
S O F T W A R E D E V E L O P M E N T K I T

User Manual

software vers ion 5.0

071-8017-XX
PRELIMINARY - JULY 2001

PROFILE & PROFILE XP FAMILY
V I D E O F I L E S E R V E R S A N D M E D I A P L A T F O R M S

Copyright Copyright © 2000 Grass Valley Group Inc. All rights reserved. Printed in the United States of
America.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of Grass Valley
Group Inc., P.O. Box 59900, Nevada City, California 95959-7900

Trademarks Grass Valley, GRASS VALLEY GROUP, Profile and Profile XP are either registered trademarks
or trademarks of Grass Valley Group in the United States and/or other countries. Other trademarks
used in this document are either registered trademarks or trademarks of the manufacturers or
vendors of the associated products. Grass Valley Group products are covered by U.S. and foreign
patents, issued and pending. Additional information regarding

Grass Valley Group's trademarks and other proprietary rights may be found at
www.grassvalleygroup.com.

Disclaimer Product options and specifications subject to change without notice. The information in this manual
is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Grass Valley Group. Grass Valley Group assumes no responsibility
or liability for any errors or inaccuracies that may appear in this publication.

U.S. Government
Restricted Rights
Legend

Use, duplication, or disclosure by the United States Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.277-7013 or in subparagraph c(1) and (2) of the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19, as applicable. Manufacturer is Grass Valley Group
Inc., P.O. Box 59900, Nevada City, California 95959-7900 U.S.A.

Revision Status

Rev date Description

January 1995 Original issue. Manual part number 070-9187-00.

March 1995 Updated to support version 1.1.
Manual part number changed to 070-9187-01.

November 1995 Updated to support version 1.3.
Manual part number changed to 070-9187-02.

May 1996 Updated to support version 1.4. Reference material removed.
Manual part number changed to 070-9187-03.

May 1999 Updated to support version 3.0.
Manual part number changed to 070-9187-04.

April 2000 Updated to support version 4.0.
Manual part number changed to 071-8017-00.

July 12 2001 Updated to support version 5.0.
Preliminary version

Third-party License Agreements

Independent JPEG software license agreement

The authors make NO WARRANTY or representation, either express or implied, with respect to
this software, its quality, accuracy, merchantability, or fitness for a particular purpose. This
software is provided “AS IS”, and you, its user, assume the entire risk as to its quality and
accuracy.

This software is copyright © 1991, 1992, 1993, 1994, Thomas G. Lane. All Rights Reserved
except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this software (or portions
thereof) for any purpose, without fee, subject to these conditions: (1) If any part of the source
code for this software is distributed, then this README file must be included, with this
copyright and no-warranty notice unaltered; and any additions, deletions, or changes to the
original files must be clearly indicated in accompanying documentation. (2) If only executable
code is distributed, then the accompanying documentation must state that “this software is based
in part on the work of the Independent JPEG Group”. (3) Permission for use of this software is
granted only if the user accepts full responsibility for any undesirable consequences; the authors
accept NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code, not just to the
unmodified library. If you use our work, you ought to acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name in advertising
or publicity relating to this software or products derived from it. This software may be referred
to only as “the Independent JPEG Group's software”.

We specifically permit and encourage the use of this software as the basis of commercial
products, provided that all warranty or liability claims are assumed by the product vendor.

Intel GNU general public license agreement
The following listed PDR 100 tools are based on tools from the Intel GNU/960 Tools, some of
which were developed and/or distributed by an organization called the Free Software Foundation
(FSF): gdb960.exe and objcopy.exe.

These tools are covered by the GNU General Public License and have no warranty of any kind.
The text of this license is built into gdb960.exe, and can be viewed by typing “info copying’ at
the gdb960 prompt. Source code for the above listed tools is available under the terms of this
license by contacting Grass Valley Group.
Preliminary — 12 July 2001 Profile Software Development Kit User 3

Chapter

4
 Profile Software Development Kit User Preliminary — 12 July 2001

Contents

Third-party License Agreements... 3
Independent JPEG software license agreement ..3
Intel GNU general public license agreement..3

Overview.. 13
About the Profile Software Development Kit ..13
About this manual...13
Getting started..14

If you are new to Profile programming...14
If you are an experienced Profile programmer ..14

Chapter 1 Introduction
Basic concepts ...15
A Profile system overview ..16

Video disk storage ...16
Video compression ..17
Video and audio boards...17

Chapter 2 Programming the Profile Video Server
The TekCfg library ..20
The TekPdr library ..21

Using stored movies ..21
Common Movie Format ...22

Using library commands with CMF movies...22
Complex movie names ..23
Movie attributes ...24
User data ...27
Change notification..27
Registry entries..28

The TekPls library ..29
The TekRem library ..30
The TekVdr library ..31

Physical resources ..31
JPEG video resources...31

Video goal size ...31
Luminance quantization level ...32
Chrominance quantization level..32

MPEG video resources..32
Chrominance sampling ...32
GOP structure ...32
Bitrate ...33
First and last line encoding ...33

Audio ...33
Analog audio architecture ...33
Audio resources..34
Audio minimum play length...34

Timecode...34
The port ...34

Port clock modes ..35
Other clock modes ..36
Still modes ..36
Port clock limits ...37
Synchronizing ports ..37

Events ..38
State events...39
Preliminary — 12 July 2001 Profile Software Development Kit User 5

Profile Family

6

Audio events..41
Timecode generator events...41
Media files ...42
Multiple files...42

The TekVfs library ..45
The TekVme library ..46
The TekXfr library...47

Chapter 3 Recording and Playing Movies
Playing a movie ..57
Playing a movie with in and out marks ...63
Playing a list of movies...69
Playing a movie using Central Resource Management ...75

Chapter 4 Using the Profile Media File System
Browsing the media file system..81
Viewing CMF information ...87
Checking free file space...97

Chapter 5 Using Events

Chapter 6 Transferring Media with Fibre Channel
Configuring Fibre Channel ...108
Multicast programming...109

Switched Fibre Channel networks ...109
Multicasting errors ..110

The PDR network configuration service ...112
UML descriptions ...112

The flattened option ..112

The exact option ..113

The HOT option ...113
Using UMLs..114
Copying media via Fibre Channel ..115
Copying media with TekPdr functions ..115
Copying media files with TekVfs functions ...116
Copying media with Media Manager..117
Copying media with copymovie..117
Using FTP for streaming transfers ...117

File mode..118
Movie mode ..118

Sample code: Media copies ..118
Streaming with Fibre Channel ..122
XfrAbort ..123
XfrGetActiveTokens ...123
XfrGetStatus...123
XfrRequest ...123
Sample code: Fibre Channel streaming..124

Chapter 7 Programming the Profile Library System
Programming model and serial protocols...129

A C programmer’s view ...129
Serial protocols..130

Library concepts overview..130
Local library catalog ..130
Cartridges and partitions ...130
Files ...130
Profile Software Development Kit User Preliminary — 12 July 2001

Barcode labels...131
Strings and file names ...131
Resource reservation ..131
In/out points ...131
Field numbers ..132
Multicartridge sets ...132
Material categories ..132

The programming model ..132
Connection and library handles ...132
Library server API memory model ...133

Operations returning multiple data items ..133
Concurrent command execution..133
Error codes ..134
Configuration, status, and information commands ..134

Important notes and assumptions ..134
Configuration ..135

Tape partitioning ..135
Library server commands...137

File selection rules ...139
Cartridge selection rules ..139
Tape transport selection rules ...139
Transport load/unload rules ...140

Library server API function descriptions...140
Library functions ..140

Transport configuration commands ..141
Library bin information commands..141
List all cartridges commands ..141

Library and cartridge directory commands ...141
Transport functions..142
Cartridge functions ..143
Basic archive functions ..146
Library server management functions ...148
Local catalog management functions ..150
Command management functions...150

Sample code: Managing a library system ...150
TekPls extension invocation ...163

The tekpls.exe program..163

The tekplsex.exe program ..163
Connecting to the TekPls extension ..163
Obtaining a library handle..164
Archiving a file ...164
Closing the library and connection ..166

PLS constants ..167
PLS error codes by value ...170

Chapter 8 Programming with MPEG
Compression/decompression algorithms ...179

Some limitations to MPEG...180
Other MPEG notes ...180

Using MPEG functions ...181
Archiving and streaming ..181
Bitrate ..181
Chrominance sampling ..181
First and last line of encoding ..181
GOP structure..181
MPEG closed caption technique ...182
Picture information...182
Preliminary — 12 July 2001 Profile Software Development Kit User 7

Profile Family

8

Sample program: MPEG encoding/decoding ...183

Chapter 9 The Media Area Network
Key features of the Media Area Network ...191
Overview of the Media Area Network...192

Media Area Network hardware ..193
Media Area Network file system software ...194
Movie database software ..195
Fibre Channel redundancy ..196
Fibre Channel failover ...197
File System Manager redundancy...198
File System Manager failover ..199

Specifications ...200
Developing Media Area Network software applications ...200

File system changes..201
Dataset name ...201
Application access to the file system..201

TekPdr changes ..201
Different Open Modes ..201
PdrDeleteMovie is not synchronous ...202
PdrSetMovieReadOnly() and PdrSetMovieReadWrite()...202
PdrControlRO bit ..202
PdrReadOnly ..202
PdrExtensions ..202
Obsolete functions ..202

Common Movie Format database access ...202
Recommendations for verifying applications ...202

Chapter 10 PdrMovie Extensions
Grass Valley Group Common Extensions..207

Video Mix Effects Extensions ..208
Simple Dissolve ..208
Advanced Dissolve ...209
Simple Wipe ...210
Advanced Wipe ..211
Key ...213
Video Fade-to-Matte ...214

Audio Mix Effects...215
Audio Mix ..215
Audio Level ...216

Motion Effects..217
Source Effects ..217

External Control...218
GPI ...218

Meta Data Extensions ...219
MovieData ..219
SegmentData..220

The PdrExtensionInfo Data Structure ..221

Chapter 11 Profile RS-422 Serial Control
Browsing a remote Profile file system ..223
Playing a movie remotely ...228
Sending packets...234
Receiving packets ..254
Packet communication ...268
Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary — 12 July 2001 Profile Software Development Kit User 9

List of tables
1 Punctuation for a complexMovieName.. 24
2 Movie attribute descriptions... 26
3 PdrCopyType descriptions .. 28
4 Summary of available events ... 38
5 Streaming error codes... 111
6 Supported commands processed by the FTP daemon ... 117
7 PLS tap‘e partitioning ... 136
8 Frequently used C function parameters .. 137
9 PLS events by name ... 167
10 PLS events by value.. 167
11 PLS opcodes by name .. 168
12 PLS opcodes by value... 169
13 PLS serial error codes .. 170
14 PdrMovie extension elements ... 205
15 Simple dissolve extension elements ... 208
16 Advanced dissolve elements... 209
17 Simple wipe extension elements ... 210
18 Advanced wipe extension elements .. 211
19 Key extension elements .. 213
20 Fade-tomatte extension elements ... 214
21 Audio mix extension elements... 215
22 Audio level extension elements ... 216
23 Source effect extension elements ... 217
24 GPI extension element .. 218
25 MovieData extension elements ... 219
26 SegmentData extension elements .. 220

10 Profile Software Development Kit User Preliminary — 12 July 2001

List of figures
1 The PDR200/300/400 block diagram ...18
2 Timeline position in media files...35
3 Profile state...38
4 Profile unit and video switcher under automation ...39
5 Pass-through Profiles in series ...40
6 Attaching a new media file to a timeline ...43
7 Deleting media from timeline with effect on other media ..44
8 Fibre Channel file transfer ...124

List of examples
record.c ... 51
play.c .. 58
play_fitted.c .. 64
play_multi.c ... 70
playcrm.cpp .. 76
browse.c ... 82
viewCMF.c .. 88
freespace.c ... 97
stateevt.c .. 100
Sample hosts file ..108
UML usage in file mode .. 114
UML usage in streaming ... 114
deepcopy.c ... 119
xferumls.c ... 125
plsdemo.c ... 151
mpegdemo.c ... 183
ppbrowse.c ... 224
ppplay.c .. 229
ppsend.c ... 234
ppreply.c ... 254
ppcomm.c ... 268
Preliminary — 12 July 2001 Profile Software Development Kit User 11

12
 Profile Software Development Kit User Preliminary — 12 July 2001

Overview

About the Profile Software Development Kit

The Profile Software Development Kit (SDK) includes two manuals:

• The Profile SDK User Manual which includes:

- a conceptual overview of the Profile system;

- a general discussion of the Profile programming libraries; and

- a series of sample programs that demonstrate Profile functionality.

• The Profile SDK Reference Manual which includes:

- application programming interface (API) and serial command summary tables;

- a functional and alphabetical listing of all available API commands; and

- a functional and numerical listing of all serial commands.

About this manual
The Profile SDK User Manual describes programming applications for the Profile video
server:

Chapter 1, Introduction is a general overview of Profile application development. This
chapter offers a brief introduction to basic Profile concepts and the core API
libraries.

Chapter 2, Programming the Profile Video Server provides a more complete conceptual
overview of the API libraries and what it takes to make them work.

Chapter 3, Recording and Playing Movies explores the basic work of recording and
playing media.

Chapter 4, Using the Profile Media File System shows you how to write programs that
inventory media on the Profile file system.

Chapter 5, Using Events furnishes a sample program that demonstrates the Profile event
model.

Chapter 6, Transferring Media with Fibre Channel provides you with the code samples
you need to write applications that implement Fibre Channel transfers, including
streaming operations.

Chapter 7, Programming the Profile Library System helps you write programs for the
Profile library system, a device that caches media on digital cartridge tapes.

Chapter 8, Programming with MPEG provides a sample program to help you record and
play MPEG video.

Chapter 11, Profile RS-422 Serial Control covers programs that perform serial
communication by using wrapper functions that implement the RS-422-based
Profile protocol.
Preliminary — 12 July 2001 Profile Software Development Kit User 13

Chapter

14
Getting started
The Profile SDK User Manual assumes that you understand basic Profile operations and that
you are already familiar with the following resources:

• The Profile Installation Manual, containing essential information for the installation of
your Profile server and the proper cabling for the installed cards.

• The Profile Family User Manual, containing essential information on properly configuring
a Profile server for your environment.

• The VdrPanel application, which utilizes much of the Profile API functionality. Playing
and recording test clips from VdrPanel is a useful exercise for the Profile developer.

If you are new to Profile programming
If this is your first introduction to Profile programming, we recommend you acquaint yourself
with the libraries, commands, and examples before writing your own code.

• Read Chapter 1 of this manual for a general overview of Profile application development,
an introduction to the core API libraries, and other basic Profile concepts.

• Study the sample programs that follow in all the chapters (complete code samples are
available in the c:\profile_sdk\src directory). Focus on the API or serial code as
appropriate to your development environment. Compile and run the sample applications.

• Once you are comfortable with the basic sample programs, you will be ready to create your
own. Use the sample code as component building blocks. (You may want to cut-and-paste
this code to create or customize your own work.)

If you are an experienced Profile programmer
We’ve made many changes to the SDK since the last release. We’ve added parameters to many
existing functions and created some new functions which implement new features and provide
convenient shortcuts.

• Read the release notes for an overview of the changes.

• You may want to work with your Profile administrator and/or other Profile developers to
coordinate the upgrade to the current software.

• If you have existing applications written for an earlier version of the API, you may want to
convert these as well.
Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 1

Introduction

The Profile Software Development Kit provides an Application Programming Interface (API)
for libraries of Profile functions that control the Profile video server. The software models
supported by the API use a set of handles or identifiers to reference objects to which the
application has requested access, or has reserved. (For a detailed explanation of the eight
libraries, see Chapter 2, Programming the Profile Video Server.)

There are two programming models involved. The first programming model supports direct
function calls that are issued by programs developed under Microsoft Visual C++. This model
will also function across Ethernet, from a remote Win32 computer to the Profile. A second
programming model supports a byte-stream serial protocol used over RS-422 communication
lines.

All functions in a particular library share a three-letter identifying prefix. For example, all
functions in the TekCfg library have the Cfg prefix. This is intended to help clarify the
differences between functions of similar names and to alphabetize function listings in the
companion volume to this user manual, the Profile SDK Reference Manual.

Louth and Odetics RS-422 protocols are supported, although there is not a one-to-one
correspondence between these protocols and the Profile API. Louth and Odetics protocols do
not allow access to the full functionality of the Profile system.

Basic concepts
The software model presented by the integrated libraries of the Profile separate functions
according to the area of responsibility. Each library is associated with a major object of the
system. At the top is the TekVdr library which provides transport control for recording and
playing movies. This library provides access to the port clock and physical resources. Below
this library is the TekPdr library which maintains the inventory of movies, their Common
Movie Format descriptions, the logical requirements of the movies for resources, and how they
relate to the media files.

A movie’s description might be changed either while being associated with the physical
resources of the system and being prepared for playing, or while in the inventory of movies.
This means that there are two distinct, yet similar sets of functions in the Profile API: one is
for manipulating the movie associated with the physical resources, the other one is associated
with the movie in the inventory. A function with a title prefixed by Vdr is used to manipulate
the movie associated with the physical resource. A function with a title prefixed by Pdr is used
to manipulate the movie in the inventory. For example, PdrSetMediaOut sets the mark-out
point for a media file which will be stored permanently with the movie.
VdrSetMediaMarkOut, on the other hand, overrides any stored out-points, setting a
mark-out position which applies to the current session only. It is essential for Profile
developers to correctly distinguish which functionality they want.

A second aid to distinguishing the objects being manipulated is the naming convention for
various API datatypes: objects associated with the physical resources are represented by
handles, while objects associated with the movie inventory are represented by tokens. For
example, a MovieHandle datatype represents a movie associated with physical resources,
while a MovieToken represents a movie associated with the inventory.
 12 July 2001 Software Development Kit User 15

Chapter 1 Introduction

16
A Profile system overview
Please refer to the Profile XP System Guide for a complete description of the Profile XP Media
Platform. The following sections describe the PDR100, PDR200, PDR300, PDR400 and
Profile PRO Series Professional Disk Recorders and Video File Servers.

The PDR series of video servers are multi-channel digital disk recorders. Both the PDR100
and PDR200 are capable of supporting up to four play/record channels of video; the video is
compressed using the JPEG algorithm for storage on disk. The PDR200 and all later (higher
numbered) models support Fiber Channel networking between systems so that content
material can be moved among networked Profiles without decompression and recompression
of the material. The PDR300 uses MPEG2 compression of the video for storage; both 4:2:0
and 4:2:2 video compression is supported. The PDR300 can support two record channels and
eight playback channels. The PDR400 supports the DV compression algorithm for video. It
can support up to sixchannels of DVCPRO25 or three channels of DVCPRO50 compression
and decompression; all channels can both record and playback.

The Profile system has an EISA motherboard with an internal digital video routing system.
There are sixteen EISA slots and one ISA slot used for interface cards and routing audio data.
The server also uses a PCI bus for routing data between the master and slave enhanced disk
recorder (EDR) boards, Fibre Channel boards, and boards for compressing and decompressing
the video.

A video router chip set is integrated on the mother board. It routes video signals between the
video compression boards, video mix effects cards, and video I/O cards. The video router is a
32x32 crosspoint matrix capable of full bandwidth 4:2:2 CCIR-601 8-bit digital video. The
video router allows real-time transfer of video throughout the system without impacting
overall system performance. The video router also makes possible simultaneous record and
playback on separate channels.

Figure 1, The PDR200/300/400 block diagram on page 18 shows a block diagram of the
hardware layout of a PDR200 or above.

Video disk storage
In the video disk subsystem, video data is compressed and written to up to eight 4-gigabyte
(PDR100 only), 9-gigabyte, or 18-gigabyte disks, and then read from these disks and
decompressed. This video data is read from and written to the video router in 8-bit, parallel
component digital video format. The video disk subsystem has disk recorder boards
(PDR100) and enhanced disk recorder boards (PDR200 and above), with an Intel i960
real-time processor and a SCSI-2 interface to the disks.

The video disk subsystem uses master and slave disk recorder or enhanced disk recorder
(EDR) boards with two SCSI-2 channels on each board. The master disk recorder board
comes standard with a two-channel JPEG codec. Bidirectional codec channels allow channels
to be configured for recording or playback. Adding a slave disk recorder board makes a
Profile unit a four-channel JPEG system. The master board has an Intel i960 real-time
processor which controls compression and the data flows on SCSI-2 channels and JPEG
codecs. Master and slave EDR boards also control MPEG encoder and decoder boards and
DVCPRO codec boards, which are connected to the master and slave via a PCI interconnect
board.
Software Development Kit User Preliminary — 12 July 2001

Video compression
Video compression
The processor on the master enhanced disk recorder board is used to control the flow of data
and load the coefficients of the compression encoder and decoder hardware. The amount of
video compression varies according to the setting of the compression coefficients. Higher
compression ratios store more video, but the result is lower quality video. On the other hand,
lower compression ratios result in higher quality video and less storage capacity.

The compression coefficients are expressed in several ways; one of the more common ways
of expressing the compression is in the resulting bitrate of the video stream. In addition, with
MPEG compression the structure of the Group of Pix (GOP) will greatly effect the
compression; long GOP structures with many P and B frames will be more compressed than
an I-frame only compression.

Audio is not compressed on the Profile system.

Since the video compression ratio can be varied to change the video quality given available
storage time, the amount of storage depends on your choice of compression ratio. A quick
rule of thumb is that five minutes of JPEG video—plus four channels of audio and two
channels of timecode—is roughly equal to one gigabyte of disk storage at 75,000 bytes per
field in 525-line video. For example, a PDX208 Disk Expansion unit expands storage up to
twelve hours and a PRS200 RAID Storage System can bring it up to approximately 96 hours.
For video stored in the MPEG format at an average 24Mbps, you can just about double these
capacities.

In addition to video compression, the disk recorder boards also integrate the digital audio data
coming from the EISA bus, with typically four channels of audio per channel of video (up to
32). These recorder boards communicate with the SCSI-2 interface using a Direct Memory
Access (DMA) interface. The PDR200 also supports the audio signal processing board
(ASPB). This board is capable of delivering 16 channels of analog, embedded digital, or AES/
EBU digital audio. The PDR200 can be equipped with two of these boards, for a total of 32
channels of audio.

Video and audio boards
Video and audio interface boards receive incoming and send outgoing video and audio data.
These boards are responsible for converting the video and audio to internal formats used by
the video server.

The PDR200, PDR300 and PDR400come with the audio signal processing board (ASPB).
This audio architecture accepts and simultaneously processes sixteen audio inputs and
outputs. Internally, all audio is processed with a selectable storage resolution of 16 or 20 bits.
Inputs may be individually clocked in groups of four, and any clock group may be referenced
to the system reference (house black) or any one of four video inputs. Output clocking is
synchronous to system reference. Sample rate conversion is available for all inputs (30 to
50kHz), providing uniform storage at 48kHz.

You can configure the PDR200, PDR300, or PDR400 to operate with analog, AES/EBU
digital, or embedded (SMPTE 272M Level A) audio, depending on which options are installed
in your system. All three audio formats are supported without external conversion equipment.
Analog audio is only available with an optional PAC208 or PAC216 Analog/Digital Interface
chassis. You can expand the number of XLR or BNC connectors for AES/EBU audio with an
optional XLR216 or BNC 216 digital interface chassis. You can choose an audio format for
each video channel. For example, you could enable analog audio on one channel, embedded
audio on another, and AES/EBU on the rest.
Preliminary — 12 July 2001 Software Development Kit User 17

Chapter 1 Introduction

18
There are several video boards that allow a Profile server to be used with various standard
video formats. Composite analog, serial digital component, or component analog video are
all possible. All boards accept 525-line (NTSC) or 625-line (PAL) video standards.

The latest analog composite input and output board offers two input and output channels per
board. The two output channels for this board are similar to the output channels of the original
analog composite board. An analog composite monitor board allows you to display text and
burn-in timecode on an output monitor.

The component analog input allows dithering, auto-timing, and vertical blanking. As with
other inputs, you can automate VITC detection. You can adjust input gain and also select an
input format such as Betacam.

A serial digital component board provides two channels of both input and output, plus
embedded audio when used with an ASPB. You can also enable dithering, auto-timing, and
automate VITC detection. The board also has error detection and handling.

The standard reference genlock board allows you to time your Profile server to other devices
in a broadcast facility. You can lock a Profile unit to a PAL or NTSC reference signal (house
black). The genlock board also lets you have LTC inputs and outputs, with four inputs and
four outputs possible for each channel.

Figure 1. The PDR200/300/400 block diagram

9955-1

32 x 32 CCIR 601
Video Router and Clocks

Enhanced
Slave Recorder
• 2 JPEG CODECs
• Ultra SCSI-2

Networking
• RS-422 ports(8)
• Ethernet LAN I/O

Applications Processor
Subsystem
• Intel Pentium Processor

Digital
Audio I/O

SCSI Devices

Enhanced
Master Recorder
• Intel i960 real-time
 processor
• 2 JPEG CODECs
• Ultra SCSI-2

Video I/O
• Analog Composite
• SDI w/Embed. Audio
• Comp. Analog In
• Analog Comp. mon.

Analog
Audio I/O

(External Chassis)

 Mix
Effects

Ref.
Genlock
Board

Fibre
Channel
 Arbitrated

Loop

MPEG
4:2:2

Encoder/
Decoder

MPEG
4:2:2

Decoder
only

Indicates optional board

DVCPRO
Codec

PCI Bus Cl
oc

ks

EISA Bus
Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 2

Programming the Profile Video Server

The Profile Software Development Kit (SDK) provides an application programming interface
(API) for libraries of functions that control the Profile video server. Software developers can
use this API to control the Profile server from third-party hardware devices. The Profile API
consists of eight libraries:

The TekCfg library provides an interface for configuring the Profile system. The Profile
Configuration Manager, a standard application that comes with system software,
implements many TekCfg functions.

The TekPdr library furnishes calls that inventory and manage movies in Common Movie
Format (CMF), a file format standard for storing video, audio, and timecode on disk.

The TekPls library supplies function calls for controlling a library of digital tape cartridges
that store video, audio, and timecode.

The TekRem library makes it possible for a remote Profile or Windows NT system to
control a Profile server over an Ethernet LAN.

The TekVdr library provides an interface for playing and recording video and audio clips,
and manipulating resources and their interconnections.

The TekVfs library supports low-level access to individual media files in the media file
system, as opposed to movies which consist of sets of media files.

The TekVme library controls the optional video mix effects board which enables you to
create various video transitions on a Profile server.

The TekXfr library supports media streaming over Fibre Channel connections.

Eight RS-422 serial ports come standard on a Profile disk recorder. A Profile disk recorder can
issue serial commands or receive them from an external device via RS-422 communication
lines. The Profile serial protocol associates each API call with a specific number that can be
sent over an RS-422 line. The ProLink application monitors Profile protocol calls over an
RS-422 link, allowing you to use compatible hardware devices to issue commands to a Profile
unit.

NOTE: Louth and Odetics RS-422 protocols are also supported, although there is not a
one-to-one correspondence between these protocols and the Profile API. Louth and
Odetics protocols do not allow full access to the functionality of the Profile system.
 12 July 2001 Profile Software Development Kit User 19

Chapter 2 Programming the Profile Video Server

20
The TekCfg library
The TekCfg library is responsible for providing information about the Profile server’s
configuration. The major work of this configuration library takes place as the real-time
embedded system receives its software load and starts running. At this point, the software
discovers what hardware is available; it communicates the hardware information back to the
configuration libraries in the host computer. The library formats the information and places it
in the Windows NT registry with other hardware start-up information.

At the same time, the libraries check the registry for the preferred settings for the drivers in
the real-time embedded system and communicate those settings to the drivers. Any variable
parameters that have not been set previously, will be taken from default tables in the libraries.
All the settings are placed in the registry.

After the real-time system is started, the configuration libraries interface to the information in
the registry for the application. The application does not need to directly access the Windows
NT registry and extract the information, but it can obtain the information from the functions
in the configuration library.

