AR database Case.DBC file, element and
system matrices may be stored in the Case.DBE and Case.DBS files, depending on the user set-
tings for the LDI_E and LDI_S arguments.

STR_DIRECTION = str_direction

str_direction Meaning

ELEMENT (or 0) Express stress/strain components in the local element (integration point) refer-
ence frame (xs=xe, ys=ye, zs= ze). (Default)

GLOBAL {X | Y | Z} Express stress/strain components in a permutation of the global reference frame,
with xs = xg, yg or zg, if X, Y or Z is selected, respectively. For shell elements, the
zs direction is automatically aligned with the local element normal, ze, direction.

{1 | 2 | 3} Same as GLOBAL {X | Y | Z}, respectively.

FAB_DIR Use the local fabrication axes for the stress frame; i.e., xs=xf, ys=yf, zs=yf. See
Section 2.7, Orientation of Fabrication Reference Frames.

STRESS = {<true> | <false>}

It is currently necessary to set STRESS=<true> for all
analyses involving adaptive mesh refinement.

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-12 COMET-AR User’s Manual Revised 12/1/97

3.2.4.1 Input Datasets

Table 3.2-2 contains a list of datasets required (unless otherwise stated) as input by procedure
L_STATIC_1. All of these datasets must be resident in the main COMET-AR database file
(Case.DBC, where Case is the specific problem name).

3.2.4.2 Output Datasets

Table 3.2-3 contains a list of datasets that may be created or updated in the database by procedure
L_STATIC_1. Most of these datasets will be resident in the main COMET-AR database file
(Case.DBC), but element and system matrices may be resident in the Case.DBE file and
Case.DBS files, depending on the values of the user-specified arguments LDI_E and LDI_S.

Table 3.2-2 Input Datasets Required by Procedure L_STATIC_1

Dataset File Description

CSM.SUMMARY...mesh Case.DBC Model summary for the analyzed mesh

EltName.DEFINITION...mesh Case.DBC Element definition for the analyzed mesh

EltName.FABRICATION...mesh Case.DBC Element fabrication pointers for the analyzed mesh

EltName.GEOMETRY...mesh Case.DBC Element solid-model geometry for the analyzed
mesh

EltName.INTERPOLATION...mesh Case.DBC Element interpolation data for the analyzed mesh

EltName.LOAD.ldcase..mesh Case.DBC Element load definition for the analyzed mesh

NODAL.COORDINATE...mesh Case.DBC Nodal coordinates for the analyzed mesh

NODAL.DOF..conset.mesh Case.DBC Nodal DOF Table for the analyzed mesh.

NODAL.TRANSFORMATION...mesh Case.DBC Nodal transformations between global and compu-
tational frames for the analyzed mesh

NODAL.SPEC_FORCE.ldcase..mesh Case.DBC Nodal specified forces for the analyzed mesh
(optional)

NODAL.SPEC_DISP.ldcase..mesh Case.DBC Nodal specified displacements for the analyzed
mesh (optional)

Table 3.2-3 Output Datasets Produced by Procedure L_STATIC_1

Dataset File Description

EltName.STRAIN.ldcase.conset.mesh Case.DBC Element strains computed for the analyzed
mesh

EltName.STRESS.ldcase.conset.mesh Case.DBC Element stresses computed for the ana-
lyzed mesh

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 13

For details on the contents of any of the above datasets, refer to Chapter 15, Database Summary.

3.2.5 Subordinate Procedures and Processors

3.2.5.1 Subordinate Procedures

A list of COMET-AR utility procedures invoked directly by procedure L_STATIC_1 is provided
in Table 3.2-4. Documentation may be found in Chapter 5, Utility Procedures.

EltName.STRAIN_ENERGY.ldcase.conset.mesh Case.DBC Element strain energy densities computed
for the analyzed mesh

NODAL.DISPLACEMENT.ldcase.conset.mesh Case.DBC Nodal displacements computed for the
analyzed mesh

NODAL.DRILL_FLAG...mesh Case.DBC Nodal suppress drilling DOF flags for the
analyzed mesh (optional)

NODAL.EXT_FORCE.ldcase..mesh Case.DBC Nodal external forces for the analyzed
mesh

NODAL.NORMAL...mesh Case.DBC Nodal shell normal for the analyzed mesh
(optional)

NODAL.ORDER...mesh Case.DBC Nodal re-ordering array, defined by node
renumbering processor (optional)

NODAL.DOF..conset.mesh Case.DBC Nodal DOF Table for the analyzed mesh.

SYSTEM.STIFFNESS...mesh Case.DBS System (assembled) stiffness matrix

SYSTEM.VECTOR.ldcase..mesh Case.DBS System (assembled) vector used to store
force and displacement vectors during
equation solving process.

Table 3.2-4 Subordinate Procedures to Procedure L_STATIC_1

Procedure Type Function

INITIALIZE Utility Performs dataset initialization, node renumbering, etc.

FORCE Utility Computes external and internal load vectors

STIFNESS Utility Computes element stiffness matrices and assembles the system
matrix

FACTOR Utility Performs Crout/Cholesky decomposition of the system matrix

SOLVE Utility Performs solution of the system linear equations

Table 3.2-3 Output Datasets Produced by Procedure L_STATIC_1 (Continued)

Dataset File Description

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-14 COMET-AR User’s Manual Revised 12/1/97

3.2.5.2 Relevant Subordinate Processors

Table 3.2-5 lists COMET_AR processors that are invoked directly by procedure L_STATIC_1 and
user-specified processors that are invoked indirectly through any of the subordinate procedures
listed in Table 3.2-4. (A list of the various non-user-specified processors that are invoked indi-
rectly via subordinate procedures may be obtained by consulting the section on the corresponding
procedure.) Documentation on these processors may be found under the chapter on the corre-
sponding processor type.

3.2.6 Current Limitations

L_STATIC_1 is a general purpose procedure and the only limitations on its usage, hardware lim-
its, are dictated by the limitations of the procedures and processors being employed. Refer to indi-
vidual processors and procedures for specific limitations.

3.2.7 Status and Error Messages

L_STATIC_1 does not print any status or error messages directly. All messages will be produces
by subordinate procedures and processors invoked during the execution of L_STATIC_1. Refer to
individual procedures in Chapter 5, Utility Procedures, for further information.

STRESS Utility Performs stress recovery

Table 3.2-5 Relevant Subordinate Processors to Procedure L_STATIC_1

Processor Type Function

Assembler Matrix/Vector Matrix assembly processor, selected via the ASM_PROCESSOR
procedure argument.

Renumbering Pre-Processor Equation/node renumbering processor, selected via the
RENO_PROCESSOR procedure argument.

Equation Solver Matrix/Vector Equation solver, set via the SKY_PROCESSOR argument.

Table 3.2-4 Subordinate Procedures to Procedure L_STATIC_1 (Continued)

Procedure Type Function

3 Basic Solution Procedures 3.2 Procedure L_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.2- 15

3.2.8 Examples and Usage Guidelines

3.2.8.1 Example 1: Direct Solver

In the above example, a linear static analysis is requested for mesh 3. The solution will be
obtained using a direct solver (SKY), using the reverse Cuthill-McKee algorithm for profile mini-
mization (RSEQ method 2), and stress recovery will be performed.

3.2.8.2 Example 2: Iterative Solver

In the above example, a linear static analysis is requested for mesh 2. The solution will be
obtained using an iterative solver (ITER) with maximum number of iterations=2000 and solver
convergence tolerance set to 1.0e-7. Node renumbering will be performed using the reverse
Gibbs-Poole-Stockmeyer algorithm for bandwidth minimization (RSEQ method 3) and stress
recovery will be performed.

3.2.9 References

[1] Stanley, G., Levit, I., Hurlbut, B., and Stehlin, B. Adaptive Refinement (AR) Strategies
for Shell Structures, Part 1: Preliminary Research, Preliminary NASA Contract Report,
1991.

[2] Stehlin, B., The COMET-AR User’s Tutorial, NASA Preliminary Contract Report,
February, 1993.

 *call L_STATIC_1 (ASM_PROCESSOR
RENUMBER
RENO_PROCESSOR
RENUMBER_OPT
SKY_PROCESSOR
MESH
STRESS

= ASM
= <true>
= RSEQ
= 2
= SKY
= 3
= <true>

; --
; --
; --
; --
; --
; --
)

 *call L_STATIC_1 (ASM_PROCESSOR
RENUMBER
RENO_PROCESSOR
RENUMBER_OPT
SKY_PROCESSOR
MAX_ITER
SOLVER_CONV_TOL
MESH
STRESS

= ASM
= <true>
= RSEQ
= 3
= ITER
= 2000
= 1.0e-7
= 2
= <true>

; --
; --
; --
; --
; --
; --
; --
; --
)

3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-16 COMET-AR User’s Manual Revised 12/1/97

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 1

3.3 Procedure NL_STATIC_1

3.3.1 General Description

Procedure NL_STATIC_1 is a solution procedure for performing nonlinear static analysis, includ-
ing both geometrical and material nonlinearity using an arclength-controlled version of a modi-
fied Newton-Raphson incremental/iterative nonlinear solution algorithm (see [1] and [2]). This
procedure enables the automatic traversal of limit points and quasi-bifurcation points, which are
commonly experienced in the postbuckling/failure analysis of structures. The user must provide
an initial load factor, a maximum/minimum load factor, and a set of strategy parameters (most of
which have reasonable default values), and the procedure will attempt to obtain an automatic solu-
tion to the problem within the number of load steps and other limits specified by the user.

The equations solved by procedure NL_STATIC_1 are the nonlinear static equilibrium equations:

where d is the system displacement vector, λ is an external load factor, fext is the scaled external
force vector, fint is the internal force vector, and r is the residual force vector. The above equations
are also subjected to the following scalar arclength constraint equation:

where ∆ denotes an increment between two successive load steps (e.g., λn and λn+1), and l is
an arclength parameter, approximating the distance along the load-displacement curve (see
Figure 3.3-1).

Figure 3.3-1 Typical Load-Displacement Curve Computed by NL_STATIC_1

r d λ,() f ext λ() f int d()– 0= =

c d() ∆d 2 ∆l 2– 0= =

∆d

∆λ
∆l

λ (Load)

d (Displacement)

dn dn+1

λn

λn+1

Iteration λmax

Load Steps

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-2 COMET-AR User’s Manual Revised 12/1/97

The solution of these two equations involves their linearization about the current configuration
(which may or may not be in equilibrium) with an iteration loop to obtain convergence in the
neighborhood of that configuration. An outer step loop advances the solution along the load-dis-
placement curve (analogous to load-step incrementation in load-controlled versus arclength-con-
trolled solution algorithms). The essential features of the solution algorithm are illustrated in
Figure 3.3-2. For more details, consult references [3]–[5].

Figure 3.3-2 Overview of Procedure NL_STATIC_1 Solution Algorithm

In Figure 3.3-2, K denotes the “effective” tangent stiffness (which in the modified Newton-Raph-
son algorithm is updated only once every one or more load steps), ε denotes a user-specified non-
linear error tolerance, the subscript “n” denotes the load step number, and the superscript “i”
denotes the iteration number within a given load step. The user provides the starting and stopping
conditions, and the rest is automatic: at each new load step, both the new displacement vector
(dn+1) and the new load factor (λn+1) are predicted via quadratic extrapolation along the solution
path. Then, within the iteration loop, two iterative-change displacement vectors are computed:
and ; the first is based on the residual force vector as right-hand-side, the second is based on
the external force vector as right-hand side. The arclength constraint equation then enables the
calculation of the corresponding iterative change in the load factor, δλ, which in turn provides the
necessary ingredients to compute the combined iterative displacement-change vector, δd. Finally,
both the displacement vector and the load factor are updated by their respective iterative changes,

λ => ∆l , λ , d = 01 1 max 1

0

d = Extrap(d , d , d)
n+1
0

δd = [K] r (d , λ) + [K] f

d = d + δd

*

n+1

i+1 -1

n+1

i+1

n+1

i

n+1

i+1

|| r • d || < ε

Given

Predict

Solve

Update

Convergence Exit

n <- n+1

i <- i+1

Load-Step

Iteration

λ = Extrap(λ , λ , λ)
n+1

*

0

n+1 n+1

i i

n n-1 n-2 n n-1 n-2

* -1 E

0 δλ =
n+1

i +1 c(d , ∆l) - 2∆d • δd
n+1 n+1

i

 2∆d • δd
n+1

i

δd δd

λ = λ + δλ
n+1

i+1

n+1

i

n+1

i +1

No

Yes

δλ
n+1

i+1 i

n+1

δd
δd̂

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 3

and convergence is checked based on the inner product of the residual force vector (r) and the iter-
ative displacement change (δd) through an energy error norm.

3.3.2 Argument Summary

Procedure NL_STATIC_1 may be invoked with the COMET-AR ∗ CALL directive, employing
the arguments summarized in Table 3.3-1. These procedure arguments are partitioned into manda-
tory and optional categories. It is assumed that all necessary database files have been opened via
the *OPEN directive before calling NL_STATIC_1.

Table 3.3-1 Procedure NL_STATIC_1 Input Arguments

Argument Default Value Description

MANDATORY Arguments

BEG_LOAD Starting load factor

MAX_LOAD Upper bound on load factor

MIN_LOAD Lower bound on load factor

OPTIONAL Arguments

AUTO_DOF_SUP <true>, 0 Automatic DOF suppression option

AUTO_DRILL <false>, 0, 0 Automatic drilling stiffness augmentation option

AUTO_MPC <false> Automatic “drilling” multipoint constraint switch

AUTO_TRIAD <false>, 0 Automatic triad re-alignment for drilling DOFs

ASM_PROCESSOR ASM Matrix/vector assembly processor name

BEG_STEP 1 Starting step number (>0)

CONSTRAINT_SET 1 Number of boundary condition set to employ

CONV_CRITERIA CHKCONV_E

COROTATION <true> Corotational option for large rotations

DES_ITERS 4 Desired number of iterations per load step

DSN_R RESPONSE.HISTORY Name of selected-results dataset

EXTRAPOLATE <true> Quadratic predicted solution extrapolation flag

FAC_STEPS 1 Number of steps between stiffness refactoring

INITIALIZE <true> Optional initialization flag for solution restarts

INTERPOLATE <false> Mesh interpolation flag for adaptive refinement

LAST_REF_STEP 1 Last step refined (AMR)

LDI_C 1 Logical device index for main COMET-AR file

LDI_E 1 Logical device index for element matrix file

LDI_R 1 Logical device index for selected results file

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-4 COMET-AR User’s Manual Revised 12/1/97

3.3.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.3-1 are defined in more detail.
The arguments are listed alphabetically, and some of the precise definitions are relegated to subor-
dinate procedures and processors (covered elsewhere in this manual) where the actual options are
determined.

LDI_S 1 Logical device index for system matrix file

LINE_SEARCH 1 Initial line-search parameter

LOAD_SET 1 Number of load set to employ in analysis

LOAD_STIFF <false> Include load stiffness

MAX_CUTS 3 Maximum number of automatic step cuts

MAX_ITERS 9 Maximum number of iterations per load step

MAX_STEPS 1 Maximum number of load steps to compute

MESH 0 Mesh number to analyze (from linear AR)

N_SELECT 0 Number of nodal DOFs for selected archival

NEWTON <false> Toggle for TRUE Newton iteration

NL_GEOM 2 Geometric nonlinearity option

NL_MATL 0 Material nonlinearity option

NL_TOL 1.e-3 Relative error tolerance for nonlinear convergence

PATH_SCALE 0.0 Arclength scale factor to use for restarts (0=automatic)

POST 0

REFINE <false> Refinement flag

RENO_PROCESSOR RSEQ Node renumbering processor

RENUMBER_OPT 3 Node renumbering option

SEL_DOFS List of DOF numbers for selected archival

SEL_NODES List of node numbers for selected archival

SKY_PROCESSOR SKY Linear equation solver processor name

SOLVER_MAX_ITER 1000 Maximum iterations for iterative solvers

SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers

STR_DIRECTION 0 Stress/strain reference frame for post-processing

STR_LOCATION INTEG_PTS

STRESS <true> Stress/strain database archival step frequency flag

ARCHIVE_STEP 10 Archival step frequency for nonlinear material data

Table 3.3-1 Procedure NL_STATIC_1 Input Arguments

Argument Default Value Description

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 5

3.3.3.1 ARCHIVE_STEP Argument

This argument sets the load step frequency for database archival of nonlinear material historical
data.

Argument syntax:

where step_frequency is a non-negative integer indicating that nonlinear material historical data
should be archived every “step_frequency”th load step. The value of step_frequency determines at
which load steps the solution can be re-started, i.e., historical data must be archived at a given step
in order for the solution to be continued in a re-start run from that step. A value of 0 implies that
no archival will be performed for the current solution interval. Relevant only for materially non-
linear analysis. (Default value: 10)

3.3.3.2 ASM_PROCESSOR Argument

This argument selects the matrix assembly processor to be used for assembling element stiffness
and mass matrices into corresponding system matrices.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. The current option is limited
to processor ASM. (Default value: ASM)

3.3.3.3 AUTO_DOF_SUP Argument

This argument defines the automatic DOF (degree-of-freedom) suppression option. This capabil-
ity automatically suppresses extraneous DOFs not supported by element stiffness. It is described
in more detail in Section 2.10, Automatic DOF Suppression and Drilling Stabilization.

Argument syntax:

where:

ARCHIVE_STEP = step_frequency

ASM_PROCESSOR = asm_processor

AUTO_DOF_SUP = option [, angle_tol]

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>, all
DOFs (in the computational frame) unsupported by element stiffness will be
suppressed throughout the adaptive refinement process. (Default value: <true>)

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-6 COMET-AR User’s Manual Revised 12/1/97

In most cases, it is best to leave the default setting intact.

3.3.3.4 AUTO_DRILL Argument

This argument defines the automatic drilling stiffness option. This option causes shell elements to
add artificial drilling rotational stiffness to nodal DOFs that would otherwise be unstable compu-
tationally. See Section 2.10, Automatic DOF Suppression and Drilling Stabilization, and individ-
ual element processor sections in Chapter 7, Element Processors, for more information.

Argument syntax:

where:

3.3.3.5 AUTO_MPC Argument

This argument sets the automatic multi-point constraint (MPC) option for suppressing extraneous
drilling DOFs, defined as rotations about the normal to a plate or shell element. Unless the ele-
ment has intrinsic stiffness associated with such rotations, these DOFs may lead to a singular stiff-
ness matrix. Turning the AUTO_MPC option on causes special constraints to be generated at
nodes where insufficient drilling rotational stiffness is present, to suppress the rotation about the
appropriate (“drilling”) axis. This axis is generally not aligned with any of the computational
axes, and so the constraint will typically involve a linear combination of the rotational DOFs cor-

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; see Sec-
tion 2.10 for details. (Default value: depends on element type)

AUTO_DRILL = option [, angle_tol , scale_fac]

Parameter Description

option Automatic drilling stiffness switch: { <true> | <false> }. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabiliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Section 2.10 for details. (Default value: depends on element
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See individual Element Processor section in Chapter 7 for
interpretation. (Default value: depends on element type)

AUTO_DRILL is not recommended for nonlinear
analysis.

Parameter Description

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 7

responding to the computational axes. See Section 2.10, Automatic DOF Suppression and Drill-
ing Stabilization, for more information on this option and related options such as
AUTO_DOF_SUP, AUTO_DRILL, and AUTO_TRIAD.

Argument syntax:

where:

3.3.3.6 AUTO_TRIAD Argument

This argument defines the automatic computational triad (i.e., DOF direction) re-alignment
option. This option, an alternative to AUTO_DRILL, causes re-alignment of the computational
triads at all nodes that require drilling DOF stabilization, as long as no boundary conditions have
been defined there. The computational axes are re-aligned such that one of them is parallel to the
average element surface-normal at the node. Then, extraneous (unstable) drilling rotational DOFs
can be subsequently suppressed via the AUTO_DOF_SUP option. (See Section 2.10, Automatic
DOF Suppression and Drilling Stabilization, for more information.)

Argument syntax:

where:

AUTO_MPC = option [, angle_tol]

Parameter Description

option Automatic multi-point constraint switch for drilling stabilization:
{ <true> | <false> }. If <true>, multi-dof constraints will be generated at nodes
where drilling stabilization is needed. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

AUTO_TRIAD = option [, angle_tol]

Parameter Description

option Automatic triad re-alignment option switch: { <true> | <false> }. If <true>, compu-
tational triads will be re-aligned with average element normal at all nodes that
require drilling DOF stabilization, unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-8 COMET-AR User’s Manual Revised 12/1/97

3.3.3.7 BEG_LOAD Argument

This argument sets the starting load factor, λ1, for the nonlinear analysis.

Argument syntax:

For applied force loading, this factor is multiplied by the reference (i.e., base) applied force vec-
tor, f0ext, i.e.,

where f0ext is a combination of the user’s specified nodal (concentrated) forces in dataset
NODAL.SPEC_FORCE.ldset..mesh and specified element (distributed) forces in dataset Elt-
Nam.LOAD.ldset..mesh. For applied displacement loading, the starting load factor is applied to
the reference (i.e., base) user-specified displacement vector, d0

ext stored in dataset
NODAL.SPEC_DISP.ldset..mesh which is then used to compute the initial internal force vector,
f1int. In either case, the starting load factor is used to compute the starting arclength increment,
∆l1, which is then modified adaptively (see DES_ITERS argument) while the load factor becomes
a solution variable throughout the rest of the analysis. (Default value: None)

3.3.3.8 BEG_STEP Argument

This argument sets the number of the first load step to be computed in a given nonlinear analysis
interval.

Argument syntax:

where beg_step is the beginning (or starting) step number. Initially, beg_step should be set equal
to 1. For analysis re-start runs, beg_step should be set equal to the next step to compute (or re-

AUTO_TRIAD should only be used in conjunction
with AUTO_DOF_SUP, and should not be used in
conjunction with user-defined point forces and/or
multi-point constraints.

BEG_LOAD = λ1

This argument is irrelevant for re-start runs (i.e., BEG_STEP>1) in which case the
PATH_SCALE argument is used (indirectly) to determine how big of a load step to take.

BEG_STEP = beg_step

f 1
ext λ1f 0

ext=

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 9

compute). For example, if n steps had been computed (and saved in the database) during the initial
run, the user would set beg_step equal to n+1 for a re-start run that continues where the first run
left off. It is not necessary for beg_step to be larger than any previously computed step. That is,
the user may wish to recompute a sequence of steps by setting beg_step equal to the number of the
first step to be re-computed. Procedure NL_STATIC_1 will then automatically use the solution
data for those steps immediately preceding step beg_step (i.e., beg_step–1, beg_step–2, and
beg_step–3) to smoothly effect the restart, and over-write the solution data for each re-computed
load step (i.e., beg_step, beg_step+1, ... up to the highest step originally computed). (Default
value: None)

3.3.3.9 CONSTRAINT_SET Argument

This argument specifies the number of the boundary condition constraint set (defined by the user
during Model Definition) to be employed for the current nonlinear analysis.

Argument syntax:

where conset is the constraint set number. (Default value: 1)

3.3.3.10 COROTATION Argument

This argument selects the element corotational update option to be employed by the generic ele-
ment processor for geometrically nonlinear analysis (i.e., large displacements and rotations, small
to moderate strains).

Argument syntax:

where corotation is the option number, for which valid entries are given below.

CONSTRAINT_SET = conset

COROTATION = corotation

corotation Description

0 Element corotational updates will not be used to account for large rotation effects; any such
effects must therefore be handled by the element’s own nonlinear strain-displacement relations,
activated by setting the argument NL_GEOM= 2.

1 Basic element corotational updates will be used to account for large rotation effects. The accu-
racy of this approach can be enhanced if nonlinear element strain-displacement relations are used
(by setting argument NL_GEOM=2) but linear element strain-displacement relations
(NL_GEOM=1) are acceptable if the mesh is sufficiently fine. (Default)

2 Higher-order element corotational option. This is essentially the same as option 1, except some
additional terms are added to the element stiffness matrix which can increase the rate of nonlinear
convergence, but only in conjunction with true Newton iteration (see NEWTON argument).

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-10 COMET-AR User’s Manual Revised 12/1/97

Corotation is a built-in feature of the Generic Element Processor (see Section 7.2, Generic Ele-
ment Processor), which subtracts the bulk rigid-body motion from each element (via the element
corotational reference frame described in Section 2.2, Reference Frames and Coordinate Sys-
tems), leaving deformational displacements and rotations that are relatively small (and become
smaller as the mesh is refined), regardless of how large the bulk motions (i.e., total displacements
and rotations) are. This allows elements that are based on only moderate rotation theory (e.g.,
most beam and shell elements), or even infinitesimal rotation theory, to be applied to problems
involving arbitrarily large rotations but small strains. For theoretical details on the corotational
method implemented in COMET-AR, refer to the Generic Element Processor Manual [4]; for a
description of how corotation interacts with procedure NL_STATIC_1, refer to the section on
NL_STATIC_1 in reference [3].

3.3.3.11 DES_ITERS Argument

This argument sets the desired number of iterations for nonlinear convergence at each load step,
which affects how the step size is adaptively updated during the run.

Argument syntax:

where des_iters is the desired number of iterations. The step-size update algorithm is as follows.
If the actual number of iterations required to obtain convergence at step n is within the limit set by
the MAX_ITERS argument, then the new arclength increment for step n+1 is defined in terms of
the arclength increment at step n via the linear relationship:

If the actual number of iterations is larger than the desired number, the new step size will be pro-
portionally smaller, and conversely if the actual number of iterations is smaller than the desired
number, the new step size will be proportionally larger then the old step size. Only if the actual
number of iterations is identical to the desired number does the step size remain constant. (Default
value: 4)

3.3.3.12 DSN_R Argument

This argument specifies the name of the dataset within the results database file (also see argument
LDI_R) where selected results and nonlinear solution parameter values are to be stored.

Argument syntax:

DES_ITERS = des_iters

DSN_R = dsn_r_name

∆l n 1+
desired_iters
actual_iters
------------------------------- ∆l n×=

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 11

where dsn_r_name is the name of the dataset. (Default value: RESPONSE.HISTORY)

3.3.3.13 EXTRAPOLATE Argument

This argument sets a flag determining whether or not to use quadratic extrapolation along the
solution path to predict the load factor and displacement vector at the beginning of each load step.

Argument syntax:

where <true> implies that quadratic extrapolation will be used.The use of quadratic extrapolation
is recommended since it has been found to be a very effective strategy for accelerating traversal of
the load-displacement curve. Far fewer load steps are usually required with extrapolation than
without except at abrupt slope discontinuities in the curve, where a quadratic polynomial is too
smooth to be of much help. (Default value: <true>)

3.3.3.14 FAC_STEPS Argument

This argument sets the number of load steps between stiffness matrix updates (i.e., re-forming and
re-factoring).

Argument syntax:

where fac_steps is a positive integer indicating that re-factoring of a new stiffness matrix will be
performed every fac_steps loads step. For modified Newton iteration, the stiffness update will be
performed only at the beginning of such steps; for true Newton iterations, the stiffness update will
be performed at each iteration of the step. (The NEWTON argument may be used to select modi-
fied versus true Newton iteration.) Best results are often obtained with fac_steps set to 1. (Default
value: 1)

3.3.3.15 INITIALIZE Argument

This argument sets a flag determining whether or not to initialize element parameters, constitutive
parameters, and equation numbers when performing a solution re-start.

EXTRAPOLATE = { <true> | <false> }

The EXTRAPOLATE=<false> option has not been fully tested,
and hence is not recommended.

FAC_STEPS = fac_steps

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-12 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where <true> implies that initialization will be performed at the beginning of the current solution
interval, and <false> implies that it will not be performed. For the very first solution interval (i.e.,
starting at step 1), the initialization flag should be set to <true>. For subsequent re-starts, it should
be set to <false> unless adaptive refinement has been performed, an option which has not yet been
fully tested. For now, use the default value of <true> initially, and change it to <false> for all sub-
sequent re-start runs. (Default value: <true>)

3.3.3.16 INTERPOLATE Argument

This argument sets an interpolation flag option that can be used in conjunction with adaptive mesh
refinement. It is typically invoked automatically when NL_STATIC_1 is called by an adaptive
solution control procedure such as AR_CONTROL_1.

Argument syntax:

where <true> means that the predicted displacement solution for step BEG_STEP will be
obtained by spatially interpolating from the solution for the previous mesh. (Default: <false>)

3.3.3.17 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
typically named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the .DBC file. (Default value: 1)

3.3.3.18 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally named Case.DBE.

INITIALIZE = { <true> | <false> }

INTERPOLATE = { <false> | <true> }

LDI_C = ldi_c

The .DBC file must be opened by the user via an
“*OPEN ldi_c” directive before invoking procedure
NL_STATIC_1.

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 13

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the .DBE file. (Default value: 1)

3.3.3.19 LDI_R Argument

This argument sets the logical device index associated with the selected results database file, typi-
cally named Case.DBR.

Argument syntax:

where ldi_r is the logical device index (a positive integer) of the .DBR file. This file will be used
to store all user-selected displacement results, as well as key solution parameters, in a dataset
whose name is specified by the DSN_R argument. (Default value: 1)

3.3.3.20 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally named Case.DBS.

Argument syntax:

where ldi_s is the logical device index (a positive integer) of the .DBS file. (Default value: 1)

LDI_E = ldi_e

To create a .DBE file separate from the .DBC (main COMET-AR database)
file, it must be opened/created via an “*OPEN ldi_e” directive before
invoking procedure NL_STATIC_1; otherwise, if ldi_e = ldi_c, all element
matrices will be stored in the .DBC file.

LDI_R = ldi_r

To create a .DBR file separate from the .DBC file, it must be opened/created via an
“*OPEN ldi_r” directive before invoking NL_STATIC_1; otherwise, if ldi_r =
ldi_c, the selected results will be stored in the .DBC file.

LDI_S = ldi_s

To create a .DBE file separate from the .DBC (main COMET-AR database) file,
it must be opened/created via an “*OPEN ldi_s” directive before invoking proce-
dure NL_STATIC_1; otherwise, if ldi_s = ldi_c, all system matrices will be
stored in the .DBC file.

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-14 COMET-AR User’s Manual Revised 12/1/97

3.3.3.21 LOAD_SET Argument

This argument specifies the number of the external load set (defined by the user during Model
Definition) to be employed for the current nonlinear analysis.

Argument syntax:

where ldset is the load set number. (Default value: 1)

3.3.3.22 MAX_CUTS Argument

This argument sets the maximum number of step cuts allowed during the current nonlinear run.

Argument syntax:

where max_cuts is the maximum number of cuts allowed. A step cut refers to a halving of the
arclength increment, ∆l, used to advance the solution from one step to the next. Step cuts are per-
formed only if the maximum number of iterations (specified via the MAX_ITERS argument) is
exceeded without converging at a given step. (Default value: 3)

3.3.3.23 MAX_ITERS Argument

This argument sets the maximum number of iterations allowed for nonlinear convergence at a
given load step.

Argument syntax:

where max_iters is the maximum number of iterations allowed. If max_iters iterations have been
performed at a given step, and nonlinear convergence (to an equilibrium state) has not yet been
obtained, procedure NL_STATIC_1 will attempt to cut the step size as many times as allowed via

LOAD_SET = ldset

MAX_CUTS = max_cuts

Whenever the step is cut, a new displacement predictor is
extrapolated, and a corresponding new stiffness matrix is
formed and factored unless the user has turned off the solution
extrapolation switch (via the EXTRAPOLATE argument). The
user may manually introduce arbitrary step size reductions (or
increases) by stopping the analysis and re-starting with a modi-
fied value of the PATH_SCALE argument.

MAX_ITERS = max_iters

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 15

the argument MAX_CUTS. If the limits set by both MAX_CUTS and MAX_ITERS have been
reached, then the run will be terminated and the user will have to try a different strategy (see Sec-
tion 3.3.9, Usage Guidelines). (Default value: 9)

3.3.3.24 MAX_LOAD Argument

This argument sets the maximum load factor, λmax, for the nonlinear analysis.

Argument syntax:

The value λmax establishes an upper limit on the load level, and provides a convenient way of ter-
minating the arclength-controlled solution algorithm. Since the load factor is actually a solution
variable (i.e., an unknown) in procedure NL_STATIC_1, there is no way of knowing a priori how
many load steps will be required to attain λmax. The analysis is terminated when either λmax, λmin,
max_steps or max_cuts is exceeded as set by the MAX_LOAD, MIN_LOAD, MAX_STEPS, and
MAX_CUTS arguments, respectively. (Default value: None)

3.3.3.25 MAX_STEPS Argument

This argument sets the maximum number of load steps to compute during the current nonlinear
analysis run with procedure NL_STATIC_1.

Argument syntax:

where max_steps is the maximum number of steps to compute in the current run, not to be con-
fused with the number of the highest load step in the analysis. This provides an implicit limit on
analysis run time. Since the load factor is actually a solution unknown (controlled by the arclength
parameter, ∆l) there is no way of knowing a priori how many load steps will be required to attain
the user’s designated maximum or minimum load factor (specified via the MAX_LOAD and
MIN_LOAD arguments). The nonlinear run is terminated whenever MAX_STEPS,
MAX_LOAD, MIN_LOAD, or MAX_CUTS is exceeded. (Default value: None)

3.3.3.26 MESH Argument

This argument sets the number of the mesh to be analyzed throughout the nonlinear analysis.

MAX_LOAD = λmax

Procedure NL_STATIC_1 may overshoot the maximum
load factor somewhat, as it does not fix the last load
increment to force convergence to the user-specified
maximum.

MAX_STEPS = max_steps

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-16 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where mesh is the mesh number. Unless linear adaptive mesh refinement has been performed ear-
lier (i.e., via solution procedure AR_CONTROL_1) the mesh number will always be 0. The cur-
rent capabilities for adaptive mesh refinement during the nonlinear analysis are experimental and
not recommended for general use. (Default value: 0)

3.3.3.27 MIN_LOAD Argument

This argument sets the minimum load factor, λmin, for the nonlinear analysis.

Argument syntax:

The value λmin establishes a lower limit on the load level which should be less than the starting
load factor, λ1, specified by the BEG_LOAD argument. This provides a convenient way of termi-
nating the arclength-controlled solution algorithm. Since the load factor is actually a solution vari-
able (i.e., an unknown) in procedure NL_STATIC_1, there is no way of knowing a priori how
many load steps will be required to attain λmin. The analysis is terminated when either λmax, λmin,
max_steps or max_cuts is exceeded as set by the MAX_LOAD, MIN_LOAD, MAX_STEPS, and
MAX_CUTS arguments. (Default value: None)

3.3.3.28 NEWTON Argument

This argument determines the type of Newton-Raphson iteration algorithm to use: modified or
true.

Argument syntax:

If NEWTON=MODIFIED, stiffness matrix updates (re-forming and re-factoring) will be per-
formed only at the beginning of every fac_steps load steps, where fac_steps is set via the

MESH = mesh

MIN_LOAD = λmin

Procedure NL_STATIC_1 may undershoot the maximum
load factor somewhat, as it does not fix the last load
increment to force convergence to the user-specified
minimum.

NEWTON = { MODIFIED | TRUE }

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 17

FAC_STEPS argument. If NEWTON=TRUE, stiffness matrix updates will be performed at each
iteration of every fac_steps load steps. (Default value: MODIFIED)

3.3.3.29 NL_GEOM Argument

This argument selects the geometrical nonlinearity option to be used in the current analysis run.

Argument syntax:

where nl_geom is the option number, for which valid entries are given below.

Option 2 is generally more accurate than option 1, but requires the particular element type
selected to have the capability for nonlinear strain-displacement relations (refer to the descriptions
of specific element processors in Chapter 7, Element Processors). For more information on the
corotational capability, refer to the COROTATION argument as well as references [3] and [4].

3.3.3.30 NL_MATL Argument

This argument selects the material nonlinearity option to be used in the current analysis run.

Modified Newton iteration is typically more effective
than true Newton iteration except at critical junctures
of the solution trajectory, where dramatic changes are
taking place rapidly, e.g., mode switching, bifurca-
tion-like behavior, contact, and abrupt material dam-
age such as progressive crack or delamination growth.

NL_GEOM = nl_geom

nl_geom Description

0 The problem is treated as geometrically linear, i.e., infinitesimally small displace-
ments, rotations and strains.

1 The problem is geometrically nonlinear, but only linear strain-displacement relations
will be used at the element level; it is assumed that large displacements and rotations
will be handled via the corotational option (see COROTATION argument).

2 The problem is geometrically linear, and nonlinear strain-displacement relations will
be used at the element level whether or not the corotational option is selected by the
user (see COROTATION argument). (Default)

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-18 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where nl_matl is the option number, for which valid entries are given below.

3.3.3.31 NL_TOL Argument

This argument sets the value of the error tolerance used to establish convergence of the nonlinear
equilibrium iteration process at each load step.

Argument syntax:

where nl_tol is the relative error tolerance in the energy error norm. The iteration loop at a given
load step is terminated whenever the following condition is met:

ε ≤ nl_tol

where ε is an error norm that may be selected via the NL_CONV_CRITERIA argument, e.g.,

is the relative energy error norm, where r is the residual force vector, δd is the iterative displace-
ment change vector, and i is the iteration counter at a given step. (Default value: 1.e-3)

3.3.3.32 N_SELECT Argument

This argument specifies the number of user-selected displacement components to be saved in the
results database (see arguments LDI_R and DSN_R for specification of the results database file
number and dataset name).

Argument syntax:

NL_MATL = nl_matl

nl_matl Description

0 Material nonlinearity will not be considered. (Default)

1 Material nonlinearity will be considered, provided the material types selected by the
user during model definition are based on a nonlinear constitutive model.

NL_TOL = nl_tol

N_SELECT = n_select

ε r i δdi•
r 1 δd1•
--------------------=

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 19

where n_select is the number of displacement components to save. The actual node and DOF
numbers identifying these displacement components are specified via the SEL_NODES and
SEL_DOFS arguments. (Default value: 0)

3.3.3.33 NL_CONV_CRITERIA

This argument selects the command-language procedure to be used to assess nonlinear conver-
gence at each iteration of a nonlinear analysis.

Argument syntax:

where the options are:

3.3.3.34 PATH_SCALE Argument

This argument sets a scale factor to be applied to the current arclength increment, ∆l, for the first
step in a re-start run. It is thus a manual way to adjust the solution step size.

Argument syntax:

where path_scale is a non-negative floating point number. If path_scale is set to 1., the step-size
from the previous step (i.e., beg_step–1, where beg_step is set by the BEG_STEP argument) will
be used to compute the first new step (beg_step), i.e.,

where n = beg_step–1. This may lead to a different step size than would have been obtained had
the analysis continued without a re-start since the step-size would have been adjusted based on the
ratio of desired-to-actual iterations (see the DES_ITERS argument). The main function of this

NL_CONV_CRITERIA = procedure_name

procedure_name Description

CHKCONV_E Uses strain-energy norm as convergence measure, with incremental quantity as a
reference value in the denominator for relative error. (Default)

CHKCONV_SE Same as CHKCONV_E except employs total strain energy (square root) as refer-
ence value in the denominator to obtain relative error.

CHKCONV_D Uses Euclidean norm of displacement vector change as error measure, with norm
of total displacement in denominator.

PATH_SCALE = path_scale

∆ln 1+ path_scale ∆ln×=

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-20 COMET-AR User’s Manual Revised 12/1/97

argument is for the user to override the procedure’s step-size adjustment algorithm, in cases where
the user has a better idea based on experience. (Default value: 0 => use automatic step-size adjust-
ment algorithm)

3.3.3.35 SEL_DOFS Argument

This argument specifies a list of DOF numbers designating user-selected displacement compo-
nents to be saved in the results database (see arguments LDI_R and DSN_R for specification of
the results database file number and dataset name). The number of displacement components to be
that are saved is set with the N_SELECT argument. The node numbers are set via the
SEL_NODES argument.

Argument syntax:

where DOF_1, DOF_2, ..., represent nodal DOF numbers (e.g., ranging between 1 and 6 for stan-
dard 6 DOF per node problems) and N_SELECT represents the number of components selected
via the N_SELECT argument. (Default value: 0)

3.3.3.36 SEL_NODES Argument

This argument specifies a list of node numbers for user-selected displacement components to be
saved in the results database (see arguments LDI_R and DSN_R for specification of the results
database file number and dataset name). The number of displacement components that are to be
saved is set with the N_SELECT argument.

Argument syntax:

where node_1, node_2, ..., represent global node numbers, and N_SELECT represents the num-
ber of components selected with the N_SELECT argument. (Default value: 0)

SEL_DOFS = DOF_1, DOF_2, . . ., DOF_N_SELECT

For each of the N_SELECT displacement components selected
there is a node and DOF number pair, set via the SEL_NODES
and SEL_DOFS arguments. For example, to save all 6 DOFs at
node 10 in the selected results dataset, the user would set:

 N_SELECT=6, SEL_NODES=6@10, and SEL_DOFS=1:6.

SEL_NODES = node_1, node_2, . . ., node_N_SELECT

Only those DOFs (i.e., components) selected via the
SEL_DOFS argument will be stored for these nodes.

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 21

3.3.3.37 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

where sky_processor is the name of the matrix solution processor. Current options are summa-
rized below.
.

Consult Chapter 12, Matrix/Vector Processors, for details on individual solution processors.

3.3.3.38 STR_DIRECTION Argument

Sets the stress/strain reference frame (xs,ys,zs) for post-processing and/or error estimation pur-
poses.

Argument format:

where str_direction denotes the stress/strain direction. Current options are summarized below.

SKY_PROCESSOR = sky_processor

sky_processor Description

SKY Direct solution of skyline matrices by Gauss elimination (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs refinement only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers.

VSS Vectorized sparse solver (very fast and also space-saving)

STR_DIRECTION = str_direction

str_direction Meaning

ELEMENT (or 0) Express stress/strain components in the local element (integration point) reference frame
(xs=xl, ys=yl, zs= zl). (Default)

GLOBAL { X | Y | Z } Express stress/strain components in a permutation of the global reference frame, with xs
= xg, yg or zg, if X, Y or Z is selected, respectively. For shell elements, the zs direction is
automatically aligned with the local element normal, zl, direction.

{ 1 | 2 | 3 } Same as GLOBAL {X | Y | Z } respectively.

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-22 COMET-AR User’s Manual Revised 12/1/97

3.3.3.39 STRESS Argument

Flag determining whether or not element stresses, strains, and strain energy densities are to be
computed and stored in the database. (Default value: <true>)

Argument format:
:

3.3.4 Database Input/Output Summary

A complete model definition database is required as input for the first run with procedure
NL_STATIC_1 (see Chapter 2, Model Definition Procedures). After the analysis, solution result
data, e.g., displacements, stresses, internal forces, etc., will have been output to the database for
each load step computed. In addition, intermediate solution data, such as incremental displace-
ment vectors, residual force vectors, element stiffness matrices and system stiffness matrices for
the current (i.e., most recently computed) step will be stored in the database. Most of the datasets
will be stored in the main COMET-AR database (.DBC file, associated with argument LDI_C),
while the element matrices may be stored in the .DBE file, and the system matrices may be stored
in the .DBS file, depending on the values set by arguments LDI_E and LDI_S, respectively.

3.3.4.1 Input Datasets

Table 3.3-2 contains a list of datasets required (unless otherwise stated) as input by procedure
NL_STATIC_1. All of these datasets must be resident in the main COMET-AR database,
Case.DBC, which is assumed to be open and attached to the logical device index specified by the

FAB_DIR Use local fabrication axes for the stress frame, i.e., xs=xf, ys=yf, zs=yf. See Section 2.7,
Orientation of Fabrication Reference Frames.

STRESS = { <true> | <false> }

It is currently necessary to set STRESS=<true> for all
analyses involving adaptive mesh refinement.

str_direction Meaning

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 23

LDI_C argument. The variables mesh, ldset, and conset represent the mesh index, load set, and
constraint set number, respectively.

3.3.4.2 Output Datasets

Table 3.3-3 contains a list of datasets that are created/stored in the database by procedure
NL_STATIC_1. Most of these datasets will be resident in the central COMET-AR database file
Case.DBC associated with argument LDI_C, but element and system matrices may be resident in
the Case.DBE and Case.DBS files, depending on the values of the user-specified arguments
LDI_E and LDI_S. Selected displacement components and solution strategy parameters will be
stored in a RESPONSE.HISTORY dataset (specified via the DSN_R argument) that will either be
resident on the .DBC file or on a separate .DBR file, depending on the values associated with
arguments LDI_R and LDI_C.

Table 3.3-2 Input Datasets Required by Procedure NL_STATIC_1

Dataset File Description

CSM.SUMMARY...mesh Case.DBC Model summary

EltName.DEFINITION...mesh Case.DBC Element definition

EltName.FABRICATION...mesh Case.DBC Element fabrication pointers

EltName.GEOMETRY...mesh Case.DBC Element solid-model geometry

EltName.INTERPOLATION...mesh Case.DBC Element interpolation data

EltName.LOAD.ldset..mesh Case.DBC Element load definition

NODAL.COORDINATE...mesh Case.DBC Nodal coordinates

NODAL.DOF..conset.mesh Case.DBC Nodal DOF boundary conditions

NODAL.TRANSFORMATION...mesh Case.DBC Nodal transformation matrices (global ->computational)

NODAL.SPEC_FORCE.ldset..mesh Case.DBC Nodal specified forces

NODAL.SPEC_DISP.ldcase..mesh Case.DBC Nodal specified displacements

Table 3.3-3 Output Datasets Updated/Created by Procedure NL_STATIC_1

Dataset(s) File Description

CSM.SUMMARY...mesh Case.DBC Model summary with updated load step counter

EltNam.STIFFNESS...mesh Case.DBE Element matrices for current step

EltNam.STRAIN.step..mesh Case.DBC Element strains at each step

EltNam.STRESS.step..mesh Case.DBC Element stresses at each step

EltNam.STRAIN_ENERGY.step..mesh Case.DBC Element strain energy densities at each step

NODAL.DISPLACEMENT.step..mesh Case.DBC Nodal displacements at each step

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-24 COMET-AR User’s Manual Revised 12/1/97

3.3.5 Subordinate Procedures and Processors

Procedure NL_STATIC_1 employs a number of utility procedures to perform nonlinear static
analysis, and these procedures, in turn, employ a number of processors to perform most of the cal-
culations. An overview of the subordinate utility procedures is given in Figure 3.3-3. The follow-
ing sections list and summarize the functions of both subordinate procedures and processors

Figure 3.3-3 Organization of Procedure NL_STATIC_1

NODAL.ORDER..conset.mesh Case.DBC Nodal re-ordering array (optional)

NODAL.DOF..conset.mesh Case.DBC Nodal DOF dataset updated with equation numbers

NODAL.EXT_FORCE...mesh Case.DBC Nodal external force vector at current step

NODAL.INC_DISP...mesh Case.DBC Nodal incremental disp. vectors, ∆d, at current step

NODAL.INC_DISP_BAS...mesh Case.DBC Nodal incremental disp. vectors, δd, at current step

NODAL.INC_DISP_ITR...mesh Case.DBC Nodal incremental disp. vectors, δd, at current step

NODAL.INC_DISP_TAN...mesh Case.DBC Nodal incremental disp. vectors, δ , at current step

NODAL.INT_FORCE.step..mesh Case.DBC Nodal internal force vectors at each step

NODAL.RES_FORCE...mesh Case.DBC Nodal residual force vector at current step

NODAL.ROTATION.step..mesh Case.DBC Nodal rotation pseudo-vectors at each step

NODAL.TAN_FORCE...mesh Case.DBC Nodal tangent force vector at current step

RESPONSE.HISTORY Case.DBR History of selected displacements and solution
parameters

STRUCTURE.STIFFNESS...mesh Case.DBS Latest assembled structural stiffness matrix

Table 3.3-3 Output Datasets Updated/Created by Procedure NL_STATIC_1

Dataset(s) File Description

d̂

INITIALIZE

NL_STATIC_1

 FORCE

 STIFFNESS

 FACTOR

 S OLVE

 STRESS

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 25

3.3.5.1 Subordinate Procedures

Utility procedures invoked directly by procedure NL_STATIC_1 is provided in Table 3.3-4.

Documentation on these procedures may be found in Chapter 5, Utility Procedures.

3.3.5.2 Subordinate Processors

A list of COMET_AR processors that are invoked by procedure NL_STATIC_1 and its utility pro-
cedures is given in Table 3.3-5.

Table 3.3-4 Subordinate Procedures to Procedure NL_STATIC_1

Procedure Type Function

FACTOR Utility Factors assembled structural stiffness matrix

FORCE Utility Forms and assembles structural force vectors

INITIALIZE Utility Initializes element data and assigns equation numbers

SOLVE Utility Solves linear equation systems using factored stiffness

STIFFNESS Utility Forms and assembles structural stiffness matrix

STRESS Utility Computes element stresses, strains, and strain energies

Table 3.3-5 Subordinate Processors to Procedure NL_STATIC_1

Processor Type Calling Procedures Function

ASM_Processor Matrix/
Vector

STIFFNESS

SOLVE

Assembles element stiffness matrices into structural
stiffness matrix.
Assembles force vector due to specified displace-
ment components.

RENO Pre-
Processor

INITIALIZE Renumbers nodes so as to achieve “optimal” equa-
tion numbers for linear solver.

SKY_Processor Matrix/
Vector

FACTOR
SOLVE

Linear equation solver, set via procedure argument:
SKY_PROCESSOR.

ESi Element INITIALIZE
FORCE

STIFFNESS
STRESS

Relevant element processors (invoked indirectly,
via utility procedure ES) perform all element related
functions.

COP Pre-
Processor

INITIALIZE
SOLVE

Defines nodal boundary conditions and multi-point
constraints.

TRIAD Special-
Purpose

INITIALIZE Re-aligns computational triads at nodes if
AUTO_TRIAD procedure argument is on.

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-26 COMET-AR User’s Manual Revised 12/1/97

Documentation on these processors may be found under the chapter on the corresponding proces-
sor type.

3.3.6 Current Limitations

A summary of current limitations is given in Table 3.3-6.

VEC Matrix/
Vector

NL_STATIC_1 Vector utility processor, used for all vector algebra
operations, including dot products, “saxpy’s,” and
even nodal pseudo-vector updates for large rota-
tions.

Table 3.3-5 Subordinate Processors to Procedure NL_STATIC_1

Processor Type Calling Procedures Function

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 27

3.3.7 Status and Error Messages

A summary of important status and error messages potentially printed by Procedure
NL_STATIC_1 is given in Table 3.3-7.

Table 3.3-6 Current Limitations of Procedure NL_STATIC_1

Limitation Description Work-Around

1 Single Load
System

Only one load system is currently allowed. This means
that all load contributions are scaled by the same load
factor.

None.

2 Not all Ele-
ment Types

Not all element types are equipped for nonlinear analy-
sis, especially geometrically nonlinear analysis. Check
the documentation on the specific element type selected
and make sure that the element has both geometric stiff-
ness matrix and internal force vector capabilities imple-
mented (under the Status and Limitations subsection of
the appropriate Element Processor section).

Select only elements that have
the necessary capabilities.

3 Limit on Speci-
fied Rotations

Specified non-zero rotational DOFs are currently valid
only in cases where the specified rotation components
remain smaller than about 10 degrees.

Make an effort to employ trans-
lational DOFs only for speci-
fied displacement loading.

4 Cannot Fix
Load Incre-
ments

Load increments are computed automatically by the
algorithm, and cannot be influenced by the user except
indirectly, by changing the arclength step size (via the
PATH_SCALE and DES_ITERS arguments).

None.

5 Not Foolproof There is no such thing as a fully automatic nonlinear
solution algorithm. The unexpected is to be expected,
and the user may have to try all kinds of different strate-
gies to complete the analysis.

Be an actively involved user;
question all results, and experi-
ment with solution strategies to
gain experience. Consult Usage
Guidelines, references [3] and
[5], and more experienced users.

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-28 COMET-AR User’s Manual Revised 12/1/97

3.3.8 Usage Examples

3.3.8.1 Example 1: Starting a Nonlinear Analysis

In the above example, a new nonlinear analysis is started with only the minimum necessary infor-
mation provided by the user: the starting step number (1), the starting load factor (.1), the maxi-
mum number of steps (20), and the maximum load factor (1.). All other parameters will take on

Table 3.3-7 Status and Error Messages for Procedure NL_STATIC_1

Status/Error
Message

Potential
Cause(s)

Suggested
User Response

1 Non-Convergence at Step n.
Revise Strategy

The maximum number of nonlinear
iterations (MAX_ITERS) has been
exhausted, as well as the maximum
number of step cuts (MAX_CUTS),
and convergence still has not been
obtained at step n.

Try re-starting the analysis from sev-
eral steps back, and decrease the arc-
length increment at that point (using
the PATH_SCALE). Or, just increase
MAX_ITERS and MAX_CUTS

2 Divergence at Step n.
Revise Strategy.

This message has implications like the
previous message, but occurs when the
error grows instead of decreases during
two successive nonlinear iterations.
The difference between divergence and
non-convergence is that divergence
cannot be cured by increasing
MAX_ITERS. It generally means that
the step size is too big.

Try re-starting from an earlier step, and
reduce the size of the arclength incre-
ment via argument PATH_SCALE,
and/or the error tolerance via TOL_E.

3 Convergence Difficulties;
Repeating Step n with
Reduced Path_Increment

Convergence has not been obtained for
step n within the maximum number of
iterations allowed (see MAX_ITERS
argument). The procedure is cutting the
step size (i.e., arclength increment) in
half and will try again.

Relax. It is normal for the step to have
to be cut several times beyond the ini-
tial estimate, especially during the
more nonlinear stages of the load-dis-
placement history.

4 Convergence at Step n The solution at load step n has con-
verged to an equilibrium state within
the user’s error tolerance. The proce-
dure is ready to advance to the next
load step.

All is probably well, for now. Remem-
ber that nonlinear problems can have
multiple solutions, and there is no
guarantee that you won’t have to re-
compute step n later, especially if you
find that you are on an unstable equilib-
rium path (see Usage Guidelines).

*call NL_STATIC_1 (BEG_STEP
MAX_STEPS
BEG_LOAD
MAX_LOAD

= 1
= 20
= 0.1
= 1.0

; --
; --
; --
)

3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Revised 12/1/97 COMET-AR User’s Manual 3.3- 29

their default values (see Argument Definitions). It is implicitly assumed in this example that the
model has been defined and stored on a .DBC database file connected to logical device index 1
(LDI_C); that all data will be stored on this database file (including element and system matrices);
that modified Newton iterations will be allowed, up to 9 per step; that 3 step cuts will be allowed
per step; etc. At the end of the run, the solution may get as far as step 20 or the maximum load,
whichever comes first. On the other hand, it may have gotten stuck prematurely at some earlier
step or load factor, in which case a solution re-start will be needed (see next example).

3.3.8.2 Example 2: Re-Starting (or Continuing) a Nonlinear Analysis

The above example is a sequel to Example 1, and assumes that in the first run, convergence diffi-
culties were encountered, say at step 15, after trying the default of 3 step cuts and 9 iterations. In
the re-start run, the user forces a smaller step size to be taken starting from step 11. The
PATH_SCALE=.2 setting indicates that the arclength increment used for step 10 is to be divided
by 5 before re-computing step 10; and the DES_ITERS=3 setting will help to keep the step sizes
smaller than before, by requiring convergence to occur in 3 iterations per step, rather than the
default which is 4 (see the DES_ITERS argument description for an explanation of how this argu-
ment is used to control the step size). In the above re-start, the original steps 11 through 15 (which
were computed in Example 1) will be over-written with new versions of these steps which may
correspond to totally different load levels. Various other changes in solution strategy parameters
may be effective for analysis re-starts; it is case-dependent.

3.3.9 Usage Guidelines

Guidelines for performing nonlinear analysis with COMET-AR procedure NL_STATIC_1 can be
found in the CSM Nonlinear Analysis Tutorial [5].

 *call NL_STATIC_1 (BEG_STEP
MAX_STEPS
MAX_LOAD
PATH_SCALE
DES_ITERS

= 11
= 100
= 1.0
= 0.2
= 3

; --
; --
; --
; --
)

For detailed examples of nonlinear analysis performed with procedure NL_STATIC_1,
consult the COMET-AR Tutorial [6] and the COMET Applications Manual [7]. While the
latter reference is based on an earlier generation of the code (COMET-BL), the operation of
procedure NL_STATIC_1 is still very much the same in COMET-AR.

3.3 Procedure NL_STATIC_1 3 Basic Solution Procedures

3.3-30 COMET-AR User’s Manual Revised 12/1/97

3.3.10 References

[1] Riks, E., “An Incremental Approach to the Solution of Snapping and Buckling
Problems,” International Journal of Numerical Methods in Engineering, Vol. 15,
pp. 524–551, 1979.

[2] Crisfield, M. A., “A Fast Incremental/Iterative Solution Procedure that Handles Snap-
through,” Computers and Structures, Vol. 13, pp. 55–62, 1983.

[3] Stewart, C. B. (ed.), The Computational Structural Mechanics (CSM) Testbed Proce-
dures Manual, preliminary NASA Technical Memorandum, May, 1990.

[4] Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics (CSM)
Testbed Generic Element Processor Manual, NASA CR-181728, March, 1990.

[5] Stanley, G. M., CSM Nonlinear Analysis Tutorial, presentation given at NASA Langley
Research Center (hand-outs available), December, 1992.

[6] Stehlin, B., The COMET-AR User’s Tutorial, preliminary NASA Contract Report,
February, 1993.

[7] Hurlbut, B. J., Stanley, G. M. and Kang, D. S., The Computational Structural Mechanics
(CSM) Testbed Applications Manual, preliminary NASA Contract Report, May, 1989.

4 Adaptive Solution Procedures 4.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 4.1-1

Chapter 4 Adaptive Solution Procedures

4.1 Overview

This chapter describes existing COMET-AR command-language procedures for performing adap-
tive finite element solutions, i.e., structural analysis with adaptive mesh refinement. A section is
dedicated to each one of these control procedures, as listed in Table 4.1-1.

Currently there is only one adaptive solution procedure, AR_CONTROL, and it is restricted to
linear static analysis, i.e., it invokes the basic solution procedure L_STATIC_1 described in the
previous chapter. In general, adaptive solution procedures invoke basic solution procedures, as
illustrated in Figure 4.1-1.

Figure 4.1-1 Relationship Between Adaptive and Basic Solution Procedures

To employ an adaptive solution procedure, the user must have first generated a model (as
described in Chapter 2, Model Definition Procedures). The adaptive solution procedure may then
be invoked via a simple *CALL directive while running the COMET-AR macro-processor.

Table 4.1-1 Outline of Chapter 4: Adaptive Solution Procedures

Section Procedure Function

4.1 Overview Introduction

4.2 AR_CONTROL Controls adaptive linear/nonlinear static analysis

ADAPTIVE

BASIC
 Solution Procedure

Solution Procedure

Utility
Procedures

Utility
Procedures

4.1 Overview 4 Adaptive Solution Procedures

4.1-2 COMET-AR User’s Manual Revised 12/1/97

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-1

4.2 Procedure AR_CONTROL

4.2.1 General Description

Procedure AR_CONTROL is a solution procedure for performing linear and nonlinear static anal-
ysis with (or without) adaptive mesh refinement. It automatically invokes the appropriate basic
solution procedures, L_STATIC_1 or NL_STATIC_1 (see Chapter 3, Basic Solution Procedures)
to perform linear or nonlinear static analysis for a given mesh, followed (optionally) by utility
procedures EST_ERR_∗ and REF_MESH_∗ to estimate element errors and perform adaptive
mesh refinement. This process can be carried out iteratively, as shown in Figure 4.2-1, by proper
choice of input parameters until spatial convergence to a user-specified tolerance has been
obtained.

Figure 4.2-1 AR_CONTROL Procedure for Linear/Nonlinear Adaptive Mesh Analysis

The Step Loop in Figure 4.2-1b is relevant only for nonlinear analysis. Most of the actual work is
performed by the various COMET-AR processors described in Part III, and reference to these pro-
cessors will be made where appropriate.

Soln. Procedure

Soln_Procedure

EST_ERR_∗

EST_ERR_∗

REF_MESH_∗

AR_CONTROL

REF_MESH_∗

Converge
?

Mesh Yes

No

Initial Mesh

Mesh

a) Procedure Organization

b) Flow Chart

Step Loop

Loop

Soln. Procedure = { L_STATIC_1 | NL_STATIC_1 }

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-2 COMET-AR User’s Manual Revised 12/1/97

4.2.2 Argument Summary

Procedure AR_CONTROL may be invoked with the COMET-AR ∗ CALL directive, employing
the arguments summarized in Table 4.2-1. These procedure arguments are partitioned into the fol-
lowing groups for the user’s convenience: i) Model Control; ii) Basic Solution Control; iii) Non-
linear Solution Control; iv) Error Estimation Control; and v) Mesh Refinement Control
arguments.

AR_CONTROL may be employed as a common user interface to perform linear or nonlinear
analysis without interacting directly with L_STATIC_1 or NL_STATIC_1. Guidelines/exam-
ples for performing adaptive mesh refinement with linear static analysis are given in the
COMET-AR Tutorial [2]. Capabilities for performing adaptive mesh refinement with nonlinear
static analysis are very preliminary, and should be invoked only by experienced researchers.

Table 4.2-1 Procedure AR_CONTROL Input Arguments

Argument Default Value Description

MODEL CONTROL Arguments

CASE AR_TEST Case name (first name of database files)

LDI_C 1 Logical unit for main database file (Case.DBC)

LDI_E 2 Logical unit for element-matrix file (Case.DBE)

LDI_S 3 Logical unit for system-matrix file (Case.DBS)

LDI_R 4 Logical unit for selected results file (Case.DBR)

LDI_GM 7

LOAD_SET 1 Load set number to be analyzed

CONSTRAINT_SET 1 Constraint set number to be analyzed.

BASIC SOLUTION CONTROL Arguments

SOLN_PROCEDURE <false> Name of solution procedure

AUTO_DOF_SUP <true> Automatic DOF suppression switch

AUTO_DRILL <false> Automatic drilling stiffness augmentation switch

AUTO_MPC <false> Automatic “drilling” multipoint constraint switch

AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs

RENO_PROCESSOR RENO Node renumbering processor

RENUMBER_OPT 0 Node renumbering option

ASM_PROCESSOR ASM Matrix/vector assembly processor

FIXED_FRAME OFF Fixed frame option for hierarchical hs-refinement

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MTX_BUFFER_SIZE 512000 Matrix buffer size for equation solving

SKY_PROCESSOR SKY Linear equation solver processor name

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-3

SOLVER_MAX_ITER 100000 Maximum iterations for iterative solvers

SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers

STRESS <false> Stress, strain and strain energy archival switch

STR_DIRECTION 0 (element local frame) Stress directions (frames) for post-processing

STR_LOCATION INTEG_PTS Stress locations for post-processing

INTERNAL_FORCE <false> Internal force archival switch

N_SELECT 0 Number of selected displacement components for archival
in LDI_R file

SEL_NODES 0 List of selected nodes for archival in LDI_R file

SEL_DOFS 0 List of selected DOFs for archival in LDI_R file

POST <true> Special post-processing procedure switch

ERROR ESTIMATION CONTROL Arguments

ERROR_PROCESSOR <false> Name of error estimation processor to invoke

ERROR_TECHNIQUE S/BARLOW Error estimation technique (S => Smoothing)

ERROR_MEASURE strain_energy Solution quantity upon which errors are based

ERROR_FREQUENCY 1 Number of steps between error estimations

SAMPLE_LOCATIONS INTEG_PTS

SMOOTH_PROCESSOR SMZ Name of smoothing processor for error estimates

SMOOTH_LOCATIONS INTEG_PTS Smoothing evaluation locations

SMOOTH_OPTIONS 0. Special option list for smoothing processor

NUM_GROUP 0 Number of element groups for error estimation

ELEMENT_GROUPS 0 List of element groups for error estimation

MESH REFINEMENT CONTROL Arguments

BEG_MESH 0 Starting mesh for AR iteration loop

MAX_MESHES 1 Stopping mesh for AR iteration loop

OLD_MESH 0 Mesh to restart from

CONVERGE_TOL .05 Global error tolerance (relative error)

REFINE_PROCESSOR <false> Name of mesh refinement processor

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

REFINE_INDICATOR MAX_RATIO Type of refinement indicator

REFINE_DIRS 1, 2 Refinement directions (1,2—implies 2D)

NUM_REFINE_TOLS 1 Number of error tolerances guiding refinement

REFINE_TOLS .90 List of local (element) error tolerances for refinement

REFINE_LEVELS 1 List of refinement levels corresponding to REFINE_TOLS

Table 4.2-1 Procedure AR_CONTROL Input Arguments (Continued)

Argument Default Value Description

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-4 COMET-AR User’s Manual Revised 12/1/97

NUM_UNREFINE_TOLS 0 No. of error tolerances guiding refinement

UNREFINE_TOLS .00 List of local (element) error tolerances for refinement

UNREFINE_LEVELS 0 List of refinement levels corresponding to REFINE_TOLS

MAX_ASPECT_RATIO 0, 0 Distortion control parameters for ht-refinement

MAX_H_LEVEL 10 Maximum levels of h-refinement for any element

MAX_P_LEVEL 5 Maximum levels of p-refinement globally

BEG_STEP_REF 1 Nonlinear load step at which to begin mesh refinement

NUM_STEP_REF 1 Number of nonlinear load steps between mesh refinement
loops

MAX_MESH_STEP 0 Maximum number of mesh updates per step

LAST_REF_STEP 1 Last step at which mesh refinement was performed

NONLINEAR SOLUTION CONTROL Arguments

BEG_STEP 1 Starting load step for nonlinear solution interval

MAX_STEPS 30 Maximum number of load steps to compute

BEG_LOAD .1 Starting load factor

MAX_LOAD 1.2 Maximum load factor

MIN_LOAD -1.0 Minimum load factor

MAX_ITERS 9 Maximum number of iterations per step

DES_ITERS 4 Desired number of iterations per step

NEWTON <false> Type of Newton-Raphson algorithm

FAC_STEPS 1 Number of steps between stiffness re-factorings

MAX_CUTS 3 Maximum number of step size cuts per step

CONV_CRITERIA CHKCONV_E Nonlinear convergence criteria (procedure name)

NL_TOL 0.001 Starting load step for nonlinear solution interval

PATH_SCALE 0. Path (arclength) scale factor for re-starts

EXTRAPOLATE <true> Path extrapolation switch

NL_MATL <false> Material nonlinearity switch

NL_GEOM 2 Geometric nonlinearity level

COROTATION <true> Element corotation switch (for large rotations)

INITIALIZE <true> Initialization switch for re-starts in conjunction with adap-
tive mesh refinement.

LOAD_STIFF <false>

LINE_SEARCH 1.0

ARCHIVE_STEP 10

Table 4.2-1 Procedure AR_CONTROL Input Arguments (Continued)

Argument Default Value Description

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-5

4.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 4.2-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to subor-
dinate procedures and processors, where the actual options are determined. For example, the defi-
nition of REFINE_TECHNIQUE depends on which refinement processor the user selects via the
REFINE_PROCESSOR argument, so the relevant options can be found in the corresponding
refinement processor sections in Part III.

4.2.3.1 ASM_PROCESSOR Argument

This argument selects the matrix assembly processor to be used for assembling element (stiffness/
mass) matrices into corresponding system matrices.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. Current options include ASM
(for ht and hc types of mesh refinement) and ASMs (for hs mesh refinement only). (Default value:
ASM)

4.2.3.2 AUTO_DOF_SUP Argument

This argument sets the automatic DOF (degree-of-freedom) suppression switch. This capability
automatically suppresses extraneous DOFs, especially useful during adaptive mesh refinement. It
is described in more detail in Section 2.10, Automatic DOF Suppression and Drilling Stabiliza-
tion.

Argument syntax:

where

ASM_PROCESSOR = asm_processor

AUTO_DOF_SUP = option [, angle_tol]

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>, all
DOFs (in the computational frame) that are unsupported by element stiffness
will be suppressed throughout the adaptive refinement process. (Default value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; see Sec-
tion 2.10 for details. (Default value: depends on element type)

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-6 COMET-AR User’s Manual Revised 12/1/97

In most cases, it is best to leave the default setting intact.

4.2.3.3 AUTO_DRILL Argument

This argument sets the automatic drilling stiffness option. This option causes shell elements to add
artificial drilling rotational stiffness to nodal DOFs that would otherwise be unstable computation-
ally. See Section 2.10, Automatic DOF Suppression and Drilling Stabilization, and individual ele-
ment processor sections in Chapter 7, Element Processors, for more information.

Argument syntax:

where

4.2.3.4 AUTO_MPC Argument

This argument sets the automatic multi-point constraint (MPC) option for suppression of extrane-
ous drilling DOFs, defined as rotations about the normal to a plate or shell element. Unless the
element has intrinsic stiffness associated with such rotations, these DOFs may lead to a singular
stiffness matrix. Turning the AUTO_MPC option on causes special constraints to be generated at
nodes where insufficient drilling rotational stiffness is present, to suppress the rotation about the
appropriate (“drilling”) axis. This axis is generally not aligned with any of the computational
axes, so the constraint will typically involve a linear combination of the rotational DOFs corre-
sponding to the computational axes. See Section 2.10, Automatic DOF Suppression and Drilling
Stabilization, for more information on this option and related options such as AUTO_DOF_SUP,
AUTO_DRILL, and AUTO_TRIAD.

AUTO_DRILL = option [, angle_tol , scale_fac]

Parameter Description

option Automatic drilling stiffness switch: { <true> | <false> }. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabiliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Section 2.10 for details. (Default value: depends on element
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See individual element descriptions in Chapter 7 for inter-
pretation. (Default value: depends on element type)

AUTO_DRILL is not recommended for nonlinear analysis.

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-7

Argument syntax:

where

4.2.3.5 AUTO_TRIAD Argument

This argument sets the automatic computational triad (i.e., DOF direction) re-alignment option.
This option, an alternative to AUTO_DRILL, causes re-alignment of the computational triads at
all nodes that require drilling DOF stabilization as long as no boundary conditions have been
defined there. The computational axes are re-aligned such that one of them is parallel to the aver-
age element surface-normal at the node. Then, extraneous (unstable) drilling rotational DOFs can
be subsequently suppressed via the AUTO_DOF_SUP option. (See Section 2.10, Automatic DOF
Suppression and Drilling Stabilization, for more information.)

Argument syntax:

where

AUTO_MPC = option [, angle_tol]

Parameter Description

option Automatic multi-point constraint switch for drilling stabilization:
{ <true> | <false> }. If <true>, multi-dof constraints will be generated at nodes
where drilling stabilization is needed. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

AUTO_TRIAD = option [, angle_tol]

Parameter Description

option Automatic triad re-alignment option switch: { <true> | <false> }. If <true>, compu-
tational triads will be re-aligned with average element normal at all nodes that
require drilling DOF stabilization, unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

AUTO_TRIAD should only be used in conjunction with
AUTO_DOF_SUP. It cannot be used in conjunction with user-
defined point forces and/or multi-point constraints.

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-8 COMET-AR User’s Manual Revised 12/1/97

4.2.3.6 BEG_LOAD Argument

This argument sets the starting load factor for nonlinear analysis.

Argument syntax:

See documentation for nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details.
(Default value: None)

4.2.3.7 BEG_MESH Argument

This argument sets the number of the first mesh to analyze at the start of the current AR run. The
initial mesh is designated as mesh 0.

Argument syntax:

where beg_mesh is the beginning mesh number. (Default value: 0)

4.2.3.8 BEG_STEP Argument

This argument sets the number of the first load step to be computed in a given nonlinear analysis
interval.

Argument syntax:

where beg_step is the beginning (or starting) step number. Initially, beg_step should be set equal
to 1. For analysis re-start runs, beg_step should be set equal to the next step to compute (or re-
compute). See documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for
more details. (Default value: None)

4.2.3.9 BEG_STEP_REF Argument

This argument sets the first load step number at which adaptive mesh refinement can begin.

Argument syntax:

BEG_LOAD = beg_load

BEG_MESH = beg_mesh

BEG_STEP = beg_step

BEG_STEP_REF = beg_step_ref

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-9

where beg_step_ref is the beginning step number for mesh refinement. (Default value: 1)

4.2.3.10 CASE Argument

This argument sets the name of the case being analyzed. This name is used as the first part of all
database file names associated with the case (e.g., Case.DBC, Case.DBE, ...). This name is typi-
cally the same as the model name used in Model Definition Procedures.

Argument syntax:

where Case is the case name prefix in all associated database files. (Default: AR_TEST)

4.2.3.11 CONVERGE_TOL Argument

This argument sets the value of the adaptive mesh refinement (AR) global convergence tolerance.
This is a relative error measure (in fractional form) below which convergence of the discrete solu-
tion to the governing equations is assumed and no further adaptive mesh refinement is performed.
The quantitative interpretation of this error measure depends on the particular error estimation
processor (ERRi) and refinement processor (REF1) selected (see ERROR_PROCESSOR and
REF_PROCESSOR arguments).

Argument syntax:

where converge_tol is the relative error tolerance in fractional form (e.g., .1 corresponds to 10 per-
cent error). (Default value: .05)

4.2.3.12 COROTATION Argument

This argument selects the element corotational update option to be employed by the generic ele-
ment processor for geometrically nonlinear analysis (i.e., large rotations, small strains).

Argument syntax:

where corotation may be set to 0 (off), 1 (medium), or 2 (high): Refer to the description of nonlin-
ear solution procedures (Section 3.3, NL_STATIC_1) for more details. (Default value: 1)

CASE = Case

CONVERGE_TOL = converge_tol

COROTATION = corotation

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-10 COMET-AR User’s Manual Revised 12/1/97

4.2.3.13 DES_ITERS Argument

This argument sets the desired number of iterations for nonlinear convergence at each load step,
which affects how the step size is adaptively updated during the run.

Argument syntax:

where des_iters is the desired number of iterations. This is relevant only for nonlinear analysis.
Refer to the documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for
more details. (Default value: 4)

4.2.3.14 ELEMENT_GROUPS Argument

Provides a list of element group numbers to process during error estimation.

Argument syntax:

where grp_“i” is a valid element group number and where NUM_GROUP is set via the
NUM_GROUP argument. (Default value: 0, which implies ALL)

4.2.3.15 ERROR_FREQUENCY Argument

This argument sets the load step frequency at which spatial error estimation is performed.

Argument syntax:

where error_frequency is the number of load steps between spatial error estimation. A value of 1
implies error are estimated at every step; a value of 0 implies no error estimation is to be per-
formed. (Default value: 1)

4.2.3.16 ERROR_MEASURE Argument

This argument sets the name of the spatial error measure (e.g., strain_energy, mean_stress, ...) to
be used within the error estimation processor selected via the ERROR_PROCESSOR argument.
Error measure options are dependent on the error estimation processor, and some error processors
may have only one option (in which case this argument is irrelevant).

DES_ITERS = des_iters

ELEMENT_GROUPS = grp_1, grp_2, . . ., grp_NUM_GROUP

ERROR_FREQUENCY = error_frequency

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-11

Argument syntax:

where error_measure is the name of the error measure. (Default value: error estimation processor
dependent)

4.2.3.17 ERROR_PROCESSOR Argument

This argument sets the name of the error estimation processor (ERRi) to be employed by
AR_CONTROL (via the utility procedure, EST_ERR_1). See Chapter 10, Error Estimation Pro-
cessors, for available options.

Argument syntax:

where error_processor is the name of the error estimation processor. Current options are summa-
rized below.

4.2.3.18 ERROR_TECHNIQUE Argument

This argument sets the name of the error estimation technique to be employed within the error
estimation processor selected via the ERROR_PROCESSOR argument. Error estimation tech-
nique options are dependent on the error estimation processor, and some error processors may
have only one option (in which case this argument is irrelevant).

Argument syntax:

where error_technique is the name of the error estimation technique. (Default value: error estima-
tion processor dependent)

ERROR_MEASURE = error_measure

ERROR_PROCESSOR = error_processor

error_processor Description

ERR2 Smoothing-based error estimator a la Zienkiewicz (Default)

ERR4 Modified version of ERR2 by Levit, for built-up shell structures

ERR6 Modified version of ERR2

ERROR_TECHNIQUE = error_technique

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-12 COMET-AR User’s Manual Revised 12/1/97

4.2.3.19 EXTRAPOLATE Argument

This argument sets a flag determining whether or not to use quadratic extrapolation along a non-
linear solution path to predict the load factor and displacement vector at the beginning of each
load step.

Argument syntax:

where <true> implies that quadratic extrapolation will be used. This is relevant only for nonlinear
analysis. Refer to the documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC_1) for more details. (Default value: <true>)

4.2.3.20 FAC_STEPS Argument

This argument sets the number of load steps between stiffness matrix updates (i.e., re-forming and
re-factoring) for nonlinear analysis.

Argument syntax:

where fac_steps is a positive integer indicating that re-factoring of a new stiffness matrix will be
performed every fac_steps load steps. This is relevant only for nonlinear analysis and only for the
argument NEWTON=MODIFIED. Refer to the documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC_1) for more details. (Default value: 1)

4.2.3.21 FIXED_FRAME Argument

Sets an esoteric flag that is relevant only for hs-refinement.

Argument syntax:

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

4.2.3.22 LDI_C Argument

This argument sets the logical device index associated with the central COMET-AR database file,
which must exist before calling AR_CONTROL; it is typically named Case.DBC, where Case is
the case name.

EXTRAPOLATE = { <true> | <false> }

FAC_STEPS = fac_steps

FIXED_FRAME = { <true> | <false> }

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-13

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the .DBC file. (Default value: 1)

4.2.3.23 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally named Case.DBE.

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the Case.DBE file. If ldi_e is not
equal to ldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for
the current mesh will be stored on a separate Case.DBE file. If ldi_e = ldi_c, then all element
matrices will be stored on the Case.DBC file, i.e., a separate Case.DBE file will not be created.
(Default value: 2)

4.2.3.24 LDI_R Argument

This argument sets the logical device index associated with the selected results database file, typi-
cally named Case.DBR.

Argument syntax:

where ldi_r is the logical device index (a positive integer) of the .DBR file. This file will be used
to store all user-selected displacement results (see arguments N_SELECT, SEL_NODES, and
SEL_DOFS) as well as key solution parameters for nonlinear analysis. (Default value: 4)

LDI_C = ldi_c

LDI_E = ldi_e

If a separate Case.DBE file is created, it will be
deleted and re-created with each new adaptive mesh.

LDI_R = ldi_r

To create a .DBR file separate from the .DBC file, it
must be opened via an *OPEN ldi_r directive before
invoking AR_CONTROL. Alternatively, if ldi_r =
ldi_c, the selected results will be stored in the .DBC file.

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-14 COMET-AR User’s Manual Revised 12/1/97

4.2.3.25 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally named Case.DBS.

Argument syntax:

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not
equal to ldi_c (see LDI_C argument), then all system matrices (e.g., stiffness and mass) for the
current mesh will be stored on a separate Case.DBS file. If ldi_s = ldi_c, then all system matrices
will be stored on the Case.DBC file, i.e., a separate Case.DBS file will not be created. (Default
value: 3)

4.2.3.26 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax:

where FULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

4.2.3.27 MAX_ASPECT_RATIO Argument

This argument sets the maximum element aspect ratios before and after prospective adaptive mesh
refinement.

Argument syntax:

where before denotes the maximum element aspect ratio before a prospective mesh refinement,
and after denotes the maximum element aspect ratio after a prospective mesh refinement. If either
of these limits would be violated, an alternate element refinement pattern is selected. This is rele-
vant primarily for transition-based (ht) refinement, where aspect ratios can be used to control the

LDI_S = ldi_s

If a separate Case.DBS file is created, it will be
deleted and re-created with each new adaptive mesh.

MATRIX_UPDATE = { FULL | PARTIAL }

MAX_ASPECT_RATIO = before, after

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-15

degree of element distortion. See Chapter 11, Mesh Refinement Processors, for more information.
(Default value: 0,0)

4.2.3.28 MAX_CUTS Argument

This argument sets the maximum number of step cuts allowed during the current nonlinear analy-
sis run.

Argument syntax:

where max_cuts is the maximum number of cuts allowed. A step cut refers to a halving of the
load, or arclength, step size used to advance the solution from one step to the next. Step cuts are
performed only if the maximum number of iterations (specified via the MAX_ITERS argument)
is exceeded without converging at a given step. This is relevant only for nonlinear analysis. Refer
to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details.
(Default value: 3)

4.2.3.29 MAX_H_LEVEL Argument

This argument sets the maximum number of levels of adaptive h-refinement allowed within any
one element. If the mesh refinement processor (REFi) determines that more than this many levels
of h-refinement are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

where max_h_level denotes the maximum number of levels of h-refinement permitted by the user.
for any one element. See Chapter 11, Mesh Refinement Processors, for more information.
(Default value: 10)

4.2.3.30 MAX_ITERS Argument

This argument sets the maximum number of iterations allowed for nonlinear convergence at a
given load step.

Argument syntax:

where max_iters is the maximum number of iterations allowed. If max_iters iterations have been
performed at a given step, and nonlinear convergence (to an equilibrium state) has not yet been

MAX_CUTS = max_cuts

MAX_H_LEVEL = max_h_level

MAX_ITERS = max_iters

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-16 COMET-AR User’s Manual Revised 12/1/97

obtained, the nonlinear solution procedure will attempt to cut the step size as many times as
allowed by the argument MAX_CUTS. If the limits set by both MAX_CUTS and MAX_ITERS
have been reached, then the run will be terminated and the user will have to try a different strat-
egy. This is relevant only for nonlinear analysis. Refer to documentation on nonlinear solution
procedures (Section 3.3, NL_STATIC_1) for details. (Default value: 9)

4.2.3.31 MAX_LOAD Argument

This argument sets the maximum load factor for the nonlinear analysis.

Argument syntax:

where max_load is the applied load factor beyond which the nonlinear analysis is terminated. This
is relevant only for nonlinear analysis. Refer to documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC_1) for details. (Default value: None)

4.2.3.32 MAX_MESHES Argument

This argument sets the maximum number of meshes to analyze within the current run. The highest
potential mesh number for the current run is equal to BEG_MESH+MAX_MESHES–1; thus, the
maximum number of adaptive mesh updates for the run is simply MAX_MESHES–1.

Argument syntax:

where max_meshes is the maximum number of meshes to analyze. (Default value: 1)

4.2.3.33 MAX_MESH_STEP Argument

This argument sets the maximum allowable number of mesh iterations per step to perform in a
nonlinear analysis with adaptive mesh refinement.

Argument syntax:

where max_mesh_step is the maximum number of meshes per step. This value may be superceded
by MAX_MESHES, which is the maximum number of total meshes allowed per run. (Default
value: 5)

MAX_LOAD = max_load

MAX_MESHES = max_meshes

MAX_MESH_STEP = max_mesh_step

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-17

4.2.3.34 MAX_P_LEVEL Argument

This argument sets the maximum number of levels of uniform p-refinement allowed for the
model. If the mesh refinement processor (REFi) determines that more than this many levels of p-
refinement are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

where max_p_level denotes the maximum number of levels of uniform p-refinement permitted.
See Chapter 11, Mesh Refinement Processors, for more information. (Default value: 5)

4.2.3.35 MAX_STEPS Argument

This argument sets the maximum number of load steps to compute during the current nonlinear
analysis run.

Argument syntax:

where max_steps is the maximum number of steps to compute in the current run, not to be con-
fused with the number of the highest load step in the analysis. This is relevant only for nonlinear
analysis. Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1)
for details. (Default value: None)

4.2.3.36 MIN_LOAD Argument

This argument sets the minimum load factor for a nonlinear analysis.

Argument syntax:

where min_load establishes a lower limit on the applied load factor, which should be less than the
starting load factor specified by the BEG_LOAD argument. This is relevant only for nonlinear
analysis. Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1)
for details. (Default value: None)

4.2.3.37 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

MAX_P_LEVEL = max_p_level

MAX_STEPS = max_steps

MIN_LOAD = min_load

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-18 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where mtx_buffer_size is the size of the buffer in terms of logical variables. (Default value:
500000)

4.2.3.38 NEWTON Argument

This argument determines the type of Newton-Raphson iteration algorithm to use for nonlinear
analysis.

Argument syntax:

If NEWTON=MODIFIED, stiffness matrix updates (re-forming and re-factoring) will be per-
formed only at the beginning of every fac_steps load steps, where fac_steps is set via the
FAC_STEPS argument. If NEWTON=TRUE, stiffness matrix updates will be performed at each
iteration of every fac_steps load steps. This is relevant only for nonlinear analysis. Refer to docu-
mentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details. (Default
value: MODIFIED)

4.2.3.39 NL_CONV_CRITERIA

This argument selects the command-language procedure to be used to assess nonlinear conver-
gence at each iteration of a nonlinear analysis.

Argument syntax:

where procedure_name is the name of the convergence-checking procedure. This is relevant only
for nonlinear analysis. See documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC_1) for more details on options. (Default value: CHKCONV_E (energy norm))

4.2.3.40 NL_GEOM Argument

This argument selects the geometrical nonlinearity option to be used in the current analysis.

Argument syntax:

MTX_BUFFER_SIZE = mtx_buffer_size

NEWTON = { MODIFIED | TRUE }

NL_CONV_CRITERIA = procedure_name

NL_GEOM = nl_geom

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-19

where nl_geom is the option number, and may be set to 0 (geometrically linear), 1 (geometrically
nonlinear, but linear element strain-displacement relations), or 2 (geometrically nonlinear includ-
ing nonlinear element strain-displacement relations). This is relevant only for nonlinear analysis.
Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for
details. (Default value: 0)

4.2.3.41 NL_MATL Argument

This argument selects the material nonlinearity option to be used in the current analysis run.

Argument syntax:

where nl_matl may be set to 0 (materially linear) or 1 (materially nonlinear). This is relevant only
for nonlinear analysis. Refer to documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC_1)for details. (Default value: 0)

4.2.3.42 NL_TOL Argument

This argument sets the value of the error tolerance used to establish convergence of the nonlinear
equilibrium iteration process at each load step.

Argument syntax:

where nl_tol is the error tolerance in the error norm specified by NL_CONV_CRITERIA. This is
relevant only for nonlinear analysis. Refer to documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC_1) for details. (Default value: 1.e-3)

4.2.3.43 NUM_GROUP Argument

This argument sets the number of element groups to be processed during error estimation. If
NUM_GROUPS > 0, a corresponding list of element group numbers may be set via the
ELEMENT_GROUP argument.

Argument syntax:

where num_group is the number of element groups to process. (Default value: 0 which implies
ALL)

NL_MATL = nl_matl

NL_TOL = nl_tol

NUM_GROUPS = num_group

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-20 COMET-AR User’s Manual Revised 12/1/97

4.2.3.44 NUM_REFINE_TOLS Argument

This argument sets the number of local (element) error tolerances that will be used to guide adap-
tive refinement. The REFINE_TOLS argument specifies the error values for these tolerances, and
the REFINE_LEVELS argument indicates the number of levels of refinement to perform when
each tolerance is exceeded.

Argument syntax:

where num_refine_tols denotes the number of refinement tolerances. See Chapter 11, Mesh
Refinement Processors, for more information. (Default value: 1)

4.2.3.45 NUM_STEP_REF Argument

This argument sets the number of nonlinear load steps between adaptive mesh refinement inter-
vals. It is not relevant for linear static analysis.

Argument syntax:

where num_step_ref is the number of load steps between adaptive mesh refinement intervals. For
example, if num_step_ref is 1, adaptive mesh refinement will be performed at every step; if it is 2,
at every other step, but only if dictated by spatial error estimates. (Default value: 1)

4.2.3.46 N_SELECT Argument

This argument specifies the number of user-selected displacement components to be saved in the
results database (see argument LDI_R) for nonlinear analysis.

Argument syntax:

where n_select is the number of displacement components to save. The actual node and DOF
numbers identifying these displacement components are specified via the SEL_NODES and
SEL_DOFS arguments. (Default value: 0)

4.2.3.47 OLD_MESH Argument

This argument sets the number of the mesh from which to restart an adaptive analysis. If
BEG_MESH=0, this argument is irrelevant. If BEG_MESH > 0, the default is MAX(beg_mesh –

NUM_REFINE_TOLS = num_refine_tols

NUM_STEP_REF = num_step_ref

N_SELECT = n_select

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-21

1,0). The main use of this argument is to allow mesh refinement to be repeated from some earlier
mesh, but with different adaptive refinement parameters. Error estimates must already be available
for the mesh specified by OLD_MESH in order to restart from that mesh.

Argument syntax:

where old_mesh denotes the number of the mesh from which to restart. The number of the first
mesh to be computed (or recomputed) will therefore be old_mesh+1. See Chapter 11 for more
information. (Default: MAX (beg_mesh–1, 0))

4.2.3.48 PATH_SCALE Argument

This argument sets a scale factor to be applied to the current arclength increment, ∆l, for the first
step in a nonlinear re-start run. It is thus a manual way to adjust the solution step size.

Argument syntax:

where path_scale is a non-negative floating point number. If path_scale is set to 1, the step-size
from the previous step (i.e., beg_step–1, where beg_step is set by the BEG_STEP argument) will
be used to compute the first new step (beg_step). The main function of this argument is for the
user to override the procedure’s step-size adjustment algorithm, in cases where the user has a bet-
ter idea based on experience. This is relevant only for nonlinear analysis. Refer to documentation
on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details. (Default value: 0 =>
automatic step-size adjustment algorithm will be used to make re-start mimic continuation with-
out re-start)

4.2.3.49 POST Argument

This argument enables or disables a user-written post-processing procedure to be invoked by the
nonlinear solution procedure.

Argument syntax:

where <true> causes the user-written post-processing procedure to be invoked and <false> pre-
vents it from being invoked. (Default value: <false>)

OLD_MESH = old_mesh

PATH_SCALE = path_scale

POST = { <true> | <false> }

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-22 COMET-AR User’s Manual Revised 12/1/97

4.2.3.50 REFINE_DIRS Argument

Establishes a list of intrinsic element directions in which to allow adaptive refinement.

Argument syntax:

where dir1, dir2, and dir3 are intrinsic element direction numbers (i.e., in the elements internal, or
natural, coordinate system), and each may take on a value between 1 and the maximum number of
intrinsic element dimensions (i.e., 3 for 3D elements, 2 for 2D elements and 1 for 1D elements).
This can eliminate unnecessary refinement, for example, in axisymmetric shell problems where
only one of the surface directions need be refined. See Chapter 11, Mesh Refinement Processors,
for more information. (Default value: 1, 2, 3).

4.2.3.51 REFINE_INDICATOR Argument

This argument sets the type of element refinement indicator to be used by the adaptive refinement
processor. The refinement indicator is the criterion used to determine whether an element's error
estimate is high enough to warrant refinement. The values of the refinement indicator denoting
various levels of refinement are set by the REFINE_TOLERANCES argument.

Argument syntax:

where refine_indicator denotes the name of the element refinement indicator to be used. (Default
value: AVE. See Chapter 11, Mesh Refinement Processors, for details.)

4.2.3.52 REFINE_LEVELS Argument

Sets an array of element refinement levels corresponding to the array of refinement tolerances
specified via the REFINE_TOLS argument. An element refinement level is defined as one appli-
cation of local refinement, employing the refinement type specified via the
REFINE_TECHNIQUE argument (e.g., ht, hc, hs or p).

Argument syntax:

where ref_lev_“ i” denotes the number of levels to refine an element when the element refinement
(error) indicator exceeds the tolerance specified by ref_tol_“ i” in the REFINE_TOLS argument;
and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument. (See Chapter
11, Mesh Refinement Processors, for details.) (Default value: 1)

REFINE_DIRS = dir1 [, dir2 [, dir3]]

REFINE_INDICATOR = refine_indicator

REFINE_LEVELS = ref_lev_1, ref_lev_2, ... ref_lev_NUM_REFINE_TOLS

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-23

4.2.3.53 REFINE_PROCESSOR Argument

This argument sets the name of the mesh refinement processor (REFi) to be invoked by
AR_CONTROL (via the REF_MESH_1 utility procedure).

Argument syntax:

where refine_processor is the name of the mesh refinement processor. Current options are summa-
rized below.

Consult Chapter 11, Mesh Refinement Processors, for more details.

4.2.3.54 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(REFi) specified via the REFINE_PROCESSOR argument.

Argument syntax:

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to “ht”, “hc”, or “p”
(among others). See Chapter 11, Mesh Refinement Processors, for details. (Default value: “hc”)

4.2.3.55 REFINE_TOLS Argument

Sets an array of element refinement tolerances corresponding to the array of refinement levels
specified via the REFINE_LEVELS argument. An element refinement tolerance is a limit in the
value of the element error-based refinement indicator (see the REFINE_INDICATOR argument)
beyond which an element is refined by a prescribed number of levels.

Argument syntax:

REFINE_PROCESSOR = refine_processor

refine_processor Description

REF1 Contains a variety of adaptive mesh refinement techniques (Default)

REFINE_TECHNIQUE = refine_technique

REFINE_TOLS = ref_tol_1, ref_tol_2, ... ref_tol_NUM_REFINE_TOLS

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-24 COMET-AR User’s Manual Revised 12/1/97

where ref_tol_“ i” denotes the value of the element refinement indicator beyond which an element
should be refined by ref_lev_“ i” levels where ref_lev_“ i” is specified in the REFINE_LEVELS
argument; and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument.
(See Chapter 11, Mesh Refinement Processors, for details.) (Default value: .05)

4.2.3.56 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used in order
to optimize matrix equation solving (time and/or storage).

Argument syntax:

where renumber_processor is the processor name. Current options are summarized below.

Consult the relevant sections in Chapter 6, Pre-Processors, for more details.

4.2.3.57 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER=<true>).

Argument syntax:

where renumber_option indicates the renumbering option and depends on the particular renum-
bering processor chosen. See processors RENO, RSEQ, etc., in Chapter 6. (Default value: 0)

4.2.3.58 SEL_DOFS Argument

This argument specifies a list of DOF numbers designating user-selected displacement compo-
nents to be saved in the results database for nonlinear analysis. Each DOF number corresponds to

RENO_PROCESSOR = renumber_processor

renumber_processor Description

RENO Node renumbering using a geometric algorithm (Default)

RENOs Node renumbering for hs-refinement only

RSEQ Node renumbering via a variety of order optimization algorithms

RENUMBER_OPT = renumber_option

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-25

a node specified via the SEL_NODES argument. The total number of such nodal DOFS must
equal to that specified via the N_SELECT argument.

Argument syntax:

where dof(i) represents a nodal DOF number (e.g., 1,2,3 typically denote the computational trans-
lations uxc, uyc, uzc), and N_SELECT is set via the N_SELECT argument. See the SEL_NODES
argument for correspondence. (Default value: 0)

4.2.3.59 SEL_NODES Argument

This argument specifies a list of node numbers designating user-selected displacement compo-
nents to be saved in the results database for nonlinear analysis. Each node number corresponds to
a DOF number specified via the SEL_DOFS argument. The total number of such node/DOF pairs
must equal to that specified via the N_SELECT argument.

Argument syntax:

where node(i) represents a node number, and N_SELECT is set via the N_SELECT argument.
See the SEL_DOFS argument for correspondence. (Default value: 0)

4.2.3.60 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

where sky_processor is the name of the matrix solution processor. Current options are summa-
rized below.

SEL_DOFS = dof(1), dof(2), . . ., dof(N_SELECT)

SEL_NODES = node(1), node(2), . . ., node(N_SELECT)

SKY_PROCESSOR = sky_processor

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-26 COMET-AR User’s Manual Revised 12/1/97

Consult Chapter 12, Matrix/Vector Processors, for details on individual solution processors.

4.2.3.61 SMOOTH_PROCESSOR Argument

This argument selects the stress smoothing processor used in conjunction with error estimation.

Argument syntax:

where smooth_processor is the name of the stress smoothing processor. Current options are sum-
marized below.

Consult Chapter 9, Smoothing Processors, for more details. (Default: none)

4.2.3.62 SMOOTH_LOCATIONS Argument

This argument specifies the locations at which smoothed data is to be computed and stored by the
SMOOTH_PROCESSOR.

sky_processor Description

SKY Direct solution of skyline matrices by Gauss elimination (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs-refinement
only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers

VSS Vectorized sparse solver (extremely fast and space-conserving)

SMOOTH_PROCESSOR = smooth_processor

smooth_processor Description

SMT Smoothing processor based on Zienkiewicz smoothing algorithm

SMZ Smoothing processor based on Tessler smoothing algorithm

If this argument is not set by the user, it is assumed that no smoothing processor
is needed and that error estimation will be performed entirely by the error esti-
mation processor selected via the ERROR_PROCESSOR argument. Con-
versely, if SMOOTH_PROCESSOR is set to one of the above options, then the
user must select an error estimation processor that is capable of “post-process-
ing” smoothed data to obtain error estimates such as ERRSM.

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-27

Argument syntax:

where INTEG_PTS refers to element integration points, NODES refers to element nodes, and
CENTROIDS refers to element centroids. (Default value: INTEG_PTS)

4.2.3.63 SMOOTH_OPTIONS Argument

This argument sets any parameters required by the smoothing processor selected via the
SMOOTH_PROCESSOR argument.

Argument syntax:

where smooth_options represents a list of options (i.e., parameters) dependent on the particular
smoothing processor selected. Consult Chapter 9, Smoothing Processors, for details on what (if
any) parameters are required here. Typically this argument is used to select non-default smooth-
ing options. (Default value: 0)

4.2.3.64 SOLN_PROCEDURE Argument

This argument sets the name of the solution procedure to be employed by AR_CONTROL for
solving the equations corresponding to a given mesh.

Argument syntax:

where soln_procedure is the name of the solution procedure. Current options are L_STATIC_1
(linear static analysis) or NL_STATIC_1 (nonlinear static analysis). (Default value: L_STATIC_1)

4.2.3.65 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

where solver_conv_tol is the convergence tolerance. (Default value: 1.e-5)

SMOOTH_LOCATIONS = { INTEG_PTS | NODES | CENTROIDS }

SMOOTH_OPTIONS = smooth_options

SOLN_PROCEDURE = soln_procedure

SOLVER_CONV_TOL = solver_conv_tol

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-28 COMET-AR User’s Manual Revised 12/1/97

4.2.3.66 SOLVER_MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). This is relevant only if the SKY_PROCESSOR argument is set equal to the
name of an iterative solver.

Argument syntax:

where solver_max_iter is the maximum number of iterations allowed. (Default value: 100)

4.2.3.67 STRESS Argument

This argument determines if and when element stresses, strains and strain energy densities are to
be computed and stored (archived) in the database.

Argument syntax:

where stress_archival_frequency indicates the number of load steps between stress archives. A
value of 1 implies stresses will be archived at each step (or once for linear statics), and a value of
<false> (or 0) implies that they will not be archived at all. (Default value: 1)

4.2.3.68 STR_DIRECTION Argument

This argument sets the stress/strain reference frame (xs,ys,zs) for post-processing and/or error esti-
mation purposes.

Argument syntax:

where str_direction denotes the stress/strain direction. Current options are summarized below.

SOLVER_MAX_ITER = solver_max_iter

STRESS = { stress_archival_frequency }

It is currently necessary to set stress_archival_frequency > 0 for all analyses
involving adaptive mesh refinement

STR_DIRECTION = str_direction

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-29

4.2.3.69 STR_LOCATION Argument

This argument sets the element locations at which stresses, strains, and strain energy densities are
computed for post-processing and/or error estimation purposes.

Argument syntax:

where str_location denotes the stress/strain/energy locations. Current options are as shown below.

4.2.4 Database Input/Output Summary

A complete model definition database is required as input for the first run with AR_CONTROL
(see Chapter 2, Model Definition Procedures). After the analysis, both solution data, as well as
model definition data will have been output to the database for all meshes created and analyzed
during the adaptive refinement iteration loop. The mesh index will appear as the third index in all
dataset names. While most datasets will be stored in the main COMET-AR database file,
Case.DBC, element and system matrices may be stored in the Case.DBE and Case.DBS files,
depending on the user settings for the LDI_E and LDI_S arguments.

str_direction Meaning

ELEMENT (or 0) Express stress/strain components in the local element (integration point) refer-
ence frame (xs=xl, ys=yl, zs= zl). (Default)

GLOBAL { X | Y | Z } Express stress/strain components in a permutation of the global reference frame,
with xs = xg, yg or zg, if X, Y or Z is selected. For shell elements, the zs direction
is automatically aligned with the local element normal, zl, direction.

{ 1 | 2 | 3 } Same as GLOBAL {X | Y | Z } respectively.

FAB_DIR Use the local fabrication axes for the stress frame, i.e., xs=xf, ys=yf, zs=yf. See
Section 2.7, Orientation of Fabrication Frames.

STR_LOCATION = str_location

str_location Meaning

INTEG_PTS Element integration points (Default)

NODES Element nodes

CENTROIDS Element centroids

It is currently necessary to set STR_LOCATION = INTEG_PTS for all analyses
involving adaptive mesh refinement

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-30 COMET-AR User’s Manual Revised 12/1/97

4.2.4.1 Input Datasets

Table 4.2-2 contains a list of datasets required (unless otherwise stated) as input by procedure
AR_CONTROL. All of these datasets must be resident in the main COMET-AR database
(Case.DBC, where Case is specified via the CASE argument). The datasets listed all correspond
to the input mesh, mesh, which is set via the OLD_MESH argument and will be equal to 0 for the
initial mesh. Also, ldset refers to the LOAD_SET argument and conset refers to the
CONSTRAINT_SET argument.

4.2.4.2 Output Datasets

Table 4.2-3 contains a list of datasets that may be created or updated in the database by procedure
AR_CONTROL. Most of these datasets will be resident in the main COMET-AR database file
(Case.DBC), but element and system matrices may be resident in the Case.DBE file and
Case.DBS files, depending on the values of the user-specified arguments LDI_E and LDI_S. The
datasets listed all correspond to the output mesh, mo, the newest mesh created and analyzed by
procedure AR_CONTROL. The value of mo should be no greater than the value set by the
END_MESH procedure argument. For linear analysis, result dataset names contain the load set
(ldset) and constraint set (conset) numbers, while for nonlinear analysis these dataset names
instead contain the load step (step) number. ldset and conset are set by the LOAD_SET and
CONSTAINT_STEP argument.

Table 4.2-2 Input Datasets Required by Procedure AR_CONTROL

Dataset File Description

CSM.SUMMARY...mesh Case.DBC Model summary for input mesh

EltName.DEFINITION...mesh Case.DBC Element definition for input mesh

EltName.FABRICATION...mesh Case.DBC Element fabrication pointers for input mesh

EltName.GEOMETRY...mesh Case.DBC Element solid-model geometry for input mesh

EltName.INTERPOLATION...mesh Case.DBC Element interpolation data for input mesh

EltName.LOAD.ldset..mesh Case.DBC Element load definition for input mesh

NODAL.COORDINATE...mesh Case.DBC Nodal coordinates for input mesh

NODAL.DOF..conset.mesh Case.DBC Nodal DOF boundary condition codes for input mesh.

NODAL.TRANSFORMATION...mesh Case.DBC Nodal transformations between global and computa-
tional frames for input mesh

NODAL.SPEC_FORCE.ldcase..mesh Case.DBC Nodal specified forces for input mesh (optional)

NODAL.SPEC_DISP.ldcase..mesh Case.DBC Nodal specified displacements for input mesh (optional)

In addition to the current mesh, datasets for all of the intermediate meshes
between the input mesh and the current mesh will be stored in the database by
AR_CONTROL (.DBC file only).

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-31

Table 4.2-3 Output Datasets Created or Modified by Procedure AR_CONTROL

Dataset File Description

CSM.SUMMARY...mesh Case.DBC Model summary for output mesh

EltName.DEFINITION...mesh Case.DBC Element definition for output mesh

EltName.ERROR.ldset.conset.mesh
or EltName.ERROR.step..mesh

Case.DBC Element error estimates computed for output
mesh

EltName.FABRICATION...mesh Case.DBC Element fabrication pointers for output mesh

EltName.GEOMETRY...mesh Case.DBC Element solid-model geometry for output mesh

EltName.INTERPOLATION...mesh Case.DBC Element interpolation data for output mesh

EltName.LOAD.ldset.mesh Case.DBC Element load definition for output mesh

EltName.REFINEMENT...mesh Case.DBC Element refinement table for output mesh

EltName.STIFFNESS...mesh Case.DBE Element matrices for output mesh

EltName.STRAIN.ldset.conset.mesh
or EltName.STRAIN.step..mesh

Case.DBC Element strains computed for output mesh

EltName.STRESS.ldset.conset.mesh
or EltName.STRESS.step..mesh

Case.DBC Element stresses computed for output mesh (and
step if nonlinear)

EltName.STRAIN_ENERGY.ldset.conset.mesh
or EltName.STRAIN_ENERGY.step..mesh

Case.DBC Element strain energy densities computed for
output mesh (and step if nonlinear)

NODAL.COORDINATE...mesh Case.DBC Nodal coordinates for output mesh

NODAL.DISPLACEMENT.ldset.conset.mesh
or NODAL.DISPLACEMENT.step..mesh

Case.DBC Nodal displacements computed for output mesh
(and step if nonlinear)

NODAL.ORDER..conset.mesh Case.DBC Nodal re-ordering array, defined by node renum-
bering processor (optional)

NODAL.DOF..conset.mesh Case.DBC Nodal DOF boundary condition codes and equa-
tion numbers for output mesh

NODAL.ROTATION.step.mesh Case.DBC Nodal rotations for nonlinear analysis

NODAL.TRANSFORMATION...mesh Case.DBC Nodal transformations between global and com-
putational frames for output mesh

NODAL.SPEC_FORCE.ldset..mesh Case.DBC Nodal specified forces for output mesh
(optional)

NODAL.SPEC_DISP.ldset..mesh Case.DBC Nodal specified displacements for output mesh
(optional)

LINE.REFINEMENT...mesh Case.DBC Line refinement table for output mesh

SURFACE.REFINEMENT...mesh Case.DBC Surface refinement table for output mesh (only
if 3D elements present)

SYSTEM.STIFFNESS...mesh Case.DBS Assembled system stiffness matrix

SYSTEM.VECTOR...mesh Case.DBS System vector used to store assembled force and
displacement vectors during equation solution
process.

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-32 COMET-AR User’s Manual Revised 12/1/97

For details on the contents of any of the datasets in Table 4.2-3, refer to Chapter 15, Database
Summary.

4.2.5 Subordinate Procedures and Processors

4.2.5.1 Subordinate Procedures

A list of COMET-AR procedures invoked directly by procedure AR_CONTROL is provided in
Table 4.2-4. Documentation on these procedures may be found in Chapter 3, Basic Solution Pro-
cedures, and Chapter 5, Utility Procedures.

4.2.5.2 Relevant Subordinate Processors

Table 4.2-5 lists COMET_AR processors that are invoked directly by procedure AR_CONTROL
and user-specified processors that are invoked indirectly through any of the subordinate proce-
dures listed in Table 4.2-4. Documentation on these processors may be found in the chapter on the
corresponding processor type.

Table 4.2-4 Subordinate Procedures to Procedure AR_CONTROL

Procedure Type Function

L_STATIC_1 Solution Performs linear static structural analysis

NL_STATIC_1 Solution Performs nonlinear static structural analysis

EST_ERR_1 Utility Performs error estimation via the error estimation processor (ERRi)
selected by the user with the ERROR_PROCESSOR argument

EST_ERR_SM Utility Performs error estimation via combination of smoothing processor
and error processor ERRSM

REF_MESH_1 Utility Performs adaptive mesh refinement via the mesh refinement proces-
sor (REFi) selected by the user with the REFINE_PROCESSOR
argument

Table 4.2-5 Relevant Subordinate Processors to Procedure AR_CONTROL

Processor Type Function

Assembler Matrix/Vector Matrix assembly processor, selected via the ASM_PROCESSOR procedure
argument

Renumberer Pre-Processor Equation/node renumbering processor, selected via the RENO_PROCESSOR
procedure argument

Equation
Solver

Matrix/Vector Equation solver, set via the SKY_PROCESSOR argument

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-33

4.2.6 Current Limitations

A summary of current limitations is given in Table 4.2-6.

4.2.7 Status and Error Messages

A summary of important status and error messages potentially printed by Procedure
AR_CONTROL is given in Table 4.2-7.

Smoother Smoothing Performs “stress” smoothing for smoothing-based spatial error estimation; set
by the SMOOTH_PROCESSOR argument

ERRi Error
Estimation

Error estimation processor, selected via the ERROR_PROCESSOR procedure
argument

REFi Mesh
Refinement

Mesh refinement processor, selected via the REFINE_PROCESSOR procedure
argument

VEC Matrix/Vector Performs vector algebra for nonlinear solution procedures

Table 4.2-6 Current Limitations of Procedure AR_CONTROL

Limitation Description Work-Around

1 Adaptive
Analysis Type

AR_CONTROL adaptive mesh refinement options have
been tested predominantly for linear static analysis (i.e.,
with solution procedure L_STATIC_1). The extension to
nonlinear analysis (via procedure NL_STATIC_1) is
new and experimental.

If unsure about nonlinear adap-
tive capabilities, perform linear
adaptive analysis first, then
switch to nonlinear analysis
starting from the refined mesh.

2 Robustness AR_CONTROL is not fully automatic, nor is it fool-
proof. It has been used to develop and research adaptive
mesh refinement techniques for aircraft shell structures,
and much more work remains to be done before it can be
considered a “robust” tool for production engineering.

The user should be prepared to
intervene, by studying the tech-
nical report given in [1], the
COMET-AR User’s Tutorial [2],
and various parts of this manual.

3 Error Estimates In particular, the current error estimators may not be
quantitatively accurate, even though they may be quali-
tatively acceptable and produce effective adaptive
meshes.

Be conservative; e.g., choose an
error tolerance of .02 (2%) if
your actual target is .05 (5%).

Table 4.2-5 Relevant Subordinate Processors to Procedure AR_CONTROL (Continued)

Processor Type Function

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-34 COMET-AR User’s Manual Revised 12/1/97

4.2.8 Examples and Usage Guidelines

4.2.8.1 Example 1: New Linear Adaptive Analysis

In this example, an adaptive linear static analysis is requested, starting with mesh 0 (the initial
model) and allowing up to 3 mesh updates (meshes 1, 2 and 3). For error estimation, processor
ERR4 is requested to use smoothing-based error estimates (of element strain-energy densities).
For mesh refinement, processor REF1 is requested to use hc (constraint-based h) refinement, to
employ the AVE element refinement indicator (which attempts to distribute element errors uni-
formly), to refine all elements whose relative errors are greater than 5% by one level of subdivi-

Table 4.2-7 Status and Error Messages for Procedure AR_CONTROL

Status/Error Message Potential Cause(s) Suggested User Response

1 Adaptive refinement proce-
dure converged

Error estimates indicate that the global
error tolerance (specified via the
CONVERGE_TOL argument) has been
satisfied with the current mesh.

Celebrate, but not before examin-
ing critical solution quantities
such as maximum stress and veri-
fying convergence.

2 Adaptive refinement proce-
dure terminated without con-
vergence

After analyzing and creating meshes
BEG_MESH through END_MESH, the
user-specified global error tolerance has
still not been satisfied. This is either
because the current adaptive strategy
requires more mesh iterations or it may be
hung up on an intractable singularity such
as a point force (which should not be
employed with adaptive refinement).

Either restart from the current
mesh and allow more mesh
updates, or consider accepting the
error levels already achieved.

3 Adaptive mesh refinement
limits exceeded

After or during the current mesh refine-
ment step a user-specified limit in problem
size (e.g., MAX_H_LEVEL) has been
exceeded while the convergence tolerance
has not yet been met.

Increase the original limits, re-run
the analysis with a different strat-
egy (e.g., refinement technique
and/or error tolerances), or accept
the latest solution as the best
available within budget.

*call AR_CONTROL (CASE
SOLN_PROCEDURE
BEG_MESH
MAX_MESHES
ERROR_PROCESSOR
ERROR_TECHNIQUE
REFINE_PROCESSOR
REFINE_TECHNIQUE
REFINE_INDICATOR
REFINE_TOLS
CONVERGE_TOL
MAX_H_LEVEL

= AR_CASE_1
= L_STATIC_1
= 0
= 4
= ERR4
= SMOOTHING
= REF1
= hc
= AVE
= .05
= .05
= 5

; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
)

4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Revised 12/1/97 COMET-AR User’s Manual 4.2-35

sion, and to terminate refinement when the global relative error is less than or equal to 5%, or
when any element attempts to subdivide by more than 5 h-refinement levels. Many of the default
values were explicitly used in this example for illustration purposes.

4.2.8.2 Example 2: Linear Adaptive Analysis Restart

This example is a sequel to Example 1, and assumes that the desired error convergence tolerance
was not achieved via the first 3 mesh updates. The run invoked here will begin by performing
error estimation and adaptive mesh refinement on mesh 3 and performing up to 2 more mesh
updates. All of the other AR control parameters are identical to Example 1.

4.2.8.3 Example 3: NonLinear/NonAdaptive Analysis Initiation

*call AR_CONTROL (CASE
BEG_MESH
MAX_MESHES
ERROR_PROCESSOR
ERROR_TECHNIQUE
REFINE_PROCESSOR
REFINE_TECHNIQUE
REFINE_INDICATOR
REFINE_TOLS
CONVERGE_TOL
MAX_H_LEVEL

= AR_CASE_1
= 3
= 3
= ERR4
= SMOOTHING
= REF1
= hc
= AVE
= .05
= .05
= 5

; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
)

*call AR_CONTROL (CASE
SOLN_PROCEDURE
BEG_STEP
MAX_STEPS
BEG_LOAD
MAX_LOAD
NL_TOL

= AR_CASE_1
= NL_STATIC_1
= 1
= 10
= .1
= 1.0
= .00001

; --
; --
; --
; --
; --
; --
)

4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2-36 COMET-AR User’s Manual Revised 12/1/97

4.2.8.4 Example 4: NonLinear/Adaptive Analysis Initiation

4.2.8.5 Example 5: Linear Adaptive Analysis With Smoothing-based Error Estimation

4.2.9 References

[1] Stanley, G., Levit, I., Hurlbut, B., and Stehlin, B., “Adaptive Refinement (AR)
Strategies for Shell Structures; Part 1: Preliminary Research,” Preliminary NASA
Contract Report, 1991.

[2] Stehlin, B., “The COMET-AR User’s Tutorial,” NASA Preliminary Contract Report,
February, 1993.

*call AR_CONTROL (CASE
SOLN_PROCEDURE
BEG_STEP
MAX_STEPS
BEG_LOAD
MAX_LOAD
NL_TOL
BEG_MESH
MAX_MESHES
ERROR_PROCESSOR
ERROR_TECHNIQUE
REFINE_PROCESSOR
REFINE_TECHNIQUE
REFINE_INDICATOR
REFINE_TOLS
CONVERGE_TOL

= AR_CASE_1
= NL_STATIC_1
= 1
= 10
= .1
= 1.0
= .00001
= 0
= 5
= ERR2
= SMOOTHING
= REF1
= hc
= AVE
= .05
= .05

; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
 --
)

*call AR_CONTROL (CASE
SOLN_PROCEDURE
BEG_MESH
MAX_MESHES
SMOOTH_PROCESSOR
SMOOTH_LOCATIONS
SMOOTH_OPTIONS
ERROR_PROCESSOR
ERROR_TECHNIQUE
REFINE_PROCESSOR
REFINE_TECHNIQUE
REFINE_INDICATOR
REFINE_TOLS
CONVERGE_TOL
MAX_H_LEVEL

= AR_CASE_1
= L_STATIC_1
= 0
= 4
= SMT
= INTEG_PTS
= 1.0
= ERRSM
= SMOOTHING
= REF1
= hc
= AVE
= .05
= .05
= 5

; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
; --
)

5 Utility Procedures 5.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 5.1-1

Chapter 5 Utility Procedures

5.1 Overview

This chapter describes existing COMET-AR command-language utility procedures that perform
basic, low-level finite element analysis tasks. A section is dedicated to each of the currently avail-
able procedures which are listed in Table 5.1-1. They include a generic element procedure,
generic solver procedures and generic adaptive refinement and error estimation procedures. These
utility procedures may be invoked with a simple *CALL directive after running the COMET-AR
macroprocessor (see Chapter 1).

The above utility procedures invoke various COMET-AR processors as described in Part III.

Table 5.1-1 Outline of Chapter 5: Utility Procedures

Section Procedure Function

5.1 Overview Introduction

5.2 ES Performs various element tasks

5.3 EST_ERR_1 Performs error estimation

5.4 EST_ERR_SM

5.5 FACTOR Performs decomposition of a system matrix
(Crout/Cholesky)

5.6 FORCE Calculates force vectors, internal and external

5.7 INITIALIZE Performs various initialization tasks

5.8 REF_MESH_1 Performs adaptive mesh refinement

5.9 SOLVE Performs system equation solution

5.10 STIFFNESS Computes element stiffness matrices and assembles
the system stiffness matrix

5.11 STRESS Performs stress recovery

5.12 MASS

5.1 Overview 5 Utility Procedures

5.1-2 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 1

5.2 Procedure ES

5.2.1 General Description

This procedure is a CLIP cover for the generic element processor, or ES (for Element/Structural),
which provides a standard template for individual COMET-AR structural finite-element
processors. These processors have names that begin with ES (e.g., ES1p, ES7p, ES36, ...). Each of
these ESi processors performs all operations for all element types implemented within the
processor, including the definition of element connectivity and loads during pre-processing, the
formation of element force and stiffness arrays during the primary solution phase, and the
formation of strains and stresses during the secondary solution phase of structural analysis.

This section describes the ES Utility Procedure, which automatically executes all element
processors and types associated with a given model. For most analyses, users will not have to
directly interact with the generic element (ES) processor or procedure except during model
definition, where ESi processors are run directly (within model definition procedures) to define
elements and element loads (with the DEFINE ELEMENTS and DEFINE LOADS commands).
During the solution phase, element functions are automatically exercised via solution procedures
and their subordinate utility procedures.

5.2.2 Argument Summary

Procedure ES may be invoked with the COMET-AR ∗ CALL directive, employing the arguments
summarized in Table 5.2-1.

Table 5.2-1 Procedure ES Input Arguments

Argument Default Value Description

COROTATION <false> Sets the default element corotational option

DISPLACEMENT NODAL.DISPLACEMENT.1.1 Sets the default name of nodal displacement dataset

DRILL_STIFF <false> Sets the default value of artificial drilling stiffness
parameter

DRILL_TOL 0 Sets the default value of drilling stabilization angle
tolerance

FORCE NODAL.FORCE.1.1 Sets the default name of nodal force dataset

FREEDOMS ES.DOFS

FUNCTION — Defines the function to be performed by the ESi
processor

GCP 1 Sets the default ldi of GCP material and fabrication
datasets

5.2 Procedure ES 5 Utility Procedures

Page 5.2-2 COMET-AR User’s Manual Revised 12/1/97

5.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7, Element Processors, for more details
on the options.

5.2.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains) even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

LDI 1 Sets the default ldi of computational database
library

LOAD_FACTOR 1.0 Sets the default load factor to be applied to element
loads

LOAD_SET 1 Sets the default load set number for element loads

MASS MASS Sets the default name of output mass matrix dataset

MESH 0 Sets the mesh number

NL_GEOM <false> Sets the default geometric nonlinearity option

NL_LOAD <false> Sets the default load nonlinearity option

NL_MATL <false> Sets the default material nonlinearity option

NUM_CON_SETS 1

PROJECTION <false> Sets the default element projection option

ROTATION NODAL.ROTATION.1.1 Sets the default name of nodal rotation pseudovec-
tor dataset

SE_TOT <false>

STEP 0 Sets/resets load- or time-step number

STIFFNESS STIFFNESS Sets the default name of element stiffness dataset

STRAIN — Sets the default name of element strain dataset

STRAIN_ENERGY — Sets the default name of element strain energy
dataset

STRESS — Sets the default name of element stress dataset

STR_DIRECTION 0 Sets the default stress/strain output coordinate
system

STR_LOCATION INTEG_PTS Sets the default stress/strain output locations

Table 5.2-1 Procedure ES Input Arguments (Continued)

Argument Default Value Description

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 3

Argument syntax:

where

5.2.3.2 DISPLACEMENT Argument

This argument changes the default ldi and name of the nodal displacement dataset.

Argument syntax:

where ds_name is the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)

5.2.3.3 DRILL_STIFF Argument

This argument changes the default artificial drilling rotational stiffness option for (certain) shell
element types.

Argument syntax:

where Option is either <true> or <false>, and scale is an integer scale factor that depends on the
particular element type. (Default value: <false>)

5.2.3.4 DRILL_TOL Argument

This argument changes the default artificial drilling tolerance option for (certain) shell element
types.

COROTATION = corotation_option

corotation_option Description

0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton itera-
tion is begin performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if True-
Newton iteration has been selected at the nonlinear solution procedure level, and even
then may provide only marginal improvement in nonlinear convergence over option 1. It
adds additional terms to the tangent stiffness matrix that render it more consistent.

 DISPLACEMENT = ds_name

 DRILL_STIFF = Option [, scale]

5.2 Procedure ES 5 Utility Procedures

Page 5.2-4 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where angle is an integer angle tolerance indicating when some form of stabilization is required
for shell element drilling rotational freedoms. If the angle between the shell-element normal and
the average element normal (or a computational axis) at a node is less than this value, drilling
stabilization may be required (depending on the element type). (Default value: 0)

5.2.3.5 FORCE Argument

This argument changes the default name of the nodal force dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: NODAL.FORCE.1.1)

5.2.3.6 FUNCTION Argument

This argument defines the function to be performed by the ESi processor.

Argument syntax:

where

(Default value: None)

 DRILL_TOL = angle

 FORCE = ds_name

 FUNCTION = function

Function Description

INITIALIZE Creation of element INTERPOLATION datasets, element AUX_STORAGE
datasets, and initialization of constitutive datasets

FORM FORCE Forms element force vectors (internal, external, or residual)

FORM STIFFNESS Forms element stiffness matrices (material, geometric, load, or tangent)

FORM MASS Forms element mass matrices (consistent or lumped)

FORM STRAIN Computes element strains

FORM STRAIN_ENERGY Computes element strain energy

FORM STRESS Computes element stresses

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 5

5.2.3.7 GCP Argument

This argument changes the default database logical device index (ldi) associated with all datasets
managed by the Generic Constitutive Processor.

Argument syntax:

where gcp_ldi is the logical device index. (Default value: 1)

5.2.3.8 LOAD_FACTOR Argument

This argument changes the default load factor to be applied to all element loads.

Argument syntax:

where load_factor is a floating-point scale factor. (Default value: 1.0)

5.2.3.9 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

where load_set is an integer load-set number. (Default value: 1)

5.2.3.10 LDI Argument

This argument changes the default logical device index (ldi) for all datasets input/output by the
current ESi processor, except those for which an explicit ldi is used in a separate database
command (e.g., STIFFNESS or GCP_LDI).

Argument syntax:

where ldi is the logical device index of the database library. (Default value: 1)

 GCP = gcp_ldi

 LOAD_FACTOR = load_factor

 LOAD_SET = load_set

 LDI = ldi

5.2 Procedure ES 5 Utility Procedures

Page 5.2-6 COMET-AR User’s Manual Revised 12/1/97

5.2.3.11 MASS Argument

This argument changes the default name of the element (consistent) or nodal (lumped) mass
datasets.

Argument syntax:

where ds_name is the new dataset name. (Default value: MASS)

5.2.3.12 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

where mesh is an integer number, typically set to the current mesh number. (Default value: 0)

5.2.3.13 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

where

 MASS = ds_name

 MESH = mesh

 NL_GEOM = nl_geom_option

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relations will be
employed and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement rela-
tions will be used. With this option, geometric nonlinearity must be accounted for via ele-
ment corotation, which for many beam/shell element types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacement rela-
tions will be used. Element corotation may or not be selected with this option. For many
beam/shell element types, nonlinear element strain-displacement relations enhances
corotation, making it more accurate for a given mesh and rotation magnitude.

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 7

5.2.3.14 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector or the tangent stiffness matrix.

Argument syntax:

where

5.2.3.15 NL_MATL Argument

This argument changes the default material nonlinearity option.

Argument syntax:

where

5.2.3.16 PROJECTION Argument

This argument changes the default element “rigid-body projection” option. The rigid-body
projection option is the linearized counterpart of the corotation option and modifies the stiffness
matrix and displacement vector so that they are free from spurious strains due to (infinitesimal)
rigid-body motion. This is relevant only for elements that do not preserve rigid-body modes exactly
(for example, warping-sensitive shell elements such as those in processor ES5) and can make a
difference in both linear and nonlinear analysis.

 NL_LOAD = nl_load_option

nl_load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-indepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads are to be
processed in the following FORM FORCE or FORM STIFFNESS command.

 NL_MATL = nl_matl_option

nl_matl_option Description

0 or <false>) The analysis is materially linear; ignore nonlinearity in any material constitutive models.
(Default)

1 The analysis is materially nonlinear, include nonlinearity in material constitutive models
if it exists.

5.2 Procedure ES 5 Utility Procedures

Page 5.2-8 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where

5.2.3.17 ROTATION Argument

This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.2.3.18 STEP Argument

This argument changes the default load- or time-step number used in many solution dataset names
(unless otherwise specified via a separate dataset command).

Argument syntax:

where step is an integer number, typically set to the current step number. (Default value: 0)

5.2.3.19 STIFFNESS Argument

This argument changes the default name of the element stiffness matrix dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: STIFFNESS)

 PROJECTION = projection_option

projection_option Description

0 or <false> Element rigid-body projection will not be performed. (Default)

1 Element rigid-body projection will be performed.

 ROTATION = ds_name

 STEP = step

 STIFFNESS = ds_name

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 9

5.2.3.20 STRAIN Argument

This argument changes the default name of the element strain dataset before using the FORM
STRAIN command. It also causes strains to be output to the database by the FORM STRESS,
FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

where ds_name is the new dataset name. (Default value: None)

5.2.3.21 STRAIN_ENERGY Argument

This argument changes the default name of the element strain-energy density dataset before using
the FORM STRAIN_ENERGY command. It also causes strain-energy densities to be output to the
database by the FORM STRESS, FORM FORCE/RES, or FORM FORCE/INT FUNCTION
arguments.

Argument syntax:

where ds_name is the new dataset name. (Default value: None)

5.2.3.22 STRESS Argument

This argument changes the default ldi and name of the element stress dataset before using the
FORM STRESS command. It also causes strains to be output to the database by the FORM
FORCE/INT or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

where ds_name is the new dataset name. (Default value: None)

5.2.3.23 STR_DIRECTION Argument

This argument changes the default stress or strain direction option prior to use of the FORM
STRAIN, FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

 STRAIN = ds_name

 STRAIN_ENERGY = ds_name

 STRESS = ds_name

5.2 Procedure ES 5 Utility Procedures

Page 5.2-10 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where

5.2.3.24 STR_LOC Argument

This argument changes the default stress, strain or strain-energy location option prior to use of the
FORM STRAIN, FORM STRESS, FORM STRAIN_ENERGY, FORM FORCE/INT, or FORM
FORCE/RES FUNCTION arguments.

Argument syntax:

where

 STR_DIRECTION = str_direction

str_direction Description

ELEMENT or 0 Use element local (integration point) coordinate system, xl, yl, zl, as
stress/strain output system: xs, ys, zs. (Default)

GLOBAL { X | Y | Z } The stress/strain output xs axis is parallel to the global xg, yg, or zg axis if
X, Y or Z, respectively, is used in the subcommand. The stress/strain out-
put zs axis is parallel to the local element normal axis for shell elements,
otherwise it is obtained by permuting the global axes. The stress/strain
output ys axis is defined by the right-hand-rule.

FAB_DIR Use the local material-fabrication coordinate system, xf, yf, zf, as the
stress/strain output system, xs, ys, zs.

 STR_LOC = str_location

str_location Description

INTEG_PTS Element stresses, strains, or strain-energy densities will be evaluated and stored
at element integration points in the STR attribute of the specified EST dataset.
(Default)

NODES Element stresses, strains, or strain-energy densities will be evaluated at integra-
tion points, then extrapolated and stored at element nodes in the STRNOD
attribute of the specified EST dataset.

CENTROIDS Element stresses, strains, or strain-energy densities will first be evaluated at the
element integration points, then averaged and stored at element centroids in the
STRCEN attribute of the specified EST dataset. (If one of the element’s inte-
gration points coincides with the centroid, the value computed there will be
output rather than an average integration-point value.)

5 Utility Procedures 5.2 Procedure ES

Revised 12/1/97 COMET-AR User’s Manual 5.2- 11

5.2.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ESi processor
being used and the FUNCTION argument. These dataset requirements are documented in detail in
Chapter 7, Element Processors.

