NASA /CR-97-206284

COMET-AR User’s Manual

COmputational M Echanics Testbed With Adaptive Refinement

E. Moas, Editor
Applied Research Associates, Inc., Raleigh, North Carolina

]
December 1997



The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA'’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA'’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part of peer reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that help round out the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access
Help Desk at (301) 621-0134

Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934



NASA /CR-97-206284

COMET-AR User’s Manual

COmputational M Echanics Testbed With Adaptive Refinement

E. Moas, Editor
Applied Research Associates, Inc., Raleigh, North Carolina

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Purchase Order L-44830D

]
December 1997



Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650



Preface

The COMET-AR User's Manual provides a reference manual for the COmputational MEchanics
Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by
Lockheed Palo Alto Research Laboratory and NASA Langley Research Center under contract
NAS1-18444. The COMET-AR system is an extended version of an earlier software system called
COMET (also developed by Lockheed and NASA). The primary extensions are the adaptive mesh
refinement capabilities and a new “object-like” database interface that makes COMET-AR easier
to extend further.

This User’'s Manual provides a detailed description olgerinterface to COMET-AR from the
viewpoint of a structural analyst. For a more concise treatment of the user interface which includes
walk-through examples, see the COMET-AR Tutorial. For additional details on Adaptive
Refinement (AR) theory and applications, please see the NASA Contractor Report entitled
Adaptive Refinement for Shell StructurEer information on how to extend COMET-AR in the
direction of adding new elements, new constitutive models or new data objects, consult the
developer-oriented sections of the Generic Element Processor Manual, the Generic Constitutive
Processor Manual, and the High-level DataBase (HDB) Manual. (See section on “Related
COMET-AR Documentation” in Chapter 1 for a list of such references.)

The contents of this document were originally compiled in October 1993 by Gary Stanley of
Lockheed Palo Alto Research Laboratory. Contributors include:

Contributor Affiliation Phone Number
Bryan HURLBUT Lockheed Palo Alto Research Laboratory
Itzhak LEVIT Lockheed Palo Alto Research Laboratory
William LODEN Lockheed Palo Alto Research Laboratory
Gary STANLEY Lockheed Palo Alto Research Laboratory (415) 424-3218
Bo STEHLIN Lockheed Palo Alto Research Laboratory
Lyle SWENSON Knowledge Management Systems

The document was edited and updated in February 1995 by Applied Research Associates, Inc. to
reflect changes and additions to the system.

Version

October 1993
February 1995

Revised 12/1/97 COMET-AR User’'s Manual i



Table of Contents (Brief)

Part I: INTRODUCTION

Chapter 1

Introduction

Part Il: PROCEDURES

Chapter 2
Chapter 3
Chapter 4

Chapter 5

Model Definition Procedures
Basic Solution Procedures
Adaptive Solution Procedures

Utility Procedures

Part Ill: PROCESSORS

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

Chapter 14

Part IV: DATABASE

Chapter 15

Pre-Processors

Element Processors
Constitutive Processors
Smoothing Processors

Error Estimation Processors
Mesh Refinement Processors
Matrix/Vector Processors
Special-Purpose Processors

Post-Processors

Database Summary

Part V: SOLID MODEL INTERFACE

Chapter 16

Solid Model Interface (SMI)

COMET-AR User’'s Manual

Revised 12/1/97



Table of Contents (Detailed)

Part I: INTRODUCTION

Chapter 1

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10

Introduction

Overview of COMET-AR

Purpose of This User's Manual

Capabilities and Limitations of COMET-AR

Organization of COMET-AR

Execution of COMET-AR (The User Interface)

How to Use This User’'s Manual

Related COMET-AR Documentation

Command Language Summary

Glossary of COMET-AR Terms, Notations, and Symbols
References

Part Il: PROCEDURES

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Chapter 3

3.1
3.2
3.3

Chapter 4

4.1
4.2

Chapter 5

5.1

Model Definition Procedures

Overview

Reference Frames and Coordinate Systems

Generic Model Definition Procedures

Node Definition Procedures

Element Definition Procedures

Material/Fabrication Definition Procedures
Orientation of Fabrication Reference Frames

Load Definition Procedures

Boundary Condition Definition Procedures

Automatic DOF Suppression and Drilling Stabilization
Sample Model Definition Procedures (Summary)
Model Definition via PATRAN and PST

Global Model to Analysis Model Translation Procedure

Basic Solution Procedures

Overview
Procedure L_STATIC_ 1
Procedure NL_STATIC 1

Adaptive Solution Procedures

Overview
Procedure AR_CONTROL

Utility Procedures
Overview

Revised 12/1/97

COMET-AR User’'s Manual



5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Procedure ES

Procedure EST_ERR_1
Procedure EST_ERR_SM
Procedure FACTOR
Procedure FORCE
Procedure INITIALIZE
Procedure REF_MESH_1
Procedure SOLVE
Procedure STIFFNESS
Procedure STRESS
Procedure MASS

Part Ill: PROCESSORS

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6

Pre-Processors

Overview

Processor AUS (Nodal Force Tabulation)
Processor COP (Constraint Processor)

Processor GCP (Generic Constitutive Processor)
Processor GEP (Generic Element Processor)
Processor PST (COMET-AR_to PATRAN)
Processor REDO (Dataset Reformatter)
Processor RENO (Node Renumbering)
Processor RSEQ (Node Renumbering)

Processor TAB (Tabulation of Nodal Coordinates)
Processor NODAL

Processor GM2AM (Geometric to Analysis Model)

Element Processors

Overview

Processor ES (Generic Element Processor)

Processor ES1 (SRI and ANS Shell Elements)

Processor ES5 (STAGS Shell Element)

Processor ES6 (STAGS Beam Element)

Processor ES1p (Variable-p Lagrange Quadrilateral Shell Elements)
Processor ES7p (ANS Shell Elts.; Var. Order Quads)

Processor ES36 (MIN3/6 Triangular Shell Elements)

Constitutive Processors

Overview

Generic Constitutive Processor Description
Fabrication Definition

Material Property Definition

Analysis Control

Update Command

COMET-AR User’'s Manual Revised 12/1/97



Chapter 9 Smoothing Processors

9.1 Overview
9.2 Processor SMT (Tessler Smoothing)
9.3 Processor SMZ (Zienkiewicz/Zhu Smoothing)

Chapter 10  Error Estimation Processors

10.1 Overview

10.2 Processor ERR (Generic Error Estimator)

10.3 Processor ERR2 (Error Estimates: Stress Smoothing)
10.4 Processor ERR4 (Error Estimates: Energy Smoothing)
10.5 Processor ERRG6 (Error Estimates: Strain Smoothing)
10.6 Processor ERRa (Error Accumulator)

10.7 Processor ERRSM (Error Estimates: Smoothing-Based)

Chapter 11  Mesh Refinement Processors

11.1 Overview

11.2 Processor REF1 (Mesh Refinemegptdh/p)
Chapter 12  Matrix/Vector Processors

12.1 Overview

12.2 Processor ASM

12.3 Processor ASMs (Matrix Assembler)

12.4 Processor ITER (lterative Linear Equation Solver)

12.5 Processor PVSOLV (Direct Linear Equation Solver)

12.6 Processor SKY (Direct Linear Equation Solver)

12.7 Processor SKYs (Direct Linear Equation Solver)

12.8 Processor VEC (Vector Algebra Utility)

12.9 Processor VSS (Vectorized Sparse Solver)

Chapter 13  Special-Purpose Processors

13.1 Overview

13.2 AMPC (Automatic Multipoint Constraint)

13.3 Processor COMET-AR (System Macroprocessor)

134 Processor TRIAD (Computational Frame Realignment)

Chapter 14  Post-Processors

14.1 Overview

14.2 Processor ARG (Adaptive Refinement Graphics)
14.3 Processor HDBprt (Database Print Utility)

14.4 Processor PST

Revised 12/1/97 COMET-AR User’'s Manual



Part IV: DATABASE

Chapter 15

15.1
15.2
15.3
15.4

Database Summary

Overview

Data Objects

Database Access

Database Organization and Evolution

Part V: SOLID MODEL INTERFACE

Chapter 16

16.1
16.2
16.3
16.4

Solid Model Interface (SMI)

Overview

Solid Model Interface (SMI) Options
The Discrete SMI Option

The User-Written SMI Option

Vi

COMET-AR User’'s Manual

Revised 12/1/97



Part |
INTRODUCTION




COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.1 Overview of COMET-AR

Chapter 1 Introduction

1.1 Overview of COMET-AR

COMET-AR is an acronym for Computational Mechanics Testbed with Adaptive Refinement, a
software system developed jointly by Lockheed Palo Alto Research Laboratory and NASA Lang-
ley Research Center to perform automated structural analysis of aerospace vehicles via adaptively
controlled numerical simulation (i.e., finite element modeling with adaptive mesh refinement).

COMET-AR is intended to be a full-capability production code that can be utilized by a wide
spectrum of structural engineers to facilitate the design of a wide variety of aerospace (and other)
vehicles. Currently, it is a research code with some advanced adaptive refinement (AR) capabili-
ties, but also with some significant gaps in generality and quality assurance. It is nonetheless
capable of analyzing some very complicated problems, and has been applied to aircraft shell
structural models possessing hundreds of thousands of degrees of freedom (DOF), achieving solu-
tions that would have required many more DOFs with conventional finite element codes. We wish
to make COMET-AR available to engineers who wish to benefit from its capabilities while partic-
ipating in its development and evolution. This User’s Manual (and the accompanying Tutorial [1])

is a prerequisite for such engineers.

The organization of this introductory chapter to the User’'s Manual is summarized in Table 1-1.

Table 1-1 Outline of Chapter Chapter 1: Introduction

Section Title
11 Overview of COMET-AR
1.2 Purpose of This User's Manual
1.3 Capabilities and Limitations of COMET-AR
1.4 Organization of COMET-AR
15 Execution of COMET-AR (The User Interface)
1.6 How to Use This User’'s Manual
1.7 Related COMET-AR Documentation
1.8 Command Language Summary
1.9 Glossary of COMET-AR Terms, Notation, & Symbols
1.10 References

It is absolutely essential for the novice user to read Sections 1.4 and 1.5 (on organization and exe-
cution of COMET-AR, respectively) before attempting to read subsequent chapters in this man-
ual, as these sections explain how the parts fit together into a working system.

Revised 12/1/97 COMET-AR User’'s Manual 1.1-1



1.1 Overview of COMET-AR 1 Introduction

1.1-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.2 Purpose of This User’s Manual

1.2 Purpose of This User's Manual

The COMET-AR User’s Manual is intended to be a reference manual for both novice and experi-
enced COMET-AR users. The term “user” refers here to a person who wishes to employ COMET-
AR to perform structural analysis without changing or adding to the existing capabilities. A typi-
cal COMET-AR user would have at least some structural analysis experience (hopefully finite ele-
ment structural analysis) but little or no software development experience. (This is in contrast to a
COMET-AR developer, who might be interested in developing or co-developing new capabilities
within COMET-AR and who would be expected to have a software development background. The
User’s Manual is not intended for such a person.)

The term “reference manual” refers here to a comprehensive backup document that is used to look
up information after the user is familiar with the system and acquired some hands-on experience,
either with the help of the COMET-AR User’s Tutorial or by a personal tutorial from an experi-
enced colleague.

The COMET-AR User's Manual does, however, provide an overview of the system, what it can
do, and how to use it, in this introductory chapter. This is no substitute for the COMET-AR Tuto-
rial and hands-on experience. It is recommended that the prospective user read all of the current
chapter, then gain experience with examples in the Tutorial. Return to the User’s Manual when it
is time to solve a real problem and you need to know all of the options and prepare the detailed
ingredients.

Revised 12/1/97 COMET-AR User’'s Manual 1.2-1



1.2 Purpose of This User’s Manual 1 Introduction

1.2-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction

1.3 Capabilities and Limitations of COMET-AR

1.3 Capabilities and Limitations of COMET-AR

A capabilities summary is provided in Table 1.3-1.

Table 1.3-1 Summary of COMET-AR Capabilities

Category

Capability

Description

APPLICATIONS

General Shell Structures

See, e.g., HSCT model on cover

ANALYSIS TYPES

Linear Statics

Direct and iterative equation solvers

Nonlinear Statics

Arclength-controlled solution algorith

ELEMENT TYPES

Quadrilateral Shell Elements

High-performance ANS formulation

Triangular Shell Elements

High-perform. MIN3 formulation

Beam and Solid Elements

Implemented but untested

MATERIAL MODELS

Elastic/Plastic Isotropic

White-Besseling plasticity model

Elastic Orthotropic

2D and 3D orthotropy

Composite Laminates

Multiple orthotropic shell layers

EXTERNAL LOADS

Point, Line, Surface, & Body

Includes live pressure loads

BOUNDARY
CONDITIONS

Single-Point and Multi-Point Linear
Constraints

Constraints enforced by direct elimina
tion of superfluous unknowns

m

ADAPTIVE MESH
REFINEMENT (AR)

Error Estimates

Smoothing-based

Modified Zienkiewicz method

Refinement Schemes

Transition-based h (ht)

Quad. & triang. transition patterns

Constraint-based h (hc)

Arbitrary element fission/fusion

Uniform p Up to p = 5 for some elements
HARDWARE Most Serial Computers with Unix | SUN, DEC, CONVEX, CRAY, and
O.S. TITAN, for example
SOFTWARE Command-Language-Driven FortrgrSolution procedures are written in high

Processors

level command language

Modular/Extendible System Con-
nected by Database

Developer interfaces for new elts, con
stit. models, and data objects

A corresponding summary of important limitations associated with each of the above categories is

given in Table 1.3-2.

Revised 12/1/97

COMET-AR User’'s Manual

1.3-1



1.3 Capabilities and Limitations of COMET-AR

1 Introduction

Table 1.3-2 Summary of COMET-AR Limitations

Category

Limitations

APPLICATIONS

Very little experience with realistic applications

ANALYSIS TYPES

Cannot perform dynamic response or eigenvalue analysis

ELEMENT TYPES

No beam or solid elements (implemented but not tested)

MATERIAL MODELS

Cannot handle finite strains

EXTERNAL LOADS

Cannot handle multiple load systems in nonlinear analysis

BOUNDARY CONDS.

Cannot handle nonlinear constraint

ADAPTIVE MESH
REFINEMENT (AR)

Error Estimates

Need to be made more robust for built-up structures

Refinement Schemes

Not compatible with all finite element types

HARDWARE

Not yet implemented on parallel processing computers

SOFTWARE

User interface is not uniformly graphical

For information on the capabilities and limitations of COMET-AR in each of these areas, refer to
the appropriate chapter(s) in this User’'s Manual. For example, analysis types are described under
the chapter omBasic Solution Procedureglement types, material models, external loads, and

boundary conditions are described in the chapteModel Definition Procedure¢and other

chapters referenced therein), and adaptive mesh refinement techniques are described in the chap-

ter onAdaptive Solution Procedurdas well as in the chapters &mror EstimationProcessors
andMesh Refinemetrocessork

1.3-2

COMET-AR User’'s Manual

Revised 12/1/97



1 Introduction 1.4 Organization of COMET-AR

1.4  Organization of COMET-AR

An overview of the COMET-AR software system is shown in Figure 1.4-1. The system is modular
and composed of several layers, although the user only interacts directly with the top one or two
layers.

The top layer consists of command-language procedures written in a simple, high-level language
called CLAMP (Command-Language for Applied Mechanics Processors). These procedures are
used to control the next layer, which consists of independently executable Fortran processors.
Linked into each processor are the architectural utilities: the command-language interpreter
(CLIP) and the high-level database manager (HDB). At the foundation level is the database, which
consists of typically one (but occasionally more) HDB files, each containing a number of datasets
(which we also refer to as data objects).

COMET-AR l .
/4 °
P
C Procedures }p
(Cpmmand-Langyage)
CLIP CLIP CLIP CLIP |« Command
/ Interface
| | | |
Arch. Procejssorfs oo o
Utilities (FORTRAN)
| | | |
S HDB HDB HDB HDB |e— Lawabase
Data Objects
O O O QO oo
Database

Figure 1.4-1 Overview of COMET-AR Organization

The function and capabilities available within each layer are described in the following sections.

Revised 12/1/97 COMET-AR User’'s Manual 1.4-1



1.4 Organization of COMET-AR 1 Introduction

1.4.1 COMET-AR Procedures

COMET-AR command-language procedures are either user-written or pre-defined. User-written
procedures are typically employed for model definition unless an alternate pre-processor such as
PATRAN is used to generate the model. Pre-defined procedures are typically employed to per-
form the solution. For example, basic solution procedures exist for linear and nonlinear static
analysis, and a special adaptive solution procedure exists for performing linear analysis with
adaptive mesh refinement. A number of other pre-defined procedures, called utility procedures,
are employed by the solution procedures to perform common functions such as stiffness matrix
formation, factorization, and equation solving. The utility procedures may be used to facilitate
development of new solution procedures as well. A summary of currently available COMET-AR
procedures is given in Table 1.4-1.

Table 1.4-1 Summary of Current COMET-AR Procedures

Procedure Description
MODEL DEFINITION Procedures

( User-Written ) [ Examples of these may be found in the Tutorial
BASIC SOLUTION Procedures

( L_STATIC_1 )| Linear static structural analysis

(_ NL_STATIC_1 )| Nonlinear static structural analysis with arclength control
ADAPTIVE SOLUTION Procedures

(_ AR_CONTROL )| Linear and nonlinear static analysis with adaptive mesh refinement
UTILITY Procedures

( ES ) | Performs generic element-level functions (via element processors)

( EST_ERR_1 )| Performs error estimation functions (via error estimation processors)

( FACTOR ) | Factors assembled matrices, e.g., stiffness (via matrix processors)

( FORCE ) | Forms/assembles force vectors (via element and vector processors)

( INITIALIZE ) | Initializes database prior to solution (via elt. and constraint processors)

(_ REF_MESH_1 )|Performs adaptive mesh refinement (via mesh refinement processors)

( SOLVE ) | Solves linear equation systems (via matrix processors)

( STIFFNESS )| Forms and assembles stiffness matrix (via elt. and assembly processors)
( STRESS ) | Computes element stresses, strains, etc. (via element processors)

The relationship between adaptive solution procedures, basic solution procedures, and utility pro-
cedures is illustrated in Figure 1.4-2.

1.4-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.4 Organization of COMET-AR

( Adaptive Solution Procedures

—

( Basic Solution Procedures

-
(Utility Procedure

Figure 1.4-2 Hierarchy of COMET-AR Procedure Types

The same utility procedures may be used by a number of different solution procedures and the
same basic solution procedures may be used by a number of different adaptive solution proce-
dures (even though there is only one adaptive solution procedure at the moment).

Descriptions of all of the COMET-AR procedures listed in Table 1.4-1 may be found in Part Il of
this manual.

1.4.2 COMET-AR Processors

COMET-AR processors perform the bulk of the computational work within COMET-AR. Each
processor is an independently executable module which is typically driven (i.e., orchestrated) by
one or more of the COMET_AR procedures described in the preceding subsection; however,
some COMET-AR processors are intended to be run interactively by the user, without intervening
procedures. While it is possible for users to write new processors, it is typically not necessary
unless some fundamental new capability is missing that the user can supply. A summary of cur-
rently available COMET-AR processors is given in Table 1.4-2.

Revised 12/1/97 COMET-AR User’'s Manual 1.4-3



1.4 Organization of COMET-AR 1 Introduction

Table 1.4-2 Summary of Current COMET-AR Processors

Processor Function
Pre-Processors
| AUS | | Tabulates specified nodal forces and displacements
| COP | Constraint processor; tabulates boundary conditions, numbers eqns.
| PST | | PATRAN-to-COMET-AR conversion
| REDO | | Reformats certain datasets from COMET to COMET-AR format
| RENO | Renumbers nodes for bandwidth optimization; geometric algorithm
| RSEQ | Renumbers nodes for bandwidth optimization; variety of algorithms
| TAB | Tabulates nodal coordinates and reference frame transformations
ELEMENT Processors
| ES1p | Variable-order basic Lagrange quadrilateral shell elements
| ES7p | Variable-order Assumed Natural Strain (ANS) quad. shell elements
| ES36 | | Anisoparametric MIN3/6 triangular shell elements
CONSTITUTIVE Processors
| GCP | | Generic constitutive processor
ERROR ESTIMATION Processors
| ERR2 | Stress-smoothing-based error estimates; Zienkiewicz’s method
| ERR4 | Strain-energy-smoothing-based error estimates; Levit's method
MESH REFINEMENT Processors
| REF1 | Adaptive mesh refinement with variety of h techniques (and uniform p)
MATRIX/VECTOR Processors
| ASM | Assembles element matrices into SKYLINE or COMPACT format
| ASMs | | Assembles element matrices into SKYLINE formatrprefinement
| PVSOLV | | Direct linear equation solver optimized for vector machines
| SKY | Direct linear equation solver based on SKYLINE matrices
| SKYs | Direct and iterative linear equation solvers for hs-refinement
| ITER | | lterative linear equation solver based on COMPACT matrices
| VEC | General-purpose vector algebra utility
Post-Processors
| ARGx | Interactive graphics model and solution post-processor
| HDBprt | | High-level database print utility
| PST | COMET-AR-to-PATRAN conversion
Special-Purpose Processors
| COMET-AR | Start-up/control processor for COMET-AR software system
| TRIAD | Re-aligns computational triads for automatic drilling DOF suppression

1.4-4 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.4 Organization of COMET-AR

All the current COMET-AR processors are written in FORTRAN (except for parts of the common
architectural utilities embedded within them), but there is no reason why new processors cannot
be written in another language (such as C).

Descriptions of all of the COMET-AR processors listed in Table 1.4-2 may be found in Part Ill of
this manual.

1.4.3 COMET-AR Architectural Utilities

Each COMET-AR processor is linked to two architectural utilities when it is created: CLIP and
HDB (as illustrated in Figure 1.4-3). CLIP [2] is a command-language interpretation utility that
both parses commands targeted for individual processors and executes procedure directives, spe-
cial commands that appear in procedures and may be used to coordinate one or more processors
(see User Interface in Section 1.5). HDB [3] is a high-level database management utility which
processes most of the data objects associated with COMET-AR. HDB actually represents a con-
glomeration of layered database utilities. It invokes a generic database utility called DB to per-
form database transactions with dynamic memory management; DB in-turn invokes a name-
oriented record management system called GAL [4] for all file-based data transactions.

Command Language

'

v CLIP -

Command-Language
Utility

Architectural Processor
Utilities

High-Level Database

A HDB [e— .
Utility

!

Data Objects

Figure 1.4-3 Relationship Between Processors and Architectural Utilities

Revised 12/1/97 COMET-AR User’'s Manual 1.4-5



1.4 Organization of COMET-AR 1 Introduction

Documentation on the special input arguments associated with each procedure, and the special
commands associated with each processor, is provided in Parts Il and Il of this manual. Docu-
mentation on CLIP (and procedure directives) may be found in reference [2].

Documentation on the data objects associated with COMET-AR analysis is provided in Part IV of
this manual. Documentation on the HDB, DB, and GAL utilities may be found in references [3],
[5], and [4].

1.4.4 COMET-AR Database

The COMET-AR database (illustrated in Figure 1.4-4) consists primarily of a main (or central)
disk file, typically (but not necessarily) call€hseDBC, whereCaserepresents a user-defined

case name. Such files are also called data libraries, and each contains a number of named datasets
(also called data objects). Most data objects may be viewed as a table of named attributes that
range over some index, such as the number of nodes in the model, the number of elements in the
model, etc. (and most come equipped with their own set of Fortran access utilities to facilitate data
manipulation by other code developers). Some of the data objects currently in COMET-AR con-
tain such things as element definition parameters, element loads, element matrices, nodal coordi-
nates, nodal vectors, system vectors, system matrices, and so on.

CaseDBS .
(System Matriceg

N

CaseDBE
Element Matrices

N—r

Data Data Objects
2l TOOQ -
(Libraries)

Database

CaseDBC
(Central File)

Figure 1.4-4 COMET-AR Database

In addition to the central database fil@aeDBC), two auxiliary files calledCaseDBE and
CaseDBS are often used (at the user’s option in various Solution Procedures) for element and
system matrices. These typically are the most space-consuming data objects, and separating them
from the main database makes it easier to discard them without sacrificing any of the more user-
oriented data, like displacement and stress results, which typically resideCas#ieBC file.

1.4-6 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction

1.4 Organization of COMET-AR

The hierarchical structure of a COMET-AR data library may be viewed as follows.

Level 1

Level 2 Level 3 Interpretation

Data Library File

(= Data Object)

Dataset Records associated with node, element, or system attriputes

Record Groups)

Record (and | Data associated with node, element, or system attribute¢s

A complete description of all data objects and libraries (i.e., files) relevant to performing an anal-
ysis with COMET-AR is given in Part IV of this manual.

COMET-AR data library (i.e., file) names such @aseDBC, which

appear throughout this manual, are recommended conventions. They are
not mandatory. Most COMET-AR command language procedureg and

processors refer to the library identification numberIdor of a file,

rather than to the file name, so that in general the user may ghoose

COMET-AR file names arbitrarily.

Revised 12/1/97 COMET-AR User’'s Manual

1.4-7



1.4 Organization of COMET-AR 1 Introduction

1.4-8 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

1.5 Execution of COMET-AR (The User Interface)

1.5.1 Getting Started

Before using COMET-AR to perform a structural analysis, the following initialization steps are
necessary. These steps assume the system has been installed on a computer with a UNIX operat-
ing system.

Step 1:

Modify your .cshrc file so that it contains the necessary PATH directions tg the
COMET-AR software system, as well as the necessary definition of UNIX enyiron-
ment variables such &CSM The proper modifications should be obtained fropn a
representative of the COMET-AR software development staff in the Computgtional
Mechanics Branch of NASA Langley Research Center. If COMET-AR is instglled
properly, this step can be accomplished by entering the UNIX-level command:

ar_login

This step only has to be performed once, preferably by the system software afiminis-
trator at your installation.

Step 2:

Create a separate working directory for each new COMET-AR analysis. Copy fo that
directory the COMET-AR procedure library database file, called “proclib.gal.” [This
step can be accomplished by issuing the UNIX-level command:

ar_proc

which will automatically perform the copy from the appropriate directory. If you are

only using “canned” COMET-AR solution procedures and not adding any of|your
own, this step can be replaced by a simple soft link of the name “proclib.gal” to the
actual master version of the file “proclib.gal,” which should be write-protected.

Revised 12/1/97 COMET-AR User’'s Manual 1.5-1



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

Step 3:

Create the necessary UNIX script file(s), model definition procedures, and/of PAT-
RAN models for the problem at hand, as described in the following subsections

The following subsections describe the process of performing an analysis with COMET-AR, from
pre-processing through post-processing.

1.5.2 User Interface Overview

A COMET-AR analysis (or simulation, depending on your perspective) consists of three phases.

Phase 1 ( Model Definition )
PRE-PROCESSING

Phase 2
SOLUTION

( Finite Element Analysis )

Phase 3

( Result/Model Evaluation )
POST-PROCESSING

Each of these phases involves a somewhat different user interface, especially if PATRAN is used
for pre/post-processing, as illustrated in Figure 1.5-1.

In Figure 1.5-1, thecomfiles are UNIX script files containing COMET-AR procedure calls, the
.Clpfiles are COMET-AR command-language procedures, and GUI denotes a graphical user inter-
face. The ingredients for each phase are explained in detail in the following subsections.

1.5-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

User

\

CSolncom> | (‘g

/ y
( Soln. Procedure)
PATRAN ' PATRAN

COMET-AR
Pre-Processors Post-Processors

Pre-Processing — Solution—}—» Post-Processin
Phase Phase Phase

Figure 1.5-1 Overview of User Interfaces Involved in Different Analysis Phases

1.5.3 Pre-Processing Phase — Model Definition

In the Pre-Processing Phase, an initial finite element model (i.e., nodes, element types, connectiv-
ity, loads, boundary conditions, material properties, etc.) is defined by the user and stored in a
COMET-AR database. The user interface for this phase depends on whether or not PATRAN is
being employed to generate the initial finite element model; thus, we shall consider the two cases
separately.

1.5.3.1 Pre-Processing Without PATRAN

This is currently the recommended way to define a COMET-AR initial model (as the PATRAN
interface is a recent addition that is not yet considered robust). The user interface requirements for
model definition are shown in Figure 1.5-2.

Revised 12/1/97 COMET-AR User’'s Manual 1.5-3



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

USER

|

qe['fom/ - Modellog

( Caseclp )

COMET-AR ,
[ | |

Pre-Prolclesslorg o e

1

@Dm@o%m CaseDBC
[ B N

Figure 1.5-2 User Interface for Pre-Processing Without PATRAN

Two files must be created by the user: i) @aeseclp file, which is a COMET-AR command-lan-

guage procedure file containing the commands necessary to generate a model with the various
COMET-AR pre-processors (heGasedenotes a user-selected case name); and Maldelcom

file, a UNIX script file that runs the COMET-AR start-up processor (also called the COMET-AR
macro-processor) which in turn invokes thaseclp file. The result of executing tivodelcom

file is that a COMET-AR databas€dseDBC file) is generated, as well as an optidviatlellog

file containing a printed record of the COMET-AR execution. (The first part of the filename,
Model is an arbitrary user-defined name.)

The steps involved in pre-processing without PATRAN are summarized next. Refer to the
COMET-AR User’s Tutorial for detailed examples.

Step 1:

Construct a Model Definition Procedure (callGtseclp) to generate the initidl
COMET-AR finite element model. Instructions are given in the chapter on Mode| Def-
inition Procedures, in Part Il of this manual. Basic model definition procedureg have
input arguments and contain a simple list of processor commands driving Jarious
COMET-AR pre-processors, described in Part Ill. More sophisticated model defini-
tion procedures involving looping and conditional statements and variables (called
macrosymbols) can be constructed by referring to a separate manual on “CLIP|Proce-
dure Directives” [2] or consulting the COMET-AR Tutorial [1] for examples.

1.5-4 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Step 2:

Construct a UNIX script file (call Modelcom) to initiate COMET-AR execution and
invoke the model definition procedure created in Step 1. The form dMdbelcom
file is as follows.

Sample Model.com File
comet-ar
[bpen 1CaseDBC
CAdd Caseclp
Ccall Case( ... inputarguments...)
[stop

The “comet-ar” line executes the COMET-AR start-up/control processor_ djen
directive creates a new database file calledeDBC to store the model. Then the
[add directive compiles the user-writt€aseclp procedure file, and theall direc-
tive invokes it, causing the model to be generated in the database file |called
CaseDBC, whereCaserepresents a user-defined name for the case (i.e., proplem)
being analyzed. There may be other input arguments to procédseelepending or
how the user has written it (see chapter on Model Definition Procedures in Pait 11 for
details). Finally, thestop directive terminates the COMET-AR execution, making

sure that the database is properly closed.

Step 3:

Execute theModelcom file as you would any UNIX script file and save the prir|1ted
output in aModellog file, e.g., using the following UNIX command:

Modelcom >& Modellog &

which would cause the COMET-AR to run in batch (background) mode. After the run
has completed successfully, proceed to either the Solution or Post-Processing phase.

Revised 12/1/97 COMET-AR User’'s Manual 1.5-5



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5.3.2 Pre-Processing With PATRAN

When using PATRAN to define the initial finite element model, the user still must perform the last
two steps of the “Pre-Processing Without PATRAN” recipe (see previous subsection), but two
new initial steps are necessary: i) PATRAN model definition, and ii) conversion of the PATRAN

database (i.e., Neutral File) to a COMET-AR model definition procedure. The procedure is illus-
trated in Figure 1.5-3.

Model.com Model.log

‘{ Caseclp )

y

PATRAN

pST_‘ COMET-AR

[N

@a Objects CaseDBO
OO0 Oeee™

Figure 1.5-3 User Interface for Pre-Processing With PATRAN

Y

PATRAN
Neutral File

The steps involved in generating a COMET-AR model via PATRAN are outlined in the following
paragraphs.

The PATRAN mode of pre-processing COMET-AR has only been impleménted
recently, and may not be quite as robust as the intrinsic form of COME[T-AR
pre-processing, which doesn’t involve PATRAN. COMET-AR'’s intrinsic (non-
PATRAN) pre-processing capabilities, however, are not adequate for gen¢rating
complex models, as they place too much of a burden on the user. A third glterna-
tive is for the user to employ his/her favorite finite element pre-processqr and
write a customized data-converter, producing as output a COMET-AR Nodel
Definition procedure file, the ingredients for which are described in Part Il.

1.5-6 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Step 1:

Construct a PATRAN model of the new problem, including all finite element infolrma—
tion: nodes, elements/mesh, loads, boundary conditions, material propertigs, etc.
Instructions for PATRAN are beyond the scope of this manual. Here we assume that
the prospective COMET-AR user is an experienced PATRAN user (otherwise, refer to
the “Post-Processing Without PATRAN" instructions). The result of the PATRAN run
should be a PATRAN Neutral File containing a complete description of the jnitial
finite element model.

Step 2:

Run the PATRAN to COMET-AR conversion processor PST to automatically gener-
ate a COMET-AR Model Definition Procedure file, callédseclp. (This is analo

gous to Step 1 in the “Pre-Processing Without PATRAN" instructions, wherg the
Caseclp file was written by the user.) Instructions for running PST in pre-processing
mode are given in the section on Processor PST under the Pre-Processors chapter in
Part 11l of this manual. Some editing of tBaseclp file may be required by the uger

to do such things as selecting the COMET-AR element type name, and defining mate-
rial and fabrication (i.e., section) properties.

Step 3:

Continue by performing Steps 2 and 3 of the “Pre-Processing without PATRAN”
instructions, in which &odelcom file is written to invoke th€aseclp file, and the
former file is executed.

1.5.4 Solution Phase

After the model has been successfully defined (see Pre-Processing Phase), the Solution Phase can
begin. During the Solution Phase, the user invokes one of COMET-AR’s standard Solution Proce-
dures, and an analysis is performed that produces various structural response data in the database.
If adaptive mesh refinement has been selected by the user (currently possible only with linear
static analysis), a series of solutions and corresponding updated meshes will be produced, and all
related data (throughout the mesh-update history) will also be available in the database. The pro-
cedure is illustrated in Figure 1.5-4.

Revised 12/1/97 COMET-AR User’'s Manual 1.5-7



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

USER

)
<_Solncom > <_Sohnlg >

( Solution_Procedure )
COMET-AR

1
olution Data Objects
Q O Q O‘ o0 CaseDBC CaseDBE
CaseDBS

Figure 1.5-4 User Interface During the Solution Phase

The user interacts with COMET-AR by writing a UNIX script file, arbitrarily cafadncom,

which invokes the desired COMET-AR standard solution procedure. If the solution procedure is a
basic (non-adaptive) one such as L_STATIC 1 or NL_STATIC 1, the output mesh will be the
same as the input mesh. If an adaptive solution procedure such as AR_CONTROL is selected, a
number of new, adaptively refined meshes and corresponding solutions will reside on the data-
base. TheCaseDBC file will contain most of this data. Tii&aseDBE andCaseDBS files will
optionally contain the latest version of the element and system stiffness matrices, respectively,
which can be discarded immediately if disk space is a problem.

The steps involved in performing a solution with COMET-AR are summarized next. The main
requirement for the user is to become familiar with using the various COMET-AR Solution Proce-
dures described in Part Il of this manual, so that a reasonable choice can be made for both the pro-
cedure type and its associated input arguments.

Step 1

First duplicate the COMET-AR database fil@aseDBC, generated during pre-processipg,
renaming one of the copies@ase model.DBC. This is just a precaution in case you decigle to
repeat the solution from scratch, in which case you will probably want a fresh databgase file
(with no extraneous solution data) without having to re-generate the model as well. The
Case model.DBC file provides a backup for this purpose.

1.5-8 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Step 2

Construct a UNIX script file (call Bolncom) to initiate COMET-AR execution and invoke tlhe
solution procedure of your choice. The form of 8@ncom file is as follows.

Sample “Soln.com” File

comet-ar
[open/rold 10, proclib.gal
[set plib =10

[open 1CaseDBC . (this line is not always required
*call Solution_Procedure( .. .input arguments . . .)
[Btop

N

The “comet-ar” line executes the COMET-AR start-up/control processor. The figen”
directive opens the standard COMET-AR procedure database file (proclib.gal), which cpntains
all of COMET-AR’s solution and utility procedure files in compiled form. The “*set plib”
directive tells COMET-AR where to look for these procedures. The second “*open” directive
opens the COMET-AR database file containing the model definition, which was just crejated in
the pre-processing phase. This file may contain solution data too if the current run is a [re-start,
or continuation. (Some solution procedures open the .DBC file internally and so the [second
[open directive may not be required in ®aelncom file). Next, the “*call” directive invoke

the user-selected solution procedure to perform an analysis with COMET-AR. The nanpes and
input-argument options for the various COMET-AR solution procedures are described in Part Il
of this manual. Finally, thestop directive terminates the COMET-AR execution, making pure
that the database is properly closed.

Step 3:

Execute th&solncom file and save the printed output iB@nlog file, e.qg.,

Solncom >& Solnlog &

which would cause the COMET-AR to run in batch (background) mode. After the run hag com-
pleted successfully, proceed to the Post-Processing phase (and/or repeat/re-start the sqglution).

Revised 12/1/97 COMET-AR User’'s Manual 1.5-9



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5.5 Post-Processing Phase — Result/Model Evaluation

1.5.5.1 Post-Processing Without PATRAN

Several COMET-AR processors are available for post-processing solution and/or model data (see
Figure 1.5-5). The most powerful is processor ARGX, which is an interactive-graphics color dis-
play processor that may be used to visualize the model and solution in various ways, unlike most
of the other processors in COMET-AR. Unlike most of the other processors in COMET-AR,
ARGKx is driven by a graphical user interface (GUI) and is typically used in stand-alone mode.
ARGx is particularly useful for verifying and visualizing the models and solutions generated dur-
ing adaptive mesh refinement.

USER

>

l COME|T-AR l

Y
PST ARGx HDB
archival Display print

I
O Q O @o o0

Figure 1.5-5 User Interface(s) During Post-Processing Phase Without PATRAN

Two other COMET-AR processors can be valuable for post-processing: processor HDBprt, which
allows the user to print selected parts of the database; and processor PST, which allows the user to
find and archive critical solution data such as maximum stresses, and stresses at prescribed loca-
tions in the model, designated either by coordinates, closest node number, or closest element
number. (Processor PST is also the COMET-AR/PATRAN translator.)

The steps for post-processing without PATRAN are summarized as follows. These steps may be
taken in any order.

1.5-10 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User Interface)

Step 1:

Execute the COMET-AR interactive-graphics post-processor, ARGX. This pro¢essor
allows you to look at the deformed geometry, color contours of solution quarntities,
and to verify load directions and nodal boundary conditions as well. It also hag some
graphing (x-y plot) capabilities and will display numerical values at locations |indi-
cated by mouse selection. (See the section on Processor ARGx in the chapter pn Post-
Processors in Part Ill of this manual.)

Step 2:

Execute COMET-AR post-processor HDBprt to get list-type printed displays of

selected node and/or element data. In fact, use HDBprt to examine any data objects of
interest. (See the section on Processor HDBprt under Post-Processors chaptgr in Part
[l of this manual.)

Step 3:

Execute Processor PST to archive selected quantities such as the stress at a grescribed
location or node, maximum stress, etc. The selected values are placed in the gatabase
for subsequent post-processing by the user. (See the section on Processor PET under
Post-Processors chapter in Part Il of this manual.)

1.5.5.2 Post-Processing With PATRAN

PATRAN may be used to post-process a COMET-AR model/solution whether or not PATRAN
was used to generate the initial finite element model. Even if the initial finite element model was
generated with PATRAN, if COMET-AR adaptive mesh refinement is employed to perform the
solution, a new finite element model will be part of COMET-AR’s output, and will have to be
translated to PATRAN as well. The situation is illustrated in Figure 1-10.

COMET-AR processor PST is used first to generate PATRAN Results and Neutral files from the
COMET-AR database. Then, the user may interact directly with PATRAN with its own native user
interface. The steps needed to perform this procedure follow Figure 1.5-6.

Revised 12/1/97 COMET-AR User’'s Manual 1.5-11



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

The COMET-AR to PATRAN interface processor PST is a recent additipn to
COMET-AR and it may not be as robust as some of the of the processors. Ada-
mant PATRAN users may, therefore, need to contact the development tepm via
NASA for assistance. Others may find that the COMET-AR processor ARGx
provides most of the necessary graphical display functions (and more) that are
provided by PATRAN. (See the previous subsection for a discussign of
ARGX).

USER\
——
COMET-AR PST PATRAN
AN

1

Solution Data Objects

@ Q @ Qo e o CaseDBC

Figure 1.5-6 User Interface During Post-Processing Phase With PATRAN

Step 1:

Execute the COMET-AR processor PST in COMET-AR_to_PATRAN mode. [This

will translate both model and solution data from the COMET-AR database to th¢ PAT-
RAN Neutral and Result files. If adaptive mesh refinement is being used (e.g., via
solution procedure AR_CONTROL), the finite element model will be changi

generated during adaptive refinement, and the user may translate any of these|models/
solutions to PATRAN for post-processing with processor PST. (Refer to the section on

Processor PST under the Post-Processors chapter in Part Il of this manual fqr usage
details.)

1.5-12 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.5 Execution of COMET-AR (The User

Interface)

Step 2:

Execute PATRAN and display the model, results, etc. This step will depend

bn the
al.

experience-level of the PATRAN user. It is not covered in the COMET-AR manu

Step 3:

The user can always employ the COMET-AR post-processors described in the
ing subsection in addition to PATRAN. Different COMET-AR users may prefer t
different post-processors to display results for the same analysis.

breced-
D use

Revised 12/1/97 COMET-AR User’'s Manual

1.5-13



1.5 Execution of COMET-AR (The User Interface) 1 Introduction

1.5-14 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.6 How to Use This User’'s Manual

1.6 How to Use This User’'s Manual

The COMET-AR User’s Manual is partitioned into five parts, as shown in Table 1.6-1.

Table 1.6-1 Organization of the COMET-AR User’s Manual

Part Title Contents

| Introduction | Overview of COMET-AR and how to use it.

Il Procedures Describes COMET-AR command-language procedures, including userjwritten
Model Definition Procedures, pre-defined Solution Procedures, and subofdinate
Utility Procedures. There is a separate section here for each procedure.

[l Processors Describes COMET-AR FORTRAN processors, including pre-processors, ¢lement
processors, constitutive processor, matrix/vector processors, post-processors, and
special-purpose processors. There is a separate section for each processor.

A Database Describes the COMET-AR database, how it is partitioned into data files ahd data
objects, and how each data object is partitioned into attributes. Also explains how
the database evolves during analyses with adaptive mesh refinement.

\% Solid-Model | Describes two options the user has for defining the underlying geometry of ajmodel
Interface in conjunction with adaptive mesh refinement: i) the discrete solid-model dgscrip-

tion, based on the initial finite element model, and ii) the continuous solid-model

description, which is more accurate but requires a number of user-written gubrou-
tines that are cumbersome for complex structures.

The correspondence between these parts of this manual and the three phases of a COMET-AR
analysis is shown in Table 1.6-2, which indicates where to look during each phase.

Table 1.6-2 Correspondence Between Documentation and Analysis Phase

Phase Where to Look in this User's Manual

1) PRE-PROCESSING Consult Part Il, under Model Definition Procedures chapter; or if usingla PAT-
RAN model, consult Processor PST in Part lll.

2) SOLUTION Consult Part I, under Basic Solution Procedures chapter, and/or Adaptive
Solution Procedures (for adaptive mesh refinement).

3) POST-PROCESSING Consult Part I, under Post-Processors chapter; in particular, see segtions on
processors ARGx, HDBprt, and PST.

A “road map” for performing COMET-AR analysis in conjunction with the documentation in the
present User's Manual is provided in Figure 1.6-1.

Revised 12/1/97 COMET-AR User’'s Manual 1.6-1



1.6 How to Use This User’s Manual 1 Introduction

COMET-AR START |
“Road Map” INITIALIZATION Phase
Step Task Doc.
1 Set up login files Sect. 1.5
2 Copy proclib.gal file Sect. 1.5
PRE-PROCESSING Without PATRAN PRE-PROCESSING With PATRAN
Step Task Doc. Step Task Doc.
1 Write Caseclp file Chaps. 2, 6-8 1 Generate PATRAN mode
2 Write Modelcom file | Sect. 1.5 - 2 Run PST converter Sect. 6.6
3 ExecuteModelcom Sect. 1.5 3 Go to: —
Y
SOLUTION Phase
Step Task Documentation

1 SaveCaseDBC file with Sect. 1.5
model definition data

| 2 Write Solncom file to Sect. 1.5, Chaps. 3and 4
A o invoke solution procedure
3 ExecuteSolncom Sect. 1.5
POST-PROCESSING Without PATRAN POST-PROCESSING With PATRAN
Step Task Doc. Step Task Doc.
1C | Run ARGk for display Sect. 13.2 1P | Run PST converter Sect. 13.4
2C | Run HDBprt for listing Sect. 13.3 2P | Run PATRAN for display
3C | Run PST for archival Sect. 134 3P | Goto: —
STOP l
! !

Figure 1.6-1 “Road Map” of COMET-AR Use

1.6-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.7 Related COMET-AR Documentation

1.7 Related COMET-AR Documentation

Table 1.7-1 provides a summary of recommended supplementary documentation to the COMET-
AR User’'s Manual.

Table 1.7-1 Summary of Related COMET-AR Documentation

Document Ref. Contents

COMET-AR Tutorial [1] Walk-through examples of using COMET-AR for varipus
kinds of analysis; recommended for beginners.

COMET-AR HDB Manual [3] Detailed description of high-level database access; r¢com-
mended for software developers.

COMET-AR DB Manual [5] Detailed description of generic database utilities employed
by HDB; recommended for software developers.

CSM Generic Element [8] Contains instructions for adding new element types {i.e.,

Processor Manual processors) to COMET-AR; recommended for element
developers.

CSM Generic Constitutive [9] Contains instructions for adding new constitutive mogels

Processor Manual to COMET-AR; recommended for constitutive mogel
developers.

CLIP Manuals [2] Detailed description of command/procedure language
employed by COMET-AR.

GAL Manual [4] Detailed description of file-management utilities emplgqyed
by HDB (via DB); recommended for software developgrs.

COMET User’'s Manual [6] Counterpart to this manual for the COMET code, which is

an ancestor of COMET-AR; however, does not cover qom-
mand-language procedures or database.

COMET Procedure Manual [71 Describes command-language (CLIP) procedures| avail-
able in the COMET code from which COMET-AR was
derived.

Revised 12/1/97 COMET-AR User’'s Manual 1.7-1



1.7 Related COMET-AR Documentation 1 Introduction

1.7-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

1.8 Command Language Summary

As described in Section 1.5, COMET-AR is controlled by the user via a command language,
called CLAMP (Command Language for Applied Mechanics Processors), which is processed by a
software architectural component called CLIP (Command Language Interface Program). Com-
mand input begins immediately after the COMET-AR macro-processor is first executed on the
user’'s host operating system (i.e., by entering the macro-processor name, “comet-ar,” in a UNIX
script file). At that point, you have access to a variety of commands which fall into two classes.

1) CLIP Directives: These are generic COMET-AR commands that begin with an
asterisk ), such as OPEN,[CALL, TPROCEDURE, and ADD; and perform
global control functions, such as opening a database file, calling a command-
language procedure file, creating a command-language procedure, and directing
input from another file (or compiling a procedure). More advanced CLIP directives
form the basis of many standard command-language procedures (see Section 1.4)
and include such things as macro-symbol variable definitions, looping directives
and conditional statements. Users may have to become familiar with the more
advanced features if they are either: i) writing complex Model Definition
Procedures; or ii) participating in the development of COMET-AR by writing
additional Solution Procedures. CLIP directives may be entered while executing
any COMET-AR processor.

2) Processor CommandsThese are commands that are specific (i.e., local) to each
of COMET-AR’s independently executable processors (see Section 1.4). One
especially important command is the RUN command, which is processed by the
COMET-AR macro-processor, and is used to run other processors. Once another
processor’'s execution has been initiated via the RUN command, the user (or
procedure writer) may enter only: i) commands that are recognized by that
particular processor; or ii) CLIP directives, which are recognized in all COMET-
AR processors (by the underlying CLIP architectural utilities that respond to them).

Processor commands for each of COMET-AR’s processors are described in corresponding sec-
tions of Part Ill. CLIP directives, which have the same description for all of the procedures
appearing in Part I, and commands that are common to all COMET-AR processors, are summa-
rized in the following subsections.

See the CLIP Manual [2] for a comprehensive description of the CLAMH lan-
guage, including directives (Vol. 1), command syntax (Vol. 1), and the HOR-
TRAN interface to this language for processor developers (Vol. 1) An
intermediate description, somewhat more expanded than presented here [but less
detailed than in [2], may be found in reference [6].

Revised 12/1/97 COMET-AR User’'s Manual 1.8-1



1.8 Command Language Summary 1 Introduction

1.8.1 CLIP Directives

CLIP directives are special commands that are understood and processed by the COMET-AR
architectural utility CLIP, and are not interpreted by individual processors. (A directive is to CLIP
like an ordinary command is to a processor.) Directives may appear in all forms of COMET-AR
input, but some directives, such as the *PROCEDURE directive and nonsequential processing
directives, must be used only within command language procedures (called CLIP procedures).

A directive is distinguished from an ordinary command by beginning with a keyword prefixed by
an asterisk (*). The keyword (verb) may be followed by a verb modifier, qualifiers, and/or param-
eters, as required by the syntax of the particular directive. A brief description of the most impor-
tant directives is given here. For a more complete description, consult Vol. Il of reference [2].

The CLIP directives are grouped in Table 1.8-1 by function; detailed descriptions of the directives
are contained in the following subsections.

Table 1.8-1 Summary of CLIP Directives

Directive Function

Database Directives

*OPEN Opens a COMET-AR data file (also called a “library”).

*CLOSE Closes a COMET-AR data library.

*TOC Prints a table of contents of a data library (listing datasets).

*RAT Prints a table of contents of records in a dataset (record access table).

*PRINT Prints contents of a dataset within a data library. (It is often more conveniept and

meaningful to employ the PRINT command in “post-processor” HDBprt for oljject-
oriented datasets.)

*COPY Copies datasets or dataset records within or across data libraries.
*DELETE Deletes (i.e., disables) datasets or records within a data library.
*ENABLE Enables previously deleted (i.e., disabled) datasets or records.
*FIND Returns information on datasets or records.

*RENAME Renames datasets or records.

Procedure Management Directives

*SET PLIB Sets procedure library index as source of command procedures.
*PROCEDURE Initiates definition of a command procedure.

*END Terminates definition of a command procedure.

*CALL Invokes a command procedure with optional argument replacements.

Non-Sequential Processing Directives (in Procedures Only)

*IF Conditional branching constructs.
*ELSE
*ELSEIF
*ENDIF

1.8-2 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

Table 1.8-1 Summary of CLIP Directives (Continued)

Directive Function
*DO Do-Looping constructs.
*ENDDO
*WHILE While-Looping constructs.
*ENDWHILE
*JUMP Transfer control to specified label.
*RETURN Forces exit from command procedure.

MacroSymbol Directives

*DEFINE Defines a macrosymbol (or macrosymbol array).
*UNDEFINE Deletes a macrosymboil(s).
*SHOW MACRO Shows current definition of macrosymbol(s).
*GAL2MAC Defines a macrosymbol from a database record.
*MAC2GAL Defines a database record from a macrosymbol.

Built-in Macros

Common constants, mathematical functions, generic functions, reserved va

riables,

Boolean functions, logical functions, string concatenation, string matchers, and status
macros.

Miscellaneous Directives

*ADD Redirects input to come from a specified text file; compiles procedures.
*ECHO Turns command/directive print-echo on or off.

*HELP Lists information from a Directive HELP file.

*REMARK Prints a remark (or comment) line.

*SET Sets various control parameters (e.g., output device index).

*SHOW Shows various control parameters.

*UNLOAD Unloads contents of a data library to an ASCII file.

*LOAD Loads contents of a data library from an “UNLOADED” ASCII file.

1.8.1.1 Database-Oriented Directives

Database-oriented procedure directives provide the user with direct access to the COMET-AR
global database from within procedures and other input files. The *OPEN directive is particularly
important, as it must be used to open a database file (i.e., a data library) before any COMET-AR
processors can be engaged. The other directives in this subsubsection are optional. For example,
the *PRINT directive is rarely used; instead the PRINT command within processor HDB is pre-
ferred for obtaining object-oriented printouts. The *TOC directive is often useful for getting an
overview of the data library before using the PRINT command, and may be used interactively
within HDB.

Revised 12/1/97 COMET-AR User’'s Manual 1.8-3



1.8 Command Language Summary 1 Introduction

1.8.1.1.1 The *OPEN Directive

The *OPEN directive opens a data library. The directive format is:

*OPENIdi filename /qualifier

whereldi is the library identification number (or “logical device index”) éitehameis the exter-
nal name of the permanent library fileldi is omitted, it will default to the first free library num-
ber (which is 1 at the beginning of a COMET-AR executiorf)ldhameis omitted, it will default
to fortldi. Once a library has been named, it may be referenced by number (i.e.,Idy, tme
subsequent directives such as *CLOSE, *TOC, etc.