By using the information available in the registry, an application can create and display lists
for use by the user in selecting the components of the embedded system that are to be used by
the application. For example, the application can determine the preferred file system onto
which the media files are to be recorded, or the media inputs to be recorded. The application
is able to use the same names for the components as all other applications on the system since
the names are maintained by the configuration libraries. This aids in increasing the consistency
in the user interface.
Profile Software Development Kit User Preliminary — 12 July 2001

The TekPdr library
The TekPdr library
The TekPdr library provides an API for enumerating and managing an inventory of stored
movies described in a Common Movie Format (CMF), and for editing the descriptions of the
movies. A movie consists of multiple, synchronized streams of media, video, audio, and
timecode. Within the Profile, the streams of media are held as files in the media file system.
The CMF description of the movie specifies the relationship of segments of the stored media
files to each other. Using the TekPdr library, the application can determine what movies are in
the inventory, create and delete stored movies, and change the specification of the movie so
that the relationship of media file segments is changed.

The Common Movie Format provides a structure to the media files that comprise the movies
so that a single media file can participate in many movies. Additionally, a single movie track
can reference multiple media files and contain segments of black media. By using the TekPdr
library, applications can share movies. A movie can be recorded by one application, edited by
a second application, and played by yet another application.

Using stored movies
There are two approaches to using stored movies.

In the first approach, you rely primarily on TekVdr calls: Attach empty media files to the port
timeline resources with VdrAttachMovie and record into the movie with VdrCueRecord
and VdrShuttle. The VdrAttachMovie function automatically creates the stored movie
representation without further effort on your part. Under this approach, you will still make
TekPdr library calls when you need to enumerate the movie database (for example, to select a
movie for playback or record.) The enumeration of the stored movies is done in the TekPdr
subsystem; the enumeration of movies on the port timeline is done in the TekVdr subsystem.
(For enumeration of stored movies, see Complex movie names on page 23. Also, refer to the
functions in the SDK Reference Manual associated with the current dataset and current group,
and the functions associated with FindFirst, FindNext and CloseFind for the dataset, group
and movie).

With the second approach, you manipulate the stored definition of the movie, directly
accessing the lower level elements of the stored movie. There is functionality in the TekPdr
subsystem to access the tracks and the individual media that comprise a track. Tracks exist
only because there is media on the track, and the track never has to be explicitly created or
deleted. Media can be added to existing tracks, or added to a new track causing it to come into
existence. Media referenced from one movie can be referenced from a second movie by
copying the media token to the second movie. Likewise, a movie can reference the same media
multiple times by copying the media token. The actual segment of the media participating in
any given reference is controlled by setting in and out points for the media in the media token.
Indeed, the structure that represents a movie can be copied to provide a backup version of the
movie before changes are made.

The header file tekpdr.h contains the function prototypes for the capabilities implemented by
the library. The new data types of the library are specified in the header file pdrtypes.h. The
header file pdrattribs.h contains movie attribute definitions. In addition, the header file
pdrerror.h can be used to decode the extended error information that is returned by the system
function GetLastError.
Preliminary — 12 July 2001 Profile Software Development Kit User 21

Chapter 2 Programming the Profile Video Server

22
Common Movie Format
Common Movie Format (CMF) describes movies by specifying the relationship of stored
media files to each other. Most users don’t need to know more about CMF beyond this, its key
benefit: All Profile applications--those developed by Grass Valley Group and by third-party
vendors--share the same media files.

A movie is a combination of several multimedia streams of information (video, audio,
timecode) synchronized to form a whole unit. In television one expects video, two or three
audio inputs, and a timecode or two to be implicitly synchronized because all three were
(historically) recorded together on tape, not on separate channels or tracks. In a digital world
where these components can be filed as separate entities on discrete systems, however,
synchronization can be a problem. That’s what makes CMF so valuable. A CMF movie
describes what information is in these various multimedia streams and how the streams are
synchronized.

Using library commands with CMF movies
The functionality of the eight Profile API libraries provide notification to applications when
the CMF movie inventory changes.

A CMF movie created with PdrCreateMovie stores header information about all media files
associated with the movie as a whole and is identified with a MovieToken. Once recorded, a
media file is referenced as a media segment, which is a portion of a media file (although that
portion can comprise up to 100 percent). In order to define a portion of the media file to use,
a descriptor is needed. In CMF, the media segment descriptor is the MediaToken, created with
PdrCreateMediaToken. The MediaToken is a media segment reference. It points to a media
file and contains two values (in/out) that specify what part of the file to use.

The movie header then references a list of tracks. Each track is referenced relative to the movie
with a TrackToken. It has some information about the track and references a list of media
segment references or MediaTokens. For example, suppose you have MovieToken 3. Using
that MovieToken, you can discover a movie’s name (PdrGetMovieName), its group
(PdrGetMovieGroup), its dataset (PdrGetMovieDataset), its length
(PdrGetMovieLength), when it was created (PdrGetMovieCreateTime), when it was last
changed (PdrGetMovieLastChangeTime), and so on.

From the TrackToken, you can discover the length of the track (PdrGetTrackLength) and
how many media segments are on the track (PdrGetNumMediaOnTrack). You can also
request the next TrackToken (PdrGetNextTrack) or previous TrackToken
(PdrGetPreviousTrack). In addition, you can query for information using the MediaToken.
The MediaToken will help you determine which file is used for this media segment
(PdrGetMediaPath), what the in/out points are (PdrGetMediaIn, PdrGetMediaOut,
PdrGetMediaMarks), and so on.

You can set movies to read-only or locked mode, and you can open them in either exclusive
or shared mode (use PdrGetMediaAttributes or PdrGetMovieAttributes to test media or
move attributes). This format also makes it easier to create a new clip and to capture a feed
into separate clips for later use in a complex movie.

A read-only movie’s media files are protected against being rerecorded, but a read-only movie
can still be edited. A locked movie is protected against any change, including a name change.
However, because movies can share media, a movie can acquire the read-only attribute if some
of its media files are read-only. This effectively is a warning at the media level that the movie
cannot be recorded over.
Profile Software Development Kit User Preliminary — 12 July 2001

Complex movie names
When a movie is opened, it can be set to exclusive or shared mode. In exclusive mode, only
one person can have the movie open, so it is permitted to expand the movie definition by
adding media segment references. In fact, the only reason for opening a movie in exclusive
mode is because an edit operation is going to add media segment references to the movie. A
movie opened in shared mode may be opened by several people at once.

Complex movie names
The TekPdr library uses the complex movie names rather than separate group and movie
names. A complex movie name consists of three parts: the dataset, group, and movie name.
Either one (or both) of the first two parts can be implicit. (See PdrSetCurrentDataset and
PdrSetCurrentGroup.)

The complexMovieName is formed as a string with punctuation separating the three
components:
<dataset:> /<group>/<movieName>

...where the values between the angle-brackets <> are the values supplied by the calling
application.

The component substrings must be comprised of characters from the following sets: A-Z, a-z,
0-9, the <space> character, and the following special characters:
! # $ % & " () + , - . ; = @ [] ^ ’ { } ~ " * < > \ and |. The slash,
colon, and question mark characters (/, :, and ?) are not allowed because they are used
for punctuation of the complex movie name, or in streaming file transfer requests. The slash
character is used to indicate the break between the components. The colon character should
only be used in the dataset component as the terminating character. The question mark should
only be used to specify options to a UML in Fibre Channel streaming transfers. The maximum
length of each portion of the complex movie name is specified in the pdrtypes.h header file.
(See PDR_MAX_DSET_NAME_LEN, PDR_MAX_GROUP_NAME_LEN, and
PDR_MAX_MOVIE_NAME_LEN).

The characters " * < > ? \ | ^ and <space> have special meaning at the operating
system level. If these characters are included in the complex movie name, they are translated
into a special double-character value. This means that every one of these characters used in the
complex movie name decreases the maximum length of that portion of the name by one
character.

The operating system also reserves some names that cannot be used for movie or group names.
These names are: CON, PRN, AUX, CLOCK$, NUL, A:-Z:, COM1-COM4, and LPT1-LPT3.
Using any of these names will cause the creation of a movie to fail.

While names allow the use of both uppercase and lowercase characters for testing whether the
name is a duplicate or not, the comparison is not case-sensitive. (For example, the name Adam
is a duplicate of the name adam.)

The dataset portion of the complex name identifies one of the file systems. For that reason, the
dataset portion of the name must be the same as one of the file system names returned from
CfgGetFileSystemName. The default dataset name is the name of file system 0, which is
always available. The dataset name will always end with the colon as a terminator. To
emphasize that the name is a dataset name, it may be terminated with the slash that starts the
group name. If the dataset portion of the name is not explicitly supplied, the value of the
current dataset is used for this component.

The group name portion of the complex name is chosen by the application/user to be
meaningful and to help group the movies into categories. The default group name is default.
The group name is identified in the complexMovieName because it is enclosed with slashes;
Preliminary — 12 July 2001 Profile Software Development Kit User 23

Chapter 2 Programming the Profile Video Server

24
it is separated from the dataset portion with a slash and from the movieName portion with a
slash. If the group portion of the name is not explicitly supplied, the value of the current group
is used for this component.

The short movie name is the final portion of the complex name. It cannot be implicit. By
default, the complex name is expected to contain a short movie name. To emphasize the
movieName portion, the short name of the movie can be prefixed with a slash.

Table 1 shows the punctuation of a complexMovieName, and the resulting components after
the name is scanned and values are supplied for the missing components. In the following
examples, assume that the default dataset name is INT: and the default group name is default.
Furthermore, assume that the name EXT: is a valid dataset name.

The last example shows that the name can be formed from component parts even when the
dataset and group are empty. The extra punctuation does not invalidate the syntax of the name.
The syntax used for aaa, bbb, ccc, and fff are the preferred syntax.

Movie attributes
The attributes of a movie include access restrictions and information about sharing. Movie
attributes are presented to the application programmer as a mask of bits, with each bit position
representing a specific attribute. The bit positions can be tested by doing a binary of the
attribute and seeing whether the result is nonzero.

The program attributes which can be set control the ability of programs to modify the movie.
A movie that is ReadWrite (meaning ReadOnly is not set) allows the greatest degree of
modification as the media files can be rerecorded. When a movie is made ReadOnly, the media
files cannot be rerecorded or written. However, the movie can be edited so that the in/out
points of a media file can be adjusted, and media segments can be added or deleted from the
tracks of the movie. Finally, when a movie is locked, it cannot be modified; the in/out points
cannot be changed.

The attribute of ReadOnly (RO) has a passive effect on other movies that share the recorded
media of a movie that has been set to RO. Those other movies using the media are not allowed
to rerecord the media. For this reason, those movies have their access mode set to RO to
identify at the highest level that the media file(s) included in the movie are RO. The
PdrControlRO bit of the attributes can detect whether the movie is RO because it was directly
set to RO, or because some media it contains was set to RO. The PdrControlRO is set when a
movie is explicitly set to RO.

If a movie is to be extensively edited and new media segments are to be added to its definition,
the movie should be opened exclusively. This allows the application to use the movie without
impacting other applications that might try to use the same movie.

Table 1. Punctuation for a complexMovieName

complexMovieName Dataset Group Short Movie Name

aaa INT: default aaa

/mygrp/bbb INT: mygrp bbb

EXT:/grp2/ccc EXT: grp2 ccc

EXT:ddd EXT: default ddd

EXT:/eee EXT: default eee

//fff INT: default fff
Profile Software Development Kit User Preliminary — 12 July 2001

Movie attributes
A movie with a single media segment on each of its tracks is a simple movie—this is
recognized as a clip. Most recording is made into clips. Clips are used as the foundation pieces
for complex movies that have multiple media segments on a track. Because the clip can
sometimes be treated differently, a movie that has the simple characteristic will have an
attribute reflecting that. Attribute meanings are described in Table 2 below.

Only PdrReadOnly, PdrLocked, and PdrOpenExclusive attributes are directly controlled by
the programmer. The PdrControlRO attribute is set because the PdrReadOnly attribute was
explicitly set on the movie, and the PdrOpen and PdrOpenMultiple attributes reflect the
dynamic changes of access to the movie.
Preliminary — 12 July 2001 Profile Software Development Kit User 25

Chapter 2 Programming the Profile Video Server

26
Table 2. Movie attribute descriptions

Attribute Description

PdrAudio16Bit This attribute indicates the predominate sample size for audio, 16-bit in this case.

PdrAudio24Bit This attribute indicates the predominate sample size for audio, 20-bit in a 24-bit
container for this case.

PdrCodecConstruction This attribute indicates that the movie is under construction and being recorded.

PdrControlRO This attribute means that the movie was set ReadOnly, and all of its media files
have been set ReadOnly. A ReadOnly movie cannot be directly set to ReadWrite
unless it has this attribute. Without this attribute, the ReadOnly attribute is a pas-
sive indicator that a shared media file has been set ReadOnly.

PdrCopyConstruction This attribute indicates that the movie is a target of a copy over Fibre Channel.

PdrError This attribute is returned when there is an error in trying to get the attributes.

PdrLocked This attribute indicates that the movie has been Locked so that no changes can be
made to the movie.

PdrOpen This attribute indicates that at least one “open” exists on the movie.

PdrOpenExclusive This attribute indicates that the movie has been opened exclusively. This will keep
anyone else from opening the movie, but does allow the space for the movie data
(media tokens and tracks) to grow without concern.

PdrOpenMultiple This attribute indicates that more than one “open” exists on the movie.

PdrReadOnly This attribute means that some of the media files of the movie have been set to
ReadOnly and cannot be modified; the files cannot be written, and media cannot
be recorded into them.

PdrRestoreConstruction This attribute indicates that the movie is the target of a restore operation from a
tape cartridge library.

PdrSampleRate50 This attribute indicates the movie’s predominant sample rate: 50Hz for PAL.

PdrSampleRate60 This attribute indicates the movie’s predominant sample rate: 60Hz for NTSC.

PdrSimpleClip This attribute indicates that the movie is composed of exactly one media segment
on each track.

PdrTcDropFrame This attribute indicates that the moving is using drop-frame timecode.

PdrTcNonDropFrame This attribute indicates that the movie is not using drop-frame timecode.

PdrUnderConstruction This attribute indicates the movie meets any of the three construction criteria:
recording, Fibre Channel copy, or library restore.

PdrVideoFormatJPEG This attribute indicates that you are using the JPEG video format.

PdrVideoFormatMPEG This attribute indicates that you are using the MPEG video format.
Profile Software Development Kit User Preliminary — 12 July 2001

User data
User data
Each object in a movie can contain associated user data. The user data can be associated with
the movie, a particular track of the movie, or a particular media segment of the movie, but it
has no significance to the library. The user data functions are responsible for storing data from
the application program, retrieving data for the application program, moving the data with the
movie object if it is copied, and deleting the data if the associated object is deleted.

The data is identified with a four-part key consisting of the MovieToken, TrackToken,
MediaToken and Tag. The tag enables each application to have its own data associated with
the movie object. The tag consists of two parts: a software vendor value and an item value. The
high order bits of the tag are assigned to a software vendor so that each vendor can define its
own use of the low order bits of the tag field. See the header file pdrtags.h for more details on
assigning tag values (see the PdrSetUserData and PdrGetUserData functions).

Because the data that is stored and returned is not used by the library, the application is
responsible for casting the data to the correct type. User data is handled as an array of unsigned
bytes by the library. The array size is specified in the Set function. If a previously set user data
item is to be deleted, the item is set with an empty value (for example, the length of the data
is 0.)

Change notification
The TekPdr library is responsible for maintaining the inventory of movies in order that an
application can be notified when the inventory has changed, or when a movie in the inventory
has changed. The library contains functions that allow the application to receive change
notifications asynchronously.

The key to the mechanism is that the application gets the handle for a notification event from
the library. The application can then create a thread that uses the Win32 functions to
WaitForSingleObject or WaitForMultipleObject. The library will satisfy the wait condition
whenever a change of the desired type is made in the library. Once notified of a change, the
application can use the PdrGetMovieChanges to identify the actual changes that are being
reported.

An application that does not want to wait for the change event and has its own timing
mechanism can use the PdrGetMovieChanges function in a polling manner to determine the
changes to the stored movie inventory.

Saving a movie off the timeline

Some applications edit a movie directly on the dynamic timeline, and save the movie in the
Common Movie Format (CMF) once editing is complete. These applications can add
resources to the timeline, add media to existing resources, and set in and out points, thus
creating an entire edited movie.

Once the movie is in its final form on the timeline, it can be saved in the inventory of movies
with the PdrSaveMovie function. PdrSaveMovie can be invoked with one of three different
PdrCopyTypes--PdrExactMedia, PdrRenderedMedia, and PdrSharedMedia--described in
Table 3.
Preliminary — 12 July 2001 Profile Software Development Kit User 27

Chapter 2 Programming the Profile Video Server

28
Registry entries
The TekPdr library uses a Windows NT registry section to communicate a few parameters,
namely HKEY_LOCAL_MACHINE. These parameters are stored under the key
\Software\Tektronix\Profile\PdrMovie. The three most important keys are as
follows:

1. Max Movies is the limit of all movies in the system. Storage for the maximum number of
movies is allocated as the system starts.

2. Max Media Definitions is the limit of total number of tracks and media segments in any
single movie. This number can be expanded for a particular movie if the movie is opened
exclusively while the additional media segments and tracks are being added to the movie.
The default value is large enough to allow the creation of a clip with nine tracks without
requiring any special operation. When any specific movie is opened exclusively, the
maximum number of media definitions can be increased without taking any special action:
the library will increase the space allowed for that movie as necessary.

3. Max Media References is the limit of total number of references to media files by all
movies in the system. Each media segment of type PdrMediaFile in each movie causes a
media reference to be allocated.

Max Movies and Max Media References values can be increased without any impact on the
existing inventory of movies. (These values may only be increased as decreased values may
cause data corruption.) The system should be shutdown and restarted for the new values to take
effect.

ATTENTION: Direct editing of the NT registry is potentially risky. Never edit the registry
if you are unsure what the consequences may be. The TekPdr library provides a separate
interface to the registry settings above via the functions PdrGetRegistry and
PdrSetRegistry.

Table 3. PdrCopyType descriptions

PdrCopyType Description

PdrExactMedia This method uses the most bandwidth (and disk space). All media files are copied
in their entirety, so that the stored movie owns one copy of each media file, while
the original copy remains on the timeline available for additional editing and is
referenced from the sources that were combined in the edit. This operation can
take a substantial amount of time depending on the amount of media being copied
and any other plays or records in progress.

PdrRenderedMedia This method copies every field currently on the timeline into a single media file,
honoring any in/out points or black on the timeline. Like the PdrExactMedia
mode, it can be resource- and time-intensive since media is duplicated. Note,
though, that the amount of media duplicated may be much less than with PdrEx-
actMedia depending on the position of in/out points relative to the extent of the
media files on the timeline. For example, given two half-hour media files on the
timeline with in/out points denoting a 10-second highlight, PdrRenderedMedia
will be much less resource-intensive than PdrExactMedia.

PdrSharedMedia This is the normal, and simplest, method of saving a movie. The movie is saved in
the inventory; the media segments are shared with other movies. This method is
most efficient since no additional space or bandwidth is required from the embed-
ded media file system.
Profile Software Development Kit User Preliminary — 12 July 2001

The TekPls library
The TekPls library
The Profile Library System (PLS) uses the client/server model of computing. There is one
instance of the library server for each library. This server has a catalog that describes the
contents of every tape cartridge loaded in a library. The catalog is a cache for tape cartridge
directories. It can also retain residual knowledge of cartridges that have been removed from
the library and stored elsewhere.

The library server works with files as a basic unit of information. A file can be a simple stream
of bytes or a multiplexed stream of video, audio, and timecode. The library system copies files
from a Profile system to tape cartridges and back, but does not delete files from a Profile
unit--file management is handled by the TekVfs library.

The library server keeps a catalog of all files in the attached library. The purpose of this
database is to allow a fast search for a given piece of material and to support requests for lists
of the available material. When cartridges are removed from a library, the operator or
application can have all references to material on the cartridge removed from the catalog. This
is useful when cartridges are not going to be used in the near future or are being sent to other
facilities. The catalog entries for removed cartridges can be retained. Having entries in a
catalog makes locating the material faster. The catalog knows the cartridge is not in a library,
and it has a note about where the cartridge is stored.

Tape cartridges are identified with unique barcode labels. Barcode labels are used so machine
and human readable cartridge identification is available.

Some vendors’ cartridges can be subdivided into partitions. A partition can be treated as if it
were a separate tape for material replacement purposes. The first partition on a cartridge (at
the load point) stores a master cartridge directory. Several types of tape cartridges may exist
in a library. One type is clip, media and data file archive cartridges. Another is tape transport
cleaning cartridges. Each cartridge must have unique barcode label. The library system reads
and writes basic units of data called files. These can be one of several types: data files, clip
files, and so forth.
Preliminary — 12 July 2001 Profile Software Development Kit User 29

Chapter 2 Programming the Profile Video Server

30
The TekRem library
The TekRem library is responsible for connections between a remote Win32 system and a
Profile. It is also responsible for communicating the calls made to the other API libraries
residing on the Profile server.

The TekRem library can access the Profile system, either locally or remotely. The application
makes a call to the TekRem library to get a ConnectHandle that will indicate which system to
use. In the case of a local system, the ConnectHandle is the defined value of
LOCAL_CONNECTION in the file remtypes.h.

The TekRem library makes remote Ethernet access possible between Profile systems or
between a Profile system and a personal computer. For example, with a remote connection,
you can control video operations over LAN from a PC in your office to a remote Profile
running in another part of the building.

The first step in establishing a remote connection handle which identifies a Profile unit for the
application that wants to communicate with it. If an application is running directly on the
Profile unit, you can eliminate the remote connection by using the LOCAL_CONNECTION
value for the connHandle parameter of the RemOpenConnection command.

The RemOpenConnection function opens a remote connection from the local host to the
target remote system by specifying a host name or Internet Protocol (IP) address. You can also
establish a local connection where the handle is named LOCAL_CONNECTION. The call
returns a handle for the connection. RemCloseConnection close a remote host connection.
Profile Software Development Kit User Preliminary — 12 July 2001

The TekVdr library
The TekVdr library
TekVdr is responsible for the Profile server’s transport control (record, stop, and play actions),
resource management, and connections. Resources are implicitly tied to a port and represent
streams of media. A port functions in only one mode at a time and has a single clock to control
all of its resources. Profile resources include physical resources, video resources, audio
resources, and timecode resources.

Physical resources
Physical resources are the inputs and outputs of the video server and the JPEG, MPEG,
DVCPRO 25, and DVCPRO 50 encoder/decoders that transfer the media streams to the media
files on the disks. Some resources can be shared among ports and applications while others
must be temporarily owned by the port and the application using them.

In general, input resources may be shared, that is, several ports can use the same video input
without conflict. Instead of allocating the input resource, the application gets a connection
handle that can be used in the same manner as an allocated handle. The codecs and output
resources need allocation so that the port and the application have ownership and no other
application can cause a conflict in their use.

JPEG, MPEG, DVCPRO 25, and DVCPRO 50 codec resources are the interface between the
media streams and the media files. Drivers read and record the media files. In order to
communicate which files, what segment of a file, and in what order to use the files, the
application attaches the media files to the resources, setting in and out points for the file.

JPEG video resources
The JPEG video codec has three dimensions of control:

• field size goal;
• luminance quantization level; and
• chrominance quantization level.

These parameters interact. After the codec compresses a field, it compares the field size with
the target field size. If the field size is smaller than the target, the quantization level is
decreased. If the field size is larger, the quantization level is increased. A complex scene
following a fade to black would cause a problem if the quantization level for the black fields
is allowed to decrease too far. In that case, the complex scene would cause a jump in the field
size that might swamp the system bandwidth. For this reason, there is an absolute minimum
quantization level. The greater the range of quantization levels allowed, the closer the codec
can keep the field size to the goal.

Video goal size
The video goal size is the target field size the JPEG codec tries to achieve when compressing
the video. The actual field sizes after compression will vary on both sides of the target. The
default value for the goal size is 75,000 bytes per field. The major limitation in increasing the
bytes per field is the total bandwidth of the system. At 75,000 bytes per field, a single codec
is using about 36Mbps (75,000 x 60 fields-per-second x 8 bits-per-byte). The maximum
bandwidth for all four JPEG video codecs is 192Mbps. This can be partitioned among the four
video codecs.

The field size varies as a function of the complexity of the field and the quantization level. The
field size target is changed with the function VdrSetVideoGoalSize. The actual field size of the
video going through the codec is obtained with the status function VdrGetCurrentFieldSize.
Preliminary — 12 July 2001 Profile Software Development Kit User 31

Chapter 2 Programming the Profile Video Server

32
Luminance quantization level
The luminance quantization level is more important than the chrominance level. As the
luminance quantization level decreases, the field size of complex scenes increases. The codec
sets the actual level and an algorithm adjusts it for each field, trying to keep a constant field
size. To avoid a large jump in the field size that might cause system problems, the quantization
levels are bound by absolute minimums and maximums. You can narrow the range of
quantization levels by having the codec use a reduced range within the absolute range of
minimum and maximum levels.

You obtain the value of the absolute minimum and maximum quantization levels for
luminance with the functions VdrGetAbsMinLumQ and VdrGetAbsMaxLumQ, and set new
minimum and maximum values using the functions VdrSetMinLumQ and VdrSetMaxLumQ.
To obtain the actual luminance quantization level of the video going through the codec, call
the status function VdrGetCurrentLumQFactor.

Chrominance quantization level
The chrominance quantization level is less important than the luminance level. Generally, the
change you will make to the chrominance quantization level is to reduce the maximum
allowed quantization on complex scenes. As with the luminance quantization level, you can
obtain the absolute range of the chrominance quantization level with functions
VdrGetAbsMinChrQ and VdrGetAbsMaxChrQ, and set new minimum and maximum values
that reduce the range using the functions VdrSetMinChrQ and VdrSetMaxChrQ; however,
there is no status function to get the chrominance quantification level of video currently going
through the codec.

MPEG video resources
The MPEG video codec has four dimensions of control:

• chrominance sampling;
• GOP structure;
• bitrate; and
• first and last line encoding.

Chrominance sampling
Use VdrSetMpegChromaFormat to set the chrominance sampling to 4:2:0 or 4:2:2, and
VdrGetMpegChromaFormat (which returns an MpegChromaFmt enumerator such as
MpegChroma420 or MpegChroma422) to query for the current format with.

GOP structure
Another early step is to set the GOP structure--the number of P- and B-frames you want to use
(up to 16 total, minus one for the single I-frame that is “heart” of the GOP). Use
VdrSetMpegGopStructure to set the structure and VdrGetMpegGopStructure to query the
system for the current GOP. These functions use an enumerator of type MpegGopEnd that
determines how an MPEG video stream begins, either open (GopOpenEnd) or closed
(GopClosedEnd). In an open GOP, the initial B-frames have a preceding I-frame that is part
of the previous GOP. A closed GOP, on the other hand, has initial B-frames that have a
preceding I-frame that is part of the same GOP.
Profile Software Development Kit User Preliminary — 12 July 2001

Audio
Bitrate
The bitrate, expressed in megabits per second, essentially sets the video quality for MPEG.
The higher the bitrate, the higher the video quality. However, higher bitrates require more disk
space to store the data, limiting the number of hours of material you can store on disk. Use
VdrSetBitRate to set the bitrate in the range of 4 to 45Mbps and VdrGetBitRate to query
the system for the current bitrate.

First and last line encoding
Finally, you can select which of the incoming lines of video are encoded as MPEG.
VdrSetEncodingRange allows you to set the first and last encoded line of video. For 525-line
systems, the starting and ending lines must be in the range 21 through 260, with an acceptable
total of 512 or fewer lines per frame. For 625-line systems, the range is 7 through 310, with
an acceptable total of 608 lines per frame. VdrGetEncodingRange returns the first and last
lines as they are currently set.

Audio
This section discusses the differences between audio and video, including the architecture and
how it effects the ResourceTypes and EventTypes. Also included in this section are the
functions which reflect the difference in how things are heard versus how they are seen.

Analog audio architecture
In the case of video, each stream of video is placed onto the video bus. Therefore any video
source to the bus can be connected to any destination on the bus. On the other hand, there is
no audio bus and the audio codecs are not independent from the audio inputs, so the choices
for resources are fewer than with video.

Each analog audio circuit board, standard with the PDR100, has four inputs, four audio
codecs, and four outputs. Each audio input is permanently connected to its audio codec. Each
audio output contains a mixer with four inputs. These mixer inputs are connected to the four
audio codecs. The signal at the audio output depends on the percentage of each input signal
used and whether the codec is in record/idle or play mode.