5.2.5 Current Limitations

ES is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the ESi processor being employed. Refer to individual ESi processors in Chapter 7
for specific processor limitations.

5.2.6 Status and Error Messages

ES does not print any status or error messages directly. All messages will be produces by the ESi
processor being employed. Refer to individual ESi processors in Chapter 7 for specific processor
messages.

5.2.7 Examples and Usage Guidelines

5.2.7.1 Example 1: Stiffness Matrix Formation

In this example, the formation of element linear material stiffnesses is requested for mesh 3. The
Generic Constitutive Processor database is stored in logical device index 4 and the element
stiffness matrices will be stored in 1, EltNam.STIFFNESS...mesh.

5.2.8 References

None.

 *call ES (STIFFNESS
GCP
NL_MATL
NL_GEOM
COROTATION
PROJECTION
MESH
FUNCTION

= MATL_STIFF
= 4
= <false>
= <false>
= <false>
= <false>
= 3
= FORM STIFFNESS

; --
; --
; --
; --
; --
; --
; --
)

5.2 Procedure ES 5 Utility Procedures

Page 5.2-12 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.3 Procedure EST_ERR_1

Revised 12/1/97 COMET-AR User’s Manual 5.3-1

5.3 Procedure EST_ERR_1

5.3.1 General Description

Procedure EST_ERR_1 is a utility procedure for performing finite element solution error esti-
mation. It automatically invokes the appropriate error estimation processor (see Chapter 10 for
details).

Procedure EST_ERR_1 is typically invoked automatically by solution procedure AR_CONTROL
during analyses with adaptive mesh refinement.

5.3.2 Argument Summary

Procedure EST_ERR_1 may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.3-1.

5.3.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.3-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to
subordinate procedures and processors, where the actual options are determined. For example, the
definition of REFINE_TECHNIQUE depends on which refinement processor the user selects via
the REFINE_PROCESSOR argument, thus the user is referred to the corresponding refinement
processor section in Part III for details on the options.

Table 5.3-1 Procedure EST_ERR_1 Input Arguments

Argument Default Value Description

ACCUMULATE <false> Accumulation of errors when processing by group switch

CONSTRAINT_SET 1 Specifies constraint-set number for error estimation

ERROR_MEASURE STRAIN-ENERGY

ERROR_PROCESSOR ERR2 Name of error estimation processor to invoke

ERROR_TECHNIQUE S Error estimation technique (S => Smoothing)

GROUP 0 List of element groups for error estimation

LDI 1 Logical unit for computational COMET-AR database file
(Case.DBC)

LOAD_SET 1 Specifies load-set number for error estimation

MESH 0 Specifies mesh number for error estimation

NUM_GROUP 0 Number of element groups for error estimation

STEP 0 Specifies load/time-step number for error estimation

5.3 Procedure EST_ERR_1 5 Utility Procedures

5.3-2 COMET-AR User’s Manual Revised 12/1/97

5.3.3.1 ACCUMULATE Argument

This argument sets the error accumulation switch.

Argument syntax:

where switch is a flag instructing the ES procedure to run the ERRa processor after estimating all
element groups errors to accumulate the total model errors (see Section 10.6).

5.3.3.2 CONSTRAINT_Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

where:

5.3.3.3 ERROR_PROCESSOR Argument

This argument defines the error processor to be used for estimating the solution errors, e.g., ERR2,
ERR4, or ERR6.

Argument syntax:

where error_processor is the name of the error estimation processor. (Default value: ERR2)

5.3.3.4 GROUP Argument

This argument defines the element group identity numbers for a group of elements that need to be
processed by the ERRi processors for each of the element types specified.

ACCUMULATE = switch

CONSTRAINT_= constraint_set

Parameter Description

constraint_set Constraint set number (Default value: 1)

ERROR_PROCESSOR = error_processor

5 Utility Procedures 5.3 Procedure EST_ERR_1

Revised 12/1/97 COMET-AR User’s Manual 5.3-3

Argument syntax:

where:

5.3.3.5 LDI Argument

This argument defines the logical device index for the computational database.

Argument syntax:

where:

5.3.3.6 LOAD_SET Argument

This argument defines the load set number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
linear static analysis).

Argument syntax:

GROUP = first:last:incr
or

GROUP = g1,g2,...,gN

Parameter Description

first First group ID to be processed (Default value: 0; all groups)

last Last group ID

incr Group ID increment

gi Group ID

LDI = ldi

Parameter Description

ldi Logical device index. (Default value: 1)

LOAD_SET= load_set

5.3 Procedure EST_ERR_1 5 Utility Procedures

5.3-4 COMET-AR User’s Manual Revised 12/1/97

where:

5.3.3.7 MESH Argument

This argument defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in names
of all datasets, e.g., EltNam.ERROR.ldset.conset.mesh.

Argument syntax:

where:

5.3.3.8 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
linear static analysis).

Argument syntax:

where:

5.3.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ERRi processor
being used. These dataset requirements are documented in detail in Chapter 10.

Parameter Description

load_set Load set number. (Default value: 1)

MESH = mesh

Parameter Description

mesh Mesh number to be processed. (Default value: 0)

STEP = step

Parameter Description

step solution step number. (Default value: None)

5 Utility Procedures 5.3 Procedure EST_ERR_1

Revised 12/1/97 COMET-AR User’s Manual 5.3-5

5.3.5 Current Limitations

EST_ERR_1 is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ERRi processor being employed. Refer to individual ERRi processors in
Chapter 10 for specific processor limitations.

5.3.6 Status and Error Messages

EST_ERR_1 does not print any status or error messages directly. All messages will be produced
by the ERRi processor being employed. Refer to individual ERRi processors in Chapter 10 for
specific processor messages.

5.3.7 Examples and Usage Guidelines

5.3.7.1 Example 1: ERROR Estimation Without Group Partition

In this example, error estimation processor ERR2 using the Zienkiewicz-Zhu global smoothing
algorithm and Barlow point stress data will be employed for estimating the errors in mesh 2.

5.3.7.2 Example 2: ERROR Estimation With Group Partition

In this example, error estimation processor ERR6 using the Zienkiewicz-Zhu global smoothing
algorithm and Barlow point stress data will be employed for estimating the errors in mesh 1. The
ERR6 processor will be run twice, for each element group, followed by the ERRa processor which
will accumulate errors by group.

5.3.8 References

None.

*CALL EST_ERR_1 (ERROR_PROCESSOR
ERROR_TECNIQUE
MESH

= ERR2
= S/BARLOW
= 2

; --
; --
)

*CALL EST_ERR_1 (ERROR_PROCESSOR
ERROR_TECNIQUE
MESH
NUM_GROUP
GROUP
ACCUMULATE

= ERR6
= S/BARLOW
= 1
= 2
= 1, 2
= <true>

; --
; --
; --
; --
; --
)

5.3 Procedure EST_ERR_1 5 Utility Procedures

5.3-6 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.4 Procedure EST_ERR_SM

Revised 12/1/97 COMET-AR User’s Manual 5.4-1

5.4 Procedure EST_ERR_SM

5.4.1 General Description

Procedure EST_ERR_SM is a utility procedure for performing finite element solution error
estimation involving a stand-alone smoothing processor. It automatically invokes the appropriate
smoothing processor followed by an error-estimation post-processor, such as ERRSM, designed to
compute errors by comparing raw finite-element stress-type data with smoothed (i.e., nodally
continuous) versions of these quantities (see Chapter 9, Smoothing Processors, and Chapter 10,
Error Estimation Processors).

Procedure EST_ERR_SM is typically invoked automatically by solution procedure
AR_CONTROL during analyses with adaptive mesh refinement.

5.4.2 Argument Summary

Procedure EST_ERR_SM may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.4-1.

Table 5.4-1 Procedure EST_ERR_SM Input Arguments

Argument Default Description

CONSTRAINT_SET 1 Specifies constraint-set number for error estimation

ERROR_MEASURE STRAIN

ERROR_PROCESSOR ERRSM Name of error estimation processor to invoke

GRADIENT_DATASET GRADS_SM

GRADIENT_FLAG <false>

LDI 1 Logical unit for central database file (Case.DBC)

LOAD_SET 1 Specifies load-set number for error estimation

MESH 0 Specifies mesh number for error estimation

NUM_GROUP 0 Number of element groups for error estimation

SAMPLE_LOCATIONS INTEG_PTS

SMOOTH_LOCATIONS ALL Locations at which smoothed data is to be computed

SMOOTH_OPTIONS --- Smoothing-processor-specific smoothing options

SMOOTH_PROCESSOR SMT Smoothing processor (see Chapter 9)

STEP 0 Specifies load/time-step number for error estimation

5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4-2 COMET-AR User’s Manual Revised 12/1/97

5.4.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.4-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to
subordinate procedures and processors, where the actual options are determined. For example, the
definition of REFINE_TECHNIQUE depends on which refinement processor the user selects via
the REFINE_PROCESSOR argument, and the user is referred to the corresponding refinement
processor section in Chapter 11 for details on the options.

5.4.3.1 CONSTRAINT_Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

where:

5.4.3.2 ERROR_PROCESSOR Argument

This argument defines the error processor to be used for estimating the solution error by comparing
smoothed data (to be computed by a stand-alone smoothing processor) with raw finite element
data.

Argument syntax:

where error_processor is the name of the error estimation processor. Only special error estimation
processors such as ERRSM can handle pre-smoothed solution data. (Default value: ERRSM)

5.4.3.3 GROUP Argument

This argument defines the element group identity numbers for a group of elements that need to be
processed by the ERRi processors for each of the element types specified.

CONSTRAINT_= constraint_set

Parameter Description

constraint_set Constraint set number (Default value: 1)

ERROR_PROCESSOR = error_processor

5 Utility Procedures 5.4 Procedure EST_ERR_SM

Revised 12/1/97 COMET-AR User’s Manual 5.4-3

Argument syntax:

where:

5.4.3.4 LOAD_SET Argument

This argument defines the load set number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
linear static analysis).

Argument syntax:

where:

5.4.3.5 LDI Argument

This argument defines the logical device index for the computational database.

Argument syntax:

GROUP = first:last:incr
or

GROUP = g1,g2,...,gN

Parameter Description

first First group ID to be processed (Default value: 0; all groups)

last Last group ID

incr Group ID increment

gi Group ID

LOAD_SET= load_set

Parameter Description

load_set Load set number. (Default value: 1)

LDI = ldi

5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4-4 COMET-AR User’s Manual Revised 12/1/97

where:

5.4.3.6 MESH Argument

This argument defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in names
of all datasets, e.g., EltNam.ERROR.ldset.conset.mesh.

Argument syntax:

where:

5.4.3.7 SMOOTH_LOCATIONS Argument

This argument defines the locations at which smoothed data is to be computed.

Argument syntax:

where:

5.4.3.8 SMOOTH_OPTIONS Argument

This argument defines processor-specific smoothing options.

Parameter Description

ldi Logical device index. (Default value: 1)

MESH = mesh

Parameter Description

mesh Mesh number to be processed. (Default value: 0)

SMOOTH_LOCATIONS = locations

Parameter Description

locations Locations where smoothed data will be computed and stored:
INTEG_PTS => element integration points (default)
NODES => element nodes
BOTH => both integration points and nodes

5 Utility Procedures 5.4 Procedure EST_ERR_SM

Revised 12/1/97 COMET-AR User’s Manual 5.4-5

Argument syntax:

where:

5.4.3.9 SMOOTH_PROCESSOR Argument

This argument defines the name of the smoothing processor to run before estimating errors.

Argument syntax:

where:

5.4.3.10 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
nonlinear static analysis).

Argument syntax:

where:

SMOOTH_OPTIONS = options

Parameter Description

options Smoothing-processor specific option values; see Chapter 9 for details.

SMOOTH_PROCESSOR = processor

Parameter Description

processor Name of a valid smoothing processor. See Chapter 9.
(Default: SMZ)

STEP = step

Parameter Description

step Solution step number. (Default value: none)

5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4-6 COMET-AR User’s Manual Revised 12/1/97

5.4.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ERRi processor
being used. These dataset requirements are documented in detail in Chapter 10.

5.4.5 Current Limitations

EST_ERR_SM is a general purpose procedure and the only limitations on its use are dictated by
the limitations of the ERRi processor being employed. Refer to individual ERRi processors in
Chapter 10 for specific processor limitations.

5.4.6 Status and Error Messages

EST_ERR_SM does not print any status or error messages directly. All messages will be produced
by the ERRi processor being employed. Refer to individual ERRi processors in Chapter 10 for
specific processor messages.

5.4.7 Examples and Usage Guidelines

5.4.7.1 Example 1: ERROR Estimation Without Group Partition

In this example, error estimation is based on a comparison of the basic finite element strains with
a smoothed version of these strains, computed via the Zienkiewicz smoothing processor, SMZ.
Error estimation processor ERRSM then computes the element error norms by integrating the
strain energy of the difference between the basic strains and smoothed strains over each element
domain. The calculations are performed for the finite element solution obtained with mesh 2.

5.4.7.2 Example 2: ERROR Estimation With Group Partition

This example is identical to the previous example except that i) error estimation is performed for
mesh 1 instead of mesh 2, and ii) smoothing will be performed independently for element groups

*CALL EST_ERR_SM (SMOOTHING_PROCESSOR
ERROR_PROCESSOR
ERROR_MEASURE
MESH

= SMZ
= ERRSM
= STRAIN
= 2

; --
; --
; --
)

*CALL EST_ERR_SM (SMOOTHING_PROCESSOR
ERROR_PROCESSOR
ERROR_MEASURE
MESH
NUM_GROUP
GROUP

= SMZ
= ERRSM
= STRAIN
= 1
= 2
= 1, 2

; --
; --
; --
; --
; --
)

5 Utility Procedures 5.4 Procedure EST_ERR_SM

Revised 12/1/97 COMET-AR User’s Manual 5.4-7

1 and 2, which presumably interface with one another at a physical discontinuity such as a non-
smooth intersection, a change in material properties, or a concentrated load.

5.4.8 References

None.

5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4-8 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.5 Procedure FACTOR

Revised 12/1/97 COMET-AR User’s Manual 5.5-1

5.5 Procedure FACTOR

5.5.1 General Description

Procedure FACTOR is a utility procedure for performing system matrix decomposition. It is
automatically invoked by solution procedures such as L_STATIC_1 and NL_STATIC_1 to
perform system matrix factorization for a given mesh.

The FACTOR procedure is merely a cover procedure which invokes the appropriate matrix/vector
algebra processor to perform the system matrix decomposition task. Existing processors of this
type are discussed in Chapter 12, Matrix/Vector Algebra Processors.

5.5.2 Argument Summary

Procedure FACTOR may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.5-1.

5.5.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.5-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 12, Matrix/Vector Algebra Processors,
for details on the options.

Table 5.5-1 Procedure FACTOR Input Arguments

Argument Default Value Description

ASM_MATRIX 1, K The ldi and dataset name of the assembled system matrix

FAC_MATRIX 1, K The ldi and dataset name of the output factored system matrix

FIXED_FRAME OFF Fixed-frame option for hierarchical hs-refinement

LDI_C 1 Logical unit for main COMET-AR database file (Case.DBC)

LDI_S 3 Logical unit for system-matrix file (Case.DBS)

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MESH 0 Mesh number to be analyzed

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

SKY_PROCESSOR SKY Linear equation solver processor name

STEP 0 Solution step number

5.5 Procedure FACTOR 5 Utility Procedures

5.5-2 COMET-AR User’s Manual Revised 12/1/97

5.5.3.1 ASM_MATRIX Argument

This argument sets the ldi and dataset name of the assembled stiffness matrix.

Argument syntax:

where ldi is the logical device index associated with the system matrix file and dataset_name is the
assembled system matrix dataset name. (Default value: 1, K)

5.5.3.2 FIXED_FRAME Argument

This argument sets a flag that is relevant only for hs-refinement. (See Section 12.3 (ASMs) and
12.7 (SKYs) for additional information about this argument).

Argument syntax:

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

5.5.3.3 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling FACTOR and must be named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.5.3.4 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file,
typically named Case.DBS.

Argument syntax:

ASM_MATRIX = ldi, dataset_name

FIXED_FRAME = {<true> | <false>}

LDI_C = ldi_c

LDI_S = ldi_s

5 Utility Procedures 5.5 Procedure FACTOR

Revised 12/1/97 COMET-AR User’s Manual 5.5-3

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not equal
to ldi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separate Case.DBS file. If ldi_s = ldi_c, then all system matrices will be
stored on the Case.DBC file, i.e., a separate Case.DBS file will not be created. (Default value: 3)

5.5.3.5 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax:

where FULL implies that the entire stiffness matrix is reformed for each new mesh and thus a
complete factorization is required, and where PARTIAL implies that only the updated-mesh
contributions to the stiffness matrix are reformed for each new mesh and thus only the new
columns added to the assembled matrix require factorization. (Default value: FULL)

5.5.3.6 MESH Argument

This argument sets the number of the mesh to analyze.

Argument syntax:

where mesh is the mesh number. (Default value: 0)

5.5.3.7 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization by certain
matrix/vector algebra processors.

Argument syntax:

where mtx_buffer_size is the size of the buffer in logical variables. (Default value: 500000)

If a separate Case.DBS file is created, it will be deleted
and re-created with each new adaptive mesh.

MATRIX_UPDATE = {FULL | PARTIAL}

MESH = mesh

MTX_BUFFER_SIZE = mtx_buffer_size

5.5 Procedure FACTOR 5 Utility Procedures

5.5-4 COMET-AR User’s Manual Revised 12/1/97

5.5.3.8 SKY_PROCESSOR Argument

Selects the matrix/vector algebra processor to be used for factoring the assembled linear equation
system.

Argument syntax:

where sky_processor is the name of the matrix/vector algebra processor. Current options are
summarized below.

Consult Chapter 12 for more details.

5.5.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the matrix/vector
algebra processor being used. These dataset requirements are documented in detail in Chapter 12.

5.5.5 Current Limitations

FACTOR is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the equation solver processor being employed. Refer to individual matrix/vector
algebra processors in Chapter 12 for specific processor limitations.

5.5.6 Status and Error Messages

FACTOR does not print any status or error messages directly. All messages will be produces by
the equation solver processor being employed. Refer to individual matrix/vector algebra processor
in Chapter 12 for specific processor messages.

SKY_PROCESSOR = sky_processor

sky_processor Description

SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs- and ht-
refinement only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers.

5 Utility Procedures 5.5 Procedure FACTOR

Revised 12/1/97 COMET-AR User’s Manual 5.5-5

5.5.7 Examples and Usage Guidelines

5.5.7.1 Example 1: In-Core Factorization

In this example, the SKY processor will be used to factor in-core an assembled skyline matrix
existing on ldi 3, in the dataset SYSTEM.MATRIX...2. The factored matrix will overwrite the
assembled matrix since the same dataset name is specified for both matrices.

5.5.7.2 Example 2: Out-of-Core Factorization

In this example, the SKYs processor will be used to fully factor out-of-core the assembled skyline
matrix of mesh 2. The factorization will be performed out-of-core using only 100000 words of
physical memory.

5.5.8 References

None.

*CALL FACTOR (SKY_PROCESSOR
ASM_MATRIX
FAC_MATRIX
MESH

= SKY
= 3, SYSTEM.MATRIX...2
= 3, SYSTEM.MATRIX...2
= 2

; --
; --
; --
)

*CALL FACTOR (SKY_PROCESSOR
MTX_BUFFER_SIZE
MATRIX_UPDATE
MESH

= SKYS
= 100000
= FULL
= 2

; --
; --
; --
)

5.5 Procedure FACTOR 5 Utility Procedures

5.5-6 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.6 Procedure FORCE

Revised 12/1/97 COMET-AR User’s Manual 5.6-1

5.6 Procedure FORCE

5.6.1 General Description

This section describes the FORCE Utility Procedure, which directs the generation of nodal force
vectors (internal, external, or residual). The main purpose of this procedure is to invoke the
appropriate element processors for adding element load contributions to nodal force vectors.

5.6.2 Argument Summary

Procedure FORCE may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.6-1.

5.6.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.6-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7, Element Processors, for more details
on the options.

Table 5.6-1 Procedure FORCE Input Arguments

Argument Default Value Description

COROTATION <false> Sets the default element corotational option

DISPLACEMENT — Sets the default name of nodal displacement dataset

INPUT_FORCE DUMMY.FORCE Sets the default name of nodal external force dataset

LDI 1 Sets the default ldi of computational database library

LOAD_FACTOR 1.0 Sets the default load factor to be applied to element loads

LOAD_SET 1 Sets the default load set number for element loads

MESH 0 Sets the mesh number

NL_GEOM <false> Sets the default geometric nonlinearity option

NL_LOAD <false> Sets the default load nonlinearity option

OUTPUT_FORCE SYS.FORCE Sets the default ldi and dataset name of output force vector

ROTATION --- Sets the default name of nodal rotation pseudovector
dataset

SE_TOT <false>

STEP 0

TYPE RESIDUAL Sets the type of force to be computed

5.6 Procedure FORCE 5 Utility Procedures

5.6-2 COMET-AR User’s Manual Revised 12/1/97

5.6.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains) even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

where

5.6.3.2 DISPLACEMENT Argument

This argument changes the default ldi and name of the nodal displacement dataset.

Argument syntax:

where ds_name is the nodal displacement dataset name. (Default value: None)

5.6.3.3 INPUT_FORCE Argument

This argument changes the default name of the nodal force dataset.

Argument syntax:

where ds_name is the dataset name. (Default value: None)

COROTATION = corotation_option

corotation_option Description

0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton iter-
ation is begin performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if True-
Newton iteration has been selected at the nonlinear solution procedure level; and even
then may provide only marginal improvement in nonlinear convergence over option 1.
It adds additional terms to the tangent stiffness matrix that render it more consistent.

 DISPLACEMENT = ds_name

 INPUT_FORCE = ds_name

5 Utility Procedures 5.6 Procedure FORCE

Revised 12/1/97 COMET-AR User’s Manual 5.6-3

5.6.3.4 OUTPUT_FORCE Argument

This argument changes the default name of the computed (output) force vector dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: 1, SYS.FORCE)

5.6.3.5 LOAD_FACTOR Argument

This argument changes the default load factor to be applied to all element loads.

Argument syntax:

where load_factor is a floating-point scale factor. (Default value: 1.0)

5.6.3.6 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

where load_set is an integer load-set number. (Default value: 1)

5.6.3.7 LDI Argument

This argument changes the default logical device index (ldi) for all datasets input/output by the
current ESi processor, except those for which an explicit ldi is used in a separate database
command (e.g., OUTPUT_FORCE).

Argument syntax:

where ldi is the logical device index of the database library. (Default value: 1)

 OUTPUT_FORCE = ds_name

 LOAD_FACTOR = load_factor

 LOAD_SET = load_set

 LDI = ldi

5.6 Procedure FORCE 5 Utility Procedures

5.6-4 COMET-AR User’s Manual Revised 12/1/97

5.6.3.8 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

where mesh is an integer number, typically set to the current mesh number. (Default value: 0)

5.6.3.9 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

where:

5.6.3.10 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector, or the tangent stiffness matrix.

Argument syntax:

 MESH = mesh

 NL_GEOM = nl_geom_option

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relations will be
employed, and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option, geometric nonlinearity must be accounted for
via element corotation (see COROTATION command), which for many beam/shell ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacement rela-
tions will be used. Element corotation may or not be selected with this option. For many
beam/shell element types, nonlinear element strain-displacement relations enhances
corotation, making it more accurate for a given mesh and rotation magnitude.

 NL_LOAD = nl_load_option

5 Utility Procedures 5.6 Procedure FORCE

Revised 12/1/97 COMET-AR User’s Manual 5.6-5

where

5.6.3.11 ROTATION Argument

This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.6.3.12 TYPE Argument

This argument defines the type of force to be computed.

Argument syntax:

where force_type of force to be computed INTERNAL, EXTERNAL, or RESIDUAL. (Default
value: RESIDUAL)

5.6.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ESi processor
being used. These dataset requirements are documented in detail in Chapter 7.

5.6.5 Current Limitations

FORCE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ESi processor being employed. Refer to individual ESi processors in Chapter 7
for specific processor limitations.

nl_load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-indepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads are to be
processed in the following FORM FORCE or FORM STIFFNESS command.

 ROTATION = ds_name

 TYPE = force_type

5.6 Procedure FORCE 5 Utility Procedures

5.6-6 COMET-AR User’s Manual Revised 12/1/97

5.6.6 Status and Error Messages

FORCE does not print any status or error messages directly. All messages will be produced by the
ESi processor being employed. Refer to individual ESi processors in Chapter 7 for specific
processor messages.

5.6.7 Examples and Usage Guidelines

5.6.7.1 Example 1: External Load Vector

In this example, the element loads will be added to the nodal applied forces and the resulting nodal
load vector will be stored in a dataset named NODAL.EXT_FORCE.1..2 in the file associated with
logical device index 1.

5.6.8 References

None.

*call FORCE (TYPE
INPUT_FORCE
OUTPUT_FORCE
NL_GEOM
COROTATION
NL_LOAD
MESH
LOAD_SET

= EXTERNAL
= 1, NODAL.SPEC_FORCE.1..2
= 1, NODAL.EXT_FORCE.1..2
= <false>
= <false>
= <false>
= 2
= 1

; --
; --
; --
; --
; --
; --
; --
)

5 Utility Procedures 5.7 Procedure INITIALIZE

Revised 12/1/97 COMET-AR User’s Manual 5.7-1

5.7 Procedure INITIALIZE

5.7.1 General Description

Procedure INITIALIZE is a utility procedure for performing solution initialization tasks. It is
automatically invoked by solution procedures such as L_STATIC_1 and NL_STATIC_1 to
perform initialization for a given finite element mesh.

Procedure INITIALIZE performs a sequence of calls to other procedures and processors as shown
in Figure 5.7-1.

Figure 5.7-1 INITIALIZE: Model Initialization Steps

 ES
initialization of element connectivity

⇒ FUNCTION = INITIALIZE

 ES
suppress drilling DOFs and generate element ⇒ FUNCTION = DEFINE FREEDOMS

 ES
define shell normals at nodal points ⇒FUNCTION = DEFINE NORMALS

TRIAD align nodal computational frame triads⇒

 ES
set the shell drilling DOFs suppress codes ⇒ FUNCTION = DEFINE DRILL_FLAGS

RENO/RSEQ renumber order of nodes for storage⇒

for built-up structures (with AUTO_TRIAD

with the computed shell normals

(with AUTO_TRIAD and AUTO_DRILL options)

and AUTO_DRILL options)

(with AUTO_TRIAD option)

DOF table (with AUTO_DOF_SUP option)

optimization (with the RENUMBER option)

COP assign equation numbers to DOFs and⇒
generate the nodal DOF table

5.7 Procedure INITIALIZE 5 Utility Procedures

5.7-2 COMET-AR User’s Manual Revised 12/1/97

The INITIALIZE procedure is merely a cover procedure invoking a sequence of utility procedures
and processors to perform the solution initialization task for a given model/mesh. Each of these
other utility procedures is described in the current chapter; the processors are described in Part III.

5.7.2 Argument Summary

Procedure INITIALIZE may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.7-1.

5.7.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.7-1 are defined in more detail.
The arguments are listed alphabetically.

5.7.3.1 AUTO_DOF_SUP Argument

Automatic DOF (degree-of-freedom) suppression switch. This capability automatically suppresses
extraneous DOFs, especially useful during adaptive mesh refinement. It is described in more detail
in Section 2.10, Automatic DOF Suppression and Drilling Stabilization.

Argument syntax:

Table 5.7-1 Procedure INITIALIZE Input Arguments

Argument Default Value Description

AUTO_DOF_SUP <false> Automatic DOF suppression switch

AUTO_DRILL <false> Automatic drilling stiffness augmentation switch

AUTO_MPC <false>

AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in the
assembled system matrix prior to factorization

LDI 1 Logical unit for main COMET-AR database file (Case.DBC)

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MESH 0 Mesh number to be analyzed

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

RENO_PROCESSOR RSEQ Node renumbering processor

RENUMBER_OPT 3 Node renumbering option

AUTO_DOF_SUP = option [, angle_tol]

5 Utility Procedures 5.7 Procedure INITIALIZE

Revised 12/1/97 COMET-AR User’s Manual 5.7-3

where

In most cases, it is best to leave the default setting intact.

5.7.3.2 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling
rotational stiffness to nodal DOFs that would otherwise be unstable computationally. See
Section 2.10 and individual element processor sections in Chapter 7 for more information.

Argument syntax:

where

5.7.3.3 AUTO_TRIAD Argument

Automatic computational triad (i.e., DOF direction) re-alignment option. This option is an
alternative to AUTO_DRILL that causes re-alignment of the computational triads at all nodes that
require drilling DOF stabilization as long as no boundary conditions have been defined there. The

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>, all
DOFs (in the computational frame) that are unsupported by element stiffness
will be suppressed throughout the adaptive refinement process. (Default value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; see Sec-
tion 2.10 for details. (Default value: depends on element type)

AUTO_DRILL = option [, angle_tol, scale_fac]

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabiliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Chapter 2 for details. (Default value: depends on element type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See Chapter 2 for interpretation. (Default value: depends on
element type)

AUTO_DRILL is not recommended for nonlinear
analysis.

5.7 Procedure INITIALIZE 5 Utility Procedures

5.7-4 COMET-AR User’s Manual Revised 12/1/97

computational axes are re-aligned such that one of them is parallel to the average element surface-
normal at the node. Then, extraneous (unstable) drilling rotational DOFs can be subsequently
suppressed via the AUTO_DOF_SUP option. (See Section 2.10, Automatic DOF Suppression and
Drilling Stabilization, for more information.)

Argument syntax:

where

5.7.3.4 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

where

AUTO_TRIAD = option [, angle_tol]

Parameter Description

option Automatic triad re-alignment option switch: {<true> | <false>}. If <true>, computa-
tional triads will be re-aligned with the average element normal at all nodes that
require drilling DOF stabilization, unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

AUTO_TRIAD should only be used in conjunction
with AUTO_DOF_SUP and cannot be used in
conjunction with user-defined point forces and/or
multi-point constraints.

CONSTRAINT_SET = constraint_set

Parameter Description

constraint_set Constraint set number (Default value: 1)

5 Utility Procedures 5.7 Procedure INITIALIZE

Revised 12/1/97 COMET-AR User’s Manual 5.7-5

5.7.3.5 LDI Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling INITIALIZE and must be named Case.DBC.

Argument syntax:

where ldi is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.7.3.6 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax:

where FULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.7.3.7 MESH Argument

This argument sets the number of the mesh to analyze.

Argument syntax:

where mesh is the mesh number. (Default value: 0)

5.7.3.8 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(REFi) specified via the REFINE_PROCESSOR argument.

Argument syntax:

LDI = ldi

MATRIX_UPDATE = {FULL | PARTIAL}

MESH = mesh

REFINE_TECHNIQUE = refine_technique

5.7 Procedure INITIALIZE 5 Utility Procedures

5.7-6 COMET-AR User’s Manual Revised 12/1/97

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to ht, hc, hs, or p (among
others). See the documentation under specific REFi processors in Chapter 11 for details. (Default
value: ht)

5.7.3.9 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used to
optimize matrix equation solving (time and/or storage).

Argument syntax:

where renumber_processor is the processor name. Current options are summarized below.

Consult the appropriate section in Chapter 6, Pre-Processors for more details.

5.7.3.10 RENUMBER Argument

Sets a flag determining whether or not to perform equation renumbering (e.g., bandwidth, skyline
or sparsity optimization) both initially and whenever the mesh is updated by adaptive refinement.

Argument syntax:

where renumber_flag may be set either to <true> or <false>. (Default value: <true>)

5.7.3.11 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER = <true>).

Argument syntax:

RENO_PROCESSOR = renumber_processor

renumber_processor Description

RENO Node renumbering using a geometric algorithm (Default)

RSEQ Node renumbering via a variety of order-optimization algorithms

RENUMBER = renumber_flag

RENUMBER_OPT = renumber_option

5 Utility Procedures 5.7 Procedure INITIALIZE

Revised 12/1/97 COMET-AR User’s Manual 5.7-7

where renumber_option indicates the renumbering option and depends on the particular
renumbering processor chosen. See processors RENO, RSEQ, etc., in Chapter 6. (Default value: 0)

5.7.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ESi processor
being employed, and by the renumbering and REDO processors. These dataset requirements are
documented in detail in Chapter 6, Pre-Processors, and Chapter 7, Element Processors.

5.7.5 Current Limitations

INITIALIZE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ESi processor being employed, renumbering, and the REDO processors. Refer to
Chapters 6 and 7 for specific processor limitations.

5.7.6 Status and Error Messages

INITIALIZE does not print any status or error messages directly. All messages will be produced
by the ESi processor being employed and by the renumbering and the REDO processors. Refer to
Chapters 6 and 7 for specific processor messages.

5.7.7 Examples and Usage Guidelines

5.7.7.1 Example 1: Initialization with Auto DOF Suppression

In this example, mesh 2 model is initialized using the automatic DOF suppression option. The
nodal points will be reordered using RSEQ processor and renumbering method 0.

5.7.8 References

None.

*call INITIALIZE (AUTO_DOF_SUP
AUTO_DRILL
AUTO_TRIAD
RENUMBER
RENO_PROCESSOR
RENO_OPTION
MESH
REFINEMENT_TECHNIQUE
LDI
CONSTRAINT_SET

= <true>
= <false>
= <false>
= <true>
= RSEQ
= 0
= 2
= hc
= 1
= 1

; --
; --
; --
; --
; --
; --
; --
; --
; --
)

5.7 Procedure INITIALIZE 5 Utility Procedures

5.7-8 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.8 Procedure REF_MESH_1

Revised 12/1/97 COMET-AR User’s Manual 5.8-1

5.8 Procedure REF_MESH_1

5.8.1 General Description

Procedure REF_MESH_1 is a utility procedure for performing one pass of adaptive mesh
refinement based on a single solution and corresponding error estimates. This procedure is a cover
that invokes adaptive mesh refinement processors such as REF1, described in Chapter 11. It is
typically called via procedure AR_CONTROL.

5.8.2 Argument Summary

Procedure REF_MESH_1 may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.8-1.

Table 5.8-1 Procedure REF_MESH_1 Input Arguments

Argument Default Value Description

CONSTRAINT_SET 1 Specifies the constraint set number

CONVERGE_TOL 0.05 Global error tolerance (relative error)

H_GRADIENT 0.8 Relative energy gradient mark above which both h and p-refine-
ment will occur (for mixed h/p-refinement options)

LDI 1 Logical unit for main COMET-AR database file (Case.DBC)

LDI_GM 7

LOAD_SET 1 Specifies the load-set number

MAX_ASPECT_RATIO 2.0, 2.0 Distortion control parameters for ht refinement

MAX_H_LEVEL 10 Maximum levels of h-refinement for any element

MAX_P_LEVEL 0 Maximum levels of p-refinement globally

NEW_MESH 0 The refined mesh number

NUM_REFINE_TOLS 1 No. of error tolerances guiding refinement

NUM_UNREFINE_TOLS 0

OLD_MESH 0 Mesh from which to restart.

P_GRADIENT 0.0 Relative energy gradient mark below which only p-refinement
will occur (for mixed h/p-refinement options)

REFINE_DIRS 1, 2 Refinement directions (1,2—implies 2D)

REFINE_INDICATOR MAX_RATIO Type of refinement indicator

REFINE_LEVELS 1 List of refinement levels corresponding to REFINE_TOLS

REFINE_PROCESSOR REF1 Name of mesh refinement processor

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

5.8 Procedure REF_MESH_1 5 Utility Procedures

5.8-2 COMET-AR User’s Manual Revised 12/1/97

5.8.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.8-1 are defined in more detail.
The arguments are listed alphabetically. Refer to the corresponding refinement processor section
in Part III for details on the options.

5.8.3.1 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element and nodal data in both
the reference and the refined meshes. This number should appear as the second cycle number in
names of all element and nodal datasets.

Argument syntax:

where conset is the constraint set number (Default value: 1)

5.8.3.2 CONVERGE_TOL Argument

This argument sets the value of the adaptive mesh refinement (AR) global convergence tolerance.
This is a relative error measure (in fractional form) below which convergence of the discrete
solution to the governing equations is assumed and no further adaptive mesh refinement is
performed. The quantitative interpretation of this error measure depends on the particular error
estimation processor (ERRi) and refinement processor (REF1) selected by the user (see
ERROR_PROCESSOR and REF_PROCESSOR arguments).

Argument syntax:

where converge_tol is the relative error tolerance in fractional form (e.g., .1 corresponds to 10
percent error). (Default value: .05)

REFINE_TOLS 0.05 List of local (element) error tolerances for refinement

STEP 0 Specifies the solution step number

UNREFINE_LEVELS 0

UNREFINE_TOLS .00

CONSTRAINT_SET = conset

CONVERGE_TOL = converge_tol

Table 5.8-1 Procedure REF_MESH_1 Input Arguments

Argument Default Value Description

5 Utility Procedures 5.8 Procedure REF_MESH_1

Revised 12/1/97 COMET-AR User’s Manual 5.8-3

5.8.3.3 H_GRADIENT Argument

This argument defines the h_gradient mark on the element energy gradient axis for multi-
technique refinement (see the “REF1—Multi-Level and Multi-Technique Refinement Control”
subsection for details).

Argument syntax:

where h_gradient is the h_gradient mark value. (Default value: 0.8)

5.8.3.4 LDI Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling REF_MESH_1, and be named Case.DBC.

Argument syntax:

where ldi is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.8.3.5 LOAD_SET Argument

This argument defines the load set number associated with the element and nodal data in both the
reference and the refined meshes. This number should appear as the first cycle number in names
of all element and nodal datasets.

Argument syntax:

where ldset is the load set number (Default value: 1)

5.8.3.6 MAX_ASPECT_RATIO Argument

Sets the maximum element aspect ratios before and after prospective adaptive mesh refinement.

Argument syntax:

H_GRADIENT = h_gradient

LDI = ldi

LOAD_SET = ldset

MAX_ASPECT_RATIO = before, after

5.8 Procedure REF_MESH_1 5 Utility Procedures

5.8-4 COMET-AR User’s Manual Revised 12/1/97

where before denotes the maximum element aspect ratio before a prospective mesh refinement,
and after denotes the maximum element aspect ratio after a prospective mesh refinement. If either
of these limits would be violated, an alternate element refinement pattern is selected. This
argument is relevant primarily for transition-based (ht) refinement, where aspect ratios can be used
to control the degree of element distortion. See Chapter 11 for more information. (Default value:
2.0,2.0)

5.8.3.7 MAX_H_LEVEL Argument

Sets the maximum number of levels of adaptive h-refinement allowed within any one element. If
the mesh refinement processor (REFi) determines that more than this many levels of h-refinement
are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

where max_h_level denotes the maximum number of levels of h-refinement permitted by the user
for any one element. See Chapter 11 for more information. (Default value: 10)

5.8.3.8 MAX_P_LEVEL Argument

Sets the maximum number of levels of uniform p-refinement allowed for the model. If the mesh
refinement processor (REFi) determines that more than this many levels of p-refinement are
necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

where max_p_level denotes the maximum number of levels of uniform p-refinement permitted.
See Chapter 11 for more information. (Default value: 0)

5.8.3.9 NEW_MESH Argument

This argument sets the mesh number of the refined (output) mesh.

Argument syntax:

where new_mesh is the mesh number of the refined mesh. (Default value: 0)

MAX_H_LEVEL = max_h_level

MAX_P_LEVEL = max_p_level

NEW_MESH = new_mesh

5 Utility Procedures 5.8 Procedure REF_MESH_1

Revised 12/1/97 COMET-AR User’s Manual 5.8-5

5.8.3.10 NUM_REFINE_TOLS Argument

Sets the number of local (element) error tolerances that will be used to guide adaptive refinement.
The REFINE_TOLS argument specifies the error values for these tolerances, and the
REFINE_LEVELS argument indicates the number of levels of refinement to perform when each
tolerance is exceeded.

Argument syntax:

where num_refine_tols denotes the number of refinement tolerances. See Chapter 11 for more
information. (Default value: 1)

5.8.3.11 OLD_MESH Argument

Sets the number of the mesh to be refined.

Argument syntax:

where old_mesh denotes the mesh number of the mesh to be refined. (Default value: 0)

5.8.3.12 P_GRADIENT Argument

This argument defines the P_gradient mark on the element energy gradient axis for multi-method
refinement (see the “REF1—Multi-Level and Multi-Technique Refinement Control” subsection
for details).

Argument syntax:

where p_gradient is the p_gradient mark value. (Default value: 0.0)

5.8.3.13 REFINE_DIRS Argument

Establishes a list of intrinsic element directions in which to allow adaptive refinement.

Argument syntax:

NUM_REFINE_TOLS = num_refine_tols

OLD_MESH = old_mesh

P_GRADIENT = p_gradient

REFINE_DIRS = dir1 [, dir2 [, dir3]]

5.8 Procedure REF_MESH_1 5 Utility Procedures

5.8-6 COMET-AR User’s Manual Revised 12/1/97

where dir1, dir2, and dir3 are intrinsic element direction numbers (i.e., in the elements internal, or
natural, coordinate system), and each may take on a value between 1 and the maximum number of
intrinsic element dimensions (i.e., 3 for 3D elements, 2 for 2D elements, and 1 for 1D elements).
This can eliminate unnecessary refinement in, for example, axisymmetric shell problems, where
only one of the surface directions need be refined. See Chapter 11 for more information. (Default
value: 1, 2).

5.8.3.14 REFINE_INDICATOR Argument

Sets the type of element refinement indicator to be used by the adaptive refinement processor (see
Chapter 11). The refinement indicator is the criterion used to determine whether an element’s error
estimate is high enough to warrant refinement. The values of the refinement indicator denoting
various levels of refinement are set by the REFINE_TOLERANCES argument.

Argument syntax:

where refine_indicator denotes the name of the element refinement indicator to be used. (Default
value: AVE; see Chapter 11 for details.)

5.8.3.15 REFINE_LEVELS Argument

Sets an array of element refinement levels corresponding to the array of refinement tolerances
specified via the REFINE_TOLS argument. An element refinement level is defined as one
application of local refinement, employing the refinement type specified via the
REFINE_TECHNIQUE argument (e.g., ht, hc, hs or p).

Argument syntax:

where ref_lev_“ i” denotes the number of levels to refine an element when the element refinement
(error) indicator exceeds the tolerance specified by ref_tol_“ i” in the REFINE_TOLS argument;
and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument (see Chapter
11 for details). (Default value: 1)

5.8.3.16 REFINE_PROCESSOR Argument

Sets the name of the mesh refinement processor (REFi) to be invoked by the REF_MESH_1
procedure.

REFINE_INDICATOR = refine_indicator

REFINE_LEVELS = ref_lev_1, ref_lev_2, ... ref_lev_NUM_REFINE_TOLS

5 Utility Procedures 5.8 Procedure REF_MESH_1

Revised 12/1/97 COMET-AR User’s Manual 5.8-7

Argument syntax:

where refine_processor is the name of the mesh refinement processor. Current options are
summarized below.

Consult Chapter 11 for more details.

5.8.3.17 REFINE_TECHNIQUE Argument

Sets the refinement technique to be employed by the mesh refinement processor (REFi) specified
via the REFINE_PROCESSOR argument.

Argument syntax:

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to ht, hc, or p (among
others). See Chapter 11 for details. (Default value: ht)

5.8.3.18 REFINE_TOLS Argument

Sets an array of element refinement tolerances corresponding to the array of refinement levels
specified via the REFINE_LEVELS argument. An element refinement tolerance is a limit in the
value of the element error-based refinement indicator (see the REFINE_INDICATOR argument)
beyond which an element is refined by a prescribed number of levels.

Argument syntax:

where ref_tol_“ i” denotes the value of the element refinement indicator beyond which an element
should be refined by ref_lev_“ i” levels, where ref_lev_“ i” is specified in the REFINE_LEVELS
argument; and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument (see
Chapter 11 for details). (Default value: .05)

REFINE_PROCESSOR = refine_processor

refine_processor Description

REF1 Contains a variety of adaptive mesh refinement techniques (Default)

REFINE_TECHNIQUE = refine_technique

REFINE_TOLS = ref_tol_1, ref_tol_2, ... ref_tol_NUM_REFINE_TOLS

5.8 Procedure REF_MESH_1 5 Utility Procedures

5.8-8 COMET-AR User’s Manual Revised 12/1/97

5.8.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the REFi processor
being used. These dataset requirements are documented in detail in Chapter 11.

5.8.5 Current Limitations

REF_MESH_1 is a general purpose procedure and the only limitations on its use are dictated by
the limitations of the REFi processor being employed. Refer to individual REFi processors in
Chapter 11 for specific processor limitations.

5.8.6 Status and Error Messages

REF_MESH_1 does not print any status or error messages directly. All messages will be produced
by the REFi processor being employed. Refer to individual REFi processors in Chapter 11 for
specific processor messages.

5.8.7 Examples and Usage Guidelines

5.8.7.1 Example 1: Constraint-Based Refinement (hc)

In this example, reference mesh 0 is being refined (the refined mesh will be mesh 1) by up to one
level of refinement using constraint-based refinement technique (hc-refinement). Each element for
which the relative element error is greater than 5% will be refined by dividing it into four elements.

5.8.8 References

None.

 *call REF_MESH_1 (REFINE_PROCESSOR
REFINE_TECHNIQUE
REFINE_INDICATOR
NUM_REFINE_TOLS
REFINE_TOLS
REFINE_LEVELS
OLD_MESH
NEW_MESH
FUNCTION

= REF1
= hc
= AVE
= 1
= 0.05
= 1
= 0
= 1
= FORM STIFFNESS

; --
; --
; --
; --
; --
; --
; --
; --
)

5 Utility Procedures 5.9 Procedure SOLVE

Revised 12/1/97 COMET-AR User’s Manual 5.9-1

5.9 Procedure SOLVE

5.9.1 General Description

Procedure SOLVE is a utility procedure for solving a system of linear equations. It is automatically
invoked by solution procedures such as L_STATIC_1 and NL_STATIC_1 to compute the system
displacement vector solution for a given finite element mesh.

Procedure SOLVE performs a sequence of calls to utility procedures and matrix/vector algebra
processors to complete the following solution steps:

• Assemble the system load vector using an assembly processor.

• Solve the system of equations to obtain the solution vector using an equation-solver
processor.

• Construct the nodal solution vector from the system vector using the COP processor.

The SOLVE procedure is merely a simple cover procedure invoking a sequence of utility
processors to perform the solution tasks. These utility processors are discussed in Chapter 12,
Matrix/Vector Processors.

5.9.2 Argument Summary

Procedure SOLVE may be invoked with the COMET-AR ∗ CALL directive employing the
arguments summarized in Table 5.9-1.

Table 5.9-1 Procedure SOLVE Input Arguments

Argument Default Value Description

ASM_PROCESSOR ASM Matrix/vector assembly processor

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in the assem-
bled system matrix prior to factorization

ELT_MATRIX — Logical unit and dataset name for the element stiffness matrices

FIXED_FRAME OFF Fixed-frame option for hierarchical hs-refinement

LDI_C 1 Logical unit for main COMET-AR database file (Case.DBC)

LDI_E 2 Logical unit for element-matrix file (Case.DBE)

LDI_S 3 Logical unit for system-matrix file (Case.DBS)

LOAD_FACTOR 1.0 Load factor to be applied to the right hand side load vector prior to the
solution

LOAD_SET 1 Load set number to be used as the external force vector

5.9 Procedure SOLVE 5 Utility Procedures

5.9-2 COMET-AR User’s Manual Revised 12/1/97

5.9.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.9-1 are defined in more detail.
The arguments are listed alphabetically. See Chapter 12, Matrix/Vector Processors for detailed
description of the options.

5.9.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. Current options include ASM
(for ht and hc types of mesh refinement) and ASMs (hs mesh refinement). (Default value: ASM)

MATRIX — Logical unit and dataset name for the assembled and factored system
matrix

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MAX_ITER 100 Maximum iterations for iterative solvers

MESH 0 Mesh number to be analyzed

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

REACTION Compute reactions at specified boundary points

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

RHS — Logical unit and dataset name for the right hand side load vector

SKY_PROCESSOR SKY Linear equation solver processor name

SOLN — Logical unit and dataset name for the solution vector

SPEC_DISP — Logical unit and dataset name for the nodal specified displacement
table

SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers

STEP 0 Solution step number

ASM_PROCESSOR = asm_processor

Table 5.9-1 Procedure SOLVE Input Arguments (Continued)

Argument Default Value Description

5 Utility Procedures 5.9 Procedure SOLVE

Revised 12/1/97 COMET-AR User’s Manual 5.9-3

5.9.3.2 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

where:

5.9.3.3 ELT_MATRIX Argument

This argument sets the logical device index and dataset name for the element matrices (stiffness).

Argument syntax:

where ldi is the logical device index for the file containing the matrices, and dataset_name is the
name of the element matrices dataset. (Default value: None)

5.9.3.4 FIXED_FRAME Argument

Sets a flag that is relevant only for hs-refinement.

Argument syntax:

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

5.9.3.5 REACTION Argument

This argument sets the reaction force computation switch.

CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (Default value: 1)

ELT_MATRIX = ldi, dataset_name

FIXED_FRAME = {<true> | <false>}

5.9 Procedure SOLVE 5 Utility Procedures

5.9-4 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where flag is the switch option. (Default value: <false>—do not compute reaction forces)

5.9.3.6 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling SOLVE and must be named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.9.3.7 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file,
typically named Case.DBE.

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the Case.DBE file. If ldi_e is not equal
to ldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for the
current mesh will be stored on a separate Case.DBE file; however, if ldi_e = ldi_c, then all element
matrices will be stored on the Case.DBC file; i.e., a separate Case.DBE file will not be created.
(Default value: 2)

5.9.3.8 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file,
typically named Case.DBS.

Argument syntax:

REACTION = flag

LDI_C = ldi_c

LDI_E = ldi_e

If a separate Case.DBE file is created, it will be deleted
and re-created with each new adaptive mesh.

LDI_S = ldi_s

5 Utility Procedures 5.9 Procedure SOLVE

Revised 12/1/97 COMET-AR User’s Manual 5.9-5

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not equal
to ldi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separate Case.DBS file; however, if ldi_s = ldi_c, then all system matrices
will be stored on the Case.DBC file, i.e., a separate Case.DBS file will not be created. (Default
value: 3)

5.9.3.9 LOAD_FACTOR Argument

This argument sets the value for the load factor to be applied to the load vector prior to solution.

Argument syntax:

where factor is the value of the load factor to be applied. (Default value: 1.0)

5.9.3.10 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

where load_set is an integer load-set number. (Default value: 1)

5.9.3.11 MATRIX Argument

This argument sets the logical device index and dataset name for the factored system matrix.

Argument syntax:

where ldi is the logical device index for the file containing the matrix, and dataset_name is the
name of the factored system matrix data set. (Default value: None)

If a separate Case.DBS file is created, it will be deleted
and re-created with each new adaptive mesh.

LOAD_FACTOR = factor

 LOAD_SET = load_set

MATRIX = ldi, dataset_name

5.9 Procedure SOLVE 5 Utility Procedures

5.9-6 COMET-AR User’s Manual Revised 12/1/97

5.9.3.12 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax:

where FULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.9.3.13 MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). It is relevant only if SKY_PROCESSOR is set equal to the name of an iterative
solver.

Argument syntax:

where max_iter is the maximum number of iterations allowed. (Default value: 100)

5.9.3.14 MESH Argument

This argument sets the number of the mesh to analyze.

Argument syntax:

where mesh is the mesh number. (Default value: 0)

5.9.3.15 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

MATRIX_UPDATE = {FULL | PARTIAL}

MAX_ITER = max_iter

MESH = mesh

MTX_BUFFER_SIZE = mtx_buffer_size

5 Utility Procedures 5.9 Procedure SOLVE

Revised 12/1/97 COMET-AR User’s Manual 5.9-7

where mtx_buffer_size is the size of the buffer in terms of logical variables. (Default value:
500000)

5.9.3.16 REACTION Argument

This argument sets the compute reaction forces switch.

Argument syntax:

where switch is the option flag for computing the reaction forces. (Default value: <false>)

5.9.3.17 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(REFi) specified via the REFINE_PROCESSOR argument.

Argument syntax:

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to “ht”, “hc”, “hs”, or
“p” (among others). See the documentation under specific REFi processors in Chapter 11 for
details. (Default value: “ht”)

5.9.3.18 RHS Argument

This argument sets the logical device index and dataset name for the right hand side (load) vector.

Argument syntax:

where ldi is the logical device index for the file containing the load vector, and dataset_name is the
name of the load vector dataset. (Default value: None)

5.9.3.19 SOLN Argument

This argument sets the logical device index and dataset name for the solution vector.

REACTION = switch

REFINE_TECHNIQUE = refine_technique

RHS = ldi, dataset_name

5.9 Procedure SOLVE 5 Utility Procedures

5.9-8 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where ldi is the logical device index for the file containing the solution vector, and dataset_name
is the name of the solution vector dataset. (Default value: None)

5.9.3.20 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equation
systems.

Argument syntax:

where sky_processor is the name of the matrix solution processor. Current options are summarized
below.

Consult the appropriate processor section in Chapter 12 for more details.

5.9.3.21 SPEC_DISP Argument

This argument sets the logical device index and dataset name for the nodal specified displacement
dataset.

Argument syntax:

where ldi is the logical device index for the file containing the nodal table, and dataset_name is the
name of the nodal specified displacements dataset. (Default value: None)

SOLN = ldi, dataset_name

SKY_PROCESSOR = sky_processor

sky_processor Description

SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs-refinement only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers.

SPEC_DISP = ldi, dataset_name

5 Utility Procedures 5.9 Procedure SOLVE

Revised 12/1/97 COMET-AR User’s Manual 5.9-9

5.9.3.22 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver, if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

where solver_conv_tol is the convergence tolerance. (Default value: 1.e-5)

5.9.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the matrix/vector
algebra processor being used. These dataset requirements are documented in Chapter 12.

5.9.5 Current Limitations

SOLVE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ESi processor being employed. Refer to individual matrix/vector algebra
processors in Chapter 12 for specific processor limitations.

5.9.6 Status and Error Messages

SOLVE does not print any status or error messages directly. All messages will be produced by the
ESi processor being employed. Refer to individual matrix/vector algebra processors in Chapter 12
for specific processor messages.

5.9.7 Examples and Usage Guidelines

5.9.7.1 Example 1: Iterative Solution

SOLVER_CONV_TOL = solver_conv_tol

*call SOLVE (SKY_PROCESSOR
SOLVER_CONV_TOL
MAX_ITER
ELT_MATRIX
MATRIX
SOLN
RHS
SPEC_DISP
MESH
LOAD_FACTOR

= ITER
= 1.0e-7
= 1000
= 2, E*.MATL_STIFFNESS...3
= 3, STRUCTURE.MATL_STIFFNESS...3
= 1, NODAL.DISPLACEMENT.1.1.3
= 1, NODAL.EXT_FORCE.1..3
= 1, NODAL.SPEC_DISP.1.0.3
= 3
= 1.0

; --
; --
; --
; --
; --
; --
; --
; --
; --
)

5.9 Procedure SOLVE 5 Utility Procedures

5.9-10 COMET-AR User’s Manual Revised 12/1/97

In this example, iterative solution for mesh 3 will be performed using the ITER processor. The
assembled and factored matrix (in this case incomplete factorization of the COMPAXX format
matrix) is in the standard system file (ldi=3 is associated with the Case.DBS file) and prescribed
displacement contributions to the load vector will be added to the right hand side vector prior to
solution using the element stiffness matrices from the standard element matrices file (ldi=2 is
associated with the Case.DBE file).

The convergence tolerance for the iterative solution is set to 1.0e-7 and a maximum of 1000
iteration is allowed.

5.9.8 References

None.

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-1

5.10 Procedure STIFFNESS

5.10.1 General Description

This section describes the STIFFNESS Utility Procedure, which calls the ES utility procedure
(FUNCTION = FORM STIFFNESS) to execute all element processors and types associated with
a given model to compute element stiffness matrices, followed by an invocation of the appropriate
assembly processor to assemble the system matrix.

5.10.2 Argument Summary

Procedure STIFFNESS may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.10-1.

Table 5.10-1 Procedure STIFFNESS Input Arguments

Argument Default Value Description

ASM_PROCESSOR ASM Matrix/vector assembly processor

ASM_STIFFNESS — Sets the default name of assembled stiffness dataset

AUTO_DRILL <false> Sets the default value of artificial drilling stiffness parameter

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in
the assembled system matrix prior to factorization

COROTATION <false> Sets the default element corotational option

DISPLACEMENT — Sets the default name of the nodal displacement dataset

ELT_STIFFNESS — The ldi and dataset name of the element stiffness matrices
dataset

FIXED_FRAME OFF Fixed-frame option for hierarchical hs-refinement

LDI_C 1 Sets the default ldi of computational database library

LDI_E 2 Sets the default ldi of element matrices database library

LDI_S 3 Sets the default ldi of system matrices database library

LOAD_FACTOR 1.0 Sets the default load factor to be applied to element loads

LOAD_SET 1 Sets the default load set number for element loads

MASS DUMMY.MASS

MATRIX_UPDATE FULL Matrix update option for hierarchical hs-refinement

MESH 0 Sets the mesh number

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

NL_GEOM <false> Sets the default geometric nonlinearity option

NL_LOAD <false> Sets the default load nonlinearity option

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-2 COMET-AR User’s Manual Revised 12/1/97

5.10.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.10-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7, Element Processors, and Chapter 12,
Matrix/Vector Processors, for details on the options.

5.10.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. Current options include ASM
(for ht and hc types of mesh refinement) and ASMs (for hs mesh refinement only). (Default value:
ASM)

5.10.3.2 ASM_STIFFNESS Argument

This argument sets the ldi and dataset name of the assembled stiffness matrix.

Argument syntax:

where ldi is the logical device index associated with the system matrix file and dataset_name is the
assembled system stiffness matrix dataset name. (Default value: None)

REFINE_TECHNIQUE ht Mesh refinement technique (ht => transition h)

ROTATION — Sets the default name of nodal rotation pseudovector dataset

SKY_PROCESSOR SKY Linear equation solver processor name

STEP 0 Sets/resets load- or time-step number

TYPE TANG Sets the default name of element stiffness dataset

ASM_PROCESSOR = asm_processor

ASM_STIFFNESS = ldi, dataset_name

Table 5.10-1 Procedure STIFFNESS Input Arguments (Continued)

Argument Default Value Description

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-3

5.10.3.3 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling
rotational stiffness to nodal DOFs that would otherwise be unstable computationally. See Section
2.10 and Chapter 7 for more information.

Argument syntax:

where

5.10.3.4 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

where:

5.10.3.5 COROTATION Argument

This argument sets the element corotational option for geometrically nonlinear analysis. The
corotational capability is built in to the generic element processor (ES) and enables beam and shell

AUTO_DRILL = option [, angle_tol, scale_fac]

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabiliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. (Default value: depends on element type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. (Default value: depends on element type)

AUTO_DRILL is not recommended for nonlinear analysis.

CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (Default value: 1)

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-4 COMET-AR User’s Manual Revised 12/1/97

elements to be employed with arbitrarily large rotations (but small to moderate strains) even if the
element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

where

5.10.3.6 DISPLACEMENT Argument

This argument sets the name of the nodal displacement dataset.

Argument syntax:

where ds_name is the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)

5.10.3.7 ELT_STIFFNESS Argument

This argument sets the ldi and dataset name of the element stiffness matrices dataset.

Argument syntax:

where ldi is the logical device index associated with the element matrices file and dataset_name is
the element stiffness matrix dataset name. (Default value: None)

COROTATION = corotation_option

corotation_option Description

0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton iter-
ation is being performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if True-
Newton iteration has been selected at the nonlinear solution procedure level, and even
then may provide only marginal improvement in nonlinear convergence over option 1.
It adds additional terms to the tangent stiffness matrix that render it more consistent.

 DISPLACEMENT = ds_name

ELT_STIFFNESS = ldi, dataset_name

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-5

5.10.3.8 FIXED_FRAME Argument

Sets a flag that is relevant only for hs-refinement.

Argument syntax:

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

5.10.3.9 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC_1 and must be named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.10.3.10 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file,
typically named Case.DBE.

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the Case.DBE file. If ldi_e is not equal
to ldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for the
current mesh will be stored on a separate Case.DBE file. If ldi_e = ldi_c, then all element matrices
will be stored on the Case.DBC file, i.e., a separate Case.DBE file will not be created. (Default
value: 2)

5.10.3.11 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file,
typically named Case.DBS.

FIXED_FRAME = {<true> | <false>}

LDI_C = ldi_c

LDI_E = ldi_e

If a separate Case.DBE file is created, it will be deleted
and re-created with each new adaptive mesh.

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-6 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not equal
to ldi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separate Case.DBS file. If ldi_s = ldi_c, then all system matrices will be
stored on the Case.DBC file, i.e., a separate Case.DBS file will not be created. (Default value: 3)

5.10.3.12 LOAD_FACTOR Argument

This argument changes the default load factor to be applied to all element loads.

Argument syntax:

where load_factor is a floating-point scale factor. (Default value: 1.0)

5.10.3.13 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

where load_set is an integer load-set number. (Default value: 1)

5.10.3.14 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
hs-refinement).

Argument syntax;

LDI_S = ldi_s

If a separate Case.DBS file is created, it will be deleted
and re-created with each new adaptive mesh.

 LOAD_FACTOR = load_factor

 LOAD_SET = load_set

MATRIX_UPDATE = {FULL | PARTIAL}

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-7

where FULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.10.3.15 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

where mesh is an integer number, typically set to the current mesh number. (Default value: 0)

5.10.3.16 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

where mtx_buffer_size is the size of the buffer in terms of logical variables. (Default value:
500000)

5.10.3.17 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

where

 MESH = mesh

MTX_BUFFER_SIZE = mtx_buffer_size

 NL_GEOM = nl_geom_option

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-8 COMET-AR User’s Manual Revised 12/1/97

5.10.3.18 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector or the tangent stiffness matrix.

Argument syntax:

where

5.10.3.19 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(REFi) specified via the REFINE_PROCESSOR argument.

Argument syntax:

where refine_technique is the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to ht, hc, hs, or p (among
others). See documentation under specific REFi processors for details. (Default value: ht)

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relations will be
employed and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option geometric nonlinearity must be accounted for via
element corotation (see the COROTATION command), which for many beam/shell ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacement rela-
tions will be used. Element corotation may or not be selected with this option. For many
beam/shell element types, nonlinear element strain-displacement relations enhance
corotation, making it more accurate for a given mesh and rotation magnitude.

 NL_LOAD = nl_load_option

nl__load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-indepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads are to be
processed in the following FORM FORCE or FORM STIFFNESS command.

REFINE_TECHNIQUE = refine_technique

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-9

5.10.3.20 ROTATION Argument

This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.10.3.21 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equation
systems.

Argument syntax:

where sky_processor is the name of the matrix solution processor. Current options are summarized
below.

Consult Chapter 12 for more details.

5.10.3.22 STEP Argument

This argument changes the default load- or time-step number used in many solution dataset names
(unless otherwise specified via a separate dataset command).

Argument syntax:

where step is an integer number, typically set to the current step number. (Default value: 0)

 ROTATION = ds_name

SKY_PROCESSOR = sky_processor

sky_processor Description

SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)

SKYs Direct and/or iterative solution of skyline matrices in conjunction with hs-refinement only

ITER Iterative solution of compact matrices by PCG algorithm

PVSOLV Direct solution of skyline matrices optimized for vector computers.

 STEP = step

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-10 COMET-AR User’s Manual Revised 12/1/97

5.10.3.23 TYPE Argument

This argument sets the type of stiffness matrix to be computed.

Argument syntax:

where type is the type of stiffness to be computed (TANG, GEOM, or MATL for tangent, geometry
or material stiffnesses, respectively). (Default value: TANG)

5.10.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ESi processor
being used and the FUNCTION argument. These dataset requirements are documented in Chapters
7 and 12.

5.10.5 Current Limitations

STIFFNESS is a general purpose procedure and the only limitations on its usage are dictated by
the limitations of the ESi and matrix/vector algebra processors being employed. Refer to individual
processors in Chapters 7 and 12 for specific processor limitations.

5.10.6 Status and Error Messages

STIFFNESS does not print any status or error messages directly. All messages will be produced
by the ESi and matrix/vector algebra processors being employed. Refer to individual processors in
Chapters 7 and 12 for specific processor messages.

 TYPE = type

5 Utility Procedures 5.10 Procedure STIFFNESS

Revised 12/1/97 COMET-AR User’s Manual 5.10-11

5.10.7 Examples and Usage Guidelines

5.10.7.1 Example 1: Material Stiffness Formation and Assembly in COMPAXX Format

In this example, the formation of element linear material stiffnesses is requested for mesh 2. The
element stiffness matrices will be stored in 2, EltNam.STIFFNESS...2. The assembled matrix in
COMPAXX format, as required by the ITER processor, will be stored in a dataset named 3,
STRUCTURE.MATL_STIFFNESS...2.

5.10.8 References

None.

*call STIFFNESS (TYPE
ELT_STIFFNESS
NL_MATL
NL_GEOM
SKY_PROCESSOR
ASM_STIFFNESS
MESH
ASM_PROCESSOR

= MATL
= 2, E*.MATL_STIFFNESS...1
= <false>
= <false>
= ITER
= 3, STRUCTURE.MATL_STIFFNESS...2
= 2
= ASM

; --
; --
; --
; --
; --
; --
; --
)

5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-12 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.11 Procedure STRESS

Revised 12/1/97 COMET-AR User’s Manual 5.11-1

5.11 Procedure STRESS

5.11.1 General Description

This section describes the STRESS Utility Procedure which calls the ES utility procedure
(FUNCTION = FORM STRESS) to executes all element processors associated with a given model
to recover element stresses from a given displacement solution.

5.11.2 Argument Summary

Procedure STRESS may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.11-1.

5.11.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.11-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7 for details on the options.

Table 5.11-1 Procedure STRESS Input Arguments

Argument Default Value Description

COROTATION <false> Sets the default element corotational option

DIRECTION 0 Sets the default stress/strain output coordinate system

DISPLACEMENT 1, NODAL.DISPLACEMENT.1.1 Sets the default name of the nodal displacement
dataset

LOCATION INTEG_PTS Sets the default stress/strain output locations

MESH 0 Sets the mesh number

NL_GEOM <false> Sets the default geometric nonlinearity option

ROTATION Sets the default name of the nodal rotation
pseudovector dataset

SE_TOT <false>

STEP 0 Sets/resets load- or time-step number

STRAIN 1, E*.STRAIN.1.1 Sets the default ldi and name of the element strain
dataset

STRAIN_ENERGY 1, E*.STRAIN_ENERGY.1.1 Sets the default ldi and name of the element strain
energy dataset

STRESS 1, E*.STRESS.1.1 Sets the default ldi and name of the element stress
dataset

5.11 Procedure STRESS 5 Utility Procedures

5.11-2 COMET-AR User’s Manual Revised 12/1/97

5.11.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains), even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

where

5.11.3.2 DIRECTION Argument

This argument changes the default stress or strain direction option prior to use of the FORM
STRAIN, FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.
(Default value: 0)

Argument syntax:

where

COROTATION = corotation_option

corotation_option Description

0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton iter-
ation is being performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if True-
Newton iteration has been selected at the nonlinear solution procedure level; and even
then may provide only marginal improvement in nonlinear convergence over option 1.
It adds additional terms to the tangent stiffness matrix that render it more consistent.

 DIRECTION = str_direction

str_direction Description

ELEMENT or 0 Use element local (integration point) coordinate system, xl, yl, zl, as stress/strain output
system: xs, ys, zs. (Default)

GLOBAL { X | Y | Z } The stress/strain output xs axis is parallel to the global xg, yg, or zg axis if X, Y, or Z,
respectively, is used in the subcommand. The stress/strain output zs axis is parallel to
the local element normal axis for shell elements, otherwise it is obtained by permutat-
ing the global axes. The stress/strain output ys axis is defined by the right-hand-rule.

5 Utility Procedures 5.11 Procedure STRESS

Revised 12/1/97 COMET-AR User’s Manual 5.11-3

5.11.3.3 DISPLACEMENT Argument

This argument changes the default name of the nodal displacement dataset.

Argument syntax:

where ds_name is the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)

5.11.3.4 LOCATION Argument

This argument changes the default stress, strain, or strain-energy location option prior to use of the
FORM STRAIN, FORM STRESS, FORM STRAIN_ENERGY, FORM FORCE/INT, or FORM
FORCE/RES FUNCTION arguments. (Default value: INTEG_PTS)

Argument syntax:

where

FAB_DIR Use the local material-fabrication coordinate system, xf, yf, zf, as the stress/strain out-
put system, xs, ys, zs.

 DISPLACEMENT = ds_name

 LOCATION = str_location

str_location Description

INTEG_PTS Element stresses, strains, or strain-energy densities will be evaluated at element inte-
gration points and stored in the STR attribute of the specified EST dataset.

NODES Element stresses, strains, or strain-energy densities will be evaluated at integration
points, then extrapolated and stored at element nodes in the STRNOD attribute of the
specified EST dataset.

CENTROIDS Element stresses, strains, or strain-energy densities will first be evaluated at the element
integration points, then averaged and stored at element centroids in the STRCEN
attribute of the specified EST dataset. (If one of the element’s integration points coin-
cides with the centroid, the value computed there will be output rather than an average
integration-point value.)

str_direction Description

5.11 Procedure STRESS 5 Utility Procedures

5.11-4 COMET-AR User’s Manual Revised 12/1/97

5.11.3.5 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

where mesh is an integer number, typically set to the current mesh number. (Default value: 0)

5.11.3.6 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

where

5.11.3.7 ROTATION Argument

This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

where ds_name is the new dataset name. (Default value: NODAL.ROTATION.1.1)

 MESH = mesh

 NL_GEOM = nl_geom_option

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relations will be
employed, and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option geometric nonlinearity must be accounted for via
element corotation (see the COROTATION command), which for many beam/shell ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacement rela-
tions will be used. Element corotation may or not be selected with this option. For many
beam/shell element types, nonlinear element strain-displacement relations enhances
corotation, making it more accurate for a given mesh and rotation magnitude.

 ROTATION = ds_name

5 Utility Procedures 5.11 Procedure STRESS

Revised 12/1/97 COMET-AR User’s Manual 5.11-5

5.11.3.8 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
nonlinear static analysis).

Argument syntax:

where

5.11.3.9 STRAIN Argument

This argument changes the default name of the element strain dataset before using the FORM
STRAIN command. It also causes strains to be output to the database by the FORM STRESS,
FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

where ldi is the new logical device index and ds_name is the new dataset name. (Default value: 1,
EltName.STRAIN.1.1.mesh)

5.11.3.10 STRAIN_ENERGY Argument

This argument changes the default name of the element strain-energy density dataset before using
the FORM STRAIN_ENERGY command. It also causes strain-energy densities to be output to the
database by the FORM STRESS, FORM FORCE/RES, or FORM FORCE/INT FUNCTION
arguments.

Argument syntax:

where ldi is the new logical device index and ds_name is the new dataset name. (Default value: 1,
EltName.STRAIN_ENERGY.1.1.mesh)

STEP = step

Parameter Description

step Solution step number. (Default value: None)

 STRAIN = ldi, ds_name

 STRAIN_ENERGY = ldi, ds_name

5.11 Procedure STRESS 5 Utility Procedures

5.11-6 COMET-AR User’s Manual Revised 12/1/97

5.11.3.11 STRESS Argument

This argument changes the default ldi and name of the element stress dataset before using the
FORM STRESS command. It also causes strains to be output to the database by the FORM
FORCE/INT or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

where ldi is the new logical device index and ds_name is the new dataset name. (Default value: 1,
EltName.STRESS.1.1.mesh)

5.11.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ESi processor
used and the FUNCTION argument. These dataset requirements are documented in Chapter 7.

5.11.5 Current Limitations

STRESS is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the ESi processor being employed. Refer to individual ESi processors in Chapter 7
for specific processor limitations.

5.11.6 Status and Error Messages

STRESS does not print any status or error messages directly. All messages will be produced by the
ESi processor being employed. Refer to individual ESi processors in Chapter 7 for specific
processor messages.

5.11.7 Examples and Usage Guidelines

5.11.7.1 Example 1: Recover Element Stresses at Integration Points

In this example, a complete stress recovery for mesh 3 will be performed. Element stresses, strains,
and strain energies will be stored in the 1, EltNam.STRESS/STRAIN/STRAIN_ENERGY.1.1.2
datasets.

STRESS = ldi, ds_name

 *call STRESS (MESH = 3)

5 Utility Procedures 5.11 Procedure STRESS

Revised 12/1/97 COMET-AR User’s Manual 5.11-7

5.11.8 References

None.

5.11 Procedure STRESS 5 Utility Procedures

5.11-8 COMET-AR User’s Manual Revised 12/1/97

5 Utility Procedures 5.12 Procedure MASS

Revised 12/1/97 COMET-AR User’s Manual 5.12-1

5.12 Procedure MASS

5.12.1 General Description

The MASS procedure is a utility procedure typically called by dynamic analysis procedures (such
as L_DYNAMIC_1) to compute and/or assemble a system mass matrix, lumped or consistent,
from element and/or nodal (lumped) mass contributions.

5.12.2 Argument Summary

Procedure MASS may be invoked with the COMET-AR ∗ CALL directive, employing the
arguments summarized in Table 5.12-1.

5.12.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.12-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7 and Chapter 12 for details on the
specific element and assembly processor options.

5.12.3.1 ASM_MASS Argument

Name of the assembled mass matrix dataset.

Table 5.12-1 Procedure MASS Input Arguments

Argument Default Value Description

ASM_MASS STRUCTURE.MASS Name of assembled system mass matrix (for consistent mass
matrices only)

ASM_PROCESSOR ASM Name of assembly processor to use

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in the
assembled system matrix prior to factorization

ELT_MASS E*.MASS Name of assembled diagonal/lumped mass matrix
(stored as a nodal vector table (NVT).

LDI_C 1 Sets the default ldi of computational database library

LDI_E 2 Sets the default ldi of the element matrices database library

LDI_S 3 Sets the default ldi of the system matrix database library

TYPE CONSISTENT Type of assembled mass matrix: LUMPED or CONSISTENT

5.12 Procedure MASS 5 Utility Procedures

5.12-2 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where asm_mass is the name of the assembled mass matrix dataset. (Default:
STRUCTURE.MASS) Currently, ASM_MASS is used as the name of the output dataset only if
TYPE=CONSISTENT; otherwise, ELT_MASS is used as the name of the lumped (i.e., diagonal)
mass matrix.

5.12.3.2 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element mass matrices into a
corresponding system matrix.

Argument syntax:

where asm_processor is the name of the matrix assembly processor. Current options include ASM
(for ht and hc types of mesh refinement) and ASMs (for hs mesh refinement only). (Default value:
ASM)

5.12.3.3 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

where:

5.12.3.4 ELT_MASS Argument

This argument represents the name to be used for the output assembled mass matrix, if the matrix
type (see TYPE argument below) is DIAGONAL.

ASM_MASS = asm_mass

ASM_PROCESSOR = asm_processor

CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (Default value: 1)

5 Utility Procedures 5.12 Procedure MASS

Revised 12/1/97 COMET-AR User’s Manual 5.12-3

Argument syntax:

where Elt_Mass is the name of the assembled diagonal mass matrix dataset to be output. (Default:
NODAL.DIAG_MASS)

5.12.3.5 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC_1 and must be named Case.DBC.

Argument syntax:

where ldi_c is the logical device index (a positive integer) of the Case.DBC file. (Default value: 1)

5.12.3.6 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file,
typically named Case.DBE. This argument is relevant only for consistent mass matrices.

Argument syntax:

where ldi_e is the logical device index (a positive integer) of the Case.DBE file. If ldi_e is not equal
to ldi_c (see the LDI_C argument), then all element mass matrices for the current mesh will be
stored on a separate Case.DBE file. If ldi_e = ldi_c, then all element mass matrices will be stored
on the Case.DBC file, i.e., a separate Case.DBE file will not be created. (Default value: 2)

5.12.3.7 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file,
typically named Case.DBS. The argument is relevant only for consistent mass matrices (for
diagonal mass matrices, the assembled matrix, which is really a nodal vector, is stored in the library
associated with LDI_C).

ELT_MASS = Elt_Mass

LDI_C = ldi_c

LDI_E = ldi_e

If a separate Case.DBE file is created, it will be deleted
and re-created with each new adaptive mesh.

5.12 Procedure MASS 5 Utility Procedures

5.12-4 COMET-AR User’s Manual Revised 12/1/97

Argument syntax:

where ldi_s is the logical device index (a positive integer) of the Case.DBS file. If ldi_s is not equal
to ldi_c (see the LDI_C argument) then all system mass matrices for the current mesh will be stored
on a separate Case.DBS file. If ldi_s = ldi_c, then all system matrices will be stored on the
Case.DBC file, i.e., a separate Case.DBS file will not be created. (Default value:3)

5.12.3.8 TYPE Argument

This argument sets the type of mass matrix to be computed.

Argument syntax:

where type is the type of stiffness to be computed. Current options are: CONSISTENT and
DIAGONAL. (Default: CONSISTENT)

5.12.4 Database Input/Output Summary

A model definition database is required as input for the MASS procedure (see Chapter 2, Model
Definition Procedures). After invoking the MASS procedure, either a consistent mass matrix will
be deposited in the data library associated with LDI_S (and element mass matrices will be
deposited in the data library associated with LDI_E), or a diagonal mass matrix (in nodal vector
format) will be deposited in the library associated with LDI_C. In additional to the usual model
input data, a “NODAL.MASS” dataset may also be defined by the user, via processor NODAL.
This dataset contains user-specified lumped nodal contributions to the mass matrix; the MASS
procedure adds this lumped nodal mass dataset to the element mass matrices when creating the
final assembled mass matrix, whether consistent or diagonal.

5.12.4.1 Input Datasets

Table 5.12-2 contains a list of datasets required (unless otherwise stated) as input by procedure
MASS. All of these datasets must be resident in the main COMET-AR database (Case.DBC, where
Case is the specific problem name).

LDI_S = ldi_s

If a separate Case.DBS file is created, it will be deleted
and re-created with each new adaptive mesh.

 TYPE = type

5 Utility Procedures 5.12 Procedure MASS

Revised 12/1/97 COMET-AR User’s Manual 5.12-5

5.12.4.2 Output Datasets

Table 5.12-3 contains a list of datasets that may be created in the database by procedure MASS.

For details on the contents of any of the above datasets, refer to Chapter 15, Database Summary.

5.12.5 Current Limitations

Procedure MASS will not generate a DIAGONAL mass matrix if there are any multi-point
constraints (MPCs). This is because MPCs typically induce coupling terms that would not be
properly accounted for. When MPCs are present, the user should employ a consistent mass matrix.

5.12.6 Status and Error Messages

None.

Table 5.12-2 Input Datasets Required by Procedure MASS

Dataset File Description

CSM.SUMMARY...mesh LDI_C Model summary for the analyzed mesh

EltName.DEFINITION...mesh LDI_C Element definition for the analyzed mesh

EltName.FABRICATION...mesh LDI_C Element fabrication pointers for the analyzed mesh

EltName.GEOMETRY...mesh LDI_C Element solid-model geometry for the analyzed mesh

EltName.INTERPOLATION...mesh LDI_C Element interpolation data for the analyzed mesh

NODAL.COORDINATE...mesh LDI_C Nodal coordinates for the analyzed mesh

NODAL.DOF..conset.mesh LDI_C Nodal DOF Table for the analyzed mesh.

NODAL.TRANSFORMATION...mesh LDI_C Nodal transformations between global and computa-
tional frames for the analyzed mesh

NODAL.MASS.ldcase..mesh LDI_C Nodal lumped masses to be added to the element
mass matrices during assembly

Table 5.12-3 Output Datasets Produced by Procedure MASS

Dataset Class File Description

[ASM_MASS] SMT LDI_S Assembled system mass matrix (Output only if TYPE=CONSISTENT)

E*.MASS EMT LDI_E Element mass matrices (Output only if TYPE=CONSISTENT)

[ELT_MASS] NVT LDI_C Assembled diagonal mass matrix (Output only if TYPE=DIAGONAL)

5.12 Procedure MASS 5 Utility Procedures

5.12-6 COMET-AR User’s Manual Revised 12/1/97

5.12.7 Examples and Usage Guidelines

5.12.7.1 Example 1: Diagonal Mass Matrix Formation

In this example, a diagonal mass matrix (NVT dataset) is stored in a dataset called
NODAL.DIAG_MASS. The assembly processor (ASM_PROCESSOR) is irrelevant for such
cases, as the diagonal mass matrix is assembled by vector addition, via processor VEC. If a user-
specified lumped nodal mass dataset (which must be called NODAL.MASS) is present, the dataset
will automatically be added into the assembled diagonal mass matrix by procedure MASS.

5.12.8 References

None.

*call MASS (TYPE
ELT_MASS

= DIAGONALL
= NODAL.DIAG_MASS

; --
 --
)

Revised 12/1/97 COMET-AR User’s Manual

Part III

PROCESSORS
In this part of the COMET-AR User’s Manual, we describe available Fortran level processors (i.e.,
independently executable command/database-driven modules) that may be invoked by the user for
a variety of functions, including pre-processing, analysis, and post-processing. While any of these
processors may be employed interactively, they are typically invoked indirectly and automatically
via COMET-AR procedures (see Part I). An exception to this is processor ARGx, a graphical post-
processor that is strictly interactive.

COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 6.1-1

Chapter 6 Pre-Processors

6.1 Overview

In this chapter, various pre-processors implemented in COMET-AR are described. These pro-
cessors are used primarily for model definition as indicated in Chapter 2, Model Definition
Procedures. A summary of currently available pre-processors within this chapter is given in Table
6.1-1.

Table 6.1-1 Outline of Chapter Chapter 6: Pre-Processors

Section Processor Function

6.2 AUS Nodal force/displacement tabulation

6.3 COP Nodal constraint definition

6.4 GCP Generic constitutive processor

6.5 GEP Generic element processor

6.6 PST PATRAN-to-COMET-AR conversion

6.7 REDO Reformatting of TAB and AUS datasets

6.8 RENO Node/bandwidth renumbering; geometric algorithm

6.9 RSEQ Node/bandwidth renumbering; various algorithms

6.10 TAB Nodal coordinate/transformation tabulation

6.1 Overview 6 Pre-Processors

6.1-2 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.2 Processor AUS (Nodal Force Tabulation)

Revised 12/1/97 COMET-AR User’s Manual 6.2-1

6.2 Processor AUS (Nodal Force Tabulation)

6.2.1 General Description

Processor AUS is used by COMET-AR to define nodal loads, i.e., point forces and/or nodal
specified displacements. The SYSVEC subprocessor constructs system vector data tables which
are subsequently translated into High Level Database (HDB) objects by the processor REDO, as
described in Section 6.7. Detailed information about the SYSVEC subprocessor and command
structure is contained in the remainder of this section.

6.2.2 Command Summary

Processor AUS follows the SPAR command syntax as described in Reference [1]. A summary of
valid commands is given in Table 6.2-1.

6.2.3 Command Definitions

6.2.3.1 SYSVEC Command

The SYSVEC subprocessor is used to create and modify datasets in SYSVEC format. The
command format for the SYSVEC subprocessor is:

where

Table 6.2-1 Processor AUS Command Summary

Command Name Function

SYSVEC Create or modify SYSVEC format datasets

SYSVEC[,U]: N1, N2, n3, n4

I =

J =

i1 i2 … i6, , ,

j beg jend j inc, ,

ejbeg
i1 ejbeg

i2 … ejbeg
i6, , ,

e jbeg jinc+()
i1 e jbeg jinc+()

i2 … e jbeg jinc+()
i6, , ,

…

6.2 Processor AUS (Nodal Force Tabulation) 6 Pre-Processors

6.2-2 COMET-AR User’s Manual Revised 12/1/97

The command runstream:

creates a dataset named APPL.FORC.1.1 with (number of active degrees of freedom) rows and
(total number of nodes) columns. All entries will be zero except for the z-direction forces for nodes
9 and 10 which will each have a value of -1.0.

6.2.3.2 Input Datasets

A summary of input datasets used by Processor AUS is given in Table 6.2-2.

6.2.3.3 Output Datasets

A summary of output datasets created by Processor AUS is given in Table 6.2-3.

Parameter Description

U Transfers the SYSVEC subprocessor into update mode, allowing for modification of an
existing SYSVEC dataset.

N1,N2,n3,n4 Names to be used in the construction of the SYSVEC dataset. N1 and N2 are character
input and n3, and n4 are integers. The resulting dataset will be named N1.N2.n3.n4.

I = Row numbers for application of forces or specified displacements. = 1, 2, or 3
always indicates a direction- displacement or force component; = 4, 5, 6 indicates
a rotation in radians or moment about axis

J = Column numbers for application of forces or specified displacements in loop limit for-
mat.

Load/Displacement values

RUN AUS

SYSVEC: APPL FORC 1

I=3

J=9,10: -1.0, -1.0

STOP

Table 6.2-2 Processor AUS Input Datasets

Dataset/Attribute Contents

JDF1.BTAB.1.8 Dataset containing the total number of nodes in the model. Created by the TAB Processor.

Table 6.2-3 Processor AUS Output Datasets

Dataset/Attribute Contents

APPL.FORC.1.1 Nodal point forces

APPL.MOTI.1.1 Nodal specified displacements

i1 i2 … i6, , , i k
i k i k

i k 3–

j beg jend j inc, ,

ejbeg
i1 ejbeg

i2 … ejbeg
i6, , ,

6 Pre-Processors 6.2 Processor AUS (Nodal Force Tabulation)

Revised 12/1/97 COMET-AR User’s Manual 6.2-3

6.2.4 Limitations

AUS is an internal processor within the COMET-AR macroprocessor. As such, there is a blank
common limit which is installation dependent. SYSVEC will notify the user if the memory
required for processing the commands is insufficient, in which case you will need to increase the
blank common of the executable.

6.2.5 Error Messages

The SYSVEC subprocessor checks to ensure that there is sufficient memory available to perform
the requested function. In addition to these errors, input errors are reported by SYSVEC. These
errors are summarized below.

6.2.6 Examples and Usage Guidelines

It is important that the computational GAL library (ldi) contain the dataset JDF1.BTAB.1.8
produced as a result of the START command in TAB. Any SYSVEC dataset operated on in
processor AUS must correspond to the JDF1.BTAB.1.8 dataset present in this ldi.

The command runstream presented below creates the applied force dataset APPL.FORC.1.1 with
a force applied in the global z direction to node 4, with a value of -1.0.

The command runstream presented below creates the specified displacement dataset
APPL.MOTI.1.1 with a displacement of -1.0, applied in the global x direction to nodes <np1>
through <nnt> as defined via the CLAMP do loop and macrosymbols.

Command Error Message and User Response

SYSVEC INPUT DATA ERROR — Fatal error; User input is in error.

RUN AUS

SYSVEC: APPL FORC 1

i=3: j=4: -1.0

STOP

RUN AUS

SYSVEC: APPL MOTI 1

*do $i = <np1>,<nnt>,1

i=1: j=<$i>: -1.0

*enddo

STOP

6.2 Processor AUS (Nodal Force Tabulation) 6 Pre-Processors

6.2-4 COMET-AR User’s Manual Revised 12/1/97

6.2.7 References

[1] Stewart, C. B., ed., The Computational Structural Mechanics Testbed User’s Manual,
NASA TM-100644, 1989.

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-1

6.3 Processor COP (Constraint Processor)

6.3.1 General Description

Processor COP is used to define and store the degrees-of-freedom (DOFs) and their constraints for
each node point of a COMET-AR model. This information constitutes what is called a Nodal DOF
Table (NDT data object), the logical view of which is described in Reference [1].

The COP processor is used to form an NDT data object for any analysis using the ASM, SKY, and/
or related COMET-AR processors, all of which operate with DOF-oriented (as opposed to nodally-
oriented) system matrices and vectors.

An NDT data object includes a table that indicates the number of freedoms that are associated with
each node point and the type of freedom that is associated with each direction at each node point
of the model. In the current version of COP, any given freedom may have one of the following
constraint status indications:

An NDT data object also includes information required to describe any SPCs and/or MPCs to
which the model may be subjected. The present version of COP assumes that each dependent
degree of freedom ud to be eliminated from the equation system is expressed in terms of Nid
independent freedoms ui through a linear multi-point constraint relation of the form:

where the Cdi are proportionality constants that relate ud to the Nid independent freedoms, and
where αd is the so-called intercept constant for the relation. COP enables the user to identify
specific DOF ud that are linearly dependent on (independent) DOF ui (and/or αd), and to specify
the weighting coefficients Cdi for the freedoms on which they are dependent. COP makes no
assumptions about how single- or multi-point constraints are enforced; it passes this information
along to other processors that know what to do with it.

An NDT data object also includes a table giving the equation number assigned to each freedom of
the model. Normally each independent DOF has an equation number assigned to it, but COP
permits you to override this convention.

FREE unconstrained, independent DOF

ZERO SPCz (Single-Point-Constrained) DOF, the value of which is zero

NONZERO SPCnz DOF, the value of which is a specified constant

MPC MPC (Multi-Point-Constrained) dependent DOF, to be expressed in terms of zero or
more independent DOFs via a linear multi-point constraint relation and eliminated
from the equation system

ud Cdi ui× αd+
i 1=

Nid

∑=

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-2 COMET-AR User’s Manual Revised 12/1/97

The COP processor also performs two essential vector-transformation operations. Given an input
vector that contains information only for the computational (independent) degrees of freedom, a
specific NDT data object, and (optionally) other information, COP can expand the input vector into
a nodally-oriented Nodal Vector Table (NVT) data object, calculating the values of any dependent
freedoms with the multi-point constraint information in the NDT data object, and imposing any
(ZERO and/or NONZERO) SPCs that may be imposed. Given an input vector that is stored in a
nodally-oriented NVT data object, COP can also contract the information, extracting the
independent DOF values contained therein to form a vector that is stored in the System Vector
Table (SVT) data object form used by ASM, SKY, and other COMET-AR processors.

6.3.2 Processor Command Summary

The user must employ CLIP directives to communicate directly with GAL database files and do
the general bookkeeping, branching, and arithmetic operations that are described in Reference [2].

The COP-specific commands that enable the user to operate on a database-resident NDT data
object, or to use this information to contract or expand system vectors, are described here. Some
of these commands facilitate the construction of a new Nodal DOF Table, or retrieve an existing
NDT data object from its GAL database location. Others modify an NDT data object, changing the
constraint status indications (states) of freedoms (by applying single- and/or multi-point
constraints, suppressing or allowing the assignment of equation numbers for various freedom
states, imposing an externally-determined nodal ordering when equation numbers are assigned,
etc.). Other commands save the NDT data object on a GAL library file, and/or display it. Still other
COP-specific commands facilitate the transformation of system vectors from the compressed,
DOF-oriented SVT data object form that is used by ASM, SKY, and other COMET-AR processors
to the nodally-oriented NVT-data-object form1 used by other COMET-AR processors or vice
versa.

The remainder of this section concentrates on these COP-specific commands. The current version
of COP accepts the commands listed in Table 6.3-1.

1. The System Vector Table (SVT data object) data structure used here replaces the DOFVEC format used by earlier
versions of ASM, COP, and SKY; and the Nodal Vector Table (NVT data object) structure replaces the SYSVEC for-
mat used by the Testbed and its older relatives. Both of these object-oriented structures are described in Reference [1].

Table 6.3-1 Processor COP Command Summary

Command Name Function

MODEL Specify a Complete Model Summary (CSM data object) dataset

SELECT Retrieve an initial NDT data object from a GAL database, or construct a new one

SEQUENCE Specify nodal-ordering information

RESET Reset a program-control parameter

DOF_SUPPRESS Set constraint-status indicators in a designated NDT data object to reflect DOF suppres-
sions indicated in a given DOF-suppression table

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-3

Table 6.3-1 shows the order in which these commands would normally be employed in COP.
Additionally, the CONSTRAIN sub-processor accepts the commands listed in Table 6.3-2.

The first step in executing COP is usually an invocation of the MODEL command, specifying a
Complete Model Summary Table (CSM data object) that contains problem-size and other vital
information for the model to be considered. This step is not required if the CSM data object to be
used is that for the so-called zero-mesh case (where the mesh index in the dataset name for the
CSM data object is zero); it is required for any other case.

The next step depends on what the user wants COP to do. To retrieve an existing NDT data object
or construct a completely new one, and then to modify, archive or display that NDT data object,
invoke the SELECT command to specify the starting NDT data object and the destination of the
NDT data object that COP will produce, and then use the CONSTRAIN command (and its sub-
commands) to define constraints and assign equation numbers. To contract (or expand) a system
vector, bypass the SELECT command and use the CONTRACT (or EXPAND) command.

The PRINT, SEQUENCE, and RESET commands are optional. The PRINT command prints all or
a selected part of a given NDT data object. The SEQUENCE identifies a Nodal-Ordering Table

CONSTRAIN Transfer control to the CONSTRAIN sub-processor, to modify, display, and/or archive an
NDT data object.

PRINT Display all or part of an NDT data object

CONTRACT Contract an NVT data object to an SVT data object (computational system vector) by
extracting the independent DOFs

EXPAND Expand a given vector to the NVT data object form, which includes values for specified
and constrained freedoms

STOP Exit the COP processor

Table 6.3-2 Sub-processor CONSTRAIN Command Summary

Command Name Description

FREE Declare freedom(s) to be independent, without constraints

ZERO Single-Point-Constrain one or more DOFs to remain identically zero

NONZERO Impose nonzero SPCnzs on one or more DOFs

MPC Define a multi-point constraint relation

RESET Reset a program-control parameter

SHOW Display some or all of the NDT data object

DONE Exit the CONSTRAIN sub-processor

Table 6.3-1 Processor COP Command Summary (Continued)

Command Name Function

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-4 COMET-AR User’s Manual Revised 12/1/97

(NOT data object) containing an {order} vector that defines the nodal sequence in which equation
numbers are assigned to the active node points of the model. The RESET command specifies
program-control parameters. The COP processor has three user-accessible control parameters that
function as toggle (ON/OFF) switches to control assignment of equation numbers to all freedoms
of the three basic types that COP recognizes: independent DOFs that are FREE (unconstrained);
ZERO (trivially single-point-constrained, remaining forever zero); or NONZERO (single-point-
constrained, with nonzero specified values). COP begins with these parameters set ON, so that
equation numbers will be assigned for all such DOFs. To change those settings, the user must
employ the RESET command before exiting the CONSTRAIN sub-processor.

The STOP command terminates execution of the COP processor, and must be the last command
employed.

6.3.3 Command Glossary

6.3.3.1 MODEL Command

The first thing a COP user usually does is specify the Complete Model Summary Table (CSM data
object) that contains the problem-size parameters and other vital information for the model to be
treated. This is done with the MODEL command.

The MODEL command opens the CSM data object stored in dataset dsn_csm on GAL library
ldi_csm and extracts two problem-size parameters, NNODES (the maximum node point number
for the model) and NDOFN (the maximum number of DOF that may be associated with each
node).

The default value for ldi_csm is 1, and the default name for the Complete Model Summary (CSM
data object) dataset is CSM.SUMMARY...0.

COP extracts the mesh index (mesh), and any other information needed to perform its function(s),
from that CSM data object. The MODEL command is optional when the required CSM data object
is identified by the default values described above; it is required for any other situation.

The MODEL keyword may be abbreviated to two characters.

MODEL [ldi_csm [dsn_csm]]

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-5

6.3.3.2 SELECT Command

The SELECT command specifies a new or old (existing) NDT data object to initialize COP. It also
specifies where the NDT data object produced by COP is to be archived. The syntax of the
SELECT command is:

where each keyword is defined below.

Given the NEW keyword, COP retrieves the NNODES and NDOFN parameters (and DOF type
information) from the CSM data object identified in a previous MODEL command (or from the
default CSM data object that COP uses if a MODEL command was not given) and constructs an
initial NDT data object from scratch, giving each node the same number and types of DOF and
setting the constraint status of each DOF to FREE (not constrained).

Given the OLD keyword (and optionally the cons and mesh parameters), COP attempts to retrieve
an existing NDT data object from the indicated GAL library, and uses that Nodal DOF Table as
the initial version, to be modified, displayed, and/or archived via the CONSTRAIN command
(described below), or displayed via the PRINT command. If the indicated NDT data object is not
found, COP prints an appropriate error message and terminates.

The SELECT keyword may be abbreviated to three characters. The NEW, OLD, and DOFDAT
keywords may be abbreviated to one character.

6.3.3.3 SEQUENCE Command

The SEQUENCE command specifies an existing Nodal Order Table (NOT data object), which
contains an {order} vector that defines the nodal sequence in which equation numbers are to be
assigned to the active node points of the model. The syntax of the SEQUENCE command is:

SELECT { NEW | OLD [ldi_old [cons [mesh]]] } ++
DOFDAT [ldi_ndt [icons [imesh]]]

Keyword Description

NEW Indicates that a new NDT data object is to be constructed from scratch (using size and other
information from the CSM data object identified in a previously-used MODEL command or
from a default CSM data object if no MODEL command has been processed)

OLD Indicates that an existing NDT data object is to be retrieved from GAL library ldi_old; the cons
and mesh parameters (with default values of 1 and 0, respectively) designate the constraint case
and the mesh index for the existing NDT data object

DOFDAT Indicates that the NDT data object that COP produces is to be archived on GAL library ldi_ndt,
in dataset NODAL.DOF..icons.mesh; the icons and imesh parameters default to cons and mesh,
respectively

SEQUENCE [ldi_seq [dsn_seq]]

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-6 COMET-AR User’s Manual Revised 12/1/97

Given the SEQUENCE command, COP opens the NOT data object stored in dataset dsn_seq on
GAL library ldi_seq, and extracts the {order} vector from it. COP uses this {order} vector to assign
an equation number to each DOF that is entitled to have an equation number, at each active node
point of the model, when that operation is performed (prior to displaying the NDT data object and/
or exiting the CONSTRAIN sub-processor).

The default values of the ldi_seq and dsn_seq parameters on the SEQUENCE command are 1 and
NODAL.ORDER...mesh, respectively, the mesh parameter being that which COP has extracted
from the CSM data object specified via the MODEL command, or from the default CSM data
object that COP attempts to use if the MODEL command was not used. The SEQUENCE
command is optional. If it is not used, COP generates and uses a default {order} vector that gives
sequence number 1 to the lowest-numbered active node, 2 to the next-lowest-numbered active
node, ..., and so on to the highest-numbered active node.

The SEQUENCE keyword may be abbreviated to three characters.

6.3.3.4 RESET Command

The RESET command may be employed to reset a processor-control parameter. The syntax of the
RESET command is:

COP currently has three user-accessible program-control parameters, which control whether or not
DOF with FREE, NONZERO, or ZERO constraint states are entitled to have equation numbers
assigned to them when that operation is performed. COP is initialized with each of these switches
in its ON (YES) position, so that each FREE, NONZERO, and ZERO constraint-status freedom is
to be given an equation number. To suppress the assignment of an equation number to each
freedom of any given type, use the RESET command to set the control parameter for that freedom
type to its OFF (NO) value. This might be done for NONZERO and ZERO freedoms, for example,
to assemble a system matrix with none of those freedoms present.

The RESET command keyword may be abbreviated to one character, and each key text word may
be abbreviated to two characters.

6.3.3.5 DOF_SUPPRESS Command

The DOF_SUPPRESS command is used to modify a given NDT data object to set the constraint
status of each DOF that is to be suppressed (single-point constrained to be zero) automatically. This
is accomplished by identifying a DOF-suppression table (which must be an NDT data object), and
using the constraint status information therein to superimpose the ZERO SPC pattern in the DOF-

RESET [FREE = {YES | NO}] [++

 [NONZERO = {YES | NO}] [++

 [ZERO = {YES | NO}]

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-7

suppression table onto a designated (input/output) NDT data object. The syntax for the
DOF_SUPPRESS command is:

where the two keywords are described below.

The DOFDAT clause is optional on this command. If it is not included, the NDT data object
identified in the previously-used SELECT command will be modified.

Given this command, COP retrieves the constraint status information for each active node in the
NDT data object specified by the DOFDAT clause (or by the SELECT command, if the DOFDAT
clause is omitted). COP also retrieves the constraint status information for the same node from the
given DOF-suppression table. Each independent (non-multi-point-constrained) DOF for that node
in the input/output NDT data object that has been SPCd to ZERO in the DOF-suppression table is
then SPCd to ZERO in the input/output NDT data object. The DOF_SUPPRESS command only
modifies the constraint status information in the input/output NDT data object. It does not assign
equation numbers to DOF that are entitled to have them. That must be accomplished via the
CONSTRAIN command, described below.

The DOF_SUPPRESS command and its two keywords may be abbreviated to one character.

6.3.3.6 CONSTRAIN Command

The CONSTRAIN command transfers the user into the CONSTRAIN sub-processor, which
recognizes a set of sub-commands that facilitate the modification, display, and archiving of an
NDT data object. The syntax of the CONSTRAIN command is very simple.

DOF_SUPPRESS INPUT = ldi_inp inp_nam [DOFDAT = ldi cons mesh]

Keyword Description

INPUT Identifies dataset inp_nam on GAL library ldi_inp as the DOF-suppression table (NDT data object)
that contains constraint status information to be used to modify the designated input/output Nodal
DOF Table (NDT data object)

DOFDAT Indicates that GAL library ldi contains the NDT data object to be modified; the cons and mesh
parameters here indicate the constraint and mesh cases for the NDT data object to be used

CONSTRAIN

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-8 COMET-AR User’s Manual Revised 12/1/97

The following sub-commands are recognized and processed by the CONSTRAIN sub-processor:

6.3.3.6.1 FREE Sub-command

The FREE sub-command is used to declare that one or more freedoms at each of one or more node
points is FREE (i.e., the freedoms in question are independent DOFs that are not subject to any
constraints). The syntax of the FREE sub-command is:

in which at least one NOD and at least one DOF clause must appear. The NOD and DOF clauses
tell the CONSTRAIN sub-processor which degrees of freedom are to be “typed” through this
command. Each NOD clause adds one or more nodes to a node-point list, and each DOF clause
adds one or more directions to a direction list. The CON sub-processor uses these lists to set the
type of freedoms in the direction list at each node point in the node list.

The i parameter is required in any given NOD clause, but j is optional and nn is second-order
optional. If j is absent, only i goes into the node-point list; if j is present (but nn is not), nodes i
through j (incrementing by plus or minus one, as appropriate) are added to the list; if j and nn are
both present, nodes to be added to the list are determined by a FORTRAN-like loop of the form

 do 10 k = i, j, nn

 NODE = k

 10 continue

The node numbers thus specified must all must fall in the range 1 ≤ NODE ≤ NNODES.

The same procedure is used for the construction of the direction list. This list is quite restricted: it
must not be longer than the maximum number of freedoms NDOFN that can be accommodated at

[FREE { NOD = i [j [nn]] } + { DOF=typ1 [typ2 [...]] }+]

[ZERO { NOD = i [j [nn]] } + { DOF=typ1 [typ2 [...]] }+]

[NONZERO { NOD = i [j [nn]] } + { DOF=typ1 [typ2 [...]] }+]

[MPC { ldi_mpc dsn_mpc | node dtype Nr αr ;

 nod1 typ1 C1

 : Nr specifications

 (nodNr typNr CNr }

[RESET [FREE = {YES | NO}] [++

 [NONZERO = {YES | NO}] [++

 [ZERO = {YES | NO}]]

[SHOW [n1 [n2]]]

 DONE

FREE { NOD=i [j [nn]] } + { DOF=typ1 [typ2 [...]] }+

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-9

any given node point (6, currently), and values in the list must be valid DOF type indicators for the
problem at hand. With the current implementation of COP, the valid type indicators are D1, D2,
D3, Theta1, Theta2, and Theta3, which represent translations in the x, y, and z-directions and
rotations about the x, y, and z-axes.

The FREE keyword may be abbreviated to one character, but the NOD and DOF keywords must
not be abbreviated.

6.3.3.6.2 ZERO Sub-command

The ZERO sub-command is used to declare that one or more freedoms at each of one or more node
points is a ZERO-type freedom (i.e., the freedoms in question are independent DOFs that are
constrained to be identically zero). The syntax of the ZERO command is:

where the meanings of the parameters following the ZERO keyword are the same as for the FREE
command. The ZERO keyword may be abbreviated to one character, but the NOD and DOF
keywords must not be abbreviated.

6.3.3.6.3 NONZERO Sub-command

The NONZERO sub-command is used to declare that one or more freedoms at each of one or more
node points is a NONZERO-type freedom (i.e., the DOFs in question are independent DOFs that
are constrained to be prescribed values that generally are nonzero). The syntax of the NONZERO
command is

where the meanings of the parameters following the NONZERO keyword are the same as for the
FREE command. Values are assigned to these freedoms via Processor AUS (see section 6.2). The
NONZERO sub-command keyword may be abbreviated to one character, but the NOD and DOF
keywords must not be abbreviated.

6.3.3.6.4 MPC Sub-command

COP gives the user the opportunity to specify that one or more of the freedoms for a given problem
are linearly dependent upon the values of other freedoms, and to remove the dependent freedom(s)
from the equation system for the analysis by using appropriate multi-point constraint relations
where appropriate. This is facilitated by the MPC command, the syntax of which is

ZERO { NOD=i [j [nn]] } + { DOF=typ1 [typ2 ,...]] }+

NONZERO { NOD=i [j [nn]] } + { DOF=typ1 [typ2 [...]] }+

MPC node dtype Nr αr

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-10 COMET-AR User’s Manual Revised 12/1/97

This command may be used to specify that the dtype degree of freedom at node point node is a
linearly dependent MPC-type freedom and is to be eliminated from the equation system. The
following multi-point constraint relation expresses the dependent freedom ud in terms of the values
of Nr independent freedoms {ui} and an (optional) intercept constant, αr

The {ui} are the Nr independent DOFs, and Nr, {Ci}, and αr are constants.

The Nr independent DOFs and their associated weights must be specified via the Nr command
addenda, which have the following syntax:

Each of the Nr independent freedoms is identified through its node and DOF-type specifications,
nodk and typk, respectively. A separate MPC command is required for each dependent freedom to
be eliminated.

The MPC keyword may be abbreviated to one character if desired.

6.3.3.6.5 RESET Sub-command

The RESET sub-command here is exactly the same as described in Section 6.3.3.4. It may be
exercised as many times as necessary in the CONSTRAIN subprocessor or in the COP main
processor.

6.3.3.6.6 SHOW Sub-command

The SHOW sub-command displays the current NDT data object, while still under the control of
the CONSTRAIN sub-processor. Information displayed includes the rectangular DOF-type and
constraint status tables, and the rectangular DOF pointers table, which contains equation numbers
for DOF that are entitled to have them, and pointers for constrained freedoms. The syntax for the
SHOW command is

where the n1 and n2 parameters may be used to specify the first and last node numbers for which
this information is desired. If n1 is omitted, the entire NDT data object will be displayed. If n1 is
specified, but n2 is omitted, information for node n1 will be displayed. If n2 is also specified, COP
will display NDT data object information for nodes n1 through n2, inclusive.

nodk typk Ck

SHOW [n1 [n2]]

ud Ci ui× α r+
i 1=

Nr

∑=

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-11

The SHOW command may be abbreviated to one character, but at least two characters are
recommended to prevent user confusion with the STOP command.

6.3.3.6.7 DONE Sub-command

The DONE sub-command tells the CONSTRAIN sub-processor that all relevant information has
been defined for the current Nodal DOF Table (NDT data object). The syntax for the DONE sub-
command is:

When the DONE command is issued, the CONSTRAIN sub-processor uses the information it has
been given (including the default or nodal sequencing {order} vector) to assign an equation
number to each freedom that is entitled to one (as discussed above) and to assign other appropriate
pointer values to other freedoms. The finished NDT data object is then stored on the output GAL
library, as specified via the SELECT command. Control then returns to the COP processor’s main
program, where COP waits for more selection, creation, manipulation, vector-transformation,
program-control, and/or termination instructions.

The DONE command may be abbreviated to one character.

6.3.3.7 PRINT Command

The optional PRINT command causes the immediate printout of the information in an NDT data
object. The syntax for the PRINT command is:

If the DOFDAT clause is omitted, the NDT identified as the output data object in the previously-
used SELECT command will be printed. The DOFDAT clause permits the user to print a specific
NDT data object (the one on GAL library ldi_ndt for which the constraint case and mesh case
indices are cons and mesh) whether or not the SELECT command has been used. In any event, the
entire NDT data object will be displayed if the SUBSET clause is omitted. The optional SUBSET
clause may be used to specify the range of node points for which information is to be displayed,
the first and last parameters indicating the desired range. If last is omitted, information will only
be displayed for node first.

The PRINT keyword may be abbreviated to one character.

6.3.3.8 CONTRACT Command

The CONTRACT command contracts a system vector from the nodally-oriented NVT-data-object
form to the DOF-oriented SVT-data-object form, eliminating dependent- and undefined-DOF as
and if necessary. The syntax for the CONTRACT command is:

DONE

PRINT [DOFDAT = ldi_ndt cons mesh] [SUBSET = first [last]]

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-12 COMET-AR User’s Manual Revised 12/1/97

where the three keywords are described below.

The istep and jstep parameters default to 1 if they are not specified; and jstep defaults to istep if the
former is given but the latter is omitted. The DOFDAT clause is optional on this command. If it is
not included, the NDT data object identified in the SELECT command will be used.

The CONTRACT command may be abbreviated to four characters.

6.3.3.9 EXPAND Command

The EXPAND command produces an NVT data object by expanding a given input vector (which
may be in the NVT-data-object or the SVT-data-object format) so that values corresponding to
eliminated (dependent) DOF are reinstated using the multi-point constraint information in the
specified NDT data object. The syntax of the EXPAND command is:

The (optional) qualifier on this command may be used to specify that the vector to be expanded is
in the SVT- or the NVT-data-object format. An SVT-data-object contains a computational vector
with independent DOF only), while the NVT-data-object format accommodates a nodally-
partitioned rectangular matrix. If no qualifier is given, COP assumes that the input vector is in the
SVT-data-object format. The keywords and input parameters on this command are:

 CONTRACT INPUT = ldi_inp inp_nam [istep] ++

OUTPUT = ldi_out out_nam [jstep] [++

DOFDAT = ldi cons mesh]

Keyword Description

INPUT Identifies dataset inp_nam on GAL library ldi_inp as the input NVT data object from which vector
number istep is to be retrieved and contracted to the SVT-data-object (computational-vector) form

OUTPUT Specifies that the contracted vector is to be stored as the jstep vector in the SVT data object in dataset
out_nam on GAL library ldi_out

DOFDAT Indicates that GAL library ldi contains the NDT data object to be used for the vector-transformation
operation to be performed; the cons and mesh parameters here indicate the constraint and mesh cases
for the NDT data object to be used.

EXPAND [/ { DOFVEC | NODVEC }] ++

 INPUT = ldi_inp inp_nam [istep] ++

 OUTPUT = ldi_out out_nam istep] [++

 VALUES = ldi_val val_nam [scale]] [++

 DOFDAT = [ldi cons mesh]]

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-13

The istep parameter defaults to 1 if it is not specified, and scale defaults to 1.0. The VALUES and
DOFDAT clauses in this command are optional. If the DOFDAT clause is omitted, the NDT data
object identified in the previously-used SELECT command will be used.

The EXPAND command may be abbreviated to three characters. The two qualifiers (DOFVEC
and NODVEC) may be abbreviated to one character.

6.3.3.10 STOP Command

The STOP command should be the final instruction from the user to COP. The syntax of this
command is:

The STOP command closes all active libraries, passes further-action instructions on to the next
COMET-AR processor to be executed (if any), and terminates COP. COP also terminates with a
RUN command (in the COMET-AR environment).

The STOP keyword may not be abbreviated!

6.3.4 Database Input/Output Summary

6.3.4.1 Input Datasets

A summary of input datasets for processor COP is given in Table 6.3-3.

Keyword Description

INPUT Indicates that the vector to be expanded is stored in dataset inp_nam on GAL library ldi_inp, and
that it is the istepth vector in this dataset (if the dataset contains an SVT data object)

OUTPUT Indicates that the expanded, NVT data object resulting from this expansion operation is to be stored
in dataset out_nam on GAL library ldi_out

VALUES Optionally indicates that specified values needed for the expansion operation are to be obtained
from the NVT data object stored in dataset val_nam on GAL library ldi_val; these values are to be
multiplied by the scale factor scale before insertion into the expanded vector

DOFDAT Optionally indicates that GAL library ldi contains the NDT data object to be used for the vector-
transformation operation to be performed; the cons and mesh parameters here indicate the constraint
and mesh cases for that NDT data object

STOP

Table 6.3-3 Processor COP Input Datasets

Dataset Class Description

CSM.SUMMARY...mesh CSM Model summary dataset. (Conditional)

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-14 COMET-AR User’s Manual Revised 12/1/97

The first two datasets in the above table are conditionally required. The model summary dataset is
not required if the model-summary information to be used is stored on active GAL library 1 in
dataset CSM.SUMMARY...0. It is required if that is not the case. The name of (cons and mesh
parameters for) an existing Nodal DOF Table must be specified if one is used to initialize the NDT
data object to be constructed by COP. The NOT-type input dataset in the above table is required
only when the SEQUENCE command is used. This dataset must contain nodal-sequencing
information (specifying the order in which nodes are to be assigned equation numbers for active,
independent degrees of freedom). The name of this dataset is not hard-wired into COP and can be
anything the user wishes. If a specific dataset is not designated (with the ldi_seq and dsn_seq
parameters on the SEQUENCE command), COP uses the default name NODAL.ORDER...mesh
(where the mesh index has been determined from the MODEL command or via default procedures
used by the COP processor).

The NVT-type input dataset in the above table is required only when the CONTRACT command
is used to convert an NVT data object to the SVT data object form, and/or when the EXPAND
command is used to convert an NVT data object that does not contain corrected values of
dependent degrees of freedom to one that does, and/or when the VALUES clause is used on the
EXPAND command. The names of these datasets are not hard-wired into COP and may be
anything that the user wishes.

The SVT-type input dataset in Table 6.3-3 is required only when the DOFVEC qualifier is used on
the EXPAND command, indicating that the system vector to be expanded (given values for
dependent degrees of freedom) is stored as an SVT data object.

6.3.4.2 Output Datasets

A summary of output datasets for processor COP is given in Table 6.3-4.

NODAL.DOF.cons..mesh NDT Nodal DOF Table to initialize COP (Conditional)

Nodal.Order...mesh NOT Nodal Ordering Table (Optional)

Nodal.vecname.step..mesh NVT Nodal Vector Table(s) (Optional)

System.vecname...mesh SVT System Vector Table(s) (Optional)

Table 6.3-4 Processor COP Output Datasets

Dataset Class Description

NODAL.DOF.cons..mesh NDT Nodal DOF Table (Optional)

Nodal.vecname.step..mesh NVT Nodal Vector Table (Optional)

System.vecname...mesh SVT System Vector Table (Optional)

Table 6.3-3 Processor COP Input Datasets

Dataset Class Description

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-15

Processor COP produces an output NDT data object for each invocation of the CONSTRAIN
command. Each output Nodal DOF Table reflects constraint-state and other information (if any)
specified by the user via CONSTRAIN sub-commands and/or nodal-ordering information
specified via the (optional) SEQUENCE command. Processor COP produces an output NVT data
object whenever the EXPAND command is used to convert an input system vector to an output
system vector for which some of the degrees of freedom may have specified values (from a
designated dataset) and others may be determined (for dependent freedoms) via multi-point
constraint relations that are embedded within the designated Nodal DOF Table. The name of this
dataset is not hard-wired into COP and may be anything that the user wishes. Processor COP
produces an output SVT data object when the CONTRACT command is used to convert an input
system vector from nodal to computational format. The name of this dataset is not hard-wired into
COP and may be anything the user wishes.

6.3.5 Limitations

The current implementation of COP has two very important limitations. First, COP is currently a
main-memory (an in-core) processor. All of the information required to generate an NDT data
object, including the DOF type, state, and pointer tables, must simultaneously fit within the
available core space, along with a nodal-ordering vector and any other information that may be
required. When vector-transformation operations are requested, the required NDT and/or SVT data
objects must also fit within the available memory space. Second, COP only understands NDT data
objects for which every node point has the same number and types of degrees of freedom.

6.3.6 Error Messages

Processor COP produces more than a hundred self-explanatory error messages. Forty of these
messages originate within the COP processor, with the remainder originating within the CSM*,
NDT*, NOT*, NVT*, and SVT* utilities that COP uses for HDB-object management tasks.

COP responds to an unknown (probably misspelled) command keyword with a message of the
form:

Unknown command = .. .

COP recognizes the following commands:

...

with control returning to the appropriate command post for further (corrected) input. COP is not
that user-friendly with most errors. COP responds to most error situations by printing a status
message that is constructed at the point where the error is detected. COP terminates after
attempting to close out and clean up any open GAL libraries that may be in use.

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-16 COMET-AR User’s Manual Revised 12/1/97

6.3.7 Examples and Usage Guidelines

Remember the two limitations discussed above, and refrain from using the current implementation
of COP for large problems. The following examples are intended to show some (but not all) ways
in which COP might be used within the current COMET-AR framework.

6.3.7.1 Example 1

COP might be used to form and display a new NDT data object for an unconstrained model
constructed in the usual manner, with COMET-AR model-definition processors that produced
(among other things) model summary information stored in dataset CSM.SUMMARY...7 on GAL
library 3. The COP input for doing this is simple.

6.3.7.2 Example 2

For illustrative purposes, let us say that the model from the preceding example must be constrained
to prohibit motion at nodes 1 through 6, and to impose a multipoint constraint on the Y translational
DOF at node 100 to eliminate that DOF by relating it to the corresponding DOF at nodes 200 and
300. The COP input for doing that might look like the following.

MODEL = 3 CSM.SUMMARY... 7 . Identify the CSM object

SELECT = NEW DOFDAT = 3 1 7 . Build the new NDT object

CONSTRAIN . ->CONSTRAIN sub-processor

SHOW . Display the NDT object

DONE . Exit CONSTRAIN

STOP . Exit COP

MODEL = 3 CSM.SUMMARY...7 . Identify the CSM object

SELECT OLD= 3 1 7 DOFDAT = 3 2 7 . Build the new NDT object

CONSTRAIN . ->CONSTRAIN sub-processor

 ZERO NOD = 1,6 ++ . Nodes 1 -> 6

 DOF = D1,D2,D3,Theta1,Theta2,Theta3 . 6 freedoms at each node

 MPC = 100 D2 2 0.0 . node , dtype , Nr, and a

 200 D2 0.5 . nod1 type coef

 300 D2 0.5 . nod2 type coef

 DONE . Exit CONSTRAIN

STOP . Exit COP

6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.3-17

6.3.7.3 Example 3

For the same model, suppose a DOFVEC-formatted vector was generated by a computational-
vector-oriented processor, and is to be expanded to an NVT data object that includes all single- and
multi-point constrained values:

where the prescribed values are in the NVT data object in dataset SPECIFYVALS.NODVEC on
GAL library 3.

6.3.8 References

[1] Stanley, G. M. and Swenson, L. HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

[2] Felippa, Carlos A., The Computational Structural Mechanics Testbed Architecture:
Volume II—Directives, NASA CR-178385, February 1989.

MODEL = 3 CSM.SUMMARY...7 . Identify the CSM object

SELECT OLD = 3 1 7 DOFDAT = 3 2 7 . Build new NDT object

EXPAND/DOFVEC ++ . Expansion operation:

 INPUT = 3 EXISTING.DOFVEC ++ . Input SVT object

 OUTPUT = 3 DESTINATION.NODVEC ++ . Output NVT object

 VALUES = 3 SPECIFYVALS.NODVEC ++ . NVT object

 DOFDAT = 3 2 7 . NDT object

STOP . Exit COP

6.3 Processor COP (Constraint Processor) 6 Pre-Processors

6.3-18 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.4 Processor GCP (Generic Constitutive Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.4-1

6.4 Processor GCP (Generic Constitutive Processor)

See Chapter 8, Constitutive Processors, which covers all related
functions, including pre-processing, solution, and post-processing phases
of COMET-AR analysis.

6.4 Processor GCP (Generic Constitutive Processor) 6 Pre-Processors

6.4-2 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.5 Processor GEP (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 6.5-1

6.5 Processor GEP (Generic Element Processor)

See Chapter 7, Element Processors, which covers all related functions,
including pre-processing, solution, and post-processing phases of
COMET-AR analysis.

6.5 Processor GEP (Generic Element Processor) 6 Pre-Processors

6.5-2 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.6 Processor PST (COMET-AR_to_PATRAN)

Revised 12/1/97 COMET-AR User’s Manual 6.6-1

6.6 Processor PST (COMET-AR_to_PATRAN)

See Chapter 14, Post-Processors, for a full description of Pro-
cessor PST pre-processing (COMET-AR_to_PATRAN) and
post-processing (PATRAN_to_COMET-AR, etc.) capabilities.

6.6 Processor PST (COMET-AR_to_PATRAN) 6 Pre-Processors

6.6-2 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.7 Processor REDO (Dataset Reformatter)

Revised 12/1/97 COMET-AR User’s Manual 6.7-1

6.7 Processor REDO (Dataset Reformatter)

6.7.1 General Description

Processor REDO reformats various datasets created by processors TAB and AUS, converting them
from the old (COMET) data structures to the new data objects required by COMET-AR. The TAB
datasets that currently need reformatting by REDO are: the model summary (JDF1.BTAB); nodal
coordinates (JLOC.BTAB); and nodal transformations (QJJT.BTAB) datasets. These are
converted to CSM.SUMMARY (CSM format), NODAL.COORDINATE (NCT format) and
NODAL.TRANSFORMATION (NTT format) datasets. The AUS datasets that currently need
reformatting are the applied nodal force and applied nodal displacement datasets, both of which are
converted from the old SYSVEC format to the new NVT format (in datasets named
NODAL.Vector) by REDO. Processor REDO also has a copy function for nodal vectors.

6.7.2 Command Summary

Processor REDO follows standard COMET-AR command interface protocol. A summary of valid
commands is given in Table 6.7-1.

6.7.3 Command Definitions

6.7.3.1 The CSM Command

The CSM command creates a COMET-AR model summary (CSM) dataset,
CSM.SUMMARY...mesh, from a TAB-generated JDF1.BTAB dataset.

Command Format:

Table 6.7-1 Processor REDO Command Summary

Command Name Function

CSM Converts model summary dataset from JDF1 format to CSM.SUMMARY (CSM) format.

NCT Converts nodal coordinate dataset from JLOC format to NODAL.COORDINATE (NCT)
format.

NTT Converts nodal transformation dataset from QJJT format to NODAL.TRANSFORMA-
TION (NTT) format.

NVT Converts nodal vector datasets from SYSVEC format to NODAL.Vector (NVT) format.

NVT /COPY Copies NODAL.Vector (NVT) datasets and creates new dataset with different name.

CSM [JDF1_ldi,] JDF1_dsname [CSM_ldi,] [CSM_dsname]

6.7 Processor REDO (Dataset Reformatter) 6 Pre-Processors

6.7-2 COMET-AR User’s Manual Revised 12/1/97

where

Only nodal summary parameters are created in the CSM summary dataset via this command. All
element summary parameters must be added subsequently by the generic element processor (ESi).

6.7.3.2 The NCT Command

The NCT command creates a COMET-AR nodal coordinate (NCT) dataset,
NODAL.COORDINATE...mesh, from a TAB-generated JLOC.BTAB dataset.

Command Format:

where

It is assumed that a CSM summary dataset, named CSM.SUMMARY...mesh, is on the data library
connected to the same ldi as the NCT dataset (i.e., NCT_ldi), and that the mesh index appearing
in the CSM dataset name is the same as that appearing in NCT_dsname.

6.7.3.3 The NTT Command

The NTT command creates a COMET-AR nodal transformation (NTT) dataset,
NODAL.TRANSFORMATION...mesh, from a TAB-generated QJJT.BTAB dataset.

Command Format:

Keyword Description

JDF1_ldi Logical device index of database input file containing JDF1 dataset. (Default: 1)

JDF1_dsname Name of JDF1 dataset (e.g., JDF1.BTAB.*).

CSM_ldi Logical device index of database input file containing CSM dataset. (Default: 1)

CSM_dsname Name of CSM dataset. (Default: CSM.SUMMARY...mesh)

NCT [JLOC_ldi,] JLOC_dsname [NCT_ldi,] NCT_dsname

Keyword Description

JLOC_ldi Logical device index of database input file containing JLOC dataset. (Default: 1)

JLOC_dsname Name of JLOC dataset (e.g., JLOC.BTAB.*).

NCT_ldi Logical device index of database input file containing NCT dataset. (Default: 1)

NCT_dsname Name of NCT dataset. (Default: NODAL.COORDINATE...mesh)

NTT [QJJT_ldi,] QJJT_dsname [NTT_ldi,] NTT_dsname

6 Pre-Processors 6.7 Processor REDO (Dataset Reformatter)

Revised 12/1/97 COMET-AR User’s Manual 6.7-3

where

It is assumed that a CSM summary dataset, named CSM.SUMMARY...mesh, is on the data library
connected to the same ldi as the NTT dataset (i.e., NTT_ldi), and that the mesh index appearing in
the CSM dataset name is the same as that appearing in NTT_dsname.

6.7.3.4 The NVT Command

The NVT command creates a COMET-AR nodal vector (NVT) dataset, NODAL.Vector...mesh,
from an AUS-generated SYSVEC dataset. A typical application of this command is to convert
applied force and displacement datasets from SYSVEC to NVT data formats.

Command Format:

where

It is assumed that a CSM summary dataset, named CSM.SUMMARY...mesh, is on the data library
connected to the same ldi as the NVT dataset (i.e., NVT_ldi), and that the mesh index appearing in
the CSM dataset name is the same as that appearing in NVT_dsname.

6.7.3.5 The NVT/COPY Command

Use of the /COPY qualifier with the NVT command indicates that both the input and output
datasets are in the NVT data format.

Command Format:

Keyword Description

QJJT_ldi Logical device index of database input file containing QJJT dataset. (Default: 1)

QJJT_dsname Name of QJJT dataset (e.g., QJJT.BTAB.*).

NTT_ldi Logical device index of database input file containing NTT dataset. (Default: 1)

NTT_dsname Name of NTT dataset. (Default: NODAL.TRANSFORMATION...mesh)

NVT [SYSVEC_ldi,] SYSVEC_dsname [NVT_ldi,] NVT_dsname

Keyword Description

SYSVEC_ldi Logical device index of database input file containing SYSVEC dataset. (Default: 1)

SYSVEC_dsname Name of SYSVEC dataset. (Example: APPL.FORC.1.1)

NVT_ldi Logical device index of database input file containing NVT dataset. (Default: 1)

NVT_dsname Name of NVT dataset. (Example: NODAL.SPEC_FORCE.1..mesh)

NVT/COPY [NVT1_ldi,] NVT1_dsname [NVT2_ldi,] NVT2_dsname

6.7 Processor REDO (Dataset Reformatter) 6 Pre-Processors

6.7-4 COMET-AR User’s Manual Revised 12/1/97

where

It is assumed that a corresponding CSM summary dataset exists for each of the NVT datasets, on
the corresponding ldi, and with corresponding mesh index.

6.7.4 Database Input/Output

6.7.4.1 Input Datasets

A summary of input datasets required by Processor REDO is given in Table 6.7-2.

6.7.4.2 Output Datasets

A summary output datasets created by Processor REDO is given in Table 6.7-3.

Keyword Description

NVT1_ldi Logical device index of database file containing input NVT dataset. (Default: 1)

NVT1_dsname Name of input NVT dataset. (Example: NODAL.SPEC_FORCE.1..mesh1)

NVT2_ldi Logical device index of database file containing output NVT dataset. (Default: 1)

NVT2_dsname Name of output NVT dataset. (Example: NODAL.SPEC_FORCE.1..mesh2)

Table 6.7-2 Processor REDO Input Datasets

Dataset Class Contents

APPL.FORC.*
APPL_DISP.*

SYS-
VEC

AUS-generated applied force and/or displacement datasets (NVT
command)

CSM.SUMMARY...mesh CSM REDO-generated model summary dataset (NCT, NTT, NVT, and
NVT/COPY commands).

JDF1.BTAB.* JDF1 TAB-generated model summary dataset (CSM command).

JLOC.BTAB.* JLOC TAB-generated nodal coordinate dataset (NCT command).

NODAL.Vector...mesh NVT Nodal vector dataset (NVT/COPY command).