The most commonly used qualifiers include NEW, OLD, and READ. The qualifier NEW will
open a new (empty) library. The qualifier OLD will open an existing library (or print an error if
the library does not exist) and the qualifier READ will open an existing library for read-only oper-
ations. If no qualifiers are used, an existing library will be open if it exists or a new one will be
created. In either case, write permission is the default.

1.8.1.1.2 The *CLOSE Directive

The *CLOSE directive closes an open data library. The directive format is:

*CLOSEIdi /qualifier

whereldi is the library identification number, which if omitted, defaults to all active libraries. A
closed library cannot be accessed again until it has been re-opened. There is only one optional
qualifier, DELETE, which deletes the file upon closing. The *CLOSE directive is automatically
invoked internally by COMET-AR in response to the RUN EXIT command.

1.8.1.1.3 The *TOC Directive

The *TOC directive prints a table of contents of datasets within a library. The directive format is:

*TOC Idi [ids | dsnamg

whereldi is the library identification number. If the optiond$ or dsnameparameters are omit-

ted, a table of contents of all datasets in the library is printed. A partial table of contents may be
obtained by specifying eithals, a range of dataset sequence numbedsane, a dataset name
which may have a wild character (*) to indicate more than one match is desired. For example:

*TOC 1 1:10

will provide a table of contents information about datasets 1 through 10, while

1.8-4 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

*TOC 1 NODAL.*

will provide a table of contents of all nodal datasets, i.e., those whose first name is NODAL.

1.8.1.1.4 The *RAT Directive

The *RAT directive will print a table of contents of records within a given dataset (or datasets).
This is typically referred to as a Record Access Table (or RAT). The directive format is:

*RAT Idi [ids | dsnam€g

where the directive parameters have the same meaning as for the *TOC directive.

1.8.1.1.5 The *PRINT Directive

The *PRINT directive prints the actual data within one or more dataset records. The directive for-
mat is:

*PRINT Idi {ids |dsnamg record_name[ /OUT=unit]

whererecord_namas the name of the record, which may specify a range of records if the dataset
consists of record groups. For example, the directive

PRINT 1 NODAL.DISPLACEMENT NVT.1:10

would cause records NVT.1 through NVT.10 within dataset NODAL.DISPLACEMENT on
library 1 to be printed. A more meaningful way to do this (in general) is to use the PRINT com-
mand in processor HDBprt and request that the nodal displacements for nodes 1 through 10 be
printed (where nodal displacements are stored as a Nodal Vector Table, or NVT, data object (see
Part IV on the COMET-AR database). The optional /OUditqualifier enables the user to re-
direct the printed output to a file which will be named “fonit.”

1.8.1.1.6 The *DELETE and *ENABLE Directives

The *DELETE directive disables a specified set of datasets from a library. The directive format is:

*DELETE Idi {ids | dsnamég

whereldi is the library identification numbeds represents a range of dataset sequence numbers,
and (alternativelyfisnamerepresents a dataset name specification, with optional wild characters
(*). Disabled datasets remain in the database, but may not be accessed by subsequent directives or

Revised 12/1/97 COMET-AR User’'s Manual 1.8-5



1.8 Command Language Summary 1 Introduction

processors unless they are enabled. To enable a dataset(s) that has been disabled via the
*DELETE directive, the *ENABLE directive may be used. It has the following format.

*ENABLE Idi {ids |dsnamég

Disabled datasets appear in *TOC listings with an asterisk next to the sequence number. After
they have been enabled, the asterisk no longer appears. When a library is copied to another library
(via the *COPY directive), disabled datasets are not copied to the destination library. This pro-
vides a way of truly deleting datasets from the database by creating a new library with only active
datasets. (Another way is the *PACK directive, which deletes and copies datasets in place; how-
ever, this is a rather risky directive. If it is interrupted by a system crash, the whole data library
may be lost.)

1.8.1.1.7 The *COPY Directive

The *COPY directive copies a dataset to a new dataset, either within a single library, or across
libraries. The directive format is:

*COPY Idi _to [dsname_to] = Idi_from {ds_name_fromn]ids_from}

whereldi_to is the destination library numbeisname_tas the optional destination dataset name
(which defaults to the source dataset name(d))from is the source library number, and
ds_name_frongor alternativelyids_from) is the source dataset name (or sequence number range)
specification. For example:

COPY2=1
would copy all datasets from library 1 to library 2;
COPY 2=1 NODAL.*
would copy all datasets with first name NODAL from library 1 to library 2; and
COPY 1 NODAL.VELOCITY = 1 NODAL.DISPLACEMENT
would copy the contents of the NODAL.DISPLACEMENT dataset to a new dataset called
NODAL.VELOCITY, both within library 1.
1.8.1.2 Procedure Management Directives

Procedure management directives provide a means of defining and invoking COMET-AR com-
mand-language procedures, which may contain a mixture of other directives and processor com-
mands, constituting a functional unit, that may be parametrized via procedure arguments.

1.8-6 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

1.8.1.2.1 The *PROCEDURE and *END Directives

The *PROCEDURE directive initiates the definition of a procedure. The directive format is:

*PROCEDUREprocedure_namgargument_list)

whereprocedure_name the name of the procedure. If there is an argumenatptifient_lisk
the parentheses are mandatory, and there must be a space separating the procedure name and the
first parenthesis. The argument list may contain up to 100 formal arguments in the form:

(argl = defaultl ; arg2 = default2 ;. .)

whereargl andarg?2 represent argument names, aefaultlanddefault2represent their default
values. Default values for arguments are optional (i.e., the =default phrases are optional). Non-
default values for arguments are provided at “run” time, via the *CALL directive. Within proce-
dures, argument names enclosed in square brackets, i.e.,

[arg_nam¢

are replaced by the assigned or default symbolic values given them via the *CALL or *PROCE-
DURE directives.

Finally, the *END directive is used to terminate a procedure definition (i.e., all procedures must
begin with a *PROCEDURE directive and end with the directive).

*END

1.8.1.2.2 The *CALL Directive

The *CALL directive invokes a COMET-AR procedure. The directive format is:

*CALL procedure_name(argument_list )

where procedure_namés the name of the procedure and, as in the *PROCEDURE directive,
there must be at least one space separating the procedure name and the first parenthesis before the
argument list. When calling a procedure, the argument list takes the form:

(argl =valuel; arg2 =value2; ...)

whereargl andarg2 are argument names (which must also appear in the corresponding *PRO-
CEDURE directive) andtaluelandvalue2are their user-specified values (or strings). The order

in which the arguments appear in the *CALL directive is arbitrary. Not all procedure arguments

need be explicitly mentioned, in which case they will take on their default values (see description
of the *PROCEDURE directive). Procedures must first be compiled via the *ADD directive (see

Miscellaneous Directives) before they can be called.

Revised 12/1/97 COMET-AR User’'s Manual 1.8-7



1.8 Command Language Summary 1 Introduction

1.8.1.2.3 The *SET PLIB Directive

The *SET PLIB (Set Procedure Library) directive associates callable procedures with a data
library, indicating that all subsequent procedure calls (via the *CALL directive) will access com-
piled procedures resident on a particular data library. It also indicates that all subsequent proce-
dure compilations, via the *ADD directive, will produce compiled procedures that are to be stored
in the specified data library. The directive format is:

*SET PLIB Idi [dsnamg

whereldi is the library identification number, addnamas the name of the dataset in which call-
able procedures are assumed to residdi I§ omitted, it defaults to zero, which means that pro-
cedures reside on ordinary ASCII disk files.d6nameis omitted, the default dataset name:
CALLABLE.PROCEDURES will be assumeth the absence of the *SET PLIB directive, all
callable procedures are assumed to exist as separate ASCII files within the current disk directory.

1.8.1.3 Non-Sequential Processing Directives

Some of the most useful directives are those that provide the means for nonsequential command
and directive processing. The directives in this category may only be used within a procedure.

1.8.1.3.1 The *IF, *ELSEIF, *ELSE, and *ENDIF Directives (Conditional Branching)

This construct is also known as the BLOCK IF directive. The format is:

*IF < logical expression > /THEN
*ELSEIF <logical expression > /THEN
additional ELSEIF’s

*ELSE

*ENDIF

This construct behaves much like the FORTRAN if-then-else construct. Both the *ELSEIF and
the *ELSE may be omitted. The logical expression must evaluate to either <TRUE> or <FALSE>
(see Macrosymbol Directives) and is typically of the form:

< a relational_qualifier b>

where a and b may be either macrosymbols, numbers, or logical expressions and the
relational_qualifiermay be any one of those listed in Table 1.8-2.

1.8-8 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction

1.8 Command Language Summary

Table 1.8-2 Relational Qualifiers in Logical Expressions

Expression Evaluates to:
a/EQb <TRUE> ifa=h, else <FALSE>
al/LEb <TRUE> ifa <b, else <FALSE>
alLTb <TRUE> ifa<b, else <FALSE>
al/GEDb <TRUE> ifa= b, else <FALSE>
alGTh <TRUE> ifa> Db, else <FALSE>
a/NEb <TRUE> ifa# Db, else <FALSE>
e; /AND &, <TRUE> if bothe; ande, are <TRUE>, else <FALSE>
e;/ORe, <TRUE> if eithere; or e, are <TRUE>, else <FALSE>

The following is an example of a valid BLOCK IF directive construct.

*IF <<macl>/eq 2 >/THEN
*DEFINE/i mflag = <TRUE>
*ELSEIF <value> /THEN
*DEFINE/i vflag = <TRUE>
*ENDIF

1.8.1.3.2 The *DO/*ENDDO Directives (DO-Loops)

This set of directives provides a FORTRAN-like looping construct. The format is:

where$macro_namés the name of a special type of macrosymbol (see Macrosymbol Directives)
which must, as indicated, start witl$ gign. The integernd andi2 specify the initial and final val-

ues for the loop variabl&macro_nameThe integei3 specifies the increment of the loop vari-
able. Ifi3 is not given, a value of +1 will be assumed, providedi2. If i1 >i2 a value of -1 is

*DO $macro_name=il,i2 [,i3 ]

*ENDDO

assumed foi3. Examples of valid *DO loops include:

*DO $i=0, 100, 10

*ENDDO

Revised 12/1/97

COMET-AR User’'s Manual




1.8 Command Language Summary 1 Introduction

which will cause the enclosed commands/directives to be executed 10 times, with the macrosym-
bol, $i, incremented by 10 each time; or:

*DO $i =1, 100

*ENDDO

which will cause the enclosed commands/directives to be executed 100 times, with the macrosym-
bol, $i, incremented by one each time; or:

*DO $i =100, 1

*ENDDO

which will cause the enclosed commands/directives to be executed 100 times, with the macrosym-
bol, $i, decremented by one each time.

There is also an alternative form of the *DO loop which uses a label to close the loop. It has the
format:

*DO :label $macroname=il, 2 [,i3 ]

‘label

wherelabelis the label name.

1.8.1.4 Macrosymbol Directives

Macrosymbols are variables that may be used both within COMET-AR procedures and in ordi-
nary (non-procedural) COMET-AR input to processors. Macrosymbols may be defined with the
*DEFINE directive, and deleted via the *UNDEFINE directive. A macrosymbol is decoded into
an actual numerical value or string by enclosing the macrosymbol name in angle brackets, i.e.,

< macro_name>
wheremacro_names the name of the macrosymbol, would be decoded to:
macro_value

wheremacro_valueis a numerical value or alphanumeric string, depending on the type of the
macrosymbol. Macrosymbol arrays are macrosymbols with numeric indices. When defining an
element of a macrosymbol array, the index follows the macrosymbol name, surrounded by square
brackets. For example, the phrase:

1.8-10 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

< macro_namei | >
would decode to the value of thth element of the macrosymbol array with namaecro_name

The *DEFINE and *UNDEFINE directives are described below, in addition to the *GAL2MAC
and *MAC2GAL directives, which transfer data values between macrosymbols and the database.
Also included in this subsubsection is a brief description of the rules for performing macrosymbol
arithmetic and a summary of some useful built-in COMET-AR macrosymbols and functions.

1.8.1.4.1 The *DEFINE and *UNDEFINE Directives

The *DEFINE directive is used to define a macrosymbol or macrosymbol array. The directive for-
mat is:

*DEFINE [ /type] macro_name {=| ==} definition_text

where *DEFINE may be abbreviated as *DEF.

Themacro_namenay contain up to 12 characters. In the case of a macrosymbol array, the index
and enclosing brackets are considered part of the name. The first character of a macrosymbol
name must be either a letter or a dollar sign. If the latter, the second character must be a letter.

Themacro_nameanddefinition_teximust be separated either by an equal sign (=) or by a double-
equal sign (==). The latter is used to force global scope (i.e., to define the macrosymbol as a glo-
bal macrosymbol that has meaning at all procedure levels). Permissible macrosymbol types are
listed in Table 1.8-3.

Table 1.8-3 Macrosymbol Type Identifiers

Type Meaning

A Unprotected character string
D[w.d| Double-floating-point
E[w.d Single-floating-point, engineering (exponential) notation
Flw.d] Single-floating point, decimal (non-exponential) notation
Glw.d| Single-floating point, engrg/decimal notation as needed
| Integer

Nearest integer

Protected character string

The D, E, F, and G types are analogous to the field specifications appearing in FORTRAN FOR-
MAT statements, as are the optioma{width) andd (decimal) specifications. All macrosymbols

Revised 12/1/97 COMET-AR User’'s Manual 1.8-11



1.8 Command Language Summary 1 Introduction

decode to character strings when enclosed in angle brackets (< >); hence, numeric macrosymbols
may be used to construct character strings by concatenation with other character strings by decod-
ing them (e.g., Ak> would decode to Al if the value of the macrosymbol).

Only 731 user-defined macrosymbols may be active at any one time. This restriction applies to
macrosymbol arrays as well. Each time of the array is considered to be one macrosymbol. One
cannot then define an array of length 732. To overcome this restriction, the user may wish to purge
macrosymbols that are not longer needed. This is done via the *UNDEFINE directive, which has

the format:

*UNDEFINE [/GLOBAL ] macro_name_list

wheremacro_name_lists a list of macrosymbols to be undefined, and the optional GLOBAL
qualifier will delete all macrosymbols of the specified name(s) at all procedure levels, up to the
highest (global) level. If the GLOBAL qualifier is omitted, macrosymbols above the current pro-
cedural level will not be deleted.

1.8.1.4.2 The *SHOW MACROS Directives

The *SHOW MACROS directive is used to print the current values of macrosymbols via:

*SHOW MACROS [macro_name(s)/Bl |

wheremacro_namgs) designates the names; the /Bl qualifier denotes built-in macrosymbols. If
no macrosymbol names are specified, all user-defined macrosymbols are printed by default.

1.8.1.4.3 The *GAL2ZMAC and *MAC2GAL Directives

This pair of directives provides the user with a means of creating a macrosymbol from a global
dataset record (*GAL2MAC) or creating a global dataset record from a macrosymbol
(*MAC2GAL). These directives may be abbreviated as *G2M and *M2G, respectively. The
directive formats are:

*G2M record_id /INAME=macro_name/TYPE=macro_type/M=n_items /IOFF=offset

and

*M2G record_id /NAME=macro_name/TYPE=macro_type/M=m_items/IOFF=offset

wheremacro_namas the input (*M2G) or output (*G2M) macrosymbol nanmejtemsis the
number of items to be read into (*M2G) or written into (*G2M), arfiidetis the integer offset
from the beginning of the dataset record being written to (*M2G) or copied from (*G2M). In
either case, thmacro_typeefers to the data type of the resulting entity (i.e., *G2M requires the

1.8-12 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

macrosymbol type and *M2G requires the record type) nantemgefers to the maximum num-
ber of items to be transferred. Regarding defamitstemsdefaults to 100 if the /M qualifier is not
specified pffsetdefaults to O if the /IOFF qualifier is not specified, aratro_typealefaults to the
macrosymbol (*M2G) or dataset record (*G2M) data type.

Therecord_idconsists of three items separated by either commas or spaces. There are two per-
missible forms forecord_id

Idi ds_name record_name

or
Idi ids record_name

whereldi is the library identification numbedls_namaes the dataset name ait$ is the dataset
sequence number.

The parameterecord_namemay assume several forms. It may be omitted (only with the *G2M
directive), in which case a macrosymbol array containing each item of every record will be cre-
ated. If there is only a single item to be read then the macrosymbol array becomes a simple (un-
subscripted) macrosymbol. Threcord_namemay also consist of a KEY and a CYCLE or
CYLES. For example, theecord_name

ES_NAME.1
with KEY=ES_NAME and CYCLE=1, will cause only one record to be transferred, while:
ES_NAME.1:10

with KEY=ES_NAME and CYCLES = 1 through 10 will cause records named ES_NAME.1,
ES _NAME.2,..., ES NAME.10 to be transferredlhen using the *M2G directive, the
record_nameanmust be specified.

1.8.1.4.4 Macrosymbol Arithmetic

Macrosymbols may be used to perform arithmetic operations, producing new macrosymbols or
explicit in-line numbers. Such macrosymbol operations are often used in command language pro-
cedures, either to control the runstream, or in preparation for numeric processor input. A summary
of the basic binary arithmetic operations that may be performed on macrosymbols is given in
Table 1.8-4.

Revised 12/1/97 COMET-AR User’'s Manual 1.8-13



1.8 Command Language Summary 1 Introduction

Table 1.8-4 Arithmetic Operations With Macrosymbols

Operation Description
<<a>+ <p>> Addition of two numeric macrosymboksandb
<<a>-<p>> Subtraction of humeric macrosymbdifrom a
< <a>*<pb>> Multiplication of two numeric macrosymbokiandb
<<a>/<b>> Division of numbered macrosymtmby b
< <a>% <> > Integer division of numeric macrosymizoby b
< <a>"<p> > Numeric macrosymbal raised to the powdr
<function(<a>,<b>,...)> | Evaluation of a macrosymbol function with macrosymbol argunaebtsetc.

An example of using macrosymbol arithmetic to define a new macrosymbol would be:
*DEF/IG ¢ =< (&> + (2*b>) )3 >

which defines a new floating point macrosymiepko be equal to the sum afplus twiceb, all

raised to the power 3, wheaeandb are previously-defined numeric macrosymbols. Outer angle
brackets < > around arithmetic expressions are mandatory to force arithmetic evaluation. Inside
the expression, parentheses may be used to indicate operational precedence, but angle brackets-
must be used to enclose macrosymbol names and force them to be decoded into numeric values.

1.8.1.4.5 Built-In Macrosymbols

COMET-AR has a number of built-in macrosymbols (and macrosymbol functions) which are
described in detail in [2]. Two of the most commonly used built-in macrosymbols are TRUE and
FALSE, which decode to 1 and 0, respectively (i.e., <TRUE>=1 and <FALSE>=0). A summary of
the most commonly used built-in macrosymbols (constants and functions) is given in Table 1.8-5.

Table 1.8-5 Summary of Commonly Used Built-in Macrosymbols

Macrosymbol Description
ABS(a) Computes the absolute valuezof
COS@) Computes the cosine of the angléadians)
COSDg@) Computes the cosine of the angléegrees)
D2R Conversion factor for degrees-to-radians = .01745329...
FALSE Integer value associated with false logical expression = 0
IFELSE@;b;c;d) Compares andb; if equal (or matching string) then it evaluates;tp
else it evaluates t
LOG(a) Computes natural log (base e)aof

1.8-14 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

Table 1.8-5 Summary of Commonly Used Built-in Macrosymbols (Continued)

Macrosymbol Description

MAX(a;b) Computes maximum af andb

MIN(&;b) Computes minimum aod andb

MOD(a;b) Computes modulus (remainder)aélivided byb

Pl Value of the constant= 3.14159...

SIGN(@b) Computes absolute value afimes sign ob
SIN() Computes the sine of the angléradians)
SIND(a) Computes the sine of the anglédegrees)
SQRT@) Computes square root af
TAN(a) Computes tangent of angiqradians)
TAND(a) Computes the tangent of the angl@egrees)
TRUE Integer value associated with true logical expression = 1

Other built-in macrosymbols may be found in Volume Il (Directives) of reference [2].

1.8.1.5 Miscellaneous Directives

1.8.1.5.1 The *ADD Directive

The *ADD directive redirects command input to a file, much like a FORTRAN INCLUDE state-
ment. It is also used to “compile” command language procedures before they can be called via the
*CALL directive. The directive format is:

*ADD filename

wherefilenameis the name of the file from which COMET-AR will begin reading input data. The
added file may contain procedure definitions, calls to procedures defined in a file otHige-than
name and other *ADD directives. It may also contain processor input data (i.e., commands, data
lines, etc.). For example, a user may want to use some pre-processor to generate files containing
nodal locations and element connectivity. Once these files have been generated, they may be used
as input for COMET-AR processors, such as TAB ang Epissuing the *ADD directive at the
appropriate points in the runstream (i.e., model definition procedure).

When using the *ADD directive to compile a command-language procedur@detteanerefers

to the name of the file containing the procedure, and the output will be a compiled (i.e., callable)
version of the procedure in a new file, whose name will be the procedure name appearing in the
*PROCEDURE directive. Alternatively, if the *SET PLIB directive has been used, then the com-

Revised 12/1/97 COMET-AR User’'s Manual 1.8-15



1.8 Command Language Summary 1 Introduction

piled (callable) procedure will be output to a record group in the indicated data library, with
record name equal to the procedure name.

The input procedure file (associated viithnamé@ can contain more than one command-language
procedure. In this case, the output will be multiple compiled procedure files, or alternatively, mul-
tiple record groups on the data library indicated by the *SET PLIB directive.

The *ADD directive is thus useful for creating and updating selected procedures in a procedure
data library (or procedure library). For example, you may make a copy of the standard COMET-
AR procedure library (“proclib.gal”), which contains all of the procedures described in Part Il of
this manual, and then add additional procedures (e.g., for model definition), or update and replace
existing procedures (e.g., solution procedures), by employing the *SET PLIB directive followed
by the *ADD directive to compile and store/replace the new/modified procedures.

1.8.1.5.2 The *ECHO,ON and *ECHO,OFF Directives

These directives cause command and directive input to be either echoed or not echoed as it is
being processed. The directive format is:

*ECHO,ON [[MA,MD] or *ECHO,OFF

where the optional MA and MD lead to detailed decoded printout of macrosymbol expressions.

1.8.1.5.3 The *HELP Directive

This directive provides on-line help on selected directives. The directive format is:

*HELP directive_name

wheredirective_namas the name of a valid directive (without thigprefix). The COMET-AR
“Help File” must be properly installed before using the *HELP directive.

1.8.1.5.4 The *SET and *SHOW Directives

The *SET directive allows a number of intrinsic parameters to be changed from their default val-
ues. The *SET PLIB directive described under the Procedure Management directives, is one
example of this generic directive. For a comprehensive list of other *SET directives, consult refer-
ence [2] (Volume II). Similarly, the *SHOW directive may be used to show the current settings.
The following two *SHOW directives are extremely useful:

*SHOW MACROS [macro_name(s)/BI ]

1.8-16 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

which prints the current values of macrosymbols indicatechagro_names), the /Bl qualifier
denotes built-in macrosymbols; and

*SHOW ARGUMENTS

which lists the procedure arguments in the current procedure, and prints their values (i.e., replace-
ment text). Consult reference [2] for other options on the *SHOW directive.
1.8.1.5.5 The *REMARK Directive

The *REMARK directive is used to print out a remark while processing a COMET-AR procedure
or ordinary command input file. The directive format is:

*REMARK remark

whereremarkmay be any alphanumeric string and may contain embedded macrosymbol evalua-
tions, including macrosymbol arithmetic. For example, the following is a valid remark:

*REMARK The result of multiplying &> * <b> is < <a>[kb> >.

wherea andb are previously-defined macrosymbols. If the values afidb were 10 and 25, the
above remark would lead to the following printed line at run-time.

The result of multiplying 10. * 25. is 250.

The *REMARK directive is useful for designing the output of a user-written command procedure.
Such directives also appear in many standard COMET-AR solution procedures, indicating the
current status of the solution as well as printing certain key parameters during the course of the
run. By turning the command and directive echo off (with the *ECHO,OFF directive), the user
will see only processor-based output and *REMARK-based output in the COMET-AR log file.

1.8.2 Processor Commands

Processor commands are input lines directed to specific COMET-AR processors, and are
described in detail in Part Il (Processors) of this manual. Processor commands typically begin
with keywords (i.e., verbs), and may contain various qualifiers, keyword phrases and plain data,
on one or multiple lines of input. While most processors have their own independent command
language (in addition to the directives which are available while running any processor), there are
a few common processor commands and conventions.

Since all COMET-AR processors employ the same command parser (CLIP), most of the basic
syntactical conventions are uniform. The most important ones are described here.

Revised 12/1/97 COMET-AR User’'s Manual 1.8-17



1.8 Command Language Summary 1 Introduction

1.8.2.1 Continuation Lines

Processor commands that require a single “logical” line of input may be continued on multiple
“physical” lines by using a double-dash continuation mark (--). For example:

ELEMENT =100 NODES = 1024, 1025, 2011, 2012, 2222, 3125, 4712 --
3025, 3022

would be interpreted as a single logical line by the receiving processor (in this ¢ase ES

1.8.2.2 Integer Sequence Format

Another common syntactical feature employed by COMET-AR processors is the “implied integer
do-loop” convention, which expands expressions of the form:

iij:k
to:
i, i+K, i+2K, i+3K, . . ., ]

where i, |, and k represent integers; the default value of k is 1.

1.8.2.3 Separators: Commas, Spaces, and Semicolons

In general, commas and spaces are interchangeable as item separators. Refer to specific processor
command descriptions. Semicolons must only be used in the following three situations:

1) to separate procedure arguments;
2) to separate arguments in macrosymbol functions; and
3) to separate multiple logical lines on the same physical line.

An example of case 3 would be:
FORM STIFFNESS ; FORM MASS ; FORM FORCE

which essentially enters three separate FORM commands on the same physical line.

1.8.3 Common Processor Commands

The following commands are common to all COMET-AR processors. All others are described in
conjunction with specific processors in Part Il of this manual.

1.8-18 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.8 Command Language Summary

1.8.3.1 The RUN Command

The RUN command is used to invoke a specific COMET-AR processor after running another
COMET-AR processor. The command format is:

RUN processor_name

whereprocessor_namis the name of the processor to be run. To use the RUN command, the user
must initiate the COMET-AR execution with the COMET-AR macroprocessor described in
Part Il under the chapter on Special-Purpose Processors. Thereafter, the RUN command may be
employed from within any COMET-AR processor, as it will cause control to first be transferred
back to the COMET-AR macroprocessor before running the indicated processor. An exception to
this rule is when the RUN command is issued to re-run the current processor without first issuing
a STOP command, in which case control will remain with the current processor without interven-
tion by the macroprocessor.

The RUN command may or may not actually cause execution of an independent processor,
depending on how the COMET-AR macroprocessor is configured. Those COMET-AR processors
that are embedded within the COMET-AR macroprocessor (a decision that can be made by the
system administrator) will not be run as independent processors, but will simply be called as sub-
routines from within the COMET-AR macroprocessor. All other COMET-AR processors (which

are external to the macroprocessor) are considered external processors, and will be executed inde-
pendently by the macroprocessor upon issuance of the RUN command.

1.8.3.2 The STOP Command

The STOP command is used to properly terminate execution of the current COMET-AR proces-
sor. The command format is simply:

STOP

In general, use the STOP command for one processor before running another processor with the
RUN command. It is especially important to issue a STOP command for the last processor in the
current COMET-AR runstream.

1.8.3.3 The SET (or RESET) Command

Most COMET-AR processors have a command of the form:

SET Parameter =Value(s) or  RESET Parameter =Value(s)

to set (or reset) various parameters to non-default values prior to issuing an action command.

Revised 12/1/97 COMET-AR User’'s Manual 1.8-19



1.8 Command Language Summary 1 Introduction

1.8-20 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.9 Glossary

1.9 Glossary of COMET-AR Terms, Notations, and

Symbols

Tables 1.9-1 to 1.9-3 define COMET-AR terms, notations, and math symbols.

Table 1.9-1 Glossary of COMET-AR Terms

Term Meaning

Adaptive Refinement Refers to adaptive mesh refinement, wherein an initial finite element mesh is
updated automatically to adapt to solution needs in a more-or-less optimal fash-
ion, satisfying user accuracy requirements.

AR Acronym for Adaptive Refinement.

AUTO_DOF_SUP An analysis option that automatically suppresses extraneous DOFs thaf are not
supported by element stiffness (e.qg., drilling DOFs).

AUTO_DRILL An analysis option that automatically adds artificial drilling stiffness only to those
nodal DOFs that require it.

AUTO_TRIAD An analysis option that automatically re-aligns the computational frames at|nodes
so that extraneous drilling DOFs can automatically be suppressed (Mia the
AUTO_DOF_SUP option).

*call directive A command-language directive used to call (i.e., invoke) another command-lan-
guage procedure.

Case An application probleraserefers to the user-defined name for the application
problem.

CLAMP Acronym for Command Language for Applied Mechanics Processors; combina-
tion of procedure directives and processor commands that are parsed by the CLIP
architectural utility in COMET-AR.

CLIP Acronym for Command Language Interpretation Program; the architectural|utility
that parses COMET-AR’s command language (see also CLAMP).

.clp files COMET-AR command language procedure files; it is conventional to use .glp as a
suffix for such files (unless they are embedded in a procedure library).

.com files UNIX script files that are used to execute COMET-AR.

COMET-AR Acronym for COmputational MEchanics Testbed.

COMET-AR User Someone interested in performing an analysis with COMET-AR.

COMET-AR Developer Someone participating in the extension of COMET-AR capabilities.

Command In a command language: an instruction consisting of one or more itemp to be
interpreted by the program that receives it.

Command Language An interpretable language consisting of a stream of commands that controls the
execution of a software system.

Computational Frame Reference frame that defines DOF directions at each node.

Corotational Frame Reference frame attached to each element; defines bulk rigid body motion, and
facilitates treatment of large rotations in beams/shells.

Revised 12/1/97

COMET-AR User’'s Manual 1.

9-1



1.9 Glossary 1 Introduction
Table 1.9-1 Glossary of COMET-AR Terms (Continued)
Term Meaning
Database One or more data files representing the definition of a COMET-AR mode

solution.

and/or

Data Library

A term used to refer to a COMET-AR data file within a database.

Data Object

A tabular data structure that contains both data attributes, and utilities t
form operations on the data (see HDB).

hat per-

DBC Suffix used for main COMET-AR database file, as in Case.DBC.

DBE Suffix used for COMET-AR file containing element matrices.

DBS Suffix used for COMET-AR file containing system matrices.

DOF(s) Degree(s) of freedom.

Drilling DOF The DOF associated with rotation about the normal vector to the surface of

or shell element; in many shell element formulations, this DOF has no sti
associated with it.

a plate
ffness

Drilling stiffness

The stiffness associated with the drilling DOF of a shell element. Many sh
ments have no intrinsic stiffness associated with this DOF; some add a
stiffness to stabilize it during the solution.

|l ele-
tificial

Element

Abbreviated term for finite element.

Error estimates

Typically refers to estimates of the discretization error in the solution for
finite element mesh.

b given

EltNam

Element name; the concatenation of the element processor name and the
type name, with an underscore () in between.

element

Generic Constitutive
Processor (GCP)

A COMET-AR processor within which all constitutive models are impleme
The GCP appears both as a stand-alone processor (for material/fabricatior
tion) and as a utility library invoked by the Generic Element Processor (duri
solution phase). May also be used for stand-alone analysis at a material pd

hted.
defini-
hg the
int.

Generic Element
Processor (GEP)

A software template (or “shell”) for all COMET-AR structural element pro
sors; provides a common generic user and developer interface to such pro

Ces-
CEeSSOrs.

Also referred to as ES. Individual element processors have names that begin with

ES (e.g., ES7p).

Global Frame

Fixed reference frame in which nodal coordinates are defined.

h refinement

Mesh refinement based on element subdivision.

hc refinement

Form of h refinement based on constraints to enforce inter-element comy
between refined (i.e., subdivided) elements and unrefined elements.

atibility

hs refinement

Form of h refinement based on superposition of fine mesh regions on top
mesh regions; a hierarchical version of hc ref.

bf coarse

ht refinement

Form of ht refinement based on the use of mesh transition patterns to
refined element regions to unrefined element regions.

connect

HDB High-level database utility employed by COMET-AR to manage data oljects
within data files.
LDI (or Idi) Acronym for logical device index.
1.9-2 COMET-AR User’s Manual Revised 12/1/97



1 Introduction

1.9 Glossal

ry

Table 1.9-1 Glossary of COMET-AR Terms (Continued)

Term

Meaning

Local Frame

Reference frame attached to each element integration point; defines dire
which elt. strains are originally computed.

Ctions in

Logical Device Index

Positive integer used to identify data libraries currently attached to COM[ET—AR

processors; used internally as a substitute for the data library’s file name.

Macro-Processor

The COMET-AR processor that is used to start up the COMET-AR sys:tm, and

from which other COMET-AR processors are executed (via the RUN com
may embed one or more other COMET-AR processors as internal process
efficiency.

and);
ors for

Procedure

A command language program written in COMET-AR'’s intrinsic lang
CLAMP (sometimes referred to as CLIP, which is actually the utility that p
the CLAMP language).

uage:
Arses

Procedure Argument

A parameter specified in the header of a command-language procedure
be used to replace text within the procedure.

that may

Procedure Library

A special data library (i.e., file) that contains compiled COMET-AR con
language procedures, ready to be invoked by users.

mand

mesh

A given finite element discretization of an application problem.

*open

Command-language directive used to open old or new COMET-AR databal
(i.e., data libraries), as in “*open Idi, doname,” where Idi denotes the I¢
device index and dbname denotes the file name.

e files
gical

RUN command

Special command recognized by COMET-AR to execute an individual C(
AR processor, as in RUN processor_name.

DMET-

Runstream

The collective set of UNIX script files and COMET-AR procedure files u
input to perform a particular analysis.

bed as

shell element

A structural element used to model thin or thick shell structures.

smoothing-based

Refers to error estimates that are based on comparing a discontinuous
ment stress field with a “smooth” version by nodal averaging.

finite ele-

Stress Frame

User-selected reference frames to be used for stress/strain output at ele
gration points, nodes, or centroids.

ment inte-

*stop directive

Command-language directive used to terminate COMET-AR, when execufing the

COMET-AR macro-processor.

User

See COMET-AR User.

Revised 12/1/97

COMET-AR User’'s Manual 1.

9-3



1.9 Glossary 1 Introduction
Table 1.9-2 Glossary of COMET-AR Notation Conventions
Notation Example Meaning
Curly brackets {a,b,c,d} Used to identify a list of related elements.
Square brackets (1) [a,b,c,d] When used in processor command syntax defjnitions,
terms within square brackets are optional.
Square brackets (2) RUN [proc_arg] When appearing within command-language | proce-

brackets indicate string replacement; i.e., the e
phrase [proc_arg] will be replaced by the valug

“proc_arg” when the procedure was called (via
*call directive).

Vertical bars

GLOBAL {X|Y|Z} When appearing in processor command synta
procedure argument syntax definitions, vertical
indicate mutually exclusive options. In the exampl
left, only one of the terms X, Y or Z may be used \
the GLOBAL phrase (e.g., GLOBAL X, GLOBAL
or GLOBAL 2).

dure, surrounding procedure argument hames, sguare

Ntire
or

string associated with the procedure argument

the

X, Of
hars
b at
vith

Table 1.9-3 Glossary of COMET-AR Math Symbols

Symbol Meaning

C Constitutive matrix relating incremental strain to incremental stress.

D Damping matrix for finite element model.

d Displacement array for finite element model.

E Total absolute error in strain energy norm of finite-element solution.

E Total relative error in strain energy norm; absolute error in finite element sglution

normalized by square root of total strain energy.
Ee Element absolute error in energy norm (square root of strain energy).
Ee Element relative error in_energy norm; element absolute error normalized by some
measure of element strain energy norm.

f Force vector for finite element model.

K Stiffness matrix for finite element model.

M Mass matrix for finite element model.

m Shell (or beam) element bending-moment stress-resultants.

n Shell (or beam) element force (membrane) stress-resultants.

Na Element shape function corresponding to element node “a.”

Nel Number of elements in the model.

q Shell element transverse-shear-force stress-resultants.
Nen Number of element nodes (per element).

1.9-4 COMET-AR User’s Manual Revised 12/1/97



1 Introduction

1.9 Glossary

Table 1.9-3 Glossary of COMET-AR Math Symbols (Continued)

Symbol Meaning
U Total strain energy.
Ue Element strain energy for element “e.”
UFE Total strain energy emanating from finite-element solution.
USM Total strain energy emanating from smoothed finite-element solution.
U Strain energy density (strain energy per unit “volume”).
(JFE Strain energy density emanating from finite element solution.
JSM Strain energy density emanating from smoothed finite element solution.
€ Element strain array.
eFE Same as, but FE makes “Finite-Element” explicit.
eSM Nodally smoothed version ef obtained by post-processing.
€ Shell (or beam) element reference-surface (membrane) strains.
K Shell (or beam) element change-of-curvature (bending) strains.
y Shell element transverse-shear strains.
o Element stress array.
ofE Same a@, but FE makes “Finite-Element” explicit.
oSM Nodally smoothed version of, obtained by post-processing.
Q Problem domain represented by finite element model.
Q Element domain (for element e); may be volume, area, or line.

Revised 12/1/97

COMET-AR User’'s Manual

1.9-5



1.9 Glossary 1 Introduction

1.9-6 COMET-AR User’'s Manual Revised 12/1/97



1 Introduction 1.10 References

1.10 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Stehlin, B., et al.The COMET-AR Tutoriapreliminary NASA Contract Report, February
1993.

Felippa, C.,The Computational Structural Mechanics (CSM) Testbed Architecture
Volume I: Language, Volume II: Directives, and Volume IlI: Fortran InterfalZéSA CRs
178383, 178384, and 178385, February 1989.

Stanley, G. and Swenson, L., HDBigh-Level (Object Oriented) Database Utilities for
COMET-AR preliminary NASA CR, August 1992.

Wright, M., Regelbrugge, M., and Felippa, CThe Computational Structural Mechanics
(CSM) Testbed Architecture, Volume IV: The Global Database Manager GAL-DBM
NASA CR 178387, January 1989.

Stehlin, B.,DB/MEM: Generic Database Utilities for COMET-AReliminary NASA CR,
May 1992.

Stewart, C.,The Computational Structural Mechanics (CSM) Testbed User's Manual
NASA TM 100644, October 1989.

Stewart, C., The Computational Structural Mechanics (CSM) Testbed Procedures
Manual preliminary NASA TM, May 1990.

Stanley, G. and Nour-Omidlhe Computational Structural Mechanics (CSM) Testbed
Generic Structural-Element Processor ManUdhSA CR 181728, May 1990.

Hurlbut, The Computational Structural Mechanics (CSM) Testbed Generic Constitutive
Processor Manual NASA CR, May 1990.

Revised 12/1/97 COMET-AR User’'s Manual 1.10-1



1.10 References 1 Introduction

1.10-2 COMET-AR User’'s Manual Revised 12/1/97



Part |
PROCEDURES

In this part of the COMET-AR User’s Manual, we describe available high-level comand-language
procedures written in the CLAMP (Command Language for Applied Mechanics Processors) which
may be invoked by the user. Some of these procedures, such as Model Definition procedures, can
be written by the user. Others, such as Solution Procedures and Utility Procedures, are “canned”
and so may be invoked directly by the user to perform various analysis functions.

Revised 12/1/97 COMET-AR User’'s Manual



COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.1 Overview

Chapter 2 Model Definition Procedures

2.1 Overview

Model Definition Procedures are command-language (CLIP) procedures that generate all of the
data associated with the initial mesh of a structural model. For reasonably simple models, Model
Definition Procedures are typically written by the user. For more complicated models, these pro-
cedures may be generated automatically (or bypassed) by using PATRAN as a pre-processor,
followed by the PATRAN-to-COMET-AR converter (PST) described in Part Ill. The main pur-
pose of this chapter is to describe the ingredients of a typical Model Definition Procedure, so that
the user may either construct a new one, or modify/interpret an existing one (some existing Model
Definition Procedures are summarized in Section 2.11). This chapter may also be valuable to users
employing PATRAN to generate the model, as certain COMET-AR modeling conventions must
be understood in order to use the PATRAN-to-COMET-AR converter (see Section 2.12). The
organization of this chapter is summarized in Table 2.1-1.

Table 2.1-1 Outline of Chapter 2: Model Definition Procedures

Section Title
2.1 Overview
2.2 Reference Frames and Coordinate Systems
2.3 Generic Model Definition Procedures
2.4 Node Definition Procedures
25 Element Definition Procedures
2.6 Material/Fabrication Definition Procedures
2.7 Orientation of Fabrication Reference Frames
2.8 Load Definition Procedures
2.9 Boundary Condition Definition Procedures
2.10 Automatic DOF Suppression and Drilling Stabilization
2.11 Sample Model Definition Procedures (Summary)
2.12 Model Definition via PATRAN (and PST Translator)
2.13 Procedure GM2AM

Many of these sections refer to various COMET-AR processors described in Part [Il of this manual.
Refer to the COMET-AR Tutorial for explicit examples of how to construct a Model Definition
Procedure.

Revised 12/1/97 COMET-AR User’'s Manual 2.1-1



2 Model Definition Procedures 2.1 Overview

2.1-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2 Reference Frames and Coordinate Systems

There are several reference frames and associated coordinate systems that the COMET-AR user
should become familiar with before defining a model.f The most important of these are summa-
rized in Table 2.2-1.

Table 2.2-1 COMET-AR Reference Frames

Reference Coordinate .
Frame Axes Role in COMET-AR
Global Fixed frame used for defining initial nodal coordinates; also| the
% Yo % default frame for orienting nodal DOFs.

Computational Used for orienting nodal DOFs; may vary from node to node, orlmay

(Nodzl) Xe Yo Zc be fixed. Selected during the Node Definition phase. (Default: |Glo-
bal Frame).
Used internally by generic element processor to track element [rigid

Corotational X body” motion, and subtract it from total deformations before dom-

(Element) e Yo % puting strains. Varies from element to element, but constant within a
given element.

Local Used by elements to express strains and stresses at element |ntegra-

X Yy Z tion points unless an alternate Stress Frame is selected by the user.

(Integ. Point) May vary from integration point to integration point.

Rotated version of the Local Frame used for database stregs and

ﬁ:ti sS Point) Xs Yo Zs strain output; selected via STR_DIR argument in solution proce-
9 dures.
Used to orient material fabrications, such as laminated composite
Fabrication X layups, in space. May vary from integration point to integrdtion
(Integ. Point) b Yh 4 point. Selected via the FAB_DIR subcommand of the DEFINE BLE-

MENTS command in the generic element processor.

Used to orients individual material fibers comprising a fabrication,

Material X e.g., each layer in a composite laminate is oriented via a fiber angle,
(Integ. Point) m: Ym: Zm 0,1, between the Fabrication Frame and the Material Frame df that
layer.

Each of the reference frames in Table 2.2-1 is orthogonal (i.e., the corresponding X, y, and z axes
are mutually perpendicular and form a right-handed system, or triad). An illustration of these var-
ious reference frames and how they relate to one another in a simple model is given in Figure 2.2-1.

Revised 12/1/97 COMET-ARJser’'sManual 2.2-1



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

Computational

Computational
Xc

Xe
Corotational

X9 Global

Fabrication

Material

Figure 2.2-1 Example of COMET-AR Reference Frames

2.2-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2.1 Global Frame

The Global Frame is represented by a fixed Cartesian coordinate sygtem, 2y, that is the

default system used to define nodal coordinates and to orient nodal (or computational) reference
frame DOFs in the initial configuration of the structural model. The user may also employ a global
cylindrical coordinate system to define nodal coordinates and computational frames in TAB (see
Section 6.10). Alternate nodal DOF reference frames may be defined in TAB as well.

2.2.2 Computational Frame

The Computational Frame is represented by a nodally varying orthogonal trigd,z, and is

used to express the components of the nodal (displacement) DOFs, including both translations and
rotations. These nodal frames are typically defined by the user (in Processor TAB) to facilitate the
definition of boundary conditions and/or the interpretation of displacement results. The default
Computational Frame at a node is the Global Frame. Alternate Computational Frames may be
defined via the ALTREF command in Processor TAB, or if a cylindrical coordinate system has
been selected for node definition, that cylindrical system may be used to automatically generate a
local, cylindrically-aligned triad as the Computational Frame at each node.

The Computational Frame at a given node is defined in the initial cgnfig-
uration and fixed throughout the motion of the structural model (i.e., it
does not rotate to follow the deformed configuration). This must be faken
into account when specifying nodal boundary conditions.

2.2.3 Corotational Frame

The Corotational Frame is represented by a separate orthogonaldriafzx that is attached to

each element in the model. This triad is defined automatically (by the Generic Element Processor,
ES) in the initial element configuration, and rotates with the “rigid body” part of the element defor-
mation. During element strain computation, this rigid body motion is subtracted from the nodal
displacements leaving “deformational displacements” whose rotatational components are much
smaller than the total nodal rotations. This enables arbitrarily large total rotations to be handled by
shell elements that are based on only moderate (or even infinitesimal) rotation theories. The Coro-
tational Frame is also used to form element stiffness and force arrays within an element processor,
although all element stiffness and force arrays are output to the database in computational compo-

nents, %, Yer Z

For shell (2D) and solid (3D) elements, the Corotational Frame is defined as an orthogonal triad
aligned with an average plane passing through the first three or four element corner points for tri-
angular and quadrilateral planform elements, respectively (see Figure 2.2-1). For beam (1D)
elements, the Corotational Frame is initially oriented via the beam element reference node.

Revised 12/1/97 COMET-ARJser’'sManual 2.2-3



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2.4 Local Frame

The Local Frame is represented by an orthogonal trjag, %, that is attached to each element
integration point in the initial configuration. This triad represents the intrinsic directions (at an ele-
ment integration point) used to express strain and stress components within an element processor.
The orientation of the Local Triad may vary from integration point to integration point within an
element (see Figure 2.2-1) or may be the same at all integration points for some elements (e.g., tri-
angular shell elements). The definition ¢f ¥, 7z is dependent on element type and described
within specific element processors (see Chaptélement ProcessoysBefore strains and stresses

are output to the database, they may be transformed to an alternate “Stress Frame.”

2.2.5 Stress Frame

The Stress Frame is a rotated version of the Local Frame used exclusively to express strain and
stress components stored in the database (for post-processing). The user may select the Stress
Frame via the STR_DIR argument provided by Solution Procedures (see also the RESET
STR_DIR command in the section on Processor ES). Current options include using the element
Local Frame (the default option) or using the Fabrication Frame.

2.2.6 Fabrication Frame

The Fabrication Frame is represented by an orthogonal tfiag, %, that orients the fabrication
definition (i.e., cross-section/materials) at each element integration point. For example, a layered-
shell fabrication is illustrated in Figure 2.2-1 which has a Fabrication Frame wit) thexes in

the lamina plane, and the axis normal to the laminate (i.e., the element reference surface). For
beam fabrications, thg axis is parallel to the beam axis; and for solid fabrications,sthg, %

axes coincide with the material axes. Fabrications and associated materials are defined via the
Generic Constitutive Processor (see Chapt&@dstitutive Processarand that the orientation

and eccentricity of the fabrication are defined as element properties via the FAB_DIR and
FAB_ECC subcommands under the DEFINE ELEMENTS command in the Generic Element Pro-
cessor (see ChapterElement Processars

2.2.7 Material Frame

The Material Frame is represented by an orthogonal trigdy% z,, that orients the material
properties within a given fabrication. For layered-shell fabrications, the Matgng} &axes are in
a plane that is parallel to the Fabricatigjypaxes, but rotated by a layer an@lgs. For beam and
solid fabrications, the Material and Fabrication frames are parallel.

For shell elements, the surface-normal directions of the Local, Stres$, Fab-
rication, and Material Frames all coincide (i.¢=zz&z=z,).

2.2-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

Revised 12/1/97 COMET-ARJser’'sManual 2.2-5



2 Model Definition Procedures 2.2 Reference Frames and Coordinate Systems

2.2-6 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.3 Generic Model Definition Procedures

2.3 Generic Model Definition Procedures

A Model Definition Procedure is a command-language (CLIP) procedure written by the user (or a
pre-processing converter such as Processor PST) to generate a model in the COMET-AR database.
This section describes the generic format of Model Definition Procedures, with more details given

in subsequent sections. This format is not rigid, but it does establish the required ingredients and
provide guidelines and a template for the user. For more detailed examples, refer to Section 2.11,
Sample Model Definition Proceduresto the COMET-AR Tutorial. A generic Model Definition
Procedure is shown in Box 2.3-1.

Box 2.3-1 Generic Model Definition Procedure

*PROCEDURE Case ( model_arg_1=model_def 1;...model_arg_n=model_def n)

. Open New Database
[OPENCaseDBC

. Node Definition

Nodal Coordinates and Computational Frames are defined here with Processor TAB.
Typically done via a sub-procedure; e«GALL NodeDefn (.. .)

. Element Definition

Element Types, Nodal Connectivity, Fabrication Numbers, and Fabrication Frames/Ecceptricity
are defined here with Element (EBrocessors.
Typically done via a sub-procedure; e«GALL EltDefn (. . .)

. Material/Fabrication Definition

Fabrication and Material Properties are defined with the Generic Constitutive Processor (CP).
Typically done via a sub-procedure; e¢GALL MatlDefn (.. .)

. Load Definition

Nodal (Concentrated) Loads and Element (Distributed) Loads are defined here with Processors
AUS and ESrespectively;
Typically done via a sub-procedure; e¢GALL LoadDefn (.. .)

. Boundary Condition Definition

Nodal Boundary Conditions are defined here via Processor COP.
Typically done via a sub-procedure; e GALL BCsDefn (.. .)

*END

In Box 2.3-1,Caserepresents the case name, a user-selected name for the model being defined.
The phrasemodel_arg i represents thdth user-defined procedure argument name, and
model_def_represents the corresponding default value (a number or character string). Such pro-
cedure arguments allow the use of arbitrary parameters that provide a convenient parametrization
of the model. For example, the procedure may include such arguments as model dimensions, mate-
rial properties (or numbers), element type, and initial mesh density.

Revised 12/1/97 COMET-AR User’'s Manual 2.3-1



2 Model Definition Procedures 2.3 Generic Model Definition Procedures

The first statement in a Model Definition Procedure is typically an *OPEN directive which creates
a new computational database file. The database file name should start @dlks¢hame and end

with the suffix .DBC. This ensures compatibility with Solution Procedures such as
AR_CONTROL.

While it is the responsibility of the user to create the injtial
CaseDBC file, it is not mandatory to include th®PEN directiv

in the model definition procedure. Instead, fRI°EN can be placegd
within the Model.com (UNIX script) file that invokes the model def-
inition procedure (see Section 1Bxecution of COMET-AR

As shown in Box 2.3-1, after creating an initial database @kes€DBC), the Model Definition
Procedure is typically composed of the following five functions: 1) Node Definition; 2) Element
Definition; 3) Material/Fabrication Definition; 4) Load Definition; and 5) Boundary Condition
Definition. For convenience (and readability) each of these model definition functions may be
treated as a subprocedure (i.e., a lower-level procedure called from within the main model defini-
tion procedure) as described in the following subsections.

Once the entire Model Definition Procedure (including all internal sub-procedures) has been writ-
ten by the user (or the PATRAN converter), it must be compiled and invoked from within a
“Model.com” file as explained in Section 1.5Bxecution of COMET-AR/Pre-Processing Phase

2.3-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.4 Node Definition Procedures

2.4 Node Definition Procedures

The Node Definition part of a Model Definition Procedure is described in this section. Node Def-
inition includes the definition of nodal coordinates and computational frames, and is performed via
Processor TAB, and followed by Processor REDO (to reformat certain datasets). The necessary
Processor commands can either be added directly (in-line) to the Model Definition Procedure or
placed in a sub-procedure. The example in Box 2.4-1 employs a sub-procedure.

In the procedure shown in Box 2.4-1, (arbitrarily called NodeDefn), a number of Model Definition
Procedure argument values have been transferred from above nfpegl_arg j1
model_arg_ji. These values are now referred to with the local argumsode arg 1 ...
node_arg_rand may be employed within the Node Definition Procedure by using square brackets
for symbolic replacement (e.gndde_arg_)).

Box 2.4-1 Sample Node Definition Sub-Procedure

*PROCEDURE NodeDefn (node_arg_J=model_val_j1]; ... node_arg_rj=model_val_jn )

.Basic Node Definition

RUN TAB
. Nodal Summary
START nn
. Nodal Coordinates
JLOC
1 xx a2
2 X ¥ %
NN Xn Ynn %n
. Nodal Computational Frames
. See ALTREF and JREF commands under Processor TAB
STOP
. Reformat Model Summary and Nodal Datasets
RUN REDO
CSM ; NCT ; NTT
STOP

*END

The TAB Processor appearing in the above procedure is used to define both nodal coordinates (via
the JLOC command), and nodal computational reference frames (via the ALTREF and JREF com-

Revised 12/1/97 COMET-AR User’'s Manual 2.4-1



2 Model Definition Procedures 2.4 Node Definition Procedures

mands). The TAB START command must first be used to specify the total number of nodes in the

initial model gin). The JLOC (“joint location”) command is followed by a nodal coordinate line

for each node, which includes the node number followed by the coordinate values. In the example
shown in Box 2.3-1, global Cartesian coordinates are employed; however, there are other options
available in TAB (e.g., cylindrical).