In record/idle mode, the codec looks at the audio input and that signal is placed on the input
line of the audio output mixer. In play mode, the codec looks at the data coming from the disk
and that data is placed on the input line of the audio output mixer. The only difference between
record and idle is if the audio codec driver is saving the digitized audio on disk in record mode.

The Audio Signal Processing Board (ASPB) comes with the PDR200, PDR300, and
PDR400. A similar board is used in the Profile XP Media Platform. The ASPB architecture
accepts and simultaneously processes up to 32 audio inputs and outputs (with two boards) at
up to four simultaneous clock rates. Inputs may be individually clocked in groups of four, and
any clock group may be referenced to the system reference (house black) or any one of four
video inputs. Output clocking is synchronous to system reference.

You can configure the ASPB to operate with analog, AES/EBU digital, or embedded (SMPTE
272M Level A) audio, depending on which options are installed in your system. All three
audio formats are supported without external conversion equipment. You can choose an audio
format for each video channel. For example, you could enable analog audio with one video
channel, embedded audio on another, and AES/EBU on the rest.
Preliminary — 12 July 2001 Profile Software Development Kit User 33

Chapter 2 Programming the Profile Video Server

34
Audio resources
The TekVdr library contains the enumerators ResourceAudioCodec, ResourceAudioInput,
and ResourceAudioOutput. The application can provide orthogonal images of the media
types. This is accomplished by having both types of ResourceHandles for the audio codec
resources. Use the shared connection handle as the audio input handle and use the allocated
handle for the audio codec handle. Since both handles represent the same resource, the
connection geometry is transparent and appears similar to the video connection geometry.

Also, with the audio resources, there may be some limitations on the audio connections, based
on the physical limitations of the audio hardware. For example, audio inputs cannot be
connected to outputs that are not on the same board. In the PDR100, you may select which
output is participating in the connection, then offer only the four inputs/codecs that can
participate with that output. This group of four is identified by being resource numbers 0, 1,
2, and 3 modulo 4. That is, the sequence of numbers will be consistent with four resources per
circuit board in order. For the PDR200 and higher and the PVS1000, 16 or 32 inputs/codecs
are allowed, and so resource numbers are 0 and 1 modulo 32.

Audio minimum play length
To recognize sound, the length of audio being played needs to be more than a single field.
Otherwise, the repetitive replay of the sound breaks down into a 60 or 50 cycle drone. Using
an audio window for looping the audio helps eliminate that problem. Instead of replaying just
a single field as the video replays the field it is positioned over, the audio plays the media of
the field it is over, plus several additional fields making the sound more easily understood. The
number of fields to play when looping on a single position on the timeline is called the audio
window. Call VdrSetAudioWindow to set the size of the window.

Timecode
In the Profile system, timecode is treated like any other media. Input timecode may be
recorded in a file. A file of timecode may be output with the audio and video media streams.
In addition, a timecode generator can be used instead of the timecode input or timecode
recorder/codec to create timecode values. (Timecode, taken in its larger sense, includes user
bits).

At the first level, timecode is like video in that it has all three components in the stream: input
resources, codecs, and output resources. Also, the resources are connected together using
events of the EventConnectResources type. A media file must be attached to the timecode
codec (recorder) in order to either record or playback timecode values. The function
VdrGetCurrentTimeCode gets the current timecode and the function
VdrGetCurrentUserBits gets the current user bits. A timecode media file can be inspected
on a field-by-field basis to determine the timecode that corresponds to a specific field position
in the file.

The port
In order to work with physical resources, an application must first obtain a port object. The
port is the center of the application’s relationship to Profile resources. The port has two
functions:

1. To link together a set of physical resources into a multimedia recorder.

2. To synchronize the resources while recording or playing.
Profile Software Development Kit User Preliminary — 12 July 2001

The port
A recorder operates on one or more streams of media (either video, audio, or timecode) and
records those streams to media files, or plays back existing media files into those media
streams. A recorder/port’s resources are linked together and all active resources must be doing
the same function: recording media files, playing existing media files, or idle. Different active
resources attached to a single port cannot do different things. All inactive resources are
considered to be idle.

The second function of the port is to keep all active physical resources of the multimedia
recorder synchronized. This means the port tells the different resource drivers which field to
play, and when, so that all of the tracks in the recorder work together. One model of the port
is a timeline with parallel tracks containing the media files. The port clock can take any
position on the timeline, and the media related to that position on the timeline are used by the
resource drivers. On record, the timeline position corresponds to the fields in the media files
that receive the current field in the media streams. On playback, the timeline position
corresponds to the fields in the media files that are the source of the current field on each media
stream (Figure 2).

An application that must record and play simultaneously needs at least two ports, one for
recording and one for playback. Likewise, if the application must play multimedia at two
different rates simultaneously, it needs multiple ports. A single port is a single clock that ties
all of the port’s active resources together.

Figure 2. Timeline position in media files

Port clock modes
To this point, the port clock mode has been the default MediaPlayMode of PlayNormal. In this
mode, the clock position is implicitly limited by the limits of the attached media. The
maximum clock value is determined by the track whose last media out point has the greatest
timeline position value. The minimum clock value is determined by the track whose first

OUTIN

Port Clock Timeline

-50 0 50 100 150 200 250 300 350

Media File 3

Two Codec Resources with Attached Media Files

Timeline Field Positions

Media File 1 Media File 2

Resource #2

Resource #1
Preliminary — 12 July 2001 Profile Software Development Kit User 35

Chapter 2 Programming the Profile Video Server

36
media in point has the smallest timeline position value. As the clock moves from one extreme
to the other, any track whose media does not exist at all possible clock positions plays black.
Any recording where there is no media file is not saved. In general, when the shuttle command
is given, the clock changes its position at the rate and direction given in the shuttle command.
This means a negative rate makes the clock move backward. The clock does not always start
at the same point: it starts with the last point at which it was located. The clock stops changing
its position when the last field within the implicit limits of the port is played. The resource
drivers continue to use that last field position until told otherwise.

Within the port, there is complete symmetry between record and play operations. The port can
be set to jog while recording; the resource drivers continually use the field of the file that
corresponds to the clock position. Although the resource drivers are given the same field
position many times before the clock position advances, only the first field from the media
stream is written into that position of the file. Other fields are discarded. Likewise, a record
operation with a rate that is greater than unity will cause empty field positions in the file. This
consistency between record and play modes also exists with the clock modes described in the
following sections.

Other clock modes
There are three additional clock modes (MediaPlayModes): PlayLimited, PlayLoop, and
PlayBounce. In addition, there is a second explicit set of clock limits that are used with these
play modes. Set the explicit clock limits with the VdrSetMinPosition and
VdrSetMaxPosition functions. Without setting these explicit limits, the additional clock
modes will not work. Change the clock mode with the VdrSetPlayMode.

The PlayLimited mode is similar to the PlayNormal mode, except that it plays within the
explicit limits on the clock position. The clock advances in the desired direction at the desired
rate until the last position in the range is reached. Then the clock stops advancing and the last
field position is used repeatedly. In play mode, the last field is shown as if the port was in jog
mode.

In PlayLoop mode, once the clock reaches the last field within the explicit clock limits, it
jumps to the last field at the other end of the media and continues. If the clock is advancing
(forward), the last field of the media delimited by the explicit clock limits is used, then the
clock jumps to the first field of the delimited range.

In PlayBounce mode, once the clock reaches the last field within the explicit limits of the
clock, the sign of the rate changes, and the clock continues in the other direction.

Still modes
In addition to rate-based clock modes, there is a field-based mode that controls which fields
are used while in jog mode. In jog mode, the clock advances only as requested by the
application. Each time the clock advances, the application must call VdrJog. The function’s
parameter indicates the number of fields to change the clock and the sign is the direction. In
jog mode, the clock remains at the same position for many field times and the resource drivers
continually reuse the same field time in their files.

The application can control the fields used at this level with the StillMode setting. The
StillMode can be either PlayByField or PlayByFrame.

NOTE: MPEG does not support a StillMode of PlayByField but does support
PlayByFrame.
Profile Software Development Kit User Preliminary — 12 July 2001

The port
In PlayByField, the clock uses only the field where it is positioned. On playback, the video
resource driver uses line doubling to provide a full image. In PlayByFrame mode, the clock
alternates its position between the two fields that comprise a frame. On playback, this
enhances the video vertical resolution.

Port clock limits
The timeline of a port ranges between field numbers of approximately –2x109 to +2x109. The
port clock is limited to a subrange of these field numbers. In NormalClock mode, the clock
limits are applied implicitly, and you do not need to be concerned with the limits. This is the
default case. In NormalClock mode, the clock limits are set to the limits of the attached media
files. The clock limits just enclose the earliest and latest times that have associated files on the
timeline. The port clock will not take values outside these minimum and maximum limits.

Different codec timelines might start and end at different points after various files have been
attached, deleted, and had in/out points changed. This means that the port clock can take
positions in which there is no media file for a codec to access. In these cases, the codec driver
plays black, or throws the recorded field away. (Black is defined as silence for the audio
codecs, 00:00:00:00 for timecode.)

Synchronizing ports
One port timeline can be controlled synchronously with a second port timeline; every position
change in the master port will cause the same relative position change in the slave port while
the ports are in play or record mode.

The application should first establish the relative positions of the ports on their timelines.
Then, the application must place each port into the proper cue mode for the action desired on
the port; either CuePlay or CueRecord. The ports can be doing different functions.

The ports will now stay locked to their relative positions; when the master port position is
changed, a similar change will be seen by the slave port. It is possible to slave multiple ports
to a single master port. The slave mode is established using the VdrSetPlayMode function.
Preliminary — 12 July 2001 Profile Software Development Kit User 37

Chapter 2 Programming the Profile Video Server

38
Events
With resources allocated to a timeline, the next issue is managing these resources. The
dynamic subsystem allows for scheduling of several types of resource-related events via the
Events API. Specifically, you can programmatically control video and timecode crosspoints,
audio mixes, timecode values and timecode user bits. The following table summarizes the
available events. (See the SDK Reference Manual for full details on function parameters.)

These events are coordinated with the API functions VdrDefaultEvent, VdrScheduleEvent
and VdrStateEvent. To understand how these functions control the timing of events, be aware
of the various states a port may assume. Figure 3 presents a simplified state diagram of a port,
including the API calls which can move a port between states.

Default events are not associated with a particular position on the timeline, but take effect any
time the port is in an idle or record state. On the other hand, scheduled events take effect at a
given video field while a port is in the play state. It is possible to schedule multiple events for
a given resource. The API also provides functionality to reschedule and cancel previously
scheduled events. Refer to the SDK Reference Manual for more details.

Figure 3. Profile state

Table 4. Summary of available events

To manage... ...use this event type

Video or timecode crosspoints EventConnectResources

Audio mix levels EventMixAudio

Timecode values EventSetGTcTime

Timecode user bits EventSetGTcBits

9187-2

Cue Record
Record

Still Record
Idle

Cue Play
Play

Still Play

VdrCuePlay
VdrShuttle

VdrJog

Scheduled Events
May Apply

Default Events
Apply

VdrIdle

VdrIdle

VdrCueRecord

VdrCuePlay

VdrCueRecord

VdrCueRecord
VdrShuttle

VdrJog

VdrIdle

VdrCuePlay
VdrShuttle

VdrJog
Profile Software Development Kit User Preliminary — 12 July 2001

State events
State events
VdrStateEvent adds flexibility to the event mechanism. VdrStateEvent can replace the use
of VdrDefaultEvent and VdrScheduleEvent in most cases. You can view default and
schedule events as subsets of state events. State events can replace most usage of the scheduled
events because they are much more efficient and provide greater flexibility.

There are three states of the Profile port relevant to this discussion:
• Record/Idle state is active whenever the port is in Record or Idle mode.
• ActivePlay state is active whenever the port is in PlayShuttle or PlayJog mode.
• ReadyToPlay state is active whenever the port is in CuePlay state, or the port would be in

ActivePlay state except that the position cannot be advanced because it is stopped by a
position limit.

The VdrStateEvent function describes an event that occurs when the Profile port switches
into the specified state. The simplest explanation will use the existing Default- and
ScheduledEvents to show what happens. With a DefaultEvent declared, the event will occur
each time the Profile port switches from any Play state to either a Record state, or an Idle state.

Consider the EventConnectResources type of Event, which determines how the resources are
connected. Normally, the application will want the input routed to the output when in Idle or
Record modes. This is accomplished by declaring a DefaultEvent with that connection. Each
time the application switches the port from Play to Idle, or Record, the input is connected to
the output.

Likewise, a ScheduledEvent is normally used by the application to switch the connection such
that the codec is connected to the output when the Profile port goes into Play mode. While the
Scheduled Event can be used to control more specifically when the switch is made, most
applications set the time of occurrence to be as early as possible, and do not attempt to control
the switching at a specific vertical interval. When the time is set to infinity, the event becomes
a StateEvent--it occurs on the change of state.

By having three states, a wider variety of applications are possible. The use of the Profile video
server as a combination pass-through switcher and spot inserter underscores the need for the
separation of the Play state into two substates. Figure 4 shows a Profile unit and a video
switcher under automation control.

Figure 4. Profile unit and video switcher under automation

Profile 1
Program Cache

Automation

RS422
control

RS422
control

Insert/ Mixed
video

(both program and
insert/commercial video)

Video
Switcher

commercial
video

Program
video
Preliminary — 12 July 2001 Profile Software Development Kit User 39

Chapter 2 Programming the Profile Video Server

40
Normally, the Profile port would be placed into CuePlay as the spot is prepared for insertion.
As the media files are buffered, the initial image of the spot is displayed on the output in a
freeze frame mode. This is a confidence check that the material is cued, and the video server
is ready.

In the case where a Profile system is acting as a pass-through switcher, it is not desirable to
show the cued first frame of the spot. The output needs to continue to show the input until it
is actually time to show the spot. Then, as the spot finishes, it is necessary to switch the output
back to the input to continue to show program material that is passing through the video server.
Figure 5 shows the combination of two Profiles acting in series.

Figure 5. Pass-through Profiles in series

By having three states, we can specify that the output of Profile 2 is connected to the input
during the Record/Idle state, and during the ReadyToPlay state, but the output is connected to
the codec during ActivePlay.

Current applications, such as the example shown in Figure 6, Attaching a new media file to a
timeline on page 43, that are showing the first frame of the spot in a freeze frame manner are
using the three states such that the output is connected to the Input during the Record/Idle
state, but during the ReadyToPlay state and the ActivePlay states the output is connected to
the codec.

In the StateEvent, a subtle side effect of the current DefaultEvent and Scheduled Events is
eliminated. Currently, if there is no ScheduledEvent, the DefaultEvent will continue to be
active. In the StateEvent, the event for each state must be specified. If the same set of
connections are to be used in all states, this can be specified in the StateEvent. It is explicitly
specified, and not an implicit condition because another event was not specified.

This functionality is still available, but it is specified differently.
VdrDefaultEvent(hPort, NULL, EventConnectResources, hInput, hOutput);

...becomes:
VdrStateEvent(hPort, EventStateAll, EventConnectResources, hInput, hOutput);

To override the Play states, the previous ScheduledEvent:
VdrScheduleEvent(hPort, MOST_NEG_FIELD, EventConnectResources, hCodec, hOutput);

...becomes:
VdrStateEvent(hPort, EventStateAllPlay, EventConnectResources, hCodec, hOutput);

State Event

Profile 1 Profile 2
Program Cache Commercial Cache

Automation

RS422
control

RS422
control

Program
video

Mixed
video

(both program and
insert/commercial video)
Profile Software Development Kit User Preliminary — 12 July 2001

Audio events
In the above, the following defines are in effect from VdrTypes.h:
#define EventStateIdleRecord (1 << 0)
#define EventStatePlayActive (1 << 1)
#define EventStatePlayReady (1 << 2)
#define EventStateSwitcher (5)
#define EventStateAllPlay (6)
#define EventStateAll (7)

The function prototype of the VdrStateEvent has the same form as VdrDefaultEvent with
the one change that the reservedHandle field which was NULL in VdrDefaultEvent is now
the StateMask field. The StateMask indicates in which states the event should be active. For
compatibility, VdrDefaultEvent is equivalent to VdrStateEvent with the StateMask set to
EventStateAll.

Example 9, stateevt.c on page 100 demonstrates how to use VdrStateEvent to provide more
control over port connections during the ReadyToPlay state and how to use VdrStateEvent
to replace VdrDefaultEvent and ScheduleEvent.

Audio events
The audio event is of the type EventMixAudio. This event has two more parameters than the
corresponding EventConnectResources. These parameters are the target level (as a
percentage) of the input signal in the output and the duration (as a number of fields) over which
the change in level should take place. This is the maximum duration of the change (the target
level might already be in use). Thus, events to play equal parts of audioCodec1 and
audioCodec2 into audioOut1 starting at port clock position 300 and getting to the target level
in 1/3 second would look like:

VdrScheduleEvent(port, 300, EventMixAudio, audioCodec1, audioOut1, (float)50., 20);
VdrScheduleEvent(port, 300, EventMixAudio, audioCodec2, audioOut1, (float)50., 20);

Timecode generator events
Instead of using a file of timecode during playback, or an external source of timecode during
record, the application can use a timecode generator. A timecode generator is another resource
type. Once allocated to the port, it is connected to the timecode codec or output in the same
manner that any source would be connected to a destination. The generator is controlled both
by functions for control setup and by events for data setup.

The control functions of the timecode generator provide for setting the timecode format and
the generator mode. Timecode formats allowed are TcFormatDropFrame or
TcFormatNonDropFrame. These are set with the function VdrSetGenTcFormat.

Generator modes are set with the function VdrSetGenTcMode. The possible modes are:
TcModeFreeze, TcModeFreeRun, and TcModeFieldLocked. In Freeze mode, the identical
value is generated every field time. The TcModeFieldLocked mode is correlated to the port
clock, such that any non-linearity in the positions of the port clock will result in the same
non-linearity in the generator output.

The generator’s data values are initiated by events. The event types are EventSetGtcTime and
EventSetGtcBits. By using events, you can force the time value and the user bit value to a
known value at a specific clock position. This could be used to mark the cut point between
different clips in a playback list.
Preliminary — 12 July 2001 Profile Software Development Kit User 41

Chapter 2 Programming the Profile Video Server

42
The encoding of the function parameters for these events would be as follows:
#define JAM_TIME 500
VdrHandle port;
EventHandle setTime, setBits, clrBits;
ResourceHandle tcGenHandle;
UINT time = SET_TIMECODE (1, 30, 15, 00);
// 1 hour, 30 min, 15 sec, 00 frame.
UINT bitsOn = 0x00008000; // set bit on
UINT bitsOff = 0x00000000; //set bit off after 60 fields.
...
setTime = VdrScheduleEvent(port, JAM_TIME, EventSetGtcTime, tcGenHandle, time);
setBits = VdrScheduleEvent(port, JAM_TIME, EventSetGtcBits, tcGenHandle, bitsOn);
clrBits = VdrScheduleEvent(port, JAM_TIME+60, EventSetGtcBits, tcGenHandle, bitsOff);

Timecode time is encoded in the system as packed decimal values, while the user bits are a
word of hexadecimal values.

Media files
The file system is shared by all applications, all ports, and all the media (audio, video, and
timecode). The files have an addressable resolution of one video field (this is more than a
single sample of audio.) The media file addresses (field numbers) are all positive, starting at
0. However, all fields of a media file do not need to be recorded.

A media file must be attached to a codec resource in order to be used with a media stream. The
file must be delimited with in/out points. The in point is the field position in the file used first
by the codec, while the out point is the first field position beyond the last field used by the
codec. The in/out points are relative to the media file, and not related to the codec timeline
where the file is attached.

The in/out points also protect the rest of the media file. The codec will only use segments of
the media file that are bracketed with in/out points.

For a new media file, the default out point is always 0, and the file is empty. Until the in/out
points for the attached new media file are set, the file is not used: it is merely a place-holder
on the timeline with a length of 0. This means the out point of a new file must be set in order
to record into the file. The file appears on the timeline with the length specified by the out
point. However, the file system itself will only remember the highest field number that was
ever recorded (and not deleted). The file system automatically gives the file a length that
includes the highest numbered field actually recorded in the file.

The media file attached to a codec resource is said to have a position on the timeline. The
position is the relationship between the field numbers on the timeline and those in the file. The
position of the file is the timeline field number of the file in point.

Multiple files
A single resource may have multiple media files attached. In that case, the files are placed head
to tail along the timeline. There are no gaps between files, and the last field position of the first
file is immediately before the first field position of the second file. The out position of the first
file is coincident with the in position of the second file. The resource uses the two files without
any break between them.

There are several cases where the timeline must be adjusted by shifting. One case is when a
file is added to the timeline. In this case, the additional file will be attached before another file,
and the position of some of the files on the timeline are shifted to make room for the added file
Profile Software Development Kit User Preliminary — 12 July 2001

Multiple files
fields. Other cases are if a file is deleted from the timeline, or if the in or out point of a file is
changed. In these examples, the number of fields in the abutted material changes, resulting in
changing of some files’ positions.

In order to simplify things, you can specify how the shifting is accomplished. The shift can be
either before or after the point on the timeline where the change is being made. If the shift is
after the point, then any file that occupies field positions on the timeline falling at or after the
point of action is effected. In the case of the shift being before, then any file occupying field
positions on the timeline that fall at or before the point of action is affected.

The effect of shifting is that the abutted files on the timeline may no longer begin at the
timeline position of 0. Any ShiftBefore actions will move the beginning of the first file away
from the position 0, and the new position can be on either side of the position 0 depending
upon the action; adding fields to the timeline will move the beginning of the first file to the
left, while deleting fields from the timeline will move the beginning of the first file to the right
(see Figure 6 and Figure 7).

Figure 6. Attaching a new media file to a timeline

9187-3

0

Original Timeline State

0

Timeline State after actions with ShiftAfter

Timeline State after actions with ShiftBefore

0

Attach Media File 3 before Media File 2

Media File 1

Media File 1 Media File 2

Media File 2Media File 1

Media File 2

Media File 3

Media File 3
Preliminary — 12 July 2001 Profile Software Development Kit User 43

Chapter 2 Programming the Profile Video Server

44
Figure 7. Deleting media from timeline with effect on other media

You might choose to do a ShiftBefore action if the point of action is before the current clock
position on the timeline, and a ShiftAfter action if the point of action is after the current clock
position. This method minimizes the impact of the shift. Consider an example in which the
current clock position is 30 when a change is made at the action point of 15. If a ShiftAfter
action is used, the relationship of the files to the timeline at the current clock position of 30
changes, and what should have been a smooth playback could have sudden cuts into other
material. Since the application can only change the timeline of one resource at a time, the
results are even worse since some of the resources will continue with the expected material
and file field numbers.

9187-4

0

Original Timeline State

0

Timeline State after actions with ShiftAfter

Timeline State after actions with ShiftBefore

0

Detach Media File B

Media File A Media File B Media File C

Media File A Media File C

Media File A Media File C
Profile Software Development Kit User Preliminary — 12 July 2001

The TekVfs library
The TekVfs library
The TekVfs library provides an interface to the media file systems used by the real-time
embedded system. Most of the functions of the host file system are available to the application
by using the TekVfs library.

While the functions in the TekVfs library may be slightly different in the parameter list from
the host file system functions, the logic is similar. The application programmer opens a file by
using the CreateFile function with the flags set to OPEN_EXISTING. The same is true with
the media file system, only the function is VfsCreateFile. (There are minor differences in the
actual parameterization of functions based on the need to remote the functions for the media
file system, and the lack of NT security in the media file system).

The files of a directory are enumerated using the Find functions: FindFirstFile,
FindNextFile, FindClose. Similarly, you enumerate the files of the media file system using
VfsFind functions: VfsFindFirstFile, VfsFindNextFile, and VfsFindClose. The find data is
even returned in a WIN32_FIND_DATA structure.

The big difference between the media file system and the host file system is the amount of
storage needed for media files. The media file system has a limited address space, so media
files are stored in a special manner: the blocks of media are outside the address space of the
file system, and only a pointer to the block is stored in the file.

The media file contains a small header area that identifies a media file, and describes its
parameters. An empty media file has a length of 128 bytes. If the file system does not
recognize its header on a file being imported into the system, the file will be considered a
non-media file. This will cause the file to be stored within the address space of the file system,
and this, in turn, may use all the available space for the file system.

The media file is addressable at the field level. Individual fields of the file can be imported and
exported to memory buffers on the host system.
Preliminary — 12 July 2001 Profile Software Development Kit User 45

Chapter 2 Programming the Profile Video Server

46
The TekVme library
The Profile video mix effects board enables you to create various styles of video transitions.
This section includes definitions of the transitions that will be supported and the methods of
allocating the mixer segments in the initial implementation of the video mix effects API.

The video mix effects board mixers can be allocated as two independent single stage mixers.
Each single stage mixer will have two video inputs, one video key input, one wipe generator,
and one video output. While this software implementation only supports single stage mixers,
the calls retain a stage specifier so that future implementations can support multiple stage
mixers without significant changes to the interface.

The following types of transitions are supported by any mixer stage:
• Dissolve between foreground and background.
• Keyed dissolve between foreground and background.
• Wipe between foreground and background, with or without border:

- Possible wipe styles are horizontal, vertical, horizontal split, vertical split, corner or
diagonal, box, diamond, and circle. These can also have multiplier values, be
positioned with x and y coordinates, have rotation, and have modulation edge.

- Borders have selectable matte color, width and softness, and can also be modulated
by sawtooth, square or sine wave of selectable frequency with changing or fixed
phase.

• Keyed wipe between foreground and background without borders.
- Keys have selectable clip, gain, and invert state.

• Push on/off between foreground and background, with or without border.
• Push over between foreground and background, with or without border or shadow.
• Dissolve between foreground or any of the above transition outputs and matte (fade to

black). This can happen at any time relative to any transition in progress.

Each transition is created in a mix context which is referenced through a VmeHandle. The mix
context is obtained, the desired transitions created for each stage within the context, then the
context is applied to the hardware. When no longer needed, the context can be freed.
Profile Software Development Kit User Preliminary — 12 July 2001

The TekXfr library
The TekXfr library
Fibre Channel enables you to copy media between Profile systems faster than in real time. To
transfer media across Fibre Channel connections, Profile systems must have Ethernet local
area network (LAN) and Fibre Channel boards installed and the systems need to be attached
to both networks in order to communicate. The Ethernet LAN carries commands between
Profile units while the Fibre Channel connections carry the actual video, audio, and timecode
data. Both networks use TCP/IP (Transmission Control Protocol/Internet Protocol).

Streaming over Fibre Channel makes it possible to transfer parallel tracks of media, such as
concurrent audio and video tracks, in small packets, and then reassemble them on the
destination Profile unit. This allows the network to transfer a clip while it is still being
recorded, or to playback a clip before the transfer is complete. For example, soon after it
begins receiving a clip, a destination Profile unit can begin playing it. The streaming transfer
continues while playback occurs at the destination, delivering new packets at a fast enough
rate to allow playback to proceed uninterrupted.
Preliminary — 12 July 2001 Profile Software Development Kit User 47

Chapter 2 Programming the Profile Video Server

48
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 3

Recording and Playing Movies

This chapter explores the basic work of recording and playing media with a Profile video disk
recorder/server, such as:

• Recording a simple movie.

• Playing a simple movie.

• Playing a movie that has in and out marks.

• Playing multiple (complex) movies.

• Each explanation is followed by a sample program written in C.

• Recording a movie

Recording and playing back a movie are two very basic operations of the Profile video server.
In this section, we discuss the basic steps necessary to accomplish these tasks, then present the
same steps in the form of small sample applications that record a movie clip to disk and play
back the saved movie clip.

Example 1, record.c illustrates the record function. (This example uses JPEG compression;
see Example 16, mpegdemo.c on page 183 in for a similar example. It may be useful to
review the JPEG play sample before reviewing the MPEG example, since this example builds
on the basic play operations.)

The program processes the command line to obtain the movie name and duration for
recording. Then it calls the SetupResources routine in order to allocate and connect the
appropriate resources. A connection to the local machine is established with
RemOpenConnection, and a port is opened with VdrOpenPortConnection. The standard
video format for the machine is determined with CfgGetStandard, and the port is set to that
format using the VdrSetVideoFormat function. The number of JPEG codecs is determined
with CfgGetNumCodecs and a free JPEG codec resource is identified and allocated with
VdrAllocateResource. The codec allows video encoding and decoding to occur on the
specified port.