QJJT.BTAB.* QJJT TAB-generated nodal transformation dataset (NTT command).

Table 6.7-3 Processor REDO Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset (CSM command).

NODAL.COORDINATE...mesh NCT Nodal coordinate dataset (NCT command).

NODAL.TRANSFORMATION...mesh JLOC Nodal transformation dataset (NTT command).

6 Pre-Processors 6.7 Processor REDO (Dataset Reformatter)

Revised 12/1/97 COMET-AR User’s Manual 6.7-5

6.7.5 Limitations

6.7.5.1 Limitation 1: Element Data

Processor REDO does not reformat element summary data via the CSM command. Such data must
be added to the CSM.SUMMARY dataset by the normal operation of the generic element
processor, (i.e., the REDO CSM command must be invoked before performing element definition).

6.7.6 Error Messages

All error messages generated by processor REDO are related to missing datasets, as:

where XXX represents the name of the missing dataset.

6.7.7 Examples and Usage Guidelines

6.7.7.1 Example 1: Reformatting Summary, Nodal Coords, and Nodal Transformations

In the above example, the model summary, nodal coordinate, and nodal transformation datasets are
converted from the TAB-generated (COMET) formats into new COMET-AR formatted datasets.
The original datasets are left unmodified.

NODAL.Vector...mesh NVT Nodal vector dataset (NVT/COPY command).

“Unable to access dataset XXX”

 run REDO

CSM JDF1.BTAB.* CSM.SUMMARY

NCT JLOC.BTAB.* NODAL.COORDINATE

NTT QJJT.BTAB.* NODAL.TRANSFORMATION

stop

Table 6.7-3 Processor REDO Input Datasets

Dataset Class Contents

6.7 Processor REDO (Dataset Reformatter) 6 Pre-Processors

6.7-6 COMET-AR User’s Manual Revised 12/1/97

6.7.7.2 Example 2: Reformatting Applied Nodal Forces and Displacements

In the above example, applied nodal force and displacement datasets are converted from AUS-
generated (COMET) SYSVEC formats into new (COMET-AR) NVT formatted datasets. The
original datasets are left unmodified.

6.7.8 References

None.

 run REDO

NVT APPL.FORC.1 NODAL.SPEC_FORCE.1

NVT APPL.MOTI.1 NODAL.SPEC_DISP.1

stop

6 Pre-Processors 6.8 Processor RENO (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.8-1

6.8 Processor RENO (Node Renumbering)

6.8.1 General Description

Processor RENO performs a simple geometrical nodal renumbering with special provisions for the
AR environment.

RENO employs a simple geometric ordering technique: an ordering direction vector is computed
as a unit vector from the lowest point in the structure to the highest one via:

where

Once the ordering direction is computed, RENO defines a plane perpendicular to the ordering
direction and moves this plane from the minimum point to the maximum point. As each nodal point
passes through that plane it is renumbered.

In practice, RENO computes a sorting weight for each node: and employs a quicksort
algorithm to sort the nodes according to their assigned weights. The resulting sorted order of the
nodes is used as the renumbering table.

Processor RENO is typically invoked by a high-level AR control procedure, such as
AR_CONTROL (via procedure L_STATIC_1), in an adaptive refinement iteration loop.

6.8.2 Command Summary

Processor RENO follows standard COMET-AR command interface protocol. A summary of valid
commands is given in Table 6.8-1.

Table 6.8-1 Processor RENO Command Summary

Command Name Function Default Value

SET MESH Specifies mesh number for renumbering 0

SET CONSTRAINT_SET Specifies constraint-set number 1

SET LDI Specifies logical device index of computational database 1

u maxX minX–
maxX minX–

--=

minXi
min

n Nnodes∈
Xi

n
 
 =

maxXi
max

n Nnodes∈
Xi

n
 
 =

w X u⋅=

6.8 Processor RENO (Node Renumbering) 6 Pre-Processors

6.8-2 COMET-AR User’s Manual Revised 12/1/97

6.8.3 Command Definitions

6.8.3.1 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data. This
number should appear as the second cycle number in names of all element and nodal datasets.

Command syntax:

where

6.8.3.2 SET LDI Command

This command defines the logical device index for the computational database.

Command syntax:

where

6.8.3.3 SET MESH Command

This command defines the mesh number for the mesh to be renumbered.

RENO/qualifier Renumber the specified mesh

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET LDI = ldi

Parameter Description

ldi Logical device index (default value: 1)

Table 6.8-1 Processor RENO Command Summary (Continued)

Command Name Function Default Value

6 Pre-Processors 6.8 Processor RENO (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.8-3

Command syntax:

where

6.8.3.4 RENO Command

This is the “go” command for processor RENO. It causes RENO to generate the renumbering
record for the mesh.

Command syntax:

where

6.8.4 Database Input/Output

6.8.4.1 Input Datasets

A summary of input datasets required by Processor RENO is given below in Table 6.8-2.

SET MESH = mesh

Parameter Description

mesh Mesh to be renumbered (default value: 0)

RENO/qualifier

Parameter Description

qualifier Renumbering option (default value: FULL):
FULL - renumber all nodes in the mesh
PARTIAL - renumber only new nodes of the specified mesh;

nodes of previous meshes retain their original
numbering.

Table 6.8-2 Processor RENO Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

NODAL.COORDINATE...mesh NCT Nodal coordinate dataset

NODAL.DOF..conset.mesh NDT Nodal DOF dataset

EltNam.DEFINITION...mesh EDT Element definition dataset

6.8 Processor RENO (Node Renumbering) 6 Pre-Processors

6.8-4 COMET-AR User’s Manual Revised 12/1/97

6.8.4.2 Output Datasets

A summary of output datasets created by Processor RENO is given in Table 6.8-3.

6.8.5 Limitations

6.8.5.1 Sub-Optimal Ordering

RENO was designed to be a quick solution with special capabilities required by the AR
environment (e.g., partial renumbering). The simple algorithm employed by RENO for
renumbering the nodes is inferior to the more advanced algorithms employed by the RSEQ
processor. Use of RENO should be limited to simple geometry problems and the s-refinement
method only, since RSEQ is not capable of partial renumbering. For s-refinement, RSEQ may be
employed for renumbering the initial mesh.

6.8.6 Error Messages

RENO contains extensive error checking. Most of the error messages printed by RENO are self-
explanatory and aim to help the user correct mistakes. Some of the errors may occur at code levels
below RENO (e.g., HDB, DB, GAL etc.) and RENO describes those errors to the best of its ability.

Table 6.8-4 summarizes the error messages related to user interface problems produced by RENO.

Table 6.8-3 Processor RENO Output Datasets

Dataset Class Contents

NODAL.ORDER...mesh* NOT Nodal ordering dataset

*—created dataset

Table 6.8-4 Processor RENO Error Messages

Index Error Message Cause Recommended User Action

1 Unknown SET variable
name encountered in RENO.

RENO user interface cover
encountered an unrecog-
nized SET variable name.

Check the spelling of variable name in the
CLIP procedure.

2 Unknown command encoun-
tered in RENO.

RENO user interface cover
encountered an unrecog-
nized COMMAND.

Check the spelling of the command in the
CLIP procedure.

6 Pre-Processors 6.8 Processor RENO (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.8-5

In addition to the above generic messages, RENO will print any relevant information regarding the
problem such as element data, nodal data and geometry information to assist the user in correcting
the error. A full trace-back printout of error messages will follow the first message, and RENO will
attempt to terminate its execution as cleanly as possible (closing opened datasets, releasing
memory allocations, etc.).

6.8.7 Examples and Usage Guidelines

6.8.7.1 Example 1: Basic Operation

In the above example, all nodal points in mesh 1 are being renumbered.

3 Old/new dataset name could
not be opened in routine
name.

RENO could not open a
certain dataset.

1. Check the execution log file; look for error
produced by processors prior to RENO execu-
tion.
2. Try to verify the particular dataset name
using the HDBprt processor.
3. Make sure that all required input datasets
are present in the database file.

4 Dataset name could not be
closed in routine name.

RENO could not close a
certain dataset.

1. Check the execution log file; look for errors
previously produced by processor RENO.
2. Verify that RENO is the ONLY PROCES-
SOR accessing the database file (is ARGx
being used in the same directory?).

5 Dataset name access prob-
lem encountered in routine
name or could not get/put/
add/update attribute name
to dataset name in routine
name.

RENO could not get/put
an attribute from/to the
dataset name table.

Verify that the particular dataset name contain
attributes required by RENO.

 *run RENO

SET MESH = 1

RENO

stop

Table 6.8-4 Processor RENO Error Messages (Continued)

Index Error Message Cause Recommended User Action

6.8 Processor RENO (Node Renumbering) 6 Pre-Processors

6.8-6 COMET-AR User’s Manual Revised 12/1/97

6.8.7.2 Example 2: Partial Renumbering

In the above example, only new nodes generated during the adaptive refinement from mesh 1 to
mesh 2 are being renumbered. Nodes that existed in mesh 1 retain their previous ordering.

6.8.8 References

None.

 *run RENO

SET MESH = 2

RENO/PARTIAL

stop

6 Pre-Processors 6.9 Processor RSEQ (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.9-1

6.9 Processor RSEQ (Node Renumbering)

6.9.1 General Description

Processor RSEQ constructs a joint elimination sequence by any one of four methods: Nested
Dissection (fill minimizer), Minimum Degree (fill minimizer), Reverse Cuthill-McKee (profile
minimizer), and Gibbs-Poole-Stockmeyer (bandwidth minimizer). The first three methods (Nested
Dissection (N/D), Minimum Degree (M/D), and Reverse Cuthill-McKee (RCM)), were all taken
from Reference [1], while the Gibbs-Poole-Stockmeyer (GPS) algorithm was taken from the
BANDIT program documentation supplied in Reference [2].

For large problems, significant savings in CPU times can usually be realized by employing one of
the four joint elimination sequences. Each of the available methods work well for some, usually
different, problems.

6.9.2 Command Summary

Processor RSEQ follows standard COMET-AR command interface protocol. A summary of RSEQ
commands is given in Table 6.9-1.

6.9.3 Command Definitions

6.9.3.1 SET/LIB Command

This command sets the GAL Library where input and output datasets for the resequencing reside.

Command Format:

Table 6.9-1 Processor RSEQ Command Summary

Command Name Function Default

SET/LIB Specifies data library with element data 1

SET/MAXCON Specifies maximum number of joints connected to a single joint 0

SET/METHOD Specifies method of nodal reordering 0

SET/MESH Specifies adaptive refinement mesh number 0

SET/CONSTRAINT Specifies constraint set for identifying input dataset 1

SET /LIB = ldi

6.9 Processor RSEQ (Node Renumbering) 6 Pre-Processors

6.9-2 COMET-AR User’s Manual Revised 12/1/97

where

6.9.3.2 SET/MAXCON Command

This command sets the maximum number of joints connected to any one joint. Using the default
value of 0 results in the automatic computation of the value of maxcon based on the assumption of
2D built-up structures. While maxcon must be set to at least the maximum connectivity of any one
joint, it may have a value larger than this maximum.

Command Format:

where

6.9.3.3 SET/METHOD Command

This command selects the method for nodal resequencing of the model.

Command Format:

where

6.9.3.4 SET/MESH Command

This command selects the adaptive refinement mesh number to use for nodal resequencing.

Keyword Description

ldi GAL Library containing element definitions and destination library for the nodal order-
ing dataset. (Default: 1)

SET /MAXCON = maxcon

Keyword Description

maxcon Maximum number of joints connected to a single joint. (Default: 0)

SET /METHOD = method

Keyword Description

method Method of determining joint elimination sequence. (Default: 0)
0 — Nested Dissection (Fill minimizer)
1 — Minimum Degree (Fill minimizer)
2 — Reverse Cuthill-McKee (profile minimizer)
3 — Gibbs-Poole-Stockmeyer (bandwidth minimizer)

6 Pre-Processors 6.9 Processor RSEQ (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.9-3

Command Format:

where:

6.9.3.5 SET/CONSTRAINT Command

This command selects the constraint set number to be used for nodal resequencing.

Command Format

where

6.9.4 Database Input/Output

6.9.4.1 Input Datasets

A summary of input datasets required by Processor RSEQ is given in Table 6.9-2.

SET /MESH = mesh

Keyword Description

mesh The adaptive refinement mesh number for the resequencing. (Default: 0)

SET /CONSTRAINT = constraint_set

Keyword Description

constraint_set Sets the constraint set for the resequencing. (Default: 1)

Table 6.9-2 Processor RSEQ Input Datasets

Dataset Type Contents

CSM.SUMMARY...mesh CSM Model summary dataset

NODAL.DOF..constraint_set.mesh NDT Nodal DOF table. Contains information about nodal free-
doms and multipoint constraints.

6.9 Processor RSEQ (Node Renumbering) 6 Pre-Processors

6.9-4 COMET-AR User’s Manual Revised 12/1/97

6.9.4.2 Output Datasets

A summary of output datasets created by Processor RSEQ is given in Table 6.9-3.

6.9.5 Limitations

In general, the Gibbs-Poole-Stockmeyer method requires the largest memory working space. The
Reverse Cuthill-McKee and Nested Dissection methods each have the same minimum space
requirement. Table 6.9-4 lists the exact memory requirements of each of the methods.

where

J = Number of Joints

M = Maximum Connectivity

 = (Number of element types)+(Record Length)+17+2(J+1)+J*M

There may be difficulties, especially with very large models, in processing a new joint sequence
with ASM (because of the space requirements of ASM). In some cases it may be impossible to run
the new elimination sequence as the new connectivity exceeds the limit on available data space.

The algorithms used in RSEQ currently do not take into account the multipoint constraints
generated by -, or -refinement. Consequently, this omission generally leads to non-optimal
equation ordering.

Table 6.9-3 Processor RSEQ Output Datasets

Dataset/Attribute Type Contents

NODAL.ORDER...mesh NOT Nodal ordering table containing a list of node numbers
arranged in the sequence to be used for equation numbering.

Table 6.9-4 Memory Requirements for RSEQ Methods

Method Space Required

Nested Dissection (N/D)

Minimum Degree (M/D)

Reverse Cuthill-McKee (RCM)

Gibbs-Poole-Stockmeyer (GPS)

Ω 3J+

Ω 7J+

Ω 3J+

Ω 9J 2+ +

Ω

hc hs

6 Pre-Processors 6.9 Processor RSEQ (Node Renumbering)

Revised 12/1/97 COMET-AR User’s Manual 6.9-5

6.9.6 Error Messages

Checks are made within RSEQ to ensure that enough work space is available. Before processing
begins, if there is not enough room to form either the adjacency arrays or the new numbering, a
message will be printed to the output file and execution will stop. The message will contain both
the space required and the space available.

In addition to checks on the amount of space available, a check is made on the amount of space that
has been allocated by the user through the SET /MAXCON command. If the value of MAXCON
is too small, execution will terminate with a message indicating the first joint at which MAXCON
was exceeded.

6.9.7 Examples and Usage Guidelines

In the above example RSEQ will renumber equations for mesh 1 using the Gibbs-Poole-
Stockmeyer algorithm.

6.9.8 References

[1] George, Alan and W-H Liu, J., Computer Solution of Large Sparse Positive Definite
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[2] Everstine, G. C., The BANDIT Computer Program for the Reduction of Matrix Bandwidth
for NASTRAN, NSRDC Report 3872, March 1972.

 RUN RSEQ

SET /MESH = 1

SET /METHOD = 3

STOP

6.9 Processor RSEQ (Node Renumbering) 6 Pre-Processors

6.9-6 COMET-AR User’s Manual Revised 12/1/97

6 Pre-Processors 6.10 Processor TAB (Tabulation of Nodal Coordinates)

Revised 12/1/97 COMET-AR User’s Manual 6.10-1

6.10 Processor TAB (Tabulation of Nodal Coordinates)

6.10.1 General Description

Processor TAB contains an array of subprocessors which are used by COMET-AR to generate
tables of node (also called joint) locations and reference frames for the structure. TAB may be used
to either (1) create new datasets, or (2) update existing datasets by replacing individual entries in
them. TAB subprocessors create datasets of which the first part of the name is the same as the name
of the subprocessor, the second part is BTAB, and the third and fourth parts are unique to each
subprocessor. These datasets are subsequently translated into High Level Database (HDB) objects
by processor REDO, described in Section 6.7.

6.10.2 Command Summary

Processor TAB follows the SPAR command syntax as described in Reference [1]. A summary of
valid commands is given in Table 6.10-1.

6.10.3 Command Definitions

6.10.3.1 START Command

When beginning a new problem, the first data line following RUN TAB must be the START
command, the syntax for which is:

Table 6.10-1 Processor TAB Command Summary

Command Name Function

START Model size declaration

JLOC Joint (node) location subprocessor

ALTREF Alternative reference frame subprocessor

JREF Joint (node) reference frame subprocessor

FORMAT Sets the format parameter for a subprocessor

UPDATE Sets the update mode on/off

NREF Sets the NREF parameter for a subprocessor

MOD Adds a constant to subsequent node numbers

ONLINE Controls amount of processor printout

START j

6.10 Processor TAB (Tabulation of Nodal Coordinates) 6 Pre-Processors

6.10-2 COMET-AR User’s Manual Revised 12/1/97

where

It is not harmful to have some unused joints (i.e. joints connected to no elements) for convenience
in interpreting the output. This should not be carried to extremes, however, since it wastes memory.

6.10.3.2 JLOC Command Subprocessor

The JLOC subprocessor produces a table containing the position coordinates of the joints (i.e.,
nodes). The data sequence on input lines is as follows:

if nj is given, a second input line must appear,

where the input parameters are as described below.

There are three possible interpretations of the above:

1) If only k, , , and are given, the ’s are interpreted as the coordinates of joint k.

2) If , ni, and ijump are given, the ’s and 's are coordinates of points A and
B, which terminate a string of ni equally-spaced joints.

3) If nj is given, a linearly interpolated two-dimensional mesh of ni by nj joints is defined.

Parameter Description

j Total number of joints in the structure.

JLOC

Parameter Description

k Joint number

Coordinates of point A

Coordinates of point B

ni Number of equally spaced points between points A and B

ijump Joint number increment between points A and B (Default = 1)

nj Number of equally spaced points between points A and C

jjump Joint number increment between points A and C (Default = 1)

Coordinates of point C

Coordinates of point D

k x1
A x2

A x3
A x1

B x2
B x3

B ni ijump nj[],[], , , ,[], , , ,

jjump x1
C x2

C x3
C x1

D x2
D x3

D, , , , , ,[]

x1
A x2

A x3
A, ,

x1
B x2

B x3
B, ,

x1
C x2

C x3
C, ,

x1
D x2

D x3
D, ,

x1
A x2

A x3
A xA

k x1
A … x3

B, , , xA xB

6 Pre-Processors 6.10 Processor TAB (Tabulation of Nodal Coordinates)

Revised 12/1/97 COMET-AR User’s Manual 6.10-3

Although the output table generated by JLOC is in rectangular coordinates relative to the global
frame, coordinate data appearing on the input lines may be in either rectangular or cylindrical
coordinates and may be relative to any frame already defined via ALTREF. The associated
command interpretations for the NREF and FORMAT commands within the JLOC subprocessor
are summarized below.

Switching among frames and between rectangular and cylindrical coordinates is unrestricted.

If cylindrical coordinates are used in connection with mesh generation, interpolation is performed
before transformation to rectangular coordinates so that regular meshes on circles, cylinders, and
cones are readily generated.

6.10.3.3 ALTREF Command Subprocessor

In addition to the global reference frame, the analyst may find it convenient to define alternate
reference frames. These frames have several uses, including the following:

1) Joint locations may be defined in any frame the analyst finds most convenient (see the
JLOC command).

2) Joint reference frame orientations may be defined using the alternate frame (see the JREF
command).

The command format for the ALTREF subprocessor is:

where

Command Meaning for JLOC subprocessor

NREF = n Coordinate data on subsequent lines are relative to frame n (until another NREF com-
mand is encountered).

FORMAT = 2 Subsequent data are in cylindrical coordinates, relative either to frame 1 (global) or to
any other frame selected by an NREF command. The convention is shown below.

FORMAT=1 Switch back to rectangular coordinates.

ALTREF

Parameter Description

k Integer identifying the alternative reference frame.

Axis numbers about which rotations are to be performed. Valid values are 1, 2, and 3, in any order.

Angles, in degrees, of rotation about the axes specified by the parameters above.

Position coordinates, relative to the global frame, of the origin of frame k. The x's need not be given
if only the orientation of frame k is of significance, which often is the case.

k i1 a1 i2 a2 i3 a3 x1 x2 x3, , , , , , , , ,

i1 i2 i3, ,
a1 a2 a3, , i1 i2 i3, ,
x1 x2 x3, ,

6.10 Processor TAB (Tabulation of Nodal Coordinates) 6 Pre-Processors

6.10-4 COMET-AR User’s Manual Revised 12/1/97

The associated command interpretations for the FORMAT commands within the ALTREF
subprocessor are summarized below.

Each frame is uniquely identified by a positive integer. The following three alternate reference
frames are generated automatically upon entering TAB.

1) Global frame: coincident with

2) coincident with

3) coincident with

While the global frame is always frame 1, frames 2 and 3 may be overwritten by the analyst. In this
case, a message warning that a predefined reference frame is being overwritten will be written to
output and execution will continue.

6.10.3.4 JREF Command Subprocessor

A unique right-hand rectangular reference frame is associated with each joint (i.e., node). Through
JREF the analyst may designate the orientation of any joint reference frame. All joint reference
frames not defined in JREF are, by default, parallel to frame 1 (global). The orientations of these
frames is of considerable significance, since joint motion components and mechanical loads
applied at joints are defined relative to the joint reference frames.

The command format for the JREF subprocessor is:

where

Command Meaning for JLOC subprocessor

FORMAT = 1 The processing sequence is: (1) rotate the local frame degrees about local axis ,
then (2) from the new position, rotate the local frame degrees about axis , then (3)
from the resulting position, rotate the local frame degrees about axis . (Default)

FORMAT = 2 The i's and a's indicate rotation of the global frame relative to frame k.

NREF = n

joint_data

Parameter Description

n Number of the alternative reference frame to be used for the joint. If n is negative then the
interpretation of the joint reference frame is as follows. The 3-axis of the joint frame is par-
allel to the three axis of frame n. The 1-axis of the joint frame is perpendicular to the 3-axis
of frame n. See the ALTREF command for details about alternative reference frames.

joint_data Set of joints in loop-limit format for which the alternate reference applies.

a1 i1
a2 i2

a3 i3

xalt xglobal

xalt yglobal

xalt zglobal

6 Pre-Processors 6.10 Processor TAB (Tabulation of Nodal Coordinates)

Revised 12/1/97 COMET-AR User’s Manual 6.10-5

6.10.3.5 NREF Command

This command is used to set the NREF parameter to apply to subsequent input for the current
subprocessor. The command format for the NREF command is:

where,

6.10.3.6 FORMAT Command

This command is used to set the FORMAT parameter to apply to subsequent input for the current
subprocessor. The command format for the FORMAT command is:

where,

6.10.3.7 UPDATE Command

This command is used to enable or disable modification of existing datasets. The command format
for the UPDATE command is:

where

The UPDATE command should immediately precede subprocessor execution commands. When
operating in the update mode, the output dataset produced in the current execution is identical to

NREF = n

Parameter Description

n A positive integer parameter used in subprocessors JLOC and JREF to specify the refer-
ence frame which applies to data on subsequent lines. This parameter is automatically
reset to its default value of 1 at the beginning of execution of a new subprocessor.

FORMAT = j

Parameter Description

j An integer parameter specifying one of the admissable formats for the current subprocessor.
Details are given in discussions of the individual subprocessors. This parameter is automati-
cally reset to its default value of 1 at the beginning of execution of a new subprocessor.

UPDATE = n

Parameter Description

n To enter the “update”' mode of operation, the command UPDATE = 1 is used. To leave
the update mode, the command UPDATE = 0 is used. (Default = 0)

6.10 Processor TAB (Tabulation of Nodal Coordinates) 6 Pre-Processors

6.10-6 COMET-AR User’s Manual Revised 12/1/97

that produced in the preceding execution, except for entries defined by the command input of the
current execution. As an example, suppose the location of joint 1742 is found to be in error. The
JLOC dataset could be repaired by the following command sequence.

6.10.3.8 MOD Command

This command is used to set the MOD parameter to apply to subsequent input for the current
subprocessor. The command format for the MOD command is:

where,

6.10.3.9 ONLINE Command

This command is used to control the amount of printout written by processor TAB. The command
format for the ONLINE command is:

where,

The ONLINE command may be used more than once within a given TAB execution.

6.10.3.10 Input Datasets

If the START command is not the first input line to TAB, the JDF1.BTAB.1.8 dataset must be
present in the computational database. In UPDATE mode, any datasets modified must be present.

UPDATE = 1

JLOC

 1742, 947.62, 1841.9 23.487

UPDATE = 0

MOD = m

Parameter Description

m A positive integer added to joint (i.e., node) numbers specified on subsequent input lines
by the JLOC or JREF commands. This parameter is automatically reset to the default
value of 0 when any of these commands is issued.

ONLINE = n

Parameter Description

n An integer that may be set to: 0 for minimum printout, 1 for normal printout or 2 for
maximum printout.

6 Pre-Processors 6.10 Processor TAB (Tabulation of Nodal Coordinates)

Revised 12/1/97 COMET-AR User’s Manual 6.10-7

6.10.3.11 Output Datasets

A summary of output datasets created by Processor TAB is given in Table 6.10-2.

6.10.4 Limitations

TAB is a processor within the COMET-AR macroprocessor. As such, there is a blank common
limit which is installation dependent. TAB will notify the user if the memory required for
processing the commands is insufficient, in which case the user can increase the blank common of
the executable.

6.10.5 Error Messages

Error messages may be printed by TAB subprocessors; messages denoted as FATAL will cause
termination of the TAB processor execution. These errors are summarized in Table 6.10-3.

Table 6.10-2 Processor TAB Output Datasets

Dataset Contents

JDF1.BTAB.1.8 Model size (Number of joints)

ALTR.BTAB.2.4 Alternate reference frame data

JLOC.BTAB.2.5 Rectangular coordinates of each joint

JREF.BTAB.2.6 Orientation of joint reference frame(s)

QJJT.BTAB.2.19 Joint reference frame orientation

Table 6.10-3 Error Messages For Processor TAB

Error Message and Meaning Subprocessor

******COORDINATE INPUT ERROR. I, J, JLOCAL,
 JOINT = xxxx
 Joint number out of range 1 to number of joints

JLOC

CORE INADEQUATE TO FORM QJ(3,3,JT). AVAIL, REQ= x JLOC, ALTREF

ERROR, K=1 NOT ALLOWED
 The global frame is always 1; therefore, alternate reference frames must start with 2.

ALTREF

***ERRORS IN INPUT PREVENT CALCULATION OF QJ(3,3,JT)
 One of the following datasets is marked in error as a result of input data errors:

ALTR.BTAB.2.4 JLOC.BTAB.2.5 JREF.BTAB.2.6

JLOC, ALTREF

FATAL ERROR. NERR, N=INCD n
 Too many data items on input line (>40)

 All

FATAL ERROR. NERR, N=JT n
 Invalid number of joints (n < 2) specified on START command.

START

6.10 Processor TAB (Tabulation of Nodal Coordinates) 6 Pre-Processors

6.10-8 COMET-AR User’s Manual Revised 12/1/97

6.10.6 Examples and Usage Guidelines

When beginning a new problem, the first data line should be a START command and the
computational data library should be empty. If the UPDATE command is used, it should appear
immediately before a subprocessor execution command. The NREF command may be used
repeatedly within the input stream of any subprocessor. At the beginning of execution of a new
subprocessor, NREF is reset to the default value.

6.10.7 References

[1] Whetstone, W. D., “Computer Analysis of Large Linear Frames,” J. Struct. Div., ASCE,
Vol. 95, No. ST11, Proc. Paper 6897, November 1969, pp. 2401-2417.

[2] Whetstone, W. D., Yen, C. L., and Jones, C. E., SPAR Structural Analysis System Ref-
erence Manual, System Level 13A: Volume 2: Theory, NASA CR 158970-2, December
1978.

FATAL ERROR. NERR, N=KORE n
 Common block size is too small by n words; must be at least 13 times the number of joints

START

FATAL ERROR. NERR, N=NREF n
 Invalid reference frame specified on NREF command; entry not defined in ALTR.BTAB.2.4

NREF

*** FATAL INPUT ERROR. NEGATIVE INDEX OR
 INSUFFICIENT CORE. NAME= xxxx

JREF

***ILLEGAL JOINT, x JREF

INPUT ERROR, JO= x
 Input data line is out of order; numeric data expected.

JLOC

UNRECOGNIZED DATA SKIPPED.
INPUT DATA ERROR, RECORD x

All

*** WARNING. ERRORS IN SOURCE DATA
 A disabled dataset was encountered.

All

*** WARNING. x SETS OF DATA MISSING, ARRAY xxxx
 This is an informational message only. The parameter x may have a negative value; for exam

ple, this would occur if a joint location was defined more than once, which is allowed within
a single execution of subprocessor JLOC.

All

Table 6.10-3 Error Messages For Processor TAB (Continued)

Error Message and Meaning Subprocessor

6 Pre-Processors 6.11 Processor NODAL

Revised 12/1/97 COMET-AR User’s Manual 6.11-1

6.11 Processor NODAL

6.11.1 General Description

Processor NODAL defines nodal quantities during COMET-AR model definition. Presently, the
only nodal quantities that can be defined with processor NODAL are lumped nodal masses to be
added to the system mass matrix.

6.11.2 Command Summary

Processor NODAL follows standard COMET-AR command interface protocol. A summary of
valid commands is given in Table 6.11-1.

6.11.3 Command Definitions

6.11.3.1 The DEFINE MASS Command

The DEFINE MASS command is used to define lumped nodal masses at selected nodes and
degrees of freedom (DOFs). The command has the following syntax.

Command Syntax:

Table 6.11-1 Processor NODAL Command Summary

Command Name Function

DEFINE MASS Converts model summary dataset from JDF1 format to CSM.SUMMARY (CSM) format.

END_DEFINE Converts nodal coordinate dataset from JLOC format to NODAL.COORDINATE (NCT)
format.

DEFINE MASS [= mass_dataset]

 MASS = mass_value NODES = nodseq DOFS = dofseq
 :
 :

END_DEFINE

6.11 Processor NODAL 6 Pre-Processors

6.11-2 COMET-AR User’s Manual Revised 12/1/97

where

The MASS phrase may be repeated as often as necessary to define all lumped masses to be added
to the system. Any nodes/DOFs not mentioned in a MASS phrase are assumed to have zero added
mass. The specification of a node/DOF more than once does not lead to an accumulation of the
mass values; but rather the last mass value specified will override.

6.11.3.2 The END_DEFINE Command

The END_DEFINE command is used to terminate any of the DEFINE commands (e.g., DEFINE
MASS), and must be entered to ensure that the DEFINE command is processed completely.

Command Syntax:

6.11.4 Database Input/Output

6.11.4.1 Input Datasets

A summary of input datasets required by Processor NODAL is given in Table 6.11-2.

Parameter Description

mass_dataset Name of the dataset in which to output the nodal masses. This dataset is of type
NVT (Nodal Vector Table). Default: NODAL.MASS (recommended!)

mass_value Value of lumped mass to be added to set of nodes and DOFs specified by NODES
and DOFS keywords.

nodseq List of nodes, in “do-loop” format, i.e., first_node, last_node, node_increment.

dofseq List of nodal DOF numbers, in arbitrary order, e.g., i1, i2, i3, ...; where in is an
integer less than the maximum number of DOFs per nodes (typically 6).

END_DEFINE

Table 6.11-2 Processor REDO Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset.

NODAL.DOFS.conset..mesh NDT Nodal DOF dataset

6 Pre-Processors 6.11 Processor NODAL

Revised 12/1/97 COMET-AR User’s Manual 6.11-3

6.11.4.2 Output Datasets

A summary output dataset created by Processor NODAL is given in Table 6.11-3.

6.11.5 Limitations

6.11.5.1 Limitation 1: Body Forces

Lumped added masses at specified nodal DOFs are applied only to the system mass matrix; they
are not used during the computation of body forces, which are assumed (at this time) to be element-
based quantities, determined from distributed load data (e.g., force per unit mass).

6.11.6 Error Messages

All error messages generated by processor NODAL are related to missing datasets, and have the
form:

where XXX represents the name of the missing dataset.

6.11.7 Examples and Usage Guidelines

6.11.7.1 Example 1: Adding a Lumped Mass to All Translational DOFs at Selected Nodes

Table 6.11-3 Processor NODAL Input Dataset

Dataset Class Contents

NODAL.MASS...mesh NVT Lumped nodal masses to be added to the system mass
matrix, defined via the DEFINE MASS command.

“Unable to access dataset XXX”

 run NODAL

DEFINE MASS = NODAL.MASS

MASS = 2.25 NODES=1,10 DOFS=1,2,3

MASS =3.25 NODES=11,20 DOFS=1,2,3

END_DEFINE

stop

6.11 Processor NODAL 6 Pre-Processors

6.11-4 COMET-AR User’s Manual Revised 12/1/97

In this example, a mass of 2.25 is added to all translational DOFs at nodes 1 through 10, and a mass
of 3.25 is added to all translational DOFs at nodes 11 through 20.

6.11.7.2 Example 2: Adding a Lumped Mass to All Rotational DOFs at All Nodes

In this example, an lumped mass of 2.25 units is added to all rotational DOFs at all nodes in the
model; the absence of the NODES phrase implies (by default) all nodes. The same is true of the
DOFS phrase. If absent, it is assumed that the MASS specification applies to all DOFS at the
specified list of nodes. If both NODES and DOFS phrases are missing, the mass value is applied
to all DOFs at all nodes.

6.11.8 References

None.

 run NODAL

DEFINE MASS = NODAL.MASS

MASS = 2.25 DOFS=4,5,6

END_DEFINE

stop

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-1

6.12 Processor GM2AM (Geometric to Analysis Model)

6.12.1 General Description

Processor GM2AM generates an initial analysis mesh (mesh 0) by refining a geometry model of
higher-order (i.e., 16-node shell) elements according to user-specified requirements.

The reference geometry mesh used by the GM2AM processor is a standard COMET-AR database
defined using either a CLIP model procedure or a PATRAN 16-node element mesh translated into
a COMET-AR database via PST. In either case, GM2AM requires the reference geometry mesh to
consist of quadrilateral 16-node shell elements (topologically equivalent to those generated by
element processors ES1p or ES7p with cubic polynomial order, i.e., p=3).

GM2AM generates the solid-model interface (SMI) hooks between the initial analysis mesh and
the reference geometry model so that the refinement processor may use the 16-node element
reference geometry mesh during all subsequent adaptive refinement operations.

GM2AM is a two-phase processor: an INITIALIZE phase followed by a REFINEMENT phase. In
the INITIALIZE phase GM2AM scans the user input and extracts the element names requested for
the analysis model. GM2AM uses these element names to generate an initialization procedure
called init_elt which must be invoked after the INITIALIZE phase (this is performed automatically
by procedure GM2AM). The purpose of the init_elt procedure is to initialize the element definition
and interpolation tables (i.e., EDT and EIT) in the analysis database by executing the DEFINE
ELEMENTS command using the appropriate element processors. A second purpose of the
INITIALIZE phase is to copy the Generic Constitutive Processor (GCP) records from the geometry
model to the analysis model database.

In the REFINEMENT phase GM2AM generates the initial analysis mesh by refining the reference
geometry model according to user-specified requirements.

Due to the two-phase execution of GM2AM, the user will find it convenient to use an “add” file
containing the requirements for generating the initial analysis mesh; “gm2am.add” is the default
name used by the generic GM2AM procedure. This “add” file may be used for both phases of
GM2AM execution without modification as described in Section 2.13.

The following sections describe the commands recognized by the GM2AM processor.

Processor GM2AM is typically executed automati-
cally for you by invoking the high-level command
procedure, GM2AM. Refer to Section 2.13 for use
of procedure GM2AM.

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-2 COMET-AR User’s Manual Revised 12/1/97

6.12.2 Command Summary

Processor GM2AM follows standard COMET-AR command interface protocol. A summary of
GM2AM commands is given below in Table 6.12-1.

6.12.3 Command Definitions

6.12.3.1 INITIALIZE Command

This is the “go” command for processor GM2AM initialization phase. It causes GM2AM to scan
user refinement requirements (i.e., from geometric elements to analysis elements) and to collect all
element names specified by the user. The collected list of element names is used by GM2AM to
construct an element initialization procedure, “init_elt.clp”, specific for the model at hand. (The
element initialization procedure, “init_elt.clp”, is used by the generic GM2AM procedure to

Table 6.12-1 Processor GM2AM Command Summary

Command Name Function Default Value

INITIALIZE Go command for the INITIALIZE phase

PROCESS_GMELTS Specifies the list of geometry model elements to be pro-
cessed

none

REFINE Go command for the REFINEMENT phase

SET CONSTRAINT_SET Specifies constraint-set number 1

SET ELEMENT_NAME Specifies the element name to be generated in the analysis
mesh by the following PROCESS_GMELTS lists

none

SET GROUP_ID Specifies group ID to be attached to each analysis mesh ele-
ment generated in each geometry element specified by the
following PROCESS_GMELTS lists

Geometry
Element ID

SET LDI_AM Specifies logical device index of analysis model database 2

SET LDI_GM Specifies logical device index of geometry model database 1

SET LOAD_SET Specifies load-set number 1

SET NEL_X Specifies number of elements to be generated along the hor-
izontal shell coordinate direction in each geometry element
specified by the following PROCESS_GMELTS lists

1

SET NEL_Y Specifies number of elements to be generated along the ver-
tical shell coordinate direction in each geometry element
specified by the following PROCESS_GMELTS lists

1

SET P Specifies the polynomial order of the element specified by
the SET ELEMENT_NAME command

none

SET STEP Specifies the load/time step number 0

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-3

initialize the element definition and interpolation tables in the analysis database by executing the
DEFINE_ELEMENT command in each of the appropriate element processors.)

The INITIALIZE phase of GM2AM must be executed prior to the REFINEMENT phase.

Command syntax:

6.12.3.2 PROCESS_GMELTS Command

This command specifies a list of geometry-model elements to be refined, in order to create an
initial analysis model. Each 16-node geometry element within the list will be refined into NEL_X
× NEL_Y element_name elements and all the relevant datasets for these elements will be added to
the analysis database.

Command syntax:

where

6.12.3.3 REFINE Command

This is the “go” command for processor GM2AM’s refinement phase. It causes GM2AM to scan
user refinement requirements and to refine the reference geometry model according to the user’s
specifications.

The INITIALIZE phase of GM2AM must be executed prior to the REFINEMENT phase.

INITIALIZE

PROCESS_GMELTS = list

Parameter Description

list List of 16-node geometry model elements to be
refined:
 = 0—process all 16-node geometry
 elements
 = Elt_ID—process a single 16-node
 geometry element
 = first,last—process all 16-node
 geometry elements
 in the range first through
 last
 = first,last,step—process all 16-node
 geometry elements
 in the range first through
 last in increment step
 (default value: none)

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-4 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

6.12.3.4 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data in both
the geometry and the analysis models. This number appears as the second cycle number in the
names of all element and nodal datasets.

Command syntax:

where

6.12.3.5 SET ELEMENT_NAME Command

This command defines the name of the next element to be generated in the analysis model by the
PROCESS_GMELTS commands that follow it. This name appears as the first component in the
names of all element datasets.

Command syntax:

where

6.12.3.6 SET GROUP_ID Command

This command the group ID for the next elements to be generated in the analysis model by the
PROCESS_GMELTS commands that follow it.

REFINE

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET ELEMENT_NAME = elt_name

Parameter Description

elt_name Element name string of the form:
 ProcName_EltType
where:
 ProcName — Element processor name
 EltType — Element type within the processor
 (default value: none)

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-5

Command syntax:

where

6.12.3.7 SET LDI_AM Command

This command defines the logical device index for the analysis database file.

Command syntax:

where

Due to dataset naming conventions in COMET-AR the analysis and geometry datasets must be in
different databases; thus, ldi_am ≠ ldi_gm.

6.12.3.8 SET LDI_GM Command

This command defines the logical device index for the geometry model database file.

Command syntax:

where

Due to dataset naming conventions in COMET-AR the analysis and geometry datasets must be in
different databases; thus, ldi_am ≠ ldi_gm.

SET GROUP_ID = group_id

Parameter Description

group_id Element group ID number
(default value: parent geometry element ID)

SET LDI_AM = ldi_am

Parameter Description

ldi_am Logical device index of the analysis model data-
base (default value: 2)

SET LDI_GM = ldi_gm

Parameter Description

ldi_gm Logical device index of the geometry model data-
base (default value: 1)

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-6 COMET-AR User’s Manual Revised 12/1/97

6.12.3.9 SET LOAD_SET Command

This command defines the load set number associated with the element data in both the geometry
and the analysis models. This number appears as the first cycle number in the names of all element
load datasets.

Command syntax:

where

6.12.3.10 SET NEL_X Command

This command defines the user refinement requirements for the “ξ” shell element natural
coordinate directions. Each 16-node geometry element specified by subsequent
PROCESS_GMELTS commands will be refined to that number of elements along the ξ-direction
of the geometry element.

Command syntax:

where

User refinement requirements are restricted to compatible meshes; that is, neighboring 16-node
geometry elements must have the same number of nodes generated along their common boundary.

6.12.3.11 SET NEL_Y Command

This command defines the user refinement requirement for the η shell-element natural coordinate
direction. Each 16-node geometry element specified by subsequent PROCESS_GMELTS
commands will be refined to that number of elements along the η-direction.

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET NEL_X = nel_x

Parameter Description

nel_x Number of elements along the shell element ξ
direction (default value: 1)

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-7

Command syntax:

where

User refinement requirements are restricted to compatible meshes; that is, neighboring 16-node
geometry elements must have the same number of nodes generated along their common boundary

6.12.3.12 SET P Command

This command defines the polynomial order of the elements which will be generated in the analysis
database by subsequent PROCESS_GMELTS commands. This value is mandatory and required
for the INITIALIZE phase of GM2AM.

Command syntax:

where

6.12.3.13 SET STEP Command

This command defines the solution step number associated with the element and nodal data in both
the geometry and the analysis models. This number appears as the second cycle number in names
of all element and nodal datasets.

Command syntax:

where

SET NEL_Y = nel_y

Parameter Description

nel_y Number of elements along the η natural-coordi-
nate direction (default value: 1)

SET P = p

Parameter Description

p Element polynomial order (default value: 0)

SET STEP = step

Parameter Description

step solution step number. (default value: 0)

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-8 COMET-AR User’s Manual Revised 12/1/97

6.12.4 Database Input/Output

6.12.4.1 Input Datasets

A summary of input datasets required by Processor GM2AM is given below in Table 6.12-2 for
the geometry model database and in Table 6.12-3 for the analysis database. The datasets listed in
Table 6.12-3 are actually output datasets during the INITIALIZE phase of GM2AM execution, and
then become input datasets during the REFINE phase of GM2AM execution.

Table 6.12-2 Processor GM2AM Input Datasets (Geometry Model)

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset

NODAL.COORDINATE NCT Nodal coordinate dataset

NODAL.DOF..conset NDT Nodal DOF dataset

NODAL.TRANSFORMATION NTT Nodal transformation dataset

NODAL.SPEC_FORCE.ldset NVT Nodal specified force dataset

NODAL.SPEC_DISP.ldset NVT Nodal specified displacement dataset

EltNam.DEFINITION EDT Element definition dataset

EltNam.INTERPOLATION EIT Element interpolation dataset

EltNam.FABRICATION EFT Element fabrication dataset

EltNam.LOAD ELT Element loads datasets

Table 6.12-3 Processor GM2AM Input Datasets (Analysis Model)

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset

EltNam.DEFINITION EDT Element definition dataset

EltNam.INTERPOLATION EIT Element interpolation dataset

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-9

6.12.4.2 Output Datasets

A summary of output datasets created by Processor GM2AM is given below in Table 6.12-4.

6.12.5 Limitations

6.12.5.1 Compatible Meshes

GM2AM is limited to compatible mesh generation. The user must ensure that neighboring 16-node
geometry model elements will be requested to refine such that each will generate the same number
of nodes along their common edges. GM2AM will abort its execution upon detection of a non-
compatible refinement request.

The compatibility of the mesh is enforced only in terms of number of nodes along common edges.
There is no restriction regarding the compatibility of the displacement field. For example, the user
may refine one 16-node geometry element into a single 9-node shell element and its neighboring
16-node element into four 4-node shell elements, generating three nodes along their common edge.
This is not recommended unless the user also plans to add some form of multi-point compatibility
constraint.

6.12.5.2 16-Node Quadrilateral Geometry Elements

GM2AM currently recognizes only 16-node quadrilateral elements. Serendipity 12-node elements,
triangular elements and 3D tri-cubic elements are not supported by GM2AM at this time.
Triangular domains may be represented as collapsed quadrilateral 16-node elements (using the

Table 6.12-4 Processor GM2AM Output Datasets (Analysis Model)

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset

NODAL.COORDINATE* NCT Nodal coordinate dataset

NODAL.DOF..conset* NDT Nodal DOF dataset

NODAL.TRANSFORMATION* NTT Nodal transformation dataset

NODAL.SPEC_FORCE.ldset* NVT Nodal specified force dataset

NODAL.SPEC_DISP.ldset NVT Nodal specified displacement dataset

EltNam.DEFINITION EDT Element definition dataset

EltNam.GEOMETRY* EGT Element geometry (solid model links) dataset

EltNam.FABRICATION* EFT Element fabrication dataset

EltNam.LOAD* ELT Element loads datasets

*—created dataset

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-10 COMET-AR User’s Manual Revised 12/1/97

standard convention in which all nodes along the third element edge are set to an identical node ID
number).

6.12.5.3 Nodal Data Limitations

The user should be cautious in specifying discrete nodal data (such as nodal forces or lumped
quantities) in the geometry model. The reason for this is that not all the nodes of the geometry
model will be active in the analysis model (e.g., be used as an analysis element nodal point). Only
the four 16-node geometry element corner nodes in the geometry model are guaranteed to be
present and active in the analysis mesh. All other nodes in the geometry model will be active in the
analysis model only if they are used as nodal points by at least one active analysis element.

For example, if a 16-node geometry element is requested to be refined into a single 4-node analysis
shell element, then only the four corner nodes will be present in the analysis model. The other
twelve nodes will not be active and their nodal information will not be part of the analysis. If, on
the other hand, the same element is requested to be refined into 3x3 4-node analysis shell elements,
all of the original 16 nodes will be active in the analysis model.

In general, concentrated nodal forces and masses are not recommended for AR.

6.12.5.4 Separate Database Files Limitations

The geometry model and the analysis model databases cannot be generated in the same file. This
restriction is due to some dataset naming convention limitations within COMET-AR. The user
must generate the geometry model database in a separate file and open both the geometry and
analysis databases prior to executing any GM2AM commands.

6.12.6 Error Messages

GM2AM contains extensive error checking. Most of the error messages printed by GM2AM are
self-explanatory and aim to help the user correct mistakes. Some of the errors may occur at code
levels below GM2AM (e.g., HDB, DB, GAL, etc.), and GM2AM describes those errors to the best
of its ability.

Table 6.12-5 summarizes the error messages produced by GM2AM that are related to user
interface problems.

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-11

Table 6.12-5 Processor GM2AM Error Messages

Index Error Message Cause Recommended User Action

1 Unknown SET variable
name encountered in
GM2AM.

GM2AM user interface cover
encountered an unrecognized
SET variable name.

Check spelling of variable name in CLIP pro-
cedure.

2 Unknown command en-
countered in GM2AM.

GM2AM user interface cover
encountered an unrecognized
command.

Check spelling of command in CLIP proce-
dure.

3 Old/new dataset name
could not be opened in rou-
tine name.

GM2AM could not open a
certain dataset.

1. Check execution log file for error produced
by processors prior to GM2AM execution.
2. Verify the particular dataset name using the
HDBprt processor.
3. Make sure that all required input datasets
are present in the database files.

4 Dataset name could not be
closed in routine name.

GM2AM could not close a
certain dataset.

1. Check the execution log file for errors previ-
ously produced by processor GM2AM.
2. Verify that GM2AM is the only processor
accessing the database file. (Is ARGx being
used in the same directory?)

5 Dataset name access prob-
lem encountered in routine
name or could not get/put/
add/update attribute name
to dataset name in routine
name.

GM2AM could not get/put an
attribute from/to the dataset
name table.

Verify that the particular dataset contains
attributes required by GM2AM (e.g., NDT
contains nontrivial data).

6 Unknown Geometry En-
tity ID encountered in
SMShlxx, entity type ID =
entityID.

The solid model interface
shell routines in GM2AM
could not locate a geometry
model entity.

Verify that the elements specified by the
PROCESS_GMELTS command are present
in the geometry model.

7 Solid Model Interface
Problem encountered in
SMShlxx.

The solid model interface
shell routines in GM2AM
could not perform their cur-
rent task.

Verify that the elements specified by the
PROCESS_GMELTS command are present
in the geometry model.

8 Convergence problem en-
countered in xxxProj, could
not locate projected point
along geometry entity type.

The solid model interface
shell routines in GM2AM
could not project a new point
into the boundaries of the cor-
responding geometry model
entity.

1. Verify that the elements specified by the
PROCESS_GMELTS command are present
in the geometry model.
2. Verify that the topology of the 16-node
geometry element being refined is correct by
inspecting the geometry model using ARGx.

9 Inconsistent refinement
request

The user specified refinement
requests that yielded differ-
ent number of nodes along a
common 16-node geometry
elements edge.

Verify that all refinement requests will yield
the same number of nodes along common 16-
node geometry element edges.

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-12 COMET-AR User’s Manual Revised 12/1/97

In addition to generic messages in Table 6.12-5, GM2AM will print any relevant information about
the problem such as element data, nodal data, and geometry information, to assist you in correcting
the error. A full trace-back printout of error messages will follow the first message, and GM2AM
will attempt to terminate its execution as cleanly as possible (by closing opened datasets, releasing
memory allocations, etc.).

6.12.7 Examples and Usage Guidelines

6.12.7.1 Example: INITIALIZE Phase

In this example, the INITIALIZE phase of GM2AM is performed. In this phase, GM2AM will
generate the “init_elt_clp” procedure which will be used to initialize the 9-ANS element (EX97)
in ES1 element processor tables. The actual initialization of the element datasets requires the
following CLIP command directives.

The above directives are automatically invoked when procedure GM2AM is used to run processor
GM2AM (see Section 2.13).

RUN GM2AM

INITIALIZE

SET ELEMENT_NAME = ES1_EX97

SET P = 2

SET NEL_X = 3

SET NEL_Y = 2

PROCESS_GMELTS = 0

STOP

*open 1 TEST.DBG

*open 2 TEST.MODEL.DBC

*add init_elt.clp

*copy 2 = 1, FABRICATIONS

copy 2 = 1, MATL.

6 Pre-Processors 6.12 Processor GM2AM (Geometric to Analysis Model)

Revised 12/1/97 COMET-AR User’s Manual 6.12-13

6.12.7.2 Example: REFINE Phase

In this example, the REFINEMENT phase of GM2AM is performed. In this phase, GM2AM will
refine each 16-node geometry element in the geometry database (logical device unit 1) into 3x2 9-
node ANS elements in the analysis model (logical device unit 2).

The shaded commands in the above box give an example of the “gm2am.add” file, which is all
that is required as command input when employing procedure GM2AM to perform the initial
analysis model creation, rather than processor GM2AM.

6.12.8 References

[1] Stanley, G., Levit, I., Hurlbut, B., and Stehlin, B., Adaptive Refinement Strategies for Shell
Structures: Part 1: Preliminary Research, NASA Contractor Report, 1991.

[2] Stanley, G., Levit, I., Hurlbut, B., Stehlin, B., Loden, W., and Swenson, L., COMET–AR:
Adaptive Refinement (AR) Manual, NASA Contractor Report, May 1991.

RUN GM2AM

SET LDI_GM = 1

SET LDI_AM = 2

REFINE

SET ELEMENT_NAME = ES1_EX97

SET P = 2

SET NEL_X = 3

SET NEL_Y = 2

PROCESS_GMELTS = 0

STOP

6.12 Processor GM2AM (Geometric to Analysis Model) 6 Pre-Processors

6.12-14 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 7.1-1

7 Element Processors

7.1 Overview

In this chapter, the generic element processor (GEP) is described as well as various specific
element-type processors that are based on the GEP architecture. The GEP is a standard processor
template, or “shell”, from which many individual element processors can be constructed. All the
individual element processors share a common user interface (i.e., commands/functions) and a
common database interface with the generic element processor. We refer to the generic element
processor shell as ES (for Element/Structural), and name each of the individual (special-purpose)
element processors ESi, where the i denotes a sequence number and/or alphanumeric string (e.g.,
ES1p or ES36, etc.). Each ESi processor performs all of the functions associated with elements of
a particular type(s). This includes pre-processing functions (e.g., element connectivity and load
definition), and solution functions (e.g., forming element force, stiffness, and stress arrays).
Regarding constitutive functions (e.g., stress and constitutive matrix calculation), these are
performed by the generic element processor via the generic constitutive processor (GCP), the
solution portion of which is embedded in each element processor as a constitutive utility library.

A summary of currently available element processors is given in Table 7.1-1. Each processor is
described in a separate section within this chapter. The ES section describes the generic commands
and relevant database entities. The ESi sections then describe the specific element types available
in processor ESi, and any element-type oriented command options and/or database parameters not
covered in the generic (ES) section.

Table 7.1-1 Outline of Chapter 7: Element Processors

Section Processor Function

7.2 ES Generic Element Processor (template for ESi)

7.3 ES1 SRI and ANS Shell Elements

7.4 ES5 STAGS Shell Element

7.5 ES6 STAGS Beam Element

7.6 ES1p Variable-p Lagrange Quadrilateral Shell Elements

7.7 ES7p ANS Shell Elts; Var. Order Quads

7.8 ES36 MIN3/6 Triangular Shell Elements

7.1 Overview 7 Element Processors

7.1-2 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-1

7.2 Processor ES (Generic Element Processor)

7.2.1 General Description

The generic element processor, or ES (for Element/Structural), provides a standard template with
which many individual structural finite-element processors may be developed and coexist as
independent modules in COMET-AR. Specific element processors built with the ES template all
have names that begin with ES (e.g., ES1p, ES7p, ES36, etc.). Each of these ESi processors
performs all operations for all element types implemented within the processor, including the
definition of element connectivity and loads during pre-processing, the formation of element force
and stiffness arrays during the primary solution phase, and the formation of strains and stresses
during the post-processing phase of a structural analysis.

This section describes the standard user command and database interfaces employed by the generic
element processor (ES) and shared by all individual ESi processors based on the ES template. All
of the standard functions performed by element processors are described in this section. (For
theoretical and developer documentation on the generic element processor, consult Reference [1].)
A special subsection is also included to indicate which ES commands may be invoked via the
convenient ES Utility Procedure, which automatically executes all element processor and types
associated with a given model. For most analyses, users will not have to directly interact with the
generic element (ES) processor or procedure except (perhaps) during model definition, via the
DEFINE ELEMENTS and DEFINE LOADS commands. Otherwise, element functions are
automatically exercised via solution procedures and their subordinate utility procedures (see Part
II of this manual).

7.2.2 Command Classes

The generic element processor (ES) commands are partitioned into several classes. A summary of
these command classes is given in Table 7.2-1. A separate subsection is then devoted to each class.

Table 7.2-1 Generic Element Processor (ES) Command Classes

Command Class Function

DEFINE Element definition commands used during pre-processing phase; includes ele-
ment connectivity, loads, and other attributes.

INITIALIZE Solution initialization command used just before solution phase.

FORM Element formation commands used during solution phase; includes force, stiff-
ness, mass, and stress formation.

RESET Element parameter reset options. Some reset parameters are mandatory.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-2 COMET-AR User’s Manual Revised 12/1/97

7.2.3 ES Processor DEFINE Commands

A summary of the DEFINE commands accessible via the generic element processor (ES) is given
in Table 7.2-2.

7.2.3.1 The DEFINE ELEMENTS Command

The DEFINE ELEMENTS command is used to define element connectivity—nodal, fabrication,
and solid-model—for elements of a particular type. The element type name must be set via the
RESET ELEMENT_TYPE command prior to issuing the DEFINE ELEMENTS command.

7.2.3.1.1 Command Syntax

The DEFINE ELEMENTS command is composed of a nested group of subcommands and
qualifiers that allows the definition of all elements of a particular type. Element nodal connectivity
is defined via a separate subcommand (ELEMENT=...) for each element, while other parameters
such as element group numbers and fabrication association may be defined via a separate phrase
that remains intact for all subsequent ELEMENT subcommands until a new definition of the
phrase is encountered. The meta-language description of the DEFINE ELEMENTS command and
its subcommands is as follows.

Table 7.2-2 Summary of ES DEFINE Commands

DEFINE Command Function

DEFINE ELEMENTS Defines element connectivity; includes nodal connectivity, material (fab-
rication) pointers, and material reference frame. This command must be
employed before any of the other commands in this section.

DEFINE LOADS Defines element applied distributed loads; includes line loads, pressures,
surface tractions, and body forces.

DEFINE FREEDOMS Defines valid element nodal freedoms for subsequent automatic freedom
suppression.

DEFINE NORMALS Defines element nodal normal vectors (for plate and shell elements only).

DEFINE DRILL_FLAGS Defines element nodal drilling stabilization flags (for plate and shell ele-
ments only)

DEFINE ATTRIBUTES Defines general element attributes (e.g., temperature, moisture, etc.)

The DEFINE ELEMENTS and DEFINE LOADS commands
are the most important commands for model definition. The
other DEFINE commands are typically invoked automatically
by various solution and utility procedures.

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-3

7.2.3.1.2 The /SOLID_MODEL Qualifier

The /SOLID_MODEL qualifier may be used to pick the solid model interface (SMI) option. The
format is:

where the available options are:

7.2.3.1.3 The /P Qualifier

The /P qualifier may be used to pick the solid model interface (SMI) option. The format is:

where polynomial_order is the element polynomial_order (e.g., 1, 2, 3, ...). This qualifier is
required only by certain element processors (e.g., see the sections on Processors ES1p and ES7p
later in this chapter).

 DEFINE ELEMENTS [/SOLID_MODEL = solid_model_option] [/p = polynomial_order]

[GROUP = group_number]

[FAB_ID = fabrication_id]

[FAB_DIR = fabrication_direction]

[FAB_ECC = fabrication_eccentricity]

[SURFACE = solid_model_surface_id]

ELEMENT = e1 NODES = n1, n2, . . . nnen [LINES = l1, l2, ..., lnle]

ELEMENT = e2 NODES = n1, n2, . . . nnen [LINES = l1, l2, ..., lnle]

:

ELEMENT = enel NODES = n1, n2, . . . nnen [LINES = l1, l2, ..., lnle]

END_DEFINE_ELEMENTS

/SOLID_MODEL = solid_model_option

solid_model_option Description

USER A user-written solid model interface will be created (see Chapter 16, Solid
Model Interface). Links to user-written subroutines will be provided via the
SURFACE and LINE subcommands within the DEFINE ELEMENTS com-
mand.

DISCRETE (Default) The initial finite-element model will suffice as the solid-model description.
(SURFACE and LINE subcommands become irrelevant.)

/P = polynomial_order

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-4 COMET-AR User’s Manual Revised 12/1/97

7.2.3.1.4 The GROUP Subcommand

The GROUP subcommand allows the user to break up the total set of elements of a particular type
into groups. The subcommand format is:

The group_number specified by this phrase remains in effect for all subsequent elements defined
via the ELEMENT subcommand until another GROUP subcommand is issued. Group numbers
should be assigned consecutively to elements. (Default: GROUP = 0)

7.2.3.1.5 The FAB_ID Subcommand

The FAB_ID subcommand is used to assign fabrication identification numbers to subsequently
defined elements. The subcommand format is:

where the fabrication_number corresponds to the number assigned to the fabrication when it is
defined via the Generic Constitutive Processor (GCP). (Default: FAB_ID = 1) The term
fabrication refers to the combination of material and cross-sectional properties. For example, a
layered shell fabrication contains information regarding the layer thicknesses, orientations, and
stacking sequence, as well as the individual layer material numbers. Refer to Chapter 8,
Constitutive Processors, for details.

7.2.3.1.6 The FAB_DIR Subcommand

The FAB_DIR subcommand may be used to orient the fabrication coordinate frame, xf, yf, zf (see
Section 2.2, Reference Frames and Coordinate Systems) relative to all subsequently defined
elements. The command format is:

where the following options are provided.

GROUP = group_number

FAB_ID = fabrication_number

FAB_DIR = fabrication_direction

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-5

For an illustration of these options, refer to Section 2.7, Orientation of Fabrication Reference
Frames.

7.2.3.1.7 The FAB_ECC Subcommand

The FAB_ECC subcommand may be used to offset the fabrication coordinate frame, xf, yf, zf (see
Section 2.2, Reference Frames and Coordinate Systems) relative to the element nodal reference
surface The command format is:

where the following options are provided. (Default: FAB_ECC = 0.)

fabrication_direction Description

ELEMENT The fabrication frame and local element stress frames coincide. (Default)

GLOBAL { X | Y | Z } The fabrication xf axis is parallel to the global xg, yg, or zg axis if X, Y, or Z, respec-
tively, is used in the subcommand. The fabrication zf axis is parallel to the local ele-
ment normal axis for shell elements, otherwise it is obtained by permuting the global
axes. The fabrication yf axis is defined by the right-hand rule.

POINT x [, θ] A reference point, x = xg, yg, zg, is connected to each element integration point by a
vector v. The fabrication yf axis is defined by taking the cross product of v and the
element local normal vector. The fabrication zf axis is parallel to the element local
normal vector. The fabrication xf axis is defined via the right-hand-rule. The optional
angle θ is used to rotate xf-yf plane counter-clockwise about the zf axis post-facto.
(Relevant only for shells.)

VECTOR v [, θ] The fabrication yf axis is defined by taking the cross product of the user-specified
vector, v = vx

g, vy
g, vz

g, and the element local normal vector. The fabrication zf axis
is assumed parallel to the element local normal vector. The fabrication xf axis is
defined via the right-hand-rule. The optional angle θ is used to rotate the xf-yf plane
counter-clockwise about the zf axis post-facto. (Relevant only for shells.)

PLANE u, v [, θ] The two user-specified vectors, u and v, given in global components, are crossed to
obtain the zf axis. The xf axis is parallel to u. The yf axis is obtained via the right-
hand rule. For shell elements, the resulting triad is projected so that zf aligns with the
element normal, and the projected xf-yf axes are then rotated by an optional angle θ
about zf.

BEAM node Node number of beam element reference point.

FAB_ECC = fabrication_eccentricity

Fabrication Type fabrication_eccentricity Description

Beam (1D) ey, ez The two eccentricities in the element local y- and z-axes of the
beam cross-section relative to the spanwise axis connecting the
element nodes. (Default: 0, 0)

Shell (2D) ez The eccentricity in the element local normal direction of the
shell thickness relative to the reference-surface connecting the
element nodes. (Default: 0)

Solid (3D) — Irrelevant.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-6 COMET-AR User’s Manual Revised 12/1/97

7.2.3.1.8 The SURFACE Subcommand

The SURFACE subcommand is relevant only if the qualifier /SOLID_MODEL=USER has been
employed with the DEFINE ELEMENT command. It links individual elements with solid model
surface IDs. The command format is:

where the solid_model_surface_id is a number defined by the user and referred to in user-written
solid-model interface definition routines (see Chapter 16, Solid Model Interface). (Default:
SURFACE = 1)

7.2.3.1.9 The ELEMENT (Nodal Connectivity) Subcommand

The ELEMENT subcommand defines nodal (and line) connectivity for each element of the type
specified by the RESET ELEMENT_TYPE command. It must be used repeatedly until all such
elements are defined. The subcommand format is:

where

7.2.3.1.10 The END_DEFINE_ELEMENTS Subcommand

This subcommand terminates the element definition session for the current element type within the
current processor. The subcommand format is:

SURFACE = solid_model_surface_id

ELEMENT = e NODES = n1, n2,, . . ., nnen [LINES = l1, l2, ..., lnle]

Parameter Description

e Element number (does not have to be sequential). These element numbers are relative to a
particular element processor/type combination. There are no “global” element numbers in
COMET-AR.

ni Global node number of element node i.

nen Number of element nodes.

li Solid-model line ID associated with element boundary i. Relevant only if
/SOLID_MODEL=USER qualifier is used with DEFINE ELEMENTS command.

nle Number of lines (i.e., 1D boundaries) per element.

END_DEFINE_ELEMENTS

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-7

7.2.3.1.11 Input Datasets

A summary of input datasets required by the DEFINE ELEMENTS command is given in
Table 7.2-3.

7.2.3.1.12 Output Datasets

A summary of output datasets created or updated by the DEFINE ELEMENTS command is given
in Table 7.2-4. Datasets marked with an asterisk are created if they don’t exist; other datasets are
simply modified.

7.2.3.2 The DEFINE LOADS Command

The DEFINE LOADS command can be used to define element loads for all elements of a particular
type, and store them in the database for subsequent recovery during the solution phase. By element
loads, we refer to distributed forces (e.g., line loads, pressures, and body forces) which require
subsequent element processing to convert them into consistent nodal forces. The purpose of the
DEFINE LOADS command is simply to store the primitive element load distributions in the
database. Consistent element nodal forces can then be subsequently computed via the FORM
FORCE/EXT command, discussed later in this section.

Table 7.2-3 Input Datasets Required by DEFINE ELEMENTS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0). Only nodal
summary parameters need be present.

Table 7.2-4 Output Datasets Created/Updated by DEFINE ELEMENTS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh; updated with element type
attributes.

EltNam.DEFINITION* EDT Element definition dataset for all elements of current element type. Con-
tains element nodal connectivity and related parameters. (EltNam denotes
the concatenation of the current element processor name and the current
element type name, i.e., EltNam = EltProc_EltTyp.)

EltNam.FABRICATION* EFT Element fabrication dataset for all elements of current element type. Con-
tains element fabrication numbers, orientation (direction) options, and
eccentricities.

EltNam.GEOMETRY* EGT Element solid-model geometry dataset for all elements of current element
type. Relevant only if the qualifier /SOLID_MODEL=USER was used
with the DEFINE ELEMENTS command.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-8 COMET-AR User’s Manual Revised 12/1/97

7.2.3.2.1 Command Syntax

The DEFINE LOADS command is composed of a nested group of subcommands and qualifiers
that allows the definition of distributed loads of a particular type (e.g., line, surface, body), for all
elements of a particular type. The meta-language description of the DEFINE LOADS command
and its subcommands is as follows.

Individual qualifiers and subcommands are described in the following subsections. The above
syntax involves “implied loops” on element group, element number, element boundary, and
element node. The default range for these loops is everything: if the optional GROUP, ELEMENT,
Boundary, and NODE subcommands are omitted, the specification of a load vector via the LOAD
command would then be applied to all nodes of all boundaries of all elements of the current type.
The current element type must be specified a priori via the RESET ELEMENT_TYPE command,
described later in this section.

7.2.3.2.2 The /Type Qualifier

The /Type qualifier must be used to indicate the type of load that is to be defined. Valid options are
described below.

 DEFINE LOADS /Type [/LIVE] [/SYSTEM = System]

[GROUP = grp1, grp2, grpinc]

[ELEMENT = elt1, elt2, eltinc]

[Boundary = bnd1, bnd2, bndinc]

[NODE = nod1, nod2, nodinc]

LOAD = load_values

 :

END_DEFINE_LOADS

Load Type Option Description

/LINE Line loads are defined as force (and/or moment) vectors per unit length. They may be applied
to 1-D elements or along the edges of 2-D and 3-D elements.

/PRESSURE Pressure loads are defined as forces per unit area that are directed normal to an element’s sur-
face. Positive pressure values are assumed to point along the “outward” normal. They are rel-
evant only for 2D (plate/shell) elements and the 2-D surfaces of 3D elements.

/SURFACE Surface loads are defined as general traction vectors (i.e., force or moment per unit element
surface area). They may be applied to 2-D elements and to the 2-D surfaces of 3D elements.

/BODY Body loads are defined as force vectors per unit mass, and may be applied to 1-D, 2-D and 3-
D elements. A typical example of a body load is gravity, where the gravitational constant, g,
is the magnitude, the direction is fixed (i.e., towards the earth), and both are constant for all
nodes and elements in the structure.

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-9

7.2.3.2.3 The /SYSTEM Qualifier

The /SYSTEM qualifier indicates the name of the coordinate system in which the specified load
components are to be interpreted. The qualifier format is:

where valid system names are

7.2.3.2.4 The /LIVE Qualifier

The optional /LIVE load qualifier may be used to designate element loads that are to be
displacement dependent. Currently, the only type of live load implemented is the live pressure
load, which is a pressure that remains normal to the element surface throughout deformation. A
common example of this type of loading is the hydrostatic pressure applied to a submerged vehicle.
To define live pressure loads, enter the command:

followed by the appropriate subcommands.

7.2.3.2.5 The GROUP Subcommand

The optional GROUP subcommand may be used to specify a range of element groups (i.e., a subset
with the current element type) to be loaded by the subsequent LOAD subcommand. The command
format is:

where the range parameters are defined as follows:

/SYSTEM = System

Load System Option Description

GLOBAL (Default) Indicates that the components of the load vector, specified via the LOAD subcommand,
are expressed in the global-Cartesian coordinate system (xg, yg, zg).

NODAL Indicates that the components of the load vector are expressed in the computational
frame (xc, yc, zc) at each node. (See Section 2.2, Reference Frames and Coordinate Sys-
tems).

ELEMENT Indicates that the components of the load vector are to be expressed in the element-Car-
tesian coordinate system (xe, ye, ze). (This system is the same as the element corotational
system and is fixed within an element.)

DEFINE LOADS /PRESSURE /LIVE

GROUP = grp1, grp2, grpinc

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-10 COMET-AR User’s Manual Revised 12/1/97

7.2.3.2.6 The ELEMENT Subcommand

The optional ELEMENT subcommand may be used to specify a range of elements (i.e., a subset
within the current element type) to be loaded by the subsequent LOAD subcommand. The
command format is:

where the range parameters are defined as follows:

If the GROUP subcommand is set to all groups, then the element range parameters refer to the
absolute element number within the group. Otherwise, the element range parameters refer to
element numbers relative to the beginning of the specified groups.

7.2.3.2.7 The “Boundary” Subcommand

The optional Boundary subcommand may be used to specify a range of element boundaries to be
loaded by the subsequent LOAD subcommand. The command format is:

where the range parameters are defined as follows:

Parameter Description

grp1 First element group in the range. (Default: 1)

grp2 Last element group in the range. (Default: Highest group number defined for current element type.)

grpinc Increment used to count from grp1 to grp2. (Default: 1)

ELEMENT = elt1, elt2, eltinc

Parameter Description

elt1 First element in the range. (Default: 1)

elt2 Last element in the range. (Default: Highest element number)

eltinc Increment used to count from elt1 to elt2. (Default: 1)

Boundary = bnd1, bnd2, bndinc

Parameter Description

Boundary Boundary type name. Must be set to LINE for line loads or SURFACE for surface
loads and pressures. Irrelevant for body loads.

bnd1 First element boundary in the range. (Default: 1)

bnd2 Last element boundary in the range. (Default: Highest element boundary number
of type Boundary)

bndinc Increment used to count from bnd1 to bnd2. (Default: 1)

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-11

7.2.3.2.8 The NODE Subcommand

The optional NODE subcommand may be used to specify a range of element boundary nodes to
be loaded by the subsequent LOAD subcommand. The subcommand format is:

where the range parameters are defined as follows:

The node numbers appearing in the NODE subcommand parameters are not global node numbers;
they are element boundary node numbers (i.e., they are relative to each element boundary). For
example, for a 4-node quadrilateral element, the element boundary node numbers on each of the
four element boundaries would range from 1 to 2. (Refer to specific ESi section for numbering
conventions.)

7.2.3.2.9 The LOAD Subcommand

The LOAD subcommand is used to specify the component(s) of the distributed load vector (or
pressure), for the range of element groups, elements, element boundaries, and element boundary
nodes indicated in the GROUP, ELEMENT, Boundary, and NODE subcommands, respectively.
The subcommand format is:

where the load_values are components defined according to the load /Type qualifier as follows:

NODE = nod1, nod2, nodnc

Parameter Description

nod1 First element boundary node in the range. (Default: 1)

nod2 Last element boundary node in the range. (Default: Highest element boundary node for the
boundaries specified via the Boundary subcommand)

nodinc Increment used to count from nod1 to nod2. (Default: 1)

LOAD = load_values

Load Type load_values

/LINE Vector of 3 nodal force components, and 3 nodal moment components (if applicable), per unit
length, in the coordinates system (i.e., reference frame) indicated by the /SYSTEM qualifier.

/PRESSURE Pressure magnitude (one number), with positive sign taken along the outward normal to the ele-
ment surfaces specified (via the Boundary subcommand).

/SURFACE Vector of 3 nodal force components, and 3 nodal moment components (if applicable), per unit
area, in the coordinates system indicated by the /SYSTEM qualifier.

/BODY Vector of 3 nodal force components (nodal body moments are not accepted), per unit mass, in
the coordinate system indicated by the /SYSTEM qualifier. (These loads are scaled by the ele-
ment mass density, defined via the Generic Constitutive Processor, when body loads are con-
verted into consistent nodal forces during the FORM FORCE command.)

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-12 COMET-AR User’s Manual Revised 12/1/97

7.2.3.2.10 The END_DEFINE_LOADS Subcommand

This subcommand terminates the element load definition session for the current load type and
element type within the current element processor. The subcommand format is:

7.2.3.2.11 Input Datasets

A summary of input datasets required by the DEFINE LOADS command is given in Table 7.2-5.

7.2.3.2.12 Output Datasets

A summary of output datasets created or updated by the DEFINE LOADS command is given in
Table 7.2-6. Datasets marked with an asterisk are created if they don’t exist; other datasets are
simply modified.

7.2.3.3 The DEFINE FREEDOMS Command

The DEFINE FREEDOMS command can be used to generate a table of potentially active nodal
degrees of freedom (DOFs) based on all elements previously defined with an ESi processor. This
table is output to the database as a Nodal Definition Table (NDT) dataset called
ELEMENT_NODAL.DOFS. This dataset is first initialized then updated cumulatively by each ESi
processor for which the DEFINE FREEDOMS command is invoked.

END_DEFINE_LOADS

Table 7.2-5 Input Datasets Required by DEFINE LOADS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current element type, where Elt-
Nam = EltProc_EltTyp is defined via the RESET ELEMENT_TYPE command.

Table 7.2-6 Output Datasets Created/Updated by DEFINE LOADS Command

Dataset Class Contents

EltNam.LOAD.ldset* ELT Element load definitions for all elements of element type EltTyp within ele-
ment processor EltProc (EltNam=EltProc_EltTyp) for load set ldset, where
EltNam and ldset are defined via prior RESET commands. (See RESET
command later in this section).

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-13

The DEFINE FREEDOMS command is automatically invoked via the INITIALIZE utility
procedure (for all participating element processors), when the user selects the AUTO_DOF_SUP
option at the solution procedure level.

7.2.3.3.1 Command Syntax

The format of the DEFINE FREEDOMS command is simply:

where elt_dof_dataset is the name of the element nodal DOF table (class NDT), which defaults to
NODAL.ELT_DOF.

7.2.3.3.2 Input Datasets

A summary of input datasets required by the DEFINE FREEDOMS command is given in
Table 7.2-7.

DEFINE FREEDOMS [= elt_dof_dataset]

Table 7.2-7 Input Datasets Required by DEFINE FREEDOMS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current element type,
where EltNam = EltProc_EltTyp is defined via the RESET
ELEMENT_TYPE command.

NODAL.COORDINATE NCT Nodal coordinates.

NODAL.TRANSFORMATION NTT Nodal transformation matrices, representing orientation of compu-
tational coordinate system: xc,yc,zc.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-14 COMET-AR User’s Manual Revised 12/1/97

7.2.3.3.3 Output Datasets

A summary of output datasets created or updated by the DEFINE FREEDOMS command is given
in Table 7.2-8. Datasets marked with an asterisk are created if they don’t exist; other datasets are
simply modified.

7.2.3.4 The DEFINE NORMALS Command

The DEFINE NORMALS command generates a dataset called NODAL.NORMALS which
contains the average element-normal vectors for all shell elements attached to each node in the
model. The average shell element normal vectors are used for defining drilling DOF stabilization
flags (see the DEFINE DRILL_FLAGS command).

The DEFINE NORMALS command is automatically invoked by the INITIALIZE Utility
Procedure (for all participating element processors) when the user selects either the
AUTO_DRILL or AUTO_TRIAD option from a solution procedure (e.g. AR_CONTROL).

7.2.3.4.1 Command Syntax

The format of the DEFINE NORMALS command is simply:

with no optional qualifiers or subcommands.

7.2.3.4.2 Input Datasets

A summary of input datasets that are required by the DEFINE NORMALS command is given in
Table 7.2-9.

Table 7.2-8 Output Datasets Created/Updated by DEFINE FREEDOMS Command

Dataset Class Contents

NODAL.ELT_DOF* NDT Nodal DOF table indicating potentially active DOFs at nodes based on the
type and orientation of the elements attached there. The attribute STATES
indicates which nodal DOFs have sufficient element stiffness to be active.
Such STATES are given the value qFREE; others are given the value
qSPCz (for single-point constraint with value zero). This element_nodal
DOF table may later be merged with the final nodal DOF table (which
includes actual model boundary conditions) via processor COP, as is done
automatically when the user selects the AUTO_DOF_SUP option from
any solution procedure.

DEFINE NORMALS

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-15

7.2.3.4.3 Output Datasets

A summary of output datasets created or updated by the DEFINE NORMALS command is given
in Table 7.2-10. Datasets marked with an asterisk are created if they don’t exist; other datasets are
simply modified.

7.2.3.5 The DEFINE DRILL_FLAGS Command

The DEFINE DRILL_FLAGS command generates or updates a dataset NODAL.DRILL_FLAGS,
which contains an integer flag for each node in the model indicating whether or not stabilization is
needed for the shell-element drilling rotation DOF at that node. This stabilization may take the
form of artificial drilling stiffness (if the AUTO_DRILL solution procedure argument is <true>)
or re-orientation of the computational directions (if the AUTO_TRIAD solution procedure
argument is <true>).

The DEFINE DRILL_FLAGS command is invoked automatically via the INITIALIZE Utility
Procedure (for every participating element processor) when the user selects either the
AUTO_DRILL or AUTO_TRIAD option from a solution procedure (e.g., AR_CONTROL).

Table 7.2-9 Input Datasets Required by DEFINE NORMALS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current element
type, where EltNam = EltProc_EltTyp is defined via the RESET
ELEMENT_TYPE command.

NODAL.COORDINATE NCT Nodal coordinates.

NODAL.TRANSFORMATION NTT Nodal transformation matrices, representing orientation of com-
putational coordinate system: xc,yc,zc.

Table 7.2-10 Output Datasets Created/Updated by DEFINE NORMALS Command

Dataset Class Contents

NODAL.NORMAL* NAT Table of average nodal normal (unit) vectors, ranging over all nodes in the
model. Each column of the table thus consists of a vector, nA = { nA

x, nA
y, nA

z},
where A is the node number and x, y, z denote global-cartesian components of
the normal vector. This table is initialized to zero and updated by accumulating
contributions from all model shell-element processors. The accumulated normal
vectors at each node are then normalized to become unit vectors by the last
active element processor/type in the model.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-16 COMET-AR User’s Manual Revised 12/1/97

7.2.3.5.1 Command Syntax

The format of the DEFINE DRILL_FLAGS command is:

with no optional qualifiers or subcommands.

7.2.3.5.2 Input Datasets

A summary of input datasets required by the DEFINE DRILL_FLAGS command is given in
Table 7.2-11.

7.2.3.5.3 Output Datasets

A summary of output datasets created or updated by the DEFINE DRILL_FLAGS command is
given in Table 7.2-12. Datasets marked with an asterisk are created if they don’t exist; others are
simply modified.

7.2.3.6 The DEFINE ATTRIBUTES Command

The DEFINE ATTRIBUTES command may be used to define and store the database arbitrary
element data, at element integration points, nodes, or centroids. Data is stored in an EAT (generic
Element Attributes Table), called EltNam.Attribute, where the Attribute name is user-specified.

DEFINE DRILL_FLAGS

Table 7.2-11 Input Datasets Required by DEFINE DRILL_FLAGS Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current element type, where Elt-
Nam = EltProc_EltTyp is defined via the RESET ELEMENT_TYPE command.

NODAL.COORDINATE NCT Nodal coordinates.

NODAL.NORMALS NTT Average nodal normals generated via the DEFINE NORMALS command.

Table 7.2-12 Output Datasets Created/Updated by DEFINE DRILL_FLAGS Command

Dataset Type Contents

NODAL.DRILL_FLAG* NAT Table of nodal drilling flags with integer values = 0 (false) if drilling sta-
bilization is not required at the node, or 1 (true) if drilling stabilization is
required.

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-17

7.2.3.6.1 Command Syntax

The DEFINE ATTRIBUTES command syntax is shown below.

where the individual qualifiers and subcommands are described below.

The command syntax involves implied loops on element groups, element numbers, and element
points. The default range for these loops is everything: if the optional GROUP, ELEMENT, or
POINT subcommands are omitted, the specification of element attributes via the ATTRIBUTE
subcommand would then be applied to all points of all elements of the current type. The current
element type must be specified a priori via the RESET ELEMENT_TYPE command.

7.2.3.6.2 The END_DEFINE_ATTRIBUTES Subcommand

This subcommand terminates the element attribute definition session for the current attribute type
and element type within the current element processor. The subcommand format is:

 DEFINE ATTRIBUTES [ldi,] Attrib_name /NUMBER=num_attrib /LOC = attrib_loc

[GROUPS = grp1, grp2, grpinc]

[ELEMENTS = elt1, elt2, eltinc]

[POINTS = pt1, pt2, ptinc]

ATTRIBUTES = att1, att2, . . ., num_attrib

 :

END_DEFINE_ATTRIBUTES

Parameter Description

ldi Logical device index of computational database. (Default: 1)

Attrib_name Attribute name; dataset name = EltNam.Attrib_name

num_attrib Number of attributes (i.e., variables) per element point

attrib_loc Location name: INTEG_PTS, NODES, or CENTROIDS. (Default: CENTROIDS)

grp1, grp2, grpinc First, last, and increment in element group range. (Default: All groups)

elt1, elt2, eltinc First, last, and increment in element range. If all groups are specified, then elt1 and elt2
refer to the absolute element number within the current element type. Otherwise, elt1
and elt2 refer to the relative element number within each specified group. (Default: All
elements in groups specified by GROUPS subcommand)

pt1, pt2, ptinc First, last, and increment in element point range. Element points refer to element nodes
if attrib_loc=NODES, or element integration points if attrib_loc=INTEG_PTS. Irrele-
vant for attrib_loc=CENTROIDS. (Default: All points of type attrib_loc with specified
element range)

att1, att2, . . ., num_attrib List of attributes 1 through num_attrib to be stored at the elements/locations indicated
by the GROUP, ELEMENT, and POINT subcommands.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-18 COMET-AR User’s Manual Revised 12/1/97

7.2.3.6.3 Input Datasets

A summary of input datasets required by the DEFINE ATTRIBUTES command is given in
Table 7.2-13.

7.2.3.6.4 Output Datasets

A summary of output datasets created or updated by the DEFINE ATTRIBUTES command is
given in Table 7.2-14. Datasets marked with an asterisk are created if they don’t exist; others are
simply modified.

7.2.4 ES Processor INITIALIZE Command

The INITIALIZE command must be used between the model definition (DEFINE commands) and
solution (FORM commands) phases of the analysis to generate or initialize certain datasets that are
employed in subsequent solution tasks. The INITIALIZE command accomplishes three functions:

1) Creation of element interpolation datasets (i.e., EltNam.INTERPOLATION), required
during later element error estimation;

2) Creation of element auxiliary storage datasets (i.e., EltNam.AUX_STORAGE), optionally
required by certain element (ESi) processors; and

3) Initialization of constitutive datasets via the embedded generic constitutive processor
(GCP).

END_DEFINE_ATTRIBUTES

Table 7.2-13 Input Datasets Required by the DEFINE ATTRIBUTES Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current type, where EltNam =
EltProc_EltTyp is defined via the RESET ELEMENT_TYPE command.

Table 7.2-14 Output Datasets Created/Updated by DEFINE LOADS Command

Dataset Class Contents

EltNam.Attrib_Name* EAT Table of element attributes. The location (i.e., points) within the element and
the number of attributes at each point are specified via the DEFINE
ATTRIBUTES command parameters attrib_loc and num_attrib, as is the
attribute name, Attrib_Name. (All attributes created by this command are
stored as floating point values.)

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-19

The INITIALIZE command is automatically invoked by most Solution Procedures (via the
INITIALIZE and ES Utility Procedures) at the beginning of the analysis and after every adaptive
mesh update.

7.2.4.1 Command Syntax

The format of the INITIALIZE command is:

with no optional command qualifiers or subcommands.

7.2.4.1.1 Input Datasets

A summary of input datasets required by the INITIALIZE command is given in Table 7.2-15.

7.2.4.1.2 Output Datasets

A summary of output datasets created or updated by the INITIALIZE command is given in
Table 7.2-16. Datasets marked with an asterisk are created.

INITIALIZE

Table 7.2-15 Input Datasets Required by the INITIALIZE Command

Dataset Class Contents

CSM.SUMMARY CSM Model summary dataset for the initial mesh (0).

EltNam.DEFINITION EDT Element definition dataset for all elements of current element
type, where EltNam = EltProc_EltTyp is defined via the
RESET ELEMENT_TYPE command.

NODAL.COORDINATE NCT Nodal coordinate table.

NODAL.TRANSFORMATION NTT Nodal transformation (global-to-computational) table.

Constitutive Datasets GCP Material and fabrication properties and pointers.

Table 7.2-16 Output Datasets Created/Updated by INITIALIZE Command

Dataset Class Contents

EltNam.INTERPOLATION* EIT Element interpolation, extrapolation, and numerical integration data;
necessary for subsequent error estimation and post-processing.

EltNam.AUX_STORAGE* EAT Element auxiliary data; required only by certain element (ESi) pro-
cessors.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-20 COMET-AR User’s Manual Revised 12/1/97

7.2.5 ES Processor FORM Commands

FORM commands (Table 7.2-17) are used to form the element arrays required during the solution
phase of a COMET-AR analysis. These arrays include element force vectors, stiffness, and mass
matrices which are employed during the primary solution phase to obtain a global displacement
solution; and element strains, stresses, and strain energy densities, which can be computed after the
displacement solution has been obtained (i.e., during the secondary solution phase).

All of the FORM commands may be invoked indirectly via the ES Utility Procedure, which
automatically runs all relevant ESi processors and element types with a single procedure call.

7.2.5.1 The FORM FORCE Command

The FORM FORCE command is used to form element force vectors (internal, external, or residual)
for all elements of a given type (as specified a priori by the RESET ELEMENT_TYPE command)
within the currently running element (ESi) processor. Element force vectors are not stored in the
database, but rather assembled directly into a system force vector.

Constitutive Datasets* GCP Various constitutive datasets and files managed by the GCP are
opened and initialized by this command. For example, the initial inte-
grated constitutive matrix is computed and stored for beam/shell ele-
ments with linear material properties. For nonlinear materials,
historical data files are opened and initialized. (See Chapter 8, Consti-
tutive Processors)

Table 7.2-17 Summary of ES FORM Commands

FORM Command Function

FORM FORCE [/INT/EXT/RES] Forms and assembles element force vectors.

FORM STIFFNESS [/MATL/GEOM/LOAD/TANG] Forms element stiffness matrices.

FORM MASS [/CONS/DIAG] Forms element mass matrices; assembles if diago-
nal matrix.

FORM STRAIN Forms element strains.

FORM STRESS Forms element stresses.

FORM STRAIN_ENERGY Forms elt. strain energy densities.

Table 7.2-16 Output Datasets Created/Updated by INITIALIZE Command (Continued)

Dataset Class Contents

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-21

7.2.5.1.1 Command Syntax

The FORM FORCE command has the following syntax:

where the following are valid command qualifiers.

7.2.5.1.2 Input Datasets

Input datasets required by the FORM FORCE commands are listed in Table 7.2-18.

FORM FORCE [/Qualifier]

Qualifier Description

INTERNAL Indicates element internal force vectors are to be formed and assembled into a system force vec-
tor. The internal force vector is defined as the set of element nodal forces which depends explic-
itly on the element internal stress distribution (and possibly on initial strains or temperatures). In a
conservative system, this vector emanates from the first variation of the element strain energy
functional. (For statistics problems, the internal force vector is equivalent (in both magnitude and
direction) to the external force vector at nodes where external forces are applied, and equivalent
to reaction forces at nodes where displacements are applied.)

EXTERNAL Indicates element external force vectors are to be formed and assembled into a system force vec-
tor. The external force vector is defined as the set of consistent element nodal forces correspond-
ing to the distributed loads specified via the DEFINE LOADS command.

RESIDUAL
(Default)

Indicates element residual force vectors are to be formed and assembled into a system force vec-
tor. The residual force vector is defined as the difference between the external and internal force
vectors, i.e., fres = fext - f int

Table 7.2-18 Input Datasets Required by the FORM FORCE Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET
MESH command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current ele-
ment type. (See RESET ELEMENT_TYPE command).

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication
numbers, orientation, and eccentricity.

EltNam.LOAD.ldset..mesh ELT Element load table for load set number ldset, as specified
via the RESET LOAD_SET command. (This dataset is
irrelevant for INTERNAL forces.)

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational
transformation matrices or triads).

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-22 COMET-AR User’s Manual Revised 12/1/97

7.2.5.1.3 Output Datasets

Output datasets created/updated by the FORM FORCE command are listed in Table 7.2-19.
Datasets marked with an asterisk are created if they don’t exist.

7.2.5.2 The FORM STIFFNESS Command

The FORM STIFFNESS command is used to form element stiffness matrices (material, geometric,
load, or tangent) for all elements of the type pre-specified by the RESET ELEMENT_TYPE
command, within the currently running ESi processor. Element stiffness matrices are stored in the
database in an element matrix table (EMT) dataset, for subsequent system assembly.

7.2.5.2.1 Command Syntax

The FORM STIFFNESS command has the following syntax:

Nodal Displacement Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NVT Nodal displacement vector table. Dataset name may be
reset via RESET DISPLACEMENT command.

Nodal Rotation Dataset

(Default name:
NODAL.ROTATION.step..mesh)

NAT Nodal rotation (pseudovector) table. Dataset name may
be reset via RESET ROTATION command.

Constitutive Datasets GCP Material and fabrication datasets, and constitutive histor-
ical data (if necessary) managed by the GCP (see Chap-
ter 8, Constitutive Processors).

Table 7.2-19 Output Datasets Created/Updated by FORM FORCE Command

Dataset Class Contents

Nodal Force Dataset*

(Default name: NODAL.FORCE)

NVT Assembled nodal force vectors, containing INTERNAL,
EXTERNAL, or RESIDUAL forces, depending on com-
mand qualifier.

FORM STIFFNESS [/Qualifier]

Table 7.2-18 Input Datasets Required by the FORM FORCE Commands (Continued)

Dataset Class Contents

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-23

where the following are valid command qualifiers:

7.2.5.2.2 Input Datasets

Input datasets required by the FORM STIFFNESS command are listed in Table 7.2-20.

Qualifier Description

MATERIAL Indicates element material stiffness matrices are to be formed and stored in the database.
The material stiffness matrix, Kmatl, is defined as that part of the tangent (or total) stiffness
matrix which depends explicitly on material properties via the linearized material constitu-
tive (stress/strain) matrix. For linear response analysis, Kmatl is equivalent to the tangent
stiffness, K tang.

GEOMETRIC Indicates element geometric stiffness matrices are to be formed and stored in the database.
The geometric stiffness matrix, Kgeom, is defined as that part of the tangent (or total) stiff-
ness matrix which depends explicitly on stresses. It is obtained by linearization of the
strain-displacement relations, and is often called the initial-stress stiffness matrix. It is
needed for both buckling eigenvalue analysis and for nonlinear analysis.

LOAD Indicates element load stiffness matrices are to be formed. The load stiffness matrix,
K load, is defined as that part of the tangent stiffness matrix emanating from displacement-
dependent loads (e.g., live pressures and other follower forces). It is needed only for cer-
tain linear buckling problems in which follower forces affect the critical load. For nonlin-
ear analysis it is typically only of marginal importance. (The LOAD stiffness option is
currently untested in COMET-AR.)

TANGENT (Default) Indicates element tangent stiffness matrices are to be formed and stored in the database.
The tangent (or total) stiffness matrix, K tang, is defined as the derivative of the element
residual force vector with respect to the element displacement vector, i.e.,

which includes all pertinent effects (material, geometric, and load stiffnesses) and hence
should be used in conjunction with any form of nonlinear analysis, including eigenanalysis
about a nonlinear load state.

Table 7.2-20 Input Datasets Required by the FORM STIFFNESS Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET MESH
command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current element
type. (See RESET ELEMENT_TYPE command.)

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication num-
bers, orientation, and eccentricity.

EltNam.LOAD.ldset..mesh ELT Element load table for load set number ldset, as specified via
the RESET LOAD_SET command. (This dataset is used only
if the load stiffness is included via the /LOAD qualifier or the
RESET NL_LOAD command.)

K tang
d∂

∂ f int
d∂

∂ f ext– K matl K geom+() K load+= =

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-24 COMET-AR User’s Manual Revised 12/1/97

7.2.5.2.3 Output Datasets

Output datasets created/updated by the FORM STIFFNESS command are listed in Table 7.2-21.
Datasets marked with an asterisk are created if they don’t exist.

7.2.5.3 The FORM MASS Command

The FORM MASS command is used to form element mass matrices (consistent or lumped) for all
elements of the type pre-specified by the RESET ELEMENT_TYPE command, within the
currently running ESi processor. Element consistent mass matrices are stored in the database in an
element matrix table (EMT) dataset for subsequent system assembly. Element lumped (i.e.,
diagonal) mass matrices are assembled directly into a nodal vector (NVT) dataset representing the
entire model.

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational transfor-
mation matrices or triads).

Nodal Displacement Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NVT Nodal displacement vector table. Dataset name may be reset
via RESET DISPLACEMENT command. Relevant only for
geometrically nonlinear analysis (see RESET NL_GEOM
command) or in conjunction with the /GEOMETRIC stiffness
qualifier.

Nodal Rotation Dataset

(Default name:
NODAL.ROTATION.step.mesh)

NAT Nodal rotation (pseudovector) table. Dataset name may be
reset via RESET ROTATION command. Relevant only for
geometrically nonlinear analysis (see RESET NL_GEOM
command).

Constitutive Datasets GCP Material and fabrication datasets, and constitutive historical
data (if necessary), managed by the GCP (see Chapter 8, Con-
stitutive Processors).

Table 7.2-21 Output Datasets Created/Updated by FORM STIFFNESS Command

Dataset Class Contents

Element Matrix Dataset*

(Default name:
EltNam.STIFFNESS...mesh)

EMT Element stiffness matrices of type material, geometric, load, or tan-
gent, depending on the command qualifier. These matrices are stored
in symmetric, upper triangular form. The dataset name may be
changed via the RESET STIFFNESS command.

Table 7.2-20 Input Datasets Required by the FORM STIFFNESS Commands (Continued)

Dataset Class Contents

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-25

7.2.5.3.1 Command Syntax

The FORM MASS command has the following syntax:

where the following are valid command qualifiers:

7.2.5.3.2 Input Datasets

Input datasets required by the FORM MASS command are listed in Table 7.2-22.

7.2.5.3.3 Output Datasets

Output datasets created/updated by the FORM MASS command are listed in Table 7.2-23.
Datasets marked with an asterisk are created if they don’t already exist.

FORM MASS [/Qualifier]

Qualifier Description

CONSISTENT
(Default)

Indicates element consistent mass matrices are to be formed and output to the database in
an element matrix table (EMT) dataset.

DIAGONAL Indicates element diagonal (lumped) mass matrices are to be formed and assembled
directly into a nodal vector table (NVT) dataset

Table 7.2-22 Input Datasets Required by the FORM MASS Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET MESH
command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current element
type. (See RESET ELEMENT_TYPE cmd.)

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication num-
bers, orientation and eccentricity.

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational transfor-
mation matrices or triads).

Constitutive Datasets GCP Mass properties, such as density and mass moments of inertia,
depending on element/fabrication type. (See Chapter 8, Con-
stitutive Processors)

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-26 COMET-AR User’s Manual Revised 12/1/97

7.2.5.4 The FORM STRAIN Command

The FORM STRAIN command is used to compute element strains for all elements of a given type
(as specified a priori by the RESET ELEMENT_TYPE command) within the currently running
element (ESi) processor. Element strains are stored in the database in an element stress/strain table
(EST) dataset. They may be computed and stored at element integration points, element nodes, or
element centroids, depending on the RESET STR_LOCATION command. The reference frame
(xs,ys,zs) in which the strain components are expressed depends on the RESET STR_DIRECTION
command; whether they are pointwise or resultant quantities depends on the element type.

7.2.5.4.1 Command Syntax

The FORM STRAIN command has the following syntax:

with no command qualifiers or subcommands.

7.2.5.4.2 Input Datasets

Input datasets required by the FORM STRAIN command are listed in Table 7.2-24.

Table 7.2-23 Output Datasets Created/Updated by FORM MASS Command

Dataset Class Contents

Element Matrix Dataset*
(if /CONSISTENT mass)

EMT Element consistent mass matrices, stored in symmetric, upper trian-
gular form. (Default dataset name: EltNam.MASS...mesh)

Nodal Vector Dataset*
(if /DIAGONAL mass)

NVT Assembled diagonal mass matrices in a nodal vector format.
(Default dataset name: NODAL.DIAG_MASS...mesh)

FORM STRAIN

Table 7.2-24 Input Datasets Required by the FORM STRAIN Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET MESH
command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current element
type. (See RESET ELEMENT_TYPE command)

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication num-
bers, orientation and eccentricity.

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-27

7.2.5.4.3 Output Datasets

Output datasets created/updated by the FORMSTRAIN command are listed in Table 7.2-25.
Datasets marked with an asterisk are created if they don’t already exist; others are simply updated.

7.2.5.5 The FORM STRESS Command

The FORM STRESS command is used to compute element stresses for all elements of a given type
(as specified a priori by the RESET ELEMENT_TYPE command) within the currently running
element (ESi) processor. Element stresses are stored in the database in an element stress/strain
table (EST) dataset. They may be computed and stored at element integration points, element
nodes, or element centroids, depending on the RESET STR_LOCATION command. The reference
frame (xs,ys,zs) in which the stress components are expressed depends on the RESET
STR_DIRECTION command; whether they are pointwise or resultant quantities depends on the
element type.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational transfor-
mation matrices, or triads).

Nodal Displacement Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NVT Nodal displacement vector table. Dataset name may be reset
via the RESET DISPLACEMENT command. (See also the
RESET STEP and RESET MESH commands for definition of
step and mesh numbers in the dataset name.)

Nodal Rotation Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NAT Nodal rotation (pseudovector) table. Dataset name may be
reset via the RESET ROTATION command. (See also the
RESET STEP and RESET MESH commands.)

Table 7.2-25 Output Datasets Created/Updated by FORM STRAIN Command

Dataset Class Contents

Element Strain Dataset

(Default name: EltNam.STRAIN.step..mesh)

EST Element strains expressed in the coordinate system indicated
by the RESET STR_DIRECTION command. Element strains
may be computed and stored either at element integration
points (STR attribute), element nodes (STRNOD attribute), or
element centroids (STRCEN attribute), depending on the
RESET STR_LOCATION command. All three locations
(attributes) may be stored in the same dataset, via three sepa-
rate applications of the FORM STRAIN command. The
dataset name may be changed by reseting STRAIN,
LOAD_SET, CONSTRAINT_SET, STEP, and/or MESH via
the RESET command.

Table 7.2-24 Input Datasets Required by the FORM STRAIN Commands (Continued)

Dataset Class Contents

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-28 COMET-AR User’s Manual Revised 12/1/97

7.2.5.5.1 Command Syntax

The FORM STRESS command has the following syntax:

with no command qualifiers or subcommands.

7.2.5.5.2 Input Datasets

Input datasets required by the FORM STRESS command are listed in Table 7.2-26.

7.2.5.5.3 Output Datasets

Output datasets created/updated by the FORM STRESS command are listed in Table 7.2-27.
Datasets marked with an asterisk are created if they don’t already exist; others are simply updated.

FORM STRESS

Table 7.2-26 Input Datasets Required by the FORM STRESS Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET MESH
command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current element
type. (See RESET ELEMENT_TYPE cmd.)

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication num-
bers, orientation and eccentricity.

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational transfor-
mation matrices, or triads).

Nodal Displacement Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NVT Nodal displacement vector table. Dataset name may be reset
via the RESET DISPLACEMENT command. (See also the
RESET STEP and RESET MESH commands.)

Nodal Rotation Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NAT Nodal rotation (pseudovector) table. Dataset name may be
reset via the RESET ROTATION command. (See also the
RESET STEP and RESET MESH commands.)

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-29

7.2.5.6 The FORM STRAIN_ENERGY Command

The FORM STRAIN_ENERGY command is used to compute element strain energy densities for
all elements of a given type (as specified a priori by the RESET ELEMENT_TYPE command)
within the currently running element (ESi) processor. Element strain energy densities are stored in
the database in an element stress/strain table (EST) dataset. They may be computed and stored at
element integration points, element nodes or element centroids, depending on the RESET
STR_LOCATION command; whether they are pointwise or resultant (i.e., pre-integrated over the
cross-section) quantities depends on the element type. For example, pointwise strain energy
densities will be in units of strain energy per unit volume for continuum (3D) elements; and
resultant strain energy densities would be in units of strain energy per unit reference-surface area
for shell (2D) elements, and per unit reference-axis length for beam (1D) elements.

7.2.5.6.1 Command Syntax

The FORM STRAIN_ENERGY command has the following syntax:

with no command qualifiers or subcommands.

7.2.5.6.2 Input Datasets

Input datasets required by the FORM STRAIN_ENERGY command are listed in Table 7.2-28.

Table 7.2-27 Output Datasets Created/Updated by FORM STRESS Command

Dataset Class Contents

Element Stress Dataset*

(Default name:
EltNam.STRESS.step..mesh)

EST Element stresses expressed in the coordinate system indicated by
the RESET STR_DIRECTION command. Element stresses may
be computed and stored either at element integration points (STR
attribute), element nodes (STRNOD attribute), or element cen-
troids (STRCEN attribute), depending on the RESET
STR_LOCATION command. All three locations (attributes) may
be stored in the same dataset, via three separate applications of
the FORM STRAIN command. The dataset name may be
changed by reseting STRESS, STEP, and/or MESH via the
RESET command.

FORM STRAIN_ENERGY

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-30 COMET-AR User’s Manual Revised 12/1/97

7.2.5.6.3 Output Datasets

Output datasets created/updated by the FORM STRAIN_ENERGY command are in Table 7.2-29.

Table 7.2-28 Input Datasets Required by the FORM STRAIN_ENERGY Commands

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset for current mesh (see RESET
MESH command).

EltNam.DEFINITION...mesh EDT Element definition dataset for all elements of current ele-
ment type. (See RESET ELEMENT_TYPE cmd.)

EltNam.FABRICATION...mesh EFT Element fabrication table; includes element fabrication
numbers, orientation, and eccentricity.

NODAL.COORDINATE...mesh NCT Nodal coordinate table.

NODAL.TRANSFORMATION...mesh NTT Nodal transformation table (global-to-computational trans-
formation matrices or triads).

Nodal Displacement Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NVT Nodal displacement vector table. Dataset name may be reset
via the RESET DISPLACEMENT command. (See the
RESET STEP and RESET MESH commands.)

Nodal Rotation Dataset

(Default name:
NODAL.DISPLACEMENT.step..mesh)

NAT Nodal rotation (pseudovector) table. Dataset name may be
reset via RESET ROTATION command. (See the RESET
STEP and RESET MESH commands.

Constitutive Datasets GCP Material and fabrication datasets; and constitutive historical
data files if nonlinear materials are present (see Chapter 8).

Table 7.2-29 Output Datasets Created/Updated by FORM STRAIN_ENERGY Command

Dataset Class Contents

Element Strain Dataset

(Default name:
EltNam.STRAIN_ENERGY.step..mesh)

EST Element strain energy densities, defined as

where σ and ε denote stress and strain (resultants). For linear-
elastic materials:

Element strain energy densities may be computed and stored at
element integration points (STR attribute), element nodes
(STRNOD attribute), or element centroids (STRCEN attribute),
depending on the RESET STR_LOCATION command. All three
locations may be stored in the same dataset via three separate
applications of the FORM STRAIN_ENERGY command. The
dataset name may be changed by reseting STRAIN_ENERGY,
STEP, and/or MESH via the RESET command.

Û σ dε•
ε
∫=

Û
1
2
---σ ε•=

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-31

7.2.6 ES Processor RESET Commands

RESET commands are used to change dataset names and/or selected input parameters from their
default values. Some RESET commands, such as RESET ELEMENT_TYPE, have no default
settings and must always be used before employing other ES commands, such as DEFINE and
FORM. A summary of RESET commands currently available to element (ESi) processors
constructed via the generic element processor (ES) is given in Table 7.2-30.

Table 7.2-30 Summary of ES “RESET” Commands

RESET Command Function

RESET COROTATION Changes default element corotational option

RESET DISPLACEMENT Changes default name of nodal displacement dataset

RESET DRILL_STIFF Changes default value of artificial drilling stiffness parameter

RESET DRILL_TOL Changes default value of drilling stabilization angle tolerance

RESET ELEMENT_TYPE Sets element type name (EltTyp); required for all commands (Mandatory
prerequisite to all other ES commands.)

RESET FORCE Changes default name of nodal force dataset

RESET GCP_LDI Changes default ldi of GCP material and fabrication datasets

RESET LDI Changes default ldi of computational database library

RESET LOAD_FACTOR Changes default load factor to be applied to element loads

RESET LOAD_SET Changes default load set number for element loads

RESET MASS Changes default name of output mass matrix dataset

RESET MESH Sets/resets mesh number

RESET NL_GEOM Changes default geometric nonlinearity option

RESET NL_LOAD Changes default load nonlinearity option

RESET NL_MATL Changes default material nonlinearity option

RESET PARAMETERS Sets values of optional element research parameters

RESET PROJECTION Changes default element projection option

RESET ROTATION Changes default name of nodal rotation pseudovector dataset

RESET STEP Sets/resets load- or time-step number

RESET STIFFNESS Changes default name of element stiffness dataset

RESET STRAIN Changes default name of element strain dataset

RESET STRAIN_ENERGY Changes default name of element strain energy dataset

RESET STRESS Changes default name of element stress dataset

RESET STR_DIR Changes default stress/strain output coordinate system

RESET STR_LOC Changes default stress/strain output locations

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-32 COMET-AR User’s Manual Revised 12/1/97

7.2.6.1 The RESET COROTATION Command

This command is used to change the default element corotational option for geometrically
nonlinear analysis. The corotational capability is built in to the generic element processor (ES) and
enables beam and shell elements to be employed with arbitrarily large rotations (but small to
moderate strains) even if the element strain-displacement relations do not intrinsically account for
large rotations (see the chapter on Corotation in Reference [1] for details). The command format is:

where

The RESET COROTATION command is relevant before the following action commands: FORM
STIFFNESS, FORM FORCE, FORM STRESS, FORM STRAIN, and FORM
STRAIN_ENERGY; and only if geometrically nonlinear analysis (see RESET NL_GEOM
command).

7.2.6.2 The RESET DISPLACEMENT Command

This command is used to change the default ldi and name of the nodal displacement dataset
command. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the ldi defined via the RESET LDI command, step is the load/time-step number
defined via the RESET STEP command, and mesh is the mesh number defined via the RESET
MESH command. For example, the command:

RESET DISPLACEMENT = NODAL.INC_DISP.step

RESET COROTATION = corotation_option

corotation_option Description

0 Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton itera-
tion is begin performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if True-
Newton iteration has been selected at the nonlinear solution procedure level and may pro-
vide only marginal improvement in nonlinear convergence over option 1. It adds addi-
tional terms to the tangent stiffness matrix that render it more consistent.

RESET DISPLACEMENT = [ldi,] ds_name

RESET DISPLACEMENT = ldi, NODAL.DISPLACEMENT.step.mesh

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-33

is typically used in nonlinear analysis to label incremental displacement vectors at a step number
step.

7.2.6.3 The RESET DRILL_STIFF Command

This command is used to change the default artificial drilling rotational stiffness option for
(certain) shell element types. The command format is:

where Option is either 1 (true) or 0 (false), and scale is an integer scale factor that depends on the
particular element type. The default setting is:

which implies that drilling stiffness will not be applied. (Relevant only before the FORM
STIFFNESS command.)

7.2.6.4 The RESET DRILL_TOL Command

This command is used to change the default artificial drilling tolerance option for (certain) shell
element types. The command format is:

where angle is an integer angle tolerance indicating when some form of stabilization is required
for shell element drilling rotational freedoms. If the angle between the shell-element normal and
the average element normal (or a computational axis) at a node is less than this value, drilling
stabilization may be required (depending on the element type). The default setting is:

which implies that the internal default values provided by specific shell-element processors will be
employed. (Relevant only for the DEFINE FREEDOMS and DEFINE DRILL_FLAGS
commands.)

7.2.6.5 The RESET ELEMENT_TYPE Command (Mandatory)

This mandatory command is used to indicate which element type within a given ESi processor to
operate on during subsequent DEFINE or FORM commands. The command format is:

RESET DRILL_STIFF = Option [, scale]

RESET DRILL_STIFF = 0, 0

RESET DRILL_TOL = angle

RESET DRILL_TOL = 0

RESET ELEMENT_TYPE = EltTyp

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-34 COMET-AR User’s Manual Revised 12/1/97

where EltTyp is the element type name. The full element name, EltNam, is automatically
constructed by concatenating the current element processor name with the element type name, i.e.,

where EltProc is the processor name. EltNam is employed in the construction of many ES dataset
names. (This command is prerequisite for all other ES commands.)

7.2.6.6 The RESET FORCE Command

This command is used to change the default ldi and name of the nodal force dataset. The command
format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the logical device index defined via the RESET LDI command, ldset is the load-set
number defined via the RESET LOAD_SET command, and mesh is the mesh number defined via
the RESET MESH command. For example, the command:

RESET FORCE = NODAL.INT_FORCE.step

is typically used in nonlinear analysis to label internal force vectors by load-step number, where
step denotes the current load or time step number.

7.2.6.7 The RESET GCP_LDI Command

This command is used to change the default database logical device index (ldi) associated with all
datasets managed by the Generic Constitutive Processor. The command format is:

where gcp_ldi is the logical device index. The default setting is:

EltNam = EltProc_EltTyp

RESET FORCE = [ldi,] ds_name

RESET FORCE = ldi, NODAL.FORCE.step.mesh

RESET GCP_LDI = gcp_ldi

RESET GCP_LDI = 1

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-35

7.2.6.8 The RESET LOAD_FACTOR Command

This command is used to change the default load factor to be applied to all element loads. The
command format is:

where load_factor is a floating-point scale factor. The default setting is:

Relevant before the following ES commands: FORM FORCE/EXT, FORM FORCE/RES, or
FORM STIFFNESS/LOAD.

7.2.6.9 The RESET LOAD_SET Command

This command is used to change the default load set number for element loads during either load
definition or consistent external force formation. The command format is:

where load_set is an integer load-set number. The default setting is:

Relevant before the following ES commands: DEFINE LOADS, FORM FORCE/EXT, FORM
FORCE/RES, or FORM STIFFNESS/LOAD.

7.2.6.10 The RESET LDI Command

This command is used to change the default logical device index (ldi) for all datasets input/output
by the current ESi processor, except those for which an explicit ldi is used in a separate database
RESET command (e.g., RESET STIFFNESS or RESET GCP_LDI). The command format is:

where ldi is the logical device index of the database library. The default setting is:

RESET LOAD_FACTOR = load_factor

RESET LOAD_FACTOR = 1.0

RESET LOAD_SET = load_set

RESET LOAD_SET = 1

RESET LDI = ldi

RESET LDI = 1

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-36 COMET-AR User’s Manual Revised 12/1/97

7.2.6.11 The RESET MASS Command

This command is used to change the default logical device index and name of the element
(consistent) or nodal (lumped) mass datasets. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default settings are:

for the element consistent mass matrix dataset, and:

for the lumped mass matrix dataset. The variable ldi is the logical device index (ldi) defined via the
RESET LDI command, EltNam is the current element processor/type name defined via the RESET
ELEMENT_TYPE command, and mesh is the mesh number defined via the RESET MESH
command. For the element consistent mass name, the user does not have to type the element name,
but may instead use the abbreviation E*. For example, the command:

would result in the dataset name being changed to EltNam.CONS_MASS, where EltNam is
automatically replaced with the definition set via the RESET ELEMENT_TYPE command.

7.2.6.12 The RESET MESH Command

This command is used to change the default mesh number used in all dataset names (unless
otherwise specified via a separate dataset RESET command). The command format is:

where mesh is an integer number, typically set to the current mesh number. The default setting is:

which corresponds to the initial mesh. Relevant before all DEFINE and FORM commands.

RESET MASS = [ldi,] ds_name

RESET MASS = ldi, EltNam .MASS...mesh

RESET MASS = ldi, NODAL.MASS...mesh

RESET MASS = E*.CONSISTENT_MASS

RESET MESH = mesh

RESET MESH = 0

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-37

7.2.6.13 The RESET NL_GEOM Command

This command is used to change the default geometric nonlinearity option. It is often used in
conjunction with the RESET COROTATION command. The command format is:

where

The RESET NL_GEOM command is relevant before the following action commands: FORM
STIFFNESS, FORM FORCE, FORM STRESS, FORM STRAIN, and FORM
STRAIN_ENERGY.

7.2.6.14 The RESET NL_LOAD Command

This command is used to change the default load nonlinearity option. It affects whether “live” loads
are to be processed as part of the external force vector, or the tangent stiffness matrix. The
command format is:

where

The RESET NL_LOAD command is relevant before the following action commands: FORM
STIFFNESS/TANG, FORM FORCE/EXT, and FORM FORCE/RES.

RESET NL_GEOM = nl_geom_option

nl_geom_option Description

0 The analysis is geometrically linear; linear element strain-displacement relations will be
employed, and element corotation will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement relations
will be used. Geometric nonlinearity must be accounted for via element corotation (see
RESET COROTATION command), which for many beam/shell element types is not as accu-
rate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacement relations
will be used. Element corotation may or not be selected with this option. For many beam/shell
element types, nonlinear element strain-displacement relations enhances corotation, making it
more accurate for a given mesh and rotation magnitude.

RESET NL_LOAD = nl_load_option

nl_geom_load Description

0 Ignore load nonlinearity (i.e., displacement dependence). Only displacement-indepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads are to be
processed in the following FORM FORCE or FORM STIFFNESS command.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-38 COMET-AR User’s Manual Revised 12/1/97

7.2.6.15 The RESET NL_MATL Command

This command is used to change the default material nonlinearity option. The command format is:

where

The RESET NL_MATL command is relevant before the following action commands: FORM
STIFFNESS, FORM FORCE/INT, FORM FORCE/RES, FORM STRESS, and FORM
STRAIN_ENERGY.

7.2.6.16 The RESET PARAMETERS Command

This command is used to specify optional element research parameters, which are element-type
dependent and hence described under individual ESi element processor sections in Chapter 7. The
command format is:

where p1, p2, p3, . . . , denote floating-point parameters. A maximum of 10 such parameters is
currently permitted. The default setting is:

The RESET PARAMETERS command is relevant only before the DEFINE ELEMENT
commands, which saves these parameters in the database (i.e., the parameters cannot be redefined
during the solution phase of the analysis).

7.2.6.17 The RESET PROJECTION Command

This command is used to change the default element “rigid-body projection” option. The rigid-
body projection option is the linearized counterpart of the corotation option and modifies the
stiffness matrix and displacement vector so that they are free from spurious strains due to
(infinitesimal) rigid-body motion. This is relevant only for elements that do not preserve rigid-

RESET NL_MATL = nl_matl_option

nl_matl_option Description

0 The analysis is materially linear; ignore nonlinearity in any material constitutive models.
(Default)

1 The analysis is materially nonlinear, include nonlinearity in material constitutive models
if it exists.

RESET PARAMETERS = p1, p2, p3, . . .

RESET PARAMETERS = 0., 0., 0., . . .

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-39

body modes exactly (for example, warping-sensitive shell elements such as those in processor
ES5) and can make a difference in both linear and nonlinear analysis. The command format is:

where

The RESET PROJECTION command is relevant before the following action commands: FORM
STIFFNESS, FORM FORCE/INT, FORM FORCE/RES, FORM STRESS, FORM STRAIN, and
FORM STRAIN_ENERGY.

7.2.6.18 The RESET ROTATION Command

This command is used to change the default logical device index and name of the nodal rotation
(pseudovector) dataset. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the logical device index defined via the RESET LDI command, step is the load/time-
step number defined via the RESET STEP command, and mesh is the mesh number defined via the
RESET MESH command. For example, the command:

would set the rotation dataset name to NODAL.PSEUDO_VECTOR.step, without including the
mesh number in the name.

RESET PROJECTION = projection_option

projection_option Description

0 Element rigid-body projection will not be performed. (Default)

1 Element rigid-body projection will be performed.

RESET ROTATION = [ldi,] ds_name

RESET ROTATION = ldi, NODAL.ROTATION.step.mesh

RESET ROTATION = NODAL.PSEUDO_VECTOR.step.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-40 COMET-AR User’s Manual Revised 12/1/97

7.2.6.19 The RESET STEP Command

This command is used to change the default load- or time-step number used in many solution
dataset names (unless otherwise specified via a separate dataset RESET command). The command
format is:

where step is an integer number, typically set to the current step number. The default setting is:

which corresponds to the linear (or initial) solution. If step = 0, then ldset is used in solution dataset
names, as specified via the RESET LOAD_SET command. (Relevant before all FORM
commands.)

7.2.6.20 The RESET STIFFNESS Command

This command is used to change the default logical device index and name of the element stiffness
matrix dataset. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the logical device index defined via the RESET LDI command, EltNam is the current
element processor/type name concatenation defined via the RESET ELEMENT_TYPE command,
and mesh is the mesh number defined via the RESET MESH command. The user does not have to
type the element name, but may instead use the abbreviation E*. For example, the command:

would result in the dataset name being changed to EltNam.MATL_STIFFNESS, where EltNam is
automatically replaced with the definition set via the RESET ELEMENT_TYPE command. The
above command would typically be done before invoking the FORM STIFFNESS/MATL
command.

RESET STEP = step

RESET STEP = 0

RESET STIFFNESS = [ldi,] ds_name

RESET STIFFNESS = ldi, EltNam.STIFFNESS...mesh

RESET STIFFNESS = E*.MATL_STIFFNESS

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-41

7.2.6.21 The RESET STRAIN Command

This command is used to change the default logical device index and name of the element strain
dataset before using the FORM STRAIN command. It also causes strains to be output to the
database by the FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES commands. The
command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the logical device index defined via the RESET LDI command, step is the load/time-
step number defined via the RESET STEP command, EltNam is the current element name defined
via the RESET ELEMENT_TYPE command, and mesh is the mesh number defined via the
RESET MESH command. The user does not have to type the full element name for EltNam, but
may abbreviate it as E*. For example, the command:

would set the strain dataset name to EltNam.STRAIN_FAB_DIR.step, where EltNam is
automatically replaced for E*. This would be appropriate if the user had set the strain direction
option to FAB_DIR (via the RESET STR_DIRECTION command) so that the strain components
were expressed in the material fabrication coordinate system. Relevant for the following
commands: FORM STRAIN, FORM STRESS, FORM FORCE/EXT, and FORM FORCE/RES.

7.2.6.22 The RESET STRAIN_ENERGY Command

This command is used to change the default logical device index and name of the element strain-
energy density dataset before using the FORM STRAIN_ENERGY command. It also causes
strain-energy densities to be output to the database by the FORM STRESS, FORM FORCE/RES,
or FORM FORCE/INT commands. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is the logical device index defined via the RESET LDI command, step is the load/time-
step number defined via the RESET STEP command, EltNam is the current element name defined

RESET STRAIN = [ldi,] ds_name

RESET STRAIN = ldi, EltNam.STRAIN.step.mesh

RESET STRAIN = E*.STRAIN_FAB_DIR.step

RESET STRAIN_ENERGY = [ldi,] ds_name

RESET STRAIN_ENERGY = ldi, EltNam.STRAIN_ENERGY.step.mesh

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-42 COMET-AR User’s Manual Revised 12/1/97

via the RESET ELEMENT_TYPE command, and mesh is the mesh number defined via the
RESET MESH command. The user does not have to type the full element name for EltNam, but
may abbreviate it as E*. For example, the command:

would set the strain dataset name to EltNam.Uhat.step, where EltNam is automatically substituted
for E*. Relevant for the following commands: FORM STRAIN_ENERGY FORM STRESS,
FORM FORCE/EXT, and FORM FORCE/RES.

7.2.6.23 The RESET STRESS Command

This command is used to change the default logical device index and name of the element stress
dataset before using the FORM STRESS command. It also causes strains to be output to the
database by the FORM FORCE/INT or FORM FORCE/RES commands. The command format is:

where ldi is the logical device index of the computational database and ds_name is the new dataset
name. The default setting is:

where ldi is thelogical device index defined via the RESET LDI command, step is the load/time-
step number defined via the RESET STEP command, EltNam is the current element name defined
via the RESET ELEMENT_TYPE command, and mesh is the mesh number defined via the
RESET MESH command. The user does not have to type the full element name for EltNam, but
may abbreviate it as E*. For example, the command:

would set the strain dataset name to EltNam.STRESS_FAB_DIR.step, where EltNam is
automatically substituted for E*. This would be appropriate if the user had set the stress direction
option to FAB_DIR (via the RESET STR_DIR command) so that the stress components were
expressed in the material fabrication coordinate system. Relevant for the following commands:
FORM STRESS, FORM FORCE/EXT, and FORM FORCE/RES.

RESET STRAIN_ENERGY = E*.Uhat.step

RESET STRESS = [ldi,] ds_name

RESET STRESS = ldi, EltNam.STRESS.step.mesh

RESET STRAIN = E*.STRESS_FAB_DIR.step

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-43

7.2.6.24 The RESET STR_DIR Command

This command is used to change the default stress or strain reference frame option prior to use of
the FORM STRAIN, FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES commands.
The command format is:

where

The default setting is:

If surface-oriented stress/strain output directions are desired, it may be necessary to define surface-
oriented fabrication directions when the elements are defined (see the FAB_DIR subcommand
under the DEFINE ELEMENTS command), and then RESET STR_DIR=FAB_DIR to employ
these directions for stress/strain output. This option can be useful even for isotropic material based
fabrications, where the fabrication direction is irrelevant to the constitutive model.

7.2.6.25 The RESET STR_LOC Command

This command is used to change the default stress, strain, or strain-energy location option prior to
use of the FORM STRAIN, FORM STRESS, FORM STRAIN_ENERGY, FORM FORCE/INT,
or FORM FORCE/RES commands. The command format is:

where

RESET STR_DIR = str_direction

str_direction Description

ELEMENT Use element local (integration point) reference frame, xl, yl, zl, as stress/strain output ref-
erence frame: xs, ys, zs.

GLOBAL { X | Y | Z } The stress/strain output xs axis is parallel to the global xg, yg, or zg axis if X, Y or Z,
respectively, is used in the subcommand. The stress/strain output zs axis is parallel to the
local element normal axis for shell elements, otherwise it is obtained by permuting the
global axes. The stress/strain output ys axis is defined by the right-hand rule.

FAB_DIR Use the local material fabrication reference frame, xf, yf, zf, as the stress/strain output ref-
erence frame, xs, ys, zs.

RESET STR_DIR = ELEMENT

RESET STR_LOC = str_location

str_location Description

INTEG_PTS Element stresses, strains, or strain-energy densities will be evaluated and stored at element
integration points in the STR attribute of the specified EST dataset.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-44 COMET-AR User’s Manual Revised 12/1/97

The default setting is:

If element error estimation is desired, it may be necessary to output element stresses, strains, and/
or strain-energy densities at element integration points. Refer to the particular Error Estimation
processor section for details.

Stresses, strains, and/or strain-energy densities may be formed and stored at all three locations
(INTEG_PTS, NODES, and CENTROIDS) by issuing three separate FORM commands. All three
locations may be stored in the same stress, strain, or strain-energy dataset (as attributes STR,
STRNOD, and STRCEN, respectively).

Finally, the NODES option does not lead to globally continuous nodal values. Different elements
attached to the same node may produce different stress/strain/energy values for the corresponding
element node. A nodal averaging post-processor is necessary to obtain globally continuous nodal
values. Such an algorithm is used, for example, by the ARG graphical post-processor, discussed in
Chapter 14.

7.2.7 ES Processor/Procedure Interface

Other than defining element connectivity, loads, and other attributes—which may be totally
different for different element types participating in the same model—most element functions can
be invoked with the same specifications for all element types. For example, while the DEFINE
ELEMENTS command requires a list of element nodal connectivity for each element of each type,
the FORM STIFFNESS command involves only some optional RESET commands that are
typically the same for all element types participating in the model. Such commands may be
invoked for all pertinent element processors/types via one call to the ES Utility Procedure. The
general form of the procedure call is:

NODES Element stresses, strains, or strain-energy densities will be evaluated at integration points,
then extrapolated and stored at element nodes in the STRNOD attribute of the specified EST
dataset.

CENTROIDS Element stresses, strains, or strain-energy densities will first be evaluated at the element inte-
gration points, then averaged and stored at element centroids in the STRCEN attribute of the
specified EST dataset. (If one of the element’s integration points coincides with the centroid,
the value computed there will be output rather than an average integration-point value.)

RESET STR_LOC = INTEG_PTS

 *call ES (FUNCTION = command_name ;
 Reset_arg_1 = reset_val_1 ; --
 Reset_arg_2 = reset_val_2 ; --
 :
 Reset_arg_n = reset_val_n)

str_location Description

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-45

where command_name is the name of any valid ES command (e.g., FORM FORCE/EXT, FORM
STIFFNESS/MATL) except for DEFINE ELEMENTS, DEFINE LOADS, or DEFINE
ATTRIBUTES. The phrase Reset_arg_i (where i = 1, 2, ..., n) represents any of the RESET
command names (e.g., COROTATION, NL_GEOM, STR_DIR, ...) and reset_pars_i denotes the
associated command parameters.

For details on the use of the ES utility procedure, refer to Procedure ES in Section 5.2.

7.2.8 ES Processor Limitations

Element processor limitations are discussed according to specific element type, under the
corresponding individual element processor (ESi) sections, later in this chapter.

7.2.9 ES Processor Error Messages

Some of the most important generic element processor error messages are summarized in
Table 7.2-31.

Table 7.2-31 Summary of Error Messages Printed by Generic Element Processor (ES)

Error # Error Message Probable Cause(s) Recommended User Response

1 # of elt ∗∗∗∗∗
too large

Element developer error; size of an element
parameter such as number of nodes exceeds
ES dimension.

Increase ES dimension and regenerate
the element processor.

2 Constitutive
error

Error status returned to element processor by
Generic Constitutive Processor.

Read GCP error message (which
should follow) and refer to Error Mes-
sages section in Chapter 8.

3 Invalid com-
mand: ∗∗∗∗∗

Either user entered invalid command in
model definition procedure, or there is a sys-
tem error in one of COMET-AR’s solution
procedures.

If in user-written model definition
procedure, check command syntax in
current Section. If in solution proce-
dure, inform COMET-AR develop-
ment staff.

4 Cannot open
dataset ∗∗∗∗∗

The specified dataset is probably not on the
database file.

Make sure you have pointed to the
right database file in your directory.

5 Variable proper-
ties not imple-
mented

User has tried to define a model with material
properties varying within individual elements.

Modify model definition so that mate-
rial properties are constant within
each element (they may vary from ele-
ment to element).

6 Invalid element
type [ES0LDN]

A new element type has been implemented
that is not accommodated by the generic ele-
ment processor.

Have element developer and/or
COMET-AR development staff get
together and modify ES.

7 Error encoun-
tered in element
kernel [ES0CR]

An error deep within the element developer’s
code.