After nodal coordinates and computational reference frames are defined with Processor TAB, the
user must employ Processor REDO to reformat certain datasets from the old (COMET-BL) data
structures to the new (COMET-AR) data structures. The standard commands required to do this
are shown in Box 2.3-1.

Refer to Section 6.10 on Processor TAB for details on both nodal coordinate and
computational frame definition, including the START, JLOC, JREF, and ALTREF
commands shown in Box 2.4-1. Refer to Section 6.7 for details regarding the REDO
commands shown in Box 2.3-1.

2.4-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.5 Element Definition Procedures

2.5 Element Definition Procedures

2.5.1 General Description

The Element Definition part of a Model Definition Procedure is described in this section. Element
Definition includes the definition of element node, fabrication, and (optionally) solid-model geom-
etry connectivity for all element types to be present in the model. These functions are all performed
by structural element processors (HBat share a common user- and database-interface known as
the Generic Element Processor (or ES) described in Section 7.2. The commands for element defi-
nition can either be added directly to the Model Definition Procedure or placed in a sub-procedure.
The example in Box 2.5-1 employs a sub-procedure.

Box 2.5-1 Sample Element Definition Sub-Procedure

*PROCEDURE EltDefn (elt_arg_1] =model_val j1]; ... elt_arg_n [=model val _jn )
RUN ES1 . Define Elements of First Type ( Name= ESi1_EltTypl)
RESET ELEMENT_TYPE-= EltTypl
DEFINE ELEMENTS [/Pp]
FAB_ID=1; FAB_DIR = GLOBAL X
ELEMENT =1 NODES =1, nl, .. ., Red
ELEMENT =2 NODES 7,2, 02, . . ., B/

ELEMENT =nell NODES =nynell pynell p nell
END DEFINE ELEMENTS
RUN ES2 . Define Elements of Second Type ( NameES2_EltTyp2)
RESET ELEMENT_TYPE-= EltTyp2
DEFINE ELEMENTS [/Pp]
ELEMENT =1 NODES 31, nl, .. ., Rl
ELEMENT =2 NODES 7,2, 02, . . ., B/

ELEMENT =nel2 NODES =nnel2 pyel2 p nel2
END DEFINE ELEMENTS

STOP
*END

Revised 12/1/97 COMET-AR User’'s Manual 2.5-1



2 Model Definition Procedures 2.5 Element Definition Procedures

In the procedure shown in Box 2.5-1, (arbitrarily calgtDefn), a number of Model Definition
Procedure argument values have been transferred from above nfpegl _arg j1
model_arg_ji. These values are now referred to with the local argureéinezg 1 ... elt_arg_n

and may be employed within the Element Definition Procedure by using square brackets for sym-
bolic replacement (e.gelt_arg_1).

There must be a separate element processoy REBN statement for each element type appearing
in the model. In this example, BESdenotes the element processor containing the first element type
EltTypl ES2 denotes the element processor containing the second elemeHtlpe2

The combination of the element processor namé fsl the element type name within that g
cessor EltTyp) is called the “Element Name” (&ltNan), i.e.,

EltNam = ES_EltTyp

The element namé(tNanm) appears as a prefix in all element datasets. For example, the ele-
ment definition dataset is called:

EltNamDEFINITION.. mesh

wheremeshis the current mesh number. This combined element name provides a unique label-
ing of element types within COMET-AR and allows different element processors to haye ele-
ments with the same element type namBkTyp) since element processor names are alyays
unique. Individual element processors ([E8ay contain multiple element types; thus, the cpm-
bined nameKIltNam) is both necessary and sufficient for unambiguous selection of an element
type by the user.

=

O-

After each RUN EBstatement, a RESET ELEMENT_TYPE command must be used to select the
element typeKltTyp within element processor Eas element processors may have multiple ele-
ment types). Then the DEFINE ELEMENTS command is used to initiate the definition of element
node and fabrication connectivity for elements of the specified type in the model (the optional /P=p
gualifier must be appended to the command if the element processor contains a specific element
type that permits variable polynomial orders, e.g., Processor ES7p). Subcommands under the
DEFINE ELEMENTS apply to all elements that appear in subsequent ELEMENT subcommands
and include: FAB_ID, which selects a fabrication (i.e., cross-section/material) type number; and
FAB_DIR, which indicates how the fabrication is to be oriented. (Other optional subcommands
that do not appear in the above example include the specification of element GROUP numbers and
solid-model SURFACE connectivity).

The ELEMENT subcommand is then used to define node (and optionally solid-model line) con-
nectivity, via the NODE phrase (and optional LINE phrase). The elements may be defined in an
arbitrary order, as their position in the database is determined by the ELEMENIF=phrase.

For details on the DEFINE ELEMENTS command (and its subcommands) refer to the section on
Processor ES. For details on individual element processors and element types, refer to the appro-
priate sections on Processori E8herei denotes the variable part of the name).

2.5-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.5 Element Definition Procedures

After defining all elements for all element types relevant to the current model, a STOP command
should appear before thEND directive in the Element Definition Procedure.

2.5.2 Available Element Processors and Types in COMET-AR

A summary of element processors and element types currently available in COMET-AR is given
in the Table 2.5-1.

Table 2.5-1 Summary of COMET-AR Element Processors/Types

Element Element

Processor Type Description

ES1 EX41-46 | Assorted 4-node selectively-reduced integrated shell elements.
EX91-96 | Assorted 9-node selectively reduced integrated shell elements.
EX47 Basic 4-node ANS shell element.
EX97 Basic 9-node ANS shell element.

ES1p SHELL | Variable-order polynomial, assumed-displacement Lagrange (LAG) isopargmetric
quadrilateral shell elements:
p=1: 4-node bilinear geometry and displacements
p=2: 9-node biquadratic geometry and displacements
p=3: 16-node bicubic geometry and displacements

ES5 E410 STAGS 4-node Kirchhoff-type shell element.
ES6 E210 STAGS 2-node Euler beam element.
ES7p SHELL | Variable-order polynomial Assumed Natural-coordinate Strain (ANS) quadrifateral

shell elements:
p=1: 4-node bilinear geometry, const./linear strains
p=2: 9-node biquadratic geometry, linear/quadratic strains
p=3: 16-node bicubic geometry, quadratic/cubic strains

ES36 MIN3 Anisoparametric 3-node triangular shell element.

MING Extension of MIN3 to curved geometry (under development).

Detailed descriptions (and usage guidelines) for each of the above elements may be found within
the corresponding sections in Chapter 7. Additional solid element processors are implemented but
untested.

Revised 12/1/97 COMET-AR User’'s Manual 2.5-3



2 Model Definition Procedures 2.5 Element Definition Procedures

2.5-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

2.6 Material/Fabrication Definition Procedures

2.6.1 General Description

The Material/Fabrication Definition part of a Model Definition Procedure is described in this sec-
tion. Material/Fabrication Definition includes the definition of fabrication properties (cross-section
geometries and associated material numbers and orientations associated primarily with beam and
shell elements); and material properties (material constants associated with specific constitutive
models). The definition of both sets of properties is performed via the Generic Constitutive Pro-
cessor (GCP) described in Chapter 8. The commands for material/fabrication definition can either
be added directly to the Model Definition Procedure, or placed in a sub-procedure. The example in
Box 2.6-1 employs a sub-procedure.

Box 2.6-1 Sample Material/Fabrication Definition Sub-Procedure

*PROCEDURE MatlDefn (matl_arg_1[ = model_val_j1]; ... matl_arg_n[ = model_val_jn )
. Run Generic Constitutive Processor (GCP) and Define all Fabrication & Material Props.
RUN GCP
FABRICATION
. Definition of one or more fabrications (FABID=1, 2, ...) goes here.
ENDFAB
MATERIAL
. Definition of one or more materials (MATID=1, 2, ...) goes here.
ENDMAT
STOP
*END

In the procedure shown in Box 2.6-1 (arbitrarily calMaltiDefrn), a number of Model Definition
Procedure argument values have been transferred from above nipdel_arg_jl
model_arg_ji. These values are now referred to with the local argunmmats arg 1 ...
matl_arg_nand may be employed within the Material/Fabrication Definition Procedure by using
square brackets for symbolic replacement (emgatl[_ arg_1). Typically, these procedure argu-
ments will be used to pass user-selected material properties, fabrication properties, or just material/

Revised 12/1/97 COMET-AR User’'s Manual 2.6-1



2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

fabrication numbers enabling the user to select from a variety of property sets pre-defined within
procedureMatlDefn

There are two relevant top-level commands within the GCP for fabrication and material property

definition: FABRICATION and MATERIAL. The FABRICATION command is used to initiate

the definition of one or more sets of fabrication properties. Each set of fabrication properties has
an associated fabrication type (e.g., SHELL) and fabrication number (e.g., FABID=1, 2, ...). The

available GCP subcommands to define properties for specific fabrication types are described in
Section 8.3. All fabrication types have one thing in common: they refer to one or more material

numbers (MATIDS), the properties for which are defined via the MATERIAL command.

The MATERIAL command is used to initiate the definition of one or more sets of material prop-
erties. Each set of material properties is associated with a specific material type (e.g., ISOEL.:
isotropic elastic) and material number (e.g., MATID=1, 2, ...). The available GCP subcommands
to define constitutive properties for specific material types are described in Section 8.4. The GCP
supports either direct input of material property data, or the tabulation of predefined material prop-
erties in a material database.

In the Element Definition Procedure (see Section 2.5) elements refer tq fabri-
cation numbers (FABIDs) and not directly to material numbers (MAT|DS)
when they are defined (via the FAB_ID subcommand of the DEFINE ELE-
MENTS command within the Generic Element Processor). In turn, fabrica-
tions refer to material numbers within the FABRICATION command of the
Generic Constitutive Processor. The hierarchy is: materials belong to fgbrica-
tions which in turn belong to elements.

The separation of the Generic Constitutive Processor from element groces-
sors (E9 as an independent module is a unique feature of COMET-AR. It
makes existing and new material/fabrication types accessible to all element
types simultaneously, avoids duplication of effort (and errors) by elgment
developers, and allows constitutive developers and element developers to
focus independently on their areas of expertise.

2.6.2 Available Fabrication Types in COMET-AR

A summary of fabrication types currently available in COMET-AR is given in Table 2.6-1.

2.6-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

Table 2.6-1 Summary of COMET-AR Fabrication Types (within the GCP)

Fabrication Type Description
BEAM Homogeneous beam element cross-section properties; includes geometric prpperties
(area, moments of inertia, eccentricities) and an associated material mpumber
(MATID).
SHELL Layered (composite) shell through-thickness properties; includes geometric proper-

ties (number of layers, layer thicknesses, layer fiber angles) and associated material
numbers (MATIDs) for each layer.

SOLID Three-dimensional solid continuum; includes only a material number (MATID), no
geometric properties.

Detailed descriptions for each of the above fabrication types may be found in Section 8.3.

2.6.3 Available Material Types in COMET-AR

A summary of material types currently available in COMET-AR is given in Table 2.6-2.

Table 2.6-2 Summary of COMET-AR Material Types (within the GCP)

Material Description
Type P
ISOEL Isotropic elastic material; includes standard material constants (and optiongl tem-
perature and moisture dependent parameters).
ORTEL Orthotropic elastic material; includes standard material constants.
PLASTIC_WB White-Besseling (mechanical sublayer) elastic-plastic constitutive model for ini-
tially isotropic materials (temperature-independent).

Detailed descriptions for each of the above material types may be found in Section 8.4.

Revised 12/1/97 COMET-AR User’'s Manual 2.6-3



2 Model Definition Procedures 2.6 Material/Fabrication Definition Procedures

2.6-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7 Orientation of Fabrication Reference Frames

2.7.1 General Description

Fabrication (and embedded material) reference frameg, (%) are defined during element defi-
nition via the FAB_DIR subcommand of the generic element processor's DEFINE ELEMENTS
command (see Section 2.5). The various options for orienting the fabrication frame are summa-
rized in Table 2.7-1.

Table 2.7-1 Fabrication Frame Orientation Options

Option Input_Data Interpretation

ELEMENT None The fabrication frame is parallel to the element local fraprexx ys =y, z =
z;. This option is useful only for very simple models with rectangular meshes.

GLOBAL {X|Y]|Z} The fabrication frame is such that theaxis is parallel to the global X (i.e.g)x
Y (i.e., yg) or Z (i.e., g) axis. The gaxis is taken parallel to the element norfal
(zp axis (for shells). Thepaxis follows from the right-hand rule. This optior] is
useful for simple cylindrical structures where one of the global axes aligns with a
structural direction of interest.

POINT X[, 6] The element local zaxis is used for;z The y axis is obtained by taking the
cross-product of the vector connecting the reference gdimtthe current eld-
ment integration point, with zThe y axis follows from the right-hand rule. The
angleB is an arbitrary in-plane rotation (abogtthat may be performed after the
triad has been projected to the element tangent plangxThis option is use-
ful for axisymmetric shell structures, especially where annular platef are
involved.

VECTOR v, 6] The element local;zaxis is used forszThe y axis is obtained by crossing the
reference vectov with z,, and x, follows from the right-hand rule. This optipn
is extremely powerful for general shell structures, where a different refdrence
vector may be defined for each substructure, typically along a generatqr. The
arbitrary in-plane anglé, may be used, e.g., to define a helical laminated gom-

posite winding on a cylindrical shell.

PLANE u, v, 0] First, a preliminary ¥, yf, z' triad is constructed by taking parallel tou, cross-
ing u with v to obtain g, and crossingszwith x; to obtain y. For shells, this tria
is then projected onto the element tangent plane by rotgtimjazthe elemen
normal axis gto obtain x, y;, z. Finally, an optional in-plane rotatidhis pro-
vided. The PLANE option is useful for general 3D models.

— oL

BEAM node Node number of beam element reference point.

The above options are selected via the element processor FAB_DIR subcommand, i.e.,

FAB_DIR = Option, Input_Data

Revised 12/1/97 COMET-AR User’'s Manual 2.7-1



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

whereOptionis the option name, andput_Dataare the associated parameters.

For shell elements, the options listed in Table 2.7-1 employ the local element normal vector (par-
allel to z) to construct a tangent plane. The user may specify an additional arbitrary “in-plane”
angle to rotate the fabrication frame after it has been aligned with the shell element local tangent
plane (which can be useful for fiberwound composites on curved surfaces). The above options are
not limited to shell elements. They may also be used with 3D solid elements, in which case the use
of the element local normal,fzxis is optional.

These fabrication reference frame options may be used to vary the orientation from element to ele-
ment, or among groups of elements, as indicated in Figure 2.7-1.

Fabrication Frame (X, Yf, %)

Local (Elt. Integ. Pt.) Frame
(X, %, %)

Global Frame
Zg
>
g

Figure 2.7-1 Orientation of Fabrication and Related Reference Frames

Finally, the fabrication reference frame may also be used for stress output, i.e., the element stress
reference frame can be equated to the fabrication reference frame by setting the stress direction
solution procedure argument to FAB_DIR:

STR_DIR = FAB_DIR

The following subsections describe the fabrication frame orientation options in more detail.

2.7-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7.2 The FAB_DIR = ELEMENT Option

The ELEMENT option for defining fabrication reference frames is the default option and is
invoked by issuing the DEFINE ELEMENTS subcommand.

FAB_DIR = ELEMENT

with no additional parameters required. The result is that the fabrication frame is equivalenced to
the local element integration point frame, i.e 7%, yf = y;, and z = z.

2.7.3 The FAB_DIR = GLOBAL Option

The GLOBAL option is invoked by issuing the DEFINE ELEMENTS subcommand.

FAB_DIR = GLOBAL {X|Y|Z} [/3D]

where specification of X, Y, or Z indicates that the fabricatioaxis is parallel to the globa},x
ygor z? axis. For shell elements, the fabricatigaxs is automatically parallel to the shell element
normal vector (i.e., to thg axis), and the gaxis completes a right-handed orthogonal triad. For
solid elements (with the /3D qualifier), theand z axes are defined by cyclic permutation of the
global axis selected fo.XThe GLOBAL definition option is illustrated geometrically and mathe-
matically in Figure 2.7-2.

Example:

=7 Zt =4
Cylindrical Shell _
(FAB_DIR = GLO Construction

L/

N
—

11

N

Figure 2.7-2 FAB_DIR = GLOBAL Option

Revised 12/1/97 COMET-AR User’'s Manual 2.7-3



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7.4 The FAB_DIR = POINT Option

The POINT option is invoked by issuing the DEFINE ELEMENTS subcommand.

FAB DIR = POINT X [,0]

wherex denotes the global coordinates of an arbitrary reference pointx Xy, Ygr Z from

which a vector is connected to the current element integration point. This vector Is then crossed
with the element normal vector; (z %) to obtain they direction, and thepdirection is obtained

via the right-hand rule. An optional in-plane rotatiorfa$ then performed about thedirection

to obtain the final orientation of the fabrication frame. The construction is illustrated in
Figure 2.7-3. The POINT option is particularly useful for annular and circular plate structures.

Example:

Annular Plate Basic Construction

Z; =z
y Z; % (X—X)

bz x(x=x)]
Xg =Yg % Zs

Zt
Additional In-Plane Rotation
X'y = X;C0SH +y;sinod
yf v Y's = —X;sind +y;cosd

Figure 2.7-3 FAB_DIR = POINT Option

2.7-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7.5 The FAB_DIR = VECTOR Option

The VECTOR option is invoked by issuing the DEFINE ELEMENTS subcommand

FAB DIR = VECTOR v [,0]

wherev denotes the global components of a an arbitrary reference vectar=.e.y, Vyg, Voq

which is crossed with the element normal vectpr(z) to obtain they; direction; the xdirection

is obtained via the right-hand rule. An optional in-plane rotatiofisfthen performed about the

z; direction to obtain the final orientation of the fabrication frame. This option may be used to gen-

erate fabrication frame triads for general shell structures. It is particularly useful for assemblages
of shells of revolution, where the axes of revolution (i.e., the shell generators) provide natural ref-
erence vectors;,. The construction is illustrated in Figure 2.7-4.

Example: Stacked Shell of Revolution Basic Construction
Zt
Zm = ZI
Vxz,
Ym = 7=
TV xzy

Additional In-Plane Rotation

X'y = X;CO0SO +y;sin6

Y's = —X;sin@ +y;cosh

Figure 2.7-4 FAB_DIR = VECTOR Option

Revised 12/1/97 COMET-AR User’'s Manual 2.7-5



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7.6 The FAB_DIR = PLANE Option

The PLANE option is invoked by issuing the DEFINE ELEMENTS subcommand.

FAB_DIR = PLANE u,v [,0] [/3D]

whereu andv denote the global components of two arbitrary reference vectorsy i;eﬁxmg,
Uz, &N V = Vyq, Vg, Vg, Which together represent a plane in 3D space. Tentatively X
directions are located in this plane witmarmal to it. For shells, this tentative triad is then rotated
into the element tangent plane (at each integration point) by projecting the rétxed mto the

local element normal (zaxis. As with the POINT and VECTOR options, an optional in-plane
rotation of@ may be performed about thairection to obtain the final orientation of the fabrica-

tion frame. The PLANE option may be used to generate fabrication frame triads for general shell
and 3D solid structures. If the /3D qualifier is used, the normal projection step is bypassed. The
construction is illustrated in Figure 2.7-5.

Example: Toroidal Solid or Shell Basic Construction
U
X: = —
’ b7l
Solid Xf o
7. = uxyv
T Juxv

Yi = Zg X X¢

Projection (for Shell Elts)

X < RX;

Yi < RY¢

Zi « RiZ;

Zt Additional In-Plane Rotation

X's = X;C0S0 +Yy;sin6

y's = —X;Sin@ +y;cos

Figure 2.7-5 FAB_DIR = PLANE Option

2.7-6 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7.7 The FAB_DIR = BEAM Option

The BEAM option is invoked by issuing the DEFINE ELEMENTS subcommand.

FAB_DIR = BEAMnode

wherenodedenotes the node number of a beam element reference point, with coor&nafgs,

Yg Zg» Which in conjunction with the two end points (i.e., nodes) of a beam element define the ele-
ment's corotational frame {xye, Z). For straight beam elements, the fabrication/cross-section
frame (¥, y;, ) is then coincident with the corotational frame, as is the element stress ffame (x

Y|, ). For curved beam elements, the reference point must be defined in the same plane as the first
three beam element nodes, and onlyzth&es of the element corotational and fabrication/stress
frames will coincide, as illustrated in Figure 2.7-6.

Straight Beam Curved Beam

’ Xe s Xf

Yer ¥f

f

( Cross-Section )

Figure 2.7-6 FAB_DIR = BEAM Option

Revised 12/1/97 COMET-AR User’'s Manual 2.7-7



2 Model Definition Procedures 2.7 Orientation of Fabrication Reference Frames

2.7-8 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.8 Load Definition Procedures

2.8 Load Definition Procedures

2.8.1 General Description

The Load Definition part of a Model Definition Procedure is described in this section. Load Defi-
nition includes the definition of element (distributed) and/or nodal (concentrated) loads. Element
loads are defined via the Generic Element Processor (i.e., Proces3oiodSI loads are defined

via Processor AUS, which builds a simple table in the old (COMET-BL) format, and Processor
REDO, which converts the AUS table to a new dataset compatible with the COMET-AR database.
The commands for load definition can either be added directly to the Model Definition Procedure
or placed in a sub-procedure as illustrated in Box 2.8-1.

Box 2.8-1 Sample Load Definition Sub-Procedure

*PROCEDURE LoadDefn (load_arg_1[ = model_val j1]; ...load_arg_n[ = model_val_jn )

. Define Element (Distributed) Loads for Selected Element Processors/Types/Locations
RUN ES
RESET ELEMENT_TYPE:= EltTyp
DEFINE LOADS /TYPE=LoadTyp
ELEMENTS=elt_range; Boundaries=bndy range NODE=od_range
LOAD =load values

END_DEFINE_LOADS

STOP
. Define Nodal (Concentrated) Loads for Selected Nodes and DOFs
RUN AUS
SYSVEC : APPLLoadNamel 1 . (LoadName= FORCE or DISP)

i =dof_number_1: j=node_number_1 load value_1

i = dof_number_2: j=node_number_2 load value_2

RUN REDO
NVT APPLLoadNamel.l =~ NODAL.SPECLoadNamel
STOP

*END

Revised 12/1/97 COMET-AR User’'s Manual 2.8-1



2 Model Definition Procedures 2.8 Load Definition Procedures

In the above procedure (arbitrarily callesadDefr), a subset of Model Definition Procedure argu-
ment values have been transferred from abovertiadel_arg j1 ... model_arg )inThese values

are now referred to with the local argumelatad _arg 1 ... load_arg_and may be employed

within the Load Definition Procedure by using square brackets for symbolic replacement (e.g.,
[load_arg_1). These arguments typically are used to pass load magnitude and/or type parameters
from the main Model Definition procedure.

For element (distributed) load definitions, a separate element procesgom(EsEbe RUN for

each element type that is to be loaded. Only those element types that have been employed within
the Element Definition Procedure (see previous section) are relevant here. After specifying the ele-
ment type within the processor (via the RESET ELEMENT_TYPE command) a DEFINE LOADS
command is needed for each separate load type that is to be applied. Element load types refer to
pressure, line loads, body loads, and temperatures, as summarized in the following subsection.
They are stored in the database as distributed loads (i.e., per unit length, area or mass) and during
the solution phase are converted into consistent nodal forces by the element processor(s). In
Box 2.8-1, the user may specify a selected range of elements (and/or groups), element boundaries,
and element boundary nodes, before specifying the load values via a LOAD command. For details
on the DEFINE LOADS command, refer to Section G2neric Element Processor

For nodal (concentrated) load definition, processor AUS is used to construct a table of specified
nodal force values and/or a table of specified nodal displacement values. Each of these tables con-
tains a column for each node in the model, and a row for each nodal DOF in the model (e.g., Six
rows for shell element models). Only those nodal DOFs that are to be loaded are mentioned in the
AUS command stream. Unspecified nodal DOFs are assumed to be unloaded (i.e., unspecified
forces are assumed to be zero, and unspecified displacements are assumed to be free unless con-
strained by boundary conditions. Processor REDO must be executed after creating specified nodal
force and/or displacement tables with AUS to convert these tables to the standard COMET-AR
nodal vector dataset format (via the NVT command). See Section 6.7 on Processor REDO for
details.

Specified nodal displacements are relevant only for nodal DOFs that are desjgnated
SPCnz (i.e., specified nonzero) during boundary condition definition (see Section
2.9,Boundary Condition Definition Procedunes

Specified nodal forces are not recommended for use with adaptive mesh refinement.
Such concentrated forces can lead to singularities in the solution, and should be
replaced where possible by local element distributed loads. In contrast, specified
nodal displacement are fine for adaptive analysis, as they can simply be interpolated
when attached elements are subdivided by the adaptive algorithm.

2.8-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.8 Load Definition Procedures

2.8.2 Available Load Types in COMET-AR

A summary of element load types currently available in COMET-AR is given in Table 2.8-1.

Table 2.8-1 Summary of COMET-AR Element (Distributed) Load Types

Load Type Description
LINE Force and/or moment vectors per unit length; specified at nodes on selected element pdges.
PRESSURE Normal force per unit area; specified at nodes on selected element surfaces; may pe “dead”
(fixed direction) or “live” (follower) force.
SURFACE General traction vectors (force and/or moment per unit area) specified at nodes on| selected
element surfaces.
BODY Body force vector per unit mass; specified at element nodes.
TEMP Thermal loads; temperature values specified at element nodes. (Currently untested)

Detailed instructions for defining each of the above element load types may be found in Section
7.2, Generic Element Processdeach of the above element load types is specified at element
nodes and interpolated along an element line, surface, or volume (depending on the load type) via
the element’s intrinsic shape functions.

Not all element processors/types have all of the above load [types
implemented. Check the subsection on Element Processor Limitations
under the appropriate Efrocessor section in Chapter 7 for spedgific

element-load status information.

Nodal (concentrated) load types are summarized in Table 2.8-2.

Table 2.8-2 Summary of COMET-AR Nodal (Concentrated) Load Types

Load Type Description
FORCE Concentrated forces and/or moments at selected nodal DOFs.
DISPLACEMENT Concentrated displacements (translations and/or rotations) at selected nodal{DOFs.

Revised 12/1/97 COMET-AR User’'s Manual 2.8-3



2 Model Definition Procedures 2.8 Load Definition Procedures

2.8-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

2.9 Boundary Condition Definition Procedures

2.9.1 General Description

The Boundary Definition part of a Model Definition Procedure is described in this section. Bound-
ary Condition Definition includes the designation of active (free) and inactive (suppressed or
specified non-zero) nodal DOFs, as well as the definition of multi-point constraints (MPCs) which
constrain selected nodal DOFs to be linear combinations of other nodal DOFs. All such boundary
conditions are defined via Processor COP (the Constraint Processor), which is described in
Section 6.2. The COP commands for boundary condition definition can either be added directly to
the Model Definition Procedure or placed in a sub-procedure as illustrated in Box 2.9-1.

Box 2.9-1 Sample Boundary Condition Definition Sub-Procedure

*PROCEDURE BCsDefn (bcs_arg_1=bcs_def I ...bcs_arg_rebcs_def n)

. Run Constraint Processor to Define all Boundary Conditions

RUN COP
MODEL
SELECT NEW DOFDATIdi, conset, mesh . (e.g., 1,1,0)
CONSTRAIN

. Designate suppressed (specified zero) nodal DOFs
ZERO NODE =node}, node2, nodeing DOF =dofnam} , dofnamz, ...
ZERO NODE =nodel, node3 , nodeing DOF =dofnam} , dofnam3, ...

. Designate specified non-zero nodal DOFs
NONZERO NODE =nodel, node2, nodeiné DOF =dofnami, dofnam2, ...
NONZERO NODE =nodel, node2, nodeiné DOF =dofnami, dofnam2, ...

W)

efine Multi-Point/DOF Constraints
MPC :::

DONE
STOP

*END

Revised 12/1/97 COMET-AR User’'s Manual 2.9-1



2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

In the procedure shown in Box 2.9-1 (arbitrarily calBx@sDefr), a subset of Model Definition
Procedure argument values have been transferred from above into the local argumemts 1

... bcs_arg_rand may be employed within the Boundary Condition Definition Procedure by using
square brackets for symbolic replacement (ebgs [arg_]). These arguments are typically used

to pass boundary condition option parameters from the main Model Definition procedure.

After running the Constraint Processor (COP), the MODEL and SELECT commands are used to
create a nodal DOF datasiDDAL.DOF..conset.meshn the database file connected to logical
device indeXdi. The CONSTRAIN command then initiates the definition of specified zero and
nonzero nodal DOFs, via the ZERO and NONZERO subcommands, respectively. In these subcom-
mands,nodel node2 andnodeincrepresent a range (first, last, and increment) of global node
numbers, andofnamirepresents a valid DOF name (e.g., d1, d2, d3, thetal, theta2, or theta3). The
MPC subcommand is used to define any multipoint constraints present. Finally, the DONE com-
mand is used to terminate the constraint (boundary condition) definition and the STOP command
is used to terminate processor COP.

2.9.2 Available Boundary Condition and DOF Types in COMET-AR

A summary of boundary condition types now available in COMET-AR is given in Table 2.9-1. All
boundary conditions refer to nodal DOFs. There are no element, edge, or surface-oriented bound-
ary conditions except as created by the user in the Boundary Condition Procedure.

Table 2.9-1 Summary of COMET-AR Nodal Boundary Condition Types

BC Type Description
ZERO Nodal DOFs that are totally suppressed. These may be specified via Processor COP’s
(or SPC2) ZERO subcommand, or generated automatically via the Automatic DOF Suppiession
option discussed in the next section.
NONZERO Nodal DOFs that are set to some prescribed value by the user. The node and DOF num-
(or SPCnz) bers should be specified via Processor COP’s NONZERO subcommand. The acfual pre-

scribed (base) values should be set in the Load Definition Procedure, via Processor AUS
(see the previous section).

MPC Nodal DOFs that are expressed as a linear combination of other nodal DOFs (either at the
(Multi-Point same or at different nodes). These dependent DOFs are later eliminated from the gquation
Constraint) system through an assembly transformation (see Processor ASM). The node/DQF num-

bers and the coefficients appearing in the linear constraint may all be specified by the user
via Processor COP’s MPC subcommand.

FREE Nodal DOFs that are neither specified as zero or nonzero and which do not appear as a
(or Active) dependent variable in a multipoint constraint, are considered free and constitute
unknowns in the assembled equation system.

A summary of nodal DOF types currently recognized by COMET-AR is given in Table 2.9-2.

2.9-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

Table 2.9-2 Summary of COMET-AR Potential Nodal DOF Types

DOF Name Description
di, d2, d3 Translational displacements in the Computational Frage/s x. direc-
tions, respectively.
thetal, theta2, theta3 Rotational displacement about the Computational Franyg'sxaxes,
respectively.

Detailed instructions for associating any of the boundary condition types listed in Table 2.9-1 with
any of the nodal DOF types listed in Table 2.9-2 may be found in Section 6.3 on Processor COP.

The default set of DOFs at all nodes is 6, i.e., 3 translations and 3 rotations: (d1, d2,
d3, thetal, theta2, theta3. While COP provides a special command to change or
expand/reduce this default DOF pattern, the non-default options have not bgen suf-
ficiently tested in COMET-AR.

Any nodal DOFs that are not mentioned in a ZERO or NONZERO COP sulbcom-
mand are assumed to be free (i.e., active). Processor COP also has a FREE
command to release any nodal DOFs that have been unintentionally constrgined by
previous ZERO or NONZERO commands.

Multi-point constraints (MPCs) in COMET-AR are currently restricted to be lihear
and explicit. There must be a clear distinction between dependent and independent
DOFs appearing in a linear constraint equation, so that the (one) dependent|DOF in
a given constraint equation can be eliminated from the assembled equation|{system
(as opposed to the use of Lagrange multipliers or penalty methods, which ad¢l DOFs
or stiffness to the equation system). If there are any multi-point constraints present,
the user must select Processor ASM as the assembly processor option whep invok-
ing a Solution Procedure.

During adaptive mesh refinement (AR), new nodes are automatically generated by
the refinement processor (e.g., REF1) and appropriate boundary conditions fpr each
new node are deduced from the boundary condition types associated with ngighbor-
ing nodes on attached element boundaries. Unless a user-written solid{ model
interface is employed (see Chapter 16) this boundary condition deduction prgcess is
not fool-proof. For the time being, the user should monitor the constraints assigned
to AR-generated nodal DOFs via the COMET-AR graphical post-processor, ARGxX.

Revised 12/1/97 COMET-AR User’'s Manual 2.9-3



2 Model Definition Procedures 2.9 Boundary Condition Definition Procedures

In addition to basic boundary condition definition, COMET-AR provides some
automatic DOF suppression options to eliminate unstable nodal DOFs, i.e.| nodal
DOFs that are not supported by element stiffness such as shell drilling rotatipns, or
rotations in general at nodes connected only to solid elements. For more infomation
on this capability, see Section 2.18utomatic DOF Suppression and Drilling
Stabilization

Nodal DOFs that are constrained to be either zero, non-zero, or a linear combination
of other DOFs (i.e., MPC) may or not have an equation number assigned to them in
the assembled matrix equation system. The decision as to which option to ¢mploy
is typically made internally, within particular COMET-AR solution and/or utflity
procedures.

2.9-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10 Automatic DOF Suppression and Drilling
Stabilization

The model boundary conditions defined by the user may not be sufficient to remove all extraneous
DOFs (i.e., DOFs for which there is negligible element stiffness present). Then the assembled
equation system may be nearly (or completely) singular, hence unsolvable. To avoid this pitfall,
COMET-AR provides an automatic DOF suppression capability (AUTO_DOF_SUP) for the gen-
eral situation, and two special-purpose options (AUTO_DRILL and AUTO_TRIAD) for treating
extraneous drilling rotational DOFs associated with shell elements that may be missed by the
AUTO_DOF option. The selection of one or more of these options is not made by the user until
the solution phase, and AUTO_DOF_SUP, AUTO_DRILL and AUTO_TRIAD appear as solution
procedure arguments.

2.10.1 Basic Automatic DOF Suppression Option (AUTO_DOF_SUP)

The basic automatic DOF suppression option, AUTO_DOF_SUP, suppresses all nodal DOFs that
do not have sufficient element stiffness in the corresponding computational directions. For exam-
ple, all rotational DOFs may be suppressed at nodes that are connected only to solid elements
(which typically have only translational stiffness); selected drilling rotational DOFs may be sup-
pressed at nodes connected to shell elements if the element normal vectors are sufficiently close to
one of the computational axes at the node (see Figure 2.10-1).

b) Rotational DOFs at Solid-Element Nodes
Z: d,. O free O
y 0 O
¢ dyc U free O
X U O
> d,. O free O
o . O
0,. O fixed [
O .. O
6, O fixed O
0 .. [l
8,. O fixed
a) Shell Drilling DOFs Ve A
y dxcg free E
(a <tolerance) .0 free O
4.0 free O
ree
0 0
GXCE lfree E
Gyc 0 fixed
U U
8,0 free [

Figure 2.10-1 Examples of DOFs Suppressed by AUTO_DOF_SUP Option

Revised 12/1/97 COMET-AR User’'s Manual 2.10-1



2 Model Definition

2.10 Automatic DOF Suppression and Drilling Stabilization

The basic steps involved in automatic DOF suppression via the AUTO_DOF_SUP option are sum-
marized in Table 2.10-1. The user performs the first two steps; COMET-AR does the rest.

Table 2.10-1 Steps in AUTO_DOF_SUP Algorithm

Step

Description

The user defines all physical boundary conditions for the model, as described in the section o
ary Condition Definition Procedures. This leads to the creation of a NODAL.DOF dataset wit
DOF boundary condition types set to FREE, ZERO, NONZERO, or MPC.

h Bound-
N nodal

The user selects the AUTO_DOF_SUP option from one of the COMET-AR Solution Procedur
L_STATIC_1 or AR_CONTROL).

s (e.g.,

The solution procedure creates an auxiliary nodal DOF dataset, which is called ELT _NODA
for elements to indicate which nodal DOFs they support with stiffness. This dataset is initializ
that all nodal DOFs are set to SPCz (i.e., suppressed).

|_.DOF,
pd such

The solution procedure executes all relevant element processors, and for each element, nd
that have stiffness in one of the computational directions are switched to FREE
ELT_NODAL.DOF dataset. If there is no stiffness contribution from the element, the nodal D(
ting is left as-is.

dal DOFs
in the
DF set-

After processing all elements, the ELT_NODAL.DOF dataset reflects a setting of FREE for a
DOFs that have supporting element stiffness, and SPCz for all nodal DOFs that have negligi
ness.

| nodal
ble stiff-

The ELT_NODAL.DOF dataset is then merged with the NODAL.DOF dataset, so that all

nodal

DOFs that are set to SPCz in the ELT_NODAL.DOF dataset are also set to SPCz (i.e., suppiessed) in

the NODAL.DOF dataset.

The resulting NODAL.DOF dataset contains all of the user’s original boundary condition assign-

ments plus any extra DOF suppressions contributed from the ELT_NODAL.DOF dataset. S

uperflu-

ous nodal DOFs have been automatically suppressed.

2.10.2 Stabilization of Drilling DOFS(AUTO_DRILL/AUTO_TRIAD/AUTO_MPC)

2.10.2.1 General Description

Many of the shell elements in COMET-AR intrinsically have only 5 DOFs per node: 3 translations
and 2 rotations. The 3rd, or “drilling,” rotational DOF, which is a rotation about the shell element
normal direction, does not appear in the shell theory and thus has no intrinsic stiffness associated
with it. This rank-deficiency can lead to singularities in the assembled stiffness matrix, preventing

a solution of the equation system with conventional equation solvers. In some cases, the problem
can be easily remedied, such as when the Computational Frame at each node is defined such that
one of the computational axes.(¥., or z) is nearly aligned with the element nodal normal and

the drilling DOF can be suppressed a priori (e.g., via the AUTO_DOF_SUP option described
above). At nodes where shell elements intersect at sufficiently large angles, rank-deficiency is
avoided without having to suppress any DOFs, as the drilling rotation in one element is resisted by
the bending stiffness in the adjacent element.

2.10-2

COMET-AR User’'s Manual

Revised 12/1/97



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

For more general situations (see Figure 2.10-2) where smooth shell regions exist in which the com-
putational axes can not be conveniently aligned with the element drilling rotation, additional
measures are necessary. Three mutually exclusive options are available within COMET-AR:

1) AUTO_DRILL : the addition of artificial drilling stiffness at the element level (for
certain element processors); or

2) AUTO_TRIAD : automatic re-direction of the computational axes so that the
drilling rotation can be suppressed afterwards by the AUTO_DOF_SUP option; or

3) AUTO_MPC: automatic generation of multipoint constraints (MPC—actually
multi-DOF constraints) at a point to suppress drilling DOFS regardless of the
directions of the computational axes.

Drilling Stabilization:

O NEEDED Not Needed

® Stiffened @ Suppressible

A A Zc

Ye

Xc
Drilling Rotation Vectors

Figure 2.10-2 Motivation for Drilling DOF Stabilization

2.10.2.2 Automatic Drilling Stiffness Option (AUTO_DRILL)

Artificial drilling stiffness is available in most COMET-AR shell element processors that do not
have intrinsic drilling stiffness (e.g., ES1p and ES7p). In these processors the addition of artificial
drilling stiffness is triggered via the AUTO_DRILL solution procedure argument. This option
insures that drilling stiffness is added at the element level, but only where needed.

For built-up shell structures, it is neither necessary nor desirable to add artificial drilling rotational
stiffness at nodes where elements intersect at moderately large angles, e.g., along the panel/stiff-
ener juncture line in a blade-stiffened panel (see Figure 2.10-3). At such nodes, sufficient rotational
stiffness is already provided in all three computational directions by the assembly of bending stiff-
nesses from the contributing adjacent elements. If the ratio of the thicknesses for the intersecting
elements is large, the addition of artificial drilling stiffness from the thicker element may over-
whelm the bending stiffness in the attached element and adversely affect accuracy. The

Revised 12/1/97 COMET-AR User’'s Manual 2.10-3



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

AUTO_DRILL option thus turns nodal drilling stiffness flags on selectively, based on whether the
structure is smooth or junctured at each node, as illustrated in Figure 2.10-3.

@® Add Drill Stiffness
O Skip Drill Stiffness

Figure 2.10-3 Effect of Automatic Drilling Stiffness Selection Option

When the AUTO_DRILL option is selected by the user (at the solution procedure level) two things
happen: 1) artificial drilling stiffness flags are defined for each node in the model, indicating where
drilling stiffness is needed; and 2) during element stiffness formation, shell elements attached to
nodes that are flagged for drilling stiffness add a “small” diagonal stiffness contribution to the nor-
mal rotational component at those nodes. An optional drilling stiffness magnitude parameter and
an optional drilling stiffness angle tolerance parameter are provided in conjunction with the
AUTO_DRILL argument appearing in COMET-AR Solution Procedures.

Some element processors, such as ES36, have artificial drilling stiffness hardwired in|the ele-
ment formulation. For such elements, the AUTO_DRILL option is irrelevant, as the dyilling
stiffness is added at the element level whether or not the option is selected.

2.10.2.3 The AUTO_TRIAD Option

The AUTO_TRIAD option is an alternative to AUTO_DRILL that bypasses the need for artificial
drilling stiffness and some of the numerical difficulties associated with it (especially in nonlinear
analysis). With this option, computational triadg, (%, z.) are re-oriented at all nodes not subject

to boundary conditions, such that one of the computational axes is aligned with the average element
normal at the node. The effect of AUTO_TRIAD is illustrated by example in Figure 2.10-4. At the
“black” node the computational triad §xy., z¢} is originally aligned with the global triad {xyy,

zg}. The AUTO_TRIAD option then replaces that triad with the new triad yx z:} such that

the new g axis is aligned with the average element normal at the node, which in the figure is close
enough to the individual element normals that the “drilling” rotation aboui.theiz can be sup-
pressed automatically by the AUTO_DOF_SUP option.

2.10-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

Average nodal normalg (Drilling rotation about this axis
can be suppressed.)

Updated
Computational Triad:

Original T
Computational Triad: |5

Figure 2.10-4 lllustration of AUTO_TRIAD Option at a Node

AUTO_DOF_SUP option, so that the corresponding drilling rotatipnal
DOFs are automatically suppressed at all nodes where insufiicient
drilling stiffness exists.

The AUTO_TRIAD option must be used in conjunction with }l)he

Computational triads at nodes with any DOFs assigned boundary con-
ditions (e.g., suppressed or specified nonzero) are skipped by the
AUTO_TRIAD option. The user is responsible for stabilizing drilljng

DOFs at these nodes.

Concentrated nodal forces (or moments) should not be employed in
conjunction with the AUTO_TRIAD option, as the computational|tri-
ads may be inadvertently re-directed by the program, changing the
interpretation of the force components. User-defined multi-pointcon-
straints should also not be used in conjunction with the AUTO_TRIAD
option for the same reasons.

Revised 12/1/97 COMET-AR User’'s Manual 2.10-5



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

When post-processing displacement results obtained with the
AUTO_TRIAD option, remember that nodal displacements will be
expressed with respect to the re-directed computational axes arjd may
need to be transformed back to the global frame. These transformations
are automatically performed by COMET-AR post-processors, such as
ARGX.

2.10.2.4 The AUTO_MPC Option

The AUTO_MPC option is the most direct and robust way to eliminate unstable drilling rotational
DOFs. It automatically generates an explicit, multi-DOF constraint equation, suppressing the drill-
ing rotation for each node where there is insufficient stiffness to stabilize (i.e., resist) that particular
motion. The nature of the constraint equation is shown both geometrically and algebraically in Fig-
ure 2.10-5. Hereg, , éyc, &,. representunitvectors in three mutually perpendicular computational
directions: %, ¢, z, respectivelyByg, 8y, 6, represent the corresponding rotational DOFS at the
node;n represents the average unit normal vector at the node (i.e., the drilling directiBg); and
represents the corresponding drilling rotation. The drilling constraint involves all three rotational
DOFS about the computational axeg, (%, z.), and the computational frame at such nodes may
be totally arbitrary, with both loads and boundary conditions present as well. This is in contrast to
the AUTO_TRIAD option, where the computational frames are automatically modified by the
code; or to the basic AUTO_DOF_SUP option where the user is responsible for properly aligning
one of the computational axes with the drilling axis at nodes that do not lie on shell/shell or shell/
beam juncture lines.

The AUTO_MPC option is the most all-purpose and robust of the drill-
ing stabilization options. The only disadvantage of the AUTO_NPC
option over other AUTO options is that is newer and is less tested.

Constraint Equation: By = 6,c(N &) + 8, (N [By) +6,(N [&,) = 0

Figure 2.10-5 The AUTO_MPC Option for Stabilizing Drilling Rotations

2.10-6 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10.3 Usage Guidelines/Limitations for AUTO_DOF/DRILL/MPC/TRIAD

The guidelines/limitations listed in Table 2.10-2 should be considered when selecting any of the
above options at the solution procedure level and when defining the model.

Table 2.10-2 Usage Guidelines for AUTO_DOF, AUTO_DRILL , AUTO_MPC, and
AUTO_TRIAD Options

Number Guideline

1 AUTO_DOF_SUP should always be selected as a safeguard

2 AUTO_MPC is the recommended option for ensuring that unstable drilling DOFs are propefly sup-
pressed, for both linear and nonlinear, adaptive and non-adaptive analysis. Proviso: While the
AUTO_MPC approach is in principle the most robust, the software is newer than the othef AUTO
options and hence may still have some bugs.

3 AUTO_DRILL should be selected only for linear analysis, and not in conjunction with iterative| equa-
tion solvers.

AUTO_MPC or AUTO_TRIAD are alternatives to AUTO_DRILL for nonlinear analysis.
AUTO_TRIAD must be used in conjunction with AUTO_DOF_SUP.

AUTO_TRIAD should not be used if concentrated nodal forces are present.

~N| o] o &~

AUTO_TRIAD does not process nodes for which any DOFs have been assigned boundary cgnditions;
the user is responsible for drilling DOF suppression at such nodes.

8 If the computational frames align closely with the average shell-element normals throughout the model,
then neither AUTO_DRILL nor AUTO_TRIAD is necessary, only AUTO_DOF_SUP.

Details on the parameters available with the AUTO_DOF, AUTO_DRILL, AUTO_MPC, and
AUTO_TRIAD options are provided under the description of the solution procedures in which
they appear as arguments (see, e.g., L_STATIC_1 or AR_CONTROL).

Revised 12/1/97 COMET-AR User’'s Manual 2.10-7



2 Model Definition 2.10 Automatic DOF Suppression and Drilling Stabilization

2.10-8 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.11 Sample Model Definition Procedures (Summary)

2.11 Sample Model Definition Procedures (Summary)

A number of existing model definition procedures, listed in Table 2.11-1, are available for the
interested reader to peruse (or cannibalize) on the computer. These procedures have been devel-
oped during the course of research on adaptive finite element methods sponsored by NASA
Langley Research Center. They range from extremely simple geometries, such as an L-shaped
domain, to moderately simple geometries, such as an I-stiffened panel. For the definition of more
complicated models (such an aircraft structure) it is advisable for the user to employ an automatic
mesh generation package, such as PATRAN, in conjunction with the PATRAN-to-COMET-AR
converter (see Section 6.6) rather than manually write a command-language procedure such as
those described in the preceding sections.

Table 2.11-1 Some Existing COMET-AR Model Definition Procedures

File Name Model Name Description
bsp.clp Blade-Stiffened Panel Flat plate with 4 axial blade stiffeners
bspx.clp Cut Blade-Stiffened Panel Same as bsp, but with one cut-off stiffener
crp.clp Cracked Plate Flat plate with partial crack
fkp.clp Flat “Knight's Panel” Flat version of kp (panel with circular hole)
isp.clp I-Stiffened Panel Flat/curved panel with 4 “I” stiffeners
kp.clp Knight's Panel Composite cylindrical panel with circular hole
Isd.clp L-Shaped Domain Flat plate with square cutout; 1/4 model
pc.clp Pinched Cylinder Cylindrical shell with opposing point/line loads
pwh.clp Plate with Hole Flat plate with circular hole, under tension
scb.clp Short Cantilevered Beam Rectangular plate, clamped at one end
steele_cyl.clp Steele’s Cylinder Axisymmetric model of cylindrical shell
steele_tor.clp Steele’s Toroid Axisymmetric model of toroidal shell

The above model definition files may be found on the computer in the directory:

comet-ar-rootprc/applications

wherecomet-ar-rootrepresents the name of the root directory under which the COMET-AR soft-
ware system has been installed.

Revised 12/1/97 COMET-AR User’'s Manual 2.11-1



2 Model Definition Procedures 2.11 Sample Model Definition Procedures (Summary)

2.11-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.12 Model Definition via PATRAN and PST

2.12 Model Definition via PATRAN and PST

For most realistic structural models, it is not feasible to construct a model definition procedure
manually. Instead, the commercially available PATRAN pre-processing code may be used to gen-
erate the model, and the COMET-AR-to-PATRAN conversion processor (PST) is used to translate
the PATRAN data to the corresponding model-definition procedure or directly to a COMET-AR
database. A description of PATRAN and its usage is beyond the scope of this manual, but Proces-
sor PST is described in Section 6.6. Examples of the use of PATRAN and PST to generate a
COMET-AR model, as well as on the subsequent solution and post-processing of that model with
COMET-AR, may be found in the COMET-AR Tutorial Manual.

Revised 12/1/97 COMET-AR User’'s Manual 2.12-1



2 Model Definition Procedures 2.12 Model Definition via PATRAN and PST

2.12-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

2.13 Global Model to Analysis Model Translation
Procedure

2.13.1 General Description

This section describes the GM2AM Utility Procedure which calls the GM2AM processor to gen-
erate an initial analysis model database from a given 16-node surface-element geometry model and
user refinement specifications. The purpose of the GM2AM procedure is to execute the two-phase
generation of an initial analysis model from a given 16-node geometry model automatically, by
invoking a processor (also called GM2AM) transparently to the user (see Section 6.12 for details
on the processor). The GM2AM procedure listing is shown in Box 2.13-1.

Box 2.13-1 Global Model to Analysis Model Translation Procedure

*procedure GM2AM ( case = GENERIC ;--
step = -
load_set =1 -
constraint_set =1 -
Idi_am =2 -
Idi_gm =1 )

Execute the INITIALIZE phase

run GM2AM
INITIALIZE
*add gm2am.add
stop

Open databases files

*open [ldi_am] [case]. MODEL.DBC
*open [Idi_gm] [case].DBG

Initialize element and GCP datasets in the analysis database

. *add init_elt.clp
*copy [Idi_am] = [Idi_gm], FABRICATIONS
*copy [Idi_am] = [Idi_gm], MATL.*

Execute the REFINE phase

run GM2AM
SET LDI_AM = [Idi_am]
SET LDI_GM = [Idi_gm]
SET STEP = [step]
SET LOAD_SET = [load_set]
SET CONSTRAINT_SET = [constraint_set]
REFINE

*add gm2am.add
stop
*close [Idi_am]
*close [Idi_gm]

*end

Revised 12/1/97 COMET-AR User’'s Manual 2.13-1



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

In addition to supplying the procedure input arguments, the user must also prepare an “add file,”
called “gm2am.add,” which contains user specifications for converting geometric elements into
analysis elements to be used as the initial mesh of an adaptive refinement (AR) sequence. See
Section 6.12Rrocessor GM2AMfor details on the preparation of the “gm2am.add” file.

2.13.2 Argument Summary

Procedure GM2AM may be invoked with t8B©MET-AR [CALL directive, employing the argu-
ments summarized in Table 2.13-1.

Table 2.13-1 Procedure GM2AM Input Arguments

Argument Default Value Description
CASE Generic Specifies the case name for the geometry and analysis databages
CONSTRAINT_SET 1 Specifies the constraint set number
LDI_AM 2 Specifies the logical device unit for the analysis database file
LDI_GM 1 Specifies the logical device unit for the geometry database file
LOAD_SET 1 Specifies the load set number
STEP 0 Specifies the load- or time-step number

2.13.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 2.13-2 are defined in more detail.
The arguments are listed alphabetically. Refer to Section 6.12 for details on the options.

2.13.3.1 Case Argument

This argument sets the case name prefix for both the geometry and analysis database files.

Argument syntax:

CASE =case

wherecaseis the file name prefix. The following is the database file naming convention expected
by this procedure.

2.13-2 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

Database Name Convention
GEOMETRY case.DBG
ANALYSIS case.MODEL.DBC

2.13.3.2 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element and nodal data in both
the geometry and the analysis meshes. This number should appear as the second cycle number in
names of all element and nodal datasets.