Similarly, two audio codecs are allocated for the port, one for each stereo channel. Audio
inputs are considered permanently attached to the audio codecs and, therefore, available with
the audio codecs.

The video input and the video and audio output resources are also allocated for the port, in
order to receive a video signal and have somewhere to send it for testing.

The video input resource is allocated using VdrGetResourceConnectionHandle, which
provides a handle value for the resource to which a connection can be made but doesn’t take
control of the resource the way VdrAllocateResource does. The video input resource is
described as “shared”.

Lastly, audio output resources are allocated, completing the allocation of resources. Audio
input resources do not need to be specified since the audio codes are assumed to be connected
to the identically numbered audio input resources.
 12 July 2001 Profile Software Development Kit User 49

Chapter 3 Recording and Playing Movies

50
After this, default (VdrDefaultEvent) and scheduled events (VdrScheduleEvent) are used to
make the connections that occur when the port is in various states. The connection made with
the scheduled event is only active during playback. It connects the video codec to the video
output resource. In all other states, the connections made with the default events are active,
connecting the video input to the video output--which allows viewing the video input at all
times that the port is not in play mode--and to the video codec. Since the audio connections
are even more complex, the normal pattern of connections has been set to the default. (See
Example 9, stateevt.c on page 100 in for more information about these events and how to gain
more control over their behavior.)

Once the resources have been obtained, the main procedure performs the record operation by
calling StartRecord. The program tries to open the movie with PdrOpenMovie, to see if it
already exists. If the program detects that the movie does not exist, the function
VdrAttachMovieWithMarks creates the movie and attaches it to the timeline with empty
media files. With the movie attached, the VdrCueRecord function places the port in record
mode.

At this point, the port is ready to record, and VdrShuttle starts recording.

After the specified duration is recorded, the current position (VdrGetPosition) stops
changing, so that as soon as two samples of the position separated by 100ms show the same
position, the port is returned to idle mode (VdrIdle) and the move is detached from the port
timeline (VdrDetachMovie). The entire movie is played back because mark-in and mark-out
points are not specified.

Finally, the resources acquired during execution must be released. The main procedure calls
cleanup to release all of the handles acquired during the setup phase (VdrReleaseResource)
and close the port (VdrClosePort). This completes the process and stops the program.

If an error occurs at any step of the way, an appropriate error message is output to the display
for troubleshooting.

Using a command-line program, the accompanying code sample illustrates theses steps by
recording and playing back a clip on a local Profile system.
Profile Software Development Kit User Preliminary — 12 July 2001

Example 1. record.c

//
// File: record.c
// This sample program records a JPEG clip of a specified time (measured
// in seconds) and then plays it back.
//
// Copyright (c) Grass Valley Group Inc. 1996-1998
// All rights reserved.
//
// Usage: record movie_name -s seconds
//
#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0

// For demo application, we will have several resources. Enumerate
// them for use as indices into an array for VdrAttachMovie calls.
// First three are Codecs.

enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX_CODEC };
enum ResEnum { VIN = MAX_CODEC, VOUT, AOUT1, AOUT2, MAX_RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;
static ResourceHandle sResHdls[MAX_RSRC];
static char* spMovieName;
static int sSeconds;
static int sRate;

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf("Usage: %s movie_name -s seconds\n", progName);

} // Usage

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources(void)
{
 BOOL rtn;
 BOOL event1, event2;
 VideoFormat videoFormat;
 int i, vlimit;
 EventHandle evtHand;

 printf("Starting setup...\n");
Preliminary — 12 July 2001 Profile Software Development Kit User 51

Chapter 3 Recording and Playing Movies

52
 // Open the connection and the port.
 rtn = RemOpenConnection(ConnectLocal, 0, 0, &sConn);
 if (!rtn) {
 printf("Error opening connection.\n");
 return FALSE;
 }
 sPort = VdrOpenPortConnection(sConn);
 if (!sPort) {
 printf("Error getting port \n");
 return FALSE;
 }

 // Is this NTSC or PAL?
 switch (CfgGetStandard(sConn)) {
 case PCI_PAL_625_MODE:
 videoFormat = Format625_50Hz_2To1;
 sRate = 50;
 break;
 case PCI_NTSC_525_MODE:
 videoFormat = Format525_60Hz_2To1;
 sRate = 60;
 break;
 case PCI_INVALID_MODE:
 default:
 printf("Invalid or unknown video mode.\n");
 return FALSE;
 }
 VdrSetVideoFormat(sPort, videoFormat);

 //
 // Now, get the necessary resources for the demo.
 //

 // Find first available codec.
 vlimit = CfgGetNumCodecs(sConn, JpegCodec
 // same as VideoCodec);
 for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
 sResHdls[VCOD] = VdrAllocateResource(sPort, ResourceJpegCodec,
 // same as ResourceVideoCodec (unsigned int)i);
 }

 if (!sResHdls[VCOD]) {
 printf("Cannot allocate jpeg video codec.\n");
 return FALSE;
 }

 // Get two audio codecs.
 sResHdls[ACOD1] = VdrAllocateResource(sPort, ResourceAudioCodec,
 NUM_INPUT);
 sResHdls[ACOD2] = VdrAllocateResource(sPort, ResourceAudioCodec,
 NUM_INPUT+1);
 if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {
 printf("Cannot allocate audio codec.\n");
 return FALSE;
 }

 // Get video in and out resources.
 sResHdls[VOUT] = VdrAllocateResource(sPort, ResourceVideoOutput,
 NUM_OUTPUT);
 if (!sResHdls[VOUT]) {
 printf("Cannot allocate video output.\n");
 return FALSE;
 }
Profile Software Development Kit User Preliminary — 12 July 2001

 sResHdls[VIN] = VdrGetResourceConnectionHandle(sPort,
 ResourceVideoInput, NUM_INPUT);
 if (!sResHdls[VIN]) {
 printf("Cannot get video input.\n");
 return FALSE;
 }

 // Get audio resources.
 sResHdls[AOUT1] = VdrAllocateResource(sPort, ResourceAudioOutput,
 NUM_OUTPUT);
 sResHdls[AOUT2] = VdrAllocateResource(sPort, ResourceAudioOutput,
 NUM_OUTPUT+1);
 if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
 printf("Cannot allocate audio resources.\n");
 return FALSE;
 }

 // Set the default event.
 event1 = VdrDefaultEvent(sPort, NULL, EventConnectResources,
 sResHdls[VIN], sResHdls[VOUT]);
 event2 = VdrDefaultEvent(sPort, NULL, EventConnectResources,
 sResHdls[VIN], sResHdls[VCOD]);
 if (event1 == FALSE || event2 == FALSE) {
 printf("Cannot schedule default events. \n");
 return FALSE;
 }

 // Schedule the event.
 evtHand = VdrScheduleEvent(sPort, INT_MIN, EventConnectResources,
 sResHdls[VCOD], sResHdls[VOUT]);
 if (!evtHand) {
 printf("Cannot schedule event.\n");
 return FALSE;
 }

 return TRUE;

} // SetupResources

//
// Clean up by releasing resources and closing the control port.
//
void Cleanup(void)
{
 int i;

 printf("Starting cleanup...\n");

 for (i=0; i<MAX_RSRC; ++i) {
 if (sResHdls[i]) {
 VdrReleaseResource(sResHdls[i]);
 sResHdls[i] = 0;
 }
 }

 if (!VdrClosePort(sPort)) {
 printf("Cannot close port. \n");
 return;
 }
 sPort = 0;

} // Cleanup
Preliminary — 12 July 2001 Profile Software Development Kit User 53

Chapter 3 Recording and Playing Movies

54
//
// Play the movie clip.
//
void StartPlay(void)
{
 INT oldpos, newpos;
 MovieHandle movieHdl;

 // Attach the movie that we just recorded.
 if (!PdrMovieExists(sConn, spMovieName)) {
 printf("Movie %s does not exist \n", spMovieName);
 return;
 }

 movieHdl = VdrAttachMovie(spMovieName, MAX_CODEC, sResHdls, NULL,
 ShiftAfter, MarkLongest);
 if (!movieHdl) {
 printf("Error getting movie handle \n");
 return;
 }

 // Cue up playback of media attached with VdrAttachMovie.
 if (!VdrCuePlay(sPort, SHUTTLE_RATE)) {
 printf("Cannot cue play \n");
 return;
 }

 // Begin motion playback.
 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf("Cannot begin playback \n");
 return;
 }

 printf("Starting playback...\n");

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Cease play back.
 if (!VdrIdle(sPort)) {
 printf("Cannot move to idle.\n");
 return;
 }

 // Detach the movie handle from the channel.
 if (!VdrDetachMovie(movieHdl, ShiftAfter)) {
 printf("Cannot detach movie.\n");
 return;
 }
} // StartPlay

//
// Record a clip in JPEG format.
//
BOOL StartRecord(void)
{

Profile Software Development Kit User Preliminary — 12 July 2001

 INT oldpos, newpos;
 int markout;
 MovieHandle movieHdl;

 // Check to see if the movie already exists.
 if (PdrMovieExists(sConn, spMovieName)) {
 printf("Movie name already exists.\n");
 return FALSE;
 }

 markout = sSeconds * sRate;
 movieHdl = VdrAttachMovieWithMarks(spMovieName, MAX_CODEC, sResHdls,
 NULL, ShiftAfter, MarkLongest, 0, markout);

 if (!movieHdl) {
 printf("Error getting movie handle \n");
 return FALSE;
 }

 if (!VdrCueRecord(sPort)) {
 printf("Cannot cue record \n");
 return FALSE;
 }

 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf("Cannot cue shuttle \n");
 return FALSE;
 }

 printf("Starting record...\n");

 // Wait until record is done.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Stop the recording.
 if (!VdrIdle(sPort)) {
 printf("Cannot idle port\n");
 return FALSE;
 }

 // Detach the movie from the timeline.
 if (!VdrDetachMovie(movieHdl, ShiftAfter)) {
 printf("Cannot detach movie.\n");
 return FALSE;
 }

 return TRUE;

} // StartRecord

//
// The main entry point.
//
void main(int argc, char *argv[])
{

 BOOL rtn, rtn1 = FALSE;
 int i;
Preliminary — 12 July 2001 Profile Software Development Kit User 55

Chapter 3 Recording and Playing Movies

56
 // Read in the new movie name.
 i = 1;
 if (argv[i]) {
 spMovieName = argv[i];
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 i++;

 // Process seconds argument.
 while (i < argc) {
 if (argv[i][0] == ’-’)
 switch (argv[i][1]) {
 case ’s’:
 i++;
 sSeconds = atoi(argv[i++]);
 break;
 default:
 Usage(argv[0]);
 exit(1);
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 }

 rtn = SetupResources();

 if (rtn)
 rtn1 = StartRecord();

 if (rtn1)
 StartPlay();

 Cleanup();

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie
Playing a movie
Example 2, play.c shows you how to play a movie in the JPEG compression format, with
optional mark-in and mark-out points. (This example uses JPEG compression; see
Example 16, mpegdemo.c on page 183 in for a similar example.)

First, the appropriate resources must be allocated for later use. A connection to the Profile is
established with RemOpenConnection, and a port is opened using a call to the function
VdrOpenPortConnection. The standard video format for the machine is determined with
CfgGetStandard, and the port is set to that format with VdrSetVideoFormat. Next, a JPEG
codec resource is allocated and attached to the port with VdrAllocateResource. The codec
allows video decoding to occur on the specified port.

Similarly, two audio codecs are allocated and attached to the port, again with
VdrAllocateResource, one for each stereo channel. The video input and output resources are
then allocated and attached to the port with similar calls.

Finally, default and scheduled events are setup, using VdrDefaultEvent and
VdrScheduleEvent respectively. These calls describe the connections that occur when the
port is in various states. (See Example 9, stateevt.c on page 100 in for more information about
these events and how to gain more control over their behavior.)

Once the resources are obtained, you proceed to the playback. The movie is opened via
PdrOpenMovie and is attached with the function VdrAttachOpenMovie. The optional
mark-in and mark-out points are set with VdrSetMovieMarkIn and VdrSetMovieMarkOut.
After that, the movie is cued for play (VdrCuePlay). It begins playing when the video server
is instructed to shuttle using VdrShuttle, and after the specified duration has passed—
determined by VdrGetPosition—idle mode is set with VdrIdle and the movie is detached
using VdrAttachMovie. The movie is closed with PdrCloseMovie.

Finally, the resources acquired during execution must be released. With a call to
VdrReleaseResource, the Profile unit is told to release all of the handles acquired during the
setup phase, and the port is closed with VdrClosePort. This completes the process and the
program is stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.

Example 2 illustrates these steps with a command-line program that plays back a clip.
Preliminary — 12 July 2001 Profile Software Development Kit User 57

Chapter 3 Recording and Playing Movies

58
Example 2. play.c

//
// File: play.c
// This sample program plays a specified JPEG clip.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// Usage: play movie_name [-i markin] [-o markout]
//
//

#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0

// For demo application, we will have several resources. Enumerate
// them for use as indeces into an array for VdrAttachMovie calls.
// First three are Codecs.
enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX_CODEC };
enum ResEnum { VIN = MAX_CODEC, VOUT, AOUT1, AOUT2, MAX_RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;
static ResourceHandle sResHdls[MAX_RSRC];
static char* spMovieName;
static int sMarkIn;
static int sMarkOut;

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf(“Usage: %s movie_name [-i markin] [-o markout]\n”, progName);

} // Usage

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources(void)
{
 VideoFormat videoFormat;
 int i, vlimit;
 EventHandle evtHand;

 printf(“Starting setup...\n”);

 // Open the connection and the port.
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie
 if (!RemOpenConnection(ConnectLocal, 0, 0, &sConn)) {
 printf(“Error opening connection.\n”);
 return FALSE;
 }
 sPort = VdrOpenPortConnection(sConn);
 if (!sPort) {
 printf(“Error getting port \n”);
 return FALSE;
 }

 // Is this NTSC or PAL?
 switch (CfgGetStandard(sConn)) {
 case PCI_PAL_625_MODE:
 videoFormat = Format625_50Hz_2To1;
 break;
 case PCI_NTSC_525_MODE:
 videoFormat = Format525_60Hz_2To1;
 break;
 case PCI_INVALID_MODE:
 default:
 printf(“Invalid or unknown video mode.\n”);
 return FALSE;
 }
 VdrSetVideoFormat(sPort, videoFormat);

 //
 // Now, get the necessary resources for the demo.
 //

 // Find first available codec.
 vlimit = CfgGetNumCodecs(sConn,
 JpegCodec // same as VideoCodec
);
 for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
 sResHdls[VCOD] = VdrAllocateResource(sPort,
 ResourceJpegCodec, // same as ResourceVideoCodec
 (unsigned int)i);
 }

 if (!sResHdls[VCOD]) {
 printf(“Cannot allocate jpeg video codec.\n”);
 return FALSE;
 }

 // Get two audio codecs.
 sResHdls[ACOD1] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT);
 sResHdls[ACOD2] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT+1);
 if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {
 printf(“Cannot allocate audio codec.\n”);
 return FALSE;
 }

 // Get video in and out resources.
 sResHdls[VOUT] = VdrAllocateResource(sPort, ResourceVideoOutput, NUM_OUTPUT);
 if (!sResHdls[VOUT]) {
 printf(“Cannot allocate video output.\n”);
 return FALSE;
 }

 sResHdls[VIN] = VdrGetResourceConnectionHandle(sPort,
ResourceVideoInput, NUM_INPUT);
 if (!sResHdls[VIN]) {
 printf(“Cannot get video input.\n”);
Preliminary — 12 July 2001 Profile Software Development Kit User 59

Chapter 3 Recording and Playing Movies

60
 return FALSE;
 }

 // Get audio resources.
 sResHdls[AOUT1] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT);
 sResHdls[AOUT2] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT+1);
 if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
 printf(“Cannot allocate audio resources.\n”);
 return FALSE;
 }

 // Set the default event.
 if (!VdrDefaultEvent(sPort, NULL, EventConnectResources,
sResHdls[VIN], sResHdls[VOUT])) {
 printf(“Cannot schedule default event. \n”);
 return FALSE;
 }

 // Schedule the event.
 evtHand = VdrScheduleEvent(sPort, INT_MIN, EventConnectResources, sResHdls[VCOD],
 sResHdls[VOUT]);
 if (!evtHand) {
 printf(“Cannot schedule event.\n”);
 return FALSE;
 }

 return TRUE;

} // SetupResources

//
// Cleanup by releasing resources and closing the control port.
//
void Cleanup(void)
{
 int i;

 printf(“Start cleanup...\n”);

 for (i=0; i<MAX_RSRC; ++i) {
 if (sResHdls[i]) {
 VdrReleaseResource(sResHdls[i]);
 sResHdls[i] = 0;
 }
 }

 if (!VdrClosePort(sPort)) {
 printf(“Cannot close port. \n”);
 return;
 }
 sPort = 0;

} // Cleanup

//
// Play the movie clip.
//
void StartPlay(void)
{
 INT oldpos, newpos;
 MovieToken movieTok;
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie
 MovieHandle movieHdl;

 // Open and attach the movie.
 movieTok = PdrOpenMovie(sConn, spMovieName, 0);
 if (!movieTok) {
 printf(“Movie %s does not exist \n”, spMovieName);
 return;
 }

 movieHdl = VdrAttachOpenMovie(movieTok, MAX_CODEC, sResHdls, NULL,
 ShiftAfter, MarkLongest);
 if (!movieHdl) {
 printf(“Error getting movie handle \n”);
 return;
 }
 if (sMarkIn) {
 VdrSetMovieMarkIn(movieHdl, sMarkIn, ShiftAfter);
 }
 if (sMarkOut) {
 VdrSetMovieMarkOut(movieHdl, sMarkOut, ShiftAfter);
 }

 // Cue up playback of media attached with VdrAttachMovie.
 if (!VdrCuePlay(sPort, SHUTTLE_RATE)) {
 printf(“Cannot cue play \n”);
 return;
 }

 // Begin motion playback.
 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf(“Cannot begin playback \n”);
 return;
 }

 printf(“Playing movie \”%s\”...\n”, spMovieName);

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Cease play back.
 if (!VdrIdle(sPort)) {
 printf(“Cannot move to idle.\n”);
 return;
 }

 // Detach the movie handle from the channel.
 if (!VdrDetachMovie(movieHdl, ShiftAfter)) {
 printf(“Cannot detach movie.\n”);
 return;
 }

 if (!PdrCloseMovie(movieTok)) {
 printf(“Cannot close movie.\n”);
 return;
 }

} // StartPlay
Preliminary — 12 July 2001 Profile Software Development Kit User 61

Chapter 3 Recording and Playing Movies

62
//
// The main entry point.
//
void main(int argc, char *argv[])
{
int i=1;
// Read in the new movie name.
 if (argv[i]) {
 spMovieName = argv[i];
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 i++;
// Process optional markin and markout points.
 while (i < argc) {
 if (argv[i][0] == ‘-’)
 switch (argv[i][1]) {
 case ‘i’:
 ++i;
 sMarkIn = atoi(argv[i++]);
 break;
 case ‘o’:
 ++i;
 sMarkOut = atoi(argv[i++]);
 break;
 default:
 Usage(argv[0]);
 exit(1);
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 }
if (SetupResources()) {
 StartPlay();
 }
Cleanup();

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie with in and out marks
Playing a movie with in and out marks
Example 3, play_fitted.c shows you how to play a movie in the JPEG compression format with
optional mark-in and mark-out points for a given duration.

First, the appropriate video resources must be allocated for later use (this particular example
does not acquire audio resources). A connection handle to the local machine is established
with RemOpenConnection, and a port is opened using VdrOpenPortConnection. Then the
standard video format for the machine is determined with CfgGetStandard, and the port is
set to that format via VdrSetVideoFormat.

Next, a JPEG codec resource is allocated and attached to the port with VdrAllocateResource.
The codec allows video decoding to occur on the specified port. The video input and output
resources are then allocated and attached to the port, also using VdrAllocateResource.
Finally, default (VdrDefaultEvent) and scheduled events (VdrScheduleEvent) are setup to
describe the connections that occur when the port is in various states. (See Example 9,
stateevt.c in for more information about events and how to gain more control over their
behavior.)

Once the resources are obtained, you are ready to perform the playback. The movie is first
opened with PdrOpenMovie. After the first track and media tokens are obtained with the
functions PdrGetNextTrack and PdrGetNextMediaToken, the media’s path is determined
with PdrGetMediaPath.

Then the movie is attached and fitted to the specified duration with optional mark-in and
mark-out points being set (see VdrAttachFittedMedia or
VdrAttachFittedMediaWithMarks). After that, the movie is cued for play using
VdrCuePlay. It begins playing when the Profile unit is instructed to shuttle with VdrShuttle,
and after the specified duration has passed, idle mode is set (VdrIdle) and the movie is
detached with PdrDetachMedia. The movie is then closed with PdrCloseMovie.

Finally, the resources acquired during execution must be released. The disk recorder/server is
told to release all of the handles acquired during the setup phase using VdrReleaseResource,
and the port is closed with VdrClosePort. This completes the process and the program is
stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.
Preliminary — 12 July 2001 Profile Software Development Kit User 63

Chapter 3 Recording and Playing Movies

64
Example 3. play_fitted.c

//
// File: play_fitted.c
// This sample program fits a recorded clip into a given time frame.
// It deals with video media only.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// Usage: play_fitted movie_name duration [-i markin] [-o markout]
//
//

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <limits.h>
#include <string.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0

// Enumerate resource ID’s for use as indeces into an array.
enum CodecResEnum { VCOD, VIN, VOUT, MAX_RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;
static ResourceHandle sResHdls[MAX_RSRC];
static char* spMovieName;
static int sMarkIn;
static int sMarkOut;
static int sRate;
static int sSeconds;

//
// Print out usage line.
//
void Usage(const char* progName)
{
printf(“Usage: %s movie_name duration [-i markin] [-o markout]\n”, progName);

} // Usage

//
// Initialize the Profile. Report any anomalies.
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources()
{
 VideoFormat videoFormat;
 int i, vlimit;
 EventHandle evtHand;

 printf(“Starting setup...\n”);
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie with in and out marks
 // Open the connection and the port.
 if (!RemOpenConnection(ConnectLocal, 0, 0, &sConn)) {
 printf(“Error opening connection.\n”);
 return FALSE;
 }
 sPort = VdrOpenPortConnection(sConn);
 if (!sPort) {
 printf(“Error getting port.\n”);
 return FALSE;
 }

 // Is this NTSC or PAL?
 switch (CfgGetStandard(sConn)) {
 case PCI_PAL_625_MODE:
 videoFormat = Format625_50Hz_2To1;
 sRate = 50;
 break;
 case PCI_NTSC_525_MODE:
 videoFormat = Format525_60Hz_2To1;
 sRate = 60;
 break;
 case PCI_INVALID_MODE:
 default:
 printf(“Invalid or unknown video mode.\n”);
 return FALSE;
 }
 VdrSetVideoFormat(sPort, videoFormat);

 // Get the necessary resources--1 codec, 1 video output, 1 video input.

 // Find first available codec.
 vlimit = CfgGetNumCodecs(sConn, JpegCodec);
 for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
 sResHdls[VCOD] = VdrAllocateResource(sPort, ResourceJpegCodec, i);
 }
 if (!sResHdls[VCOD]) {
 printf(“Cannot allocate jpeg codec.\n”);
 return FALSE;
 }

 // Get video in and out resources.
 sResHdls[VOUT] = VdrAllocateResource(sPort, ResourceVideoOutput, NUM_OUTPUT);
 if (!sResHdls[VOUT]) {
 printf(“Cannot allocate video output\n”);
 return FALSE;
 }
 sResHdls[VIN] = VdrGetResourceConnectionHandle(sPort,
ResourceVideoInput, NUM_INPUT);
 if (!sResHdls[VIN]) {
 printf(“Cannot get video input.\n”);
 return FALSE;
 }

 // Set the default event.
 if (!VdrDefaultEvent(sPort, NULL, EventConnectResources, sResHdls[VIN],
sResHdls[VOUT])) {
 printf(“Cannot schedule default event.\n”);
 return FALSE;
 }

 // Schedule the event.
 evtHand = VdrScheduleEvent(sPort, INT_MIN, EventConnectResources, sResHdls[VCOD],
 sResHdls[VOUT]);
Preliminary — 12 July 2001 Profile Software Development Kit User 65

Chapter 3 Recording and Playing Movies

66
 if (!evtHand) {
 printf(“Cannot schedule event.\n”);
 return FALSE;
 }

 return TRUE;

} // SetupResources

//
// Cleanup by releasing resources and closing the control port.
//
void Cleanup()
{
 int i;

 printf(“Starting cleanup...\n”);

 for (i=0; i<MAX_RSRC; ++i) {
 if (sResHdls[i]) {
 VdrReleaseResource(sResHdls[i]);
 sResHdls[i] = 0;
 }
 }

 if (!VdrClosePort(sPort)) {
 printf(“Cannot close port\n”);
 return;
 }
 sPort = 0;

} // Cleanup

//
// Play the movie clip.
//
void StartPlay()
{
 int oldpos, newpos;
 MovieToken movieTok;
 TrackToken trackTok;
 MediaToken mediaTok;
 MediaHandle mediaHdl;
 char mediaFilePath[PDR_MAX_COMPLEX_MEDIA_NAME_LEN+1];
 int duration;

 // Open the movie.
 movieTok = PdrOpenMovie(sConn, spMovieName, 0);
 if (!movieTok) {
 printf(“Movie %s does not exist \n”, spMovieName);
 return;
 }

 // Get the first track token for this movie.
 trackTok = PdrGetNextTrack(movieTok, 0);
 if (!trackTok) {
 printf(“Can not get a track token.\n”);
 return;
 }

 // Get the first media token on this track.
 mediaTok = PdrGetNextMediaToken(movieTok, trackTok, PdrNullMediaToken());
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie with in and out marks
 if (PdrMediaTokenIsNull(mediaTok)) {
 printf(“First track media token is null.\n”);
 return;
 }

 // Get the pathname for the media we have selected.
 if (PdrGetMediaPath(mediaTok, mediaFilePath,
PDR_MAX_COMPLEX_MEDIA_NAME_LEN) == -1) {
 printf(“Error getting media path.\n”);
 return;
 }

 duration = sSeconds * sRate;

 if (sMarkIn || sMarkOut) {
 mediaHdl = VdrAttachFittedMediaWithMarks(mediaFilePath, sResHdls[VCOD],
duration, NULL, ShiftAfter, sMarkIn, sMarkOut);
 }
 else {
 mediaHdl = VdrAttachFittedMedia(mediaFilePath, sResHdls[VCOD], duration,
NULL, ShiftAfter);
 }
 if (!mediaHdl) {
 printf(“Cannot attach the media.\n”);
 return;
 }

 // Cue up playback of media that has been attached with VdrAttachMedia.
 if (!VdrCuePlay(sPort, SHUTTLE_RATE)) {
 printf(“Cannot cue play.\n”);
 return;
 }

 // Begin motion playback.
 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf(“Cannot begin playback.\n”);
 return;
 }

 printf(“Starting playback...\n”);

 //
 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 //
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Cease play back.
 if (!VdrIdle(sPort)) {
 printf(“Cannot move to idle.\n”);
 return;
 }

 // Detach the moviehandle from the channel.
 if (!VdrDetachMedia(mediaHdl, ShiftAfter)) {
 printf(“Cannot detach media.\n”);
 return;
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 67

Chapter 3 Recording and Playing Movies

68
 if (!PdrCloseMovie(movieTok)) {
 printf(“Cannot close movie.\n”);
 return;
 }
} // StartPlay

//
// The main entry point.
//
void main(int argc, char *argv[])
{

 int i = 1;

 // Read in the required movie name.
 if (argv[i]) {
 spMovieName = argv[i];
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 i++;

 sSeconds = atoi(argv[i++]);

 // Process optional markin and markout points.
 while (i < argc) {
 if (argv[i][0] == ‘-’)
 switch (argv[i][1]) {
 case ‘i’:
 i++;
 sMarkIn = atoi(argv[i++]);
 break;
 case ‘o’:
 i++;
 sMarkOut = atoi(argv[i++]);
 break;
 default:
 Usage(argv[0]);
 exit(1);
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 }

 if (SetupResources()) {
 StartPlay();
 }

 Cleanup();

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies
Playing a list of movies
Example 4, play_multi.c shows you how to play a list of movies in the JPEG compression
format. First, the command line is parsed for a list of movies. Up to five movies are
concatenated together and stored in an array. Each movie will be played in its entirety,
immediately followed by the next movie.

