OK CASH ECR-PCINTERFACE

THE PC COMMUNICATION DRIVER ... 3
INEFOAUCTION ..ttt 3
INSTAIIALION ..eeeeiiiiiiiiiiii e 4
HOW 10 USE the DIV ...uuiiiiiiiiiiiiitiiiiiittbbe bbbttt bbbt be bbb ee e e 5

Driver Opening & CloSING ProCEAUIE........cooi i 5
Reception and TransmisSion BUTTEI ... 6
REAA & WV oo 7
Value of the Code FIeld.........cooiiiiiiiiiiii 7
Program EXAMPIES ..o 10
LIBRARY FOR WINDOWS 95......ciiiiiiiiiiiiiiii e 15
Lol (@] 01T o PP PP PPTTTT 16
Lo VAT] T 17
ECTREA 18
ol (4 (0] T 19

INTERFACING APC TO OK CASH ECR ...coiiiiiiii 20
MESSAGE SEIUCTUIE ...ttt ettt et e et et e e e e e e e et e e e e n e r e e e e e e e enrrnanas 20
MESSAGE SEUUEINCES ... eiieeeiiiei ettt e e ettt r e e e et e et e e e e e e e e e e e an b r e e e e e e e enrrnaaas 22

SPECIAI MESSAGES ... 23

WRITING PROGRAMS FOR ECR INTERFACING ...ttt 25
Yoo o1 ISP 25
(DY =] (o] o LT oL =TT U= o =TT 25

Program Example Using Basic under MS-DOS ... 26
Program Example Using C Language under MS-DOS...........cooooiiiiiiiii 27
Program Example Using Pascal under MS-DOS ... 29
Program Example Using Visual Basic for WindowsO5 ..., 31
Program Example Using Visual C for WindOWSO5coooiiiiiii 34

MESSAGES SENT BY THE ECRcooiiiiiiiiiii 36
ECR 1dENTIICAION IMESSAQE ... tttttttiitiiiitttiittitbtbbbbbbbbbbeb bbb bbb bbb bbb bbb bbb bbb bbb b bbb bbbbbbbebnnnes 36
LGS o To =T o Y [T Vo =P 37
LU T a Tt L= = T T @ o =TT 43

Sending Item DESCHPLIONScooviiiiiiii 45

L 11T Y TS F= T [T PPN 47
ETTON IMBSSAGES ...ttt ettt ettt e ettt e e e e et e e e e et e e e 49
READING ECR MEMORYcoiiiiiiiiiiiiiiit e 50
Data Read from the ECR MEMOIY.......coooiiiiiii i 51

L@ [a1 (=T £ g T LI = - F PPN 53
ECR TOtalS MEMOIY ATCA ..o 54

ECR CoNfIgUIAtionN Datal........cooeeeieeeeeee e 55

P LU 56

ECR PROGRAMMINGcoiiiiiiiiiiiiiiii e 57
UsiNg the ECR S & PC TEIMMINALuuuutiiiiiiiiiiiiiiiiiiiiiiiiebieibbbbeebebebbebebebeeeeeeeeeeeeeeeebeeeseseeeeeeeeeseenes 57

OK CASH ECR-PC INTERFACE page 2

THE PC COMMUNICATION DRIVER

Introduction

The Electronic Cash Register (ECR) model OK CASH is equipped with two RS-232 serial ports: the
first one for the connection to an external computer, typically a Personal Computer (PC); the second
one to connect a Bar Code Reader.

Through the communication between ECR and PC, it is possible to improve the ECR functions run-
ning applications on the PC interactively with the ECR. Examples of such applications are:

management of a data base of articles in order to perform the sales using the Bar Code
Reader;
monitoring of the activity performed on the ECR to implement the Data Collection or to inter-
act introducing additional functions (like special discount management);
- ECR data customisation, like PLU price and description updating.
In the protocol between the ECR and the PC there are exact rules and timings that, if not respected,
can generate communication error.

The driver ECR232A8.SYS was especially designed to implement this protocol in a MS-DOS Device
Driver so that applications running on the PC can exchange data with the ECR in a very easy way. It
is able to handle up eight independent RS232 ports, either the standard COM1 and COM2 either non
standard serial expansion boards.

OK CASH ECR-PC INTERFACE page 3

Installation
To install the communication driver on the PC, just copy the file ECR232A8.SYS on the PC disk. It is
not needed for the directory containing it to be inserted in the Path.

To make the operating system MS-DOS to load and activate the driver, add in the file CONFIG.SYS
the following command line:

DEVI CE=\ di r name\ ECR232A8. SYS
where "dirname" is the name of the directory where ECR232A8.SYS has been copied into.
In this case, by default, the driver will initialise COM1 and COM2.

When using ports different from COM1 and COM2 or using additional non standard ports, it is possi-
ble to customise the ports to be used by adding as option in the command line the base address and
the interrupt of each RS232 port (up to eight):

DEVI CE=\ nonedi r\ ECR232A8. SYS / AAAA /1 [AAAA /1 [AAAA /|1 [AAAA /1]
where:

AAAA | must be a 4 digit hexadecimal value specifying the port address of each port.

I must be the number of the interrupt used by each port.

Legal interrupt numbers are 3, 4, 5, 6 and 7. More then one port can share the same interrupt (check
the hardware configuration of the expansion board).

The hardware definition for the standard ports is the following:

PORT I/O base address Interrupt
coM1 03F8h 4
COM2 02F8h 3

If needed, it is also possible to exclude one of the standard ports, for instance because it is already
used for a different purpose (i.e. the port COM1 is connected to a mouse or a modem), by specifying
a zero address in the options added to previous described command line; i.e. the command line:

DEVI CE=\ nonedi r\ ECR232A8. SYS /0000 /0
will activate the driver only on COM2, while the command line:
DEVI CE=\ nonedi r\ ECR232A8. SYS / 03F8 /4 /0000 /0

will activate the driver only on COM1, excluding COM2.

The default communication parameters are:
9600 bit/sec
8 bit data length
No parity
2 stop bit

In a following paragraph will be explained how it is possible to select different communication pa-
rameters from the user program.

Further details on the CONFIG.SYS files are contained in the MS- DOS user manual.

OK CASH ECR-PC INTERFACE page 4

How to Use the Driver

The MS-DOS identifies the driver with the names "OK232CH1", "OK232CH2", "OK232CH3",
"OK232CH4" and "OK232CHX". For compatibility with the previous release of the driver, the first four
names are referring respectively to the first four RS232 ports handled by the driver. When an user
program opens a file using "OK232CH2" as name, the MS-DOS will re-direct to the second RS232
port all the following Read and Write operation performed on this file.

The name "OK232CHX" can be used to address any of the eight ports handled by the driver. In this
case, the RS232 port number is specified in the data structure exchanged between the applicative
program and the driver.

Driver Opening & Closing Procedure

To exchange messages with an ECR using the Driver is enough to open a "file of bytes" (or a "file of
characters") with name "OK232CHi" (were i stands for 1, 2, 3, 4 or X) and make Read or Write op-
erations, following the rules explained in the following paragraphs.

EXAMPLE : DRIVER OPENING/CLOSING PROCEDURE IN PASCAL LANGUAGE:

var Ecr : file of byte;
begi n
assign (Ecr,' OK232CHL'");
reset (Ecr);

close (Ecr);
end.

OK CASH ECR-PC INTERFACE page 5

Reception and Transmission Buffer

To exchange data and commands, the driver expects a buffer structured as follows:

Code © byte (or character)
Por t Nurmber : byte (or character)
Length . integer (two bytes |ong)

Dat a : array of characters (or bytes)

The previous buffer must be defined as a contiguous structure, maintaining the described order for
the variables. The meaning of the fields is:

Field Meaning

Code: Command Code / Error Code. Before calling the Read or Write operation, the user
program must initialise it with the code that identifies the options requested while
reading or writing. After the Read or the Write, the driver will fill this field with the Er-
ror Code of the operation.

PortNumber | This field has meaning only for Read and Write directed to "OK232CHX". A value
between 1 and 8 will tell the driver to address the Read and Write operation to a spe-
cific RS232 port.

A value 0 during a Read operation will ask the driver to check all eight ports for data.
The value returned in this field by successful Read is the number of the RS232 port
from which the data have been received.

Calling a Write specifying 0 in this field, will ask the driver to send the data from the
same RS232 port of the last successful Read.

Length Length of the Data field. Before the Write operation, the user programs must initialise
it with the number of characters to be sent to the ECR. Before the Read operation, the
user programs must initialise it with the max length available for the Data field. After a
successful Read this field contains the number of characters received from the ECR.

Data Area that contains the character to be sent to or received from the ECR. The dimen-
sion of this field (in terms of number of characters) must be greater than the longest
message to be exchanged with the ECR.

EXAMPLE : DEFINITION OF THE TX AND RX BUFFERS USING THE PASCAL:

type ConBuff = record

Code . byte;

Por t Nunber: byte;

Length . integer;

Dat a :array [1 .. 200] of char;
end;

var RxBuff : ConBuff;
TxBuff : ConBuff;

Note: The data field is defined as an array of characters, instead as a String, to make the
driver be independent from the language used in the user program development. Different
languages can have different internal representation for string type variables.

OK CASH ECR-PC INTERFACE page 6

Read & Write

To be compliant to the protocol's rules, the Driver performs the complete transmission or reception
operation in a single MS-DOS activation.