Argument syntax:

CONSTRAINT_SET =conset

whereconsets the constraint set number (Default value: 1).

2.13.3.3 LDI_AM Argument
This argument sets the logical device index associated with the ankaisisse file.

Argument syntax:

LDI_AM = Idi_am

whereldi_am is the logical device index (a positive integer) of the [case]. MODEL.DBC file.
(Default value: 2).

2.13.3.4 LDI_GM Argument
This argument sets the logical device index associated with the geometrydatadbaise file.

Argument syntax:

LDI_GM =Idi_gm

whereldi_gm is the logical device index (a positive integer) of the [case].DBG file. (Default
value: 1).

2.13.3.5 LOAD_SET Argument

This argument defines the load set number associated with the element and nodal data in both the
geometry and the analysis meshes. This number should appear as the first cycle number in names
of all element and nodal datasets.

Revised 12/1/97 COMET-AR User’'s Manual 2.13-3



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

Argument syntax:

LOAD_SET =ldset

whereldsetis the load set number (Default value: 1).

2.13.3.6 STEP Argument

This argument defines the solution step number associated with the element and nodal data in both
the geometry and the analysis meshes. This number should appear as the first cycle number in
names of all element and nodal datasets.

Argument syntax:

STEP =step

wherestepis the solution step number (Default value: 0).

2.13.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the GM2Am proces-
sor. These dataset requirements are detailed in Section 6.12 on Processor GM2AM.

2.13.5 Current Limitations

GM2AM is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the GM2AM processor, refer to Section 6.12 for details.

2.13.6 Status and Error Messages

GM2AM does not print any status or error messages directly. All messages will be produced by
the GM2AM processor; refer to Section 6.12 for specific processor messages.

2.13.7 Examples and Usage Guidelines

*call GM2AM ( CASE = PCL )

In this example, a complete initial analysis mesh will be generated starting with a 16-node geom-
etry elements database named PCL.DBG and the analysis database will be named
PCL.MODEL.DBC.

2.13-4 COMET-AR User’'s Manual Revised 12/1/97



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Procedure

The user refinement specifications should be provided through the “gm2am.add” file (see
Section 6.12, Processor GM2AM, for details). For example, this file may contain the following
refinement specifications.

Sample gm2am.add Input File

SET ELEMENT_NAME = ES1_EX97

SETP =2
SET NEL_X =3
SET NEL_Y =3

PROCESS_GMELTS =0

The above “add” file instructs the GM2AM processor to refine every 16-node geometry element
present in the geometry database into a 3x3 mesh of 9-node ANS elements in the analysis mesh.

2.13.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 2.13-5



2 Model Definition Procedures 2.13 Global Model to Analysis Model Translation Proce-

2.13-6 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures

3.1 Overview

Chapter 3 Basic Solution Procedures

3.1 Overview

This chapter describes existing COMET-AR command-language procedures that perform basic
finite element solutions (i.e., independent of adaptive mesh refinement). A section is dedicated to
each of the currently available procedures listed in Table 3.1-1, including linear static and nonlin-
ear static analysis. Before employing these solution procedures, the user must have first generated
a model, as described in the preceding chapter. Then the procedure may be invoked with a simple
*CALL directive, after running the COMET-AR macroprocessor (see Chapter 1).

Table 3.1-1 Outline of Chapter 3: Basic Solution Procedures

Section Procedure Function
3.1 Overview Introduction
3.2 L_STATIC 1 Performs linear static analysis
3.3 NL_STATIC 1 Performs nonlinear static analysis

Procedures L_STATIC 1 and NL_STATIC_1 solve the structural equations corresponding to a
given finite element mesh. To do this, they employ a number of lower-level (utility) procedures,
which in-turn, invoke various processors (described in Part Il: Processors).

All the basic solution procedures described here are
accessible through adaptive solution procedures, su

also
ch as

AR_CONTROL, which perform adaptive mesh refinement

in addition to solving the basic equations.

Revised 12/1/97

COMET-AR User’'s Manual

3.1-1



3 Basic Solution Procedures 3.1 Overview

3.1-2 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

3.2 Procedure L_STATIC_ 1

3.2.1 General Description

Procedure L_STATIC_1 is a solution procedure for performing linear static analysis. It is auto-
matically invoked by the adaptive refinement AR_CONTROL_1 procedure to perform linear
static analysis for a given mesh.

The L_STATIC_1 procedure is merely a simple cover procedure invoking a sequence of utility
procedures to perform the linear static analysis task, as shown below in Figure 3.2-1. Each of
these utility procedures is discussed in Chaptéltibty Procedures

< INITIALIZE > initialization of datasets, computation of nodal

triads, reordering of nodal points, etc.

( FORCE )

v

( STIFFNESS )

external force vector computation

computation of element stiffness matrices and
assembly of the system stiffness matrix

( FACTOR )

Y

( SoLvE )

v

( STRESS )

Y

< FORCE > |:| internal force computation (optional)

decomposition of the system matrix—
Crout, Cholesky etc.

linear equation solution (direct or iterative)

OO OO O O O

stress recovery (optional)

Figure 3.2-1 L_STATIC_1 Algorithm for Linear Finite Element Static Analysis

3.2.2 Argument Summary

Procedure L_STATIC_1 may be invoked with B®MET-AR [CALL directive, employing the
arguments summarized in Table 3.2-1.

Revised 12/1/97 COMET-AR User’'s Manual 3.2-1



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures
Table 3.2-1 Procedure L_STATIC_1 Input Arguments
Argument Default Value Description
ASM_PROCESSOR ASM Matrix/vector assembly processor
AUTO_DOF_SUP <true> Automatic DOF suppression switch
AUTO_DRILL <false> Automatic drilling stiffness augmentation switch
AUTO_MPC <false>
AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs
CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in
the assembled system matrix prior to factorization
FIXED_FRAME OFF Fixed-frame option for hierarchid¢atrefinement
INTERNAL <false> Compute internal force vector switch
LDI_C 1 Logical unit for main COMET-AR database fjle
(CaseDBC)
LDI_E 2 Logical unit for element-matrix file&CaseDBE)
LDI_S 3 Logical unit for system-matrix fil&CaseDBS)
LOAD_SET 1 Load set number to be used as the external force vectqr
MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement
MAX_ITER 100 Maximum iterations for iterative solvers
MESH 0 Mesh number to be analyzed
MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving
PRINT <false> Print solution vector switch
REFINE_TECHNIQUE ht Mesh refinement technigbg=t> transition h)
RENO_PROCESSOR RENO Node renumbering processor
RENUMBER_OPT 0 Node renumbering option
SKY_PROCESSOR SKY Linear equation solver processor name
SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers
STR_DIRECTION 0 Stress directions for post-processing
STR_LOCATION INTEG_PTS
STEP 0 Solution step humber
STRESS <false> Stress, strain, & strain-energy computation switch
3.2-2 COMET-AR User’s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

3.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.2-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to subor-
dinate procedures and processors where the actual options are determined. For example, the defi-
nition of REFINE_TECHNIQUE depends on which refinement processor the user selects via the
REFINE_PROCESSOR argument, so the relevant options can be found in the corresponding
refinement processor sections in Part 111

3.2.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

ASM_PROCESSOR asm_processor

whereasm_processas the name of the matrix assembly processor. Current options include ASM
(for hy andh, types of mesh refinement) and ASMs (figmesh refinement only). (Default value:
ASM.)

3.2.3.2 AUTO_DOF_SUP Argument

Automatic DOF (degree-of-freedom) suppression switch. This capability automatically sup-
presses extraneous DOFs and is especially useful during adaptive mesh refinement. It is described
in more detail in Section 2.18utomatic DOF Suppression and Drilling Stabilization

Argument syntax:

AUTO_DOF_SUP =option[, angle_to]

where

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>| all

DOFs (in the computational frame) that are unsupported by element st|ffness
will be suppressed throughout the adaptive refinement process. (Defaulf value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; sep Sec-
tion 2.10 for details. (Default value: depends on element type)

In most cases, it is recommended that the user leave the default setting intact.

Revised 12/1/97 COMET-AR User’'s Manual 3.2-3



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2.3.3 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling rota-
tional stiffness to nodal DOFs that would otherwise be unstable computationally. See Section
2.10,Automatic DOF Suppression and Drilling Stabilizati@and individual element processor
sections in Chapter Element Processor$or more information.

Argument syntax:

AUTO_DRILL = option[, angle_to| scale fac]

where

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell gle-
ment types will add artificial drilling stiffness to nodal DOFs that require stabjliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is ng¢eded
at a given node. See Section 2.10 for details. (Default value: depends on ¢lement
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by

selected shell elements. See Chapter 7 for interpretation. (Default value: depgnds on
element type)

AUTO_DRILL is not recommended for nonlingar
analysis.

3.2.3.4 AUTO_TRIAD Argument

Automatic computational triad (i.e., DOF direction) re-alignment option. This option is an alter-
native to AUTO_DRILL that causes re-alignment of the computational triads at all nodes that
require drilling DOF stabilization, as long as no boundary conditions have been defined there. The
computational axes are re-aligned such that one of them is parallel to the average element surface-
normal at the node. Then, extraneous (unstable) drilling rotational DOFs can be subsequently sup-
pressed via the AUTO_DOF_SUP option. (See Section 2Adt@matic DOF Suppression and
Drilling Stabilization for more information.)

Argument syntax:

AUTO_TRIAD = option[, angle_to]

3.2-4 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

where

Parameter Description

option Automatic triad re-alignment option switch: {<true> | <false>}. If <true>, computa-

tional triads will be re-aligned with the average element normal at all nodgs that
require drilling DOF stabilization unless boundary conditions are defined fhere.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on elementtype)

AUTO_TRIAD should only be used in conjunctipn
with AUTO_DOF_SUP and cannot be used in gon-
junction with user-defined point forces and/or mylti-
point constraints.

3.2.3.5 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

CONSTRAINT_SET =conset

where:

Parameter Description

conset Constraint set number (Default value: 1)

3.2.3.6 FIXED_FRAME Argument
Sets a flag that is relevant only fogrefinement.

Argument syntax:

FIXED_FRAME = {<true> | <false>}

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

Revised 12/1/97 COMET-AR User’'s Manual 3.2-5



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2.3.7 INTERNAL Argument
This argument sets the internal force computation switch.

Argument syntax:

INTERNAL = flag

whereflag is the switch option. (Default value: <false>. Do not compute internal force.)

3.2.3.8 LDI C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC 1, and must be naGas&DBC.

Argument syntax:

LDI_C =1di_c

whereldi_cis the logical device index (a positive integer) of @@seDBC file. (Default value:1)

3.2.3.9 LDI E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally namedCaseDBE.

Argument syntax:

LDI_E =Idi_e

whereldi_e is the logical device index (a positive integer) of @eseDBE file. If Idi_e is not

equal toldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for
the current mesh will be stored on a sepatateeDBE file; however, itdi_e =Idi_c, then all ele-

ment matrices will be stored on tBaseDBC file, i.e., a separatéaseDBE file will not be cre-

ated. (Default value: 2)

174

If a separateCaseDBE file is created, it will b¢
deleted and re-created with each new adaptive mesh.

3.2.3.10 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally namedCaseDBS.

3.2-6 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

Argument syntax:

LDI_S =Idi_s

whereldi_s is the logical device index (a positive integer) of @aseDBS file. If Idi_s is not

equal tddi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the
current mesh will be stored on a sepaf2dseDBS file; however, ifdi_s =Idi_c, then all system
matrices will be stored on theéaseDBC file, i.e., a separatéaseDBS file will not be created.
(Default value: 3)

If a separateCaseDBS file is created, it will b
deleted and re-created with each new adaptive me¢sh.

1%

3.2.3.11 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
he-refinement).

Argument syntax:

MATRIX_UPDATE = {FULL | PARTIAL}

whereFULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

3.2.3.12 MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). Relevant only if SKY_PROCESSOR is set equal to the name of an iterative
solver.

Argument syntax:

MAX_ITER = max_iter

wheremax_iteris the maximum number of iterations allowed. (Default value: 100)

3.2.3.13 MESH Argument

This argument sets the number of the mesh to analyze.

Revised 12/1/97 COMET-AR User’'s Manual 3.2-7



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

Argument syntax:

MESH =mesh

wheremeshis the mesh number. (Default value: 0)

3.2.3.14 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

MTX_BUFFER_SIZE =mtx_buffer_size

wheremtx_buffer_sizés the size of the buffer in logical variables. (Default value: 500000)

3.2.3.15 PRINT Argument
This argument sets the solution printout switch.

Argument syntax:

PRINT =flag

whereflag is the switch option. (Default value: <false>)

3.2.3.16 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(RER) specified via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =refine_technique

whererefine_techniqués the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set eqiml Itg hg, or p
(among others). See documentation under specifi¢ RiBEessors for details. (Default valie:

3.2-8 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

3.2.3.17 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used to opti-
mize matrix equation solving (time and/or storage).

Argument syntax:

RENO_PROCESSOR renumber_processor

whererenumber_processaos the processor name. Current options are summarized below.

renumber_processor Description
RENO Node renumbering using a geometric algorithm (Default)
RSEQ Node renumbering via a variety of order-optimization algorithms

Consult the appropriate sections in Chaptd?ré;Processorsfor more details.

3.2.3.18 RENUMBER Argument

Sets a flag determining whether or not to perform equation renumbering (e.g., bandwidth, skyline,
or sparsity optimization) both initially and whenever the mesh is updated by adaptive refinement.

Argument syntax:

RENUMBER =renumber_flag

whererenumber_flagnay be set either to <true> or <false>. (Default value: <true>)

3.2.3.19 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER = <true>).

Argument syntax:

RENUMBER_OPT =renumber_option

whererenumber_optionndicates the renumbering option and depends on the particular renum-
bering processor chosen. See processors RENO, RSEQ, etc., in ChapterPépcessors
(Default value: 0)

Revised 12/1/97 COMET-AR User’'s Manual 3.2-9



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2.3.20 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

SKY_PROCESSOR sky_ processor

wheresky processors the name of the matrix solution processor. Current options are summa-
rized below.

sky processor Description
SKY Direct solution of skyline matrices by Crout LDU decomposition (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction tgttefinement
only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers.
VSS Vectorized sparse solver (very fast and also space-saving).

Consult the appropriate sections in ChapteMatyix/Vector Processorgor more details.

3.2.3.21 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver, if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

SOLVER_CONV_TOL =solver_conv_tol

wheresolver_conv_tois the convergence tolerance. (Default value: 1.e-6)

3.2.3.22 STR_DIRECTION Argument

This argument sets the stress reference frage, &) for post-processing and/or error estimation
purposes.

3.2-10 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

Argument syntax:

STR_DIRECTION =str_direction

wherestr_directiondenotes the stress/strain direction. Current options are summarized below:

str_direction Meaning
ELEMENT (or 0) Express stress/strain components in the local element (integration poin{) refer-
ence frame @&Xg, Ys=Ve Z= Zo). (Default)
GLOBAL{X|Y | Z} Express stress/strain components in a permutation of the global reference|frame,

With Xs = Xg, Yg OF 7, if X, Y or Z is selected, respectively. For shell elements} the
z, direction is automatically aligned with the local element normatlizection.

{11213} Same as GLOBAL {X | Y | Z}, respectively.

FAB_DIR Use the local fabrication axes for the stress frame; &, Xs=Ys, Z=Y; Se€
Section 2.7Qrientation of Fabrication Reference Frames

3.2.3.23 STRESS Argument

Flag determining whether or not element stresses, strains, and strain energy densities are to be
computed and stored in the database (Default value: <true>).

Argument syntax:

STRESS = {<true> | <false>}

It is currently necessary to set STRESS=<true> fqr all
analyses involving adaptive mesh refinement.

3.2.4 Database Input/Output Summary

A complete model definition database is required as input for the L_STATIC_1 procedure (see
Chapter 2Model Definition ProcedurgsAfter the analysis, the solution data will be output to the
database for the mesh analyzed; the mesh index will appear as the third index in all dataset names.
While most datasets will be stored in the main COMET-AR databaseDBC file, element and

system matrices may be stored in @eseDBE andCaseDBS files, depending on the user set-

tings for the LDI_E and LDI_S arguments.

Revised 12/1/97 COMET-AR User’'s Manual 3.2-11



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2.4.1 Input Datasets
Table 3.2-2 contains a list of datasets required (unless otherwise stated) as input by procedure

L_STATIC_1. All of these datasets must be resident in the main COMET-AR database file
(CaseDBC, whereCaseis the specific problem name).

Table 3.2-2 Input Datasets Required by Procedure L_STATIC_1

Dataset File Description
CSM.SUMMARY..mesh Cas®BC | Model summary for the analyzed mesh
EltNameDEFINITION... mesh Cas®BC | Element definition for the analyzed mesh
EltNameFABRICATION...mesh Cas®BC | Element fabrication pointers for the analyzed mgsh
EltNameGEOMETRY..mesh Cas®BC | Element solid-model geometry for the analyped

mesh
EltNameINTERPOLATION..mesh Cas®BC | Element interpolation data for the analyzed megh
EltNameLOAD.ldcase..mesh Cad$eBC | Element load definition for the analyzed mesh
NODAL.COORDINATE..mesh Cas®BC | Nodal coordinates for the analyzed mesh
NODAL.DOF.conset.mesh Cad$eBC | Nodal DOF Table for the analyzed mesh.
NODAL.TRANSFORMATION..mesh Cas®BC | Nodal transformations between global and compu-
tational frames for the analyzed mesh
NODAL.SPEC_FORCHdcase..mesh CadeBC [ Nodal specified forces for the analyzed mesh
(optional)
NODAL.SPEC_DISHdcase..mesh CadeBC | Nodal specified displacements for the analyzed
mesh (optional)

3.2.4.2 Output Datasets

Table 3.2-3 contains a list of datasets that may be created or updated in the database by procedure
L_STATIC 1. Most of these datasets will be resident in the main COMET-AR database file
(CaseDBC), but element and system matrices may be resident irCaéiseDBE file and
CaseDBS files, depending on the values of the user-specified arguments LDI_E and LDI_S.

Table 3.2-3 Output Datasets Produced by Procedure L_STATIC 1

Dataset File Description
EltNameSTRAIN Idcase.conset.mesh CadBC | Element strains computed for the analyged
mesh
EltNameSTRESSdcase.conset.mesh CadBC | Element stresses computed for the @na-
lyzed mesh

3.2-12 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures

3.2 Procedure L_STATIC 1

Table 3.2-3 Output Datasets Produced by Procedure L_STATIC_1 (Continued)

he

de

Dataset File Description

EltNameSTRAIN_ENERGYldcase.conset.mesh CadBC | Element strain energy densities compyted
for the analyzed mesh

NODAL.DISPLACEMENT Idcase.conset.mesh CadBC | Nodal displacements computed for
analyzed mesh

NODAL.DRILL_FLAG...mesh Cas®BC | Nodal suppress drilling DOF flags for the
analyzed mesh (optional)

NODAL.EXT_FORCEldcase..mesh CadeBC | Nodal external forces for the analyged
mesh

NODAL.NORMAL...mesh Cas®BC | Nodal shell normal for the analyzed mg¢sh
(optional)

NODAL.ORDER..mesh Cas®BC | Nodal re-ordering array, defined by ndg
renumbering processor (optional)

NODAL.DOF.conset.mesh CadeBC | Nodal DOF Table for the analyzed mesip.

SYSTEM.STIFFNESSmesh Cas®BS | System (assembled) stiffness matrix

SYSTEM.VECTORIdcase..mesh Ca$eBS | System (assembled) vector used to gtore
force and displacement vectors durlng
equation solving process.

For details on the contents of any of the above datasets, refer to Chaplatabase Summary

3.2.5 Subordinate Procedures and Processors

3.2.5.1 Subordinate Procedures

A list of COMET-AR utility procedures invoked directly by procedure L_STATIC 1 is provided
in Table 3.2-4. Documentation may be found in Chapteltibty Procedures

Table 3.2-4 Subordinate Procedures to Procedure L_STATIC_1

Procedure Type Function
INITIALIZE Utility Performs dataset initialization, node renumbering, etc.
FORCE Utility Computes external and internal load vectors
STIFNESS Utility Computes element stiffness matrices and assembles the ystem
matrix
FACTOR Utility Performs Crout/Cholesky decomposition of the system matrix
SOLVE Utility Performs solution of the system linear equations
Revised 12/1/97 COMET-AR User’'s Manual 3.2-13



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

Table 3.2-4 Subordinate Procedures to Procedure L_STATIC_1 (Continued)

Procedure Type Function

STRESS Utility Performs stress recovery

3.2.5.2 Relevant Subordinate Processors

Table 3.2-5 lists COMET_AR processors that are invoked directly by procedure L_STATIC_1 and
user-specified processors that are invoked indirectly through any of the subordinate procedures
listed in Table 3.2-4. (A list of the various non-user-specified processors that are invoked indi-
rectly via subordinate procedures may be obtained by consulting the section on the corresponding
procedure.) Documentation on these processors may be found under the chapter on the corre-
sponding processor type.

Table 3.2-5 Relevant Subordinate Processors to Procedure L_STATIC_1

Processor Type Function

Assembler Matrix/Vector | Matrix assembly processor, selected via the ASM_PROCE$SOR
procedure argument.

Renumbering Pre-Processor| Equation/node renumbering processor, selected via the
RENO_PROCESSOR procedure argument.

Equation Solver Matrix/Vector | Equation solver, set via the SKY_PROCESSOR argument.

3.2.6 Current Limitations

L_STATIC 1 is a general purpose procedure and the only limitations on its usage, hardware lim-
its, are dictated by the limitations of the procedures and processors being employed. Refer to indi-
vidual processors and procedures for specific limitations.

3.2.7 Status and Error Messages

L_STATIC_1 does not print any status or error messages directly. All messages will be produces
by subordinate procedures and processors invoked during the execution of L_STATIC 1. Refer to
individual procedures in Chapter3tility Procedures for further information.

3.2-14 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.2 Procedure L_STATIC 1

3.2.8 Examples and Usage Guidelines

3.2.8.1 Example 1: Direct Solver

*call L_STATIC_1 ( ASM_PROCESSOR = ASM ;-
RENUMBER = <true> ;==
RENO_PROCESSOR = RSEQ
RENUMBER_OPT =2 ;==
SKY_PROCESSOR = SKY
MESH =3
STRESS = <true> )

In the above example, a linear static analysis is requested for mesh 3. The solution will be
obtained using a direct solver (SKY), using the reverse Cuthill-McKee algorithm for profile mini-
mization (RSEQ method 2), and stress recovery will be performed.

3.2.8.2 Example 2: Iterative Solver

*call L_STATIC 1 ( ASM_PROCESSOR = ASM ;-
RENUMBER = <true> ;-
RENO_PROCESSOR = RSEQ
RENUMBER_OPT =3
SKY_PROCESSOR = ITER ;-
MAX_ITER = 2000 ;-
SOLVER_CONV_TOL = 1.0e-7
MESH =2
STRESS = <true> )

In the above example, a linear static analysis is requested for mesh 2. The solution will be
obtained using an iterative solver (ITER) with maximum number of iterations=2000 and solver
convergence tolerance set to 1.0e-7. Node renumbering will be performed using the reverse
Gibbs-Poole-Stockmeyer algorithm for bandwidth minimization (RSEQ method 3) and stress
recovery will be performed.

3.2.9 References

[1] Stanley, G., Levit, I., Hurlbut, B., and Stehlin, Bdaptive Refinement (AR) Strategies
for Shell Structures, Part 1: Preliminary ResearEheliminary NASA Contract Report,
1991.

[2] Stehlin, B., The COMET-AR User’s TutoriaNASA Preliminary Contract Report,

February, 1993.

Revised 12/1/97 COMET-AR User’'s Manual 3.2-15



3.2 Procedure L_STATIC_1 3 Basic Solution Procedures

3.2-16 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

3.3 Procedure NL_STATIC 1

3.3.1 General Description

Procedure NL_STATIC_1 is a solution procedure for performing nonlinear static analysis, includ-
ing both geometrical and material nonlinearity using an arclength-controlled version of a modi-
fied Newton-Raphson incremental/iterative nonlinear solution algorithm (see [1] and [2]). This
procedure enables the automatic traversal of limit points and quasi-bifurcation points, which are
commonly experienced in the postbuckling/failure analysis of structures. The user must provide
an initial load factor, a maximum/minimum load factor, and a set of strategy parameters (most of
which have reasonable default values), and the procedure will attempt to obtain an automatic solu-
tion to the problem within the number of load steps and other limits specified by the user.

The equations solved by procedure NL_STATIC_1 are the nonlinear static equilibrium equations:
r(d,\) = fex{x) —fint(d) = 0

whered is the system displacement vectois an external load factd€Xtis the scaled external
force vectorfint is the internal force vector, ands the residual force vector. The above equations
are also subjected to the following scalar arclength constraint equation:

c(d) = [ad|z—al|z = 0

whereA denotes an increment between two successive load steps\(eagd A1), andl is
an arclength parameter, approximating the distance along the load-displacement curve (see
Figure 3.3-1).

A (Load) A

A
n+1 4T7
2

An + \</AI ﬂ\‘\Load Steps

» d (Displacement)

dn dn+1

Figure 3.3-1 Typical Load-Displacement Curve Computed by NL_STATIC 1

Revised 12/1/97 COMET-AR User’'s Manual 3.3-1



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

The solution of these two equations involves their linearization about the current configuration
(which may or may not be in equilibrium) with an iteration loop to obtain convergence in the
neighborhood of that configuration. An outer step loop advances the solution along the load-dis-
placement curve (analogous to load-step incrementation in load-controlled versus arclength-con-
trolled solution algorithms). The essential features of the solution algorithm are illustrated in
Figure 3.3-2. For more details, consult references [3]-[5].

Given
* 0
}‘1:> AI 1 )\max' d1: 0
Load-Step —» Predict
0 _ 0 _
)\n+l_ Extrap( A A A ) d ,, = Extrap(d ,d ,d )
lteration ——m Solve
1 el i i x-1 E __i+l i+1 Cdi ,Al - 2Adi * &d
5d = KT r@ A + KT o | e = Sl A, 1
| | | ] N n i A
J— N\ ! °
& 54 2Adn+1 od
1+1 q ] 6C||+1 )\I+l )\l 5)\i+1
= + = +
n+l n+1l n+1 n+l n+1l n+1l Update
i <-i+l /
No [[red]|| < Exit
Convergence
n<-n+l1 Yes

Figure 3.3-2 Overview of Procedure NL_STATIC_1 Solution Algorithm

In Figure 3.3-2K denotes the “effective” tangent stiffness (which in the modified Newton-Raph-
son algorithm is updated only once every one or more load stefe)ptes a user-specified non-

linear error tolerance, the subscript “n” denotes the load step number, and the superscript “”
denotes the iteration number within a given load step. The user provides the starting and stopping
conditions, and the rest is automatic: at each new load step, both the new displacement vector
(dh+9) and the new load factok(,,) are predicted via quadratic extrapolation along the solution
path. Then, within the iteration loop, two iterative-change displacement vectors are cordguted:

and dd ; the first is based on the residual force vector as right-hand-side, the second is based on
the external force vector as right-hand side. The arclength constraint equation then enables the
calculation of the corresponding iterative change in the load faatomhich in turn provides the
necessary ingredients to compute the combined iterative displacement-chang@d.e€toally,

both the displacement vector and the load factor are updated by their respective iterative changes,

3.3-2 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures

3.3 Procedure NL_STATIC_1

and convergence is checked based on the inner product of the residual force vantbthe iter-
ative displacement chang&d through an energy error norm.

3.3.2 Argument Summary

Procedure NL_STATIC_ 1 may be invoked with t6B®MET-AR [CALL directive, employing

the arguments summarized in Table 3.3-1. These procedure arguments are partitioned into manda-
tory and optional categories. It is assumed that all necessary database files have been opened via

the *OPEN directive before calling NL_STATIC 1.

Table 3.3-1 Procedure NL_STATIC 1 Input Arguments

Argument Default Value Description
MANDATORY Arguments
BEG_LOAD Starting load factor
MAX_LOAD Upper bound on load factor
MIN_LOAD Lower bound on load factor
OPTIONAL Arguments
AUTO_DOF_SUP <true>, 0 Automatic DOF suppression option

AUTO_DRILL <false>, 0, 0 Automatic drilling stiffness augmentation option
AUTO_MPC <false> Automatic “drilling” multipoint constraint switch
AUTO_TRIAD <false>, 0 Automatic triad re-alignment for drilling DOFs
ASM_PROCESSOR ASM Matrix/vector assembly processor name
BEG_STEP 1 Starting step humber (>0)
CONSTRAINT_SET 1 Number of boundary condition set to employ
CONV_CRITERIA CHKCONV_E

COROTATION <true> Corotational option for large rotations
DES_ITERS 4 Desired number of iterations per load step
DSN_R RESPONSE.HISTORY Name of selected-results dataset
EXTRAPOLATE <true> Quadratic predicted solution extrapolation flag
FAC_STEPS 1 Number of steps between stiffness refactoring
INITIALIZE <true> Optional initialization flag for solution restarts
INTERPOLATE <false> Mesh interpolation flag for adaptive refinement
LAST REF_STEP 1 Last step refined (AMR)

LDI_C 1 Logical device index for main COMET-AR file
LDI_E 1 Logical device index for element matrix file

LDl R 1 Logical device index for selected results file

Revised 12/1/97

COMET-AR User’'s Manual

3.3-3



3.3 Procedure NL_STATIC 1

3 Basic Solution Procedures

Table 3.3-1 Procedure NL_STATIC_1 Input Arguments

Argument Default Value Description
LDI_S 1 Logical device index for system matrix file
LINE_SEARCH 1 Initial line-search parameter
LOAD_SET 1 Number of load set to employ in analysis
LOAD_STIFF <false> Include load stiffness
MAX_CUTS 3 Maximum number of automatic step cuts
MAX_ITERS 9 Maximum number of iterations per load step
MAX_STEPS 1 Maximum number of load steps to compute
MESH 0 Mesh number to analyze (from linear AR)
N_SELECT 0 Number of nodal DOFs for selected archival
NEWTON <false> Toggle for TRUE Newton iteration
NL_GEOM 2 Geometric nonlinearity option
NL_MATL 0 Material nonlinearity option
NL_TOL 1l.e-3 Relative error tolerance for nonlinear convergence
PATH_SCALE 0.0 Arclength scale factor to use for restarts (O=automgtic)
POST 0
REFINE <false> Refinement flag
RENO_PROCESSOR RSEQ Node renumbering processor
RENUMBER_OPT 3 Node renumbering option
SEL_DOFS List of DOF numbers for selected archival
SEL_NODES List of node numbers for selected archival
SKY_PROCESSOR SKY Linear equation solver processor name
SOLVER_MAX_ITER 1000 Maximum iterations for iterative solvers
SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers
STR_DIRECTION 0 Stress/strain reference frame for post-processing
STR_LOCATION INTEG_PTS
STRESS <true> Stress/strain database archival step frequency flag
ARCHIVE_STEP 10 Archival step frequency for nonlinear material data

3.3.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.3-1 are defined in more detail.
The arguments are listed alphabetically, and some of the precise definitions are relegated to subor-
dinate procedures and processors (covered elsewhere in this manual) where the actual options are
determined.

3.3-4 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

3.3.3.1 ARCHIVE_STEP Argument

This argument sets the load step frequency for database archival of nonlinear material historical
data.

Argument syntax:

ARCHIVE_STEP =step_frequency

wherestep_frequencys a non-negative integer indicating that nonlinear material historical data
should be archived every “step_frequency”th load step. The vakiemffrequencgetermines at

which load steps the solution can be re-started, i.e., historical data must be archived at a given step
in order for the solution to be continued in a re-start run from that step. A value of 0 implies that
no archival will be performed for the current solution interval. Relevant only for materially non-
linear analysis. (Default value: 10)

3.3.3.2 ASM_PROCESSOR Argument

This argument selects the matrix assembly processor to be used for assembling element stiffness
and mass matrices into corresponding system matrices.

Argument syntax:

ASM_PROCESSOR =asm_processor

whereasm_processas the name of the matrix assembly processor. The current option is limited
to processor ASM. (Default value: ASM)
3.3.3.3 AUTO_DOF_SUP Argument

This argument defines the automatic DOF (degree-of-freedom) suppression option. This capabil-
ity automatically suppresses extraneous DOFs not supported by element stiffness. It is described
in more detail in Section 2.18utomatic DOF Suppression and Drilling Stabilization

Argument syntax:

AUTO_DOF_SUP =option [, angle_tol ]

where:

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>| all
DOFs (in the computational frame) unsupported by element stiffness will be
suppressed throughout the adaptive refinement process. (Default value: true>)

Revised 12/1/97 COMET-AR User’'s Manual 3.3-5



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Parameter Description

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; sep Sec-
tion 2.10 for details. (Default value: depends on element type)

In most cases, it is best to leave the default setting intact.

3.3.3.4 AUTO_DRILL Argument

This argument defines the automatic drilling stiffness option. This option causes shell elements to
add artificial drilling rotational stiffness to nodal DOFs that would otherwise be unstable compu-
tationally. See Section 2.18utomatic DOF Suppression and Drilling Stabilizati@amd individ-

ual element processor sections in Chapt&iément Processorpr more information.

Argument syntax:

AUTO_DRILL = option [, angle_tol , scale fac ]

where:

Parameter Description

option Automatic drilling stiffness switch: { <true> | <false>}. If <true>, certain shell ele-
ment types will add artificial drilling stiffness to nodal DOFs that require stabjliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Section 2.10 for details. (Default value: depends on ¢lement
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by

selected shell elements. See individual Element Processor section in Chapter 7 for
interpretation. (Default value: depends on element type)

AUTO_ DRILL is not recommended for nonlinegar
analysis.

3.3.3.5 AUTO_MPC Argument

This argument sets the automatic multi-point constraint (MPC) option for suppressing extraneous
drilling DOFs, defined as rotations about the normal to a plate or shell element. Unless the ele-
ment has intrinsic stiffness associated with such rotations, these DOFs may lead to a singular stiff-
ness matrix. Turning the AUTO_MPC option on causes special constraints to be generated at
nodes where insufficient drilling rotational stiffness is present, to suppress the rotation about the
appropriate (“drilling”) axis. This axis is generally not aligned with any of the computational
axes, and so the constraint will typically involve a linear combination of the rotational DOFs cor-

3.3-6 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

responding to the computational axes. See Section RutOmatic DOF Suppression and Drill-
ing Stabilization for more information on this option and related options such as
AUTO_DOF_SUP, AUTO_DRILL, and AUTO_TRIAD.

Argument syntax:

AUTO_MPC = option [, angle_tol ]

where:

Parameter Description

option Automatic multi-point constraint switch for drilling stabilization:
{ <true> | <false> }. If <true>, multi-dof constraints will be generated at npdes
where drilling stabilization is needed. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

3.3.3.6 AUTO_TRIAD Argument

This argument defines the automatic computational triad (i.e., DOF direction) re-alignment
option. This option, an alternative to AUTO_DRILL, causes re-alignment of the computational
triads at all nodes that require drilling DOF stabilization, as long as no boundary conditions have
been defined there. The computational axes are re-aligned such that one of them is parallel to the
average element surface-normal at the node. Then, extraneous (unstable) drilling rotational DOFs
can be subsequently suppressed via the AUTO_DOF_SUP option. (See Sectidutdbatic

DOF Suppression and Drilling Stabilizatipfor more information.)

Argument syntax:

AUTO_TRIAD = option [, angle_tol ]

where:

Parameter Description

option Automatic triad re-alignment option switch: { <true> | <false> }. If <true>, compu-

tational triads will be re-aligned with average element normal at all nodep that
require drilling DOF stabilization, unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element type)

Revised 12/1/97 COMET-AR User’'s Manual 3.3-7



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

AUTO_TRIAD should only be used in conjunctipn
with AUTO_DOF_SUP, and should not be useq in
conjunction with user-defined point forces and/or
multi-point constraints.

3.3.3.7 BEG_LOAD Argument
This argument sets the starting load facterfor the nonlinear analysis.

Argument syntax:

BEG_LOAD =\

For applied force loading, this factor is multiplied by the reference (i.e., base) applied force vec-
tor, fgeXt i.e.,

ext
= ext
fl - )‘1fo

where f®Xtis a combination of the user’'s specified nodal (concentrated) forces in dataset
NODAL.SPEC_FORCHdset..meshand specified element (distributed) forces in dat&set
NamLOAD.ldset..meshFor applied displacement loading, the starting load factor is applied to
the reference (i.e., base) user-specified displacement vedie¥! stored in dataset
NODAL.SPEC_DISHdset..meshwhich is then used to compute the initial internal force vector,
f,int. In either case, the starting load factor is used to compute the starting arclength increment,
Al4, which is then modified adaptively (see DES_ITERS argument) while the load factor becomes
a solution variable throughout the rest of the analysis. (Default value: None)

This argument is irrelevant for re-start runs (i.e., BEG_STEP>1) in which cage the
PATH_SCALE argument is used (indirectly) to determine how big of a load step to take.

3.3.3.8 BEG_STEP Argument

This argument sets the number of the first load step to be computed in a given nonlinear analysis
interval.

Argument syntax:

BEG_STEP =beg_step

wherebeg_steps the beginning (or starting) step number. Initidbyg_steshould be set equal
to 1. For analysis re-start ruseg_stemhould be set equal to the next step to compute (or re-

3.3-8 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

compute). For example,rifsteps had been computed (and saved in the database) during the initial
run, the user would séeg_stemequal ton+1 for a re-start run that continues where the first run
left off. It is not necessary fdyeg_stepo be larger than any previously computed step. That is,
the user may wish to recompute a sequence of steps by betingteequal to the number of the

first step to be re-computed. Procedure NL_STATIC 1 will then automatically use the solution
data for those steps immediately preceding &teg step(i.e., beg_step—1lbeg_step—2and
beg_step-Bto smoothly effect the restart, and over-write the solution data for each re-computed
load step (i.e.beg_stepbeg_step+1... up to the highest step originally computed). (Default
value: None)

3.3.3.9 CONSTRAINT_SET Argument

This argument specifies the number of the boundary condition constraint set (defined by the user
during Model Definition) to be employed for the current nonlinear analysis.

Argument syntax:

CONSTRAINT_SET =conset

whereconsets the constraint set number. (Default value: 1)

3.3.3.10 COROTATION Argument

This argument selects the element corotational update option to be employed by the generic ele-
ment processor for geometrically nonlinear analysis (i.e., large displacements and rotations, small
to moderate strains).

Argument syntax:

COROTATION = corotation

wherecorotationis the option number, for which valid entries are given below.

corotation Description

0 Element corotational updates will not be used to account for large rotation effects; afy such
effects must therefore be handled by the element’s own nonlinear strain-displacement rglations,
activated by setting the argument NL_GEOM= 2.

1 Basic element corotational updates will be used to account for large rotation effects. The accu-
racy of this approach can be enhanced if nonlinear element strain-displacement relations|are used
(by setting argument NL_GEOM=2) but linear element strain-displacement relations
(NL_GEOM=1) are acceptable if the mesh is sufficiently fine. (Default)

2 Higher-order element corotational option. This is essentially the same as option 1, excgpt some
additional terms are added to the element stiffness matrix which can increase the rate of ponlinear
convergence, but only in conjunction with true Newton iteration (see NEWTON argument).

Revised 12/1/97 COMET-AR User’'s Manual 3.3-9



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Corotation is a built-in feature of the Generic Element Processor (see SectiGerre?ic Ele-

ment ProcessQr which subtracts the bulk rigid-body motion from each element (via the element
corotational reference frame described in Section Reference Frames and Coordinate Sys-
temg, leaving deformational displacements and rotations that are relatively small (and become
smaller as the mesh is refined), regardless of how large the bulk motions (i.e., total displacements
and rotations) are. This allows elements that are based on only moderate rotation theory (e.g.,
most beam and shell elements), or even infinitesimal rotation theory, to be applied to problems
involving arbitrarily large rotations but small strains. For theoretical details on the corotational
method implemented in COMET-AR, refer to the Generic Element Processor Manual [4]; for a
description of how corotation interacts with procedure NL_STATIC 1, refer to the section on
NL_STATIC_1 in reference [3].

3.3.3.11 DES_ITERS Argument

This argument sets the desired number of iterations for nonlinear convergence at each load step,
which affects how the step size is adaptively updated during the run.

Argument syntax:

DES _ITERS =des_iters

wheredes _iterds the desired number of iterations. The step-size update algorithm is as follows.
If the actual number of iterations required to obtain convergence at istgpthin the limit set by

the MAX_ITERS argument, then the new arclength increment fomstéps defined in terms of

the arclength increment at stepvia the linear relationship:

_ desired_iters><

Al = e
n+1 ™ actual_iters” — "

If the actual number of iterations is larger than the desired number, the new step size will be pro-
portionally smaller, and conversely if the actual number of iterations is smaller than the desired
number, the new step size will be proportionally larger then the old step size. Only if the actual
number of iterations is identical to the desired number does the step size remain constant. (Default
value: 4)

3.3.3.12 DSN_R Argument

This argument specifies the name of the dataset within the results database file (also see argument
LDI_R) where selected results and nonlinear solution parameter values are to be stored.

Argument syntax:

DSN_R =dsn_r_name

3.3-10 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

wheredsn_r_namas the name of the dataset. (Default value: RESPONSE.HISTORY)

3.3.3.13 EXTRAPOLATE Argument

This argument sets a flag determining whether or not to use quadratic extrapolation along the
solution path to predict the load factor and displacement vector at the beginning of each load step.

Argument syntax:

EXTRAPOLATE = {<true> | <false>}

where <true> implies that quadratic extrapolation will be used.The use of quadratic extrapolation
is recommended since it has been found to be a very effective strategy for accelerating traversal of
the load-displacement curve. Far fewer load steps are usually required with extrapolation than
without except at abrupt slope discontinuities in the curve, where a quadratic polynomial is too
smooth to be of much help. (Default value: <true>)

The EXTRAPOLATE=<false> option has not been fully tesfed,
and hence is not recommended.

3.3.3.14 FAC_STEPS Argument

This argument sets the number of load steps between stiffness matrix updates (i.e., re-forming and
re-factoring).

Argument syntax:

FAC_STEPS +ac_steps

wherefac_stepss a positive integer indicating that re-factoring of a new stiffness matrix will be
performed everyac_stepdoads step. For modified Newton iteration, the stiffness update will be
performed only at the beginning of such steps; for true Newton iterations, the stiffness update will
be performed at each iteration of the step. (The NEWTON argument may be used to select modi-
fied versus true Newton iteration.) Best results are often obtainethwitbtepset to 1. (Default

value: 1)

3.3.3.15 INITIALIZE Argument

This argument sets a flag determining whether or not to initialize element parameters, constitutive
parameters, and equation numbers when performing a solution re-start.

Revised 12/1/97 COMET-AR User’'s Manual 3.3-11



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Argument syntax:

INITIALIZE = { <true> | <false>}

where <true> implies that initialization will be performed at the beginning of the current solution
interval, and <false> implies that it will not be performed. For the very first solution interval (i.e.,
starting at step 1), the initialization flag should be set to <true>. For subsequent re-starts, it should
be set to <false> unless adaptive refinement has been performed, an option which has not yet been
fully tested. For now, use the default value of <true> initially, and change it to <false> for all sub-
sequent re-start runs. (Default valsgrue>)

3.3.3.16 INTERPOLATE Argument

This argument sets an interpolation flag option that can be used in conjunction with adaptive mesh
refinement. It is typically invoked automatically when NL_STATIC_1 is called by an adaptive
solution control procedure such as AR_CONTROL _1.

Argument syntax:

INTERPOLATE = { <false> | <true> }

where <true> means that the predicted displacement solution for step BEG_STEP will be
obtained by spatially interpolating from the solution for the previous mesh. (Default: <false>)
3.3.3.17 LDI_C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
typically namedCaseDBC.

Argument syntax:

LDI_C =1di_c

whereldi_c is the logical device index (a positive integer) of the .DBC file. (Default value: 1)

The .DBC file must be opened by the user vig an
“*OPEN Idi_c’ directive before invoking procedure
NL_STATIC 1.

3.3.3.18 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally namedCaseDBE.

3.3-12 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

Argument syntax:

LDI_E =Idi_e

whereldi_e s the logical device index (a positive integer) of the .DBE file. (Default value: 1)

To create a .DBE file separate from the .DBC (main COMET-AR datapase)
file, it must be opened/created via an “*OPHN € directive beforeg
invoking procedure NL_STATIC_1; otherwise]di_e =Idi_c, all element
matrices will be stored in the .DBC file.

3.3.3.19 LDI_R Argument

This argument sets the logical device index associated with the selected results database file, typi-
cally namedCaseDBR.

Argument syntax:

LDI_R =Idi_r

whereldi_r is the logical device index (a positive integer) of the .DBR file. This file will be used
to store all user-selected displacement results, as well as key solution parameters, in a dataset
whose name is specified by the DSN_R argument. (Default value: 1)

To create a .DBR file separate from the .DBC file, it must be opened/created via an
“*OPEN Idi_r” directive before invoking NL_STATIC_1; otherwise, Idi_r =
Idi_c, the selected results will be stored in the .DBC file.

3.3.3.20 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally namedCaseDBS.

Argument syntax:

LDI_S =Idi_s

whereldi_sis the logical device index (a positive integer) of the .DBS file. (Default va)ue

it must be opened/created via an “*OPHEIN s’ directive before invoking procg-
dure NL_STATIC_1; otherwise, ifdi_s = Idi_c, all system matrices will b
stored in the .DBC file.

To create a .DBE file separate from the .DBC (main COMET-AR databas{) file,

Revised 12/1/97 COMET-AR User’'s Manual 3.3-13



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

3.3.3.21 LOAD_SET Argument

This argument specifies the number of the external load set (defined by the user during Model
Definition) to be employed for the current nonlinear analysis.

Argument syntax:

LOAD_SET = Idset

whereldsetis the load set number. (Default value: 1)

3.3.3.22 MAX_CUTS Argument
This argument sets the maximum number of step cuts allowed during the current nonlinear run.

Argument syntax:

MAX_CUTS =max_cuts

wheremax_cutss the maximum number of cuts allowed. A step cut refers to a halving of the
arclength incrementyl, used to advance the solution from one step to the next. Step cuts are per-
formed only if the maximum number of iterations (specified via the MAX_ITERS argument) is
exceeded without converging at a given step. (Default value: 3)

Whenever the step is cut, a new displacement predictor is
extrapolated, and a corresponding new stiffness matrjx is
formed and factored unless the user has turned off the sojution
extrapolation switch (via the EXTRAPOLATE argument). The
user may manually introduce arbitrary step size reductions (or
increases) by stopping the analysis and re-starting with a modi-
fied value of the PATH_SCALE argument.

3.3.3.23 MAX_ITERS Argument

This argument sets the maximum number of iterations allowed for nonlinear convergence at a
given load step.

Argument syntax:

MAX_ITERS =max_iters

wheremax_itersis the maximum number of iterations allowedmix_itersiterations have been
performed at a given step, and nonlinear convergence (to an equilibrium state) has not yet been
obtained, procedure NL_STATIC_1 will attempt to cut the step size as many times as allowed via

3.3-14 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

the argument MAX_CUTS. If the limits set by both MAX_CUTS and MAX_ITERS have been
reached, then the run will be terminated and the user will have to try a different strategy (see Sec-
tion 3.3.9,Usage Guidelings (Default value: 9)

3.3.3.24 MAX_LOAD Argument

This argument sets the maximum load factqy,,, for the nonlinear analysis.

Argument syntax:

MAX_LOAD = Apay

The valueh 5 establishes an upper limit on the load level, and provides a convenient way of ter-
minating the arclength-controlled solution algorithm. Since the load factor is actually a solution
variable (i.e., an unknown) in procedure NL_STATIC 1, there is no way of knowing a priori how
many load steps will be required to attajp,, The analysis is terminated when eitAggy, Amin:
max_step®r max_cutds exceeded as set by the MAX_LOAD, MIN_LOAD, MAX_STEPS, and
MAX_CUTS arguments, respectively. (Default value: None)

Procedure NL_STATIC_1 may overshoot the maximum
load factor somewhat, as it does not fix the last |oad
increment to force convergence to the user-spedified
maximum.

3.3.3.25 MAX_STEPS Argument

This argument sets the maximum number of load steps to compute during the current nonlinear
analysis run with procedure NL_STATIC 1.

Argument syntax:

MAX_STEPS =max_steps

wheremax_stepss the maximum number of steps to compute in the current run, not to be con-
fused with the number of the highest load step in the analysis. This provides an implicit limit on
analysis run time. Since the load factor is actually a solution unknown (controlled by the arclength
parameterAl) there is no way of knowing a priori how many load steps will be required to attain
the user’s designated maximum or minimum load factor (specified via the MAX_LOAD and
MIN_LOAD arguments). The nonlinear run is terminated whenever MAX_STEPS,
MAX_LOAD, MIN_LOAD, or MAX_CUTS is exceeded. (Default value: None)

3.3.3.26  MESH Argument

This argument sets the number of the mesh to be analyzed throughout the nonlinear analysis.

Revised 12/1/97 COMET-AR User’'s Manual 3.3-15



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Argument syntax:

MESH = mesh

wheremeshis the mesh number. Unless linear adaptive mesh refinement has been performed ear-
lier (i.e., via solution procedure AR_CONTROL_1) the mesh number will always be 0. The cur-
rent capabilities for adaptive mesh refinement during the nonlinear analysis are experimental and
not recommended for general use. (Default value: 0)

3.3.3.27 MIN_LOAD Argument

This argument sets the minimum load fackq;,, for the nonlinear analysis.

Argument syntax:

MIN_LOAD = Apin

The valueh,, establishes a lower limit on the load level which should be less than the starting
load factor)4, specified by the BEG_LOAD argument. This provides a convenient way of termi-
nating the arclength-controlled solution algorithm. Since the load factor is actually a solution vari-
able (i.e., an unknown) in procedure NL_STATIC_1, there is no way of knowing a priori how
many load steps will be required to attajg, The analysis is terminated when eithggy Amins
max_step®r max_cutss exceeded as set by the MAX_LOAD, MIN_LOAD, MAX_STEPS, and
MAX_CUTS arguments. (Default value: None)

Procedure NL_STATIC_1 may undershoot the maxinpum
load factor somewhat, as it does not fix the last |oad
increment to force convergence to the user-spedified
minimum.

3.3.3.28 NEWTON Argument

This argument determines the type of Newton-Raphson iteration algorithm to use: modified or
true.

Argument syntax:

NEWTON = { MODIFIED | TRUE }

If NEWTON=MODIFIED, stiffness matrix updates (re-forming and re-factoring) will be per-
formed only at the beginning of evefgc_stepsload steps, wheréac_stepsis set via the

3.3-16 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

FAC_STEPS argument. If NEWTON=TRUE, stiffness matrix updates will be performed at each
iteration of everyac_stepdoad steps. (Default value: MODIFIED)

Modified Newton iteration is typically more effectiye
than true Newton iteration except at critical junctyres
of the solution trajectory, where dramatic changeg are
taking place rapidly, e.g., mode switching, bifurfa-

tion-like behavior, contact, and abrupt material dam-
age such as progressive crack or delamination growth.

3.3.3.29 NL_GEOM Argument

This argument selects the geometrical nonlinearity option to be used in the current analysis run.

Argument syntax:

NL_GEOM = nl_geom

wherenl_geomis the option number, for which valid entries are given below.

nl_geom Description

0 The problem is treated as geometrically linear, i.e., infinitesimally small displace-
ments, rotations and strains.

1 The problem is geometrically nonlinear, but only linear strain-displacement relations
will be used at the element level; it is assumed that large displacements and rptations
will be handled via the corotational option (see COROTATION argument).

2 The problem is geometrically linear, and nonlinear strain-displacement relatiofs will
be used at the element level whether or not the corotational option is selected by the
user (see COROTATION argument). (Default)

Option 2 is generally more accurate than option 1, but requires the particular element type
selected to have the capability for nonlinear strain-displacement relations (refer to the descriptions
of specific element processors in ChapteEl@ment ProcessoysFor more information on the
corotational capability, refer to the COROTATION argument as well as references [3] and [4].

3.3.3.30 NL_MATL Argument

This argument selects the material nonlinearity option to be used in the current analysis run.

Revised 12/1/97 COMET-AR User’'s Manual 3.3-17



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Argument syntax:

NL_MATL = nl_matl

wherenl_matlis the option number, for which valid entries are given below.

nl_matl Description
0 Material nonlinearity will not be considered. (Default)
1 Material nonlinearity will be considered, provided the material types selected py the
user during model definition are based on a nonlinear constitutive model.

3.3.3.31 NL_TOL Argument

This argument sets the value of the error tolerance used to establish convergence of the nonlinear
equilibrium iteration process at each load step.