As always, the appropriate resources must be allocated for later use. Therefore, the program
establishes a connection to the local machine with RemOpenConnection, and opens a port
using VdrOpenPortConnection. Next, the program determines the standard video format for
the machine with CfgGetStandard, and with VdrSetVideoFormat, sets the format.

Then the code allocates a JPEG codec resource with VdrAllocateResource, and attached to
the port with a call to VdrGetResourceConnectionHandle. The codec allows video
decoding to occur on the specified port. Similarly, the program allocates two audio codecs,
again with VdrAllocateResource, one for each stereo channel. The video input and output
resources are then allocated and attached to the port using similar calls. Finally, default events
(VdrDefaultEvent) and scheduled events (VdrScheduleEvent) are setup that describe the
connections that occur when the port is in various states. (See Example 9, stateevt.c on
page 100 in for more information about these events and how to gain more control over their
behavior.)

Once the resources are obtained, the code performs the playback. The program opens each
movie with PdrOpenMovie and a call to the function VdrAttachOpenMovie attaches each
movie to the timeline. In this example, each movie in succession is attached to the end of the
timeline. Other applications could use different insertion methods to place movies in a
different order, shifting before or after other media files. After attachment, the port is cued for
play with VdrCuePlay. It begins playing the movies in succession when the Profile is
instructed to shuttle (VdrShuttle). After all the movies have finished playing, idle mode is set
with VdrIdle and the movies are detached with VdrDetachMovie and closed with
PdrCloseMovie.

Finally, the resources acquired during execution must be released. The Profile is told to release
all of the handles acquired during the setup phase (VdrReleaseResource), and the port is
closed (VdrClosePort).
Preliminary — 12 July 2001 Profile Software Development Kit User 69

Chapter 3 Recording and Playing Movies

70
Example 4. play_multi.c

//
// File: play_multi.c
// This sample program plays up to 5 specified JPEG clips.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// Usage: play_multi movie_name1 [... movie_name5]
//
//
#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0
#define MAX_CLIPS 5

// For demo application, we will have several resources. Enumerate
// them for use as indeces into an array for VdrAttachMovie calls.
// First three are Codecs.
enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX_CODEC };
enum ResEnum { VIN = MAX_CODEC, VOUT, AOUT1, AOUT2, MAX_RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;
static char* spMovieNames[MAX_CLIPS];
static ResourceHandle sResHdls[MAX_RSRC];

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf(“Usage: %s movie_name1 [... movie_name%d]\n”, progName, MAX_CLIPS);

} // Usage

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources(void)
{
 BOOL rtn;
 VideoFormat videoFormat;
 int i, vlimit;
 EventHandle evtHand;

 printf(“Starting setup...\n”);

 // Open the connection and the port.
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies
 rtn = RemOpenConnection(ConnectLocal, 0, 0, &sConn);
 if (!rtn) {
 printf(“Error opening connection.\n”);
 return FALSE;
 }
 sPort = VdrOpenPortConnection(sConn);
 if (!sPort) {
 printf(“Error getting port \n”);
 return FALSE;
 }

 // Is this NTSC or PAL?
 switch (CfgGetStandard(sConn)) {
 case PCI_PAL_625_MODE:
 videoFormat = Format625_50Hz_2To1;
 break;
 case PCI_NTSC_525_MODE:
 videoFormat = Format525_60Hz_2To1;
 break;
 case PCI_INVALID_MODE:
 default:
 printf(“Invalid or unknown video mode.\n”);
 return FALSE;
 }
 VdrSetVideoFormat(sPort, videoFormat);

 //
 // Now, get the necessary resources for the demo.
 //

 // Find first available codec.
 vlimit = CfgGetNumCodecs(sConn, JpegCodec // same as VideoCodec);
 for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
 sResHdls[VCOD] = VdrAllocateResource(sPort,
 ResourceJpegCodec, // same as ResourceVideoCodec
 (unsigned int)i);
 }

 if (!sResHdls[VCOD]) {
 printf(“Cannot allocate jpeg video codec.\n”);
 return FALSE;
 }

 // Get two audio codecs.
 sResHdls[ACOD1] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT);
 sResHdls[ACOD2] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT+1);
 if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {
 printf(“Cannot allocate audio codec.\n”);
 return FALSE;
 }

 // Get video in and out resources.
 sResHdls[VOUT] = VdrAllocateResource(sPort, ResourceVideoOutput, NUM_OUTPUT);
 if (!sResHdls[VOUT]) {
 printf(“Cannot allocate video output.\n”);
 return FALSE;
 }

 sResHdls[VIN] = VdrGetResourceConnectionHandle(sPort, ResourceVideoInput,
NUM_INPUT);
 if (!sResHdls[VIN]) {
 printf(“Cannot get video input.\n”);
 return FALSE;
Preliminary — 12 July 2001 Profile Software Development Kit User 71

Chapter 3 Recording and Playing Movies

72
 }

 // Get audio resources.
 sResHdls[AOUT1] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT);
 sResHdls[AOUT2] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT+1);
 if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
 printf(“Cannot allocate audio resources.\n”);
 return FALSE;
 }

 // Set the default event.
 if (!VdrDefaultEvent(sPort, NULL, EventConnectResources,
sResHdls[VIN], sResHdls[VOUT])) {
 printf(“Cannot schedule default event.\n”);
 return FALSE;
 }

 // Schedule the event.
 evtHand = VdrScheduleEvent(sPort, INT_MIN, EventConnectResources, sResHdls[VCOD],
sResHdls[VOUT]);
 if (!evtHand) {
 printf(“Cannot schedule event.\n”);
 return FALSE;
 }

 return TRUE;

} // SetupResources

//
// Cleanup by releasing resources and closing the control port.
//
void Cleanup(void)
{
 int i;

 printf(“Starting cleanup...\n”);

 for (i=0; i<MAX_RSRC; ++i) {
 if (sResHdls[i]) {
 VdrReleaseResource(sResHdls[i]);
 sResHdls[i] = 0;
 }
 }

 if (!VdrClosePort(sPort)) {
 printf(“Cannot close port. \n”);
 return;
 }
 sPort = 0;

} // Cleanup

//
// Play the movie clip.
//
void StartPlay(void)
{
 int oldpos, newpos;
 int i;
 MovieToken movieToks[MAX_CLIPS];
 MovieHandle movieHdls[MAX_CLIPS];
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies
 memset(movieToks, 0, sizeof(movieToks));
 memset(movieHdls, 0, sizeof(movieHdls));

 i = 0;
 while (spMovieNames[i] && i < MAX_CLIPS) {
 // Open and attach the movies.
 movieToks[i] = PdrOpenMovie(sConn, spMovieNames[i], 0);
 if (!movieToks[i]) {
 printf(“Movie %s does not exist \n”, spMovieNames[i]);
 return;
 }

// NULL in this next command attaches the clips one after another. It could
// be replaced with the moviehandle of the movie “before” which the new one
// would be inserted.
 movieHdls[i] = VdrAttachOpenMovie(movieToks[i], MAX_CODEC, sResHdls, NULL,
 ShiftAfter, MarkLongest);
 if (!movieHdls[i]) {
 printf(“Error getting movie handle for %s.\n”, spMovieNames[i]);
 return;
 }
 i++;
 }

 // Cue up playback of media attached with VdrAttachMovie.
 if (!VdrCuePlay(sPort, SHUTTLE_RATE)) {
 printf(“Cannot cue play \n”);
 return;
 }

 // Begin motion playback.
 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf(“Cannot begin playback \n”);
 return;
 }

 printf(“Starting playback...\n”);

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Cease play back.
 if (!VdrIdle(sPort)) {
 printf(“Cannot move to idle.\n”);
 return;
 }

 i = 0;
 while (spMovieNames[i] && i < MAX_CLIPS) {

 // Detach the movie handle from the channel.
 if (!VdrDetachMovie(movieHdls[i], ShiftAfter)) {
 printf(“Cannot detach movie %s.\n”, spMovieNames[i]);
 return;
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 73

Chapter 3 Recording and Playing Movies

74
 if (!PdrCloseMovie(movieToks[i])) {
 printf(“Cannot close movie %s.\n”, spMovieNames[i]);
 return;
 }
 i++;
 }

} // StartPlay

//
// The main entry point.
//
void main(int argc, char *argv[])
{
BOOL rtn;
int i = 1;

 // Read in the movie names.

 if (argc > 6) {
 printf(“Too many clips.\n”);
 Usage(argv[0]);
 exit(1);
 }
 if (!argv[i]) {
 printf(“No clip names.\n”);
 Usage(argv[0]);
 exit(1);
 }
// Process seconds argument.
 while (i <= 5 && argv[i]) {
 spMovieNames[i-1] = argv[i];
 ++i;
 }

 rtn = SetupResources();

 if (rtn)
 StartPlay();

 Cleanup();

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-
Playing a movie using Central Resource Management
Profile System Software 4.0 includes a new Configuration Manager that introduces new
resource management concepts. Configuration Manager now allows the user to create
channels, pre-defined groups of resources that can be used by ports for record and play
operations. Software applications no longer need to allocate individual video, audio, and
timecode resources to a port. They can allocate a channel that was created in Configuration
Manager, thus avoiding the complexity of allocating individual resources, and benefiting from
the Resource Manager’s resource conflict reporting.

Example 5, playcrm.cpp shows you how to allocate a channel to a port, how to play a movie
on that port, then close the port and free up the resources used by the channel. Note that this
process is independent of the compression format. The channel definition specifies the codec
type, and the attached movie type must match the codec type.

First, the appropriate resources must be allocated for later use. VdrGetNumChannelDefs is
used to obtain the number of entries in the channel definition list. Then the definitions are read
using VdrGetChannelInfoList. VdrAllocateChannel assigns the resources defined by a
channel to a port and opens that port. In this example, the first channel is arbitrarily assigned
to a port, although any named channel definition from the list could be used. Note that the
application name is provided to assist in subsequent resource conflict reporting. If the port is
not successfully opened, the channel status if tested for problems or resource conflicts using
the structure defined in crmtypes.h and returned by VdrAllocateChannel and
VdrGetChannelInfoList.

Once the channel is assigned, you proceed to the playback. The movie is opened via
PdrOpenMovie and is attached with the function VdrAttachOpenMovie. After that, the
movie is cued for play (VdrCuePlay). It begins playing when the video server is instructed to
shuttle using VdrShuttle, and after the clip has finished playing—determined by
VdrGetPosition—idle mode is set with VdrIdle and the movie is detached using
VdrDetachMovie. The movie is closed with PdrCloseMovie.

Finally, the resources acquired during execution must be released. With a call to
VdrClosePort, the Profile unit is told to release all of the resource handles acquired during
the setup phase, and the port is closed. This completes the process and the program is stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.
Preliminary — 12 July 2001 Profile Software Development Kit User 75

Chapter 3 Recording and Playing Movies

76
Example 5. playcrm.cpp

/* Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
 * is protected as an unpublished work under the copyright laws of
 * the United States.
 *
 * This source code is only intended as a sample code to demonstrate the
 * usage of the Profile XP API.
 */

#include <stdio.h>
#include <windows.h>
#include <tekrem.h>
#include <crmtypes.h>
#include <tekpdr.h>
#include <tekvdr.h>
#include <vdrerror.h>

/* 1) Open connection to ProfileXP
 * 2) Allocate Resources
 * 3) Play MPEG clip
 * 4) Shutdown
 */

/* Module static variables. */
static ConnectHandle hConn = LOCAL_CONNECTION;
static VdrHandle hVdrPort = 0;
static ChannelInfochanInfo;

/**
 * SetupResources
 *
 * Purpose: Set up the appropriate resources for playback
 ***/
BOOL SetupResources()
{
 printf("Setup resources.\n");

 /* USE IF REMOTING: Open the connection and the port.
 if (!RemOpenConnection(ConnectLocal, 0, 0, &hConn))
{
 printf("Error opening connection.\n");
 return FALSE;
 }
*/

/* Get channel definitions */
int iChanDefCount = VdrGetNumChannelDefs(hConn);

if (iChanDefCount <= 0)
{

printf("No channel definitions exist on this Profile.");
return FALSE;

}

int iBufferSize = sizeof(ChannelInfo) * iChanDefCount;
ChannelInfo* pChanInfoList = (ChannelInfo*) malloc(iBufferSize);
int iFetched;
if ((!VdrGetChannelInfoList(hConn, pChanInfoList, iBufferSize, iChanDefCount, &iFetched)) ||

(iFetched != iChanDefCount))
{

// Failed to get list, or the number fetched does not equal the number requested.
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-
printf("Failed to get ChannelInfo list.");
free(pChanInfoList);
return FALSE;

}

/* Allocate the first channel in the list.
Note that this function opens a port, allocates all resources specified
in the channel definition, and connects the resources on each track.
The channel name is "playcrm"*/

hVdrPort = VdrAllocateChannel(hConn, pChanInfoList[0].name, 0x00, "playcrm", &chanInfo);

if (hVdrPort)
{
 printf("Successfully allocated channel ’%s’ (port handle %d).\n", pChanInfoList[0].name,
hVdrPort);
}
 else
{

if (chanInfo.status & CHAN_STATUS_IN_USE)
{

printf("Channel ’%s’ is in use by ’%s’ on ’%s’",
pChanInfoList[0].name, chanInfo.applicationName, chanInfo.hostName);

}
if (chanInfo.status & CHAN_STATUS_CONFLICTS)
{

printf("Some resources are in use by another application.");
}
else
{

switch (GetLastError())
{
case VDR_ERROR_CREATE_DICTIONARY:
case VDR_ERROR_GET_CHANNEL_DEFINITION:
printf("Could not find configuration for ’%s’", pChanInfoList[0].name);
break;
case VDR_ERROR_ADD_RESOURCE_OWNER:
case VDR_ERROR_RESMON_CREATE_FAILED:
printf("Unable to register resource use.");
break;
case VDR_ERROR_PORT_OPEN_FAILED:
printf("The system is out of ports.");
break;
default:
printf("Unable to allocate channel.");
}

}

free(pChanInfoList);
return FALSE;

 }

free(pChanInfoList);
 return TRUE;
}
Preliminary — 12 July 2001 Profile Software Development Kit User 77

Chapter 3 Recording and Playing Movies

78
/**
 * Cleanup
 *
 * Purpose: Release all the resources
 ***/
void Cleanup(void)
{
 printf("Start cleanup...\n");

 if (!VdrClosePort(hVdrPort)) {
 printf("Error closing port. \n");
 return;
 }
 hVdrPort = 0;
}
/**
 * StartPlay
 *
 * Purpose: Play the clip
 ***/
void StartPlay(char *movieName)
{
 INT oldpos, newpos = 0;
 MovieTokenmovieToken = 0;
 MovieHandlemovieHandle = 0;

 // Open and attach the movie.
 movieToken = PdrOpenMovie(hConn, movieName, 0);
 if (!movieToken) {
 printf("Movie %s does not exist \n", movieName);
 return;
 }

 movieHandle = VdrAttachOpenMovie(movieToken, chanInfo.resourceCount,

chanInfo.resourceHandles, NULL, ShiftAfter, MarkLongest);
 if (!movieHandle) {
 printf("Error getting movie handle \n");
 return;
 }

 // Cue up playback of media attached with VdrAttachMovie.
 if (!VdrCuePlay(hVdrPort, 0.0)) {
 printf("Cannot cue play \n");
 return;
 }

 // Begin motion playback.
 if (!VdrShuttle(hVdrPort, 1.0)) {
 printf("Cannot begin playback \n");
 return;
 }

 printf("Playing movie \"%s\"...\n", movieName);

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(hVdrPort);
 } while (newpos > oldpos);

Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-
 // Cease play back.
 if (!VdrIdle(hVdrPort)) {
 printf("Cannot move to idle.\n");
 return;
 }

printf("Detaching movie \"%s\"...\n", movieName);
 // Detach the movie handle from the channel.
 if (!VdrDetachMovie(movieHandle, ShiftAfter)) {
 printf("Cannot detach movie.\n");
 return;
 }

 if (!PdrCloseMovie(movieToken)) {
 printf("Cannot close movie.\n");
 return;
 }

}
/**
 * main
 *
 * Purpose: Main entry point
 ***/
void main()
{

char movieName[PDR_MAX_MOVIE_NAME_LEN+1];
memset(movieName, 0, sizeof(movieName));

/* Get the movie and channel name*/
printf("Usage: playcrm [mpeg movie name]\n");
printf("Enter a valid movie name (i.e. INT:/default/#1):\n");
 scanf("%s",movieName);

 if (SetupResources() != FALSE) {
 StartPlay(movieName);
 }

Sleep(5000);

 Cleanup();
}

Preliminary — 12 July 2001 Profile Software Development Kit User 79

Chapter 3 Recording and Playing Movies

80
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 4

Using the Profile Media File System

The movies that you record on a Profile video file server or disk recorder are stored on a set
of high-capacity ultra SCSI disks. This set of disks is called a dataset, not unlike a volume on
a personal computer. A volume on a PC usually resides on a single disk, but a dataset always
consists of multiple disks.

Datasets contain collections of movies called groups. This is analogous to a directory on a PC
file system. Movies are stored in one or more media files which contain digitized JPEG video,
MPEG video, audio, or timecode.

This chapter discusses browsing the inventory of movies on a Profile disk recorder, viewing
information and characteristics of movies in the inventory, and checking free disk file space.

Each explanation of coding methods is followed by a sample program written in C.

Browsing the media file system
Example 6, browse.c demonstrates the use of API calls that print a local or remote Profile’s
entire inventory, similar to the Unix ls and MS-DOS dir commands. DVCPRO 25,
DVCPRO 50, MPEG or JPEG format is also noted, using the attributes element of the
PdrMovieState structure.

An optional -v flag on the command line specifies verbose mode, which provides more detail
about each movie in the inventory. (For more specific information about a single movie file,
see Example 7, viewCMF.c on page 88.)

Once the connection is established with RemOpenConnection, the sample code function
IdentifyInventory performs the majority of the work. PdrFindFirstDataset and
PdrFindNextDataset walk through all of the available datasets. PdrFindFirstGroup and
PdrFindNextGroup are used to walk through all of the available groups within each dataset.
Similarly, PdrFindFirstMovie and PdrFindNextMovie are used to walk through each movie
within a group. PdrCloseFind ends each walk-through.

The sample code function PrintMovieState uses PdrGetMovieStateInfo to retrieve a
PdrMovieState structure, which it then uses to format some basic information about a movie.
 12 July 2001 Profile Software Development Kit User 81

Chapter 4 Using the Profile Media File System

82
Example 6. browse.c

//
// File: browse.c
// This sample program enumerates all clips in the inventory.
// It is able to work either locally or remotely.
//
// Copyright (c) Grass Valley Group Inc., 1996-1998.
// All rights reserved.
//
// Usage: browse [hostname]
//
#include <windows.h>
#include <stdio.h>
#include "tekpdr.h"
#include "pdrerror.h"
#include "tekrem.h"
#include "tekvfs.h"

static const char *sMonth[] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};

static BOOL sVerbose = FALSE;

//
// This function is used if the input is either
// a ? or the word help. It shows the usage of the program.
//
void Usage(const char *progName)
{
 printf("Usage:\n");
 printf("%s [-v] [hostname]\n", progName);

 printf(" -v Verbose\n");
 printf(" hostname Machine name to act upon remotely\n");
 printf("\n");
 printf("%s ? : Causes this message to be printed\n", progName);
 printf("%s help : Causes this message to be printed\n", progName);
 printf("\n");
 printf("This tool enumerates movies in the inventory of a Profile.\n");

} // Usage

//
// Convert a FILETIME to a string, using the array of month strings above.
//
void MakeTimeString(FILETIME *ft, char *string)
{
 SYSTEMTIME st;
 WORD thisYear, thisMonth;

 GetLocalTime(&st);
 thisYear = st.wYear;
 thisMonth= st.wMonth;
 FileTimeToSystemTime(ft, &st);
Profile Software Development Kit User Preliminary — 12 July 2001

Browsing the media file system
 if ((thisYear == st.wYear) ||
 ((thisYear == (st.wYear+1)) && (thisMonth < st.wMonth))) {
 sprintf(string, "%3s %2d %02d:%02d",
 sMonth[st.wMonth-1], st.wDay, st.wHour, st.wMinute);
 }
 else {
 sprintf(string, "%3s %2d, %4d",
 sMonth[st.wMonth-1], st.wDay, st.wYear);
 }

} // MakeTimeString

//
// This function gets and prints the movie video format(s) for an individual
// movie. When run in verbose mode, the movie state information is printed.
//
void PrintMovieState(ConnectHandle lch, const char* movieName)
{
 char create[16];
 char change[16];
 PdrMovieState state;

 BOOL ret = PdrGetMovieState(lch, movieName, &state);

 if (ret) {
 if (state.attributes & PdrVideoFormatJPEG) printf("JPEG");
 if (state.attributes & PdrVideoFormatMPEG) printf("MPEG");
 printf("\n");
 }
 if (ret && sVerbose) {
 printf(" > Length- min=%d, max=%d \n",
 state.minLength, state.maxLength);
 MakeTimeString(&state.createTime, create);
 MakeTimeString(&state.lastChangedTime, change);
 printf(" > Time- created: %s, changed: %s \n",
 create, change);
 printf(" > #Tracks- V=%d, A=%d, TC=%d \n",
 state.numV, state.numA, state.numT);
 printf(" > Attr.- Open-%s, OpenMultiple-%s, OpenExclusive-%s,\n",
 (state.attributes & PdrOpen)? "Yes":"No",
 (state.attributes & PdrOpenMultiple)? "Yes":"No",
 (state.attributes & PdrOpenExclusive)? "Yes":"No");
 printf(" > - ReadOnly-%s, CntlRO-%s, Locked-%s,\n",
 (state.attributes & PdrReadOnly)? "Yes" : "No",
 (state.attributes & PdrControlRO)? "Yes" : "No",
 (state.attributes & PdrLocked)? "Yes" : "No");
 if (state.attributes & PdrOpenExclusive) {
 printf(" > Exclusive open by process 0x%x\n",
 state.exclusivePID);
 }
 printf(" \n");
 }
 if (!ret) {
 printf("\n");
 printf("Failed to get movie state for \"%s\"\n", movieName);
 printf("Error code is 0x%x\n", GetLastError());
 }

} // PrintMovieState
Preliminary — 12 July 2001 Profile Software Development Kit User 83

Chapter 4 Using the Profile Media File System

84
//
// Churn through datasets, groups and movies.
//
void IdentifyInventory(ConnectHandle lch)
{
 EnumToken dset, grp, movie;
 char dataset[PDR_MAX_DSET_NAME_LEN+1];
 char group[PDR_MAX_GROUP_NAME_LEN+1];
 char name[PDR_MAX_MOVIE_NAME_LEN+1];
 char startName[PDR_MAX_COMPLEX_MOVIE_NAME_LEN+1];

 dset = PdrFindFirstDataset(lch, dataset, sizeof(dataset));
 if (dset <= 0) {
 printf("Failed to find the first dataset\n");
 printf("Error code is 0x%x\n", GetLastError());
 return;
 }
 do {
 // Process dataset information.
 printf("%s/\n", dataset);

 // Now look for groups within this dataset.
 strcpy(startName, dataset);
 grp = PdrFindFirstGroup(lch, startName, group, sizeof(group));
 if (grp <= 0) {
 printf("Failed to find the first group in dataset %s\n", dataset);
 printf("Error code is 0x%x\n", GetLastError());
 continue;
 }
 do {
 // Process group information.
 printf(" --/%s/\n", group);

 // Now look for movies within this group.
 sprintf(startName, "%s/%s/", dataset, group);
 movie = PdrFindFirstMovie(lch, startName, name, sizeof(name));
 if (movie <= 0) {
 printf("Failed to find first movie in %s\n", startName);
 printf("Error code is 0x%x\n", GetLastError());
 continue;
 }
 do {
 // Process movie information.
 printf(" ---/%s - ", name);

 sprintf(startName, "%s/%s/%s",
 dataset, group, name);

 PrintMovieState(lch, startName);

 } while (PdrFindNextMovie(movie, name, sizeof(name)));

 if (GetLastError() != PDR_FIND_END) {
 printf("Failed to find next movie\n");
 printf("Error code is 0x%x\n", GetLastError());
 }

 PdrCloseFind(movie);

 } while (PdrFindNextGroup(grp, group, sizeof(group)));
Profile Software Development Kit User Preliminary — 12 July 2001

Browsing the media file system
 if (GetLastError() != PDR_FIND_END) {
 printf("Failed to find next group\n");
 printf("Error code is 0x%x\n", GetLastError());
 }
 PdrCloseFind(grp);

 } while (PdrFindNextDataset(dset, dataset, sizeof(dataset)));

 if (GetLastError() != PDR_FIND_END) {
 printf("Failed to find next dataset\n");
 printf("Error code is 0x%x\n", GetLastError());
 }
 PdrCloseFind(dset);

} // IdentifyInventory

//
// In the main function, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays local.
// Then, the Inventory function is invoked.
// We also allow ? or help on the command line in order to get the
// usage printout.
//
main(int argc, char *argv[])
{
 ConnectHandle ch = LOCAL_CONNECTION;
 const char *chDesc = "LOCAL_CONNECTION";
 BOOL success;
 int hostArg=1;

 if (argc > 1) {
 // If user wants help, give it right away.
 if ((strcmp(argv[1], "help") == 0)
 || (strcmp(argv[1], "?") == 0)) {
 Usage(argv[0]);
 return 0;
 }

 // Process optional verbose flag.
 if (!strcmp(argv[1], "-v")) {
 sVerbose = TRUE;
 ++hostArg;
 }

 // Process optional specific host name (otherwise it’s local).
 if (argc > hostArg) {
 success = RemOpenConnection(ConnectEthernet, 0, argv[hostArg], &ch);
 if (success) {
 chDesc = argv[hostArg];
 }
 else {
 printf("Failed to make a connection to %s\n", argv[hostArg]);
 printf("Error code is 0x%x\n", GetLastError());
 Usage(argv[0]);
 return 0;
 }
 }
 }
 printf("Inventory List of %s\n", chDesc);

 printf("Interfacing to tekpdr version %d.%d\n",
 PdrGetMajorVersion(ch), PdrGetMinorVersion(ch));
Preliminary — 12 July 2001 Profile Software Development Kit User 85

Chapter 4 Using the Profile Media File System

86
 IdentifyInventory(ch);
 success = RemCloseConnection(ch);
 if (!success) {
 printf("Failed to close the connection to %s\n", chDesc);
 printf("Error code is 0x%x\n", GetLastError());
 }
 return 0;

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information
Viewing CMF information
The Profile API contains a number of functions to help determine specific information about
a CMF (Common Movie Format) file. Example 7, viewCMF.c uses various functions by
determining and displaying information about a single movie stored on a local or remote
Profile. To see how to list all available movies on a Profile system, see Browsing the media file
system on page 81.

First, the connection is established with RemOpenConnection. The program then determines
if the movie exists with PdrMovieExists and can be opened; if not, appropriate error
messages are generated. Then PdrGetMovieAttributes determines if the movie is simple or
complex. PdrGetMovieStateInfo fetches a PdrMovieState structure, which is then formatted
for output.

Next, the program walks through each track in the movie, and then walks through each media
token for each track. Information about each track is presented after querying the functions
PdrGetNumMediaOnTrack, PdrGetTrackLength, PdrGetTrackTokenNum, and
PdrGetTrackTokenType. For each media token, PdrGetMediaState fetches a
PdrMediaState structure, which is then formatted to output.

For each media file, the TekVfs library determines miscellaneous information about the file.
The size, type, format, modification time, default marks and other attributes are determined
using VfsFindFirstFile, VfsGetFileType, VfsGetFileVideoFormat,
VfsGetFileModificationTime, VfsGetFileDefaultMarks, and VfsGetFileAttributes.