To do so, the user program must call the Read or Write as if only the Code byte should be read or
written. The driver will access autonomously the rest of the structure of the buffer.

READ AND WRITE SYNTAX TO INTERFACE THE DRIVER USING THE PASCAL LANGUAGE:

read (Ecr, RxBuff. Code);
write(Ecr, TxBuff. Code);

Note: It is very important that the "Ecr" file is defined accordingly to the Code field defini-
tion (“file of byte" if the Code field is a byte; "file of char" if the Code field is a char) so
that no "formatting" operations are performed within the Read or Write execution.

To better clarify this concept with an example, if "Ecr" is defined as a text file, before writing the Code
byte on the text file, the Write procedure will transform the byte content (that is numerical) in its text
representation (that is ASCII), passing this to the driver instead of the defined data structure. Or also,
using in Pascal the statement "writeln" instead of "write", would cause the queuing of Carriage Return
and Line Feed characters to the Code byte. In both cases, the driver would not work.

Value of the Code Field

Following are listed the possible value of the Code fields with their meaning.

VALID CODES BEFORE THE WRITE:

Code Description

0 requests the driver to transmit the Data field to the ECR.

3 It is not a transmission request. It is a command directed to the driver to activate the "auto
answer mode". Nothing is transmitted to the ECR. When this mode is active, the driver
perform by itself the handshake with the ECR so that no time-out occurs while executing on
the PC programs that doesn't interface the ECR. Any Read or Write operation different from
this, will disable the "auto answer mode".

5 It is not a transmission request. It is a command directed to the driver to initialise and re
configure the communication port, clearing its internal buffer. Nothing is transmitted to the
ECR. The buffer must contain the communication parameters, as follows:

Code =5 (initialise conuand)
Port Nunmber = 1+8 (RS232 port to be initialised)
Length = 5 (nunber of characters in the Data field)
Dat a[1] = not used
Dat a[2] = baud rate: '4" - 1200
'6' - 4800
7' - 9600
Dat a[3] = parity : 'N - No Parity
Dat a[4] = stop bits : '2
Dat a[8] = bit per character: '8’

Note: The baud rate must match with the one selected in the ECR (default 9600). The last
three parameter must be 'N', '2' and '8'.

OK CASH ECR-PC INTERFACE page 7

VALID CODES BEFORE THE READ

Code

Description

0

requests the driver to receive a buffer from the ECR. In this case, the Read will return only
when a complete message is received from the ECR.

It is possible, setting one or more option bits, to obtain different functions:

Option

Meaning

10 hex

forces the Read to return also when a "Waiting For Keyboard Entry" message has been re-
ceived from the ECR. If this occurs, after the Read the buffer will have both Code field and
Length field set to 0. This is useful to synchronise PC and ECR when sending keyboard
command from PC.

20 hex

forces the Read to return also when no message has been received from the ECR. If this
occurs, after the Read the buffer will have the Code field set to 2.

40 hex

forces the Read to return also when a key is entered from the PC keyboard. If this occurs,
after the Read the buffer will have the Code field set to 8.

80 hex

Forces the Read to return also when just numeric keys have been receives. Otherwise, the
numeric keys are queued to build sequence terminated by at least one functional key.

VALID CODES AFTER THE READ OR THE WRITE

Code Description
0 message successfully received (read) or transmitted (write) or Command executed (write).
1 error during transmission.
2 receive buffer empty. It works in conjunction with the 20 hex option bit in the Read code.
4 Data field too short. The message received is longer then the Data field length (one speci-

fied in the Length field before the Read call). The message is lost.

7 Time Out. It happens when an initiated communication session is not completed within the
stated time.

8 Key Pressed on the PC keyboard. It works in conjunction with the 20 hex option bit in the
Read code.

9 During the Memory Dump function, if the buffer is not large enough to contain all the data,

only part of the data are passed. This code indicates that the Memory Dump is still in prog-
ress and a further Read is needed. When the transfer is completed, the code 0 will be re-
turned.

Note: The values described for the code field are numerical. That means that when the
Code field is defined as a character, care must be taken while initialising it.

OK CASH ECR-PC INTERFACE page 8

Following is an example, in Pascal, of the right way to initialise the driver:

type ConBuff = record

Code . char;

Por t Nunber: char;

Length : integer;

Dat a :array [1 .. 200] of char;
end;

var TxBuff : ConBuff;
Ecr . file of char;
begi n
assi gn(Ecr, ' OK232CHL');
reset (Ecr);

TxBuf f . Code = chr(5); {puts a nunerical value into a character}
TxBuff.Length : = 5;

TxBuf f.data[1] : = O;

TxBuff.data[2]:="'7";

TxBuff.data[3]:= 'N;

TxBuff.data[4]:="'2";

TxBuff.data[5]:= '8";
write(Ecr, TxBuff. Code);

Writing

TxBuff.Code := '5'";
instead of

TxBuff. Code : = chr(5);

would initialise the Code field with the 53 (that is the value for the ASCII representation for the char-
acter '5").

OK CASH ECR-PC INTERFACE page 9

Program Examples

Following are two examples of programs written in Pascal language.

EXAMPLE 1

The following program receives and shows on the computer screen all the messages sent by the
ECR’s:

{ R« and Tx buffers definition }

type ConBuff = record

Code . byte;

Por t Nunber: byte;

Length . integer;

Dat a carray [1 .. 200] of char;
end;

var RxBuff : ConBuff;
TxBuff : ConBuff;

{ constant code definition }

const CodeK = 0 ;
NoRX = 2 ;
PcKeyPressed = 8 ;
Initialise = 5;
Ecr Sl ave = $10;
NoWai t = $20;
PcKeyCtr = $40;
{ variables definition }
var i . integer;
ch . char;
Ecr . file of byte;

{ programentry point }

begi n

{ driver opening }

assi gn(Ecr, ' OK232CHX') ;
reset (Ecr);

OK CASH ECR-PC INTERFACE page 10

{ configuration of the 8 serial ports }

for i=1 to 8 do begin
TxBuf f. Code: =l nitialise;
TxBuf f. Port Nunber: =i ;
TxBuf f . Lengt h: =5;
TxBuf f.data[1] : = O;
TxBuff.Data[2]:="7";
TxBuff.Data[3]:="N;
TxBuff.Data[4]:="2";
TxBuff.Data[5]:="8";
write(Ecr, TxBuff. Code);

end;

r epeat

{ reception of a nessage fromECR s with option of return if PC key pressed

RxBuf f . Code: =PcKeyCtr| ;
TxBuf f. Port Nunber : =0;
RxBuf f . Lengt h: =200;
read (Ecr, RxBuff. Code);

{ if a nmessage was received, its content is shown }
i f (RxBuff.Code=CodeCk)
t hen begin
writeln(' Received data fromECR ', TxBuff. Port Nunber);
for i:=1 to RxBuff.Length do wite(RxBuff.Data[i]);
witeln;
end

{ if an error code condition is detected it is signalled }
else if (RxBuff.Code<>PcKeyPressed) then
witeln(' DRI VER ERROR ', RxBuff. Code);

{ if a key is pressed on the PC keyboard, the programterm nates }
until RxBuff.Code=PcKeyPressed;

cl ose(Ecr);
end.

OK CASH ECR-PC INTERFACE page 11

EXAMPLE 2

The following program reads a keyboard command message from keyboard and sends it to the ECR.
{ Rk and Tx buffers definition }

type ConBuff = record

Code . byte;

Por t Nunber: byte;

Length . integer;

Dat a carray [1 .. 200] of char;
end;

var RxBuff : ConBuff;
TxBuff : ConBuff;

{ constant code definition }

const CodeK = 0 ;
NoRX = 2 ;
PcKeyPressed = 8 ;
Initialise = 5 ;
Aut oAnswer = 3 ;
Ecr Sl ave = $10;
NoWai t = $20;
PcKeyCtr = $40;

{ variables definition }

var i:integer;
ch : char;
Conmmand : string;
Ecr : file of byte;

{ programentry point }

begi n

{ driver opening }
assign(Ecr, ' OK232CHL') ;
reset (Ecr);

{ Selection and reconfiguration of the serial port }
witeln('Serial port to be used (1..4)?");
readl n(ch);

{ configuration of the 8 serial ports }

OK CASH ECR-PC INTERFACE page 12

for i=1 to 8 do begin
TxBuff. Code: =Initialise;
TxBuf f. Port Nunber: =i ;
TxBuf f . Lengt h: =5;
TxBuf f. Dat a[1] : =0;
TxBuff.Data[2]:="7";
TxBuff.Data[3]:="N;
TxBuff.Data[4]:="2";
TxBuff.Data[5]:="8";
write(Ecr, TxBuff. Code);

end;

r epeat

witeln(' Conmand to be sent ? (RETURN to quit)');

{ Waiiting the keyboard entry fromthe PC the program shows }
{ the activity on going on the ECR This |loop ends at the }
{ first key entry on the PC }

r epeat
RxBuf f . Code: =PcKeyCtr| ;
TxBuf f. Port Nunber : =0;
RxBuf f . Lengt h: =200;
read (Ecr, RxBuff. Code);
i f (RxBuff.Code=0)
t hen begin
writeln(' Received data fromECR ', TxBuff. Port Nunber);
for i:=1 to RxBuff.Length do wite (RxBuff.Data[i]);
witeln;
witeln(' Conmand to be sent ? (RETURN to quit)');
end;
until RxBuff.Code=PcKeyPressed;