Argument syntax:

NL_TOL = nl_tol

wherenl_tol is the relative error tolerance in the energy error norm. The iteration loop at a given
load step is terminated whenever the following condition is met:

€ <nl_tol
wheree is an error norm that may be selected via the NL_CONV_CRITERIA argument, e.g.,

riedd
€ =
rte ad®

is the relative energy error norm, wheris the residual force vectawl is the iterative displace-
ment change vector, amds the iteration counter at a given step. (Defaallie 1.e-3)

3.3.3.32 N_SELECT Argument

This argument specifies the number of user-selected displacement components to be saved in the
results database (see arguments LDI_R and DSN_R for specification of the results database file
number and dataset name).

Argument syntax:

N_SELECT =n_select

3.3-18 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

wheren_selectis the number of displacement components to save. The actual node and DOF
numbers identifying these displacement components are specified via the SEL_NODES and
SEL_DOFS arguments. (Default value: 0)

3.3.3.33 NL_CONV_CRITERIA

This argument selects the command-language procedure to be used to assess nonlinear conver-
gence at each iteration of a nonlinear analysis.

Argument syntax:

NL_CONV_CRITERIA = procedure_name

where the options are:

procedure_name Description

CHKCONV_E Uses strain-energy norm as convergence measure, with incremental quartity as a
reference value in the denominator for relative error. (Default)

CHKCONV_SE Same as CHKCONV_E except employs total strain energy (square root) gs refer-
ence value in the denominator to obtain relative error.

CHKCONV_D Uses Euclidean norm of displacement vector change as error measure, with norm
of total displacement in denominator.

3.3.3.34 PATH_SCALE Argument

This argument sets a scale factor to be applied to the current arclength incfénfenthe first
step in a re-start run. It is thus a manual way to adjust the solution step size.

Argument syntax:

PATH_SCALE =path_scale

wherepath_scalds a non-negative floating point numberpé#th_scalds set to 1., the step-size
from the previous step (i.doeg_step—lwherebeg_steps set by the BEG_STEP argument) will
be used to compute the first new stegg(_step i.e.,

Al ., = path_scalex Al |

n

wheren = beg_step—-1This may lead to a different step size than would have been obtained had
the analysis continued without a re-start since the step-size would have been adjusted based on the
ratio of desired-to-actual iterations (see the DES_ITERS argument). The main function of this

Revised 12/1/97 COMET-AR User’'s Manual 3.3-19



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

argument is for the user to override the procedure’s step-size adjustment algorithm, in cases where
the user has a better idea based on experience. (Default value: 0 => use automatic step-size adjust-
ment algorithm)

3.3.3.35 SEL_DOFS Argument

This argument specifies a list of DOF numbers designating user-selected displacement compo-
nents to be saved in the results database (see arguments LDI_R and DSN_R for specification of
the results database file number and dataset name). The number of displacement components to be
that are saved is set with the N_SELECT argument. The node numbers are set via the
SEL_NODES argument.

Argument syntax:

SEL_DOFS =DOF_1, DOF 2, ..., DOF_N_SELECT

whereDOF_1, DOF_2, .,.represent nodal DOF numbers (e.g., ranging between 1 and 6 for stan-
dard 6 DOF per node problems) aNdSELECTrepresents the number of components selected
via the N_SELECT argument. (Default value: 0)

For each of the N_SELECT displacement components selected
there is a node and DOF number pair, set via the SEL_NQDES
and SEL_DOFS arguments. For example, to save all 6 DQFs at
node 10 in the selected results dataset, the user would se}:

N_SELECT=6, SEL_NODES=6@10, and SEL_DOFS=1:6.

3.3.3.36  SEL_NODES Argument

This argument specifies a list of node numbers for user-selected displacement components to be

saved in the results database (see arguments LDI_R and DSN_R for specification of the results

database file number and dataset name). The number of displacement components that are to be
saved is set with the N_SELECT argument.

Argument syntax:

SEL_NODES =node_1, node 2, ..., node N SELEQT

wherenode_1, node_2, . represent global node numbers, &h¢&6ELECT represents the num-
ber of components selected with the N_SELECT argument. (Default value: 0)

Only those DOFs (i.e., components) selected via| the
SEL_DOFS argument will be stored for these nodes.

3.3-20 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

3.3.3.37 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

SKY_PROCESSOR =sky_processor

wheresky processors the name of the matrix solution processor. Current options are summa-
rized below.

sky_processor Description
SKY Direct solution of skyline matrices by Gauss elimination (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction kgtiefinement only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers.
VSS Vectorized sparse solver (very fast and also space-saving)

Consult Chapter 1Matrix/\Vector Processordor details on individual solution processors.

3.3.3.38 STR_DIRECTION Argument

Sets the stress/strain reference framgy{zy) for post-processing and/or error estimation pur-
poses.

Argument format:

STR_DIRECTION s=str_direction

wherestr_directiondenotes the stress/strain direction. Current options are summarized below.

str_direction Meaning

ELEMENT (or 0) Express stress/strain components in the local element (integration point) referente frame
(X=X, Y=Y, Z= 2)- (Default)

GLOBAL {X|Y|Z} |Express stress/strain components in a permutation of the global reference framg| with x
= Xg Yg OF %, if X, Y or Z is selected, respectively. For shell elements, {liérection is
automatically aligned with the local element normgldizection.

{1]12]3} Same as GLOBAL {X | Y| Z} respectively.

Revised 12/1/97 COMET-AR User’'s Manual 3.3-21



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

str_direction Meaning

FAB_DIR Use local fabrication axes for the stress frame, ikBXXys=Ys, Z=Y;. See Section 2.7,
Orientation of Fabrication Reference Frames

3.3.3.39 STRESS Argument

Flag determining whether or not element stresses, strains, and strain energy densities are to be
computed and stored in the database. (Default value: <true>)

Argument format:

STRESS = { <true> | <false> }

analyses involving adaptive mesh refinement.

It is currently necessary to set STRESS=<true> fc‘r all

3.3.4 Database Input/Output Summary

A complete model definition database is required as input for the first run with procedure
NL_STATIC_1 (see Chapter Rjodel Definition ProcedurgsAfter the analysis, solution result

data, e.g., displacements, stresses, internal forces, etc., will have been output to the database for
each load step computed. In addition, intermediate solution data, such as incremental displace-
ment vectors, residual force vectors, element stiffness matrices and system stiffness matrices for
the current (i.e., most recently computed) step will be stored in the database. Most of the datasets
will be stored in the main COMET-AR database (.DBC file, associated with argument LDI_C),
while the element matrices may be stored in the .DBE file, and the system matrices may be stored
in the .DBS file, depending on the values set by arguments LDI_E and LDI_S, respectively.

3.3.4.1 Input Datasets

Table 3.3-2 contains a list of datasets required (unless otherwise stated) as input by procedure
NL_STATIC 1. All of these datasets must be resident in the main COMET-AR database,
CaseDBC, which is assumed to be open and attached to the logical device index specified by the

3.3-22 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

LDI_C argument. The variablesesh Idset andconsetrepresent the mesh index, load set, and
constraint set number, respectively.

Table 3.3-2 Input Datasets Required by Procedure NL_STATIC 1

Dataset File Description
CSM.SUMMARY..mesh Cas®BC | Model summary
EltNameDEFINITION..me#& CaseDBC | Element definition
EltNameFABRICATION...mesh Cas®BC | Element fabrication pointers
EltNameGEOMETRY..mesh Cas®BC | Element solid-model geometry
EltNameINTERPOLATION..mesh Cas®BC | Element interpolation data
EltNameLOAD.ldset..mesh CadeBC | Element load definition
NODAL.COORDINATE..mesh Cas®BC | Nodal coordinates
NODAL.DOF.conset.mesh Cad$eBC | Nodal DOF boundary conditions
NODAL.TRANSFORMATION..mesh Cas®BC | Nodal transformation matrices (global ->computational)
NODAL.SPEC_FORCHdset..mesh CadeBC | Nodal specified forces
NODAL.SPEC_DISHdcase..mesh CadeBC | Nodal specified displacements

3.3.4.2 Output Datasets

Table 3.3-3 contains a list of datasets that are created/stored in the database by procedure
NL_STATIC 1. Most of these datasets will be resident in the central COMET-AR database file
CaseDBC associated with argument LDI_C, but element and system matrices may be resident in
the CaseDBE andCaseDBS files, depending on the values of the user-specified arguments
LDI_E and LDI_S. Selected displacement components and solution strategy parameters will be
stored in ERESPONSE.HISTOR¥ataset (specified via the DSN_R argument) that will either be
resident on the .DBC file or on a separate .DBR file, depending on the values associated with
arguments LDI_R and LDI_C.

Table 3.3-3 Output Datasets Updated/Created by Procedure NL_STATIC_1

Dataset(s) File Description
CSM.SUMMARY..mesh Cas®BC | Model summary with updated load step counter|
EltNamSTIFFNESS.mesh Cas®BE | Element matrices for current step
EltNamSTRAIN step..mesh CadeBC | Element strains at each step
EltNamSTRESSstep..mesh CadeBC | Element stresses at each step
EltNamSTRAIN_ENERGY.step..mesh CadeBC | Element strain energy densities at each step
NODAL.DISPLACEMENT.step..mesh CadeBC | Nodal displacements at each step

Revised 12/1/97 COMET-AR User’'s Manual 3.3-23



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Table 3.3-3 Output Datasets Updated/Created by Procedure NL_STATIC_1

Dataset(s) File Description
NODAL.ORDER.conset.mesh Cad$eBC | Nodal re-ordering array (optional)
NODAL.DOF..conset.mesh Ca$eBC | Nodal DOF dataset updated with equation numlpers
NODAL.EXT_FORCE..mesh Cas®BC | Nodal external force vector at current step
NODAL.INC_DISP..mesh Cas®BC | Nodal incremental disp. vectors], at current stef
NODAL.INC_DISP_BAS..mesh Cas®BC | Nodal incremental disp. vectosl, at current step
NODAL.INC_DISP_ITR..mesh Cas®BC | Nodal incremental disp. vectodsl, at current step
NODAL.INC_DISP_TAN..mesh Cas®BC | Nodal incremental disp. vecto’] , at current step
NODAL.INT_FORCEstep..mesh CadeBC | Nodal internal force vectors at each step
NODAL.RES_FORCE.mesh Cas®BC | Nodal residual force vector at current step
NODAL.ROTATION.step..mesh CadeBC | Nodal rotation pseudo-vectors at each step
NODAL.TAN_FORCE..mesh Cas®BC | Nodal tangent force vector at current step
RESPONSE.HISTORY CadBR | History of selected displacements and solution

parameters
STRUCTURE.STIFFNESSmesh Cas®BS | Latest assembled structural stiffness matrix

3.3.5 Subordinate Procedures and Processors

Procedure NL_STATIC 1 employs a number of utility procedures to perform nonlinear static
analysis, and these procedures, in turn, employ a number of processors to perform most of the cal-
culations. An overview of the subordinate utility procedures is given in Figure 3.3-3. The follow-
ing sections list and summarize the functions of both subordinate procedures and processors

( NL_STATIC 1 )

( INITIALIZE ) ( STIFFENESS) ( SOLVE )
( FORCE ) FACTOR ( STRESS )

Figure 3.3-3 Organization of Procedure NL_STATIC 1

3.3-24 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

3.3.5.1 Subordinate Procedures

Utility procedures invoked directly by procedure NL_STATIC_1 is provided in Table 3.3-4.

Table 3.3-4 Subordinate Procedures to Procedure NL_STATIC 1

Procedure Type Function
FACTOR Utility Factors assembled structural stiffness matrix
FORCE Utility Forms and assembles structural force vectors
INITIALIZE Utility nitializes element data and assigns equation numbers
SOLVE Utility Solves linear equation systems using factored stiffness
STIFFNESS Utility Forms and assembles structural stiffness matrix
STRESS Utility Computes element stresses, strains, and strain energies

Documentation on these procedures may be found in Chajiélity, Procedures

3.3.5.2 Subordinate Processors

A list of COMET_AR processors that are invoked by procedure NL_STATIC_1 and its utility pro-
cedures is given in Table 3.3-5.

Table 3.3-5 Subordinate Processors to Procedure NL_STATIC 1

Processor Type Calling Procedures Function
ASM_Processor Matrix/ STIFFNESS Assembles element stiffness matrices into strucfural
Vector stiffness matrix.
SOLVE Assembles force vector due to specified displace-
ment components.
RENO Pre- INITIALIZE Renumbers nodes so as to achieve “optimal” equa-
Processor tion numbers for linear solver.
SKY_Processor Matrix/ FACTOR Linear equation solver, set via procedure argunjent:
Vector SOLVE SKY_PROCESSOR.
ES Element INITIALIZE Relevant element processors (invoked indiregtly,
FORCE via utility procedure ES) perform all element related
STIFFNESS functions.
STRESS
COP Pre- INITIALIZE Defines nodal boundary conditions and multi-pgint
Processor SOLVE constraints.
TRIAD Special- INITIALIZE Re-aligns computational triads at nodes | if
Purpose AUTO_TRIAD procedure argument is on.

Revised 12/1/97 COMET-AR User’'s Manual 3.3-25



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

Table 3.3-5 Subordinate Processors to Procedure NL_STATIC_1

Processor Type Calling Procedures Function
VEC Matrix/ NL_STATIC_1 | Vector utility processor, used for all vector alggbra
Vector operations, including dot products, “saxpy’s,” and

even nodal pseudo-vector updates for large fota-
tions.

Documentation on these processors may be found under the chapter on the corresponding proces-

sor type.

3.3.6 Current Limitations

A summary of current limitations is given in Table 3.3-6.

3.3-26 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures

3.3 Procedure NL_STATIC_1

Table 3.3-6 Current Limitations of Procedure NL_STATIC 1

Limitation Description Work-Around
1 | Single Load | Only one load system is currently allowed. This mgasne.
System that all load contributions are scaled by the same [load
factor.
2 | Not all Ele- Not all element types are equipped for nonlinear anaglect only elements that have
ment Types sis, especially geometrically nonlinear analysis. Chelk necessary capabilities.
the documentation on the specific element type selg¢cted
and make sure that the element has both geometrid stiff-
ness matrix and internal force vector capabilities imple-
mented (under the Status and Limitations subsectign of
the appropriate Element Processor section).
3 | Limit on Speci{ Specified non-zero rotational DOFs are currently valithke an effort to employ trang-
fied Rotations | only in cases where the specified rotation comporjdateonal DOFs only for spec|-
remain smaller than about 10 degrees. fied displacement loading.
4 | Cannot Fix Load increments are computed automatically by|tkene.
Load Incre- algorithm, and cannot be influenced by the user eXcept
ments indirectly, by changing the arclength step size (via|the
PATH_SCALE and DES_ITERS arguments).
5 | Not Foolproof | There is no such thing as a fully automatic nonlingar an actively involved use;
solution algorithm. The unexpected is to be expegtgdestion all results, and expdfi-
and the user may have to try all kinds of different stjatgent with solution strategies o
gies to complete the analysis. gain experience. Consult Usage
Guidelines, references [3] and
[5], and more experienced users.

3.3.7 Status and Error Messages

A summary of important status and error messages potentially printed by Procedure

NL_STATIC 1 is given in Table 3.3-7.

Revised 12/1/97

COMET-AR User’'s Manual

3.3-

27



3.3 Procedure NL_STATIC 1

3 Basic Solution Procedures

Table 3.3-7 Status and Error Messages for Procedure NL_STATIC 1

Status/Error
Message

Potential
Cause(s)

Suggested
User Response

Non-Convergence at Step
Revise Strategy

Mhe maximum number of nonline
iterations (MAX_ITERS) has bee
exhausted, as well as the maxim
number of step cuts (MAX_CUTS
and convergence still has not be
obtained at step n.

\/-
arc-
'9
be

plry re-starting the analysis from sd
reral steps back, and decrease the
Llangth increment at that point (usi
the PATH_SCALE). Or, justincrea
MMAX_ITERS and MAX_CUTS

Divergence at Step n.
Revise Strategy.

This message has implications like
previous message, but occurs when
error grows instead of decreases du
two successive nonlinear iteratio

The difference between divergence @§nd

non-convergence is that diverger
cannot be cured by increasi
MAX_ITERS. It generally means th
the step size is too big.

ey re-starting from an earlier step, &
tiregluce the size of the arclength ing
inent via argument PATH_SCALI
hand/or the error tolerance via TOL_H.

re-

ce

9
At

Convergence Difficulties;
Repeating Step n with
Reduced Path_Increment

Convergence has not been obtained
step n within the maximum number
iterations allowed (see MAX_ITER
argument). The procedure is cutting
step size (i.e., arclength increment)
half and will try again.

fRelax. Itis normal for the step to hg
db be cut several times beyond the
Jial estimate, especially during t
fmore nonlinear stages of the load-dis-
placement history.

Convergence at Step n

The solution at load step n has
verged to an equilibrium state with
the user’s error tolerance. The pro
dure is ready to advance to the n
load step.

Abrs probably well, for now. Remenmn
imer that nonlinear problems can have
Cerultiple  solutions, and there is o
egtiarantee that you won't have to fe-
compute step n later, especially if ypu
find that you are on an unstable equilib-

rium path (see Usage Guidelines).

3.3.8 Usage Examples

3.3.8.1 Example 1: Starting a Nonlinear Analysis

*call NL_STATIC_1 (

BEG_STEP
MAX_STEPS
BEG_LOAD
MAX_LOAD

In the above example, a new nonlinear analysis is started with only the minimum necessary infor-
mation provided by the user: the starting step number (1), the starting load factor (.1), the maxi-
mum number of steps (20), and the maximum load factor (1.). All other parameters will take on

3.3-28 COMET-AR User’'s Manual Revised 12/1/97



3 Basic Solution Procedures 3.3 Procedure NL_STATIC_1

their default values (see Argument Definitions). It is implicitly assumed in this example that the
model has been defined and stored on a .DBC database file connected to logical device index 1
(LDI_C); that all data will be stored on this database file (including element and system matrices);
that modified Newton iterations will be allowed, up to 9 per step; that 3 step cuts will be allowed
per step; etc. At the end of the run, the solution may get as far as step 20 or the maximum load,
whichever comes first. On the other hand, it may have gotten stuck prematurely at some earlier
step or load factor, in which case a solution re-start will be needed (see next example).

3.3.8.2 Example 2: Re-Starting (or Continuing) a Nonlinear Analysis

*call NL_STATIC_1 ( BEG_STEP =11
MAX_STEPS =100
MAX_LOAD =1.0
PATH_SCALE  =0.2 :
DES_ITERS =3 )

The above example is a sequel to Example 1, and assumes that in the first run, convergence diffi-
culties were encountered, say at step 15, after trying the default of 3 step cuts and 9 iterations. In
the re-start run, the user forces a smaller step size to be taken starting from step 11. The
PATH_SCALE=.2 setting indicates that the arclength increment used for step 10 is to be divided
by 5 before re-computing step 10; and the DES_ITERS=3 setting will help to keep the step sizes
smaller than before, by requiring convergence to occur in 3 iterations per step, rather than the
default which is 4 (see the DES_ITERS argument description for an explanation of how this argu-
ment is used to control the step size). In the above re-start, the original steps 11 through 15 (which
were computed in Example 1) will be over-written with new versions of these steps which may
correspond to totally different load levels. Various other changes in solution strategy parameters
may be effective for analysis re-starts; it is case-dependent.

For detailed examples of nonlinear analysis performed with procedure NL_STATIC 1,
consult the COMET-AR Tutorial [6] and the COMET Applications Manual [7]. Whilg the
latter reference is based on an earlier generation of the code (COMET-BL), the openation of
procedure NL_STATIC 1 is still very much the same in COMET-AR.

3.3.9 Usage Guidelines

Guidelines for performing nonlinear analysis with COMET-AR procedure NL_STATIC_1 can be
found in theCSM Nonlinear Analysis Tutorigb].

Revised 12/1/97 COMET-AR User’'s Manual 3.3-29



3.3 Procedure NL_STATIC 1 3 Basic Solution Procedures

3.3.10 References

[1] Riks, E., “An Incremental Approach to the Solution of Snapping and Buckling
Problems,” International Journal of Numerical Methods in Engineeringpl. 15,
pp. 524-551, 1979.

[2] Crisfield, M. A., “A Fast Incremental/lterative Solution Procedure that Handles Snap-
through,”Computers and Structuregol. 13, pp. 55-62, 1983.

[3] Stewart, C. B. (ed.)The Computational Structural Mechanics (CSM) Testbed Proce-
dures Manuglpreliminary NASA Technical Memorandum, May, 1990.

[4] Stanley, G. M. and Nour-Omid, SThe Computational Structural Mechanics (CSM)
Testbed Generic Element Processor ManM#iSA CR-181728, March, 1990.

[5] Stanley, G. M.CSM Nonlinear Analysis Tutorigbresentation given at NASA Langley
Research Center (hand-outs available), December, 1992.

[6] Stehlin, B., The COMET-AR User’s Tutorigpbreliminary NASA Contract Report,
February, 1993.

[7] Hurlbut, B. J., Stanley, G. M. and Kang, D. Bhe Computational Structural Mechanics
(CSM) Testbed Applications Manugleliminary NASA Contract Report, May, 1989.

3.3-30 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.1 Overview

Chapter 4 Adaptive Solution Procedures

4.1 Overview

This chapter describes existing COMET-AR command-language procedures for performing adap-
tive finite element solutions, i.e., structural analysis with adaptive mesh refinement. A section is
dedicated to each one of these control procedures, as listed in Table 4.1-1.

Table 4.1-1 Outline of Chapter 4: Adaptive Solution Procedures

Section Procedure Function
4.1 Overview Introduction
4.2 AR_CONTROL Controls adaptive linear/nonlinear static analysis

Currently there is only one adaptive solution procedure, AR_CONTROL, and it is restricted to
linear static analysis, i.e., it invokes the basic solution procedure L_STATIC 1 described in the
previous chapter. In general, adaptive solution procedures invoke basic solution procedures, as
illustrated in Figure 4.1-1.

ADAPTIVE
Solution Procedure

Utility BASIC Utility
Procedures Solution Procedure Procedures

Figure 4.1-1 Relationship Between Adaptive and Basic Solution Procedures

To employ an adaptive solution procedure, the user must have first generated a model (as
described in Chapter ®Jodel Definition Procedurg¢sThe adaptive solution procedure may then
be invoked via a simple *CALL directive while running the COMET-AR macro-processor.

Revised 12/1/97 COMET-AR User’'s Manual 4.1-1



4.1 Overview 4 Adaptive Solution Procedures

4.1-2 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

4.2 Procedure AR_CONTROL

4.2.1 General Description

Procedure AR_CONTROL is a solution procedure for performing linear and nonlinear static anal-
ysis with (or without) adaptive mesh refinement. It automatically invokes the appropriate basic
solution procedures, L_STATIC 1 or NL_STATIC 1 (see Chapt&aS8ic Solution Procedurgs

to perform linear or nonlinear static analysis for a given mesh, followed (optionally) by utility
procedures EST_ERRland REF_MESHI to estimate element errors and perform adaptive
mesh refinement. This process can be carried out iteratively, as shown in Figure 4.2-1, by proper
choice of input parameters until spatial convergence to a user-specified tolerance has been
obtained.

Initial Mesh
Step Loop

( AR_CONTROL )

(EST_ERR D) (Soln. Procedurd (REF_MESH ) |

a) Procedure Organization

Soln. Procedure = { L_STATIC_1 | NL_STATIC_ 1}

<« (REF_MESH_[)

b) Flow Chart

Figure 4.2-1 AR_CONTROL Procedure for Linear/Nonlinear Adaptive Mesh Analysis

The Step Loop in Figure 4.2-1b is relevant only for nonlinear analysis. Most of the actual work is
performed by the various COMET-AR processors described in Part 111, and reference to these pro-
cessors will be made where appropriate.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-1



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

AR_CONTROL may be employed as a common user interface to perform linear or ngnlinear
analysis without interacting directly with L_STATIC_1 or NL_STATIC_1. Guidelines/exam-
ples for performing adaptive mesh refinement with linear static analysis are given|in the
COMET-AR Tutorial [2]. Capabilities for performing adaptive mesh refinement with nonlinear
static analysis are very preliminary, and should be invoked only by experienced researghers.

4.2.2 Argument Summary

Procedure AR_CONTROL may be invoked with Bt ®@MET-AR [CALL directive, employing

the arguments summarized in Table 4.2-1. These procedure arguments are partitioned into the fol-
lowing groups for the user’s convenience: i) Model Control; ii) Basic Solution Control; iii) Non-
linear Solution Control; iv) Error Estimation Control; and v) Mesh Refinement Control

arguments.

Table 4.2-1 Procedure AR_CONTROL Input Arguments

Argument Default Value Description
MODEL CONTROL Arguments

CASE AR_TEST Case name (first name of database files)
LDI_C 1 Logical unit for main database filegseDBC)
LDI_E 2 Logical unit for element-matrix file&CaseDBE)
LDI_S 3 Logical unit for system-matrix filicCaseDBS)
LDI R 4 Logical unit for selected results fil€gseDBR)
LDI_GM 7
LOAD_SET 1 Load set number to be analyzed
CONSTRAINT_SET 1 Constraint set number to be analyzed.

BASIC SOLUTION

CONTROL Arguments

SOLN_PROCEDURE <false> Name of solution procedure
AUTO_DOF_SUP <true> Automatic DOF suppression switch
AUTO_DRILL <false> Automatic drilling stiffness augmentation switch
AUTO_MPC <false> Automatic “drilling” multipoint constraint switch
AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs
RENO_PROCESSOR RENO Node renumbering processor
RENUMBER_OPT 0 Node renumbering option
ASM_PROCESSOR ASM Matrix/vector assembly processor
FIXED_FRAME OFF Fixed frame option for hierarchidgirefinement
MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement
MTX_BUFFER_SIZE 512000 Matrix buffer size for equation solving
SKY_PROCESSOR SKY Linear equation solver processor name

4.2-2

COMET-AR User’'s Manual

Revised 12/1/97



4 Adaptive Solution Procedures

4.2 Procedure AR_CONTROL

Table 4.2-1 Procedure AR_CONTROL Input Arguments (Continued)
Argument Default Value Description
SOLVER_MAX_ITER 100000 Maximum iterations for iterative solvers
SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers
STRESS <false> Stress, strain and strain energy archival switch

STR_DIRECTION

0 (element local framg

b)  Stress directions (frames) for post-processing

Chival

STR_LOCATION INTEG_PTS Stress locations for post-processing

INTERNAL_FORCE <false> Internal force archival switch

N_SELECT 0 Number of selected displacement components for ar
in LDI_R file

SEL_NODES 0 List of selected nodes for archival in LDI_R file

SEL_DOFS 0 List of selected DOFs for archival in LDI_R file

POST <true> Special post-processing procedure switch

ERROR ESTIMATION CONTROL Arguments

ERROR_PROCESSOR

<false>

Name of error estimation processor to invoke

ERROR_TECHNIQUE

S/BARLOW

Error estimation technique (S => Smoothing)

ERROR_MEASURE

strain_energy

Solution quantity upon which errors are based

ERROR_FREQUENCY 1 Number of steps between error estimations
SAMPLE_LOCATIONS INTEG_PTS

SMOOTH_PROCESSOR SMz Name of smoothing processor for error estimates
SMOOTH_LOCATIONS INTEG_PTS Smoothing evaluation locations
SMOOTH_OPTIONS 0. Special option list for smoothing processor
NUM_GROUP 0 Number of element groups for error estimation
ELEMENT_GROUPS 0 List of element groups for error estimation

MESH REFINEMENT CONTROL Arguments

BEG_MESH 0 Starting mesh for AR iteration loop

MAX_MESHES 1 Stopping mesh for AR iteration loop

OLD_MESH 0 Mesh to restart from

CONVERGE_TOL .05 Global error tolerance (relative error)
REFINE_PROCESSOR <false> Name of mesh refinement processor
REFINE_TECHNIQUE ht Mesh refinement technigbe= transition h)
REFINE_INDICATOR MAX_RATIO Type of refinement indicator

REFINE_DIRS 1,2 Refinement directions (1,2—implies 2D)
NUM_REFINE_TOLS 1 Number of error tolerances guiding refinement
REFINE_TOLS .90 List of local (element) error tolerances for refinement
REFINE_LEVELS 1 List of refinement levels corresponding to REFINE_T(

DLS

Revised 12/1/97

COMET-AR User’'s Manual

4.2-3



4.2 Procedure AR_CONTROL

4 Adaptive Solution Procedures

Table 4.2-1 Procedure AR_CONTROL Input Arguments (Continued)

DLS

ement

Argument Default Value Description
NUM_UNREFINE_TOLS 0 No. of error tolerances guiding refinement
UNREFINE_TOLS .00 List of local (element) error tolerances for refinement
UNREFINE_LEVELS 0 List of refinement levels corresponding to REFINE_T(
MAX_ASPECT_RATIO 0,0 Distortion control parameters fiprefinement
MAX_H_LEVEL 10 Maximum levels oh-refinement for any element
MAX_P_LEVEL 5 Maximum levels op-refinement globally
BEG_STEP_REF 1 Nonlinear load step at which to begin mesh refineme
NUM_STEP_REF 1 Number of nonlinear load steps between mesh refin

loops
MAX_MESH_STEP 0 Maximum number of mesh updates per step
LAST_REF_STEP 1 Last step at which mesh refinement was performed

NONLINEAR SOLUTION CONTROL Arguments

BEG_STEP 1 Starting load step for nonlinear solution interval

MAX_STEPS 30 Maximum number of load steps to compute

BEG_LOAD 1 Starting load factor

MAX_LOAD 1.2 Maximum load factor

MIN_LOAD -1.0 Minimum load factor

MAX_ITERS 9 Maximum number of iterations per step

DES_ITERS 4 Desired number of iterations per step

NEWTON <false> Type of Newton-Raphson algorithm

FAC_STEPS 1 Number of steps between stiffness re-factorings

MAX_CUTS 3 Maximum number of step size cuts per step

CONV_CRITERIA CHKCONV_E Nonlinear convergence criteria (procedure name)

NL_TOL 0.001 Starting load step for nonlinear solution interval

PATH_SCALE 0. Path (arclength) scale factor for re-starts

EXTRAPOLATE <true> Path extrapolation switch

NL_MATL <false> Material nonlinearity switch

NL_GEOM 2 Geometric nonlinearity level

COROTATION <true> Element corotation switch (for large rotations)

INITIALIZE <true> Initialization switch for re-starts in conjunction with adap-
tive mesh refinement.

LOAD_STIFF <false>

LINE_SEARCH 1.0

ARCHIVE_STEP 10

4.2-4

COMET-AR User’'s Manual

Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

4.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 4.2-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to subor-
dinate procedures and processors, where the actual options are determined. For example, the defi-
nition of REFINE_TECHNIQUE depends on which refinement processor the user selects via the
REFINE_PROCESSOR argument, so the relevant options can be found in the corresponding
refinement processor sections in Part 111

4.2.3.1 ASM_PROCESSOR Argument

This argument selects the matrix assembly processor to be used for assembling element (stiffness/
mass) matrices into corresponding system matrices.

Argument syntax:

ASM_PROCESSOR =asm_processor

whereasm_processas the name of the matrix assembly processor. Current options include ASM
(for hy andh, types of mesh refinement) and ASMs (figmesh refinement only). (Default value:
ASM)

4.2.3.2 AUTO_DOF_SUP Argument

This argument sets the automatic DOF (degree-of-freedom) suppression switch. This capability
automatically suppresses extraneous DOFs, especially useful during adaptive mesh refinement. It
is described in more detail in Section 2.A0tomatic DOF Suppression and Drilling Stabiliza-

tion.

Argument syntax:

AUTO_DOF_SUP =option [, angle_tol ]

where

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>| all

DOFs (in the computational frame) that are unsupported by element stjffness
will be suppressed throughout the adaptive refinement process. (Default| value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; sep Sec-
tion 2.10 for details. (Default value: depends on element type)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-5



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

In most cases, it is best to leave the default setting intact.

4.2.3.3 AUTO_DRILL Argument

This argument sets the automatic drilling stiffness option. This option causes shell elements to add
artificial drilling rotational stiffness to nodal DOFs that would otherwise be unstable computation-
ally. See Section 2.1@utomatic DOF Suppression and Drilling Stabilizatiamd individual ele-

ment processor sections in ChapteE[ément Processorgor more information.

Argument syntax:

AUTO_DRILL = option [, angle_tol , scale fac]

where
Parameter Description
option Automatic drilling stiffness switch: { <true> | <false>}. If <true>, certain shell ele-

ment types will add artificial drilling stiffness to nodal DOFs that require stabjliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is needed
at a given node. See Section 2.10 for details. (Default value: depends on ¢lement
type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See individual element descriptions in Chapter 7 fqr inter-
pretation. (Default value: depends on element type)

AUTO_DRILL is not recommended for nonlinear analysis.

4.2.3.4 AUTO_MPC Argument

This argument sets the automatic multi-point constraint (MPC) option for suppression of extrane-
ous drilling DOFs, defined as rotations about the normal to a plate or shell element. Unless the
element has intrinsic stiffness associated with such rotations, these DOFs may lead to a singular
stiffness matrix. Turning the AUTO_MPC option on causes special constraints to be generated at
nodes where insufficient drilling rotational stiffness is present, to suppress the rotation about the
appropriate (“drilling”) axis. This axis is generally not aligned with any of the computational
axes, so the constraint will typically involve a linear combination of the rotational DOFs corre-
sponding to the computational axes. See Section AutBmatic DOF Suppression and Drilling
Stabilization for more information on this option and related options such as AUTO_DOF_SUP,
AUTO_DRILL, and AUTO_TRIAD.

4.2-6 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures

4.2 Procedure AR_CONTROL

Argument syntax:

AUTO_MPC = option [, angle_tol ]

where
Parameter Description
option Automatic multi-point constraint switch for drilling stabilization:
{ <true> | <false> }. If <true>, multi-dof constraints will be generated at npdes
where drilling stabilization is needed. (Default value: <false>)
angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element

type)

4.2.3.5 AUTO_TRIAD Argument

This argument sets the automatic computational triad (i.e., DOF direction) re-alignment option.
This option, an alternative to AUTO_DRILL, causes re-alignment of the computational triads at
all nodes that require drilling DOF stabilization as long as no boundary conditions have been
defined there. The computational axes are re-aligned such that one of them is parallel to the aver-
age element surface-normal at the node. Then, extraneous (unstable) drilling rotational DOFs can
be subsequently suppressed via the AUTO_DOF_SUP option. (See Sectigkutbitatic DOF
Suppression and Drilling Stabilizatipfor more information.)

Argument syntax:

AUTO_TRIAD = option [, angle_tol ]

5 that
there.

where
Parameter Description
option Automatic triad re-alignment option switch: { <true> | <false> }. If <true>, compu-

tational triads will be re-aligned with average element normal at all node
require drilling DOF stabilization, unless boundary conditions are defined
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on element

type)

AUTO_TRIAD should only be used in conjunction wijth
AUTO_DOF_SUP. It cannot be used in conjunction with user-
defined point forces and/or multi-point constraints.

Revised 12/1/97

COMET-AR User’'s Manual

4.2-7



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.6 BEG_LOAD Argument
This argument sets the starting load factor for nonlinear analysis.

Argument syntax:

BEG_LOAD = beg_load

See documentation for nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details.
(Default value: None)
4.2.3.7 BEG_MESH Argument

This argument sets the number of the first mesh to analyze at the start of the current AR run. The
initial mesh is designated as mesh 0.

Argument syntax:

BEG_MESH =beg_mesh

wherebeg_mesilis the beginning mesh number. (Default value: 0)

4.2.3.8 BEG_STEP Argument

This argument sets the number of the first load step to be computed in a given nonlinear analysis
interval.

Argument syntax:

BEG_STEP -heg_step

wherebeg_steps the beginning (or starting) step number. Initiddgg stepshould be set equal

to 1. For analysis re-start ruriseg_stepshould be set equal to the next step to compute (or re-
compute). See documentation on nonlinear solution procedures (Section 3.3, NL_STATIC 1) for
more details. (Default value: None)

4.2.3.9 BEG_STEP_REF Argument

This argument sets the first load step number at which adaptive mesh refinement can begin.

Argument syntax:

BEG_STEP_REF =heg_step ref

4.2-8 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

wherebeg_step_reis the beginning step number for mesh refinement. (Default value: 1)

4.2.3.10 CASE Argument

This argument sets the name of the case being analyzed. This name is used as the first part of all
database file names associated with the case @aseDBC, CaseDBE, ...). This name is typi-
cally the same as the model name used in Model Definition Procedures.

Argument syntax:

CASE = Case

whereCaseis the case name prefix in all associated database files. (Default: AR_TEST)

4.2.3.11 CONVERGE_TOL Argument

This argument sets the value of the adaptive mesh refinement (AR) global convergence tolerance.
This is a relative error measure (in fractional form) below which convergence of the discrete solu-
tion to the governing equations is assumed and no further adaptive mesh refinement is performed.
The quantitative interpretation of this error measure depends on the particular error estimation
processor (ERR and refinement processor (REF1) selected (see ERROR_PROCESSOR and
REF_PROCESSOR arguments).

Argument syntax:

CONVERGE_TOL =converge_tol

whereconverge _tols the relative error tolerance in fractional form (e.g., .1 corresponds to 10 per-
cent error). (Default value: .05)
4.2.3.12 COROTATION Argument

This argument selects the element corotational update option to be employed by the generic ele-
ment processor for geometrically nonlinear analysis (i.e., large rotations, small strains).

Argument syntax:

COROTATION = corotation

wherecorotationmay be set to 0 (off), 1 (medium), or 2 (high): Refer to the description of nonlin-
ear solution procedures (Section 3.3, NL_STATIC_1) for more details. (Default value: 1)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-9



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.13 DES_ITERS Argument

This argument sets the desired number of iterations for nonlinear convergence at each load step,
which affects how the step size is adaptively updated during the run.

Argument syntax:

DES _ITERS =des iters

wheredes _itersis the desired number of iterations. This is relevant only for nonlinear analysis.
Refer to the documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for
more details. (Default value: 4)

4.2.3.14 ELEMENT_GROUPS Argument

Provides a list of element group numbers to process during error estimation.

Argument syntax:

ELEMENT_GROUPS =grp_1, grp_2, ..., grp_NUM_GROUP

where grp_“i” is a valid element group number and whé&&/M_GROUPIis set via the
NUM_GROUP argument. (Default value: 0, which implies ALL)

4.2.3.15 ERROR_FREQUENCY Argument
This argument sets the load step frequency at which spatial error estimation is performed.

Argument syntax:

ERROR_FREQUENCY =rror_frequency

whereerror_frequencyis the number of load steps between spatial error estimation. A value of 1
implies error are estimated at every step; a value of O implies no error estimation is to be per-
formed. (Default value: 1)

4.2.3.16 ERROR_MEASURE Argument

This argument sets the name of the spatial error measure (e.g., strain_energy, mean_stress, ...) to
be used within the error estimation processor selected via the ERROR_PROCESSOR argument.
Error measure options are dependent on the error estimation processor, and some error processors
may have only one option (in which case this argument is irrelevant).

4.2-10 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Argument syntax:

ERROR_MEASURE =error_measure

whereerror_measuras the name of the error measure. (Default value: error estimation processor
dependent)
4.2.3.17 ERROR_PROCESSOR Argument

This argument sets the name of the error estimation processoi)(ERBe employed by
AR_CONTROL (via the utility procedure, EST_ERR_1). See Chaptert0r Estimation Pro-
cessorsfor available options.

Argument syntax:

ERROR_PROCESSORetror_processor

whereerror_processoiis the name of the error estimation processor. Current options are summa-
rized below.

error_processor Description
ERR2 Smoothing-based error estimator a la Zienkiewicz (Default)
ERR4 Modified version of ERR2 by Levit, for built-up shell structures
ERRG Modified version of ERR2

4.2.3.18 ERROR_TECHNIQUE Argument

This argument sets the name of the error estimation technique to be employed within the error
estimation processor selected via the ERROR_PROCESSOR argument. Error estimation tech-
nique options are dependent on the error estimation processor, and some error processors may
have only one option (in which case this argument is irrelevant).

Argument syntax:

ERROR_TECHNIQUE =error_technique

whereerror_techniques the name of the error estimation technique. (Default value: error estima-
tion processor dependent)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-11



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.19 EXTRAPOLATE Argument

This argument sets a flag determining whether or not to use quadratic extrapolation along a non-
linear solution path to predict the load factor and displacement vector at the beginning of each
load step.

Argument syntax:

EXTRAPOLATE = {<true> | <false>}

where <true> implies that quadratic extrapolation will be used. This is relevant only for nonlinear
analysis. Refer to the documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC 1) for more details. (Default value: <true>)

4.2.3.20 FAC_STEPS Argument

This argument sets the number of load steps between stiffness matrix updates (i.e., re-forming and
re-factoring) for nonlinear analysis.

Argument syntax:

FAC_STEPS Hac_steps

wherefac_stepss a positive integer indicating that re-factoring of a new stiffness matrix will be
performed everyac_stepdoad steps. This is relevant only for nonlinear analysis and only for the
argument NEWTON=MODIFIED. Refer to the documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC_1) for more details. (Default value: 1)

4.2.3.21 FIXED_FRAME Argument

Sets an esoteric flag that is relevant onlynfarefinement.

Argument syntax:

FIXED_FRAME ={ <true> | <false>}

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

4.2.3.22 LDI_C Argument

This argument sets the logical device index associated with the central COMET-AR database file,
which must exist before calling AR_CONTROL,; it is typically nan@abeDBC, whereCaseis
the case name.

4.2-12 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Argument syntax:

LDI_C =Idi_c

whereldi_c is the logical device index (a positive integer) of the .DBC file. (Default value: 1)

4.2.3.23 LDI_E Argument

This argument sets the logical device index associated with the element matrix database file, typi-
cally namedCaseDBE.

Argument syntax:

LDI_E =Idi_e

whereldi_e is the logical device index (a positive integer) of @aseDBE file. If Idi_e is not

equal toldi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for
the current mesh will be stored on a sepaGaseDBE file. If Idi_e = Idi_c, then all element
matrices will be stored on theaseDBC file, i.e., a separateaseDBE file will not be created.
(Default value: 2)

174

If a separateCaseDBE file is created, it will b¢
deleted and re-created with each new adaptive me

14

sh.

4.2.3.24 LDI_R Argument

This argument sets the logical device index associated with the selected results database file, typi-
cally namedCaseDBR.

Argument syntax:

LDI R = Idi_r

whereldi_r is the logical device index (a positive integer) of the .DBR file. This file will be used
to store all user-selected displacement results (see arguments N_SELECT, SEL_NODES, and
SEL_DOFS) as well as key solution parameters for nonlinear analysis. (Default value: 4)

To create a .DBR file separate from the .DBC filg, it
must be opened via an *OPHBNI_r directive before
invoking AR_CONTROL. Alternatively, ifldi_r =
Idi_c, the selected results will be stored in the .DBC file.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-13



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.25 LDI_S Argument

This argument sets the logical device index associated with the system matrix database file, typi-
cally namedCaseDBS.

Argument syntax:

LDI_S =Idi_s

whereldi_s is the logical device index (a positive integer) of @eseDBS file. IfIdi_s is not

equal toldi_c (see LDI_C argument), then all system matrices (e.g., stiffness and mass) for the
current mesh will be stored on a sepa@aseDBS file. IfIdi_s=Idi_c, then all system matrices

will be stored on th&€aseDBC file, i.e., a separateaseDBS file will not be created. (Default
value: 3)

If a separateCaseDBS file is created, it will b
deleted and re-created with each new adaptive mgsh.

1%

4.2.3.26 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
he-refinement).

Argument syntax:

MATRIX_UPDATE ={FULL | PARTIAL }

whereFULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

4.2.3.27 MAX_ASPECT_RATIO Argument

This argument sets the maximum element aspect ratios before and after prospective adaptive mesh
refinement.

Argument syntax:

MAX_ASPECT_RATIO =before, after

wherebeforedenotes the maximum element aspect ratio before a prospective mesh refinement,
andafter denotes the maximum element aspect ratio after a prospective mesh refinement. If either
of these limits would be violated, an alternate element refinement pattern is selected. This is rele-
vant primarily for transition-basethj refinement, where aspect ratios can be used to control the

4.2-14 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

degree of element distortion. See ChapteMedsh Refinement Processdi more information.
(Default value: 0,0)
4.2.3.28 MAX_CUTS Argument

This argument sets the maximum number of step cuts allowed during the current nonlinear analy-
sis run.

Argument syntax:

MAX_CUTS =max_cuts

wheremax_cutsis the maximum number of cuts allowed. A step cut refers to a halving of the
load, or arclength, step size used to advance the solution from one step to the next. Step cuts are
performed only if the maximum number of iterations (specified via the MAX_ITERS argument)

is exceeded without converging at a given step. This is relevant only for nonlinear analysis. Refer
to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC 1) for details.
(Default value: 3)

4.2.3.29 MAX_H_LEVEL Argument

This argument sets the maximum number of levels of addptigénement allowed within any
one element. If the mesh refinement processor (RIgtermines that more than this many levels
of h-refinement are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

MAX H_LEVEL = max_h_level

wheremax_h_levetenotes the maximum number of level$ro&finement permitted by the user.
for any one element. See Chapter Mesh Refinement Processofsr more information.
(Default value: 10)

4.2.3.30 MAX_ITERS Argument

This argument sets the maximum number of iterations allowed for nonlinear convergence at a
given load step.

Argument syntax:

MAX_ITERS =max_iters

wheremax_itersis the maximum number of iterations allowedmix_itersiterations have been
performed at a given step, and nonlinear convergence (to an equilibrium state) has not yet been

Revised 12/1/97 COMET-AR User’'s Manual 4.2-15



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

obtained, the nonlinear solution procedure will attempt to cut the step size as many times as
allowed by the argument MAX_CUTS. If the limits set by both MAX_CUTS and MAX_ITERS
have been reached, then the run will be terminated and the user will have to try a different strat-
egy. This is relevant only for nonlinear analysis. Refer to documentation on nonlinear solution
procedures (Section 3.3, NL_STATIC 1) for details. (Default value: 9)

4.2.3.31 MAX_LOAD Argument
This argument sets the maximum load factor for the nonlinear analysis.

Argument syntax:

MAX_LOAD = max_load

wheremax_loads the applied load factor beyond which the nonlinear analysis is terminated. This
is relevant only for nonlinear analysis. Refer to documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC 1) for details. (Default value: None)

4.2.3.32 MAX_MESHES Argument

This argument sets the maximum number of meshes to analyze within the current run. The highest
potential mesh number for the current run is equal to BEG_MESH+MAX_MESHES-1; thus, the
maximum number of adaptive mesh updates for the run is simply MAX_MESHES-1.

Argument syntax:

MAX_MESHES =max_meshes

wheremax_mesheis the maximum number of meshes to analyze. (Default value: 1)

4.2.3.33 MAX_MESH_STEP Argument

This argument sets the maximum allowable number of mesh iterations per step to perform in a
nonlinear analysis with adaptive mesh refinement.

Argument syntax:

MAX_MESH_STEP =max_mesh_step

wheremax_mesh_stdp the maximum number of meshes per step. This value may be superceded
by MAX_MESHES, which is the maximum number of total meshes allowed per run. (Default
value: 5)

4.2-16 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

4.2.3.34 MAX_P_LEVEL Argument

This argument sets the maximum number of levels of unifpmefinement allowed for the
model. If the mesh refinement processor (REEtermines that more than this many levelg-of
refinement are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

MAX_P_LEVEL =max_p_level

wheremax_p_levedenotes the maximum number of levels of unifgamefinement permitted.
See Chapter 1Mesh Refinement Processdiar more information. (Default value: 5)
4.2.3.35 MAX_STEPS Argument

This argument sets the maximum number of load steps to compute during the current nonlinear
analysis run.

Argument syntax:

MAX_STEPS =max_steps

wheremax_stepss the maximum number of steps to compute in the current run, not to be con-

fused with the number of the highest load step in the analysis. This is relevant only for nonlinear
analysis. Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1)
for details. (Default value: None)

4.2.3.36 MIN_LOAD Argument

This argument sets the minimum load factor for a nonlinear analysis.

Argument syntax:

MIN_LOAD = min_load

wheremin_loadestablishes a lower limit on the applied load factor, which should be less than the
starting load factor specified by the BEG_LOAD argument. This is relevant only for nonlinear
analysis. Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1)
for details. (Default value: None)

4.2.3.37 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-17



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

Argument syntax:

MTX_BUFFER_SIZE =mtx_buffer_size

where mtx_buffer_sizas the size of the buffer in terms of logical variables. (Default value:
500000)
4.2.3.38 NEWTON Argument

This argument determines the type of Newton-Raphson iteration algorithm to use for nonlinear
analysis.

Argument syntax:

NEWTON = { MODIFIED | TRUE }

If NEWTON=MODIFIED, stiffness matrix updates (re-forming and re-factoring) will be per-
formed only at the beginning of evefgc_stepsload steps, wheréac_stepsis set via the
FAC_STEPS argument. If NEWTON=TRUE, stiffness matrix updates will be performed at each
iteration of everyfac_stepdoad steps. This is relevant only for nonlinear analysis. Refer to docu-
mentation on nonlinear solution procedures (Section 3.3, NL_STATIC_1) for details. (Default
value: MODIFIED)

4.2.3.39 NL_CONV_CRITERIA

This argument selects the command-language procedure to be used to assess nonlinear conver-
gence at each iteration of a nonlinear analysis.

Argument syntax:

NL_CONV_CRITERIA = procedure_name

whereprocedure_names the name of the convergence-checking procedure. This is relevant only
for nonlinear analysis. See documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC 1) for more details on options. (Default value: CHKCONV_E (energy norm))
4.2.3.40 NL_GEOM Argument

This argument selects the geometrical nonlinearity option to be used in the current analysis.

Argument syntax:

NL_GEOM = nl_geom

4.2-18 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

wherenl_geomis the option number, and may be set to 0 (geometrically linear), 1 (geometrically
nonlinear, but linear element strain-displacement relations), or 2 (geometrically nonlinear includ-
ing nonlinear element strain-displacement relations). This is relevant only for nonlinear analysis.
Refer to documentation on nonlinear solution procedures (Section 3.3, NL_STATIC 1) for
details. (Default value: 0)

4.2.3.41 NL_MATL Argument
This argument selects the material nonlinearity option to be used in the current analysis run.

Argument syntax:

NL_MATL = nl_matl

wherenl_matlmay be set to 0 (materially linear) or 1 (materially nonlinear). This is relevant only
for nonlinear analysis. Refer to documentation on nonlinear solution procedures (Section 3.3,
NL_STATIC 1)for details. (Default value: 0)

4.2.3.42 NL_TOL Argument

This argument sets the value of the error tolerance used to establish convergence of the nonlinear
equilibrium iteration process at each load step.

Argument syntax:

NL _TOL = nl_tol

wherenl_tol is the error tolerance in the error norm specified by NL_CONV_CRITERIA. This is
relevant only for nonlinear analysis. Refer to documentation on nonlinear solution procedures
(Section 3.3, NL_STATIC_1) for details. (Default value: 1.e-3)

4.2.3.43 NUM_GROUP Argument

This argument sets the number of element groups to be processed during error estimation. If
NUM_GROUPS > 0, a corresponding list of element group numbers may be set via the
ELEMENT_GROUP argument.

Argument syntax:

NUM_GROUPS =num_group

wherenum_groupis the number of element groups to process. (Default value: 0 which implies
ALL)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-19



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.44 NUM_REFINE_TOLS Argument

This argument sets the number of local (element) error tolerances that will be used to guide adap-
tive refinement. The REFINE_TOLS argument specifies the error values for these tolerances, and
the REFINE_LEVELS argument indicates the number of levels of refinement to perform when
each tolerance is exceeded.

Argument syntax:

NUM_REFINE_TOLS =num_refine_tols

where num_refine_tolsdenotes the number of refinement tolerances. See Chaptédesh,
Refinement Processoifer more information. (Default value: 1)
4.2.3.45 NUM_STEP_REF Argument

This argument sets the number of nonlinear load steps between adaptive mesh refinement inter-
vals. It is not relevant for linear static analysis.

Argument syntax:

NUM_STEP_REF =num_step_ref

wherenum_step_reis the number of load steps between adaptive mesh refinement intervals. For
example, ilnum_step_reis 1, adaptive mesh refinement will be performed at every step; if it is 2,
at every other step, but only if dictated by spatial error estimates. (Default value: 1)

4.2.3.46 N_SELECT Argument

This argument specifies the number of user-selected displacement components to be saved in the
results database (see argument LDI_R) for nonlinear analysis.

Argument syntax:

N_SELECT =n_select

wheren_selectis the number of displacement components to save. The actual node and DOF
numbers identifying these displacement components are specified via the SEL_NODES and
SEL_DOFS arguments. (Default value: 0)

4.2.3.47 OLD_MESH Argument

This argument sets the number of the mesh from which to restart an adaptive analysis. If
BEG_MESH=0, this argument is irrelevant. If BEG_MESH > 0, the default is MAX(mesh-

4.2-20 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

1,0). The main use of this argument is to allow mesh refinement to be repeated from some earlier
mesh, but with different adaptive refinement parameters. Error estimates must already be available
for the mesh specified by OLD_MESH in order to restart from that mesh.