Contact element developer (if possi-
ble) or COMET-AR development
staff.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-46 COMET-AR User’s Manual Revised 12/1/97

7.2.10 ES Processor Examples and Usage Guidelines

7.2.10.1 Element Connectivity Definition Example: Rectangular Shell-Element Mesh

Figure 7.2-1 shows a simple rectangular mesh with four 4-node shell elements.

Figure 7.2-1 Rectangular Shell-Element Mesh

A sample ES command runstream to generate the above mesh is presented below.

In the above example, element processor ES7p (discussed in Section 7.7) is first executed from
within the COMET-AR macro-processor using the COMET-AR RUN command, and the element
type name is set to SHELL via the RESET ELEMENT_TYPE command. Then, the DEFINE
ELEMENTS command is entered with the DISCRETE solid model option (which happens to be
the default) and with the element polynomial order set to 1 via the /P qualifier. The /P qualifier is

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

DEFINE ELEMENTS /SOLID_MODEL=DISCRETE /P=1

 GROUP = 1

 FAB_ID = 1

 FAB_DIR = GLOBAL X

 ELEMENT = 1 NODES = 1, 2, 5, 4

 ELEMENT = 2 NODES = 2, 3, 6, 5

 GROUP = 2

 ELEMENT = 3 NODES = 4, 5, 8, 7

 ELEMENT = 4 NODES = 5, 6, 9, 8

END_DEFINE_ELEMENTS

STOP

xg

zg

yg

1 2 3

4 5 6

97 8

(1) (2)

(3) (4)

Lx

Ly

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-47

only necessary for element processors that have variable-order p capabilities, such as processor
ES7p.

Next, the element group is set to 1 (via the GROUP subcommand), the first fabrication is selected
(via the FAB_ID subcommand), and the fabrication xf axis is equated to the global xg axis (via the
FAB_DIR subcommand). Then, nodal connectivity for the bottom row of elements (1 and 2) is
defined and associated with group 1. Finally, the nodal connectivity for the top row of elements is
defined and associated with group 2 (via the intervening GROUP subcommand). The FAB_ID and
FAB_DIR settings remain intact for the elements in group 2. The NODES subcommand must be
typed on the same logical command line as the ELEMENT subcommand since the two
subcommands are linked; but line continuation of the ELEMENT and NODE subcommand pair on
more than one physical command line may be accomplished via continuation (--) marks.

The ES END_DEFINE_ELEMENTS subcommand terminates the element definition sequence,
and the COMET_AR STOP command terminates processor ES7p.

Sophisticated do-loops, conditional statements, and symbolic replacement (i.e., parametrization)
may be employed in conjunction with the DEFINE ELEMENTS command by embedding the ES
processor commands in a CLAMP procedure. Consult Reference [2] for details on the CLAMP
language. References [3], [4], and [5] may also be helpful for background and examples.

7.2.10.2 Element Load Definition Example: Constant Pressure on Rectangular Plate

In this example, we shall apply a constant pressure load to the single-surface shell-element model
defined in Figure 7.2-1. The command runstream is presented below.

The above runstream first resets the element type (which is necessary for each execution of an
element processor), and then defines a constant pressure load of 100 (force per unit area) in the
positive zg direction (which in this case is parallel to the element outward normal direction, zl). In
the absence of any ELEMENT or GROUP subcommands, the same load value is applied to all
elements of all groups.

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

DEFINE LOADS /PRESSURE

 LOAD = 100.

END_DEFINE_LOADS

STOP

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-48 COMET-AR User’s Manual Revised 12/1/97

7.2.10.3 Element Load Definition Example: Variable Pressure on Rectangular Plate

In this example, we shall apply a piecewise constant pressure load to the single-surface shell-
element model defined in Figure 7.2-1, with a different value of pressure on each element group.
The command runstream is presented below.

7.2.10.4 Element Load Definition Example: Const. Line Load on Rectangular Plate Boundary

In this example, we shall apply a constant transverse (zg directed) line load to the boundary yg=0
of the rectangular shell-element model defined in Figure 7.2-1. The command runstream is
presented below.

In the above runstream, line loads are selected via the /LINE qualifier, and the load coordinate
system is set to global, via the /SYSTEM qualifier. Then, the first edge (line 1) of elements 1 and
2 are selected via the LINE and ELEMENT subcommands, respectively. Finally, the LOAD
subcommand specifies that the line load vector has a magnitude of 100 (force per unit length) in
the negative zg direction. The meaning of line “1” is an element-type-dependent definition. For the
quadrilateral elements within processor ES7p, line 1 is defined as the line connecting element
nodes 1 and 2. Consult the appropriate ESi section in this manual to obtain the correct information
for a particular element type.

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

DEFINE LOADS /PRESSURE

 GROUP = 1

 LOAD = 100.

 GROUP = 2

 LOAD = 200.

END_DEFINE_LOADS

STOP

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

DEFINE LOADS /LINE /SYSTEM=GLOBAL

 ELEMENT = 1, 2

 LINE = 1

 LOAD = 0., 0., -100.

END_DEFINE_LOADS

STOP

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-49

7.2.10.5 Element Load Definition Example: Variable Line Load on Rect. Plate Boundary

In this example, we extend the previous example by allowing the line load to vary linearly from
xg=0 to xg=Lx in the rectangular shell-element model (Figure 7.2-1). The command runstream is
presented below.

In the above runstream, element line 1 is selected first; then element line nodes 1 and 2 are loaded
on line 1 of elements 1 and 2. The node numbers are relative to each element line, rather than to
the element nodal connectivity order. The load of –100 at global node 2 is repeated once per
element, at the corresponding element node; thus, for element 1, this load is applied to element line
node 2, and for element 2, the same load is applied to element line node 1. The above definition
represents a load (i.e., force per unit length) that varies from in magnitude from 0 at global node 1,
to 200 at global node 3; and is pointing in the negative zg direction.

7.2.10.6 Element Solution Formation Example: Forming External Force Vectors

The following example illustrates how a specific ESi processor may be executed to form and
assemble consistent external forces based on the distributed loads defined in the previous example.

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

DEFINE LOADS /LINE /SYSTEM=GLOBAL

 LINE = 1

 ELEMENT = 1

 NODE = 1

 LOAD = 0., 0., 0.

 NODE = 2

 LOAD = 0., 0., -100.

 ELEMENT = 1

 NODE = 1

 LOAD = 0., 0., -100.

 NODE = 2

 LOAD = 0., 0., -200.

END_DEFINE_LOADS

STOP

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

RESET LOAD_FACTOR = 2.0

FORM FORCE/EXT

STOP

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-50 COMET-AR User’s Manual Revised 12/1/97

In the above runstream, the specific element type is selected and the load factor is changed to 2.0,
via RESET commands, and then the element forces are formed and assembled via the FORM
FORCE command. By default, the element forces are accumulated/output into a nodal force vector
dataset called NODAL.FORCE, and that the COMET-AR STOP command (or another RUN
command) are necessary to ensure that the database is properly closed.

An alternative (and more convenient) way of performing the above function is through an ES
procedure call, i.e.,

The difference between the above procedure call and the previous command runstream is that the
element type name does not have to be specified in the procedure call. The procedure instead
automatically processes (i.e., performs all of the steps listed in the previous runstream) all element
processors and specific element types associated with the current model, as summarized in the
CSM.SUMMARY dataset.

7.2.10.7 Element Solution Formation Example: Computing Element Stresses

The following example is similar to the previous example on forming external forces, except that
this command runstream computes element stresses after the global displacement solution has been
obtained.

In the above runstream the stress direction is set to the fabrication direction, and the stress location
specification is set to element centroids. The stress dataset name is set (implicitly) to
ES7p_SHELL.STRESS_CENT...1, where the E* is automatically replaced by the actual element
processor and type names (concatenated with an underscore).

Alternatively, we could have performed this same function automatically for all element types
defined in the current model by employing the following ES procedure call.

* call ES (FUNCTION = FORM FORCE/EXT; LOAD_FACTOR = 2.0)

 RUN ES7p

RESET ELEMENT_TYPE = SHELL

RESET STR_DIR = FAB_DIR

RESET STR_LOC = CENTROIDS

RESET STRESS = E*.STRESS_CENT

FORM STRESS

STOP

*call ES (FUNCTION = FORM STRESS; MESH = 2; STR_DIR = FAB_DIR ; --
 STR_LOC = CENTROIDS; STRESS = E*.STRESS_CENT...2)

7 Element Processors 7.2 Processor ES (Generic Element Processor)

Revised 12/1/97 COMET-AR User’s Manual 7.2-51

Something like the above procedure call is built in to utility procedures such as STRESS, which in
turn is called by solution procedures such as L_STATIC_1, and AR_CONTROL_1 (see Part II of
this manual for more information on the procedure interface to COMET-AR).

7.2.11 References

[1] Stanley, G. M., The Generic Structural-Element Processor Manual for the COMET
Code, NASA CR, 1990.

[2] Felippa, C. A., The Computational Structural Mechanics Testbed Architecture: Volume
II: Directives, NASA CR-178385, 1989.

[3] Stewart, C. B., ed., The Computational Structural Mechanics Testbed User’s Manual,
NASA TM 100644, 1989.

[4] Stewart, C. B., ed., The Computational Structural Mechanics Testbed Procedures
Manual, NASA TM 100645, 1989.

[5] Stehlin, B. P., The COMET-AR Tutorial Manual, NASA CR (preliminary), February
1993.

7.2 Processor ES (Generic Element Processor) 7 Element Processors

7.2-52 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-1

7.3 Processor ES1 (SRI and ANS Shell Elements)

7.3.1 Element Description

Processor ES1 contains various shear-deformable (C0) quadrilateral shell elements, including
displacement-based selective-reduced integrated (SRI) elements, and assumed natural-coordinate
strain (ANS) shell elements. Both SRI and ANS element families include 4-node (bilinear) and 9-
node (biquadratic) element geometries.

These elements are intended for modeling very thin to moderately thick shells. Both SRI and ANS
formulations are designed to alleviate common shell-element pathologies such as locking, spurious
mechanisms, and mesh distortion sensitivity; however, different element types within these
families achieve these goals to varying extents, and none are optimal. Many of the specific element
types implemented within processor ES1 are intended primarily for research-type comparisons,
and not for production analyses. The only production-oriented element types in processor ES1 are
the 4- and 9-node ANS elements (especially the 9-node), called EX47 and EX97, respectively. A
more efficient (but occasionally more distortion-sensitive) implementation of these (and higher-
order) ANS shell elements may be found in processor ES7p.

The following sections provide an overview of the various shell element types contained within
processor ES1. For a more detailed theoretical description consult Reference [1].

7.3.1.1 Summary of Element Types

Currently implemented element types available within processor ES7p are summarized in
Tables 7.3-1 and 7.3-2. The first contains 4-node elements; the second contains 9-node elements.

Table 7.3-1 Summary of Processor ES1 4-node Element Types

Element Type
Name

Description Status

EX41 Uniformly reduced (1-pt) integrated (URI) element; standard isoparametric
Lagrange bilinear displacement interpolation.

Research

EX42 Selectively reduced integrated (SRI) element; reduced (1-pt) integration on
all shear strain components; bilinear displacements.

Research

EX43 Similar to EX42, but directionally-reduced integration is used on transverse
shear strains. (Very distortion sensitive)

Research

EX44 Same as EX42 except in-plane shear strains fully integrated. Research

EX45 Same as EX43 except geometric stiffness is fully integrated. Research

EX46 Fully integrated bilinear Lagrange element (locks in bending). Research

EX47 Assumed natural-coordinate strain (ANS) element; bilinear geometry and
displacements; constant strain field.

Production

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-2 COMET-AR User’s Manual Revised 12/1/97

7.3.1.2 Element Geometry and Node Numbering

The geometry, node and integration point numbering conventions for 4-node elements are
illustrated in Figure 7.3-1. Similar information is provided for 9-node elements in Figure 7.3-2. In
these figures, element nodes are shown as solid circles with bold node numbers, and element Gauss
integration (stress storage) points for fully integrated and selectively-reduced integrated element
types are shown as X’s with plain number subscripts. The integration point locations for elements
that employ uniform reduced integration (i.e., EX41 and EX91) are shown in part c of these figures
as small x’s. Selectively reduced integrated elements (e.g., EX42 and EX92) employ a combination
of full and reduced Gauss integration point locations for strain evaluation, but always store the
resulting strains and stresses at the full integration points. Element boundary (line) numbers and
node numbering conventions within boundaries (for line load application) are shown in part b of
these figures.

Table 7.3-2 Summary of Processor ES1 9-node Element Types

Element Type
Name

Description Status

EX91 Uniformly reduced (2x2) integrated (URI) element; isoparametric
Lagrange biquadratic displacement interpolation.

Research

EX92 Uniformly reduced integrated (URI) Serendipity element; only 8 nodes are
active; the 9th (center) node is inactive.

Research
(untested)

EX93 Selectively reduced integrated (SRI) Heterosis element; the 9th (center)
node has active rotations, but no translations. Reduced integration on mem-
brane and transverse-shear strains, as well as on the entire geometric stiff-
ness matrix.

Research
(untested)

EX94 Same as EX93 except geometric stiffness is fully integrated. Research
(untested)

EX95 Same as EX93 except geometric stiffness is selectively integrated. Research
(untested)

EX96 Fully integrated (3x3) biquadratic Lagrange element. (Stiff in bending
when modeling curved shells.)

Res./Prod.

EX97 Assumed natural-coordinate strain (ANS) element; biquadratic geometry
and displacements; linear strain field.

Production

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-3

Figure 7.3-1 4-Node Element Geometry, Nodes, and Integration Points

a) Element Connectivity and Integ. Pts.(X) b) Boundary Connectivity

X
X

X
X

xe

ye
ze

xl

ylzl

ξ

η

1

2

3

4

1

2

3
4

1

2

3

4

l1

l2

l3

l4

1

2
1

2

1
21

2

x

1

2

3
4

1

c) Reduced Integration Pts.(x)

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-4 COMET-AR User’s Manual Revised 12/1/97

Figure 7.3-2 9-Node Element Geometry, Nodes, and Integration Points

In Figures 7.3-1 and 7.3-2, the orthogonal xe, ye, ze axes form the element Cartesian (or
corotational) coordinate system. The orthogonal xl, yl, zl axes form the element local stress
coordinate system, which can vary from integration point to integration point; and the non-
orthogonal/curvilinear ξ, η, ζ axes from the element natural-coordinate system. The xe axis
initially connects nodes 1 and 2, and the ze axis is perpendicular to the 1-2-3 plane; however, this
coordinate system is slightly modified by the generic element processor to achieve a less biased
system for corotational nonlinear analysis (see Reference [2]). The xl axis is always tangent to the
local ξ curve, the zl axis is always normal to the ξ−η tangent plane, and the yl axis completes an
orthogonal triad.

7.3.1.3 Nodal Freedoms (DOFs) and BCs

All of the quadrilateral shell elements in Processor ES1 have 3 translational displacement DOFs
and 3 rotational displacement DOFs at each element node (see Figure 7.3-3); however, the

a) Element Connectivity and Integ. Pts. (X) b) Boundary Connectivity

X X
X

X

X

X X
XX

ξ

η

xe

ye

ze

xl

yl

zl

1

2

3

4

5

6

7

8
9

1
2

3

4
5 6

7
8

9

1

2

3

4

l1

l2

l3

l4

1

2 1

2

1

2
1

2

3

3

3

3

c) Reduced Integration Points (x)

x
x

x
x

1

2

3

4

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-5

“drilling” rotational DOF (i.e., the rotation about the local element surface-normal vector) does not
have any intrinsic stiffness, and a “drilling stabilization” option must be employed with this
element (see subsection on Drilling Stabilization later in this section).

Figure 7.3-3 Displacement DOFs for ANS Shell Elements

7.3.1.4 Displacement (and Geometry) Representation

The approximation of the displacement field, as well as the surface geometry, within both SRI and
ANS shell elements, is defined by Lagrangian interpolation functions, which have the variations
shown in Table 7.3-3.

where pi() denotes a polynomial of degree i in the argument variable. For SRI and ANS shell
elements, the strains are not obtained by simply differentiating the displacement field, as explained
in the following subsection.

Table 7.3-3 Processor ES1 Shell Element Displacement and Geometry Approximations

Component
Polynomial Variation

4-Node Elements 9-node Elements

u(ξ,η), θ(ξ,η) and x(ξ,η) p1(ξ)∗ p1(η) p2(ξ)∗ p2(η)

Element Displacement Vector Nodal Displacement Vector

translations

rotations

(a = 1, 2, ... num. elt. nodes)

ux

uy
uz

θx

θyθz

ux

uy

uz

θx

θy
θz

da
e ua

θa
 
 
 
 
 

uxa uya uza, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =
de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

=

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-6 COMET-AR User’s Manual Revised 12/1/97

7.3.1.5 Strain Representation
Both classes of elements generate 8 resultant strain components, which are stored at each of the
element integration (i.e., “stress storage”) points. The 8-strain resultants are arranged as follows:

where the subscripts x and y denote the xl and yl components at an integration point (see
Figures 7.3-1 and 7.3-2).

For the SRI elements, the Cartesian strain components are obtained by first differentiating the
assumed displacement field, then sampling specific strain components at either reduced or full
integration points, and finally extrapolating the sampled strains to the full integration points. The
variation of the strains within an element is thus filtered by the sampling points (see [1] and [4] for
details). Similarly, for the ANS elements, the strain components are sampled at reduced integration
points but in a directional manner, different for each strain component, and expressed in a
curvilinear (natural-coordinate) basis (see [1] and [3] for details). The resulting intra-element
variations for individual strain components within each of the ES1 element types is summarized in
Tables 7.3-4 and 7.3-5.

Table 7.3-4 Processor ES1 4-node Shell Element Strain Approximations

Elt.
Type

Membrane Strains Bending Strains Transverse-Shears

ex eh exh kx kh kxh gx gh

SRI

EX41 p0(ξ,η) p0(ξ,η) p0(ξ,η) p0(ξ,η) p0(ξ,η) p0(ξ,η) p0(ξ,η) p0(ξ,η)

EX42 p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ,η) p0(ξ,η)

EX43 p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η)

EX44 p0(ξ)*p1(η) p1(ξ)*p0(η) p1(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p1(ξ,η) p0(ξ,η) p0(ξ,η)

EX45 p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η)

EX46 p0(ξ)*p1(η) p1(ξ)*p0(η) p1(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p1(ξ,η) p1(ξ,η) p1(ξ,η)

ANS

EX47 p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ)*p1(η) p1(ξ)*p0(η) p0(ξ,η) p0(ξ,η) p0(ξ,η)

ε
ε
κ
γ

Membrane_Strains

Bending_Strains

Transverse-Shear_Strains

= =

ε
εx

εy

εxy

= κ
κ x

κ y

κ xy

= γ
γx

γy

=

where

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-7

7.3.1.6 Stress Representation

Stress resultants conjugate to the above strain resultants are computed via the Generic Constitutive
Processor (see Chapter 8), and are arranged as follows.

Like the strains, the stress resultants are also computed and stored at the element integration (i.e.,
stress storage) points, and have the same polynomial variations (for linear constitutive models).

7.3.1.7 Drilling Rotational Stiffness

Since the present shell element formulation has no intrinsic drilling (normal rotational) stiffness,
an artificial drilling stiffness option is provided. This option is triggered by the AUTO_DRILL
solution procedure argument and works as shown in Figure 7.3-4.

Table 7.3-5 Processor ES1 9-node Shell Element Strain Approximations

Elt.
Type

Membrane Strains Bending Strains Transverse-Shears

ex eh exh kx kh kxh gx gh

SRI

EX91 p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η)

EX92 p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η)

EX93 p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p2(η) p2(ξ)*p1(η) p2(ξ,η) p1(ξ)*p1(η) p1(ξ)*p1(η)

EX94 p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p2(η) p2(ξ)*p1(η) p2(ξ,η) p1(ξ)*p1(η) p1(ξ)*p1(η)

EX95 p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p2(η) p2(ξ)*p1(η) p2(ξ,η) p1(ξ)*p1(η) p1(ξ)*p1(η)

EX96 p1(ξ)*p2(η) p2(ξ)*p0(η) p2(ξ,η) p1(ξ)*p2(η) p2(ξ)*p1(η) p2(ξ,η) p2(ξ,η) p2(ξ,η)

ANS

EX97 p1(ξ)*p2(η) p2(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p2(η) p2(ξ)*p1(η) p1(ξ)*p1(η) p1(ξ)*p2(η) p2(ξ)*p1(η)

σ
N
M
Q

Membrane_Stresses

Bending_Stresses

Transverse-Shear_Stresses

= =

N
Nx

Ny

Nxy

= M
Mx

My

Mxy

= Q
Qx

Qy

=

where

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-8 COMET-AR User’s Manual Revised 12/1/97

Figure 7.3-4 Implementation of Artificial Drilling Stiffness in Processor ES1

The element material stiffness matrix is first computed in the element corotational frame (xe,ye,ze)
and then rotated into an independent local frame (l) at each node such that the zl axis is parallel to
the element normal (or drilling) axis. The diagonal drilling rotational stiffness components are then
set equal to a small fraction of the maximum element diagonal stiffness component. Finally, the
element matrix is rotated back to the element corotational frame before depositing in the database
for assembly. The fractional coefficient multiplying the maximum diagonal stiffness component
involves a negative power of 10. That exponent, referred to as scale, corresponds to the scale
parameter in the AUTO_DRILL solution procedure argument. The default coefficient is 10-5

(scale=5).

7.3.1.8 Element Nonlinearity

Element geometrical nonlinearity is accounted for by an Updated Lagrangian treatment of the
element force vector and stiffness matrix, and by a moderate-rotation nonlinear strain measure
based on the midpoint strain tensor (see [4] for details). Additionally, both SRI and ANS shell
elements may be (and should be) employed with the generic element processors (ES) built-in
corotational capability to enable arbitrarily large rotations (see [2] for details). For material
nonlinearity, Processor ES1 is fully compatible with the generic constitutive processor, and all
specific shell constitutive models implemented therein (see Chapter 8).

7.3.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options for Processor ES1 are described in the following
subsections.

xe

yeze

xl

zl yl

K l T
el
T

K eT
el=

K l[] θzl
10

scale–
max Kii()⋅=

K g TglK lTgl
T

=

θzl

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-9

7.3.2.1 RESET Command for Element Type

The various element types within Processor ES1 can be selected via the command:

where, for example, EltTyp would be EX47 for the 4-ANS element and EX97 for the 9-ANS
element. This RESET command should be entered before using the DEFINE ELEMENTS
command. ES1 is not a “p” type element processor, so the /P qualifier should not be used with the
DEFINE ELEMENTS command.

7.3.2.2 RESET Command for Element-Specific Research Parameters

None.

7.3.2.3 RESET Commands for Drilling Stiffness and Angle Tolerance

The default scale parameter used to compute artificial drilling stiffness is 5, which corresponds to
a scale factor of 10-5 (see Figure 7.3-4). The value of scale can be changed via the command:

The default angle tolerance for requiring artificial drilling stiffness is 1 degree. Drilling stiffness
flags are turned on at any node for which the normals of all attached shell elements make an angle
less than this tolerance with the average element normal. The default tolerance can be changed via
the command:

Both of the above parameters also appear in the AUTO_DRILL solution procedure argument, and
the angle tolerance parameter appears in the AUTO_MPC, AUTO_TRIAD, and
AUTO_DOF_SUP solution procedure arguments.

7.3.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). There are no special-purpose datasets or data attributes at this time.

7.3.3.1 Auxililiary Storage Dataset

None.

RESET ELEMENT_TYPE = EltTyp

RESET DRILL_STIFF = scale

RESET DRILL_TOL = angle

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-10 COMET-AR User’s Manual Revised 12/1/97

7.3.3.2 Other Special-Purpose Datasets/Attributes

None.

7.3.4 Element Implementation Status and Limitations

A summary of the current implementation status of the shell elements within processor ES1 is
given in Table 7.3-6. All functions except for the load stiffness matrix and element-dependent error
estimates are implemented for all element types. Neither of these two functions is essential.
Generic element error estimates are adequate for adaptive refinement, and the load stiffness matrix
is important only for some buckling eigenproblems involving live loads (e.g., hydrostatically
loaded cylindrical shells).

7.3.5 Element Error Messages

A summary of the most important or common error messages associated specifically with
processor ES7p are described in Table 7.3-7.

Table 7.3-6 Processor ES1 Shell Element Implementation Status

Functions SRI Elements ANS Elements

Auto DOF Suppression Yes Yes

Body Forces Yes Yes

Consistent Mass Yes Yes

Diagonal Mass Yes Yes

Drilling Stiffness Yes Yes

Error Estimates/Elt-dep. No No

Error Estimates/Generic Yes Yes

Geometric Nonlinearity Yes Yes

Geometric Stiffness Yes Yes

Internal Forces Yes Yes

Load Stiffness No No

Material Nonlinearity Yes Yes

Pressure Forces Yes Yes

Strains Yes Yes

Stresses Yes Yes

Stress Extrapolation Yes Yes

Stress Transformation Yes Yes

Surface Forces Yes Yes

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-11

7.3.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on experience to-date with
COMET-AR Processor ES1.

7.3.6.1 Element Type Selection

As indicated under the general Element Description subsection, only three of the fourteen shell
element types implemented in processor ES1 are recommended for general-purpose analysis (in
order of preference):

1) EX97 (9-node ANS element)

2) EX96 (9-node fully integrated Lagrange element)

3) EX47 (4-node ANS element)

The EX97 (or 9ANS) element is the most robust of the element types; the EX96 (or 9LAG) element
is robust, but can be excessively stiff relative to EX97 for curved shell models. The EX47 (or
4ANS) is also robust, but not as efficient as the 9ANS element, and provides a much cruder
representation of the geometry of curved shells (e.g., 10 EX47 elements over a 90-degree circular
arc are equivalent to about 3 EX97 elements for geometric accuracy).

Table 7.3-7 Summary of Element Processor ES7p Error Messages

Error
#

Error Message Probable Cause(s) Recommended User Response

1 Invalid ES1 element
type

The user has selected an invalid element
type (via the RESET ELEMENT_TYPE
command) when defining element con-
nectivity or loads.

Change the element type to one of the
valid names listed in Tables 1 and 2.

2 ES0**** not imple-
mented

The element developer has not imple-
mented this particular element function.

Try to work around the unimple-
mented function; or ask the element
developer to implement it ASAP.

3 Zero determinant of
Jacobian

The element nodes probably do not
define a proper quadrilateral. Either the
nodal coordinates are not as intended by
the user, or the definition of element
nodal connectivity via the DEFINE
ELEMENTS command is incorrect.

Check nodal coordinates and element
connectivity. (This error is probably
not due to the degeneration of a quad-
rilateral into a triangle; that is a per-
missible modeling technique with this
element processor.)

Caution: The remaining element types are included only for research
purposes, serving as benchmarks for comparison with newer element
formulations. Some of these research elements may exhibit pathologies
such as spurious modes, or locking phenomena, which are not considered
safe for production-oriented analysis.

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-12 COMET-AR User’s Manual Revised 12/1/97

7.3.6.2 Problem Class Recommendations

The shell elements in Processor ES1 are all equipped for general-purpose linear/nonlinear/static/
dynamic structural analysis; however, for nonlinear analysis, while rotations can be arbitrarily
large (with the corotational option), strains are assumed to be relatively small (<5%).

7.3.6.3 Distortion Sensitivity

While the ANS shell elements (EX47 and EX97) are in general more accurate than the SRI
elements (e.g., EX42 and EX96) for a given mesh, the ANS elements tend to be more distortion
sensitive. That is, as the element shapes in the mesh are made to deviate more and more from
rectangular, the solution degrades faster for ANS elements than for many of the SRI elements. If
mesh distortion is kept within reasonable limits and not allowed to increase as the mesh is refined,
the ANS elements should converge to the exact solution more rapidly than the others. All of the
quadrilateral elements within processor ES1 can be degenerated into triangular elements by
allowing all of the nodes on one side to correspond to a single global node. The degenerated
triangular elements exhibit a degradation in accuracy that is greater for the 4-node elements than
for the 9-node elements, and also greater for the ANS element than for the SRI elements in general.

7.3.6.4 Automatic Drilling Stabilization

Because neither the ANS nor the SRI shell elements within processor ES1 have intrinsic drilling
rotational stiffness, the user must select one of the automatic drilling DOF stabilization options
available in COMET-AR solution procedures (see Section 2.10): either the AUTO_DRILL option
(which will engender artificial drilling stiffness at the element level); or the AUTO_DOF_SUP
option (which will suppress global rotational DOFs if the computational axes are closely aligned
with the element normal). The AUTO_TRIAD option may also be selected in conjunction with the
AUTO_DOF_SUP option, if the computational axes are not closely aligned with the element
normals. Finally, an AUTO_MPC option, which automatically generates an explicit multi-DOF
constraint to eliminate the drilling rotation at appropriate nodes, is also available at the solution
procedure level.

At shell/shell, or shell/stiffener junctures, drilling stabilization is unnecessary.

7.3.6.5 Adaptive Analysis Guidelines

All of the shell elements in Processor ES1 may be used in conjunction with adaptive mesh
refinement (AR) with the following provisos.

1) The EX47 (4-ANS) and EX97 (9-ANS) shell elements can be distortion-sensitive when
used with transition-based (ht) refinement; if ht refinement is to be used, the EX97 element
is recommended over the EX47 element.

2) The EX47 and EX97 elements are also sensitive to the multipoint constraints generated by
constraint-based (hc) refinement; again, the EX97 is recommended over the EX47.

3) The only SRI element that is appropriate for both ht and hc adaptive mesh refinement is the
EX96 (fully integrated 9-LAG) element.

7 Element Processors 7.3 Processor ES1 (SRI and ANS Shell Elements)

Revised 12/1/97 COMET-AR User’s Manual 7.3-13

7.3.7 References

[1] Stanley, G. M., The Computational Structural Mechanics Testbed [COMET] Structural
Element Processor ES1: Basic SRI and ANS Shell Elements, NASA CR 4357, 1990.

[2] Stanley, G. M., The Generic Structural-Element Processor Manual for the COMET
Code, NASA CR 181728, 1990.

[3] Park, K. C. and Stanley, G. M., “A Curved C0 Shell Element Based on Assumed Natural
Coordinate Strains,” Journal of Applied Mechanics, Vol. 108, pp. 278-290, 1986.

[4] Stanley, G. M., “Continuum-Based Shell Elements,” Ph.D. Thesis, Stanford University,
Stanford, CA, 1985.

7.3 Processor ES1 (SRI and ANS Shell Elements) 7 Element Processors

7.3-14 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.4 Processor ES5 (STAGS Shell Element)

Revised 12/1/97 COMET-AR User’s Manual 7.4-1

7.4 Processor ES5 (STAGS Shell Element)

7.4.1 Element Description

Processor ES5 contains a flat 4-node Kirchhoff-type (transverse-shear-free) shell element with
intrinsic drilling stiffness. This element was transferred directly from the NASA-sponsored
STAGS finite-element code [1], where it has been used as a “work-horse” element for over a
decade, and the implementation in COMET-AR should be identical to that found in STAGS.
Within STAGS the element is known as the 410 shell element; the element type name in COMET-
AR has been changed to E410.

The E410 shell element is recommended only for thin shells (with negligible transverse-shear
flexibility) and in conjunction with fairly rectangular element shapes. Element accuracy tends to
degenerate rapidly with either in-plane mesh distortion or out-of-plane warping; however, the
element’s intrinsic drilling stiffness is a real advantage, making it unnecessary to use any of the
automatic drilling DOF suppression options implemented in COMET-AR (e.g., AUTO_MPC).
For a more detailed theoretical description of the E410 element, see Reference [2].

7.4.1.1 Summary of Element Types

There is currently only one element type available within processor ES5, as summarized in
Table 7.4-1.

7.4.1.2 Element Geometry and Node Numbering

The E410 shell element geometry and node numbering is illustrated in Figure 7.4-1. Element nodes
are shown as solid circles with bold node numbers, and integration (stress-storage) points are
shown as X’s with plain number subscripts. Element boundary (line) numbers and node numbering
conventions within boundaries (for line load application) are shown in part b of the figure.

Table 7.4-1 Summary of Processor ES5 Element Types

Element Type Name Description Status

E410 4-node flat Kirchhoff-type shell element with drilling stiffness Implemented

7.4 Processor ES5 (STAGS Shell Element) 7 Element Processors

7.4-2 COMET-AR User’s Manual Revised 12/1/97

Figure 7.4-1 E410 Shell Element Geometry and Node Numbers

In Figure 7.4-1, the element corotational frame (xe, ye, ze) is defined such that, for flat elements,
the ye axis is parallel to the side connecting element nodes 1 and 4 (i.e., l4), the ze axis is normal
to lines l1 and l4, and the xe axis completes an orthogonal triad. For “warped” elements, this
preliminary frame is rotated so that the ze axis is normal to the plane defined by the two element
diagonals (1-3 and 2-4).

The integration point xl, yl, zl axes are parallel to the xe, ye, ze axes, and hence fixed throughout
the element. The E410 element is always formulated as a flat element, with nodes of the actual
(user-specified) element geometry projected onto the flat surface defined by the average normal
vector, ze. The 4-point Gauss integration rule used corresponds to slightly reduced integration of
the element stiffness matrix and internal force vectors (which require a 5-point rule for exact
integration). This rule improves element performance without introducing spurious kinematic
modes (at least in all element test cases run to-date).

7.4.1.3 Nodal Freedoms (DOFs) and BCs

The E410 quadrilateral shell element in Processor ES5 has 3 translational displacement DOFs and
3 rotational displacement DOFs at each element node (see Figure 7.4-2). All 3 rotational DOFs
have intrinsic stiffness associated with them, even the so-called drilling rotations (i.e., the rotations
about the ze axis at each node), which are linked to the membrane strain field.

a) Element Connectivity b) Boundary Connectivity

X
X

X
X

xe

ye

ze

xl

ylzl

ξ

η

1

2

3

4

1

3

2
4

1

2

3

4

l1

l2

l3

l4

1

2
1

2

1
21

2

7 Element Processors 7.4 Processor ES5 (STAGS Shell Element)

Revised 12/1/97 COMET-AR User’s Manual 7.4-3

Figure 7.4-2 Displacement DOFs for E410 Shell Element

7.4.1.4 Displacement Representation

The approximation of the displacement field within the E410 shell element is based on a
nonconforming cubic polynomial for the bending (transverse) displacement component (w), and a
combination of cubic and linear polynomials for the in-plane displacement components (u, v).
This is summarized in Table 7.4-2.

7.4.1.5 Strain Representation

The E410 shell elements in Processor ES5 generates 6 resultant strain components, which are
stored at each of the element’s 4 integration points. The 6-strain resultants are arranged as follows:

Table 7.4-2 Processor ES5, Element E410 Displacement Approximations

Component Approximation

Transverse:
w = uze(xe,ye)

Cubic (nonconforming) polynomial; function of nodal values of transverse displacement
and rotations: uaze, θa

xe and θa
ye.

In-Plane:
u = uxe(ξe,ψe),
v = uye(ξe,ψe)

Mixed cubic/linear polynomial; function of nodal values of in-plane translations and drill-
ing rotations: uaxe, va

xe, θa
ze.

Element Displacement Vector Nodal Displacement Vector

translations

rotations

(a = 1, 2, 3,4)

ux

uy

uz

θx

θy
θz

de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

= da
e ua

θa
 
 
 
 
 

uxa uya uza, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =

7.4 Processor ES5 (STAGS Shell Element) 7 Element Processors

7.4-4 COMET-AR User’s Manual Revised 12/1/97

where the “e” subscript has been dropped for simplicity.

These strain components are constructed within each element domain by differentiating the
displacement approximation (Table 7.4-2), using the standard strain-displacement definitions
given in Table 7.4-1, for linear analysis. The resulting variations of each strain component in the
element x, y directions is also shown in Table 7.4-3.

where pi(x) refers to a polynomial of degree “i” in the x direction.

7.4.1.6 Stress Representation

Stress resultants conjugate to the above strain resultants are computed via the Generic Constitutive
Processor (GCP), and are arranged as follows:

Table 7.4-3 Element E410 Strain Definitions

Strain
Component

Definition in Terms of
Displacement Components

Polynomial Variation
due to Displacement Approximation

εx u,x p0(xe) x p2(ye)

εy v,y p2(xe) x p0(ye)

εxy u,y + v,x p2(xe,ye)

κx w,xx p1(xe,ye)

κy w,yy p1(xe,ye)

κxy -2w,xy p1(xe,ye)

ε ε
κ

Membrane_Strains

Bending_Strains
= =

ε
εx

εy

εxy

= κ
κ x

κ y

κ xy

=

where

7 Element Processors 7.4 Processor ES5 (STAGS Shell Element)

Revised 12/1/97 COMET-AR User’s Manual 7.4-5

Like the strains, the stress resultants are also computed and stored at the element integration points,
and have the same polynomial variations (for linear constitutive models).

7.4.1.7 Drilling Rotational Stiffness

As mentioned above, the E410 element has intrinsic drilling rotational stiffness which emanates
from its membrane strain field. No special measures have to be taken to suppress drilling rotational
DOFs.

7.4.1.8 Element Nonlinearity

Element geometrical nonlinearity is accounted for by a Total Lagrangian treatment of the element
force vector and stiffness matrix; and by a moderate-rotation nonlinear strain measure based on the
Lagrangian strain tensor. It is recommended that the user employ the standard COMET-AR
corotational option (see COROTATION argument in analysis procedures such as AR_CONTROL
and NL_STATIC_1) in conjunction with the E410 shell element. This will refer the Total
Lagrangian formulation to an element corotational frame and enable arbitrarily large rotations
(albeit only small to moderate strains). For material nonlinearity, Processor ES5 is fully compatible
with the Generic Constitutive Processor (GCP), and all specific shell constitutive models
implemented therein.

7.4.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options for Processor ES5 are described in the following
subsections.

σ N
M

Membrane_Stresses

Bending_Stresses
= =

N
Nx

Ny

Nxy

= M
Mx

My

Mxy

=

where

7.4 Processor ES5 (STAGS Shell Element) 7 Element Processors

7.4-6 COMET-AR User’s Manual Revised 12/1/97

7.4.2.1 RESET Command for Element Type

While there is only one element type E410 within processor ES5, the user must explicitly define
the element type via the command:

before using the DEFINE ELEMENTS command.

7.4.2.2 RESET Command for Element-Specific Research Parameters

None.

7.4.2.3 RESET Commands for Drilling Stiffness and Angle Tolerance

None (element E410 in processor ES5 has intrinsic drilling stiffness).

7.4.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). Any special-purpose datasets or data attributes are discussed in the following
subsections.

7.4.3.1 Auxiliary Storage Dataset

Processor ES5 creates an auxiliary storage dataset, called ES5_E410.AUX_STORAGE, during the
initialization phase of analysis. This dataset contains pre-computed element kinematic data that is
employed repeatedly during the course of an analysis.

7.4.3.2 Other Special-Purpose Datasets/Attributes

None.

7.4.4 Element Implementation Status and Limitations

A summary of the current implementation status of the E410 shell element within processor ES5
is given in Table 7.4-4.

RESET ELEMENT_TYPE = E410

7 Element Processors 7.4 Processor ES5 (STAGS Shell Element)

Revised 12/1/97 COMET-AR User’s Manual 7.4-7

7.4.5 Element Error Messages

A summary of the most important, or most common, error messages associated specifically with
processor ES5 are described in Table 7.4-5.

Table 7.4-4 Processor ES5, Shell Element E410 Implementation Status

Functions Status

Auto DOF Suppression N/A

Body Forces No

Consistent Mass No

Diagonal Mass No

Drilling Stiffness Yes

Error Estimates/Elt-dep. No

Error Estimates/Generic Yes

Geometric Nonlinearity Yes

Geometric Stiffness Yes

Internal Forces Yes

Load Stiffness No

Material Nonlinearity Yes (GCP)

Material (Linear) Stiffness Yes

Pressure Forces Yes

Strains Yes

Stresses Yes (GCP)

Stress Extrapolation Yes

Stress Transformation Yes

Surface Forces No

Table 7.4-5 Summary of Element Processor ES5 Error Messages

Error
#

Error Message Probable Cause(s)
Recommended User

Response

1 DETERMINANT OF
JACOBIAN = ***. PROB-
LEM TERMINATED.

The Jacobian, which is related to the ele-
ment area, is non-positive. This usually
occurs when either the element nodes are
not numbered properly, or the nodal coor-
dinates are incorrect.

Check the element nodal con-
nectivity and nodal coordinates
to make sure the element geom-
etry is a proper quadrilateral,
with no re-entrant corners.

7.4 Processor ES5 (STAGS Shell Element) 7 Element Processors

7.4-8 COMET-AR User’s Manual Revised 12/1/97

7.4.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on experience to-date with the
E410 shell element in COMET-AR’s Processor ES5, and related experience with the 410 element
in the STAGS code.

7.4.6.1 Element Type Selection

There is only one element type to select: E410.

7.4.6.2 Problem Class Recommendations

The E410 element in Processor ES5 is suitable for general-purpose linear/nonlinear analysis.

7.4.6.3 Distortion Sensitivity

The E410 element is fairly distortion sensitive. It is recommended that element corner angles be in
the range of 45–135 degrees, with 90 degrees being optimal. While out-of-plane distortion (i.e.,
warp) is compensated for by a rigid-body projection operator, accuracy may degrade with
increasing warp in the initial (undeformed) mesh.

7.4.6.4 Adaptive Analysis Guidelines

The E410 element in Processor ES5 may be used in conjunction with adaptive mesh refinement
(AR) with either transition-based (ht) refinement, or constraint-based (hc) refinement; however,
better results are often obtained with hc refinement, as less mesh distortion will be engendered.

7.4.7 References

[1] Almroth, B. O., Brogan, F. A., and Stanley, G. M., Structural Analysis of General
Shells, Vol. II: User Instructions for the STAGSC-1 Computer Code, Report No. LMSC-
D633873, Lockheed Palo Alto Research Laboratory, Palo Alto, CA, December 1982.

[2] Rankin, C. and Brogan, F., The Computational Structural Mechanics (CSM) Testbed
Element Processor ES5: STAGS Shell Element, NASA CR 4358, 1991.

2 ELEMENT IS SINGU-
LAR

The element shape function matrix is sin-
gular; typically for the same reason(s) as
in Error 1.

Same as for Error 1.

Table 7.4-5 Summary of Element Processor ES5 Error Messages (Continued)

Error
#

Error Message Probable Cause(s)
Recommended User

Response

7 Element Processors 7.5 Processor ES6 (STAGS Beam Element)

Revised 12/1/97 COMET-AR User’s Manual 7.5-1

7.5 Processor ES6 (STAGS Beam Element)

7.5.1 Element Description

Processor ES6 contains a general-purpose, assumed-displacement 2-node (straight) beam element,
based on Bernoulli-Euler beam theory. This element is intended for modeling slender beams (i.e.,
without transverse-shear flexibility) which appear in either frame structures or as stiffening
elements in shell structures. It may be used to obtain a faceted model of a curved beam. The beam
element includes stretching, bending, and twisting deformations, for which it employs linear,
cubic, and linear displacement variations, respectively, within each element domain.

The element type name for the general beam element in processor ES6 is E210. This element was
transferred directly from the STAGS finite element code [1], where it is referred to as the 210
element. The E210 beam element in processor ES6 is compatible with the E410 shell element in
processor ES5 (which also was transferred from the STAGS code). For a more detailed theoretical
description of the E210 element, see Reference [2].

7.5.1.1 Summary of Element Types

There is currently only one element type available within processor ES6, shown in Table 7.5-1.

7.5.1.2 Element Geometry and Node Numbering

The E210 beam element geometry and node numbering is illustrated in Figure 7.5-1. Element
nodes are shown as solid circles with bold node numbers, and integration (stress-storage) points
are shown as X’s with plain number subscripts.

Table 7.5-1 Summary of Processor ES6 Element Types

Element Type Name Description Status

E210 2-node straight Bernoulli-Euler beam shell. Implemented

7.5 Processor ES6 (STAGS Beam Element) 7 Element Processors

7.5-2 COMET-AR User’s Manual Revised 12/1/97

Figure 7.5-1 E210 Beam Element Geometry and Node Numbers

In Figure 7.5-1, the element corotational frame (xe,ye,ze) should be defined such that the xe axis is
parallel to the line connecting nodes 1 and 2. The orientation of these corotational triads must be
defined via processor TAB, and selected for individual elements within processor ES6 via the
ORIENTATION subcommand of the DEFINE ELEMENTS command.

The integration point stress-storage (xl, yl, zl) axes are parallel to the xe, ye, ze axes, and hence fixed
throughout the element. The 2-point Gauss integration rule used corresponds to uniform reduced
integration of the element stiffness matrix and internal force vector, which improves element
performance without introducing spurious kinematic modes.

Regarding cross-section geometry, properties such as area and moments of inertia are defined as
fabrication properties via the generic constitutive processor (GCP), and the fabrication number is
selected for each beam element within processor ES6 via the FABRICATION subcommand of the
DEFINE ELEMENTS command. Cross-section eccentricity with respect to the nodal reference
axis (1-2) can also be defined within the DEFINE ELEMENTS command, via the
ECCENTRICITY subcommand.

7.5.1.3 Nodal Freedoms (DOFs) and BCs

The E210 beam element in Processor ES6 has 3 translational displacement DOFs and 3 rotational
displacement DOFs at each element node (see Figure 7.5-2). While the computational directions
at each node are arbitrary, the figure shows the nodal DOFs aligned with the xe, ye, ze frame for
convenience. Thus, in this figure, u refers to the axial displacement, v and w to the transverse
(bending) displacements, θx refers to the torsional rotation, and θy and θz to the bending rotations.

X

X

1

2

1

2

xe

ye

ze

zl

xl
yl

7 Element Processors 7.5 Processor ES6 (STAGS Beam Element)

Revised 12/1/97 COMET-AR User’s Manual 7.5-3

Figure 7.5-2 Displacement DOFs for E210 Shell Element

7.5.1.4 Displacement Representation

The approximation of the displacement field within the E210 beam element is based on a
Hermitian cubic interpolating polynomial for the bending field, and linear interpolation for the
axial and torsional displacement fields, as summarized in Table 7.5-2.

In Table 7.5-2 all displacement and coordinate components are expressed in the element
corotational (xe,ye,ze) frame.

Table 7.5-2 Processor ES6, Element E210 Displacement Approximations

Component Approximation

Axial u(x) Linearly interpolated from nodal displacements u1 and u2.

Bending w(x) Cubically interpolated, via Hermitian shape functions, from nodal displacements w1, θy1,
w2 and θz2, where θy is associated with w,x and θz is associated with v,x.

Torsion θx(x) Linearly interpolated from nodal rotations θx1 and θx2.

Element Displacement Vector Nodal Displacement Vector

translations

rotations

(a = 1, 2)

de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

= da
e ua

θa
 
 
 
 
 

ua va wa, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =

u1

u2

v1

w1

w2

v2

θx1

θy1

θz1

θz2

θx2

θy2

7.5 Processor ES6 (STAGS Beam Element) 7 Element Processors

7.5-4 COMET-AR User’s Manual Revised 12/1/97

7.5.1.5 Strain Representation

The E210 beam element in Processor ES6 generates 4 resultant strain components, which are
stored at each of the element’s 2 Gauss integration points (see Figure 7.5-1). The 4-strain resultants
are arranged as follows:

where the “e” subscript on the coordinate axes has been dropped for simplicity.

These strain components are constructed within each element domain by differentiating the
displacement approximation (Table 7.5-2), using the standard strain-displacement definitions for
linear analysis (see Sect. 7.5.1.7 for nonlinear analysis). The resulting variation of each strain
component in the element xe direction is shown in Table 7.5-3.

where commas denote differentiation and pi(x) refers to a polynomial of degree “i” in the element
xe direction.

7.5.1.6 Stress Representation

Stress resultants conjugate to the strain resultants defined in the previous section are computed via
the Generic Constitutive Processor (GCP), and are arranged as follows:

Table 7.5-3 Element E210 Strain Definitions

Strain
Component

Strain Type
Definition in Terms of

Displacements
Polynomial Variation

within Element

εx Axial u,x p0(x)

κy Bending -w,xx p1(x)

κz Bending -v,xx p1(x)

a Twist θx,x p0(x)

ε

εx

κ y

κz

α

Axial

Bending_about_z

Bending_about_y

Twist

= =

7 Element Processors 7.5 Processor ES6 (STAGS Beam Element)

Revised 12/1/97 COMET-AR User’s Manual 7.5-5

Like the strains, the stress resultants are also computed and stored at the element integration points,
and have the same polynomial variations (for linear constitutive models).

7.5.1.7 Element Nonlinearity

Element geometrical nonlinearity is accounted for by a Total Lagrangian treatment of the element
force vector and stiffness matrix, and by a moderate-rotation nonlinear strain measure based on the
Lagrangian strain tensor. With this strain measure, nonlinear terms are added only to the axial
strain, εx; the bending and torsional strain expressions remain linear.

It is also recommended that the user employ the standard COMET-AR corotational option (see
COROTATION argument in analysis procedures such as AR_CONTROL and NL_STATIC_1) in
conjunction with the E210 beam element. This will refer the Total Lagrangian formulation to an
element corotational frame, and enable arbitrarily large rotations (albeit only small to moderate
strains). For material nonlinearity, Processor ES6 is fully compatible with the Generic Constitutive
Processor (GCP), and all specific beam constitutive models implemented therein.

7.5.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options for Processor ES6 are described in the following
subsections.

7.5.2.1 RESET Command for Element Type

While there is only one element type E210 within processor ES6, the user must explicitly define
the element type via the command:

before using the DEFINE ELEMENTS command.

7.5.2.2 RESET Command for Element-Specific Research Parameters

None.

RESET ELEMENT_TYPE = E210

σ

N
M y

M y

T

Axial_Force

Bending_Moment_about_z

Bending_Moment_about_y

Torque

= =

7.5 Processor ES6 (STAGS Beam Element) 7 Element Processors

7.5-6 COMET-AR User’s Manual Revised 12/1/97

7.5.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). There are no special-purpose datasets or data attributes at this time.

7.5.3.1 Auxilliary Storage Dataset

None.

7.5.3.2 Other Special-Purpose Datasets/Attributes

None.

7.5.4 Element Implementation Status and Limitations

A summary of the current implementation status of the E210 beam element within processor ES6
is given in Table 7.5-4.

Table 7.5-4 Processor ES6, Beam Element E210 Implementation Status

Functions Status

Auto DOF Suppression Yes

Body Forces No

Consistent Mass Yes

Diagonal Mass Yes

Error Estimates/Elt-dep. No

Error Estimates/Generic N/A

Geometric Nonlinearity Yes

Geometric Stiffness Yes

Internal Forces Yes

Line-load Forces Yes

Load Stiffness No

Material Nonlinearity Yes (GCP)

Material (Linear) Stiffness Yes

Strains Yes

Stresses Yes (GCP)

Stress Extrapolation Yes

Stress Transformation N/A

Surface Forces No

7 Element Processors 7.5 Processor ES6 (STAGS Beam Element)

Revised 12/1/97 COMET-AR User’s Manual 7.5-7

7.5.5 Element Error Messages

None.

7.5.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on experience to-date with the
E210 beam element in COMET-AR’s Processor ES6, and related experience with the 210 element
in the STAGS code.

7.5.6.1 Element Type Selection

There is only one element type to select: E210.

7.5.6.2 Problem Class Recommendations

The E210 beam element in Processor ES6 is suitable for general-purpose linear/nonlinear/static/
dynamic analysis.

7.5.6.3 Adaptive Analysis Guidelines

COMET-AR adaptive mesh refinement is not currently implemented for beam elements. Once
appropriate modifications have been made to COMET-AR mesh refinement and error estimation
processors (e.g., REF1 and ERRi, respectively), no specific changes should be necessary to the
E210 beam element within processor ES6 to enable adaptive analysis.

7.5.7 References

[1] Almroth, B. O., Brogan, F. A., and Stanley, G. M., Structural Analysis of General
Shells, Vol. II: User Instructions for the STAGSC-1 Computer Code, Report No. LMSC-
D633873, Lockheed Palo Alto Research Laboratory, Palo Alto, CA, December 1982.

[2] Nour-Omid, S., Brogan, F. A., and Stanley, G. M., The Computational Structural
Mechanics (CSM) Testbed Element Processor ES6: STAGS Beam Element, NASA CR
4359, 1991.

7.5 Processor ES6 (STAGS Beam Element) 7 Element Processors

7.5-8 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-1

7.6 Processor ES1p (Variable-p Lagrange Quadrilateral Shell Elements)

7.6.1 Element Description

Processor ES1p contains a family of variable-polynomial(p)-order assumed displacement
Lagrange (LAG) quadrilateral shell elements, ranging from a 4-node element (p=1) to a 16-node
element (p=3). The formulation is based on the basic isoparametric (degenerated solid approach)
described in [1], which features a C0 (shear-deformable) shell theory [2] with Lagrange polynomial
shape functions used to approximate both the element geometry and displacement field; and strains
obtained by simple differentiation of the displacements. The result is a set of relatively stiff, but
fairly distortion-insensitive elements. While these elements do not perform as well (i.e., converge
as fast) as their high-performance counterparts (the assumed natural strain (ANS) shell elements
implemented in Processor ES7p), they are often less sensitive to the side effects of adaptive mesh
refinement, such as mesh distortion (in transition-based, ht, refinement) or multi-point interelement
constraints (in constraint-based, hc, refinement).

7.6.1.1 Summary of Element Types

Currently implemented element types available within processor ES1p are summarized in
Table 7.6-1.

7.6.1.2 Element Geometry and Node Numbering

The three LAG shell element types listed in Table 7.6-1 are illustrated in Figures 7.6-1 to 7.6-3.
Element nodes are shown as solid circles with bold node numbers, and integration (stress-storage)
points are shown as X’s with plain number subscripts. Element boundary (line) numbers and node
numbering conventions within boundaries (for line load application) are shown in part b of each
figure.

Table 7.6-1 Summary of Processor ES1p Element Types

Element Type
Name

Description Status

SHELL
(p=1)

4-node LAG (4-LAG) quadrilateral shell element; bilinear geometry and
displacement field; differentiated strain field; uses selective-reduced
numerical integration for shear-strain terms in element stiffness and force.

Implemented

SHELL
(p=2)

9-node LAG (9-LAG) quadrilateral shell element; biquadratic geometry
and displacement field; differentiated strain field; uses full numerical inte-
gration for element stiffness and force.

Implemented

SHELL
(p=3)

16-node LAG (16-LAG) quadrilateral shell element; bicubic geometry and
displacement field; differentiated strain field; uses full numerical integra-
tion for element stiffness and force.

Implemented

7.6 Processor ES1p 7 Element Processors

7.6-2 COMET-AR User’s Manual Revised 12/1/97

Figure 7.6-1 4-LAG (p=1) Element Geometry and Node Numbers

Figure 7.6-2 9-LAG (p=2) Element Geometry and Node Numbers

a) Element Connectivity b) Boundary Connectivity

X

X

X
X

xe

ye
ze

xl

ylzl

ξ

η

1

2

3
4

1

2

3
4

1

2

3

4

l1

l2

l3

l4

1

2
1

2
1

21

2

a) Element Connectivity b) Boundary Connectivity

X X
X

X

X

X X

XX

ξ

η

xe

ye

ze

xl

yl

zl

1

2

3

4

5

6

7

8
9

1 2
3

4
5 6

7
8

9

1

2

3

4

l1

l2

l3

l4

1

2 1

2

1

2
1

2
3

3

3

3

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-3

Figure 7.6-3 16-LAG (p=3) Element Geometry and Node Numbers

In Figures 7.6-1 to 7.6-3, the orthogonal xe, ye, ze axes form the element Cartesian (or corotational)
coordinate system; orthogonal xl, yl, zl axes form the element local stress coordinate system, which
can vary from integration point to integration point; and the non-orthogonal/curvilinear ξ, η, ζ axes
from the element natural-coordinate system. The xe axis initially connects nodes 1 and 2, and the
ze axis is perpendicular to the 1-2-3 plane; however, this coordinate system is slightly modified by
the generic element processor to achieve a less biased system for corotational nonlinear analysis
(see Reference [3]). The xl axis is always tangent to the local ξ curve, the zl axis is always normal
to the ξ−η tangent plane, and the yl axis completes an orthogonal triad.

7.6.1.3 Nodal Freedoms (DOFs) and BCs

All of the quadrilateral shell elements in Processor ES1p have 3 translational displacement DOFs
and 3 rotational displacement DOFs at each element node (see Figure 7.6-4); however, the drilling
rotational DOF (i.e., the rotation about the local element surface-normal vector) does not have any
intrinsic stiffness. One of two drilling stabilization options must be employed with this element:
i) artificial drilling stiffness (which may be triggered via the AUTO_DRILL option at the solution
procedure level); or ii) automatic drilling DOF suppression via the AUTO_DOF_SUP option in
conjunction with the AUTO_TRIAD option for models (see Section 2.10, Automatic DOF
Suppression and Drilling Stabilization).

 4

 12
1

a) Element Connectivity

b) Boundary Connectivity

ξ

η

X X

X
X

X

X

X

X

X
X

X
X

1

2

3

4

5
6

7 8

9

1011
12

13
14

16

15
 2

 3

 5
 6

 7

 8

 9
 10

 11

 13
 14

 15
 16

xl

ylzl

ze

xe

ye

1

2

3

4

l1 l2

l3l4

1

1

1

1

2

2

2

3

3
3

3
4

4

4
4

7.6 Processor ES1p 7 Element Processors

7.6-4 COMET-AR User’s Manual Revised 12/1/97

Figure 7.6-4 Displacement DOFs for LAG Shell Elements

7.6.1.4 Displacement Representation

The approximation of the displacement field within the LAG shell elements is based on Lagrange
interpolating polynomials, with polynomial variations in ξ and η as shown in Table 7.6-2

Table 7.6-2 Processor ES1p Element Displacement Approximations

Component
Polynomial Variation

p = 1 (4-node) p = 2 (9-node) p = 3 (16-node)

u(ξ,η) Lin(ξ)∗ Lin(η) Quad(ξ)∗ Quad(η) Cubic(ξ)∗ Cubic(η)

θ(ξ,η) Lin(ξ)∗ Lin(η) Quad(ξ)∗ Quad(η) Cubic(ξ)∗ Cubic(η)

Element Displacement Vector

de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

=

Nodal Displacement Vector

da

e ua

θa
 
 
 
 
 

uxa uya uza, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =
translations

rotations

(a = 1, 2, ... num. elt. nodes)

ux

uy
uz

θx

θyθz

ux

uy
uz

θx

θyθz

ux

uy

uz

θx

θy
θz

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-5

7.6.1.5 Strain Representation

The LAG shell elements in Processor ES1p generate 8 resultant strain components, which are
stored at each of the element integration points. The 8-strain resultants are arranged as follows:

where the subscripts x and y denote the xl and yl components at an integration point (see Figures
7.6-1 to 7.6-3). The natural-coordinate components of these strains within the element domain are
obtained by differentiating the displacement approximation (Table 7.6-2), using the strain-
displacement definitions given in Table 7.6-3. The 4-LAG element is a special case in that after
differentiating the displacement, selective/reduced numerical integration is used on the shear-strain
terms (εξη, κξη, γξ and γη) appearing in the element stiffness matrix and internal force vector, such
that these particular strain components are forced to remain constant throughout the element.
While this improves element performance, it also engenders two spurious kinematic modes that
can be triggered by certain boundary conditions (see Subsection 7.8.6 on Element Selection and
Usage Guidelines).

Table 7.6-3 Processor ES1p Strain Definitions

Strain Component Definition in Terms of Displacement Components

εξ

εη

εξη

κξ

κη

κξη

ε
ε
κ
γ

Membrane_Strains

Bending_Strains

Transverse-Shear_Strains

= =

ε
εx

εy

εxy

= κ
κ x

κ y

κ xy

= γ
γx

γy

=

where

ξ∂
∂ x

ξ∂
∂ u•

η∂
∂ x

η∂
∂ u•

ξ∂
∂ x

η∂
∂ u• 

 
η∂
∂ x

ξ∂
∂ u• 

 +

ξ∂
∂ x

ξ∂
∂ û•

η∂
∂ x

η∂
∂ û•

ξ∂
∂ x

η∂
∂ û• 

 
η∂
∂ x

ξ∂
∂ û• 

 +

7.6 Processor ES1p 7 Element Processors

7.6-6 COMET-AR User’s Manual Revised 12/1/97

The variation of the element translation vector, u, appearing in Table 7.6-3 is also given in
Table 7.6-2. The reference-surface position vector, x, varies in the same way as u; the reference-
surface normal vector is defined as the cross-product of the two in-plane tangent vectors, i.e.,

and the linearized rotation vector, θ, appears implicitly through the definition of a relative
displacement vector, i.e.,

where is the displacement of the tip of the element unit normal vector relative to the reference
surface, at the point x.

7.6.1.6 Stress Representation

Stress resultants conjugate to the above strain resultants are computed via the Generic Constitutive
Processor (GCP), and are arranged as follows:

Like the strains, the stress resultants are also computed and stored at the element integration points,
and have the same polynomial variations (for linear constitutive models).

γξ

γη

Table 7.6-3 Processor ES1p Strain Definitions (Continued)

Strain Component Definition in Terms of Displacement Components

x̂
ξ∂

∂ u• 
 

ξ∂
∂ x û• 

 +

x̂
η∂
∂ u• 

 
η∂
∂ x û• 

 +

x̂
ξ∂

∂ x
η∂
∂ x×=

û x̂– θ×=

û

σ
N
M
Q

Membrane_Stresses

Bending_Stresses

Transverse-Shear_Stresses

= =

N
Nx

Ny

Nxy

= M
Mx

My

Mxy

= Q
Qx

Qy

=

where

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-7

7.6.1.7 Drilling Rotational Stiffness

Since the present shell element formulation has no intrinsic drilling (normal rotational) stiffness,
an artificial drilling stiffness option is provided. This option is triggered by the AUTO_DRILL
solution procedure argument, and works as shown in Figure 7.6-5.

Figure 7.6-5 Implementation of Artificial Drilling Stiffness in Processor ES1p

The element material stiffness matrix is first computed in the element corotational frame (xe,ye,ze)
and then rotated into an independent local frame (l) at each node such that the zl axis is parallel to
the element normal (or drilling) axis. The diagonal drilling rotational stiffness components are
then set equal to a small fraction of the maximum element diagonal stiffness component. Finally,
the element matrix is rotated back to the element corotational frame before depositing in the data-
base for assembly. The fractional coefficient multiplying the maximum diagonal stiffness compo-
nent involves a negative power of 10. That exponent, referred to as scale, corresponds to the scale
parameter in the AUTO_DRILL solution procedure argument (and also in the element processor’s
RESET DRILL_STIFF command). The default coefficient is 10-5 (scale=5).

7.6.1.8 Element Nonlinearity

Element geometrical nonlinearity is accounted for by an Updated Lagrangian treatment of the
element force vector and stiffness matrix; and by a moderate-rotation nonlinear strain measure
based on the midpoint strain tensor. Additionally, the ANS shell elements may be employed with
the generic element processors (ES) built-in corotational capability to enable arbitrarily large
rotations. For material nonlinearity, Processor ES1p is fully compatible with the Generic
Constitutive Processor (GCP), and all specific shell constitutive models implemented therein.

7.6.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options for Processor ES1p are described in the following
subsections.

xe

yeze

xl

zl yl

K l T
el
T

K eT
el=

K l[] θzl
10

scale–
max Kii()⋅=

K g TglK lTgl
T

=

θzl

7.6 Processor ES1p 7 Element Processors

7.6-8 COMET-AR User’s Manual Revised 12/1/97

7.6.2.1 RESET Command for Element Type

All elements within Processor ES1p have the same element type name, SHELL, thus:

should be entered before using the DEFINE ELEMENTS command. To select the 4-node, 9-node,
or 16-node LAG shell element, use the /P qualifier in the DEFINE ELEMENTS command, i.e.,

where p is the polynomial order and may be set to 1 (for the 4-LAG element), 2 (for the 9-LAG
element) or 3 (for the 16-LAG element).

7.6.2.2 RESET Command for Element-Specific Research Parameters

None.

7.6.2.3 RESET Commands for Drilling Stiffness and Angle Tolerance

The default scale parameter used to compute artificial drilling stiffness is 5, which corresponds to
a scale factor of 10-5 (see Figure 7.6-4). The value of scale can be changed via the RESET
DRILL_STIFF command.

The default angle tolerance for requiring artificial drilling stiffness is 1 degree. Drilling stiffness
flags are turned on at any node for which the normals of all attached shell elements make an angle
less than this tolerance with the average element normal. The default tolerance can be changed via
the RESET DRILL_TOL command.

Both of the above parameters also appear in the AUTO_DRILL solution procedure argument, and
the angle tolerance parameter appears in the AUTO_TRIAD and AUTO_DOF_SUP solution
procedure arguments.

7.6.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). There are no special-purpose datasets or attributes at this time.

7.6.3.1 Auxilliary Storage Dataset

None.

RESET ELEMENT_TYPE = SHELL

DEFINE ELEMENTS /P = p

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-9

7.6.3.2 Other Special-Purpose Datasets/Attributes

None.

7.6.4 Element Implementation Status and Limitations

A summary of the current implementation status of the LAG shell elements within processor ES1p
is given in Table 7.6-4. All functions except for the load stiffness matrix and element-dependent
error estimates are implemented for all element types. Neither of these functions is essential.
Generic element error estimates are adequate for adaptive refinement, and the load stiffness matrix
is important only for some buckling eigenproblems involving live loads (e.g., hydrostatically
loaded cylindrical shells).

Higher-order LAG shell elements (beyond p=3) are implemented internally, and can be activated
by recreating processor ES1p with a modified include block (contact the COMET-AR
development team for details).

Table 7.6-4 Processor ES1p Element Implementation Status

Functions
p=3 (4-node)

LAG Element Status
p=2 (9-node)

LAG Element Status
p=3 (16-node)

LAG Element Status

Auto DOF Supp. Yes Yes Yes

Body Forces Yes Yes Yes

Consistent Mass Yes Yes Yes

Diagonal Mass Yes Yes Yes

Drilling Stiffness Yes Yes Yes

Error Estimates/Elt-dep. No No No

Error Estimates/Generic Yes Yes Yes

Geometric Nonlinearity Yes Yes Yes

Geometric Stiffness Yes Yes Yes

Internal Forces Yes Yes Yes

Load Stiffness No No No

Material Nonlinearity Yes Yes Yes

Pressure Forces Yes Yes Yes

Strains Yes Yes Yes

Stresses Yes Yes Yes

Stress Extrapolation Yes Yes Yes

Stress Transformation Yes Yes Yes

Surface Forces Yes Yes Yes

7.6 Processor ES1p 7 Element Processors

7.6-10 COMET-AR User’s Manual Revised 12/1/97

7.6.5 Element Error Messages

A summary of the most important or common error messages associated specifically with
processor ES1p are described in Table 7.6-5.

7.6.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on experience to-date with
COMET-AR Processor ES1p.

7.6.6.1 Element Type Selection

Of the three standard element types within Processor ES1p (4-LAG, 9-LAG, and 16-LAG), the 16-
LAG element is the most robust, followed by the 9-LAG element. The 4-LAG is not recommended
unless 4-node elements are absolutely necessary (e.g., from a large pre-existing model). Since the
9-LAG and 16-LAG are fully integrated isoparametric elements, they tend to be stiff for thin,
curved shells (compared to the corresponding ANS elements in Processor ES7p). In contrast, the
4-LAG element, which would be unacceptably stiff with full integration (i.e., it would lock), is
treated with selective/reduced integration. This makes the element more flexible, but at the expense
of engendering potential spurious kinematic modes. Any model run with the 4-LAG (p=1) element
should be examined first for spurious modes via a preliminary eigenvalue (e.g., vibration) analysis.

Table 7.6-5 Summary of Element Processor ES1p Error Messages

Error # Error Message Probable Cause(s) Recommended User Response

1 Invalid ES1p element type The user has selected an invalid ele-
ment type (via the RESET
ELEMENT_TYPE command) when
defining element connectivity or loads.

Change the element type to
SHELL, as that is currently the only
valid element type in processor
ES1p.

2 p level exceeds current
limit

The user has selected the element
polynomial order (via the /P qualifier
in the DEFINE ELEMENTS com-
mand) that is beyond a hardcoded
limit in processor ES1p.

Reduce the polynomial order to an
acceptable value, less than or equal
to 5 on most installations, or ask the
COMET-AR development team to
increase the hardcoded limit.

3 ES0∗∗∗∗ not implemented The element developer has not imple-
mented this element function.

Try to work around the unimple-
mented function; or ask the element
developer to implement it ASAP.

4 Zero determinant of Jaco-
bian

The element nodes probably do not
define a proper quadrilateral. Either
the nodal coordinates are not as
intended by the user, or the definition
of element nodal connectivity via the
DEFINE ELEMENTS command is
incorrect.

Check nodal coordinates and ele-
ment connectivity. (Error is proba-
bly not due to the degeneration of a
quadrilateral into a triangle; that is a
permissible modeling technique
with this element processor.)

7 Element Processors 7.6 Processor ES1p

Revised 12/1/97 COMET-AR User’s Manual 7.6-11

7.6.6.2 Problem Class Recommendations

The 9-LAG and 16-LAG elements in Processor ES1p are usable for general-purpose linear/
nonlinear analysis, but not optimal. For improved accuracy and reliability, use the ANS shell
elements in Processor ES7p.

7.6.6.3 Distortion Sensitivity

The LAG quadrilateral shell elements do have some sensitivity to mesh distortion (i.e., element
corner point angles that are far from 90 degrees), but they are less sensitive than a number of other
shell elements (e.g., those in processor ES7p). However, the overall accuracy of the LAG elements
may be significantly less than these other, more distortion-sensitive elements for the same mesh.

7.6.6.4 Automatic Drilling Stabilization

Since the LAG shell elements do not have intrinsic drilling rotational stiffness, the user must select
one of the automatic drilling DOF stabilization options available in COMET-AR solution
procedures: either the AUTO_DRILL option (which will engender artificial drilling stiffness at the
element level); or the AUTO_DOF_SUP option (which will suppress global rotational DOFs if the
computational axes are closely aligned with the element normal). The AUTO_TRIAD option may
also be selected in conjunction with the AUTO_DOF_SUP option, if the computational axes are
not closely aligned with the element normals. At shell/shell, or shell/stiffener junctures, drilling
stabilization is unnecessary.

7.6.6.5 Adaptive Analysis Guidelines

All of the LAG shell elements in Processor ES1p may be used in conjunction with adaptive mesh
refinement (AR) with the following provisos:

1) The 4-LAG element may be sensitive to the multipoint interelement constraints generated
by constraint-based (hc) refinement. This is because the selective/reduced integration used
on this element makes it effectively an incompatible (i.e., non-conforming) element.

2) The 9-LAG and 16-LAG elements seem to work well with either hc or ht refinement;
however, they usually converge much more slowly than the corresponding ANS elements
in processor ES7p.

7.6.7 References

[1] Stanley, G. M., The Computational Structural Mechanics Testbed (COMET) Structural
Element Processor ES1: Basic SRI and ANS Shell Elements, NASA CR 4357, 1991.

[2] Stanley, G. M., “Continuum-Based Shell Elements,” Ph.D. Thesis, Stanford University,
Stanford, CA, 1985.

7.6 Processor ES1p 7 Element Processors

7.6-12 COMET-AR User’s Manual Revised 12/1/97

[3] Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed
(COMET) Generic Structural-Element Processor Manual, NASA CR 181728, 1990.

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-1

7.7 Processor ES7p (Variable-p ANS Quadrilateral Shell Elements)

7.7.1 Element Description

Processor ES7p contains a family of variable-polynomial (p)-order, assumed natural-coordinate
strain (ANS) quadrilateral shell elements, ranging from a 4-node element (p=1) to a 16-node
element (p=3). The formulation is based on an extension of the ANS elements described in [1] and
[2], which features a C0 (shear-deformable) shell theory [3] with directionally selective
approximations for each natural-coordinate strain component. The result is a set of rapidly
convergent elements that are insensitive to element thickness-to-length aspect ratios, and free of
spurious kinematic modes. These shell elements may also be viewed as high-performance
extensions of displacement-based isoparametric (Lagrange) shell elements (e.g., those in processor
ES1p), as they use an implicit form of directionally reduced numerical integration on the basic
Lagrange elements to achieve increased accuracy, prevent locking and avoid mechanisms. On the
other hand, the lower-order elements (p=1 and p=2) tend to be somewhat more sensitive to mesh
distortion than the corresponding basic Lagrange elements

7.7.1.1 Summary of Element Types

Currently implemented element types available within processor ES7p are summarized in
Table 7.7-1.

7.7.1.2 Element Geometry and Node Numbering

The three ANS shell element types listed in Table 7.7-1 are illustrated in Figures 7.7-1 to 7.7-3.
Element nodes are shown as solid circles with bold node numbers and integration (stress-storage)
points are shown as X’s with plain number subscripts. Element boundary (line) numbers and node
numbering conventions within boundaries (for line load application) are shown in part b of each
figure.

Table 7.7-1 Summary of Processor ES7p Element Types

Element Type
Name

Description Status

SHELL
(p=1)

4-node ANS quadrilateral shell element; bilinear geometry and displace-
ment field; constant/linear strain field.

Implemented

SHELL
(p=2)

9-node ANS quadrilateral shell element; biquadratic geometry and dis-
placement field; linear/quadratic strain field.

Implemented

SHELL
(p=3)

16-node ANS quadrilateral shell element; bicubic geometry and displace-
ment field; quadratic/cubic strain field.

Implemented

7.7 Processor ES7p 7 Element Processors

7.7-2 COMET-AR User’s Manual Revised 12/1/97

Figure 7.7-1 4-ANS (p=1) Element Geometry and Node Numbers

Figure 7.7-2 9-ANS (p=2) Element Geometry and Node Numbers

a) Element Connectivity b) Boundary Connectivity

1

2

3

4

l1

l2

l3

l4

1

2
1

2
1

21

2
X

X

X
X

xe

ye
ze

xl

ylzl

ξ

η

1

2

3
4

1

2

3
4

b) Boundary Connectivity

1

2

3

4

l1

l2

l3

l4

1

2 1

2

1

2
1

2
3

3

3

3
X X

X

X

X

X X

XX

ξ

η

xe

ye

ze

xl

yl

zl

1

2

3

4

5

6

7

8
9

1 2
3

4
5 6

7
8

9

a) Element Connectivity

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-3

\

Figure 7.7-3 16-ANS (p=3) Element Geometry and Node Numbers

In Figures 7.7-1 to 7.7-3, the orthogonal xe, ye, ze axes form the element Cartesian (or corotational)
coordinate system. The orthogonal xl, yl, zl axes form the element local stress coordinate system,
which can vary from integration point to integration point; and the non-orthogonal/curvilinear ξ,
η, ζ axes from the element natural-coordinate system. The xe axis initially connects nodes 1 and 2,
and the ze axis is perpendicular to the 1-2-3 plane; however, this coordinate system is slightly
modified by the generic element processor to achieve a less biased system for corotational
nonlinear analysis (see Reference [4]). The xl axis is always tangent to the local ξ curve, the zl axis
is always normal to the ξ−η tangent plane, and the yl axis completes an orthogonal triad.

7.7.1.3 Nodal Freedoms (DOFs) and BCs

All of the quadrilateral shell elements in Processor ES7p have 3 translational displacement DOFs
and 3 rotational displacement DOFs at each element node (see Figure 7.7-4). The drilling rotational
DOF (i.e., the rotation about the local element surface-normal vector) does not have any intrinsic
stiffness, and one of two drilling stabilization options must be employed with this element: i)
artificial drilling stiffness (which may be triggered via the AUTO_DRILL option at the solution
procedure level), or ii) automatic drilling DOF suppression via the AUTO_DOF_SUP option in
conjunction with the AUTO_TRIAD option for models (see Section 2.10, Automatic DOF
Suppression and Drilling Stabilization).

a) Element Connectivity

b) Boundary Connectivity

1

2

3

4

l1 l2

l3l4

1

1

1

1

2

2

2

3

3
3

3
4

4

4
4

 4

 12
1

ξ

η

X X

X
X

X

X

X

X

X
X

X
X

1

2

3

4

5
6

7 8

9

1011
12

13
14

16

15
 2

 3

 5
 6

 7

 8

 9
 10

 11

 13
 14

 15
 16

xl

ylzl

ze

xe

ye

7.7 Processor ES7p 7 Element Processors

7.7-4 COMET-AR User’s Manual Revised 12/1/97

Figure 7.7-4 Displacement DOFs for ANS Shell Elements

7.7.1.4 Displacement Representation

The approximation of the displacement field within ANS shell elements, assumed independently
of the strain field, is shown in Table 7.7-2

Table 7.7-2 Processor ES7p Element Displacement Approximations

Component
Polynomial Variation

p = 1 (4-node) p = 2 (9-node) p = 3 (16-node)

u(ξ,η) Lin(ξ)∗ Lin(η) Quad(ξ)∗ Quad(η) Cubic(ξ)∗ Cubic(η)

θ(ξ,η) Lin(ξ)∗ Lin(η) Quad(ξ)∗ Quad(η) Cubic(ξ)∗ Cubic(η)

Element Displacement Vector

de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

=

Nodal Displacement Vector

 da
e ua

θa 
 
 
 
 

uxa uya uza, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =

translations

rotations

(a = 1, 2, ... num. elt. nodes)

ux

uy
uz

θx

θyθz

ux

uy
uz

θx

θyθz

ux

uy

uz

θx

θy
θz

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-5

7.7.1.5 Strain Representation

The ANS shell elements in Processor ES7p generate 8 resultant strain components, which are
stored at each of the element integration points. The 8-strain resultants are arranged as follows:

where the subscripts x and y denote the xl and yl components at an integration point (see Figures
7.7-1 to 7.7-3). The variation of the natural-coordinate components of these strains within the
element domain is assumed independently of the displacement field, as summarized in Table 7.7-3.

7.7.1.6 Stress Representation

Stress resultants conjugate to the above strain resultants are computed via the Generic Constitutive
Processor (GCP), and are arranged as follows:

Table 7.7-3 Processor ES7p Element Strain Approximations

Component
Polynomial Variation

p = 1 (4-node) p = 2 (9-node) p = 3 (16-node)

εξ, kξ, γξ Lin(η) Lin(ξ)∗ Quad(η) Quad(ξ)∗ Cubic(η)

εη, κη, γη Lin(ξ) Quad(ξ)∗ Lin(η) Cubic(ξ)∗ Quad(η)

εξη, κξη Constant Lin(ξ)∗ Lin(η) Quad(ξ)∗ Quad(η)

ε
ε
κ
γ

Membrane_Strains

Bending_Strains

Transverse-Shear_Strains

= =

ε
εx

εy

εxy

= κ
κ x

κ y

κ xy

= γ
γx

γy

=

where

7.7 Processor ES7p 7 Element Processors

7.7-6 COMET-AR User’s Manual Revised 12/1/97

Like the strains, the stress resultants are also computed and stored at the element integration points,
and have the same polynomial variations (for linear constitutive models).

7.7.1.7 Drilling Rotational Stiffness

Since the present shell element formulation has no intrinsic drilling (normal rotational) stiffness,
an artificial drilling stiffness option is provided. This option is triggered by the AUTO_DRILL
solution procedure argument, and works as shown in Figure 7.7-5.

Figure 7.7-5 Implementation of Artificial Drilling Stiffness in Processor ES7p

The element material stiffness matrix is first computed in the element corotational frame (xe, ye,
ze) and then rotated into an independent local frame (l) at each node such that the zl axis is parallel
to the element normal (or drilling) axis. The diagonal drilling rotational stiffness components are
then set equal to a small fraction of the maximum element diagonal stiffness component. Finally,
the element matrix is rotated back to the element corotational frame before depositing in the
database for assembly. The fractional coefficient multiplying the maximum diagonal stiffness
component involves a negative power of 10. That exponent, referred to as scale, corresponds to the
scale parameter in the AUTO_DRILL solution procedure argument (and also in the element
processor’s RESET DRILL_STIFF command). The default coefficient is 10-5 (scale=5).

σ
N
M
Q

Membrane_Stresses

Bending_Stresses

Transverse-Shear_Stresses

= =

N
Nx

Ny

Nxy

= M
Mx

My

Mxy

= Q
Qx

Qy

=

where

xe

yeze

xl

zl yl

K l T
el
T

K eT
el=

K l[] θzlθzl
10

scale–
max Kii()⋅=

K g TglK lTgl
T

=

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-7

7.7.1.8 Element Nonlinearity

Element geometrical nonlinearity is accounted for by an Updated Lagrangian treatment of the
element force vector and stiffness matrix, and by a moderate-rotation nonlinear strain measure
based on the midpoint strain tensor. Additionally, the ANS shell elements may be employed with
the generic element processors (ES) built-in corotational capability to enable arbitrarily large
rotations. For material nonlinearity, Processor ES7p is fully compatible with the generic
constitutive processor, and all specific shell constitutive models implemented therein.

7.7.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options for Processor ES7p are described in the following
subsections.

7.7.2.1 RESET Command for Element Type

All elements within Processor ES7p have the same element type name, SHELL, thus:

should be entered before using the DEFINE ELEMENTS command. To select the 4-node, 9-node,
or 16-node ANS shell element, use the /P qualifier in the DEFINE ELEMENTS command, i.e.,

where p is the polynomial order and may be set to 1 (for the 4-ANS element), 2 (for the 9-ANS
element) or 3 (for the 16-ANS element).

7.7.2.2 RESET Command for Element-Specific Research Parameters

None.

7.7.2.3 RESET Commands for Drilling Stiffness and Angle Tolerance

The default scale parameter used to compute artificial drilling stiffness is 5, which corresponds to
a scale factor of 10-5 (see Figure 7.7-4). The value of scale can be changed via the RESET
DRILL_STIFF command.

The default angle tolerance for requiring artificial drilling stiffness is 1 degree. Drilling stiffness
flags are turned on at any node for which the normals of all attached shell elements make an angle
less than this tolerance with the average element normal. The default tolerance can be changed via
the RESET DRILL_TOL command.

RESET ELEMENT_TYPE = SHELL

DEFINE ELEMENTS /P = p

7.7 Processor ES7p 7 Element Processors

7.7-8 COMET-AR User’s Manual Revised 12/1/97

Both of the above parameters also appear in the AUTO_DRILL solution procedure argument, and
the angle tolerance parameter appears in the AUTO_TRIAD and AUTO_DOF_SUP solution
procedure arguments.

7.7.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). There are no special-purpose datasets or data attributes at this time.

7.7.3.1 Auxilliary Storage Dataset

None.

7.7.3.2 Other Special-Purpose Datasets/Attributes

None.

7.7.4 Element Implementation Status and Limitations

A summary of the current implementation status of the ANS shell elements within processor ES7p
is given in Table 7.7-4. All functions except for the load stiffness matrix and element-dependent
error estimates are implemented for all element types. Neither of these functions is essential.
Generic element error estimates are adequate for adaptive refinement, and the load stiffness matrix
is important only for some buckling eigenproblems involving live loads (e.g., hydrostatically
loaded cylindrical shells).

Table 7.7-4 Processor ES7p Element Implementation Status

Functions
p=3 (4-node)

ANS Element Status
p=2 (9-node)

ANS Element Status
p=3 (16-node)

ANS Element Status

Auto DOF Supp. Yes Yes Yes

Body Forces Yes Yes Yes

Consistent Mass Yes Yes Yes

Diagonal Mass Yes Yes Yes

Drilling Stiffness Yes Yes Yes

Error Estimates/Elt-dep. No No No

Error Estimates/Generic Yes Yes Yes

Geometric Nonlinearity Yes Yes Yes

Geometric Stiffness Yes Yes Yes

Internal Forces Yes Yes Yes

Load Stiffness No No No

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-9

Higher-order ANS shell elements (beyond p=3) are implemented internally and can be activated
by recreating processor ES7p with a modified include block (contact COMET-AR development
team for details).

7.7.5 Element Error Messages

A summary of the most important or common error messages associated specifically with
processor ES7p are described in Table 7.7-5.

Material Nonlinearity Yes Yes Yes

Pressure Forces Yes Yes Yes

Strains Yes Yes Yes

Stresses Yes Yes Yes

Stress Extrapolation Yes Yes Yes

Stress Transformation Yes Yes Yes

Surface Forces Yes Yes Yes

Table 7.7-5 Summary of Element Processor ES7p Error Messages

Error
#

Error Message Probable Cause(s) Recommended User Response

1 Invalid ES1p
element type

The user has selected an invalid ele-
ment type (via the RESET
ELEMENT_TYPE command) when
defining element connectivity or loads.

Change the element type to SHELL, as
that is currently the only valid element
type in processor ES7p.

2 p level exceeds
current limit

The user has selected the element poly-
nomial order (via the /P qualifier in the
DEFINE ELEMENTS command) that
is beyond a hardcoded limit in proces-
sor ES1p.

Reduce the polynomial order to an
acceptable value, which is less than or
equal to 5 on most installations, or as
the COMET-AR development team to
increase the hardcoded limit.

3 ES0 ∗∗∗∗ not
implemented

The element developer has not imple-
mented this particular element function.

Try to work around the unimplemented
function; or ask the element developer
to implement it ASAP.

Table 7.7-4 Processor ES7p Element Implementation Status (Continued)

Functions
p=3 (4-node)

ANS Element Status
p=2 (9-node)

ANS Element Status
p=3 (16-node)

ANS Element Status

7.7 Processor ES7p 7 Element Processors

7.7-10 COMET-AR User’s Manual Revised 12/1/97

7.7.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on experience to-date with
COMET-AR Processor ES7p.

7.7.6.1 Element Type Selection

Of the three standard element types within Processor ES7p (4-ANS, 9-ANS, and 16-ANS), the 16-
ANS element is the most robust, followed by the 9-ANS element. The 4-ANS is not recommended
unless 4-node elements are absolutely necessary (e.g., from a large pre-existing model). All of
these ANS shell elements are significantly more accurate than their counterpart Lagrange elements
(in processor ES1p) unless there is significant mesh distortion (see Distortion Sensitivity below).

7.7.6.2 Problem Class Recommendations

The ANS elements in Processor ES7p are recommended for general-purpose linear/nonlinear
analysis. For curved structures, the higher-order (p=2, 3) elements are strongly recommended.

7.7.6.3 Distortion Sensitivity

The 4-ANS and 9-ANS (p=1 and p=2) elements are more distortion-sensitive than their Lagrange
counterparts (e.g., in processor ES1p); however, the 16-ANS (p=3) element is much less distortion
sensitive than lower-order elements, and similar in this regard to the 16-LAG element.

7.7.6.4 Automatic Drilling Stabilization

Since the ANS shell elements do not have intrinsic drilling rotational stiffness, the user must select
one of the automatic drilling DOF stabilization options (see Section 2.10) available in COMET-
AR solution procedures: the AUTO_DRILL option (which will engender artificial drilling stiffness
at the element level); or the AUTO_DOF_SUP option (which will suppress global rotational DOFs
if the computational axes are closely aligned with the element normal). The AUTO_TRIAD option
may also be selected in conjunction with the AUTO_DOF_SUP option, if the computational axes

4 Zero determi-
nant of Jaco-
bian

The element nodes probably do not
define a proper quadrilateral. Either the
nodal coordinates are not as intended by
the user, or the definition of element
nodal connectivity via the DEFINE
ELEMENTS command is incorrect.

Check nodal coordinates and element
connectivity. (Error probably not due
to the degeneration of a quadrilateral
into a triangle, a permissible modeling
technique with this element processor.)

Table 7.7-5 Summary of Element Processor ES7p Error Messages (Continued)

Error
#

Error Message Probable Cause(s) Recommended User Response

7 Element Processors 7.7 Processor ES7p

Revised 12/1/97 COMET-AR User’s Manual 7.7-11

are not closely aligned with the element normals. At shell/shell, or shell/stiffener junctures, drilling
stabilization is unnecessary.

7.7.6.5 Adaptive Analysis Guidelines

All of the ANS shell elements in Processor ES7p may be used in conjunction with adaptive mesh
refinement (AR) with the following provisos:

1) The 4-ANS (p=1) and 9-ANS (p=3) elements can be distortion-sensitive when used with
transition-based (ht) refinement; the 9-ANS is recommended over the 4-ANS.

2) The 4-ANS and 9-ANS elements are also sensitive to the multipoint constraints generated
by constraint-based (hc) refinement; again, the 9-ANS is recommended over the 4-ANS.

3) The 16-ANS is recommended with either hc or ht refinement; however, its storage
requirements can be considerably higher than lower-order elements, especially when using
a direct equation solvers. Iterative solvers are therefore recommended.

7.7.7 References

[1] Park, K. C. and Stanley, G. M., “A Curved C0 Shell Element Based on Assumed Natural
Coordinate Strains,” Journal of Applied Mechanics, Vol. 108, pp. 278-290, 1986.

[2] Stanley, G. M., Park, K. C., and Cabiness, H., The Computational Structural Mechanics
Testbed (COMET) Structural Element Processor ES7: Revised ANS Shell Elements,
NASA CR 4360, 1991.

[3] Stanley, G. M., “Continuum-Based Shell Elements,” Ph.D. Thesis, Stanford University,
Stanford, CA, 1985.

[4] Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed
(COMET) Generic Structural-Element Processor Manual, NASA CR 181728, 1990.

7.7 Processor ES7p 7 Element Processors

7.7-12 COMET-AR User’s Manual Revised 12/1/97

7 Element Processors 7.8 Processor ES36

Revised 12/1/97 COMET-AR User’s Manual 7.8-1

7.8 Processor ES36 (MIN3/6 Triangular Shell Elements)

7.8.1 Element Description

Processor ES36 contains a 3-node triangular shell element, called MIN3, based on Mindlin
(moderately thick) plate theory, with an anisoparametric finite element displacement field to
maintain element performance in both thin and thick shell limits. A curved shallow shell version
of the element (MIN6) employing 6 nodes for geometric description is partially implemented. The
formulation of both MIN3 and MIN6 elements are described in detail in Reference [1]. Processor
ES36 was developed by Alex Tessler and Majdi Baddourah of NASA Langley Research Center,
with assistance from Gary Stanley of Lockheed Palo Alto Research Laboratory.

7.8.1.1 Summary of Element Types

Element types currently implemented or under development that are available within processor
ES36 are summarized in Table 7.8-1.

7.8.1.2 Element Geometry and Node Numbering

The MIN3 element is illustrated in Figure 7.8-1 and the MIN6 element in Figure 7.8-2. Both
elements have one centroidal integration point (for stress storage). The boundary node numbering
conventions are the same for both MIN3 and MIN6, as the midside nodes appearing in the
definition of the MIN6 nodal connectivity are used only for geometric purposes. No loads,
boundary conditions, or displacements are present there. Element integration (i.e., stress/strain
storage) points are indicated by an X designating the location, and a number in parentheses
denoting the integration point numbering convention.

Table 7.8-1 Summary of Processor ES36 Element Types

Element Type Name Description Status

MIN3 3-node triangular plate element; can be used as a flat facet element
approximation to model shell structures

Implemented

MIN6 6-node triangular shallow-shell element; only 3 active nodes,
the other 3 nodes used exclusively for geometrical description

Under
Development

7.8 Processor ES36 7 Element Processors

7.8-2 COMET-AR User’s Manual Revised 12/1/97

Figure 7.8-1 MIN3 Element Geometry and Node Numbers

Figure 7.8-2 MIN3 Element Geometry and Node Numbers

7.8.1.3 Nodal Freedoms (DOFs) and BCs

Both the MIN3 and MIN6 shell elements have 3 translational displacement DOFs and 3 rotational
displacement DOFs at each of the 3 element corner nodes (see Figure 7.8-3). The drilling rotational
DOF (i.e., the rotation about the local element surface-normal vector) is provided with artificial
stiffness so that the user does not have to be concerned about suppressing it.

X

xe

ye

1

2

3

(1) xl

ylzl

ze

l1

l2
l3

1

2

1

21

2

1

2

3

a) Element Connectivity b) Boundary Connectivity

X

xe

ye

ze

4

5
6

(1) xl

yl
zl

1

2

3

1

2

3

1
2

1

21

2

l1

l2

l3

a) Element Connectivity b) Boundary Connectivity

7 Element Processors 7.8 Processor ES36

Revised 12/1/97 COMET-AR User’s Manual 7.8-3

Figure 7.8-3 Displacement DOFs for MIN3 and MIN6 Elements

7.8.1.4 Displacement Representation

The approximation of the displacement field within the element is summarized in Table 7.8-2.

7.8.1.5 Strain Representation

The MIN3 and MIN6 shell elements each generate 8 resultant strain components, which are stored
at the element centroid. The 8-strain resultants are arranged as follows:

Table 7.8-2 MIN3 Element Displacement Approximation

Component Polynomial Variation in xe, ye Plane

uxe, uye, θxe, θye Linear

uze Quadratic

θze Irrelevant

Element Displacement Vector

de

d1
e

d2
e

d3
e

 
 
 
 
 
 
 

=

Nodal Displacement Vector

 da
e ua

θa
 
 
 
 
 

uxa uya uza, ,{ } T

θxa θya θza, ,{ } T

 
 
 
 
 

= =
translations

rotations

(a = 1, 2, 3)

uxa

uya

uza

θxa

θya

θza

7.8 Processor ES36 7 Element Processors

7.8-4 COMET-AR User’s Manual Revised 12/1/97

and are expressed in the local centroidal xl, yl, zl system, which coincides with the element
corotational frame: xe, ye, ze (see Figure 7.8-1). The variation of these strain components within
the element domain is summarized in Table 7.8-3.

7.8.1.6 Stress Representation

Stress resultants conjugate to the above strain resultants are computed via the generic constitutive
processor, and are arranged as follows:

Like the strains, the stress resultants are also saved at the element centroid, although the internal
variation within an element is linear (for linear constitutive models).

Table 7.8-3 MIN3 Element Displacement Approximation

Component Polynomial Variation in xe, ye Plane

ε Linear

κ Linear

γ Linear

ε
ε
κ
γ

Membrane_Strains

Bending_Strains

Transverse-Shear_Strains

= =

ε
εx

εy

εxy

= κ
κ x

κ y

κ xy

= γ
γx

γy

=

where

σ
N
M
Q

Membrane_Stresses

Bending_Stresses

Transverse-Shear_Stresses

= =

N
Nx

Ny

Nxy

= M
Mx

My

Mxy

= Q
Qx

Qy

=

where

7 Element Processors 7.8 Processor ES36

Revised 12/1/97 COMET-AR User’s Manual 7.8-5

7.8.1.7 Drilling Rotational Stiffness

Since there is no intrinsic normal rotational (i.e., drilling) stiffness associated with the present shell
element formulation, artificial drilling stiffness is added to stabilize drilling DOFs. At each element
node a tiny fraction (10-6) of the smallest physical component on the diagonal of the element
stiffness matrix is added to the diagonal term corresponding to the drilling DOF. This addition to
the element stiffness matrix is hardwired internally, so that the user cannot change its magnitude
(or angle tolerance) via COMET-AR’s AUTO_DRILL option.

7.8.1.8 Element Nonlinearity

Element geometrical nonlinearity is presently not accounted; large rotation effects must therefore
be relegated to the corotational option within the COMET-AR generic element processor. Material
nonlinearity is accommodated via the COMET-AR generic constitutive processor.

7.8.2 Element Command Specifications

General command syntax and options are all inherited from the generic element processor (see
Section 7.2). Special command options peculiar to Processor ES36 are described in the following
subsections.

7.8.2.1 RESET Element Research Parameters

None.

7.8.2.2 RESET Drilling Stiffness and Angle Tolerances

Irrelevant for the elements in this processor (artificial drilling stiffness is hardwired).

7.8.3 Element Input/Output Datasets

General input and output dataset specifications are inherited from the generic element processor
(see Section 7.2). Any special-purpose datasets or data attributes are discussed below.

7.8.3.1 Auxiliary Storage Dataset

Processor ES36 employs an auxiliary storage dataset, called:

where nen (the number of element nodes) is 3 for the MIN3 element, and 6 for the MIN6 element.
This dataset, which is of class EAT, contains the initial constitutive matrix for each element in the

ES36_MINnen.AUX_STORAGE...mesh

7.8 Processor ES36 7 Element Processors

7.8-6 COMET-AR User’s Manual Revised 12/1/97

model, and is used later by the element to construct material-dependent relaxation parameters that
improve the elements’ performance in the thin and thick shell limits.

7.8.3.2 Other Special-Purpose Datasets/Attributes

None.

7.8.4 Element Implementation Status and Limitations

A summary of the current implementation status of the MIN3 and MIN6 elements within processor
ES36 is given in Table 7.8-4. Only linear static analysis capabilities are currently available.

7.8.5 Element Error Messages

There are currently no special-purpose error messages associated with either the MIN3 or MIN6
elements in processor ES36.

Table 7.8-4 Processor ES36 Element Implementation Status

Functions MIN3 Status MIN6 Status

Auto DOF Suppression Yes No

Body Forces No No

Consistent Mass No No

Diagonal Mass No No

Drilling Stiffness Yes No

Error Estimates/Elt-dep. No No

Error Estimates/Generic Yes No

Geometric Nonlinearity No No

Geometric Stiffness No No

Internal Forces No No

Load Stiffness No No

Material Nonlinearity Yes No

Pressure Forces Yes No

Strains Yes No

Stresses Yes No

Stress Extrapolation Yes No

Stress Transformation Yes No

Surface Forces No No

7 Element Processors 7.8 Processor ES36

Revised 12/1/97 COMET-AR User’s Manual 7.8-7

7.8.6 Element Selection and Usage Guidelines

The following element selection and usage guidelines are based on minimal experience with the
MIN3 and MIN6 elements within COMET-AR.

7.8.6.1 Element Type Selection

Presently, only the MIN3 element is operational. This element may be used for flat or curved shell
structures, but due to the faceted approximation, a fine initial mesh may be required to capture
geometric accuracy for curved structures.

7.8.6.2 Problem Class Recommendations

The MIN3 element is recommended for general smooth shell analysis, including transverse-shear
deformation effects; however, for junctured or stiffened shells the built-in artificial drilling
stiffness may decrease solution accuracy.

7.8.6.3 Distortion Sensitivity

Not yet evaluated.

7.8.6.4 Automatic Drilling Stabilization

The built-in artificial drilling stiffness of the MIN3 element means that the AUTO_DOF_SUP,
AUTO_DRILL and AUTO_TRIAD solution procedure options have no effect on this element
type.

7.8.7 References

[1] Tessler, A., “A C0-Anisoparametric Three-Node Shallow Shell Element for General
Shell Analysis,” Army Materials Technology Laboratory Report, MTL TR 89-72, 1989.

7.8 Processor ES36 7 Element Processors

7.8-8 COMET-AR User’s Manual Revised 12/1/97

8 Constitutive Processors 8.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 8.1-1

8 Constitutive Processors

8.1 Overview

This chapter describes the constitutive processing capabilities available in COMET-AR. These
capabilities are implemented in a processor named the Generic Constitutive Processor (GCP).
Table 8.1-1 shows the contents of this chapter.

Table 8.1-1 Outline of Chapter 8: Constitutive Processors

Section Description

8.1 Overview

8.2 Generic Constitutive Processor Description

8.3 Fabrication Definition

8.4 Material Property Definition

8.5 Analysis Control

8.6 Update Command

8.1 Overview 8 Constitutive Processors

8.1-2 COMET-AR User’s Manual Revised 12/1/97

8 Constitutive Processors 8.2 Generic Constitutive Processor Description

Revised 12/1/97 COMET-AR User’s Manual 8.2-1

8.2 Generic Constitutive Processor Description

8.2.1 General Description

The Generic Constitutive Processor (GCP) is a set of software modules that perform all
constitutive functions for COMET-AR. Two functions are served by the GCP: as a stand-alone
processor for use in testing of new constitutive models; and as a Fortran callable constitutive
library directly accessible by COMET-AR element processors. To enable this duality in function,
the GCP performs constitutive calculations using input received through a common interface
from either the Generic Element Processor (GEP) during a finite element analysis, or from the
GCP processor shell when operating in stand-alone mode.

The GCP provides a flexible, easy to use framework for the testing and incorporation of new
constitutive modeling capability into COMET-AR. From a method developers standpoint, the
GCP allows automatic access to constitutive functions by all element developers using the GEP,
and conversely allows constitutive models incorporated by material researchers to be available to
all elements implemented within the Generic Element Processor (GEP) framework. These
capabilities have been included through standard developer interfaces described in detail in the
GCP Manual.

Processor GCP is normally invoked directly within the users model definition procedure when
used in conjunction with COMET-AR.

8.2.2 Command Summary

The GCP commands fall into four categories: fabrication definition; material definition; stand-
alone analysis; and historical data update. The fabrication definition commands define the
geometry of the structure at an element integration point, including pointers to the material
properties to be used in the analysis. The material definition commands allow for the input of the
properties or parameters that are used by a specific constitutive model, e.g., mechanical material
properties, failure parameters, etc. The analysis commands are used to control a pointwise
constitutive analysis when the GCP is used as a stand-alone processor. The historical data update
command updates the constitutive historical data upon completion of a nonlinear load step.

Each of the four command categories is performed by a separate command subprocessor within
the GCP . The commands used to enter each of these subprocessors is given in Table 8.2-1.

Table 8.2-1 Processor GCP Command Summary

Command Name Function

FABRICATION Initiate the fabrication subprocessor for fabrication definition

MATERIAL Initiate the material subprocessor for material property definition

ANALYSIS Initiate the analysis subprocessor for pointwise constitutive analysis

UPDATE Update constitutive historical databases for a load step

8.2 Generic Constitutive Processor Description 8 Constitutive Processors

8.2-2 COMET-AR User’s Manual Revised 12/1/97

8.2.3 Database Input/Output

8.2.3.1 Input Datasets

The GCP does not use any input datasets.

8.2.3.2 Output Datasets

A summary of output datasets created by the GCP is given in Table 8.2-2.

The GCP always creates three datasets on the database: MATL.PNTR, MATL.DATA, and
FABRICATIONS, which contain pointers and data corresponding to the material and fabrication
definitions. In addition, if there are no thermally dependent material properties or non-linear
materials in the analysis the dataset, CONSTITUTIVE.STIFF is created storing the integrated
constitutive stiffness for each individual fabrication definition.

The processor also creates external files containing historical data for those constitutive models
that use such data. Two files are created: a converged data file containing historical data from the
previous converged load step in a nonlinear analysis, and an iterative data file with results from
the current iteration during the nonlinear analysis. If the GCP is run in stand-alone mode, the
iterative and converged data files are named HISTORY.CONV and HISTORY.ITER. When the
GCP is invoked by the element processor, the two files are named EltType.HIST.CONV and
EltType.HIST.ITER, where EltType is the name of the element type being used, e.g.
EX97.HIST.ITER.

Use of the UPDATE/ARCHIVE command (see Section 8.6), results in the creation of two
datasets on the computational database containing historical data. The datasets are named
EltType.EHIST.step and EltType.PHIST.step, where step is the step number in the nonlinear
analysis. The dataset EltType.EHIST.step contains the element-based resultant historical data at

Table 8.2-2 Output Datasets Created By The GCP

Dataset Description

MATL.PNTR Pointers to material property data

MATL.DATA Material property definition data

FABRICATIONS Fabrication definition data

CONTSTITUTIVE.STIFFNESS Integrated constitutive stiffnesses for each fabrication

EltType.EHIST.step Element based constitutive historical data for element type EltType at
non-linear load step, step.

EltType.PHIST.step Pointwise constitutive historical data for element type EltType at non-
linear load step, step.

8 Constitutive Processors 8.2 Generic Constitutive Processor Description

Revised 12/1/97 COMET-AR User’s Manual 8.2-3

the element integration points, and EltType.PHIST.step contains the pointwise constitutive
historical data at the layer integration points.

8.2.4 Limitations

There are two hard-coded array size limits that will affect users interested in shell fabrications.
The number of layers in a single shell fabrication is presently hard-coded to a maximum of 100.
The number of through-the-thickness integration points for a single layer is hard-coded to a
maximum of 9.

The capability to interpolate material properties based on the value of the state parameters is not
yet implemented in the GCP. Data associated with values of npar1, npar2 > 1 (as documented in
Subsection 8.4.1), will not be accessed in the current version; users should specify npar2,
npar1(1:1) = 1.

Moisture-dependent computations are not implemented within the GCP.

8.2.5 Error Messages

Error messages within the GCP can be classified into two categories: user input errors and
internal database access errors.

The GCP verifies that the user’s input commands or number of data items are consistent with the
command being executed. Reasonably descriptive messages are provided if an error of this type is
encountered, typically directing the user to modify the input commands or data.

Internal database errors can be recognized by the first word being “Error” followed by
information about the type of action being attempted (i.e. opening, closing, getting, or putting a
particular type of data object). Typically if the user encounters one of these errors the COMET-
AR computational database has not been properly initialized (i.e. the runstream was attempted on
an existing database). If clearing the computational database and deletion of historical data files
from the directory does not solve the error condition then the problem should be reported to the
person in charge of the COMET-AR software.

8.2 Generic Constitutive Processor Description 8 Constitutive Processors

8.2-4 COMET-AR User’s Manual Revised 12/1/97

8 Constitutive Processors 8.3 Fabrication Definition

Revised 12/1/97 COMET-AR User’s Manual 8.3-1

8.3 Fabrication Definition

The fabrication definition commands allow the user to specify the geometry of the material
structure at an element integration point (herein referred to as a fabrication point), and also serves
as a pointer to the material properties to be used in the analysis. A unique fabrication type has
been defined for each of the following kinematic idealizations: continuum, laminated shell, and
beam.

Continuum fabrications represent the degenerate case: they have no geometric structure, since
they correspond to a material point, and they simply require a pointer to material properties. Shell
fabrications may be either homogeneous or partitioned into layers. Beam fabrications represent
the cross-sectional properties of the section.

Fabrication definition is performed by a command subprocessor within the GCP. The commands
used to invoke and exit the fabrication subprocessor are given below.

All fabrication data may be input in either single or multiple fabrication input sessions. The
commands for fabrication input for each kinematic idealization are given in Subsections 8.3.1
through 8.3.3.

8.3.1 Continuum Fabrication Definition

For a continuum idealization, a fabrication point is equivalent to a material point, hence each
fabrication is limited to a unique material definition. For this reason the continuum fabrication
consists of a fabrication identifier and a material identifier used to reference a database-resident
set of material properties. The keyword-driven commands required to define a continuum
fabrication are as follows.

The SOLID command is used to start the continuum fabrication definition, which is terminated
with the END command. The SOLID and END commands are required for the definition of each
individual continuum fabrication.

Command Description

FABRICATION Invoke fabrication subprocessor to define fabrications

ENDFAB Exit fabrication subprocessor

SOLID

FABID = fabid

MATID= matid

END

Parameter Description

fabid Continuum fabrication ID number

matid Material ID number associated with the fabrication

8.3 Fabrication Definition 8 Constitutive Processors

8.3-2 COMET-AR User’s Manual Revised 12/1/97

An example defining two solid fabrications is given below, where fabrication number 1
references material 4 and fabrication number 2 references material 1.

8.3.2 Laminated Shell Fabrication Definition

For a laminated shell idealization (which includes monocoque plates as a special case) each
fabrication point can contain a unique layup of materials. The keyword-driven commands used to
define a shell fabrication are as follows.

Input for the commands MATID, THICKNESS, ANGLE, and INTPTS can be reduced for a
symmetric layup by adding the qualifier /SYMMETRIC to the command. When this option is
used the number of layers must be even and the parameter values are entered beginning at the
laminate midplane.

The SHELL command is used to start the shell fabrication definition, which is terminated with the
END command. The parameters are described below.

FABRICATION

 SOLID

 FABID = 1

 MATID = 4

 END

 SOLID

 FABID = 2

 MATID = 1

 END

ENDFAB

SHELL

FABID = fabid

NLAYERS = nlayers

[SCF =]

MATID[/SYMMETRIC] =

THICKNESS[/SYMMETRIC] =

ANGLE[/SYMMETRIC] =

INTPTS[/SYMMETRIC] =

END

k1
2 k2

2,

matid1 matid2 … matidnlayers, , ,

t1 t2 … t, , , nlayers

θ1 θ2 … θ, , , nlayers

n1 n2 … n, , , nlayers

8 Constitutive Processors 8.3 Fabrication Definition

Revised 12/1/97 COMET-AR User’s Manual 8.3-3

The GCP is presently hard-coded for a maximum of NLAYERS = 100.

The GCP performs a through-the-thickness integration to obtain the integrated stiffness
coefficients or stress resultants for the laminate. The command INTPTS specifies the number of
integration used within each layer and effectively controls the type of integration that is
performed. For INTPTS = 1, a single integration point is chosen at the center of the layer, and the
integrated quantity (stiffness or stress resultants) is assumed to be constant within the layer; this
choice neglects bending effects in the laminate. For INTPTS = 2, the integration points are chosen
at the top and bottom surface of the layer, and an exact integration is performed assuming a linear
distribution of stress through the layer thickness. The results with INTPTS = 2 are equivalent to
classical lamination theory. This choice is available to reduce the computational time for linear
elastic materials, and should not be used for nonlinear materials. Finally, for INTPTS > 2, a
repeated Simpson’s integration rule is employed and the number of integration points must be
odd. Presently, the GCP is hard-coded for a maximum of INTPTS = 9.

An example of an 8-layer symmetric aluminum-clad, (0, ±60)s, P75 Graphite Epoxy laminate
shell fabrication is given below.

Parameter Description

fabid Fabrication ID number

nlayers Total number of layers in laminate fabrication.

Shear correction factors, defined in the fabrication coordinate system.
Optional input; default values are = 1.0.

Material ID number for each layer, nlayers entries.

Layer thickness for each layer, nlayers entries.

Orientation of material reference frame with respect to fabrication frame
(has units of degrees), nlayers entries.

Number of integration points for each layer, nlayers entries. Optional
input as described in detail below.

FABRICATION

SHELL

FABID = 4 . Al-clad (0/+60/-60)s P75 gr/epoxy laminate

NLAYERS = 8

SCF = 0.833 0.833

ANGLE/SYM = -60 60 0 0

THICKNESS/SYM = 3@.005 .001

MATID/SYM = 3@2 1

INTPTS/SYM = 4@3 . optional input (default = 2)

END

ENDFAB

k1
2 k2

2, k1
2 k2

2,

matid1 matid2 … matid, , , nlayers

t1 t2 … t, , , nlayers

θ1 θ2 … θ, , , nlayers
θ

n1 n2 … n, , , nlayers

8.3 Fabrication Definition 8 Constitutive Processors

8.3-4 COMET-AR User’s Manual Revised 12/1/97

8.3.3 Beam Fabrication Definition

The beam fabrication idealization is based on generalized properties used to define the cross-
section. This method allows for only linear material behavior in beams with arbitrary cross-
sections. The keyword-driven commands to define a beam fabrication are as follows.

The BEAM command is used to start an individual beam fabrication definition, which is
terminated with the END command. The parameters are described below.

BEAM

FABID = fabid

MATID = matid

AREA = A

MOMENTS = Iy, Iz, Iyz

TORSION = J

SHRCTR = cy, cz

ECCEN = ey, ez

END

Parameter Description

fabid Beam fabrication ID number

matid Material ID number

A Cross-sectional area

Iy, Iz, Iyz
Moments of inertia: (Iy, Iz, Iyz) =

J Torsional rigidity of the beam cross-section

cy, cz Shear center of the beam cross-section, measured from reference axes

ey, ez Center of beam cross-section, measured from reference axes

y2 z2 yz, ,()dA
A
∫

8 Constitutive Processors 8.4 Material Property Definition

Revised 12/1/97 COMET-AR User’s Manual 8.4-1

8.4 Material Property Definition

The material property definition commands of the GCP allow the user to input the properties that
characterize the behavior of the material for specific computational models. The GCP allows for
user-defined constitutive models to be implemented in COMET-AR. This procedure is detailed in
the GCP User’s Manual. The material models listed below are now implemented in COMET-AR:

1) isotropic linear elasticity;

2) orthotropic linear elasticity;

3) isothermal mechanical sublayer plasticity.

The data input for these models is described in Subsections 8.4.4, 8.4.5, and 8.4.6.

Material property definition is performed by a command subprocessor within the GCP. The
commands used to invoke and exit the material definition subprocessor are given below.

Input for the definition of these material properties is initiated by the command MATERIAL
within the GCP processor environment. This is followed by the appropriate material property
definition phrases, and terminated with the command ENDMAT. The command MATERIAL can
have two optional qualifiers. If the qualifier /COMPUTATIONAL is specified, the GCP expects
material property definitions to be input by the user for use in constructing the computational
database. If the qualifier /ARCHIVAL is specified, the GCP will access an archival material
database to retrieve the material property definition; alternatively, the MATERIAL/ARCHIVAL
command can be used to archive a material property definition on the database. If the qualifier is
omitted, the computational mode is assumed.

A general description of the material property data input is given in Subsection 8.4.1. Input of
material properties from a pre-existing archival materials database to the GCP computational
database is accomplished using the commands outlined in Subsection 8.4.2. Creation and
maintenance of an archival material property database is detailed in Subsection 8.4.3.

8.4.1 Direct Material Property Definition

The general format for material property definition consists of a header line containing the
material model name and general parameters, followed by one or more lines containing the actual
material property data, as follows.

Command Description

MATERIAL[/COMPUTATIONAL | /ARCHIVAL] Invoke material definition subprocessor to define fabrications

ENDMAT Exit material definition subprocessor

8.4 Material Property Definition 8 Constitutive Processors

8.4-2 COMET-AR User’s Manual Revised 12/1/97

The input commands and parameters are described below.

The material property definition is designed to accommodate material properties that vary as a
function of up to two state parameters, for example temperature and moisture. Input of material
properties is repeated for each specified set of state parameters. The number of specified values of
the second parameter is referred to as npar2; the number of specified values of the first parameter,
at each specified value of the second parameter, is referred to as npar1. There may be a different
number of specified values of the first parameter at each specified value of the second parameter.

For example, the user may specify 3 values of moisture (2nd parameter) and 3 values of
temperature (1st parameter) at the first moisture value, 3 values of temperature at the second
moisture value, and 2 values of temperature at the third moisture value (see Figure 8.4-1).The
material property data is repeated such that the first state parameter varies first, the second state
parameter is held constant (i.e., like a nested DO LOOP), the first parameter varies in the inner
loop, and the second parameter varies in the outer loop. The actual values of these state
parameters (e.g., temperature and moisture) are input on the same line with the associated
material properties.

MATERIAL

model_name matid, npar2, npar1(1:npar2)

data

ENDMAT

Parameter Description

model_name Name of constitutive model (e.g., ISOEL, ORTEL, PLASTIC_WB).

matid Material ID number to be use in analysis.

npar2 Number of specified values of state parameter 2; currently limited to npar2=1 in
COMET-AR.

npar1(1:npar2) Number of specified values of state parameter 1; currently limited to
npar1(1:1) = 1 in COMET-AR.

data Data for material model as outlined in Subsections 8.4.4–8.4.6.

The capability to interpolate material properties based on the value
of the state parameters is not yet implemented in the GCP; data
associated with values of npar1, npar2>1 will not be accessed in
the current version.

8 Constitutive Processors 8.4 Material Property Definition

Revised 12/1/97 COMET-AR User’s Manual 8.4-3

Figure 8.4-1 Sample Variation of Property with Temperature and Moisture

8.4.2 Material Property Definition via Archival Database

Material property data may also be input from a predefined archival material database. To access
archived material property definitions, first designate the archival database, then transfer the
individual material constitutive model from the archival database to the current computational
database. Commands to retrieve a material definition from an archival database are listed below.

The MATLIB command is used to specify the material archival database, and the MATL
command is used to enter a material definition into the current computational database. The
parameters are described below.

MATERIAL/ARCHIVAL

MATLIB ldi, libname

MATL matid, dsname, model_name

ENDMAT

Parameter Description

ldi Logical device index of archival material database.

libname Name of archival material database.

matid Material ID number to be used in analysis.

dsname Dataset name in libname containing material definition.

model_name Record name in dsname corresponding to constitutive model (e.g., ISOEL, ORTEL,
PLASTIC_WB).

Temperature

Property

M1

M2

M3

T1
1

T2
1 T3

1

T1
3

T1
2

T2
2

T2
3

T2
3

Property Input Order:

P T1
1 M1,() P T2

1 M1,() P T3
1 M1,() P T1

2 M2,) … P T1
3 M3,(), ,(, , ,

8.4 Material Property Definition 8 Constitutive Processors

8.4-4 COMET-AR User’s Manual Revised 12/1/97

8.4.3 Creating and Maintaining Material Archival Libraries

There are three command options available for creating or maintaining a material archival library:
CREATE, MODIFY, and DELETE. The commands act on datasets in the library; the particular
action taken by each command is self-explanatory. The following command runstream illustrates
their use for defining a new archival material library or operating on an existing library.

The MATLIB command defines the archival database to use, and the MATNAM command
identifies the dataset in libname which will be operated upon. The parameters are described
below.

8.4.4 Linear Elastic Isotropic Material Property Definition

The material constitutive data expected for a temperature- and moisture-dependent linear elastic
isotropic material are given below. The model_name and data items are entered under the
MATERIAL command as described in Sections 8.4.1 through 8.4.3.

The items in the data line are described below.

MATERIAL/ARCHIVAL

{CREATE | MODIFY | DELETE}

MATLIB ldi, libname

MATNAM dsname

model_name npar2, npar1(1:npar2)

data

{ENDCREATE | ENDMODIFY | ENDDELETE}

ENDMAT

Parameter Description

ldi Logical device index of archival material database.

libname Name of archival material database.

dsname Dataset name in libname containing material definition.

model_name Name of constitutive models described in Subsections 8.4.4–8.4.6.

npar2 Number of specified values of state parameter 2; currently limited to npar2=1 in COMET-AR.

npar1(1:npar2) Number of specified values of state parameter 1; currently limited to npar1(1:1) =1 in COMET-AR.

data Data for material model as outlined in Sections 8.4.4–8.4.6.

model_name ISOEL

data E, ν, ρ, α, β, T, M

8 Constitutive Processors 8.4 Material Property Definition

Revised 12/1/97 COMET-AR User’s Manual 8.4-5

The definition of the material properties for an isotropic elastic material model of 6064-T4
Aluminum is shown below.

8.4.5 Linear Elastic Orthotropic Material Property Definition

The material constitutive data expected for a temperature- and moisture-dependent linear elastic
orthotropic material are given below. The material property directions 1, 2, and 3 are referred to
the material reference frame, which is oriented relative to the fabrication reference frame via the
“angle” command for shell fabrications. The material and fabrication reference frames coincide
for the beam and continuum fabrications. The fabrication reference frame is set according to the
value of the FABRICATION DIRECTION command defined by the element processor (see
Chapter 7).

The model_name and data items are entered under the material command as described in Sections
8.4.1 through 8.4.3.

Parameter Description

E elastic modulus

ν Poisson’s ratio

ρ mass density

α coefficient of thermal expansion

β coefficient of hygroscopic expansion

T reference temperature

M reference moisture content

ISOEL 2 1 1 -- . .6061--T4 Aluminum

10.1E6 -- . Young’s Modulus

0.29 -- . Poisson’s Ratio

0.111 -- . Mass Density

12.0E-6 -- . CTE

0.0 -- . CHE (n/a)

75 -- . Temperature

0.0 -- . Moisture Content (n/a)

model_name ORTEL

data E1, E2, E3, G12, G13, G23, ν12, ν13, ν23, ρ, α1, α2, α3, β1, β2, β3, T, M

8.4 Material Property Definition 8 Constitutive Processors

8.4-6 COMET-AR User’s Manual Revised 12/1/97

The items in the data line are described below.

8.4.6 Mechanical Sublayer Plasticity Material Property Definition

The material constitutive data expected for the isothermal White-Besseling mechanical sublayer
plastic material are given below. This model allows for the user to specify a pointwise effective
stress-strain curve to simulate material behavior ranging from elastic/perfectly-plastic to strain-
hardening plasticity (see Figure 8.4-2). The model_name and data items are entered under the
MATERIAL command as described in Sections 8.4.1 through 8.4.3.

The items in the data line are listed below.

The mechanical sublayer model idealization of the uniaxial stress-strain curve of a hardening
material is shown in Figure 8.4-2 for the case of a 3 sublayer model. The yield stress of each
sublayer is found from:

Parameter Description

E1, E2, E3 elastic moduli

G12, G13, G23 shear moduli

ν12, ν13, ν23 Poisson’s ratios

ρ mass density

α1, α2, α3 coefficients of thermal expansion

β1, β2, β3 coefficients of hygroscopic expansion

T reference temperature

M reference moisture content

model_name PLASTIC_WB

data E, ν, ρ, α, n, σ(i), ε (i)

Parameter Description

E elastic modulus

ν Poisson’s ratio

ρ mass density

α coefficient of thermal expansion

n number of points in effective stress-strain curve

σ, (i) effective stress for point i, i = 1, n

ε, (i) effective strain for point i, i = 1, n

σk E1εk= k 1 2 3, ,=

8 Constitutive Processors 8.4 Material Property Definition

Revised 12/1/97 COMET-AR User’s Manual 8.4-7

Figure 8.4-2 Mechanical Sublayer Model Idealization of the Uniaxial Stress-Strain Curve

An example of a command runstream for the definition of a material for the White-Besseling
plasticity model is shown below.

MATERIAL

PLASTIC_WB 1 1 1

10000. -- . Initial Elastic Modulus

0.0 -- . Poisson’s Ratio

0.0 -- . Material Density

0.0 -- . Coefficient of Thermal Expansion

3 -- . Number of points on effective stress-strain curve

10.0 15.0 17.0 -- . Effective Stress Values

0.001 0.003 0.005 -- . Effective Strain Values

ENDMAT

Sublayer 1

Sublayer 2

Sublayer 3

E1

E2

E3
E4=0

ε3ε1 ε2

σ

ε

ε

σ

σ3

σ2

σ1

8.4 Material Property Definition 8 Constitutive Processors

8.4-8 COMET-AR User’s Manual Revised 12/1/97

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-1

8.5 Analysis Control

The analysis subprocessor is used to define the required information for controlling a pointwise
constitutive analysis when using the GCP in stand-alone mode. This autonomous capability
allows for pointwise constitutive analysis for continuum and beam and fabrications, as well as
through-the-thickness integration to obtain stiffness and stress-resultant quantities for shell-
fabrications. The GCP analysis capabilities are initiated by the following command phrase:

where analysis_type identifies the type of analysis to be performed, and the /kinematic_type
qualifier indicates the kinematic assumptions to use in the analysis. The analysis command is
followed by the user-selected analysis and load definition parameters, and the EXECUTE
command is used to initiate the constitutive analysis.

Three stand-alone analysis types are available in the GCP: PROPERTIES, LINEAR, and
NONLINEAR, summarized below and described in Sections 8.5.1, 8.5.2, and 8.5.3.

The analyses depend on the kinematic_type qualifier, the valid options for which are listed below.

The conjugate stress/strain quantities defined for the various kinematic models are listed in
Table 8.5-1. For beam and shell fabrications, these quantities represent stress resultants and strain
measures.

 ANALYSIS = analysis_type /kinematic_type

Analysis Type Description

PROPERTIES Computes the compliance properties for the particular kinematic_type chosen

LINEAR Performs a linear stress analysis based on a user-described loading conditions

NONLINEAR Performs a stress analysis at a series of user-prescribed load steps.

kinematic_type Description

1d One dimensional continuum

2dstrs Two dimensional plane-stress continuum

2dstrn Two dimensional plane-strain continuum

2daxi Two dimensional axisymmetric continuum

3d Three dimensional continuum

c0shel Shear-deformable shell

c1shel Non-shear-deformable shell

c0beam Shear-deformable beam

c1beam Non-shear-deformable beam

8.5 Analysis Control 8 Constitutive Processors

8.5-2 COMET-AR User’s Manual Revised 12/1/97

8.5.1 Property Analysis

The PROPERTIES command option evaluates the pointwise material properties for a constitutive
model. The analysis returns the material compliance matrix for continuum and beam fabrications,
and returns the integrated laminate compliance matrix for the shell fabrication. The following
command is used to execute the properties analysis.

8.5.2 Linear Pointwise Stress Analysis

The LINEAR command option calculates the pointwise linear elastic stress state for a user-
prescribed loading condition. Two types of loading can be defined for an analysis: mechanical
and/or thermal loading. The following command runstream is used to execute the linear analysis.

Table 8.5-1 Conjugate Stress-Strain Quantities for GCP Kinematic Types

kinematic_type Stress (Resultant) Component Strain (Measure) Component

1D {σx} { εx}

C0BEAM {Nx, My, Mz, τ, Vy, Vz} { εx, κy, κz, θ, γy, γz}

C1BEAM {Nx, My, Mz, τ} { εx, κy, κz, θ}

C0SHELL {Nx, Ny, Nxy, Mx, My, Mxy, Vx, Vy} { εx, εy, εxy, κx, κy, κxy, γx, γy}

C1SHELL {Nx, Ny, Nxy, Mx, My, Mxy} { εx, εy, εxy, κx, κy, κxy}

2DSTRESS {σx, σy, σxy} { εx, εy, εxy}

2DSTRAIN {σx, σy, σxy} { εx, εy, εxy}

2DAXISYM { σr, σz, σrz, σθ} { εr, εz, εrz, εθ}

3D {σx, σy, σz, σyz, σzx, σxy} { εx, εy, εz, εyz, εzx, εxy}

ANALYSIS = PROPERTIES /kinematic_type

EXECUTE

ANALYSIS = LINEAR /kinematic_type

TEMP input_cond, input_format, data, ref_temp

LOAD

LOAD_TYPE = STRAIN

LOADS data

EXECUTE

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-3

The TEMP command is used to define the temperature distribution for the fabrication. The
input_cond code is used to specify whether the temperature data is an initial or current condition
for the analysis, and can be set as follows.

Several assumed temperature distributions are available depending on the fabrication type. The
continuum fabrication represents a material-point; hence, a constant temperature T is assumed for
the point. The temperature distribution for the shell fabrication can be specified in the form of a
constant temperature, a linear distribution, a quadratic distribution, a layer-wise linear distribution
or a point-wise linear distribution. The through-the-thickness temperature distributions for the
various shell formats are given by:

where the thickness coordinate z is measured relative to the shell midsurface, ti are the layer
thicknesses, and h is the shell thickness. Ttop, Tbot are the temperatures at z = ±h/2, respectively; Ti
are the layer interface temperatures for the layer-wise linear distribution, or can be specified at
through-the-thickness coordinates zi in the point-wise linear distribution.

input_cond Description

1 Current condition for ANALYSIS = LINEAR, or initial condition for ANALYSIS =
NONLINEAR.

2 Current condition for ANALYSIS = PROPERTIES, NONLINEAR.

Format Thermal Distribution Valid Range

Constant

Linear

Quadratic

Layer-wise linear

Point-wise linear

T z() T= h
2
---– z

h
2
---< <

T z() 1
2
--- z

h
---– 

  Tbot
1
2
--- z

h
---+ 

  Ttop–= h
2
---– z

h
2
---< <

T z() T0 T1z T2z2+ += h
2
---– z

h
2
---< <

T z()
zi 1+ z–

ti 1+
------------------- 

  Ti

z zi–

ti 1+
------------ 

  Ti 1++=
zi z zi 1+< <

i 0 1 … nlayers, , ,=

T z()
zi 1+ z–

zi 1+ zi–
-------------------- 

  Ti

z zi–

zi 1+ zi–
-------------------- 

  Ti 1++=
zi z zi 1+< <

i 1 2 … n, , ,=

8.5 Analysis Control 8 Constitutive Processors

8.5-4 COMET-AR User’s Manual Revised 12/1/97

Two temperature distributions are available for the beam fabrication: a constant temperature or a
linear distribution, as shown below:

where y, z are measured from the reference axes.

The temperature distribution format is specified by an input_format code, which can take one of
the following values.

The required data for the TEMP command is listed below. The tabulated data for the point-wise
linear format requires that n pairs of temperature and z-coordinate values be specified; the linear
distribution for the beam fabrication requires that both temperatures and gradients be specified.

The last parameter in the TEMP command is ref_temp, which is the stress-free reference
temperature.

The mechanical loading for the fabrication point is specified with the LOAD command. The GCP
is currently limited to accepting mechanical loads in the form of strains for a continuum, or strain
measures for beams and laminated shell fabrications. The LOADS command is used to enter the

Format Thermal Distribution

Constant T (y, z) = T

Linear

input_format Description

0 constant temperature

1 linear temperature distribution

2 quadratic temperature distribution

10 linear temperature distribution in each layer

20 linear temperature distribution between tabulated points

Format Solid Shell Beam

Constant T T T

Linear n/a Ttop, Tbot

Quadratic n/a T0, T1 , T2 n/a

Layer-wise linear n/a T0, T1 , ..., Tnlayers n/a

Point-wise linear n/a T1, z1 , T2, z2, ..., Tn, Tz n/a

T y z,() T y
y∂

∂T
z

z∂
∂T

+ +=

T
y∂

∂T
z∂

∂T, ,

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-5

prescribed (strain) data. The number and meaning of the data items should be consistent with the
kinematic type as described in Table 8.5-1.