{ A key pressed on the PC ends the nonitor | oops }
{ before reading the desired command fromthe PC keyboard, }
{ it is activated the Auto Answer on the driver, so that }

{ the ECR doesn't disconnects itself during the PC data reading }

for i:=1 to 8 do begin
TxBuf f . Code: =Aut oAnswer ;
TxBuf f. Port Nunber: =i ;
write(Ecr, TxBuff. Code);
end;

{ the command line is read from PC keyboard }

OK CASH ECR-PC INTERFACE page 13

r eadl n(Cormmand) ;

if (length(Conmand) > 0) then
begi n
{ Selection of the serial port }
witeln('Serial port to be used (1..8)?");
readl n(RxBuf f . Port Nunber) ;

{ preparing the transm ssion buffer }
TxBuf f . Code: =0;
TxBuf f . Lengt h: =l engt h(Cormand) ;
TxBuf f . Port Nunber : =0;
for i:=1 to |l ength(Conmand) do TxBuff.Data[i]:=Conmand[i];

{ waits for the ECR to be ready to accept a renote keyboard entry }

RxBuf f . Code: =PcKeyCt r | +Ecr Sl ave;
RxBuf f . Lengt h: =200;
read (Ecr, RxBuff. Code);

{ if the ECR can accept the conmand, sends the buffer }
i f (RxBuff.Code=CodeCk) and (RxBuff.Length=0)
then wite(Ecr, TxBuff. Code);

{ if a key was pressed on the PC while waiting, the program stops }
i f (RxBuff.Code=PcKeyPressed) then Command: ='";
end;

until (I ength(Conmmand) =0);

cl ose(Ecr);
end.

OK CASH ECR-PC INTERFACE page 14

LIBRARY FOR WINDOWS 95

The Dynamic-Link Library OkInterf.dll has been developed to simplify the connection between a PC
and the OK Cash ECR'’s using programs operating under Windows 95. The Oklnterf.dll is a 32 bits li-
brary, therefore can be used only in conjunction to 32bits compilers.

This library has the capability to handle up to a maximum of 8 independent RS232 ports, either the
standard COM1 e COMZ2, either non standard ports installed in serial expansion boards, but only if a
Windows Communication Devices is available for these boards to operate under Windows 95.

It is important that the program implementing the ECR’s interface management performs cyclically
the call to the receiving procedure, otherwise a communication time-out will occur on the ECR’s side.

The available library procedures are described thereafter. The operative mode is similar to that de-
scribed for the MS-DOS driver.

OK CASH ECR-PC INTERFACE page 15

EcrOpen

The procedure definition is as follows:

void EcrOpen (char *Porta, int *EcrNum, int BaudRate)

Must be called to open a Windows Communication Device and assign a Cash Register Number to a

serial port.

Calling Parameters:

char *Porta

Pointer to a null terminated string containing the name of the Communication De-
vice to be opened (i.e.: "COML1", "COM2").

int *EcrNum

Pointer to a 32 bits integer variable, containing the ECR number to be associated to
the Communication Device. Valid values for ECR numbers are 1 to 8 or 0.

A value 0 will result in an automatic association of the first not assigned ECR num-
ber.

int BaudRate

A 32 bits integer variable, containing the value of the Baud Rate.
Valid values are: 1200, 4800, 9600. Any invalid value will be treated as 9600 Baud.

The remaining communication parameters are automatically set in accordance to
the ECR protocol.

Returned Values:

EcrNum

After successful completion of the EcrOpen procedure, the variable will contain the
ECR number linked to the serial port.

A returned value -1 will indicate an failed open operation.

Possible causes of fail are:

the Communication Device does not exists
the Communication Device is already opened by other application
all possible 8 ECR numbers are already assigned

OK CASH

ECR-PC INTERFACE page 16

EcrWrite

The procedure definition is as follows:

void EcrWrite (int *Codice, int *EcrNum, int Quanti, char *TxBuff)

It sends a data frame on the serial port to the specified ECR.

Calling Parameters:

int *Codice Pointer to a 32 bits integer variable. The initial value of this parameter is ignored.

int *EcrNum Pointer to a 32 bits integer variable, containing the ECR number to be associated to
the Communication Device. Valid values for ECR numbers are 1 to 8.
A value 0 will result in an automatic transmission to the last ECR from which a
frame was received.

int Quanti A 32 bits integer variable containing the numbers of characters to be transmitted.

char *TxBuff Pointer to a string containing the caracters to be transmitted. The string is treated as

an array of characters.

Returned Values:

Codice After the EcrWrite procedure, the variable Codice will contain a code with the result
of the write operation:
0 = successful write
1 = failed write operation
EcrNum After the EcrWrite procedure, the variable will contain the contacted ECR number.
OK CASH ECR-PC INTERFACE page 17

EcrRead

The procedure definition is as follows:
void EcrRead (int *Codice, int *EcrNum, int *Quanti, char *RxBuff)

It receives a data frame via serial port from the specified ECR.

Calling Parameters:

int *Codice Pointer to a 32 bits integer variable. The initial value of this parameter shall contain
the reading options. A valid value is the combination (sum) of the following options:

0 = normal read: the procedure will return when a valid record has been received,
excluding "Waiting For Keyboard Entry" messages.

16 = Ecr keyboard control option: the read will return also when a "Waiting For Key-
board Entry" message is received from the ECR. In such a case, both Codice and
Quanti will contain zero. This option is needed to synchronize the PC and the ECR
sending commands from the PC;

32 = Not locking read option: the read will return even if no data have been re-
ceived. In such a case, the value returned into Codice is 2;

128 = single key read option: the read will not pack the received keys to build a ter-
minated keyboard string, but will return each single received keyboard command.

int *EcrNum Pointer to a 32 bits integer variable, containing the ECR number to be tested for re-
ception. Valid values for ECR numbers are 1 to 8 or 0.

A value 0 will test all the opened ECR's for the first available received message.
When a message is received, this variable will contain the number of the sender
ECR.

int *Quanti Pointer to a 32 bits integer variable containing the maximum numbers of characters
that can be received (dimensions of the receive buffer RxBuff).

char *RxBuff | Pointer to a characters array to contain the received caracters.

Returned Values:

Codice After the EcrRead procedure, the variable Codice will contain a code with the result
of the read operation:

0 = read completed (data are in RxBuff)

1 = error during read operation

2 = no caracters have been received

4 = the received keyboard string is longer then RxBuffer (data are lost)

7 = time out

9 = a memory dump is still in progress (data received up to how are in RxBuff)

EcrNum Number of the ECR whose data have been received (only when Codice = 0 or 9).
Quanti Number of characters that have been received (only when Codice =0 0 9).
RxBuff Received data (only when Codice =0 0 9).

OK CASH ECR-PC INTERFACE page 18

EcrClose

The procedure definition is as follows:

void EcrClose (int EcrNum)
Must be called at the end of the program to release the Windows Communication Device previously
assigned to a Cash Register Number.

If a Windows Communication Device is not released at the end of the program, it will remain locked
and no further access is possible unless Windows restarts.

Calling Parameters:

int EcrNum A 32 bits integer variable, containing the ECR number associated to the Communi-
cation Device to be released. Valid values for ECR numbers are 1 to 8.

A value 0 will automatically close all previously opened devices.

OK CASH ECR-PC INTERFACE page 19

INTERFACING A PC TO OK CASH ECR

Message Structure
The interaction between the ECR and a PC is obtained exchanging messages that contain, mainly,
ECR keyboard entries.

Each ECR keyboard entry is represented by a string of ASCII characters. Then each ECR key has an
associated character, according to the following table:

ECR KEY CHARACTER HEX ASCIl CODE
0 0 30
1 1 31
2 2 32
3 3 33
4 4 34
5 5 35
6 6 36
7 7 37
8 8 38
9 9 39
.(decimal point) . 2E
X (multiply) * 2A
% % 25
PLU I 49
DEPARTMENT 1 P 50
DEPARTMENT 2 Q 51
DEPARTMENT 3 R 52
DEPARTMENT 4 S 53
DEPARTMENT 5 T 54
DEPARTMENT 6 U 55
DEPARTMENT 7 V 56
DEPARTMENT 8 w 57
SUBTOTAL = 3D
TOTAL X 58
TENDER 2 Y 59
TENDER 3 Z 5A
+ + 2B
- - 2D
PAPER FEED A 41
CLEAR K 4B
ITEM CORRECT L 4C

OK CASH ECR-PC INTERFACE page 20

In addition to the above keys, there are the following special symbols: a string delimitator, used to en-
close ASCII strings (article description); a protocol related wait command; a communication error in-
dicator:

SYMBOL CHARACTER HEX ASCIl CODE
string delimitator " 22
serial number and version-revision delimitator ! 21
memory dump identifier & 26
printer buffer identifier a 61
printer buffer identifier b 62
printer buffer identifier c 63
printer buffer identifier d 64
printer buffer identifier e 65
printer buffer identifier f 66
printer buffer identifier g 67
printer buffer identifier h 68
ECR error identifier E 45
wait @ 40
Communication Error G 47

Excluding the memory dump operation, all the messages exchanged between the ECR and the PC
are sequences of ASCII characters.

OK CASH ECR-PC INTERFACE page 21

Message Sequences
The communication session is always started by the ECR that sends or the keys entered by the
cashier or an empty buffer if the ECR is waiting for a key entry.