From examining the source code and running the program on a few target movies, you can see
that there is a fair amount of information that can be obtained about a single movie file. The
PdrMovieState and PdrMediaState structures contain such information as JPEG compression
quantization factors, MPEG group of picture (GOP) values, audio gain settings, video sample
rates, and timecode formats.
Preliminary — 12 July 2001 Profile Software Development Kit User 87

Chapter 4 Using the Profile Media File System

88
Example 7. viewCMF.c

//
// File: ViewCMF.c
// Sample code to view all aspects of a movie in the inventory.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//

#include <windows.h>
#include <stdio.h>
#include "tekpdr.h"
#include "tekrem.h"
#include "tekvfs.h"

static const char *month[] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf("Usage:\n");
 printf("%s complexMovieName : \n", progName);
 printf("shows characteristics of the named movie.\n");
 printf("%s -h hostname complexMovieName : \n", progName);
 printf("shows characteristics of the named movie on the machine hostname\n");
 printf("%s ? : causes this message to be printed\n", progName);
 printf("%s help : causes this message to be printed\n", progName);
 printf("%s usage : causes this message to be printed\n", progName);

} // Usage

//
// Closes the connection (if remote) and exits.
//
void KillConnectionAndExit(ConnectHandle ch, char* hostname)
{
 if (ch != LOCAL_CONNECTION) {
 if (!RemCloseConnection(ch)) {
 printf("Failed to close the connection to %s\n", hostname);
 printf("Error code is 0x%x\n", GetLastError());
 }
 }
 exit(0);

} // KillConnectionAndDie

//
Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information
// Converts a FILETIME to a string. Uses the array of month strings above.
//
void MakeTimeString(FILETIME *ft, char *string)
{
 SYSTEMTIME st;
 WORD y, m;

 GetLocalTime(&st);
 y = st.wYear;
 m = st.wMonth;
 FileTimeToSystemTime(ft, &st);
 if (y == st.wYear || (y == st.wYear+1 && m < st.wMonth)) {
 sprintf(string, "%3s %2d %02d:%02d",
 month[st.wMonth-1], st.wDay, st.wHour, st.wMinute);
 }
 else {
 sprintf(string, "%3s %2d, %4d", month[st.wMonth-1], st.wDay, st.wYear);
 }

} // MakeTimeString

//
// Convert a UINT timecode to a string. It uses the definitions in vdrtypes.h
//
void MakeTimeCodeString(UINT tc, char *string)
{
 if (IS_TIMECODE_INVALID(tc)) {
 sprintf(string, "INVALID TC ");
 }
 else {
 UINT fields = GET_TIMECODE_FIELDS(tc);
 UINT frames = fields / 2;
 char spacer = ’.’;
 if (fields & 1) spacer = ’:’;
 if (GET_TIMECODE_DROPFRAME(tc)) {
 spacer = ’,’;
 if (fields & 1) spacer = ’;’;
 }
 sprintf(string, "%02d:%02d:%02d%c%02d",
 GET_TIMECODE_HOURS(tc), GET_TIMECODE_MINUTES(tc),
 GET_TIMECODE_SECONDS(tc), spacer, frames);
 }

} // MakeTimeCodeString

#define LEN_SIZE 20
//
// Prints the information about a single media file from the i960 perspective.
//
void PrintFileInfo(ConnectHandle ch, char* path)
{
 BOOL success;
 WIN32_FIND_DATA find;
 unsigned long high, low;
 HANDLE file;
 DWORD attributes;
 FileType type;
 VideoFormat format;
 FILETIME time;
 UINT markIn, markOut;
 char len[LEN_SIZE];
Preliminary — 12 July 2001 Profile Software Development Kit User 89

Chapter 4 Using the Profile Media File System

90
 char modtime[16];
 char testbit;
 int bit, i, limit = 64;

 success = VfsFileExists(ch, path);
 if (!success) {
 printf("The media file ’%s’ does NOT exist\n", path);
 return;
 }
 // Use Vfs library to get the file size.
 file = VfsFindFirstFile(ch, path, &find);
 VfsFindClose(file);

 // Miscellaneous information about the file.
 attributes = VfsGetFileAttributes(ch, path);
 type = VfsGetFileType(ch, path);
 format = VfsGetFileVideoFormat(ch, path);
 time = VfsGetFileModificationTime(ch, path);
 success = VfsGetFileDefaultMarks(ch,
 path, &markIn, &markOut);

 // Can we continue with this file?
 if (file == INVALID_HANDLE_VALUE || !success) {
 printf("Vfs error getting file information\n");
 printf("Error code is 0x%x\n", GetLastError());
 return;
 }

 MakeTimeString(&time, modtime);

 // Initialize for 64 bit conversion.
 for (i=0; i<LEN_SIZE; i++) len[i] = 0;
 high = find.nFileSizeHigh;
 low = find.nFileSizeLow;

 // Test each bit of the 64 bit size.
 if (!high) {
 high = low;
 low = 0;
 limit = 32;
 }
 if (!(high & 0xFFFF0000)) {
 high = (high << 16) + (low >> 16);
 low = (low << 16);
 limit -= 16;
 }
 if (!(high & 0xFF000000)) {
 high = (high << 8) + (low >> 24);
 low = (low << 8);
 limit -= 8;
 }
 for (bit=0; bit<limit; bit++) {
 testbit = (char)(high >>31) & 1;
 for (i=LEN_SIZE-2; i>=0; i--) {
 len[i] = (len[i] *2) + testbit;
 testbit = 0;
 if (len[i] > 9) {
 len[i] -= 10;
 testbit = 1;
 }
 }
 testbit = (char)(low >>31) & 1;
 high = (high *2) + (testbit);
Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information
 low = (low *2);
 }
 // Change binary to ascii.
 for (i=0; i<LEN_SIZE; i++) len[i] += ’0’;

 // Change leading 0s to blanks.
 for (i=0; i<LEN_SIZE-2; i++) {
 if (len[i] != ’0’) break;
 len[i] = ’ ’;
 }
 len[LEN_SIZE-1] = ’\0’;

 // Output info.
 printf("The file is of type %s, and format %s.\n",
 (type == FileTypeNonMedia) ? "FileTypeNonMedia" :
 (type == FileTypeJpegVideo) ? "FileTypeJpegVideo" :
 (type == FileTypeMpegVideo) ? "FileTypeMpegVideo" :
 (type == FileTypeAudio) ? "FileTypeAudio" :
 (type == FileTypeTimecode) ? "FileTypeTimecode" : "UNKNOWN",
 (format == Format525_60Hz_2To1) ? "Format525_60Hz_2To1" :
 (format == Format625_50Hz_2To1) ? "Format625_50Hz_2To1" : "UNKNOWN");
 printf("The file attributes (0x%x) are: -FILE_ATTRIBUTE_DIRECTORY %s\n",
 attributes,
 (attributes & FILE_ATTRIBUTE_DIRECTORY) ? "Yes" : "No");
 printf(" -FILE_ATTRIBUTE_NORMAL %s, FILE_ATTRIBUTE_READONLY %s\n",
 (attributes & FILE_ATTRIBUTE_NORMAL) ? "Yes" : "No",
 (attributes & FILE_ATTRIBUTE_READONLY) ? "Yes" : "No");
 printf("The file length is %s bytes\n", len);
 printf("First/Last recorded fields (Default Marks) are- First %d, Last %d\n",
 markIn, markOut);
 printf("File last modified %s\n", modtime);

} // PrintFileInfo
//
// Print info for an individual media segment from the NT perspective.
//
void PrintMediaInfo(PdrMediaState ms)
{
 printf("The media token for this segment is ”%d%c%c%02d”\n",
 ms.thisSegment.a, (ms.thisSegment.b >>8) &0xFF,
 ms.thisSegment.b &0xFF, ms.thisSegment.c);
 printf("This media segment is of type %s\n",
 (ms.type == PdrMediaBlack) ? "PdrMediaBlack" :
 (ms.type == PdrMediaFile) ? "PdrMediaFile" :
 (ms.type == PdrMediaTrackRecord) ? "PdrMediaTrackRecord" : "UNKNOWN");
 printf("It is at position %d and extends for %d fields\n",
 ms.position, ms.out - ms.in);
 printf("The Pdr Track type is %s\n",
 (ms.track_type == PdrTrackInvalid) ? "Invalid" :
 (ms.track_type == PdrJpegVideoTrack) ? "JpegVideo" :
 (ms.track_type == PdrAudioTrack) ? "Audio" :
 (ms.track_type == PdrTimeCodeTrack) ? "Timecode" :
 (ms.track_type == PdrMpegVideoTrack) ? "MpegVideo" :
 "TrackType Unknown");
 printf("The file IN/OUT points are set at %d/%d\n",
 ms.in, ms.out);
 printf("The segment attributes are (0x%x)\n", ms.attributes);
 printf(" -PdrControlRO %s, -PdrReadOnly %s\n",
 (ms.attributes & PdrControlRO) ? "Yes" : "No",
 (ms.attributes & PdrReadOnly) ? "Yes" : "No");
 if (ms.type == PdrMediaFile) {
 printf("The media file pathname is %s\n", ms.path);
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 91

Chapter 4 Using the Profile Media File System

92
 if (ms.fileType == FileTypeAudio) {
 printf("Audio ramp control is set as:\n");
 printf(" in-fields %d to target %f; out-fields %d to target %f\n",
 ms.aud.nFields1, ms.aud.aGain1, ms.aud.nFields2, ms.aud.aGain2);
 }
 if (ms.fileType == FileTypeJpegVideo) {
 printf("JPEG Compression Quantization Factors are set as: \n");
 printf(" max Chroma Q %f, max Lumina Q %f\n",
 ms.jpeg.maxChrQ, ms.jpeg.maxLumQ);
 printf(" min Chroma Q %f, min Lumina Q %f\n",
 ms.jpeg.minChrQ, ms.jpeg.minLumQ);
 }
 if (ms.fileType == FileTypeMpegVideo) {
 printf("MPEG parameterization is set as:\n");
 printf(" Chroma Format %s, GOP End %s\n",
 (ms.mpeg.chroma == MpegChroma420) ? "MpegChroma420" :
 (ms.mpeg.chroma == MpegChroma422) ? "MpegChroma422" :
 "MpegChromaUnknown",
 (ms.mpeg.gopEnd == GopOpenEnd) ? "GopOpenEnd" :
 (ms.mpeg.gopEnd == GopClosedEnd) ? "GopClosedEnd" :
 "GopEndUnknown");
 printf(" Gop Structure is %d IPix per Gop, \n",
 ms.mpeg.iPixPerGop);
 printf(" %d PPix per IPix, %d BPix per IPPix\n",
 ms.mpeg.pPixPerIPix, ms.mpeg.bPixPerIPPix);
 printf(" Pix Type is: %s\n",
 (ms.mpeg.pixStructure == PixStructureFrame) ? "PixStructureFrame" :
 (ms.mpeg.pixStructure == PixStructureField) ? "PixStructureField" :
 "PixStructureUnknown");
 }
 if (ms.fileType == FileTypeTimecode) {
 char firstTc[20];
 char lastTc[20];
 printf("Timecode parameterization is:\n");
 printf(" format is (0x%x) %s\n", ms.tc.format,
 (ms.tc.format == TcFormatDropFrame) ? "DropFrame" :
 (ms.tc.format == TcFormatNonDropFrame) ? "NonDropFrame" :
 "TcFormatUnknown");
 MakeTimeCodeString(ms.tc.firstTimeCode, firstTc);
 MakeTimeCodeString(ms.tc.lastTimeCode, lastTc);
 printf("Timecode Values: first %s, (0x%x)\n",
 firstTc, ms.tc.firstTimeCode);
 printf(" : last %s, (0x%x)\n",
 lastTc, ms.tc.lastTimeCode);
 }
 if (ms.fileType == FileTypeNonMedia) {
 printf("Cached file Type is unknown; no parameters can be decoded\n");
 }
 printf("Neighboring media tokens are-\n");
 printf(" Previous ”%d%c%c%02d”, Next ”%d%c%c%02d”\n",
 ms.prev.a, (ms.prev.b >>8) &0xFF, ms.prev.b &0xFF, ms.prev.c,
 ms.next.a, (ms.next.b >>8) &0xFF, ms.next.b &0xFF, ms.next.c);
 printf(" ---- RTS file system status of this media file ---- \n");

} // PrintMediaInfo
Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information
//
// Print info for an individual track.
//
void PrintTrackInfo(MovieToken movie, TrackToken track)
{
 int nMedia = PdrGetNumMediaOnTrack(movie, track);
 int len = PdrGetTrackLength(movie, track);
 int num = PdrGetTrackTokenNum(track);
 PdrTrackType type = PdrGetTrackTokenType(track);

 printf("This track is of type %s, and is number %d\n",
 (type == PdrTrackInvalid) ? "Invalid" :
 (type == PdrJpegVideoTrack) ? "JpegVideo" :
 (type == PdrAudioTrack) ? "Audio" :
 (type == PdrTimeCodeTrack) ? "Timecode" :
 (type == PdrMpegVideoTrack) ? "MpegVideo" :
 "UNKNOWN", num);
 printf("The track is %d fields long, and contains %d media segment%s\n",
 len, nMedia, nMedia == 1 ? "" : "s");

} // PrintTrackInfo

//
// Prints the state information for an individual movie.
//
void PrintMovieState(PdrMovieState state)
{
 char create[16];
 char change[16];
 char firstTc[20];
 char lastTc[20];

 printf("Length- min=%d, max=%d \n", state.minLength, state.maxLength);
 MakeTimeString(&state.createTime, create);
 MakeTimeString(&state.lastChangedTime, change);
 printf("Time- created: %s, changed: %s \n", create, change);
 printf("Tracks- J=%x, M=%x. A=%x, TC=%x \n",
 state.numJ, state.numM, state.numA, state.numT);
 printf("Attributes- 0x%08x\n", state.attributes);
 printf(" - Open-%s, OpenMultiple-%s, OpenExclusive-%s,\n",
 (state.attributes & PdrOpen)? "Yes":"No",
 (state.attributes & PdrOpenMultiple)? "Yes":"No",
 (state.attributes & PdrOpenExclusive)? "Yes":"No");
 printf(" - ReadOnly-%s, CntlRO-%s, Locked-%s,\n",
 (state.attributes & PdrReadOnly)? "Yes" : "No",
 (state.attributes & PdrControlRO)? "Yes" : "No",
 (state.attributes & PdrLocked)? "Yes" : "No");
 printf(" - Construction: Codec %s, Copy %s, Restore %s\n",
 (state.attributes & PdrCodecConstruction)? "Yes":"No",
 (state.attributes & PdrCopyConstruction)? "Yes":"No",
 (state.attributes & PdrRestoreConstruction)? "Yes":"No");
 printf(" - Major Sample Rate 50Hz-%s, 60Hz-%s\n",
 (state.attributes & PdrSampleRate50)? "Yes" : "No",
 (state.attributes & PdrSampleRate60)? "Yes" : "No");
 printf(" - Primary Video Format JPEG-%s, MPEG-%s\n",
 (state.attributes & PdrVideoFormatJPEG)? "Yes" : "No",
 (state.attributes & PdrVideoFormatMPEG)? "Yes" : "No");
 printf(" - Primary Timecode Format NonDF-%s, DropFrame-%s\n",
 (state.attributes & PdrTcNonDropFrame)? "Yes" : "No",
 (state.attributes & PdrTcDropFrame)? "Yes" : "No");
 printf(" - Primary Audio Sample Size 16bit-%s, 20bit-%s\n",
 (state.attributes & PdrAudio16Bit)? "Yes" : "No",
 (state.attributes & PdrAudio24Bit)? "Yes" : "No");
Preliminary — 12 July 2001 Profile Software Development Kit User 93

Chapter 4 Using the Profile Media File System

94
 if (state.attributes & PdrOpenExclusive) {
 printf("Exclusive open by process 0x%x\n", state.exclusivePID);
 }
 printf("Marks- IN-%d, OUT-%d\n", state.markIn, state.markOut);

 MakeTimeCodeString(state.firstTimeCode, firstTc);
 MakeTimeCodeString(state.lastTimeCode, lastTc);
 printf("Timecode Values: first %s, (0x%x)\n", firstTc, state.firstTimeCode);
 printf(" : last %s, (0x%x)\n", lastTc, state.lastTimeCode);
 printf("Timecode format appears to be %s\n",
 (GET_TIMECODE_DROPFRAME(state.lastTimeCode)) ?
 "TcFormatDropFrame" : "TcFormatNonDropFrame");

 printf("MPEG parameterization- Chroma Format- %s\n",
 (state.mpegChroma == MpegChroma420) ? "MpegChroma420" :
 (state.mpegChroma == MpegChroma422) ? "MpegChroma422" :
 "MpegChromaUnknown");
 printf(" -GOP End- %s, Pix Type- %s\n",
 (state.mpegGopEnd == GopOpenEnd) ? "GopOpenEnd" :
 (state.mpegGopEnd == GopClosedEnd) ? "GopClosedEnd" :
 "GopEndUnknown",
 (state.mpegPixStructure == PixStructureFrame) ? "PixStructureFrame" :
 (state.mpegPixStructure == PixStructureField) ? "PixStructureField" :
 "PixStructureUnknown");
 printf(" -IPixPerGop-%d, PPixPerIPix-%d, BPixPerIPPix-%d\n",
 state.mpegIPixPerGop, state.mpegPPixPerIPix,
 state.mpegBPixPerIPPix);

} // PrintMovieState

//
// In the main program, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays local.
// We also allow ? or help on the command line in order to get the
// usage printout.
//
main(int argc, char *argv[])
{
 ConnectHandle ch = LOCAL_CONNECTION;
 char* thisArg = argv[1];
 char* movieName = NULL;
 char* hostname = NULL;
 char dset[MAX_PATH];
 char group[MAX_PATH];
 char name[MAX_PATH];
 BOOL success;
 PdrMovieState movieState;
 PdrAttributes attributes;
 PdrMediaState mediaState;
 MovieToken movie;
 TrackToken track;
 MediaToken media;
 MediaToken nullMedia = PdrNullMediaToken();

 // Require a movie name.
 if (argc < 2) {
 Usage(argv[0]);
 return 0;
 }
 if (!strcmp(thisArg, "help") || !strcmp(thisArg, "?")
 || !strcmp(thisArg, "usage")) {
Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information
 Usage(argv[0]);
 return 0;
 }
 if (!strcmp(thisArg, "-h")) {
 thisArg = argv[3];
 hostname = argv[2];
 success = RemOpenConnection(ConnectEthernet, 0, hostname, &ch);
 if (!success) {
 printf("Failed to make a connection to %s\n", hostname);
 printf("Error code is 0x%x\n", GetLastError());
 return 0;
 }
 printf("Interfacing to tekrem version %d.%d\n",
 RemGetMajorVersion(), RemGetMinorVersion());
 }
 movieName = thisArg;

 printf("Interfacing to tekpdr version %d.%d\n",
 PdrGetMajorVersion(ch), PdrGetMinorVersion(ch));
 printf("Interfacing to tekvfs version %d.%d\n",
 VfsGetMajorVersion(ch), VfsGetMinorVersion(ch));
 printf("Interfacing to rts version %d.%d\n",
 VfsGetEngineMajorVersion(ch), VfsGetEngineMinorVersion(ch));
 printf("Compiled for PDR_DB_VERSION 0x%x\n", PDR_DB_VERSION);

 printf("\nIn the following description, the special pattern\n");
 printf(" of a NullMediaToken prints at ’0Z 00’\n");
 printf("---\n");

 // Do the exposure of the movie here.
 // First, see if the movie exists; if not, go no farther.
 success = PdrMovieExists(ch, movieName);
 if (!success) {
 printf("Movie '%s' does not exist.\n", movieName);
 KillConnectionAndExit(ch, hostname);
 }
 printf("Information about movie %s is as follows:\n", movieName);

 // Since the movie exists, get and print the movie state.
 success = PdrGetMovieState(ch, movieName, &movieState);
 if (!success) {
 printf("Failed to get movie state for '%s'\n", movieName);
 printf("Error code is 0x%x\n", GetLastError());
 KillConnectionAndExit(ch, hostname);
 }
 PrintMovieState(movieState);

 // Now the movie must be opened to go on; if can’t open, quit.
 movie = PdrOpenMovie(ch, movieName, 0);
 if (!movie) {
 printf("Failed to open movie '%s'\n", movieName);
 printf("Error code is 0x%x\n", GetLastError());
 KillConnectionAndExit(ch, hostname);
 }

 // Get the attributes; indicate if it is a simple clip.
 attributes = PdrGetMovieAttributes(movie);
 if ((attributes == PdrError)
 || !PdrGetMovieDataset(movie, dset, sizeof(dset))
 || !PdrGetMovieGroup(movie, group, sizeof(group))
 || !PdrGetMovieName(movie, name, sizeof(name))){
 printf("Failed to get information for movie '%s'\n", movieName);
 printf("Error code is 0x%x\n", GetLastError());
Preliminary — 12 July 2001 Profile Software Development Kit User 95

Chapter 4 Using the Profile Media File System

96
 KillConnectionAndExit(ch, hostname);
 }

 printf("The movie name is fully qualified as ’%s/%s/%s’\n", dset, group, name);
 printf("It is %s a simple clip\n", (attributes & PdrSimpleClip)? "" : "not");
 printf("---\n");
 // Now, get the first track.
 track = PdrGetNextTrack(movie, 0);
 while (track) {

 // For each track, display the track information, then walk the media.
 PrintTrackInfo(movie, track);
 media = PdrGetNextMediaToken(movie, track, nullMedia);
 while (!PdrMediaTokenIsNull(media)) {
 printf("- -\n");

 // For each media token, get the media state and display it.
 success = PdrGetMediaState(movie, track, media, PdrThisMedia,
 &mediaState);
 if (!success) {
 printf("Failed to get information for media %s\n", movieName);
 printf("Error code is 0x%x\n", GetLastError());
 }
 else {
 PrintMediaInfo(mediaState);

 // For each File type media, get the Vfs information.
 if (mediaState.type == PdrMediaFile) {
 PrintFileInfo(ch, mediaState.path);
 }
 }
 media = PdrGetNextMediaToken(movie, track, media);
 }
 printf("--\n");
 track = PdrGetNextTrack(movie, track);
 }
 // When finished with all tracks, close the movie, and the connection.
 PdrCloseMovie(movie);

 KillConnectionAndExit(ch, hostname);

 return 0;

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Checking free file space
Checking free file space
Example 8, freespace.c demonstrates use of the TekVfs library, which provides low-level
access to the media file system of a Profile. The program does the following:

1. It opens a connection with RemOpenConnection.

2. It calls CfgGetNumFileSystems to return the number of file systems into which the media
disk space has been partitioned on the local machine. The function
CfgGetFileSystemName returns the name of the referenced file systems.

3. It uses VfsQueryFileSystemSpace to obtain the amount of free space and total space on
the disks of a local or remote Profile video server. The two values are displayed in
megabytes and as a percentage of free space to the total space.

Example 8. freespace.c

//
// File: frespace.c
// A demo program to determine free disk space on a local or remote Profile.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
#include <stdio.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekvfs.h>

// Print the proper usage of this command line program.
void Usage(const char *progName)
{
 printf("Usage:\n%s [-r remote_machine]\n", progName);
 printf(" -r remote_machine (local if not specified)\n");

} // Usage

// Determine the free file space on the given machine.
// A NULL input means the local machine.
void file_space(char *remote_machine)
{
 ConnectHandle connHdl;
 int numFileSystems;
 int i, len;
 char dset[PDR_MAX_DSET_NAME_LEN];
 ULARGE_INTEGER totalSpace, spaceRemaining;
 DWORD totalMB, remainMB;
 double percentFree;

 len = PDR_MAX_DSET_NAME_LEN;
 if (remote_machine) {
 if (!RemOpenConnection(ConnectEthernet, 0, remote_machine, &connHdl)) {
 printf("Cannot connect to %s\n", remote_machine);
 return;
 }
 }
 else
 connHdl = LOCAL_CONNECTION;

 numFileSystems = CfgGetNumFileSystems(connHdl);
Preliminary — 12 July 2001 Profile Software Development Kit User 97

Chapter 4 Using the Profile Media File System

98
 printf("\nMedia file system space for %s:\n",(remote_machine) ?
remote_machine :"Local");

 if (numFileSystems <= 0)
 printf("\nNo File Systems found...");

 for (i = 0; i < numFileSystems; i++) {
 CfgGetFileSystemName(connHdl, i, dset, len);
 if (VfsQueryFileSystemSpace(connHdl, i, &totalSpace, &spaceRemaining)) {
 // A ULARGE_INTEGER tells the number of bytes.
 // Each kilobyte is 2^10, so a shift by 20 on the low will equal MB (KB * KB).
 // We assume that the upper 12 bits of the highPart are unused, since
 // 1 exabyte (GB * GB) is more than the entire memory of all computers
 // connected to the Internet in 1998.
 totalMB = (totalSpace.HighPart << 12) + (totalSpace.LowPart >> 20);
 remainMB = (spaceRemaining.HighPart << 12) + (spaceRemaining.LowPart >> 20);
 printf("\n%s Total = %d MB , Remaining = %d MB", dset, totalMB, remainMB);

 percentFree = 100 * ((double)remainMB / (double)totalMB);
 printf("\n\tPercent Free = %.1f%%\n", percentFree);
 }
 else {
 printf("Failed to get File System Space for filesystem %s.

GetLastError reports 0x%x\n", dset, GetLastError());

 }
 }
 RemCloseConnection(connHdl);
 return;

} // file_space

void main(int argc, char *argv[])
{
 int i;
 char *remote_machine = NULL;

 for (i = 1; i < argc; i++) {
 if (*argv[i] == ‘-’) {
 switch (tolower(*(argv[i]+1))) {
 case ‘r’:
 remote_machine = argv[++i];
 break;
 default:
 Usage(argv[0]);
 return;
 }
 }
 else {
 Usage(argv[0]);
 return;
 }
 }

 file_space(remote_machine);
}

Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 5

Using Events

VdrStateEvent is a recent addition to the Profile SDK that adds flexibility to the events
mechanism. StateEvent can replace the use of DefaultEvent (VdrDefaultEvent) and
ScheduledEvent (VdrScheduleEvent) in most cases. For the most part, the default and
schedule events can be viewed as a subset of StateEvent. StateEvents should replace most
usage of the ScheduledEvents, because they are much more efficient compared to
ScheduledEvents and provide greater flexibility. (For more information on the differences
between event types, see Events on page 38.)

The code in Example 9, stateevt.c steps through normal setup, such as opening a connection
with RemOpenConnection and opening a port with VdrOpenPortConnection. The video
standard is detected using the function CfgGetStandard then set with VdrSetVideoFormat.
Then video and audio resources are allocated with several calls to the function
VdrAllocateResource.

Finally, the code calls VdrStateEvent using the function as a replacement for
VdrDefaultEvent and VdrScheduleEvent. VdrStateEvent actually provides more control
over port connections during the ReadyToPlay state than its predecessors. The function
prototype for VdrStateEvent has the same form as VdrDefaultEvent with the one exception
that the reservedHandle field (NULL in VdrDefaultEvent) is the StateMask field. For the
sake of compatibility, VdrDefaultEvent is equivalent to VdrStateEvent with the StateMask
field set to the value EventStateAll.

With this done, a movie token is created by specifying a filename to save to with
PdrOpenMovie. The movie is attached to the video codec with the function
VdrAttachOpenMovie. The movie is then cued (VdrCuePlay), and actual play begins when
the video server is instructed to shuttle (VdrShuttle) at the given rate (SHUTTLE_RATE).
Once the specified duration has passed as determined by VdrGetPosition, the Profile unit is
again placed into idle mode (VdrIdle), and the movie is detached from the timeline with the
function VdrDetachMovie.

Next, the movie is detached with the function VdrDetachMovie. The entire movie is played
back because no special mark-in and mark-out points are specified. With a call to
PdrCloseMovie, the movie is closed.