Argument syntax:

OLD_MESH =old_mesh

whereold_meshdenotes the number of the mesh from which to restart. The number of the first
mesh to be computed (or recomputed) will thereforeldemesh1l. See Chapter 11 for more
information. (Default: MAX beg_meshl, 0))

4.2.3.48 PATH_SCALE Argument

This argument sets a scale factor to be applied to the current arclength incfénienthe first
step in a nonlinear re-start run. It is thus a manual way to adjust the solution step size.

Argument syntax:

PATH_SCALE =path_scale

wherepath_scalas a non-negative floating point numberp#th_scalds set to 1, the step-size

from the previous step (i.doeg_step—lwherebeg_steps set by the BEG_STEP argument) will

be used to compute the first new stepg step The main function of this argument is for the

user to override the procedure’s step-size adjustment algorithm, in cases where the user has a bet-
ter idea based on experience. This is relevant only for nonlinear analysis. Refer to documentation
on nonlinear solution procedures (Section 3.3, NL_STATIC 1) for details. (Default value: 0 =>
automatic step-size adjustment algorithm will be used to make re-start mimic continuation with-
out re-start)

4.2.3.49 POST Argument

This argument enables or disables a user-written post-processing procedure to be invoked by the
nonlinear solution procedure.

Argument syntax:

POST ={ <true> | <false>}

where <true> causes the user-written post-processing procedure to be invoked and <false> pre-
vents it from being invoked. (Default value: <false>)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-21



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.50 REFINE_DIRS Argument
Establishes a list of intrinsic element directions in which to allow adaptive refinement.

Argument syntax:

REFINE_DIRS =dirl [,dir2 [,dir3] ]

wheredirl, dir2, anddir3 are intrinsic element direction numbers (i.e., in the elements internal, or
natural, coordinate system), and each may take on a value between 1 and the maximum number of
intrinsic element dimensions (i.e., 3 for 3D elements, 2 for 2D elements and 1 for 1D elements).
This can eliminate unnecessary refinement, for example, in axisymmetric shell problems where
only one of the surface directions need be refined. See Chapidedi Refinement Processors

for more information. (Default value: 1, 2, 3).

4.2.3.51 REFINE_INDICATOR Argument

This argument sets the type of element refinement indicator to be used by the adaptive refinement
processor. The refinement indicator is the criterion used to determine whether an element's error
estimate is high enough to warrant refinement. The values of the refinement indicator denoting
various levels of refinement are set by the REFINE_TOLERANCES argument.

Argument syntax:

REFINE_INDICATOR =refine_indicator

whererefine_indicatordenotes the name of the element refinement indicator to be used. (Default
value: AVE. See Chapter 1Mesh Refinement Processdis details.)

4.2.3.52 REFINE_LEVELS Argument

Sets an array of element refinement levels corresponding to the array of refinement tolerances
specified via the REFINE_TOLS argument. An element refinement level is defined as one appli-
cation of local refinement, employing the refinement type specified via the
REFINE_TECHNIQUE argument (e.dy, h;, hsor p).

Argument syntax:

REFINE_LEVELS =ref lev_1, ref lev_2, ... ref lev._NUM_REFINE_TOL

U)

whereref_lev "i” denotes the number of levels to refine an element when the element refinement
(error) indicator exceeds the tolerance specifiedebytol “i” in the REFINE_TOLS argument;

and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument. (See Chapter
11,Mesh Refinement Processdiar details.) (Default value: 1)

4.2-22 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

4.2.3.53 REFINE_PROCESSOR Argument

This argument sets the name of the mesh refinement processon RBEbe invoked by
AR_CONTROL (via the REF_MESH_1 utility procedure).

Argument syntax:

REFINE_PROCESSOR =zefine_processor

whererefine_processois the name of the mesh refinement processor. Current options are summa-
rized below.

refine_processor Description

REF1 Contains a variety of adaptive mesh refinement techniques (Default)

Consult Chapter 1Mesh Refinement Processdia more details.

4.2.3.54 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(RER) specified via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =refine_technique

whererefine_techniqué the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to “ht”, “hc”, or “p”
(among others). See Chapter Mesh Refinement Processdia details. (Default value: “hc”)

4.2.3.55 REFINE_TOLS Argument

Sets an array of element refinement tolerances corresponding to the array of refinement levels
specified via the REFINE_LEVELS argument. An element refinement tolerance is a limit in the
value of the element error-based refinement indicator (see the REFINE_INDICATOR argument)
beyond which an element is refined by a prescribed number of levels.

Argument syntax:

REFINE_TOLS =ref _tol_1, ref tol 2, ... ref_tol_ NUM_REFINE_TOLS

Revised 12/1/97 COMET-AR User’'s Manual 4.2-23



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

whereref_tol “i” denotes the value of the element refinement indicator beyond which an element
should be refined bxef _lev “i” levels whereref lev “i” is specified in the REFINE_LEVELS
argument; and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument.
(See Chapter 1Mesh Refinement Processdia details.) (Default value: .05)

4.2.3.56 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used in order
to optimize matrix equation solving (time and/or storage).

Argument syntax:

RENO_PROCESSOR renumber_processor

whererenumber_processas the processor name. Current options are summarized below.

renumber_processor Description
RENO Node renumbering using a geometric algorithm (Default)
RENOs Node renumbering fog-refinement only
RSEQ Node renumbering via a variety of order optimization algorithms

Consult the relevant sections in ChapteP@-Processorsfor more details.

4.2.3.57 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER=<true>).

Argument syntax:

RENUMBER_OPT =renumber_option

whererenumber_optionndicates the renumbering option and depends on the particular renum-
bering processor chosen. See processors RENO, RSEQ, etc., in Chapter 6. (Default value: 0)
4.2.3.58 SEL_DOFS Argument

This argument specifies a list of DOF numbers designating user-selected displacement compo-
nents to be saved in the results database for nonlinear analysis. Each DOF number corresponds to

4.2-24 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

a node specified via the SEL_NODES argument. The total number of such nodal DOFS must
eqgual to that specified via the N_SELECT argument.

Argument syntax:

SEL_DOFS =dof(1), dof(2), . . ., dof_SELECT)

wheredof(i) represents a nodal DOF number (e.g., 1,2,3 typically denote the computational trans-
lations Y, We, Uy, and N_SELECT is set via the N_SELECT argument. See the SEL_NODES
argument for correspondence. (Default value: 0)

4.2.3.59 SEL_NODES Argument

This argument specifies a list of node numbers designating user-selected displacement compo-
nents to be saved in the results database for nonlinear analysis. Each node number corresponds to
a DOF number specified via the SEL_DOFS argument. The total number of such node/DOF pairs
must equal to that specified via the N_SELECT argument.

Argument syntax:

SEL_NODES =node(1), node(2), . . ., nods( SELECT)

wherenode(i) represents a node number, and N_SELECT is set via the N_SELECT argument.
See the SEL_DOFS argument for correspondence. (Default value: 0)
4.2.3.60 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equa-
tion systems.

Argument syntax:

SKY_PROCESSOR =sky_processor

wheresky processors the name of the matrix solution processor. Current options are summa-
rized below.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-25



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

sky_processor Description
SKY Direct solution of skyline matrices by Gauss elimination (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction gttefinement
only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers
VSS Vectorized sparse solver (extremely fast and space-conserving)

Consult Chapter 1Matrix/Vector Processordor details on individual solution processors.

4.2.3.61 SMOOTH_PROCESSOR Argument
This argument selects the stress smoothing processor used in conjunction with error estimation.

Argument syntax:

SMOOTH_PROCESSOR smooth_processor

wheresmooth_processas the name of the stress smoothing processor. Current options are sum-
marized below.

smooth_processor Description
SMT Smoothing processor based on Zienkiewicz smoothing algorithm
SMZ Smoothing processor based on Tessler smoothing algorithm

Consult Chapter $moothing Processarior more details. (Default: none)

If this argument is not set by the user, it is assumed that no smoothing prgcessor
is needed and that error estimation will be performed entirely by the errgr esti-
mation processor selected via the ERROR_PROCESSOR argument{ Con-
versely, if SMOOTH_PROCESSOR is set to one of the above options, then the
user must select an error estimation processor that is capable of “post-grocess-
ing” smoothed data to obtain error estimates such as ERRSM.

4.2.3.62 SMOOTH_LOCATIONS Argument

This argument specifies the locations at which smoothed data is to be computed and stored by the
SMOOTH_PROCESSOR.

4.2-26 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Argument syntax:

SMOOTH_LOCATIONS = { INTEG_PTS | NODES | CENTROIDS [}

where INTEG_PTS refers to element integration points, NODES refers to element nodes, and
CENTROIDS refers to element centroids. (Default value: INTEG_PTS)

4.2.3.63 SMOOTH_OPTIONS Argument

This argument sets any parameters required by the smoothing processor selected via the
SMOOTH_PROCESSOR argument.

Argument syntax:

SMOOTH_OPTIONS =smooth_options

wheresmooth_optionsepresents a list of options (i.e., parameters) dependent on the particular
smoothing processor selected. Consult Chapt&ntothing Processqrfor details on what (if

any) parameters are required here. Typically this argument is used to select non-default smooth-
ing options. (Default value: 0)

4.2.3.64 SOLN_PROCEDURE Argument

This argument sets the name of the solution procedure to be employed by AR_CONTROL for
solving the equations corresponding to a given mesh.

Argument syntax:

SOLN_PROCEDURE =soln_procedure

wheresoln_proceduras the name of the solution procedure. Current options are L_STATIC 1
(linear static analysis) or NL_STATIC 1 (nonlinear static analysis). (Default value: L_STATIC_1)

4.2.3.65 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

SOLVER_CONV_TOL =solver_conv_tol

wheresolver_conv_tois the convergence tolerance. (Default value: 1.e-5)

Revised 12/1/97 COMET-AR User’'s Manual 4.2-27



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.3.66 SOLVER_MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). This is relevant only if the SKY_PROCESSOR argument is set equal to the
name of an iterative solver.

Argument syntax:

SOLVER_MAX_ITER =solver_max_iter

wheresolver_max_itefs the maximum number of iterations allowed. (Default value: 100)

4.2.3.67 STRESS Argument

This argument determines if and when element stresses, strains and strain energy densities are to
be computed and stored (archived) in the database.

Argument syntax:

STRESS = {stressarchival_frequency}

wherestress_archival_frequendndicates the number of load steps between stress archives. A
value of 1 implies stresses will be archived at each step (or once for linear statics), and a value of
<false> (or 0) implies that they will not be archived at all. (Default value: 1)

U7

It is currently necessary to sstress_archival_frequency O for all analyse
involving adaptive mesh refinement

4.2.3.68 STR_DIRECTION Argument

This argument sets the stress/strain reference frajiyg 4y for post-processing and/or error esti-
mation purposes.

Argument syntax:

STR_DIRECTION s=str_direction

wherestr_directiondenotes the stress/strain direction. Current options are summarized below.

4.2-28 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

str_direction Meaning

ELEMENT (or 0) Express stress/strain components in the local element (integration point) refer-
ence framexg&x|, Ys=Y|, Zz= ;). (Default)

GLOBAL{X|Y|Z} Express stress/strain components in a permutation of the global reference| frame,
with Xs = Xg, Y Or Zy, if X, Y or Z is selected. For shell elements, thelirection
is automatically aligned with the local element normaldirection.

{1123} Same as GLOBAL {X | Y | Z } respectively.

FAB_DIR Use the local fabrication axes for the stress frame xi®xs, Ys=Ys Z=Y; See
Section 2.7Qrientation of Fabrication Frames

4.2.3.69 STR_LOCATION Argument

This argument sets the element locations at which stresses, strains, and strain energy densities are
computed for post-processing and/or error estimation purposes.

Argument syntax:

STR_LOCATION =str_location

wherestr_locationdenotes the stress/strain/energy locations. Current options are as shown below.

str_location Meaning

INTEG_PTS Element integration points (Default)
NODES Element nodes

CENTROIDS Element centroids

It is currently necessary to set STR_LOCATION = INTEG_PTS for all analyses
involving adaptive mesh refinement

4.2.4 Database Input/Output Summary

A complete model definition database is required as input for the first run with AR_CONTROL
(see Chapter 2ylodel Definition Procedur@sAfter the analysis, both solution data, as well as
model definition data will have been output to the database for all meshes created and analyzed
during the adaptive refinement iteration loop. The mesh index will appear as the third index in all
dataset names. While most datasets will be stored in the main COMET-AR database file,
CaseDBC, element and system matrices may be stored iCdseDBE andCaseDBS files,
depending on the user settings for the LDI_E and LDI_S arguments.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-29



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.4.1 Input Datasets

Table 4.2-2 contains a list of datasets required (unless otherwise stated) as input by procedure
AR_CONTROL. All of these datasets must be resident in the main COMET-AR database
(CaseDBC, whereCaseis specified via the CASE argument). The datasets listed all correspond
to the input meshmesh which is set via the OLD_MESH argument and will be equal to O for the
initial mesh. Also, Idset refers to the LOAD SET argument arwbnset refers to the
CONSTRAINT_SET argument.

Table 4.2-2 Input Datasets Required by Procedure AR_CONTROL

Dataset File Description
CSM.SUMMARY..mesh Cas®BC Model summary for input mesh
EltNameDEFINITION.. mesh Cas®BC Element definition for input mesh
EltNameFABRICATION...mesh Cas®BC Element fabrication pointers for input mesh
EltNameGEOMETRY..mesh Cas®BC Element solid-model geometry for input mesh
EltNameINTERPOLATION..mesh Cas®BC Element interpolation data for input mesh
EltNameLOAD.Idset..mesh CadeBC Element load definition for input mesh
NODAL.COORDINATE..mesh Cas®BC | Nodal coordinates for input mesh
NODAL.DOF.conset.mesh Ca$eBC | Nodal DOF boundary condition codes for input mesh.
NODAL.TRANSFORMATION..mesh Cas.DBC | Nodal transformations between global and computa-

tional frames for input mesh

NODAL.SPEC_FORCHdcase..mesh CadeBC | Nodal specified forces for input mesh (optional)
NODAL.SPEC_DISRdcase..mesh CadeBC | Nodal specified displacements for input mesh (optignal)

4.2.4.2 Output Datasets

Table 4.2-3 contains a list of datasets that may be created or updated in the database by procedure
AR_CONTROL. Most of these datasets will be resident in the main COMET-AR database file
(CaseDBC), but element and system matrices may be resident irCaéiseDBE file and
CaseDBS files, depending on the values of the user-specified arguments LDI_E and LDI_S. The
datasets listed all correspond to the output meshthe newest mesh created and analyzed by
procedure AR_CONTROL. The value ofo should be no greater than the value set by the
END_MESH procedure argument. For linear analysis, result dataset names contain the load set
(Idsed and constraint secgnset numbers, while for nonlinear analysis these dataset names
instead contain the load stegte) number.ldset and consetare set by the LOAD_SET and
CONSTAINT_STEP argument.

In addition to the current mesh, datasets for all of the intermediate meshes
between the input mesh and the current mesh will be stored in the databpase by
AR_CONTROL (.DBC file only).

4.2-30 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures

4.2 Procedure AR_CONTROL

Table 4.2-3 Output Datasets Created or Modified by Procedure AR_CONTROL

Dataset File Description
CSM.SUMMARY..mesh Cas®BC | Model summary for output mesh
EltNameDEFINITION...mesh Cas®BC Element definition for output mesh
EltNameERRORIdset.conset.mesh CaseDBC | Element error estimates computed for oufput
or EltNameERRORstep..mesh mesh
EltNameFABRICATION... mesh Cas®BC | Element fabrication pointers for output mesh
EltNameGEOMETRY..mesh Cas®BC | Element solid-model geometry for output mejsh
EltNamelNTERPOLATION...mesh Cas®BC | Element interpolation data for output mesh
EltNameLOAD.ldset.mesh CadeBC Element load definition for output mesh
EltNameREFINEMENT..mesh Cas®BC Element refinement table for output mesh
EltNameSTIFFNESS.mesh Cas®BE Element matrices for output mesh
EltNameSTRAIN.Idset.conset.mesh CaseDBC | Element strains computed for output mesh
or EItNameSTRAIN.step..mesh
EltNameSTRESSdset.conset.mesh CaseDBC | Element stresses computed for output mesh|(and
or EItNameSTRESSstep..mesh step if nonlinear)
EltNameSTRAIN_ENERGMdset.conset.mesh| CaseDBC | Element strain energy densities computed| for
or EItNameSTRAIN_ENERGYstep..mesh output mesh (and step if nonlinear)
NODAL.COORDINATE..mesh Cas®BC | Nodal coordinates for output mesh
NODAL.DISPLACEMENTIdset.conset.mesh CaseDBC | Nodal displacements computed for output nesh
or NODAL.DISPLACEMENTSstep..mesh (and step if nonlinear)
NODAL.ORDER.conset.mesh Ca$eBC | Nodal re-ordering array, defined by node renhm-

bering processor (optional)
NODAL.DOF..conset.mesh Ca$eBC | Nodal DOF boundary condition codes and equa-
tion numbers for output mesh
NODAL.ROTATION.step.mesh CadeBC | Nodal rotations for nonlinear analysis
NODAL.TRANSFORMATION..mesh Cas®BC | Nodal transformations between global and cpm-
putational frames for output mesh
NODAL.SPEC_FORCHdset..mesh CadeBC | Nodal specified forces for output mgsh
(optional)
NODAL.SPEC_DISRdset..mesh CadeBC | Nodal specified displacements for output mesh
(optional)
LINE.REFINEMENT..mesh Cas®BC | Line refinement table for output mesh
SURFACE.REFINEMENT.mesh Cas®BC | Surface refinement table for output mesh (¢nly
if 3D elements present)
SYSTEM.STIFFNESS.mesh Cas®BS | Assembled system stiffness matrix
SYSTEM.VECTOR.mesh Cas®BS System vector used to store assembled forc¢ and

displacement vectors during equation solu
process.

ion

Revised 12/1/97

COMET-AR User’'s Manual

4.2-31



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

For details on the contents of any of the datasets in Table 4.2-3, refer to Chajpiatabase
Summary

4.2.5 Subordinate Procedures and Processors

4.25.1 Subordinate Procedures

A list of COMET-AR procedures invoked directly by procedure AR_CONTROL is provided in
Table 4.2-4. Documentation on these procedures may be found in Chapdsic3Solution Pro-
ceduresand Chapter 8Jtility Procedures

Table 4.2-4 Subordinate Procedures to Procedure AR_CONTROL

Procedure Type Function

L_STATIC 1 Solution Performs linear static structural analysis

NL_STATIC 1 Solution Performs nonlinear static structural analysis

EST ERR_1 Utility Performs error estimation via the error estimation processor)(ERR
selected by the user with the ERROR_PROCESSOR argument

EST ERR_SM Utility Performs error estimation via combination of smoothing progessor
and error processor ERRSM

REF_MESH_1 Utility Performs adaptive mesh refinement via the mesh refinement proces-
sor (RER) selected by the user with the REFINE_PROCES$OR
argument

4.2.5.2 Relevant Subordinate Processors

Table 4.2-5 lists COMET_AR processors that are invoked directly by procedure AR_CONTROL
and user-specified processors that are invoked indirectly through any of the subordinate proce-
dures listed in Table 4.2-4. Documentation on these processors may be found in the chapter on the
corresponding processor type.

Table 4.2-5 Relevant Subordinate Processors to Procedure AR_CONTROL

Processor Type Function

Assembler Matrix/Vector | Matrix assembly processor, selected via the ASM_PROCESSOR procedure
argument

Renumberer Pre-Processoll Equation/node renumbering processor, selected via the RENO_PROCESSOR
procedure argument

Equation Matrix/Vector | Equation solver, set via the SKY_PROCESSOR argument
Solver

4.2-32 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

Table 4.2-5 Relevant Subordinate Processors to Procedure AR_CONTROL (Continued)

Processor Type Function
Smoother Smoothing Performs “stress” smoothing for smoothing-based spatial error estimat|on; set
by the SMOOTH_PROCESSOR argument

ERR Error Error estimation processor, selected via the ERROR_PROCESSOR prdcedure
Estimation | argument

REH Mesh Mesh refinement processor, selected via the REFINE_PROCESSOR prdcedure
Refinement | argument

VEC Matrix/Vector | Performs vector algebra for nonlinear solution procedures

4.2.6 Current Limitations

A summary of current limitations is given in Table 4.2-6.

Table 4.2-6 Current Limitations of Procedure AR_CONTROL

proof. It has been used to develop and research ad
mesh refinement techniques for aircraft shell struc

considered a “robust” tool for production engineerin

t
and much more work remains to be done before it cf

hjstteevene, by studying the tec
résal report given in [1], th
ICMET-AR User’s Tutorial [2]
and various parts of this manu

Limitation Description Work-Around
1 Adaptive | AR_CONTROL adaptive mesh refinement options Hdfeinsure about nonlinear addp-
Analysis Type| been tested predominantly for linear static analysis (itige capabilities, perform linegr
with solution procedure L_STATIC 1). The extension &olaptive analysis first, then
nonlinear analysis (via procedure NL_STATIC 1)| $svitch to nonlinear analys|s
new and experimental. starting from the refined mesh
Robustness [ AR_CONTROL is not fully automatic, nor is it fpdlhe user should be prepared| to

Error Estimate

5 In particular, the current error estimators may n|
quantitatively accurate, even though they may be g
tatively acceptable and produce effective aday
meshes.

pBdeonservative; e.g., choose
Latior tolerance of .02 (2%)
tiaur actual target is .05 (5%).

4.2.7 Status and Error Messages

A summary of important status and error messages potentially printed by Procedure
AR_CONTROL is given in Table 4.2-7.

Revised 12/1/97 COMET-AR User’'s Manual 4.2-33



4.2 Procedure AR_CONTROL

4 Adaptive Solution Procedures

Table 4.2-7 Status and Error Messages for Procedure AR_CONTROL

Status/Error Message

Potential Cause(s)

Suggested User Response

Adaptive refinement proc

dure converged

pbError estimates indicate that the glo
error tolerance (specified via t
CONVERGE_TOL argument) has be]
satisfied with the current mesh.

b@lelebrate, but not before exam

esuch as maximum stress and v
fying convergence.

nang critical solution quantitiep

Adaptive refinement proc
dure terminated without conBEG_MESH through END_MESH, th

vergence

pAfter analyzing and creating mesh

user-specified global error tolerance
still not been satisfied. This is eith

requires more mesh iterations or it may

as a point force (which should not
employed with adaptive refinement).

dsither restart from the curre
enesh and allow more me
naepdates, or consider accepting
egrror levels already achieved.

because the current adaptive strategy

be

hung up on an intractable singularity sych

be

Nt
5h
the

Adaptive mesh
limits exceeded

refineme

NAfter or during the current mesh refin
ment step a user-specified limit in probl
size (e.g., MAX H LEVEL) has besg
exceeded while the convergence tolerd

regy (e.g., refinement techniq
rened/or error tolerances), or acc

dncrease the original limits, re-rgn
bthe analysis with a different strat-

e
bt

the latest solution as the begst
available within budget.

has not yet been met.

4.2.8 Examples and Usage Guidelines

4.2.8.1 Example 1: New Linear Adaptive Analysis

*call AR_CONTROL ( CASE = AR_CASE_1 e
SOLN_PROCEDURE = L_STATIC_ 1 -
BEG_MESH =0 -
MAX_MESHES =4 -
ERROR_PROCESSOR = ERR4 -
ERROR_TECHNIQUE = SMOOTHING -
REFINE_PROCESSOR = REF1 -
REFINE_TECHNIQUE = hc -
REFINE_INDICATOR = AVE -
REFINE_TOLS = 05 -
CONVERGE_TOL = 05 -
MAX_H_LEVEL =5 )

In this example, an adaptive linear static analysis is requested, starting with mesh 0 (the initial
model) and allowing up to 3 mesh updates (meshes 1, 2 and 3). For error estimation, processor
ERR4 is requested to use smoothing-based error estimates (of element strain-energy densities).
For mesh refinement, processor REF1 is requested th, senstraint-basetl) refinement, to

employ the AVE element refinement indicator (which attempts to distribute element errors uni-
formly), to refine all elements whose relative errors are greater than 5% by one level of subdivi-

4.2-34 COMET-AR User’'s Manual Revised 12/1/97



4 Adaptive Solution Procedures 4.2 Procedure AR_CONTROL

sion, and to terminate refinement when the global relative error is less than or equal to 5%, or
when any element attempts to subdivide by more thanelinement levels. Many of the default
values were explicitly used in this example for illustration purposes.

4.2.8.2 Example 2: Linear Adaptive Analysis Restart

*call AR_CONTROL ( CASE = AR_CASE_1 -
BEG_MESH =3 -
MAX_MESHES =3 -
ERROR_PROCESSOR = ERR4 -
ERROR_TECHNIQUE = SMOOTHING -
REFINE_PROCESSOR = REF1 -
REFINE_TECHNIQUE = he -
REFINE_INDICATOR = AVE -
REFINE_TOLS = .05 -
CONVERGE_TOL = .05 -
MAX_H_LEVEL =5 )

This example is a sequel to Example 1, and assumes that the desired error convergence tolerance
was not achieved via the first 3 mesh updates. The run invoked here will begin by performing
error estimation and adaptive mesh refinement on mesh 3 and performing up to 2 more mesh
updates. All of the other AR control parameters are identical to Example 1.

4.2.8.3 Example 3: NonLinear/NonAdaptive Analysis Initiation

*call AR_CONTROL ( CASE = AR_CASE_1 -
SOLN_PROCEDURE = NL_STATIC_1 -
BEG_STEP =1 -
MAX_STEPS = 10 -
BEG_LOAD =1 -
MAX_LOAD =10 -
NL_TOL = .00001 )

Revised 12/1/97 COMET-AR User’'s Manual 4.2-35



4.2 Procedure AR_CONTROL 4 Adaptive Solution Procedures

4.2.8.4 Example 4: NonLinear/Adaptive Analysis Initiation

*call AR_CONTROL ( CASE = AR_CASE_1 -
SOLN_PROCEDURE = NL_STATIC_1 -
BEG_STEP =1 -
MAX_STEPS =10 -
BEG_LOAD =1 -
MAX_LOAD =10 -
NL_TOL = .00001 -
BEG_MESH =0 -
MAX_MESHES =5 -
ERROR_PROCESSOR = ERR2 -
ERROR_TECHNIQUE = SMOOTHING -
REFINE_PROCESSOR = REF1 -
REFINE_TECHNIQUE = he -
REFINE_INDICATOR = AVE -
REFINE_TOLS = .05 -
CONVERGE_TOL = .05 -

)

4.2.8.5 Example 5: Linear Adaptive Analysis With Smoothing-based Error Estimation

*call AR_CONTROL ( CASE = AR_CASE_1 ;-

SOLN_PROCEDURE = L_STATIC_1 ;-
BEG_MESH =0 ;-
MAX_MESHES =4 ;-
SMOOTH_PROCESSOR = SMT ;-
SMOOTH_LOCATIONS = INTEG_PTS ;-
SMOOTH_OPTIONS = 1.0 ;-
ERROR_PROCESSOR = ERRSM ;-
ERROR_TECHNIQUE = SMOOTHING ;-
REFINE_PROCESSOR = REF1 ;-
REFINE_TECHNIQUE = hc ;-
REFINE_INDICATOR = AVE )
REFINE_TOLS = .05
CONVERGE_TOL = .05
MAX_H_LEVEL =5

4.2.9 References

[1] Stanley, G., Levit, I, Hurlbut, B., and Stehlin, B., “Adaptive Refinement (AR)

Strategies for Shell Structures; Part 1: Preliminary ReseaRiefiminary NASA
Contract Report1991.

[2] Stehlin, B., “The COMET-AR User’s Tutorial NASA Preliminary Contract Report
February, 1993.

4.2-36 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures

5.1 Overview

Chapter 5 Utility Procedures

5.1 Overview

This chapter describes existing COMET-AR command-language utility procedures that perform
basic, low-level finite element analysis tasks. A section is dedicated to each of the currently avail-
able procedures which are listed in Table 5.1-1. They include a generic element procedure,
generic solver procedures and generic adaptive refinement and error estimation procedures. These
utility procedures may be invoked with a simple *CALL directive after running the COMET-AR
macroprocessor (see Chapter 1).

Table 5.1-1 Outline of Chapter 5: Utility Procedures

embles

Section Procedure Function

5.1 Overview Introduction

5.2 ES Performs various element tasks

5.3 EST ERR_1 Performs error estimation

5.4 EST_ERR_SM

5.5 FACTOR Performs decomposition of a system matrix
(Crout/Cholesky)

5.6 FORCE Calculates force vectors, internal and external

5.7 INITIALIZE Performs various initialization tasks

5.8 REF_MESH_1 Performs adaptive mesh refinement

5.9 SOLVE Performs system equation solution

5.10 STIFFNESS Computes element stiffness matrices and ass¢
the system stiffness matrix

511 STRESS Performs stress recovery

5.12 MASS

The above utility procedures invoke various COMET-AR processors as described in Part Ill.

Revised 12/1/97

COMET-AR User’'s Manual

51-1



5.1 Overview 5 Utility Procedures

5.1-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

5.2 Procedure ES

5.2.1 General Description

This procedure is a CLIP cover for the generic element processor, or ES (for Element/Structural),
which provides a standard template for individual COMET-AR structural finite-element
processors. These processors have names that begin with ES (e.g., ES1p, ES7p, ES36, ...). Each of
these EB processors performs all operations for all element types implemented within the
processor, including the definition of element connectivity and loads during pre-processing, the
formation of element force and stiffness arrays during the primary solution phase, and the
formation of strains and stresses during the secondary solution phase of structural analysis.

This section describes the ES Utility Procedure, which automatically executes all element
processors and types associated with a given model. For most analyses, users will not have to
directly interact with the generic element (ES) processor or procedure except during model
definition, where EBprocessors are run directly (within model definition procedures) to define
elements and element loads (with the DEFINE ELEMENTS and DEFINE LOADS commands).
During the solution phase, element functions are automatically exercised via solution procedures
and their subordinate utility procedures.

5.2.2 Argument Summary

Procedure ES may be invoked with B®@MET-AR CCALL directive, employing the arguments
summarized in Table 5.2-1.

Table 5.2-1 Procedure ES Input Arguments

Argument Default Value Description

COROTATION <false> Sets the default element corotational option

DISPLACEMENT NODAL.DISPLACEMENT.1.1| Sets the default name of nodal displacement dataset

DRILL_STIFF <false> Sets the default value of artificial drilling stiffnpss
parameter

DRILL_TOL 0 Sets the default value of drilling stabilization angle
tolerance

FORCE NODAL.FORCE.1.1 Sets the default name of nodal force dataset

FREEDOMS ES.DOFS

FUNCTION — Defines the function to be performed by the [ES
processor

GCP 1 Sets the defautti of GCP material and fabricatign
datasets

Revised 12/1/97 COMET-AR User’'s Manual 5.2-1



5.2 Procedure ES 5 Utility Procedures

Table 5.2-1 Procedure ES Input Arguments (Continued)

Argument Default Value Description

LDI 1 Sets the defaultldi of computational databage
library

LOAD_FACTOR 1.0 Sets the default load factor to be applied to element
loads

LOAD_SET 1 Sets the default load set number for element logds

MASS MASS Sets the default name of output mass matrix dataset

MESH 0 Sets the mesh number

NL_GEOM <false> Sets the default geometric nonlinearity option

NL_LOAD <false> Sets the default load nonlinearity option

NL_MATL <false> Sets the default material nonlinearity option

NUM_CON_SETS 1

PROJECTION <false> Sets the default element projection option

ROTATION NODAL.ROTATION.1.1 Sets the default name of nodal rotation pseudpvec-
tor dataset

SE_TOT <false>

STEP 0 Sets/resets load- or time-step number

STIFFNESS STIFFNESS Sets the default name of element stiffness datpset

STRAIN — Sets the default name of element strain dataset

STRAIN_ENERGY — Sets the default name of element strain energy
dataset

STRESS — Sets the default name of element stress datasqt

STR_DIRECTION 0 Sets the default stress/strain output coordinate
system

STR_LOCATION INTEG_PTS Sets the default stress/strain output locations

5.2.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapkeifient Processor$or more details
on the options.

5.2.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains) even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

Page 5.2-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

Argument syntax:

COROTATION = corotation_option

where
corotation_option Description
0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newton itera-
tion is begin performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only iff True-
Newton iteration has been selected at the nonlinear solution procedure level, apd even
then may provide only marginal improvement in nonlinear convergence over optign 1. It
adds additional terms to the tangent stiffness matrix that render it more consistent.

5.2.3.2 DISPLACEMENT Argument
This argument changes the defdditand name of the nodal displacement dataset.

Argument syntax:

DISPLACEMENT =ds_name

whereds_namaes the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)
5.2.3.3 DRILL_STIFF Argument

This argument changes the default artificial drilling rotational stiffness option for (certain) shell
element types.

Argument syntax:

DRILL_STIFF = Option [,scale]

whereOptionis either <true> or <false>, asdaleis an integer scale factor that depends on the
particular element type. (Default value: <false>)

5.2.3.4 DRILL_TOL Argument

This argument changes the default artificial drilling tolerance option for (certain) shell element
types.

Revised 12/1/97 COMET-AR User’'s Manual 5.2-3



5.2 Procedure ES 5 Utility Procedures

Argument syntax:

DRILL_TOL = angle

whereangleis an integer angle tolerance indicating when some form of stabilization is required
for shell element drilling rotational freedoms. If the angle between the shell-element normal and
the average element normal (or a computational axis) at a node is less than this value, drilling
stabilization may be required (depending on the element type). (Default value: 0)

5.2.3.5 FORCE Argument

This argument changes the default name of the nodal force dataset.

Argument syntax:

FORCE =ds_name

whereds_namas the new dataset name. (Default value: NODAL.FORCE.1.1)

5.2.3.6 FUNCTION Argument
This argument defines the function to be performed by theB8essor.

Argument syntax:

FUNCTION = function

where
Function Description
INITIALIZE Creation of element INTERPOLATION datasets, element AUX _STORAGE
datasets, and initialization of constitutive datasets
FORM FORCE Forms element force vectors (internal, external, or residual)
FORM STIFFNESS Forms element stiffness matrices (material, geometric, load, or tangent
FORM MASS Forms element mass matrices (consistent or lumped)
FORM STRAIN Computes element strains
FORM STRAIN_ENERGY | Computes element strain energy
FORM STRESS Computes element stresses

(Default value: None)

Page 5.2-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

5.2.3.7 GCP Argument

This argument changes the default database logical device Idfexséociated with all datasets
managed by the Generic Constitutive Processor.

Argument syntax:

GCP =gcp_ldi

wheregcp_ldiis the logical device index. (Default value: 1)

5.2.3.8 LOAD_FACTOR Argument
This argument changes the default load factor to be applied to all element loads.

Argument syntax:

LOAD FACTOR =load_factor

whereload_factoris a floating-point scale factor. (Default value: 1.0)

5.2.3.9 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

LOAD_SET =load_set

whereload_seis an integer load-set number. (Default value: 1)

5.2.3.10 LDI Argument

This argument changes the default logical device intigx for all datasets input/output by the
current E$ processor, except those for which an expliditis used in a separate database
command (e.g., STIFFNESS or GCP_LDI).

Argument syntax:

LDI = Idi

whereldi is the logical device index of the database library. (Default value: 1)

Revised 12/1/97 COMET-AR User’'s Manual 5.2-5



5.2 Procedure ES 5 Utility Procedures

5.2.3.11 MASS Argument

This argument changes the default name of the element (consistent) or nodal (lumped) mass
datasets.

Argument syntax:

MASS =ds_name

whereds_namas the new dataset name. (Default value: MASS)

5.2.3.12 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

MESH = mesh

wheremeshis an integer number, typically set to the current mesh number. (Default value: 0)

5.2.3.13 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

NL_GEOM = nl_geom_option

where

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relationg will be
employed and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement rela-
tions will be used. With this option, geometric nonlinearity must be accounted for ja ele-
ment corotation, which for many beam/shell element types is not as accurate as dption 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacemgnt rela-
tions will be used. Element corotation may or not be selected with this option. For many

beam/shell element types, nonlinear element strain-displacement relations ephances
corotation, making it more accurate for a given mesh and rotation magnitude.

Page 5.2-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

5.2.3.14 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector or the tangent stiffness matrix.

Argument syntax:

NL_LOAD = nl_load_option

where

nl_load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-indepen-
dent (“dead”) external loads are to be processed in the following FORM FOR[LCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads ar¢ to be
processed in the following FORM FORCE or FORM STIFFNESS command.

5.2.3.15 NL_MATL Argument
This argument changes the default material nonlinearity option.

Argument syntax:

NL_MATL = nl_matl_option

where
nl_matl_option Description
0 or <false>) The analysis is materially linear; ignore nonlinearity in any material constitutive models.
(Default)
1 The analysis is materially nonlinear, include nonlinearity in material constitutive mjodels
if it exists.

5.2.3.16 PROJECTION Argument

This argument changes the default element “rigid-body projection” option. The rigid-body
projection option is the linearized counterpart of the corotation option and modifies the stiffness
matrix and displacement vector so that they are free from spurious strains due to (infinitesimal)
rigid-body motion. This is relevant only for elements that do not preserve rigid-body modes exactly
(for example, warping-sensitive shell elements such as those in processor ES5) and can make a
difference in both linear and nonlinear analysis.

Revised 12/1/97 COMET-AR User’'s Manual 5.2-7



5.2 Procedure ES 5 Utility Procedures

Argument syntax:

PROJECTION =projection_option

where
projection_option Description
0 or <false> Element rigid-body projection will not be performed. (Default)
1 Element rigid-body projection will be performed.

5.2.3.17 ROTATION Argument
This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

ROTATION = ds_name

whereds_namaes the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.2.3.18 STEP Argument

This argument changes the default load- or time-step number used in many solution dataset names
(unless otherwise specified via a separate dataset command).

Argument syntax:

STEP =step

wherestepis an integer number, typically set to the current step number. (Default value: 0)

5.2.3.19 STIFFNESS Argument
This argument changes the default name of the element stiffness matrix dataset.

Argument syntax:

STIFFNESS =ds_name

whereds_namas the new dataset name. (Default value: STIFFNESS)

Page 5.2-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

5.2.3.20 STRAIN Argument

This argument changes the default name of the element strain dataset before using the FORM
STRAIN command. It also causes strains to be output to the database by the FORM STRESS,
FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

STRAIN = ds_name

whereds_namaes the new dataset name. (Default value: None)

5.2.3.21 STRAIN_ENERGY Argument

This argument changes the default name of the element strain-energy density dataset before using
the FORM STRAIN_ENERGY command. It also causes strain-energy densities to be output to the
database by the FORM STRESS, FORM FORCE/RES, or FORM FORCE/INT FUNCTION
arguments.

Argument syntax:

STRAIN_ENERGY =ds_name

whereds_namas the new dataset name. (Default value: None)

5.2.3.22 STRESS Argument

This argument changes the defddltand name of the element stress dataset before using the
FORM STRESS command. It also causes strains to be output to the database by the FORM
FORCE/INT or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

STRESS =ds_name

whereds_namas the new dataset name. (Default value: None)

5.2.3.23 STR_DIRECTION Argument

This argument changes the default stress or strain direction option prior to use of the FORM
STRAIN, FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

Revised 12/1/97 COMET-AR User’'s Manual 5.2-9



5.2 Procedure ES

5 Utility Procedures

Argument syntax:

where

STR_DIRECTION =str_direction

str_direction

Description

ELEMENT or O

Use element local (integration point) coordinate systemy,xz,
stress/strain output systemy; ¥, z;. (Default)

as

GLOBAL {X|Y|Z}

otherwise it is obtained by permuting the global axes. The stre
output y axis is defined by the right-hand-rule.

The stress/strain output &xis is parallel to the globaj, ¥/, or 7, axis if
X,Y or Z, respectively, is used in the subcommand. The stress/strajn out-
put z axis is parallel to the local element normal axis for shell elements,

ss/strain

FAB_DIR

stress/strain output system, ¥, z.

Use the local material-fabrication coordinate systemyqx z, as the

5.2.3.24 STR_LOC Argument

This argument changes the default stress, strain or strain-energy location option prior to use of the
FORM STRAIN, FORM STRESS, FORM STRAIN_ENERGY, FORM FORCE/INT, or FORM
FORCE/RES FUNCTION arguments.

Argument syntax:

where

STR_LOC =str_location

str_location

Description

INTEG_PTS

Element stresses, strains, or strain-energy densities will be evaluated ar
at element integration points in the STR attribute of the specified EST d
(Default)

d stored
htaset.

NODES

Element stresses, strains, or strain-energy densities will be evaluated at
tion points, then extrapolated and stored at element nodes in the ST,
attribute of the specified EST dataset.

integra-
RNOD

CENTROIDS

Element stresses, strains, or strain-energy densities will first be evaluate
element integration points, then averaged and stored at element centroid
STRCEN attribute of the specified EST dataset. (If one of the element’
gration points coincides with the centroid, the value computed there W
output rather than an average integration-point value.)

d at the
s in the
b inte-
ill be

Page 5.2-10

COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.2 Procedure ES

5.2.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by fredeSsor

being used and the FUNCTION argument. These dataset requirements are documented in detail in
Chapter 7Element Processors

5.2.5 Current Limitations

ES is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the ESprocessor being employed. Refer to individual @®cessors in Chapter 7

for specific processor limitations.

5.2.6 Status and Error Messages

ES does not print any status or error messages directly. All messages will be produces by the ES

processor being employed. Refer to individual g®cessors in Chapter 7 for specific processor
messages.

5.2.7 Examples and Usage Guidelines

5.2.7.1 Example 1: Stiffness Matrix Formation

*call ES ( STIFFNESS = MATL_STIFF ;-
GCP =4 ;-
NL_MATL = <false> ;-
NL_GEOM = <false> ;-
COROTATION = <false> ;-
PROJECTION = <false> ;-
MESH =3 ;-
FUNCTION = FORM STIFFNESS )

In this example, the formation of element linear material stiffnesses is requested for mesh 3. The
Generic Constitutive Processor database is stored in logical device index 4 and the element
stiffness matrices will be stored inBlfNamSTIFFNESS.mesh

5.2.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.2-11



5.2 Procedure ES 5 Utility Procedures

Page 5.2-12 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.3 Procedure EST_ERR_1

5.3 Procedure EST ERR 1

5.3.1 General Description

Procedure EST_ERR_1 is a utility procedure for performing finite element solution error esti-
mation. It automatically invokes the appropriate error estimation processor (see Chapter 10 for
details).

Procedure EST_ERR_1 is typically invoked automatically by solution procedure AR_CONTROL
during analyses with adaptive mesh refinement.

5.3.2 Argument Summary

Procedure EST_ERR_1 may be invoked with@@MET-AR CCALL directive, employing the
arguments summarized in Table 5.3-1.

Table 5.3-1 Procedure EST_ERR_1 Input Arguments

Argument Default Value Description
ACCUMULATE <false> Accumulation of errors when processing by group switch
CONSTRAINT_SET 1 Specifies constraint-set number for error estimation
ERROR_MEASURE STRAIN-ENERG
ERROR_PROCESSOR ERR2 Name of error estimation processor to invoke
ERROR_TECHNIQUE S Error estimation technique (S => Smoothing)
GROUP 0 List of element groups for error estimation
LDI 1 Logical unit for computational COMET-AR database file

(CaseDBC)

LOAD_SET 1 Specifies load-set number for error estimation
MESH 0 Specifies mesh number for error estimation
NUM_GROUP 0 Number of element groups for error estimation
STEP 0 Specifies load/time-step number for error estimation

5.3.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.3-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to
subordinate procedures and processors, where the actual options are determined. For example, the
definition of REFINE_TECHNIQUE depends on which refinement processor the user selects via
the REFINE_PROCESSOR argument, thus the user is referred to the corresponding refinement
processor section in Part Ill for details on the options.

Revised 12/1/97 COMET-AR User’'s Manual 5.3-1



5.3 Procedure EST_ERR_1 5 Utility Procedures

5.3.3.1 ACCUMULATE Argument
This argument sets the error accumulation switch.

Argument syntax:

ACCUMULATE = switch

whereswitchis a flag instructing the ES procedure to run the ERRa processor after estimating all
element groups errors to accumulate the total model errors (see Section 10.6).

5.3.3.2 CONSTRAINT_Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

CONSTRAINT _=constraint set

where:

Parameter Description

constraint_set Constraint set number (Default value: 1)

5.3.3.3 ERRORPROCESSOR Argument

This argument defines the error processor to be used for estimating the solution errors, e.g., ERR2,
ERR4, or ERRG.

Argument syntax:

ERROR_PROCESSORetror_processor

whereerror_processois the name of the error estimation processor. (Default value: ERR2)

5.3.3.4 GROUP Argument

This argument defines the element group identity numbers for a group of elements that need to be
processed by the ERRrocessors for each of the element types specified.

5.3-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures

5.3 Procedure EST_ERR_1

Argument syntax:

GROUP =first:last:incr

or
GROUP =01,92:--- N

where:
Parameter Description
first First group ID to be processed (Default value: 0; all groups)
last Last group ID
incr Group ID increment
Oi Group ID

5.3.3.5 LDI Argument

This argument defines the logical device index for the computational database.

Argument syntax:

where:

LDI = Idi

Parameter

Description

Idi

Logical device index. (Default value: 1)

5.3.3.6 LOAD_SET Argument

This argument defines the load set number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
linear static analysis).

Argument syntax:

LOAD_SET=load set

Revised 12/1/97

COMET-AR User’'s Manual 5.3-3



5.3 Procedure EST_ERR_1 5 Utility Procedures

where:

Parameter Description

load_set Load set number. (Default value: 1)

5.3.3.7 MESH Argument

This argument defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in names
of all datasets, e.gEltNamERRORIdset.conset.mesh

Argument syntax:

MESH =mesh
where:
Parameter Description
mesh Mesh number to be processed. (Default value: 0)

5.3.3.8 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
linear static analysis).

Argument syntax:

STEP =step

where:

Parameter Description

step solution step number. (Default value: None)

5.3.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by ihar&fRRBsor
being used. These dataset requirements are documented in detail in Chapter 10.

5.3-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.3 Procedure EST_ERR_1

5.3.5 Current Limitations

EST_ERR_1is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ERR processor being employed. Refer to individual ERROcessors in
Chapter 10 for specific processor limitations.

5.3.6 Status and Error Messages

EST_ERR_1 does not print any status or error messages directly. All messages will be produced

by the ERR processor being employed. Refer to individual ERRcessors in Chapter 10 for
specific processor messages.

5.3.7 Examples and Usage Guidelines

5.3.7.1 Example 1: ERROR Estimation Without Group Partition

*CALL EST_ERR_1 ( ERROR_PROCESSOR = ERR2 -
ERROR_TECNIQUE = S/IBARLOW -
MESH =2 )

In this example, error estimation processor ERR2 using the Zienkiewicz-Zhu global smoothing
algorithm and Barlow point stress data will be employed for estimating the errors in mesh 2.

5.3.7.2 Example 2: ERROR Estimation With Group Partition

*CALL EST_ERR_1 ( ERROR_PROCESSOR = ERR6
ERROR_TECNIQUE = S/IBARLOW
MESH =1
NUM_GROUP =2
GROUP = 1,2 ,
ACCUMULATE = <true> )

In this example, error estimation processor ERR6 using the Zienkiewicz-Zhu global smoothing
algorithm and Barlow point stress data will be employed for estimating the errors in mesh 1. The
ERRG6 processor will be run twice, for each element group, followed by the ERRa processor which
will accumulate errors by group.

5.3.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.3-5



5.3 Procedure EST_ERR_1 5 Utility Procedures

5.3-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.4 Procedure EST_ERR_SM

5.4 Procedure EST_ERR_SM

5.4.1 General Description

Procedure EST_ERR_SM is a utility procedure for performing finite element solution error
estimation involving a stand-alone smoothing processor. It automatically invokes the appropriate
smoothing processor followed by an error-estimation post-processor, such as ERRSM, designed to
compute errors by comparing raw finite-element stress-type data with smoothed (i.e., nodally
continuous) versions of these quantities (see Chapt@m8pthing Processqrand Chapter 10,

Error Estimation Processo)s

Procedure EST_ERR_SM is typically invoked automatically by solution procedure
AR_CONTROL during analyses with adaptive mesh refinement.
5.4.2 Argument Summary

Procedure EST_ERR_SM may be invoked withGREVET-AR CCALL directive, employing the
arguments summarized in Table 5.4-1.

Table 5.4-1 Procedure EST_ERR_SM Input Arguments

Argument Default Description
CONSTRAINT_SET 1 Specifies constraint-set number for error estimation
ERROR_MEASURE STRAIN
ERROR_PROCESSOR ERRSM Name of error estimation processor to invoke
GRADIENT_DATASET GRADS_SM
GRADIENT_FLAG <false>
LDI 1 Logical unit for central database filE4seDBC)
LOAD_SET 1 Specifies load-set number for error estimation
MESH 0 Specifies mesh number for error estimation
NUM_GROUP 0 Number of element groups for error estimation
SAMPLE_LOCATIONS INTEG_PTS
SMOOTH_LOCATIONS ALL Locations at which smoothed data is to be computed
SMOOTH_OPTIONS Smoothing-processor-specific smoothing options
SMOOTH_PROCESSOR SMT Smoothing processor (see Chapter 9)

STEP 0 Specifies load/time-step number for error estimation

Revised 12/1/97

COMET-AR User’'s Manual

54-1



5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.4-1 are defined in more detail.
The arguments are listed alphabetically and many of the precise definitions are relegated to
subordinate procedures and processors, where the actual options are determined. For example, the
definition of REFINE_TECHNIQUE depends on which refinement processor the user selects via
the REFINE_PROCESSOR argument, and the user is referred to the corresponding refinement
processor section in Chapter 11 for details on the options.

5.4.3.1 CONSTRAINT_Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

CONSTRAINT _=constraint set

where:

Parameter Description

constraint_set Constraint set number (Default value: 1)

5.4.3.2 ERRORPROCESSOR Argument

This argument defines the error processor to be used for estimating the solution error by comparing
smoothed data (to be computed by a stand-alone smoothing processor) with raw finite element
data.

Argument syntax:

ERROR_PROCESSORetror_processor

whereerror_processors the name of the error estimation processor. Only special error estimation
processors such as ERRSM can handle pre-smoothed solution data. (Default value: ERRSM)
5.4.3.3 GROUP Argument

This argument defines the element group identity numbers for a group of elements that need to be
processed by the ERRrocessors for each of the element types specified.

5.4-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures

5.4 Procedure EST_ERR_SM

Argument syntax:

or

GROUP =first:last:incr

GROUP =01,92:--- N

where:
Parameter Description
first First group ID to be processed (Default value: 0; all groups)
last Last group ID
incr Group ID increment
Oi Group ID

5.4.3.4 LOAD_SET Argument

This argument defines the load set number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for

linear static analysis).

Argument syntax:

where:

LOAD_SET=load set

Parameter

Description

load_set

Load set number. (Default value: 1)

5.4.3.5 LDI Argument

This argument defines the logical device index for the computational database.

Argument syntax:

LDI = Idi

Revised 12/1/97

COMET-AR User’'s Manual

5.4-3



5.4 Procedure EST_ERR_SM 5 Utility Procedures

where:

Parameter Description

Idi Logical device index. (Default value: 1)

5.4.3.6 MESH Argument

This argument defines the mesh number associated with the model and solution data for which
error estimates are to be computed. This number should appear as the third cycle number in names
of all datasets, e.gEltNamERRORIdset.conset.mesh

Argument syntax:

MESH =mesh
where:
Parameter Description
mesh Mesh number to be processed. (Default value: 0)

5.4.3.7 SMOOTH_LOCATIONS Argument
This argument defines the locations at which smoothed data is to be computed.

Argument syntax:

SMOOTH_LOCATIONS Hocations

where:

Parameter Description

locations Locations where smoothed data will be computed and storgd:
INTEG_PTS => element integration points (default)
NODES => element nodes

BOTH => both integration points and nodes

5.4.3.8 SMOOTH_OPTIONS Argument

This argument defines processor-specific smoothing options.

5.4-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.4 Procedure EST_ERR_SM

Argument syntax:

SMOOTH_OPTIONS =options

where:

Parameter Description

options Smoothing-processor specific option values; see Chapter 9 for deails.

5.4.3.9 SMOOTH_PROCESSOR Argument
This argument defines the name of the smoothing processor to run before estimating errors.

Argument syntax:

SMOOTH_PROCESSOR processor

where:

Parameter Description

processor Name of a valid smoothing processor. See Chapter 9.
(Default: SMZ)

5.4.3.10 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
nonlinear static analysis).

Argument syntax:

STEP =step

where:

Parameter Description

step Solution step number. (Default value: none)

Revised 12/1/97 COMET-AR User’'s Manual 5.4-5



5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by ihar&fRRBsor

being used. These dataset requirements are documented in detail in Chapter 10.

5.4.5 Current Limitations

EST_ERR_SM is a general purpose procedure and the only limitations on its use are dictated by
the limitations of the ERRprocessor being employed. Refer to individual ERRcessors in
Chapter 10 for specific processor limitations.

5.4.6 Status and Error Messages

EST_ERR_SM does not print any status or error messages directly. All messages will be produced

by the ERR processor being employed. Refer to individual ERRcessors in Chapter 10 for
specific processor messages.