After sending the key sequence, the ECR doesn't processes it, waiting for the PC answer. If no an-
swer is received before the time-out occurs, the ECR disconnects itself.

The answer received from the PC is the key sequence interpreted and executed on the ECR, instead
the very last one entered by the cashier.

This allows the PC even to change the entry done by the cashier (i.e. to insert special discounts).

Note: To avoid mixed sequences (keyboard entered digits mixed to PC commands) the PC
must clear the ECR entry by starting the answer string with the K character, if needed.

It is also important to store partial entries, like multiplication, because to perform a sale from the PC
(i.e. to manage the Bar Code) a complete sale sequence, including the eventual multiplying quantity
or even the Void key, MUST be prepared.

In the following example, the PC adds an automatic discount to a sale performed on the PLU 115:

frames received from ECR 2.5%115I

frame answered back from the PC K2.5*115110%-

It is also important to note that multiple sequences can be received in a single message. For instance,
if a department key is repeated to perform several sales, it is probable to receive:

first sale on the department 1500R

three time repetition RRR

If the PC program should only monitor the ECR activity without interfering, it must echo each mes-
sage. This ECHO function is performed in the DOS Driver ECR232A8.SYS each time no Write is
done between two consecutive Read operations. Therefore, using the Driver, the PC program can ig-
nore this echo, performing only reading operations to monitor the activity on going and writing only
when the PC should interact with the ECR.

Examples of messages are:

3X1500P (sales of 3 items with price=1500 on the department 1)

=3.5%- (3.5 % discount on the subtotal)

OK CASH ECR-PC INTERFACE page 22

Special Messages
Following are listed the message's that are not ECR keyboard entries.

ERROR MESSAGES (SENT BY THE ECR)

When an error occurs on the ECR, this error condition is sent also to the PC. The message format is
the letter E followed by the numerical code of the error. Examples of the error message are:

Error Meaning
E14E (function not enabled)
E10E (wrong keyboard sequence)
G Communication error (sent by the ECR)

When a communication error is detected by the ECR (time out or wrong message format) the ECR
disconnects itself after sending the character G by itself.

ITEM DESCRIPTION (SENT BY THE PC)

The PC can send to the ECR a description to be used in the very next department sale. The message
to be sent is the description in ASCII enclosed into double quote. Should the item description use
characters other then numeric (from ‘0’ to ‘9’) or letters (from ‘A’ to ‘Z’), the ECR internal character
code, not always according to the ASCII code, must be (see paragraph Sending Item Descriptions).

The description must never be longer than 11 characters.
Example is: "COCA COLA"

BAR CODE ARTICLE NUMBER (SENT BY THE ECR)

If a bar code reader is connected to the ECR, when a code is read it is sent to the PC as a string en-
closed in double quote, containing all the characters received from the bar code reader.

Example of this message is: “A051111125137"

If the PC has an article data base can answer to this message with a sales entry containing the de-
scription (optional), the price and the department.

An example of possible answer is: "FLOPPY DISK"15000R
MEMORY DUMP (SENT BY THE ECR)

If a Memory Dump has been requested to the ECR (Departments data, PLU data, etc. — see section 6
of the Manual for the list of available dump), the image of the memory is sent to the PC in a single
frame (max. length 16 Kbytes). The first character of such message is: &.

RECEIPT PRINTOUT ECHO (SENT BY THE ECR)

All the print command directed to the internal receipt printer are echoed on the serial line. Such mes-
sages are composed by the letter "a" (or "b" or "c" or "d" or "e" or "' or "g") followed by the printed
string. Its length is according to the number of characters of the printer. The letter "h" by itself identi-
fies a Line Feed command.

WaAIT COMMAND

When the ECR sends a message, it expects an answer within 1 second. Elapsed this time, a time-out
occurs causing a communication error.

If it is needed a longer time to prepare the answer, it is possible to restart on the ECR the time-out
counter by sending the character @ before the elapsing of the previous one. It is possible to repeat
several times this process to make the ECR to wait longer time.

Note: An application program should not care about the Wait command because the driver
ECR232A8.SYS automatically sends it in order to make the time-out as long as 8 seconds.

OK CASH ECR-PC INTERFACE page 23

IDENTIFICATION MESSAGE

This message is sent automatically by the ECR any time the communication is enabled through the
sequence 204 SBT.

The structure and the content of this message is as follows:

InnnnnnnnnnnNnn vv-rrsssss!<CR>

where:
vV two digits to identify the software version.
Example:
00: Not fiscal ECR's-messages in English
01: Fiscal ECR's-messages in Italian
03: Not fiscal ECR’s-messages in German
09: Fiscal ECR's-messages in Russian
10: Not fiscal ECR’s-messages in Slovak
rr two digits to identify the revision of the software;
nnnnnnnnn serial number of the ECR, stored into the Fiscal Memory (empty string for not
fiscal ECR);
SSSSS ECR model.

Following are two examples, the first one for a fiscal ECR, the second one for a not fiscal ECR:
IEK 00000001 15-5151-05!

When the connection is active, it is possible for the PC to request this message by sending the key-
board command:

204==

OK CASH ECR-PC INTERFACE page 24

WRITING PROGRAMS FOR ECR INTERFACING

Scope

The aim of this document is to provide hints and examples, in order to help the writing of PC pro-
grams able to control the OK CASH through the RS232 serial port. For detail on how to install and
interface the communication driver, refer to the section ECR/PC Interface.

Development Languages

Both the MS-DOS communication driver and the Windows 95 Dinamic Link Library are designed in
such a way that PC programs can perform receiving and transmitting operations, as well as issuing
mode control commands just using standard disk file access procedures or library functions. Never-
theless, the rules to properly define and use the interface structures, needed to correctly interface the
driver, are different depending on the programming language used to develop the program.

Following, there are examples that show the correct driver interface procedure for the most popular
programming languages.

OK CASH ECR-PC INTERFACE page 25

Program Example Using Basic under MS-DOS

REM **x*** |nterface buffers definition *****x*

TYPE ConmBuf f er
Comando AS | NTEGER
Lung AS | NTEGER
Dati AS STRING * 200
END TYPE

COWON SHARED RxBuff AS CommBuf f er
COWON SHARED TxBuff AS CommBuf f er
COMMON SHARED st AS STRI NG

REM *kkkkk*k Drlver q)enl ng *kkkkk*k
OPEN "OK232CH1" FOR BINARY AS #1 LEN =1

REM ****** GSarjal Port initialization *****x*
REM ****x* 9600 Baud, No Parity, ******
REM ****x* 2 GStop Bits, 8 Bits per Character ******
TxBuf f. Comando = 5
TxBuff.Lung = 5
TxBuff.Dati = "17N28"
PUT #1, , TxBuff. Conando

DO

REM ****** reads an ECR nessage ******

REM ****x* 64 requests the driver to return on PC Key pressed ******
RxBuf f . Comando = 64
RxBuf f. Lung = 200
CET #1, , RxBuff. Comando

REM ****x* |{f 3 nessage has been received, *ok kKK K
REM ****** extracts and prints the data string ******
| F (RxBuf f. Comando = 0) THEN
st = LEFT$(RxBuff.Dati, RxBuff.Lung)
PRI NT st
END | F

LOOP UNTIL | NKEY$ = CHR$(27)

CLCSE #1

OK CASH ECR-PC INTERFACE page 26

Program Example Using C Language under MS-DOS

#i ncl ude "string. h"
#i nclude "io. h"

#include "fcntl . h"
#i ncl ude "stdio.h"

/*
*xx*x*xx |Interface buffer definition ****x**
*/

struct Buffer
2-2-{
2-2- int Comrand;
2-2- int Lung;
char Line[200+1];
2-2-} RxBuffer;

int i,j;
int Ecr;

voi d main()
{
/*
*kkkkk*k D'iver q)enl ng *kkkkk*k
*/
Ecr =open(" OK232CH1", O RDWR+QO Bl NARY) ;

/*
x%*xx GSarjal Port initialization *****x*
xx%x% 9600 Baud, No Parity, ***x*

*rkxxkk D Stop Bits, 8 Bits per Character *****x*

*/
RxBuf f er . Command=5;
strcpy(RxBuffer. Line, "17N28");
RxBuf f er. Lung=str| en(RxBuf f er. Li ne) ;
write(Ecr, &xBuffer, 1);

do
/*
xx%x% reads an ECR nmessage ****

*x*xxxk% Ox40 requests the driver to return on PC Key pressed ******

*/
RxBuf f er . Command=0x40;
RxBuf f er . Lung=200;
read(Ecr, &RxBuffer, 1);
OK CASH ECR-PC INTERFACE

page 27

/*

***xxx% | f a nmessage has been received, FAE KA K
xxx% termnates and prints the data string ***
*/
i f (RxBuffer.Comuand==0)
{
RxBuf f er. Li ne[RxBuf f er. Lung] =0;
printf("% \n", RcBuffer.Line);
}
}
/*

xxxx% RxBuf f er. Cormand==8 i ndi cates a PC key pressed ****
*/

while (RxBuffer.Comrand != 8);

cl ose(Ecr);

OK CASH ECR-PC INTERFACE page 28

Program Example Using Pascal under MS-DOS

{ Rk and Tx buffers definition }

type ConBuff = record

Code . byte;

Spar e . byte;

Length : integer;