8.5.3 Nonlinear Pointwise Stress Analysis

The NONLINEAR command option calculates the pointwise stress state for a user-prescribed
load history, which is specified at a number of steps. The following commands are used to
execute the nonlinear analysis:

where the commands and parameters are identical to those described in Section 8.5.2, with the
addition of STEP n, where n is the load step number. The commands STEP through LOADS are
repeated as necessary to complete the load history definition.

8.5.4 Stand-Alone Analysis Examples

8.5.4.1 Material Property Analysis of an Elastic Orthotropic Laminated Shell

An example GCP runstream and the resulting output is presented for a pointwise material
property (stiffness) analysis of a laminated shell made of both isotropic and orthotropic elastic
material layers stacked in a symmetric layup.

The following runstream shows the GCP commands necessary to perform this analysis.

. **

. GCP Stand-alone Analysis Example #1

. Material property analysis of a laminated shell.

. **

.
*open 1 example1.dbc
.
. Input Laminated Shell Fabrication
.
fabrication
 shell
 fabid = 1
 nlayers = 8
 matid/sym = 3@1 2
 thick/sym = 0.005 3@0.0055
 angle/sym = 0. 45. -45. 90.
 intpts/sym = 4@3
 end

ANALYSIS = NONLINEAR /kinematic_type

STEP n

TEMP input_cond, input_format, data, ref_temp

LOAD

LOAD_TYPE = STRAIN

LOADS data

EXECUTE

8.5 Analysis Control 8 Constitutive Processors

8.5-6 COMET-AR User’s Manual Revised 12/1/97

endfab
.
. Input Material Properties
.
material
 ortel 1 1 1
 42.0E6 1.2E6 1.2E6 .8E6 .8E6 .6E6 .3 .3 .3 0. 0. 0. 0. 0. 0. 0. 0. 0.
 isoel 2 1 1
 5.E5 0.45 0. 0. 0. 0. 0.
endmat
.
. Run Material Property Analysis
.
analysis properties /c1shel
execute

The output from the GCP for the above material property analysis is shown below. The result is
the thickness-integrated composite laminate stiffness matrix, often known as the “ABD” matrix.

 <CL> PUT_message,Commnt>
 ** BEGIN GCP ** Using Dynamic Memory **
 <CL> $root,L0001,C00001>*add example1.clp
 <DM> OPEN, Ldi: 1, File: example1.dbc , Attr: new, Block I/O

 SUMMARY OF SHELL FABRICATION NUMBER 1

 Composite Thickness = 4.3000E-02

 Layer no. Layer Layup angle Thickness Midplane distance
 Material no. THETA (deg) H Z

 1 2 90.00 5.5000E-03 -1.8750E-02
 2 1 -45.00 5.5000E-03 -1.3250E-02
 3 1 45.00 5.5000E-03 -7.7500E-03
 4 1 0.00 5.0000E-03 -2.5000E-03
 5 1 0.00 5.0000E-03 2.5000E-03
 6 1 45.00 5.5000E-03 7.7500E-03
 7 1 -45.00 5.5000E-03 1.3250E-02
 8 2 90.00 5.5000E-03 1.8750E-02

 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV

 STIFFNESS
 0.6878E+06 0.2313E+06 0.1091E-10 0.6405E-03 0.2154E-03 -0.8527E-13
 0.2313E+06 0.2787E+06 0.1091E-10 0.2154E-03 0.2596E-03 -0.8527E-13
 0.1091E-10 0.1091E-10 0.2441E+06 -0.8527E-13 -0.8527E-13 0.2274E-03
 0.6405E-03 0.2154E-03 -0.8527E-13 0.3721E+02 0.2815E+02 -0.1299E+02
 0.2154E-03 0.2596E-03 -0.8527E-13 0.2815E+02 0.3380E+02 -0.1299E+02
 -0.8527E-13 -0.8527E-13 0.2274E-03 -0.1299E+02 -0.1299E+02 0.2893E+02

 <CL> CSS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: example1.dbc

8.5.4.2 Linear Stress Analysis of an Elastic Orthotropic Laminated Shell

An example GCP runstream and the resulting output is presented for a pointwise linear analysis of
a laminated shell made of both isotropic and orthotropic elastic material layers stacked in a
symmetric layup. The non-shear-deformable C1 shell fabrication-point is subjected to a curvature-
change κx of 0.001 in the “X-Z” plane, with all other strain components forced to remain zero.
The following runstream shows the GCP commands necessary to perform this analysis.

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-7

. *************************************

. GCP Stand-alone Analysis Example #2

. Linear analysis of a laminated shell.

. *************************************

.
*open 1 example2.dbc
.
. Input Laminated Shell Fabrication
.
fabrication
 shell
 fabid = 1
 nlayers = 8
 matid/sym = 3@1 2
 thick/sym = 0.005 3@0.0055
 angle/sym = 0. 45. -45. 90.
 intpts/sym = 4@3
 end
endfab
.
. Input Material Properties
.
material
 ortel 1 1 1
 42.0E6 1.2E6 1.2E6 .8E6 .8E6 .6E6 .3 .3 .3 0. 0. 0. 0. 0. 0. 0. 0. 0.
 isoel 2 1 1
 5.E5 0.45 0. 0. 0. 0. 0.
endmat
.
. Run Linear Analysis
.
analysis linear /c1shel
 load
 load_type strain
 loads 0.0 0.0 0.0 0.001 0.0 0.0
execute

The output from the GCP stand-alone linear analysis consists of the strain and corresponding
stress resultants at the shell fabrication point, as shown below.

 <CL> PUT_message,Commnt>
 ** BEGIN GCP ** Using Dynamic Memory **
 <CL> $root,L0001,C00001>*add example2.clp
 <DM> OPEN, Ldi: 1, File: example2.dbc , Attr: new, Block I/O

 SUMMARY OF SHELL FABRICATION NUMBER 1

 Composite Thickness = 4.3000E-02

 Layer no. Layer Layup angle Thickness Midplane distance
 Material no. THETA (deg) H Z

 1 2 90.00 5.5000E-03 -1.8750E-02
 2 1 -45.00 5.5000E-03 -1.3250E-02
 3 1 45.00 5.5000E-03 -7.7500E-03
 4 1 0.00 5.0000E-03 -2.5000E-03
 5 1 0.00 5.0000E-03 2.5000E-03
 6 1 45.00 5.5000E-03 7.7500E-03
 7 1 -45.00 5.5000E-03 1.3250E-02
 8 2 90.00 5.5000E-03 1.8750E-02

 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV

 Linear Analysis

8.5 Analysis Control 8 Constitutive Processors

8.5-8 COMET-AR User’s Manual Revised 12/1/97

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.1000E-02 0.0000E+00 0.0000E+00

 STRESSES
 0.6405E-06 0.2154E-06 0.1665E-15 0.3721E-01 0.2815E-01 -0.1299E-01

 <CL> CSS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: example2.dbc

8.5.4.3 Linear Thermal Stress Analysis of an Orthotropic Laminated Shell

An example GCP runstream and the resulting output is presented for a pointwise linear analysis of
a laminated shell made of both isotropic and orthotropic elastic material layers stacked in a
symmetric layup. The non-shear-deformable C1 shell fabrication-point is subjected to a linearly
varying temperature through the thickness, with bottom and top surface temperatures of –1.0 and
1.0 degrees respectively. All mechanical strain components are constrained to remain zero. The
following runstream shows the GCP commands necessary to perform this analysis.

. ***

. GCP Stand-alone Analysis Example #3

. Linear thermal analysis of a laminated shell.

. ***

.
*open 1 example3.dbc
.
. Input Laminated Shell Fabrication
.
fabrication
 shell
 fabid = 1
 nlayers = 8
 matid/sym = 3@1 2
 thick/sym = 0.005 3@0.0055
 angle/sym = 0. 45. -45. 90.
 intpts/sym = 4@3
 end
endfab
.
. Input Material Properties
.
material
 ortel 1 1 1
 42.0E6 1.2E6 1.2E6 .8E6 .8E6 .6E6 .3 .3 .3 0. .0001 .0001 0. 0. 0. 0. 0. 0.
 isoel 2 1 1
 5.E5 0.45 0.0001 0. 0. 0. 0.
endmat
.
. Run Linear Analysis
.
analysis linear /c1shel
 temp 1 1 1.0 -1.0 0.0
 load
 load_type strain
 loads 0.0 0.0 0.0 0.0 0.0 0.0
execute
.

The output from the GCP stand-alone linear analysis consists of the strain and corresponding
stress resultants at the shell fabrication point, as shown below.

 <CL> PUT_message,Commnt>
 ** BEGIN GCP ** Using Dynamic Memory **

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-9

 <CL> $root,L0001,C00001>*add example3.clp
 <DM> OPEN, Ldi: 1, File: example3.dbc , Attr: new, Block I/O

 SUMMARY OF SHELL FABRICATION NUMBER 1

 Composite Thickness = 4.3000E-02

 Layer no. Layer Layup angle Thickness Midplane distance
 Material no. THETA (deg) H Z

 1 2 90.00 5.5000E-03 -1.8750E-02
 2 1 -45.00 5.5000E-03 -1.3250E-02
 3 1 45.00 5.5000E-03 -7.7500E-03
 4 1 0.00 5.0000E-03 -2.5000E-03
 5 1 0.00 5.0000E-03 2.5000E-03
 6 1 45.00 5.5000E-03 7.7500E-03
 7 1 -45.00 5.5000E-03 1.3250E-02
 8 2 90.00 5.5000E-03 1.8750E-02

Echo of Temperature Command
 1 1 1.00000 -1.00000 0.
 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV

 Linear Analysis

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

 STRESSES
 -0.3809E-05 -0.1151E-05 -0.9745E-06 -0.2876E+00 -0.2717E+00 0.1209E+00

 <CL> CSS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: example3.dbc

8.5.4.4 Nonlinear Analysis of an Monocoque Shell

An example runstream and the resulting GCP output is presented for a pointwise nonlinear
analysis of a monocoque shell. The shell fabrication-point is subjected to a load history of
curvature-changes in the “X-Z” plane κx. The first load-step brings the point to the elastic limit of
the shell. Subsequent load-steps continue the loading well into the plastic regime. The following
runstream shows the GCP commands necessary to perform this analysis.

. ***

. GCP Stand-alone Analysis Example #4

. Non-Linear analysis of a monocoque shell.

. ***

.
*open 1 example4.dbc
.
. Input Monocoque Shell Fabrication
.
fabrication
 shell
 fabid = 1
 nlayers = 1
 matid = 1
 thick = 1.
 angle = 0.
 intpts = 5
 end
endfab
.
. Input Material Properties
.
material

8.5 Analysis Control 8 Constitutive Processors

8.5-10 COMET-AR User’s Manual Revised 12/1/97

 plastic_wb 1 1 1
 10000. 0.0 0.0 0.0 1 10.0 0.001
endmat
.
. Run Non-Linear Analysis
.
analysis nonlinear /c1shel
.
. Load Data For Step 1
.
 step 1

 load/incremental
 load_type strain
 loads 0.0 0.0 0.0 0.002 0.0 0.0
.
. Load Data For Step 2
.
 step 2

 load/incremental
 load_type strain
 loads 0.0 0.0 0.0 0.004 0.0 0.0
.
. Load Data For Step 3
.
 step 3

 load/incremental
 load_type strain
 loads 0.0 0.0 0.0 0.006 0.0 0.0
.
. Load Data For Step 4
.
 step 4

 load/incremental
 load_type strain
 loads 0.0 0.0 0.0 0.01 0.0 0.0
.
 execute
.

The output from the GCP stand-alone nonlinear analysis consists of the strain and corresponding
stress resultants at the shell fabrication-point for each nonlinear load-step, as shown below.

 <CL> PUT_message,Commnt>
 ** BEGIN GCP ** Using Dynamic Memory **
 <CL> $root,L0001,C00001>*add example4.clp
 <DM> OPEN, Ldi: 1, File: example4.dbc , Attr: new, Block I/O

 SUMMARY OF SHELL FABRICATION NUMBER 1

 Composite Thickness = 1.0000E+00

 Layer no. Layer Layup angle Thickness Midplane distance
 Material no. THETA (deg) H Z

 1 1 0.00 1.0000E+00 0.0000E+00

 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV

 STEP: 1

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.2000E-02 0.0000E+00 0.0000E+00
 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: old, Block I/O
 <DM> OPEN, Ldi: 3, File: HISTORY.ITER , Attr: new, Block I/O
 STRESSES

8 Constitutive Processors 8.5 Analysis Control

Revised 12/1/97 COMET-AR User’s Manual 8.5-11

 -0.1110E-15 0.0000E+00 0.0000E+00 0.1667E+01 0.1583E-07 0.0000E+00
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV
 <DM> CLOSE, Ldi: 3, File: HISTORY.ITER

 STEP: 2

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-02 0.0000E+00 0.0000E+00
 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: old, Block I/O
 <DM> OPEN, Ldi: 3, File: HISTORY.ITER , Attr: new, Block I/O
 STRESSES
 0.1110E-15 0.0000E+00 0.0000E+00 0.2602E+01 0.2701E+00 0.0000E+00
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV
 <DM> CLOSE, Ldi: 3, File: HISTORY.ITER

 STEP: 3

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.6000E-02 0.0000E+00 0.0000E+00
 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: old, Block I/O
 <DM> OPEN, Ldi: 3, File: HISTORY.ITER , Attr: new, Block I/O
 STRESSES
 -0.1110E-15 -0.5551E-16 0.0000E+00 0.2757E+01 0.7117E+00 0.0000E+00
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV
 <DM> CLOSE, Ldi: 3, File: HISTORY.ITER

 STEP: 4

 STRAINS
 0.0000E+00 0.0000E+00 0.0000E+00 0.1000E-01 0.0000E+00 0.0000E+00
 <DM> OPEN, Ldi: 2, File: HISTORY.CONV , Attr: old, Block I/O
 <DM> OPEN, Ldi: 3, File: HISTORY.ITER , Attr: new, Block I/O
 STRESSES
 -0.2220E-15 0.1110E-15 0.0000E+00 0.2866E+01 0.1180E+01 0.0000E+00
 <DM> CLOSE, Ldi: 2, File: HISTORY.CONV
 <DM> CLOSE, Ldi: 3, File: HISTORY.ITER
 <CL> CSS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: example4.dbc

8.5 Analysis Control 8 Constitutive Processors

8.5-12 COMET-AR User’s Manual Revised 12/1/97

8 Constitutive Processors 8.6 Update Command

Revised 12/1/97 COMET-AR User’s Manual 8.6-1

8.6 Update Command

The GCP can store and access historical data if required by a constitutive material model, e.g., for
plasticity analysis. Two external files are maintained: a converged data file containing historical
data from the previous converged step in a nonlinear analysis; and an iterative data file with
results from the previous iteration during the nonlinear analysis. The UPDATE command is used
to copy the iterative data file to the converged file when a step converges in the nonlinear
analysis.

When the optional qualifier ARCHIVE is specified, the historical data is also archived on the
computational database identified by the parameter ldi; the dataset is named EltType.HIST.step,
where EltType is the name of the element calling the GCP, and step is the load step number in the
nonlinear analysis, e.g., EX97.HIST.step.

UPDATE[/ARCHIVE LDI = ldi STEP = step]

8.6 Update Command 8 Constitutive Processors

8.6-2 COMET-AR User’s Manual Revised 12/1/97

9 Smoothing Processors 9.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 9.1-1

9 Smoothing Processors

9.1 Overview

Various smoothing processors implemented in COMET-AR are described in this chapter. These
processors take basic finite element integration point data (e.g., stresses, strains, or strain energy
densities) computed in the course of a standard finite element analysis, and compute globally
smoothed (i.e., continuous) versions of this data at element integration points and/or nodes. In
some cases, smoothed gradients of the basic quantities are also computed (e.g., processor SMT).
The term “globally” is relative, as smoothing may be performed independently for different
element groups. Such group partitioning is essential if physical discontinuities such as junctures,
stiffness jumps, and concentrated loads, appear in the model, since smoothing should not be
performed across such discontinuities.

The smoothing processors described in this chapter may be used in stand-alone mode for post-
processing purposes, or as a basis for error estimation in adaptive mesh refinement. For this latter
application, the user must select the smoothing processor and an appropriate error estimation
processor (such as ERRSM) when invoking procedure AR_CONTROL (described in Chapter 4,
Adaptive Solution Procedures).

A summary of currently available smoothing processors is given in Table 9.1-1.

The command language and database requirements for each of the above smoothing processors
conform to common conventions. This is to facilitate their use by high-level procedures, such as
AR_CONTROL, or in special-purpose user-written procedures.

Table 9.1-1 Outline of Chapter 9: Smoothing Processors

Section Processor Function

9.2 SMT Smoothing based on Alex Tessler’s algorithm.

9.3 SMZ Smoothing based on the Zienkiewicz/Zhu smoothing algorithm.

9.1 Overview 9 Smoothing Processors

9.1-2 COMET-AR User’s Manual Revised 12/1/97

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-1

9.2 Processor SMT (Tessler Smoothing)

9.2.1 General Description

Processor SMT computes element smoothed data (e.g., strains, stresses, and strain energies)
employing the Tessler [1] global smoothing algorithm to obtain continuous fields over the
problem domain, or specified subdomains (by element group).

The smoothing algorithm used by SMT is based on an approximate least-squares fit of a C1 field
to the finite element stress (or strain or strain-energy) solution which is typically piecewise
continuous. The method is based on minimizing a functional involving discrete least-squares error
plus a penalty constraint that ensures smoothness of the stress field. The result is a set of globally
continuous stresses (or other quantity) plus continuous gradients in these quantities as well.

This smoothed data may be used either directly for post-processing, or by a generic smoothing-
based error estimation processor (such as ERRSM) that may be used for adaptive mesh
refinement (see Section 4.2, Procedure AR_CONTROL).

9.2.2 Command Summary

Processor SMT follows standard COMET-AR command interface protocol. A summary of SMT
commands is given in Table 9.2-1.

Processor SMT is currently limited to planar (2D) structures.

Smoothing should not be performed across physical discontinuities
such as junctures, thickness jumps, material property jumps, or con-
centrated forces. Instead, the model should be partitioned into ele-
ment groups that isolate the discontinuities, and the smoothing
processor should be run independently for each element group.

Table 9.2-1 Processor SMT Command Summary

Command Name Function
Default
Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET ELEMENT_GROUP Specifies subset of element groups to be smoothed as a single
subdomain

0
(all)

SET ELEMENT_LIST Specifies subset of element numbers to be smoothed within a
single subdomain

0
(all)

SET ELEMENT_TYPE Specifies subset of element types to be smoothed as a single
subdomain

ALL

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-2 COMET-AR User’s Manual Revised 12/1/97

9.2.3 Command Definitions

9.2.3.1 SMOOTH Command

This is the “go” command for processor SMT. It causes SMT to compute the smoothed nodal
field values and output the element smoothed data as an EST dataset.

Command syntax:

9.2.3.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data. This
number should appear as the second cycle number in names of all datasets.

Command syntax:

SET GRADIENT_DATASET Specifies the name for the smoothed gradients dataset (currently
unused by SMT)

NONE

SET GRADIENT_FLAG Sets the gradient processing flag <false>

SET INPUT_DATASET Sets the root name for the input dataset STRESS

SET LDI Sets the logical device index of the computational database
library

1

SET LOAD_SET Specifies the load-set number 1

SET MESH Specifies the mesh number 0

SET OPTIONS Sets selected smoothing options BARLOW

SET OUTPUT_DATASET Sets the root name for the output dataset STRESS_SM

SET OUTPUT_LOCATIONS Sets the location of the output data within each element (nodes,
integration points, or both)

BOTH

SET SMOOTH_QUANTITY Sets the quantity to be smoothed STRESS

SET STEP Sets the load step number 0

SMOOTH Action command: compute smooth field

SMOOTH

SET CONSTRAINT_SET = conset

Table 9.2-1 Processor SMT Command Summary (Continued)

Command Name Function
Default
Value

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-3

where

9.2.3.3 SET ELEMENT_GROUP Command

This command defines the element group identity numbers for a group of elements that need to be
processed by the ERRSM processor.

Command syntax:

where

9.2.3.4 SET ELEMENT_LIST Command

This command defines a subset of elements that need to be processed by the ERRi processors
within the element group defined above.

Command syntax:

where

Parameter Description

conset Constraint set number (default value: 1)

SET ELEMENT_GROUP = first:last:incr
or

SET ELEMENT_GROUP = g1,g2,...,gN

Parameter Description

first First group ID to be processed

last Last group ID

incr Group ID increment

gi Group ID (default value: 0 — implies all groups)

SET ELEMENT_LIST = first:last:incr
or

SET ELEMENT_LIST = e1,e2,...,en

Parameter Description

first First element ID to be processed

last Last element ID

incr element ID increment

ei element ID (default value: 0 — implies all elements)

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-4 COMET-AR User’s Manual Revised 12/1/97

9.2.3.5 SET ELEMENT_TYPE Command

This command defines the subset of element types to be processed by the error estimation
processor (e.g., ES1p, ES7p). This command is relevant only for linear static analysis.

Command syntax:

where

9.2.3.6 SET GRADIENT_DATASET Command

This command defines the second component of the gradient dataset names. The full input dataset
names are constructed as follows:

EltName.grad_name.step..mesh if step > 0

EltName.grad_name.ldset.conset.mesh if step = 0

Command syntax:

where

9.2.3.7 SET GRADIENT_FLAG Command

This command sets the flag for the gradient processing option.

Command syntax:

SET ELEMENT_TYPE = element_type

Parameter Description

element_type Element type name (default value: ALL)

SET GRADIENT_DATASET = grad_name

Parameter Description

grad_name Second component of the gradient datasets name
(default value: NONE)

SET GRADIENT_FLAG = flag

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-5

where

9.2.3.8 SET INPUT_DATASET Command

This command defines the second component of the input dataset names. The full input dataset
names are constructed as follows:

EltName.in_name.step..mesh if step > 0

EltName.in_name.ldset.conset.mesh if step = 0

Command syntax:

where

9.2.3.9 SET LDI Command

This command defines the logical device index for the computational database.

Command syntax:

where

9.2.3.10 SET LOAD_SET Command

This command defines the load set number associated with the element and nodal data. This
number should appear as the first cycle number in names of all datasets.

Parameter Description

flag Gradient processing flag (default value: 0 — implies false)

SET INPUT_DATASET = in_name

Parameter Description

in_name Second component of the input datasets name
(default value: STRESS)

SET LDI = ldi

Parameter Description

ldi Logical device index. (default value: 1)

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-6 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

9.2.3.11 SET MESH Command

This command defines the mesh number to be processed. This number should appear as the third
cycle number in names of all datasets.

Command syntax:

where

9.2.3.12 SET OPTIONS Command

This command sets the Barlow stress point data rather then integration points data for computing
the smoothed field.

Command syntax:

where

9.2.3.13 SET OUTPUT_DATASET Command

This command defines the second component of the output dataset names. The full output dataset
names are constructed as follows:

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MESH = mesh

Parameter Description

mesh Model mesh number (default value: 0)

SET OPTIONS = option

Parameter Description

option Option value (default value: BARLOW)

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-7

EltName.out_name.step..mesh if step > 0

EltName.out_name.ldset.conset.mesh if step = 0

Command syntax:

where

9.2.3.14 SET OUTPUT_LOCATIONS Command

This command defines the element location for the smoothed field output.

Command syntax:

where

9.2.3.15 SET SMOOTH_QUANTITY Command

This command defines the solution quantity to be smoothed.

Command syntax:

where

SET OUTPUT_DATASET = out_name

Parameter Description

out_name Second component of the output datasets name
(default value: in_name_SM)

SET OUTPUT_LOCATIONS = location

Parameter Description

location Element location of the smoothed field: NODES, INTEG_PTS, or
BOTH (default value: BOTH)

SET SMOOTH_QUANTITY = quantity

Parameter Description

quantity The solution quantity to be smoothed: STRESS, STRAIN, or
STRAIN_ENERGY (default value: STRESS)

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-8 COMET-AR User’s Manual Revised 12/1/97

9.2.3.16 SET STEP Command

This command defines the solution step number associated with the element and nodal data. This
number, if defined, should appear as the first cycle number in names of all datasets.

Command syntax:

where

9.2.4 Database Input/Output

9.2.4.1 Input Datasets

A summary of input datasets required by Processor SMT is given below in Table 9.2-2.

9.2.4.2 Output Datasets

A summary of output datasets created by Processor SMT is given in Table 9.2-3.

SET STEP = step

Parameter Description

step Solution step number (default value: 0)

Table 9.2-2 Processor SMT Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets

EltNam.DEFINITION...mesh EDT Element definition datasets

EltNam.in_name.ldset.conset.mesh
—or—

EltNam.in_name.step..mesh

EST Element stress datasets. These must contain data evaluated
at element integration points.

NODAL.COORDINATE...mesh NCT Nodal coordinate dataset

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-9

9.2.5 Limitations

9.2.5.1 Partitioning Requirement

It may be necessary to partition the elements into element groups so that physical discontinuities
(e.g., thickness jumps, point forces, or intersections in built-up structures) occur only on the
boundary of such partitions. Otherwise, a meaningless smoothing of the physical discontinuity
can result.

9.2.5.2 Element Type and Dimensionality

Currently, SMT is restricted to 2D (planar) elements and model geometries.

9.2.5.3 Common Solution Field Coordinate System

SMT interpolates, extrapolates, and accumulates element solution tensor contributions at each
nodal point. These tensors are assumed to be defined in an appropriate reference coordinate
system such that these type of operations are applicable. The user must verify that the element
processors, ESi, are instructed to calculate strain and stress results in a common coordinate
system for all elements that will be processed by SMT in a single SMOOTH command. This
limitation is applicable only for tensor solution fields (i.e., STRESS and STRAIN). This
limitation is not relevant to scalar solution quantities (i.e., STRAIN_ENERGY).

9.2.6 Error Messages

SMT contains extensive error checking. Most of the error messages printed by SMT are self-
explanatory messages and aim to help the user correct mistakes. Some of the errors may occur at
code levels below SMT (e.g., HDB, DB, GAL, etc.) and SMT describes those errors to the best of
its ability.

The following is a summary of the error messages related to user interface problems as produced
by SMT.

Table 9.2-3 Processor SMT Output Datasets

Dataset Class Contents

EltNam.out_name.ldset.conset.mesh*
—or—

EltNam.out_name.step..mesh *

EST Element smoothed stress datasets containing smoothed
data at the required element locations.

*created dataset

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-10 COMET-AR User’s Manual Revised 12/1/97

9.2.7 Examples and Usage Guidelines

9.2.7.1 Example 1: Basic Operation

In this example, all default options are chosen except for the mesh number. This example will
generate element smoothed stresses at both nodal and integration points locations using the
Barlow point data for all active elements in the first mesh. The dataset name for the output dataset
will be EltNam.STRESS_SM.1.1.1.

Index Error Message Cause Recommended User Action

1 Invalid SMT command. SMT encountered an unrecog-
nized command.

Check the spelling of the command name,
and refer to Command Descriptions in this
section of the manual.

2 Invalid SET command. SMT encountered an unrecog-
nized SET command; i.e., the
object in SET object is invalid.

Check the spelling of the SET option, and
refer to Command Descriptions in this sec-
tion of the manual.

3 Cannot open * dataset. SMT could not open the named
dataset.

1. Check the execution log file; look for
error produced by processors prior to SMT
execution.
2. Try to verify the dataset name using the
HDBprt processor.
3. Make sure that all necessary input
datasets are present in the database file.

RUN SMT

SET MESH = 1

SMOOTH

STOP

9 Smoothing Processors 9.2 Processor SMT (Tessler Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.2-11

9.2.7.2 Example 2: Two Element Groups Partition

In this example, SMT is requested to smooth the elements strain fields and output the results at
element nodal points only. The model is partitioned into two groups (due to physical discontinuity
along the interface of these groups). For each group, a separate “go” command is issued to ensure
that no smoothing will take place along the boundaries between the first and second groups of
elements. The name for the output dataset will be EltNam.STRAIN_1_SM.1.1.

9.2.8 References

[1] Tessler, A., Riggs, H. R., and Macy, S. C., “A Variational Method for Finite Element
Stress Recovery and Error Estimation,” AIAA Structures, Dynamics and Materials
(SDM) Conference, Paper AIAA-93-13844-CP, April, 1993.

RUN SMT

SET SMOOTH_QUANTITY = STRAIN

SET SMOOTH_LOCATIONS = NODES

SET INPUT_DATASET = STRAIN_1

SET MESH = 1

SET ELEMENT_GROUP = 1

SMOOTH

SET ELEMENT_GROUP = 2

SMOOTH

STOP

9.2 Processor SMT (Tessler Smoothing) 9 Smoothing Processors

9.2-12 COMET-AR User’s Manual Revised 12/1/97

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-1

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

9.3.1 General Description

Processor SMZ computes element smoothed data (e.g., strains, stresses, and strain energies)
employing the Zienkiewicz-Zhu [1] global smoothing algorithm to obtain continuous fields over
the problem domain or specified subdomains (by element group).

The smoothing algorithm used by SMZ is based on an approximate least-square fit of a Co field to
the finite element solution using the finite element displacement approximation space for the
smoothed data field.

The smoothed field, fSM, where f denotes stress, strain, or strain-energy density, is computed by
SMZ is as follows:

(9.3-1)

where x denotes the local coordinates within an element, “a” is an element node number, Nen is
the number of element nodes, Na is the element shape function corresponding to element node
“a,” and faSM is the globally smoothed (i.e., continuous) data at node “a,” defined as follows:

(9.3-2)

In the above expression, the integrals are taken over all elements connected to node “a”, which in
effect is a weighted average of the basic finite element data, f FE.

SMZ currently works in conjunction with any 2D (plate/shell) element implemented via the
Generic Element Processor (i.e., ESi Processors). The output of SMZ is an element stress table
(EST) data object, containing smoothed data at element integration points, via Equation 9.3-1,
and/or at element nodes, via Equation 9.3-2. This smoothed data may be used either directly for
post-processing, or by a generic smoothing-based error estimation processor (see ERRSM) for the
assessment of element errors for a given mesh; the latter may be used for adaptive mesh
refinement (see Section 4.2, Procedure AR_CONTROL).

f SM x() Na x() f a
SM

a 1=

Nen

∑=

f a
SM

Na f FE

Ω
∫ dΩ

Na
2dΩ

Ω
∫

------------------------------=

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-2 COMET-AR User’s Manual Revised 12/1/97

9.3.2 Command Summary

Processor SMZ follows standard COMET-AR command interface protocol. A summary of SMZ
commands is given in Table 9.3-1.

9.3.3 Command Definitions

9.3.3.1 SMOOTH Command

This is the “go” command for processor SMZ. It causes SMZ to compute the smoothed nodal
field values using the Zienkiewicz-Zhu method and output the element smoothed data as an EST
dataset.

Table 9.3-1 Processor SMZ Command Summary

Command Name Function
Default
Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET ELEMENT_GROUP Specifies subset of element groups to be smoothed as a sin-
gle subdomain

0
(all)

SET ELEMENT_LIST Specifies subset of element numbers to be smoothed within
a single subdomain

0
(all)

SET ELEMENT_TYPE Specifies subset of element types to be smoothed as a sin-
gle subdomain

ALL

SET GRADIENT_DATASET Specifies the name for the smoothed gradients dataset (cur-
rently unused by SMZ)

NONE

SET GRADIENT_FLAG Sets the gradient processing flag <false>

SET INPUT_DATASET Sets the root name for the input dataset STRESS

SET LDI Sets the logical device index of the computational database
library

1

SET LOAD_SET Specifies the load-set number 1

SET MESH Specifies the mesh number 0

SET OPTIONS Sets selected smoothing options BARLOW

SET OUTPUT_DATASET Sets the root name for the output dataset STRESS_SM

SET OUTPUT_LOCATIONS Sets the location of the output data within each element
(nodes, integration points, or both)

BOTH

SET SMOOTH_QUANTITY Sets the quantity to be smoothed STRESS

SET STEP Sets the load step number 0

SMOOTH Action command: compute smooth field

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-3

Command syntax:

9.3.3.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data. This
number should appear as the second cycle number in names of all datasets.

Command syntax:

where

9.3.3.3 SET ELEMENT_GROUP Command

This command defines the element group identity numbers for a group of elements that need to be
processed by the ERRSM processor.

Command syntax:

where

9.3.3.4 SET ELEMENT_LIST Command

This command defines a subset of elements that need to be processed by the ERRi processors
within the element group defined above.

SMOOTH

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET ELEMENT_GROUP = first:last:incr
or

SET ELEMENT_GROUP = g1,g2,...,gN

Parameter Description

first First group ID to be processed

last Last group ID

incr Group ID increment

gi Group ID (default value: 0 — implies all groups)

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-4 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

9.3.3.5 SET ELEMENT_TYPE Command

This command defines the subset of element types to be processed by the error estimation
processor (e.g., ES1p, ES7p). This command is relevant only for linear static analysis.

Command syntax:

where

9.3.3.6 SET GRADIENT_DATASET Command

This command defines the second component of the gradient dataset names. This command is not
yet implemented. The full input dataset names are constructed as follows:

EltName.grad_name.step..mesh if step > 0

EltName.grad_name.ldset.conset.mesh if step = 0

Command syntax:

SET ELEMENT_LIST = first:last:incr
or

SET ELEMENT_LIST = e1,e2,...,en

Parameter Description

first First element ID to be processed

last Last element ID

incr Element ID increment

ei Element ID (default value: 0 — implies all elements)

SET ELEMENT_TYPE = element_type

Parameter Description

element_type Element type name (default value: ALL)

SET GRADIENT_DATASET = grad_name

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-5

where

9.3.3.7 SET GRADIENT_FLAG Command

This command sets the flag for the gradient processing option.

Command syntax:

where

9.3.3.8 SET INPUT_DATASET Command

This command defines the second component of the input dataset names. The full input dataset
names are constructed as follows:

EltName.in_name.step..mesh if step > 0

EltName.in_name.ldset.conset.mesh if step = 0

Command syntax:

where

9.3.3.9 SET LDI Command

This command defines the logical device index for the computational database.

Parameter Description

grad_name Second component of the gradient datasets name
(default value: NONE)

SET GRADIENT_FLAG = flag

Parameter Description

flag Gradient processing flag (default value: 0 — implies false)

SET INPUT_DATASET = in_name

Parameter Description

in_name Second component of the input datasets name
(default value: STRESS)

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-6 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

9.3.3.10 SET LOAD_SET Command

This command defines the load set number associated with the element and nodal data. This
number should appear as the first cycle number in names of all datasets.

Command syntax:

where

9.3.3.11 SET MESH Command

This command defines the mesh number to be processed. This number should appear as the third
cycle number in names of all datasets.

Command syntax:

where

9.3.3.12 SET OPTIONS Command

This command sets the Barlow stress point data rather then integration points data for computing
the smoothed field.

SET LDI = ldi

Parameter Description

ldi Logical device index. (default value: 1)

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MESH = mesh

Parameter Description

mesh Model mesh number (default value: 0)

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-7

Command syntax:

where

9.3.3.13 SET OUTPUT_DATASET Command

This command defines the second component of the output dataset names. The full output dataset
names are constructed as follows:

EltName.out_name.step..mesh if step > 0

EltName.out_name.ldset.conset.mesh if step = 0

Command syntax:

where

9.3.3.14 SET OUTPUT_LOCATIONS Command

This command defines the element location for the smoothed field output.

Command syntax:

where

SET OPTIONS = option

Parameter Description

option Option value (default value: BARLOW)

SET OUTPUT_DATASET = out_name

Parameter Description

out_name Second component of the output datasets name
(default value: in_name_SM)

SET OUTPUT_LOCATIONS = location

Parameter Description

location Element location of the smoothed field: NODES, INTEG_PTS, or
BOTH (default value: BOTH)

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-8 COMET-AR User’s Manual Revised 12/1/97

9.3.3.15 SET SMOOTH_QUANTITY Command

This command defines the solution quantity to be smoothed.

Command syntax:

where

9.3.3.16 SET STEP Command

This command defines the solution step number associated with the element and nodal data. This
number, if defined, should appear as the first cycle number in names of all datasets.

Command syntax:

where

9.3.4 Database Input/Output

9.3.4.1 Input Datasets

A summary of input datasets required by Processor SMZ is given below in Table 9.3-2.

SET SMOOTH_QUANTITY = quantity

Parameter Description

quantity The solution quantity to be smoothed: STRESS, STRAIN, or
STRAIN_ENERGY (default value: STRESS)

SET STEP = step

Parameter Description

step Solution step number (default value: 0)

Table 9.2-2 Processor SMZ Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets

EltNam.DEFINITION...mesh EDT Element definition datasets

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-9

9.3.4.2 Output Datasets

A summary of output datasets created by Processor SMZ is given below in Table 9.3-3.

9.3.5 Limitations

9.3.5.1 Partitioning Requirement

It is necessary to partition the elements so that physical discontinuities (e.g., thickness jumps,
point forces, or intersections in built-up structures) occur only on the boundary of element
partitions. Otherwise, smoothing of the physical discontinuity may result.

9.3.5.2 Common Solution Field Coordinate System

SMZ interpolates, extrapolates, and accumulates element solution tensor contributions at each
nodal point. These tensors are assumed to be defined in an appropriate reference coordinate
system such that these type of operations are applicable. The user must verify that the element
processors, ESi, are instructed to calculate strain and stress results in a common coordinate
system for all elements that will be processed by SMZ in a single SMOOTH command. This
limitation is applicable only for tensor solution fields (i.e., STRESS and STRAIN). This
limitation is not relevant to scalar solution quantities (i.e., STRAIN_ENERGY).

EltNam.in_name.ldset.conset.mesh
—or—

EltNam.in_name.step..mesh

EST Element stress datasets. These must contain data evaluated at
element integration points.

NODAL.COORDINATE...mesh NCT Nodal coordinate dataset

Table 9.2-3 Processor SMZ Output Datasets

Dataset Class Contents

EltNam.out_name.ldset.conset.mesh*
—or—

EltNam.out_name.step..mesh *

EST Element smoothed stress datasets containing
smoothed data at the required element locations.

*created dataset

Table 9.2-2 Processor SMZ Input Datasets (Continued)

Dataset Class Contents

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-10 COMET-AR User’s Manual Revised 12/1/97

9.3.6 Error Messages

SMZ contains extensive error checking. Most of the error messages printed by SMZ are self-
explanatory messages and aim to help the user correct mistakes. Some of the errors may occur at
code levels below SMZ (e.g., HDB, DB, GAL, etc.) and SMZ describes those errors to the best of
its ability.

The following summarizes the error messages related to user interface problems as produced by
SMZ:

9.3.7 Examples and Usage Guidelines

9.3.7.1 Example 1: Basic Operation

Index Error Message Cause Recommended User Action

1 Unknown set vari-
able name encoun-
tered

SMZ encountered an unrecog-
nized SET variable name.

Check the spelling of variable name in the CLIP
procedure.

2 Unknown command
encountered.

SMZ encountered an unrecog-
nized COMMAND.

Check the spelling of the command in the CLIP
procedure.

3 Old/new dataset
name could not be
opened.

SMZ could not open the
named dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to SMZ execution.
2. Try to verify the dataset name using the HDBprt
processor.
3. Make sure that all input datasets are present in
the database file.

4 Dataset name could
not be closed.

SMZ could not close the
named dataset.

1. Check the execution log file to look for errors
previously produced by processor SMZ.
2. Verify that SMZ is the only processor accessing
the database file (is ARGx being used in the same
directory?).

5 Dataset name access
problem encountered.

SMZ could not get/put an
attribute from the dataset
name table.

Verify that the named dataset contains attributes
required by SMZ (e.g., EST does not contain data at
integration points).

RUN SMZ

SET MESH = 1

SMOOTH

STOP

9 Smoothing Processors 9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 9.3-11

In the above example, all default options are chosen except for the mesh number. This example
will generate element smoothed stresses at both nodal and integration points locations using the
Barlow point data for all active elements in the first mesh.The dataset name for the output dataset
will be EltNam.STRESS_SM.1.1.1.

9.3.7.2 Example 2: Two Element Groups Partition

In the above example, SMZ is requested to smooth the elements strain fields and output the
results at element nodal points only. The model is partitioned into two groups (due to physical
discontinuity along the interface of these groups). For each group, a separate “go” command is
issued to ensure that no smoothing will take place along the boundaries between the first and
second groups of elements. The name for the output dataset will be EltNam.STRAIN_1_SM.1.1.

9.3.8 References

[1] Zienkiewicz, O. C. and Zhu, J. Z. “A Simple Error Estimator For Adaptive Procedure
for Practical Engineering Analysis,” International Journal of Numerical Engineering,
Vol. 24, pp. 337-357, 1987.

RUN SMZ

SET SMOOTH_QUANTITY = STRAIN

SET SMOOTH_LOCATIONS = NODES

SET INPUT_DATASET = STRAIN_1

SET MESH = 1

SET ELEMENT_GROUP = 1

SMOOTH

SET ELEMENT_GROUP = 2

SMOOTH

STOP

9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing) 9 Smoothing Processors

9.3-12 COMET-AR User’s Manual Revised 12/1/97

10 Error Estimation Processors 10.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 10.1-1

10 Error Estimation Processors

10.1 Overview

In this chapter, various error estimation processors implemented in COMET-AR are described.
These processors may be used either in stand-alone mode, or in conjunction with automated
adaptive refinement procedures (see Chapter 4). By convention, the name of all error estimation
processors begins with ERR; the rest of the name may be any unique alphanumeric string. A
summary of currently available error estimation processors is given in Table 10.1-1.

The command language and database requirements for each of the above error estimation
processors conform to common conventions. This is to facilitate their use by high-level
procedures such as EST_ERR_1 and AR_CONTROL in the context of adaptive refinement.

Table 10.1-1 Outline of Chapter 10: Error Estimation Processors

Section Processor Function

10.2 ERR Generic Error Estimator

10.3 ERR2 Zienkiewicz’s strain-smoothing-based error estimates

10.4 ERR4 Levit’s energy-smoothing-based error estimates

10.5 ERR6 Levit-modified version of ERR2

10.6 ERRa Error accumulation processor

10.7 ERRSM Error estimation post-processor for smoothing processors

10.1 Overview 10 Error Estimation Processors

10.1-2 COMET-AR User’s Manual Revised 12/1/97

10 Error Estimation Processors 10.2 Processor ERR (Generic Error Estimator)

Revised 12/1/97 COMET-AR User’s Manual 10.2-1

10.2 Processor ERR (Generic Error Estimator)

10.2.1 General Description

Processors ERRi compute element error estimates using a variety of techniques which shall be
individually discussed in the following sections of this chapter (ERRi is the generic name used to
represent the name of any actually implemented error processor). To simplify the user interaction
with the ERRi processors, a single generic user interface (which we refer to as ERR) is used as a
cover for all error estimation processors.

This section will describe the common commands used in the generic error estimator user
interface. Other information, such as database requirements, examples, and theoretical
considerations are addressed under the individual ERRi processor sections.

10.2.2 Command Summary

Processors ERRi follow standard COMET-AR command interface protocol. A summary of valid
commands is given in Table 10.2-1.

10.2.3 Command Definitions

10.2.3.1 ESTIMATE ERRORS Command

This is the “go” command for processors ERRi. It causes ERRi to compute element errors for all
or some of the elements in a specified mesh, and output them to an element error table (EET)

Table 10.2-1 Processor ERRi Command Summary

Command Name Function Default

SET CONSTRAINT_SET Specifies constraint-set number for error estimation 1

SET ELEMENT_GROUP Specifies subset of element groups for error estimates 0

SET ELEMENT_LIST Specifies subset of element numbers for error estimates 0

SET ELEMENT_TYPE Specifies subset of element types for error estimates ALL

SET ERROR_TECHNIQUE Specifies error estimation option S

SET LDI Specifies logical device index of computational database 1

SET LOAD_SET Specifies load-set number for error estimation 1

SET MESH Specifies mesh number for error estimation 0

SET STEP Specifies load/time-step number for error estimation 0

ESTIMATE_ERRORS Compute element error estimates; store in database

10.2 Processor ERR (Generic Error Estimator) 10 Error Estimation Processors

10.2-2 COMET-AR User’s Manual Revised 12/1/97

dataset EltNam.ERROR.ldset.conset.mesh (EltNam is the element name, ldset is the load set
number, conset is the constraint set number, and mesh is the mesh number).

Command syntax:

10.2.3.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY.
Relevant only for linear static analysis.

Command syntax:

where

10.2.3.3 SET ELEMENT_GROUP Command

This command defines the element group identity numbers for a group of elements that need to be
processed by the ERRi processors for each of the element types specified.

Command syntax:

where

ESTIMATE_ERRORS

SET CONSTRAINT_SET = constraint_set

Parameter Description

constraint_set Constraint set number (default value: 1)

SET ELEMENT_GROUP = first:last:incr
or

SET ELEMENT_GROUP = g1,g2,...,gN

Parameter Description

first First group ID to be processed (default value: 0 — all groups)

last Last group ID

incr Group ID increment

gi Group ID

10 Error Estimation Processors 10.2 Processor ERR (Generic Error Estimator)

Revised 12/1/97 COMET-AR User’s Manual 10.2-3

10.2.3.4 SET ELEMENT_LIST Command

This command defines a subset of elements that need to be processed by the ERRi processors
within the element group defined above.

Command syntax:

where

10.2.3.5 SET ELEMENT_TYPE Command

This command defines the subset of element types to be processed by the error estimation
processor (e.g., ES1p, ES7p). Relevant only for linear static analysis.

Command syntax:

where

10.2.3.6 SET ERROR_TECHNIQUE Command

This command defines the error technique to be used for estimating the solution errors (e.g.,
SMOOTHING, LOOK_AHEAD). Relevant only for linear static analysis.

Command syntax:

SET ELEMENT_LIST = first:last:incr
or

SET ELEMENT_LIST = e1,e2,...,en

Parameter Description

first First element ID to be processed (default value: 0 — all elements)

last Last element ID

incr Element ID increment

ei Element ID

SET ELEMENT_TYPE = element_type

Parameter Description

element_type Element type name (default value: ALL)

SET ERROR_TECHNIQUE = error_technique/qualifier

10.2 Processor ERR (Generic Error Estimator) 10 Error Estimation Processors

10.2-4 COMET-AR User’s Manual Revised 12/1/97

where

10.2.3.7 SET MESH Command

This command defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in
names of all datasets (e.g., EltNam.ERROR.ldset.conset.mesh).

Command syntax:

where

10.2.3.8 SET LDI Command

This command defines the logical device index for the central database.

Command syntax:

where

10.2.3.9 SET LOAD_SET Command

This command defines the load set number associated with the element solution data for which
error estimates are to be computed. This number should appear as the first cycle number in names
of all element solution datasets (e.g., STRESS, STRAIN, and STRAIN_ENERGY). Relevant
only for linear static analysis.

Parameter Description

error_technique Error technique (default value: SMOOTHING/BARLOW)

SET MESH = mesh

Parameter Description

mesh Mesh number to be processed (default value: 0)

SET LDI = ldi

Parameter Description

ldi Logical device index (default value: 1)

10 Error Estimation Processors 10.2 Processor ERR (Generic Error Estimator)

Revised 12/1/97 COMET-AR User’s Manual 10.2-5

Command syntax:

where

10.2.3.10 SET STEP Command

This command defines the solution step number associated with the element solution data for
which error estimates are to be computed. This number should appear as the first cycle number in
names of all element solution datasets (e.g., STRESS, STRAIN, and STRAIN_ENERGY).
Relevant only for nonlinear static analysis.

Command syntax:

where

SET LOAD_SET = load_set

Parameter Description

load_set Load set number. (default value: 1)

SET STEP = step

Parameter Description

step Solution step number. (default value: 0—implies
linear analysis)

10.2 Processor ERR (Generic Error Estimator) 10 Error Estimation Processors

10.2-6 COMET-AR User’s Manual Revised 12/1/97

10 Error Estimation Processors 10.3 Processor ERR2 (Error Estimates: Stress Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 10.3-1

10.3 Processor ERR2 (Error Estimates: Stress Smoothing)

10.3.1 General Description

Processor ERR2 computes element error estimates employing the Zienkiewicz-Zhu [1] global
smoothing algorithm to obtain a continuous strain field over the problem domain. The smoothed
strain field is then compared to the original finite element approximation to yield an estimate of
the element displacement error in terms of the strain energy norm.

The smoothing algorithm used by ERR2 is based on a least-square fit of a Co strain field to the
finite element solution using the finite element displacement solution space for the smoothed
strain field.

The definition of the element error estimate Ee computed by ERR2 is as follows:

ERR2 currently works in conjunction with any 2D (plate/shell) element implemented via the
generic element processor (i.e., ESi processors), provided that the new AR-prototype version of
the ESi shell is employed and that the element interpolation and extrapolation kernel routines
(ES0IP and ES0XP) have been implemented for the particular element processor. The output of
ERR2 is an element error table (EET) data object, which may be used for adaptive refinement
(AR), or just as an assessment of element errors for a given mesh.

Processor ERR2 is normally invoked indirectly via procedure EST_ERR_1, which is called
automatically by adaptive analysis procedures such as AR_CONTROL.

Ee εSM εFE–()TC

Ωe

∫ εSM εFE–()dΩ=

εSM Naεa
SM

a 1=

Nen

∑=

εa
SM

NaεFE

Ω
∫ dΩ

Na
2dΩ

Ω
∫

-----------------------------=

10.3 Processor ERR2 (Error Estimates: Stress Smoothing) 10 Error Estimation Processors

10.3-2 COMET-AR User’s Manual Revised 12/1/97

10.3.2 Command Summary

See Section 10.2 for the summary of the generic commands common to all error estimation
processors.

10.3.3 Command Definitions

See Section 10.2 for the definition of the generic commands common to all error estimation
processors.

10.3.4 Database Input/Output

10.3.4.1 Input Datasets

A summary of input datasets required by Processor ERR2 is given in Table 10.3-1.

10.3.4.2 Output Datasets

A summary of output datasets and attributes created by Processor ERR2 is given in Table 10.3-2.

Table 10.3-1 Processor ERR2 Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset.

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets.

EltNam.DEFINITION...mesh EDT Element definition datasets.

EltNam.FABRICATION...mesh EFT Element fabrication datasets.

EltNam.STRAIN.ldset.conset.mesh
EltNam.STRESS.ldset.conset.mesh

EST Element strain and stress datasets. These must con-
tain data evaluated at element integration points.

NODAL.COORDINATE...mesh NCT Nodal coordinate datasets.

10 Error Estimation Processors 10.3 Processor ERR2 (Error Estimates: Stress Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 10.3-3

10.3.5 Limitations

10.3.5.1 Partitioning Requirement

As with most smoothing-based error estimators, it is necessary to partition the elements so that
physical discontinuities (e.g., thickness jumps, point forces, or intersections in built-up structures)
occur only on the boundary of element partitions. Otherwise, excessive refinement in the vicinity
of the physical discontinuity may result.

Table 10.3-2 Processor ERR2 Output Datasets

Dataset Class Contents

EltNam.ERROR.ldset.conset.mesh* EET Element error datasets. The following element attributes are created.

Attribute Description

AbsErr Absolute element error Ee

Energy Element strain-energy density:

where

EngGrd Element strain-energy density gradient:

where Ae is the eleme8nt area.

ErrRat Element error ratio:

RelErr Relative element error:

where is the total finite element strain

energy integrated over all elements, and Nel is
the total number of elements.

*—created dataset

Ue ÛFEdΩ
Ωe

∫=

ÛFE 1
2
---σ ε•=

∇ Û
Ûmax Ûmin–

Ae

------------------------------=

Ẽe
Ee Ae⁄

max

e
Ee Ae⁄()

--------------------------------------=

Êe
Ee

Utot
FE Nel⁄

---------------------------=

Utot
FE

10.3 Processor ERR2 (Error Estimates: Stress Smoothing) 10 Error Estimation Processors

10.3-4 COMET-AR User’s Manual Revised 12/1/97

10.3.5.2 Common Strain Coordinate System

ERR2 interpolates, extrapolates, and adds element strain tensor contributions at each nodal point.
These strain tensors are assumed to be defined in a consistent reference coordinate system such
that these type of operations are applicable. The user must verify that the element processors, ESi,
are instructed to calculate strain and stress results in a common coordinate system for all elements
processed by ERR2 in a single ESTIMATE_ERRORS command.

10.3.6 Error Messages

ERR2 contains extensive checking. Most of the error messages printed by ERR2 are self-
explanatory messages and aim to help the user correct mistakes. Some of the errors may occur at
code levels below ERR2 (e.g., HDB, DB, GAL, etc.), and ERR2 describes those errors to the best
of its ability. The following summarizes the error messages related to user interface problems as
produced by ERR2.

Index Error Message Cause Recommended User Action

1 Unknown set variable name
encountered

ERR2 user interface cover
encountered an unrecog-
nized SET variable name.

Check the spelling of variable name in the
CLIP procedure.

2 Unknown command encoun-
tered.

ERR2 user interface cover
encountered an unrecog-
nized COMMAND.

Check the spelling of command in the
CLIP procedure.

3 Old/new dataset name could
not be opened.

ERR2 could not open a cer-
tain dataset.

1. Check the execution log file; look for
error produced by processors prior to
ERR2 execution.
2. Try to verify the dataset name using the
HDBprt processor.
3. Make sure that all input datasets are
present in the database file.

4 Dataset name could not be
closed.

ERR2 could not close a cer-
tain Dataset.

1. Check the execution log file, look for
errors previously produced by processor
ERR2.
2. Verify that ERR2 is the only processor
accessing the database file (is ARGx being
used in the same directory?).

5 Dataset name access problem
encountered.

ERR2 could not get/put an
attribute from the dataset
name table.

Verify that the particular dataset contains
attributes required by ERR2 (e.g., EST
contain nontrivial data at integration
point).

10 Error Estimation Processors 10.3 Processor ERR2 (Error Estimates: Stress Smoothing)

Revised 12/1/97 COMET-AR User’s Manual 10.3-5

10.3.7 Examples and Usage Guidelines

10.3.7.1 Example 1: Basic Operation

In this example, all default options are chosen except for the mesh number.

10.3.7.2 Example 2: Two Element Groups Partition

In this example, all default options are chosen except for the mesh number and element group. For
each group, a separate “go” command is issued to ensure that no smoothing will take place along
the boundaries between the first and second groups of elements.

10.3.8 References

[1] Zienkiewicz, O. C. and Zhu, J. Z. “A Simple Error Estimator For Adaptive Procedure for
Practical Engineering Analysis,” International Journal of Numerical Engineering,
Vol. 24, pp. 337-357, 1987.

RUN ERR2

SET MESH = 1

ESTIMATE ERRORS

STOP

RUN ERR2

SET MESH = 1

SET ELEMENT_GROUP = 1

ESTIMATE ERRORS

SET ELEMENT_GROUP = 2

ESTIMATE ERRORS

STOP

10.3 Processor ERR2 (Error Estimates: Stress Smoothing) 10 Error Estimation Processors

10.3-6 COMET-AR User’s Manual Revised 12/1/97

10 Error Estimation Processors 10.4 Processor ERR4

Revised 12/1/97 COMET-AR User’s Manual 10.4-1

10.4 Processor ERR4 (Error Estimates: Energy Smoothing)

10.4.1 General Description

Processor ERR4 computes element error estimates employing element-computed strain energy
densities, and a smoothing-based projection technique. Like Processor ERR2, ERR4 uses a
Zienkiewicz-type [1] global smoothing algorithm to obtain a continuous strain energy field over
the problem domain. The smoothed strain energy field is then compared to the original finite-
element approximation to yield an estimate of the element displacement error in terms of the
strain energy norm. ERR4 is different from ERR2 in that the smoothing algorithm is applied to
the square root of the strain energy density field instead of the strain field. The error expression
itself is modified in ERR4 to involve these square roots directly.

The error estimation algorithm used by ERR4 leads to a significant increase in implementation
simplicity and efficiency due to smoothing a scalar quantity (strain energy density) rather than a
tensor quantity (strain). Unlike processor ERR2, ERR4 is applicable to arbitrary structural
configurations including built-up shell structures (e.g., stiffened shells) and to models involving
different type of elements (e.g., shells and beams).

The definition of the element error estimate Ee computed by ERR4 is as follows.

Ee Ûe
SM Ûe

FE–()
2

Ωe

∫ dΩ=

ÛFE σij εij=

Ûe
SM Na Ûa

SM

a 1=

Nen

∑=

Ûa
SM

Na ÛFE

Ω
∫ dΩ

Na
2dΩ

Ω
∫

-----------------------------------=

10.4 Processor ERR4 10 Error Estimation Processors

10.4-2 COMET-AR User’s Manual Revised 12/1/97

ERR4 currently works in conjunction with any 2D (plate/shell) element implemented via the
generic element processor (i.e., ESi processors), provided that the new AR-prototype version of
the ESi shell is employed and that the element interpolation and extrapolation kernel routines
(ES0IP and ES0XP) have been implemented for the particular element processor. The output of
ERR4 is an element error table (EET) data object, which may be used for adaptive refinement
(AR), or just as an assessment of element errors for a given mesh.

Processor ERR4 is normally invoked indirectly via procedure EST_ERR_1, which is called auto-
matically by adaptive analysis procedures such as AR_CONTROL.

10.4.2 Command Summary

See Section 10.2 for the summary of the generic commands common to all error estimation
processors.

10.4.3 Command Definitions

See Section 10.2 for the definition of the generic commands common to all error estimation
processors.

10.4.4 Database Input/Output

10.4.4.1 Input Datasets

A summary of input datasets required by Processor ERR4 is given below in Table 10.4-1.

Table 10.4-1 Processor ERR4 Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset.

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets.

EltNam.DEFINITION...mesh EDT Element definition datasets.

EltNam.STRAIN_ENERGY.ldset.conset.mesh EST Element strain energy dataset. These must contain
strain energy densities at element integration points.

NODAL.COORDINATE...mesh NCT Nodal coordinate datasets.

10 Error Estimation Processors 10.4 Processor ERR4

Revised 12/1/97 COMET-AR User’s Manual 10.4-3

10.4.4.2 Output Datasets

A summary of output datasets and attributes created by Processor ERR4 is given in Table 10.4-2.

Table 10.4-2 Processor ERR4 Output Datasets

Dataset Class Contents

EltNam.ERROR.ldset.conset.mesh* EET Element error datasets. The following element attributes are created.

Attribute Description

AbsErr Absolute element error Ee

Energy Element strain-energy density:

where

EngGrd Element strain-energy density gradient:

where Ae is the element area.

ErrRat Element error ratio:

RelErr Relative element error:

where is the total finite element strain

energy integrated over all elements, and Nel is
the total number of elements.

*—created dataset

Ue ÛFEdΩ
Ωe

∫=

ÛFE 1
2
---σ ε•=

∇ Û
Ûmax Ûmin–

Ae

------------------------------=

Ẽe
Ee Ae⁄

max

e
Ee Ae⁄())

--=

Êe
Ee

Utot
FE Nel⁄

---------------------------=

Utot
FE

10.4 Processor ERR4 10 Error Estimation Processors

10.4-4 COMET-AR User’s Manual Revised 12/1/97

10.4.5 Limitations

10.4.5.1 Effectivity

The error estimates computed by processor ERR4 tend to underestimate rather than overestimate
the actual error.

10.4.5.2 Change of Sign Errors

Processor ERR4 employs strain energy density for measuring the errors. The square root of the
strain energy is equivalent to the weighted norm of the stress tensor and as such is insensitive to
sign changes in any stress component. As a result, ERR4 will produce significant spurious errors
in areas of the model in which a change in sign of a dominant stress component occurs.

10.4.5.3 Partitioning Due to Change in Shell Thicknesses

Processor ERR4 smooths the square root of the strain energy density (a scalar quantity) and thus
does not require any special partitioning for structures in which the physical strain energy fields
are continuous. For true shell elements, the ESi processors computes the strain energy densities
based on resultant stresses and thus the strain energy densities are per unit element area (e.g.,
contain thickness information).

For structures containing thickness discontinuities, or any physical strain energy discontinuities,
the model should be partitioned into groups of element such that ERR4 will preserve the
discontinuity in the smoothed field solution. This will prevent generation of spurious errors along
the physical discontinuities.

10.4.6 Error Messages

ERR4 contains extensive error checking. Most of the error messages printed by ERR4 are self-
explanatory messages and aim to help the user correct his mistakes. Some of the errors may occur
at code levels below ERR4 (e.g., HDB, DB, GAL, etc.), and ERR4 describes those errors to the
best of its ability.

The following summarizes the error messages related to user interface as produced by ERR4.

10 Error Estimation Processors 10.4 Processor ERR4

Revised 12/1/97 COMET-AR User’s Manual 10.4-5

10.4.7 Examples and Usage Guidelines

10.4.7.1 Example 1: Basic Operation

In this example, all default options are chosen except for the mesh number.

10.4.7.2 Example 2: Two Element Groups Partition

Index Error Message Cause Recommended User Action

1 Unknown set variable
name encountered

ERR4 user interface cover
encountered an unrecog-
nized SET variable name.

Check spelling of variable name in CLIP procedure.

2 Unknown command
encountered.

ERR4 user interface cover
encountered an unrecog-
nized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened.

ERR4 could not open a
certain dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to ERR4 execution.
2. Verify the dataset name using HDBprt processor.
3. Make sure that all input datasets are present in the
database file.

4 Dataset name could
not be closed.

ERR4 could not close a
certain dataset.

1. Check the execution log file; look for errors previ-
ously produced by processor ERR4.
2. Verify that ERR4 is the only processor accessing
database file (is ARGx used in the same directory?).

5 Dataset name access
problem encountered.

ERR4 could not get/put an
attribute from the dataset
name table.

Verify that the dataset contains attributes required by
ERR4 (e.g., EST contains nontrivial data at integra-
tion point).

RUN ERR4

SET MESH = 1

ESTIMATE ERRORS

STOP

RUN ERR4

SET MESH = 1

SET ELEMENT_GROUP = 1

ESTIMATE ERRORS

SET ELEMENT_GROUP = 2

ESTIMATE ERRORS

STOP

10.4 Processor ERR4 10 Error Estimation Processors

10.4-6 COMET-AR User’s Manual Revised 12/1/97

In this example, all default options are chosen except for the mesh number and element group. For
each group, a separate “go” command is issued to ensure that no smoothing will take place along
the boundaries between the first and second groups of elements.

10.4.8 References

[1] Stanley, G., Hurlbut, B., Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR:
Adaptive Refinement (AR) Manual, 1991.

10 Error Estimation Processors 10.5 Processor ERR6

Revised 12/1/97 COMET-AR User’s Manual 10.5-1

10.5 Processor ERR6 (Error Estimates: Stress Smoothing)

10.5.1 General Description

Processor ERR6 computes element error estimates employing the Zienkiewicz-Zhu [1] global
smoothing algorithm to obtain a continuous strain field over the problem domain. The smoothed
strain field is then compared to the original finite-element approximation to yield an estimate of
the element displacement error in terms of the strain energy norm.

The smoothing algorithm used by ERR6 is based on a least-square fit of a Co strain field to the
finite element solution using the finite element displacement solution space for the smoothed
strain field. The main difference between processors ERR2 and ERR6 is in the definition of the
error norm. ERR6 formulation is based on the theorem “the energy error is equal to the error in
energies,” namely:

where

The definition of the element error estimate Ee computed by ERR6 is as follows.

E2 εExact εFE–()TC

Ω
∫ εExact εFE–()dΩ UExact UFE–= =

U εTC

Ω
∫ εdΩ=

Ee Ue
SM Ue

FE–=

Ue
SM εSM()TC

Ωe

∫ εSMdΩ=

εSM Naεa
SM

a 1=

Nen

∑=

εa
SM

NaεFE

Ω
∫ dΩ

Na
2dΩ

Ω
∫

-----------------------------=

10.5 Processor ERR6 10 Error Estimation Processors

10.5-2 COMET-AR User’s Manual Revised 12/1/97

ERR6 currently works in conjunction with any 2D (plate/shell) element implemented via the
generic element processor (i.e., ESi processors), provided that the new AR-prototype version of
the ESi shell is employed and that the element interpolation and extrapolation kernel routines
(ES0IP and ES0XP) have been implemented for the particular element processor. The output of
ERR6 is an element error table (EET) data object, which may be used for adaptive refinement
(AR), or just as an assessment of element errors for a given mesh.

Processor ERR6 is normally invoked indirectly via procedure EST_ERR_1, which is called auto-
matically by adaptive analysis procedures such as AR_CONTROL.

10.5.2 Command Summary

See Section 10.2 for the summary of the generic commands common to all error estimation
processors.

10.5.3 Command Definitions

See Section 10.2 for the definition of the generic commands common to all error estimation
processors.

10.5.4 Database Input/Output

10.5.4.1 Input Datasets

A summary of input datasets required by Processor ERR6 is given in Table 10.5-1.

Table 10.5-1 Processor ERR6 Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset.

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets.

EltNam.DEFINITION...mesh EDT Element definition datasets.

EltNam.FABRICATION...mesh EFT Element fabrication datasets.

EltNam.STRAIN.ldset.conset.mesh
EltNam.STRESS.ldset.conset.mesh

EST Element strain and stress datasets. Must contain data
evaluated at element integration points.

NODAL.COORDINATE...mesh NCT Nodal coordinate datasets.

10 Error Estimation Processors 10.5 Processor ERR6

Revised 12/1/97 COMET-AR User’s Manual 10.5-3

10.5.4.2 Output Datasets

A summary of output datasets and attributes created by Processor ERR6 is given in Table 10.5-2.

10.5.5 Limitations

10.5.5.1 Partitioning Requirement

As with most smoothing-based error estimators, it is necessary to partition the elements so that
physical discontinuities (e.g., thickness jumps, point forces, or intersections in built-up structures)

Table 10.5-2 Processor ERR6 Output Datasets

Dataset/Attribute Class Contents

EltNam.ERROR.ldset.conset.mesh* EET Element error datasets. These element attributes are created.

Attribute Description

AbsErr Absolute element error Ee

Energy Element strain-energy density:

where ρFE = σ:ε

EngGrd Element strain-energy density gradient:

where Ae is the element area.

ErrRat Element error ratio:

RelErr Relative element error:

where is the total finite element strain

energy integrated over all elements, and Nel
is the total number of elements.

*—created dataset

Ue ÛFEdΩ
Ωe

∫=

∇ Û
Ûmax Ûmin–

Ae

------------------------------=

Ẽe
Ee Ae⁄

max

e
Ee Ae⁄()

--------------------------------------=

Êe
Ee

Utot
FE Nel⁄

---------------------------=

Utot
FE

10.5 Processor ERR6 10 Error Estimation Processors

10.5-4 COMET-AR User’s Manual Revised 12/1/97

occur only on the boundary of element partitions. Otherwise excessive refinement in the vicinity
of the physical discontinuity may result.

10.5.5.2 Common Strain Coordinate System

ERR2 interpolates, extrapolates, and adds element strain tensor contributions at each nodal point.
These strain tensors are assumed to be defined in a consistent reference coordinate system such
that these type of operations are applicable. The user must verify that the element processors, ESi,
are instructed to calculate strain and stress results in a common coordinate system for all elements
processed by ERR2 in a single ESTIMATE_ERRORS command.

10.5.6 Error Messages

ERR6 contains extensive checking. Most of the error messages printed by ERR6 are self-
explanatory messages and aim to help the user correct mistakes. Some of the errors may occur at
code levels below ERR6 (e.g., HDB, DB, GAL, etc.) and ERR2 describes those errors to the best
of its ability. The following summarizes the error messages related to user interface problems as
produced by ERR6:

Index Error Message Cause Recommended User Action

1 Unknown set
variable name
encountered

ERR6 user interface cover encoun-
tered an unrecognized SET variable
name.

Check spelling of variable name in CLIP proce-
dure.

2 Unknown com-
mand encoun-
tered.

ERR6 user interface cover encoun-
tered an unrecognized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset
name could not
be opened.

ERR6 could not open a certain
dataset.

1. Check the execution log file; look for error
produced by processors prior to ERR6 execution.
2. Try to verify the particular Dataset using the
HDBprt processor.
3. Make sure that all input datasets are present in
the database file.

4 Dataset name
could not be
closed.

ERR6 could not close a certain
dataset.

1. Check the execution log file; look for errors
previously produced by processor ERR6.
2. Verify that ERR6 is the only processor access-
ing the database file (is ARGx being used in the
same directory?).

5 Dataset name
access problem
encountered.

ERR6 could not get/put an attribute
from the dataset name table.

Verify that dataset contains attributes required by
ERR6 (e.g., EST contains nontrivial data at inte-
gration point).

10 Error Estimation Processors 10.5 Processor ERR6

Revised 12/1/97 COMET-AR User’s Manual 10.5-5

10.5.7 Examples and Usage Guidelines

10.5.7.1 Example 1: Basic Operation

In this example, all default options are chosen except for the mesh number.

10.5.7.2 Example 2: Two Element Groups Partition

In this example, all default options are chosen except for the mesh number and element group. For
each group, a separate “go” command is issued to ensure that no smoothing will take place along
the boundaries between the first and second groups of elements.

10.5.8 References

[1] Zienkiewicz, O. C., and Zhu, J. Z., “A Simple Error Estimator For Adaptive Procedure for
Practical Engineering Analysis,” International Journal of Numerical Engineering,
Vol. 24, pp. 337-357, 1987.

RUN ERR6

SET MESH = 1

ESTIMATE ERRORS

STOP

RUN ERR6

SET MESH = 1

SET ELEMENT_GROUP = 1

ESTIMATE ERRORS

SET ELEMENT_GROUP = 2

ESTIMATE ERRORS

STOP

10.5 Processor ERR6 10 Error Estimation Processors

10.5-6 COMET-AR User’s Manual Revised 12/1/97

10 Error Estimation Processors 10.6 Processor ERRa

Revised 12/1/97 COMET-AR User’s Manual 10.6-1

10.6 Processor ERRa (Error Accumulator)

10.6.1 General Description

Processor ERRa is used to compute total errors in cases when smoothing-based error estimators
(e.g., ERR2, ERR4, and ERR6) force the user to employ partitioning in estimating element errors.

When model partitioning is used, each invocation of an ERRi processor computes the errors
(including global errors) only for user-specified elements (see Section 10.2 for user commands for
partitioning the model). The main function of ERRa is to accumulate intermediate values and
compute the total model errors, total strain energy, relative element error, and element errors
ratios based on all elements data.

Processor ERRa is normally invoked indirectly via procedure EST_ERR_1, called automatically
by adaptive analysis procedures such as AR_CONTROL.

10.6.2 Command Summary

Processors ERRa follow standard COMET-AR command interface protocol. A summary of
ERRa commands is given in Table 10.6-1.

10.6.3 Command Definitions

10.6.3.1 ACCUMULATE Command

This is the “go” command for processor ERRa. It causes ERRa to accumulate element errors for
all elements in a specified mesh, and to output them to the element error table (EET) dataset
EltNam.ERROR.ldset.conset.mesh (EltNam is the element name, ldset is the load set number,
conset is the constraint set number, and mesh is the mesh number).

Table 10.6-1 Processor ERRa Command Summary

Command Name Function Default

SET CONSTRAINT_SET Specifies constraint-set number for error accumulation 1

SET LDI Specifies logical device index of computational database 1

SET LOAD_SET Specifies load-set number for error accumulation 1

SET MESH Specifies mesh number for error accumulation 0

SET STEP Specifies load/time-step number for error accumulation 0

ACCUMULATE Accumulate error estimates; store in database

10.6 Processor ERRa 10 Error Estimation Processors

10.6-2 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

10.6.3.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets (e.g., STRESS, STRAIN, and STRAIN_ENERGY).
Relevant only for linear static analysis.

Command syntax:

where

10.6.3.3 SET LDI Command

This command defines the logical device index for the central database.

Command syntax:

where

10.6.3.4 SET LOAD_SET Command

This command defines the load set number associated with the element solution data for which
error estimates are to be computed. This number should appear as the first cycle number in names
of all element solution datasets (e.g., STRESS, STRAIN, and STRAIN_ENERGY). Relevant
only for linear static analysis.

Command syntax:

ACCUMULATE

SET CONSTRAINT_SET = constraint_set

Parameter Description

constraint_set Constraint set number (default value: 1)

SET LDI = ldi

Parameter Description

ldi Logical device index (default value: 1)

SET LOAD_SET = load_set

10 Error Estimation Processors 10.6 Processor ERRa

Revised 12/1/97 COMET-AR User’s Manual 10.6-3

where

10.6.3.5 SET MESH Command

This command defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in
names of all datasets (e.g., EltNam.ERROR.ldset.conset.mesh).

Command syntax:

where

10.6.3.6 SET STEP Command

This command defines the solution step number associated with the element solution data for
which error estimates are to be computed. This number should appear as the first cycle number in
names of all element solution datasets (e.g., STRESS, STRAIN, and STRAIN_ENERGY).
Relevant only for linear static analysis.

Command syntax:

where

10.6.4 Database Input/Output

10.6.4.1 Input Datasets

A summary of input datasets required by Processor ERRa is given in Table 10.6-2.

Parameter Description

load_set Load set number (default value: 1)

SET MESH = mesh

Parameter Description

mesh Mesh number to be processed (default value: 0)

SET STEP = step

Parameter Description

step Solution step number (default value: 0—implies
linear analysis)

10.6 Processor ERRa 10 Error Estimation Processors

10.6-4 COMET-AR User’s Manual Revised 12/1/97

10.6.4.2 Output Datasets

A summary of output datasets/attributes created by Processor ERRa is given in Table 10.6-3.

Table 10.6-2 Processor ERRa Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

EltNam.DEFINITION...mesh EDT Element definition datasets

EltNam.ERROR.ldset.conset.mesh EET Element error datasets. The following element attributes are created

Table 10.6-3 Processor ERRa Output Datasets

Dataset/Attribute Class Contents

EltNam.ERROR.ldset.conset.mesh EET Element error datasets. The following element attributes are created.

Attribute Description

AbsErr Absolute element error Ee

Energy Element strain-energy density:

where ρFE = σ:ε

EngGrd Element strain-energy density gradient:

where Ae is the element area.

ErrRat Element error ratio:

RelErr Relative element error:

where is the total finite element strain

energy integrated over all elements, and Nel is
the total number of elements.

Ue ρFEdΩ
Ωe

∫=

∇ρ
ρmax ρmin–

Ae

----------------------------=

Ẽe
Ee Ae⁄

max

e
Ee Ae⁄()

--------------------------------------=

Êe
Ee

Utot
FE Nel⁄

---------------------------=

Utot
FE

10 Error Estimation Processors 10.6 Processor ERRa

Revised 12/1/97 COMET-AR User’s Manual 10.6-5

10.6.5 Limitations

There are no serious limitations associated with this processor.

10.6.6 Error Messages

ERRa contains extensive error checking. Most of the error messages printed by ERRa are self-
explanatory and aim to help the user correct mistakes. Some of the errors may occur at code levels
below ERRa (e.g., HDB, DB, GAL, etc.), and ERRa describes those errors to the best of its
ability. The following summarizes error messages related to user interface problems as produced
by ERRa.

10.6.7 Examples and Usage Guidelines

10.6.7.1 Example 1: Basic Operation

Index Error Message Cause Recommended User Action

1 Unknown set variable
name encountered

ERRa user interface cover
encountered an unrecog-
nized SET variable name.

Check spelling of variable name in CLIP proce-
dure.

2 Unknown command
encountered.

ERRa user interface cover
encountered an unrecog-
nized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened.

ERRa could not open a cer-
tain dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to ERRa execution.
2. Try to verify the particular dataset using the
HDBprt processor.
3. Make sure that all input datasets are present in
the database file.

4 Dataset name could
not be closed.

ERRa could not close a cer-
tain dataset.

1. Check the execution log file; look for errors
previously produced by processor ERRa.
2. Verify that ERRa is the only processor access-
ing the database file (is ARGx being used in the
same directory?).

5 Dataset name access
problem encountered.

ERRa could not get/put an
attribute from the dataset
name table.

Verify that the particular dataset contain attributes
required by ERRa (e.g., EST contains nontrivial
data at integration point).

RUN ERRa

SET MESH = 1

ACCUMULATE

STOP

10.6 Processor ERRa 10 Error Estimation Processors

10.6-6 COMET-AR User’s Manual Revised 12/1/97

In this example, all default options are chosen except for the mesh number.

10.6.8 References

None.

10 Error Estimation Processors 10.7 Processor ERRSM

Revised 12/1/97 COMET-AR User’s Manual 10.7-1

10.7 Processor ERRSM (Error Estimates: Smoothing-Based)

10.7.1 General Description

Processor ERRSM computes element error estimates employing smoothed stresses, strains, or
strain energy densities (and possibly their gradients) which are assumed to have been computed in
advance by a separate smoothing processor (See Chapter 9). The smoothed field is compared to
the original finite element approximation of the field to yield an estimate of the element
displacement error expressed in terms of the strain energy norm.

The definition of the absolute element error estimate Ee computed by ERRSM is as follows. For
ERROR_MEASURE = STRAIN:

or, for ERROR_MEASURE = STRESS:

or, for ERROR_MEASURE = STRAIN_ENERGY:

ERRSM currently works in conjunction with a standard smoothing processor, and its limitations
depend largely on the limitations of the smoothing processor (e.g., processor SMT). The output of
ERRSM consists of several attributes in the element error table (EET) data object (dataset name
EltNam.ERROR.*), which may be used for adaptive refinement, or just as an assessment of
element errors for a given mesh.

Processor ERRSM is normally invoked indirectly via procedure EST_ERR_SM, which is called
automatically by the adaptive analysis control procedure AR_CONTROL.

10.7.2 Command Summary

See Section 10.2 for the summary of the generic commands common to all error estimation
processors. Two additional commands are required by processor ERRSM, as described in
Table 10.7-1.

Ee
1
2
-- εSM εFE–()TC

Ωe

∫ εSM εFE–()dΩ=

Ee
1
2
-- σSM σFE–()TC

Ωe

∫ σSM σFE–()dΩ=

Ee ÛSM ÛFE–

Ωe

∫ dΩ=

10.7 Processor ERRSM 10 Error Estimation Processors

10.7-2 COMET-AR User’s Manual Revised 12/1/97

10.7.3 Command Definitions

See Section 10.2 for the definition of the generic commands common to all error estimation
processors.

10.7.3.1 SET SMOOTH_LOCATIONS Command

This command indicates where the smoothed element strains, stresses, or strain energy densities
have been evaluated. Unsmoothed quantities are always assumed to be stored at element
integration points.

Command syntax:

where

10.7.3.2 SET SMOOTH_GRADIENTS Command

This command indicates whether or not smoothed gradients are to be employed in the error
estimates.

Command syntax:

Table 10.7-1 Special Processor ERRSM Commands

Command Name Function Default

SET SMOOTH_LOCATIONS Specifies where smoothed element quantities are stored:
at integration points or nodes.

INTEG_PTS

SET SMOOTH_GRADIENTS Indicates whether smoothed gradients are to be used to
compute error estimates (<true> or <false>).

<false>

SET SMOOTH_LOCATIONS = { INTEG_PTS | NODES }

Parameter Description

INTEG_PTS Smoothed quantities are stored at element integration points

NODES Smoothed quantities are stored at element nodes (and must
be interpolated to integration points in order to compare
with unsmoothed quantities.

SET SMOOTH_GRADIENTS = { <true> | <false> }

10 Error Estimation Processors 10.7 Processor ERRSM

Revised 12/1/97 COMET-AR User’s Manual 10.7-3

where

10.7.4 Database Input/Output

10.7.4.1 Input Datasets

A summary of input datasets required by Processor ERRSM is given below in Table 10.7-2.

Parameter Description

<true> Gradients of stress, strain, or strain energy density
will be employed in the element error estimates.

<false> Gradients will be ignored (default).

Table 10.7-2 Processor ERRSM Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

EltNam.INTERPOLATION...mesh EIT Element interpolation datasets

EltNam.DEFINITION...mesh EDT Element definition datasets

EltNam.FABRICATION...mesh EFT Element fabrication datasets

EltNam.STRAIN.id1.id2.mesh; or:
EltNam.STRESS.id1.id2.mesh; or:
EltNam.STRAIN_ENERGY.id1.id2.mesh

EST Element strain, stress, or strain energy datasets,
depending on the SET ERROR_MEASURE com-
mand. The values stored are expected to be element
integration points in a globally meaningful coordinate
frame.

EltNam.STRAIN_SM.id1.id2.mesh; or:
EltNam.STRESSSM.id1.id2.mesh; or:
EltNam.STRAIN_ENERGY_SM.id1.id2.mesh

EST Smoothed element strain, stress, or strain energy
datasets, depending on the error measure selected by
the SET ERROR_MEASURE command. The values
stored are expected to be either at element integration
points or element nodes, depending on the SET
SMOOTH_LOCATIONS command, in the same
coordinate frame as the unsmoothed quantities.

NODAL.COORDINATE...mesh NCT Nodal coordinate dataset

10.7 Processor ERRSM 10 Error Estimation Processors

10.7-4 COMET-AR User’s Manual Revised 12/1/97

10.7.4.2 Output Datasets

A summary of datasets/attributes output by Processor ERRSM is given in Table 10.7-3.

Table 10.7-3 Processor ERRSM Output Datasets

Dataset Class Contents

EltNam.ERROR.id1.id2.mesh* EET Element error datasets. The following element attributes are created:

Attribute Description

AbsErr
(Ee)

Absolute element error Ee .
For ERROR_MEASURE=STRAIN:

or, for ERROR_MEASURE=STRESS:

or, for ERROR_MEASURE=STRAIN_ENERGY:

Energy
(Ue

FE)
Element strain-energy:

where FE = σtε/2.

EngGrd
(Ue

SM)
Smoothed element strain-energy:

where SM = (εSM)tCεSM/2.

*—created dataset

1
2
-- εSM εFE–()TC

Ωe

∫ εSM εFE–()dΩ

1
2
-- σSM σFE–()TC

Ωe

∫ σSM σFE–()dΩ

ÛSM ÛFE–

Ωe

∫ dΩ

Ue
FE Û()FEdΩ

Ωe

∫=

Û

Ue
SM Û()SMdΩ

Ωe

∫=

Û

10 Error Estimation Processors 10.7 Processor ERRSM

Revised 12/1/97 COMET-AR User’s Manual 10.7-5

10.7.5 Limitations

10.7.5.1 Partitioning Requirement

As with most smoothing-based error estimators, it is necessary to partition the elements so that
physical discontinuities (e.g., thickness jumps, point forces, or intersections in built-up structures)
occur only on the boundary of element partitions. Otherwise, excessive refinement in the vicinity
of the physical discontinuity may result.

10.7.5.2 Common Strain Coordinate System

ERRSM subtracts and integrates element basic and smoothed strain, stress, and/or strain-energy
density quantities evaluated at element integration points or nodes. For the strain and stress
options (i.e., error measures) all strains or stresses must be expressed in a consistent coordinate
system, which must be identical for smoothed and basic values. The user can assure this by
choosing a meaningful stress direction option (STR_DIRECTION) when invoking the adaptive
analysis control procedure.

10.7.6 Error Messages

ERRSM contains extensive checking. Most of the error messages printed by ERRSM are self-
explanatory messages and aim to help the user correct mistakes. Some errors may occur at code
levels below ERRSM (e.g., HDB, DB, GAL, etc.); ERRSM describes them to the best of its
ability.

The following summarizes error messages related to user interface problems produced by
ERRSM.

Index Error Message Cause Recommended User Action

1 Unknown set variable
name encountered

ERRSM user interface
cover encountered an
unrecognized SET variable
name.

Check spelling of variable name in CLIP procedure.

2 Unknown command
encountered.

ERRSM user interface
cover encountered an
unrecognized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened.

ERRSM could not open a
certain dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to ERRSM execution.
2. Try to verify the dataset name using the HDBprt
processor.
3. Verify all input datasets are in database file.

4 Dataset name could
not be closed.

ERRSM could not close a
certain Dataset.

1. Check the execution log file for errors previously
produced by processor ERRSM.
2. Verify ERRSM is the only processor accessing the
database file (is ARGx used in the same directory?).

10.7 Processor ERRSM 10 Error Estimation Processors

10.7-6 COMET-AR User’s Manual Revised 12/1/97

10.7.7 Examples and Usage Guidelines

10.7.7.1 Example 1: Basic Operation

In this example, all default options are chosen except for the mesh number.

10.7.7.2 Example 2: Two Element Groups Partition

In this example, all default options are chosen except for the mesh number and element group. For
each group, a separate “go” command is issued to ensure that no smoothing will take place along
the boundaries between the first and second groups of elements.

10.7.8 References

[1] Zienkiewicz, O. C., and Zhu, J. Z., “A Simple Error Estimator For Adaptive Procedure for
Practical Engineering Analysis,” International Journal of Numerical Engineering, Vol. 24,
pp. 337-357, 1987.

5 Dataset name access
problem encountered.

ERRSM could not get/put
an attribute from dataset
name table.

Verify dataset contains attributes required by
ERRSM (e.g., EST contains nontrivial data at inte-
gration point).

RUN ERRSM

SET MESH = 1

ESTIMATE ERRORS

STOP

RUN ERRSM

SET MESH = 1

SET ELEMENT_GROUP = 1

ESTIMATE ERRORS

SET ELEMENT_GROUP = 2

ESTIMATE ERRORS

STOP

Index Error Message Cause Recommended User Action

11 Mesh Refinement Processors 11.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 11.1-1

11 Mesh Refinement Processors

11.1 Overview

In this chapter, COMET-AR mesh refinement processors, typically used in the context of
adaptive refinement (AR), are described. The convention is to call these processors REFi, and
allow individual researchers to develop their own processors. Differences in REFi processor
commands can be covered by writing tailor-made versions of the mesh refinement procedure
REF_MESH_1 (see Section 5.8). Some conventions, and perhaps a template, have been
established by processor REF1, which is the first AR-compatible mesh refinement processor to be
developed for COMET-AR.

The command language and database requirements for the above adaptive mesh refinement
processors conform to common conventions. This is to facilitate their use by high-level solution
procedures such as AR_CONTROL in the context of adaptive refinement.

Table 11.1-1 Outline of Chapter 11: Mesh Refinement Processors

Section Processor Function

11.2 REF1 Mesh Refinement Processor; contains various forms of adaptive h
and uniform p refinement schemes.

11.1 Overview 11 Mesh Refinement Processors

11.1-2 COMET-AR User’s Manual Revised 12/1/97

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-1

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

11.2.1 General Description

Processor REF1 performs one stage of adaptive mesh refinement (and/or unrefinement) based on
previously computed element error estimates (e.g., generated by one of the ERRi processors) for a
given mesh. Presently, the mesh refinement options implemented in REF1 include transition-
based h-refinement (or ht-refinement), cons traint-based h-refinement (or hc-refinement),
superposition-based h-refinement (or hs-refinement) and/or uniform p-refinement employing
Lagrange/ANS-type quadrilateral plate/shell elements. The expected database input for REF1 is a
complete set of model definition datasets, plus an element error table (EET) dataset containing
element error estimates for a particular mesh, m. As output, REF1 creates an entirely new set of
model definition datasets for mesh m+1.

REF1 provides two solid-model interface (SMI) options: discrete and user-defined. With the
discrete SMI option, REF1 views the initial finite element model as the exact model for geometry,
materials, loads, and boundary conditions. With the user-defined SMI option, REF1 calls user-
written subroutines to obtain this data at newly created nodes and element integration points (see
Chapter 16, Solid Model Interface).

Processor REF1 is typically invoked by a high-level AR control procedure, such as
AR_CONTROL (via procedure REF_MESH_1), in an adaptive refinement iteration loop.

11.2.2 REF1 — Refinement Techniques

The mesh refinement processor REF1 includes a variety of mesh refinement techniques including
several mesh partition techniques (ht-refinement) and polynomial enrichment technique (p-
refinement). Each of the available refinement techniques will be briefly described in the following
subsections.

11.2.2.1 Transition-Based Refinement Techniques—ht, htt, htq-refinement

Transition-based h-refinement techniques employ special refinement patterns to transition from
refined mesh zones to neighboring, unrefined zones. REF1 includes three methods of
transitioning from refined to unrefined zones:

ht ⇒ Transition zones employ quadrilateral-only patterns
(for an all quadrilateral element mesh);

htt ⇒ Transition zones employ triangular-only patterns
(for an all triangular element mesh);

htq ⇒ Transition zones employ mixed quadrilateral and
collapsed quadrilateral triangular elements patterns.

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-2 COMET-AR User’s Manual Revised 12/1/97

These three transition techniques and the patterns they produce are shown in Figure 11.2-1.

Figure 11.2-1 Transition-Based Refinement Techniques

11.2.2.2 Constraint-Based Refinement Technique—hc-refinement

Constraint-based h-refinement techniques employ a special displacement field constrained to
ensure compatibility (or continuity) of the displacement field across boundaries between refined
mesh zones and neighboring, unrefined zones.

REF1 employs standard Lagrange constraints for enforcing the compatibility of the displacement
field as shown in Figure 11.2-2.

ht

htt

htq

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-3

Figure 11.2-2 Constraint-Based Refinement Technique

11.2.2.3 Superposition-Based Refinement Technique—hs-refinement

Superposition-based h-refinement techniques add a second refined mesh on top of an existing
mesh. New degrees of freedom associated with new nodes in the superimposed mesh are treated
as relative (or incremental) degrees of freedom. Compatibility is maintained in this method by
simply suppressing the relative displacements along the interface boundaries between the
underlying mesh and the superposed mesh as shown in Figure 11.2- 3.

Figure 11.2-3 Superposition-Based Refinement Technique

hc

- constrained node

ΩsΓs

Ω0

Ω sΩsΓs

Underlying Mesh

Superposed Mesh:

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-4 COMET-AR User’s Manual Revised 12/1/97

11.2.2.4 Uniform Polynomial Enrichment Refinement Technique—pu-refinement

Uniform polynomial enrichment pu-refinement increases the polynomial order of all elements in
the mesh as shown in Figure 11.2-4. This refinement option is only applicable in conjunction with
the variable order element processors ESip.

Figure 11.2-4 Uniform Polynomial Enrichment Refinement Technique

11.2.3 REF1—Multi-Level and Multi-Technique Refinement Control

The mesh refinement processor REF1 is capable of multi-level refinement and unrefinement
(within a single AR iteration) and includes a preliminary implementation of multi-technique
refinement (e.g., using both h-refinement and p-refinement in a single iteration).

User control of multi-level refinement is illustrated in Figure 11.2-5. The user can specify
Num_Ref_Tols tolerance values and corresponding Ref_Levels for controlling the refinement
based on the element Refine_Indicator being used (e.g., MAX or AVE options). If REF1
encounters an element with an error measure in the range [Ref_Tolsi, Ref_Tolsi+1] then
Ref_Levelsi levels of refinements will be used for that element. User control for unrefinement is
similar to the refinement control described above.

Effective use of this refinement control algorithm requires the use of more refinement levels for
elements with high errors than for elements with low errors, and similarly elements with very low
errors should be allowed to unrefine more levels than elements with moderately low errors.

In addition to the multi-level refinement control, REF1 provides the user with an option to mix h-
and p-refinement within a single refinement iteration loop. Figure 11.2-6 illustrates the control
arguments used for this purpose. The user can specify control points on the element energy
gradient axis: the p_gradient and the h_gradient.

The idea here is to take advantage of the special characteristics of h- and p-refinement. p-
refinement is extremely effective in capturing monotonic changes in the solution field and the
algorithm employs pure p-refinement in the low range of element energy gradients. Rapid
changes in the solution field are more adequately captured by the h-refinement method and pure

Pu

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-5

h-refinement is employed in the mid-range values. Finally, for the upper range of element energy
gradients, both methods are employed simultaneously for refinement.

Figure 11.2-5 Multi-Level Refinement—User Control

Figure 11.2-6 Multiple Methods Refinement—User Control

11.2.4 Command Summary

Processors REF1 follows standard COMET-AR command interface protocol. A summary of
REF1 commands is given in Table 11.2-1.

A general p-refinement technique is not yet implemented in REF1
(only the uniform pu-refinement capability is implemented). DO NOT
USE THE MULTI-METHOD CONTROL OPTION YET!

Element
Error Measure

0

R
ef

_T
ol

1

R
ef

_T
ol

2

U
nr

ef
_T

ol
1

U
nr

ef
_T

ol
2

Refine Ref_Levels(1) levels

Refine Ref_Levels(2) levels

Refine
Ref_Levels(N) levels

Unrefine Unref_Levels(1) levels

Unrefine Unref_Levels(2) levels

Unrefine
Unref_Levels(N) levels

R
ef

_T
ol

N

U
nr

ef
_T

ol
N

Element
Energy Gradient0 p_gradient h_gradient

p-refinement h-refinement hp-refinement

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-6 COMET-AR User’s Manual Revised 12/1/97

11.2.5 Command Definitions

11.2.5.1 REFINE_MESH Command

This is the “go” command for processor REF1. It causes REF1 to set the element’s refinement
indicators based on element errors previously computed by an ERRi processor, and to adaptively
refine the reference mesh, m, and generate a complete database for the next, adaptively refined
mesh, m + 1.

Table 11.2-1 Processor REF1 Command Summary

Command Name Function Default Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET H_GRADIENT Relative energy gradient mark above which both h and p-
refinement will occur (for mixed h/p-refinement options)

0.0

SET LDI Specifies logical device index of computational database 1

SET LOAD_SET Specifies load-set number 1

SET MAX_ASPECT_RATIO Distortion control parameters 0.0,0.0

SET MAX_h_LEVEL Maximum number of h-refinement levels allowed 10

SET MAX_p_LEVEL Maximum number of p-refinement levels allowed 5

SET MESH/NEW Specifies new (generated) mesh number for refinement 1

SET MESH/OLD Specifies old (reference) mesh number for refinement 0

SET NUM_REFINE_TOLS Number of refinement tolerances 2

SET NUM_UNREFINE_TOLS Number of unrefinement tolerances 0

SET P_GRADIENT Relative energy gradient mark below which only p-refinement
will occur (for mixed h/p-refinement options)

0.0

SET REFINE_DIRS Allowable refinement directions 1,2,3

SET REFINE_LEVELS Number of refinement levels for each refinement tolerance 1,2

SET REFINEMENT_INDICATOR Specifies error quantity to be used for setting refinement indi-
cators option

MAX

SET REFINEMENT_TECHNIQUE Specifies refinement estimation option ht

SET REFINE_TOLS Specifies refinement tolerances 0.90,0.95

SET STEP Specifies load/time-step number 0

SET UNREFINE_LEVELS Number of unrefinement levels for each unrefinement toler-
ance

0

SET UNREFINE_TOLS Specifies unrefinement tolerances 0.0

REFINE_MESH Refine the reference mesh

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-7

Command syntax:

11.2.5.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data in
both the reference and the refined meshes. This number should appear as the second cycle number
in names of all element and nodal datasets.

Command syntax:

where

11.2.5.3 SET H_GRADIENT Command

This command defines the h_gradient mark on the element energy gradient axis for multi-
technique refinement (see Section 11.2.3, Multi-Level and Multi-Technique Refinement Control).

Command syntax:

where

11.2.5.4 SET LDI Command

This command defines the logical device index for the computational database.

Command syntax:

REFINE_MESH

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET H_GRADIENT = h_gradient

Parameter Description

h_gradient h_gradient mark value (default value: 0.0)

SET LDI = ldi

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-8 COMET-AR User’s Manual Revised 12/1/97

where

11.2.5.5 SET LOAD_SET Command

This command defines the load set number associated with the element data in both the reference
and the refined meshes. This number should appear as the first cycle number in names of all
element load datasets.

Command syntax:

where

11.2.5.6 SET MAX_ASPECT_RATIO Command

This command defines a distortion control parameters for ht-refinement. This option allows the
user to maintain some distortion control of the refined mesh. REF1 is capable of checking two
levels of aspect-ratio measures.

• Parent. This is a pre-refinement check. Set this distortion control value to force an element
to refine uniformly if the element’s aspect-ratio is greater than this value. (The transition
refinement patterns always increases the aspect-ratio in the generated elements while uniform
refinement maintains the parent element aspect-ratio.)

• Child. This is a post-refinement check. Set this distortion control value to force an element
to refine uniformly if any of its child element’s aspect-ratio is greater than this value.

Command syntax:

where

Parameter Description

ldi Logical device index (default value: 1)

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MAX_ASPECT_RATIO = parent, child

Parameter Description

parent Pre-refinement max aspect-ratio for non-uniform refinement
(default value: 0.0—no distortion control for the parent element)

child Post-refinement max aspect-ratio for non-uniform refinement
(default value: 0.0—no distortion control for the child element)

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-9

11.2.5.7 SET MAX_H_LEVEL Command

This command defines the maximum allowable h-refinement level. REF1 will not allow any
element in the original mesh to refine more than MAX_H_LEVEL levels (i.e., no more than
MAX_H_LEVEL generations of an element may exist in the refined mesh).

Command syntax:

where

11.2.5.8 SET MAX_P_LEVEL Command

This command defines the maximum allowable p-refinement level. REF1 will not allow any
element in the original mesh to have shape function polynomials of order higher than
MAX_P_LEVEL order.

Command syntax:

where

11.2.5.9 SET MESH/NEW Command

This command defines the mesh number associated with the refined model data. REF1 will use
this number as the third cycle number in names of all datasets associated with the refined mesh.

Command syntax:

where

SET MAX_H_LEVEL = max_h_level

Parameter Description

max_h_level Maximum level of refinement in the refined mesh. (default value: 10)

SET MAX_P_LEVEL = max_p_level

Parameter Description

max_p_level Maximum element polynomial order in the refined mesh (default value: 5)

SET MESH/NEW = new_mesh

Parameter Description

new_mesh Refined mesh number (default value: old_mesh + 1)

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-10 COMET-AR User’s Manual Revised 12/1/97

11.2.5.10 SET MESH/OLD Command

This command defines the mesh number associated with the reference model and solution data.
REF1 will use this mesh as a reference mesh and will adaptively refine this mesh.

Command syntax:

where

11.2.5.11 SET NUM_REFINE_TOLS Command

This command defines the number of refinement tolerances to be used by REF1 in setting the
refinement indicators (see Section 11.2.3, Multi-Level and Multi-Technique Refinement Control).

Command syntax:

where

11.2.5.12 SET NUM_UNREFINE_TOLS Command

This command defines the number of unrefinement tolerances to be used by REF1 in setting the
unrefinement indicators (see Section 11.2.3, Multi-Level and Multi-Technique Refinement
Control).

Command syntax:

where

SET MESH/OLD = old_mesh

Parameter Description

old_mesh Reference mesh to be refined (default value: 0)

SET NUM_REFINE_TOLS = num_tols

Parameter Description

num_tols Number of tolerances used for controlling the refinement (default value: 2)

SET NUM_UNREFINE_TOLS = num_tols

Parameter Description

num_tols Number of tolerances used for controlling the unrefinement (default value: 0)

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-11

11.2.5.13 SET P_GRADIENT Command

This command defines the p_gradient mark on the element energy gradient axis for multi-method
refinement (see Section 11.2.3, Multi-Level and Multi-Technique Refinement Control).

Command syntax:

where

11.2.5.14 SET REFINE_DIRS Command

This command defines the allowable refinement directions in the element frame directions. In
certain cases the user may wish to use this option to restrict the refinement in a certain direction
for a more efficient solution.

Command syntax:

where

11.2.5.15 SET REFINE_LEVELS Command

This command defines the number of refinement levels to be used by REF1 for each refinement
tolerance mark (see Section 11.2.3, Multi-Level and Multi-Technique Refinement Control).

Command syntax:

where

SET P_GRADIENT = p_gradient

Parameter Description

p_gradient p_gradient mark value (default value: 0.0)

SET REFINE_DIRS = Dir1, Dir2,...

Parameter Description

Dir i The ith element direction flag (default value: 1,2,3)

SET REFINE_LEVELS = Level1, Level2,..., LevelNum_Ref_Tols

Parameter Description

Leveli Number of refinement levels to be used for refining an element whose error
measure is in the range [Toli, Toli+1] (default value: 1, 2)

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-12 COMET-AR User’s Manual Revised 12/1/97

11.2.5.16 SET REFINE_INDICATOR Command

This command defines the error measure indicator to be used for setting the element refinement
indicators.

Command syntax:

where

Values for the refine_indicator parameter are listed below:

11.2.5.17 SET REFINE_TECHNIQUE Command

This command defines the refinement technique for adaptively refining the reference mesh.

Command syntax:

where

Values for the refine_technique parameter are listed below:

SET REFINE_INDICATOR = indicator

Parameter Description

indicator Refinement indicator (default value: MAX)

Refinement
Indicator

Description

MAX Use the element absolute error scaled by the maximum element error as the error
measure for setting the element refinement indicators.

AVE Use the element absolute error scaled by the square root of the average element
strain energy as the error measure for setting the element refinement indicators.

SET REFINE_TECHNIQUE = refinement_technique

Parameter Description

refine_technique Refinement technique (default value: ht)

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-13

11.2.5.18 SET REFINE_TOLS Command

This command defines the values of the refinement tolerances to be used by REF1 in setting the
refinement indicators (see Section 11.2.3, Multi-Level and Multi-Technique Refinement Control).

Command syntax:

where

11.2.5.19 SET STEP Command

This command defines the solution step number associated with the element and nodal data in
both the reference and the refined meshes. This number should appear as the second cycle number
in names of all element and nodal datasets. Relevant only for nonlinear analysis.

Command syntax:

Refinement
Technique

Description

ht ht–refinement—transition-based refinement using quadrilateral only refinement patterns

htpu ht–refinement—transition-based refinement using quadrilateral only refinement patterns followed
by pu-refinement.

htt htt–refinement—transition-based refinement using triangular only refinement patterns

htq htq–refinement—transition-based refinement using mixed quadrilateral/triangular refinement pat-
terns

htqpu htq–refinement—transition-based refinement using mixed quadrilateral/triangular refinement pat-
terns followed by pu-refinement

pu pu–refinement—uniform polynomial enrichment refinement

hc hc–refinement—constraint-based refinement

hc3D Three dimensional hc–refinement—constraint-based refinement applicable only in conjunction with
the 3D continuum-based shell element processors (ES36& ES37)

hs hs–refinement—superposition-based refinement

SET REFINE_TOLS = Tol1, Tol2,..., TolNum_Ref_Tols

Parameter Description

Toli The ith tolerance value (default value: 0.90, 0.95)

SET STEP = step

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-14 COMET-AR User’s Manual Revised 12/1/97

where

11.2.5.20 SET UNREFINE_LEVELS Command

This command defines the number of unrefinement levels to be used by REF1 for each un-
refinement tolerance mark (see Section 11.2.3, Multi-Level and Multi-Technique Refinement
Control).

Command syntax:

where

11.2.5.21 SET UNREFINE_TOLS Command

This command defines the values of the refinement tolerances to be used by REF1 in setting the
unrefinement indicators (see Section 11.2.3, Multi-Level and Multi-Technique Refinement
Control).

Command syntax:

where

11.2.6 Database Input/Output

11.2.6.1 Input Datasets

A summary of input datasets required by Processor REF1 is given in Table 11.2-2.

Parameter Description

step Solution step number. (default value: 0)

SET UNREFINE_LEVELS = Level1, Level2,..., LevelNum_Unref_Tols

Parameter Description

Leveli Number of unrefinement levels to be used for unrefining an element whose error
measure is in the range [Toli+1, Toli] (default value: 0)

SET UNREFINE_TOLS = Tol1, Tol2,..., TolNum_Unref_Tols

Parameter Description

Toli The ith unrefinement tolerance value (default value: 0.00)

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-15

11.2.6.2 Output Datasets

A summary of output datasets created by Processor REF1 is given in Table 11.2-3.

Table 11.2-2 Processor REF1 Input Datasets

Dataset Class Contents

CSM.SUMMARY...old_mesh CSM Model summary dataset

NODAL.COORDINATE...old_mesh NCT Nodal coordinate dataset

NODAL.DOF..conset.old_mesh NDT Nodal DOF dataset

NODAL.TRANSFORMATION...old_mesh NTT Nodal transformation dataset

NODAL.SPEC_FORCE.ldset..old_mesh NVT Nodal specified force dataset

NODAL.SPEC_DISP.ldset..old_mesh NVT Nodal specified displacement dataset

EltNam.DEFINITION...old_mesh EDT Element definition dataset

EltNam.REFINEMENT...old_mesh ERT Element refinement dataset (this dataset is created by
REF1 for the initial mesh)

EltNam.INTERPOLATION...old_mesh EIT Element interpolation dataset

EltNam.ERROR.ldset.conset.old_mesh EET Element error dataset

EltNam.GEOMETRY...old_mesh EGT Element geometry (solid model links) dataset

EltNam.FABRICATION...old_mesh EFT Element fabrication dataset

EltNam.LOAD...old_mesh ELT Element loads datasets

LINE.REFINEMENT...old_mesh LRT Line refinement dataset (this dataset is created by REF1
for the initial mesh)

SURFACE.REFINEMENT...old_mesh SRT Surface refinement dataset (only in 3D-refinement—this
dataset is created by REF1 for the initial mesh)

Table 11.2-3 Processor REF1 Output Datasets

Dataset Class Contents

CSM.SUMMARY...new_mesh* CSM Model summary dataset

NODAL.COORDINATE...new_mesh* NCT Nodal coordinate dataset

NODAL.DOF..conset.new_mesh* NDT Nodal DOF dataset

NODAL.TRANSFORMATION...new_mesh* NTT Nodal transformation dataset

NODAL.SPEC_FORCE.ldset..new_mesh* NVT Nodal specified force dataset

NODAL.SPEC_DISP.ldset..new_mesh NVT Nodal specified displacement dataset

EltNam.DEFINITION...new_mesh* EDT Element definition dataset

EltNam.REFINEMENT...new_mesh* ERT Element refinement dataset

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-16 COMET-AR User’s Manual Revised 12/1/97

11.2.7 Limitations

11.2.7.1 Distortion Sensitivity

Transition-based refinement (ht-refinement) tends to generate distorted elements within the
transition zones between refined and coarse mesh areas. Some of the shell elements (such as the
ANS family) were found to be extremely sensitive to distortion and may cause a mesh locking
phenomena in transition zones. Distortion control should be enforced when using such elements
by judicious use of the SET MAX_ASPECT_RATIO command. This may alleviate some of the
problem by reducing the amount of distortion in the refined mesh.

11.2.7.2 Consistent Constraints

Constraint-based refinement (hc-refinement) requires a consistent set of displacement constraints
for proper enforcement of the compatibility condition across element boundaries. For hybrid shell
elements, such as the ANS family of elements, these constraints are not known and the automatic
constraint builder algorithm employed by REF1 will substitute simple Lagrange constraints
instead. This simple constraint equations may cause over constraining of nodes and may cause
some spurious local errors in the vicinity of such nodes. In practice it was found that higher order
hybrid elements, such as the 16ANS, were less sensitive to this type of approximate constraints
then their lower order counterparts.

11.2.7.3 p-refinement Limitations

REF1 includes only uniform p-refinement capabilities which are restricted for use only in
conjunction with the variable p-order element processors (e.g., ES1p and ES7p). The algorithm
for setting refinement indicators includes provisions for general p-refinement and even mixed hp-
refinement (see the SET H_GRADIENT and SET P_GRADIENT commands). Ignore these
capabilities in the current version of REF1 and do not attempt to use either the general p-
refinement or the mixed hp-refinement options.

EltNam.INTERPOLATION...new_mesh* EIT Element interpolation dataset

EltNam.GEOMETRY...new_mesh* EGT Element geometry (solid model links) dataset

EltNam.FABRICATION...new_mesh* EFT Element fabrication dataset

EltNam.LOAD...new_mesh* ELT Element loads datasets

LINE.REFINEMENT...new_mesh* LRT Line refinement dataset

SURFACE.REFINEMENT...new_mesh* SRT Surface refinement dataset (only in 3D refinement)

*—created dataset

Table 11.2-3 Processor REF1 Output Datasets (Continued)

Dataset Class Contents

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-17

11.2.7.4 3D Refinement Limitations

The capability for 3D-refinement in REF1 is limited to constraint-based (hc)-refinement, and may
be used only in conjunction with 3D elements based on variable-order, Lagrange-type brick
element topologies (i.e., elements that have IxJxK nodal patterns, where I, J, and K are the
number of nodes in each of the three natural coordinate directions).

11.2.8 Error Messages

REF1 contains extensive error checking. Most of the error messages printed by REF1 are self-
explanatory and aim to help correct mistakes. Some of the errors may occur at code levels below
REF1 (e.g., HDB, DB, GAL, etc.) and REF1 describes those errors to the best of its ability.

The following summarizes the error messages related to user interface problems as produced by
REF1.

Index Error Message Cause Recommended User Action

1 Unknown SET vari-
able name encountered
in REF1.

REF1 user interface cover
encountered an unrecog-
nized SET variable name.

Check spelling of variable name in CLIP proce-
dure.

2 Unknown command
encountered in REF1.

REF1 user interface cover
encountered an unrecog-
nized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened in
routine name.

REF1 could not open a cer-
tain dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to REF1 execution.
2. Try to verify the particular dataset name using
the HDBprt processor.
3. Make sure that all required input datasets are
present in the database file.

4 Dataset name could
not be closed in rou-
tine name.

REF1 could not close a cer-
tain dataset.

1. Check the execution log file; look for errors pre-
viously produced by processor REF1.
2. Verify that REF1 is the only processor accessing
the database file (is ARGx being used in the same
directory?).

5 Dataset name access
problem encountered
in routine name,
—or—
Could not get/put/add/
update attribute name
to dataset name in rou-
tine name.

REF1 could not get/put an
attribute from/to the dataset
name table.

Verify that the particular dataset contain attributes
required by REF1 (e.g., EST contain nontrivial data
at integration point).

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-18 COMET-AR User’s Manual Revised 12/1/97

In addition to the above generic messages, REF1 will print any relevant information regarding the
problem such as element data, nodal data, and geometry information to assist in correcting the
error. A full trace-back printout of error messages will follow the first message, and REF1 will
attempt to terminate its execution as cleanly as possible (closing opened datasets, releasing
memory allocations, etc.).

6 Unknown Geometry
Entity ID encountered
in SMShlxx, entity
type ID = entityID.

The solid model interface
shell routines in REF1 could
not locate a solid model
geometry entity.

1. Verify that the elements are properly linked to the
user written solid model definition routines (e.g.,
check Line_IDs and Surface_ID for the definition of
the element in question.
2. Make sure that the version of REF1 being used is
linked with the proper user written solid element
model routines.

7 Solid Model Interface
Problem encountered
in SMShlxx.

The solid model interface
shell routines in REF1 could
not perform their current
task.

1. Verify that the elements are properly linked to the
user written solid model definition routines (e.g.,
check Line_IDs and Surface_ID for the definition of
the element in question.
2. Make sure that the version of REF1 being used is
linked with the proper user written solid element
model routines.

8 Convergence problem
encountered in
xxx Proj — could not
locate projected point
along geometry entity
type.

The solid model interface
shell routines in REF1 could
not project a new point into
the boundaries of the corre-
sponding solid model geom-
etry entity.

1. Verify that the elements are properly linked to the
user written solid model definition routines (e.g.,
check Line_IDs and Surface_ID for the definition of
the element in question.
2. Make sure that the version of REF1 being used is
linked with the proper user written solid element
model routines.
3. Verify that the assumed parametric presentation
for each type of geometry entity is maintained in the
user written routine (i.e., each generic parameter
varies in the bi-unit interval range, [-1,+1], and that
a “one-to-one” mapping exist between the generic
parametric space and the physical space for each
geometry entity).

Index Error Message Cause Recommended User Action

11 Mesh Refinement Processors 11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p)

Revised 12/1/97 COMET-AR User’s Manual 11.2-19

11.2.9 Examples and Usage Guidelines

11.2.9.1 Example 1: Basic Operation

In this example, reference mesh 0 is being refined (the refined mesh will be mesh 1) by up to one
level of refinement using constraint-based refinement technique (hc-refinement). All elements for
which the relative element error is greater than 5% will be refined by dividing them into four
elements.

11.2.9.2 Example 2: Multi-Level Refinement

RUN REF1

SET REFINE_TECHNIQUE = hc

SET REFINE_INDICATOR = AVE

SET NUM_REFINE_TOLS = 1

SET REFINE_TOLS = 0.05

SET REFINE_LEVELS = 1

SET MESH/OLD = 0

REFINE_MESH

STOP

RUN REF1

SET REFINE_TECHNIQUE = ht

SET REFINE_INDICATOR = MAX

SET NUM_REFINE_TOLS = 2

SET REFINE_TOLS = 0.90, 0.95

SET REFINE_LEVELS = 1, 2

SET NUM_UNREFINE_TOLS = 1

SET UNREFINE_TOLS = 0.10

SET UNREFINE_LEVELS = 1

SET MESH/OLD = 1

REFINE_MESH

STOP

11.2 Processor REF1 (Mesh Refinement: hc/hs/ht/p) 11 Mesh Refinement Processors

11.2-20 COMET-AR User’s Manual Revised 12/1/97

In this example, reference mesh 1 is being refined (the refined mesh will be mesh 2) by up to two
levels of refinement using transition-based refinement technique (ht-refinement). All elements for
which the element max error ratio is greater than 90% will be refined by a single refinement level
and elements having max error ratio greater than 95% will be refined by two refinement levels.
Finally, all elements having a maximum error ratio less than 10% will be unrefined by one level.

11.2.10 References

[1] Stanley, G., Levit, I., Hurlbut, B., and Stehlin, B., Adaptive Refinement Strategies for
Shell Structures: Part 1: Preliminary Research, 1991.

[2] Stanley, G., Levit, I., Hurlbut, B., Stehlin, B., Loden, W., and Swenson, L., COMET–AR:
Adaptive Refinement (AR) Manual, May 1991.

12 Matrix/Vector Processors 12.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 12.1-1

12 Matrix/Vector Processors

12.1 Overview

In this chapter, COMET-AR matrix and vector algebra processors are described. These pro-
cessors are typically invoked automatically by COMET-AR utility procedures, which in turn are
invoked by high-level solution procedures. The matrix/vector processors currently available in
COMET-AR and their section numbers within this chapter are given in Table 12.1-1.

Table 12.1-1 Outline of Chapter 12: Matrix/Vector Processors

Section Processor Function

12.2 ASM Matrix assembly processor for SKYLINE and COMPACT matrix formats; also
enforces multipoint constraints by direct elimination of dependent DOFs.

12.3 ASMs Special matrix assembly processor required in conjunction with superposition type
(hs) mesh refinement.

12.4 ITER Iterative linear equation solver based on pre-conditioned conjugate gradient method.

12.5 PVSOLV Direct linear equation solver based on COMPACT matrix format; optimized for
vector computers.

12.6 SKY Direct linear equation solver based on SKYLINE matrix format; restricted to
problems that fit in core.

12.7 SKYs Special direct/iteration equation solver based on SKYLINE matrix format; needed
with hs mesh refinement.

12.8 VEC General-purpose vector/pseudovector algebra utility.

12.9 VSS Direct linear equation solver.

12.1 Overview 12 Matrix/Vector Processors

12.1-2 COMET-AR User’s Manual Revised 12/1/97

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-1

12.2 Processor ASM

12.2.1 General Description

The ASM assembly processor described here is an improved version of the initial (prototype)
ASM processor described in Reference [1]. ASM was developed because previously existing
matrix and vector assembly tools could not perform many of the operations required within the
COMET-AR framework and it was frequently difficult, and sometimes impossible, to use those
tools to conduct increasingly complex analyses and to treat problems in domains other than those
for which they were originally developed. Additional motivation for developing ASM arose from
anticipated needs for efficient treatment of structural analysis problems with transition regions
(where many elements with nodes admitting all possible motions join other elements with nodes
that only admit a subset of those freedoms), with nodes that may have more freedoms than the
current processors allow, where different nodes have different numbers of degrees of freedom
(DOF), and where different nodes have different types of DOF. Still more motivation for
developing ASM stemmed from requirements for a more flexible tool to be used within the
current and developing COMET-AR frameworks as new needs arise, including the need to
assemble system matrices and associated right-hand-side (RHS) vectors using contributions
stored in forms other than the venerable “EFIL” data structure that Testbed processors have
historically used. The need to assemble these entities into data formats that current and future
versions of COMET-AR processors recognize and treat, and the need for an assembly processor
with the capability of adding new formats at both ends of the assembly process without the
complications that usually accompany those efforts is evident.

Many applications require the imposition of multi-point constraints that occur naturally in the
course of adaptive refinement, contact-impact, multibody-dynamic, and other analysis activities.
Multi-point constraints, where some of the unknown (dependent) field variables are expressed in
terms of other independent variables, are best treated by directly applying appropriate
transformations to eliminate the dependent variables in favor of the independent variables at the
element-level during the system matrix (and system vector) assembly process.

The direct elimination algorithm can be used to enforce explicit linear multi-point constraint
relations, in which an element’s degrees-of-freedom, de, can be expressed in terms of a set of
independent DOFs as follows:

d
e dI

e

dD
e

 
 
 
 
 

I 0

CDI
e

CDI

dI
e

dI 
 
 
 
 

0

αe

 
 
 
 
 

+= =

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-2 COMET-AR User’s Manual Revised 12/1/97

or

Here an element’s DOFs are logically partitioned into independent and dependent sets, de
I and

de
D, respectively. An element’s dependent DOFs can generally be expressed in terms of the ele-

ment’s independent DOFs de
I (through coefficients Ce

DI) and in terms of a second set of
independent DOFs dI (through coefficients CDI), where the dI extends beyond the element’s
domain. For generality, an element’s dependent DOFs are also influenced by a set of constant
terms αe.

Prior to constraint elimination, the local virtual work performed by an element’s internal and
external forces can be written as:

where Ke is the element stiffness matrix and fe is the element load vector. Using the previous
expression for the element DOF vector de, the constrained equilibrium equations can be written
as:

where the constrained element stiffness matrix and load vector are given by:

These are the terms assembled into the system stiffness matrix and system load vector.

The current version of processor ASM and some enhancements to it that are projected for the near
future are described here. The current version of ASM is a second prototype which does many,
but not yet all, of the necessary operations for solving new kinds of problems with the COMET-
AR system. The functions of the current and projected versions of ASM are described in general
terms in the remaining paragraphs of this section. The user interface to ASM (i.e., the commands
that ASM recognizes and treats) is described in detail in the next section, with some discussions
about the methodologies used by the processor.

de Cd α+=

δde()T Kede δde()Tf e=

Kd f=

K CTKeC=

f CT f e Keα–()=

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-3

12.2.1.1 Current and Projected Functionality

Basic GAL database operations (*OPEN, *CLOSE, *TOC, etc.) must be performed through
CLIP directives [2]. ASM recognizes processor-specific commands that have been designed to
make getting information into and out of the program as easy as possible.

ASM accepts information from the user-defined entities that contribute to the system matrix (and/
or the system vector) to be assembled. These entities must be stored in datasets on one or more
GAL library files. Currently, ASM can process contributions stored as any of the following data
objects:

• An Element Matrix Table (EMT data object), used by COMET-AR processors for element
contribution data. EMT contributions must be supplemented with additional information
(nodal connectivity, etc.) stored in an Element Definition Table (EDT data object) and
information in a Complete Model Summary Table (CSM data object). ASM uses HDB
utilities [3] to access this information, shielding developer and user from data structure
details;

• A Nodal Vector Table (NVT data object), used by COMET-AR processors for storage of
nodally-oriented system vectors (for right-hand-side information);

• A System Vector Table (SVT data object), used by DOF-oriented processors for storage of
computational system vectors which only contain information for the independent DOFs of
the system.

ASM includes provisions for extension to treat system-matrix contributions stored in other self-
descriptive formats in addition to (or instead of) those that are stored as EMT data objects:

• The SKY_MATRIX (skyline) format, used by the SKY processor (and other programs) for
storage of a fully-assembled, symmetric system matrix;

• The COMPACT (compact-column) format, for space-efficient storage of an assembled
unfactored, symmetric system matrix;

• The COMPAXX (compact-row) format, which also provides space-efficient storage of an
assembled unfactored, symmetric system matrix and is compatible with new-generation
solvers in use at NASA/LaRC and elsewhere.

ASM accepts information from the user that defines the important problem-size parameters (the
highest node number and the maximum number of degrees of freedom at any node point, for
example), that specifies the type of freedom for each potential DOF of the problem, the equation
number assigned to each DOF that gets an equation number, and any constraints that need to be
taken into account while or after assembling the system matrix and/or RHS vector. This
information is stored in a Nodal DOF Table (NDT data object) and its related Complete Model
Summary Table (CSM data object). These data structures, and others that ASM recognizes and
treats, are described in Chapter 15, Database Summary.

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-4 COMET-AR User’s Manual Revised 12/1/97

ASM accepts information from the user defining the destination(s) and the format(s) for archival
storage of the assembled system matrix and/or RHS vector. The following formats are available:

• COMPACT (assembled system matrix);

• COMPAXX (assembled system matrix);

• SKY_MATRIX (assembled system matrix);

• SVT data object (assembled computational vector).

ASM processes commands that request the immediate display of information about entities
contributing to or defining the matrix (and/or RHS vector) being assembled, and that display
information about the size and contents of the assembled matrix and/or vector.

ASM assembles a symmetric system matrix, summing all of the user-designated system-matrix
contributions and taking all user-defined constraints into account, and stores the assembled
system matrix on the user-specified output GAL library file(s) in the format(s) that the user
requests.

ASM assembles right-hand-side computational vectors, summing the user-designated RHS
contributions and taking user-defined constraints into account, and stores the assembled RHS
vector on the user-specified output GAL library file(s).

ASM uses available topological information to facilitate and improve the efficiency of the
assembly process. ASM currently uses the element- and nodal-level data in EMT-formatted
contributions to partition its internal workspace and to define the order and nature of some of the
assembly operations. When other contribution formats are introduced, ASM will be modified to
perform some of its pre-assembly analyses at the DOF-level (when nodal-level information is not
available).

12.2.2 Processor Command Summary

The user must employ CLIP directives to communicate directly with GAL database files and do
general bookkeeping, branching, and arithmetic operations. CLIP directives are described in
reference [2]. ASM-specific commands enable the user to access database-resident model-
definition, DOF-table, element-contribution, RHS-contribution, and other information; to direct
the flow of output from ASM to GAL-library storage locations; and to control certain aspects of
ASM processor operations. ASM commands are summarized in Table 12.2-1 (shown in the order
in which ASM commands would normally be entered).

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-5

12.2.3 Command Glossary

Complete descriptions of all of the current ASM commands are given in the following
subsections. The commands are described in the same order as they are listed in Table 12.2-1.

12.2.3.1 MODEL Command

The first thing the ASM user must usually do is to specify the Complete Model Summary Table
(CSM data object), which contains problem-size parameters and other vital information for the
model to be treated. This is done with the MODEL command, the syntax of which is

The MODEL command tells ASM to open the CSM data object on GAL library ldi_csm with
name dsn_csm, and to extract two problem-size parameters: NNODES (the number of nodes for
the model); and NDOFN (the maximum number of DOFs that may be associated with each node).
The default values for ldi_csm and dsn_csm are 1 and CSM.SUMMARY. ASM also extracts from
that CSM data object the mesh index (mesh) and any other information needed to perform
operations requested via subsequent ASM commands.

The MODEL command is optional when the CSM data object is identified by the default values
(ldi_csm=1 and dsn_csm=CSM.SUMMARY); it is required for any other situation.

The MODEL keyword may be abbreviated to one character.

Table 12.2-1 ASM Command Summary

Command Name Function

MODEL Specify the CSM (Complete Model Summary) table

RESET Reset an assembly- or program-control parameter

INCLUDE Define (or purge) contributions or constraints

OUTPUT Define (or purge) output destination(s) and format(s)

SHOW Display input, output, matrix, or vector information

ASSEMBLE Assemble the system matrix and/or RHS vector

RESTART Re-initialize ASM to treat a new assembly problem

STOP Exit the ASM processor

MODEL [ldi_csm [dsn_csm]]

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-6 COMET-AR User’s Manual Revised 12/1/97

12.2.3.2 RESET Command

The RESET command is used to reset an assembly- or program-control flag or parameter. The
syntax of this command is:

The first of these two choices allows the user to specify that memory is limited to size computer
words (the program’s default limit being installation-dependant). The second choice (verbose)
operates a toggle switch that changes the program’s verbosity switch from false (the default
value) to true, or vice versa, giving the user some control over how much execution-time
information is printed out as the assembly progresses.

12.2.3.3 INCLUDE Command

The INCLUDE command is used to: (i) identify data entities that contribute to the next system
matrix (and/or vector) to be assembled, (ii) identify DOF and constraint information for the
system matrix and/or vector to be assembled, or (iii) purge any items from the list of previously-
included entities. Entities to be included must be stored in datasets on GAL library file(s) in
appropriate format(s). ASM currently treats the following types of datasets:

ASM recognizes, but does not treat, the COMPACT-, COMPAXX-, and SKY_MATRIX-type
datasets during its information-gathering stage. ASM cannot currently continue with the assembly
when these types of datasets are included.

The formal syntax of the INCLUDE command is:

RESET { memory = size | verbose }

Dataset Type Description

CSM Complete summary of the model, a CSM data object

EMT Element-matrix contributions, an EMT data object

NDT Nodal DOF and constraint information, an NDT data object

NVT Right-hand-side system-vector contributions, an NVT data object

SVT Right-hand-side system vector contributions, an SVT data object

Dataset Type Description

COMPACT Assembled-matrix contributions, stored in the upper-triangle-by-columns, COMPACT system-
matrix format (see Chapter 15).

COMPAXX Assembled-matrix contributions, stored in the upper-triangle-by-rows, COMPAXX system-
matrix format (see Chapter 15).

SKY_MATRIX Assembled-matrix contributions, stored in the ‘SKY_MATRIX (symmetric) skyline-matrix
format (see Chapter 15).

INCLUDE [/X] ldi { ds_name | seq }

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-7

The command items are summarized in the following table and described in detail following the
table.

The optional X qualifier is used with the INCLUDE command to rescind one or more previously-
submitted INCLUDE specifications. If the X qualifier is not used, the INCLUDE command tells
ASM to examine all of the specifications given on the remainder of the command and to include
entities identified there in tables ASM uses to keep track of contributions to and constraints upon
the matrix to be assembled. If the X qualifier is used, the INCLUDE command tells ASM to
remove all previously-included entities stored in dataset(s) { ds_name | seq } on library ldi from
these tables.

The CONTENTS phrase is used to identify the contents of included datasets that are not self-
descriptive, and to indicate operations to be performed by ASM with various self-descriptive
(data-object) datasets. ASM currently recognizes the following cntnts designations.

 [CONTENTS = cntnts] ++

 [DEFINITION = ldi_def] ++

 [{ EXCEPT | ONLY } = lds { subset | jseq }] ++

 [ORDER = ldo { ord_set | kseq }]

 Item Item Description

X Optional qualifier used to rescind one or more previous INCLUDE commands.

ldi Logical device index for the GAL library containing the entity to be included. If ds_name is
specified, the entity to be included is stored in dataset ds_name (or in the datasets indicated by
ds_name if ds_name contains wildcard characters). If the integer list seq is given, the entities
to be included are stored in the dataset(s) with sequence number(s) in that list.

CONTENTS ... Required phrase if the dataset(s) designated in the preceding {ds_name | seq} phrase are not
self-descriptive (do not contain recognized CONTENTS records); this phrase identifies the
types of data contained in a non-descriptive datasets and in NVT- and SVT- data objects.

DEFINITION Optional definition phrase.

EXCEPT Optional exclusion phrase (not implemented).

ONLY Optional selection phrase (not implemented).

ORDER Optional permutation phrase (not implemented).

cntnts Value Value Description

FORC_NODVEC The dataset contains RHS contributions, stored as an NVT data object

DIAG_NODVEC The dataset contains contributions to the system-matrix diagonal, stored as an NVT-object

DISP_NODVEC The dataset contains prescribed RHS values, stored as an NVT-object

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-8 COMET-AR User’s Manual Revised 12/1/97

Extensions of ASM are anticipated to process datasets with the following cntnts designations:

The DEFINITION phrase is required only when the entity being included is a single element-
contribution or a set of element-contribution EMT data object(s). The ldi_def parameter identifies
the GAL library that contains the supplementary element-definition EDT data object(s) for those
contributions. The DEFINITION phrase must not be used under any other circumstances.