5.4.7 Examples and Usage Guidelines

5.4.7.1 Example 1. ERROR Estimation Without Group Partition

*CALL EST_ERR_SM ( SMOOTHING_PROCESSOR = SMZ -
ERROR_PROCESSOR = ERRSM -
ERROR_MEASURE = STRAIN -
MESH =2 )

In this example, error estimation is based on a comparison of the basic finite element strains with
a smoothed version of these strains, computed via the Zienkiewicz smoothing processor, SMZ.
Error estimation processor ERRSM then computes the element error norms by integrating the
strain energy of the difference between the basic strains and smoothed strains over each element
domain. The calculations are performed for the finite element solution obtained with mesh 2.

5.4.7.2 Example 2: ERROR Estimation With Group Partition

*CALL EST_ERR_SM ( SMOOTHING_PROCESSOR = SMZ -
ERROR_PROCESSOR = ERRSM -
ERROR_MEASURE = STRAIN -
MESH =1 -
NUM_GROUP =2 -
GROUP =12 )

This example is identical to the previous example except that i) error estimation is performed for
mesh 1 instead of mesh 2, and ii) smoothing will be performed independently for element groups

5.4-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.4 Procedure EST_ERR_SM

1 and 2, which presumably interface with one another at a physical discontinuity such as a non-
smooth intersection, a change in material properties, or a concentrated load.

5.4.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.4-7



5.4 Procedure EST_ERR_SM 5 Utility Procedures

5.4-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.5 Procedure FACTOR

5.5 Procedure FACTOR

5.5.1 General Description

Procedure FACTOR is a utility procedure for performing system matrix decomposition. It is
automatically invoked by solution procedures such as L_STATIC 1 and NL_STATIC_ 1 to
perform system matrix factorization for a given mesh.

The FACTOR procedure is merely a cover procedure which invokes the appropriate matrix/vector
algebra processor to perform the system matrix decomposition task. Existing processors of this
type are discussed in Chapter Mtrix/Vector Algebra Processars

5.5.2 Argument Summary

Procedure FACTOR may be invoked with tB®OMET-AR [ICALL directive, employing the
arguments summarized in Table 5.5-1.

Table 5.5-1 Procedure FACTOR Input Arguments

Argument Default Value Description
ASM_MATRIX 1, K Theldi and dataset name of the assembled system matrix
FAC_MATRIX 1,K Theldi and dataset name of the output factored system matrix
FIXED_FRAME OFF Fixed-frame option for hierarchidgtrefinement
LDI_C 1 Logical unit for main COMET-AR database filegseDBC)
LDI_S 3 Logical unit for system-matrix filiCaseDBS)
MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement
MESH 0 Mesh number to be analyzed
MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving
SKY_PROCESSOR SKY Linear equation solver processor name
STEP 0 Solution step nhumber

5.5.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.5-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chaptévidt2ix/Vector Algebra Processors,
for details on the options.

Revised 12/1/97 COMET-AR User’'s Manual 5.5-1



5.5 Procedure FACTOR 5 Utility Procedures

5.5.3.1 ASM_MATRIX Argument
This argument sets théi and dataset name of the assembled stiffness matrix.

Argument syntax:

ASM_MATRIX = Idi, dataset_name

whereldi is the logical device index associated with the system matrix fildaadet _names the
assembled system matrix dataset name. (Default value: 1, K)
5.5.3.2 FIXED_FRAME Argument

This argument sets a flag that is relevant onlyhferefinement. (See Section 12.3 (ASMs) and
12.7 (SKYs) for additional information about this argument).

Argument syntax:

FIXED_FRAME = {<true> | <false>}

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

5.5.3.3 LDI C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling FACTOR and must be na@GestDBC.

Argument syntax:

LDI_C =Idi_c

whereldi_c is the logical device index (a positive integer) of@aseDBC file. (Default value: 1)

5.5.3.4 LDI S Argument

This argument sets the logical device index associated with the system matrix database file,
typically namedCaseDBS.

Argument syntax:

LDI_S =Idi_s

5.5-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.5 Procedure FACTOR

whereldi_sis the logical device index (a positive integer) of@laeseDBS file. Ifldi_sis not equal

toldi_c (see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separ@&seDBS file. If Idi_s=Idi_c, then all system matrices will be
stored on th€aseDBC file, i.e., a separateaseDBS file will not be created. (Default value: 3)

If a separat€aseDBS file is created, it will be deletgd
and re-created with each new adaptive mesh.

5.5.3.5 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
he-refinement).

Argument syntax:

MATRIX_UPDATE = {FULL | PARTIAL}

whereFULL implies that the entire stiffness matrix is reformed for each new mesh and thus a
complete factorization is required, and where PARTIAL implies that only the updated-mesh
contributions to the stiffness matrix are reformed for each new mesh and thus only the new
columns added to the assembled matrix require factorization. (Default value: FULL)

5.5.3.6 MESH Argument

This argument sets the number of the mesh to analyze.

Argument syntax:

MESH =mesh

wheremeshis the mesh number. (Default value: 0)

5.5.3.7 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization by certain
matrix/vector algebra processors.

Argument syntax:

MTX_BUFFER_SIZE =mtx_buffer_size

wheremtx_buffer_sizés the size of the buffer in logical variables. (Default value: 500000)

Revised 12/1/97 COMET-AR User’'s Manual 5.5-3



5.5 Procedure FACTOR 5 Utility Procedures

5.5.3.8 SKY_PROCESSOR Argument

Selects the matrix/vector algebra processor to be used for factoring the assembled linear equation
system.

Argument syntax:

SKY_PROCESSOR sky_processor

where sky processors the name of the matrix/vector algebra processor. Current options are
summarized below.

sky processor Description
SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction Withand h-
refinement only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers.

Consult Chapter 12 for more details.

5.5.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the matrix/vector
algebraprocessor being used. These dataset requirements are documented in detail in Chapter 12.
5.5.5 Current Limitations

FACTOR is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the equation solver processor being employed. Refer to individual matrix/vector
algebra processors in Chapter 12 for specific processor limitations.

5.5.6 Status and Error Messages
FACTOR does not print any status or error messages directly. All messages will be produces by

the equation solver processor being employed. Refer to individual matrix/vector algebra processor
in Chapter 12 for specific processor messages.

5.5-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.5 Procedure FACTOR

5.5.7 Examples and Usage Guidelines

5.5.7.1 Example 1: In-Core Factorization

*CALL FACTOR ( SKY_PROCESSOR SKY ;-

ASM_MATRIX = 3, SYSTEM.MATRIX...2 -
FAC_MATRIX = 3, SYSTEM.MATRIX...2 -
MESH =2 )

In this example, the SKY processor will be used to factor in-core an assembled skyline matrix
existing onldi 3, in the dataset SYSTEM.MATRIX...2. The factored matrix will overwrite the
assembled matrix since the same dataset name is specified for both matrices.

5.5.7.2 Example 2: Out-of-Core Factorization

*CALL FACTOR(  SKY_PROCESSOR = SKYS -
MTX_BUFFER_SIZE = 100000 -
MATRIX_UPDATE = FULL -
MESH =2 )

In this example, the SKYs processor will be used to fully factor out-of-core the assembled skyline
matrix of mesh 2. The factorization will be performed out-of-core using only 100000 words of
physical memory.

5.5.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.5-5



5.5 Procedure FACTOR 5 Utility Procedures

5.5-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.6 Procedure FORCE

5.6 Procedure FORCE

5.6.1 General Description

This section describes the FORCE Utility Procedure, which directs the generation of nodal force
vectors (internal, external, or residual). The main purpose of this procedure is to invoke the
appropriate element processors for adding element load contributions to nodal force vectors.

5.6.2 Argument Summary

Procedure FORCE may be invoked with @®OMET-AR [ICALL directive, employing the
arguments summarized in Table 5.6-1.

Table 5.6-1 Procedure FORCE Input Arguments

Argument Default Value Description
COROQTATION <false> Sets the default element corotational option
DISPLACEMENT — Sets the default name of nodal displacement dataset
INPUT_FORCE DUMMY.FORCE Sets the default name of nodal external force dataset
LDI 1 Sets the defauldi of computational database library
LOAD_FACTOR 1.0 Sets the default load factor to be applied to element Igads
LOAD_SET 1 Sets the default load set number for element loads
MESH 0 Sets the mesh number
NL_GEOM <false> Sets the default geometric nonlinearity option
NL_LOAD <false> Sets the default load nonlinearity option
OUTPUT_FORCE SYS.FORCE Sets the deftdiland dataset name of output force vegtor
ROTATION Sets the default nhame of nodal rotation pseudovector

dataset

SE_TOT <false>
STEP 0
TYPE RESIDUAL Sets the type of force to be computed

5.6.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.6-1 are defined in more detail.

The arguments are listed alphabetically. Refer to Chapkdeifient Processor$or more details

on the options.

Revised 12/1/97

COMET-AR User’'s Manual 5.

6-1



5.6 Procedure FORCE 5 Utility Procedures

5.6.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains) even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

COROTATION = corotation_option

where
corotation_option Description
0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newtoh iter-
ation is begin performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if[True-

Newton iteration has been selected at the nonlinear solution procedure level; and even
then may provide only marginal improvement in nonlinear convergence over opfion 1.
It adds additional terms to the tangent stiffness matrix that render it more consistgnt.

5.6.3.2 DISPLACEMENT Argument
This argument changes the defdditand name of the nodal displacement dataset.

Argument syntax:

DISPLACEMENT =ds_name

whereds_namaes the nodal displacement dataset name. (Default value: None)

5.6.3.3 INPUT_FORCE Argument
This argument changes the default name of the nodal force dataset.

Argument syntax:

INPUT_FORCE =ds_name

whereds_namas the dataset name. (Default value: None)

5.6-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.6 Procedure FORCE

5.6.3.4 OUTPUT_FORCE Argument
This argument changes the default name of the computed (output) force vector dataset.

Argument syntax:

OUTPUT_FORCE =ds_name

whereds_namas the new dataset name. (Default value: 1, SYS.FORCE)

5.6.3.5 LOAD_FACTOR Argument
This argument changes the default load factor to be applied to all element loads.

Argument syntax:

LOAD_FACTOR =load_factor

whereload_factoris a floating-point scale factor. (Default value: 1.0)

5.6.3.6 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

LOAD_SET =load_set

whereload_sets an integer load-set number. (Default value: 1)

5.6.3.7 LDI Argument

This argument changes the default logical device intigxfor all datasets input/output by the
current E$ processor, except those for which an expliditis used in a separate database
command (e.g., OUTPUT_FORCE).

Argument syntax:

LDI = Idi

whereldi is the logical device index of the database library. (Default value: 1)

Revised 12/1/97 COMET-AR User’'s Manual 5.6-3



5.6 Procedure FORCE 5 Utility Procedures

5.6.3.8 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

MESH = mesh

wheremeshis an integer number, typically set to the current mesh number. (Default value: 0)

5.6.3.9 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

NL_GEOM = nl_geom_option

where:

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relations| will be
employed, and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option, geometric nonlinearity must be accounted for
via element corotation (see COROTATION command), which for many beam/shell ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacemept rela-
tions will be used. Element corotation may or not be selected with this option. Forfmany

beam/shell element types, nonlinear element strain-displacement relations ernhances
corotation, making it more accurate for a given mesh and rotation magnitude.

5.6.3.10 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector, or the tangent stiffness matrix.

Argument syntax:

NL_LOAD = nl_load_option

5.6-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.6 Procedure FORCE

where

nl_load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-ifdepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads ard to be
processed in the following FORM FORCE or FORM STIFFNESS command.

5.6.3.11 ROTATION Argument
This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

ROTATION = ds_name

whereds_namas the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.6.3.12 TYPE Argument
This argument defines the type of force to be computed.

Argument syntax:

TYPE = force_type

whereforce_typeof force to be computed INTERNAL, EXTERNAL, or RESIDUAL. (Default
value: RESIDUAL)

5.6.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by gredeSsor
being used. These dataset requirements are documented in detail in Chapter 7.

5.6.5 Current Limitations

FORCE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the ESprocessor being employed. Refer to individual g®cessors in Chapter 7
for specific processor limitations.

Revised 12/1/97 COMET-AR User’'s Manual 5.6-5



5.6 Procedure FORCE 5 Utility Procedures

5.6.6 Status and Error Messages

FORCE does not print any status or error messages directly. All messages will be produced by the
ES processor being employed. Refer to individual p&cessors in Chapter 7 for specific
processor messages.

5.6.7 Examples and Usage Guidelines

5.6.7.1 Example 1: External Load Vector

*call FORCE ( TYPE = EXTERNAL ;=
INPUT_FORCE = 1, NODAL.SPEC_FORCE.1..2 ;-
OUTPUT_FORCE = 1, NODAL.EXT_FORCE.1..2 ;-
NL_GEOM = <false> ;-
COROTATION = <false>
NL_LOAD = <false> ;-
MESH =2
LOAD_SET =1 )

In this example, the element loads will be added to the nodal applied forces and the resulting nodal
load vector will be stored in a dataset named NODAL.EXT_FORCE.1..2 in the file associated with
logical device index 1.

5.6.8 References

None.

5.6-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.7 Procedure INITIALIZE

5.7 Procedure INITIALIZE

5.7.1 General Description

Procedure INITIALIZE is a utility procedure for performing solution initialization tasks. It is
automatically invoked by solution procedures such as L_STATIC 1 and NL_STATIC_ 1 to
perform initialization for a given finite element mesh.

Procedure INITIALIZE performs a sequence of calls to other procedures and processors as shown
in Figure 5.7-1.

ES
< FUNCTION=INITIALIZE> D initialization of element connectivity

¢

ES
FUNCTION = DEFINE NORMAL D define shell normals at nodal points
¢ (with AUTO_TRIAD andAUTO_DRILL options)

ES
<FUNCTION = DEFINE DRILL_FLAGS D set the shell drilling DOFs suppress codes
for built-up structures (withuUTO_TRIAD
¢ andAUTO_DRILL options)

TRIAD D align nodal computational frame triads
¢ with the computed shell normals

(with AUTO_TRIAD option)

ES
GUNCTlON = DEFINE FREED(& D suppress drilling DOFs and generate element
$ DOF table (withAUTO_DOF_SuUPoption)

RENO/RSEQ [ ] renumber order of nodes for storage
¢ optimization (with the RENUMBER option)
CoP |:| assign equation numbers to DOFs and

generate the nodal DOF table

Figure 5.7-1 INITIALIZE: Model Initialization Steps

Revised 12/1/97 COMET-AR User’'s Manual 5.7-1



5.7 Procedure INITIALIZE 5 Utility Procedures

The INITIALIZE procedure is merely a cover procedure invoking a sequence of utility procedures
and processors to perform the solution initialization task for a given model/mesh. Each of these
other utility procedures is described in the current chapter; the processors are described in Part 1.

5.7.2 Argument Summary

Procedure INITIALIZE may be invoked with tteOMET-AR [ICALL directive, employing the
arguments summarized in Table 5.7-1.

Table 5.7-1 Procedure INITIALIZE Input Arguments

Argument Default Value Description
AUTO_DOF_SUP <false> Automatic DOF suppression switch
AUTO_DRILL <false> Automatic drilling stiffness augmentation switch
AUTO_MPC <false>
AUTO_TRIAD <false> Automatic triad re-alignment for drilling DOFs
CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOF{ in the

assembled system matrix prior to factorization

LDI 1 Logical unit for main COMET-AR database filEgseDBC)
MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement
MESH 0 Mesh number to be analyzed
REFINE_TECHNIQUE ht Mesh refinement technigbg=> transition h)
RENO_PROCESSOR RSEQ Node renumbering processor
RENUMBER_OPT 3 Node renumbering option

5.7.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.7-1 are defined in more detail.
The arguments are listed alphabetically.
5.7.3.1 AUTO_DOF_SUP Argument

Automatic DOF (degree-of-freedom) suppression switch. This capability automatically suppresses
extraneous DOFs, especially useful during adaptive mesh refinement. It is described in more detail
in Section 2.10Automatic DOF Suppression and Drilling Stabilization.

Argument syntax:

AUTO_DOF_SUP =-option[, angle_to]

5.7-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.7 Procedure INITIALIZE

where

Parameter Description

option Automatic DOF suppression option switch: {<true> | <false>}. If <true>| all

DOFs (in the computational frame) that are unsupported by element st|ffness
will be suppressed throughout the adaptive refinement process. (Defaulf value:
<true>)

angle_tol Angle tolerance to use for suppression of shell element drilling DOFs; sep Sec-
tion 2.10 for details. (Default value: depends on element type)

In most cases, it is best to leave the default setting intact.

5.7.3.2 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling
rotational stiffness to nodal DOFs that would otherwise be unstable computationally. See
Section 2.10 and individual element processor sections in Chapter 7 for more information.

Argument syntax:

AUTO_DRILL = option[, angle_to] scale fac]

where

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell gle-
ment types will add artificial drilling stiffness to nodal DOFs that require stabjliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is ng¢eded
at a given node. See Chapter 2 for details. (Default value: depends on elemeit type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. See Chapter 2 for interpretation. (Default value: depgnds on
element type)

AUTO_DRILL is not recommended for nonlingar
analysis.

5.7.3.3 AUTO_TRIAD Argument

Automatic computational triad (i.e., DOF direction) re-alignment option. This option is an
alternative to AUTO_DRILL that causes re-alignment of the computational triads at all nodes that
require drilling DOF stabilization as long as no boundary conditions have been defined there. The

Revised 12/1/97 COMET-AR User’'s Manual 5.7-3



5.7 Procedure INITIALIZE 5 Utility Procedures

computational axes are re-aligned such that one of them is parallel to the average element surface-
normal at the node. Then, extraneous (unstable) drilling rotational DOFs can be subsequently
suppressed via the AUTO_DOF_SUP option. (See SectionRuidématic DOF Suppression and
Drilling Stabilization for more information.)

Argument syntax:

AUTO_TRIAD = option[, angle_to]

where

Parameter Description

option Automatic triad re-alignment option switch: {<true> | <false>}. If <true>, comguta-

tional triads will be re-aligned with the average element normal at all nodgs that
require drilling DOF stabilization, unless boundary conditions are defined there.
(Default value: <false>)

angle_tol Angle tolerance to use for determining whether drilling stabilization is needed at a
given node. See Section 2.10 for details. (Default value: depends on elementtype)

AUTO_TRIAD should only be used in conjunctipn
with AUTO_DOF_SUP and cannot be used|in
conjunction with user-defined point forces and/or
multi-point constraints.

5.7.3.4 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element solution data for
which error estimates are to be computed. This number should appear as the second cycle number
in names of all element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY
(relevant only for linear static analysis).

Argument syntax:

CONSTRAINT_SET =constraint set

where

Parameter Description

constraint_set Constraint set number (Default value: 1)

5.7-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.7 Procedure INITIALIZE

5.7.3.5 LDI Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling INITIALIZE and must be naraseDBC.

Argument syntax:

LDI = Idi

whereldi is the logical device index (a positive integer) of@@seDBC file. (Default value: 1)

5.7.3.6 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
herefinement).

Argument syntax:

MATRIX_UPDATE = {FULL | PARTIAL}

whereFULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.7.3.7 MESH Argument

This argument sets the number of the mesh to analyze.

Argument syntax:

MESH =mesh

wheremeshis the mesh number. (Default value: 0)

5.7.3.8 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(RER) specified via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =refine_technique

Revised 12/1/97 COMET-AR User’'s Manual 5.7-5



5.7 Procedure INITIALIZE 5 Utility Procedures

whererefine_techniqués the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set edyahtd, orp (among
others). See the documentation under specificiREI€essors in Chapter 11 for details. (Default
value:h)

5.7.3.9 RENO_PROCESSOR Argument

This argument sets the name of the equation (or node) renumbering processor to be used to
optimize matrix equation solving (time and/or storage).

Argument syntax:

RENO_PROCESSOR renumber_processor

whererenumber_processas the processor name. Current options are summarized below.

renumber_processor Description
RENO Node renumbering using a geometric algorithm (Default)
RSEQ Node renumbering via a variety of order-optimization algorithms

Consult the appropriate section in Chapte?i®@-Processorgor more details.

5.7.3.10 RENUMBER Argument

Sets a flag determining whether or not to perform equation renumbering (e.g., bandwidth, skyline
or sparsity optimization) both initially and whenever the mesh is updated by adaptive refinement.

Argument syntax:

RENUMBER =renumber_flag

whererenumber_flagnay be set either to <true> or <false>. (Default value: <true>)

5.7.3.11 RENUMBER_OPT

This argument sets the equation renumbering option to use within the renumbering processor
selected via the RENO_PROCESSOR argument (assuming RENUMBER = <true>).

Argument syntax:

RENUMBER_OPT =renumber_option

5.7-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.7 Procedure INITIALIZE

where renumber_optionindicates the renumbering option and depends on the particular
renumbering processor chosen. See processors RENO, RSEQ), etc., in Chapter 6. (Default value: 0)
5.7.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by firedeSsor

being employed, and by the renumbering and REpD#2essors. These dataset requirements are
documented in detail in ChapterRe-Processorsand Chapter Element Processors

5.7.5 Current Limitations

INITIALIZE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the EEprocessor being employed, renumbering, and the REDEessors. Refer to
Chapters 6 and 7 for specific processor limitations.

5.7.6 Status and Error Messages

INITIALIZE does not print any status or error messages directly. All messages will be produced

by the E$ processor being employed and by the renumbering and the REI8€ssors. Refer to
Chapters 6 and 7 for specific processor messages.

5.7.7 Examples and Usage Guidelines

5.7.7.1 Example 1: Initialization with Auto DOF Suppression

*call INITIALIZE ( AUTO_DOF_SUP = <true>
AUTO_DRILL = <false>
AUTO_TRIAD = <false>
RENUMBER = <true>
RENO_PROCESSOR = RSEQ
RENO_OPTION =0
MESH =2
REFINEMENT_TECHNIQUE = hc
LDI =1 ; ==
CONSTRAINT_SET =1 )

In this example, mesh 2 model is initialized using the automatic DOF suppression option. The
nodal points will be reordered using RSEQ processor and renumbering method O.

5.7.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.7-7



5.7 Procedure INITIALIZE 5 Utility Procedures

5.7-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.8 Procedure REF_MESH_1

5.8 Procedure REF_MESH 1

5.8.1 General Description

Procedure REF_MESH_1 is a utility procedure for performing one pass of adaptive mesh
refinement based on a single solution and corresponding error estimates. This procedure is a cover
that invokes adaptive mesh refinement processors such as REF1, described in Chapter 11. It is
typically called via procedure AR_CONTROL.

5.8.2 Argument Summary

Procedure REF_MESH_1 may be invoked with@@MET-AR CALL directive, employing the
arguments summarized in Table 5.8-1.

Table 5.8-1 Procedure REF_MESH_1 Input Arguments

Argument Default Value Description

CONSTRAINT_SET 1 Specifies the constraint set number

CONVERGE_TOL 0.05 Global error tolerance (relative error)

H_GRADIENT 0.8 Relative energy gradient mark above which both h and p-rgfine-
ment will occur (for mixedv/p-refinement options)

LDI 1 Logical unit for main COMET-AR database filEdseDBC)

LDI_GM 7

LOAD_SET 1 Specifies the load-set number

MAX_ASPECT_RATIO 2.0,2.0 Distortion control parameters for ht refinement

MAX_H_LEVEL 10 Maximum levels oh-refinement for any element

MAX_P_LEVEL 0 Maximum levels op-refinement globally

NEW_MESH 0 The refined mesh number

NUM_REFINE_TOLS 1 No. of error tolerances guiding refinement

NUM_UNREFINE_TOLS 0

OLD_MESH 0 Mesh from which to restart.

P_GRADIENT 0.0 Relative energy gradient mark below which gafgfinement
will occur (for mixedh/p-refinement options)

REFINE_DIRS 1,2 Refinement directions (1,2—implies 2D)

REFINE_INDICATOR MAX_RATIO | Type of refinement indicator

REFINE_LEVELS 1 List of refinement levels corresponding to REFINE_TOLS

REFINE_PROCESSOR REF1 Name of mesh refinement processor

REFINE_TECHNIQUE ht Mesh refinement technigbg=> transition h)

Revised 12/1/97 COMET-AR User’'s Manual 5.8-1



5.8 Procedure REF_MESH_1 5 Utility Procedures

Table 5.8-1 Procedure REF_MESH_1 Input Arguments

Argument Default Value Description
REFINE_TOLS 0.05 List of local (element) error tolerances for refinement
STEP 0 Specifies the solution step number
UNREFINE_LEVELS 0
UNREFINE_TOLS .00

5.8.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.8-1 are defined in more detail.
The arguments are listed alphabetically. Refer to the corresponding refinement processor section
in Part Ill for details on the options.

5.8.3.1 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element and nodal data in both
the reference and the refined meshes. This number should appear as the second cycle number in
names of all element and nodal datasets.

Argument syntax:

CONSTRAINT_SET =conset

whereconsetis the constraint set number (Default value: 1)

5.8.3.2 CONVERGE_TOL Argument

This argument sets the value of the adaptive mesh refinement (AR) global convergence tolerance.
This is a relative error measure (in fractional form) below which convergence of the discrete
solution to the governing equations is assumed and no further adaptive mesh refinement is
performed. The quantitative interpretation of this error measure depends on the particular error
estimation processor (ERRand refinement processor (REF1) selected by the user (see
ERROR_PROCESSOR and REF_PROCESSOR arguments).

Argument syntax:

CONVERGE_TOL =converge_tol

whereconverge_tois the relative error tolerance in fractional form (e.g., .1 corresponds to 10
percent error). (Default value: .05)

5.8-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.8 Procedure REF_MESH_1

5.8.3.3 HGRADIENT Argument

This argument defines thie_gradientmark on the element energy gradient axis for multi-
technique refinement (see the “REF1—Multi-Level and Multi-Technique Refinement Control”
subsection for details).

Argument syntax:

H_GRADIENT =h_gradient

whereh_gradientis the h_gradient mark value. (Default value: 0.8)

5.8.3.4 LDI Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling REF_MESH_1, and be naGas®DBC.

Argument syntax:

LDI = Idi

whereldi is the logical device index (a positive integer) of @aseDBC file. (Default value: 1)

5.8.3.5 LOAD_SET Argument

This argument defines the load set number associated with the element and nodal data in both the
reference and the refined meshes. This number should appear as the first cycle number in names
of all element and nodal datasets.

Argument syntax:

LOAD_SET =ldset

whereldsetis the load set number (Default value: 1)

5.8.3.6 MAX_ASPECT_RATIO Argument
Sets the maximum element aspect ratios before and after prospective adaptive mesh refinement.

Argument syntax:

MAX_ASPECT_RATIO =before, after

Revised 12/1/97 COMET-AR User’'s Manual 5.8-3



5.8 Procedure REF_MESH_1 5 Utility Procedures

wherebeforedenotes the maximum element aspect ratio before a prospective mesh refinement,
andafter denotes the maximum element aspect ratio after a prospective mesh refinement. If either
of these limits would be violated, an alternate element refinement pattern is selected. This
argument is relevant primarily for transition-base)l (efinement, where aspect ratios can be used

to control the degree of element distortion. See Chapter 11 for more information. (Default value:

2.0,2.0)

5.8.3.7 MAX_H_LEVEL Argument

Sets the maximum number of levels of adapitirefinement allowed within any one element. If
the mesh refinement processor (REfetermines that more than this many levels-méfinement
are necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

MAX_H_ LEVEL = max_h_level

wheremax_h_levetlenotes the maximum number of level$ro€finement permitted by the user
for any one element. See Chapter 11 for more information. (Default value: 10)
5.8.3.8 MAX_P_LEVEL Argument

Sets the maximum number of levels of unifgumefinement allowed for the model. If the mesh
refinement processor (RBFdetermines that more than this many levelp-oéfinement are
necessary to achieve convergence, the adaptive analysis is terminated.

Argument syntax:

MAX_P_LEVEL =max_p_level

wheremax_p_levebdenotes the maximum number of levels of unifgamefinement permitted.
See Chapter 11 for more information. (Default value: 0)

5.8.3.9 NEW_MESH Argument
This argument sets the mesh number of the refined (output) mesh.

Argument syntax:

NEW_MESH =new_mesh

wherenew_meslis the mesh number of the refined mesh. (Default value: 0)

5.8-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.8 Procedure REF_MESH_1

5.8.3.10 NUM_REFINE_TOLS Argument

Sets the number of local (element) error tolerances that will be used to guide adaptive refinement.
The REFINE_TOLS argument specifies the error values for these tolerances, and the
REFINE_LEVELS argument indicates the number of levels of refinement to perform when each
tolerance is exceeded.

Argument syntax:

NUM_REFINE_TOLS =num_refine_tols

wherenum_refine_tolslenotes the number of refinement tolerances. See Chapter 11 for more
information. (Default value: 1)

5.8.3.11 OLD_MESH Argument
Sets the number of the mesh to be refined.

Argument syntax:

OLD_MESH =old_mesh

whereold_mesltdenotes the mesh number of the mesh to be refined. (Default value: 0)

5.8.3.12 PGRADIENT Argument

This argument defines the P_gradient mark on the element energy gradient axis for multi-method
refinement (see the “REF1—Multi-Level and Multi-Technique Refinement Control” subsection
for details).

Argument syntax:

P_GRADIENT =p_gradient

wherep_gradientis the p_gradient mark value. (Default value: 0.0)

5.8.3.13 REFINE_DIRS Argument
Establishes a list of intrinsic element directions in which to allow adaptive refinement.

Argument syntax:

REFINE_DIRS =dirl [,dir2 [,dir3] ]

Revised 12/1/97 COMET-AR User’'s Manual 5.8-5



5.8 Procedure REF_MESH_1 5 Utility Procedures

wheredirl, dir2, anddir3 are intrinsic element direction numbers (i.e., in the elements internal, or
natural, coordinate system), and each may take on a value between 1 and the maximum number of
intrinsic element dimensions (i.e., 3 for 3D elements, 2 for 2D elements, and 1 for 1D elements).
This can eliminate unnecessary refinement in, for example, axisymmetric shell problems, where
only one of the surface directions need be refined. See Chapter 11 for more information. (Default
value: 1, 2).

5.8.3.14 REFINE_INDICATOR Argument

Sets the type of element refinement indicator to be used by the adaptive refinement processor (see
Chapter 11). The refinement indicator is the criterion used to determine whether an element’s error
estimate is high enough to warrant refinement. The values of the refinement indicator denoting
various levels of refinement are set by the REFINE_TOLERANCES argument.

Argument syntax:

REFINE_INDICATOR = refine_indicator

whererefine_indicatordenotes the name of the element refinement indicator to be used. (Default
value: AVE; see Chapter 11 for details.)

5.8.3.15 REFINE_LEVELS Argument

Sets an array of element refinement levels corresponding to the array of refinement tolerances
specified via the REFINE_TOLS argument. An element refinement level is defined as one
application of local refinement, employing the refinement type specified via the
REFINE_TECHNIQUE argument (e.dy, h., hs orp).

Argument syntax:

REFINE_LEVELS =ref lev_1, ref lev 2, ... ref lev.NUM_REFINE_TOL

92

whereref_lev "i” denotes the number of levels to refine an element when the element refinement
(error) indicator exceeds the tolerance specifiedelbytol “i” in the REFINE_TOLS argument;

and NUM_REFINE_TOLS is the value set in the NUM_REFINE_TOLS argument (see Chapter
11 for details). (Default value: 1)

5.8.3.16 REFINE_PROCESSOR Argument

Sets the name of the mesh refinement processoriJR&Mbe invoked by the REF_MESH_1
procedure.

5.8-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.8 Procedure REF_MESH_1

Argument syntax:

REFINE_PROCESSOR =zefine_processor

where refine_processoris the name of the mesh refinement processor. Current options are
summarized below.

refine_processor Description

REF1 Contains a variety of adaptive mesh refinement techniques (Default)

Consult Chapter 11 for more details.

5.8.3.17 REFINE_TECHNIQUE Argument

Sets the refinement technique to be employed by the mesh refinement procesgos{&tifred
via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =efine_technique

whererefine_techniqués the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set edquiahtm or p (among
others). See Chapter 11 for details. (Default value: ht)

5.8.3.18 REFINE_TOLS Argument

Sets an array of element refinement tolerances corresponding to the array of refinement levels
specified via the REFINE_LEVELS argument. An element refinement tolerance is a limit in the
value of the element error-based refinement indicator (see the REFINE_INDICATOR argument)
beyond which an element is refined by a prescribed number of levels.

Argument syntax:

REFINE_TOLS =ref tol_1, ref tol 2, ... ref_tol NUM_REFINE_TOLS

whereref_tol “i” denotes the value of the element refinement indicator beyond which an element
should be refined byef _lev “i” levels, whereref_lev “i” is specified in the REFINE_LEVELS
argument; and NUM_REFINE_TOLS is the value setin the NUM_REFINE_TOLS argument (see
Chapter 11 for details). (Default value: .05)

Revised 12/1/97 COMET-AR User’'s Manual 5.8-7



5.8 Procedure REF_MESH_1 5 Utility Procedures

5.8.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by thrdRESsOr
being used. These dataset requirements are documented in detail in Chapter 11.

5.8.5 Current Limitations

REF_MESH_1 is a general purpose procedure and the only limitations on its use are dictated by
the limitations of the REFprocessor being employed. Refer to individual REfecessors in
Chapter 11 for specific processor limitations.

5.8.6 Status and Error Messages

REF_MESH_1 does not print any status or error messages directly. All messages will be produced

by the REF processor being employed. Refer to individual Rpfecessors in Chapter 11 for
specific processor messages.

5.8.7 Examples and Usage Guidelines

5.8.7.1 Example 1: Constraint-Based Refinemenh)

*call REF_MESH_1 ( REFINE_PROCESSOR = REF1 ;-
REFINE_TECHNIQUE = hc ;-
REFINE_INDICATOR = AVE ;-
NUM_REFINE_TOLS =1 ;-
REFINE_TOLS = 0.05 ;-
REFINE_LEVELS =1 ;-
OLD_MESH =0 ;-
NEW_MESH =1 ;-
FUNCTION = FORM STIFFNESS )

In this example, reference mesh 0 is being refined (the refined mesh will be mesh 1) by up to one
level of refinement using constraint-based refinement technigirefinement). Each element for
which the relative element error is greater than 5% will be refined by dividing it into four elements.

5.8.8 References

None.

5.8-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.9 Procedure SOLVE

5.9 Procedure SOLVE

5.9.1 General Description

Procedure SOLVE is a utility procedure for solving a system of linear equations. It is automatically
invoked by solution procedures such as L_STATIC_1 and NL_STATIC_1 to compute the system
displacement vector solution for a given finite element mesh.

Procedure SOLVE performs a sequence of calls to utility procedures and matrix/vector algebra
processors to complete the following solution steps:
» Assemble the system load vector using an assembly processor.

» Solve the system of equations to obtain the solution vector using an equation-solver
processor.

» Construct the nodal solution vector from the system vector using the COP processor.

The SOLVE procedure is merely a simple cover procedure invoking a sequence of utility
processors to perform the solution tasks. These utility processors are discussed in Chapter 12,
Matrix/Vector Processors

5.9.2 Argument Summary

Procedure SOLVE may be invoked with tE®OMET-AR [ICALL directive employing the
arguments summarized in Table 5.9-1.

Table 5.9-1 Procedure SOLVE Input Arguments

Argument Default Value Description

ASM_PROCESSOR ASM Matrix/vector assembly processor

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in the|assem-
bled system matrix prior to factorization

ELT_MATRIX — Logical unit and dataset name for the element stiffness matrices

FIXED_FRAME OFF Fixed-frame option for hierarchidatrefinement

LDI_C 1 Logical unit for main COMET-AR database filegseDBC)

LDI_E 2 Logical unit for element-matrix file&CaseDBE)

LDI_S 3 Logical unit for system-matrix fil&CaseDBS)

LOAD_FACTOR 1.0 Load factor to be applied to the right hand side load vector prior|to the
solution

LOAD_SET 1 Load set number to be used as the external force vector

Revised 12/1/97 COMET-AR User’'s Manual 5.9-1



5.9 Procedure SOLVE

5 Utility Procedu

res

Table 5.9-1 Procedure SOLVE Input Arguments (Continued)

Argument

Default Value

Description

MATRIX

Logical unit and dataset name for the assembled and factored g
matrix

ystem

cement

MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement

MAX_ITER 100 Maximum iterations for iterative solvers

MESH 0 Mesh number to be analyzed

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

REACTION Compute reactions at specified boundary points

REFINE_TECHNIQUE ht Mesh refinement technighg=t> transition h)

RHS — Logical unit and dataset name for the right hand side load vectof

SKY_PROCESSOR SKY Linear equation solver processor name

SOLN — Logical unit and dataset name for the solution vector

SPEC_DISP — Logical unit and dataset name for the nodal specified displa
table

SOLVER_CONV_TOL 0.000001 Convergence tolerance for iterative solvers

STEP 0 Solution step humber

5.9.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.9-1 are defined in more detail.
The arguments are listed alphabetically. See Chaptdvia2ix/Vector Processorfor detailed
description of the options.

5.9.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

ASM_PROCESSOR asm_processor

whereasm_processds the name of the matrix assembly processor. Current options include ASM
(for hy andh types of mesh refinement) and ASMg ihesh refinement). (Default value: ASM)

5.9-2

COMET-AR User’'s Manual

Revised 12/1/97



5 Utility Procedures 5.9 Procedure SOLVE

5.9.3.2 CONSTRAINT_SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

CONSTRAINT_SET =conset

where:

Parameter Description

conset Constraint set number (Default value: 1)

5.9.3.3 ELT_MATRIX Argument
This argument sets the logical device index and dataset name for the element matrices (stiffness).

Argument syntax:

ELT_MATRIX = Idi, dataset_name

whereldi is the logical device index for the file containing the matrices dataset_names the
name of the element matrices dataset. (Default value: None)

5.9.3.4 FIXED_FRAME Argument
Sets a flag that is relevant only togrefinement.

Argument syntax:

FIXED_FRAME = {<true> | <false>}

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)

5.9.3.5 REACTION Argument

This argument sets the reaction force computation switch.

Revised 12/1/97 COMET-AR User’'s Manual 5.9-3



5.9 Procedure SOLVE 5 Utility Procedures

Argument syntax:

REACTION =flag

whereflag is the switch option. (Default value: <false>—do not compute reaction forces)

5.9.3.6 LDI C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling SOLVE and must be na@&seDBC.

Argument syntax:

LDI_C =Idi_c

whereldi_cis the logical device index (a positive integer) of@laseDBC file. (Default value: 1)

5.9.3.7 LDI E Argument

This argument sets the logical device index associated with the element matrix database file,
typically namedCaseDBE.

Argument syntax:

LDI_E =Idi_e

whereldi_eis the logical device index (a positive integer) of@aseDBE file. If Idi_eis not equal

to Idi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for the
current mesh will be stored on a sepaGaseDBE file; however, ifdi_e=Idi_c, then all element
matrices will be stored on th@aseDBC file; i.e., a separat€aseDBE file will not be created.
(Default value: 2)

If a separat€aseDBE fileis created, it will be deleted
and re-created with each new adaptive mesh.

5.9.3.8 LDI S Argument

This argument sets the logical device index associated with the system matrix database file,
typically namedCaseDBS.

Argument syntax:

LDI_S =Idi_s

5.9-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.9 Procedure SOLVE

whereldi_sis the logical device index (a positive integer) of@laeseDBS file. Ifldi_sis not equal
toldi_c(see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separ@eseDBS file; however, ifdi_s=Idi_c, then all system matrices

will be stored on th€aseDBC file, i.e., a separa&aseDBS file will not be created. (Default
value: 3)

If a separat€aseDBS file is created, it will be deletgd
and re-created with each new adaptive mesh.

5.9.3.9 LOAD_FACTOR Argument
This argument sets the value for the load factor to be applied to the load vector prior to solution.

Argument syntax:

LOAD_ FACTOR =factor

wherefactor is the value of the load factor to be applied. (Default value: 1.0)

5.9.3.10 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

LOAD_SET =load_set

whereload_sets an integer load-set number. (Default value: 1)

5.9.3.11 MATRIX Argument
This argument sets the logical device index and dataset name for the factored system matrix.

Argument syntax:

MATRIX = Idi, dataset_name

whereldi is the logical device index for the file containing the matrix, dahset_names the
name of the factored system matrix data set. (Default value: None)

Revised 12/1/97 COMET-AR User’'s Manual 5.9-5



5.9 Procedure SOLVE 5 Utility Procedures

5.9.3.12 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
herefinement).

Argument syntax:

MATRIX_UPDATE = {FULL | PARTIAL}

whereFULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.9.3.13 MAX_ITER Argument

This argument sets the maximum number of iterations allowed by an iterative linear equation
solver (e.g., ITER). Itis relevant only if SKY_PROCESSOR is set equal to the name of an iterative
solver.

Argument syntax:

MAX_ITER = max_iter

wheremax_iteris the maximum number of iterations allowed. (Default value: 100)

5.9.3.14 MESH Argument
This argument sets the number of the mesh to analyze.

Argument syntax:

MESH =mesh

wheremeshis the mesh number. (Default value: 0)

5.9.3.15 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

MTX_BUFFER_SIZE =mtx_buffer_size

5.9-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.9 Procedure SOLVE

where mtx_buffer_sizas the size of the buffer in terms of logical variables. (Default value:
500000)

5.9.3.16 REACTION Argument
This argument sets the compute reaction forces switch.

Argument syntax:

REACTION =switch

whereswitchis the option flag for computing the reaction forces. (Default value: <false>)

5.9.3.17 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(RER) specified via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =refine_technique

whererefine_techniqués the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set equal to “ht”, “hc”, “hs”, or
“p” (among others). See the documentation under specifia REf€essors in Chapter 11 for
details. (Default value: “ht”)

5.9.3.18 RHS Argument

This argument sets the logical device index and dataset name for the right hand side (load) vector.

Argument syntax:

RHS =Idi, dataset_name

whereldi is the logical device index for the file containing the load vectordataket names the
name of the load vector dataset. (Default value: None)

5.9.3.19 SOLN Argument

This argument sets the logical device index and dataset name for the solution vector.

Revised 12/1/97 COMET-AR User’'s Manual 5.9-7



5.9 Procedure SOLVE 5 Utility Procedures

Argument syntax:

SOLN =ldi, dataset_name

whereldi is the logical device index for the file containing the solution vectordataket name
is the name of the solution vector dataset. (Default value: None)
5.9.3.20 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equation
systems.

Argument syntax:

SKY_PROCESSOR sky processor

wheresky_processas the name of the matrix solution processor. Current options are summarized
below.

sky_processor Description
SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction kgttefinement only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers.

Consult the appropriate processor section in Chapter 12 for more details.

5.9.3.21 SPEC_DISP Argument

This argument sets the logical device index and dataset name for the nodal specified displacement
dataset.

Argument syntax:

SPEC_DISP di, dataset_name

whereldi is the logical device index for the file containing the nodal tabledataset _names the
name of the nodal specified displacements dataset. (Default value: None)

5.9-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.9 Procedure SOLVE

5.9.3.22 SOLVER_CONV_TOL Argument

This argument sets the convergence tolerance for the iterative linear equation solver, if one has
been selected via the SKY_PROCESSOR argument.

Argument syntax:

SOLVER_CONV_TOL =solver_conv_tol

wheresolver_conv_tois the convergence tolerance. (Default value: 1.e-5)

5.9.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the matrix/vector
algebraprocessor being used. These dataset requirements are documented in Chapter 12.

5.9.5 Current Limitations

SOLVE is a general purpose procedure and the only limitations on its use are dictated by the
limitations of the E& processor being employed. Refer to individual matrix/vector algebra
processors in Chapter 12 for specific processor limitations.

5.9.6 Status and Error Messages

SOLVE does not print any status or error messages directly. All messages will be produced by the

ES processor being employed. Refer to individual matrix/vector algebressors in Chapter 12
for specific processor messages.

5.9.7 Examples and Usage Guidelines

5.9.7.1 Example 1: Iterative Solution

*call SOLVE (  SKY_PROCESSOR = ITER -
SOLVER_CONV_TOL = 1.0e-7
MAX_ITER = 1000
ELT_MATRIX = 2, E*MATL_STIFFNESS...3
MATRIX = 3, STRUCTURE.MATL_STIFFNESS...3 -
SOLN = 1, NODAL.DISPLACEMENT.1.1.3 -
RHS = 1, NODAL.EXT_FORCE.1..3
SPEC_DISP = 1, NODAL.SPEC_DISP.1.0.3
MESH =3
LOAD_FACTOR = 1.0 )

Revised 12/1/97 COMET-AR User’'s Manual 5.9-9



5.9 Procedure SOLVE 5 Utility Procedures

In this example, iterative solution for mesh 3 will be performed using the ITER processor. The
assembled and factored matrix (in this case incomplete factorization of the COMPAXX format
matrix) is in the standard system file (Idi=3 is associated witlCds=DBS file) and prescribed
displacement contributions to the load vector will be added to the right hand side vector prior to
solution using the element stiffness matrices from the standard element matrices file (Idi=2 is
associated with th€aseDBE file).

The convergence tolerance for the iterative solution is set to 1.0e-7 and a maximum of 1000
iteration is allowed.

5.9.8 References

None.

5.9-10 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

5.10 Procedure STIFFNESS

5.10.1 General Description

This section describes the STIFFNESS Utility Procedure, which calls the ES utility procedure
(FUNCTION = FORM STIFFNESS) to execute all element processors and types associated with
a given model to compute element stiffness matrices, followed by an invocation of the appropriate
assembly processor to assemble the system matrix.

5.10.2 Argument Summary

Procedure STIFFNESS may be invoked with @@MET-AR [LCALL directive, employing the
arguments summarized in Table 5.10-1.

Table 5.10-1 Procedure STIFFNESS Input Arguments

Argument Default Value Description

ASM_PROCESSOR ASM Matrix/vector assembly processor

ASM_STIFFNESS — Sets the default name of assembled stiffness dataset

AUTO_DRILL <false> Sets the default value of artificial drilling stiffness parameter

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs in
the assembled system matrix prior to factorization

COROQTATION <false> Sets the default element corotational option

DISPLACEMENT — Sets the default name of the nodal displacement datasgt

ELT_STIFFNESS — Thedi and dataset name of the element stiffness matfrices
dataset

FIXED_FRAME OFF Fixed-frame option for hierarchit¢glrefinement

LDl C 1 Sets the defauldi of computational database library

LDI_E 2 Sets the defaultli of element matrices database library

LDIL_S 3 Sets the defauldi of system matrices database library

LOAD_FACTOR 1.0 Sets the default load factor to be applied to element logds

LOAD_SET 1 Sets the default load set number for element loads

MASS DUMMY.MASS

MATRIX_UPDATE FULL Matrix update option for hierarchichl-refinement

MESH 0 Sets the mesh number

MTX_BUFFER_SIZE 500000 Matrix buffer size for equation solving

NL_GEOM <false> Sets the default geometric nonlinearity option

NL_LOAD <false> Sets the default load nonlinearity option

Revised 12/1/97

COMET-AR User’'s Manual

5.10-1



5.10 Procedure STIFFNESS 5 Utility Procedures

Table 5.10-1 Procedure STIFFNESS Input Arguments (Continued)

Argument Default Value Description
REFINE_TECHNIQUE ht Mesh refinement technigbe=¢ transition h)
ROTATION — Sets the default name of nodal rotation pseudovector dgtaset
SKY_PROCESSOR SKY Linear equation solver processor name
STEP 0 Sets/resets load- or time-step number
TYPE TANG Sets the default name of element stiffness dataset

5.10.3 Argument Definitions

In this subsection, the procedure arguments summarized Table 5.10-1 are defined in more detalil.
The arguments are listed alphabetically. Refer to Chapkeifent Processorand Chapter 12,
Matrix/Vector Processordor details on the options.

5.10.3.1 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element (stiffness/mass) matrices
into corresponding system matrices.

Argument syntax:

ASM_PROCESSOR asm_processor

whereasm_processds the name of the matrix assembly processor. Current options include ASM
(for hy andh, types of mesh refinement) and ASMs (figmesh refinement only). (Default value:
ASM)

5.10.3.2 ASM_STIFFNESS Argument

This argument sets thei and dataset name of the assembled stiffness matrix.

Argument syntax:

ASM_STIFFNESS 4di, dataset_name

whereldi is the logical device index associated with the system matrix fild@adet names the
assembled system stiffness matrix dataset name. (Default value: None)

5.10-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

5.10.3.3 AUTO_DRILL Argument

Automatic drilling stiffness option. This option causes shell elements to add artificial drilling
rotational stiffness to nodal DOFs that would otherwise be unstable computationally. See Section
2.10 and Chapter 7 for more information.

Argument syntax:

AUTO_DRILL = option[, angle_to| scale fac]

where

Parameter Description

option Automatic drilling stiffness switch: {<true> | <false>}. If <true>, certain shell gle-
ment types will add atrtificial drilling stiffness to nodal DOFs that require stabjliza-
tion. (Default value: <false>)

angle_tol Angle tolerance to use for determining whether artificial drilling stiffness is ng¢eded
at a given node. (Default value: depends on element type)

scale_fac Scale factor determining magnitude of artificial drilling stiffness to be added by
selected shell elements. (Default value: depends on element type)

AUTO_DRILL is not recommended for nonlinear analysis

5.10.3.4 CONSTRAINTSET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

CONSTRAINT_SET =conset

where:

Parameter Description

conset Constraint set number (Default value: 1)

5.10.3.5 COROTATION Argument

This argument sets the element corotational option for geometrically nonlinear analysis. The
corotational capability is built in to the generic element processor (ES) and enables beam and shell

Revised 12/1/97 COMET-AR User’'s Manual 5.10-3



5.10 Procedure STIFFNESS 5 Utility Procedures

elements to be employed with arbitrarily large rotations (but small to moderate strains) even if the
element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

COROTATION = corotation_option

where
corotation_option Description
0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newtoh iter-
ation is being performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if[True-

Newton iteration has been selected at the nonlinear solution procedure level, apd even
then may provide only marginal improvement in nonlinear convergence over opfion 1.
It adds additional terms to the tangent stiffness matrix that render it more consistgnt.

5.10.3.6 DISPLACEMENT Argument
This argument sets the name of the nodal displacement dataset.

Argument syntax:

DISPLACEMENT =ds_name

whereds_namaes the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)

5.10.3.7 ELT_STIFFNESS Argument
This argument sets théi and dataset name of the element stiffness matrices dataset.

Argument syntax:

ELT_STIFFNESS #di, dataset_name

whereldi is the logical device index associated with the element matrices fitkatabt names
the element stiffness matrix dataset name. (Default value: None)

5.10-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

5.10.3.8 FIXED_FRAME Argument
Sets a flag that is relevant only togrefinement.

Argument syntax:

FIXED_FRAME = {<true> | <false>}

Do not change the default setting without the advice of a COMET-AR expert. (Default value:
<false>)
5.10.3.9 LDI C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC_1 and must be na@eseDBC.

Argument syntax:

LDI_C =Idi_c

whereldi_cis the logical device index (a positive integer) of @aseDBC file. (Default value: 1)

5.10.3.10 LDI]E Argument

This argument sets the logical device index associated with the element matrix database file,
typically namedCaseDBE.

Argument syntax:

LDI_E =Idi_e

whereldi_eis the logical device index (a positive integer) of@aseDBE file. If Idi_eis not equal

to Idi_c (see the LDI_C argument) then all element matrices (e.g., stiffness and mass) for the
current mesh will be stored on a sepa2aseDBE file. If Idi_e =1di_c, then all element matrices

will be stored on th€aseDBC file, i.e., a separatéaseDBE file will not be created. (Default
value: 2)

If a separat€aseDBE fileis created, it will be deleted
and re-created with each new adaptive mesh.

5.10.3.11 LDI S Argument

This argument sets the logical device index associated with the system matrix database file,
typically namedCaseDBS.

Revised 12/1/97 COMET-AR User’'s Manual 5.10-5



5.10 Procedure STIFFNESS 5 Utility Procedures

Argument syntax:

LDI_S =Idi_s

whereldi_sis the logical device index (a positive integer) of@laeseDBS file. Ifldi_sis not equal
toldi_c(see the LDI_C argument) then all system matrices (e.g., stiffness and mass) for the current
mesh will be stored on a separ@&seDBS file. If Idi_s=Idi_c, then all system matrices will be
stored on th€aseDBC file, i.e., a separateaseDBS file will not be created. (Default value: 3)

If a separat€aseDBS file is created, it will be deletgd
and re-created with each new adaptive mesh.

5.10.3.12 LOAD_FACTOR Argument
This argument changes the default load factor to be applied to all element loads.

Argument syntax:

LOAD_FACTOR =load_factor

whereload_factoris a floating-point scale factor. (Default value: 1.0)

5.10.3.13 LOAD_SET Argument

This argument changes the default load set number for element loads during either load definition
or consistent external force formation.

Argument syntax:

LOAD_SET =load_set

whereload_setis an integer load-set number. (Default value: 1)

5.10.3.14 MATRIX_UPDATE Argument

This argument sets the matrix-update mode for hierarchical adaptive refinement (relevant only for
he-refinement).