Dat a carray [1 .. 200] of
end;

var RxBuff : ConBuff;
TxBuff : ConBuff;

{ constant code definition }

const CodeXX = 0 ;
NoRX = 2
PcKeyPressed = 8 ;
Initialize = 5;
Ecr Sl ave = $10;
NoWai t = $20;
PcKeyCtrl = $40;
{ variables definition }
var i . integer;
ch . char;
st . string;
Ecr . file of byte;
{ programentry point }
begi n
{
*kkkkk*k D'Ver QZ)enI ng *kkkkk*k
}

assi gn(Ecr, ' OK232CHL');
reset (Ecr);

*xx%*xx GSarjal Port initialization *****x*

char;

OK CASH ECR-PC INTERFACE

page 29

xxx%x 9600 Baud, No Parity, ****
*xkxxkk D Stop Bits, 8 Bits per Character **x**x*

TxBuff. Code: =Initialize;
TxBuf f . Lengt h: =5;
TxBuff.Data[1]:="1";
TxBuff.Data[2]:="7";
TxBuff.Data[3]:="N;
TxBuff. Data[4]:="2'
TxBuff.Data[5]:="8";
write(Ecr, TxBuff. Code);

r epeat

xx%x% reads an ECR nessage ****
xxx% requesting the driver to return on PC Key pressed ***

RxBuf f . Code: =PcKeyCtr| ;
RxBuf f . Lengt h: =200;
read (Ecr, RxBuff. Code);

{
***xx*x% | f a nmessage has been received, *ok kKK K
x%% phuilds and prints the data string ***
}
i f (RxBuff.Code=Code(k)
t hen begin
st:="";

for i:=1 to RxBuff.Length do st:=st+RxBuff.Datali];
witeln(st);
end

{ if a key is pressed on the PC keyboard, the programterm nates }
until RxBuff.Code=PcKeyPressed;

cl ose(Ecr);
end.

OK CASH ECR-PC INTERFACE page 30

Program Example Using Visual Basic for Windows95

Program exanpl e for Visual Basic 5.0

Definition of the R« and TX Buffer type as a char array

Public Type RxTxBuff
Linea As String * 100
End Type

Vari abl es Definition

G obal Ecr As Long

G obal RxConmand As Long
G obal RxLength As Long
G obal TxConmand As Long
G obal TxLength As Long

d obal TxBuf As RxTxBuff
d obal RxBuf As RxTxBuff

G obal Data As String
d obal KeySequence As String

' Syntax of library procedures :

Decl are Sub EcrOpen Lib "kinterf" (ByRef PortName As RxTxBuff, ByRef Ecr-
Num As Long, ByVal BaudRate As Long)

Declare Sub EcrRead Lib "Oklnterf" (ByRef Code As Long, ByRef EcrNum As
Long, ByRef Quanti As Long, ByRef RxBuff As RxTxBuff)

Declare Sub EcrWite Lib "Oklnterf" (ByRef Code As Long, ByRef EcrNum As
Long, ByVal Quanti As Long, ByRef TxBuff As RxTxBuff)

Decl are Sub Ecrd ose Lib "kinterf" (ByVal EcrNum As Long)

Sub OpenFil es()

Assigns next free logic nunber to COM and puts it into the variable ECR
' On Fail, abort the program after a warning.

OK CASH ECR-PC INTERFACE page 31

Ecr = 0
st3 "cow"

TxBuf.Linea = st3 & Chr(0)

Cal I EcrOpen(| ni Buf, Ecr, 9600)

If Ecr < 0 Then
st3 = st3 & " Device Error !'"

MsgBox st 3
Call Ecrd ose(0)
End

End If

End Sub

Sub Recei ve()

VWiile waiting for data fromthe port, executes the events.

Upon reception, returns the received string into Data.

RxConmand = 32 "inizialization

Do While Command <> 0

DoEvent s ' to execute the focused Form

RxConmand = 32 " non bl ocking read option
RxLength = 100

Cal | Ecr Read(RxCommand, Ecr, RxLength, RxBuf)

Loop

Data = Left (RxBuf.Linea, RxLength)

End Sub

Sub Send()

OK CASH ECR-PC INTERFACE

page 32

' Sends the KeySequence string content.

TxCommand = 0
TxLengt h = Len(KeySequence)
I ni Buf . Li nea = KeySequence

Call EcrWite(TxConmand, Ecr, TxLength, TxBuf)

End Sub

Sub O oseFil es(Cancel As I|nteger)

' Coses all opened Conmm Devi ces.
Call Ecrd ose(0)
End

End Sub

Private Sub Form Unl oad(Cancel As Integer)

' Closes all opened Comm Devi ces.
Call Ecrd ose(0)
End

End Sub

' The applicative programstarts by calling QpenFiles;
works calling cyclically Receive;

" when it has to send a key sequence to the ECR calls Send;
' At the end nust call C oseFiles.

" This call is repeated into the Unload of the main Formto close the Comm
Devi ce

' in the event that the programis terninated by anexternal event

OK CASH ECR-PC INTERFACE page 33

Program Example Using Visual C for Windows95

(*
In the Link optiond the librery Ckinterf.lib nust
This programlisten to the ECR keyboard sequences,
10% di scount on PLU 100 sal es.

*)

/1 Library functions definition

voi d Ecr Open (char *Port, int *EcrNum int BaudRate);
void EcrWite (int *Code, int *EcrNum int Quanti,
void EcrRead (int *Code, int *EcrNum int *Quanti,

void Ecrd ose (int EcrNunj;

// Costants Definition

#def i ne RXCOK 0 /1 Ricezione conpleta
#def i ne NORX 2 // Nessuna ricezi one
#defi ne NoWai t 32 // bit di read senza attesa

#define KeybCtrl 16 /1 bit di read con controllo tastiera ECR

int WNAPI W nMi n(H NSTANCE hlnstance, // handle to current

HI NSTANCE hPrevl nst ance,
st ance

LPSTR | pCrdLine, // pointer to conmand |ine
int nCdShow // show state of w ndow

{
char Buffer[80];

char Conmand[80] ;

int Mbde;
int NunChar;
int Nuntcr;

/1 Assigns next free |ogic nunber to COWR
NunmEcr = O;
Ecr Qpen ("COWR", &Nuntcr, 9600);

if (Nunmkcr >= 0)

be i ncl uded.

char *TxBuff);
char *RxBuff);

i nstance
to previous in-

do
{
/1 waits for a keyboard string
do
OK CASH ECR-PC INTERFACE page 34

Mode = NoWai t;
NuntChar = 70;
Ecr Read (&Wode, &Nunkcr, &NuntChar, Buffer);

}
while (Mbde == NORX);

/1 if a string has been received
i f (Mbde == RXCK)
{
/1 verifies if it is a PLU 100 sale
if (strcnp(Buffer,"1001") ==0)
{
/1 if yes, waits for the ECRin idle state
do
{
Mode NoWait + KeybCtrl;
NuntChar = 70;
Ecr Read (&Wode, &Nunkcr, &NuntChar, Buffer);

}
while ((Mde I'= RXOK) || (NumChar !'= 0))

/1 Sends the 10% di scount sequence
strcpy(Conmand, "10%");
Mbde = O;
EcrWite (&Wde, &Nuntcr, strlen(Conmand), Command);

}

while ((Buffer[0]!="G) && (strcnp(Buffer,"205=")!=0));

/1 on ECR off line, the programtermn nates

Ecr d ose(0);
return(0);

OK CASH ECR-PC INTERFACE page 35

MESSAGES SENT BY THE ECR

The communication session is always started by the ECR. Therefore, the program on the PC, after
port initialization, shall read the port first and, only when a message is received such that requires in-
ter-actively from PC, it shall send the proper reply message. The examples mentioned in the follow-
ing paragraphs, as the example programs contained in the floppy, are written in Pascal, using the MS-
DOS driver. It is easy for a programmer to translate them in a different language.

ECR ldentification Message

The OK CASH ECR uses this message to start the communication session. This means that, when
the communication session is not yet opened, the ECR Identification message is received at the first
read operation on the PC. The ECR sends the Identification Message in the following cases:

when a "204 STL STL" command sequence is given to the ECR trough keyboard or from serial
port (only if out of transaction);

automatically each second when the communication is not active and the ECR is showing the
time of day on the display;

cyclically whenever, during the communication session, no answer is received from the PC or a
communication error occurred (On the ECR display the "DISCONNECT PC" message is
shown).

No direct answer is needed to this message (the driver will answer with the handshake message on
the following read). The PC can analyse the string to determine which ECR is connected.

Note that on the very first read operation (if the port setting command was issued to the driver while
the ECR is sending this message) only part of the string might be received (the final part). In such a
case, the program shall not misunderstand the type of string (i.e. verifying that the string terminates
with a ‘I"). The connection is established anyway. If the complete ECR Identification is needed to ini-
tialise the PC program, its repetition can be requested issuing from PC the command message

204== (the equivalent of keyboard sequence 204 STL STL).
In this case, being the communication session already started, the whole string will be received.

OK CASH ECR-PC INTERFACE page 36

Keyboard Messages

When the communication is active, each key (or group of keys) pressed on the ECR keyboard is sent
to the PC. When the PC echoes the key sequence, this is executed.

This is the base of the inter-activity between the PC and the ECR, allowing the PC also to change the
key sequence itself.