The EXCEPT phrase has been included in anticipation that ASM will be enhanced to INCLUDE
a subset of the contributions stored in the indicated dataset by excluding some of the information
therein using the exclusion vector {E} that is stored in dataset subset (or in the dataset(s)
identified by sequence number(s) jseq) on library lds. This capability has not been fully
implemented and should not be exercised at this time.

The ONLY phrase has been included in anticipation that ASM will be enhanced to INCLUDE a
subset of the contributions stored in the indicated dataset by including only the items designated
in the inclusion vector {E} that is stored in dataset subset (or in the dataset(s) identified by
sequence number(s) jseq) on library lds. This capability has not been fully implemented and
should not be exercised at this time.

The ORDER phrase has been included to permit the user to apply a permutation vector {P},
which is stored in dataset ord_set (or in the dataset with sequence number kseq), on GAL library
ldo, to modify (within ASM) the information in the dataset(s) to be included via this command.
This capability might be used, for example, to introduce an alternate nodal sequencing vector
(NOT data object), to re-order the equation system in the DOF-table (NDT data object) being
used. This capability has not been fully implemented and should not be exercised at this time. It
should be exercised with great caution when it is implemented.

The user must specify a compatible Complete Model Summary Table (CSM data object) via the
MODEL command prior to any attempt to INCLUDE anything. A Nodal DOF Table (NDT data
object) must also be included in order to assemble anything.

The INCLUDE command (and each of the keywords on the INCLUDE command) may be
abbreviated to two characters.

12.2.3.4 OUTPUT Command

The OUTPUT command is used to specify where an assembled system matrix (and/or system
vector) is to be saved, or to purge any previously-specified OUTPUT requests from the program's
output-request table. The OUTPUT command must be used at least once before the ASSEMBLE
command is given and may be used more than once to save the assembled information in more
than one output format.

Future cntnts Value Value Description

FORC_DOFVEC The dataset contains RHS contributions, stored as an SVT data object

DISP_DOFVEC The dataset contains prescribed RHS values, stored as an SVT data object

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-9

The formal syntax of the OUTPUT command is:

The command items are described below.

The optional X qualifier is used with the OUTPUT command to rescind previously-specified
OUTPUT specifications. If the X qualifier is not used, destination and format specifications are
added to a table that ASM interrogates when archiving operations are performed. If the X
qualifier is used, the indicated output specifications are removed from that table.

ASM normally receives a variety of contributions and definitions, one of which must be an
appropriate Nodal DOF Table (NDT data object). ASM collects the contribution, degree-of-
freedom, constraint, and topological data associated with those definitions, analyzes those data,
and then assembles the desired system matrix (and/or vector) into a compact, space-efficient,
upper-triangle-by-columns format before converting it (when necessary) to the output format
requested.

If the user does not include the FORMAT phrase, ASM will save any assembled matrix that it
constructs in its default SKY_MATRIX format. Specify FORMAT = DOFVEC for any RHS
vector to be assembled.

12.2.3.5 SHOW Command

The optional SHOW command may be used at any time before an assembly to display
information about the matrix to be assembled, or to set parameters that control printout of the
assembled system matrix (and/or vector). The formal syntax of the SHOW command is:

OUTPUT [/X] ldi ds_name [FORMAT = format]

 Item Item Description

X Optional qualifier used to rescind one or more previous OUTPUT specifications

ldi Logical device index for GAL library to receive the assembled matrix or vector

ds_name Dataset name where the assembled system matrix (or vector) is to be stored (on library ldi)

format The format in which an assembled entity is to be archived:
DOFVEC — SVT data object format (for a RHS vector)
COMPACT — upper triangle by columns (for a system matrix)
COMPAXX — upper triangle by rows (for a system matrix)
SKYLINE — SKY_MATRIX format (for a system matrix)

SHOW { DOF_DATA |

 INCLUDE | OUTPUT | VECTOR |

 MATRIX [DIAGONAL | ++

 [COLUMN = ldc { col_set | cseq }] ++

 [ROW = ldr { row_set | rseq }]] }

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-10 COMET-AR User’s Manual Revised 12/1/97

The keywords cause actions as noted below.

12.2.3.6 ASSEMBLE Command

The ASSEMBLE command causes the assembly of a system matrix and/or a computational RHS
vector. Contributions to the matrix (and/or vector), and a suitable Nodal DOF Table (NDT data
object), must have been defined (with one or more INCLUDE commands), and the archival-
storage destination(s) of the resulting assembled system matrix (and/or vector) must have been
defined (with appropriate OUTPUT commands) before the ASSEMBLE command is used.

The formal syntax of the ASSEMBLE command is:

The command qualifiers are described below.

If neither of these qualifiers is given, the MATRIX option is assumed. If both qualifiers are given,
ASM attempts to assemble a system matrix and a system vector.

Typically, the user also enters CLIP *OPEN directives as many times as necessary to open GAL
library files containing contribution, constraint, and/or any other kinds of input data required for
the assembly work to be done, and as many more times as necessary to open the GAL library
file(s) to receive the assembled entities.

Keyword Keyword Description

DOF_DATA Displays the included DOF Table (NDT data object) when it is accessed (immediately prior to
assembling the system matrix and/or vector).

INCLUDE Displays information about contributions to the matrix to be assembled.

OUTPUT Displays the library location(s) and output-dataset format(s) specified for the system matrix and/
or system vector to be assembled and archived.

VECTOR Displays the assembled RHS vector (if any).

MATRIX Displays the diagonal of the assembled matrix, or some or all of the nonzero entries (and their
row and column locations) in the entire assembled matrix. The COLUMN and ROW sub-com-
mands are not yet implemented. Since columns and rows of interest cannot be selected, use of the
MATRIX option on the SHOW command (without exercising the DIAGONAL option) currently
causes the entire matrix to be printed. The number of nonzero entries in anything but the smallest
assembled matrix is generally very large, thus SHOW MATRIX generates an enormous amount
of printout for most system matrices.

ASSEMBLE [/MATRIX | /VECTOR | /MATRIX,VECTOR | /VECTOR,MATRIX]

Qualifier Qualifier Description

MATRIX Optional qualifier specifying that a system matrix is to be assembled (default)

VECTOR Optional qualifier specifying that a system vector is to be assembled

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-11

Contributions to the system matrix must be specified through at least one use of the INCLUDE
command. DOF and constraint information for the system must also be specified through an
additional INCLUDE command. When everything that contributes to (and possibly constrains)
the system matrix has been specified, the ASSEMBLE command is invoked. With the
ASSEMBLE command, ASM first performs a topological analysis by looking at nodal
connectivity for contributors to the matrix with that kind of information. ASM uses the results of
that analysis to partition its internal workspace and make decisions about the assembly operations.
ASM then assembles the system matrix into a space-efficient, compact data structure used for its
internal operations.

If the COMPACT format option was selected on an OUTPUT command, ASM saves the
assembled matrix in the upper-triangle-by-columns format. If the COMPAXX format option was
selected on an OUTPUT command, ASM saves the assembled matrix in the upper-triangle-by-
rows format. If the SKYLINE option was selected, ASM transforms the compact-formatted
matrix into the default SKY_MATRIX data format and saves it in that form. This data format is
also used by default when an option format is not specified. ASM saves the assembled
computational RHS vector as an SVT data object if the FORMAT=DOFVEC clause was included
on an OUTPUT command.

When the assembly and archiving operations are completed, ASM returns to the user-input
command post with all of the currently active INCLUDE, OUTPUT, and SHOW specifications
still in place. At this point, the user can enter additional INCLUDE, OUTPUT, and/or SHOW
commands to construct a modified version of the system matrix and/or vector that has already
been assembled. The user can then issue the ASSEMBLE command again to assemble (from
scratch) the modified system matrix (and/or vector), issue the RESTART command to clear the
boards before treating a totally new, independent assembly problem, or issue the STOP command
(or a RUN command) to terminate the ASM processor. ASM operations are normally terminated
with the STOP command.

12.2.3.7 RESTART Command

The RESTART command is used to re-initialize ASM, to start a completely new assembly
problem from scratch. The formal syntax of this command is:

ASM responds to the RESTART command by clearing all of its INCLUDE-, OUTPUT-, and
SHOW-specification tables by erasing (but not releasing) its local memory and returning to the
user-interface command post to await instructions for the next system matrix to be assembled.
The RESTART command is usually issued after the successful completion of an assembly
operation, but it may be used at any time the user wants to start over.

RESTART

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-12 COMET-AR User’s Manual Revised 12/1/97

12.2.3.8 STOP Command

The STOP command is used to terminate ASM operations normally. The formal syntax of this
command is:

ASM recognizes END and EXIT as synonyms for STOP, and terminates normally if either of
these alternates is submitted. ASM also recognizes the RUN command and terminates normally
when a command of that form is submitted.

In any event, when ASM terminates normally, active libraries are flushed and closed and
information for the next CSM processor (if any) is passed on for further use down the line.

12.2.4 Database Input/Output Summary

12.2.4.1 Input Datasets

A summary of input datasets for processor ASM is given below in Table 12.2-2.

The CSM and NDT datasets are required for any assembly operations. One or more EMT
(element-contribution) datasets (with their associated EDT-formatted, element-definition
datasets) will be required for assembly of a system matrix and may be used for assembly of a
system RHS vector. The names of these datasets are generally determined by element processors
(used prior to the assembly process) and are not hard-wired into the ASM processor. One or more
NVT-formatted datasets may be required if the user includes right-hand-side contributions and/or
specified-value information. The names of these datasets are not hard-wired into ASM either.
Specification of how these data are to be interpreted is accomplished via the CONTENTS phrase
on the INCLUDE command used to bring them into ASM.

STOP

Table 12.2-2 Processor ASM Input Datasets

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Model Summary dataset for mesh=mesh

NODAL.DOF..cons.mesh NDT Nodal DOF Table (constraint case=cons, mesh=mesh)

Eltname.DEFINITION...mesh EDT Element-definition data (optional)

Eltname.Matname...mesh EMT Element-contribution data (optional)

NODAL.Vector.step..mesh NVT RHS-contribution data (optional)

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-13

12.2.4.2 Output Datasets

A summary of output datasets that may be produced by processor ASM (depending on the
OUTPUT option(s) specified by the user) is given in Table 12.2-3.

Given compatible input, Processor ASM produces a COMPACT-formatted system-matrix dataset
if the OUTPUT command is used with the FORMAT=COMPACT clause (assuming that the
ASSEMBLE command is then used with the MATRIX qualifier); and/or a COMPAXX-
formatted system matrix if the OUTPUT command is used with the FORMAT=COMPAXX
clause; and/or a SKY_MATRIX-formatted system matrix if the OUTPUT command is used with
the FORMAT=SKYLINE clause. The name(s) of these datasets are not hard-wired into ASM and
can be set by the user.

Given compatible input, Processor ASM produces an SVT data object containing an assembled
computational RHS system vector if the OUTPUT command is used with the
FORMAT=DOFVEC clause prior to invocation of the ASSEMBLE command with the VECTOR
qualifier. The name of this dataset is not hard-wired into ASM and can be anything the user
chooses.

12.2.5 Limitations

ASM is currently implemented as a main-memory (in-core) processor. Sufficient main memory
must be available to store the following information:

• The entire CSM data object, which contains important problem-size and other information
for the system to be assembled;

• A portion of the Nodal DOF Table (NDT data object), which contains DOF-type,
constraint-status, and constraint-reference information for the problem at hand;

• A portion of the Element Matrix Table for any EMT data object that contributes to the
system to be assembled;

• A portion of the Element Definition Table (EDT data object) for any EMT data object that
contributes to the system to be assembled; the EDT data object contains nodal-connectivity

Table 12.2-3 Processor ASM Output Datasets

Dataset Dataset Type Description

Matrix..step.cons.mesh COMPACT Assembled system matrix

Matrix..step.cons.mesh COMPAXX Assembled system matrix

Matrix..step.cons.mesh SKY_MATRIX Assembled system matrix

SYSTEM.Vector...mesh SVT Assembled RHS vector

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-14 COMET-AR User’s Manual Revised 12/1/97

data for those contributions;

• All vectors specified through EXCEPT-, ONLY-, and/or ORDER-clauses on any
INCLUDE commands;

• Two integer-type and two floating-point-type vectors that are needed for the COMPACT
representation of the assembled system matrix;

• A single Neq-entry (floating point) computational vector, if a vector is to be assembled; plus
any (NDOF x NNODES)-entry NODVEC-formatted vectors that contribute to or contain
specified values for the RHS vector to be assembled.

Following a successful assembly, ASM frees the memory required for nodal connectivity and
other contribution information. If output is requested in the SKY_MATRIX format, this memory
(and whatever else is required) will be used to store the skyline representation of the system
matrix (which must exist in main memory simultaneously with the compact representation).

For conversion of the upper-triangle-by-columns version of an assembled system matrix to the
transposed (upper-triangle-by-rows) format, an additional Neq-entry integer vector is required for
storage of pointer information. Integer and floating-point vectors are also required for the nonzero
values and their locations in the system matrix. If available memory is too small to contain both
versions of the assembled matrix simultaneously, ASM allocates integer- and floating-point
workspaces that are as large as possible and forms the desired location and value records block-
by-block as required.

An additional Neq-entry integer-type vector is required for conversion of the upper-triangle-by-
columns version of an assembled system matrix to the SKY_MATRIX format. A floating-point
vector that is large enough to contain (as much as possible of) the active columns of the
SKY_MATRIX-formatted matrix is also required: this vector is generally much larger than its
compact-format counterparts, since it must accommodate all entries within the profile of the
skyline, including zeros. ASM forms the values record in one pass if it can be fully
accommodated within the available memory or on a block-by-block basis if it cannot.

Other less serious limitations have been noted throughout the preceding text. These are primarily
related to program features that have been projected but not yet fully implemented.

12.2.6 Error Messages

Processor ASM generates about 150 internally-constructed error messages, all of which are as
self-explanatory as possible. Care has been taken to detect and explain user errors as early as
possible in the data-definition process or, failing that, as soon as possible during the assembly
process. Additionally, ASM passes on to the user a number of error messages that are returned to
ASM by the CSM*, EDT*, EMT*, NDT*, NOT*, NVT*, and SVT* utilities that ASM uses to
access model-summery, element-definition, element-matrix, DOF-Table, nodal-ordering, nodal-
vector, and computational-vector information, when problems are encountered there.

12 Matrix/Vector Processors 12.2 Processor ASM

Revised 12/1/97 COMET-AR User’s Manual 12.2-15

The following three messages are typical of those that are produced by the part of ASM that reads
and checks information on an INCLUDE command.

The messages continue to be friendly after the user-input portion of the assembly operation is
finished and ASM starts checking the included entities for compatibility and completeness. The
following are four typical messages that might be generated during the pre-assembly, data-
consistency-checking phase (after the user issues the ASSEMBLE command).

The more urgently punctuated messages are generally produced when errors that inhibit the
assembly operation are encountered. The most serious of these might be followed by the

message, which ASM tries to avoid issuing but must when it cannot determine what to do.

12.2.7 Examples and Usage Guidelines

Remember ASM’s limitations and refrain from using ASM for extremely large problems and
from using program features that have not been implemented.

The following generic commands constitute the minimum required to assemble a system matrix.

Sub-Command Keyword Expected...

 Valid Sub-Commands... EXCEPT ONLY ORDER

Dataset QWERTY.ZAP Is Not Self-Descriptive (It Has No CONTENTS Record)

ASM Does Not Understand And Cannot Process Type ATAHUALPA Datasets

Dataset CAVA.BIEN Contributes FULSYM-Formatted Data

ASM Cannot Process FULSYM-Type Contributions At This Time !!!

!!! DOF_DATA Have Not Been Specified !!!

??? No OUTPUT Specifications ???

!!! ASM ASSEMBLY OPERATIONS DISCONTINUED !!!

 *OPEN ldi file_name . Open a GAL file

 INCLUDE = ldi model_summary_table . Model Summary Table

 INCLUDE = ldi { NDT_dataset | seq_number } . Nodal DOF Table

 INCLUDE = ldi { contribution_dataset | seq_number } . Element/Vector contributions

 OUTPUT = ldi output_dataset . Output destination

 ASSEMBLE . Go-Do-It command

 STOP . Exit ASM

12.2 Processor ASM 12 Matrix/Vector Processors

12.2-16 COMET-AR User’s Manual Revised 12/1/97

12.2.7.1 Example 1

The following commands might be used in a more typical situation to assemble a constrained
system matrix and an RHS vector, to save the matrix in two output formats, and to save the RHS
computational system vector as an SVT data object.

12.2.8 References

[1] Stanley, G. M., Loden, W., Regelbrugge, M., Stehlin, B., and Wright, M., The
Computational Structural Mechanics (CSM) Testbed User's Manual: New Lockheed
Processors, Lockheed Contract Report, May 1989.

[2] Felippa, C. A., The Computational Structural Mechanics Testbed Architecture: Volume II:
Directives, NASA CR–178385, February 1989.

[3] Stanley, G. M. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-
AR, NASA Computational Structural Mechanics (CSM) Contract Report, August 1992

*open 1 HSCT.DBC Open GAL file

 include 1 CSM.SUMMARY Model Summary table

 incl 1 NODAL.DOF..1 Nodal DOF Table (NDT obj)

 inc 1 E*.MATL_STIFFNESS DEFINITION 2 Element (EMT) contributions

 In 1 NODAL.EXT_FORC.1 CONTENTS=FORC_S RHS vector contributions

 output 2 CIEL.BLEU.1 FORMAT=SKYLINE Output matrix destination

 outp 2 TOY.OTA.1 FORMAT=COMPACT Output matrix destination

 Out 2 RHS.VEC.1 format = DOFVEC Output vector destination

 assem /matrix,vector Assemble matrix & vector

 stop Exit ASM

12 Matrix/Vector Processors 12.3 Processor ASMs (Matrix Assembler)

Revised 12/1/97 COMET-AR User’s Manual 12.3-1

12.3 Processor ASMs (Matrix Assembler)

12.3.1 General Description

Processor ASMs is a general purpose, out-of-core, linear equation assembly processor using the
skyline storage format (SMT data object class).

ASMs includes special provisions for the particular needs of the AR environment, notably:

• Partial assembly. Assemble only new columns which are appended to a previously
assembled/factored matrix (required by the hs-refinement technique).

• Preconditioning matrix assembly. Assemble only the block diagonal terms for each mesh
to be used in a Preconditioned Conjugate Gradient (PCG)1 iteration solver (only when hs-
refinement technique is being used).

• Compute coupling stiffness terms for hs-refinement. ASMs computes the coupling
stiffness terms between the superposed mesh and the underlying elements using the S-
Interpolation Property (SIP)2 and can also update block diagonal stiffness of an underlying
mesh to account for changes in geometry presentation between superposed mesh (fine) and
an underlying mesh (coarse).

ASMs employs an out-of-core block assembly algorithm whose memory buffer is dynamically
allocated at run time with a size controlled by the user.

Processor ASMs is typically invoked by a high-level AR control procedure, such as
AR_CONTROL (via procedure L_STATIC_1), in an adaptive refinement iterations loop.

12.3.2 Command Summary

Processor ASMs follows standard COMET-AR command interface protocol. A summary of
ASMs commands is given in Table 12.3-1.

1. See Section 12.4, Iterative Linear Equation Solver for details about the PCG algorithm.
2. See “Superposition-based (hs) Adaptive Refinement of Shell Structures,” Lockheed Contract Report for
NASA CSM Task 15, November 1991.

Table 12.3-1 Processor ASMs Command Summary

Command Name Function Default Value

SET BUFFER_SIZE Specifies size in float words of the memory buffer used by
ASMs to store each of the system matrix blocks.

524288
(2MB single,
4MB double)

SET CONSTRAINT_SET Specifies constraint-set number. 1

12.3 Processor ASMs (Matrix Assembler) 12 Matrix/Vector Processors

12.3-2 COMET-AR User’s Manual Revised 12/1/97

12.3.3 Command Definitions

12.3.3.1 ASSEMBLE Command

This is the “go” command for processor ASMs. It causes ASMs to assemble the proper system
entity specified by the system_entity qualifier.

Command syntax:

SET FIXED_FRAME Fixed frame flag for hs-refinement. When the computation
frame is fixed in the model, ASMs can compute the stiff-
ness coupling terms, using the SIP method, without apply-
ing any frame transformation to the stiffness arrays. This
will greatly increase the performance of ASMs.

NO

SET LDIC Specifies logical device index of computational database. 1

SET LDIE Specifies logical device index of element matrices database
(required only for iterative solutions).

2

SET LDIS Specifies logical device index of system database. 3

SET LOAD_SET Specifies load-set number. 1

SET MESH Specifies mesh number. 0

SET STEP Specifies load step number. 0

ASSEMBLE/system_entity Assembled system matrix or vector.

ASSEMBLE/system_entity

Table 12.3-1 Processor ASMs Command Summary (Continued)

Command Name Function Default Value

12 Matrix/Vector Processors 12.3 Processor ASMs (Matrix Assembler)

Revised 12/1/97 COMET-AR User’s Manual 12.3-3

where

12.3.3.2 SET BUFFER_SIZE Command

This command defines the size of memory buffer used by ASMs to hold each assembled system
matrix columns block.

Command syntax:

where

12.3.3.3 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

a. See Section 12.7, Direct Linear Equation Solver, for details

Parameter Description

system_entity Type of system entity to assemble (default value MATRIX):
VECTOR—assemble the right hand side load vector
MATRIX/ option/update—assemble the system matrix. The qualifiers option and update are
relevant only in the context of hs-refinement and are described as follows:

Parameter Description

option DIRECT—assemble the full matrix including coupling terms between
superposed and underlying meshes; to be factored by a direct equation
solver.
PRECONDITIONER—assemble only the block diagonal stiffness, for
each mesh, to create a preconditioning matrix for the PCGa iterative
solver.

update UPDATE_STIFFNESS—update the underlying mesh stiffness matrix
(will need full factorization)
NO_UPDATE—do not update the underlying mesh stiffness matrix (will
require only PARTIAL factorization)

SET BUFFER_SIZE = size

Parameter Description

size Matrix block size (in floating precision words)
(default value: 524288)

12.3 Processor ASMs (Matrix Assembler) 12 Matrix/Vector Processors

12.3-4 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

12.3.3.4 SET FIXED_FRAME Command

Sets the fixed-frame flag to the appropriate state for hs-refinement solution. ASMs computes the
coupling stiffness by using the “S-Interpolation Property” (SIP) to account for the coupling terms
between the superposed mesh and the underlying mesh. This process involves interpolation of
stiffness matrices which need to be transformed into a global/fixed coordinate system before and
after the interpolation, unless a fixed computational frame is used throughout the mesh.

Command syntax:

where:

12.3.3.5 SET LDIC Command

This command defines the logical device index for the central database.

Command syntax:

where

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET FIXED_FRAME = flag

Parameter Description

flag Fixed computational frame flag (default value: NO)

SET LDIC = ldic

Parameter Description

ldic Logical device index (default value: 1)

12 Matrix/Vector Processors 12.3 Processor ASMs (Matrix Assembler)

Revised 12/1/97 COMET-AR User’s Manual 12.3-5

12.3.3.6 SET LDIE Command

This command defines the logical device index for the element matrices database.

Command syntax:

where

12.3.3.7 SET LDIS Command

This command defines the logical device index for the system matrices database.

Command syntax:

where

12.3.3.8 SET LOAD_SET Command

This command defines the load set number associated with the element, nodal, and system data.
This number should appear as the first cycle number in names of all datasets.

Command syntax:

where

SET LDIE = ldie

Parameter Description

ldie Logical device index (default value: 2)

SET LDIS = ldis

Parameter Description

ldis Logical device index (default value: 3)

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

12.3 Processor ASMs (Matrix Assembler) 12 Matrix/Vector Processors

12.3-6 COMET-AR User’s Manual Revised 12/1/97

12.3.3.9 SET MESH Command

This command defines the mesh number for the mesh to be processed. This number should appear
as the third cycle number in names of all datasets.

Command syntax:

where

12.3.3.10 SET STEP Command

This command defines the solution step number (for nonlinear analyses only) associated with the
element, nodal, and system data. This number, if defined, should appear as the first cycle number
in names of all datasets.

Command syntax:

where

12.3.4 Database Input/Output

12.3.4.1 Input Datasets

A summary of input datasets required by Processor ASMs is given in Table 12.3-2.

SET MESH = mesh

Parameter Description

mesh Mesh to be assembled (default value: 0)

SET STEP = step

Parameter Description

step Solution step number. (default value: 0)

Table 12.3-2 Processor ASMs Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

NODAL.DOF..conset.mesh NDT Nodal DOF dataset

12 Matrix/Vector Processors 12.3 Processor ASMs (Matrix Assembler)

Revised 12/1/97 COMET-AR User’s Manual 12.3-7

12.3.4.2 Output Datasets

A summary of output datasets created by Processor ASMs is given in Table 12.3-3.

12.3.5 Limitations

12.3.5.1 SMT Data Structure

ASMs currently outputs the assembled matrix as an SMT type data structure recognized by the
SKYs solver. Other solvers within COMET-AR require different types of input data structures
(such as COMPAXX format) which cannot be produced by ASMs.

†NODAL.COORDINATE...mesh NCT Nodal coordinate dataset

†NODAL.TRANSFORMATION...mesh NTT Nodal transformation dataset

NODAL.EXT_FORCE.ldset..mesh NVT Nodal external load dataset

NODAL.SPEC_DISP.ldset..mesh NVT Nodal specified displacement dataset

EltNam.DEFINITION...mesh EDT Element definition dataset

†EltNam.REFINEMENT...mesh ERT Element refinement dataset

†EltNam.INTERPOLATION...mesh EIT Element interpolation dataset

EltNam.MATL_STIFFNESS...mesh EMT Element stiffness matrix dataset (in file LDIE)

EltNam.LOAD...mesh ELT Element loads datasets

†hs-refinement only

Table 12.3-3 Processor ASMs Output Datasets

Dataset Class Contents

†EltNam.COUP_STIFF...mesh EAT Element coupling matrices dataset (in file LDIE)

†EltNam.TCGHAT...mesh EAT Element updated rotations transformation (accounts for
geometry updates in superposed mesh, in file LDIC)

SYSTEM.VECTOR.ldset..mesh SVT System load vector

COLUMN.HEIGHT...mesh SMT Columns heights (in file LDIS)

DIAGONAL.ADRESSES...mesh SMT Diagonal elements pointers (in file LDIS)

STRUCTURE.MATL_STIFFNESS...mesh SMT The assembled system matrix (in file LDIS)

†—hs-refinement only

Table 12.3-2 Processor ASMs Input Datasets (Continued)

Dataset Class Contents

12.3 Processor ASMs (Matrix Assembler) 12 Matrix/Vector Processors

12.3-8 COMET-AR User’s Manual Revised 12/1/97

12.3.5.2 Multi-Point Constraints

ASMs currently does not include any capabilities for applying MPCs to the assembled matrix,
and thus cannot be used as an assembly processor within constraint-based (hc) adaptive
refinement.

12.3.6 Error Messages

ASMs contains extensive error checking. Most of the error messages printed by ASMs are self-
explanatory messages and aim to help the user correct mistakes. Some of the errors may occur at
code levels below ASMs (e.g., HDB, DB, GAL, etc.) and ASMs describes those errors to the best
of its ability.

The following summarizes error messages related to user interface problems produced by ASMs.

Index Error Message Cause Recommended User Action

1 Unknown SET variable
name encountered in
ASMs.

ASMs user interface cover
encountered an unrecog-
nized SET variable name.

Check spelling of variable name in CLIP proce-
dure.

2 Unknown command
encountered in ASMs.

ASMs user interface cover
encountered an unrecog-
nized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened in
routine name
—or—
problem in routine name:
missing dataset name for
the following element
name.

ASMs could not open a cer-
tain dataset.

1. Check execution log file; look for error pro-
duced by processors prior to ASMs execution.
2. Verify dataset name using HDBprt processor.
3. Make sure that all required input datasets are
present in the database file.

4 Dataset name could not be
closed in routine name.

ASMs could not close a
certain dataset.

1. Check execution log file; look for errors pre-
viously produced by processor ASMs.
2. Verify that ASMs is the only processor
accessing the database file. (Is ARGx being used
in the same directory?)

5 Dataset name access
problem encountered in
routine name
—or—
could not get/put/add/
update/attribute name to
dataset name in routine
name.

ASMs could not get/put an
attribute from/to the dataset
name table.

Verify that the particular dataset contains
attributes required by ASMs.

6 Could not allocate mem-
ory for array name in rou-
tine name.

Malloc memory allocation
problem encountered in
DBmem level.

Check with your system manager. You may need
permission to access more memory.

12 Matrix/Vector Processors 12.3 Processor ASMs (Matrix Assembler)

Revised 12/1/97 COMET-AR User’s Manual 12.3-9

In addition to the above generic messages, ASMs will print any relevant information regarding
the problem to assist the user in correcting the error. A full trace-back printout of error messages
will follow the first message, and ASMs will attempt to terminate its execution as cleanly as
possible (closing opened datasets, releasing memory allocations, etc.).

12.3.7 Examples and Usage Guidelines

12.3.7.1 Example 1: Assembling the Load Vector

In this example, ASMs will assemble the load vector for mesh 1, load set 1, and constraint set 1
assuming standard naming conventions for the input files. Nodal external loads will be transferred
into a system vector format and element-prescribed displacement contributions will be computed
and assembled.

12.3.7.2 Example 2: Assembling the Stiffness Matrix

In this example, ASMs will assemble the stiffness matrix of mesh 1, using 102400 words of
physical memory for the assembly buffer. The assembled matrix, in SMT format, will be stored in
the standard system database (logical device index 3).

12.3.7.3 Example 3: Assembling a Preconditioner Matrix for hs-refinement

RUN ASMs

SET MESH = 1

ASSEMBLE/VECTOR

STOP

RUN ASMs

SET MESH = 1

SET BUFFER_SIZE = 102400

ASSEMBLE/MATRIX

STOP

RUN ASMs

SET MESH = 1

SET FIXED_FRAME = ON

12.3 Processor ASMs (Matrix Assembler) 12 Matrix/Vector Processors

12.3-10 COMET-AR User’s Manual Revised 12/1/97

In this example, ASMs will assemble the block diagonal stiffness matrix of mesh 1 and append
this block to an existing system matrix (currently containing the mesh 0 factored matrix). The
assembled matrix, in SMT format, will be stored in the standard system database (logical device
index 3).

In addition, ASMs will compute the mesh 1 element coupling stiffness, assuming that the
computational frame is fixed throughout the mesh, which will be stored as an EAT dataset in the
standard element database (logical device index 2).

Finally, since the NO_UPDATE qualifier is set, ASMs will not update any stiffness term
associated with mesh 0, ignoring the effects of the changes in geometry modeling between mesh 0
and mesh 1.

12.3.8 References

None.

ASSEMBLE/MATRIX/PRECONDITIONER/NO_UPDATE

STOP

12 Matrix/Vector Processors 12.4 Processor ITER (Iterative Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.4-1

12.4 Processor ITER (Iterative Linear Equation Solver)

12.4.1 General Description

Processor ITER is a general purpose, iterative, linear equation solver employing the
preconditioned conjugate gradients (PCG) scheme with a partial Crout (LDU) factorization of the
stiffness matrix as a preconditioner.

The PCG technique enforces the K-orthogonality condition (orthogonality with respect to the
stiffness matrix) on successive solution increments and employs a simple Line Search (LS)
technique to minimize the solution errors (in the energy norm) during each iteration cycle.

PCG techniques are guaranteed to converge within Neq iterations when applied to a symmetric
positive definite quadratic form (such as the strain energy function) provided that a symmetric
positive definite preconditioner is employed.

ITER uses the partially factored stiffness matrix (in COMPAXX storage format, see Chapter 15,
Database Summary) as a preconditioning matrix. The preconditioner matrix is obtained by
applying Crout factorization to that form of the assembled matrix without adding the additional
below-the-profile terms as traditionally done by conventional solvers. The partially factored
matrix occupies the identical storage space as the unfactored matrix, but is only an approximation
for the actual factored matrix.

A partially factored matrix may lose its positive-definiteness, easily detected during the
factorization step by monitoring negative diagonal terms in the factored matrix. To ensure that the
preconditioner is indeed positive definite matrix, ITER employs a technique called diagonal
scaling, where diagonal terms of the stiffness matrix K are scaled by a small factor as shown in
the following equation:

The scaling factor α is sufficient to ensure that the partial factorization of K is indeed positive
definite. ITER may require several factorization attempts to fine-tune the value of α.

Processor ITER is typically invoked by a high-level AR control procedure, such as
AR_CONTROL_1 (via procedure L_STATIC_1), in an adaptive refinement iteration loop

K K α diag K()()+←

12.4 Processor ITER (Iterative Linear Equation Solver) 12 Matrix/Vector Processors

12.4-2 COMET-AR User’s Manual Revised 12/1/97

12.4.2 Command Summary

Processor ITER follows standard COMET-AR command interface protocol. A summary of ITER
commands is given below in Table 12.4-1.

12.4.3 Command Definitions

12.4.3.1 FACTOR Command

This is the “go” command for processor ITER’s factorization stage. It causes ITER to generate the
preconditioner matrix for the specified mesh by using diagonal scaling and partial Crout
factorization of the system matrix (stored in the compact-transpose COMPAXX format).

Command syntax:

12.4.3.2 SOLVE Command

This is the “go” command for processor ITER’s iterative solution stage. It causes ITER to
compute the solution vector using the PCG iteration technique.

Table 12.3-1 Processor ITER Command Summary

Command Name Function Default Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET CONV_TOL Convergence tolerance 10-6

SET LDIC Specifies logical device index of computational database 1

SET LDIS Specifies logical device index of system database 3

SET LOAD_SET Specifies load-set number 1

SET MAX_ITER Specifies maximum allowable number of iterations 2 Neq

SET MESH Specifies mesh number 0

SET STEP Specifies load step number 0

SET SCALE_FACTOR Initial diagonal terms scaling factor 0.005

FACTOR Partially factor the mesh to generate the preconditioner matrix

SOLVE Obtain a solution using PCG iterations

FACTOR

12 Matrix/Vector Processors 12.4 Processor ITER (Iterative Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.4-3

Command syntax:

12.4.3.3 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Command syntax:

where

12.4.3.4 SET CONV_TOL Command

This command defines the convergence tolerance for the PCG iterations with respect to energy
error norm.

Command syntax:

where

12.4.3.5 SET LDIC Command

This command defines the logical device index for the computational database.

Command syntax:

SOLVE

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number. (default value: 1)

SET CONV_TOL = contol

Parameter Description

contol Convergence tolerance. (default value: 10-6)

SET LDIC = ldic

12.4 Processor ITER (Iterative Linear Equation Solver) 12 Matrix/Vector Processors

12.4-4 COMET-AR User’s Manual Revised 12/1/97

where

12.4.3.6 SET LDIS Command

This command defines the logical device index for the system database.

Command syntax:

where

12.4.3.7 SET LOAD_SET Command

This command defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the first cycle number in names of all datasets.

Command syntax:

where

12.4.3.8 SET MAX_ITER Command

This command defines the maximum allowable number of PCG iterations.

Command syntax:

Parameter Description

ldic Logical device index. (default value: 1)

SET LDIS = ldis

Parameter Description

ldis Logical device index. (default value: 3)

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MAX_ITER = maxiter

12 Matrix/Vector Processors 12.4 Processor ITER (Iterative Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.4-5

where

12.4.3.9 SET MESH Command

This command defines the mesh number for the system equations to be processed. This number
should appear as the third cycle number in names of all datasets.

Command syntax:

where

12.4.3.10 SET STEP Command

This command defines the solution step number (for nonlinear analyses only) associated with the
element, nodal, and system data. This number, if defined, should appear as the first cycle number
in names of all datasets.

Command syntax:

where

12.4.3.11 SET SCALE_FACTOR Command

This command defines the initial diagonal scaling factor for the partial factorization stage.

Command syntax:

Parameter Description

maxiter Maximum number of iterations (default value: 2 Neq)

SET MESH = mesh

Parameter Description

mesh Mesh to be solved (default value: 0)

SET STEP = step

Parameter Description

step Solution step number (default value: 0)

SET SCALE_FACTOR = factor

12.4 Processor ITER (Iterative Linear Equation Solver) 12 Matrix/Vector Processors

12.4-6 COMET-AR User’s Manual Revised 12/1/97

where

12.4.4 Database Input/Output

12.4.4.1 Input Datasets

A summary of input datasets required by Processor ITER is given in Table 12.4-2.

Parameter Description

factor Initial diagonal scaling factor (default value: 0.005)

Table 12.4-2 Processor ITER Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

SYSTEM.VECTOR.ldset..mesh SVT System load vector

STRUCTURE.MATL_STIFFNESS...mesh System
Matrix

Assembled system matrix (in file LDIS). Records
description:

Record
Name

Description

COLLTH Column (row) heights

COLPTR Diagonal elements pointers

ROWS Identity of non-zero elements in each row

DIAG Diagonal terms

COEFS Off-diagonal non-zero terms

12 Matrix/Vector Processors 12.4 Processor ITER (Iterative Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.4-7

12.4.4.2 Output Datasets

A summary of output datasets created by Processor ITER is given in Table 12.4-3.

*—created record

12.4.5 Limitations

12.4.5.1 Memory Limitation

ITER may require a large number of iterations to converge. Typically this number is in the range
[1%-10%] of the total number of equations in the system, depending on the condition number of
the system matrix. As a result of the large number of computations, it is important to keep all data
required by ITER in the physical memory of the computer so that no I/O will be performed during
the solution phase.

This will require two system matrices, the preconditioner and the stiffness matrix, to
simultaneously reside in memory. Because a COMPAXX storage format is used (which typically
requires an order of magnitude less storage than the skyline (SKY-MATRIX) format) relatively
large problems can be solved (e.g., over 150,000 DOFs problems were solved successfully on a
CONVEX computer).

Table 12.4-3 Processor ITER Output Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary table

SYSTEM.VECTOR.ldset..mesh* SVT System solution vector

STRUCTURE.MATL_STIFFNESS...mesh* System
Matrix

Assembled system matrix (in file LDIS). Records
description:

Record Name Description

D D of Crout LDLT decomposition

L L of Crout LDLT decomposition

ROWS Identity of non-zero elements in each
row

DIAG Diagonal terms

COEFS Off-diagonal non-zero terms

12.4 Processor ITER (Iterative Linear Equation Solver) 12 Matrix/Vector Processors

12.4-8 COMET-AR User’s Manual Revised 12/1/97

12.4.6 Error Messages

ITER contains extensive error checking. Most of the error messages printed by ITER are self-
explanatory and aim to help the user correct mistakes. Some of the errors may occur at code levels
below ITER (e.g., HDB, DB, GAL, etc.), and ITER describes those errors to the best of its ability.

The following summarizes error messages related to user interface problems produced by ITER.

In addition to the above generic messages, ITER will print any relevant information regarding the
problem to assist the user in correcting the error. A full trace-back printout of error messages will
follow the first message, and ITER will attempt to terminate its execution as cleanly as possible
(closing opened datasets, releasing memory allocations, etc.).

Index Error Message Cause Recommended User Action

1 Unknown SET vari-
able name encoun-
tered in ITER.

ITER user interface cover
encountered an unrecog-
nized SET variable name.

Check spelling of variable name in CLIP procedure.

2 Unknown command
encountered in ITER.

ITER user interface cover
encountered an unrecog-
nized command.

Check spelling of command in CLIP procedure.

3 Old/new dataset name
could not be opened in
routine name.

ITER could not open a cer-
tain dataset.

1. Check the execution log file; look for error pro-
duced by processors prior to ITER execution.
2. Verify dataset name using the HDBprt processor.
3. Make sure that all required input datasets are
present in the database file.

4 Dataset name could
not be closed in rou-
tine name.

ITER could not close a cer-
tain dataset.

1. Check the execution log file; look for errors previ-
ously produced by processor ITER.
2. Verify ITER is the only processor accessing the
database file. (Is ARGx being used in the same
directory?)

5 Dataset name access
problem encountered
in routine name
—or—
could not get/put/add/
update/attribute name
to dataset name in
routine name.

ITER could not get/put an
attribute from/to the dataset
name table.

Verify that the particular dataset contain attributes
required by ITER.

6 Could not allocate
memory for array
name in routine name

Malloc memory allocation
problem encountered in
DBmem level

Check with your system manager; you may need
permission to access more memory.

7 Zero or negative diag-
onal term encountered
in FACTOR, Equa-
tion number = eqn.

The assembled matrix is a
non-positive-definite matrix.

Check your model’s element connectivity and
boundary conditions. ARGx may be very useful in
this regard.

12 Matrix/Vector Processors 12.4 Processor ITER (Iterative Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.4-9

12.4.7 Examples and Usage Guidelines

12.4.7.1 Example 1: Basic Operation

In this example, the assembled matrix of mesh 1 is factored followed by an iterative solution for
mesh 1 displacement field using 10-7 as the solution energy error norm tolerance and allowing up
to 1000 iterations.

12.4.8 References

None.

RUN ITER

SET MESH = 1

SET CONV_TOL = 10 -7

SET MAX_ITER = 1000

FACTOR

SOLVE

STOP

12.4 Processor ITER (Iterative Linear Equation Solver) 12 Matrix/Vector Processors

12.4-10 COMET-AR User’s Manual Revised 12/1/97

12 Matrix/Vector Processors 12.5 Processor PVSOLV (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.5-1

12.5 Processor PVSOLV (Direct Linear Equation Solver)

Documentation on this NASA-developed processor
will appear in a future release of the User’s Manual.

12.5 Processor PVSOLV (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.5-2 COMET-AR User’s Manual Revised 12/1/97

12 Matrix/Vector Processors 12.6 Processor SKY (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.6-1

12.6 Processor SKY (Direct Linear Equation Solver)

12.6.1 General Description

Processor SKY is designed to complement the processors ASM and COP, and performs three
major functions: (i) factorization of a symmetric system matrix; (ii) solution of a linear system of
equations (given a factored system matrix and a computational system vector); and (iii) matrix/
vector multiplication (given a system matrix and a computational system vector). In all cases the
system matrix is stored in the SKY_MATRIX skyline format and the computational system
vector is stored as an SVT data object (Reference [1]).

12.6.2 Processor Command Summary

Like all other COMET-AR processors, the SKY processor can interpret two types of commands:
(i) general CLIP directives and (ii) processor specific commands. Directives are described in
Reference [2] and are used in the usual manner to open, close, and interrogate a GAL database
library. The commands unique to the SKY processor are summarized in Table 12.6-1.

Each of the above SKY commands can be invoked independently provided that all input is of the
correct data type. Since the solve operation needs a factored SKY_MATRIX formatted matrix,
the usual calling sequence is a FACTOR command followed by a SOLVE command. A status
data record is associated with each SKY_MATRIX formatted matrix to indicate whether the
matrix has been factored.

12.6.3 Command Glossary

Arguments for each command are composed of GAL dataset identifiers representing vectors and
matrices stored as SVT data objects and SKY_MATRIX formats. Each dataset identifier is
composed of a logical device index (ldi), a dataset name (dsn), and an optional data record name
(recn). If a data record name is omitted, a default record name is used. (Default argument values
will be discussed in the individual command descriptions.) Command arguments for matrix and
vector dataset identifiers are separated by the symbols ‘*’ (star) and ‘->’ (arrow). The star
separates an input matrix from an input vector while the arrow points to the output vector or

Table 12.6-1 SKY Command Summary

Command Name Function

FACTOR Factor a SKY_MATRIX formatted matrix

SOLVE Solve equations with a factored SKY_MATRIX matrix

MULTIPLY Multiply a SKY_MATRIX matrix by an SVT data object

STOP Exit the SKY processor

12.6 Processor SKY (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.6-2 COMET-AR User’s Manual Revised 12/1/97

matrix of the specified operation. All commands except STOP may be abbreviated to the first
three letters of the command word.

12.6.3.1 FACTOR Command

The FACTOR command performs an in-core factorization of a sparse, skyline stored, symmetric
matrix. Syntax for the FACTOR command requires naming the input and an output matrices as
follows:

where

Required argument items to identify each matrix are ldi and dsn. The data record name recn is
optional, and assumes the name MATRIX if omitted. Both the input and output matrices can
assume the same name, in which case the output matrix overwrites the input matrix.

Before performing the factor operation, SKY checks if the current status value of the input matrix
is UNFACTORED. If the status value is not UNFACTORED, a warning message is printed
before the factorization begins.

Associated with each SKY_MATRIX formatted matrix is an integer-valued array, called
DIAG_POINTER, indicating where each column of the matrix is located. For more information
regarding SKY_MATRIX formatted matrix data structures refer to Chapter 15, Database
Summary.

12.6.3.2 SOLVE Command

The SOLVE command solves an unconstrained linear system of equations where a full right-hand
side (RHS) system vector is prescribed and the input equation matrix has been factored using the
FACTOR command provided by SKY. The SOLVE command syntax requires naming the two
input and single output (LHS) dataset identifiers as follows.

FACTOR k_ldi k_dsn k_rec -> kf_ldi kf_dsn kf_rec

Item Item Description Item Default Value

k_ldi Logical device index of unfactored matrix —None—

k_dsn Dataset name of unfactored matrix —None—

k_recn Record name of unfactored matrix MATRIX

kf_ldi Logical device index of factored matrix —None—

kf_dsn Dataset name of factored matrix —None—

kf_recn Record name of factored matrix MATRIX

SOLVE kf_ldi kf_dsn kf_rec * rhs_ldi rhs_dsn rhs_recn -> lhs_ldi lhs_dsn lhs_recn

12 Matrix/Vector Processors 12.6 Processor SKY (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.6-3

The command arguments are identified below.

If the status value of the input matrix is UNFACTORED, then the SOLVE operation is aborted.
The input and the solution vectors can have the same name, in which case the output vector
overwrites the input vector. The default record name for the RHS and LHS vectors is DATA.1,
while the default name for the factored matrix is MATRIX.

12.6.3.3 MULTIPLY Command

The MULTIPLY command multiplies a SKY_MATRIX formatted matrix by a full system vector
(LHS). The MULTIPLY command syntax requires naming the two input and single output (RHS)
dataset identifiers as follows.

The command arguments are identified as follows.

Item Item Description Item Default Value

kf_ldi Logical device index of factored matrix —None—

kf_dsn Dataset name of factored matrix —None—

kf_recn Record name of factored matrix MATRIX

rhs_ldi Logical device index of RHS vector —None—

rhs_dsn Dataset name of RHS vector —None—

rhs_recn Record name of RHS vector DATA.1

lhs_ldi Logical device index of LHS vector —None—

lhs_dsn Dataset name of LHS vector —None—

lhs_recn Record name of LHS vector DATA.1

MULTIPLY kf_ldi kf_dsn kf_rec * lhs_ldi lhs_dsn lhs_recn -> rhs_ldi rhs_dsn rhs_recn

Argument Argument Description Argument Default Value

kf_ldi Logical device index of factored matrix —None—

kf_dsn Dataset name of factored matrix —None—

kf_recn Record name of factored matrix MATRIX

lhs_ldi Logical device index of LHS vector —None—

lhs_dsn Dataset name of LHS vector —None—

lhs_recn Record name of LHS vector DATA.1

rhs_ldi Logical device index of RHS vector —None—

rhs_dsn Dataset name of RHS vector —None—

rhs_recn Record name of RHS vector DATA.1

12.6 Processor SKY (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.6-4 COMET-AR User’s Manual Revised 12/1/97

The input and the solution vectors can have the same name, in which case the output vector
overwrites the input vector. The default record name for the RHS and LHS vectors is DATA.1,
while the default name for the matrix is MATRIX.

12.6.3.4 STOP Command

The STOP command terminates the current execution of the SKY processor. This command
requires no arguments.

Invoking this command properly closes all GAL libraries. Executing another COMET-AR
processor with the RUN processor_name command has the same effect as using the STOP
command. It is suggested that all processors be terminated with an explicit STOP command for
clarity.

12.6.4 Database Input/Output Summary

12.6.4.1 Input Datasets

The SKY processor makes no assumptions regarding dataset names, as long as they follow
standard naming conventions (see Table 12.6-2). Matrices are assumed to be stored using the
SKY_MATRIX format and system vectors as SVT data objects. For more information regarding
SKY_MATRIX and SVT data structures refer to Chapter 15, Database Summary.

12.6.4.2 Output Datasets

The output datasets created by SKY follow the same conventions as the input datasets:

STOP

Table 12.6-2 Processor SKY Input Datasets

Dataset Name Dataset Type Description

Matrix.step.cons.mesh SKY_MATRIX Assembled SKY_MATRIX formatted matrix

SYSTEM.Vector...mesh SVT DOF-oriented SVT data object

Table 12.6-3 Processor SKY Output Datasets

Dataset Name Dataset Type Description

Matrix.step.cons.mesh SKY_MATRIX Assembled SKY_MATRIX formatted matrix

SYSTEM.Vector...mesh SVT DOF-oriented SVT data object

12 Matrix/Vector Processors 12.6 Processor SKY (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.6-5

A factored matrix created using the FACTOR command also produces data records summarizing
the factorization. The data records listed in Table 12.6-4 are created following the FACTOR
command.

In addition to these output records, SKY also creates the macrosymbols listed in Table 12.6-5.

12.6.5 Limitations

12.6.5.1 Main Memory Limitations

Each of the SKY commands requires that the upper triangular portion of the SKY_MATRIX
formatted matrix reside in main memory. This requirement is SKY’s most important limitation.
Commands SOLVE and MULTIPLY also require memory space to store SVT data objects (in
addition to a small work space). The total memory space required by each command is
summarized below.

Table 12.6-4 Processor SKY Output Records

Data Record Name Record Type Description

COEF_DET.0 Float Coefficient of the determinant

EXP10_DET.0 Int Exponent of determinate to the base 2

NEG_ROOTS.0 Int Number of negative matrix diagonal elements

SIGN_DET.0 Int Sign of the determinant

Table 12.6-5 Processor SKY Macrosymbols

Macrosymbol Name Type Description

coef_det Float Coefficient of the determinant

exp10_det Int Exponent of determinant to the base 2

num_neg Int Number of negative matrix diagonal elements

sign_det Int Sign of the determinant

Operation Memory Space Requirement

FACTOR Neq*(4* iprc + 1) + iprc*nmat + 1

SOLVE Neq*(3* iprc + 1) + iprc*nmat + 1

MULTIPLY Neq*(4* iprc + 1) + iprc*nmat + 1

12.6 Processor SKY (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.6-6 COMET-AR User’s Manual Revised 12/1/97

where Neq is the number of equations, iprc is a precision flag (with a value of 1 or 2), and nmat is
the number of entries stored in the matrix skyline.

12.6.5.2 Allowed Data Structures

SKY assumes that all vectors are stored as SVT data objects. Although SKY can read Nodal
Vector Table (NVT) data objects, it presently outputs all vector results as SVT data objects. It is
recommended that the capabilities of COP and ASM be used to contract an NVT data object to an
SVT data object, and to expand an SVT data object to an NVT data object. Failure to do this
might result in conflicts between SKY and other COMET-AR processors.

12.6.5.3 Case Sensitivity

SKY specific commands and dataset names are case sensitive. All input is expected in uppercase.

12.6.6 Error Messages

The most commonly occurring error messages printed by SKY are presented in Table 12.6-6.
Each message has an associated probable cause and a recommended action.

Table 12.6-6 Processor SKY Error Messages

Index Error Message Probable Cause Recommended Action

1 Invalid command option The SKY processor does not recog-
nize the command.

Check spelling of input command
and case.

2 Command syntax error The correct SKY command has been
specified, however the separator
symbol (star or arrow) has been
improperly placed.

Use correct input format.

3 Dataset does not exist Unable to find one of the specified
datasets in the database.

Check spelling and status of the
logical device index.

4 Invalid data type There is a data type conflict between
specified datasets.

Check type of all data records spec-
ified.

5 Dataset length mismatch Input matrix and output matrix have
different lengths.

Check if length of the matrices are
different; also inspect the load vec-
tor.

6 Invalid vector length Input and output vectors have differ-
ent lengths.

Make sure that input and output
vectors are consistent.

7 Blank common too small Not enough memory. Increase the size of blank common.

8 Core too small Not enough memory. Increase the size of blank common.

9 Matrix is unfactored Attempt to use an unfactored matrix
with the SOLVE operation.

Factor or use different input matrix.

12 Matrix/Vector Processors 12.6 Processor SKY (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.6-7

12.6.7 Example and Usage Guidelines

The following is a typical command script for the SKY processor.

12.6.8 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

[2] Felippa, Carlos A., The Computational Structural Mechanics Testbed Architecture:
Volume II: Directives, NASA CR-178385, February 1989.

RUN SKY

 FACTOR 1 SKY_INPUT -> 2 SKY_OUTPUT

 SOLVE 2 SKY_OUPUT * 1 RHS_VECTOR -> 3 LHS_VECTOR

STOP

12.6 Processor SKY (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.6-8 COMET-AR User’s Manual Revised 12/1/97

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-1

12.7 Processor SKYs (Direct Linear Equation Solver)

12.7.1 General Description

Processor SKYs is a general purpose, out-of-core, linear equation solver employing the Crout
(LDU) factorization of symmetric non-singular matrices stored in skyline storage format (SMT
data object class).

SKYs includes special provisions for the particular needs of the AR environment:

• Partial factorization. Factor only new columns appended to a previously factored matrix
(required by the hs-refinement technique); and

• Iterative solution. Use of Preconditioned Conjugate Gradient (PCG)1 iterations using the
hs-refinement block diagonal matrix as a preconditioner (only when hs-refinement
technique is being used).

SKYs employs an optimized two-block factorization algorithm: a factored block, and an updated
block, which are dynamically allocated at run time with a size controlled by the user.

Processor SKYs is typically invoked by a high-level AR control procedure, such as
AR_CONTROL_1 (via procedure L_STATIC_1), in an adaptive refinement iterations loop.

12.7.2 Command Summary

Processor SKYs follows standard COMET-AR command interface protocol. A summary of
SKYs commands is given in Table 12.7-1.

1. See Section 12.4, Iterative Linear Equation Solver, for more details about the PCG algorithm.

Table 12.7-1 Processor SKYs Command Summary

Command Name Function Default

SET BUFFER_SIZE Specifies size in float words of the memory
buffer used by SKYs to store each of the system
matrix blocks.

262144
(1 MB single, 2 MB double)

SET CONSTRAINT_SET Specifies constraint-set number. 1

SET CONV_TOL Convergence tolerance. 10-6

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-2 COMET-AR User’s Manual Revised 12/1/97

12.7.3 Command Definitions

12.7.3.1 FACTOR Command

This is the “go” command for factorization stage. It causes SKYs to factor the assembled matrix
using Crout LDU factorization.

Command syntax:

SET COUPLING For hs-refinement, specifies whether coupling
load terms between superposed and underlying
meshes should be computed using the SIP or can
be computed from elements coupling stiffness
(stored in EAT).

COMPUTE

SET FIXED_FRAME Fixed frame flag for hs-refinement with the itera-
tive solution option.

NO

SET LDIC Specifies logical device index of computational
database.

1

SET LDIE Specifies logical device index of element matri-
ces database (required only for iterative solu-
tions).

2

SET LDIS Specifies logical device index of system matrices
database.

3

SET LOAD_SET Specifies load-set number. 1

SET MAX_ITER Specifies maximum allowable number of itera-
tions.

100

SET MESH Specifies mesh number. 0

SET STEP Specifies load step number. 0

SET SOLVER Specifies type of solver to be used: direct or itera-
tive.

DIRECT

SET UPDATE For hs-refinement, specifies whether the load
terms of an underlying mesh should be updated
using the SIP to account for geometry changes
between the superposed mesh and the underlying
mesh.

UPDATE

FACTOR/qualifier Partially factor the assembled system matrix.

SOLVE Obtain a solution vector.

FACTOR/qualifier

Table 12.7-1 Processor SKYs Command Summary (Continued)

Command Name Function Default

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-3

where

12.7.3.2 SOLVE Command

This is the “go” command for solution stage. It causes SKYs to compute the solution vector.

Command syntax:

12.7.3.3 SET BUFFER_SIZE Command

This command defines the size of the memory buffer used by SKYs to hold each assembled
system matrix columns block. A single block is required during the solution (SOLVE) stage and
two blocks are required during the factorization (FACTOR) stage.

Command syntax:

where

12.7.3.4 SET CONSTRAINT_SET Command

Defines the constraint set number associated with the element, nodal, and system data. This
number should appear as the second cycle number in names of all datasets.

Command syntax:

Parameter Description

qualifier Depends on the SOLVER selected (default value: FULL)

Direct Iterative

FULL full factorization factor all diagonal mesh blocks

PARTIAL only factor new columns factor diagonal block for last mesh only

SOLVE

SET BUFFER_SIZE = size

Parameter Description

size Matrix block size (in floating precision words) (Default 262144)

SET CONSTRAINT_SET = conset

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-4 COMET-AR User’s Manual Revised 12/1/97

where

12.7.3.5 SET CONV_TOL Command

Defines the convergence tolerance for the PCG iterations with respect to energy error.

Command syntax:

where

12.7.3.6 SET COUPLING Command

Defines the source for the coupling load terms during iterative hs-refinement solution.

Command syntax:

where

12.7.3.7 SET FIXED_FRAME Command

Sets the fixed-frame flag to the appropriate state for hs-refinement solution. SKYs computes the
residual vectors by using the “S-Interpolation Property” (SIP) to account for the coupling terms
between the superposed mesh and the underlying mesh. This process involves interpolation of
load vectors which are needed to be transformed into a global/fixed coordinate system before and
after the interpolation, unless a fixed computational frame is used throughout the mesh.

Parameter Description

conset Constraint set number (default value: 1)

SET CONV_TOL = contol

Parameter Description

contol Convergence tolerance (default value: 10-6)

SET COUPLING = source

Parameter Description

source The source for the coupling load terms:
LOAD —read coupling stiffness from EAT (EltNam.COUP_STIFF...mesh
dataset) and multiply by the displacement vector
COMPUTE—use the SIP to interpolate loads from superposed element to
their underlying ancestor elements (default value: COMPUTE)

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-5

Command syntax:

where

12.7.3.8 SET LDIC Command

Defines the logical device index for the computational database.

Command syntax:

where

12.7.3.9 SET LDIE Command

Defines the logical device index for the element matrices database.

Command syntax:

where

12.7.3.10 SET LDIS Command

Defines the logical device index for the system matrices database.

SET FIXED_FRAME = flag

Parameter Description

flag Fixed computational frame flag (default value: NO)

SET LDIC = ldic

Parameter Description

ldic Logical device index (default value: 1)

SET LDIE = ldie

Parameter Description

ldie Logical device index (default value: 2)

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-6 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

12.7.3.11 SET LOAD_SET Command

Defines the load set number associated with the element, nodal, and system data. This number
should appear as the first cycle number in names of all datasets.

Command syntax:

where

12.7.3.12 SET MAX_ITER Command

Defines the maximum allowable number of PCG iterations.

Command syntax:

where

12.7.3.13 SET MESH Command

Defines the mesh number for the system equations to be processed. This number should appear as
the third cycle number in names of all datasets.

SET LDIS = ldis

Parameter Description

ldis Logical device index (default value: 3)

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MAX_ITER = maxiter

Parameter Description

maxiter Maximum number of iterations (default value: 100)

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-7

Command syntax:

where

12.7.3.14 SET SOLVER Command

Defines the solver to be used during hs-refinement solution.

Command syntax:

where

12.7.3.15 SET STEP Command

Defines the solution step number (for nonlinear analysis only) associated with the element, nodal,
and system data. This number, if defined, should appear as the first cycle number in names of all
datasets.

Command syntax:

where

SET MESH = mesh

Keyword Description

mesh Mesh to be solved (default value: 0)

SET SOLVER = solver

Parameter Description

solver Type of solver to be used in hs-refinement solution: DIRECT or
ITERATIVE (default value: DIRECT)

SET STEP = step

Parameter Description

step Solution step number (default value: 0)

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-8 COMET-AR User’s Manual Revised 12/1/97

12.7.3.16 SET UPDATE Command

This command sets the update mode for underlying mesh elements during iterative hs-refinement
solution. SKYs is capable of updating the load terms of an underlying mesh using the SIP to
account for geometry changes between the superposed mesh and the underlying mesh.

Command syntax:

where

12.7.4 Database Input/Output

12.7.4.1 Input Datasets

A summary of input datasets required by Processor SKYs is given in Table 12.7-2.

SET UPDATE = flag

Parameter Description

flag Update load mode: YES/NO (default value: YES)

Table 12.7-2 Processor SKYs Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

NODAL.DOF..conset.mesh NDT Nodal DOF dataset

EltNam.DEFINITION...mesh EDT Element definition dataset

EltNam.REFINEMENT...mesh ERT Element refinement dataset

EltNam.COUP_STIFF...mesh EAT Element coupling matrix dataset (in file LDIE)

EltNam.MATL_STIFFNESS...mesh EMT Element matrix dataset (in file LDIE)

SYSTEM.VECTOR.ldset..mesh SVT System load vector

COLUMN.HEIGHT...mesh SMT Columns heights (in file LDIS)

DIAGONAL.ADRESSES...mesh SMT Diagonal elements pointers (in file LDIS)

D.VECTOR...mesh SMT D vector of Crout LDU decomposition (in file LDIs).
This dataset is an input dataset in the SOLVE stage and
an output dataset in the FACTOR stage.

STRUCTURE.MATL_STIFFNESS...mesh SMT The assembled matrix (in file LDIS): unfactored matrix
as input to the FACTOR stage and the decomposed
matrix as input to the SOLVE stage

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-9

12.7.4.2 Output Datasets

A summary of output datasets created by Processor SKYs is given in Table 12.7-3.

12.7.5 Limitations

12.7.5.1 SMT Data Structures Form

SKYs currently recognizes only SMT type data structure as created by ASMs. Other assembly
processors within COMET-AR output different types of data structures (such as COMPAXX
format) which can not be accessed by SKYs.

12.7.6 Error Messages

SKYs contains extensive error checking. Most of the error messages printed by SKYs are self-
explanatory and aim to help the user correct mistakes. Some of the errors may occur at code levels
below SKYs (e.g., HDB, DB, GAL, etc.) and SKYs describes those errors to the best of its ability.

The following summarizes error messages related to user interface problems produced by SKYs.

Table 12.7-3 Processor SKYs Output Datasets

Dataset Class Contents

SYSTEM.VECTOR.ldset..mesh SVT System load vector

D.VECTOR...mesh* SMT D vector of Crout LDU decomposition (in file LDIS)

STRUCTURE.MATL_STIFFNESS...mesh SMT The factored system matrix (in file LDIS)

*—created record

Index Error Message Cause Recommended User Action

1 Unknown SET variable name
encountered in SKYs.

SKYs user interface
cover encountered un-
recognized SET variable
name.

Check spelling of set variable name in
CLIP procedure.

2 Unknown command encountered in
SKYs.

SKYs user interface
cover encountered un-
recognized command.

Check spelling of command in CLIP proce-
dure.

3 Old/new dataset name could not be
opened in routine name.

SKYs could not open a
certain dataset.

1. Check execution log for error produced
by processors prior to SKYs execution.
2. Verify the particular dataset name using
the HDBprt processor.
3. Make sure that all required input datasets
are present in the database file.

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-10 COMET-AR User’s Manual Revised 12/1/97

In addition to the above generic messages, SKYs will print any relevant information regarding the
problem to assist the user in correcting the error. A full trace-back printout of error messages will
follow the first message, and SKYs will attempt to terminate its execution as cleanly as possible
(closing opened datasets, releasing memory allocations, etc.).

12.7.7 Examples and Usage Guidelines

12.7.7.1 Example 1: Basic Operation

In this example, the assembled matrix of mesh 1 is factored out-of-core using the default memory
allocation size (e.g., 524288 words) followed by standard forward reduction/back substitution
solution for mesh 1 displacement field.

5 Dataset name could not be closed in
routine name.

SKYs could not close a
certain dataset.

1. Check execution log file; look for errors
previously produced by processor SKYs.
2. Verify SKYs is the only processor
accessing the database file. (Is ARGx being
used in the same directory?)

6 Dataset name access problem in
routine name
—or—
could not get/put/add/update/
attribute name to dataset name in
routine name.

SKYs could not get/put
an attribute from/to the
dataset name table.

Verify that the particular dataset contains
attributes required by SKYs.

7 Could not allocate memory for
array name in routine name

Malloc memory alloca-
tion problem encountered
in DBmem level

Check with your system manager. You may
need permission to access more memory.

8 Zero or negative diagonal term in
FACTOR, Equation number = eqn.

Assembled matrix is non-
positive-definite matrix.

Check your model element connectivity
and boundary condition. ARGx may be
useful in this regard.

RUN SKYs

SET MESH = 1

SET SOLVER = DIRECT

FACTOR/FULL

SOLVE

STOP

Index Error Message Cause Recommended User Action

12 Matrix/Vector Processors 12.7 Processor SKYs (Direct Linear Equation Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.7-11

12.7.7.2 Example 2: Iterative Solution (hs-refinement only)

In this example, the assembled block diagonal matrix of mesh 1 hs-refinement is factored
followed by an iterative solution for the mesh 1 displacement field using 10-7 as the solution
energy error norm tolerance, allowing up to 1000 iterations, and computing the residual vectors
using re-computed element stiffness coupling matrices stored in an EAT dataset.

12.7.8 References

None.

RUN SKYs

SET MESH = 1

SET SOLVER = ITERATIVE

SET COUPLING = LOAD

SET CONV_TOL = 10 -7

SET MAX_ITER = 1000

FACTOR/PARTIAL

SOLVE

STOP

12.7 Processor SKYs (Direct Linear Equation Solver) 12 Matrix/Vector Processors

12.7-12 COMET-AR User’s Manual Revised 12/1/97

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-1

12.8 Processor VEC (Vector Algebra Utility)

12.8.1 General Description

Processor VEC performs a number of algebraic functions using nodally-oriented system vectors
and rotation vectors, which are stored in the database as Nodal Vector Table (NVT) and Nodal
Attribute Table (NAT) data objects (Reference [1]). Basic facilities exist in VEC for creating,
interrogating, and modifying NVT and NAT data objects. VEC is primarily used to write solution
procedures to solve specific analysis tasks. An example of a solution procedure developed using
VEC is NL_STATIC_1, which uses an arclength-controlled version of a modified Newton-
Raphson incremental solution algorithm. VEC is also used in stand-alone mode to pre- or post-
process NVT and NAT data objects.

VEC also has the capability to create and modify a Nodal Degree-of-Freedom Table (NDT) data
object. This feature is used in certain nonlinear solution procedures to modify the active degrees-
of-freedom at a node. Processor VEC should not be used instead of processor COP (specifically
designed to define a Nodal DOF Table), but to augment COP’s capabilities.

12.8.2 Processor Command Summary

VEC input is governed by the COMET-AR command language CLAMP (Reference [2]);
therefore, VEC accepts both CLIP directives [3] and VEC-specific commands. All VEC output
are data objects which conform to the object-oriented High-level Database (HDB) data structure
formats [1]. Main memory data management is controlled by DB-MEM [4] and global data
management is organized by GAL-DBM [5].

The data type of a new object introduced to VEC is specified by the user in an initialization
command. The data type of an existing object (residing on a GAL library) is known to VEC, since
HDB data objects are self-descriptive. The only data object classes recognized by VEC are NAT,
NDT, and NVT. If VEC does create a new data object, its numerical precision is determined by
VEC’s default floating-point precision, selected when the processor is compiled.

Use of HDB data structures requires that data objects be linked to a Complete Summary of the
Model (CSM) data object. In VEC, the requirement of associating a data object with its CSM
object is transparent to the user. VEC automatically searches the default GAL library (via default
logical device index ldi) for the CSM.SUMMARY...mesh dataset when the first VEC command is
issued. (The default CSM data object can be changed by resetting default ldi and mesh values
using the SET LDI or SET MESH commands.)

Once a vector object has been opened in VEC, it remains open and active unless an explicit
CLOSE command is issued. This convention is established to improve computational efficiency.

Since there is no separate object class for rotation pseudo-vectors, a NAT object is used to store
this vector type. As a result, some VEC commands have been updated to handle NAT objects as
well as NVT objects.

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-2 COMET-AR User’s Manual Revised 12/1/97

Table 12.8-1 provides a summary of all VEC commands.

12.8.3 Command Glossary

The general form of a VEC algebraic command is symbolically represented as:

or:

The command items are defined below.

Table 12.8-1 VEC Command Summary

Command Name Function

CLOSE Explicitly close and save a data object

COMBINE Compute the linear combination of two vectors

COMPONENT Select a specific component from a vector

DOT Compute the inner product of two vectors

DIAG_INV Computes the inverse of each component of a NVT vector.

FIX Change the constraint status of a specified freedom

INIT_NAT Initialize a rotations pseudo-vector (NAT data object)

INIT_NDT Initialize a Nodal DOF Table (NDT data object)

INIT_NVT Initialize a Nodal Vector Table (NVT data object)

INIT_VEC Initialize a Nodal Vector Table (NVT data object)

NORM Compute the Euclidean or maximum vector norm

PRINT Print or display the contents of a vector

PROD Multiply a diagonal matrix times a vector

ROTATE Update a nodal rotation pseudo-vector

SET Set default names and parameters

STOP Exit the VEC processor

Command [/qualifier] α a * β b -> γ c

Command [/qualifier] γ c <- α a ± β b

 Item Item Description

a, b Input vector dataset identifiers, each comprising a logical device index (ldi) and dataset name (dsn)

c Output vector dataset identifier, comprising a logical device index (ldi) and a dataset name (dsn)

α, β, γ Scalar constants associated with vectors a, b, and c, usually constants or macrosymbol expressions.

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-3

Vector dataset identifiers interpreted by VEC are composed of a complete dataset name
specification. The format for specifying a vector dataset identifier is as follows.

The ldi value in a vector dataset identifier is optional. If the ldi value is omitted, the default ldi
value supplied by the user on a previous SET LDI command is used. The dataset name dsn,
however, is mandatory and must include all necessary component names and cycle numbers. An
actual VEC command would look (generically) like this:

where Command is a VEC command and qualifier is an optional command qualifier; cA and cB
are constants; dsnA, dsnB, and dsnC are dataset names; and ldiA, ldiB, and ldiC are GAL library
logical device indices. Using the CLIP directive, *DEFINE, the user can rewrite this command
using a math-like syntax that resembles the symbolic representation. The following formal
statements illustrate the use of *DEFINE directives used in conjunction with a generic VEC
command.

12.8.3.1 CLOSE Command

The CLOSE command explicitly saves and closes a data object currently open in VEC. This
function is automatically performed when the VEC processor is terminated with a STOP or RUN
command. By explicitly closing an object, however, the user can control VEC’s use of main
memory.

The command items are defined below.

Vector Dataset Identifier

 [ldi] dsn

Parameter Description

ldi GAL library logical device index containing the dataset named dsn

dsn Name of dataset containing the vector object

Command [/qualifier] cA [ldiA] dsnA + cB [ldiB] dsnB -> [ldiC] dsnC

*def/d a = cA

*def/d b = cB

*def/a VectorA = [ldiA] dsnA

*def/a VectorB = [ldiB] dsnB

*def/a VectorC = [ldiC] dsnC

Command [/ qualifier] <a> <VectorA> + <VectorB> -> <VectorC>

CLOSE [a]

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-4 COMET-AR User’s Manual Revised 12/1/97

If no dataset identifier is specified, then all open data objects are saved and closed.

12.8.3.2 COMBINE Command

The COMBINE command computes the linear combination of up to two vectors. Each vector
may be scaled by a constant. The use of this command is not limited to combining two vectors. By
using only one dataset identifier this command can be used to perform a range of functions such
as clearing, initializing, scaling, and copying a vector. This command applies to NVT data objects
only, except when a vector is scaled it accepts NVT or NAT (pseudo-vector) data objects.

The command items are defined below.

12.8.3.3 COMPONENT Command

The COMPONENT command either extracts a specified component from a vector or replaces a
vector component with a new value. The direction of the arrow operator indicates which function
to perform. The extracted component value is assigned to a designated macrosymbol and is also
printed in the output file. This command is only valid for NVT data objects.

To extract a specific component from a vector object use the following command.

The command items are defined below.

 Item Item Description

a Input dataset identifier: [ldi] dsn

COMBINE c <- [α] a [± [β] b]

 Item Item Description

a, b Input dataset identifiers: [ldi] dsn

c Output dataset identifier: [ldi] dsn

α, β Constants multiplying vectors a and b (default values: 1.0)

COMPONENT a { i | node, dof } -> γ

 Item Item Description

a Input dataset identifier: [ldi] dsn

i Vector component index: 1 ≤ i ≤ length(a)

node, dof Node and DOF index corresponding to a component: 1 ≤ node ≤ nnode and 1 ≤ dof ≤ ndof

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-5

To change the value of a specified component in a vector dataset, use the following command.

The command items are defined below.

12.8.3.4 DIAG_INV Command

The DIAG_INV command computes the inverse of Nodal Vector Table (NVT) data object.

The command items are defined below.

12.8.3.5 DOT Command

The DOT command computes an inner vector product and is only valid for NVT data objects.

The command items are defined below.

γ Name of macrosymbol to receive the vector component value

COMPONENT a { i | node, dof } <- γ

 Item Item Description

a Output dataset identifier: [ldi] dsn

i Vector component index: 1 ≤ i ≤ length(a)

node, dof Node and DOF index corresponding to a component: 1 ≤ node ≤ nnode and 1 ≤ dof ≤ ndof

γ Scalar constant assigned to the component specified by i or node,dof

DIAG_INV a -> c

 Item Item Description

a Input dataset identifiers: [ldi] dsn

c Output dataset identifier: [ldi] dsn

DOT a * b -> γ

 Item Item Description

a, b Input dataset identifiers: [ldi] dsn

 Item Item Description

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-6 COMET-AR User’s Manual Revised 12/1/97

12.8.3.6 FIX Command

The FIX command assigns the state attribute of a component in an NDT data object to be zero
(i.e., a suppressed DOF).

The command items are defined as follows:

12.8.3.7 INIT_NAT Command

The INIT_NAT command creates and initializes new rotation pseudo-vectors stored in a Nodal
Attribute Table (NAT) data object.

The command items are defined below.

12.8.3.8 INIT_NDT Command

The INIT_NDT command creates and initializes a new Nodal DOF Table (NDT) data object. The
attributes associated with each node are initialized so that all nodes are active and all nodal
degrees-of-freedom are FREE. The components are numbered consecutively.

γ Name of macrosymbol to receive the dot product value

FIX node, dof d

 Item Item Description

d Input/output NDT dataset identifier: [ldi] dsn

node, dof Node and DOF index corresponding to the suppressed freedom:1 ≤ node ≤ nnode and 1 ≤ dof ≤ ndof

INIT_NAT a [nnode, ndof]

 Item Item Description

a Output NAT dataset identifier: [ldi] dsn

nnode
Number of nodes (columns) in the table. If omitted, the attribute value of Nnode in the CSM data
object is used.

ndof Number of degrees-of-freedom per node (default value: 3)

INIT_NDT d [nnode, ndof]

 Item Item Description

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-7

The command items are defined below.

12.8.3.9 INIT_NVT Command

The INIT_NVT command creates and initializes a new Nodal Vector Table (NVT) data object.

The command items are defined below.

12.8.3.10 INIT_VEC Command

This command is a synonym for the INIT_NVT command. See the description of INIT_NVT for
usage details.

12.8.3.11 NORM Command

The NORM command either computes the Euclidean norm or the maximum norm of a vector,
and is only valid for NVT data objects. The command for the Euclidean vector norm takes the
following form:.

The command items are defined below.

 Item Item Description

d Output NDT dataset identifier: [ldi] dsn

nnode
Number of nodes (columns) in the table. If omitted, the attribute value of Nnode in the CSM data object
is used.

ndof
Number of degrees-of-freedom per node. If omitted, the value of Ndofn in the CSM data object is used.
If the CSM isn’t open, ndof=6 is used.

INIT_NVT a [nnode, ndof]

 Item Item Description

a Output NVT dataset identifier: [ldi] dsn

nnode
Number of nodes (columns) in the table. If omitted, the attribute value of Nnode in the CSM data
object is used.

ndof Number of degrees-of-freedom per node (default value: 3)

NORM a -> γ

 Item Item Description

a Input dataset identifier: [ldi] dsn

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-8 COMET-AR User’s Manual Revised 12/1/97

The command for the maximum vector norm takes the following form:

where the command items are defined as follows:

12.8.3.12 PRINT Command

The PRINT command displays the contents of an NVT or an NAT data object. Print output can be
redirected to a file by changing the default output unit number using the SET OUTPUT_UNIT
command described in this Command Glossary. The name of the output is set with the SET
FILENAME command, also described in the Command Glossary.

The command items are defined below.

12.8.3.13 PROD Command

The PROD command multiplies a diagonal matrix times a vector and is only valid for NVT data
objects.

γ Name of macrosymbol to receive the Euclidean vector norm value

NORM /MAX a -> γ { i | node, dof }

 Item Item Description

a Input dataset identifier: [ldi] dsn

 γ Name of macrosymbol to receive the maximum vector norm value

i Name of macrosymbol to receive the maximum-component index value

node, dof Names of macrosymbols to receive the maximum-component (node, dof) values

PRINT a

 Item Item Description

a Input dataset identifier: [ldi] dsn

PROD a * b -> c

 Item Item Description

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-9

The command items are defined below.

12.8.3.14 ROTATE Command

The ROTATE command updates nodal rotation triads (pseudo-vectors), stored in an NAT data
object.

The command items are defined below.

12.8.3.15 SET Command

The SET command is used to specify name and parameter values.

The command items are defined below.

 Item Item Description

a, b Input NVT dataset identifiers: [ldi] dsn

c Output NVT dataset identifier: [ldi] dsn

ROTATE a * β b -> c

 Item Item Description

a Input (old) NAT rotation pseudo-vector dataset identifier: [ldi] dsn

b Input NVT dataset identifier: [ldi] dsn

c Output (updated) NAT rotation pseudo-vector dataset identifier: [ldi] dsn

SET keyword = value

 Keyword Default Item Description

DOFN
d1, d2, d3,

theta1, theta2, theta3
Nodal DOF name list

MESH 0 Mesh number

NDOFN 6 Number of nodal DOFs (must agree with no. of items in DOFN list)

LDI 1 GAL library logical device index value

OUTPUT_UNIT 6 FORTRAN output logical unit number

STEP 0 Solution step number

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-10 COMET-AR User’s Manual Revised 12/1/97

12.8.3.16 STOP Command

The STOP command saves and closes all open VEC data objects and database files and returns
control to the parent processor. The COMET-AR command “RUN processor_name” will perform
this same function in addition to transferring control to processor named processor_name.

12.8.4 Database Input/Output Summary

12.8.4.1 Input Datasets

VEC input, depending on the selected command, consists of data objects with generic dataset
names listed in Table 12.8-2. The data object types required by each specific command are
discussed in Section 12.8.2, Processor Command Summary.

A CSM object (typically contained in a dataset named CSM.SUMARY...mesh) is associated with
each data object recognized by VEC. Explicit specification of the CSM object associated with
every data object is not required, VEC locates the CSM object on the database using the LDI
value and mesh number specified with the SET LDI and SET MESH commands. If the LDI value
or mesh number is not explicitly set, then VEC uses its internal values defined when the processor
starts. If a CSM object is not found, then one will be created using either the user-supplied LDI
value and mesh number or VEC’s default LDI value and mesh number.

12.8.4.2 Output Datasets

VEC output, depending on the selected command, is a data object with a generic dataset name
listed in Table 12.8-3. The data object types required by each specific command are discussed in
Section 12.8.2, Processor Command Summary.

STOP

Table 12.8-2 Processor VEC Input Datasets

Dataset Class Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

NODAL.AttName.step..mesh NAT Nodal Attribute Table (NAT) of pseudo-vectors used to update nodal
rotation triads. The name of an NAT data object is completely specified
by the user, including component names and cycle numbers.

NODAL.DOF..conset.mesh NDT Nodal DOF Table (NDT). The name of an NDT data object is com-
pletely specified by the user, including component names and cycle
numbers

NODAL.VecName.step..mesh NVT Nodal Vector Table (NVT). The name of an NVT data object is com-
pletely specified by the user, including component names and cycle
numbers.

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-11

A CSM object (typically contained in a dataset CSM.SUMARY...mesh) is associated with each
data object recognized by VEC. Explicit specification of the CSM object associated with every
data object are not required, VEC locates the CSM object on the database using the LDI value and
mesh number specified with the SET LDI and SET MESH commands. If the LDI value or mesh
number is not explicitly set, then VEC uses its internal values which are defined when the
processor starts. If a CSM object is not found, then one will be created using either the user-
supplied LDI value and mesh number or VEC’s default LDI value and mesh number. VEC
initializes a new CSM object’s nodal attributes with the values of the SET command parameters
NDOFN and DOFN.

If VEC creates a new data object, its numerical precision is determined by VEC’s default floating-
point precision, selected when the processor is compiled.

12.8.5 Limitations

Processor VEC has no inherent limitations.

12.8.6 Error Messages

VEC produces user-friendly error messages. The messages often include complete descriptions of
all vectors involved (i.e., ldi and dataset_name) with a comment about what to do next.

12.8.7 Examples and Usage Guidelines

The example script shown in Table 12.8-4 is located in the VEC master source directory
($AR_VEC) and is used to test basic VEC functionality. It contains instructive comments and
illustrates the syntax for almost every VEC command. Study this file before applying VEC to
specific analysis tasks.

Table 12.8-3 Processor VEC Output Datasets

Dataset Class Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

NODAL.AttName.step..mesh NAT Nodal Attribute Table (NAT) of pseudo-vectors used to update nodal rota-
tion triads. The name of an NAT data object is completely specified by the
user, including component names and cycle numbers.

NODAL.DOF..conset.mesh NDT Nodal DOF Table (NDT). The name of an NDT data object is completely
specified by the user, including component names and cycle numbers.

NODAL.VecName.step..mesh NVT Nodal Vector Table (NVT). The name of an NVT data object is completely
specified by the user, including component names and cycle numbers.

Table 12.8-4 Example 1: Test Script for VEC

*sys rm VEC_TEST.DBC
*open VEC_TEST.DBC

*def/i vec_size == 10

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-12 COMET-AR User’s Manual Revised 12/1/97

*def/i vec_io == 6

set output_unit = <vec_io>

*remark ================================
*remark TESTING OPERATIONS on NVT OBJECT
*remark ================================
*remark
*remark
*remark Initialize vector A : VECCLR VECINVT
*remark =====================================

 init_vec 1 a.a <vec_size>
 1 a.a <- 1.0
 print 1 a.a

*remark
*remark Initialize vector B : VECCLR VECINVT
*remark =====================================

 init_vec 1 b.b <vec_size>
 1 b.b <- 2.0
 print 1 b.b

*remark
*remark Linear combination of input vectors C = 2.0*A + B : VECADD
*remark ==

 1 c.c <- 2.0 1 a.a + 1 b.b
 print 1 c.c

*remark
*remark Linear combination of input vectors C = 2.0*A + 3.0*A : VECADD
*remark ==

 1 a.a <- 2.0 1 a.a + 3.0 1 a.a
 print 1 a.a

*remark
*remark Scaled copy of vector C = 2.0*C : VECSCL
*remark ==

 1 c.c <- 2.0 1 c.c
 print 1 c.c

*remark
*remark Direct copy of vector D = C : VECCOP
*remark ====================================

 d.d <- 1 c.c
 print 1 d.d

*remark
*remark Extract component value from vector: VECCMP
*remark ===

 comp 1 b.b 9 3 -> node2
 comp c.c 9 3 -> node1
 *show macro node1
 *show macro node2

*remark
*remark Set component value of vector: VECCMP

Table 12.8-4 Example 1: Test Script for VEC (Continued)

12 Matrix/Vector Processors 12.8 Processor VEC (Vector Algebra Utility)

Revised 12/1/97 COMET-AR User’s Manual 12.8-13

*remark =====================================

 comp 1 b.b 9 3 <- <node1>
 print 1 b.b 9 3
 comp c.c 9 3 <- <node2>
 print 1 c.c 9 3

*remark
*remark Compute DOT product: VECDOT
*remark ===========================

 dot d.d * d.d -> scaleD
 dot 1 a.a * 1 d.d -> scaleAB
 *show macro scaleD
 *show macro scaleAB

*remark
*remark Compute vector product (term by term): VECPROD
*remark ==

 prod b.b * b.b -> e.e
 print e.e

 prod 1 e.e * c.c -> 1 f.f
 print 1 f.f

 prod 1 f.f * 1 f.f -> 1 f.f
 print 1 f.f 1
 print 1 f.f 0 4

*remark
*remark Compute norm: VECnrm
*remark ====================

 norm 1 a.a -> normA
 *show macro normA

*remark
*remark Compute MAX norm: VECmax
*remark ========================

 norm/max 1 b.b -> MaxNormB NodeB DofB
 *show macro MaxNormB
 *show macro NodeB
 *show macro DofB

*remark
*remark
*remark ================================
*remark TESTING OPERATIONS on NDT OBJECT
*remark ================================
*remark
*remark
*remark Initialize vector DOF Table : VECINDT
*remark =====================================

 init_ndt 1 n.n <vec_size>

 fix 1 n.n 1 6
 fix 1 n.n 1 5

 fix 1 n.n 1 4

Table 12.8-4 Example 1: Test Script for VEC (Continued)

12.8 Processor VEC (Vector Algebra Utility) 12 Matrix/Vector Processors

12.8-14 COMET-AR User’s Manual Revised 12/1/97

12.8.8 References

[1] Stanley, G., and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

[2] Felippa, C., A Command Language for Applied Mechanics Processors, Volume I: The
Language, NASA CR-178384, 1988.

[3] Felippa, C., A Command Language for Applied Mechanics Processors Volume II:
Directives, NASA CR-178385, 1989.

[4] Stehlin, B., DB/MEM: Generic Database Utilities for the COMET-AR Testbed, NASA
Computational Structural Mechanics (CSM) Contract Report, May 1992.

[5] Felippa, C., Regelbrugge, M., and Wright, M., The Computational Structural Mechanics
Testbed Architecture, Volume IV: The Global Database Manager GAL-DBM, NASA CR-
178387, 1989.

 free 1 n.n 1 5

*remark
*remark
*remark ================================
*remark TESTING OPERATIONS on NAT OBJECT
*remark ================================
*remark
*remark
*remark Initialize NAT vectors A : VECINAT
*remark =============================

 init_nat 1 q.q <vec_size>
 init_nat 1 s.s <vec_size> 3
 print/nat 1 s.s

*remark Testing rotation Pseudo_vector Update:VECSPN
*remark ==

 rotate 1 s.s * 1.0 1 a.a -> 1 s.s
 print/nat 1 s.s

 rotate 1 s.s * 0.2 1 a.a -> 1 t.t
 print/nat t.t

 1 u.u <- 1 t.t
 print/nat u.u

*remark
*remark
*remark Closing all open HDB/DB objects
*remark ===============================

 close

Table 12.8-4 Example 1: Test Script for VEC (Continued)

12 Matrix/Vector Processors 12.9 Processor VSS (Vectorized Sparse Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.9-1

12.9 Processor VSS (Vectorized Sparse Solver)

12.9.1 General Description

Processor VSS is a very fast direct linear equation solver developed at NASA that operates on
sparse matrices and employs optimal equation renumbering to minimize the number of floating
point operations.

12.9.2 Command Summary

Processor ITER follows standard COMET-AR command interface protocol. A summary of ITER
commands is given below in Table 12.9-1.

12.9.3 Command Definitions

12.9.3.1 SOLVE Command

This is the “go” command for processor VSS. It causes VSS to both factor the assembled matrix
and solve for the solution vector via forward and back substitution.

Command syntax:

12.9.3.2 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Table 12.9-1 Processor VSS Command Summary

Command Name Function Default Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET LDIC Specifies logical device index of computational database 1

SET LDIS Specifies logical device index of system database 3

SET LOAD_SET Specifies load set number 1

SET MESH Specifies mesh number 0

SET STEP Specifies load step number 0

SOLVE Obtain a solution using PCG iterations

SOLVE

12.9 Processor VSS (Vectorized Sparse Solver) 12 Matrix/Vector Processors

12.9-2 COMET-AR User’s Manual Revised 12/1/97

Command syntax:

where

12.9.3.3 SET LDIC Command

This command defines the logical device index for the computational database.

Command syntax:

where

12.9.3.4 SET LDIS Command

This command defines the logical device index for the system database.

Command syntax:

where

12.9.3.5 SET LOAD_SET Command

This command defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the first cycle number in names of all datasets.

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number. (default value: 1)

SET LDIC = ldic

Parameter Description

ldic Logical device index. (default value: 1)

SET LDIS = ldis

Parameter Description

ldis Logical device index. (default value: 3)

12 Matrix/Vector Processors 12.9 Processor VSS (Vectorized Sparse Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.9-3

Command syntax:

where

12.9.3.6 SET MESH Command

This command defines the mesh number for the system equations to be processed. This number
should appear as the third cycle number in names of all datasets.

Command syntax:

where

12.9.3.7 SET STEP Command

This command defines the solution step number (for nonlinear analysis only) associated with the
element, nodal, and system data. This number, if defined, should appear as the first cycle number
in names of all datasets.

Command syntax:

where

SET LOAD_SET = ldset

Parameter Description

ldset Load set number (default value: 1)

SET MESH = mesh

Parameter Description

mesh Mesh to be solved (default value: 0)

SET STEP = step

Parameter Description

step Solution step number (default value: 0)

12.9 Processor VSS (Vectorized Sparse Solver) 12 Matrix/Vector Processors

12.9-4 COMET-AR User’s Manual Revised 12/1/97

12.9.4 Database Input/Output

12.9.4.1 Input Datasets

A summary of input datasets required by Processor VSS is given below in Table 12.9-2.

12.9.4.2 Output Datasets

A summary of output datasets created by Processor VSS is given below in Table 12.9-3.

12.9.5 Limitations

12.9.5.1 Memory Limitation

VSS is currently limited to in-core operation (i.e., the assembled and factored matrices must fit
completely in memory). Due to the optimal renumbering scheme this does not usually cause
difficulties for structural problems until the problem size is of the order of 105 equations.

Table 12.9-2 Processor VSS Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

SYSTEM.VECTOR.ldset..mesh SVT System load vector (right-hand-side of equation system).

STRUCTURE.MATL_STIFFNESS...mesh System
Matrix

Assembled system matrix (in file LDIS). Records
description:

Record
Name

Description

COLLTH Columns (rows) heights

COLPTR Diagonal elements pointers

ROWS Identity of non-zero elements in each row

DIAG Diagonal terms

COEFS Off-diagonal non-zero terms

Table 12.9-3 Processor VSS Output Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary table

SYSTEM.VECTOR.ldset..mesh* SVT System solution vector

12 Matrix/Vector Processors 12.9 Processor VSS (Vectorized Sparse Solver)

Revised 12/1/97 COMET-AR User’s Manual 12.9-5

12.9.5.2 Multiple Right-Hand-Sides

VSS currently does not save (i.e., output) the factored matrix. It repeats the matrix factorization
every time the SOLVE command is issued, even if only the right-hand-side has changed.

12.9.6 Error Messages

To be documented by the developer(s) of VSS.

12.9.7 Examples and Usage Guidelines

12.9.7.1 Example 1: Basic Operation of VSS

In this example, the assembled matrix of mesh 1 is factored followed by an iterative solution for
mesh 1 displacement field using 10-7 as the solution energy error norm tolerance and allowing up
to 1000 iterations.

12.9.8 References

None.

RUN VSS

SET MESH = 1

SOLVE

STOP

12.9 Processor VSS (Vectorized Sparse Solver) 12 Matrix/Vector Processors

12.9-6 COMET-AR User’s Manual Revised 12/1/97

13 Special-Purpose Processors 13.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 13.1-1

13 Special-Purpose Processors

13.1 Overview

In this chapter we describe special-purpose COMET-AR processors that do not fit in any of the
other categories. A summary of currently available special-purpose processors is given in Table
13.1-1.

Table 13.1-1 Outline of Chapter 13: Special-Purpose Processors

Section Processor Function

13.2 AMPC Automatic multi-point constraint (MPC) generator for suppression
of spurious shell drilling rotational DOFs.

13.3 COMET-AR COMET-AR macro-processor used to start-up the system (may
contain some or all of the other COMET-AR processors as internal
processors).

13.4 TRIAD Generates new computational reference frames (triads) at nodes
that require stabilization of drilling DOFs in response to the
AUTO_TRIAD option provided by most COMET-AR Solution
Procedures.

13.1 Overview 13 Special-Purpose Processors

13.1-2 COMET-AR User’s Manual Revised 12/1/97

13 Special-Purpose Processors 13.2 AMPC (Automatic Multipoint Constraint)

Revised 12/1/97 COMET-AR User’s Manual 13.2-1

13.2 AMPC (Automatic Multipoint Constraint)

13.2.1 General Description

Processor AMPC is used to suppress shell-element drilling rotational freedoms selectively by
applying multipoint constraints to the nodal rotations in the computational frame. The multipoint
constraints generated by the AMPC processor are stored in the NODAL.DOF dataset and are
consistent with any other multipoint constraints that may exist in the model (e.g., due to boundary
conditions and/or due to constraint-based refinement). Processor AMPC examines the
NODE.DRIL dataset which identifies nodes that require drilling stabilization, and for those nodes
generates a multipoint constraint equation defined as follows:

where denotes the ith computational rotation freedom at the node and n is the element-aver-
aged nodal normal (defined in the NODE.NORM dataset). The subscripts max, minmax, and min
denote the rotation DOFs which are the most-closely, intermediately, and least-closely aligned
with the nodal normal.

Processor AMPC is automatically invoked via the AUTO_MPC solution procedure option (for
example, see the L_STATIC procedure in the COMET Procedure Manual).

13.2.2 Command Summary

Processor AMPC follows standard COMET-AR command interface protocol. A summary of
recognized commands is given in Table 13.2-1.

Table 13.2-1 Processor AMPC Command Summary

Command Name Function Default Value

SET CONSTRAINT_SET Specifies constraint-set number 1

SET LDI Specifies logical device index of computational database 1

SET LOAD_SET Specifies load-set number 1

SET MESH Specifies mesh number to be processed 0

MPC Generate the MPCs for the specified mesh

SET STEP Specifies step number 0

θmax
c nmax

c• θminmax
c nminmax

c• θmin
c nmin

c•≥ ≥

θmax
c 1–

nmax
c

----------- 
  nminmax

c θminmax
c nmin

c θmin
c•+•()=

θi
c

13.2 AMPC (Automatic Multipoint Constraint) 13 Special-Purpose Processors

13.2-2 COMET-AR User’s Manual Revised 12/1/97

13.2.3 Command Definitions

13.2.3.1 SET CONSTRAINT_SET Command

This command defines the constraint set number associated with the element and nodal data. This
number should appear as the second cycle number in names of all element and nodal datasets.

Command syntax:

where

13.2.3.2 SET LDI Command

This command defines the logical device index for the computational database.

Command syntax:

where

13.2.3.3 SET LOAD_SET Command

This command defines the load set number associated with the element and nodal data. This
number should appear as the first cycle number in names of all datasets.

Command syntax:

where

SET CONSTRAINT_SET = conset

Parameter Description

conset Constraint set number (default value: 1)

SET LDI = ldi

Parameter Description

ldi Logical device index (default value: 1)

SET LOAD_SET = loadset

Parameter Description

loadset Load set number (default value: 1)

13 Special-Purpose Processors 13.2 AMPC (Automatic Multipoint Constraint)

Revised 12/1/97 COMET-AR User’s Manual 13.2-3

13.2.3.4 SET MESH Command

This command defines the mesh number associated with the element and nodal data. This number
should appear as the third cycle number in names of all datasets.

Command syntax:

where

13.2.3.5 SET STEP Command

This command defines the step number associated with the element and nodal data for nonlinear
analyses. This number should appear as the first cycle number in names of all datasets.

Command syntax:

where

13.2.3.6 MPC Command

This is the “go” command for processor AMPC. It causes AMPC to generate the multipoint
constraints for the mesh.

Command syntax:

SET MESH = mesh

Parameter Description

mesh Mesh number (default value: 0)

SET STEP = step

Parameter Description

step Step number (default value: 0)

MPC

13.2 AMPC (Automatic Multipoint Constraint) 13 Special-Purpose Processors

13.2-4 COMET-AR User’s Manual Revised 12/1/97

13.2.4 Database Input/Output

13.2.4.1 Input Datasets

A summary of input datasets required by Processor AMPC is given in Table 13.2-2.

13.2.4.2 Output Datasets

A summary of output datasets created by Processor AMPC is given below in Table 13.2-3.

13.2.5 Limitations

13.2.5.1 Tolerance Sensitive

AMPC depends on the NODAL.NORMAL and NODAL.DRILL_FLAG datasets. The nodal
normals are computed by an ESi element processor and are an approximation to the actual shell
normals at nodal points (computed as the average normal for all elements connected to the node
point). The drilling flags are also set by an ESi element processor by comparing each element’s
normal at each node to the approximated shell normal at the node. If all elements attached to a
node have normals that are parallel, within a user-specified tolerance, to the approximated nodal
normal, then the drilling flag of that node is set ON. This algorithm is not a robust method for
setting the drilling flags and in certain cases, such as junctures in build-up structures, the averaged
nodal normal may not be a good approximation to the actual drilling direction. In all cases the
algorithm is sensitive to the tolerance specified by the user for setting the drilling flags (a too
small tolerance may yield an ill-conditioned stiffness matrix and a too large tolerance may yield
an overly constrained matrix).

Table 13.2-2 Processor AMPC Input Datasets

Dataset Class Contents

CSM.SUMMARY...mesh CSM Model summary dataset

NODAL.DOF..conset.mesh NDT Nodal DOF dataset

NODAL.DRILL_FLAG...mesh NAT Nodal drilling stabilization flags

NODAL.NORMAL...mesh NAT Average element nodal normal vectors

Table 13.2-3 Processor AMPC Output Datasets

Dataset Class Contents

NODAL.DOF..conset.mesh NDT Nodal DOF dataset

13 Special-Purpose Processors 13.2 AMPC (Automatic Multipoint Constraint)

Revised 12/1/97 COMET-AR User’s Manual 13.2-5

13.2.6 Error Messages

AMPC contains extensive error checking. Most of the error messages printed by AMPC are self-
explanatory and aim to help the user correct mistakes. Some of the errors may occur at code levels
below AMPC (e.g., HDB, DB, GAL, etc.) and AMPC describes those errors to the best of its
ability.

The following summarizes the error messages related to user interface problems produced by
AMPC.

In addition to the above generic messages, AMPC will print any relevant information regarding
the problem such as element data, nodal data, and geometry information to assist the user in
correcting the error. A full trace-back printout of error messages will follow the first message, and
AMPC will attempt to terminate its execution as cleanly as possible by closing open datasets,
releasing memory allocations, etc.

Index Error Message Cause Recommended User Action

1 Unknown SET parameter
name encountered in AMPC.

AMPC encountered an un-
recognized SET parameter
name.

Check the spelling of parameter name in
the CLIP procedure.

2 Unknown command encoun-
tered in AMPC.

AMPC encountered an un-
recognized COMMAND.

Check the spelling of command in the
CLIP procedure.

3 Old/new dataset-name could
not be opened in routine
name.

AMPC could not open the
named dataset.

1. Check execution log file for errors pro-
duced by processors prior to AMPC exe-
cution.
2. Try to verify the particular dataset-
name using the HDBprt processor.
3. Make sure that all required input
datasets are present in the database file.

4 Dataset-name could not be
closed in routine name.

AMPC could not close the
named dataset.

1. Check the execution log file for errors
previously produced by processor AMPC.
2. Verify that AMPC is the only processor
accessing the database file. (Is ARGx
being used in the same directory?).

5 Dataset-name access problem
encountered in routine-name
or
Could not get/put/add/update
attribute-name to dataset
name in routine-name.

AMPC could not get/put an
attribute from/to the dataset-
name table.

Verify that the particular dataset-name
contain attributes required by AMPC.

13.2 AMPC (Automatic Multipoint Constraint) 13 Special-Purpose Processors

13.2-6 COMET-AR User’s Manual Revised 12/1/97

13.2.7 Examples and Usage Guidelines

13.2.7.1 Example 1: Basic Operation

In this example, multipoint constraints are generated for mesh=1.

13.2.8 References

None.

 *run AMPC

SET MESH = 1

MPC

stop

13 Special-Purpose Processors 13.3 Processor COMET-AR (System Macroprocessor)

Revised 12/1/97 COMET-AR User’s Manual 13.3-1

13.3 Processor COMET-AR (System Macroprocessor)

13.3.1 General Description

Processor COMET-AR is a macroprocessor for the COMET-AR system. It is used to start
COMET-AR and remains in the background to run individual COMET-AR processors in
response to the RUN command. Processor COMET-AR may physically contain some or all of the
other COMET-AR processors, embedded as internal processors, depending on how COMET-AR
has been installed on your operating system.

13.3.2 Commands

The COMET-AR macroprocessor recognizes only one command, the RUN command, which has
the following format:

where processor_name represents the name of any of the other COMET-AR processors described
in this manual. The RUN command executes the named processor, which then responds to its own
local commands until a STOP command is issued to that processor; control is then returned to the
COMET-AR macroprocessor. To properly terminate the COMET-AR macro-processor, issue a
∗ STOP directive.

13.3.3 Sample Usage

RUN processor_name

comet-ar . start up macro-processor

 RUN processor_name . execute processor

::: . processor commands

STOP . terminate processor

*stop . terminate macro-processor

13.3 Processor COMET-AR (System Macroprocessor) 13 Special-Purpose Processors

13.3-2 COMET-AR User’s Manual Revised 12/1/97

13 Special-Purpose Processors 13.4 Processor Triad

Revised 12/1/97 COMET-AR User’s Manual 13.4-1

13.4 Processor TRIAD (Computational Frame Realignment)

13.4.1 General Description

Processor TRIAD is used to selectively replace computational nodal triads residing in the
QJJT.BTAB dataset with new triads that permit explicit suppression of shell-element drilling
rotational freedoms. The nodal triads stored in this dataset represent 3x3 transformation matrices
relating the global coordinate system to the computational coordinate system at the node. Each
row of the 3x3 matrix (or triad) represents one of the computational unit vectors expressed in the
global cartesian basis. Processor TRIAD examines the NODE.DRIL dataset, which identifies
nodes that require drilling stabilization, and replaces the original triad with a new triad defined as
follows:

where xc, yc, zc denote the computational unit vectors at the node, n is the element-averaged
nodal normal (defined in the NODE.NORM dataset), and g is the first global-cartesian unit vector
that makes an angle of at least 45 degrees with n. Processor TRIAD does not replace the computa-
tional triads at nodes for which user boundary conditions have been prescribed for any DOFs.
Nodal loads and user-specified multipoint constraints (MPCs) should not be used in conjunction
with processor TRIAD (or the AUTO_TRIAD option), as such loads and MPCs are always
expressed in the computational directions, and these directions may be inadvertently modified by
TRIAD. Processor TRIAD is automatically invoked via the AUTO_TRIAD solution procedure
option (e.g., see procedure L_STATIC in the COMET Procedure Manual). If the
AUTO_DOF_SUP solution procedure option is also selected, then the θc DOF at nodes whose tri-
ads have been updated by TRIAD will automatically be suppressed.

13.4.2 Command Summary

Processor TRIAD follows standard COMET-AR command interface protocol. A summary of
valid commands is given in Table 13.4-1.

Table 13.4-1 Command Summary for Processor Triad

Command Function

LDI Reset database logical device index

ICON Reset constraint set index

GO Selectively replace computational triads in QJJT dataset

zc n=

yc g=

xc yc zc×=

13.4 Processor Triad 13 Special-Purpose Processors

13.4-2 COMET-AR User’s Manual Revised 12/1/97

13.4.3 Command Definitions

13.4.3.1 LDI Command

The LDI command resets the database logical device index from its default value.

Command Format:

where the integer ldi is the logical device index. (Default value: 1)

13.4.3.2 ICON Command

The ICON command resets the constraint set index from its default value.

Command Format:

where icon is the constraint set index appearing in the name of dataset NODAL.DOF..icon.
(Default value: 1)

13.4.3.3 GO Command

This is the action command. It causes the global-to-computational nodal triads in the
NODAL.DOF dataset to be selectively replaced by new triads such that the computational zc axis
is parallel to the average element normal at the node.

Command Format:

LDI = ldi

ICON = icon

GO

13 Special-Purpose Processors 13.4 Processor Triad

Revised 12/1/97 COMET-AR User’s Manual 13.4-3

13.4.4 Database Input/Output

13.4.4.1 Input Datasets

A summary of input datasets required by Processor TRIAD is given in Table 13.4-2.

13.4.4.2 Output Datasets

A summary output datasets created by Processor TRIAD is given in Table 13.4-3.

13.4.5 Limitations

1) Processor TRIAD is not suitable for use in conjunction with multi-point constraints
(MPCs), as triad replacements at nodes involved in MPCs may invalidate the user’s
constraint relations.

2) Processor TRIAD is also not suitable for use with nodal (i.e., concentrated) loads, as such
loads are by definition specified in the computational coordinate system at each node and
these directions are likely to be altered by triad replacement.

13.4.6 Error Messages

1) “Cannot open NODAL.NORMAL dataset.” — The dataset is not present in the currently
open database or has been corrupted.

Table 13.4-2 Processor TRIAD Input Datasets

Dataset Class Contents

NODAL.NORMAL NAT Average element nodal normal vectors

NODAL.DRILL_FLAG NAT Nodal drilling stabilization flags

NODAL.DOF..icon NDT Nodal DOF table

NODAL.TRANSFORMATION NTT Initial nodal computational triads

Table 13.4-3 Processor TRIAD Output Datasets

Dataset Class Contents

NODAL.TRANSFORMATION NTT Modified nodal computational triads

13.4 Processor Triad 13 Special-Purpose Processors

13.4-4 COMET-AR User’s Manual Revised 12/1/97

2) “Cannot open NODAL.DRILL_FLAGG dataset.” — The dataset is not present in the
currently open database or has been corrupted.

3) “Cannot open NODAL.TRANSFORMATION dataset.” — The dataset is not present in the
currently open database or has been corrupted.

4) “Cannot open Nodal DOF dataset.” — The NODAL.DOF..icon dataset is not present in the
currently open database or has been corrupted.

5) “Cannot find good global axis.” — Implies that all three of the global axes are within 45
degrees of the average shell-element normal at a given node. The NODAL.NORMAL
dataset was not properly formed, or the code has been corrupted.

6) “Command error.” — The user has issued a command to Processor TRIAD that is not
contained in the list of valid commands summarized in Table 13.4-1.

13.4.7 Usage Guidelines

1) It is best to employ Processor TRIAD only via the AUTO_TRIAD solution procedure
option. This will insure that it is invoked at the right stage in the analysis and is synchronous
with other COMET-AR solution procedure options such as AUTO_DOF_SUP.

2) The main purpose of Processor TRIAD is to enable the AUTO_TRIAD solution procedure
option, which aligns selected nodal triads (i.e., computational-to-global transformation
matrices) with the average shell-element normal vectors so that drilling rotational DOFs
can be subsequently suppressed. For this purpose, be sure to select the AUTO_DOF_SUP
solution procedure option in addition to the AUTO_TRIAD option, so that the necessary
DOF suppressions will be imposed.

3) Do not use Processor TRIAD (or the AUTO_TRIAD option) in conjunction with
multipoint constraints (MPCs) unless the MPCs involve only nodes that are not eligible for
triad replacement by TRIAD (i.e., nodes at which sufficient drilling rotational stiffness is
already present).

4) Do not apply nodal (concentrated) loads or element loads referred to the computational
bases at nodes where triads may be replaced by Processor TRIAD. Nodes eligible for triad
replacement are those at which insufficient drilling rotational stiffness exists and at which
no boundary conditions have been prescribed.

13.4.8 References

None.

14 Post-Processors 14.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 14.1-1

14 Post-Processors

14.1 Overview

In this chapter, various post-processors implemented in COMET-AR are described. These
processors are used primarily for solution (and model) display. A summary of currently available
post-processors is given in Table 14.1-1.

Table 14.1-1 Outline of Chapter 14: Post-Processors

Section Processor Function

14.2 ARGx Interactive-graphics model/solution display; especially designed for analyses
with adaptive refinement (AR)

14.3 HDBprt High-level database printout processor

14.4 PST COMET-AR_to_PATRAN translation (+ archival fns.)

14.1 Overview 14 Post-Processors

14.1-2 COMET-AR User’s Manual Revised 12/1/97

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-1

14.2 Processor ARGx (Adaptive Refinement Graphics)

14.2.1 Overview

In this section, the graphical post-processor for adaptive mesh refinement, ARGx, and its
capabilities and usage will be described.

14.2.2 ARGx — Architecture Overview

ARGx is a general purpose graphical post-processor with special provisions included for post-
processing and controlling the adaptive mesh refinement environment. ARGx is fully integrated
with the COMET-AR database system through high level database utilities (HDB), and may be
used for either model verification purposes or as a post-processor for any model defined in the
COMET-AR system contours. The general architecture of ARGx is shown in Figure 14.2-1.

Figure 14.2-1 ARGx — Architecture

There is a direct two-way connection between ARGx and the COMET-AR database (labeled
GAL database in Figure 14.2-1). ARGx contains a simple built-in graphical user interface (GUI),
which interacts directly with the lowest level of the X11R4/R5 routines, the Xlib level, and it does
not rely on any third-party GUI (such as Motif). This makes ARGx fully transportable to any X-
platform without any modification to its source code.

Operations Menus:

IO
Orientation

Drawx
Color Editor
AR Control

.

.

.

GAL Database

HDB->ARG

HDB

Root Menu: ARGx Main Driver

Xlib X11R4/R5

GXlib: Xlib graphical macros

GXlib_cover: Fortran Cover

PopUp: Simple GUI

ARGx Echo

PostScript
Echo

Explain
Windows

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-2 COMET-AR User’s Manual Revised 12/1/97

The ARGx window layout is shown in Figure 14.2-2.

Figure 14.2-2 ARGx — Window Layout

The main portion of the display is occupied by a large square Graphics Window. In this window
ARGx will display the model during the model orientation stage. This window is expanded to the
entire screen when ARGx displays any type of results data. On top are, from left to right, the
Information Window, the Activity Window, and the PopUp Menus windows. The Information
Window is used by ARGx to display messages. Watch this window carefully when using ARGx.
The Activity Window is used by ARGx for reporting on the activity being performed. This
window will change its appearance to reverse video when ARGx is busy processing data and back
to regular video when ARGx is waiting for some user input. The PopUp Menus window is where
most of the user interface activity takes place. In this window, ARGx displays its menus and
responds to user selections. At the bottom right corner, a small Text Port window is used by
ARGx to graphically echo user keyboard inputs.

The menu organization within ARGx is shown in Figure 14.2-3.

Information Window

Graphics Window

Activity Window PopUp Menus

Text Port

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-3

Figure 14.2-3 ARGx — Menu Organization

The Root Menu is the driver level of ARGx. It controls the flow of the program and directs user
interaction. The level of menus below the Root Menu is designed to fulfill special post-processing
tasks and is organized in logical order.

The unique post-processing features in ARGx are summarized below.

 Unique Capability

1 Completely integrated with COMET-AR

2 Flexible window layout (full zoom, local/global, four windows)

3 Advanced orientation tools (drag, mirror, dynamic rotations)

4 Full color spectrum control (color editor, dynamic color editor)

5 Model verification tools (BCs, loads, shell normals & triads, equation/node/element
identification tools)

6 Advanced data visualization tools (fringe plots of any field, pointwise data, instant
xy-plot along straight lines, and curvilinear plots along user-defined curves)

7 EPSI PostScript echo and journal file echoes

8 Fully implemented using low level Xlib—portable

I/O

Root Menu

Edit Map SizeSet Color SpectrumColors

Titles

Window Layout

Nodal Contour Plots

Draw

Orientation Auto Repeat

Element Contour Plots

User Control

Unprocessed Elements

Plot Options Miscellaneous

PostScript

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-4 COMET-AR User’s Manual Revised 12/1/97

14.2.3 ARGx Menu Documentation

In the following subsections the documentation of ARGx is presented in its entirety. The terms
used to describe user interactions in this section are listed below.

The following mouse button settings are the default for use in ARGx unless otherwise indicated
(as in IDENTIFY and IDENTIFY/XYplot modes).

14.2.3.1 ARGx — Root Menu

ARGx starts by displaying the Root Menu which is displayed in the PopUp Menus window at the
top of the right side of your screen. The Root Menu enables you to control execution of ARGx.
The choices available in the Root Menu are listed below.

Term Explanation

LMB Left mouse button

MMB Middle mouse button

RMB Right mouse button

CLICK Press and immediately release a mouse button

POINT Position the pointer over specific location without clicking a mouse button

HIGHLIGHT Position the pointer over a menu item without clicking a mouse button

SELECT Position the pointer over an item and click a mouse button

Mouse Button Setup

LMB Select mouse button

MMB Ignore

RMB Explain mouse button

Menu Items List

1) I/O Menu 7) Element Contour Menu

2) Titles Menu 8) User Control Menu

3) Color Menu 9) Window Layout Menu

4) Orientation Menu 10) PostScript Menu

5) Draw Menu 11) Miscellaneous Menu

6) Nodal Contour Menu 12) Exit ARGx

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-5

Select a menu item by clicking the left mouse button (LMB). Clicking the right mouse button
(RMB) over a menu item displays online help in an Explain Window for that item. The
Information Window marked at the top of the left side of your screen gives you instructions
during ARGx execution and the Activity window continuously updates you about current activity.

Always start by selecting the I/O Menu to open your COMET database file; set the mesh number,
appropriate load set and constraint set IDs. Selecting the Orientation Menu enables you to orient
the model on your display. The Draw Menu provides options to draw the deformed or
undeformed configuration for the current Mesh/Step and causes all subsequent contours to be
displayed with this configuration. The Titles and Color Menus enable you to edit and customize
your contours, which will be generated by the Nodal or Element Contour Menu options. The
PostScript Menu enables you to save PostScript Echo files (in EPSI format—Encapsulated
PostScript + preview bitmap header), which you may either send to any PostScript printer or
incorporate into your PostScript documents. The Exit ARGx item terminates execution of the
program.

14.2.3.1.1 I/O Menu

The I/O Menu is used for selecting the GAL database file to be processed by ARGx and to set the
mesh number, load step (for nonlinear analysis), load set and constraint set numbers (for linear
analysis) associated with the dataset names which will be processed.

14.2.3.1.2 Titles Menu

The Titles Menu is used for setting the main title and subtitle for the various contours.

14.2.3.1.3 Color Menu

The Color Menu provides several options for setting the color pallets employed by ARGx. These
options consist of a full-color map editor, color map inversion, background/foreground color
inversion, and color map size (enabling control of the speed of graphical display and size of the
PostScript Echo files).

14.2.3.1.4 Orientation Menu

The Orientation Menu offers a variety of tools for positioning your model in the display.

Obtaining the optimal view of your model is simple:

1) Use the rotation items in this menu for rotating the model about the principle axes (screen
and world coordinate systems);

2) Once you have the proper viewing angle of your model you may want to use the Zoom item
to magnify part of the model.

14.2.3.1.5 Draw Menu

The Draw Menu enables you to display the model in either its original configuration or its
deformed state. This menu also provides a quick redraw capability.

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-6 COMET-AR User’s Manual Revised 12/1/97

14.2.3.1.6 Nodal Contour Menu

The Nodal Contour Menu enables you to select a contour based on nodal point data (either
primary solution field or a smoothed secondary one) for a large selection of field components
(nodal stresses, strains, displacements, etc.).

14.2.3.1.7 Element Contour Menu

The Element Contour Menu enables you to select a contour based on element data for a large
selection of field components (element energy, errors, gradients, etc.).

14.2.3.1.8 User Control Menu

The User Control Menu enables you to control the automatic AR procedure by graphically
selecting elements/regions in which error estimation should occur and resetting refinement
indicators.

14.2.3.1.9 Window Layout Menu

The Window Layout Menu enables control of the display layout. You can toggle options between
Full Window Zoom and Local/Global type Zoom and between a Single View and a Four View
partitioned display. This feature is not yet implemented.

14.2.3.1.10 PostScript Menu

The PostScript Menu enables you to control the PostScript Echo of the display.

14.2.3.1.11 Miscellaneous Menu

The Miscellaneous Menu offers a variety of useful tools for visual check of a model. The
boundary conditions, loads, and extremum points data may be located using options in this menu.

14.2.3.1.12 Exit ARGx

The Exit ARGx item terminates execution of the ARGx program. You will have an opportunity to
save a journal file of the current session prior to exiting.

14.2.3.2 I/O Menu

The I/O Menu is used to select the GAL database file to be processed by ARGx and to set the
mesh number, load step, load set, and constraint set numbers associated with the dataset names
which will be processed. Once a selection is made, control returns to the ARGx Root Menu.

Menu Items List

1) Enter GAL File Name

2) Set Mesh/Step Numbers

3) Exit Menu

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-7

14.2.3.2.1 Enter GAL File Name

The Enter GAL File Name item is used to open your COMET database file. Select the Enter GAL
File Name item to activate the Text Port window located at the bottom of the right side of the
screen and ARGx will ask you to type in the name of your model data file. You may use any legal
UNIX path as part of your data file name. ARGx will inform you if it cannot locate the file.

14.2.3.2.2 Set Mesh/Step Numbers

The Set Mesh/Step Numbers item is used for setting the mesh, load set and constraint set numbers
(for linear analysis), or load step number (for nonlinear analysis) to be processed. This option
invokes the HDB to ARGx data convertor, which will convert the GAL data using the HDB
utilities into ARGx data structures.

14.2.3.2.3 Exit Menu

The Exit Menu item returns you to the ARGx Root Menu.

14.2.3.3 Titles Menu

The Titles Menu is used for setting the main title and subtitle for the various contours. By default,
ARGx employs the GAL file name as the main title and the field name being plotted as a subtitle.
The date and time stamp are appended to either the default or user-provided title. Once a selection
is made, control returns to the ARGx Root Menu.

14.2.3.3.1 Set Main Title

Set Main Title enables you to enter the ARGx contour’s main title line. Selecting the Set Main
Title activates the Text Port window and prompts for your own title. ARGx default main title is
automatically set to the name of the GAL file being processed.

14.2.3.3.2 Set Subtitle

Set Subtitle enables you to enter the ARGx contour’s subtitle line. Selecting the Set Subtitle item
activates the Text Port window and prompts for your own subtitle. ARGx default subtitle is
automatically set to the name of the result field being processed. Date and time stamps are
appended to the subtitle line.

14.2.3.3.3 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

Menu Items List

1) Set Main Title

2) Set Subtitle

3) Exit Menu

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-8 COMET-AR User’s Manual Revised 12/1/97

14.2.3.4 Color Menu

The Color Menu provides several options for setting the color pallets employed by ARGx. These
options consist of a full color map editor, color map inversion, background/foreground color
inversion, and color map size (enabling control of the size of the postscript echo files). Once a
selection is made control returns to the ARGx Root Menu.

14.2.3.4.1 Set The Color Map

Set The Color Map enables you to edit the colors spectrum used for contour animation sequences.
Selecting the Set The Color Map item activates the colors editor which enables you to change the
boundaries of the six basic maps which construct the 256 colors used for contours. The color
editor is described in detail in Section 14.2.18.

14.2.3.4.2 Invert Color Map

Invert The Color Map enables you to invert the current color maps.

14.2.3.4.3 Invert Background Color

Invert The Background Color enables you to invert the current foreground/background colors.

14.2.3.4.4 Set Number of Colors Used

The Set Number of Colors Used option allows you to set the number of colors used by ARGx to
define the current color map. This number is bounded by the hardware color map size limitation.
The performance of ARGx and the size of the PostScript file echo are linearly proportional to the
size of the color map used.

14.2.3.4.5 Use Default Color Map

Use Default Color Map option causes ARGx to reset the color map to the default Map for use in
subsequent contour plots.

Menu Items List

1) Set The Color Map

2) Invert Color Map

3) Invert Background Color

4) Set Number of Colors

5) Use Default Color Map

6) Save Color Map

7) Use Last Saved Color Map

8) Exit Menu

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-9

14.2.3.4.6 Save Color Map

Save Color Map allows you to save the color map for use in subsequent contour plots.

14.2.3.4.7 Use Last Saved Color Map

The Use Last Saved Color Map option causes ARGx to reset the color map to the last saved map.
Selecting this option enables you to dynamically modify your color map during contour sessions
and record the effect of the modified color map in the PostScript Echo File.

The following procedure details the steps required to dynamically modify the color map and use
the result in a PostScript file:

1) Display the desired contours;

2) Select Use Last Saved Color Map from the Color Menu;

3) Select Redraw Last Picture from the Draw Menu;

4) Dynamically edit the color map to the desired appearance;

5) Select Set PostScript Echo On from the PostScript Menu;

6) Select Redraw Last Picture from the Draw Menu;

7) Select Save PostScript File from the PostScript Menu.

14.2.3.4.8 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.5 Orientation Menu

The Orientation Menu provides the orientation tools for positioning your model in the display.

Menu Items List

1) Rotate About World X-axis 10) Set Isometric Projection

2) Rotate About World Y-axis 11) Reset Transformation

3) Rotate About World Z-axis 12) Zoom

4) Rotate About Screen X-axis 13) Un-Zoom

5) Rotate About Screen Y-axis 14) Drag Model

6) Rotate About Screen Z-axis 15) Mirror Image Model

7) Interactive Rotation Bounding Box 16) Draw the Model

8) Interactive Rotation Wire-Frame Model 17) Done Orienting

9) Set Parallel Projection

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-10 COMET-AR User’s Manual Revised 12/1/97

Obtaining the optimal view of your model is simple:

1) Use the rotation items in this menu for rotating the model about the principle axes (screen
or world coordinate systems);

2) Once you have the proper viewing angle of your model you may want to use the Zoom item
for magnifying part of the model.

Control remains in this menu until the Done Orienting item is selected, returning you to the
ARGx Root Menu.

14.2.3.5.1 Rotate bout World Xi-axis

The Rotate About World Xi-axis item enables you to rotate your model about the world
coordinates Xi-axis. Selecting the Rotate About World Xi-axis item activates the Text Port
window located at the bottom of the right side of your screen. ARGx prompts you to enter the
rotation angle in degrees.

The world coordinate system is the physical Cartesian coordinate system in which your model is
defined and is presented at the lower right corner of your screen whenever you draw your model.
Selecting this item alters the transformation applied to your model but it will not redraw the
model.

14.2.3.5.2 Rotate About Screen Xi-axis

The Rotate About Screen Xi-axis item enables you to rotate your model about the screen
coordinates Xi-axis. Selecting the Rotate About Screen Xi-axis item activates the Text Port
window located at the bottom of the right side of your screen. ARGx prompts you to enter the
rotation angle in degrees.

The screen coordinate system is the display coordinate system. The screen coordinate system’s
origin is the lower corner of the display, X being the horizontal axis, and Y being the vertical axis
in the display plane. The Z axis perpendicular to the display points outwards. Selecting this item
alters the transformation applied to your model but it will not redraw the model.

14.2.3.5.3 Interactive Rotation Bounding Box

The Interactive Rotation Bounding Box item enables you to interactively rotate your model
bounding box about an axis perpendicular to the direction in which the pointer is moved and an
angle proportional to the distance travelled by the pointer. Any mouse button click will exit this
mode and ARGx will redraw the model in the desired orientation. This option draws in
“GXinverse” mode. X11/Xlib does not invert a black pixel and so this option should not be used
with a black background color.

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-11

14.2.3.5.4 Interactive Rotation Wireframe Model

The Interactive Rotation Wireframe Model item enables you to interactively rotate your model
wire frame presentation about an axis perpendicular to the direction in which the pointer is moved
and an angle proportional to the distance travelled by the pointer. Any mouse button click will
exit this mode and ARGx will redraw the model in the desired orientation. This option draws in
“GXinverse” mode. X11/Xlib does not invert a black pixel and so this option should not be used
with a black background color.

For this option, ARGx will require data which is contained in the Line Refinement Table (LRT as
generated by the refinement processor REF1). This option will not be available if the database
does not contain LRT. Since this is a computer-intensive option it is restricted to discrete
transformations:

• Pointer motion of less then 5 degrees rotations is ignored.

• Any pointer motion during ARGx active mode (i.e., while the message “Drawing the
Model” is displayed in the Activity Window) is discarded.

14.2.3.5.5 Set Parallel Projection

The Set Parallel Projection item enables you to set the projection employed by ARGx to a parallel
projection in the (0,0,-1) direction (the viewer is located along the world Z axis looking towards
the origin). Parallel projection is useful for obtaining standard 2-D projections of the model.

14.2.3.5.6 Set Isometric Projection

The Set Isometric Projection item enables you to set the type of projection employed by ARGx to
an isometric projection in the (-1,-1,-1) direction (the viewer is located in the first quadrant
looking towards the origin). Isometric projection is useful for obtaining 3-D views of the model
and is the default orientation used by ARGx.

14.2.3.5.7 Reset Transformation

The Reset Transformation item enables you to cancel all previously defined transformations and
sets the model transformation matrix as the default isometric projection matrix.

14.2.3.5.8 Zoom

Zoom enables you to magnify parts of your model. Selecting the Zoom item causes ARGx to
switch to its rubber band cursor mode. ARGx will ask you to point to the lower left corner of the
Zoom window, then it will switch to its rubber band cursor and ask you to point to the upper right
corner of the Zoom window.

The area enclosed by the rubber band cursor is magnified to fill the area labeled “local view” and
shrink the model to fit into the area marked “global view.” You may define a zoom within a zoom
to any magnification order in either the local or global windows.

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-12 COMET-AR User’s Manual Revised 12/1/97

14.2.3.5.9 Un-Zoom

Un-Zoom cancels all previously defined Zooms and redraws the model in its original
magnification.

14.2.3.5.10 Drag Model

Drag Model enables you to duplicate your model by dragging it along an arbitrary axis. ARGx
asks you to define the Drag Axis by entering the coordinates of two points along the axis. Once
the Drag Axis is defined, ARGx will prompt for a drag rotation angle in degrees and drag
distance, either of which may be set to zero. To drag the deformed model, display the deformed
configuration before using the Drag tool. The Drag Tool has an auto-repeat mode which repeats
the drag operation. The Drag Tool works in conjunction with any other viewing tool. Contours
may be shown over the dragged model and the appropriate data will automatically be mapped into
the expanded image.

14.2.3.5.11 Mirror Image Model

Mirror Image Model enables you to generate a mirror image of the model around an arbitrary
plane. ARGx will ask you to define the Mirror Plane by entering the coordinates of three points
within the plane. Once the Mirror Plane is defined, ARGx will generate the mirror image of the
model. To generate a mirror image of the deformed model, display the deformed configuration
prior to using the Mirror Tool. The Mirror tool works in conjunction with any other viewing tool.
Contours may be shown over the mirrored model and the appropriate data will automatically be
mapped into the mirrored image.

14.2.3.5.12 Draw Model

Draw Model causes ARGx to apply the current transformation matrix to the model original
coordinates and draw the model in its new orientation. Selecting the Draw Model item causes
ARGx to generate new coordinates for the view and resort its polygon list. This can be time-
consuming, so hang in there, ARGx will continuously inform you about its activity in the
Information and the Activity windows. The Draw Model item automatically puts ARGx into the
IDENTIFY mode. In the IDENTIFY mode, ARGx expects you to use the mouse buttons as
follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

Mouse Button Setup

LMB Exit IDENTIFY mode

MMB IDENTIFY current cursor position

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-13

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. The IDENTIFY operation may be repeated as many times as needed. The IDENTIFY
mode is not activated in Four Windows or Local/Global Zoom modes.

14.2.3.5.13 Done Orienting

Done Orienting terminates the orientation session and returns control back to the Root Menu. You
can always modify your model orientation by reselecting the Orientation item from the Root
Menu.

14.2.3.6 Draw Menu

The Draw Menu enables you to display the model in either its original configuration or its
deformed state. This menu also provides a quick redraw capability. Once a selection is made
control returns to the ARGx Root Menu..

All items in this menu automatically put ARGx into the IDENTIFY mode. In the IDENTIFY
mode ARGx expects you to use the mouse buttons as follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information

Menu Items List

1) Draw Deformed Model

2) Draw Undeformed Model

3) Redraw Last Picture

4) Exit Menu

Mouse Button Setup

LMB Exit IDENTIFY mode

MMB IDENTIFY current cursor position

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-14 COMET-AR User’s Manual Revised 12/1/97

Window. The IDENTIFY operation may be repeated as many times as needed. The IDENTIFY
mode is not activated in Four Windows or Local/Global Zoom modes.