Resources acquired during execution must be released. The Profile server is told to release all
handles acquired during the setup phase (VdrReleaseResource), and the port is closed
(VdrClosePort). This completes the process and stops the program.
 12 July 2001 Profile Software Development Kit User 99

Chapter 5 Using Events

100
Example 9. stateevt.c

//
// File: stateevt.c
//
// This sample program plays a JPEG clip using StateEvents.
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof, is
// protected as an unpublished work under the copyright laws of the United States.
//
// Usage: stateevt movie_name [1]|[2]
//
#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0

// For demo application, we will have several resources. Enumerate them for use
// as indexes into an array for VdrAttachMovie calls. The first three are Codecs.
//
enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX_CODEC };
enum ResEnum { VIN = MAX_CODEC, VOUT, AOUT1, AOUT2, MAX_RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;
static ResourceHandle sResHdls[MAX_RSRC];
static char* spMovieName;
static BOOL sUseStateEvents;
static BOOL sActAsSwitcher;

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf("Usage: %s movie_name [1]|[2]\n", progName);
 printf(" 1 Use StateEvents to emulate Default and Scheduled Events\n");
 printf(" 2 Use StateEvents with ReadyToPlay state VIN -> VOUT\n");

} // Usage
Profile Software Development Kit User Preliminary — 12 July 2001

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources(void)
{
 BOOL rtn;
 BOOL event1, event2, event3;
 VideoFormat videoFormat;
 int i, vlimit;
 EventHandle evtHand;

 printf("Starting setup...\n");

 // Open the connection and the port.
 rtn = RemOpenConnection(ConnectLocal, 0, 0, &sConn);
 if (!rtn) {
 printf("Error opening connection.\n");
 return FALSE;
 }
 sPort = VdrOpenPortConnection(sConn);

 if (!sPort) {
 printf("Error getting port \n");
 return FALSE;
 }

 // Is this NTSC or PAL?
 switch (CfgGetStandard(sConn)) {
 case PCI_PAL_625_MODE:
 videoFormat = Format625_50Hz_2To1;
 break;
 case PCI_NTSC_525_MODE:
 videoFormat = Format525_60Hz_2To1;
 break;
 case PCI_INVALID_MODE:
 default:
 printf("Invalid or unknown video mode.\n");
 return FALSE;
 }
 VdrSetVideoFormat(sPort, videoFormat);

 //
 // Now, get the necessary resources for the demo.
 //
Preliminary — 12 July 2001 Profile Software Development Kit User 101

Chapter 5 Using Events

102
// Find first available codec.
 vlimit = CfgGetNumCodecs(sConn, JpegCodec // same as VideoCodec
);
 for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
 sResHdls[VCOD] = VdrAllocateResource(sPort, ResourceJpegCodec,
// same as ResourceVideoCodec
 (unsigned int)i);
 }

 if (!sResHdls[VCOD]) {
 printf("Cannot allocate jpeg video codec.\n");
 return FALSE;
 }

 // Get two audio codecs.
 sResHdls[ACOD1] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT);
 sResHdls[ACOD2] = VdrAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT+1);
 if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {
 printf("Cannot allocate audio codec.\n");
 return FALSE;
 }

 // Get video in and out resources.
 sResHdls[VOUT] = VdrAllocateResource(sPort, ResourceVideoOutput, NUM_OUTPUT);
 if (!sResHdls[VOUT]) {
 printf("Cannot allocate video output.\n");
 return FALSE;
 }

 sResHdls[VIN] = VdrGetResourceConnectionHandle(sPort, ResourceVideoInput,
NUM_INPUT);

 if (!sResHdls[VIN]) {
 printf("Cannot get video input.\n");
 return FALSE;
 }

 // Get audio resources.
 sResHdls[AOUT1] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT);
 sResHdls[AOUT2] = VdrAllocateResource(sPort, ResourceAudioOutput, NUM_OUTPUT+1);
 if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
 printf("Cannot allocate audio resources.\n");
 return FALSE;
 }

 if (sUseStateEvents) {
 event1 = VdrStateEvent(sPort, EventStateAll, EventConnectResources,

sResHdls[VIN], sResHdls[VOUT]);
 event2 = VdrStateEvent(sPort, EventStateAll, EventConnectResources,

sResHdls[VIN], sResHdls[VCOD]);
 if (!event1 || !event2) {
 printf("VdrStateEvent() failed. \n");
 return FALSE;
 }

 if (!sActAsSwitcher) {
 // With command line option 1, this acts like the old ScheduleEvent.
 event3 = VdrStateEvent(sPort, EventStatePlayActive | EventStatePlayReady,

// Same as EventStateAllPlay
 EventConnectResources, sResHdls[VCOD], sResHdls[VOUT]);
 }
 else {
// With command line option 2, only connect the codec to out
// during active play.
Profile Software Development Kit User Preliminary — 12 July 2001

 event3 = VdrStateEvent(sPort, EventStatePlayActive,
 EventConnectResources, sResHdls[VCOD], sResHdls[VOUT]);
 }
 if (!event3) {
 printf("VdrStateEvent() failed.\n");
 return FALSE;
 }
 }
 else {
 // Set the default event.
 event1 = VdrDefaultEvent(sPort, NULL, EventConnectResources, sResHdls[VIN],

sResHdls[VOUT]);
 event2 = VdrDefaultEvent(sPort, NULL, EventConnectResources, sResHdls[VIN],

sResHdls[VCOD]);
 if (!event1 || !event2) {
 printf("Cannot schedule default events. \n");
 return FALSE;
 }

 // Schedule the event.
 evtHand = VdrScheduleEvent(sPort, INT_MIN, EventConnectResources,

sResHdls[VCOD], sResHdls[VOUT]);
 if (!evtHand) {
 printf("Cannot schedule event.\n");
 return FALSE;
 }
 }

 return TRUE;

} // SetupResources
Preliminary — 12 July 2001 Profile Software Development Kit User 103

Chapter 5 Using Events

104
//
// Cleanup by releasing resources and closing the control port.
//
void Cleanup(void)
{
 int i;

 printf("Starting cleanup...\n");

 for (i=0; i<MAX_RSRC; ++i) {
 if (sResHdls[i]) {
 VdrReleaseResource(sResHdls[i]);
 sResHdls[i] = 0;
 }
 }

 if (!VdrClosePort(sPort)) {
 printf("Cannot close port. \n");
 return;
 }
 sPort = 0;

} // Cleanup

//
// Play the movie clip.
//
void StartPlay(void)
{
 INT oldpos, newpos;
 MovieToken movieTok;
 MovieHandle movieHdl;

 // Open and attach the movie that we just recorded.
 movieTok = PdrOpenMovie(sConn, spMovieName, 0);
 if (!movieTok) {
 printf("Movie %s does not exist \n", spMovieName);
 return;
 }

 movieHdl = VdrAttachOpenMovie(movieTok, MAX_CODEC, sResHdls, NULL, ShiftAfter,

MarkLongest);
 if (!movieHdl) {
 printf("Error getting movie handle \n");
 return;
 }

 // Cue up playback of media attached with VdrAttachMovie.
 if (!VdrCuePlay(sPort, SHUTTLE_RATE)) {
 printf("Cannot cue play \n");
 return;
 }

 // Wait 15 seconds, so user can see what happens in cue play state.
 printf("Waiting 15 seconds to play.\n");
 Sleep(15000);

 // Begin motion playback.
 if (!VdrShuttle(sPort, SHUTTLE_RATE)) {
 printf("Cannot begin playback \n");
 return;
 }

Profile Software Development Kit User Preliminary — 12 July 2001

 printf("Playing movie.\n");

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 newpos = VdrGetPosition(sPort);
 } while (newpos > oldpos);

 // Pause for 10 seconds, so you can watch the video screen.
 // In regular mode, you’ll see the final frame frozen.
 // In "switcher" mode, you’ll see video in on the output.
 printf("Waiting 10 seconds in idle mode.\n");
 Sleep(10000);

 // Cease play back.
 if (!VdrIdle(sPort)) {
 printf("Cannot move to idle.\n");
 return;
 }

 // Detach the movie handle from the channel.
 if (!VdrDetachMovie(movieHdl, ShiftAfter)) {
 printf("Cannot detach movie.\n");
 return;
 }

 if (!PdrCloseMovie(movieTok)) {
 printf("Cannot close movie.\n");
 return;
 }

} // StartPlay
Preliminary — 12 July 2001 Profile Software Development Kit User 105

Chapter 5 Using Events

106
//
// The main entry point.
//
void main(int argc, char *argv[])
{

 BOOL rtn;

 // Read in the new movie name.
 if (argv[1]) {
 spMovieName = argv[1];
 }
 else {
 Usage(argv[0]);
 exit(1);
 }

 // Optional argument shows state events usage.
 if (argv[2]) {
 // Make sure there is no third argument.
 if (argv[3]) {
 Usage(argv[0]);
 exit(1);
 }
 if (!strcmp(argv[2], "1")) {
 sUseStateEvents = TRUE;
 }
 else if (!strcmp(argv[2], "2")) {
 sUseStateEvents = TRUE;
 sActAsSwitcher = TRUE;
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 }

 rtn = SetupResources();

 if (rtn)
 StartPlay();

 Cleanup();

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 6

Transferring Media with Fibre Channel

Fibre Channel enables you to copy and transfer media between Profile systems faster than in
real-time. Not only can you copy media between Profiles, you can also transfer media to and
from SGI servers, as long as appropriate software is installed on the SGI server (refer to the
Profile Fibre Channel Server Interface Manual for complete information). Fibre Channel
transfers must be used with some care since they can consume a substantial amount of the
bandwidth of the media disks and could thus restrict the bandwidth available for playing and
recording video.

Streaming over Fibre Channel makes it possible to transfer parallel tracks of media, such as
concurrent audio and video tracks, in small packets, and then reassemble them on the
destination Profile unit.

This allows you to transfer a clip while it is still being recorded or playback a clip before the
transfer is complete. For example, soon after it begins receiving a clip, a destination Profile
unit can begin playing it. The streaming transfer continues while playback occurs at the
destination, delivering new packets at a fast enough rate to allow playback to proceed
uninterrupted.

Transfer of complex movies over Fibre Channel is now supported. A complex movie is a
movie that consists of pointers to several other clips. Such a movie is not rendered and is not
a physical clip taking up disk space. Fibre Channel support for complex movies requires that
the source Profile send the appropriate pieces of the complex movie’s constituent clips along
with the data required to reassemble the pieces on the destination Profiles.

With Media Manager under Profile system software 2.5 or higher, all clips (simple movies)
and masters (complex movies) are streamed with Media Manager. SGI servers also can only
stream clips. Remote recording, playback, and editing of media is not available on an SGI
server.

NOTE: You must have Profile system software version 2.2 to copy media via Fibre
Channel. Version 2.4 allows you to stream simple clips and interoperate with SGI
servers. Versions 2.5 and higher allow you to stream complex clips and archive across
Fibre Channel by specifying movie names prefixed with a Profile name.

To transfer media across Fibre Channel, a Profile system must have an Ethernet local area
network (LAN) board and a Fibre Channel board installed, each one connected to its
respective network. The Ethernet LAN carries commands between Profile units, while the
Fibre Channel connection carries the actual video, audio, and timecode data. Both networks
use TCP/IP (Transmission Control Protocol/Internet Protocol).

For instructions on setting up these two networks, see the installation manual that came with
your Profile system; if you have installed a Fibre Channel board as an f-kit, see the Profile
Family Local Area Network Installation Manual. You should also consult the chapter on Fibre
Channel video networking in the Profile Family User Manual.
 12 July 2001 Profile Software Development Kit User 107

Chapter 6 Transferring Media with Fibre Channel

108
Configuring Fibre Channel
To transfer media between Profiles over Fibre Channel, you must first configure two discrete
networks, Ethernet and Fibre Channel. Network configuration is covered in more detail in the
Profile Family User Manual, but here is a brief overview of what you need to do to configure
your Profiles for Fibre Channel transfers (assuming your Profile system has the appropriate
hardware installed).

1. Set up your Ethernet LAN.

Using a twisted-pair cable, connect your Profile’s LAN board to a standard 10Base-T or
100Base-T Ethernet hub or switch. (You cannot connect Profiles directly from one LAN
board to another without a special cable.) Set your Profile system’s Ethernet IP address
in Windows NT with the Control Panel | Network applet. (See your system
administrator for the correct IP addresses to use on your network.)

2. Set up your Fibre Channel network.

Each Profile requires a separate and distinct Fibre Channel IP address in addition to its
Ethernet IP address. You can set your Fibre Channel IP address either through the Fibre
Channel dialog box in the Configuration Manager or with the fcconfig command line
utility. To use Configuration Manager, see the chapter describing the configuration
application in the Profile Family User Manual. To use fcconfig, see the chapter on Fibre
Channel video networking in the Profile Family User Manual.

3. Edit the hosts file.

This file can usually be found in the c:\winnt\system32\drivers\etc directory.
Example 10 shows a sample hosts file with bogus IP addresses. (See your system
administrator for the correct IP addresses to use on your network.)

Example 10. Sample hosts file

Computer Name: PROFILE1

Ethernet Address: 123.123.99.1

FC Address: 123.123.100.1

Computer Name: PROFILE2

Ethernet Address: 123.123.99.2

FC Address: 123.123.100.2

The hosts file lists the Profile unit names (PROFILE1, PROFILE2, etc.) and their
respective Fibre Channel names (PROFILE1_fc0, PROFILE2_fc0, etc.) and which IP
addresses are associated with them. If you make one comprehensive hosts file with the
IP addresses of all the Profile units on your network, you can copy that file from one
Profile to all others and save yourself a lot of time editing each hosts file individually.
You can also use a DNS server for name lookup, but that discussion is outside the scope
of this manual. Another alternative is to use the PDR network configuration service
(fcncs) to automatically update and maintain the hosts file.

4. Set up the pdrstart.bat file for version 2.5 or earlier.

Both the htssvc service and Port Server program must be running at all times on all
Profiles where you are using Fibre Channel. The pdrstart.bat file (in the c:\profile
directory) starts htssvc and Port Server in the proper sequence. If you want, you can
place pdrstart.bat in a startup folder and set it to run minimized. Make sure it’s running
on the other Profiles, too. After configuring all machines, you can verify name
resolution with fcping.
Profile Software Development Kit User Preliminary — 12 July 2001

Multicast programming
Multicast programming
Multicasting is the simultaneous transfer of a single streamed file to several destinations.
Multicasting can streamline applications in environments where one unit with a large amount
of storage can multicast files to a network of several Profiles (up to a maximum of eight) for
playout. Multicast transfers, like unicast transfers, occur through the TekXfr library. The only
real difference is that, instead of a single host/file destination pair for a unicast call, a multicast
call sends a list of destination pairs.

Limitations include the following:

• Profile multicasting (one-to-many transfers) requires the dedicated bandwidth available in
a Fibre Channel switch environment; multicasting is not available in a shared bandwidth
hub environment. To enable multicasting, the Fibre Channel network must be configured
with a Fibre Channel switch. Multicast is not supported on Profile XP Media Platforms.

• Fibre Channel hubs and Fibre Channel switches cannot coexist on the same network. If you
are converting from a hub network to a switched network, you must convert all nodes on
the network.

• Converting from a Fibre Channel hub network to a switched network may require a
firmware upgrade to each Profile’s Fibre Channel board.

• Multicasting requires a software option that must be running on each Profile.

• The current limit is eight destinations in a single transfer. For more than eight destinations,
the transfer command must be called multiple times.

• Each destination host in a multicast must be unique.

• The source host in a multicast cannot also be a destination host.

NOTE: When multicasting, the transfer rate of the sending Profile is cut approximately
in half. Thus, multicasting makes the most “performance” sense during transfers of a
1:3 (or higher) ratio. (A 1:2 multicast yields the same performance as making two
transfers.)

Switched Fibre Channel networks
There are many advantages to using a switched Fibre Channel network, the biggest being the
guaranteed bandwidth (as opposed to a hub environment’s shared bandwidth) between
devices. A switched environment also offers increased system reliability through its complete
isolation between Profiles on the network. And with browser-based management tools, it is
easy to view complete statistics and information on each node and detect network problems,
simplifying Fibre Channel troubleshooting.

The greatest drawback to a switched Fibre Channel network is the price; switches are more
expensive than hubs.

If your expenses allow it, you should configure your Fibre Channel network with a switch to
provide faster transfers, more robustness, and more advanced configuration/monitoring tools.
If, however, multicasting is not a requirement, and you are more interested in reducing costs,
you may wish to stick with a hub environment.

If you do choose to go with a switched network, you should consider connecting switches
redundantly by tying two ports together between two switches. If you have three switches,
connect each switch to the other two. (It is possible to cascade up to 32 switches together.)
What this does is allow your switches to automatically default to the redundant path in case of
Preliminary — 12 July 2001 Profile Software Development Kit User 109

Chapter 6 Transferring Media with Fibre Channel

110
a failure. Switch ports are hot-swappable too, so that if a port in the switch fails, you can
reconnect the Profile to a different port, and the system will resync in a few seconds without
powering down the Profile or the switch.

The drawback to using redundant paths is the reduction in the total number of connections
allowed. With redundant connections, each switch will lose two ports for interconnects, thus
a 16-port switch could have only fourteen Profiles connected and an 8-port switch could have
only six Profiles connected.

Multicasting errors
In a multicast, a calling application can discern between three results: complete success,
partial success, and complete failure. The transfer will continue until it is successful or an
error occurs. In the event that there is not complete success, it is up to the calling application
to determine which hosts did not get the movie.

• Complete success means that all the destination hosts successfully received the transferred
file.

• Partial success means that at least one destination host did successfully receive the
transferred file and at least one destination host did not. In a partial success situation, a
special error code is returned. Those hosts which have received the movie successfully
retain the file.

• Complete failure means that none the destination hosts successfully received the
transferred file.
Profile Software Development Kit User Preliminary — 12 July 2001

Switched Fibre Channel networks
Possible errors returned are shown in Table 5, Streaming error codes. Most of these are the
same as unicast errors. Other modules involved in the transfer can return both multicast and
unicast error codes.

Table 5. Streaming error codes

Error code Error name

0x02030001 * STRM_E_MALFORMED_UML

0x02030002 * STRM_E_BAD_UML_COUNT

0x02030003 STRM_E_NO_RESOURCE

0x02030004 * STRM_E_INTERNAL

0x02030005 * STRM_E_TIMEOUT

0x02030006 STRM_E_INVALID_STREAMID

0x02030007 STRM_IUE_INVALID_SESSION

0x02030008 STRM_E_NOT_SUPPORTED

0x02030009 STRM_E_BAD_ARGUMENTS

0x0203000a STRM_E_UNKNOWN_CODE

0x0203000b STRM_E_INCOMPLETE **

0x0203000c STRM_E_MALFORMED_LINE

0x0203000d * STRM_E_REMOTE_FAILURE

0x0203000e STRM_E_NONETWORK

0x0203000f * STRM_E_NO_CONNECTION

0x02030010 * STRM_E_OUT_OF_RESOURCES

0x02030011 STRM_E_NO_SPACE

0x02030012 STRM_E_IO

0x02030013 STRM_E_BADAUTH

0x02030014 STRM_E_SERVER

0x02030015 STRM_E_WRITE_PROTECT

0x02030016 STRM_E_VOLUME_OVERFLOW

* These errors are specific to multicast mode.
** This is the error reported for partial success--when at least one but not all of the destina-

tions get the data successfully.
Preliminary — 12 July 2001 Profile Software Development Kit User 111

Chapter 6 Transferring Media with Fibre Channel

112
The PDR network configuration service
The PDR network configuration service (fcncs) collects information about other Profiles on
the network via multicast, and maintains a local table of the information. It also will update
the hosts file if and only if the fcconfig -hta option is set to on.

This service has the following command line options:
fcncs -install Installs the service on the system. The service starts automatically when

installed.
fcncs -remove Removes the service from the system.
fcncs -start Starts the service.
fcncs -stop Stops the service.

UML descriptions
A UML (Uniform Media Locator) provides a complete description of the source or destination
of a transfer over Fibre Channel. In the Fibre Channel world, UMLs are similar in concept to
the URL (Universal Resource Locator) scheme used with HTTP on the Internet.

Here is the generic form for a UML:
<host>/<type>/<typeSpecificInformation>[?<options>]

..or, to use a specific example:
Profile1/explodedFile/INT1:/default/mymovie?(3600-21600)

The <host> portion consists of the Windows NT computer name of the source or destination
computer, in the above example, Profile1. The host must be available on the Fibre Channel
network with the other associated machines; if the host is not specified, it will default to
LOCALHOST.

The <type> portion represents the type of transfer to be performed at the source or destination.
Presently, ExplodedFile is the only type defined for the external API.

The <typeSpecificInformation> portion is described by the dataset (INT1:), the group
(default), and the name of the clip (mymovie).

The bracketed ?<options> piece indicates a group of optional arguments that will allow you
to specify which fields will be copied from the clip and also to designate streaming priority.
If you choose to append any options to the UML, add the question mark and the rest of the
syntax described below for each option.

Currently, there are three options defined: flattened, exact, and HOT.

The flattened option
This option, the default mode of operation, requires a (<startField>-<endField>) value
range after the question mark character. In the example below...
Profile1/explodedFile/INT1:/default/mymovie?(3600-21600)

...the range (3600-21600) specifies a five-minute portion of an NTSC clip starting after
the first minute1.

In general, only the media found between the parenthetical movie marks is transferred;
however, material outside the marks may be transferred for MPEG files, because of the need
to tansfer I-frames on which some of the predictive frames are based. For example, material

1. A five-minute clip is defined as 5 x 60 seconds x 60 fields = 18,000 frames;
the starting point (one minute into the clip) is defined as 60 seconds x 60 fields = 3600 frames);
an 18000-frame (five-minute) clip, starting one minute into the clip, yields the range 3600-21600.
Profile Software Development Kit User Preliminary — 12 July 2001

UML descriptions
back to and including the previous I-frame will be transferred for closed-GOP streams, and
material back to and including the I-frame before the previous I-frame will be transferred for
open-GOP streams. Also, if the <endField> frame (which is exclusive) comes just after a
P-frame, one additional frame will be transferred.

The exact option
This option transfers an exact copy of all the different pieces of media in their original format.
This includes all material located between the movie’s first field and last field, plus all the
other data in the media files that is not included in the movie description, such as material
before the first field or after the last field. (This allows an archive of an edit session on a
complex movie).

Using the exact option...
Profile1/explodedFile/INT1:/default/mycomplexmovie?exact

...will transfer all media files touched by the complex movie mycomplexmovie, even if the
complex movie uses only 10% of any one media file. In comparison, using the same UML
without the exact option...
Profile1/explodedFile/INT1:/default/mycomplexmovie

...will transfer only the media that appears between the movie marks (or just the 10%).

NOTE: You cannot specify startField and endField values with the exact option. Any
such request will fail.

The HOT option
This option allows you to designate a single stream as a “HOT” transfer that supercedes all
other transfers. This option suspends all other Fibre Channel transfers and reserves all
available Fibre Channel bandwidth for that one stream alone. After the HOT transfer has
finished, all suspended transfers will resume.

NOTE: The available bandwidth in a loop topology might not be enough to guarantee
that your HOT stream’s performance will not be degraded, but in a switched Fibre
Channel environment, the HOT option will allot full Profile-to-Profile bandwidth for
your stream, from source to sink.

The example below shows the syntax for the HOT option:
Profile1/explodedFile/INT1:/default/mymovie?HOT

Note that the word “HOT” must appear in capital letters after the question mark. Here are
some other requirements for HOT stream usage:

• Only one HOT stream is allowed per Profile; a second request for a HOT stream will fail.

• For an XfrRequest call, the option HOT must be specified on the source UML and on the
destination UML. Failure to do so will yield undefined results.

• For an FTP (STOR or RETR) call, the HOT option is specified on the UML.

It is possible to use the HOT option in conjunction with both the flattened and exact options,
but each option must be separated by its own question mark:
Profile1/explodedFile/INT1:/default/mymovie?(3600-21600)?HOT
Profile1/explodedFile/INT1:/default/mymovie?exact?HOT
Preliminary — 12 July 2001 Profile Software Development Kit User 113

Chapter 6 Transferring Media with Fibre Channel

114
Using UMLs
Example 11 demonstrates how to use an FTP file transfer to get all media files from a movie
mymovie consisting of one video track, two audio tracks, and a timecode track. The files are
saved locally as media files, then they are sent back as media files yourmovie.XX to the
Profile system called profile_fc0.

Example 11. UML usage in file mode

c: ftp profile_fc0
User : anything (except movie) or RETURN
ftp > bin
ftp > get INT1:/PDR/default/default/mymovie.V01 mymovie.V01
ftp > get INT1:/PDR/default/default/mymovie.A01 mymovie.A01
ftp > get INT1:/PDR/default/default/mymovie.A02 mymovie.Ao2
ftp > get INT1:/PDR/default/default/mymovie.T01 mymovie.T01

ftp > put mymovie.V01 INT1:/pdr/default/default/yourmovie.V01
ftp > put mymovie.A01 INT1:/pdr/default/default/yourmovie.A01
ftp > put mymovie.A02 INT1:/pdr/default/default/yourmovie.A02
ftp > put mymovie.T01 INT1:/pdr/default/default/yourmovie.T01

ftp > quit

Out of band control via the TekPdr API must be exercised to open the movie and query the
media file names on each track, before issuing the FTP request. When the media files are
“put” onto a profile, a movie is not created, only media files bearing the proposed movie name.
Again, out of band control via the SDK must be exercised to construct movie yourmovie
from the media files yourmovie.

Example 12 describes how to get a movie mymovie from a Profile system called profile_fc0
via FTP, save it locally as demo, then send the stream back as movie yourmovie. The local
file name demo must be explicitly specified, as the /explodedFile/INT1:/default
directory does not exist on the local system (the FTP client). Be sure to set the transfer type
to image (bin).

Example 12. UML usage in streaming

c: ftp profile_fc0
User : movie
ftp > bin
ftp > get /explodedFile/INT1:/default/mymovie demo
ftp > put demo /explodedFile/INT1:/default/yourmovie
ftp > quit

REQUIRED:
set the transfer type to image
ftp > bin

You can now play the movie yourmovie directly, without any other operations.
Profile Software Development Kit User Preliminary — 12 July 2001

Copying media via Fibre Channel
Copying media via Fibre Channel
Profile offers you several ways to write your own Fibre Channel media transfer applications:

• with TekXfr function calls (the preferred method);

• with TekPdr function calls;

• with TekVfs function calls;

• with the Media Manager application; and

• with the copymovie command line utility.

NOTE: A transfer may be initiated from a remote, non-Profile PC running Windows NT
and connected via Ethernet, but the actual transfers must take place between units
connected via Fibre Channel.

Our recommended transfer method is through the recently added TekXfr library

Copying media with TekPdr functions
Fibre Channel copies are possible through several function calls in the TekPdr library of the
Profile SDK:

• The PdrCopyMovie function initiates a copy, specifying the media source and destination.
This call also initiates a WaitToken which helps to manage the copy queue.

• The PdrGetWaitOpStatus must be called in conjunction with PdrCopyMovie. This call
polls the copy status until the copy is complete or it reports a failure. The application must
poll with this function to ensure that the copy operation proceeds smoothly.

• The PdrTerminateWaitOperation concludes the copy operation. You must call this
function to terminate all copy operations, whether successful or not. The WaitToken closes
when PdrTerminateWaitOperation is called; therefore, subsequent calls to
PdrCopyMovie will not return a WaitToken until the previous WaitToken is terminated.
This function can also cancel a current copy operation.

For parameter and other information for these function calls, see the Profile SDK Reference
Manual.

A master (complex movie) definition may include many individual media files. To optimize
network performance, the PdrCopyMovie function queues all media files to be copied, but
will only initiate a fixed number of copies at a time. For example, a master may consist of five
media files (for example, one media file for video and four audio files), but PdrCopyMovie
might elect to perform just three concurrent media copies.

As these copies complete, the remaining two media files will not be copied automatically.
They will only be copied when PdrGetWaitOpStatus is called. Once a copy operation has
been started, subsequent media copies are initiated only when PdrGetWaitOpStatus is
called. Thus, the first three media copies might all complete successfully, but the next two will
not be initiated until the application next issues a PdrGetWaitOpStatus. If
PdrTerminateWaitOperation were called before PdrGetWaitOpStatus, the two remaining
files would never be copied.

A media copy can be initiated as one of the following:

• a push operation (where the source machine initiates the copy);
Preliminary — 12 July 2001 Profile Software Development Kit User 115

Chapter 6 Transferring Media with Fibre Channel

116
• a pull operation (where the destination machine initiates the copy); or

• a remote operation (where a third machine initiates copy).