If the scope of the PC connection is to perform data collection and ECR activity monitor, no need ex-
ists to modify the received key sequences. In this case the PC program shall perform only reading
operation, and the driver will take care of sending back the received key sequences to the ECR (the
previously received sequence will automatically echoed by the driver on the following read operation,
if in the meantime no write has been requested from the PC program).

If the scope of the PC program implies the complete inter-activity (i.e. item sales using the bar code
reader), then it will be necessary for the program to directly control the echo of some key sequence.
To do this it is important to know how sequences are received, in order to correctly analyse them and
build the proper reply.

A basic sequence is composed by a string containing one function key, eventually preceded by one or
more numeric keys.

An item entry is composed by one or more basic sequences.
To better clarify, following are examples of item entries:

COMPLETE ITEM ENTRY BASIC SEQUENCES FUNCTION ACTIVATED

Q Q Sale on department 2 using the preset price
1500P 1500P Sale on department 1 with an amount of 1500
152| 152| sale on PLU 152
I I repetition of the previous PLU sale
2.5*1000R 2. sale of a quantity of 2.5

5* with unit price 1000 on

1000R department 3
-2.5*850L100I - void of a sale of a quantity

2. of 2.5

5*

850L with unit price 1000

1001 on open PLU 100

Keyboard messages are sent by the ECR as soon as key codes are taken from the keyboard queue.
This means that when the ECR is in idle state, a key is sent when it is pressed,; if the ECR is working
(i.e. pressing keys when printing) the keys are queued and sent all together as a single message.

In order to maintain interactivity, when receiving a keyboard message, the driver immediately echoes
numeric keys before receiving the first function key, passing the string to the calling program only
when at least one function key and the end of message has been received. As a consequence of that,
when reading the driver the following events can occur:

OK CASH ECR-PC INTERFACE page 37

1. A SINGLE COMPLETE BASIC SEQUENCE IS RECEIVED ON EACH READ

(this is the most frequent event); i.e.:

2. when reading this 2 is already echoed
5* when reading this 5 is already echoed
1000R when reading this 1000 is already echoed
100l when reading this 100 is already echoed

2 - MORE THEN ONE BASIC SEQUENCE OR ITEM ENTRY IS RECEIVED. I.E.:

2.5*1000R210011 ‘ (when reading this 2 is already echoed)

3 - ONE OR MORE COMPLETE BASIC SEQUENCES PLUS THE STARTING PART OF THE
FOLLOWING IS RECEIVED ON A READ AND THE REMAINING PART IS RECEIVED ON THE
FOLLOWING READ. i.e.:

2.5*10 (when reading this 2 is already echoed)
O0R (when reading this 1000 is already echoed)
100111 (when reading this 100 is already echoed)

When receiving messages like in the examples, the program that analyses them must recognise the
following item entries:

2.5*1000R

sale of quantity 2.5 at 1000 unit price on department 3

1001

sale of quantity 1 on PLU 100

repetition of the previous PLU sale

repetition of the previous PLU sale

repetition of the previous PLU sale

If it is needed for the PC program to modify partially the received sequence, for instance to add a
special discount of 150 value after three sold items on PLU 100, a new key sequence must be built
and sent to the cash register. Building this new key sequence, it is needed to think first how should be
the proper translation of the basic sequences in order to make the ECR correctly perform the item
entries and the discount in the appropriate order:

2.5*1000R sale of quantity 2.5 at 1000 unit price on department 3

100l first sale on PLU 100

I repetition of the previous PLU sale

I repetition of the previous PLU sale

150- discount of 150

100l new entry on PLU 100 (repetition is no more possible after discount)

OK CASH ECR-PC INTERFACE page 38

The way of managing this translation may vary depending on the received string. Let analyse the ac-
tion to be performed in the PC program in order to obtain the previously described transaction modifi-
cation in the three possible events:

CASEOF EVENT 1

ACTION

STRINGS RECEIVED
OR SENT BY THE
PC

STRINGS ECHOED
BY THE DRIVER

COMMENTS

read

set quantity to 2

item entry not completed
end of the string reached
no need of reply

read

5*

set quantity to 2.5

item entry not completed
end of the string reached
no need of reply

read

1000R

*1000

this item require no action
end of the string reached
no need of reply

read

1001

R100

set g.ty to 1 and add it on PLU 100 sale counter
counter=1 implies no discount

end of the string reached

no need of reply

read

set g.ty to 1 and add it on PLU 100 sale counter
counter = 2 implies no discount

end of the string reached

no need of reply

read

set g.ty to 1 and add it on PLU 100 sale counter
counter = 3 implies discount

builds the reply string 1150-

end of the string reached

write

1150-

reset PLU 100 counter to O

read

set g.ty to 1 and add it on PLU 100 sale counter

counter=1 implies no discount repetition after dis-
count

needs the PLU number to be declared
builds the reply string 100l
end of the string reached

write

1001

OK CASH

ECR-PC INTERFACE page 39

CASE OF EVENT 2

ACTION | STRINGS RECEIVED | STRINGS ECHOED COMMENTS
OR SENT BY THE BY THE DRIVER
PC
read 2.5*1000R2100II |2 analyses the string
extracts | 2. set quantity to 2

item entry not completed
string not finished
copy sequence to reply string 2.

extracts | 5* set quantity to 2.5

item entry not completed

string not finished

add sequence to reply string 2.5*

extracts | 1000R this item require no action
string not finished
add sequence to reply string 2.5*1000R

extracts | 100l set g.ty to 1 and add it on PLU 100 sale counter
counter=1 implies no discount

string not finished

add sequence to reply string 2.5*1000R100I

extracts I set g.ty to 1 and add it on PLU 100 sale counter
counter = 2 implies no discount

string not finished

add sequence to reply string 2.5*1000R100lI

extracts I set g.ty to 1 and add it on PLU 100 sale counter

counter = 3 implies discount

modify the sequence

string not finished

add sequence to reply string
2.5*1000R100111150-

extracts I set g.ty to 1 and add it on PLU 100 sale counter

counter=1 implies no discount

repetition after discount needs the PLU number
to be declared

modify the sequence

add sequence to reply string
2.5*1000R100111150-100I

end of string reached

the string has been modified and must be sent

cut the already echoed numbers

write .5*1000R100I1115
0-100I

OK CASH ECR-PC INTERFACE page 40

CASE OF EVENT 3

ACTION | STRINGS RECEIVED | STRINGS ECHOED COMMENTS
OR SENT BY THE BY THE DRIVER
PC

read 2.5*10 2 analyses the string

extracts | 2. set quantity to 2
item entry not completed
string not finished
copy sequence to reply string 2.

extracts | 5* set quantity to 2.5
item entry not completed
string not finished
add sequence to reply string 2.5*

extracts |10 this item require no action
string not finished
item entry not completed
end of the string reached
no need of reply
store numeric keys to analyse them with the next
sequence

read O00R .5*1000 analyses the string

analyses |1000R this item require no action
end of the string reached
no need of reply

read 1001 R analyses the string

extracts 100l 100 set g.ty to 1 and add it on PLU 100 sale counter
counter=1 implies no discount
string not finished
copy sequence to reply string 100l

extracts I set g.ty to 1 and add it on PLU 100 sale counter
counter = 2 implies no discount
string not finished
add sequence to reply string 100lI

extracts I set g.ty to 1 and add it on PLU 100 sale counter
counter = 3 implies discount
modify the sequence
string not finished
add sequence to reply string
100111150-

OK CASH ECR-PC INTERFACE page 41

ACTION

STRINGS RECEIVED
OR SENT BY THE
PC

STRINGS ECHOED
BY THE DRIVER

COMMENTS

extracts

set g.ty to 1 and add it on PLU 100 sale counter
counter=1 implies no discount

repetition after discount

needs the PLU number to be declared

modify the sequence

add sequence to reply string 100111150-100I
end of string reached

the string has been modified and must be sent
cut the already echoed numbers

write

[11150-100I

O Note that when linking the basic sequences to build the reply string, it must be taken into
account that the numeric characters preceding the first non numeric have already been

echoed.

OK CASH

ECR-PC INTERFACE page 42

Using the Bar Code

When inputting a sale using the bar code reader connected to the ECR, the sale sequence sent to the
PC. The PC program has to take into account that a code not readable with the bar code reader is
entered from the keyboard with the same sequence used for PLU entry, where the PLU number is re-
placed by the code. Following are examples of valid bar coded item entries:

BAR CODE ENTRY MEANING

“12345678" sale of a quantity of 1 on the article having code 12345678

2*“A7610424288347" | sale of a quantity of 2 on the article having code 7610424288347 (the letter
A is a code type identifier usually added by the bar code reader)

-3.5*00511111288311 |void of a sale of a quantity of 3.5 on the article having code 0051111128831

If the article code is present into the ECR memory, the PC has to convert the Bar Code, received as a
string, into a PLU sale sequence, using only the numerical part of the code, since the code stored into
the PLU’s is only numeric.

In example, when receiving the code “A7610424288347", the PC must send to the ECR the se-
quence 76104242883471.

If the code is received as a PLU entry sequence, there is no need for the PC to modify the sequence
itself. If the article code is not present into the ECR memory, to perform the sale the PC must drive
the ECR modifying the bar code sale sequence with a similar sequence that performs the sale on a
department or on a PLU.

Obviously, beside sales sequences, also refund and void sequences using the bar code reader must
be expected and managed by the PC.