Argument syntax;

MATRIX_UPDATE = {FULL | PARTIAL}

5.10-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

whereFULL implies that the entire stiffness matrix is reformed for each new mesh, and where
PARTIAL implies that only the updated-mesh contributions to the stiffness matrix are reformed
for each new mesh. (Default value: FULL)

5.10.3.15 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

MESH = mesh

wheremeshis an integer number, typically set to the current mesh number. (Default value: 0)

5.10.3.16 MTX_BUFFER_SIZE Argument

This argument sets the size of the memory buffer to be used for matrix factorization and solution
by certain matrix solution processors.

Argument syntax:

MTX_BUFFER_SIZE =mtx_buffer_size

where mtx_buffer_sizas the size of the buffer in terms of logical variables. (Default value:
500000)
5.10.3.17 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

NL_GEOM = nl_geom_option

where

Revised 12/1/97 COMET-AR User’'s Manual 5.10-7



5.10 Procedure STIFFNESS 5 Utility Procedures

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relationg will be
employed and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option geometric nonlinearity must be accounted for via
element corotation (see the COROTATION command), which for many beam/shgll ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacemept rela-
tions will be used. Element corotation may or not be selected with this option. For many

beam/shell element types, nonlinear element strain-displacement relations enhhance
corotation, making it more accurate for a given mesh and rotation magnitude.

5.10.3.18 NL_LOAD Argument

This argument changes the default load nonlinearity option. It affects whether “live” loads are to
be processed as part of the external force vector or the tangent stiffness matrix.

Argument syntax:

NL_LOAD = nl_load_option

where

nl__load_option Description

0 or <false> Ignore load nonlinearity (i.e., displacement dependence). Only displacement-igpdepen-
dent (“dead”) external loads are to be processed in the following FORM FORCE or
FORM STIFFNESS command. (Default)

1 Include load nonlinearity. Only displacement-dependent (“live”) external loads ard to be
processed in the following FORM FORCE or FORM STIFFNESS command.

5.10.3.19 REFINE_TECHNIQUE Argument

This argument sets the refinement technique to be employed by the mesh refinement processor
(RER) specified via the REFINE_PROCESSOR argument.

Argument syntax:

REFINE_TECHNIQUE =refine_technique

whererefine_techniqués the name of the refinement technique. For example, in conjunction with
processor REF1, the REFINE_TECHNIQUE argument might be set eduahtd, orp (among
others). See documentation under specific iREEécessors for details. (Default valle):

5.10-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

5.10.3.20 ROTATION Argument
This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

ROTATION = ds_name

whereds_namas the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.10.3.21 SKY_PROCESSOR Argument

Selects the matrix solution processor to be used for factoring and solving assembled linear equation
systems.

Argument syntax:

SKY_PROCESSOR sky_processor

wheresky processas the name of the matrix solution processor. Current options are summarized
below.

sky_processor Description
SKY Direct solution of skyline matrices by Crout decomposition (LDU) (Default)
SKYs Direct and/or iterative solution of skyline matrices in conjunction gtiefinement only
ITER Iterative solution of compact matrices by PCG algorithm
PVSOLV Direct solution of skyline matrices optimized for vector computers.

Consult Chapter 12 for more details.

5.10.3.22 STEP Argument

This argument changes the default load- or time-step number used in many solution dataset names
(unless otherwise specified via a separate dataset command).

Argument syntax:

STEP =step

wherestepis an integer number, typically set to the current step number. (Default value: 0)

Revised 12/1/97 COMET-AR User’'s Manual 5.10-9



5.10 Procedure STIFFNESS 5 Utility Procedures

5.10.3.23 TYPE Argument
This argument sets the type of stiffness matrix to be computed.

Argument syntax:

TYPE = type

wheretypeis the type of stiffness to be computed (TANG, GEOM, or MATL for tangent, geometry
or material stiffnesses, respectively). (Default value: TANG)

5.10.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by gredeSsor
being used and the FUNCTION argument. These dataset requirements are documented in Chapters
7 and 12.

5.10.5 Current Limitations

STIFFNESS is a general purpose procedure and the only limitations on its usage are dictated by
the limitations of the ESand matrix/vector algebra processors being employed. Refer to individual
processors in Chapters 7 and 12 for specific processor limitations.

5.10.6 Status and Error Messages

STIFFNESS does not print any status or error messages directly. All messages will be produced

by the E$and matrix/vector algebra processors being employed. Refer to individual processors in
Chapters 7 and 12 for specific processor messages.

5.10-10 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.10 Procedure STIFFNESS

5.10.7 Examples and Usage Guidelines

5.10.7.1 Example 1: Material Stiffness Formation and Assembly in COMPAXX Format

*call STIFFNESS ( TYPE = MATL ;-
ELT_STIFFNESS = 2, E*MATL_STIFFNESS...1 ;-
NL_MATL = <false>
NL_GEOM = <false> ;-
SKY_PROCESSOR = ITER ;-
ASM_STIFFNESS = 3, STRUCTURE.MATL_STIFFNESS...2 ;-
MESH =2 -
ASM_PROCESSOR= ASM )

In this example, the formation of element linear material stiffnesses is requested for mesh 2. The
element stiffness matrices will be stored iIrEBRNamSTIFFNESS...2. The assembled matrix in
COMPAXX format, as required by the ITER processor, will be stored in a dataset named 3,
STRUCTURE.MATL_STIFFNESS...2.

5.10.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.10-11



5.10 Procedure STIFFNESS 5 Utility Procedures

5.10-12 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.11 Procedure STRESS

5.11 Procedure STRESS

5.11.1 General Description

This section describes the STRESS Utility Procedure which calls the ES utility procedure
(FUNCTION = FORM STRESS) to executes all element processors associated with a given model
to recover element stresses from a given displacement solution.

5.11.2 Argument Summary

Procedure STRESS may be invoked with @@MET-AR [ICALL directive, employing the
arguments summarized in Table 5.11-1.

Table 5.11-1 Procedure STRESS Input Arguments

Argument Default Value Description

COROTATION <false> Sets the default element corotational option

DIRECTION 0 Sets the default stress/strain output coordinate system

DISPLACEMENT | 1, NODAL.DISPLACEMENT.1.1 Sets the default name of the nodal displacgment
dataset

LOCATION INTEG_PTS Sets the default stress/strain output locations

MESH 0 Sets the mesh number

NL_GEOM <false> Sets the default geometric nonlinearity option

ROTATION Sets the default name of the nodal rotation
pseudovector dataset

SE_TOT <false>

STEP 0 Sets/resets load- or time-step number

STRAIN 1, E*.STRAIN.1.1 Sets the default Idi and name of the element $train
dataset

STRAIN_ENERGY 1, E*.STRAIN_ENERGY.1.1 Sets the default Idi and name of the element|strain
energy dataset

STRESS 1, E*.STRESS.1.1 Sets the default Idi and name of the element stress
dataset

5.11.3 Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.11-1 are defined in more detail.
The arguments are listed alphabetically. Refer to Chapter 7 for details on the options.

Revised 12/1/97

COMET-AR User’'s Manual

511-1



5.11 Procedure STRESS 5 Utility Procedures

5.11.3.1 COROTATION Argument

This argument sets the default element corotational option for geometrically nonlinear analysis.
The corotational capability is built in to the generic element processor (ES) and enables beam and
shell elements to be employed with arbitrarily large rotations (but small to moderate strains), even
if the element strain-displacement relations do not intrinsically account for large rotations exactly.

Argument syntax:

COROTATION = corotation_option

where
corotation_option Description
0 or <false> Element corotation will not be used. (Default)

1 Basic element corotation will be used. This option is sufficient unless True-Newtoh iter-
ation is being performed at the nonlinear solution procedure level.

2 Higher-order element corotation will be used. This option should be used only if| True-
Newton iteration has been selected at the nonlinear solution procedure level; aid even

then may provide only marginal improvement in nonlinear convergence over opfion 1.
It adds additional terms to the tangent stiffness matrix that render it more consistgnt.

5.11.3.2 DIRECTION Argument

This argument changes the default stress or strain direction option prior to use of the FORM
STRAIN, FORM STRESS, FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.
(Default value: 0)

Argument syntax:

DIRECTION = str_direction

where
str_direction Description
ELEMENT or O Use element local (integration point) coordinate systgty), X, as stress/strain outpyt

system: ¥, Y, Z. (Default)

GLOBAL {X|Y|Z} [ The stress/strain outputaxis is parallel to the globalxyg, or 7 axis if X, Y, or Z,
respectively, is used in the subcommand. The stress/strain oygptis Zs parallel to
the local element normal axis for shell elements, otherwise it is obtained by permutat-
ing the global axes. The stress/strain outpays is defined by the right-hand-rule.

5.11-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.11 Procedure STRESS

str_direction Description

FAB_DIR Use the local material-fabrication coordinate systgimy;xz, as the stress/strain ou
pUt SyStemi g‘ ySv ZS

—t
1

5.11.3.3 DISPLACEMENT Argument
This argument changes the default name of the nodal displacement dataset.

Argument syntax:

DISPLACEMENT =ds_name

whereds_namas the nodal displacement dataset name.
(Default value: NODAL.DISPLACEMENT.1.1)
5.11.3.4 LOCATION Argument

This argument changes the default stress, strain, or strain-energy location option prior to use of the
FORM STRAIN, FORM STRESS, FORM STRAIN_ENERGY, FORM FORCE/INT, or FORM
FORCE/RES FUNCTION arguments. (Default value: INTEG_PTS)

Argument syntax:

LOCATION = str_location

where
str_location Description

INTEG_PTS Element stresses, strains, or strain-energy densities will be evaluated at elemgnt inte-
gration points and stored in the STR attribute of the specified EST dataset.

NODES Element stresses, strains, or strain-energy densities will be evaluated at int¢gration
points, then extrapolated and stored at element nodes in the STRNOD attribute of the
specified EST dataset.

CENTROIDS Element stresses, strains, or strain-energy densities will first be evaluated at the|element
integration points, then averaged and stored at element centroids in the STRCEN
attribute of the specified EST dataset. (If one of the element’s integration pointg coin-
cides with the centroid, the value computed there will be output rather than an gverage
integration-point value.)

Revised 12/1/97 COMET-AR User’'s Manual 5.11-3



5.11 Procedure STRESS 5 Utility Procedures

5.11.3.5 MESH Argument

This argument changes the default mesh number used in all dataset names (unless otherwise
specified via a separate dataset command).

Argument syntax:

MESH = mesh

wheremeshis an integer number, typically set to the current mesh number. (Default value: 0)

5.11.3.6 NL_GEOM Argument

This argument changes the default geometric nonlinearity option. It is often used in conjunction
with the COROTATION command.

Argument syntax:

NL_GEOM = nl_geom_option

where

nl_geom_option Description

0 or <false> The analysis is geometrically linear; linear element strain-displacement relationg will be
employed, and element corotational will be disregarded. (Default)

1 The analysis is geometrically nonlinear, but only linear element strain-displacement
relations will be used. With this option geometric nonlinearity must be accounted for via
element corotation (see the COROTATION command), which for many beam/shqll ele-
ment types is not as accurate as option 2.

2 The analysis is geometrically nonlinear, and nonlinear element strain-displacemept rela-
tions will be used. Element corotation may or not be selected with this option. Forfmany

beam/shell element types, nonlinear element strain-displacement relations ernhances
corotation, making it more accurate for a given mesh and rotation magnitude.

5.11.3.7 ROTATION Argument
This argument changes the default name of the nodal rotation (pseudovector) dataset.

Argument syntax:

ROTATION = ds_name

whereds_namas the new dataset name. (Default value: NODAL.ROTATION.1.1)

5.11-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.11 Procedure STRESS

5.11.3.8 STEP Argument

This argument defines the solution step number associated with the element solution data for which
error estimates are to be computed. This number appears as the first cycle number in names of all
element solution datasets, e.g., STRESS, STRAIN, and STRAIN_ENERGY (relevant only for
nonlinear static analysis).

Argument syntax:

STEP =step
where
Parameter Description
step Solution step number. (Default value: None)

5.11.3.9 STRAIN Argument

This argument changes the default name of the element strain dataset before using the FORM
STRAIN command. It also causes strains to be output to the database by the FORM STRESS,
FORM FORCE/INT, or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

STRAIN = Idi, ds_name

whereldi is the new logical device index add_names the new dataset name. (Default value: 1,
EltNameSTRAIN.1.1mesh

5.11.3.10 STRAIN_ENERGY Argument

This argument changes the default name of the element strain-energy density dataset before using
the FORM STRAIN_ENERGY command. It also causes strain-energy densities to be output to the
database by the FORM STRESS, FORM FORCE/RES, or FORM FORCE/INT FUNCTION
arguments.

Argument syntax:

STRAIN_ENERGY =ldi, ds_name

whereldi is the new logical device index add _namas the new dataset name. (Default value: 1,
EltNameSTRAIN_ENERGY.1.1Imesh

Revised 12/1/97 COMET-AR User’'s Manual 5.11-5



5.11 Procedure STRESS 5 Utility Procedures

5.11.3.11 STRESS Argument

This argument changes the defdditand name of the element stress dataset before using the
FORM STRESS command. It also causes strains to be output to the database by the FORM
FORCE/INT or FORM FORCE/RES FUNCTION arguments.

Argument syntax:

STRESS =Idi, ds_name

whereldi is the new logical device index add_names the new dataset name. (Default value: 1,
EltNameSTRESS.1.Inesh
5.11.4 Database Input/Output Summary

All database input and output requirements for this procedure are imposed by gredeSsor
used and the FUNCTION argument. These dataset requirements are documented in Chapter 7.

5.11.5 Current Limitations

STRESS is a general purpose procedure and the only limitations on its usage are dictated by the
limitations of the ESprocessor being employed. Refer to individual g®cessors in Chapter 7

for specific processor limitations.

5.11.6 Status and Error Messages

STRESS does not print any status or error messages directly. All messages will be produced by the

ES processor being employed. Refer to individual B&cessors in Chapter 7 for specific
processor messages.

5.11.7 Examples and Usage Guidelines

5.11.7.1 Example 1: Recover Element Stresses at Integration Points

*call STRESS ( MESH

3 )

In this example, a complete stress recovery for mesh 3 will be performed. Element stresses, strains,
and strain energies will be stored in theEENamSTRESS/STRAIN/STRAIN_ENERGY.1.1.2
datasets.

5.11-6 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.11 Procedure STRESS

5.11.8 References

None.

Revised 12/1/97 COMET-AR User’'s Manual 5.11-7



5.11 Procedure STRESS 5 Utility Procedures

5.11-8 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.12 Procedure MASS

5.12 Procedure MASS

5.12.1 General Description

The MASS procedure is a utility procedure typically called by dynamic analysis procedures (such
as L_DYNAMIC 1) to compute and/or assemble a system mass matrix, lumped or consistent,
from element and/or nodal (lumped) mass contributions.

5.12.2 Argument Summary

Procedure MASS may be invoked with tEOMET-AR [CALL directive, employing the
arguments summarized in Table 5.12-1.

Table 5.12-1 Procedure MASS Input Arguments

Argument Default Value Description

ASM_MASS STRUCTURE.MASS| Name of assembled system mass matrix (for consistent mass
matrices only)

ASM_PROCESSOR ASM Name of assembly processor to use

CONSTRAINT_SET 1 Constraint set number to be used for suppressing DOFs]in the
assembled system matrix prior to factorization

ELT_MASS E*.MASS Name of assembled diagonal/lumped mass matrix
(stored as a nodal vector table (NVT).

LDI_C 1 Sets the defaultli of computational database library

LDI_E 2 Sets the defauldi of the element matrices database library

LDI_S 3 Sets the defauldi of the system matrix database library

TYPE CONSISTENT Type of assembled mass matrix: LUMPED or CONSISTENT

5.12.3 Argument Definitions
In this subsection, the procedure arguments summarized Table 5.12-1 are defined in more detail.

The arguments are listed alphabetically. Refer to Chapter 7 and Chapter 12 for details on the
specific element and assembly processor options.

5.12.3.1 ASM_MASS Argument

Name of the assembled mass matrix dataset.

Revised 12/1/97 COMET-AR User’'s Manual 5.12-1



5.12 Procedure MASS 5 Utility Procedures

Argument syntax:

ASM_MASS =asm_mass

where asm_massis the name of the assembled mass matrix dataset. (Default:
STRUCTURE.MASS) Currently, ASM_MASS is used as the name of the output dataset only if
TYPE=CONSISTENT; otherwise, ELT_MASS is used as the name of the lumped (i.e., diagonal)
mass matrix.

5.12.3.2 ASM_PROCESSOR Argument

Selects the matrix assembly processor to be used for assembling element mass matrices into a
corresponding system matrix.

Argument syntax:

ASM_PROCESSOR asm_processor

whereasm_processds the name of the matrix assembly processor. Current options include ASM
(for hy andh, types of mesh refinement) and ASMs (figmesh refinement only). (Default value:
ASM)

5.12.3.3 CONSTRAINT SET Argument

This argument defines the constraint set number associated with the element, nodal, and system
data. This number should appear as the second cycle number in names of all datasets.

Argument syntax:

CONSTRAINT_SET =conset

where:

Parameter Description

conset Constraint set number (Default value: 1)

5.12.3.4 ELT_MASS Argument

This argument represents the name to be used for the output assembled mass matrix, if the matrix
type (see TYPE argument below) is DIAGONAL.

5.12-2 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures 5.12 Procedure MASS

Argument syntax:

ELT_MASS = Elt_Mass

whereElt_Massis the name of the assembled diagonal mass matrix dataset to be output. (Default:
NODAL.DIAG_MASS)
5.12.3.5 LDI C Argument

This argument sets the logical device index associated with the main COMET-AR database file,
which must exist before calling L_STATIC_1 and must be naGesDBC.

Argument syntax:

LDI_C =Idi_c

whereldi_c is the logical device index (a positive integer) of@aseDBC file. (Default value: 1)

5.12.3.6 LDI E Argument

This argument sets the logical device index associated with the element matrix database file,
typically namedCaseDBE. This argument is relevant only for consistent mass matrices.

Argument syntax:

LDI_E =Idi_e

whereldi_eis the logical device index (a positive integer) of@aseDBE file. If Idi_eis not equal

to Idi_c (see the LDI_C argument), then all element mass matrices for the current mesh will be
stored on a separafaseDBE file. If Idi_e =Idi_c, then all element mass matrices will be stored

on theCaseDBC file, i.e., a separatéaseDBE file will not be created. (Default value: 2)

If a separat€aseDBE file is created, it will be deletgd
and re-created with each new adaptive mesh.

5.12.3.7 LDI S Argument

This argument sets the logical device index associated with the system matrix database file,
typically namedCaseDBS. The argument is relevant only for consistent mass matrices (for
diagonal mass matrices, the assembled matrix, which is really a nodal vector, is stored in the library
associated with LDI_C).

Revised 12/1/97 COMET-AR User’'s Manual 5.12-3



5.12 Procedure MASS 5 Utility Procedures

Argument syntax:

LDI_S =Idi_s

whereldi_sis the logical device index (a positive integer) of@laeseDBS file. Ifldi_sis not equal
toldi_c(see the LDI_C argument) then all system mass matrices for the current mesh will be stored
on a separat€aseDBS file. If Idi_s = Idi_c, then all system matrices will be stored on the
CaseDBC file, i.e., a separatéaseDBS file will not be created. (Default value:3)

If a separat€aseDBS file is created, it will be deletgd
and re-created with each new adaptive mesh.

5.12.3.8 TYPE Argument
This argument sets the type of mass matrix to be computed.

Argument syntax:

TYPE = type

wheretype is the type of stiffness to be computed. Current options are: CONSISTENT and
DIAGONAL. (Default: CONSISTENT)

5.12.4 Database Input/Output Summary

A model definition database is required as input for the MASS procedure (see Chijidel,
Definition Procedures After invoking the MASS procedure, either a consistent mass matrix will

be deposited in the data library associated with LDI_S (and element mass matrices will be
deposited in the data library associated with LDI_E), or a diagonal mass matrix (in nodal vector
format) will be deposited in the library associated with LDI_C. In additional to the usual model
input data, a “NODAL.MASS” dataset may also be defined by the user, via processor NODAL.
This dataset contains user-specified lumped nodal contributions to the mass matrix; the MASS
procedure adds this lumped nodal mass dataset to the element mass matrices when creating the
final assembled mass matrix, whether consistent or diagonal.

5.12.4.1 Input Datasets

Table 5.12-2 contains a list of datasets required (unless otherwise stated) as input by procedure
MASS. All of these datasets must be resident in the main COMET-AR dat&lzae®8C, where
Caseis the specific problem name).

5.12-4 COMET-AR User’'s Manual Revised 12/1/97



5 Utility Procedures

5.12 Procedure MASS

Table 5.12-2 Input Datasets Required by Procedure MASS

esh

uta-

Dataset File Description
CSM.SUMMARY..mesh LDl C Model summary for the analyzed mesh
EltNameDEFINITION...mesh LDl C Element definition for the analyzed mesh
EltNameFABRICATION...mesh LDl C Element fabrication pointers for the analyzed mes
EltNameGEOMETRY..mesh LDl C Element solid-model geometry for the analyzed n
EltNameINTERPOLATION..mesh LDl C Element interpolation data for the analyzed mesh
NODAL.COORDINATE..mesh LDl C Nodal coordinates for the analyzed mesh
NODAL.DOF..conset.mesh LDl C Nodal DOF Table for the analyzed mesh.
NODAL.TRANSFORMATION..mesh LDl C Nodal transformations between global and comp

tional frames for the analyzed mesh
NODAL.MASS.Idcase..mesh LDI_C Nodal lumped masses to be added to the ele
mass matrices during assembly

ment

5.12.4.2 Output Datas

ets

Table 5.12-3 contains a list of datasets that may be created in the database by procedure MASS.

Table 5.12-3 Output Datasets Produced by Procedure MASS

Dataset Class File Description
[ASM_MASS] | SMT | LDI_S | Assembled system mass matrix (Output only if TYPE=CONSISTEN
E*.MASS EMT | LDI_E | Element mass matrices (Output only if TYPE=CONSISTENT)
[ELT_MASS] NVT | LDI_C | Assembled diagonal mass matrix (Output only if TYPE=DIAGONAL

IT)

For details on the contents of any of the above datasets, refer to Chaptatabiase Summary

5.12.5 Current Limitations

Procedure MASS will not generate a DIAGONAL mass matrix if there are any multi-point
constraints (MPCs). This is because MPCs typically induce coupling terms that would not be
properly accounted for. When MPCs are present, the user should employ a consistent mass matrix.

5.12.6 Status and Error Messages

None.

Revised 12/1/97

COMET-AR User’'s Manual

5.12-5



5.12 Procedure MASS 5 Utility Procedures

5.12.7 Examples and Usage Guidelines

5.12.7.1 Example 1: Diagonal Mass Matrix Formation

*call MASS ( TYPE
ELT_MASS

DIAGONALL
NODAL.DIAG_MASS

)

In this example, a diagonal mass matrix (NVT dataset) is stored in a dataset called
NODAL.DIAG_MASS. The assembly processor (ASM_PROCESSOR) is irrelevant for such
cases, as the diagonal mass matrix is assembled by vector addition, via processor VEC. If a user-
specified lumped nodal mass dataset (which must be called NODAL.MASS) is present, the dataset
will automatically be added into the assembled diagonal mass matrix by procedure MASS.

5.12.8 References

None.

5.12-6 COMET-AR User’'s Manual Revised 12/1/97



Part Il
PROCESSORS

In this part of the COMET-AR User’s Manual, we describe available Fortran level processors (i.e.,
independently executable command/database-driven modules) that may be invoked by the user for
a variety of functions, including pre-processing, analysis, and post-processing. While any of these
processors may be employed interactively, they are typically invoked indirectly and automatically
via COMET-AR procedures (see Part I). An exception to this is processor ARGX, a graphical post-
processor that is strictly interactive.

Revised 12/1/97 COMET-AR User’'s Manual



COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.1 Overview

Chapter 6 Pre-Processors

6.1 Overview

In this chapter, various pre-processors implemented in COMET-AR are described. These pro-
cessors are used primarily for model definition as indicated in Chaptdodel Definition

ProceduresA summary of currently available pre-processors within this chapter is given in Table
6.1-1.

Table 6.1-1 Outline of Chapter Chapter 6: Pre-Processors

Section Processor Function

6.2 AUS Nodal force/displacement tabulation

6.3 COP Nodal constraint definition

6.4 GCP Generic constitutive processor

6.5 GEP Generic element processor

6.6 PST PATRAN-to-COMET-AR conversion

6.7 REDO Reformatting of TAB and AUS datasets

6.8 RENO Node/bandwidth renumbering; geometric algorithm
6.9 RSEQ Node/bandwidth renumbering; various algorithms
6.10 TAB Nodal coordinate/transformation tabulation

Revised 12/1/97 COMET-AR User’'s Manual 6.1-1



6.1 Overview 6 Pre-Processors

6.1-2 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.2 Processor AUS (Nodal Force Tabulation)

6.2 Processor AUS (Nodal Force Tabulation)

6.2.1 General Description

Processor AUS is used by COMET-AR to define nodal loads, i.e., point forces and/or nodal
specified displacements. The SYSVEC subprocessor constructs system vector data tables which
are subsequently translated into High Level Database (HDB) objects by the processor REDO, as
described in Section 6.7. Detailed information about the SYSVEC subprocessor and command
structure is contained in the remainder of this section.

6.2.2 Command Summary

Processor AUS follows the SPAR command syntax as described in Reference [1]. A summary of
valid commands is given in Table 6.2-1.

Table 6.2-1 Processor AUS Command Summary

Command Name Function

SYSVEC Create or modify SYSVEC format datasets

6.2.3 Command Definitions

6.2.3.1 SYSVEC Command

The SYSVEC subprocessor is used to create and modify datasets in SYSVEC format. The
command format for the SYSVEC subprocessor is:

SYSVECI,U]: N1, N2, n3, n4
1= i%,i2, ...,i6
J= jbeg Jena Jinc
€lbeg Ejbeg 1 Ebeg

i1 j2 i6
€(jbeg+ jing)r €(jbeg+ jing: -+ E(jbeg+ jinc)

where

Revised 12/1/97 COMET-AR User’'s Manual 6.2-1



6.2 Processor AUS (Nodal Force Tabulation) 6 Pre-Processors

Parameter Description

] Transfers the SYSVEC subprocessor into update mode, allowing for modificatior] of an
existing SYSVEC dataset.

N1,N2,n3,n4 Names to be used in the construction of the SYSVEC dataset. N1 and N2 are character
input and n3, and n4 are integers. The resulting dataset will be named N1.N2.n3{n4.

1= il i2 ...,i® Row numbers for application of forces or specified displacemefts. =1, 2, or 3
always indicates a directiorft displacqment or force compoHént; =4, 5, 6 ingicates
a rotation in radians or moment about ais- 3

J :ibeg jend’ jinc Column numbers for application of forces or specified displacements in loop limi for-
mat.

e}éeg, e}éeg, e e}geg Load/Displacement values

The command runstream:

RUN AUS
SYSVEC: APPL FORC 1
=3
J=9,10: -1.0, -1.0
STOP

creates a dataset named APPL.FORC.1.1 with (number of active degrees of freedom) rows and
(total number of nodes) columns. All entries will be zero except for the z-direction forces for nodes
9 and 10 which will each have a value of -1.0.

6.2.3.2 Input Datasets

A summary of input datasets used by Processor AUS is given in Table 6.2-2.

Table 6.2-2 Processor AUS Input Datasets

Dataset/Attribute Contents

JDF1.BTAB.1.8 Dataset containing the total number of nodes in the model. Created by the TAB Prgcessor.

6.2.3.3 Output Datasets

A summary of output datasets created by Processor AUS is given in Table 6.2-3.

Table 6.2-3 Processor AUS Output Datasets

Dataset/Attribute Contents
APPL.FORC.1.1 Nodal point forces
APPL.MOTI.1.1 Nodal specified displacements

6.2-2 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.2 Processor AUS (Nodal Force Tabulation)

6.2.4 Limitations

AUS is an internal processor within the COMET-AR macroprocessor. As such, there is a blank
common limit which is installation dependent. SYSVEC will notify the user if the memory
required for processing the commands is insufficient, in which case you will need to increase the
blank common of the executable.

6.2.5 Error Messages
The SYSVEC subprocessor checks to ensure that there is sufficient memory available to perform

the requested function. In addition to these errors, input errors are reported by SYSVEC. These
errors are summarized below.

Command Error Message and User Response

SYSVEC INPUT DATA ERROR — Fatal error; User input is in error.

6.2.6 Examples and Usage Guidelines

It is important that the computational GAL librarldij contain the dataset JDF1.BTAB.1.8
produced as a result of the START command in TAB. Any SYSVEC dataset operated on in
processor AUS must correspond to the JDF1.BTAB.1.8 dataset presentdn this

The command runstream presented below creates the applied force dataset APPL.FORC.1.1 with
a force applied in the global z direction to node 4, with a value of -1.0.

RUN AUS
SYSVEC: APPL FORC 1
i=3:j=4.-1.0

STOP

The command runstream presented below creates the specified displacement dataset
APPL.MOTI.1.1 with a displacement of -1.0, applied in the global x direction to nodes <np1>
through <nnt> as defined via the CLAMP do loop and macrosymbols.

RUN AUS
SYSVEC: APPL MOTI 1
*do $i = <npl>,<nnt>,1
i=1: j=<$i>: -1.0
*enddo
STOP

Revised 12/1/97 COMET-AR User’'s Manual 6.2-3



6.2 Processor AUS (Nodal Force Tabulation) 6 Pre-Processors

6.2.7 References

[1] Stewart, C. B., ed.The Computational Structural Mechanics Testbed User’'s Manual
NASA TM-100644, 1989.

6.2-4 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

6.3 Processor COP (Constraint Processor)

6.3.1 General Description

Processor COP is used to define and store the degrees-of-freedom (DOFs) and their constraints for
each node point of a COMET-AR model. This information constitutes what is called a Nodal DOF
Table (NDT data object), the logical view of which is described in Reference [1].

The COP processor is used to form an NDT data object for any analysis using the ASM, SKY, and/
or related COMETAR processors, all of which operate with DOF-oriented (as opposed to nodally-
oriented) system matrices and vectors.

An NDT data object includes a table that indicates the number of freedoms that are associated with
each node point and the type of freedom that is associated with each direction at each node point
of the model. In the current version of COP, any given freedom may have one of the following
constraint status indications:

FREE unconstrained, independent DOF

ZERO SPCz (Single-Point-Constrained) DOF, the value of which is zero

NONZERO SPCnz DOF, the value of which is a specified constant

MPC MPC (Multi-Point-Constrained) dependent DOF, to be expressed in terms of zero or
more independent DOFs via a linear multi-point constraint relation and elimipated
from the equation system

An NDT data object also includes information required to describe any SPCs and/or MPCs to
which the model may be subjected. The present version of COP assumes that each dependent
degree of freedomiy to be eliminated from the equation system is expressed in teridg of
independent freedoms through a linear multi-point constraint relation of the form:

Nig

b= 5 [cyx] e

i=1

where theCy; are proportionality constants that relaieto theN;y independent freedoms, and
whereay is the so-called intercept constant for the relation. COP enables the user to identify
specific DOFuy that are linearly dependent on (independent) DQENd/oray), and to specify

the weighting coefficient€y; for the freedoms on which they are dependent. COP makes no
assumptions about how single- or multi-point constraints are enforced; it passes this information
along to other processors that know what to do with it.

An NDT data object also includes a table giving the equation number assigned to each freedom of
the model. Normally each independent DOF has an equation number assigned to it, but COP
permits you to override this convention.

Revised 12/1/97 COMET-AR User’'s Manual 6.3-1



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

The COP processor also performs two essential vector-transformation operations. Given an input
vector that contains information only for the computational (independent) degrees of freedom, a
specific NDT data object, and (optionally) other information, COP can expand the input vector into
a nodally-oriented Nodal Vector Table (NVT) data object, calculating the values of any dependent
freedoms with the multi-point constraint information in the NDT data object, and imposing any
(ZERO and/or NONZERO) SPCs that may be imposed. Given an input vector that is stored in a
nodally-oriented NVT data object, COP can also contract the information, extracting the
independent DOF values contained therein to form a vector that is stored in the System Vector
Table (SVT) data object form used by ASM, SKY, and other COMET-AR processors.

6.3.2 Processor Command Summary

The user must employ CLIP directives to communicate directly with GAL database files and do
the general bookkeeping, branching, and arithmetic operations that are described in Reference [2].

The COP-specific commands that enable the user to operate on a database-resident NDT data
object, or to use this information to contract or expand system vectors, are described here. Some
of these commands facilitate the construction of a new Nodal DOF Table, or retrieve an existing
NDT data object from its GAL database location. Others modify an NDT data object, changing the
constraint status indications (states) of freedoms (by applying single- and/or multi-point
constraints, suppressing or allowing the assignment of equation numbers for various freedom
states, imposing an externally-determined nodal ordering when equation numbers are assigned,
etc.). Other commands save the NDT data object on a GAL library file, and/or display it. Still other
COP-specific commands facilitate the transformation of system vectors from the compressed,
DOF-oriented SVT data object form that is used by ASM, SKY, and other COMET-AR processors
to the nodally-oriented NVT-data-object fofrased by other COMET-AR processors or vice
versa.

The remainder of this section concentrates on these COP-specific commands. The current version
of COP accepts the commands listed in Table 6.3-1.

Table 6.3-1 Processor COP Command Summary

Command Name Function
MODEL Specify a Complete Model Summary (CSM data object) dataset
SELECT Retrieve an initial NDT data object from a GAL database, or construct a new one
SEQUENCE Specify nodal-ordering information
RESET Reset a program-control parameter
DOF_SUPPRESS Set constraint-status indicators in a designated NDT data object to reflect DOH suppres-
sions indicated in a given DOF-suppression table

1. The System Vector Table (SVT data object) data structure used here replaces the DOFVEC format used by earlier
versions of ASM, COP, and SKY; and the Nodal Vector Table (NVT data object) structure replaces the SYSVEC for-
mat used by the Testbed and its older relatives. Both of these object-oriented structures are described in Reference [1].

6.3-2 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

Table 6.3-1 Processor COP Command Summary (Continued)

Command Name Function
CONSTRAIN Transfer control to the CONSTRAIN sub-processor, to modify, display, and/or arclpive an
NDT data object.
PRINT Display all or part of an NDT data object
CONTRACT Contract an NVT data object to an SVT data object (computational system vedtor) by

extracting the independent DOFs

EXPAND Expand a given vector to the NVT data object form, which includes values for spgcified
and constrained freedoms

STOP Exit the COP processor

Table 6.3-1 shows the order in which these commands would normally be employed in COP.
Additionally, the CONSTRAIN sub-processor accepts the commands listed in Table 6.3-2.

Table 6.3-2 Sub-processor CONSTRAIN Command Summary

Command Name Description
FREE Declare freedom(s) to be independent, without constraints
ZERO Single-Point-Constrain one or more DOFs to remain identically zero
NONZERO Impose nonzero SPCnzs on one or more DOFs
MPC Define a multi-point constraint relation
RESET Reset a program-control parameter
SHOW Display some or all of the NDT data object
DONE Exit the CONSTRAIN sub-processor

The first step in executing COP is usually an invocation of the MODEL command, specifying a
Complete Model Summary Table (CSM data object) that contains problem-size and other vital
information for the model to be considered. This step is not required if the CSM data object to be
used is that for the so-called zero-mesh case (where the mesh index in the dataset name for the
CSM data object is zero); it is required for any other case.

The next step depends on what the user wants COP to do. To retrieve an existing NDT data object
or construct a completely new one, and then to modify, archive or display that NDT data object,
invoke the SELECT command to specify the starting NDT data object and the destination of the
NDT data object that COP will produce, and then use the CONSTRAIN command (and its sub-
commands) to define constraints and assign equation numbers. To contract (or expand) a system
vector, bypass the SELECT command and use the CONTRACT (or EXPAND) command.

The PRINT, SEQUENCE, and RESET commands are optional. The PRINT command prints all or
a selected part of a given NDT data object. The SEQUENCE identifies a Nodal-Ordering Table

Revised 12/1/97 COMET-AR User’'s Manual 6.3-3



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

(NOT data object) containing an {order} vector that defines the nodal sequence in which equation
numbers are assigned to the active node points of the model. The RESET command specifies
program-control parameters. The COP processor has three user-accessible control parameters that
function as toggle (ON/OFF) switches to control assignment of equation numbers to all freedoms
of the three basic types that COP recognizes: independent DOFs that are FREE (unconstrained);
ZERO (trivially single-point-constrained, remaining forever zero); or NONZERO (single-point-
constrained, with nonzero specified values). COP begins with these parameters set ON, so that
equation numbers will be assigned for all such DOFs. To change those settings, the user must
employ the RESET command before exiting the CONSTRAIN sub-processor.

The STOP command terminates execution of the COP processor, and must be the last command
employed.

6.3.3 Command Glossary

6.3.3.1 MODEL Command

The first thing a COP user usually does is specify the Complete Model Summary Table (CSM data
object) that contains the problem-size parameters and other vital information for the model to be
treated. This is done with the MODEL command.

MODEL [Idi_csm [dsn_csnj]

The MODEL command opens the CSM data object stored in datssetsmon GAL library
Idi_csmand extracts two problem-size parameters, NNODES (the maximum node point number
for the model) and NDOFN (the maximum number of DOF that may be associated with each
node).

The default value foidi_csmis 1, and the default name for the Complete Model Summary (CSM
data object) dataset is CSM.SUMMARY....0.

COP extracts the mesh inderdsh, and any other information needed to perform its function(s),
from that CSM data object. The MODEL command is optional when the required CSM data object
is identified by the default values described above; it is required for any other situation.

The MODEL keyword may be abbreviated to two characters.

6.3-4 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

6.3.3.2 SELECT Command

The SELECT command specifies a new or old (existing) NDT data object to initialize COP. It also
specifies where the NDT data object produced by COP is to be archived. The syntax of the
SELECT command is:

SELECT {NEW |OLD [idi_old [cons[ mesh]]]} ++
DOFDAT [Idi_ndt [icons [imesh]]]

where each keyword is defined below.

Keyword Description

NEW Indicates that a new NDT data object is to be constructed from scratch (using size apd other
information from the CSM data object identified in a previously-used MODEL commgnd or
from a default CSM data object if no MODEL command has been processed)

OLD Indicates that an existing NDT data object is to be retrieved from GAL lilhagld; thecons
andmeshparameters (with default values of 1 and 0, respectively) designate the constrdint case
and the mesh index for the existing NDT data object

DOFDAT Indicates that the NDT data object that COP produces is to be archived on GAL dibnaaly
in dataset NODAL.DOHRcons.meshtheiconsandimeshparameters default tmnsandmesh
respectively

Given the NEW keyword, COP retrieves the NNODES and NDOFN parameters (and DOF type
information) from the CSM data object identified in a previous MODEL command (or from the
default CSM data object that COP uses if a MODEL command was not given) and constructs an
initial NDT data object from scratch, giving each node the same number and types of DOF and
setting the constraint status of each DOF to FREE (not constrained).

Given the OLD keyword (and optionally thensandmeshparameters), COP attempts to retrieve

an existing NDT data object from the indicated GAL library, and uses that Nodal DOF Table as
the initial version, to be modified, displayed, and/or archived via the CONSTRAIN command
(described below), or displayed via the PRINT command. If the indicated NDT data object is not
found, COP prints an appropriate error message and terminates.

The SELECT keyword may be abbreviated to three characters. The NEW, OLD, and DOFDAT
keywords may be abbreviated to one character.
6.3.3.3 SEQUENCE Command

The SEQUENCE command specifies an existing Nodal Order Table (NOT data object), which
contains an {order} vector that defines the nodal sequence in which equation numbers are to be
assigned to the active node points of the model. The syntax of the SEQUENCE command is:

SEQUENCE [di_seq [dsn_seq ]

Revised 12/1/97 COMET-AR User’'s Manual 6.3-5



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

Given the SEQUENCE command, COP opens the NOT data object stored in disrtasetpn

GAL libraryIdi_seq and extracts the {order} vector from it. COP uses this {order} vector to assign

an equation number to each DOF that is entitled to have an equation number, at each active node
point of the model, when that operation is performed (prior to displaying the NDT data object and/
or exiting the CONSTRAIN sub-processor).

The default values of tHdi_seganddsn_segarameters on the SEQUENCE command are 1 and
NODAL.ORDER..mesh respectively, the mesh parameter being that which COP has extracted
from the CSM data object specified via the MODEL command, or from the default CSM data
object that COP attempts to use if the MODEL command was not used. The SEQUENCE
command is optional. If it is not used, COP generates and uses a default {order} vector that gives
sequence number 1 to the lowest-numbered active node, 2 to the next-lowest-numbered active
node, ..., and so on to the highest-numbered active node.

The SEQUENCE keyword may be abbreviated to three characters.

6.3.3.4 RESET Command

The RESET command may be employed to reset a processor-control parameter. The syntax of the
RESET command is:

RESET [FREE = {YES|NO}] [++
[ NONZERO = {YES | NO}] [++
[ZERO = {YES |NO}]

COP currently has three user-accessible program-control parameters, which control whether or not
DOF with FREE, NONZERO, or ZERO constraint states are entitled to have equation numbers
assigned to them when that operation is performed. COP is initialized with each of these switches
in its ON (YES) position, so that each FREE, NONZERO, and ZERO constraint-status freedom is
to be given an equation number. To suppress the assignment of an equation nhumber to each
freedom of any given type, use the RESET command to set the control parameter for that freedom
type to its OFF (NO) value. This might be done for NONZERO and ZERO freedoms, for example,
to assemble a system matrix with none of those freedoms present.

The RESET command keyword may be abbreviated to one character, and each key text word may
be abbreviated to two characters.

6.3.3.5 DOF_SUPPRESS Command

The DOF_SUPPRESS command is used to modify a given NDT data object to set the constraint
status of each DOF that is to be suppressed (single-point constrained to be zero) automatically. This
is accomplished by identifying a DOF-suppression table (which must be an NDT data object), and

using the constraint status information therein to superimpose the ZERO SPC pattern in the DOF-

6.3-6 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

suppression table onto a designated (input/output) NDT data object. The syntax for the
DOF_SUPPRESS command is:

DOF_SUPPRESS INPUT #i_inp inp_nam [ DOFDAT =Idi cons mesh]

where the two keywords are described below.

Keyword Description

INPUT Identifies dataseéhp_namon GAL libraryldi_inp as the DOF-suppression table (NDT data object)
that contains constraint status information to be used to modify the designated input/outpidit Nodal
DOF Table (NDT data object)

DOFDAT Indicates that GAL librarydi contains the NDT data object to be modified; ¢tbesand mesh
parameters here indicate the constraint and mesh cases for the NDT data object to be used

The DOFDAT clause is optional on this command. If it is not included, the NDT data object
identified in the previously-used SELECT command will be modified.

Given this command, COP retrieves the constraint status information for each active node in the
NDT data object specified by the DOFDAT clause (or by the SELECT command, if the DOFDAT
clause is omitted). COP also retrieves the constraint status information for the same node from the
given DOF-suppression table. Each independent (non-multi-point-constrained) DOF for that node
in the input/output NDT data object that has been SPCd to ZERO in the DOF-suppression table is
then SPCd to ZERO in the input/output NDT data object. The DOF_SUPPRESS command only
modifies the constraint status information in the input/output NDT data object. It does not assign
equation numbers to DOF that are entitled to have them. That must be accomplished via the
CONSTRAIN command, described below.

The DOF_SUPPRESS command and its two keywords may be abbreviated to one character.

6.3.3.6 CONSTRAIN Command

The CONSTRAIN command transfers the user into the CONSTRAIN sub-processor, which
recognizes a set of sub-commands that facilitate the modification, display, and archiving of an
NDT data object. The syntax of the CONSTRAIN command is very simple.

CONSTRAIN

Revised 12/1/97 COMET-AR User’'s Manual 6.3-7



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

The following sub-commands are recognized and processed by the CONSTRAIN sub-processor:

[ FREE {NOD =i [j[nn]]}* {DOF=typ [typp[..]1]1}"]
[ ZERO {NOD =i [j[nn]]}* {DOF=typ; [typp[...1]1}*]
[ NONZERO {NOD =i [j[nn]]}* {DOF=typ, [typp[...]]1}"]
[ MPC {Idi_mpc dsn_mpc| node dtypeN, q, ;

nod typ G

N, specifications
(nody, typnr Cnrl}
[ RESET [FREE ={YES | NO}] [++
[ NONZERO ={YES | NO}] [ ++
[ZERO ={YES |NO}]]
[ SHOW [ [na]]]
DONE

6.3.3.6.1 FREE Sub-command

The FREE sub-command is used to declare that one or more freedoms at each of one or more node
points is FREE (i.e., the freedoms in question are independent DOFs that are not subject to any
constraints). The syntax of the FREE sub-command is:

FREE {NOD=i [j[nn]]}* {DOF=yp, [typp[..]]}*

in which at least one NOD and at least one DOF clause must appear. The NOD and DOF clauses
tell the CONSTRAIN sub-processor which degrees of freedom are to be “typed” through this
command. Each NOD clause adds one or more nodes to a node-point list, and each DOF clause
adds one or more directions to a direction list. The CON sub-processor uses these lists to set the
type of freedoms in the direction list at each node point in the node list.

Thei parameter is required in any given NOD clause,jbsitoptional anchn is second-order
optional. Ifj is absent, only goes into the node-point list;jifis present (butinis not), node$
throughj (incrementing by plus or minus one, as appropriate) are added to thg kstdiin are

both present, nodes to be added to the list are determined by a FORTRAN:-like loop of the form

do10k= i, J, nn
NODE =k
10 continue
The node numbers thus specified must all must fall in the rasgdQDE < NNODES.

The same procedure is used for the construction of the direction list. This list is quite restricted: it
must not be longer than the maximum number of freedoms NDOFN that can be accommodated at

6.3-8 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

any given node point (6, currently), and values in the list must be valid DOF type indicators for the
problem at hand. With the current implementation of COP, the valid type indicat@4,dp2,

D3, Thetal Theta2 and Theta3 which represent translations in tkey, andz-directions and
rotations about the, y, and zaxes.

The FREE keyword may be abbreviated to one character, but the NOD and DOF keywords must
not be abbreviated.
6.3.3.6.2 ZERO Sub-command

The ZERO sub-command is used to declare that one or more freedoms at each of one or more node
points is a ZERO-type freedom (i.e., the freedoms in question are independent DOFs that are
constrained to be identically zero). The syntax of the ZERO command is:

ZERO {NOD= [j [nn]]}* { DOF=typy; [typ, ,...]1}*

where the meanings of the parameters following the ZERO keyword are the same as for the FREE
command. The ZERO keyword may be abbreviated to one character, but the NOD and DOF
keywords must not be abbreviated.

6.3.3.6.3 NONZERO Sub-command

The NONZERO sub-command is used to declare that one or more freedoms at each of one or more
node points is a NONZERO-type freedom (i.e., the DOFs in question are independent DOFs that

are constrained to be prescribed values that generally are nonzero). The syntax of the NONZERO
command is

NONZERO {NOD= [j [nn]]}* {DOF=typ; [typ, [...]]1}"*

where the meanings of the parameters following the NONZERO keyword are the same as for the
FREE command. Values are assigned to these freedoms via Processor AUS (see section 6.2). The
NONZERO sub-command keyword may be abbreviated to one character, but the NOD and DOF
keywords must not be abbreviated.

6.3.3.6.4 MPC Sub-command

COP gives the user the opportunity to specify that one or more of the freedoms for a given problem
are linearly dependent upon the values of other freedoms, and to remove the dependent freedom(s)
from the equation system for the analysis by using appropriate multi-point constraint relations
where appropriate. This is facilitated by the MPC command, the syntax of which is

MPC node dtype N, a,

Revised 12/1/97 COMET-AR User’'s Manual 6.3-9



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

This command may be used to specify that the dtype degree of freedom at nodegmista
linearly dependent MPC-type freedom and is to be eliminated from the equation system. The
following multi-point constraint relation expresses the dependent freaglonterms of the values

of N, independent freedoms;f and an (optional) intercept constaat,

N,

0= 3 [oxu]

i=1
The {u;} are theN, independent DOFs, amd}, {C;}, and a, are constants.

The N, independent DOFs and their associated weights must be specified Wadbemand
addenda, which have the following syntax:

nod, typ Cy

Each of the\, independent freedoms is identified through its node and DOF-type specifications,
nod, andtyp,, respectively. A separate MPC command is required for each dependent freedom to
be eliminated.

The MPC keyword may be abbreviated to one character if desired.

6.3.3.6.5 RESET Sub-command

The RESET sub-command here is exactly the same as described in Section 6.3.3.4. It may be
exercised as many times as necessary in the CONSTRAIN subprocessor or in the COP main
processor.

6.3.3.6.6 SHOW Sub-command

The SHOW sub-command displays the current NDT data object, while still under the control of
the CONSTRAIN sub-processor. Information displayed includes the rectangular DOF-type and
constraint status tables, and the rectangular DOF pointers table, which contains equation numbers
for DOF that are entitled to have them, and pointers for constrained freedoms. The syntax for the
SHOW command is

SHOW [ny [ny]]

where then; andn, parameters may be used to specify the first and last node numbers for which
this information is desired. H; is omitted, the entire NDT data object will be displayea, Ifs
specified, buh, is omitted, information for node, will be displayed. Ih, is also specified, COP

will display NDT data object information for nodegthroughn,, inclusive.

6.3-10 COMET-AR User’'s Manual Revised 12/1/97



6 Pre-Processors 6.3 Processor COP (Constraint Processor)

The SHOW command may be abbreviated to one character, but at least two characters are
recommended to prevent user confusion with the STOP command.

6.3.3.6.7 DONE Sub-command

The DONE sub-command tells the CONSTRAIN sub-processor that all relevant information has
been defined for the current Nodal DOF Table (NDT data object). The syntax for the DONE sub-
command is:

DONE

When the DONE command is issued, the CONSTRAIN sub-processor uses the information it has
been given (including the default or nodal sequencing {order} vector) to assign an equation
number to each freedom that is entitled to one (as discussed above) and to assign other appropriate
pointer values to other freedoms. The finished NDT data object is then stored on the output GAL
library, as specified via the SELECT command. Control then returns to the COP processor’s main
program, where COP waits for more selection, creation, manipulation, vector-transformation,
program-control, and/or termination instructions.

The DONE command may be abbreviated to one character.

6.3.3.7 PRINT Command

The optional PRINT command causes the immediate printout of the information in an NDT data
object. The syntax for the PRINT command is:

PRINT [ DOFDAT =Idi_ndt cons mesh [ SUBSET =first [ last] ]

If the DOFDAT clause is omitted, the NDT identified as the output data object in the previously-
used SELECT command will be printed. The DOFDAT clause permits the user to print a specific
NDT data object (the one on GAL libralgi_ndt for which the constraint case and mesh case
indices are&onsandmesh whether or not the SELECT command has been used. In any event, the
entire NDT data object will be displayed if the SUBSET clause is omitted. The optional SUBSET
clause may be used to specify the range of node points for which information is to be displayed,
thefirst andlast parameters indicating the desired rangéadfis omitted, information will only

be displayed for nodirst.

The PRINT keyword may be abbreviated to one character.

6.3.3.8 CONTRACT Command

The CONTRACT command contracts a system vector from the nodally-oriented NVT-data-object
form to the DOF-oriented SVT-data-object form, eliminating dependent- and undefined-DOF as
and if necessary. The syntax for the CONTRACT command is:

Revised 12/1/97 COMET-AR User’'s Manual 6.3-11



6.3 Processor COP (Constraint Processor) 6 Pre-Processors

CONTRACT INPUT = Idi_inp inp_nam[ istep] ++
OUTPUT =Idi_out out_nam/[jstep] [ ++
DOFDAT = Idi cons mesh]

where the three keywords are described below.

Keyword Description

INPUT Identifies datasehp_namon GAL libraryldi_inp as the input NVT data object from which vegtor
numberistepis to be retrieved and contracted to the SVT-data-object (computational-vector) form

OUTPUT Specifies that the contracted vector is to be stored ptetheector in the SVT data object in dataset
out_namon GAL libraryldi_out

DOFDAT Indicates that GAL libraridi contains the NDT data object to be used for the vector-transfornpation
operation to be performed; thensandmeshparameters here indicate the constraint and mesh|cases
for the NDT data object to be used.

Theistepandjstepparameters default to 1 if they are not specifiedjstegdefaults tastepif the
former is given but the latter is omitted. The DOFDAT clause is optional on this command. If it is
not included, the NDT data object identified in the SELECT command will be used.

The CONTRACT command may be abbreviated to four characters.

6.3.3.9 EXPAND Command

The EXPAND command produces an NVT data object by expanding a given input vector (which
may be in the NVT-data-object or the SVT-data-object format) so that values corresponding to
eliminated (dependent) DOF are reinstated using the multi-point constraint information in the
specified NDT data object. The syntax of the EXPAND command is:

EXPAND [/{DOFVEC | NODVEC}] ++
INPUT =Idi_inp inp_nam [istep] ++
OUTPUT =Idi_ou