14.2.3.6.1 Draw Deformed Model

Draw Deformed Model causes ARGx to apply the current transformation matrix to the deformed
model coordinates and draw the model in its new orientation. Selecting the Draw Deformed
Model item causes ARGx to generate new coordinates for the view and to resort its polygon list.
This can be time-consuming, so hang in there. ARGx will continuously inform you about its
activity in the Information and Activity windows.

The Draw Deformed Model item automatically puts ARGx into the IDENTIFY mode. In the
IDENTIFY mode ARGx expects you to use the mouse buttons as follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. The IDENTIFY operation may be repeated as many times as needed. The IDENTIFY
mode is not activated in Four Windows or Local/Global Zoom modes.

The deformation field of the model is automatically scaled so that peak deformations will be 20%
of the model dimension. Repeated selection of this item enables you to reset the scale factor.
Subsequent contours will be displayed over the deformed configuration of the model.

14.2.3.6.2 Draw Undeformed Model

Draw Undeformed Model causes ARGx to apply the current transformation matrix to the original
model coordinates and draw the model in its undeformed configuration. Subsequent contours will
be displayed over the undeformed configuration of the model. Selecting the Draw Undeformed
Model item causes ARGx to generate a new coordinates for the view and to resort its polygon list.
This can be time-consuming, so hang in there. ARGx will continuously inform you about its
activity in the Information and the Activity windows.

Mouse Button Setup

LMB Exit IDENTIFY mode

MMB IDENTIFY current cursor position

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-15

The Draw Undeformed Model item automatically puts ARGx into the IDENTIFY mode. In the
IDENTIFY mode ARGx expects you to use the mouse buttons as follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. The IDENTIFY operation may be repeated as many times as needed. The IDENTIFY
mode is not activated in Four Windows or Local/Global Zoom modes.

14.2.3.6.3 Redraw Last Picture

Redraw Last Picture is used to re-display the last picture with the current attributes (color map
choice and titles). This option is very useful in generating a postscript echo of the last view. The
Redraw Last Picture item automatically puts ARGx into the IDENTIFY mode. In the IDENTIFY
mode ARGx expects you to use the mouse buttons as follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. The IDENTIFY operation may be repeated as many times as needed. The IDENTIFY
mode is not activated in Four Windows or Local/Global Zoom modes.

Mouse Button Setup

LMB Exit IDENTIFY mode

MMB IDENTIFY current cursor position

Mouse Button Setup

LMB Exit IDENTIFY mode

MMB IDENTIFY current cursor position

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-16 COMET-AR User’s Manual Revised 12/1/97

14.2.3.6.4 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.7 Nodal Contours Menu

The Nodal Contours Menu enables you to select a contour based on nodal point data (either
primary solution field or smoothed secondary one) for a large selection of field components
(stresses, strains, displacements, etc.).

For most of the above menu items ARGx will process the Element Stress Table (EST) and operate
on stresses at each element integration point, and use the element interpolation table (EIT) to
obtain smoothed nodal values. ARGx will ask you to choose INTEGRATION point or BARLOW
point stress data for use in its smoothing algorithm. ARGx will also ask you to identify which
element groups should be processed for nodal contouring by entering: N, GID1, GID2,..., GIDN,
where N is the number of groups and GID1-GIDN are the group numbers to be plotted.

Once the nodal field data is obtained, ARGx displays the extreme values of that field and asks if
you wish to overwrite these values (to reset the contours to a desired range) and proceed by
displaying the contours for this data.

All items in this menu automatically put ARGx into the IDENTIFY/XYplot mode. In this mode
ARGx expects you to use the mouse buttons as follows:

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

Menu Items List

1) Draw Stress Contour Lines 7) Draw Max Mxy

2) Draw Max Membrane Stress 8) Draw Strain Contour Lines

3) Draw Min Membrane Stress 9) Draw Strain Energy Contour Lines

4) Draw Max Shear Stress 10) Draw Displacement Contour Lines

5) Draw Max Bending Moment 11) Exit Menu

6) Draw Min Bending Moment

Mouse Button Setup

LMB Exit IDENTIFY/XYplot mode

MMB IDENTIFY current cursor position

RMB SET XYplot location

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-17

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. If you enter a RMB click, ARGx will activate the Rubber-line Cursor. The Rubber-line
Cursor will be anchored at the cursor position of the first RMB click and will follow the cursor
motion (the line will be displayed in inverse video color). If you enter a second RMB click, ARGx
will respond as follows:

• The Rubber-line Cursor will be replaced by a solid arrow head line from the position of the
first RMB click to the position of the second RMB click;

• If the line intersects any part of the model, an X-Y plot showing the field value of all points
along the line will be displayed at the upper right corner of the display.

The IDENTIFY and X-Y plots operations may be repeated as many times as needed (using MMB
and RMB clicks, respectively). X-Y plots are being echoed to the postscript file if the PostScript
Echo is ON. The IDENTIFY/XYplot mode can not be activated in Four Windows mode or in
Local/Global Zoom mode. Positioning the pointer over the Color Index (middle right side of the
display) will re-color a single contour line with the background color. Using a RMB click while
the cursor is positioned over the Color Index allows you to dynamically change the color
spectrum used. A second RMB click while the cursor is positioned over the Color Index will
freeze the color spectrum to the current state. These Dynamic Color manipulations will not affect
the postscript echo file.

14.2.3.7.1 Draw Stress Contour Lines

Draw Stress Contour Lines is used for plotting contour lines for any stress component present in
the element stress table (EST).

14.2.3.7.2 Draw Max Membrane Stress

Draw Max Membrane Stress is used for plotting contour lines for the maximum membrane stress
using the element stress table (EST).

14.2.3.7.3 Draw Min Membrane Stress

Draw Min Membrane Stress is used for plotting contour lines for the minimum membrane stress
using the element stress table (EST).

Nmax

Nx Ny+

2

Nx Ny+

2
-------------------- 

 
2

Nxy
2

++=

Nmin

Nx Ny+

2

Nx Ny–

2
-------------------- 

 
2

Nxy
2

++=

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-18 COMET-AR User’s Manual Revised 12/1/97

14.2.3.7.4 Draw Max Shear Stress

Draw Max Shear Stress is used for plotting contour lines for the maximum membrane stress using
the element stress table (EST).

14.2.3.7.5 Draw Max Bending Moment

Draw Max Bending Moment is used for plotting contour lines for the maximum membrane stress
using the element stress table (EST).

14.2.3.7.6 Draw Min Bending Moment

Draw Min Bending Moment is used for plotting contour lines for the minimum membrane stress
using the element stress table (EST).

14.2.3.7.7 Draw Max Mxy

Draw Max Mxy is used for plotting contour lines for the maximum membrane stress using the
element stress table (EST).

14.2.3.7.8 Draw Strain Contour Lines

Draw Strain Contour Lines is used for plotting contour lines for any strain component present in
the element strain table (EST).

14.2.3.7.9 Draw Strain Energy Contour Lines

Draw Strain Energy Contour Lines is used for plotting contour lines for the strain energy densities
using the element strain energy table (EST).

Nxy
max

Nx Ny–

2
-----------------------=

Mmax

Mx My+

2

Mx My+

2
---------------------- 

 
2

Mxy
2

++=

Mmin

Mx My+

2

Mx My–

2
--------------------- 

 
2

Mxy
2

++=

Mxy
max

Mx My–

2
------------------------=

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-19

14.2.3.7.10 Draw Displacement Contour Lines

Draw Displacement Contour Lines is used for plotting contour lines for any displacement field
component.

14.2.3.7.11 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.8 Element Contour Menu

Element Contour enables you to select a contour based on elements data for a large selection of
field components (Energy, Errors, Gradients, etc.). Once a selection is made control returns to the
ARGx Root Menu.

.

Selecting any item in this menu causes ARGx to process the Element Error Table (EET) for the
quantity of interest and display the model using color coded elements. Next, ARGx will ask you
to identify which element groups should be processed for element contouring by entering: N,
GID1, GID2,..., GIDN, where N is the number of groups and GID1-GIDN are the group numbers
to be plotted.

Once the element field data is processed, ARGx displays the extreme values of that field and asks
if you wish to overwrite these values (to reset the contours to a desired range) and proceed by
displaying the contours for this data.

All items in this menu automatically put ARGx into the IDENTIFY/XYplot mode. In this mode
ARGx expects you to use the mouse buttons as follows:

Menu Items List

1) Draw Element Energy

2) Draw Element Energy Gradients

3) Draw Element Absolute Errors

4) Draw Element Error (MAX) Ratios

5) Draw Element Error (AVE) Ratios

6) Exit Menu

Mouse Button Setup

LMB Exit IDENTIFY/XYplot mode

MMB IDENTIFY current cursor position

RMB SET XYplot location

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-20 COMET-AR User’s Manual Revised 12/1/97

If you enter a MMB click while the cursor is pointing to a point in the model, ARGx will respond
as follows:

• The polygon containing the cursor will be highlighted;

• The nearest nodal point to the cursor position will be marked;

• The nodal point and the element identity numbers will be displayed in the Information
Window.

If you enter a MMB click while the cursor is pointing to a point outside the model, ARGx will
respond by displaying the “CURSOR OUTSIDE THE MODEL!!!” message in the Information
Window. If you enter a RMB click, ARGx will activate the Rubber-line Cursor. The Rubber-line
Cursor will be anchored at the cursor position of the first RMB click and will follow the cursor
motion (the line will be displayed in inverse video color). If you enter a second RMB click, ARGx
will respond as follows:

• The Rubber-line Cursor will be replaced by a solid arrow head line from the position of the
first RMB click to the position of the second RMB click;

• If the line intersects any part of the model, an X-Y plot showing the field value of all points
along the line will be displayed at the upper right corner of the display.

The IDENTIFY and X-Y plots operations may be repeated as many times as needed (using MMB
and RMB clicks, respectively). X-Y plots are being echoed to the postscript file if the PostScript
Echo is ON. The IDENTIFY/XYplot mode can not be activated in Four Windows mode or in
Local/Global Zoom mode. Positioning the pointer over the Color Index (middle right side of the
display) will re-color a single contour line with the background color. Using a RMB click while
the cursor is positioned over the Color Index allows you to dynamically change the color
spectrum used. A second RMB click while the cursor is positioned over the Color Index will
freeze the color spectrum to the current state. These Dynamic Color manipulations will not affect
the PostScript echo file.

14.2.3.8.1 Draw Element Energy

Draw Element Energy is used for plotting color codes for the elements energy using the Element
Error Table (EET)

14.2.3.8.2 Draw Element Energy Gradients

Draw Element Energy Gradients is used for plotting color codes for the element energy gradients
using the Element Error Table (EET).

14.2.3.8.3 Draw Element Absolute Errors

Draw Element Absolute Errors is used for plotting color codes for the element absolute errors
using the Element Error Table (EET).

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-21

14.2.3.8.4 Draw Element Error (MAX) Ratios

Draw Element Error (MAX) Ratios is used for plotting color codes for the element error max
ratios using the Element Error Table (EET). The (MAX) ratios are obtained by dividing the
element average error density by the maximum average element error density and the element
area.

14.2.3.8.5 Draw Element Error (AVE) Ratios

Draw Element Error (AVE) Ratios is used for plotting color codes for the element relative error
ratios using the Element Error Table (EET). The element relative error ratios is obtained by
normalizing the element absolute error with the root mean square of the element strain energy.

14.2.3.8.6 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.9 User Control Menu

The User Control Menu enables you to control the automatic AR procedure by graphically
selecting elements/region in which error estimation should occur, and to reset refinement
indicators. Once a selection is made control returns to the ARGx Root Menu.

14.2.3.9.1 Draw Refined Elements

Draw Refined Elements is used for highlighting element edges along which refinement indicators
are set using the Line Refinement Table (LRT). Selecting the Draw Refined Elements item causes
ARGx to process the LRT table for the line refinement indicators and display the model with
these edges highlighted in red. The LRT hashing table file, “hash.dat”, must be present in the
current directory for this option to work.

14.2.3.9.2 Error Control Menu

Error Control is used to control the regions in which the AMR error estimation processor (ERR1)
should operate. This menu provides a variety of graphical options for selecting and defining such
regions. This option is not yet implemented.

Menu Items List

1) Draw Refined Elements

2) Error Control Menu (not implemented)

3) Refinement Control Menu (not implemented)

4) Exit Menu

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-22 COMET-AR User’s Manual Revised 12/1/97

14.2.3.9.3 Refinement Control Menu

Refinement Control is used to control the regions in which the AMR refinement processor
(REF1) should operate. This menu provides a variety of graphical options for setting the
refinement indicators in regions of the model. This option is not yet implemented.

14.2.3.9.4 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.10 Window Layout Menu

The Window Layout Menu enables you to control the layout of the display. You can toggle
options between Full Window Zoom and Local/Global type Zoom, and between a Single View to
Four View partitioned display. Once a selection is made control returns to the ARGx Root Menu.

14.2.3.10.1 Set Four/Single Window(s) Mode

The Set Four/Single Window(s) Mode option toggles between a single window mode, the default,
and four windows mode. In the four windows mode the display is divided into four windows, only
one of which is active at a time, allowing you to display multiple views/meshes of your model
simultaneously.

14.2.3.10.2 Next Window

Next Window will set ARGx focus on the next window when in Four Windows mode.

14.2.3.10.3 Set Full/Local-Global Zoom Mode

The Set Full/Local-Global Zoom Mode option toggles between full window zoom of the selected
zoom area to a local/global format of the zoom area.

14.2.3.10.4 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

Menu Items List

1) Set Four/Single Window(s) Mode

2) Next Window

3) Set Full/Local-Global Zoom Mode

4) Exit Menu

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-23

14.2.3.11 PostScript Menu

The PostScript Menu enables you to control the PostScript Echo of the display. Once a selection
is made control returns to the ARGx Root Menu.

14.2.3.11.1 Set PostScript Echo ON/OFF

Set PostScript Echo ON/OFF toggles on/off the PostScript Echo Mode. The PostScript Echo is
used for generating an encapsulated color PostScript image of the current view into an ASCII file
named Figure#.ps where # is the figure sequential number. The postscript file is not saved until
the Save the PostScript Echo File item is selected. Displaying multiple figures in Single Window
Mode without saving the file for each figure will cause an overwrite, so that only the last figure
echo will be present in the postscript echo file.

14.2.3.11.2 Save the PostScript File

Save the PostScript File will save the current postscript echo file named Figure#.ps where # is the
figure sequential number. This option will also toggle the Set PostScript Echo ON/OFF to OFF.

14.2.3.11.3 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.12 Miscellaneous Menu

The Miscellaneous Menu offers a variety of useful tools for a visual check of the model. The
boundary conditions, loads, and extremum points data may be located using options in this menu.
Once a selection is made control returns to the ARGx Root Menu.

Menu Items List

1) Set PostScript Echo ON/OFF

2) Save the PostScript File

3) Exit Menu

Menu Items List

1) Set Boundary Conditions Mask

2) Show Boundary Conditions

3) Show External Loads

4) Identify Min/Max Locations

5) Initialize Curve Definition

6) Add/Remove Points From Curve

7) Plot Options Menu

8) Exit Menu

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-24 COMET-AR User’s Manual Revised 12/1/97

14.2.3.12.1 Set Boundary Conditions Mask

The Set Boundary Conditions Mask option enables you to set the Mask for each DOF direction
such that selective display of boundary conditions may be displayed. The mask is entered as an
integer vector (NDOF) containing 1 for unmasked DOF and 0 for a masked one (single record in
FREE format).

14.2.3.12.2 Show Boundary Conditions

The Show Boundary Conditions option graphically presents the boundary codes of the model,
using single-headed arrows for displacement DOFs and double-headed arrows for rotational
DOFs. Selecting the Show Boundary Conditions item causes ARGx to process the Nodal
Definition Table (NDT) and extract the appropriate boundary codes. This option does not work in
Four Windows Mode or Local/Global Zoom mode

14.2.3.12.3 Show External Loads

The Show External Loads option graphically presents the loads on the model, using single-headed
arrows for forces and double-headed arrows for moments. Selecting the Show External Loads
item causes ARGx to process the nodal external forces dataset (NVT) and extract the appropriate
loads. This option does not work in Four Windows Mode or Local/Global Zoom mode.

14.2.3.12.4 Identify Min/Max Locations

Identify Min/Max Locations displays in the information window the locations (element ID and
node ID) for the minimum and maximum field values for the last contours.

14.2.3.12.5 Initialize Curve Definition

Initialize Curve Definition initializes the curve definition stack. The curve definition stack is a
collection of nodal point IDs used to define a curve for 2-D plotting purposes (using the Add/
Remove Points From Curve item).

14.2.3.12.6 Add/Remove Points From Curve

Add/Remove Points From Curve puts ARGx into Curve Definition mode. In the curve definition
mode you can define/edit a curve through a number of nodal points in your model.

In Curve Definition mode ARGx will interpret the mouse buttons as follows.

The curve definition stack is limited to 1000 points.

Mouse Button Setup

LMB Add a point to the curve definition stack

MMB Exit Curve Definition mode

RMB Remove a point from the curve definition stack

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-25

14.2.3.12.7 Plot Options Menu

The Plot Options Menu provides options for displaying a 2-D curve plot (see Subsection
14.2.3.13).

14.2.3.12.8 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.13 Plot Options Menu

The Plot Options Menu provides five options for displaying a 2-D curve plot.

• The curve definition may be edited using the Add/Remove Points From Curve from the
Miscellaneous Menu.

• Different solution fields may be plotted without repeating the definition of the curve. This
is done by first selecting the new field to be presented from either the Nodal Contours or
the Element Contours menus followed by selection of this option.

• Any of the curve plot options can be echoed into the postscript echo file by setting the
PostScript Echo Mode to ON (from the PostScript Menu) prior to plotting;

When any of the color plot options is activated, the following options are available:

• Positioning the pointer over the Color Index (middle right side of the display) will re-color
a single contour line with the background color.

• Using a RMB click while the cursor is positioned over the Color Index will allow you to
dynamically change the color spectrum used. A second RMB click while the cursor is
positioned over the Color Index will freeze the color spectrum to the current state.

For the Curvilinear plots, the following options are available:

• The Curvilinear plot may be rotated using the standard rotation tools from the Orientation
Menu and redrawing the model prior to reselection of this option.

• The orientation of the curvilinear coordinates used depends on the definition of the curve.
Changing the order of the definition nodes (i.e., from clockwise to counter-clockwise) will
flip the direction of the normal curvilinear axis.

Menu Items List

1) Color Linear X-Y plot

2) Linear X-Y plot

3) Curvilinear plot

4) Curvilinear color plot

5) All four options simultaneously

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-26 COMET-AR User’s Manual Revised 12/1/97

14.2.3.13.1 Linear X-Y Plot

Linear X-Y Plot displays a 2-D plot for the current curve defined by the curve definition stack. In
this mode, the horizontal axis represents the arclength of the curve, scaled to the [0,1] interval,
and the vertical axis represents the last solution field value processed by ARGx.

14.2.3.13.2 Color Linear X-Y Plot

Color Linear X-Y Plot displays a 2-D plot for the current curve defined by the curve definition
stack. In this mode, the horizontal axis represents the arclength of the curve, scaled to the [0,1]
interval, and the vertical axis represent the last solution field value processed by ARGx. In this
option, the area enclosed between the plot curve and the horizontal axis is color-coded, filled with
colors associated with the field value of the point, and a color index is displayed.

14.2.3.13.3 Curvilinear Plot

Curvilinear Plot displays a 2-D plot for the current curve defined by the curve definition stack. In
this mode, a 2-D projection of the curve (into the display) is used as the tangent curvilinear axis
and the normal curvilinear axis represent the last solution field value processed by ARGx.

14.2.3.13.4 Color Curvilinear Plot

Color Curvilinear Plot displays a 2-D plot for the current curve defined by the curve definition
stack. In this mode, a 2-D projection of the curve (into the display) is used as the tangent
curvilinear axis and the normal curvilinear axis represent the last solution field value processed by
ARGx. In this option, the area enclosed between the plot curve and the actual curve is color-
coded, filled with colors associated with the field value of the point, and a color index is
displayed.

14.2.3.13.5 All Four Options

All Four Options displays all four options for curve plotting simultaneously. In this mode the
display will be divided into four windows each displaying one of the above options.

14.2.3.13.6 Exit Menu

The Exit Menu item will exit to the ARGx Root Menu.

14.2.3.14 Auto-Repeat

The Auto-Repeat Menu enables you to set the Repeat flag on or off by selecting either the Repeat
or the Stop items. Selecting the Repeat item from this menu enables you to repeat the last
operation and the Stop item will terminate the Auto-Repeat Mode.

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-27

14.2.3.14.1 Repeat

Repeat instructs ARGx to repeat the last operation.

14.2.3.14.2 Repeat N Times

Repeat N Times instructs ARGx to repeat the last operation N times.

14.2.3.14.3 Stop

Stop instructs ARGx to terminate the Auto-Repeat mode of operation.

14.2.3.15 Set The Color Map Menu

The Set Color Map Menu enables you to construct a color map for light source shading or to
collect several such maps into a vivid contours display. ARGx contains 56 predefined maps for all
the possibilities of construction of a color map ramp between Black, White, Red, Yellow, Green,
Turquoise, Blue, and Violet. Up to 56 such maps may be collected together, in any order, for
construction of the contour lines color spectrum. For animation sequences with the Light Source
Shading option, only the first map in the list is used for constructing the shading map.

This menu is contained in two sub menus, each containing 28 possible color maps. Selected maps
are marked by their position within the spectrum displayed in parentheses. Selecting a marked
map will remove this map from the list. After the construction of the spectrum is finished, the
individual maps in the selected spectrum can be edited for size with the Edit Map Size menu,
which is automatically invoked for each color map.

14.2.3.15.1 From Color a To Color b

From Color a To Color b items are the available color maps for constructing the contour lines
color spectrum. An item name followed by a number enclosed in parentheses indicates a selected
map (the number is its position in the color spectrum). Selecting an item again causes the removal
of this map from the spectrum.

Menu Items List

1) Repeat

2) Repeat N Times

3) Stop

Menu Items List

1) From Color a To Color b

2) Next Maps List

3) Previous Maps List

4) Done Setting Spectrum

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-28 COMET-AR User’s Manual Revised 12/1/97

14.2.3.15.2 Next Maps List

Next Maps List displays the second submenu of color maps names.

14.2.3.15.3 Previous Maps List

Previous Maps List displays the first submenu of color maps names.

14.2.3.15.4 Done Setting Spectrum

Done Setting Spectrum signals ARGx that the spectrum maps list is complete and activates the
Edit Map Size menu.

14.2.3.16 Edit Map Size Menu

The Edit Map Size Menu is automatically invoked by the Edit Colors menu whenever you define
a color spectrum with multiple color maps. The Edit Map Size is sequentially invoked for each
map in the list and enables you to change the size of that map within the color spectrum. This
menu invokes an update of a displayed color spectrum map for immediate feedback.

14.2.3.16.1 Increase

Increase enables you to increase the size of a color map. Increasing a map will proportionally
decrease all other maps in the list; however, a minimum map size (2 map entries) is automatically
maintained.

14.2.3.16.2 Decrease

Decrease enables you to decrease the size of the color map. Decreasing a map will proportionally
increase all other maps in the list; however, a minimum map size (2 map entries) is automatically
maintained.

14.2.3.16.3 Done Editing

Done Editing signals ARGx that you are finished changing the currently edited map.

Menu Items List

1) Increase

2) Decrease

3) Done Editing

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-29

14.2.3.17 Unprocessed Elements Mode Menu

The Unprocessed Elements Mode Menu enables you to select the drawing mode for unprocessed
elements. This menu will automatically be activated when you choose to process element data by
groups (e.g., not all elements are being processed for contours).

14.2.3.17.1 Display As Solid Filled

Display As Solid Filled causes ARGx to display any element for which contour data was not
processed as a solid filled element (i.e., filled with the flat background color).

14.2.3.17.2 Display As Transparent

Display As Transparent causes ARGx to display any element for which contour data was not
processed as a transparent element (i.e., represented as a wireframe).

14.2.3.17.3 Omit

The Omit item causes ARGx to omit from the display any element for which contour data was not
processed.

14.2.4 ARGx — Advanced Usage

This section is aimed at the more advanced ARGx user. It contains examples of how to use the
more sophisticated features in ARGx.

Menu Items List

1) Display As Solid Filled

2) Display As Transparent

3) Omit

Subsection Topic

14.2.4.1 How to Change the Automatic Deformation Scale Factor

14.2.4.2 Using the Mirror and Drag Tools

14.2.4.3 Special Visualization Capabilities

14.2.4.4 Using the Curve Plot Capabilities

14.2.4.5 Using the Color Editor

14.2.4.6 Using the Dynamically Edited Color Map in PostScript

14.2.4.7 Tips on Using PostScript Echo

14.2.4.8 Processing by Groups - When, Why and How?

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-30 COMET-AR User’s Manual Revised 12/1/97

14.2.4.1 How to Change the Automatic Deformation Scale Factor

The deformed model is displayed by selecting Draw Deformed Model from the Draw menu.
ARGx automatically sets the deformation scale factor using:

where

You can overwrite this automatically computed scale factor by selecting Draw Deformed Model
from the Draw menu. This time ARGx will display the current value of the displacements scale
factor and ask if you wish to change this value.

14.2.4.2 Using the Mirror and Drag Tools

The following example illustrates the proper use of the Mirror and Drag tools:

1) Select Mirror from the Orientation menu;

2) Define the mirror plan by entering 3 points in the plan: (300,0,0); (300,1,0); (300,0,1);

3) Select Drag from the Orientation menu;

4) Define the drag axis by entering two points along the line: (0,0,0); (0,1,0);

5) Enter the drag distance followed by the drag rotation angle (in degrees): 300; 0;

6) The Auto Repeat menu will pop up and the drag operation can be repeated N times (without
intermediate drawings).

The Mirror and Drag operations may be applied to the deformed model; however, you must
display the deformed model prior to using these operations.

14.2.4.3 Special Visualization Capabilities

When displaying contour plots of any of the solution fields, ARGx activates an array of hidden
visualization tools. These special capabilities are summarized below:

User Action ARGx Response

Move cursor inside the
color spectrum rectangle.

Change the color map for the pointed color to black, display field value in the informa-
tion window.

Click RMB inside the
color spectrum rectangle.

Dynamically modify the color spectrum. The pointed color moves with the cursor and
maps above and below this color will compress/expand as the pointer moves (second
user RMB click anchors the color map).

Click MMB inside model. Display and highlight pointed element ID, nearest nodal point ID, and field value.

ScaleFactor
lim D()
lim X()

---------------------× 0.20=

lim Di() max Di() min Di()–=

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-31

14.2.4.4 Using the Curve Plot Capabilities

ARGx includes an option to plot solution data along a curve defined as a set of nodal points. The
following is the procedure for using this option:

1) Select Define Curve from the Miscellaneous Menu;

2) Add nodal points to the curve definition by using LMB clicks;

3) Remove nodal points from the curve definition by using RMB clicks;

4) Use MMB click to finish editing the curve definition;

5) Display contour plot for any solution field component;

6) Select Plot Options from the Miscellaneous Menu;

7) Select the option for the plot (Display all four Options gives a good overview).

You may repeat steps 5-7 as many times as desired. PostScript echo is possible by selecting Set
PostScript Echo on from the PostScript menu before Step 6 above.

14.2.4.5 Using the Color Editor

The ARGx color editor enables you to select and edit the color map used for displaying your data.
The following is the procedure for using the color editor.

1) Select Set Color Map from the Colors Menu.

2) Select the color ramps which will compose the color map. Selecting the same ramp twice
will deselect that ramp. Color ramps are quadratically weighted.

3) Select Done Selecting Ramps when you are finished selecting your color ramps.

4) You can now edit the individual ramps (one at a time) by selecting Increase/Decrease from
the Ramp Editor. Each Increase selection will allocate 5 more colors in the color map
(compressing the remaining ramps) and each Decrease will reduce the allocated space by 5.

5) Select Done Editing when you finish editing the color ramp and ARGx will open the next
selected color map for editing.

Click RMB inside model. Activate the rubber-line cursor anchored at the pointed position and upon receiving
second LMB click display xy-plot for data along the line.

User Action ARGx Response

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-32 COMET-AR User’s Manual Revised 12/1/97

14.2.4.6 Using the Dynamically Edited Color Map in PostScript

The color map can be changed with the dynamic color editor as described in Section 14.2.4.3.
ARGx can be forced to use the dynamically modified color map in the PostScript echo file with
the following procedure.

1) Display your contour plot.

2) Select Use Last Color Map from the Colors Menu.

3) Select Redraw Last Picture from the Draw Menu.

4) Dynamically edit your color map using pairs of RMB clicks.

5) Select Set PostScript Echo On from the PostScript Menu.

6) Select Redraw Last Picture from the Draw Menu.

7) Select Save PostScript File from the PostScript Menu.

14.2.4.7 Tips on Using PostScript Echo

Neither the PostScript language nor Xlib have any direct provisions for shaded polygon fill
(Phong or Gauraud). As a result, shading effects need to be emulated in ARGx using the
supported flat-fill capabilities, which dramatically increases the size of the PostScript echo file.
The following are some useful tips for controlling the size of the PostScript echo files.

• The size of the PostScript Echo file is linearly proportional to the number of colors used in
the color map (256 by default, 0&1 reserved). Reduce the number of colors used prior to
starting PostScript echo (64 is a nice compromise).

• Once PostScript echo is set to ON, every single graphical operation is echoed. Get used to
toggling the echo ON/OFF to eliminate echoing of unnecessary operations. The triplet: Set
PostScript Echo ON; Redraw Last Picture; Set PostScript Echo OFF is useful in this regard.

• In Four Windows mode, PostScript echo may be started only from the first window (lower
left quadrant). Don't forget to toggle echo when moving from one window to another.

14.2.4.8 Processing by Groups — When, Why, and How

There are two occasions when ARGx inquires which element groups you wish to process:

1) When reading the model data, you can reduce the amount of data processed by ARGx by
defining a list of element group IDs. For example, in the HSCT all internal structure may
be eliminated by selecting only skin groups. Internal structure may be displayed by
selecting only rib and spar group IDs.

2) When ARGx processes element data for contour plots (stresses, etc.), you can process the
data for a subset of your model (say, skin elements only in the HSCT example). In this case
nodal smoothed values will be computed based on the element group list only.

14 Post-Processors 14.2 Processor ARGx (Adaptive Refinement Graphics)

Revised 12/1/97 COMET-AR User’s Manual 14.2-33

The items in 1) and 2) above are used for different purposes by ARGx and can be unrelated lists.
Fringe plots will be displayed only for those elements which belong to both lists. You have the
option to Omit/WireFrame/SolidFill elements in the first list but not in the second list.

14.2 Processor ARGx (Adaptive Refinement Graphics) 14 Post-Processors

14.2-34 COMET-AR User’s Manual Revised 12/1/97

14 Post-Processors 14.3 Processor HDBprt (Database Print Utility)

Revised 12/1/97 COMET-AR User’s Manual 14.3-1

14.3 Processor HDBprt (Database Print Utility)

14.3.1 General Description

The high level database print processor, HDBprt, prints any of the HDB data objects currently
defined and used by COMET-AR (see Reference [1]). The purpose of this processor is to enable
the COMET-AR user to obtain meaningful, labelled printouts of data objects created via the HDB
utilities, as opposed to the generic, unlabeled printouts that are obtained via the *PRINT directive
provided within the COMET-AR architecture described in Reference [1]. The print commands
documented here employ the class-specific print utilities (Classprt).

14.3.2 Processor Command Summary

To use processor HDBprt to print one or more data objects resident in a COMET-AR database,
the library containing the objects to be printed must first be opened using the CLIP *OPEN
directive. HDBprt allows several libraries to be open simultaneously.

Output from HDBprt can be redirected to a file by changing the logical unit number associated
with CLIP’s standard print device. This is achieved by using the *SET UNIT directive as follows:

This directive associates the print output device with the FORTRAN logical unit number given
symbolically by prt-lun. When the logical unit number is omitted from the *SET UNIT directive,
CLIP’s default print logical unit number is reinstated. Next enter the SET OBJECT command to
identify a particular dataset containing the object to be printed. (Processor HDBprt knows the
class of the specified object since the object class is self-described in the database.) Finally, the
PRINT command can be issued repeatedly to print all or part of the selected data object.

The remainder of the commands available to processor HDBprt are of secondary importance but
may be useful in some situations. A summary of the commands that are currently implemented in
processor HDBprt is given in Table 14.3-1.

The dataset_identifier field in Table 14.3-1 is defined as follows:

where the (optional) ldi parameter specifies the GAL library containing the HDB object(s) to be
treated, and either dataset_sequence_number or dataset_name must be used to identify an active
(enabled) HDB-object dataset by its sequence number or its dataset name.

*SET UNIT PRT = prt-lun

dataset_identifier :== [ldi] { dataset_sequence_number | dataset_name }

14.3 Processor HDBprt (Database Print Utility) 14 Post-Processors

14.3-2 COMET-AR User’s Manual Revised 12/1/97

14.3.3 Command Glossary

14.3.3.1 HELP Command

Help on an HDBprt command is available with the HELP command, the syntax of which is:

14.3.3.2 PRINT Command

The PRINT command displays information for selected attributes in the data object (chosen with
the SET OBJECT command) and has the following syntax:

Object information consists of two types: attribute properties and attribute values. Attribute
properties consist of attribute name, data type, current dimension, maximum dimension, and
index in the physical record. Attribute properties are displayed when the PROP qualifier is
specified; otherwise attribute values are displayed.

Table 14.3-1 HDBprt Command Summary

Command Name Function

HELP Help User with print processor command usage
Syntax: HELP [command]

PRINT Print data object attribute values or properties
Syntax: PRINT [/PROP] { attribute | * } { * | col1 [col2 | *] }

RUN Stop HDBprt and run another processor
Syntax: RUN processor_name

SET CSM Set CSM object associated with print object
Syntax: SET CSM dataset_identifier

SET OBJECT Set the print object
Syntax: SET OBJECT dataset_identifier

SHOW CSM Display associated CSM object library and dataset
Syntax: SHOW CSM

SHOW LIBS Display names and LDIs of open libraries
Syntax: SHOW LIBS

SHOW OBJECT Display print object library and dataset
Syntax: SHOW OBJECT

STOP Stop HDBprt processor
Syntax: STOP

HELP [command]

PRINT [/PROP] { attribute | * } { * | col1 [col2 | *] }

14 Post-Processors 14.3 Processor HDBprt (Database Print Utility)

Revised 12/1/97 COMET-AR User’s Manual 14.3-3

The attribute argument in the PRINT command is the name of an attribute to be printed. All
object attributes may be printed by entering an asterisk (*) in place of an attribute name. All
columns are printed by using an asterisk (*) in the final field of this command. If a column range
is specified, then the col1 argument is the logical table column number of the first column to be
printed and the col2 argument is the logical table column number of the last column to be printed.
If an asterisk (*) is specified in place of the col2 value, then all columns from col1 to the last
physical column will be printed. Column argument values are not applicable when printing
attribute properties.

14.3.3.3 RUN Command

Processor HDBprt can be terminated and another processor activated with the RUN command:

Processor HDBprt can also be terminated with the STOP command.

14.3.3.4 SET CSM Command

Most HDB data objects must be associated with a CSM data object when they are opened.
Processor HDBprt uses either the default CSM object, or one that is specified using the SET CSM
command:

where the syntax for dataset_indentifier is given by:

If the library logical device index (ldi) is not specified, then the logical device index of the last
SET CSM object will be used as the default value.

If a CSM object is not set using the SET CSM command, processor HDBprt assumes that the
CSM data object to be associated with the print object is in the same library as the print object and
has the dataset_name CSM.SUMMARY.0.0.mesh, where mesh is the same mesh number as that
specified for the print object.

14.3.3.5 SET OBJECT Command

Before an HDB object (also called the print object) can be printed, it must be specified using the
SET OBJECT command:

RUN processor_name

SET CSM dataset_identifier

dataset_identifier :== [ldi] { dataset_sequence_number | dataset_name }

SET OBJECT dataset_indentifier

14.3 Processor HDBprt (Database Print Utility) 14 Post-Processors

14.3-4 COMET-AR User’s Manual Revised 12/1/97

where the syntax for dataset_indentifier is given by:

If the library logical device index (ldi) is not specified, then the logical device index specified in
the last SET OBJECT command will be used as the default value.

14.3.3.6 SHOW CSM Command

Library and dataset names for the currently set CSM data object can be displayed with the SHOW
CSM command:

14.3.3.7 SHOW LIBS Command

Before an HDB data object can be printed, the library on which it resides must first be opened
using the CLIP *OPEN directive. To display the names and logical device indices of all data
libraries currently open (since several libraries can be open at once), use the SHOW LIBS
command:

When an open library is no longer required, it can be closed with the CLIP *CLOSE directive.

14.3.3.8 SHOW OBJECT Command

The library and dataset name for the currently set print object can be displayed with the SHOW
OBJECT command:

14.3.3.9 STOP Command

Processor HDBprt can be terminated with the STOP command:

Processor HDBprt can also be terminated by executing another processor with the RUN
command.

dataset_identifier :== [ldi] { dataset_sequence_number | dataset_name }

SHOW CSM

SHOW LIBS

SHOW OBJECT

STOP

14 Post-Processors 14.3 Processor HDBprt (Database Print Utility)

Revised 12/1/97 COMET-AR User’s Manual 14.3-5

14.3.4 Database Input/Output Summary

Processor HDBprt makes no assumptions regarding dataset names, so long as they follow
standard naming conventions. It is assumed that any dataset whose name is supplied (as part of a
dataset_identifier) to a SET CSM or a SET OBJECT command contains an HDB data object.
Since HDB data objects are self-descriptive, HDBprt not only knows whether the user supplied
dataset contains an HDB object, but exactly to which class the data object belongs.

For a summary of the possible input dataset names for datasets (containing HDB data objects) that
HDBprt can print, refer to Chapter 15, Database Summary, or consult Reference [1] for more
details. The dataset names found there follow the suggested naming conventions for COMET-AR
data objects, but actual datasets may be named according to the user’s preference.

The HDBprt processor does not create any output datasets.

14.3.5 Limitations

Processor HDBprt has no limitation other than the ability to print only HDB data objects.

14.3.6 Error Messages

The most commonly occurring error messages printed by HDBprt are presented in Table 14.3-2.
Each message has an associated probable cause and a recommended user action.

Table 14.3-2 Processor HDBprt Error Messages

Index Error Message Probable Cause Recommended Action

1 Undefined Print Object
Library or Dataset

Print object has not been set Use SET OBJECT command

2 Undefined Default CSM
Library or Dataset

CSM object has not been set and
HDBprt cannot find one with the
default name

Use *TOC to find the appropriate CSM
object; use SET CSM command to set the
data object

3 Undefined Dataset Bad dataset name or sequence
number on a SET command

Use *TOC to check for correct name or
number; re-enter SET CSM or SET
OBJECT command

4 Library Is Not Open Bad library LDI on a SET com-
mand

Use SHOW LIBS to see open libraries; use
*OPEN to open a new library

5 Bad LDI Value Library LDI value is out-of-range Acceptable LDI values are in the range 1–32

6 Dataset Identifier Cleared SET CSM/OBJECT is entered
with no dataset_identifier

Supply a proper dataset_identifier

7 Bad Dataset Identifier
Syntax

Badly formed dataset_identifier Use HELP SET CSM for proper
dataset_identifer syntax

8 CSM Open Failed Cannot open a CSM data object Check CSM library LDI and dataset name

14.3 Processor HDBprt (Database Print Utility) 14 Post-Processors

14.3-6 COMET-AR User’s Manual Revised 12/1/97

14.3.7 Example and Usage Guidelines

The following is a typical command script for the HDBprt Processor.

After a library (shuttle.dbc) is opened on CLIP’s logical device index 1 and its table of contents
(TOC) examined, the CSM data object for mesh 4 is SET and its first column printed. Next, the
Nodal DOF Table for mesh 2 (given by the TOC as dataset sequence number 37, for example) is
SET and all of its attributes in columns 4 through 10 are printed. This example assumes an
interactive session with HDBprt output is going to the user’s display. The next command (*SET
UNIT directive) redirects future processor output to a permanent file associated with FORTRAN
unit 3. The following PRINT command prints the entire NDT data object to this file. After
restoring the print device to be the user’s display, the STATE attribute in columns 1 through 20 of

9 Bad PROP Value Unrecognized PRINT qualifier Check spelling of /PROP qualifier

10 Bad CSM CONTENTS
Record

Reference to a non-CSM dataset Check spelling of dataset name or correct-
ness of dataset sequence number

11 Bad ATTRIBUTE Value Attribute name on PRINT is not
text or an ‘*’

Check spelling of attribute name

12 Undefined Attribute Name Name is not an attribute of the
print object

Check spelling of attribute name

13 Bad COL1 Value Argument col1 on PRINT is not
an integer or an ‘*’

Check argument col1

14 Bad COL2 Value Argument col2 on PRINT is not
an integer or an ‘*’

Check argument col2

15 Too Many Command
Arguments

Bad command syntax Use HELP command

16 Bad CONTENTS Record Reference to a non-HDB data
object

Check spelling of dataset name or correct-
ness of dataset sequence number

*open 1 shuttle.dbc . open library on LDI 1
*toc . look at dataset names
set obj 1 csm.summary...4 . set CSM for mesh 4
print * 1 . print all CSM attributes
set obj 1 37 . set NDT for mesh 2
print * 4 10 . print NDT for nodes 4..10
*set unit prt = 3 . set output file to FORTRAN unit 3
print * * . print complete Nodal DOF Table
*set unit prt . set CLIP’s default output file
print state 1 20 . print NDT Table STATE attribute
... . more HDBprt & CLIP commands
stop . exit HDBprt

Table 14.3-2 Processor HDBprt Error Messages (Continued)

Index Error Message Probable Cause Recommended Action

14 Post-Processors 14.3 Processor HDBprt (Database Print Utility)

Revised 12/1/97 COMET-AR User’s Manual 14.3-7

the NDT data object is printed. Finally, after the user has completed examination of library
shuttle.dbc, the HDBprt processor is terminated with the STOP command.

14.3.8 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

14.3 Processor HDBprt (Database Print Utility) 14 Post-Processors

14.3-8 COMET-AR User’s Manual Revised 12/1/97

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-1

14.4 Processor PST

14.4.1 General Description

PST consists of a set of sub-processors which perform various pre- and post-processing functions.
Many of these functions were developed independently of each other in order to fulfill the pre-
and post-processing requirements that appeared while validating Adaptive Mesh Refinement
(AR). Over time these functions have been collected and integrated into PST (PoST). Many
commands have not been tested for general robustness, and the input and output to commands are
often tailored for particular users and applications. As a result, many functions are not user-
friendly. Nevertheless, PST may offer useful pre- and post-processing functions. Improvements
and modifications to PST are encouraged. Table 14.4-1 summarizes all PST sub-processors.

The ARCHIVE sub-processor extracts resultant quantities from the database at selected locations
and archives/or displays those quantities in the database. The original purpose of this sub-
processor was to extract and tabulate nodal adaptive mesh refinement data used to create XY-
plots. Since the plot package used to create the XY plots was capable of reading fixed-length
GAL records, all output from the ARCHIVE commands employ this output format.

The TRANSLATE (previously called CONVERT) sub-processor translates data between
different FEM analyzers and external modeling tools. Currently the translator recognizes
COMET-AR, PATRAN,1 and STAGS 2.02 (QSTAGS) data formats. The translator converts data
from the source data format to a temporary intermediate data format, and then to the destination
data format. By adopting an intermediate data format, each additional data format added to the
PST immediately has access to all other data formats.

The input to PST is governed by the COMET-AR command language CLAMP (see Reference
[1]); therefore, PST accepts both CLIP directives [2] and PST-specific commands as input. The
PST executive level commands are shown in Table 14.4-2. They consist of commands to execute
sub-processors (usually the name of the sub-processor), SET parameter commands, and a STOP
command.

1. The translator reads PATRAN neutral files.
2. The translator uses STAR to interrogate and create a STAGS database.

Table 14.4-1 Summary of Sub-Processor Names

Sub-Processor Name Function

ARCHIVE Archives selected COMET-AR data to the database

TRANSLATE Translates data between analyzer data formats

14.4 Processor PST 14 Post-Processors

14.4-2 COMET-AR User’s Manual Revised 12/1/97

A sub-processor is invoked by typing the name of the sub-processor at the main command level.
Once a sub-processor has been executed, each sub-processor responds to a separate list of
commands, in addition to the globally applicable SET commands. The SET commands augment
the sub-processor specific commands and are used to change the value of input parameters from
their default values. In general, a SET command can be issued from anywhere within PST in
order to change the value of a parameter. Once a new parameter value has been set, the value
applies throughout PST until the parameter is changed with another SET command. Most SET
parameters have been assigned a default value.

14.4.2 ARCHIVE Sub-Processor

14.4.2.1 General Description

The ARCHIVE sub-processor extracts resultant quantities from the database at selected locations
and archives those quantities in the database. The ARCHIVE sub-processor is invoked by issuing
the ARCHIVE command at the PST main prompt.

This command transfers you to the ARCHIVE command level, where you can chose from a
variety of archival commands as described in Table 14.4-3. Each archival command extracts a
specific solution quantity or model summary parameter from the central data library (.DBC). The
CPU command differs from other ARCHIVE commands, in that it operates on the output
generated by a COMET-AR analysis. This output is required to be saved in a log file. The result
of each archival function is stored as GAL record group in the database. By default, the results are
stored on the central data library (.DBC); however, the output is typically redirected to the results
data library (.DBR). The user can control the name of the output data library and dataset.

Table 14.4-2 PST Command Summary

Section Command Name Function

14.4.2 ARCHIVE Archives selected COMET-AR data to the database

14.4.3 SET parameter Set default names and parameters

14.4.4 STOP Exit the PST processor

14.4.5 TRANSLATE Translates data between analyzer data formats

 ARCHIVE

Table 14.4-3 Summary of ARCHIVE Commands

Command Name Function

ATTRIBUTE Retrieves and archives attributes from the CSM data object.

CPU Reads and tabulates the CPU information recorded in a COMET-AR log file by a linear
static solution with adaptive mesh refinement.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-3

When using the CPU, DISPLACEMENT, NODES, RESULTANT, or VECTOR command,
control is first transferred to a sub-command level, which accepts additional commands specific
to the ARCHIVE command in question. These sub-commands augment SET commands, and
provide additional control to the archival of various solution quantities. The format of sub-
commands is similar to SET commands, but they are not preceded by the keyword SET.

The functional distinction between SET commands and sub-commands is not always clear. In
general, sub-commands are specific to the particular archive function chosen. The SET
commands control global quantities and may apply to other ARCHIVE commands, sub-
commands, or other sub-processors in PST. The actual archival of a solution quantity is initiated
by typing the command ARCHIVE at the sub-command level. (ARCHIVE command appears in
two situations: in one case it is the name of a sub-processor and in another case it is used to
initiate the actual archival of different solution quantities.) The ATTR and RETURN command
do not have additional command levels. These commands complete their functions as soon as a
valid input command has been entered.

In the command descriptions that follow, all SET commands applicable to a particular ARCHIVE
command are listed. For a more detailed description of each SET command refer to
Section 14.4.3.

14.4.2.2 ATTRIBUTE Command

14.4.2.2.1 General Description

This command retrieves the value of a general summary attribute from the CSM data object and
deposits it in a GAL record. Any general summary attribute in the CSM object with a dimension
of 1 can be archived with the ATTRIBUTE command. A CSM object exists in the central data
library for each mesh generated during an analysis. The CSM data object associated with each
mesh is selected with the SET MESH command. The output from this command consists of GAL
record groups, macrosymbols, and output to standard output. The macrosymbols are created for
use within CLAMP-procedures. This command does not have a sub-command level.

DISPLACEMENT Retrieves and records selected data from the NODAL.DISPLACEMENT vector. This
command has the same functionality as the VECTOR command except that the dis-
placement vector is chosen automatically.

NODES Allows you to define a list of nodes for which data will be extracted and recorded.
Alternatively, you specify a coordinate range from which PST extracts a list of nodes.

RESULTANT Retrieves and records selected data from STRAIN, STRESS, and STRAIN_ENERGY
datasets (EST data objects).

RETURN Return to main command level.

VECTOR Retrieves and records selected data from a user specified NVT or NAT vector.

Table 14.4-3 Summary of ARCHIVE Commands (Continued)

Command Name Function

14.4 Processor PST 14 Post-Processors

14.4-4 COMET-AR User’s Manual Revised 12/1/97

This command has primarily been used to archive the neq attribute of the CSM data object in
order to plot the global convergence of finite element solutions quantities obtained via adaptive
mesh refinement.

14.4.2.2.2 Command Syntax

The ATTRIBUTE command accepts only one parameter as input, the name of a general summary
attribute from a CSM data object. Once the command has been issued, the value of the attribute is
retrieved from the default data library (specified via the SET LDI command) and archived in a
GAL record group. The command syntax for the ATTRIBUTE command is composed of the
ATTRIBUTE keyword followed by a valid attribute name:

Valid attributes are listed in Table 2.4-3 in the HDB manual [3].

14.4.2.2.3 Relevant SET Commands

The SET commands that apply to the ATTRIBUTE command are listed in Table 14.4-4. None of
these SET commands are mandatory, but the SET MESH command is usually included to
indicate the meshes from which to extract attributes. For a more detailed description of SET
commands, see Section 14.4.3.

14.4.2.2.4 Input Datasets

The input to the ATTRIBUTE commands is always a CSM data object. You specify which CSM
date object to consider by supplying a mesh number or mesh range, which then is used to
automatically search the default data library for the CSM data objects associated with the mesh
numbers specified. Once the CSM data object has been found, the appropriate attribute is
extracted and archived (see Table 14.4-5).

ATTRIBUTE attribute

Table 14.4-4 Relevant SET Commands for the ATTRIBUTE Command

Command Name Default Function

SET DATASET_NAME 1,ARCHIVE Name of dataset which receives the archived quantities as a
record group

SET LDI 1 Logical device index of computational data library (.DBC)

SET LDI/ARCHIVE 1 Logical device index of results data library.

SET MESH 0,0,1 Range of meshes from which data is to be archived.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-5

14.4.2.2.5 Output Datasets

The output from this command consists of GAL record(s) containing the value of the attribute
requested. The record has the same name as the attribute. If a mesh range is specified, a record
group is formed. Each record in the record group corresponds to one mesh. The SET MESH
command determines which record in the record group is assigned an attribute value. If a record
already exists the data is overwritten with a new value. Mesh=0 corresponds to record number 1
in a record group, since DB does not allow record numbers to start from zero. In general, mesh n
corresponds to record n+1. Table 14.4-6 shows the name of the ATTRIBUTE command output
datasets, while Table 14.4-7 shows the name of the output records.

14.4.2.2.6 Output Macrosymbol

In addition to creating record groups, a global macrosymbol is created as in Table 14.4-8.

Table 14.4-5 ATTRIBUTE Command Input Datasets

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

Table 14.4-6 ATTRIBUTE Command Output Datasets

Dataset Name Default Description

dataset_name 1,ARCHIVE Name of archival dataset name

Table 14.4-7 ATTRIBUTE Command Output Records

Record Name Description

attribute.<mesh+1> Record containing the value of the attribute selected for a given mesh.

Table 14.4-8 ATTRIBUTE Command Output Macrosymbols

Macrosymbol Name Description

attribute[mesh]
Macrosymbol containing the value of the attribute selected for a given mesh.
(Attribute [0] corresponds to mesh 0.)

14.4 Processor PST 14 Post-Processors

14.4-6 COMET-AR User’s Manual Revised 12/1/97

14.4.2.2.7 Limitations

This command is limited to the archival of general summary attributes from the CSM data object
only. Valid attributes are listed in Table 2.4-3 in the HDB manual [1]. Element type summary
attributes can currently not be archived with this command.

14.4.2.2.8 Error Messages

The error messages in Table 14.4-9 are possible with the ATTRIBUTE command.

14.4.2.2.9 Examples and Usage Guidelines

The command stream shown below is used to extract two attributes from the CSM data object,
neq and nnode. First, the ARCHIVE command is issued at the main PST command level to enter
the ARCHIVE sub-processor. The SET commands are used to specify for which meshes to
archive the attributes NEQ and NNODE, to set the name of the archival dataset, and to specify the
logical device index associated with the central data library. Finally, the ATTRIBUTE command
is issued, which extracts the value of the attributes from the CSM data object of the KP.DBC data
library, and archives these values in record groups called NEQ and NNODE.

Table 14.4-9 Summary of Errors Displayed by the ATTRIBUTE Command.

Error # Error Message Probable Cause(s) Recommended User Response

1 Cannot open CSM data
object ...

No CSM data object for mesh number
or logical device index specified.

Check data library and set correct mesh
number and logical device index.

2 Cannot access attribute
from CSM data object ...

Misspelled name of attribute requested;
attribute not a valid general summary
attribute (with unit dimension)

Check name of attribute specified.
Valid attributes are listed in Table 2.4-3
in the HDB Manual [1].

3 Problems opening the AT-
TRIBUTE record group.

Resultant data library not open or name
of results dataset is invalid.

Open resultant data library with
*OPEN directive. Specify a valid
dataset name.

4 Unable to write
ATTRIBUTE record.

Bad record group identifier, internal
tables clobbered.

Read complete error diagnostic. If
meaning is unclear see developer.

5 Unable to close CSM
object

Bad HDB data object handle of data
library conflict.

Read complete error diagnostic. If
meaning is unclear see developer.

6 Problem closing attribute
record group

Bad DB record group identifier, or
dataset clobbered.

Read complete error diagnostic. If
meaning is unclear see developer.

 *open 1 KP.DBC
 *open 2 KP.DBR

. SET commands

. ============
 SET LDI = 1
 SET MESH = 0,4,1
 SET DATA = 2, ARCHIVE.SUMMARY

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-7

The output generated by the command stream above is shown here. In addition to creating two
record groups, attribute values are defined via macrosymbols and displayed to standard output.

 ARCHIVE

 ATTRIBUTE NNODE
 ATTRIBUTE NEQ

 RETURN

. Display macrosymbols created

. ============================
 *show macros

. Display content of results library

. ==================================
 *rat 2

 STOP

 ** BEGIN PST ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 1, File: KP.DBC , Attr: old, Block I/O
 <DM> OPEN, Ldi: 2, File: KP.DBR , Attr: old, Block I/O

 Mesh NNODE
 0 24
 1 80
 2 244
 3 860
 4 920

 Mesh NEQ
 0 86
 1 338
 2 1062
 3 3950
 4 4170

<CL> lv:0 t:I CSM_PRECISION 2
<CL> lv:0 t:I NNODE[0] 24
<CL> lv:0 t:I NNODE[1] 80
<CL> lv:0 t:I NNODE[2] 244
 <CL> lv:0 t:I NNODE[3] 860
 <CL> lv:0 t:I NNODE[4] 920
 <CL> lv:0 t:I NEQ[0] 86
 <CL> lv:0 t:I NEQ[1] 338
 <CL> lv:0 t:I NEQ[2] 1062
 <CL> lv:0 t:I NEQ[3] 3950
 <CL> lv:0 t:I NEQ[4] 4170

. Content of
 Record Table of dataset ARCHIVE.SUMMARY
 Key L_cyc H_cyc Type Log_size
 NEQ 1 5 I 1
 NNODE 1 5 I 1

 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: KP.DBC
 <DM> CLOSE, Ldi: 2, File: KP.DBR

14.4 Processor PST 14 Post-Processors

14.4-8 COMET-AR User’s Manual Revised 12/1/97

14.4.2.3 CPU Command

14.4.2.3.1 General Description

This command was specifically created to archive the CPU time associated with a linear static
solution with adaptive mesh refinement. The command reads the content of a COMET-AR log
file, and scans it for the CPU information printed by every processor during an analysis. Every
time the processor EXIT statement is encountered the name of the processor and the CPU time
spent in that processor is recorded. From this data, the total accumulated solution time for the
whole analysis, and the incremental CPU time associated with each mesh is printed to standard
output and archived in the data library.

This command works by recognizing certain features in the log file. The CPU recording is
initiated when the character string highlighted below is encountered. From the highlighted
character string the program reads the starting mesh number and then proceeds to read and
tabulate the CPU information from each processor until the last processor for that particular mesh
has been encountered. The computations for a mesh (a mesh loop) consist of adaptive mesh
refinement, solution, and error estimation. Since error estimation is the last step, the end of a mesh
is recognized by looking for the execution of an error processor. Once the CPU information from
an error processor has been encountered, the CPU for all processors of that mesh are added and
summarized. Since the number of error processors called at the end of a mesh loop varies
depending on the nature of the problem, the user has to specify the number of error processors
executed at the end of each mesh loop. Once this information has been supplied, the CPU
command is capable of summarizing the CPU history for the analysis.

 Control Loop Summary
 =========================
 MESH = 0
 FIRST_STEP = 0
 LAST_STEP = 0

 Adaptive Mesh Refinement = 0
 Solution = 1 L_STATIC_1
 Error Estimation = 1
 Stress = 1

 Research Parameter Summary
 ==========================
 Mesh initialization = 0
 Interpolation = 0

 ###
 <DM> OPEN, Ldi: 2, File: KP.DBE , Attr: new, Block I/O
 <DM> OPEN, Ldi: 3, File: KP.DBS , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 3, File: KP.DBS, Opt: DELETE
 <DM> OPEN, Ldi: 3, File: KP.DBS , Attr: new, Block I/O
 ####################################

 L_STATIC Mesh 0 Step 0

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-9

14.4.2.3.2 Command Syntax

The command syntax for the CPU command is shown below.

The CPU function is invoked by first executing the ARCHIVE sub-processor and then invoking
the CPU command from the ARCHIVE sub-processor. The SET commands are used to augment
the CPU commands shown in Table 14.4-10. The SET FILE command is always required in order
to supply the name of the log file. The actual extraction of CPU information is initiated by
entering the ARCHIVE command. In order for this command to work properly it is necessary to
supply the correct value to the CALL_ERR command. This command is used to identify the end
of a mesh loop. All mesh loops are assumed to end with a call to an error processor.

 ####################################
 ======================
 LINEAR STATIC ANALYSIS
 ======================
 ** BEGIN ES1 ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 6, File: ES1_EX96.HIST.CONV , Attr: new, Block I/O
 <DM> CLOSE, Ldi: 6, File: ES1_EX96.HIST.CONV
 Element configuration initialized.
 ** BEGIN ES1 ** Using Dynamic Memory **
 EXIT ES1 CPUTIME= 1.19 I/0(DIR,BUF)= 0 0

 UNIX COMET AR -- VERSION 2.0 -- 07_JUN_1993 (aml_32)

ARCHIVE
 SET FILE = log_file
 CPU
 [CALL_ERR = call_err]
 [CUMULATIVE = [<true> | <false>]]
 [RETURN]
 ARCHIVE
 RETURN
STOP

Table 14.4-10 Summary of CPU Commands

Command Name Default Function

ARCHIVE ARCHIVE CPU times from log file

CALL_ERR 1 Number of times error processor(s) are called per mesh.

CUMULATIVE <true> CPU-time accumulation time. If this flag is on the CPU time of each
mesh is added to the total CPU time.

RETURN Exit from CPU command module

14.4 Processor PST 14 Post-Processors

14.4-10 COMET-AR User’s Manual Revised 12/1/97

14.4.2.3.3 The ARCHIVE Command

This command initiates the archival process.

14.4.2.3.4 The CALL_ERR Command

This command is used to specify how many times error processors are called during a mesh loop.
Determine the number of calls to error processors by counting the number of times the string “**
BEGIN ERR? ** Using Dynamic Memory ** ” appears in each mesh loop of the log file,
where ? is a generic symbol for any character. For an analysis with no partitions, this number is
usually one (the default). If the structure is partitioned, the call to the main error processor is
automatically followed by a call to an error processor called ERRa, which accumulates the
element errors in different groups into a global error. In this case call_err is equal to 2.

14.4.2.3.5 The CUMULATIVE Command

This command adds the CPU time associated with each mesh to the previous mesh, resulting in
the display of a total accumulated CPU for each mesh. To obtain the CPU associated with each
mesh inactivate this parameter by setting it to <false>.

The default value of CUMULATIVE = <true> .

14.4.2.3.6 The RETURN Command

This command exits from the CPU command level and returns to the ARCHIVE command level.

14.4.2.3.7 Relevant SET Commands

Table 14.4-11 lists all SET commands relevant to the CPU command.

ARCHIVE

 CALL_ERR = call_err

CUMULATIVE = [<true> | <false>]

RETURN

Table 14.4-11 SET Commands Relevant to CPU command

Command Name Default Function

SET DATASET_NAME 1,ARCHIVE Name of dataset which receives archived quantities as a record group.

SET FILE_NAME Name of log file. This SET command must be supplied by the user in
conjunction with the CPU command.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-11

14.4.2.3.8 Input Datasets

There are no input datasets associated with the CPU command. Instead a file containing output
from COMET-AR processors is expected.

14.4.2.3.9 Output Datasets

The output from this command consists of four GAL record groups summarizing the CPU time
spent by various processors during an analysis. The names of these record groups are shown in
Table 14.4-12 and cannot be changed. The format of the dataset name is shown in Table 14.4-13.
The SET MESH command determines which records in the record group are assigned a CPU time.
Mesh=n corresponds to record number n+1. DB does not allow record numbers to start from zero.

14.4.2.3.10 Limitations

This command is programmed to recognize a certain format in the log file. If the format of the log
file changes the corresponding change has to be made to the program source code.

This command only works in conjunction with linear static solutions.

SET HEADER L_STATIC Mesh Sets the format of the header string searched to initiate CPU timing
for each mesh. This SET command is only used for this command.

SET LDI 1 Logical device index of central data library (.DBC).

SET LDI/ARCHIVE 1 Logical device index for results data library (.DBR).

SET MESH 0,0,1 Range of meshes from which data is to be archived.

Table 14.4-12 CPU Command Output Datasets

Dataset Name Default Description

dataset_name 1, ARCHIVE Total CPU time for of all processors of a given mesh

Table 14.4-13 CPU Command Output Records

Record Name Description

CPUTOT.<mesh+1> Total CPU used by all processors for a given mesh

CPUASM.<mesh+1> Total CPU spent in assembly and RHS operations for a given mesh

CPUSKY.<mesh+1> CPU for FACTOR, SOLVE and matrix decompositions steps

CPUES.<mesh+1> Total CPU spent in the element processors.

Table 14.4-11 SET Commands Relevant to CPU command (Continued)

Command Name Default Function

14.4 Processor PST 14 Post-Processors

14.4-12 COMET-AR User’s Manual Revised 12/1/97

14.4.2.3.11 Error Messages

The CPU command produces user-friendly error messages that are self-explanatory.

14.4.2.3.12 Examples and Usage Guidelines

In this example the CPU times recorded in the file ka.log are accumulated and summarized in the
dataset ARCHIVE.SUMMARY which resides on the results data library KP.DBR. The input
deck is shown below.

The output shows the CPU information for mesh 1 and 2. To obtain the CPU information, the
program searches the log file ka.log for the mesh specified via the SET MESH command. If other
meshes are encountered during the search, this is acknowledged and no CPU information is
printed for these meshes.

 *echo,off
 *open KP.DBR

. Set General Parameters

. ======================
 SET ECHO = <true>
 SET FILE = ka.log
 SET DATA = 1,ARCHIVE.SUMMARY
 SET MESH = 1,2

 ARCHIVE

. Define Node to extract displacements from
. ===
 CPU
 CALL_ERR = 1
 ARCHIVE

 RETURN

 STOP

<CL> PUT_message,Commnt>
 ** BEGIN PST ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 1, File: KP.DBR , Attr: old, Block I/O
SET ECHO: ON
SET FILENAME: ka.log
SET LDIR: 1
SET IDSN: 1
SET DATASET_NAME: ARCHIVE.SUMMARY
SET BEG_MESH: 1
SET END_MESH: 2
SET INC_MESH: 1

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-13

14.4.2.4 DISPLACEMENT Command

14.4.2.4.1 General Description

This command is similar to the VECTOR command, except that the NVT vector is automatically
assumed to be the NODAL.DISPLACEMENT vector.

 =======> Processing mesh 0
 =======> Processing mesh 1

 Total CPU time recorded 31.000000000

 CPU summary
 ARC 0.000000000 0.00
 ES 9.700000000 0.31
 RENUMB 1.000000000 0.03
 COP 1.600000000 0.05
 ASM 5.100000000 0.16
 FAC,SOL 1.100000000 0.04
 ERR 4.200000000 0.14
 REF 8.300000000 0.27
 VEC 0.000000000 0.00
 MISC 0.000000000 0.00

 TOTAL 31.000000000 1.00

 =======> Processing mesh 2

 Total CPU time recorded 109.800000000

 CPU summary
 ARC 0.000000000 0.00
 ES 20.300000000 0.26
 RENUMB 1.700000000 0.02
 COP 3.800000000 0.05
 ASM 19.600000000 0.25
 FAC,SOL 10.500000000 0.13
 ERR 7.100000000 0.09
 REF 15.800000000 0.20
 VEC 0.000000000 0.00
 MISC 0.000000000 0.00

 TOTAL 78.800000000 1.00

 =======> Processing mesh 3

 EXIT PST CPUTIME= 0.72 I/0(DIR,BUF)= 0 0
 <CL> PNS exhausted

 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: KP.DBR

14.4 Processor PST 14 Post-Processors

14.4-14 COMET-AR User’s Manual Revised 12/1/97

14.4.2.4.2 Command Syntax

The command syntax for the DISPLACEMNT command is shown below.

The above command syntax assumes that the default name of the node list record group is used.

14.4.2.5 NODES Command

14.4.2.5.1 General Description

The NODES command generates a list of nodes typically used to extract nodal displacements,
stress, strain, or strain energy quantities from the database. The node list is created either by
directly specifying the nodes to be included in the node list or by specifying a coordinate range
and a tolerance, used to search for nodes in the NCT data object that fall within the coordinate
range specified. The node list is then usually passed to the DISPLACEMENT, VECTOR, or
RESULTANT command to extract resultant solution quantities for the nodes in the node list.

14.4.2.5.2 Command Syntax

The command syntax for the NODES command is shown below.

The NODES function is invoked by first executing the ARCHIVE sub-processor and then
invoking the NODES command from the ARCHIVE sub-processor. The SET commands are used
to augment the NODES sub-commands shown below. The actual formation of the node list is
initiated by entering the ARCHIVE command.

 ARCHIVE
 SET MESH = beg_mesh, end_mesh, inc_mesh
 DISPLACEMENT

 [ABS { <true> | <false> }]
 {{MIN | MAX} { <true> | <false> }]
 [INPUT_NODES node-list_record_name]

 [OUTPUT_NODE maxmin-node_record_name]
 [OUTPUT_COORD maxmin-coordinate_record_name]
 [OUTPUT_DISP disp_record_name]
 [OUTPUT_COMP maxmin-node_record_name]
 ARCHIVE [INPUT_NODES node-list_record_name]
 RETURN

ARCHIVE
 SET MESH = beg_mesh, end_mesh, inc_mesh
 NODES
 [OUTPUT_NODE node-list_record_name]
 [OUTPUT_COORD coordinate_record_name]
 NODE beg_node, end_node, inc_node
 ARCHIVE
 RETURN
STOP

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-15

14.4.2.5.3 The ARCHIVE Command

This command initiates the archival process.

14.4.2.5.4 The NODE Command

This command specifies the nodes to be included in a node list. The nodes are either specified
directly by listing the nodes to be included in the node list or indirectly by specifying a coordinate
range from which the nodes should be extracted. If the nodes are specified directly, the starting
node (beg_node), ending node (end_node), and the node increment (inc_node) of the nodes to be
included are supplied as input. When this format is used, the command can be repeated multiple
times before the ARCHIVE command is issued to initiate the archival process. All nodes
specified in this way will be added to the node list.

Alternatively the nodes can be extracted by specifying a coordinate range. In this mode, the
default is to assume that all nodes are included in the node list. The user then proceeds to limit the
number of nodes to be included in the final node-list by specifying a coordinate range from which
the nodes should be extracted. All nodes which fall within the coordinate range (to within a
specified tolerance) are extracted and entered into a GAL record.

Table 14.4-14 Sub-command Names for the NODES Command

Command Name Default Function

ARCHIVE Archives the nodes specified via the NODES command.

NODES ALL Command used to specify the node list. If this sub-command is specified without
any other parameters all active nodes for the mesh range specified are extracted.

OUTPUT_NODE NODEName of record group where the output nodes are stored.

OUTPUT_COORD CORDName of record group where the coordinates of the selected nodes are stored.

RETURN Return from ARCHIVE sub-processor to main executive level.

ARCHIVE

 NODE beg_node , end_node , inc_node

 NODE X=x beg,x end Y=y beg,y end Z=z beg,z end MACRO=name

Table 14.4-15 List of Parameters for NODE Command

Parameter Function

beg_node Beginning node number in loop limit node specification

end_node Ending node number in loop limit node specification

14.4 Processor PST 14 Post-Processors

14.4-16 COMET-AR User’s Manual Revised 12/1/97

One or all of the keywords X, Y, Z, or MACRO may be included. If none are specified, all active
nodes in the NCT data object are included.

14.4.2.5.5 The OUTPUT_NODE Command

This command sets the name of the record group containing the node list. If the node list is
generated by using a coordinate range specification, the number of nodes extracted for each mesh
must be the same, since all records in a record group must have the same length (fixed-length
records). If you expect that based on the coordinate range specification a different number of
nodes will be extracted for each mesh, then each mesh should be processed separately and a
unique record name should be assigned for each mesh. If the NODES command is invoked and
the SET MESH command is such that beg_mesh = end_mesh then the record cycle number is
always one, irrespective of mesh number. If beg_mesh < end_mesh then a record group is created
where the record cycle number corresponds to mesh+1.

The parameter node_list_record_name is the name of the record group and is limited to 11
characters. The default name is NODE. If the SET TAG command is issued the tag string gets
appended to the default name. The name of the NODE record group is automatically passed to the
VECTOR, DISPLACEMENT, or RESULTANT command if the default name or the TAG name
is used. If the name of the node list is supplied via the OUTPUT_NODE command, then you have
to pass this name explicitly to the other ARCHIVE functions.

14.4.2.5.6 The OUTPUT_COORD Command

This command sets the name of the record group containing the coordinates of the nodes
contained in the node list. The record group created is a fixed-length record group and the cycle
number appended to the record name follows the same convention as for the OUTPUT_NODE
command above.

inc_node Increment in loop limit node specification

xbeg Beginning x coordinate in range specification

xend Ending x coordinate in range specification

ybeg Beginning y coordinate in range specification

yend Ending y coordinate in range specification

zbeg Beginning z coordinate in range specification

zend Ending z coordinate in range specification

name Name of macrosymbol containing node list. Each node in node list is contained in an indexed mac-
rosymbol. The number of items in the macro array is stored in a macrosymbol called num_name.

 OUTPUT_NODE node_list_record_name

Table 14.4-15 List of Parameters for NODE Command (Continued)

Parameter Function

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-17

The parameter coordinate_record_name is the name of the record group and is limited to 11
characters. The default name is CORD. If the SET TAG command is issued the tag string gets
appended to the default name.

14.4.2.5.7 The RETURN Command

This command exits from NODES command level and returns to the ARCHIVE command level.

14.4.2.5.8 Relevant SET Commands

Table 14.4-16 lists all SET commands relevant to the CPU command.

14.4.2.5.9 Input Datasets

This command searches the nodal coordinate table (NCT) for active nodes and therefore only
requires the CSM, NCT, and NDT data objects. The CSM is required for general model and
element type attributes, the NDT is required to check which nodes are active, and the NCT stores
the nodal coordinates.

OUTPUT_COORD coordinate_record_name

RETURN

Table 14.4-16 SET Commands Relevant to NODES Command

Command Name Default Function

SET CONSTRAINT_SET 1 Constraint set

SET DATASET_NAME 1,ARCHIVE Name of dataset which receives the archived quantities as a record group.

SET LDI 1 Logical device index of central data library (.DBC).

SET LDI/ARCHIVE 1 Logical device index for results data library (.DBR).

SET MESH 0,0,1 Range of meshes from which data is to be archived.

SET TAG - Tag that is appended to the default record names in order to create unique
record names. The tag is limited to 6 characters.

SET TOL 0.001 Tolerance used for identifying nodes at certain coordinate locations.

Table 14.4-17 NODES Command Input Datasets

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

NODAL.COORDINATE..mesh NAT Nodal Attribute Table (NAT) of pseudo-vectors used to update nodal
rotation triads. The name of an NAT data object is completely specified
by the user, including component names and cycle numbers.

14.4 Processor PST 14 Post-Processors

14.4-18 COMET-AR User’s Manual Revised 12/1/97

14.4.2.5.10 Output Datasets

The output from this command is written to the resultant data library (DBR file) in the form of
record groups. The dataset name of the record group is set with the SET DATASET command.
The names of the records created are controlled by the SET TAG command or the
OUTPUT_NODE and OUTPUT_COORD command. Alternatively, the user can also use the
default values shown in Table 14.4-18 or Table 14.4-19.

The name of the output record names can be constructed in two different ways. The user can
either explicitly supply the name of the record group, or supply a tag string which is appended to
the default name. The tag string is set with the SET TAG command.

14.4.2.5.11 Limitations

None.

14.4.2.5.12 Error Messages

The error messages produced by this command are listed in Table 14.4-20.

NODAL.DOF..con_set.mesh NDT Nodal DOF Table (NDT). The name of an NDT data object is completely
specified by the user, including component names and cycle numbers

Table 14.4-18 NODES Command Output Datasets

Dataset Name Default Description

dataset_name 1,ARCHIVE Name of archival dataset name

Table 14.4-19 NODES Command Output Records

Record Name Default Description

NODEtag or output_node NODE Node number at which maximum value is located

CORDtag or output_coordinate CORD Nodal component number at which maximum value is located

Table 14.4-20 Error Messages Produced by the NODES Command

Error # Error Message Probable Cause(s) Recommended User Response

1 Incorrect number of input
items ...

Command line contains too many or
too few input parameters

Re-enter command with correct num-
ber of parameters. Refer to PST docu-
mentation if necessary.

Table 14.4-17 NODES Command Input Datasets (Continued)

Dataset Type Description

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-19

14.4.2.5.13 Examples and Usage Guidelines

This first input example illustrates how to use the NODES command to generate a node list by
directly specifying the nodes in the list. The NODES command will include the nodes specified in
the node list and retrieve the coordinates of these nodes. The nodes entered here describe the
radius of the central hole of the Knight’s Panel problem for computational mesh number one.

2 Node number specified
must be greater than zero.

Invalid node range. Re-enter node range in loop-limit for-
mat with positive integer numbers.

3 Unable to assign/resize
space for ???? buffer.

Error in node list input, otherwise
internal variables have been clob-
bered. It is possible the system is out
of memory.

Verify node list input. If the system is
out of memory, release memory for
process. Read complete error diagnos-
tic. If meaning unclear see developer.

4 Command not recognized Command issued is misspelled or
not applicable

Supply valid command.

5 Cannot open CSM/NCT/
NDT data object...

Data object does not exist for mesh
number or logical device index
specified.

Check data library and set correct mesh
number and logical device index.

6 Cannot read NCT/NDT
data object

Clobbered database. Read complete error diagnostic. If
meaning unclear see developer.

7 Unable to find a node
within the coordinate range
and tolerance specified.

Search for node is not satisfied
because tolerance specified is too
small. Coordinate range specified
does not contain any nodes.

Reset tolerance and verify coordinate
range.

8 Problems opening the ????
record group.

The resultant data library is not open
or the name of the results dataset is
invalid. The record group exists and
was previously opened with a differ-
ent fixed-length record size.

Open resultant data library with
*OPEN directive. Specify a valid
dataset name. Specify a different record
group name

9 Unable to write ????
record.

Bad record group identifier, internal
tables clobbered.

Read complete error diagnostic. If
meaning unclear see developer.

10 Unable to close CSM
object

Bad HDB data object handle of data
library conflict.

Read complete error diagnostic. If
meaning unclear see developer.

11 Problem closing ????
record group

Bad DB record group identifier, or
dataset clobbered.

Read complete error diagnostic. If
meaning unclear see developer.

Table 14.4-20 Error Messages Produced by the NODES Command (Continued)

Error # Error Message Probable Cause(s) Recommended User Response

14.4 Processor PST 14 Post-Processors

14.4-20 COMET-AR User’s Manual Revised 12/1/97

The output record group NODE includes all the nodes specified as input, and the output record
group CORD lists all the coordinates of the nodes in the node list. Here the SET ECHO command
was used to echo all the SET commands to standard output after they have been issued.

 *echo,off

 *open KP.DBC
 *open KP.DBR

. Set General Parameters

. ======================
 SET ECHO = <true>
 SET LDI = 1
 SET DATA = 2, ARCHIVE
 SET MESH = 1

 ARCHIVE

. Define Node to extract displacements from
. ===
 NODES
 Node 17,24,1
 Node 29,30,1
 Node 45,46,1
 Node 59,60,1
 Node 71,72,1
 ARCHIVE

 RETURN

. Display content of results library

. ==================================
 *rat 2
 *print 2 1

 STOP

 <CL> PUT_message,Commnt>
 ** BEGIN PST ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 1, File: KP.DBC , Attr: old, Block I/O
 <DM> OPEN, Ldi: 2, File: KP.DBR , Attr: new, Block I/O
SET ECHO: ON
SET LDI: 1
SET LDIR: 2
SET IDSN: 0
SET DATASET_NAME: ARCHIVE
SET MESH: 1

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-21

The example shown above is an example of a NODES specification where a coordinate range is
specified. In the next example, all nodes situated in the xy-plane with zg=0.0, are archived. This
format of the NODES command lets the user specify a coordinate range and tolerance from which
the nodes in the node list are selected. Note that the user does not have to specify a coordinate
range for all coordinate directions. Without a coordinate range specification all nodes are
included; each coordinate range specified restricts the number of nodes to include in the final
node list.

This example also shows how you can control the name of the output record groups archiving the
node list and coordinate list. Since beg_mesh = end_mesh, only one record was created with cycle
number one.

 Record Table of dataset ARCHIVE
 Key L_cyc H_cyc Type Log_size
 CORD 1 1 D 48
 NODE 1 1 I 16

 Record CORD.1 of dataset ARCHIVE
 1: -1.4142D+00 1.4933D+01 8.4142D+00 -6.5567D-07 1.5000D+01
 9.0000D+00 1.4142D+00 1.4933D+01 8.4142D+00 2.0000D+00
 11: 1.4866D+01 7.0000D+00 1.4142D+00 1.4933D+01 5.5858D+00
 -6.5567D-07 1.5000D+01 5.0000D+00 -1.4142D+00 1.4933D+01
 21: 5.5858D+00 -2.0000D+00 1.4866D+01 7.0000D+00 -7.0711D-01
 1.4983D+01 8.8536D+00 7.0711D-01 1.4983D+01 8.8536D+00
 31: 1.8536D+00 1.4883D+01 7.7071D+00 1.8536D+00 1.4883D+01
 6.2929D+00 7.0711D-01 1.4983D+01 5.1464D+00 -7.0711D-01
 41: 1.4983D+01 5.1464D+00 -1.8536D+00 1.4883D+01 6.2929D+00
 -1.8536D+00 1.4883D+01 7.7071D+00

 Record NODE.1 of dataset ARCHIVE
 1: 17 18 19 20 21
 22 23 24 29 30
 11: 45 46 59 60 71
 72

 EXIT PST CPUTIME= 0.66 I/0(DIR,BUF)= 0 0
 <CL> PNS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: KP.DBC
 <DM> CLOSE, Ldi: 2, File: KP.DBR

 *echo,off

 *open KP.DBC
 *open KP.DBR

. Set General Parameters

. ======================
 SET LDI = 1
 SET DATA = 2, ARCHIVE
 SET MESH = 2

14.4 Processor PST 14 Post-Processors

14.4-22 COMET-AR User’s Manual Revised 12/1/97

The following shows the output in response to the input shown above. In addition to creating
record groups, macrosymbols are created.

The final example specifies a coordinate location where the user wants to view the value of
resultant data. The program will search for nodes, within a specified tolerance of this location, and
archive those in the data library. Since only one value is extracted for each mesh (the one closest
to the point specified) a mesh range can be specified for which this function is performed. (The
output can be stored in a fixed-length record group.) This example also shows how the SET TAG
command is used. It must be issued from within the ARCHIVE sub-processor, otherwise the TAG
is reset to its default value.

 ARCHIVE

. Define Node to extract displacements from

. ===
 NODES
 NODE Z=0.0 MACRO = Z_0
 OUTPUT_NODE = SPECIF_NODE
 OUTPUT_COORD= SPECIF_COORD
 ARCHIVE

 RETURN

. Display macrosymbols created

. ============================
 *show macros

. Display content of results library

. ==================================
 *rat 2

 STOP

 <CL> PUT_message,Commnt>
 ** BEGIN PST ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 1, File: KP.DBC , Attr: old, Block I/O
 <DM> OPEN, Ldi: 2, File: KP.DBR , Attr: old, Block I/O

 <CL> lv:0 t:I CSM_PRECISION 2
 <CL> lv:0 t:I Z_0[1] 5
 <CL> lv:0 t:I Z_0[2] 6
 <CL> lv:0 t:I Z_0[3] 7
 <CL> lv:0 t:I Z_0[4] 55
 <CL> lv:0 t:I Z_0[5] 56
 <CL> lv:0 t:I NUM_Z_0 5

 Record Table of dataset ARCHIVE
 Key L_cyc H_cyc Type Log_size
 SPECIF_COOR 1 1 D 15
 SPECIF_NODE 1 1 I 5

 EXIT PST CPUTIME= 0.90 I/0(DIR,BUF)= 0 0
 <CL> PNS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: KP.DBC
 <DM> CLOSE, Ldi: 2, File: KP.DBR

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-23

Below is the output in response to the input shown above.

 *echo,off

 *open KP.DBC
 *open KP.DBR

. Set General Parameters

. ======================
 SET ECHO = <true>
 SET LDI = 1
 SET DATA = 2, ARCHIVE
 SET MESH = 0,4,1
 SET TOL = 0.01

 ARCHIVE

 SET TAG = MAXVAL

. Define Node to extract displacements from

. ===
 NODES
 NODE X=2.0 Y=14.866 Z=7.0
 ARCHIVE

 RETURN

. Display content of results library

. ==================================
 *rat 2
 *print 2 1

 STOP

 <CL> PUT_message,Commnt>
 ** BEGIN PST ** Using Dynamic Memory **
 <DM> OPEN, Ldi: 1, File: KP.DBC , Attr: old, Block I/O
 <DM> OPEN, Ldi: 2, File: KP.DBR , Attr: old, Block I/O
 Record Table of dataset ARCHIVE
 Key L_cyc H_cyc Type Log_size
 CORDMAXVAL 1 5 D 3
 NODEMAXVAL 1 5 I 1

 Record CORDMAXVAL.1 of dataset ARCHIVE
 1: 2.0000D+00 1.4866D+01 7.0000D+00
 Record NODEMAXVAL.1 of dataset ARCHIVE
 1: 20
 Record SPECIF_COOR.1 of dataset ARCHIVE
 1: 7.0000D+00 1.3266D+01 0.0000D+00 -6.5567D-07 1.5000D+01
 0.0000D+00 -7.0000D+00 1.3266D+01 0.0000D+00 3.5000D+00
 11: 1.4567D+01 0.0000D+00 -3.5000D+00 1.4567D+01 0.0000D+00

14.4 Processor PST 14 Post-Processors

14.4-24 COMET-AR User’s Manual Revised 12/1/97

14.4.2.6 RESULTANT Command

14.4.2.6.1 General Description

The RESULTANT command extracts nodally smoothed stress, strain, and strain energy
quantities from the database. There are two modes of operation: either the user specifies a node
list for which nodal resultant quantities are extracted, or the database is searched for the node at
which the stress based nodal resultant is a maximum or minimum.

14.4.2.6.2 Command Syntax

The command syntax for the RESULTANT command is shown below.

 Record SPECIF_NODE.1 of dataset ARCHIVE
 1: 5 6 7 55 56
 Record CORDMAXVAL.2 of dataset ARCHIVE
 1: 2.0000D+00 1.4866D+01 7.0000D+00
 Record NODEMAXVAL.2 of dataset ARCHIVE
 1: 20
 Record CORDMAXVAL.3 of dataset ARCHIVE
 1: 2.0000D+00 1.4866D+01 7.0000D+00
 Record NODEMAXVAL.3 of dataset ARCHIVE
 1: 20
 Record CORDMAXVAL.4 of dataset ARCHIVE
 1: 2.0000D+00 1.4866D+01 7.0000D+00
 Record NODEMAXVAL.4 of dataset ARCHIVE
 1: 20
 Record CORDMAXVAL.5 of dataset ARCHIVE
 1: 2.0000D+00 1.4866D+01 7.0000D+00
 Record NODEMAXVAL.5 of dataset ARCHIVE
 1: 20
 EXIT PST CPUTIME= 0.90 I/0(DIR,BUF)= 0 0
 <CL> PNS exhausted
 ENDRUN called by CLIP
 <DM> CLOSE, Ldi: 1, File: KP.DBC
 <DM> CLOSE, Ldi: 2, File: KP.DBR

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-25

The commands associated with the RESULTANT function are described in Table 14.4-21. All
these commands are optional except for the {STRESS | STRAIN | STRAIN_ENERGY}
command. Specify the results type to archive by selecting one of the keywords STRESS,
STRAIN, or STRAIN_ENERGY. To initiate the archival enter the ARCHIVE command.

 ARCHIVE

 RESULTANT
 [ABS { <true> | <false> }]
 [BARLOW { <true> | <false> }]
 {{MIN | MAX} { <true> | <false> }]
 [NUM_GROUPS = num_group, (grp 1, grp 2,..., grp num_group)]
 [INPUT_NODES node-list_record_name]

 [OUTPUT_COMP maxmin-comp_record_name]
 [OUTPUT_NODES maxmin-node_record_name]
 [OUTPUT_STRESS stress _record_name]
 {STRESS | STRAIN | STRAIN_ENERGY }
 ARCHIVE [INPUT_NODES node-list_record_name]
 RETURN

Table 14.4-21 Summary of RESULTANT Commands

Command Name Default Function

ABS 0 Use absolute value of components when determining the extremum value.

ARCHIVE Initiate archival of resultant components from database.

BARLOW <false> Extrapolate to nodes via Barlow points.

INPUT_NODES NODE Name of the record group containing the input node list.

MAX <false> This command searches the results object for the component with the maxi-
mum value. When used in conjunction with the ABS flag, the search is per-
formed on the absolute value of the components.

MIN <false> This command searches the results object for the component with the mini-
mum value. When used in conjunction with the ABS flag, the search is per-
formed on the absolute value of the components.

NUM_GROUPS 1,1 Specifies the element groups to be include in the computation of smooth stress,
strain, or strain energy fields.

OUTPUT_COMP COMP Name of the record group containing the component of the node at which the
maximum stress value is located. This record group is only created if the MAX
or MIN command is specified.

OUTPUT_NODE NODR Name of the record group containing the node number of the node at which the
maximum stress value is located. This record group is only created if the MAX
or MIN command is specified.

14.4 Processor PST 14 Post-Processors

14.4-26 COMET-AR User’s Manual Revised 12/1/97

14.4.2.6.3 The ABS Command

This command indicates that the absolute value of the nodal results should be used when
searching for an extremum value.

14.4.2.6.4 The ARCHIVE Command

This command initiates the archival process.

14.4.2.6.5 The BARLOW Command

This command allows you to control when stress, strain, and strain energy components are
extrapolated from integration points to nodes via Barlow points.

14.4.2.6.6 The INPUT_NODE Command

This command specifies the name of the record group which contains the input node list. It is only
used if the MAX or MIN command is not specified.

OUTPUT_STRESS

SIGM Name of the record group containing the value(s) of the stress component
extracted.

EPSI Name of the record group containing the value(s) of the strain component
extracted.

UFE Name of the record group containing the value(s) of the strain energy density
extracted.

RETURN Return to ARCHIVE main command level.

STRAIN <false> Flag indicating that strain components are to be extracted and archived.

STRAIN_ENERGY <false> Flag indicating that the strain energy density is to be extracted and archived.

STRESS <false> Flag indicating that stress components are to be extracted and archived.

 ABS { <true> | <false> }

ARCHIVE

BARLOW [<true> | <false>]

INPUT_NODE node_list_record_name

Table 14.4-21 Summary of RESULTANT Commands (Continued)

Command Name Default Function

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-27

The node_list_record_name is the name of the record group and is limited to 11 characters. The
default name is NODE. If the SET TAG command is issued the tag string gets appended to the
default name.

14.4.2.6.7 The MAX Command

Search the results quantity selected for the component with the maximum value.

14.4.2.6.8 The MIN Command

Search the results quantity selected for the component with the minimum value.

14.4.2.6.9 The NUM_GROUPS Command

This command selects the element groups to be included when smoothing stress, strain, or strain
energy density.

14.4.2.6.10 The OUTPUT_COMP Command

Name of record group containing the nodal component for which the extremum value was found.
This record group is only created if the MAX or MIN command was used.

The maxmin_comp_record_name is the name of the record group and is limited to 11 characters.
The default name is COMP. If the SET TAG command is issued the tag string gets appended to
the default name.

14.4.2.6.11 The OUTPUT_NODE Command

Name of record group containing the node number for which the extremum value was found. This
record group is only created if the MAX or MIN command was used.

The maxmin_node_record_name is the name of the record group and is limited to 11 characters.
The default name is NODR. If the SET TAG command is issued the tag string gets appended to
the default name.

MAX [<true> | <false>]

MIN [<true> | <false>]

NUM_GROUP num_group, (grp 1, grp 2,..., grp num_group)

OUTPUT_COMP maxmin_comp_record_name

OUTPUT_NODE maxmin_node_record_name

14.4 Processor PST 14 Post-Processors

14.4-28 COMET-AR User’s Manual Revised 12/1/97

14.4.2.6.12 The OUTPUT_STRESS Command

Name of record group containing archived stress component. This record group is always created.

The stress_record_name is the name of the record group and is limited to 11 characters. The
default name is SIGM, EPSI, or UFE, depending on the resultant type chosen. If the SET TAG
command is issued the tag string is appended to the default name

14.4.2.6.13 The RETURN Command

This command returns program control to the ARCHIVE sub-processor command level.

14.4.2.6.14 The STRESS Command

Flag indicating that stresses are to be extracted and archived. When this command is issued it
supersedes any previous STRESS, STRAIN, or STRAIN_ENERGY command. This command
automatically sets the output stress record group to its default value (SIGM).

14.4.2.6.15 The STRAIN Command

Flag indicating that strains are to be extracted and archived. When this command is issued it
supersedes any previous STRESS, STRAIN, or STRAIN_ENERGY command. This command
automatically sets the output stress record group to its default value (EPSI).

14.4.2.6.16 The STRAIN_ENERGY Command

Flag indicating that strain energy densities are to be extracted and archived. When this command
is issued it supersedes any previous STRESS, STRAIN, or STRAIN_ENERGY command. This
command automatically sets the output stress record group to its default value (UFE).

OUTPUT_STRESS stress_record_name

RETURN

STRESS [<true> | <false>]

 STRAIN [<true> | <false>]

STRAIN_ENERGY [<true> | <false>]

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-29

14.4.2.6.17 Relevant SET Commands

Table 14.4-22 lists all SET commands relevant to the RESULTANT command.

14.4.2.6.18 Input Datasets

Table 14.4-22 SET Commands Relevant to RESULTANT Command

Command Name Default Function

SET COMPONENT 0 Stress component selected:
0 — All resultant stress components at a node are included in the
archival function
>1 — Only the component selected via this command is included in
the archival function

SET CONSTRAINT_SET 1 Constraint set to use.

SET DATASET_NAME 1,ARCHIVE Name of dataset which receives archived quantities as a record group.

SET LDI 1 Logical device index of central data library (.DBC).

SET LDI/ARCHIVE 1 Logical device index for results data library (.DBR).

SET LOAD_SET 1 Load Set.

SET MESH 0,0,1 Range of meshes from which data is to be archived.

SET TAG - This is a tag that is appended to the default record names in order to
create unique record names. The tag is limited to 6 characters.

Table 14.4-23 RESULTANT Command Input Dataset Names

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

NODAL.DISPLACEMENT.
load_set.con_set.mesh

NAT Nodal Attribute Table (NAT) of pseudo-vectors used to
update nodal rotation triads. The name of an NAT data object
is completely specified by the user, including component
names and cycle numbers.

NODAL.DOF..con_set.mesh NDT Nodal DOF Table (NDT). The name of an NDT data object
is completely specified by the user, including component
names and cycle numbers

NODAL.TRANSFORMATION...mesh NTT Nodal vector Table (NVT). The name of an NVT data object
is completely specified by the user, including component
names and cycle numbers.

eltnam.STRESS.load_set.con_set.mesh EST Element stress Table (EST). The element stresses are stored
at integration points.

eltnam.STRAIN.load_set.con_set.mesh EST Element stress Table (EST). The element strains are stored at
integration points.

eltnam.STRAIN_ENERGY.
load_set.con_set.mesh

EST Element stress Table (EST). The element strain energy den-
sities are stored at integration points.

14.4 Processor PST 14 Post-Processors

14.4-30 COMET-AR User’s Manual Revised 12/1/97

14.4.2.6.19 Output Datasets

If the input data is a node list then the output from the RESULTANT function is a list of stress
resultants corresponding to the nodes in the node list. Stresses are only extracted for stress
components selected via the SET COMP command.

The default output record name can be modified by the SET TAG command or by directly
specifying alternate record names via the OUTPUT_STRESS command.

14.4.2.6.20 Limitations

None.

14.4.2.6.21 Error Messages

Most messages produced are self-explanatory.

14.4.2.6.22 Examples and Usage Guidelines

The following is an example of an input deck where the NODES and RESULTANT command
have been used together to archive stresses, strains, and strain energy densities.

Table 14.4-24 RESULTANT Command Output Dataset Names

Dataset Name Default Description

dataset_name 1, ARCHIVE Name of archival dataset name

Table 14.4-25 RESULTANT Command Output Record Names

Record Name Description

NODR Node number at which maximum value is located.

COMP Nodal component number at which maximum value is located

SIGM Name of record group containing archived stresses.

EPSI Name of record group containing archived strains.

UFE Name of record group containing archived strain energy densities.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-31

14.4.2.7 VECTOR Command

14.4.2.7.1 General Description

The VECTOR command extracts selected nodal data from a vector stored either as an NVT or an
NAT object. The node list is selected via the NODES command as described in Section 14.4.2.5.
The output from this command depends on the additional input parameters specified to the
VECTOR command. If the keyword MAX or MIN is selected, then the stress components of the
nodes in the node list are searched for a maximum or minimum value, which is written to the

 *open KP.DBC
 *open KP.DBR

. Set General Parameters

. ======================
 SET DATA = 2, ARCHIVE.SUMMARY
 SET MESH = 0,4,1
 SET COMP = 1

 ARCHIVE

. Define Node to extract displacements from
. ===
 SET TAG = MAXVAL
 SET TOL = 0.01

 NODES
 NODE X=2.0 Y=14.866 Z=7.0
 ARCHIVE

 RESULTANT
 BARLOW = <true>
 STRAIN
 ARCHIVE

 RESULTANT
 BARLOW = <true>
 STRESS
 ARCHIVE

 RESULTANT
 BARLOW = <true>
 STRAIN_ENERGY
 ARCHIVE

 RETURN

. Display content of results library

. ==================================
 *rat 2
 *print 2 1

 STOP

14.4 Processor PST 14 Post-Processors

14.4-32 COMET-AR User’s Manual Revised 12/1/97

archival data library. If neither the MAX nor the MIN keyword is specified, then all stress
components of the nodes in the node list are extracted and written to the archival data library. If
the NODES command is omitted, then all nodes (active and inactive) are considered part of the
node list and are written to the archival data library.

14.4.2.7.2 Command Syntax

The command syntax for the VECTOR command is shown below.

 ARCHIVE
 SET MESH = beg_mesh, end_mesh, inc_mesh
 VECTOR
 {NVT_NAME | NAT_NAME }= dsname

 [ABS { <true> | <false> }]
 {{MIN | MAX} { <true> | <false> }]
 [INPUT_NODES node-list_record_name]

 [OUTPUT_NODE maxmin-node_record_name]
 [OUTPUT_COORD maxmin-coordinate_record_name]
 [OUTPUT_DISP disp_record_name]
 [OUTPUT_COMP maxmin-node_record_name]
 ARCHIVE [INPUT_NODES node-list_record_name]
 RETURN

Table 14.4-26 Summary of VECTOR Commands

Command Name Default Function

ABS <false> Use absolute value of components when determining the extremum value.

ARCHIVE - Archive vector components from database.

INPUT_NODES NODE Name of the record group containing the input node list.

MAX <false> This command searches the vector for the component with the maximum
value. When used in conjunction with the ABS flag, the search is performed
on the absolute value of the components.

MIN <false> This command searches the vector for the component with the minimum
value. When used in conjunction with the ABS flag, the search is performed
on the absolute value of the components.

NAT_NAME NODAL.DIS-
PLACEMENT

Name of NAT vector used for archival purposes.

NVT_NAME NODAL.ROTA-
TION

Name of NVT vector used for archival purposes.

OUTPUT_COMP COMP Name of the record group containing the component of the node at which
the maximum vector value is located. This record group is only created if
the MAX or MIN command is specified.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-33

14.4.2.7.3 The ABS Command

This command indicates that the absolute value of the nodal vector components should be used
when searching for the extremum value.

14.4.2.7.4 The ARCHIVE Command

This command initiates the archival process.

14.4.2.7.5 The INPUT_NODE Command

This command specifies the name of the record group that contains the input node list. If the
MAX or MIN command is selected this command is redundant.

The node_list_record_name is the name of the record group and is limited to 11 characters. The
default name is NODE. If the SET TAG command is issued the tag string is appended to the
default name.

14.4.2.7.6 The MAX Command

This command indicates that the input vector should be searched for the maximum vector
component value.

OUTPUT_NODE NODD Name of the record group containing the node number of the node at which
the maximum vector value is located. This record group is only created if
the MAX or MIN command is specified.

OUTPUT_COORD CORD Name of the record group containing the coordinate of the node at which the
maximum vector value is located. This record group is only created if the
MAX or MIN command is specified.

OUTPUT_DISP DISP Name of record group containing the displacement value at the nodes
selected.

RETURN Return to ARCHIVE command module.

ABS { <true> | <false> }

ARCHIVE

INPUT_NODE node_list_record_name

MAX { <true> | <false> }

Table 14.4-26 Summary of VECTOR Commands (Continued)

Command Name Default Function

14.4 Processor PST 14 Post-Processors

14.4-34 COMET-AR User’s Manual Revised 12/1/97

14.4.2.7.7 The MIN Command

This command indicates that the input vector should be searched for the minimum vector
component value.

14.4.2.7.8 The OUTPUT_COMP Command

Name of record group containing the nodal component for which an extremum value was found.
This record group is only created if the MAX or MIN command was used.

The maxmin_comp_record_name is the name of the record group and is limited to 11 characters.
The default name is COMP. If the SET TAG command is issued the tag string is appended to the
default name.

14.4.2.7.9 The OUTPUT_COORD command

Name of the record group containing the coordinate of the node at which the maximum vector
value is located. This record group is only created if the MAX or MIN command is specified.

The coordinate_record_name is the name of the record group and is limited to 11 characters.
The default name is CORD. If the SET TAG command is issued the tag string is appended to the
default name.

14.4.2.7.10 The OUTPUT_DISP Command

Name of record group containing the displacement value of the node(s) archived.

The disp_record_name is the name of the record group and is limited to 11 characters. The
default name is DISP. If the SET TAG command is issued the tag string is appended to the default
name.

14.4.2.7.11 The OUTPUT_NODE Command

Name of record group containing the node for which an extremum value was found. This record
group is only created if the MAX or MIN command was used.

MIN { <true> | <false> }

 OUTPUT_COMP maxmin_comp_record_name

OUTPUT_COORD coordinate_record_name

OUTPUT_DISP disp_record_name

 OUTPUT_ NODE maxmin_node_record_name

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-35

The maxmin_node_record_name is the name of the record group and is limited to 11 characters.
The default name is NODD. If the SET TAG command is issued the tag string is appended to the
default name.

14.4.2.7.12 The RETURN Command

This command exits from the NODES command level and returns to ARCHIVE command level.

14.4.2.7.13 Relevant SET Commands

Table 14.4-27 summarizes all SET commands relevant to the VECTOR command.

RETURN

Table 14.4-27 SET Commands Relevant to VECTOR Command

Command Name Default Function

SET LDI 1 Logical device index of computational data library.

SET LDI/ARCHIVE 1 Logical device index for results data library.

SET DATASET_NAME 1,ARCHIVE Name of dataset which will contain CPU record group.

SET MESH 0 Adaptive mesh number.

SET FRAME GLOBAL Coordinate frame in which the displacement components are viewed.
GLOBAL – Transform vector to global frame.
COMPUTATIONAL – Transform vector to computational frame.

SET COMPONENT 0 Selects nodal component:
= 0 All components
> 1 Component number

14.4 Processor PST 14 Post-Processors

14.4-36 COMET-AR User’s Manual Revised 12/1/97

14.4.2.7.14 Input Datasets

14.4.2.7.15 Output Datasets

The output from the VECTOR command is a set of GAL record groups. The name and content of
these record groups is described in Table 14.4-29.

If the input data is in the form of a node list then the output of this operation is a list of output
displacements corresponding to the node list and the component selected. The default output
record name is DISP but can be modified by the SET TAG command or by directly specifying an
alternate record name with the OUTPUT_DISP command as described above.

14.4.2.7.16 Limitations

None.

14.4.2.7.17 Error Messages

Most messages produced are self-explanatory.

Table 14.4-28 Processor PST Input Datasets

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

NODAL.DOF..con_set.mesh NDT Nodal DOF Table (NDT). The name of an NDT data object is
completely specified by the user, including component names
and cycle numbers

NODAL.TRANSFORMATION...mesh NTT Nodal vector Table (NVT). The name of an NVT data object is
completely specified by the user, including component names
and cycle numbers.

NVT_name.load_set.con_set.mesh NVT Name of nodal vector stored as an NVT object. The user spec-
ifies the name of the NVT object.

NAT_name.load_set.con_set.mesh NAT Name of nodal vector stored as an NAT object. The user spec-
ifies the name of the NAT object.

Table 14.4-29 VECTOR Command Output Datasets

Record Name Description

NODD Node number at which maximum value is located.

COMP Nodal component number at which maximum value is located.

DISP Maximum component value whose location is described by NODD and COMP.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-37

14.4.2.7.18 Examples and Usage Guidelines

In the following example the user specifies a location in the form of a node number at which to
extract displacement data. The Z component at node 442 in the global frame is extracted and put
into the record group DISP442. This operation is performed for Mesh=0 through Mesh=4.

The next example illustrates how to search the displacement vector for the maximum component.
This operation requires no input node; instead the result of the operation will report which node
and component contain the maximum or minimum value. The result is written to the
computational database since the resultant database has the same logical device index as the
computational database.

*open 1 HSCT.DBC
*open 2 HSCT.DBR

 ARCHIVE

. Set General Parameters

. ======================

 SET LDI = 1
 SET LDI/ARCHIVE = 2
 SET DATA = ES7P_SHELL.HC14_B0000000000
 SET FRAME = GLOBAL
 SET COMPONENT = 3
 SET BEG_MESH = 0
 SET END_MESH = 4

 SET TAG = 442

 NODES
 NODE 442
 ARCHIVE

 VECTOR
 NVT_NAME = NODAL.DISPLACEMENT
 ARCHIVE

*open 1 HSCT.DBC

 ARCHIVE
 SET LDI = 1
 SET LDI_R = 1
 SET DATA = ES7P_SHELL.HC14_B0000000000
 SET FRAME = GLOBAL
 SET COMPONENT = ALL

 SET MESH = 1
 VECTOR
 NVT_NAME = NODAL.DISPLACEMENT
 MAX
 ABS
 OUTPUT_DISP = DISPMAX
 ARCHIVE
 STOP

14.4 Processor PST 14 Post-Processors

14.4-38 COMET-AR User’s Manual Revised 12/1/97

14.4.3 SET Command

14.4.3.1 General Description

The SET commands are used to change input parameters from their default values. Some SET
commands have no default value and must always be set. For each command documented in PST
there is a list of relevant SET commands.

14.4.3.2 Command Syntax

 The general form of the command is as follows:

Table 14.4-30 summarizes all PST set commands, described separately in subsequent subsections.

SET parameter = value

Table 14.4-30 Summary of SET Commands

Keyword Default Value Function

CASENAME -

CHILDREN <false> Flag indicating whether child elements should be included in an element list.

COMPONENT 0

COMPRESS <false>

CONSTRAINT_SET 1 Constraint Set

DATASET_NAME -

DEGEN <false>

ECHO <false>

ELEMENT_NAME -

FILE_NAME -

FRAME Global

GROUP 0

INPUT_UNIT 5

LDI 1 Logical Device Index

LOADSET 1

LOCATION INTEG_PTS

MESH 0

NVTNAME

NEN 9

OBJECT

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-39

14.4.3.3 SET CASE_NAME Command

Name used to construct the name of the data libraries for an analysis. The case name is used in
conjunction with suffixes .DBC, .DBE, .DBS, and .DBR to create the name of the data libraries.

where

14.4.3.4 SET CONSTRAINT_SET Command

Constraint set number associated with element and nodal data in the reference mesh and all
refined meshes.

where

14.4.3.5 SET COMPONENT Command

This command is used to specify which nodal components to consider when post-processing the
results of an analysis.

ORIENTATION 0

OUTPUT_UNIT 6

STEP 0

TAG -

TITLE -

TOLERANCE 0.001

SET CASE_NAME = casename

Parameter Default Value Description

casename

Name of the case used to construct the data library names. (Ex. HSCT.DBC)

SET CONSTRAINT_SET =

con_set

Parameter Default Value Description

con_set

1 Constraint set number.

SET COMPONENT =

comp

Table 14.4-30

Summary of SET Commands (Continued)

Keyword Default Value Function

14.4 Processor PST 14 Post-Processors

14.4-40 COMET-AR User’s Manual Revised 12/1/97

where

14.4.3.6 SET COMPRESS Command

This command sets a flag which compresses the node and element numbering such that no gaps
exist. Only active nodes and elements are considered.

where

14.4.3.7 SET DEGEN Command

When this flag is set to true all triangles are converted to degenerate quads.

where

14.4.3.8 SET DATASET_NAME Command

where

Parameter Default Value Description

comp

1,2,3,4,5,6 Nodal component.

SET COMPRESS =

compress

Parameter Default Value Description

compress

<false> Flag indicating if node and element numbering should be compressed.

SET DEGEN =

degen

Parameter Default Value Description

degen

<false> Converts all triangles to degenerate quads.

SET DATASET_NAME = [

 ldi

]

,

{

 dsname

|

 idsn

}

Parameter Default Value Description

ldi

1 Logical device index.

dsname

Dataset name.

idsn

Dataset sequence number.

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-41

14.4.3.9 SET ECHO Command

This flag controls the display of commands issued to the PST processor. When <true> all
commands which change values of parameters are echoed. The echo includes the name of the
command and the value of the command.

where

14.4.3.10 SET ELEMENT_NAME Command

This command sets the name of the element, which is constructed by concatenating the element
processor name with the element type.

where

14.4.3.11 SET FILE_NAME Command

This command is used to set the name of input file or log file needed by some PST commands:

where

SET ECHO =

echo

Parameter Default Value Description

echo

<false> Controls the display of PST commands.

SET ELEMENT_NAME =

element_name

Parameter Default Value Description

element_name

Name of element.

SET FILE_NAME [

/qualifier

] =

filename

Parameter Default Value Description

filename

Name of input file or log file.

Table 14.4-31

Description of Qualifiers for SET FILE_NAME Command

/qualifier

Default Value Description

/DISP

DISP.DAT Name of PATRAN nodal results file containing nodal displacements.

/FORCE

FORCE.DAT Name of PATRAN nodal results file containing nodal forces.

14.4 Processor PST 14 Post-Processors

14.4-42 COMET-AR User’s Manual Revised 12/1/97

14.4.3.12 SET FRAME Command

This command allows you specify the coordinate frame in which an operation should be carried
out or in which coordinate system results should be output. Typically the command refers to
nodal displacements and forces which are typically stored in the computational frame, but are
often displayed with respect to the global reference frame.

where

Valid coordinate frames are displayed in Table 14.4-32.

14.4.3.13 SET GROUP Command

This command allows you to select which element groups to include for a particular operation:

/FROM

Used to designate the name of the source file when the output of an operation
is another file.

/NEUTRAL

MODE.DAT Name of PATRAN neutral file.

/PRESSURE

PRESSURE.DAT Name of PATRAN element results file which contains element pressures.

/RESULT

RESULT.DAT Name of PATRAN results file containing strains, stresses, and strain energy
densities.

/TO

Used to designate the name of the destination file when the output of an
operation is another file.

SET FRAME =

frame

Parameter Default Value Description

frame

Global Coordinate frame

Table 14.4-32

Valid Options for the SET FRAME Command

Reference Frame Description

Global

Indicates that the operation to be completed is conducted in the global cartesian coordinate
system (x

g

, y

g

, z

g

).

Computational

Indicates that the operation to be completed is conducted in the computational frame of
each node (x

c

, y

c

, z

c

).

SET GROUP =

group

Table 14.4-31

Description of Qualifiers for SET FILE_NAME Command (Continued)

/qualifier

Default Value Description

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-43

where

14.4.3.14 SET INPUT_UNIT Command

Fortran input unit used by processor PST.

where

14.4.3.15 SET LDI Command

This command sets the logical device index of the data library to be used by subsequent
operations. It is assumed that the data library has been opened with the *OPEN directive before it
is accessed by PST.

where

The qualifier is optional and is primarily used to designate alternate data library destinations for
output generated. A summary of valid qualifiers is shown in Table 14.4-33.

Parameter Default Value Description

group

0 Element Group (0 implies process all groups)

SET INPUT_UNIT =

input

Parameter Default Value Description

input

5 FORTRAN input unit

SET LDI[

/qualifier

] =

ldi

Parameter Default Value Description

ldi

1

Logical device index

Table 14.4-33

Description of Qualifiers for SET LDI Command

/qualifier

Description

/ARCHIVE

Logical device index of archival data library.

/FROM

Used to designate the source data library when the input of an operation is another data library.

/TO

Used to designate the destination data library when the output of an operation is another data library.

14.4 Processor PST 14 Post-Processors

14.4-44 COMET-AR User’s Manual Revised 12/1/97

14.4.3.16 SET LOAD_SET Command

This command changes the default load set number to be used in constructing dataset names
within the ARCHIVE sub-processor. In the TRANSLATE processor this command is used to
select load set from other FEM analyzers.

where

14.4.3.17 SET LOCATION Command

where

14.4.3.18 SET MESH Command

This command is used to designate which mesh to archive and extract data for.

where

If only the

beg_mesh

 parameter is specified,

end_mesh

 =

beg_mesh

. If

 inc_mesh

 is omitted it is
always assumed to be one. Alternatively you can set SET MESH = ALL which will automatically
includes all the mesh contained in the data library in subsequent operations.

SET LOAD_SET =

load_set

Parameter Default Value Description

load_set

1 Load Set

SET LOCATION =

location

Parameter Default Value Description

location

INTEG_PTS

SET MESH = {

beg_mesh, end _mesh, inc_mesh

|

ALL

}

Parameter Default Value Description

beg_mesh 0 Beginning mesh number

end_mesh 0 Ending mesh number

inc_mesh 1 Mesh increment between beginning and ending mesh number

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-45

14.4.3.19 SET NVT_NAME Command

Name of nodal vector. The vector has to be in NVT format.

where

14.4.3.20 SET OBJECT Command

where

14.4.3.21 SET ORIENTATION Command

where

14.4.3.22 SET OUTPUT_UNIT Command

where

SET NVT_NAME = nvt_name

Parameter Default Value Description

nvt_name Name of nodal vector.

SET OBJECT = [ldi], { dsname | idsn }

Parameter Default Value Description

object

SET ORIENTATION = orient

Parameter Default Value Description

orient 0 Fabrication orientation

SET OUTPUT_UNIT = output

Parameter Default Value Description

output 6 FORTRAN output unit.

14.4 Processor PST 14 Post-Processors

14.4-46 COMET-AR User’s Manual Revised 12/1/97

14.4.3.23 SET STEP Command

Set step number. For linear static solutions the step number is zero.

where

14.4.3.24 SET TAG Command

Set tag character string to uniquely identify record groups. String is limited to 6 characters.

where

14.4.3.25 SET TITLE Command

Set title of analysis. The title should be enclosed in quotes.

where

14.4.3.26 SET TOLERANCE Command

Tolerance to be used when searching for nodes in a user-specified coordinate range.

SET STEP = step

Parameter Default Value Description

step 1 Step number

SET TAG = tag

Parameter Default Value Description

tag None Character string used as tag for record names.

SET TITLE = “title”

Parameter Default Value Description

“title” None Title given to analysis.

SET TOLERANCE = tolerance

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-47

where

14.4.3.27 Input Datasets

Some SET commands access HDB data objects.

14.4.3.28 Output Datasets

None.

14.4.3.29 Limitations

None.

14.4.3.30 Error Messages

The error messages for the SET command are informative and self-explanatory.

14.4.3.31 Examples and Usage Guidelines

See Examples and Usage Guidelines of other commands for illustrations on SET command usage.

14.4.4 STOP Command

The STOP command terminates the processor. Any open HDB or DB data objects will be closed
gracefully and main memory blocks allocated through MEM will be released to the system. If
PST was called from a macro-processor then control is returned to it, otherwise control is returned
to UNIX. The COMET-AR command “RUN processor_name” will perform this same function
(in addition to transferring control to the new processor).

Parameter Default Value Description

tolerance 1.0e-03

Table 14.4-34 SET Command Input Datasets

Dataset Type Description

CSM.SUMMARY...mesh CSM Complete Summary of the Model (CSM data object)

STOP

14.4 Processor PST 14 Post-Processors

14.4-48 COMET-AR User’s Manual Revised 12/1/97

14.4.4.1 Input Datasets

None.

14.4.4.2 Output Datasets

None.

14.4.4.3 Limitations

None.

14.4.4.4 Error Messages

None.

14.4.4.5 Examples and Usage Guidelines

The following is an example of how the STOP command is used to terminate a processor.

14.4.5 TRANSLATE Sub-Processor

14.4.5.1 General Description

The TRANSLATE sub-processor (previously called CONVERT) allows the user to translate data
between different FEM analyzers and external modeling tools. Currently the translator recognizes
COMET-AR, PATRAN, and STAGS 2.0 (QSTAGS) data formats. The translator converts data
from the source data format to a temporary intermediate data format, and then to the destination
data format. By adopting an intermediate data format, each additional data format added to the
PST immediately has access to all other data formats.

*open 1 HSCT.DBC

SET NEUT = hsct.pat

 TRANSLATE
 FROM COMET-AR TO PATRAN
 MODEL
 TRANSLATE
 STOP

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-49

14.4.5.2 Command Syntax

The general format of a translation command stream is shown below.

The TRANSLATE sub-processor is invoked by issuing the TRANSLATE command at the main
command level. Once you have entered the TRANSLATE sub-processor you have to specify
which data formats to translate “from” and “to” via the FROM and TO commands, augmented by
keywords referred to as from_options and to_options used to select finite element quantities to
translate. A brief description of each command type shown above is shown in Table 14.4-35.

PST can read the data formats shown in Table 14.4-36.

TRANSLATE
 FROM from_data_format
 .
 from_options
 .
 TO to_data_format
 .
 to_options
 .
 TRANSLATE
 RETURN

Table 14.4-35 Summary of Primary TRANSLATE Commands

Command Name Function

FROM from_data_format The FROM command is used to specify the source data format. Currently sup-
ported data formats are listed in Table 14.4-36.

from_options The from_options indicate which finite element quantities to translate. For each
finite element quantity in the database there is a keyword which controls whether
this quantity should be translated, usually set to <true> or <false> . The key-
words are listed in Table 14.4-38.

RETURN This command returns program control to the main command level.

TO to_data_format The TO command is used to specify the destination data format. Currently sup-
ported data formats are listed in Table 14.4-37.

to_options See from_options.

TRANSLATE This command initiates the actual translation process.

Table 14.4-36 Summary of FROM Data Formats

Data Format Description

COMET-AR This FROM data format reads the contents of a COMET-AR database. The translator is capable of
reading all HDB data objects generated by a standard model definition procedure. It can also read
output contained in NVT and EST data objects.

14.4 Processor PST 14 Post-Processors

14.4-50 COMET-AR User’s Manual Revised 12/1/97

PST can write to the data formats shown in Table 14.4-37.

Once the source and destination data formats have been determined, the user has to indicate which
finite element quantities to translate. Table 14.4-38 lists the keywords used to control the
translation of model data. The MODEL keyword automatically translates all model quantities
from the database. Alternatively you can control the translation of each data type by selectively
turning data types on or off.

PATRAN This FROM data format reads the content of the PATRAN neutral file. The translator can read PAT-
RAN Packet Types: 01, 02, 05–08 and 14.

STAGS This FROM data format reads the content of the STAGS database directly via STAR access routines.

Table 14.4-37 Summary of TO Data Formats

Data Format Description

CLIP This TO data format generates a set of CLAMP *ADD files which are read by a generic model pro-
cedure. Not all finite element quantities can be generated using this data format.

COMET-AR This TO data format is capable of generating all finite element quantities required to define a model
in COMET-AR. The model generated by translation can subsequently be used to perform adaptive
mesh refinement.

PATRAN This TO data format generates a PATRAN neutral file.

STAGS Not implemented yet.

Table 14.4-38 Summary of Keywords for Controlling Basic Model Finite Element Quantities

Data Type Description

MODEL This keyword can be used to designate that all solution data quantities should be translated.
When this keyword is used all other keywords associated with solution quantities are automati-
cally set to <true>.

BC Controls the translation of boundary conditions.

ELEMENT Controls the translation of element attributes and element connectivities.

ELT_LOAD Controls the translation of body, line, pressure, and surface loads. Some or all of these data for-
mats may be supported by the translator.

MPC Controls the translation of multi-point constraints. Not all data formats support MPCs.

NODAL_DISP Controls the translation of nodal specified displacement vectors. For some data formats all
boundary conditions are described via a nodal displacement vector.

NODAL_FORCE Controls the translation of nodal force vectors. For some data formats all boundary conditions
are described via a nodal force vector.

Table 14.4-36 Summary of FROM Data Formats (Continued)

Data Format Description

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-51

Table 14.4-39 summarizes all the keywords used to control the translation of solution quantities,
which can be translated independent of model quantities. The SOLUTION keyword automatically
translates all solution quantities from the database. Alternatively the user can control the
translation of each solution data type by selectively turning data types on or off.

The restrictions on data translation between different data formats is shown in Table 14.4-40.
This table consists of two main columns: a TO column and a FROM column. Under each column
there are additional columns for each data format. For each data format the data types that PST
can translate are checked off.

NODE Controls the translation of nodes. The node number, coordinate location, and coordinate system
in which the node is located is translated.

TRIAD Controls the translation of nodal transformations.

Table 14.4-39 Summary of Keywords for Controlling Basic Solution Finite Element Quantities

Data Type Description

SOLUTION This keyword can be used to designate that all solution quantities should be translated. When
used all other keywords associated with solution quantities are automatically set to <true>.

DISPLACEMENT Controls the translation of displacement quantities.

ENERGY Controls translation of strain energy densities. The location at which strain energy density is
extracted or generated depends on the TO and FROM data formats used in translation process.

ERROR Controls the translation of element errors.

STRAIN Controls the translation of the strain resultants. The location at which the strains are extracted or
generated depends on the TO and FROM data formats used in the translation process.

STRESS Controls the translation of the stress resultants. The location at which the stresses are extracted
or generated depends on the TO and FROM data formats used in the translation process.

Table 14.4-40 Summary of Translation Capabilities

FROM TO

COMET-
AR

PATRAN STAGS CLIP
COMET-

AR
STAGS PATRAN

Model

Node ✔ ✔ ✔ ✔ ✔ ✔

Triad ✔ ✔ ✔ ✔ ✔

Element ✔ ✔ ✔ ✔ ✔ ✔

Element Load ✔ ✔ ✔ ✔ ✔ ✔

Table 14.4-38 Summary of Keywords for Controlling Basic Model Finite Element Quantities

Data Type Description

14.4 Processor PST 14 Post-Processors

14.4-52 COMET-AR User’s Manual Revised 12/1/97

14.4.5.3 The FROM COMET-AR Command

14.4.5.3.1 General Description

This command sets the source data format to COMET-AR. A COMET-AR data library
containing model and solution data is subsequently read when the TRANSLATION command is
issued. It is assumed that the data library has previously been opened with the *OPEN directive.

14.4.5.3.2 Command Syntax

Boundary Condition ✔ ✔ ✔ ✔ ✔ ✔

Multi-Point Constraint ✔ ✔

Nodal Force ✔ ✔ ✔ ✔ ✔

Nodal Displacement ✔ ✔ ✔ ✔ ✔

Material

Fabrication

Solution

Displacement ✔ ✔ ✔ ✔

Force ✔ ✔

Error ✔

Strain ✔ ✔ ✔ ✔

Stress ✔ ✔ ✔ ✔

Energy ✔ ✔ ✔ ✔

Pressure ✔

MISC

Element Check

Interpolation/Extrapolation ✔

FROM COMET-AR

Table 14.4-40 Summary of Translation Capabilities (Continued)

FROM TO

COMET-
AR

PATRAN STAGS CLIP
COMET-

AR
STAGS PATRAN

14 Post-Processors 14.4 Processor PST

Revised 12/1/97 COMET-AR User’s Manual 14.4-53

14.4.5.3.3 Relevant SET Commands

14.4.5.4 The RETURN Command

14.4.5.4.4 General Description

This command returns program control to the executive command level.

14.4.5.4.5 Command Syntax

14.4.5.5 The TO PATRAN Command

14.4.5.5.6 General Description

This command sets the destination data format to PATRAN. A Patran neutral file and results file
is generated when the TRANSLATION command is issued. The name of the Patran neutral file
and results file is specified with SET commands.

14.4.5.5.7 Command Syntax

Table 14.4-41 SET Commands Relevant to the FROM COMET-AR Command

Command Name Default Function

SET CONSTRAINT_SET 1 Constraint set to use when translating model and solution data.

SET LDI 1 Logical device index of central data library (.DBC) which contains
model and solution data.

SET LOAD_SET 1 Load set to use when translating model and solution data.

SET LOCATION INTEG_PTS Location of element stress, strain, and strain energy densities used in
the translation process.

SET MESH 0 Mesh number from which model and solution data will be read.

SET STEP 0 Solution step from which data will be read.

RETURN

TO PATRAN

14.4 Processor PST 14 Post-Processors

14.4-54 COMET-AR User’s Manual Revised 12/1/97

14.4.5.5.8 Relevant SET Commands

14.4.5.6 The TRANSLATE Command

14.4.5.6.1 General Description

This command, issued from the TRANSLATE sub-processor, initiates the translation of data
from the source data format to the destination data format.

14.4.5.6.2 Command Syntax

14.4.5.7 Examples and Usage Guidelines

Examples of different translation scripts can be found in the $AR_PST/example directory.

14.4.6 References

[1] Felippa, C., A Command Language for Applied Mechanics Processors, Volume I: The
Language, NASA CR-178384, 1988.

[2] Felippa, C., A Command Language for Applied Mechanics Processors, Volume II:
Directives, NASA CR-178385, 1989.

[3] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

Table 14.4-42 SET Commands Relevant to the TO PATRAN Command

Command Name Default Function

SET COMPRESS <false> Compresses node and element numbering to prevent gaps in numbering.

SET FILE/NEURTAL MODEL.DAT Sets name of Patran neutral file.

SET FILE/RESULTS STRESS.DAT Sets name of Patran results file containing stress, strain, and strain energy
resultants.

SET LOAD_SET 1 Load set to use when translating model and solution data.

SET TITLE “ “ Title given to model; should be enclosed in quotes.

TRANSLATE

Revised 12/1/97 COMET-AR User’s Manual

Part IV

DATABASE

In this part of the COMET-AR User’s Manual, we describe the database from an engineering
analysis user’s perspective. The structure and function of database files and datasets (or data
objects) created by COMET-AR is presented in enough detail that you can monitor the progress of
the analysis by examining the database.

COMET-AR User’s Manual Revised 12/1/97

15 Database Summary 15.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 15.1-1

15 Database Summary

15.1 Overview

In this chapter, those aspects of the COMET-AR database related to data descriptions, access
methods, and organization are described (see Table 15.1-1). In Section 15.2, a summary is
presented of data objects (i.e., data structures and corresponding data management utilities) that
are used in COMET-AR analysis, with particular emphasis on those data objects used for adaptive
refinement applications. The parameters maintained in the complete summary of the model table
(CSM), the element and line refinement tables (ERT and LRT), the element geometry table
(EGT), and the element error table (EET) are described. These data objects are employed
primarily by the error estimation (ERRi) and mesh refinement (REFi) processors. Discussion in
Section 15.3 addresses how these and other data objects may be accessed, from both the
procedure and processor levels. In Section 15.4, a description of how the database evolves during
adaptive refinement is presented.

Table 15.1-1 Outline of Chapter 15: Database Summary

Section Title

15.2 Data Objects

15.3 Database Access

15.4 Database Organization and Evolution

15.1 Overview 15 Database Summary

15.1-2 COMET-AR User’s Manual Revised 12/1/97

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-1

15.2 Data Objects

In this section we review the concept of data objects, explain how the COMET-AR database has
been mapped onto this conceptual framework via the high-level database (HDB) utilities [1], and
briefly describe those data objects which are central to COMET-AR usage.

A data object is defined as the combination of a data structure and its associated data-specific
manipulation utilities. By data structure we mean the organization of the data, which has both
logical (i.e., conceptual) and physical (i.e., actual) characteristics. By data utilities, we mean
FORTRAN subroutines that are specifically designed for particular data structures. Data class
denotes a generic description of a particular type of data object; that is, a data object is a specific
instance of a data class. For example, many data objects of the same class may be in the database
at any given time.

Logically, an HDB data object is typically represented as a rectangular table, with object-specific
attributes (nodal coordinates, element nodes, etc.) recorded along the rows, and an index label
(node number, element number, etc.) along the columns. Physically, a data object involves the
mapping of the logical table to a set of Global Access Library (GAL) records and record groups
[2]. This mapping is performed automatically by the high-level (object-oriented) HDB utilities, so
that HDB users do not have to be concerned with such transformation details. HDB utilities and
physical data structures are discussed in detail in Reference [1].

High-level (HDB) object-based utilities are provided for each object class. These utilities allow
you to imagine each object in its logical data format, e.g., as a simple table structure. In turn, these
HDB utilities invoke the intermediate-level database (DB) utilities [3], which create and access
GAL physical data structures and perform automatic local memory buffering functions. A
conceptual view of a data object is shown in Figure 15.2-1.

Figure 15.2-1 Conceptual View of a Data Object

Attribs 1 2 ... Nel

Attrib1

Attrib2

Attrib3

...

OPN CLS

CPYPUT

PRT GET

INF ...

Data
Retrieval

Data
Storage

Data Object
Utility Functions

15.2 Data Objects 15 Database Summary

15.2-2 COMET-AR User’s Manual Revised 12/1/97

Figure 15.2-1 shows a generic data structure surrounded by a number of support utilities such as
OPN (open data object), CLS (close data object), GET (get data from data object), PUT (put data
into data object), INF (retrieve information about data object), PRT (print data object), and CPY
(copy data object). Additional tailor-made support utilities may be present for some data objects
as necessary. The implementation of this concept provides both the COMET-AR user and
software developer with all of the tools needed to manipulate the database.

15.2.1 Summary of Primary COMET-AR Data Objects

The implementation of data objects in COMET-AR is performed by organizing the entire
database into data objects and developing the necessary support utilities. The high-level data
object support utilities illustrated in Figure 15.2-1 are referred to collectively as HDB and are
described in detail in Reference [1]. Beneath the HDB level are a set of generic global/local data
management utilities referred to as DB. The DB utilities are described in detail in Reference [3].
Below the DB level is the COMET-AR global data manager, GAL. The GAL description of the
database in terms of data libraries, data sets, and data records is preserved throughout the DB and
HDB levels, except that the HDB level hides the details of record organization and makes the data
object appear to the user as a simple, logical table regardless of the underlying physical (GAL)
structure.