The ECR protocol provides also the host computer with the capability to replace the item description
printed on the receipt with a new one, valid only for the item and its repetition, allowing the appropri-
ate article description to be printed.

To make the PC item description (of maximum 11 characters) to be printed, this must be sent, en-
closed within double quote, just before the whole item entry sequence. As consequence of this, to
print the proper item description it is needed to clear on the ECR side basic sequences of the bar
code item entry already echoed. For this purpose, in the BARCODE.PAS example program, each re-
ply to a bar coded entry starts with a clear key (K).

To update the stock quantity in the PC articles data base, it is necessary to keep track of the quantity
sold for each article. To do this, the sales quantity (1 if not declared or on item repeat) must be ex-
tracted from the keyboard sequences, and added (when sale or correction of a refund) or subtracted
(in case of refund or correction) to a sold quantity counter.

The following examples are based on the BARCODE.PAS mode of operation. This program loads
from a file into a memory buffer a very simple articles database, containing for each article the fol-
lowing data:

Contents Format
Numeric code (up to 14 digits)
description (up to 11 characters)
price (up to 9 digits)

linked department or PLU | (*)

sold quantity counter

(*) when building the reply message, numbers from 1 to 8 are treated as departments, numbers from
9 to 2000 are treated as open PLU.

OK CASH ECR-PC INTERFACE page 43

When receiving sequences from an ECR, the program analyses them looking for significant key

codes:

Key code

Meaning

if not preceded by digits, or by a % key, it identifies a negative item entry (refund or
void).

the preceding digits are the integer part of a percentage or of a sale quantity

the preceding digits, eventually queued as decimal part to the integer part entered
with the . key, are the sale quantity.

the preceding digits are the code of a PLU (if between 1 and 2000) or an article
code (if greater than 2000.

If not preceded by digits, it identifies the repetition of the last PLU or bar code sale
with unit quantity.

To be acceptable, the repeat sequence must be entered right after an integer quan-
tity sale or another repeat.

L if not preceded by digits, it identifies the correction of the previous item entry. The
correction is valid no other keys are entered between the item and its correction.
If preceded by digits, they are the price to be entered on an open PLU.

K it clears a partially entered item entry.

%

it identifies a percentage. In this context it tested to discriminate between discounts
and refunds.

While analysing the received messages, depending on the key sequence the program sets some
status flag in order to process the items in the proper way.

To make some example, let suppose that exist the following articles:

CoDE DESCRIPTION PRICE LINKED TO
7610424288347 | COCACOLA 1L 3500 department 5
24570004 APPLES 1200 open PLU 130

Under this hypothesis, taking into account everything said before, the received sequences must be
translated in the following way (empty reply message indicate no need to reply):

RECEIVED MESSAGE REPLY MESSAGE AcCTION TAKEN / NOTES

2*7610424288347" K"COCACOLA 1L"2*3500T |counter + 2

| T counter + 1
| T counter + 1
L counter - 1

1500R3.5*24570004" | RK"APPLES"3.5*1200L130I |counter + 3.5

(repeat not allowed after decimal quantity)

7610424288347I K"COCACOLA 1L"3500T counter + 1
K
L (correction not allowed after clear)

-2*7610424288347I K"COCACOLA 1L"-2*3500T | counter - 2

L

counter + 2

OK CASH

ECR-PC INTERFACE page 44

Sending Item Descriptions

In the bar code management section is described how it is possible to send an Item Description to the
ECR.

To properly use this feature, it is necessary to follow some rules.

It is very important never to exceed 11 characters of description length. If such event occurs, the
ECR will reject the item entry, sending the communication error character (G) and then starting a new
communication session.

If the description contains special characters (other then the ASCIl numbers 0 to 9 or capital letters A
to Z) the description string must be translated in such way that the sent characters are according to
the ECR character set.

The description string modification is obviously function of the character set installed in the ECR to
specialise it to a country.

Starting from the ECR Character Codes reported in Appendix A of the User Manual, that contains the
numerical code of the ECR characters, it is possible to translate a given character of the description
into the character to be sent in the following way: the character to be sent is the PC character having
as numerical code the ECR character code corresponding to the given character + 31. For instance,
the ECR code for the character 0 is 17 and the character to be sent must have code 17+31=48 (ASCII
code for “ 0”); the ECR code for the character E is 69 and the character to be sent must have code
69+31=100 (ASCII code for “d").

The numerical code corresponding to a given PC character is the numerical representation of its
coding (usually ASCII for the standard alphabet), that is the number to be inserted in the numeric key-
pad while pressing the ALT key to enter the character (refer to the DOS instruction manual). For in-
stance, for standard PC the numerical code for the character 0 is 48 (it may be entered pressing ALT
48); for the character E is 144 (it may be entered pressing ALT 144); the code 100 corresponds to the
character d.

Following the previous example, the description "OE" must be translated as "0d".

The simplest way to translate the descriptions in a program is to get the numerical code of a character
and use it to access a look-up table that contains the translated character.

OK CASH ECR-PC INTERFACE page 45

Following is an example of a Pascal function that perform the translation of a string and its limitation
at 11 character maximum:

{ TRANSLATI ON TABLE FROM PC CHAR CCDE TO ECR CHAR CODE }
const ToEcrChar : array [0..255] of char =

R T S GRS KPR L A A
T K L R L A A H -
" 'AL'BL,'CL,'DL,ELCFLCGLTH LT UKL M, UN, O
PLUQLTRLIS T LUV WL XYz
CUAL'BL'CL,'DLCE LR LG TH LY KL M
PLUQLTRLIS T LUV WL XY
bzt d T g e kT
d,t ot ,'q,'s','p', y','x','|', s','zh '
CLULURTLTON W, g g

function Translate (I nputDescr : string) : string;

var i,j : integer;
code : integer;
Qut Descr : string;

begi n
Qut Descr: ="";
j i =l engt h(I nput Descr); { GET THE I NPUT STRI NG LENGTH }
if j > 11 then j:=11; { MAX LENGTH ALLOWED IS 11 }
for i:=1toj do { FOR EACH CHARACTER }
begi n
code: =ord(I nput Descr[i]); { CGET I'TS NUMERI CAL CODE}
Qut Descr: =CQut Descr + ToEcrChar[code]; { ADD I TS TRANSLATI ON }
{ TO THE QUTPUT STRI NG }
end;
Transl ate : = QutDescr; { RETURNS THE TRANSLATED STRI NG }
end;

The array ToEcrChar must change according to the ECR programmed language and character set.

OK CASH ECR-PC INTERFACE page 46

Printer Messages

If the option to send to the PC echo of all printer operations(printouts and line feeds) has been set on
the ECR, each time that a printer operation is performed a printer message is sent.

Each printer message has the following structure:

<Command> <Dat a>

where <Command> is a single character

performed on the printer (Normal print,

hei gth print,
present only after print type comuands,

<Dat a>

Li ne feed);

i ndi cating the operation

Doubl e

it

contains the 18 or 24 character (depending on the
ECR nodel) printed on the receipt.

The possi ble command codes are: a, b, ¢, d, e, f, g, h.

The used are:

b = normal print
d = doubl e hei ght
h =1ine feed

Even when printer messages are received, each read request to the driver will return only one printer
message. This is valid also when printer messages are received mixed with keyboard messages.

An example of possible message reception sequence is:

3*

1000R

b 3 x 1.000
bDEPARTMENT3 C
R20
bDEPARTMENT3 C
OOoP
bDEPARTMENT1 A
X

h

dTOTAL

3. 000

1. 000

2. 000

6. 000

What explained before for the item description strings, is applicable to the Data field of the printer
messages: the characters sent by the ECR are corresponding to a humerical code equal to the ECR

internal code + 31.

On the PC, the printed strings should be translated to the correct PC character coding. This can be
done in the same way as previously described, but using a different translation look-up table, always
function of the ECR language and character set.

OK CASH

ECR-PC INTERFACE

page 47

For example, the reverse translation table corresponding to the previous example is:

{ TRANSLATI ON TABLE FROM ECR CHAR CODE TO PC CHAR CCODE }

const ToPcChar : array [O0..255] of char =

OK CASH ECR-PC INTERFACE page 48

Error Messages

The error messages are sent by the ECR whenever an error condition has been detected while exe-
cuting a keyboard command (both entered through keyboard or sent by the PC).

An error message is a 4 character strings. First and last characters are the letter E. The mid two char-
acter are the numerical error code, that is shown also on the display.

Example of error message is:
E10E

When controlling the ECR from the PC, error messages can be monitored to verify that a keyboard
message has been accepted by the ECR.

OK CASH ECR-PC INTERFACE page 49

READING ECR MEMORY

It is possible, through some function, to ask the ECR to send part of its memory content (consult the
User Manual for more details on function key sequences). Following is a list of the main functions to
read the ECR memory data.

Function Data transferred Command Sequence
920 Departments 920=15290=
921 Cashiers 921=15290=
922 Header + Trailer 922=15290=
923 Alternative Trailers 923=15290=
924 ECR Internal Data 924=15290=
925 ECR Totals Memory Area 925=15290=
926 ECR Configuration Data 926=15290=
927 PLU 1to 512 927=15290=
928 PLU 513 to 1024 928=15290=
929 PLU 1025 to 1536 929=15290=
930 PLU 1537 to 2000 930=15290=
940 Single PLU 940=15290=<plu number>=

The memory content is transmitted as a single memory message, having the structure:

<| D Char> <Mem Dat a>

where <ID Char> is the character &
<Mem Data> is a sequence of bytes.

The length of the <Mem Data> field is equal to the dimension of the requested memory area. For ex-
ample, each PLU data area is 16384 bytes long.

Two events are possible when performing the reading request to the driver:

1 - the dimension of the driver interface structure is big enough to contain all the memory mes-
sage, in which case the read returned code will be 0;

2 - the dimension of the driver interface structure is not enough to contain all the memory mes-
sage, in which case the driver will fill up the interface structure with part of the memory message,
and the read returned code will be 9.

If the second event occurs, it is possible to read again the driver to get the following part of the
memory. When the last part of the memory message is read, the returned code will be 0. Also
partial memory content will start with the <ID Char>.

Once the memory content has been received, to extract the desired data the program must interpret
the memory image decoding it according to the ECR internal data structure.

Following is reported the structure of the memory area of main interest.

OK CASH ECR-PC INTERFACE page 50

Data Read from the ECR Memory

DEPARTMENTS

The memory data will contain 5 or 8 or 16 departments records, according to the ECR model, each

one containing:

Description 11 characters (to be translated as previously explained)
Option byte : bit 0,1,2 = VAT pointer (0 to 7)

bit 3 =unused

bit 3= Single Item

bit 5..7 = unused

Preset Price

4 bytes integer

Sales Total

4 bytes integer

Sales Counter

2 bytes integer

Spare

9 bytes

Entry Limit (Spare if not
present)

1 byte = maximum figures number accepted as unit price from keyboard

CASHIERS

The memory data will contain 20 cashier records, each one containing:

Name Up to 20 characters depending on the ECR model (to be translated as
previously explained)

Gross Sales 6 bytes integer (less significant byte is received first)

Loan Total 6 bytes integer

Pick-up Total 6 bytes integer

Cash Total 6 bytes integer

Check Total 6 bytes integer

Tend. 3 Total 6 bytes integer

HEADER + TRAILER

The memory data will contain the characters of the header lines followed by the trailer line (to be
translated as previously explained). The number of header lines and number of characters per lines
depend on the ECR model. For ECR with 15 characters thermal printer, the content will be:

Header Line 1

15 characters

Header Line 2

15 characters

Header Line 3

15 characters

Header Line 4

15 characters

Header Line 5

15 characters

Header Line 6

15 characters

Header Line 7

15 characters

Trailer line

15 characters

OK CASH

ECR-PC INTERFACE page 51

ALTERNATIVE TRAILER

The memory data will contain the characters of the ten alternative trailer lines (to be translated as

previously explained). The number of characters per lines depends on the ECR model. For ECR with
15 characters thermal printer, the content will be:

Alternative Trailer 1 15 characters
Alternative Trailer 2 15 characters
Alternative Trailer 9 15 characters
Alternative Trailer 10 15 characters
OK CASH ECR-PC INTERFACE

page 52

ECR Internal Data

This memory area contains internal parameter data, not all of them are of interest to an external user.
The interesting data of this area are the following:

Start Byte Meaning Format
Position
1 First Data Byte of Dump 924

84 Option Bits 8 bits (bit O is the Isb)
bit 0 = Discount Disabled
bit 1 = Mark-up Disabled
bit 2 = Time on display Disabled
bit 3-7 = N.A.

85 Preset Discount % 1 byte integer

86 Preset Mark-up % 1 byte integer

141 VAT Rates 8 integers values (2 bytes each) representing the VAT
rates multiplied by 100

290 Enabled VAT Rates Mask 8 bits (Isb enables VAT 1, etc.)

644 Status Bits 8 bits (bit O is the Isb)
bit 0-6 = N.A.
bit 7 = Fiscalized ECR

646 Number of Active Cashiers 1 byte integer

675 General Options 1 word (its meaning is explained in the programming
manual)

OK CASH ECR-PC INTERFACE page 53

ECR Totals Memory Area

The memory data will contain several internal ECR data (including workspace areas). The interesting
part of these data are the Daily Totals area. It starts in correspondence of the 79" received byte of the
Mem Data Field and is structured as follows:

Discount Total

6 bytes integer (less significant byte is received first)

Mark-up Total

6 bytes integer

Void Total

6 bytes integer

Refund Total

6 bytes integer

Discount Counter

2 bytes integer

Mark-up Counter

2 bytes integer

Void Counter

2 bytes integer

Refund Counter

2 bytes integer

Loan Total 6 bytes integer
Pick-up Total 6 bytes integer
Cash Total 6 bytes integer
Check Total 6 bytes integer

Tender 3 Total

6 bytes integer

Cash Counter

2 bytes integer

Check Counter

2 bytes integer

Tender 3 Counter

2 bytes integer

OK CASH

ECR-PC INTERFACE

page 54

ECR Configuration Data

This memory area contains internal parameter data, not all of them are of interest to an external user.
The interesting data of this area are the following:

Start Byte Meaning Format
Position

1 First Data Byte of Dump 926

3 Number of VAT Rates 1 byte integer (0 to 7 for 1 to 8 VAT Rates)

16 Status Bits 8 bits (bit O is the Isb)
bit 0-3 = N.A.
bit 4 = VAT Exempt present
bit 5-7 = N.A.

21 Configuration Bits 8 bits (bit O is the Isb)
bit 0 = N.A.
bit 1 = PLU records with EAN Code
bit 2 = N.A.
bit 3 = Departments with entry limit
bit 4-7 = N.A.

25 Fixed General Options Mask 1 word (it contains the bit mask of the options that
cannot be modified on fiscalized ECR)

29 Number of departments 1 byte integer

30 Number of PLU 2 bytes integer

32 Characters per printer line 1 byte integer

33 Number of Header Lines 1 byte integer

34 Characters per Cashier Name | 1 byte integer

OK CASH ECR-PC INTERFACE page 55

PLU

The memory data will contain up to 512 PLU records, each one containing:

Description 11 characters (to be translated as previously explained)

Option byte : bit 0,1,2,3 = Major Department pointer, for a maximum of 16
departments (0 to 15), depending on ECR model.

bit 4 = Single Item
bit 5= Open Price
bit 6..7 =0 unused

NOTE:

For Poland ECR, the first four bits have the following meaning:
bit 0,1,2 = VAT pointer (0 to 7)

bit 3 =0unused

Preset Price (only if Preset Plu) | 4 bytes integer
Sales Total (only if Open Plu)

Sales Quantity 4 bytes integer (3 decimals fixed point)
Inventory 4 bytes integer (3 decimals fixed point)
EAN Code (Spare if not pres-|7 bytes (BCD packed numeric code)
ent)

Spare 1 byte
SINGLE PLU

The memory data will contain a single PLU record, according to the previous described format.

Notes : characters are coded as ECR numerical code + 31, to translate them into PC char-
acters, the same conversion algorithm as for the print messages shall be used. - memory
address range may change depending on the ECR model and revision.

The program GETMEM.PAS is an example of how to read and decode ECR memory data.

OK CASH ECR-PC INTERFACE page 56

ECR PROGRAMMING

For obvious security reasons, ECR memory data can be only read from the PC.

It is anyway possible to perform ECR data customisation (like description, price, option programming)
sending from the PC the sequences reported into the Programming Manual.

Using the ECR as a PC Terminal

For some application, or during ECR programming, may be necessary for the ECR to be slave of the
PC.

Depending on the Command Field within the structure that interfaces the driver, it is possible to re-
quest the driver for different mode of operation while requesting a read function.

The bit-4 of the Command field specifies whether the driver must return to the calling program only if
a key sequence has been received from the ECR (bit-4=0) or also when the ECR polls the PC to ask
for a remote key sequence (bit-4=1).

Before sending from the PC a key sequence, which is not a reply to are received keyboard sequence,
it is necessary to wait for the ECR polling, in order to synchronise the transmission with the internal
status of the ECR.

To do this the program must request the read function to the driver with the bit-4 of the Command
field set, wait for the reception of an empty sequence (Length field = 0) and then send the key se-
guence to the ECR.

The program EXAMPLEZ2.PAS shows how to do this operation.

In case that it is desired an exclusive PC control over the ECR, that means a complete disabling of
the ECR keyboard, it is possible to ask the driver not to send echo of numeric keys and then, each
time a not empty sequence is received from the ECR, reply with an empty sequence.

To ask the driver not to send echo of numeric keys, the bit-7 of the Command field during the read
operation.

OK CASH ECR-PC INTERFACE page 57

Following is an example of such a procedure, that locks the ECR until a key is pressed on the PC

keyboard:

procedur e EcrKeyLock;

{ Rk and Tx buffers definition }

type ConBuff =

var TxRxBuff

{ constant code

record

Command . integer;

Length . integer;

Dat a :array [1 .. 200] of char;
end;
ConBuf f;

definition }

const CodeK = 0 ;
PcKeyPressed = 8 ;
NoNunber Echo = $80 ;
PcKeyCtr = $40 ;
begi n
r epeat

TxRxBuf f . Conmand: =PcKeyCtr1 + NoNunber Echo;
TxRxBuf f. Lengt h: =200;

read (Ecr, TxRxBuff. Command);

i f (TxRxBuff.Comand=CodeOK)

t hen

begi n

TxRxBuf f . Lengt h: =0;

write(Ecr, TxRxBuff.Command);
end;
until TxRxBuff. Comand=PcKeyPr essed;
end;
OK CASH ECR-PC INTERFACE page 58