The correspondence between data objects and datasets is one-to-one. Every data object
corresponds to a dataset and vice versa. The COMET-AR database for a given problem, which
may be distributed over one or more data libraries, is comprised of data objects belonging to a
class that falls into one of the following general categories:

• Summary Data Objects;

• Nodal Data Objects;

• Element Data Objects;

• Line Data Objects;

• Surface Data Objects; or

• System Data Objects.

A summary of specific data object dataset names for each of these class categories is given in
Tables 15.2-1 through 15.2-6. Specific data objects may or may not exist in the database for a
particular analysis. Each data object is named according to its class category (Summary, Element,
Nodal, Line, etc.), a class component name (Definition, Errors, Geometry, Coordinates, etc.), and
one or more qualifiers for object uniqueness (analysis step, load set, constraint set, or mesh
number). In the following naming conventions, uppercase words are required, italicized
capitalized words are user dependent, and lowercase italicized words (numerical qualifiers) are
typically analysis dependent.

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-3

Table 15.2-1 Summary Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

ANS Analysis Summary ANALYSIS.SUMMARY ANALYSIS.SUMMARY

ARS Adaptive Refinement Summary REFINEMENT.SUMMARY REFINEMENT.SUMMARY

CSM Complete Model Summary CSM.SUMMARY...mesh CSM.SUMMARY...2

Table 15.2-2 Element Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

EAT Element Attributes
(Generic)

EltName.AttName.step..mesh
EltName.AttName.ldset.cnset.mesh

ES1_EX47.COUP_STIFF.1..2
ES1_EX47.COUP_STIFF.2.2.1

EDT Element Definition EltName.DEFINITION...mesh ES7P_SHELL.DEFINITION...3

EET Element Error EltName.ERROR.step..mesh
EltName.ERROR.ldset.cnset.mesh

ES36_MIN3.ERROR.2..1
ES36_MIN3.ERROR.1.2.3

EFT Element Fabrication EltName.FABRICATION...mesh ES1_EX97.FABRICATION

EGT Element Geometry EltName.GEOMETRY...mesh ES1_EX96.GEOMETRY...4

EIT Element Interpolation EltName.INTERPOLATION...mesh ES7P_SHELL.INTERPOLATION...1

ELT Element Loads EltName.LOAD.step..mesh
EltName.LOAD.ldset..mesh

ES1_EX42.LOAD.3..5
ES1_EX42.LOAD.1..4

EMT Element Matrix EltName.MatName...mesh ES1_EX47.STIFFNESS...3

ERT Element Refinement EltName.REFINEMENT...mesh ES36_MIN3.REFINEMENT...2

EST Element Stress/Strain EltName.StrName.step..mesh
EltName.StrName.ldset.cnset.mesh

ES1P_SHELL.STRAIN.1.1
ES1P_SHELL.STRESS.2.1.4

Table 15.2-3 Nodal Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

NAT Nodal Attributes (Generic) NODAL.AttName.step..mesh
NODAL.AttName.ldset.cnset.mesh

NODAL.NORMAL.1..2
NODAL.NORMAL.2.2.1

NCT Nodal Coordinates NODAL.COORDINATE...mesh NODAL.COORDINATE...2

NDT Nodal DOF NODAL.DOF..cnset.mesh NODAL.DOF..2.3

NOT Nodal Ordering NODAL.ORDER...mesh NODAL.ORDER...1

NTT Nodal Transformation NODAL.TRANSFORMATION...mesh NODAL.TRANSFORMATION...2

NVT Nodal Vector NODAL.VecName.step..mesh
NODAL.VecName.ldset.cnset.mesh

NODAL.DISPLACEMENT
NODAL.VELOCITY.2.1.3

Table 15.2-4 Line Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

LRT Line Refinement Table LINE.REFINEMENT...mesh LINE.REFINEMENT...2

15.2 Data Objects 15 Database Summary

15.2-4 COMET-AR User’s Manual Revised 12/1/97

In the tables above, the Class column denotes the abbreviated names used to describe the data
object class name. For example, an Element Definition Table is a data object in class EDT.

15.2.2 General Description of Data Objects

Data objects maintained within a COMET-AR database can logically be viewed as consisting of
tables with class-specific attributes labelling rows and each column comprising a record of
information indexed by a value meaningful for the class. For example, nodal-class objects are
column-indexed by node numbers, while element-class objects are column-indexed by element
numbers. Each class of data objects is generally described in terms of a tabular organization
listing its attributes names (row labels) and column-indexing parameters (column labels) as
shown below in Table 15.2-7.

In the following subsections, representative COMET-AR data object descriptions are presented.
Each data object is described in two tables. Table 15.2-8 lists the data object’s attribute names (in
the tabular form described above) and Table 15.2-9 lists the attribute’s characteristics (data types
and dimensions) and meaning. The data objects listed in Table 15.2-8 are central to COMET-AR
usage and are described in more detail beginning in subsection 15.2.2.2.

Table 15.2-5 Surface Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

SRT Surface Refinement Table SURFACE.REFINEMENT...mesh SURFACE.REFINEMENT...3

Table 15.2-6 Matrix/Vector Data Object Dataset Names

Class Description Generic Dataset Name Example Dataset Name

SMT System Matrix Table SYSTEM.MatName...mesh SYSTEM.STIFFNESS...4

SVT System Vector Table SYSTEM.VecName...mesh SYSTEM.VELOCITY...3

Table 15.2-7 Generic Data Object Description

Attribute Column 1 ... ColumnN

Name1 Name11 ... Name1N
Name2 Name21 ... Name2N

...

NameM NameM1 ... NameMN

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-5

Before discussing the logical structure of data objects in terms of their tabular structure and
attribute names, the next subsection presents the physical storage of a data object as a collection
of GAL records.

15.2.2.1 Storage of Data Objects in a GAL Dataset

A dataset containing a single HDB data object consists of five records and one record group. The
five records contain descriptive information about the object, and the record group contains the
data object’s values. These records and their characteristics are outlined in Table 15.2-9.

All data objects are stored using the same representation scheme. A single object is described by a
contents record, an attribute descriptor, a parameter record, and a single record group containing
all of the data object’s values.

A CONTENTS record contains the class name of the data object in the dataset. The value of a
CONTENTS record is text, generically called Class, where Class represents any of the object
classes: CSM, EDT, NDT, etc.

Each data object has an attribute descriptor, called Class_ATTS, that contains information about
the object’s attributes (see Table 15.2-10). Each attribute is described by five numerical
parameters: record index, dimension, maximum dimension, symbolic name, and data type. The

Table 15.2-8 Data Objects Selected For Presentation

Class Description Generic Dataset Name

CSM Complete Summary of the Model MODEL.SUMMARY..mesh

EDT Element Definition Table EltName.DEFINITION...mesh

EGT Element Geometry Table EltName.GEOMETRY...mesh

ELT Element Loads Table EltName.LOADS.step..mesh

ERT Element Refinement Table EltName.REFINEMENT...mesh

LRT Line Refinement Table EltName.REFINEMENT...mesh

NDT Nodal DOF Table NODAL.DOF..cnset.mesh

Table 15.2-9 Physical Structure for a Generic Data Object

Record Name Type Length Description

CONTENTS Char 20 Class Name: Class (e.g., CSM, EDT, etc.)

Class_ATTS Int 5*NATTS Attribute Descriptor

Class_NATTS Int 1 Number of Attributes (NATTS)

Class_PARS Int NPARS Parameters Record

Class_NPARS Int 1 Number of Parameters (NPARS)

Class.1:Ncol Float/Int RecLen Data Object Values

15.2 Data Objects 15 Database Summary

15.2-6 COMET-AR User’s Manual Revised 12/1/97

Class_ATTS record contains five numbers for each attribute, and the number of attributes is
stored in the record Class_NATTS.

The value of an Index parameter gives an attribute’s word location in a data record where the first
word is numbered 1. Each attribute has its own data type but data records have a uniform type and
all record attributes are converted to that type for storage. Specifying attribute location by record
index is independent of the individual attribute data types.

When positive, a Dimension parameter indicates an attribute’s current dimension. The value of
this parameter may vary among data objects belonging to the same class. For example, an
attribute may be sized by mesh parameters that change during adaptive refinement (AR) analyses.
When an attribute’s Dimension is positive, data written to the attribute can contain any number of
items not exceeding Max-Dimension; however, when reading data from an attribute Dimension
items are always returned.

When negative, a Dimension parameter indicates that an attribute’s current dimension varies from
record to record. For this case, an attribute’s dimension is recorded in another attribute (called the
dimension-attribute) in the same record as the attribute's data values. The magnitude of a
Dimension parameter is the index of the dimension-attribute in the Class_ATTS record. As an
example of this feature, an Element Refinement Table (ERT) has an attribute called Child whose
variable dimension is recorded in the dimension-attribute called Nchild. For each record, the
dimension of Child is contained in a dimension-attribute called Nchild. This feature can be
thought of as variable dimensioning. When an attribute has a variable dimension, its dimension is
automatically updated with a write operation and used with a read operation. Reading an attribute
with a variable dimension always returns the number of data items last written. (No more than
Max-Dimension data items can ever be written or read.)

A Max-Dimension parameter sets a limit on the number of data items that can be written to an
attribute. When attribute parameter Dimension is positive, data written to an attribute can contain
any number of items not exceeding Max-Dimension; however, when reading data from an
attribute (not variably dimensioned), Dimension items are always returned.

A Symbolic-Name parameter encodes an attribute’s name using a Q-symbol value. Every attribute
name for all data objects has an associated Q-symbol [1]. Identification of attributes by Symbolic-
Name is the only mechanism used across the HDB class utilities interface.

Table 15.2-10 Attribute Parameters for a Generic Data Object

Parameter Attribute 1 ... Attribute NATTS

Index Index1 ... IndexNATTS

Dimension Dimension1 ... DimensionNATTS

Max-Dimension Max-Dimension1 ... Max-DimensionNATTS

Symbolic-Name Symbolic-Name1 ... Symbolic-NameNATTS

Data-Type Data-Type1 ... Data-TypeNATTS

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-7

A Data-Type parameter encodes an attribute’s data type, again using Q-symbol values. Five data
types are currently defined: qChar, qDouble, qIntegr, qSingle, and qSymbol. Character-valued
attributes are stored one character per word using the ASCII encoding standard. Symbol attributes
are stored as integer numbers (Q-symbol values) but are displayed by the HDB Print Processor by
Q-symbol name. (See Section 14.3, Database Print Utility, for a description of the object-oriented
HDB print processor.)

An HDB data object’s parameter record, Class_PARS, contains extraneous information such as
values of special parameters supplied when an object is created. For example, most HDB element
objects have a Reserve parameter that is stored in their parameter record. The size of Class_PARS
is stored in the record Class_NPARS.

Values for an HDB data object (belonging to class Class) are stored in one record group called
Class. All attribute values for a logical HDB data object record are stored in this single record
group record.

The data type of a Class record group is determined by the data object’s attribute data types. If
one or more of the attributes is typed qDouble, then the record group’s data type is qDouble and
all attribute values are converted to qDouble for storage. If one or more of the attributes is typed
qSingle, then the record group’s data type is qSingle and all attribute values are converted to
qSingle for storage. Otherwise, all of the attributes are either qChar, qIntegr, or qSymbol and the
record group’s data type is qIntegr. (qChar attribute values are always stored one character per
word using the ASCII encoding standard.)

A Class record is stored in a memory buffer allocated by the DB Memory Manager (MEM) [3].
Access to attribute values in a Class record (either reading or writing) may require conversion
between the Class record’s data type and the attribute’s data type. This conversion is
automatically performed by HDB using information contained in the Class_ATTS attribute
descriptor record.

Storing logical attribute values in a common physical record has the property of data locality:
related data values are stored physically close together. If an attribute’s value is accessed in a
record, then it is likely that an associated attribute’s value in the same record will also be
accessed. When record attributes are processed collectively, disk performance using this single-
record approach is better than when using a scheme where each data object attribute is stored in a
separate record. This latter approach requires multiple input/output operations for each attribute
accessed.

15.2.2.2 CSM — Complete Summary of the Model

The CSM class summarizes all high-level information relevant to the current COMET-AR model.
A data object in this class is partitioned into two tables: general summary attributes and element
type summary attributes (which range over the number of element types). There is typically only
one CSM data object for each model which must be opened first before opening related data
objects, such as objects from the EDT or NDT classes. Objects from these classes contain data
that varies from element-to-element, or node-to-node. This is because parameters contained in a

15.2 Data Objects 15 Database Summary

15.2-8 COMET-AR User’s Manual Revised 12/1/97

CSM data object are automatically employed to dimension attributes appearing in these other
objects. Model summary parameters such as the total number of nodes (Nnode) and the total
number of elements in each element type (Nelt[EltTyp]) are automatically updated in the
associated CSM object whenever any element or nodal data object is expanded. Information in the
CSM class should be extended as necessary to give a complete overview of the model and to
permit convenient access at the CSM procedure level. To facilitate communication between
COMET-AR procedures and the database, an interface procedure CSMget has been written to
fetch selected CSM attribute values.

The attributes stored in general summary attributes are shown in Table 15.2-11 and those stored in
element type summary attributes are shown in Table 15.2-12.

Table 15.2-11 CSM General Summary Table

General Summary Attributes

AnaTyp Analysis Type

ARflag Adaptive Refinement Flag

CnsFrq Constitutive Stiffness Archival Frequency (Steps)

DisFrq Displacement Archival Frequency (Steps)

Dofn (Ndofn) Nodal DOF Types

HisFrq Constitutive History Archival Frequency (Steps)

Mesh Current Mesh

Miters Maximum Nonlinear Iterations per Step

Mmesh Maximum Number of Meshes

Mrefin Maximum Number of Refinement Levels

Msize Maximum Problem Size (MW)

Mstep Maximum Number of Steps

Mtime Maximum Execution Time

Ndofn Number of Nodal DOF Types

Neq Number of Equations

Net Number of Element Types

Nline Number of Element Lines in LRT

Nload Number of Load Sets

Nmesh Number of Meshes

Nnode Number of Nodes

Nstep Number of Analysis Steps

Nsurf Number of Element Surfaces in SRT

Pglob Current Polynomial Order for Global p-Refinement

Size Current Problem Size (MW)

SolMod Solid Model Type

Step Current Step

StfFrq Stiffness Formation Frequency (Steps)

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-9

StnFrq Strain Archival Frequency (Steps)

StrFrq Stress Archival Frequency (Steps)

Maximum Dimensions for AR Storage Reservations

Mdofn Maximum Number of Nodal DOF Types

MEchld Maximum Number of Child Elements

MLchld Maximum Number of Child Lines

Mnline Maximum Number of Nodes per Line

Mnsurf Maximum Number of Nodes per Surface

Mparse Maximum Number of Element Research Parameters

MPglob Maximum Polynomial Order for Global p-refinement

MSchld Maximum Number of Child Surfaces

Table 15.2-12 CSM Element Type Summary Table

Attribute Element Type 1 ... Element Type Net

Class Class1 ... ClassNet

Consti Consti1 ... ConstiNet

Dim Dim1 ... DimNet

Dofe (Ndofe) Dofe (Ndofe1)1 ... Dofe (NdofeNet)Net

DrlDof DrlDof1 ... DrlDofNet

DrlOpt DrlOpt1 ... DrlOptNet

DrlStf DrlStf1 ... DrlStfNet

DrlTol DrlTol1 ... DrlTolNet

EltNam EltNam1 ... EltNamNet

EltPro EltPro1 ... EltProNet

EltTyp EltTyp1 ... EltTypNet

KinTyp KinTyp1 ... KinTypNet

Mee Mee1 ... MeeNet

Men Men1 ... MenNet

Mip Mip1 ... MipNet

Mnlt Mnlt1 ... MnltNet

Mnst Mnst1 ... MnstNet

Mstore Mstore1 ... MstoreNet

Ndofe Ndofe1 ... NdofeNet

Nee Nee1 ... NeeNet

Nelt Nelt1 ... NeltNet

Nen Nen1 ... NenNet

Table 15.2-11 CSM General Summary Table (Continued)

General Summary Attributes

15.2 Data Objects 15 Database Summary

15.2-10 COMET-AR User’s Manual Revised 12/1/97

Definitions of the general summary attributes appearing in Table 15.2-11 and of the element type
attributes appearing in Table 15.2-12 are provided in Tables 15.2-13 and 15.2-14.

NfabEc NfabEc1 ... NfabEcNet

NfabOr NfabOr1 ... NfabOrNet

Ngrp Ngrp1 ... NgrpNet

Nip Nip1 ... NipNet

Nle Nle1 ... NleNet

NLgeom NLgeom1 ... NLgeomNet

NLload NLload1 ... NLloadNet

NLmatl NLmatl1 ... NLmatlNet

Nnlt Nnlt1 ... NnltNet

Nnst Nnst1 ... NnstNet

Nparse Nparse1 ... NparseNet

Nse Nse1 ... NseNet

Nstore Nstore1 ... NstoreNet

Nstr Nstr1 ... NstrNet

Option Option1 ... OptionNet

P P1 ... PNet

Parse (Nparse) Parse (Nparse1)1 ... Parse (NparseNet)Net

Pmax Pmax1 ... PmaxNet

Shape Shape1 ... ShapeNet

VarElt VarElt1 ... VarEltNet

VarFab VarFab1 ... VarFabNet

Table 15.2-13 CSM General Summary Attribute Descriptions

Attribute Length Type Description

AnaTyp 1 Int Analysis type:
qNone — no analysis performed yet
qLbuck — linear buckling
qLdyna — linear dynamics
qLstat — linear statics
qLvibr — linear vibrations
qNLbuck — nonlinear buckling
qNLdyna — nonlinear dynamics
qNLstat — nonlinear statics
qNLvibr — nonlinear vibrations

ARflag 1 Int Adaptive refinement flag:
qOn — adaptive refinement
qOff — no adaptive refinement

Table 15.2-12 CSM Element Type Summary Table (Continued)

Attribute Element Type 1 ... Element Type Net

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-11

CnsFrq 1 Int Constitutive stiffness archival frequency

DisFrq 1 Int Displacement archival frequency

Dofn Ndofn Int List of active nodal DOF types

HisFrq 1 Int Constitutive history archival frequency

Mdofn 1 Int Maximum number of nodal DOF types

MEchld 1 Int Maximum number of child elements

Mesh 1 Int Current mesh number

Miters 1 Int Maximum nonlinear iterations per step

MLchld 1 Int Maximum number of child lines

Mmesh 1 Int Maximum number of meshes

Mnline 1 Int Maximum number of nodes per line

Mnsurf 1 Int Maximum number of nodes per surface

Mparse 1 Int Maximum number of element research parameters

MPglob 1 Int Maximum polynomial order for global p-refinement

Mrefin 1 Int Maximum number of refinement levels

MSchld 1 Int Maximum number of child surfaces

Msize 1 Int Maximum problem size (MW)

Mstep 1 Int Maximum number of steps

Mtime 1 Int Maximum execution time

Ndofn 1 Int Number of active nodal DOF types

Neq 1 Int Number of active equations

Net 1 Int Number of active element types

Nline 1 Int Number of element lines in LRT data object

Nload 1 Int Number of load sets

Nmesh 1 Int Number of meshes

Nnode 1 Int Number of nodes

Nstep 1 Int Number of analysis steps

Nsurf 1 Int Number of element surfaces in SRT data object

Pglob 1 Int Current polynomial order for global p-refinement

Size 1 Int Current problem size (MW)

SolMod 1 Int Solid model type: qUser or qApprox

Step 1 Int Current step

StfFrq 1 Int Stiffness formation frequency

StnFrq 1 Int Strain formation frequency

StrFrq 1 Int Stress formation frequency

Table 15.2-13 CSM General Summary Attribute Descriptions (Continued)

Attribute Length Type Description

15.2 Data Objects 15 Database Summary

15.2-12 COMET-AR User’s Manual Revised 12/1/97

Table 15.2-14 CSM Element Type Summary Attribute Descriptions

Attribute Length Type Description

Class 1 Int Intrinsic element class:
qBeam — Beam (axial force resultants)
qShell — Shell (force/moment resultants per unit length
qSolid — Solid continuum (pointwise stress components)

Consti 1 Int Constitutive basis (strain or stress based):
qStrain — strains computed by element
qStress — stresses computed by element

Dim 1 Int Number of intrinsic spatial dimensions represented by element nodal con-
nectivity: 1, 2, or 3

Dofe Ndofe Int List of potential DOFs at element nodes, e.g., qD1, qD2, qD3, qTheta1,
qTheta2, qTheta3,... (see Nodal DOF Table (NDT) class for all options)

DrlDof 1 Int Flag indicating the presence of element drilling stiffness: qTrue or qFalse

DrlOpt 1 Int Flag indicating if artificial drilling stiffness is added: qTrue or qFalse

DrlStf 1 Int Absolute value of exponent of artificial drilling stiffness scale factor

DrlTol 1 Int Angle tolerance between computational frames and element normal vector

EltNam 16 Char Element name; concatenation of EltPro and EltTyp, separated by an under-
score, e.g., “ES1_EX97”

EltPro 16 Char Element processor name, e.g., ES1, ES2, ...

EltTyp 16 Char Element type name, e.g., EX91, EX97, EX47, ...

KinTyp 1 Int Kinematic type:
q1D or q2D or q3D for Class = qSolid
qC0 or qC1 for Class = qShell
qC0 or qC1 for Class = qBeam

Mee 1 Int Maximum number of element equations (for reserve storage)

Men 1 Int Maximum number of element nodes (for reserve storage)

Mip 1 Int Maximum number of element integration points (for reserve storage)

Mnlt 1 Int Maximum total number of line nodes per element (for reserve storage)

Mnst 1 Int Maximum total number of surface nodes per element (for reserve storage)

Mstore 1 Int Maximum number of element initial storage entries (for reserve storage)

Ndofe 1 Int Number of distinct nodal DOF types potentially active within the element;
e.g., 3 for a solid continuum element, or 6 for a general shell element

Nee 1 Int Number of equations per element
(0 ⇒ variable number of equations)

Nelt 1 Int Number of elements (per type)

Nen 1 Int Number of element nodes
(0 ⇒ variable number of nodes)

NfabEc 1 Int Number of fabrication eccentricities per element point

NfabOr 1 Int Number of fabrication orientation parameters per element point

Ngrp 1 Int Number of element groups in current element type

Nip 1 Int Number of integration points per element
(0 ⇒ variable number of integration points)

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-13

Nle 1 Int Number of lines (edges) per element

NLgeom 1 Int Nonlinear geometry parameter:
0 ⇒ Linear
1 ⇒ Globally nonlinear
2 ⇒ Globally and locally (element) nonlinear

NLload 1 Int Nonlinear load flag: qFalse or qTrue

NLmatl 1 Int Nonlinear material flag: initially, qFalse or qTrue; later changed to a GCP
internal option (such as qNoHist) if materially nonlinear (i.e., if initially
qTrue).

Nnlt 1 Int Total number of element line nodes
(0 ⇒ variable number of line nodes)

Nnst 1 Int Total number of surface nodes per element
(0 ⇒ variable number of surface nodes)

Nparse 1 Int Number of element research parameters

Nse 1 Int Number of surfaces per element

Nstore 1 Int Number of entries required per element for storage in an Element Initializa-
tion Table (EIT) data object
(0 ⇒ variable number of entries)

Nstr 1 Int Number of stress/strain components at each element integration point:
Class = qBeam — 4 or 6
Class = qShell — 6 or 8
Class = qSolid — 1, 3, 4 or 6

Option 1 Int Internal element option number

P 1 Int Current element polynomial order
(0 ⇒ variable element order)

Parse Nparse Float Element research parameters

Pmax 1 Int Maximum element polynomial order for problem

Shape 1 Int Shape of primary element nodal surface:
qLine — beam element
qQuad — quadrilateral element face
qTri — triangular element face

VarElt 1 Int Variable element size flag:
qFalse — element size same for all elements
qTrue — element size varies with element

VarFab 1 Int Variable element fabrication properties type:
qFalse — same for all elements
qElt — vary from element to element
qIntPt — vary from point to point

Table 15.2-14 CSM Element Type Summary Attribute Descriptions (Continued)

Attribute Length Type Description

15.2 Data Objects 15 Database Summary

15.2-14 COMET-AR User’s Manual Revised 12/1/97

15.2.2.3 EDT — Element Definition Table

The Element Definition Table (EDT) has information which is required for adaptive refinement
analysis and includes an element nodal DOF pattern array (which may optionally vary from
element to element within a given type), which enables either global or local adaptive
p-refinement. Adaptive h-refinement is accommodated by adding more elements to the table and/
or rendering old elements inactive via a Status attribute stored in the table (a utility is provided to
retrieve the next active element when processing an element loop). Elements in the EDT are never
actually deleted, making it possible to retrieve information from previous models generated
during adaptive refinement. However, to obtain topological information about current or previous
models, including element hierarchical relations, refer to the Element Refinement Table (ERT)
class definition.

The logical organization of an Element Definition Table (EDT) data object is shown in
Table 15.2-15.

The columns range over the total number of elements of a particular type (Nelt), including both
active and inactive elements. The attributes marked with an asterisk may either be constant or
variable from element to element (depending on the value of VarElt in the associated CSM data
object). When these values are constant, they may also be obtained from the CSM data object.
The attributes marked with a double asterisk are always stored in the EDT, but they too may
either be constant or variable. The attribute VarElt in the CSM data object determines whether
these element attributes (both single and double asterisks) are constant or variable.

The EDT attributes given in Table 15.2-15 are defined in Table 15.2-16.

Table 15.2-15 Element Definition Table (EDT)

Attribute Element 1 ... Element Nelt

DOFtab (Ndofe,Nen)** DOFtab (Ndofe,Nen1)1 ... DOFtab (Ndofe,NenNelt)Nelt

GrpElt GrpElt1 ... GrpEltNelt

GrpNum GrpNum1 ... GrpNumNelt

Nee* Nee1 ... NeeNelt

Nen* Nen1 ... NenNelt

Nip* Nip1 ... NipNelt

Nnl (Nle)** Nnl (Nle)1 ... Nnl (Nle)Nelt

Nnlt* Nnlt1 ... NnltNelt

Nns (Nse)** Nns (Nse)1 ... Nns (Nse)Nelt

Nnst* Nnst1 ... NnstNelt

Nodes (Nen) Nodes (Nen1)1 ... Nodes (NenNelt)Nelt

Nstore* Nstore1 ... NstoreNelt

P* P1 ... PNelt

Status Status1 ... StatusNelt

UsrElt UsrElt1 ... UsrEltNelt

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-15

The EDT attribute dimension parameters appearing in Table 15.2-16 are stored in the CSM data
object and defined in Table 15.2-17.

15.2.2.4 EGT — Element Geometry Table

An EGT data object is created by a generic element processor (ESi processor), and updated/
utilized by the mesh refinement processors (REFi). An EGT is typically stored in the database in

Table 15.2-16 EDT Attribute Descriptions

Attribute Length Type Description

DOFtab** (Ndofe,Nen) Int DOF pattern at element nodes:
0 ⇒ DOF is inactive
1 ⇒ DOF is active
The correspondence of the rows of DOFtab with DOF types is
given by the Dofe attribute in the CSM data object.

GrpElt 1 Int Element number relative to present element group

GrpNum 1 Int Group number of element relative to present element type

Nee* 1 Int Number of equations per element
 (≤ Ndofe*Nen)

Nen* 1 Int Number of element nodes

Nip* 1 Int Number of integration points per element
(for stress storage)

Nnl** Nle Int Number of nodes per element line (edge)

Nnlt* 1 Int Total number of element line nodes
(sum of Nnl)

Nns** Nse Int Number of nodes per element surface (face)

Nnst* 1 Int Total number of element surface nodes
(sum of Nns)

Nodes Nen Int Element node numbers:
Node(a) ≤ 0 ⇒ inactive element node

Nstore* 1 Int Number of entries per element in element initial storage (EIT)
data object

P* 1 Int Element polynomial (p) order

Status 1 Int Element status flag:
qActive ⇒ element is active

UsrElt 1 Int User element number (typically same as EDT column number)

Table 15.2-17 EDT Parameter Descriptions

Parameter Length Type Description

Ndofe 1 Int Max number of DOFs per element node

Nle 1 Int Number of lines (edges) per element (≥0)

Nse 1 Int Number of surfaces (faces) per element (≥0)

15.2 Data Objects 15 Database Summary

15.2-16 COMET-AR User’s Manual Revised 12/1/97

datasets named EltNam.GEOMETRY...mesh (i.e., one for each element type). The purpose of an
EGT is to define links between the discrete finite element model and a continuous, or solid-
model, description of the structural geometry. If the user selected the “discrete” solid-model
interface option (see Chapter 16, Solid Model Interface), the EGT becomes irrelevant because the
solid-model and discrete-model geometry are then interpreted as one and the same. If the “user-
written” SMI option was selected, the EGT then associates each finite element with one or more
solid-model volumes, surfaces, and lines.

A summary of the attributes stored in an EGT data object is given in Table 15.2-18. The LineID
attribute contains a list of solid-model line identifiers for each element line. If the element line
does not lie on a solid-model line, then a zero is stored. Similarly, the SurfID attribute contains a
list of solid model surface identifiers for each element. If the element is a 2-D surface element
(e.g., a plate or shell) then there is only one surface ID per element. If the element is a 3-D solid
element, then it will have a number of surfaces, some of which may lie on a solid-model surface,
and some of which may be interior. For the interior surfaces a zero is stored in SurfID. The SolID
attribute contains a solid-model volume identifier and is relevant only for 3-D elements.

The columns in this table range over the total number of elements of a particular type (Nelt),
including both active and inactive elements. The attributes (rows) of an EGT and the parameters
used to dimension these attributes are described next in Tables 15.2-19 and 15.2-20.

The EGT attribute dimension parameters are stored in a CSM data object and are defined in Table
15.2-20.

Table 15.2-18 Element Geometry Table (EGT)

Attribute Element 1 ... Element Nelt

LineID (Nle) LineID (Nle)1 ... LineID (Nle)Nelt

SoliID SoliID1 ... SoliIDNelt

SurfID (Nse) SurfID (Nse)1 ... SurfID (Nse)Nelt

Table 15.2-19 EGT Attribute Descriptions

Attribute Length Type Description

LineID Nle Int Solid model line identifier for each element line
0 ⇒ element line is not associated with a solid-model line

SoliID 1 Int Solid model volume identifier for each element volume (3D refinement only)
0 ⇒ element volume is not associated with a solid-model volume

SurfID Nse Int Solid model surface identifier for each element surface
0 ⇒ element surface is not associated with a solid-model surface

Table 15.2-20 EGT Parameter Descriptions

Parameters Length Type Description

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-17

15.2.2.5 ELT — Element Load Table

A data object belonging to the Element Loads Table (ELT) class potentially contains all element
loads for a particular element type and load case. Structural-element loads include distributed
line, surface and body forces/moments, as well as temperatures.

The logical organization of an Element Loads Table (ELT) data object is shown in Table 15.2-21.

The columns range over the total number of elements of a particular type (Nelt), including both
active and inactive elements. Attributes (rows) of an ELT data object are described in
Table 15.2-22.

Not all of the above attributes groups may be present in a particular ELT data object. For
example, perhaps only line loads may be defined, or only pressure loads, or the combination of
the two. Only those loading types (i.e., attribute groups) relevant to a particular model will be
present. This enables element consistent-load generation to be data-driven. It is assumed that
“live” (displacement-dependent) loads are defined in a separate dataset from “dead”
(displacement-independent) loads.

Nle 1 Int Number of lines per element

Nse 1 Int Number of surfaces per element

Table 15.2-21 Element Load Table (ELT)

Attribute Element 1 ... Element Nelt

Bload (Ndofe,Nen)
Bsyst

Bload (Ndofe,Nen)1
Bsyst1

... Bload (Ndofe,Nen)Nelt
BsystNelt

Lload (Ndofe,Nnlt)
Lsyst

Lload (Ndofe,Nnlt)1
Lsyst1

... Lload (Ndofe,Nnlt)Nelt
LsystNelt

Pload (Nnst)
Psyst

Pload (Nnst)1
Psyst1

... Pload (Nnst)Nelt
PsystNelt

Sload (Ndofe,Nnst)
Ssyst

Sload (Ndofe,Nnst)1
Ssyst1

... Sload (Ndofe,Nnst)Nelt
SsystNelt

Table 15.2-22 ELT Attribute Descriptions

Attribute Length Type Description

Bload (Ndofe,Nen) Flost Body loads for a particular element

Bsyst 1 Int Body load coordinate system:
qGlobal, qElemnt, or qNodal

Lload (Ndofe,Nnlt) Float Line loads for a particular element

Table 15.2-20 EGT Parameter Descriptions

15.2 Data Objects 15 Database Summary

15.2-18 COMET-AR User’s Manual Revised 12/1/97

The ELT attribute dimension parameters appearing in Table 15.2-22 are stored in the CSM data
object and are defined in Table 15.2-23.

15.2.2.6 ERT — Element Refinement Table

A data object belonging to the Element Refinement Table (ERT) class is used to keep track of
how elements refine during adaptive h- and/or p-refinement. An ERT is created and updated by
mesh refinement processors such as REFi.

In the case of h-refinement, an ERT logically represents a set of tree structures which connect
elements that emanate from each element in the initial mesh. When elements subdivide (fission),
the new elements thus created are referred to as child elements, and the original element is the
parent element. As the process continues, many generations can be created by fission and
annihilated by fusion (recombination of a set of child elements back into their parent element).
This process is illustrated schematically in Figure 15.2-2 for 2-D quadrilateral elements, which
are logically represented as a quad-tree (4 child elements per parent element). The generalization
to 3-D brick-type elements is an oct-tree (8 child elements per parent element). During
p-refinement, an ERT is used just to keep track of the old and new p levels for each element. For
combined h/p-refinement, an ERT describes both the h nesting and the p levels for every element
in the mesh (for a given element type).

Lsyst 1 Int Line load coordinate system:
qGlobal, qElemnt, or qNodal

Pload (Nnlt) Float Pressure loads for a particular element

Psyst 1 Int Pressure load coordinate system:
qGlobal, qElemnt, or qNodal

Sload (Ndofe,Nnst) Float Surface loads for a particular element

Ssyst 1 Int Surface load coordinate system:
qGlobal, qElemnt, or qNodal

Table 15.2-23 ELT Parameter Descriptions

Parameters Length Type Description

Ndofe 1 Int Number of (potential) DOFs per element node

Nen 1 Int Number of element nodes

Nnlt 1 Int Total number of nodes on all element lines

Nnst 1 Int Total number of nodes on all element surfaces

Table 15.2-22 ELT Attribute Descriptions (Continued)

Attribute Length Type Description

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-19

Figure 15.2-2 Quad-tree Growth during Element h-Refinement

The main use of this tree structure is for adaptive h-refinement, (although an ERT contains data
pertinent to p- and h/p-refinement as well). In the case of h-refinement, the tree structure is used:
(i) to permit interpolation of model and/or solution data between two different meshes; and (ii) to
allow the mesh refinement process to be traced backwards in time, as in the case of adaptive
unrefinement, where child elements may fuse together and reactivate their parent element. For the
solution interpolation function, more than one ERT may be necessary (e.g., to map historical
solutions during nonlinear or dynamic analysis from an earlier mesh/step to the current mesh/
step). In that case, an ERT would be needed for each pertinent load or time step at which the
model had been refined.

The logical organization of an Element Refinement Table (ERT) data object is shown in
Table 15.2-24.

Table 15.2-24 Element Refinement Table (ERT)

Attribute Element 1 ... Element Nelt

Child (Nchild) Child (Nchild1)1 ... Child (NchildNelt)Nelt

Hnew Hnew1 ... HnewNelt

Hold Hold1 ... HoldNelt

Nchild Nchild1 ... NchildNelt

Nunref NunRef1 ... NunRefNelt

Parent Parent1 ... ParentNelt

Pnew Pnew1 ... PnewNelt

Pold Pold1 ... PoldNelt

pRef pRef1 ... pRefNelt

Status Status1 ... StatusNelt

UniRef UniRef1 ... UniRefNelt

1

2

54

6 7

98

1

2 3 4 5

6 7 8 9

Element
Parent
Child1
Child2
Child3
Child4

1 2 3 4 5 6 7 8 9
1 1 1 1 3 3 3 3

2
3
4
5

6
7
8
9

15.2 Data Objects 15 Database Summary

15.2-20 COMET-AR User’s Manual Revised 12/1/97

Table columns range over the total number of elements of a particular type (Nelt), including both
active and inactive elements. Attribute fields of an ERT are described below in Table 15.2-25.
The dimension of Child (the value of attribute Nchild) may vary from element to element. The
maximum value of Nchild is stored as an attribute in the CSM data object, called MEchld.
Element edge refinement may be indicated even if Pnew = Pold.

15.2.2.7 LRT — Line Refinement Table

An LRT is similar to an ERT, but corresponds to element lines, not elements; thus, there is only
one LRT for each given mesh, typically called LINE.REFINEMENT...mesh. This is created and
updated by the refinement processors (REFi). The number of columns in an LRT is equal to the
total number of element lines defined for the problem. Element lines which are common to more
than one element are not repeated in an LRT. When an element subdivides, the lines attached to
the element also subdivide, creating new child lines, which are added to the table without deleting
the original parent lines. An LRT tracks parent/child relations between element lines, in the same
way as an ERT performs this function for elements.

The attributes stored in an LRT are listed in Table 15.2-26. They serve a two-fold purpose. First,
parameters such as Hnew, Hold, Pnew, Pold, represent line refinement indicators, and facilitate
the definition of element refinement indicators via a two-pass process. For example, the element
h-refinement patterns are triggered by first setting the line refinement indicator Hnew. During
refinement Hold is updated, when Hold equals Hnew no more refinement is needed. The second
function of the LRT is to use the embedded parent/child relations between lines to facilitate the
construction of interelement constraints for refinement processors that employ hc-refinement.

Table 15.2-25 ERT Attribute Descriptions

Attribute Length Type Description

Child Nchild Int Element indices of child elements

Hnew 1 Int Number of levels of h-refinement after current refinement stage

Hold 1 Int Number of levels of h-refinement before current refinement stage

Nchild 1 Int Number of child elements per parent elements (e.g., 4 for quadrilat-
eral elements, 8 for brick elements; may also be 3, 5, or 9 for quadri-
lateral elements with ht-refinement)

NunRef 1 Int Number of child elements requesting unrefinement

Parent 1 Int Element index (i.e., column number) of parent element

Pnew 1 Int Intrinsic polynomial order of element after current refinement stage

Pold 1 Int Intrinsic polynomial order of element before current refinement stage

pRef 1 Int Element p-refinement flag:
qTrue ⇒ refine
qFalse ⇒ do not refine

Status 1 Int Element refinement status: qActive or qInact

UniRef 1 Int Uniform refinement flag: qFalse or qTrue

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-21

Columns in Table 15.2-26 range over the total number of model lines, Nline, including both
active and inactive lines. The attributes Nchild and Nnodes indicate that the dimension of
attributes Child and Nodes may vary from line to line. The maximum values of Nchild and
Nnodes are stored in the CSM data object as attributes MLchld and Mnline. Attributes (rows) of
an LRT data object are described in Table 15.2-27.

Table 15.2-26 Line Refinement Table (LRT)

Attribute Line 1 ... Line Nline

Child (Nchild) Child (Nchild1)1 ... Child (NchildNline)Nline

Hnew Hnew1 ... HnewNline

Hold Hold1 ... HoldNline

Nchild Nchild1 ... NchildNline

NelAtt NelAtt1 ... NelAttNline

NelRef NelRef1 ... NelRefNline

Nnodes Nnodes1 ... NnodesNline

Nodes (Nnodes) Nodes (Nnodes1)1 ... Nodes (NnodesNline)Nline

Parent Parent1 ... ParentNline

Pnew Pnew1 ... PnewNline

Pold Pold1 ... PoldNline

Status Status1 ... StatusNline

Table 15.2-27 LRT Attribute Descriptions

Attribute Length Type Description

Child Nchild Int Line (column) numbers of child lines

Hnew 1 Int Number of levels of line h-refinement required

Hold 1 Int Number of levels of line h-refinement before current refinement stage

Nchild 1 Int Number of child lines

NelAtt 1 Int Number of elements attached to line

NelRef 1 Int Number of elements requesting refinement on line

Nnodes 1 Int Number of nodes on line

Nodes Nnodes Int Node numbers defining line

Parent 1 Int Line number of parent line

Pnew 1 Int Polynomial order of line after current refinement stage

Pold 1 Int Polynomial order of line before current refinement stage

Status 1 Int Line processing status: qActive or qInact

15.2 Data Objects 15 Database Summary

15.2-22 COMET-AR User’s Manual Revised 12/1/97

15.2.2.8 NDT — Nodal DOF Table

Data objects belonging to the Nodal DOF Table (NDT) class contain information about nodal
freedoms (DOFs) and multi-point constraints. This includes DOF state information (e.g., fixed,
free, specified, etc.), pointers representing equation numbers in an assembled system, pointers to
multi-point constraint relations, and the actual data defining these constraint relations. An NDT
data object is currently created and updated by processor COP.

The logical organization of a Nodal DOF Table (NDT) data object is arranged in two tables. The
first table contains nodal DOF state and pointer information while the second table contains
multi-point constraint information. The logical structure of the nodal DOF state/pointer
information is shown in Table 15.2-28:

where the columns range over the total number of nodes in the model. Attributes (rows) of an
NDT are described in Table 15.2-29:

15.2.3 Non-HDB Data Structures

There are several data structures that are not currently covered under the HDB Data Object
organizational umbrella, notably, system matrices (e.g., an assembled stiffness matrix) packaged
in three formats: (i) compact column, (ii) compact row, and (iii) skyline. Following are examples
of the data structure components containing the necessary information to describe a system matrix
organized in each of the three formats. Also discussed is the physical storage of the system matrix
data components as records within a single GAL dataset. Presented here are default record names,
record attributes (i.e., datum type and dimensions), and specific record contents.

Table 15.2-28 Nodal DOF Table (NDT)

Attribute Attribute ... Node Nnode

Ptrs (Ndofn) Ptrs (Ndofn)1 ... Ptrs (Ndofn)Nnode

State (Ndofn) State (Ndofn)1 ... State (Ndofn)Nnode

Status Status1 ... StatusNnode

Table 15.2-29 NDT Attribute Descriptions

Attribute Length Type Description

Ptrs Ndofn Int Pointers to equations or multipoint constraint relations

State Ndofn Int Nodal DOF state value:
qFree, qMPC, qSPCnz, or qSPCz

Status 1 Int Nodal status flag:
qActive ⇒ node is activeq
qInact ⇒ node is inactive

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-23

15.2.3.1 Compact Column Data Structure (COMPACT Format)

The COMPACT format for compact column storage of the upper triangular part of an assembled
(symmetric) system matrix contains the five records shown in Table 15.2-30.

Example 15.2-1

This system matrix gives the COMPACT-formatted dataset records shown below.

15.2.3.2 Compact Row Data Structure (COMPAXX Format)

The “COMPAXX” format for compact row storage of the upper triangular part of an assembled
(symmetric) system matrix contains the six records shown in Table 15.2-31.

Table 15.2-30 COMPACT Formatted System-Matrix Data Structure

Record Length Type Description

CONTENTS.1 20 Char “COMPACT”, self-description character string

DIAGONALS.1 Neq Float The Neq assembled system matrix diagonal entries

LOCATIONS.1 Nvals Int The ith entry of the LOCATIONS record indicates the row location (in the
assembled system matrix) for the ith entry in the Nvals-entry VALUES record

POINTERS.1 Neq Int The ith entry Pi of the POINTERS record indicates the end-of-information
position within the LOCATIONS and VALUES records for column i of the
assembled system matrix; column i of the assembled matrix has Pi - Pi-1 off-
diagonal entries (2 ≤ i ≤ Neq)

VALUES.1 Nvals Float Off-diagonal entries of the assembled system matrix

Record Record Contents

CONTENTS.1 COMPACT

DIAGONALS.1 1.1 2.2 3.3 4.4 5.5 6.6

POINTERS.1 0 1 2 3 5 7

LOCATIONS.1 1 2 2 1 3 2 3

VALUES.1 1.2 2.3 2.4 1.5 3.5 2.6 3.6

1.1 1.2 0.0 0.0 1.5 0.0

2.2 2.3 2.4 0.0 2.6

3.3 0.0 3.5 3.6

4.4 0.0 0.0

5.5 0.0

6.6

15.2 Data Objects 15 Database Summary

15.2-24 COMET-AR User’s Manual Revised 12/1/97

Example 15.2-2

This system matrix gives the COMPAXX-formatted dataset records shown below.

15.2.3.3 Skyline Data Structure (SKY_MATRIX Format)

The SKY_MATRIX format for column storage of the upper triangular part of an assembled
(symmetric) system matrix contains the four records shown in Table 15.2-32.

Table 15.2-31 COMPAXX Formatted System-Matrix Data Structure

Record Length Type Description

CONTENTS.1 20 Char “COMPAXX”, self-description character string

COEFS.1 Nvals Float Off-diagonal entries of the assembled system matrix

COLLTH.1 Neq Int Number of off-diagonal entries in each row of the assembled system matrix

COLPTR.1 Neq+1 Int The ith entry Pi of COLPTR indicates the beginning-of-information position for
row i (of the assembled system matrix) in the COEFS and ROWS records; row i
of the assembled matrix has Pi+1 - Pi off-diagonal entries

DIAG.1 Neq Float The Neq assembled system matrix diagonal entries

ROWS.1 Nvals Int The ith ROWS entry is the column location (in the assembled matrix) for entry i
of the COEFS record

Record Record Contents

CONTENTS.1 COMPAXX

DIAG.1 1.1 2.2 3.3 4.4 5.5 6.6

COLLTH.1 2 3 2 0 0 0

COLPTR.1 1 3 6 8 8 8 8

ROWS.1 2 5 3 4 6 5 6

COEFS.1 1.2 1.5 2.3 2.4 2.6 3.5 3.6

1.1 1.2 0.0 0.0 1.5 0.0

2.2 2.3 2.4 0.0 2.6

3.3 0.0 3.5 3.6

4.4 0.0 0.0

5.5 0.0

6.6

15 Database Summary 15.2 Data Objects

Revised 12/1/97 COMET-AR User’s Manual 15.2-25

Example 15.2-3

This system matrix gives the COMPACT-formatted dataset records shown below:

15.2.4 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

[2] Felippa, C., Regelbrugge, M., and Wright, M., The Computational Structural Mechanics
Testbed Architecture, Volume IV: The Global Database Manager GAL-DBM, NASA CR-
178387, 1989.

[3] Stehlin, B., DB/MEM: Generic Database Utilities for the COMET-AR Testbed, NASA
Computational Structural Mechanics (CSM) Contract Report, May 1992.

Table 15.2-32 SKY_MATRIX Formatted System-Matrix Data Structure

Record Length Type Description

CONTENTS.1 20 Char “SKY_MATRIX”, self-description character string

DIAG_POINTER.1 Neq Int The magnitude of entry i in the DIAG_POINTER record indicates the
location (in the MATRIX record) of the diagonal entry for equation i of the
assembled system matrix; the sign indicates the constraint status for
equation i: positive if equation i is not constrained; negative if equation i is
SPCz- or SPCnz-constrained

MATRIX.1 Nvals Float Assembled system matrix entries; the active part of each column of the
upper-triangular half of the matrix is stored sequentially here (incl. zeros)

TYPE.1 20 Char Status (i.e., “FACTORED” or “UNFACTORED”)

Record Record Contents

CONTENTS.1 SKY_MATRIX

DIAG_POINTER.1 1 3 5 8 13 18

VALUES.1 1.1 1.2 2.2 2.3 3.3 2.4 0.0 4.4 1.5
0.0 3.5 0.0 5.5 2.6 3.6 0.0 0.0 6.6

TYPE.1 UNFACTORED

1.1 1.2 0.0 0.0 1.5 0.0

2.2 2.3 2.4 0.0 2.6

3.3 0.0 3.5 3.6

4.4 0.0 0.0

5.5 0.0

6.6

15.2 Data Objects 15 Database Summary

15.2-26 COMET-AR User’s Manual Revised 12/1/97

15 Database Summary 15.3 Database Access

Revised 12/1/97 COMET-AR User’s Manual 15.3-1

15.3 Database Access

In this section we point to the mechanisms which COMET-AR processor and procedure user/
developers may employ to access the database created in the context of adaptive refinement.

15.3.1 Processor-Level Database Access

All of the data objects described in the previous section may be conveniently accessed at the
COMET-AR processor (i.e., FORTRAN) level by calling on HDB object-oriented high-level data
utilities. These are discussed fully in the HDB Manual [1]. Each data object has its own set of
HDB utilities to perform the basic functions of getting/putting data from/into the database,
printing, copying, etc. Additionally, some data objects have tailor-made utilities to perform
special-purpose functions. For example, EDT class objects have a utility called EDTnext which
gets the index of the next active element; an LRT class object has a utility called LRTvert which
gets the vertex node numbers of a line given the line number, etc. Consult Reference [1] before
employing the HDB utilities to build (or retrofit) Testbed processors.

15.3.2 Procedure-Level Database Access

At the COMET-AR command procedure level (batch or interactive), the user may get information
from the database via the CLIP *G2M (GAL to Macro) directive. This requires a detailed
knowledge of the physical structure of the dataset in terms of record organization, a level of detail
which is not required at the processor level. To alleviate this burden, we have developed a utility
procedure, called CSMget and used within the ES Procedure, which may be used to get attributes
from a CSM (Complete Summary of the Model) data object in a logical (versus physical) manner.
This utility procedure is like an object-oriented version of the *G2M directive. It is incomplete,
however, and other utility procedures will be required to access information from other data
objects.

To print all or part of a data object in a meaningful fashion, either from a COMET-AR procedure
or interactively, the user may invoke the HDB print processor described in Section 14.3,
Database Print Utility.

15.3.3 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

15.3 Database Access 15 Database Summary

15.3-2 COMET-AR User’s Manual Revised 12/1/97

15 Database Summary 15.4 Database Organization and Evolution

Revised 12/1/97 COMET-AR User’s Manual 15.4-1

15.4 Database Organization and Evolution

This section presents a discussion of the organization and evolution of a COMET-AR database
during an AR analysis. This includes the distribution of data sets among data libraries (i.e., host
files), and the growth of both data libraries and datasets as the mesh (and solution) is iteratively
updated during AR. In addition, a summary of datasets (and their class membership) is presented
where the names of processors that possibly create or use each dataset are given.

15.4.1 Data Libraries

A COMET-AR database is usually not stored on a single GAL data library during adaptive
refinement. Instead, the database is divided into 3 files: (i) Case.DBC; (ii) Case.DBE; and
(iii) Case.DBS. The .DBC file may be viewed as the computational data library. It contains
everything except element and system matrices. The .DBE file contains only element matrices
(e.g., stiffness and mass). The .DBS file contains only assembled structural system matrices.
During adaptive refinement, the evolution of these libraries is shown in Figure 15.4-1.

Figure 15.4-1 Evolution of COMET-AR Data Libraries during Adaptive Refinement

As indicated in Figure 15.4-1, the .DBC file continues to grow with each new mesh iteration,
saving all model and solution data for every mesh analyzed. In contrast, the .DBE and .DBS files
are deleted and re-created at the beginning of each new mesh iteration. This is because the
element and system matrices are relatively large and are typically not needed once the mesh has
been updated.

Mesh 0 Mesh 1 Mesh 2

 C ase.DBC
Computational 0 0 1 0 12

1 20

0 1 2

...

Data

 Case.DBE
Element
Data

 Case.DBS
System
Data

...

...

...

15.4 Database Organization and Evolution 15 Database Summary

15.4-2 COMET-AR User’s Manual Revised 12/1/97

There are exceptions to this last rule, which may be exploited in the future. For example, during
adaptive h-refinement of a linear analysis, it may be advantageous to retain the element matrix file
(.DBE) and simply extend it as new elements are added so that only the matrices for the newly
added elements need to be reformed. Similarly, for adaptive p-refinement with hierarchical-type p
elements, the element matrix file may be updated rather than re-created. Even the assembled
matrices in the .DBS file may be handled this way (for linear analysis) if partial factoring or
iterative algorithms are used to solve the linear equation system.

The evolution of data libraries during adaptive refinement is currently managed by the AR control
procedure, AR_CONTROL, described in Chapter 4, Adaptive Solution Procedures.

15.4.2 Dataset Evolution

There are two different ways to manage datasets during adaptive refinement: (i) extension and
(ii) re-creation. With the extension approach, datasets are extended as new elements and nodes are
added. For h-refinement, this is simply a matter of adding element and nodal records to a dataset,
without changing the length of each record. For p-refinement, either the length of element records
must be extended or the initial element record length must be reserved large enough to
accommodate the maximum level of p used in the problem. For h/p-refinement, extensions in
both record length and record number are required. The situation is illustrated in Figure 15.4-2.

With the re-creation approach entirely new datasets are created for each new mesh, leaving the
original datasets (for the old mesh) intact. For h-refinement, this is accomplished by first copying
the old dataset to a new one (via the HDB data object copy utilities), and then adding records. For
p-refinement, the datasets are simultaneously copied and expanded in length (again via the HDB
copy utilities). For h/p-refinement, the datasets are first copied/expanded, and then extended by
records. For uniform p-refinement, while the record lengths must be increased, all records remain
the same size for a given element type. This is true for both the extension and the re-creation
approaches.

With the extension approach, the size of the database is minimized (an advantage). However, it
becomes difficult to reconstruct earlier meshes for post-processing and/or restart purposes, and it
is very difficult to manage p-refinement (or h/p-refinement) without reserving maximum-p record
sizes at the outset (both liabilities). There are also a number of datasets, particularly solution
datasets, which must be re-created, as the values are different for the same nodes and elements
from one mesh to the next.

A similar trade-off exists for the re-creation approach. While the size of the database grows more
rapidly than with the extension approach (a liability), all previous meshes are instantly available
for post-processing and/or re-starts, and p- and h/p-refinement present no additional difficulties as
each new element dataset may be sized for precisely what is needed in the new mesh (both
advantages).

In light of the above trade-offs, the re-creation approach is the one adopted by the refinement
processors currently implemented in COMET-AR (e.g., REF1). Both approaches are potentially
available by invoking the appropriate option at the HDB database utility level.

15 Database Summary 15.4 Database Organization and Evolution

Revised 12/1/97 COMET-AR User’s Manual 15.4-3

Figure 15.4-2 Evolution of Datasets during Adaptive Refinement

15.4.3 Dataset Creation and Usage

During the analysis process, numerous datasets are created and used by COMET-AR processors.
Tables 15.4-1 through 15.4-6 list all High-level Database (HDB, see Reference [1]) datasets by
generic name and summarize which processors read from or write to them. Processors that may
create a dataset are tagged with an asterisk.

Table 15.4-1 Processor Usage of Summary Data Object Datasets

Class Generic Dataset Name
Processor Name

Input Usage Output Usage

ANS ANALYSIS.SUMMARY —Not Currently Used— —Not Currently Used—

ARS REFINEMENT.SUMMARY —Not Currently Used— —Not Currently Used—

CSM CSM.SUMMARY —All Processors— —All Processors—

Original (Element) Data

Data Following p-refinement

Data Following h-refinement

Data Following h/p-refinement

1 2 3 ... NELElt =

h

p h/p

Fission

15.4 Database Organization and Evolution 15 Database Summary

15.4-4 COMET-AR User’s Manual Revised 12/1/97

Table 15.4-2 Processor Usage of Element Data Object Dataset Names

Class Generic Dataset Name
Processor Name

 Input Usage Output Usage

EAT EltName.AttName ASMs, SKYs ASMs*, ESi, SKYs

EDT EltName.DEFINITION ASM, ASMs, ERRi, ESi, REF1 REDO*, REF1*

EET EltName.ERROR ERRa, REF1 ERRi

EFT EltName.FABRICATION ERR2, ERR6, ESi, GCP ESi, REDO*

EGT EltName.GEOMETRY REF1 REDO*, REF1*

EIT EltName.INTERPOLATION ERRi, REF1 ESi*

ELT EltName.LOAD ESi, REF1 ESi*, REF1*

EMT EltName.MatName ASM, ASMs ESi*

ERT EltName.REFINEMENT REF1 REF1*

EST EltName.StrName ERRi ESi*

Table 15.4-3 Usage of Nodal Data Object Dataset Names

Class Generic Dataset Name
Processor Name

 Input Usage Output Usage

NAT NODAL.AttName ESi ESi*

NCT NODAL.COORDINATE —All Processors— REDO*, REF1*

NDT NODAL.DOF ASM, ASMs, COP, REF1 COP*, REF1*

NOT NODAL.ORDER COP RENO*, RSEQ*

NTT NODAL.TRANSFORMATION ASMs, ESi, REF1, TRIAD, SKYs REDO*, REF1*, TRIAD*

NVT NODAL.VecName ASM, ASMs, ESi, REF1 COP*, REF1

Table 15.4-4 Processor Usage of Line Data Object Dataset Names

Class Generic Dataset Name
Processor Name

 Input Usage Output Usage

LRT LINE.REFINEMENT REF1 REF1*

Table 15.4-5 Processor Usage of Surface Data Object Dataset Names

Class Generic Dataset Name
Processor Name

 Input Usage Output Usage

SRT SURFACE.REFINEMENT REF1 REF1*

15 Database Summary 15.4 Database Organization and Evolution

Revised 12/1/97 COMET-AR User’s Manual 15.4-5

15.4.4 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

Table 15.4-6 Processor Usage of Matrix/Vector Data Object Dataset Names

Class Generic Dataset Name
Processor Name

 Input Usage Output Usage

SMT SYSTEM.MatName SKYs ASMs*

SVT SYSTEM.VecName ITER, SKY, SKYs ASM*, ASMs*, ITER*, SKY*, SKYs*

15.4 Database Organization and Evolution 15 Database Summary

15.4-6 COMET-AR User’s Manual Revised 12/1/97

Revised 12/1/97 COMET-AR User’s Manual

Part V

Solid Model Interface

(SMI)

In this part of the COMET-AR User’s Manual, we describe the solid model interface to COMET-
AR, i.e., the various ways in which the underlying geometry of a COMET-AR model can be
represented. This includes the conventional approach of using the initial finite-element model as a
solid model representation, and a user-written solid model approach that is more accurate for
purposes of adaptive mesh refinement, but places more of a burden on the user. In the future it is
planned to integrate COMET-AR with a Computer-Aided Design (CAD) system, so that an
accurate solid-model description is maintained throughout an adaptively-refined analysis.

COMET-AR User’s Manual Revised 12/1/97

16 Solid Model Interface (SMI) 16.1 Overview

Revised 12/1/97 COMET-AR User’s Manual 16.1-1

16 Solid Model Interface (SMI)

16.1 Overview

In this chapter, we describe the solid model interface (SMI) options available with adaptive
refinement. The SMI is the link between the discrete finite element model and the underlying
continuous (i.e., solid model) description of the structure. As indicated in Table 16.1-1, two SMI
options are described in this chapter: discrete (approximate), and user-written (exact).

Table 16.1-1 Outline of Chapter 16: Solid Model Interface (SMI)

Section Topic

16.2 SMI Options

16.3 The Discrete (Approximate) SMI Option

16.4 The User-Written (Exact) SMI Option

16.1 Overview 16 Solid Model Interface (SMI)

16.1-2 COMET-AR User’s Manual Revised 12/1/97

16 Solid Model Interface (SMI) 16.2 Solid Model Interface (SMI) Options

Revised 12/1/97 COMET-AR User’s Manual 16.2-1

16.2 Solid Model Interface (SMI) Options

Two solid model interface options are provided in COMET–AR: discrete and user-written. The
discrete SMI employs the initial finite element model as the exact solid model description, and
saves the user the trouble of defining any additional information (beyond the usual finite element
model input). In contrast, the user-written SMI relies on the user to provide a continuous
description of the exact solid model via user-written subroutines and some simple links to the
initial finite element model.

Thus, the user has the choice of either defining a sufficiently refined initial finite element model
to accurately represent the geometry, loads, material properties, and boundary conditions; or
using an arbitrarily coarse initial finite element model, but describing all of the functional
variations in these quantities via user-written subroutines.

Both the discrete and user-written SMIs are embedded in a generic SMI cover routine (called
SMshlxx), which is employed by all standard mesh refinement processors (i.e., REFi). The
implementation of the various SMI options within REFi is shown schematically in Figure 16.2-1.

16.2 Solid Model Interface (SMI) Options 16 Solid Model Interface (SMI)

16.2-2 COMET-AR User’s Manual Revised 12/1/97

Figure 16.2-1 SMI Implementation Within Mesh Refinement Processors

IM Routines

IMxxxCr - Coordinates
IMxxxBc - Bndry Codes
IMxxxTr - Nodal Transf.
IMxxxSd - Spec. Disp.
IMxxxBl - Body Loads
IMxxxFb - Fabrication
IMSurP - Surface Load
IMSupSl - Pressure Load
IMLinLd - Line Load

Where xxx:
 Lin - Lines
 Sur - Surface
 Vol - volumes

qUser qApprox qPAT

PAT Routines

PATxxxCr
PATxxxBc
PATxxxTr
PATxxxSd
PATxxxBl
PATxxxFb
PATSurP
PATSupSl
PATLinLd

Where xxx:
 Lin - Lines
 Sur - Surface
 Vol - volumes

EGT HDB REF1

SMI

SMshlxx
Routines

HDB

EDT ELT EIT EFT NCT NDT NTT

User Routines

xxxCr
xxxBc
xxxTr
xxxSd
xxxBl
xxxFb
SurP
SurSl
LinLd

Where xxx:
 Lin - Lines
 Sur - Surface
 Vol - volumes

16 Solid Model Interface (SMI) 16.3 The Discrete SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.3-1

16.3 The Discrete SMI Option

The user may select the discrete SMI option by setting the /SOLID_MODEL qualifier in the
generic element processor’s DEFINE ELEMENTS command to DISCRETE:

See Chapter 7, Element Processors, for a complete description of processor ESi’s DEFINE
ELEMENTS command. /SOLID_MODEL = DISCRETE is currently the default option.

The initial finite element model is interpreted as the solid model, and all subsequent adaptive
refinements are performed by interpolating geometry, material properties, loads, and boundary
conditions from this discrete model, element by element.

While this SMI option is extremely straightforward it can lead to erroneous AR results,
converging to the wrong solution if the initial discrete model is not sufficiently detailed to pick up
all important variations in structural geometry, properties, etc. This may be difficult to ascertain a
priori in many cases. The use of potentially curved, higher-order elements (i.e., quadratic and
higher) is recommended in conjunction with the discrete SMI, as this can dramatically increase
the geometric accuracy of the initial finite element model and alleviate this pitfall.

[RUN ES1

 RESET ELEMENT_TYPE = EX97

 DEFINE ELEMENTS /SOLID_MODEL = DISCRETE

 ELEMENTS 1 NODES = n 1, n 2, n 3, n 4,...

 ...

16.3 The Discrete SMI Option 16 Solid Model Interface (SMI)

16.3-2 COMET-AR User’s Manual Revised 12/1/97

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-1

16.4 The User-Written SMI Option

To employ the user-written (exact) solid-model interface option, the user must first make the links
between the initial model and the exact model during initial model generation, and then write a set
of subroutines which will enable a refinement processor (REFi) to update the mesh and remain
faithful to the user’s exact model. These user-written routines must be linked into the appropriate
REFi processor executable.

The ingredients for both of these steps are described in the following subsections.

16.4.1 Initial Model Generation

The user may select the user-written SMI option by setting the /SOLID_MODEL qualifier in a
generic element (ESi) processor’s DEFINE ELEMENTS command to USER:

The RESET SURFACE command and the “LINES = l1, l2,...” subcommands will be explained
below by example. They establish the links between the initial finite element model and the user’s
conception of the solid model.

Figure 16.4-1 provides an example of an initial finite element model for a composite cylindrical
panel with circular cutout (also known as “Knight’s Panel” problem). It consists of one surface,
S1, and six lines: L1, L2, L3, L4, L5 and L6. The lines represent the four boundaries of the panel
plus the internal boundary of the hole. The external boundaries have the displacement conditions
indicated below:

RUN ES1

 RESET ELEMENT_TYPE = EX97

 DEFINE ELEMENTS /SOLID_MODEL = USER

 RESET SURFACE = S_1

 ELEMENTS 1 NODES = n 1, n 2, n 3, n 4, ... LINES = l 1, l 2, ...

Line Number Line Boundary Conditions

1 Zero: D1, D2, Theta1, Theta2, Theta3

2 Zero: D1, D2, D3, Theta1, Theta2, Theta3

3 Zero: D1, Theta1, Theta3

4 Zero: D1, Theta1, Theta3

5 Zero: Theta3

6 Zero: Theta3

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-2 COMET-AR User’s Manual Revised 12/1/97

Figure 16.4-1 User-Written Solid Model Description of Knight’s Panel

For this problem, the appropriate initial element definition subcommands follow.

The solid model lines are associated with element sides via the LINES phrase. Element sides that
do not lie on solid model lines are assigned a line number of zero, while those which do are
assigned the solid model line number. Similarly, for 3-D solid elements there is both a LINES and
a SURFACES phrase and a RESET VOLUME command.

DEFINE ELEMENTS /SOLID_MODEL = USER

 RESET SURFACE = 1

 ELEMENT 1 NODES = 12,14,8,6,13,19,7,17,18 LINES = 2,0,5,0

 ELEMENT 2 NODES = 14,11,2,8,16,21,1,19,20 LINES = 4,0,6,0

 ELEMENT 3 NODES = 11, 9,4,2,10,23,3,21,22 LINES = 1,0,6,0

 ELEMENT 4 NODES = 9,12,6,4,15,17,5,23,24 LINES = 3,0,5,0

ξ1
L

1

2

3

4

1

3

2

4

12 13

14

16

11

9

15 24

17 18
19

20

21

22

2

3

4

1

5

6
7 8

14"

R=15"

14"

+

23

ξ4
L

ξ2
L

ξ1
S

η1
S

ξ3
L

ξ5
L

ξ6
L

5

6

10

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-3

To perform adaptive refinement using this model as the underlying solid model, the user must
also provide a set of user-written subroutines describing each of the solid model’s properties
(geometry, loads, boundary conditions, etc.) as functions of the intrinsic surface parameters (ξ,η)
for each distinct solid-model surface, and as a function of the intrinsic line parameter (ξ) for each
distinct solid model line. These routines are described in the following subsections.

16.4.2 User-Written SMI Routines

16.4.2.1 General Description and Summary

The user-written subroutines required to perform adaptive refinement employing the user-written
SMI are summarized in this section. There are subroutines describing solid model properties
(such as global coordinates, transformations, material properties, loads, and boundary conditions)
for line, surface, and volume entities. Mathematically, these subroutines use the following
functions:

Along lines:

X = X(ξi
L)

Along surfaces:

X = X(ξi
S, η i

S)

Within volumes:

X = X(ξi
V, η i

V, ζ i
V)

where ξ, η, and ζ are intrinsic line, surface, and volume coordinates for each geometric entity
(i.e., line, surface, volume). Each coordinate ranges between –1 and +1 along that entity.

The complete set of user-written subroutines required for the most general case are listed in
Table 16.4-1.

Table 16.4-1 Summary of User-Written SMI Subroutines

 Specific Versions (smi)

Generic Name LIN SUR VOL Purpose of Subroutine

smiBCS ✔ ✔ ✔ Define boundary conditions (DOF states)

smiBLD ✔ ✔ ✔ Define body loads

smiCRD ✔ ✔ ✔ Define global coordinates

smiFAB ✔ ✔ ✔ Define material fabrication associations

smiLLD ✔ N/A N/A Define line loads

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-4 COMET-AR User’s Manual Revised 12/1/97

In practice, the letters “smi” in the subroutine names in Table 16.4-1 are replaced by LIN, SUR,
or VOL for line, surface, or volume entities, as appropriate. In most cases only a subset of these
subroutines must be written. For example, for a problem involving only 1-D elements (e.g.,
beams), only LIN subroutines are needed, and while all of the geometric and material entry points
must be written, only those load entry points (LINLLD, SURSLD, etc.) which are relevant to the
problem must be written.

Before performing AR with the user-written SMI option, the user must link the above subroutines
into the appropriate mesh refinement processor (REFi). See the REFi “makefile” for details.

16.4.2.2 SMI Subroutine Argument Glossary

Table 16.4-2 provides a comprehensive list of arguments that appear in one or more of the user-
written SMI subroutines.

smiPLD N/A ✔ N/A Define pressure loads

smiSLD N/A ✔ N/A Define general surface loads

smiSPD ✔ ✔ ✔ Define specified displacements

smiTRF ✔ ✔ ✔ Define global/computational transformations

Table 16.4-2 User-Written SMI Subroutine Argument Glossary

Name Type I/O Description

Bcs Integer(Ndof) O DOF states; Bcs(i) = { qSPCz, qFree, ... }

Blds Float(Ndof) O Body load vector (force/volume)

Crds Float(3) O Global coordinates: Crds(i) = xi
g

ETA Float I Second SM coordinate (η)

FabEcc Float(NfabEcc) O Fabrication eccentricities

FabID Integer O Fabrication ID (in FE database)

FabOri Float(NfabOri) I Fabrication orientation data

FabRef Integer O Fabrication reference frame (in FE database)

Lexist Integer O Load existence flag: qTrue or qFalse

LinID Integer I Line ID

Llds Float(Ndof) O Line load vector (force/length)

Table 16.4-1 Summary of User-Written SMI Subroutines (Continued)

 Specific Versions (smi)

Generic Name LIN SUR VOL Purpose of Subroutine

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-5

In the following sections the calling sequences for each of the user-written SMI subroutines listed
in Table 16.4-1, and involving the arguments listed in Table 16.4-2, are presented. In the
following calling sequences the prefix symbol < denotes an input argument, the symbol > denotes
an output argument, and the symbol <> denotes an argument that is used both as input and output.

16.4.2.3 BCS (Boundary-Condition) SMI Utilities

16.4.2.4 BLD (Body-Load) SMI Utilities

Ndof Integer I Number of DOF per node

NfabEcc Integer O Number of fabrication eccentricities

NfabOri Integer I Number of fabrication orientation data items

Plds Float O Pressure load (force/area)

Slds Float(Ndof) O Surface load (traction) vector (force/area)

Spds Float(Ndof) O Specified displacement vector

Status Integer I Subroutine return status (qOK ⇒ no errors)

SurID Integer I Surface ID

Trfs Float (3,3) O Transformations: Trfs(i,j) = Tij
GC

XSI Float I First SM coordinate (ξ)

VolID Integer I Volume ID

ZETA Float I Third SM coordinate (ζ)

Name Calling Sequence

LinBCS (<LinID, >BCs, <Ndofe, >Status)

SurBCS (<SurID, >BCs, <Ndofe, >Status)

VolBCS (<VolID, >BCs, <Ndofe, >Status)

Name Calling Sequence

LinBLD (<LinID, <XSI, >Blds, <Ndof, >Lexist, >Status)

SurBLD (<SurID, <XSI, <ETA, >Blds, <Ndof, >Lexist, >Status)

VolBLD (<VolID, <XSI, <ETA, <ZETA, >Blds, <Ndof, >Lexist, >Status)

Table 16.4-2 User-Written SMI Subroutine Argument Glossary (Continued)

Name Type I/O Description

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-6 COMET-AR User’s Manual Revised 12/1/97

16.4.2.5 CRD (Coordinate) SMI Utilities

16.4.2.6 FAB (Fabrication) SMI Utilities

16.4.2.7 LLD (Line-Load) SMI Utilities

16.4.2.8 PLD (Pressure-Load) SMI Utilities

16.4.2.9 SLD (Surface-Load) SMI Utilities

Name Calling Sequence

LinCRD (<LinID, <XSI, >Crds, >Status)

SurCRD (<SurID, <XSI, <ETA, >Crds, >Status)

VolCRD (<VolID, <XSI, <ETA, <ZETA, >Crds, >Status)

Name Calling Sequence

LinFAB (<LinID, <XSI, >FabID, >FabEcc, >FabRef, >NfabEcc, >FabOri, >NFabOri, >Status)

SurFAB (<SurID, <XSI, <ETA, >FabID, >FabEcc, >FabRef, >NfabEcc, >FabOri, >NFabOri, >Status)

VolFAB (<VolID, <XSI, <ETA, <ZETA, >FabID, >FabEcc, >FabRef, >NfabEcc, >FabOri, >NFabOri, >Status)

Name Calling Sequence

LinLLD (<LinID, <XSI, >Llds, >Lexist, >Status)

Name Calling Sequence

SurPLD (<SurID, <XSI, <ETA, >Slds, <Ndof, >Lexist, >Status)

Name Calling Sequence

LinSLD (<LinID, <XSI, >Slds, <Ndof, >Lexist, >Status)

SurSLD (<SurID, <XSI, <ETA, >Slds, <Ndof, >Lexist, >Status)

VolSLD (<VolID, <XSI, <ETA, <ZETA, >Slds, <Ndof, >Lexist, >Status)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-7

16.4.2.10 SPD (Specified-Displacement) SMI Utilities

16.4.2.11 TRF (Transformation) SMI Utilities

16.4.2.12 Mesh Update Algorithm via User-Written SMI Utilities

The user may have noticed that with the user-written SMI option, the user does not provide the
values of the line and surface coordinates (ξ, η, and ζ, respectively) for the nodes in the initial
finite element mesh. Since these coordinates are provided as an input data by a REFi processor to
the user-written SMI routines (via the generic SMI shell routine described earlier), the question
might arise as to how they are generated, both for the nodes in the original mesh and for new
nodes created during adaptive refinement.

To save the user the trouble of defining the line and surface intrinsic coordinates at each of the
nodes in the initial mesh, the SMI shell uses the following algorithm to generate these intrinsic
coordinates during adaptive refinement.

1) Predict the values of ξ at each node of the parent element, where the global coordinates are
known as x.

2) Compute the actual values of ξ corresponding to x (at each parent node) by inverting the
mapping x = f(ξ) provided by the user-written subroutine LINCRD. The inverse mapping
is obtained by linearizing the following “projected” version of the forward mapping:

and employing the following Newton-Raphson algorithm:

Name Calling Sequence

LinSPD (<LinID, <XSI, >Spds, <Ndof, >Lexist, >Status)

SurSPD (<SurID, <XSI, <ETA, >Spds, <Ndof, >Lexist, >Status)

VolSPD (<VolID, <XSI, <ETA, <ZETA, >Spds, <Ndof, >Lexist, >Status)

Name Calling Sequence

LinTRF (<LinID, <XSI, >Trfs, >Status)

SurTRF (<SurID, <XSI, <ETA, >Trfs, >Status)

VolTRF (<VolID, <XSI, <ETA, <ZETA, >Trfs, >Status)

∂f
∂ξα
--------- x f ξ()–() 0= α⋅ 1 2 … Ndim, , ,=

∂2 f
∂ξα∂ξβ
------------------ x f ξ()–() ∂f

∂ξα
---------– ∂f

∂ξβ
--------–⋅

ξ i

δξβ
i 1+ ∂f

∂ξα

ξ i

x f ξ i()–()⋅–=

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-8 COMET-AR User’s Manual Revised 12/1/97

3) Go to Step 1 and iterate until ξi+1 ≈ ξi

In these equations, α and β each range from 1 to the number of intrinsic dimensions, Ndim.
The value of Ndim equals 1 for a curve, 2 for a surface, and 3 for a volume.

4) Once ξ is obtained at the parent element’s nodes, the values of ξ at the new interior nodes
engendered by refining the element are obtained by interpolation. The global coordinates
(and other properties) at the new nodes are then obtained via the user-written SMI routines.

The derivatives of f appearing in Step 1 are computed numerically, via second-order finite-
difference approximations:

The inverse mapping is from a 3-D global space to either a 1-D, 2-D, or 3-D intrinsic space. The
projection of the forward mapping given as the first equation under Step 2 is necessary to handle
the case where the number of intrinsic dimensions is less than 3, for example along a curved line
or surface. As a fringe benefit, the same procedure may be used to compute ξ given a starting
point, x, which does not even lie in the intrinsic space (i.e., on the curve or surface). In this case,
the value of ξ computed will correspond to the point on the curve or surface which is closest to
the starting point, x; that is, the orthogonality condition ∂f/∂ξ⋅x – f(ξ) = 0 will yield the
orthogonal projection of x onto that curve/surface.

The projected inverse mapping procedure is implemented in the subroutine utility package
xxxProj, which is invoked via the generic SMI cover routine SMShlxx that is employed in all
standard REFi processors. These utilities may also be invoked via the following calling sequence:

where the symbols are defined as follows.

CALL xxxProj (<xxxID, <Pt, >ξ, >η, >ζ, >Crds, <LIM, <>Status)

Symbol Definition

xxx Lin ⇒ line projection
Sur ⇒ surface projection
Vol ⇒ volume projection

Pt(3) Coordinates of the point as generated by REF1

ξβ
i 1+ ξβ

i δξβ
i 1+

+=

f∂
ξα∂

1
2ε
----- f ξα ε+() f ξα ε–()–[]=

∂2 f

∂ ξa∂ξβ

1
2ε
----- ∂f

∂ξα
--------- ξα ξβ ε+,() ∂f

∂ξα
--------- ξα ξβ ε–,()–=

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-9

16.4.3 Limitations on User-Written SMI Option

1) The user may define lines, surface, or volumes of any shape via the user-written SMI as
long as every point within these solid-model entities has a unique, and invertible, mapping
x = f(ξ). Closed curves and surfaces must be subdivided into open curves and surfaces
before defining them as solid model entities. For example, to model a closed cylindrical
shell, break the cylindrical surface into two cylindrical surfaces (e.g., 0–180 deg., and 180–
360 deg.).

2) Each element and its boundaries must be contained within a single geometrical entity. For
example, a shell element must be contained within a single surface definition and each of
its four edges which coincides with geometrical lines must be contained within a single
line. (e.g., elements cannot be defined across geometrical surface boundaries, and element
edges cannot be defined across geometrical line boundaries).

3) To increase the efficiency of the mesh projection algorithm employed for the user-written
SMI, keep the range of the intrinsic line, surface, and volume coordinates (ξ,η,ζ) as close
to the interval [-1,+1] as possible. This can speed up the convergence of the embedded
Newton-Raphson algorithm considerably.

16.4.4 Example: User-Written SMI for the Knight’s Panel Model

In this section, we demonstrate how to write a complete set of user-written solid model routines
using the Knight’s panel example depicted in Figure 16.4-2.

In general, a good starting point for developing a new user-written solid model routines is to
obtain a copy of an existing example, such as the one discussed in this section, and to modify the
example for the particular problem.

User-written solid model routines are treated, by design, as a complete solid modeler by a
refinement processor and as such, they should provide the full range of solid model entry points,
including those which may not be relevant to the particular problem at hand. Those entry points
which are not used for modeling the particular problem can be present as simple subroutine
“stubs”, having all the formal arguments declared but no statements.

ξ,η,ζ Intrinsic coordinates of the projected point; only ξ is relevant for lines; and only ξ
and η are relevant for surfaces

Crds(3) Projected point coordinates in the computational frame

LIM Initial model logical flag:
.true. ⇒ initial model routines are used (CSM.SolMod = qApprox)
.false. ⇒ user routines are used (CSM.SolMod = qUser or qPAT)

Status SMI status flag

Symbol Definition

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-10 COMET-AR User’s Manual Revised 12/1/97

All solid modelers operate on a series of hierarchically ordered geometrical entities: point, curve,
surface, and volume (presented in their descending hierarchical order). Entities which have a
higher hierarchical position also have higher priority. If information is requested by a refinement
processor at a location in the model which belongs to both a geometrical surface and a
geometrical curve, the curve’s higher position in the hierarchical list will give it higher priority
over the surface, and information for this location will be provided based on the curve’s data.

Only the curve, surface, and volume entities are relevant in the context of adaptive mesh
refinement, since points can not be refined. The geometry points data must be present in the initial
mesh and is not modified throughout the adaptive mesh refinement process.

A few words about the programming style used in this example are required. Each of the routine
contains two distinct sections: “Declarations” and “Logic”. The Declarations section contains an
explicit declaration for each of the routine’s arguments as well as any internal variables. A
machine-dependent implicit declaration of all variables in the subroutine (e.g., the MAX blocks in
lines 17-27 of Listing 1) eliminates many hard-to-find variable names typing errors. The
Declarations section in each routine contains the standard COMET-AR Q-symbols file (see
Reference [1] for details).

Error processing is an important aspect of programming within the COMET-AR architecture.
Each routine contain a formal argument “Status” which is used for monitoring execution errors.
The first executable statement in each routine verifies that there is no prior error condition set by
any of the former routines. This is accomplished by a logical check comparing the value of the
Status argument to the Q-symbol qOK value. If an error condition is set prior to the routine
invocation, the routine should silently exit such that the error message trace-back produced by
higher level routines will not be cluttered by messages from lower level routines, which cannot
have any relevant information regarding the particular error condition.

If an error is detected during the normal execution of a routine, the routine is required to initiate
the error processing mechanism by calling a standard entry point named “ERR” to set the error
condition. The ERR routine has three formal arguments: the name of the calling routine, an error
message, and the Status argument. The ERR routine will automatically set the execution error
condition and initiate the error trace-back mechanism.

Any messages to the user should be printed using the PRTi printing entry points to maintain a
consistent format of messages. This example may be used as a template for writing messages.

In the following subsections, each of the standard user-written SMI entry points for the Knight’s
Panel problem will be presented and described in detail. Each of the 22 routines (all of which are
mandatory entry points) constructing the complete set of user-written routines are presented as a
separate listing; lines are numbered for easy referencing in the text.

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-11

Figure 16.4-2 Knight’s Panel: Problem Definition

16.4.4.1 Initialization Routine

The Initialization routine, shown in Listing 1, is merely a place holder for any initialization that
may be required by the user-written routines or by a commercial solid modeling program (in the
future). The user should implement this entry point, which is always the first routine to be called
at the beginning of the refinement stage, to initialize any data or parameters required by particular
user-written routines. For the current example, data initialization is not required and this routine
has an empty executable body.

3

2

4

14" R=2"

14"

ξ4
L

ξ2
L

η
1
S

ξ3
L

ξ
1

L

5
ξL

ξ6
L

6

5

1

θ

X

Y

Z

R=15"ϕ

ξ1
S

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-12 COMET-AR User’s Manual Revised 12/1/97

16.4.4.2 Coordinates Routines

The geometry of the Knight’s Panel example contains six geometry lines as depicted in
Figure 16.4-2. Geometry lines 1 and 2 are circular arcs given by the following mathematical
definitions:

The parametric presentations of these lines are obtained by replacing the variable by
 via:

asin

Lines 53-62, and 36-72 of Listing 2 below contain the Fortran code representing the above
equations.

Listing 1 Initialization Routine

 1 c
 2 c ***********
 3 c S M I n i t
 4 c ***********
 5 c
 6 subroutine SMInit (status)
 7 c
 8 c.....Dummy initialization routine
 9 c
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN
 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer status
 34 c
 35 c ==
 36 c L o g i c
 37 C ==
 38 if(status.ne.qOK) return
 39
 40 return
 41 end

Line1 x x 15 ϕ() y;cos 15 ϕ() z;sin 0 ϕ 7
15
------ 

 asin–
7
15
------ 

 asin+[,]∈;= = =
 
 
 

=

Line2 x x 15 ϕ() y;cos 15 ϕ() z;sin 15ϕ 7
15
------ 

 asin–
7
15
------ 

 asin+[,]∈;= = =
 
 
 

=

ϕ
ξ 1– 1[,]∈

ϕ ξ=
7
15

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-13

Geometry lines 3 and 4 of Figure 16.4-2 are simple straight lines given by:

and are programmed in lines 73-82 and 83-92 of Listing 2.

Finally, the circular hole at the center of the panel is a curve which defines the intersection of a
cylinder of radius 2 inches along the y-axis with a cylinder of radius 15 inches along the z-axis.
The mathematical presentation of this curve is:

In order to comply with restrictions 1 and 3 of “Limitations on User-Written SMI Option” above,
this geometry line is divided into two segments, geometry lines 5 and 6, along the
diagonal. The mappings from the generic coordinate to the angle for each of these
lines are given by:

This lines are programmed in lines 93-110 and 111-128 of Listing 2.

If the Line Coordinates routine is requested to provide information about a geometry line which is
unknown to the routine, an error message is printed and error condition is set by calling ERR as
shown in lines 129-139 of Listing 2.

Listing 2 Line Coordinates Routine

 1 c
 2 c ***********
 3 c L i n C r d
 4 c ***********
 5 c
 6 subroutine LinCrd (LineID , XSI , Crds , Status)
 7 c
 8 c.....Example solid model routine to compute global coordinates along
 9 c a parametric presentation of a solid model line
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN

Line3 x x 15 ϕ() y;cos 15 ϕ() z;sin 7 1 ξ–() ϕ;= = =
7
15
------ 

 asin–=
 
 
 

=

Line4 x x 15 ϕ() y;cos 15 ϕ() z;sin 7 1 ξ–() ϕ;= = =
7
15
------ 

 asin=
 
 
 

=

Lines5 6, x x 2 θ() z;cos 7 2 θ() y;sin– 152 x2–= = ={ }=

θ 45o–=
ξ 1– 1[,]∈ θ

θ5 90 1 ξ+() 225+=

θ6 90 1 ξ+() 45+=

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-14 COMET-AR User’s Manual Revised 12/1/97

 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer LineID, Status
 34 c
 35 c=IF DOUBLE
 36 c
 37 double precision
 38 c
 39 c=ELSE
 40 c
 41 real
 42 c
 43 c=ENDIF
 44 c
 45 $ XSI, Crds(3), Theta
 46 c
 47 c ==
 48 c L o g i c
 49 C ==
 50 c
 51 if (Status .ne. qOK) return
 52 c
 53 if (LineID .eq. 1) then
 54 c
 55 c Knight's panel geometry: line 1 - arc at Z=0.0
 56 c
 57 Theta = XSI * asin (7.0 / 15.0)
 58 c
 59 Crds(1) = 15.0 * sin(Theta)
 60 Crds(2) = 15.0 * cos(Theta)
 61 Crds(3) = 0.0
 62 c
 63 else if (LineID .eq. 2) then
 64 c
 65 c Knight's panel geometry: line 2 - arc at Z=14.0
 66 c
 67 Theta = XSI * asin (7.0 / 15.0)
 68 c
 69 Crds(1) = 15.0 * sin(Theta)
 70 Crds(2) = 15.0 * cos(Theta)
 71 Crds(3) = 14.0
 72 c
 73 else if (LineID .eq. 3) then
 74 c
 75 c Knight's panel geometry: line 3 -
 Straight line at Theta = - asin(7/15)
 76 c
 77 Theta = - asin (7.0 / 15.0)
 78 c
 79 Crds(1) = 15.0 * sin(Theta)
 80 Crds(2) = 15.0 * cos(Theta)
 81 Crds(3) = 7.0 * (XSI + 1.0)
 82 c
 83 else if (LineID .eq. 4) then
 84 c
 85 c Knight's panel geometry: line 4 -
 Straight line at Theta = + asin(7/15)
 86 c
 87 Theta = + asin (7.0 / 15.0)
 88 c
 89 Crds(1) = 15.0 * sin(Theta)
 90 Crds(2) = 15.0 * cos(Theta)
 91 Crds(3) = 7.0 * (XSI + 1.0)
 92 c
 93 else if (LineID .eq. 5) then
 94 c

Listing 2 Line Coordinates Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-15

The Knight’s Panel example contains a single surface defined by:

The surface generic coordinates are mapped to and z, respectively, via:

These surface definition equations are programmed in lines 53-61 of Listing 3. We do not have to
account for the circular hole present in the surface since this hole is fully accounted for by the
definition of the geometry lines (higher level entities in the goniometry hierarchy), and the

 95 c Knight's panel geometry: line 5 - circular cut-out
 96 c
 97 c Note! X,Z are computed on the circle such that:
 98 c X * X + Z * Z = 4 (on the circle)
 99 c
100 c Y is computed such that:
101 c X * X + Y * Y = 225 (on the panel)
102 c
103 c
104 Theta = ((XSI + 1.0) * 90.0 + 225.0) *
105 $ atan (1.0) / 45.0
106 c
107 Crds(1) = 2.0 * cos(Theta)
108 Crds(2) = sqrt (225.0 - Crds(1) * Crds(1))
109 Crds(3) = 7.0 - 2.0 * sin(Theta)
110 c
111 else if (LineID .eq. 6) then
112 c
113 c Knight's panel geometry: line 6 - circular cut-out
114 c
115 c Note! X,Z are computed on the circle such that:
116 c X * X + Z * Z = 4 (on the circle)
117 c
118 c Y is computed such that:
119 c X * X + Y * Y = 225 (on the panel)
120 c
121 c
122 Theta = ((XSI + 1.0) * 90.0 + 45.0) *
123 $ atan (1.0) / 45.0
124 c
125 Crds(1) = 2.0 * cos(Theta)
126 Crds(2) = sqrt (225.0 - Crds(1) * Crds(1))
127 Crds(3) = 7.0 - 2.0 * sin(Theta)
128 c
129 else
130 c
131 c Unknown geometry line
132 c
133 call PRTs (qError , qIntegr ,
134 $ '***ERROR*** unknown line geometry ID^'
135 $ //' was requested in LinCrd^'
136 $ //' unknown line ID :=' , LineID)
137 c
138 call ERR ('LinCrd' , 'unknown line ID' , Status)
139 c
140 end if
141 c
142 return
143 end

Listing 2 Line Coordinates Routine (Continued)

1 x x 15 ϕ() y;cos 15 ϕ() z 0 14,[] ϕ 7
15
------ 

 asin– a+[,∈;∈;sin= =




=

η 1– 1[,∈, ϕ

ϕ ξ 7
15
------ 

 asin=

z 7 1 η+()=

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-16 COMET-AR User’s Manual Revised 12/1/97

refinement processor will never request any information for points inside the hole since there are
no elements defined inside this region in the initial mesh of the problem.

Listing 3 Surface Coordinates Routine

 1 c
 2 c ***********
 3 c S u r C r d
 4 c ***********
 5 c
 6 subroutine SurCrd (SurfID , XSI , ETA , Crds , Status)
 7 c
 8 c.....Example solid model routine to compute global coordinates along
 9 c a parametric presentation of a solid model surface
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN
 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer SurfID, Status
 34 c
 35 c=IF DOUBLE
 36 c
 37 double precision
 38 c
 39 c=ELSE
 40 c
 41 real
 42 c
 43 c=ENDIF
 44 c
 45 $ XSI, ETA, Crds(3), Theta
 46 c
 47 c ==
 48 c L o g i c
 49 C ==
 50 c
 51 if (Status .ne. qOK) return
 52 c
 53 if (SurfID .eq. 1) then
 54 c
 55 c Knight's panel geometry
 56 c
 57 Theta = XSI * asin (7.0 / 15.0)
 58 c
 59 Crds(1) = 15.0 * sin(Theta)
 60 Crds(2) = 15.0 * cos(Theta)
 61 Crds(3) = 7.0 * (ETA + 1.0)
 62 c
 63 else
 64 c
 65 c Unknown geometry surface surface
 66 c
 67 call PRTs (qError , qIntegr ,
 68 $ '***ERROR*** unknown surface geometry ID^'
 69 $ //' was requested in SurCrd^'
 70 $ //' unknown surface ID :=' , SurfID)
 71 c
 72 call ERR ('SurCrd' , 'unknown surface ID' , Status)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-17

The Volume Coordinates routine, shown in Listing 4, is an example of a typical dummy entry
point in the user-written routines. This example does not require any volume definition; therefore,
this routine contains only the formal Declarations section and an empty Logic section.

 73 c
 74 end if
 75 c
 76 return
 77 end

Listing 4 Volume Coordinates Routine

 1 c
 2 c ***********
 3 c V o l C r d
 4 c ***********
 5 c
 6 subroutine VolCrd (VolmID , XSI , ETA , ZETA , Crds , Status)
 7 c
 8 c.....Dummy solid model routine
 9 c
 10 C ===
 11 c D e c l a r a t i o n s
 12 C ===
 13 c
 14 C=IF VAX
 15 c
 16 implicit none
 17 c
 18 C=ELSEIF SUN
 19 c
 20 implicit none
 21 c
 22 C=ELSE
 23 c
 24 implicit character *1 (a - z)
 25 c
 26 C=ENDIF
 27 c
 28 c High level DB utilities include file
 29 c
 30 include 'qsymbol.inc'
 31 c
 32 c=IF DOUBLE
 33 c
 34 double precision
 35 c
 36 c=ELSE
 37 c
 38 real
 39 c
 40 c=ENDIF
 41 c
 42 $ XSI, ETA, ZETA, Crds(3)
 43 c
 44 integer VolmID, Status
 45 c
 46 c ==
 47 c L o g i c
 48 C ==
 49 c
 50 if (Status .ne. qOK) return
 51 c
 52 c *************NOT REQUIRED FOR THIS MODEL**************
 53 c
 54 return
 55 end

Listing 3 Surface Coordinates Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-18 COMET-AR User’s Manual Revised 12/1/97

16.4.4.3 Boundary Condition Routines

The boundary conditions of the Knight’s Panel example are summarized in “Initial Model
Generation” above. These boundary codes are written in terms of standard Q-symbol parameters:
“qSPCz” for specified zero DOF, “qSPCnz” for specified non-zero DOF, and “qFree” for free
DOF. These boundary codes are defined for each of the six lines (see data statement in lines 36-41
of Listing 5) and for interior point along the surface (see data statement in line 36 of Listing 6).

The Logic part of these routines consists of merely copying the boundary codes associated with
the requested line ID or surface ID from the internal storage arrays, “BCsi,” to the receiving
vector, “BCs” (see lines 49-52 of Listing 5 and lines 44-47 of Listing 6). Note the consistent error
processing code present in this routines.

Listing 5 Line Boundary Conditions Routine

 1 c
 2 c ***********
 3 c L i n B c s
 4 c ***********
 5 c
 6 subroutine LinBcs (LineID , Bcs , NDof , Status)
 7 c
 8 c.....Example solid model routine to obtain boundary codes for lines
 9 c
 10 C ===
 11 c D e c l a r a t i o n s
 12 C ===
 13 c
 14 C=IF VAX
 15 c
 16 implicit none
 17 c
 18 C=ELSEIF SUN
 19 c
 20 implicit none
 21 c
 22 C=ELSE
 23 c
 24 implicit character *1 (a - z)
 25 c
 26 C=ENDIF
 27 c
 28 c High level DB utilities include file
 29 c
 30 include 'qsymbol.inc'
 31 c
 32 integer LineID, NDof, Bcs(NDof), Status
 33 c
 34 integer Bcsi(6,6)
 35 c
 36 data Bcsi / qSPCz, qSPCz, qSPCnz, qSPCz, qSPCz, qSPCz,
 37 $ qSPCz, qSPCz, qSPCz, qSPCz, qSPCz, qSPCz,
 38 $ qSPCz, qFree, qFree, qSPCz, qFree, qSPCz,
 39 $ qSPCz, qFree, qFree, qSPCz, qFree, qSPCz,
 40 $ qFree, qFree, qFree, qFree, qFree, qFree,
 41 $ qFree, qFree, qFree, qFree, qFree, qFree/
 42 c
 43 c ==
 44 c L o g i c
 45 C ==
 46 c
 47 if (Status .ne. qOK) return
 48 c
 49 if (LineID .gt. 0 .and. LineID .le. 6) then
 50 c
 51 call ICOPY (Bcs , Bcsi(1,LineID) , NDof , Status)
 52 c
 53 else
 54 c
 55 c Unknown geometry line

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-19

 56 c
 57 call PRTs (qError , qIntegr ,
 58 $ '***ERROR*** unknown line geometry ID^'
 59 $ //' was requested in LinBcs^'
 60 $ //' unknown line ID :=' , LineID)
 61 c
 62 call ERR ('LinBcs' , 'unknown line ID' , Status)
 63 c
 64 end if
 65 c
 66 return
 67 end

Listing 6 Surface Boundary Conditions Routine

 1 c
 2 c ***********
 3 c S u r B c s
 4 c ***********
 5 c
 6 subroutine SurBcs (SurfID , Bcs , NDof , Status)
 7 c
 8 c.....Example solid model routine to obtain boundary codes for surfaces
 9 c
 10 C ===
 11 c D e c l a r a t i o n s
 12 C ===
 13 c
 14 C=IF VAX
 15 c
 16 implicit none
 17 c
 18 C=ELSEIF SUN
 19 c
 20 implicit none
 21 c
 22 C=ELSE
 23 c
 24 implicit character *1 (a - z)
 25 c
 26 C=ENDIF
 27 c
 28 c High level DB utilities include file
 29 c
 30 include 'qsymbol.inc'
 31 c
 32 integer SurfID, NDof, Bcs(NDof), Status
 33 c
 34 integer Bcsi(6)
 35 c
 36 data Bcsi / qFree, qFree, qFree, qFree, qFree, qFree /
 37 c
 38 c ==
 39 c L o g i c
 40 C ==
 41 c
 42 if (Status .ne. qOK) return
 43 c
 44 if (SurfID .eq. 1) then
 45 c
 46 call ICOPY (Bcs , Bcsi , NDof , Status)
 47 c
 48 else
 49 c
 50 c Unknown geometry surface
 51 c
 52 call PRTs (qError , qIntegr ,
 53 $ '***ERROR*** unknown surface geometry ID^'
 54 $ //' was requested in SurBcs^'
 55 $ //' unknown surface ID :=' , SurfID)
 56 c
 57 call ERR ('SurBcs' , 'unknown surface ID' , Status)
 58 c
 59 end if

Listing 5 Line Boundary Conditions Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-20 COMET-AR User’s Manual Revised 12/1/97

The Volume Boundary Conditions routine, shown in Listing 7, is a dummy entry point in the
user-written routines. This example does not require any volume definitions; therefore, this
routine contains only the formal Declarations section and an empty Logic section.

16.4.4.4 Specified Displacements Routines

For the Knight’s Panel example, the z-direction displacements along geometry line 1 are specified
to be unity. The Specified Displacements Routines contain an additional logical argument, named
“LExists,” which is a flag indicating if the particular data, in this case nontrivial specified
displacements, exists at the generic location. This information is required by the refinement
processor in order to prevent the storage of trivial data in the database.

 60 c
 61 return
 62 end

Listing 7 Volume Boundary Conditions Routine

 1 c
 2 c ***********
 3 c V o l B c s
 4 c ***********
 5 c
 6 subroutine VolBcs (VolmID , Bcs , NDof , Status)
 7 c
 8 c.....Example solid model routine to obtain boundary codes
 9 c for Volums
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN
 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer VolmID, Status, NDof, Bcs(NDof), Status
 34 c
 35 c ==
 36 c L o g i c
 37 C ==
 38 c
 39 if (Status .ne. qOK) return
 40 c
 41 c *****************NOT REQUIRED FOR THIS MODEL**************
 42 c
 43 return
 44 end

Listing 6 Surface Boundary Conditions Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-21

The Logic section of the “Line Specified Displacements” routine returns the value of the specified
z-direction displacement in the “Spds” output vector for geometry line 1, sets the “LExists” flag
to true and clears the output vector for all other lines (see lines 58-72 of Listing 8).

Listing 8 Line Specified Displacements Routine

 1 c
 2 c ***********
 3 c L i n S p d
 4 c ***********
 5 c
 6 subroutine LinSpd (LineID , XSI , Spds ,
 7 $ NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain nodal specified
 10 c displacement vectors for lines
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer LineID, NDof, Status
 35 c
 36 c=IF DOUBLE
 37 c
 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI, Spds(NDof)
 47 c
 48 logical LExists
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 LExists = .false.
 57 c
 58 if (LineID .gt. 0 .and. LineID .le. 6) then
 59 c
 60 call RCLEAR (Spds , NDof , Status)
 61 c
 62 c Prescribed displacements in the computational 3-direction
 63 c along line # 1
 64 c
 65 if (LineID .eq. 1) then
 66
 67 Spds(3) = 1.0
 68
 69 LExists = .true.
 70

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-22 COMET-AR User’s Manual Revised 12/1/97

The hierarchical nature of the geometry entities results in resolving all points for which non-
trivial prescribed displacement data exists using their geometry line definition (e.g., all points
along the geometry line 1). The Surface Specified Displacements routine is not required to
provide any data for the requested points and it always sets the “LExists” flag to false, and clears
the output vector “Spds” (see lines 56-61 of Listing 9).

 71 end if
 72 c
 73 else
 74 c
 75 c Unknown geometry line
 76 c
 77 call PRTs (qError , qIntegr ,
 78 $ '***ERROR*** unknown line geometry ID^'
 79 $ //' was requested in LinSpd^'
 80 $ //' unknown line ID :=' , LineID)
 81 c
 82 call ERR ('LinSpd' , 'unknown line ID' , Status)
 83 c
 84 end if
 85 c
 86 return
 87 end

Listing 9 Surface Specified Displacements Routine

 1 c
 2 c ***********
 3 c S u r S p d
 4 c ***********
 5 c
 6 subroutine SurSpd (SurfID , XSI , ETA ,
 7 $ Spds , NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain nodal specified
 10 c displacement vectors for surfaces
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer SurfID, NDof, Status
 35 c
 36 c=IF DOUBLE
 37 c
 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI , ETA, Spds(NDof)

Listing 8 Line Specified Displacements Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-23

The Volume Specified Displacement routine, shown in Listing 10, is a dummy entry point in the
user-written routines. This example does not require any volume definitions; therefore, this
routine contains only the formal Declarations section and an empty Logic section.

 47 c
 48 logical LExists
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 LExists = .false.
 57 c
 58 if (SurfID .eq. 1) then
 59 c
 60 call RCLEAR (Spds , NDof , Status)
 61 c
 62 else
 63 c
 64 c Unknown geometry surface
 65 c
 66 call PRTs (qError , qIntegr ,
 67 $ '***ERROR*** unknown surface geometry ID^'
 68 $ //' was requested in SurSpd^'
 69 $ //' unknown surface ID :=' , SurfID)
 70 c
 71 call ERR ('SurSpd' , 'unknown surface ID' , Status)
 72 c
 73 end if
 74 c
 75 return
 76 end

Listing 10 Volume Specified Displacements Routine

 1 c
 2 c ***********
 3 c V o l S p d
 4 c ***********
 5 c
 6 subroutine VolSpd (VolmID , XSI , ETA , ZETA ,
 7 $ Spds , NDof , LExists , Status)
 8 c
 9 c.....Dummy solid model routine to obtain nodal specified
 10 c displacement vectors for volumes
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer VolmID, Status, NDof, Status
 35 c

Listing 9 Surface Specified Displacements Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-24 COMET-AR User’s Manual Revised 12/1/97

16.4.4.5 Computational Frame Transformations Routines

The Computational Frame Transformations routines define a transformation matrix from the
global Cartesian coordinate system to a computational coordinate system. A 3x3 orthonormal
transformation matrix is required at every nodal point of the model. The computational frame
should be oriented for the user’s convenience such that definitions of loads, boundary codes, and
results (displacements, stresses, etc.) will be as simple and meaningful as possible. There are no
restrictions on the choice of computational frames in COMET-AR and they may vary, in an
arbitrary fashion, from one nodal point to another.

For the Knight’s panel example, it is convenient to set the computational frame such that the first
axis is normal to the panel, the third axis in the z-direction and the second axis completes the
proper right-hand triad definition. For given point, x, we can define the transformation from the
global to computational frames, Tcg, by:

where

The Computational Frame Transformations routines are called with the generic point coordinate
rather than the physical coordinates and they first have to call the appropriate Coordinates routine
to obtain the global coordinates at the requested location (see lines 57-71 of Listing 11 for the
geometry lines and again in lines 53-67 of Listing 12 for the geometry surface).

 36 c=IF DOUBLE
 37 c
 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI, ETA, ZETA, Spds(NDof)
 47 c
 48 logical LExists
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 c *****************NOT REQUIRED FOR THIS MODEL**************
 57 c
 58 return
 59 end

Listing 10 Volume Specified Displacements Routine (Continued)

Tcg
1
l

x y– 0

y x 0

0 0 l

T

=

l x2 y2+=

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-25

The transformation matrix, “Trfs,” is programmed in lines 73-87 of Listing 11 for the geometry
lines and again in lines 69-86 of Listing 12 for the geometry surface.

Listing 11 Line Computational Frame Transformations Routine

 1 c
 2 c ***********
 3 c L i n T r f
 4 c ***********
 5 c
 6 subroutine LinTrf (LineID , XSI , Trfs , Status)
 7 c
 8 c.....Example solid model routine to obtain nodal transformations for lines
 9 c
 10 C ===
 11 c D e c l a r a t i o n s
 12 C ===
 13 c
 14 C=IF VAX
 15 c
 16 implicit none
 17 c
 18 C=ELSEIF SUN
 19 c
 20 implicit none
 21 c
 22 C=ELSE
 23 c
 24 implicit character *1 (a - z)
 25 c
 26 C=ENDIF
 27 c
 28 c High level DB utilities include file
 29 c
 30 include 'qsymbol.inc'
 31 c
 32 integer LineID, Status
 33 c
 34 c=IF DOUBLE
 35 c
 36 double precision
 37 c
 38 c=ELSE
 39 c
 40 real
 41 c
 42 c=ENDIF
 43 c
 44 $ XSI, Trfs(3,3), Crds(3), Vnorm
 45 c
 46 c High level DB utilities include file
 47 c
 48 include 'qsymbol.inc'
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 call RCLEAR (Trfs , 9 , Status)
 57
 58 c Compute the global coordinates of the point
 59 c
 60 call LinCrd (LineID , XSI , Crds , Status)
 61 c
 62 if (Status .ne. qOK) then
 63 c
 64 call PRTs (qError , qIntegr ,
 65 $ '***ERROR*** Could not get point generic^'
 66 $ //' coordinate from LinCrd in LinTrf^'
 67 $ //' Line ID :=' , LineID)
 68 c
 69 return
 70 c
 71 end if
 72 c

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-26 COMET-AR User’s Manual Revised 12/1/97

 73 if (LineID .gt. 0 .and. LineID .le. 6) then
 74 c
 75 c Dir 1 - Normal to the panel
 76 c Dir 2 - tangent
 77 c Dir 3 - global Z
 78 c
 79 call MultSV (Trfs , 1.0 / Vnorm (Crds , 2 , Status) ,
 80 $ Crds , 2 , Status)
 81 c
 82 Trfs(1,2) = - Trfs(2,1)
 83 Trfs(2,2) = Trfs(1,1)
 84 Trfs(3,3) = 1.0
 85 c
 86 call Transpose (Trfs , 3 , Status)
 87 c
 88 else
 89 c
 90 c Unknown geometry line
 91 c
 92 call PRTs (qError , qIntegr ,
 93 $ '***ERROR*** unknown line geometry ID^'
 94 $ //' was requested in LinTrf^'
 95 $ //' unknown line ID :=' , LineID)
 96 c
 97 call ERR ('LinTrf' , 'unknown line ID' , Status)
 98 c
 99 end if
100 c
101 return
102 end

Listing 12 Surface Computational Frame Transformations Routine

 1 c
 2 c ***********
 3 c S u r T r f
 4 c ***********
 5 c
 6 subroutine SurTrf (SurfID , XSI , ETA , Trfs , Status)
 7 c
 8 c.....Example solid model routine to obtain nodal transformations
 for surfaces
 9 c
 10 C ===
 11 c D e c l a r a t i o n s
 12 C ===
 13 c
 14 C=IF VAX
 15 c
 16 implicit none
 17 c
 18 C=ELSEIF SUN
 19 c
 20 implicit none
 21 c
 22 C=ELSE
 23 c
 24 implicit character *1 (a - z)
 25 c
 26 C=ENDIF
 27 c
 28 c High level DB utilities include file
 29 c
 30 include 'qsymbol.inc'
 31 c
 32 integer SurfID, Status
 33 c
 34 c=IF DOUBLE
 35 c
 36 double precision
 37 c
 38 c=ELSE
 39 c
 40 real

Listing 11 Line Computational Frame Transformations Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-27

The Volume Computational Frame Transformation routine, shown in Listing 13, is a dummy
entry point in the user-written routines. This example does not require any volume definitions;
therefore, this routine contains only the formal Declarations section and an empty Logic section.

 41 c
 42 c=ENDIF
 43 c
 44 $ XSI, ETA, Trfs(3,3), Crds(3), Vnorm
 45 c
 46 c ==
 47 c L o g i c
 48 C ==
 49 c
 50 if (Status .ne. qOK) return
 51 c
 52 call RCLEAR (Trfs , 9 , Status)
 53 c
 54 c Compute the global coordinates of the point
 55 c
 56 call SurCrd (SurfID , XSI , ETA , Crds , Status)
 57 c
 58 if (Status .ne. qOK) then
 59 c
 60 call PRTs (qError , qIntegr ,
 61 $ '***ERROR*** Could not get point generic^'
 62 $ //' coordinates from SurCrd in SrfTrf^'
 63 $ //' Surface ID :=' , SurfID)
 64 c
 65 return
 66 c
 67 end if
 68 c
 69 if (SurfID .eq. 1) then
 70 c
 71 if (Status .eq. qOK) then
 72 c
 73 c Dir 1 - Normal to the panel
 74 c Dir 2 - tangent
 75 c Dir 3 - global Z
 76 c
 77 call MultSV (Trfs , 1.0 / Vnorm (Crds , 2 , Status) ,
 78 $ Crds , 2 , Status)
 79 c
 80 c
 81 Trfs(1,2) = - Trfs(2,1)
 82 Trfs(2,2) = Trfs(1,1)
 83 Trfs(3,3) = 1.0
 84 c
 85 call Transpose (Trfs , 3 , Status)
 86 c
 87 else
 88 c
 89 c Unknown geometry surface
 90 c
 91 call PRTs (qError , qIntegr ,
 92 $ '***ERROR*** unknown surface geometry ID^'
 93 $ //' was requested in SurTrf^'
 94 $ //' unknown surface ID :=' , SurfID)
 95 c
 96 call ERR ('SurTrf' , 'unknown surface ID' , Status)
 97 c
 98 end if
 99 c
100 return
101 end

Listing 13 Volume Computational Frame Transformation Routine

 1 c
 2 c ***********
 3 c V o l T r f
 4 c ***********

Listing 12 Surface Computational Frame Transformations Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-28 COMET-AR User’s Manual Revised 12/1/97

16.4.5 Material Fabrications Routines

The Material Fabrications routines establish the connection between a generic point location and
the material properties of the point as stored by the Generic Constitutive Processor (GCP, see
Chapter 8). These user-written routines can be used for generating heterogenous material data,
thickness, and laminate variations and eccentricities changes within the model.

The Knight’s Panel example consists of a single homogenous material throughout the model;
therefore, the Material Fabrications routines return the same information for all of the geometry
lines and the surfaces. These data consist of the fabrication identity number in the GCP database
and dummy eccentricity data. The “FabRef” argument assigns the z-axis as the fabrication
reference axis (i.e., the material frame’s first coordinate direction is along the global z-axis). This

 5 c
 6 subroutine VolTrf (VolmID , XSI , ETA ,
 7 $ ZETA , Trfs , Status)
 8 c
 9 c.....Dummy solid model routine to obtain nodal transformations
 10 c for Volumes
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer VolmID, Status
 35 c
 36 c=IF DOUBLE
 37 c
 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI, ETA, ZETA, Trfs(3,3)
 47 c
 48 c ==
 49 c L o g i c
 50 C ==
 51 c
 52 if (Status .ne. qOK) return
 53 c
 54 c *****************NOT REQUIRED FOR THIS MODEL**************
 55 c
 56 return
 57 end

Listing 13 Volume Computational Frame Transformation Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-29

is programmed in lines 53-60 of Listing 14 for the geometry lines and in lines 53-59 of Listing 15
for the geometry surface.

Listing 14 Line Material Fabrication Routine

 1 c
 2 c ***********
 3 c L i n F a b
 4 c ***********
 5 c
 6 subroutine LinFab (LineID , XSI , FabIDs , FabEcc ,
 7 $ FabRef , NfabEc , Status)
 8 c
 9 c.....Example solid model routine to obtain fabrications ID's for lines
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN
 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer LineID, FabIDs, FabRef, NfabEc, Status
 34 c
 35 c=IF DOUBLE
 36 c
 37 double precision
 38 c
 39 c=ELSE
 40 c
 41 real
 42 c
 43 c=ENDIF
 44 c
 45 $ XSI, FabEcc(*)
 46 c
 47 c ==
 48 c L o g i c
 49 C ==
 50 c
 51 if (Status .ne. qOK) return
 52 c
 53 if (LineID .gt. 0 .and. LineID .le. 6) then
 54 c
 55 FabIDs = 1
 56 NfabEc = 1
 57 FabEcc(1) = 0.00
 58 FabRef = 3
 59 c
 60 else
 61 c
 62 c Unknown geometry line
 63 c
 64 call PRTs (qError , qIntegr ,
 65 $ '***ERROR*** unknown line geometry ID^'
 66 $ //' was requested in LinFab^'
 67 $ //' unknown line ID :=' , LineID)
 68 c
 69 call ERR ('LinFab' , 'unknown line ID' , Status)
 70 c
 71 end if
 72 c

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-30 COMET-AR User’s Manual Revised 12/1/97

 73 return
 74 end

Listing 15 Surface Material Fabrication Routine

 1 c
 2 c ***********
 3 c S u r F a b
 4 c ***********
 5 c
 6 subroutine SurFab (SurfID , XSI , ETA , FabIDs ,
 7 $ FabEcc , FabRef , NfabEc , Status)
 8 c
 9 c.....Example solid model routine to obtain fabrications ID's for surfaces
 10 c
 11 C ===
 12 c D e c l a r a t i o n s
 13 C ===
 14 c
 15 C=IF VAX
 16 c
 17 implicit none
 18 c
 19 C=ELSEIF SUN
 20 c
 21 implicit none
 22 c
 23 C=ELSE
 24 c
 25 implicit character *1 (a - z)
 26 c
 27 C=ENDIF
 28 c
 29 c High level DB utilities include file
 30 c
 31 include 'qsymbol.inc'
 32 c
 33 integer SurfID, FabIDs, FabRef, NfabEc, Status
 34 c
 35 c=IF DOUBLE
 36 c
 37 double precision
 38 c
 39 c=ELSE
 40 c
 41 real
 42 c
 43 c=ENDIF
 44 c
 45 $ XSI, ETA, FabEcc(*)
 46 c
 47 c ==
 48 c L o g i c
 49 C ==
 50 c
 51 if (Status .ne. qOK) return
 52 c
 53 if (SurfID .eq. 1) then
 54 c
 55 FabIDs = 1
 56 NfabEc = 1
 57 FabEcc(1) = 0.00
 58 FabRef = 3
 59 c
 60 else
 61 c
 62 c Unknown geometry surface
 63 c
 64 call PRTs (qError , qIntegr ,
 65 $ '***ERROR*** unknown surface geometry ID^'
 66 $ //' was requested in SurFab^'
 67 $ //' unknown surface ID :=' , SurfID)
 68 c
 69 call ERR ('SurFab' , 'unknown surface ID' , Status)

Listing 14 Line Material Fabrication Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-31

The Volume Material Fabrication routine, shown in Listing 16, is a dummy entry point in the
user-written routines. This example dose not require any volume definitions; therefore, this
routine contains only the formal Declarations section and an empty Logic section.

 70 c
 71 end if
 72 c
 73 return
 74 end

Listing 16 Volume Fabrication Routine

 1 c
 2 c ***********
 3 c V o l F a b
 4 c ***********
 5 c
 6 subroutine VolFab (VolmID , XSI , ETA , ZETA ,
 7 $ FabIDs , FabEcc , FabRef , NfabEc ,
 8 $ Status)
 9 c
 10 c.....Dummy solid model routine to obtain fabrications ID's for volumes
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer VolmID, FabIDs, FabRef, NfabEc, Status
 35 c
 36 c=IF DOUBLE
 37 c
 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI, ETA, ZETA, FabEcc(*)
 47 c
 48 c ==
 49 c L o g i c
 50 C ==
 51 c
 52 if (Status .ne. qOK) return
 53 c
 54 c *****************NOT REQUIRED FOR THIS MODEL**************
 55 c
 56 return
 57 end

Listing 15 Surface Material Fabrication Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-32 COMET-AR User’s Manual Revised 12/1/97

16.4.5.1 Body Load Routines

The Body Load routines are used to define a body load vector at each generic integration point. In
general, these routines should be capable of defining a NDOF-dimensional body load vector,
“Blds,” at any given generic point along a geometry line, surface, or in a geometry volume.

A body load definition may range from the specification of a constant body load vector to an
arbitrary spatially varying body load. In certain cases the global coordinate of a point may be
required for the body load computation. It can be easily obtained by calling the appropriate
Coordinates routine (see the Computational Frame Transformations section above for an
example of such a call).

The Knight’s Panel example does not include any body loads; therefore, the Body Loads routines
simply set the “LExist” logical flag to false and clear the output load vector buffer as shown in
lines 56-60 of Listing 17 for the geometry lines and in lines 56-62 of Listing 18 for the geometry
surface.

Listing 17 Line Body Load Routine

 1 c
 2 c ***********
 3 c L i n B l d
 4 c ***********
 5 c
 6 subroutine LinBld (LineID , XSI , Blds ,
 7 $ NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain body loads
 10 c vectors for lines
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer LineID, NDof, Status
 35 c
 36 logical LExists
 37 c
 38 c=IF DOUBLE
 39 c
 40 double precision
 41 c
 42 c=ELSE
 43 c
 44 real
 45 c
 46 c=ENDIF
 47 c
 48 $ XSI, Blds(NDof)
 49 c
 50 c ==

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-33

 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 if (LineID .gt. 0 .and. LineID .le. 6) then
 57 c
 58 LExists = .false.
 59 call RCLEAR (Blds , NDof , Status)
 60 c
 61 else
 62 c
 63 c Unknown geometry line
 64 c
 65 call PRTs (qError , qIntegr ,
 66 $ '***ERROR*** unknown line geometry ID^'
 67 $ //' was requested in LinBld^'
 68 $ //' unknown line ID :=' , LineID)
 69 c
 70 call ERR ('LinBld' , 'unknown line ID' , Status)
 71 c
 72 end if
 73 c
 74 return
 75 end

Listing 18 Surface Body Load Routine

 1 c
 2 c ***********
 3 c S u r B l d
 4 c ***********
 5 c
 6 subroutine SurBld (SurfID , XSI , ETA ,
 7 $ Blds , NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain body loads
 10 c vectors for surfaces
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer SurfID, NDof, Status
 35 c
 36 logical LExists
 37 c
 38 c=IF DOUBLE
 39 c
 40 double precision
 41 c
 42 c=ELSE
 43 c
 44 real
 45 c
 46 c=ENDIF

Listing 17 Line Body Load Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-34 COMET-AR User’s Manual Revised 12/1/97

The Volume Body Loads routine shown in Listing 19 below is a dummy entry point in the user-
written routines. This example does not require any volume definitions; therefore, this routine
contains only the formal Declarations section and an empty Logic section.

 47 c
 48 $ XSI, ETA, Blds(NDof)
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 if (SurfID .eq. 1) then
 57 c
 58 LExists = .false.
 59 call RCLEAR (Blds , NDof , Status)
 60 c
 61 c
 62 c Unknown geometry surface
 63 c
 64 call PRTs (qError , qIntegr ,
 65 $ '***ERROR*** unknown surface geometry ID^'
 66 $ //' was requested in SurBld^'
 67 $ //' unknown surface ID :=' , SurfID)
 68 c
 69 call ERR ('SurBld' , 'unknown surface ID' , Status)
 70 c
 71 end if
 72 c
 73 return
 74 end

Listing 19 Volume Body Load Routine

 1 c
 2 c ***********
 3 c V o l B l d
 4 c ***********
 5 c
 6 subroutine VolBld (VolmID , XSI , ETA , ZETA ,
 7 $ Blds , NDof , LExists , Status)
 8 c
 9 c.....Dummy solid model routine to obtain body loads
 10 c vectors for volumes
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer VolmID, Status, NDof
 35 c
 36 c=IF DOUBLE
 37 c

Listing 18 Surface Body Load Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-35

16.4.5.2 Surface Load Routines

The Surface Pressure Load routine is used to define a pressure load at each generic integration
point along a surface. A pressure load definition may range from the specification of a uniform
pressure load to an arbitrary spatially varying one. In certain cases the global coordinate of point
may be required for the pressure load computation. It can be easily obtained by calling the
appropriate Coordinates routine (see the Computational Frame Transformations section above for
an example of such a call).

The Knight’s Panel example does not contain any pressure loads; therefore, the Surface Pressure
Loads routine simply sets the “LExist” logical flag to false and clears the output load variable as
shown in lines 56-60 of Listing 20.

 38 double precision
 39 c
 40 c=ELSE
 41 c
 42 real
 43 c
 44 c=ENDIF
 45 c
 46 $ XSI, ETA, ZETA, Blds(NDof)
 47 c
 48 logical LExists
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 c *****************NOT REQUIRED FOR THIS MODEL**************
 57 c
 58 return
 59 end

Listing 20 Surface Pressure Routine

 1 c
 2 c ***********
 3 c S u r P l d
 4 c ***********
 5 c
 6 subroutine SurPld (SurfID , XSI , ETA ,
 7 $ Plds , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain pressure loads
 10 c vectors for surfaces
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c

Listing 19 Volume Body Load Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-36 COMET-AR User’s Manual Revised 12/1/97

The Surface Traction Load routines are used to define a surface traction load vector at each
generic nodal point location. In general, these routines should be capable of defining an NDOF-
dimensional surface traction vector, “Slds,” at any given generic point along a geometry surface.

A surface traction load definition may range from the specification of a constant surface traction
load vector to an arbitrary spatially varying load. In certain cases the global coordinate of a point
may be required for the surface traction load computation. It can be easily obtained by calling the
appropriate Coordinates routine (see the Computational Frame Transformations section above for
an example of such a call).

 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer SurfID, Status
 35 c
 36 logical LExists
 37 c
 38 c=IF DOUBLE
 39 c
 40 double precision
 41 c
 42 c=ELSE
 43 c
 44 real
 45 c
 46 c=ENDIF
 47 c
 48 $ XSI, ETA, Plds
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 if (SurfID .eq. 1) then
 57 c
 58 LExists = .false.
 59 Plds = 0.0
 60 c
 61 else
 62 c
 63 c Unknown geometry surface
 64 c
 65 call PRTs (qError , qIntegr ,
 66 $ '***ERROR*** unknown surface geometry ID^'
 67 $ //' was requested in SurPld^'
 68 $ //' unknown surface ID :=' , SurfID)
 69 c
 70 call ERR ('SurPld' , 'unknown surface ID' , Status)
 71 c
 72 end if
 73 c
 74 return
 75 end

Listing 20 Surface Pressure Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-37

The Knight’s Panel example does not include any surface traction loads; therefore, the Surface
Traction Loads routines simply set the “LExist” logical flag to false and clear the output load
vector buffer as shown in lines 56-60 of Listing 21.

Listing 21 Surface (Traction) Loads Routine

 1 c
 2 c ***********
 3 c S u r S l d
 4 c ***********
 5 c
 6 subroutine SurSld (SurfID , XSI , ETA ,
 7 $ Slds , NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain surface (traction)
 10 c loads vectors for surfaces
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer SurfID, NDof, Status
 35 c
 36 logical LExists
 37 c
 38 c=IF DOUBLE
 39 c
 40 double precision
 41 c
 42 c=ELSE
 43 c
 44 real
 45 c
 46 c=ENDIF
 47 c
 48 $ XSI, ETA, Slds(NDof)
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 if (SurfID .eq. 1) then
 57 c
 58 LExists = .false.
 59 call RCLEAR (Slds , NDof , Status)
 60 c
 61 else
 62 c
 63 c Unknown geometry surface
 64 c
 65 call PRTs (qError , qIntegr ,
 66 $ '***ERROR*** unknown surface geometry ID^'
 67 $ //' was requested in SurSld^'
 68 $ //' unknown surface ID :=' , SurfID)
 69 c
 70 call ERR ('SurSld' , 'unknown surface ID' , Status)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-38 COMET-AR User’s Manual Revised 12/1/97

16.4.5.3 Line Load Routine

The Line Loads routines are used to define a Line load vector at each generic nodal point location.
In general, these routines should be capable of defining an NDOF-dimensional line load vector,
“Llds,” at any given generic point along a geometry line.

A line load definition may range from the specification of a constant line traction vector to an
arbitrary spatially varying load. In certain cases the global coordinate of a point may be required
for the line load computation. It can be easily obtained by calling the appropriate Coordinates
routine (see the Computational Frame Transformations section above for an example of such a
call).

The Knight’s Panel example does not include any line loads; therefore, the Line Loads routine
simply sets the “LExist” logical flag to false and clears the output load vector buffer as shown in
lines 56-60 of Listing 22.

 71 c
 72 end if
 73 c
 74 return
 75 end

Listing 22 Line Load Routine

 1 c
 2 c ***********
 3 c L i n L l d
 4 c ***********
 5 c
 6 subroutine LinLld (LineID , XSI , Llds ,
 7 $ NDof , LExists , Status)
 8 c
 9 c.....Example solid model routine to obtain line loads
 10 c vectors for lines
 11 c
 12 C ===
 13 c D e c l a r a t i o n s
 14 C ===
 15 c
 16 C=IF VAX
 17 c
 18 implicit none
 19 c
 20 C=ELSEIF SUN
 21 c
 22 implicit none
 23 c
 24 C=ELSE
 25 c
 26 implicit character *1 (a - z)
 27 c
 28 C=ENDIF
 29 c
 30 c High level DB utilities include file
 31 c
 32 include 'qsymbol.inc'
 33 c
 34 integer LineID, NDof, Status
 35 c

Listing 21 Surface (Traction) Loads Routine (Continued)

16 Solid Model Interface (SMI) 16.4 The User-Written SMI Option

Revised 12/1/97 COMET-AR User’s Manual 16.4-39

16.4.6 References

[1] Stanley, G. and Swenson, L., HDB: Object-Oriented Database Utilities for COMET-AR,
NASA Computational Structural Mechanics (CSM) Contract Report, August 1992.

 36 logical LExists
 37 c
 38 c=IF DOUBLE
 39 c
 40 double precision
 41 c
 42 c=ELSE
 43 c
 44 real
 45 c
 46 c=ENDIF
 47 c
 48 $ XSI, Llds(NDof)
 49 c
 50 c ==
 51 c L o g i c
 52 C ==
 53 c
 54 if (Status .ne. qOK) return
 55 c
 56 LExists = .false.
 57 c
 58 if (LineID .gt. 0 .and. LineID .le. 6) then
 59 c
 60 call RCLEAR (Llds , NDof , Status)
 61 c
 62 else
 63 c
 64 c Unknown geometry line
 65 c
 66 call PRTs (qError , qIntegr ,
 67 $ '***ERROR*** unknown line geometry ID^'
 68 $ //' was requested in LinLld^'
 69 $ //' unknown line ID :=' , LineID)
 70 c
 71 call ERR ('LinLld' , 'unknown line ID' , Status)
 72 c
 73 end if
 74 c
 75 return
 76 end

Listing 22 Line Load Routine (Continued)

16.4 The User-Written SMI Option 16 Solid Model Interface (SMI)

16.4-40 COMET-AR User’s Manual Revised 12/1/97

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1997
3. REPORT TYPE AND DATES COVERED

Contractor Report
4. TITLE AND SUBTITLE

COMET-AR User’s Manual
COmputational MEchanics Testbed with Adaptive Refinement

5. FUNDING NUMBERS

L-44380D
505-63-53-01

6. AUTHOR(S)

E. Moas, Editor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 Applied Research Associates, Inc.
 Southeast Division
 811 Spring Forest Road, Suite 100
 Raleigh, NC 27609

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDR ESS(ES)

National Aeronautics and Space Administration
NASA Langley Research Center
Hampton, VA 23681-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-97-206284

11. SUPPLEMENTARY NOTES

Prepared for Langley Research Center under Air Force Contract F08635-93-C
Langley Technical Monitor: Jonathan B. Ransom

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 39 Distribution: Nonstandard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The COMET-AR User’s Manual provides a reference manual for the Computational Structural Mechanics
Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by Lockheed Palo Alto
Research Laboratory and NASA Langley Research Center under contract NAS1-18444. The COMET-AR
system is an extended version of an earlier finite element based structural analysis system called COMET, also
developed by Lockheed and NASA. The primary extensions are the adaptive mesh refinement capabilities and a
new “object-like” database interface that makes COMET-AR easier to extend further. This User’s Manual
provides a detailed description of the user interface to COMET-AR from the viewpoint of a structural analyst.

14. SUBJECT TERMS

Computational Structural Mechanics
15. NUMBER OF PAGES

895
Structural Analysis 16. PRICE CODE

A99
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION
 OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