Nonetheless, all copies are translated into pulls. All copies are pulls at both the movie
database level and at the video file system level. Although this is all handled transparently by
the application, a brief understanding of the underlying mechanism may aid in application
design.

Any PdrCopyMovie request, regardless of where it is initiated, is immediately handed to the
destination machine. The destination machine then queries the source machine’s movie
database for the movie definition. This includes all the data associated with the movie, such
as the list of all media files that are part of the movie. Once the destination machine has
compiled this list of media files, it commences queueing media file copies. These individual
media file copies are all handled as pulls by the video file system.

As mentioned earlier, there is a restriction of one WaitToken per Profile system when using
TekPdr functions. Since all movie copies are movie database pulls, this restriction translates
to one WaitToken per destination Profile. This also means that a source Profile (server) mays
safely be involved in multiple copies.

Copying media files with TekVfs functions
The movie copying functions in the TekPdr library--namely PdrCopyMovie,
PdrGetWaitOpStatus, and PdrTerminateWaitOperation--meet the needs of many
application developers. If you need finer control over the copy process, however, you may
want to use the lower-level TekVfs library commands. These commands do not copy movies;
they copy the underlying media files. An application employing TekVfs calls must assume
the burden of maintaining integrity with the movie database. TekVfs calls are recommended
only for developers familiar with their implications.

Like TekPdr function calls, the TekVfs copies are handled by a set of three functions:

• The VfsCopyFile function initiates a media file copy, specifying the media source and
destination, and Boolean to wait for completion of the copy.

• The VfsStatusOfCopy polls the system for the status of the copy operation.

• The VfsCancelCopy function cancels a media file copy.

For parameter and other information for these function calls, see the Profile SDK Reference
manual. The pattern of use for these three functions is analogous to their equivalents in the
TekPdr library. However, note the following differences:

• There is a limit of eight simultaneous TekVfs copies per destination machine.

• Synchronous operation is optional because VfsCopyFile has a Boolean
WaitForCompletion parameter that monitors the WaitToken. More than one WaitToken is
possible, so your application does not have to manage the queue.

• Since TekVfs does not implement queue management, the application is not required to use
VfsStatusOfCopy if VfsCopyFile is given a nonzero waitForCompletion flag.

• The source and destination file names take the following form:
profile8_fc0.INT:/PDR/default/#1-001.V0

This can be done using code like:
sprintf(szFinalName, “%s_fc0.%s”, node, pathName);

In review, here is a clarification of the limitations of the current system:
Profile Software Development Kit User Preliminary — 12 July 2001

Copying media with Media Manager
• When copying via TekPdr functions, there can be only one WaitToken per Profile system,
which means your application must manage copy task queuing.

• You can make no more than three concurrent copies from the same Profile server without
performance penalties.

• Nonmedia files cannot be copied across Fibre Channel except by VfsCopyFile.

Copying media with Media Manager
A simple way to test your work so far is to start Media Manager by double-clicking its icon
on the Windows NT desktop. Use File | Add/Remove Machine in Media Manager to add or
remove a Profile machine on the network. For more information on copying media and
connecting to other Profile systems, see the chapter on Media Manager in the Profile Family
User Manual.

Copying media with copymovie
The copymovie command line utility also copies media between Profiles disk recorders using
the Fibre Channel. In this example, typed at a command line prompt, you copy media from
INT:/default/movie1 on PROFILE1 to the local Profile where the command was run, where
it is named INT:/default/movie7.
copymovie PROFILE1 INT:/default/movie1 * INT:/default/movie7

A companion to the copymovie command is the listnames command line utility. It provides
a way to list media on a remote Profile without using Media Manager. In the example here,
you list all movies in INT:/default on PROFILE1:
listnames -r PROFILE1 -l INT:/default/

Using FTP for streaming transfers
Another way to transfer media over Fibre Channel is through FTP.

FTP (File Transfer Protocol) is a TCP/IP protocol that has been used for many years to log on
to a network, list directories, copy files, and make other transfer operations. The FTP daemon
that runs on the Profile real-time processor has been enhanced to allow, not only traditional
FTP file transfers, but streaming file transfers as well.

The streaming protocol, when called by FTP, is passed a UML (see UML descriptions on
page 112) that will start an FTP buffer source (or sink, depending on the direction of transfer).
The external world sees an RFC-959-compliant data connection since the internal streaming
protocol processing is not visible to the outside world.

FTP commands can run in file mode or in movie mode (see Table 6). File mode is traditional
FTP, used for straightforward file transfers; movie mode uses FTP to initiate a movie stream
transfer.

Table 6. Supported commands processed by the FTP daemon

FTP command File mode Movie mode

USER no operation movie

PASS no operation no operation

PORT yes yes

TYPE yes yes

SEND yes yes
Preliminary — 12 July 2001 Profile Software Development Kit User 117

Chapter 6 Transferring Media with Fibre Channel

118
File mode
When in file mode, FTP is running directly on the native Profile file system (media file system
or MFS) in the real-time processor. The MFS stores media files which are actually individual
movie tracks such as the video track, the audio tracks and the timecode track. In this mode,
media files can be listed, directories can be changed, etc.. Since no concept of a “movie” exists
in the media file system, all transfers using this mode are done on a track-by-track (file-by-file)
basis.

If an FTP client wishes to transfer a movie rather than media files, the client may dictate that
the session be in movie mode. When in movie mode, all SEND and RECV commands are
processed by the streaming protocol on the targeted Profile. If movie mode is not selected, all
SEND and RECV commands are processed by the FTP session directly on the media files
specified by the request.

Movie mode
Movie mode is selected by initiating an FTP session with the user designated as MOVIE.
Movie mode provides a streamed file (multiplexed audio, video, and timecode) rather than a
track-by-track transfer. The notion of a “movie” only exists in the Windows NT PDR
database. Since the FTP connection is actually on the real-time side rather than on the
Windows NT side, it is not possible to query the Windows NT database, change directories,
etc. when operating in movie mode. Queries must be handled out of band over Ethernet
through the Profile remote API.

Sample code: Media copies
Example 13, deepcopy.c demonstrates use of the PdrCopyMovie function call to copy a
movie file. A single movie can be copied between any two Profiles on the Profile video
network. You can specify if the copy is to be exact, rendered, extract or shared. An exact copy
is the default option if none is specified.

Once the command-line is parsed, PdrCopyMovie is called with the appropriate parameters
and a WaitToken is received. PdrGetWaitOpStatus then queries the state of the copy as it
happens. Finally, the function PdrTerminateWaitOperation closes the copy operation.
Some timing and bandwidth information is displayed throughout the process, to allow you to
gauge the performance of the system.

Example 14, xferumls.c on page 125 provides a similar example using Fibre Channel to
perform streaming operations.

RECV yes yes

QUIT yes yes

PASV yes yes

ABOR yes yes

SITE yes yes

CWD yes n/a

NLST yes n/a

Table 6. Supported commands processed by the FTP daemon

FTP command File mode Movie mode
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Media copies
Example 13. deepcopy.c

//
// File: deepcopy.c
// Sample code to demonstrate PdrCopyMovie().
//
// Copyright (c) Grass Valley Group, Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
#include <windows.h>
#include <stdio.h>
#include "tekpdr.h"
#include "tekrem.h"

//
// Display usage line.
//
void Usage(const char *progName)
{
 printf("Usage:\n");
 printf("%s srcMachine srcName destMachine destName [copy type]\n",progName);
 printf(" if Machine is *, uses LOCAL_CONNECTION\n");
 printf(" copy type is exact(default), rendered, extract, or shared\n");
 printf("%s ? : causes this message to be printed\n", progName);
 printf("%s help : causes this message to be printed\n", progName);
 printf("%s usage : causes this message to be printed\n", progName);

} // Usage

//
// Take care of closing any remote connections.
//
void CloseConnections(ConnectHandle srcConn, ConnectHandle dstConn)
{
 if (srcConn != LOCAL_CONNECTION) {
 RemCloseConnection(srcConn);
 }
 if (dstConn != LOCAL_CONNECTION) {
 RemCloseConnection(dstConn);
 }

} // CloseConnections

//
// Parse the command-line and perform the copy. Determine if the Profile is remote,
// and open the connection if it is; Otherwise, the connection stays local.
// Also allow ? or help on the command line in order to get the usage printout.
//
main(int argc, char *argv[])
{
 ConnectHandle srcConn = LOCAL_CONNECTION;
 ConnectHandle dstConn = LOCAL_CONNECTION;
 char* srcHost = NULL;
 char* srcName;
 char* dstHost = NULL;
 char* dstName;

 const char* thisArg;
 DWORD tickStart, tickWait, tickFinish;
 PdrCopyType copyType;

 BOOL success;
Preliminary — 12 July 2001 Profile Software Development Kit User 119

Chapter 6 Transferring Media with Fibre Channel

120
 WaitToken wait;
 PdrWaitOpStatus status;
 double bandwidth, average;

 if (argc < 5) {
 Usage(argv[0]);
 return 0;
 }
 if (argc < 6) {
 // No copy type supplied, setting default.
 copyType = PdrExactMedia;
 }
 else {
 switch (argv[5][0]) {
 case ‘s’:
 case ‘S’:
 copyType = PdrShareMedia;
 break;
 case ‘r’:
 case ‘R’:
 copyType = PdrRenderedMedia;
 break;
 case ‘e’:
 case ‘E’:
 // Is the argument exact or extract?
 switch (argv[5][2]) {
 case ‘a’:
 copyType = PdrExactMedia;
 break;
 case ‘t’:
 copyType = PdrExtractMedia;
 break;
 default:
 Usage(argv[0]);
 return 0;
 }
 break;
 default:
 Usage(argv[0]);
 return 0;
 }
 }

 if (!strcmp(argv[1], "help") || !strcmp(argv[1], "?") || !strcmp(argv[1], "usage")) {
 Usage(argv[0]);
 return 0;
 }
 if (strcmp(argv[1], "*")) {
 srcHost = argv[1];
 }
 srcName = argv[2];
 if (strcmp(argv[3], "*")) {
 dstHost = argv[3];
 }
 dstName = argv[4];
 if (srcHost || dstHost) {
 printf("Interfacing to tekrem version %d.%d\n",
 RemGetMajorVersion(), RemGetMinorVersion());
 }
 if (srcHost) {
 success = RemOpenConnection(ConnectEthernet, 0, srcHost, &srcConn);
 if (!success) {
 printf("Failed to make a connection to %s\n", srcHost);
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Media copies
 printf("Error code is 0x%x\n", GetLastError());
 return 0;
 }
 printf("srcHost %s connection is 0x%x\n", srcHost, srcConn);
 }
 if (dstHost) {
 success = RemOpenConnection(ConnectEthernet, 0, dstHost, &dstConn);
 if (!success) {
 printf("Failed to make a connection to %s\n", dstHost);
 printf("Error code is 0x%x\n", GetLastError());
 CloseConnections(srcConn, dstConn);
 return 0;
 }
 printf("dstHost %s connection is 0x%x\n", dstHost, dstConn);
 }

 if (!PdrMovieExists(srcConn, srcName)) {
 printf("src movie %s does NOT exist!\n", srcName);
 printf("Request failed.\n");
 CloseConnections(srcConn, dstConn);
 return 0;
 }
 printf("%06d: Input validated\n", GetTickCount()%1000000);
 printf(" srcConn 0x%x, srcMachine %s, srcName %s\n",
 srcConn, srcHost, srcName);
 printf(" destConn 0x%x, destMachine %s, destName %s\n",
 dstConn, dstHost, dstName);

 // Everything is ready, grab the current time then start the transfer.
 tickStart = GetTickCount();
 wait = PdrCopyMovie(srcConn, srcName, dstConn, dstName, copyType);
 tickWait = GetTickCount();
 if (!wait) {
 // Failed to get wait token.
 printf("Error in PdrCopyMovie call; WaitToken is 0\n");
 printf(" LastError code is 0x%x\n", GetLastError());
 printf("Request failed.\n");
 CloseConnections(srcConn, dstConn);
 return 0;
 }
 printf(" WaitToken value is 0x%x\n", wait);
 printf(" Ticks for startup of operation are %d\n", tickWait - tickStart);
 printf("%06d Time started\n%06d Start up completed\n",
 tickStart%1000000, tickWait%1000000);

 status.state = PdrWaitOpContinue;
 success = TRUE;
 while (success && status.state == PdrWaitOpContinue) {
 success = PdrGetWaitOpStatus(wait, &status);
 if (!success) {
 printf("PdrGetWaitOpStatus call failed\n");
 printf(" reason is 0x%x\n", GetLastError());
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 121

Chapter 6 Transferring Media with Fibre Channel

122
 else {
 switch (status.state)
 {
 case PdrWaitOpError:
 thisArg = "PdrWaitOpError";
 break;
 case PdrWaitOpRequest:
 thisArg = "PdrWaitOpRequest";
 break;
 case PdrWaitOpCanceled:
 thisArg = "PdrWaitOpCanceled";
 break;
 case PdrWaitOpContinue:
 thisArg = "PdrWaitOpContinue";
 break;
 case PdrWaitOpInvalidHandle:
 thisArg = "PdrWaitOpInvalidHandle";
 break;
 case PdrWaitOpCompleted:
 thisArg = "PdrWaitOpCompleted";
 break;
 default:
 thisArg = "?? ??";
 break;
 }
 bandwidth = (double)status.lastBandWidth / 1000000.;
 average = (double)status.averageBandWidth / 1000000.;
 printf("%06d pcnt %3d, #W %3d, #A %1d, BW %6.3f, aver %6.3f, %s\n",
 GetTickCount()%1000000,
 status.percentCompleted,
 status.numOfFileWaiting, status.numOfFileCopying,
 bandwidth, average, thisArg);
 Sleep(990);
 }
 }
 tickFinish = GetTickCount();

 PdrTerminateWaitOperation(wait, NULL);
 printf(" Total time: %d\n", tickFinish - tickStart);

 CloseConnections(srcConn, dstConn);

 return 0;

} // main

Streaming with Fibre Channel
Fibre Channel streaming is made possible because of the TekXfr library in the Profile SDK.
The TekXfr library currently contains four function calls:

• XfrAbort

• XfrGetActiveTokens

• XfrGetStatus

• XfrRequest

For detailed information on these functions, see the Profile SDK Reference Manual.
Profile Software Development Kit User Preliminary — 12 July 2001

XfrAbort
XfrAbort
XfrAbort requests that a transfer in progress be stopped, or releases the XfrToken in a
streaming transfer that is already done.

XfrGetActiveTokens
XfrGetActiveTokens returns an array of the transfers currently occurring on the system it is
requested on. This allows applications to provide in-transit status. Given this list, the
application can then call XfrGetStatus for all the transfers currently occurring or in the status
cache.

XfrGetStatus
XfrGetStatus returns the current status of a transfer in progress or a transfer that was
completed earlier. The final status of any request is cached so that an application can request
it at a later time. This helps you keep track of transfers as a request may be queued and
finalized later automatically.

XfrRequest
The XfrRequest function initiates a transfer between a single data source and a destination.
This call returns immediately after initiation (NULL if unsuccessful).

Streaming function calls keep track of transfers by means of the XfrToken, which is specific
only to streaming operations. With XfrToken, it is possible to make any number of transfers,
though performance may degrade as the number of transfers increases. A transfer request may
be queued if bandwidth limitations keep a request from being performed immediately.

The source and destinations of the transfer are specified by a Uniform Media Locator (UML).
For a detailed explanation of UMLs, see UML descriptions on page 112.
Preliminary — 12 July 2001 Profile Software Development Kit User 123

Chapter 6 Transferring Media with Fibre Channel

124
Sample code: Fibre Channel streaming
Figure 8 illustrates what happens in a typical Fibre Channel streaming file transfer. (Although
a Fibre Channel ring or loop topology is shown, a Fibre Channel fabric topology relies on the
same principles.)

Figure 8. Fibre Channel file transfer

First, the Fibre Channel transfer request travels over Ethernet from the NT operating system
to Profile1. Then Profile1 initiates a Fibre Channel transfer of the media file mymovie over
to Profile2 with the name mycopy. The example uses fully qualified UML names to avoid
any ambiguity.

Example 14, xferumls.c demonstrates the use of Fibre Channel streaming transfers. A source
clip, designated by a UML, is copied to a destination using the Fibre Channel transfer API.
Bandwidth and total time are reported as status output. Given that xferuml.exe iss executed on
a remote, non-Profile Windows NT system over Ethernet, the command would be formed like
this:
xferuml Profile1 Profile1/explodedFile/INT:/default/mymovie Profile2/explodedFile/INT:/
default/mycopy

The C code required to accomplish this is relatively straightforward. Some initial setup and
parsing of the command line is performed. Then the API functions XfrRequest,
XfrGetStatus, and XfrAbort are called to control transfer of data through Fibre Channel.

For a similar example using Fibre Channel to perform simple (nonstreaming) copy operations,
see Example 13, deepcopy.c on page 119. The Profile SDK abstracts the transfer control to a
much higher level.

Fibre Channel Ring
(or other Fibre Channel topology)

Ethernet

Profile 1 Profile 2 Profile n

NT
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Fibre Channel streaming
Example 14. xferumls.c

//
// File: xferuml.cpp
// Demonstrates using Fibre Channel transfers.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
#include <windows.h>;
#include <stdio.h>;
#include "tekpdr.h"
#include "tekrem.h"
#include "tekxfr.h"

// This function is used if the input is either a ? or the word help.
// It shows the usage of the program.

void Usage(const char *progName)
{
 printf("Usage:\n");
 printf("%s srcProfile srcUml dstUml\n", progName);
 printf(" srcProfile Profile to run streamcopy from\n");
 printf(" srcUml Source UML\n");
 printf(" dstUml Destination UML\n");

} // Usage

// In the main program, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays
// local. We also allow ? or help on the command line in order to
// get the usage printout.

int main(int argc, char *argv[])
{
 ConnectHandle srcConn = LOCAL_CONNECTION;
 char* srcHost = NULL;
 char lochost[82];
 char* srcUml;
 char* dstUml = NULL;
 char* dstList = NULL;
 const char* dstArray[1];
 DWORD tickStart, tickFinish;
 XfrToken waitxfer;
Preliminary — 12 July 2001 Profile Software Development Kit User 125

Chapter 6 Transferring Media with Fibre Channel

126
 // Parse command line arguments.
 if (argc != 4) {
 Usage(argv[0]);
 return 0;
 }
 srcHost = argv[1];
 srcUml = argv[2];
 dstUml = argv[3];

 // Validate the source movie.
 gethostname(lochost, 82);
 if (strcmp (srcHost,lochost) != 0) {
 if (!RemOpenConnection(ConnectEthernet, 0, srcHost, &srcConn)) {
 printf("ERROR: Failed to connect to %s, error code 0x%x\n", srcHost,

GetLastError());
 return 1;
 }
 }
 printf("Source Profile %s connection is 0x%x\n", srcHost, srcConn);
 printf("The source UML is: %s\n", srcUml);

 // Only one destination from the command line.
 printf("The destination UML is: %s\n", dstUml);
 dstArray[0] = dstUml;

 // Initiate the transfer.
 tickStart = GetTickCount();

 waitxfer = XfrRequest(srcConn, srcUml, 1, (const char **)dstArray);
 if (waitxfer == 0) {
 // We failed to get wait token.
 printf("ERROR: XfrRequest token is 0, error code 0x%x\n", GetLastError());
 if (srcConn != LOCAL_CONNECTION)
 RemCloseConnection(srcConn);
 return 1;
 }
 printf(" WaitToken value is 0x%x\n", waitxfer);

 for (;;) {
 const char* thisArg;
 double bandwidth, average;
 XfrStatus status;

 if (!XfrGetStatus(waitxfer, &status)) {
 printf("\nERROR: XfrGetStatus call failed, error code 0x%x\n",

GetLastError());
 break;
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Fibre Channel streaming
 switch (status.state) {
 case XFR_ST_ERROR:
 thisArg = "XFR_ST_ERROR";
 printf("\nERROR: Status error code %d\n", status.error);
 break;
 case XFR_ST_QUE:
 thisArg = "XFR_ST_QUE";
 break;
 case XFR_ST_ACTIVE:
 thisArg = "XFR_ST_ACTIVE";
 break;
 case XFR_ST_DONE:
 thisArg = "XFR_ST_DONE";
 break;
 case XFR_ST_LAST:
 thisArg = "XFR_ST_LAST";
 break;
 default:
 thisArg = "UNKNOWN";
 break;
 }
 bandwidth = (double)status.lastBandWidth / 1000000.;
 average = (double)status.averageBandWidth / 1000000.;
 printf(" %06d %3d%% BW %6.3f ave %6.3f %-15s\r", GetTickCount()%1000000,

status.percentCompleted, bandwidth, average, thisArg);
 fflush(stdout);
 if ((status.state != XFR_ST_ACTIVE) && (status.state != XFR_ST_QUE))
 break;

 Sleep(990);
 }

 tickFinish = GetTickCount();

 XfrAbort (waitxfer);
 printf(“\nTotal time: %d\n”, tickFinish - tickStart);

 if (srcConn != LOCAL_CONNECTION) {
 RemCloseConnection(srcConn);
 }

 return 0;

} // main
Preliminary — 12 July 2001 Profile Software Development Kit User 127

Chapter 6 Transferring Media with Fibre Channel

128
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 7

Programming the Profile Library System

The Profile Library System (PLS) uses the client/server model of computing. There is one
instance of the library server for each library. This server has a catalog that describes the
contents of every tape cartridge loaded in a library. The catalog is a cache for tape cartridge
directories. It can also retain residual knowledge of cartridges that have been removed from
the library and stored elsewhere.

The library server works with files as a basic unit of information. A file can be a simple stream
of bytes or a multiplexed stream of video, audio, and timecode. The library system copies files
from a Profile system to tape cartridges and back, but does not delete files from a Profile unit;
file management is handled by Media Manager or other third-party applications.

The programming model can be approached from two distinct views. First is the ANSI C
function calls. The second model supports serial protocols used over RS-422 and Ethernet.
We have striven for a consistent model and feature set between these two programming
paradigms. In some cases, the limitations of one model have shaped the features of both. The
API is available for local applications and as remote procedure calls using the SDK over the
Ethernet.

The C programmer’s model is based on ANSI C functions. These are implemented as a remote
procedure call library that binds function calls to a network transport protocol. Memory
management is the responsibility of the application. This model lowers the risk of
network-wide memory leaks. The library server uses a set of handles or identifiers to pass
linkages to objects the application references or reserves. The use of handles supports
communication of object references across serial links. This mechanism is prone to leaks if
the application programmer is not careful. Leaks are due to the application not closing handles
before exit. A concurrent execution model is supported for long commands.

The byte stream serial protocol is modeled after the existing RS-422 Profile protocol. We have
limited the length of transport packets in the command set because of the limits imposed by
the current RS-422 packet framing model.

Programming model and serial protocols
The programming model can be approached from two distinct views: the ANSI C function
calls and serial protocols used over RS-422 and Ethernet. We have tried to make a consistent
model and feature set between these two programming paradigms. In some cases, the
limitations of one model have shaped the features of both. The API is available for local
applications and as remote procedure calls using the SDK over the Ethernet.

A C programmer’s view
The C programmer’s model is based on ANSI C functions. These are implemented as a
Remote Procedure Call library that binds function calls to a network transport protocol.
Memory management is the responsibility of the application. This model lowers the risk of
network-wide memory leaks. The library server uses a set of handles or identifiers to pass
linkages to objects the application references or reserves. The use of handles supports
 12 July 2001 Profile Software Development Kit User 129

Chapter 7 Programming the Profile Library System

130
communication of object references across serial links. This mechanism is prone to leaks if
the application programmer is not careful. A concurrent execution model is supported for
slow commands.

Serial protocols
A byte stream serial protocol will be implemented that is modeled after the existing RS-422
protocols. Several decisions in the command set have been made to limit the length of
transport packets because of the limits imposed by the current RS-422 packet framing model.

Library concepts overview
Here’s a description of many of the basic concepts used to design the library server.

Local library catalog
The library server keeps a catalog of all files in the attached library. The purpose of this
database is to allow a fast search for a given piece of material and to support requests for lists
of the available material. When cartridges are removed from a library, the application can have
all references to material on the cartridge removed from the catalog. This is useful when
cartridges are not going to be used in the near future or are being sent to other facilities. The
catalog entries for removed cartridges can be retained. Having entries in a catalog makes
locating the material faster. The catalog knows the cartridge is not in a library, and it has a
field noting where the cartridge is stored or where it can be placed.

Cartridges and partitions
Tape cartridges are identified with unique barcode labels. Barcode labels are used so machine
and human readable cartridge identification is available.

You can subdivide cartridges into partitions. A partition can be treated as if it were a separate
tape for material replacement purposes. The first partition on a cartridge (at the load point)
will be used to store a master cartridge directory. The master cartridge directory need not be
the same size as the rest of the partitions. The remaining partitions will all be of equal size
and used to store data and media files. From the customer’s view, partition numbers start at 1
and ascend as you move away from the cartridge’s load point. Partition numbers
PlsAnyPartition and PlsNoPartition (-1) are reserved to mean no partition or all partitions,
depending on the context.

The code design allows a directory partition to be of different size than data partitions. Data
partitions must all be the same size. Some vendor restrictions may require that all partitions
be the same size.

Several types of tape cartridges may exist in a library. One type is clip, media and data file
archive cartridges. Another is tape transport cleaning cartridges. Each cartridge must have
unique barcode label.

Files
Files are the basic units of data the library system reads and writes. They can be one of several
types:

• A data file. A simple data file, a stream of bytes. It must be local on the Profile server
attached to the PLS machine.

• A clip file. Audio, video(motion-JPEG encoded), and timecode media files multiplexed
Profile Software Development Kit User Preliminary — 12 July 2001

Barcode labels
into an MPEG program element stream. MPEG compression formats are not used in
Profile system software version 2.4.

An archive clip file is a degenerate case of a movie. It has video streams, audio streams,
and possibly time codes. An archive clip file is a flat or rendered media stream.

• A published (finished) movie file. This is a multiplexed collection of audio, video,
timecodes, and control track information. Material is stored in the playout time sequence
and unused material is not archived.

Barcode labels
Tape cartridges are identified with barcoded labels. The library server supports barcode label
identifier strings of up to sixteen ASCII characters. While the design allows for sixteen
characters, the number offered by vendors may differ.

At each installation, barcode identifiers must be unique. If required, an operator can replace
a duplicate label on a cartridge from another facility, then load it into a library.

Strings and file names
Strings contain only printing characters and white space, that is, tab and space through tilde.
A null pointer to a string is considered to be a null string. Strings will always be null
terminated.

File names are strings that identify the file. The path string (dataset name and file path prefix)
is omitted from file names in a library. The file name on a cartridge may have a partial Profile
file system path as well as the formal Profile file name and extension. File names must be
unique in each partition. Files in a library are found by qualifying the names with a cartridge’s
label.

The name spaces are flat for archived files. The library server will keep files in the order they
are stored on cartridges, not in a hierarchical file system tree.

File names are a subset of ASCII strings. The file name character set excludes: NULL (0x00)
to US (0x1f), *, ?, and (0x7f). Case differences are not considered when comparing
names. The case of provided strings will be preserved by the library server. Names that only
differ by white space at the end will be considered matches; trailing white space is removed.
A null pointer to a name is considered equal to a null name.

Resource reservation
Some types of system resources, tape transports, and tape cartridges can be reserved by an
application or operator. Resource reservation is intended to control tape transport and
cartridge access when time critical operations are underway. It is assumed system resources
will not be reserved for extended periods of time.

When a single application is driving the library server, the application may implement its own
resource reservation model. When multiple applications share a library server, they should
reserve resources that will be required in the near future. Applications may also want to
reserve resources so other applications using the same library server will not cause unexpected
problems.

In/out points
In/out points are used to control what portions of audio/video media files are archived or
restored.
Preliminary — 12 July 2001 Profile Software Development Kit User 131

Chapter 7 Programming the Profile Library System

132
When an audio/video media file is archived, a pair of in/out points specifies the starting and
ending locations of the material to be saved. The mark-in and mark-out points for a movie are
saved with the file.

An optional set of in/out points can be used with a restore command. This in/out pair is used
to restore a portion of the material from a file.

Field numbers
Fields in a media file are addressed in time with field numbers. The first field number in a
media file or clip is 0.

Multicartridge sets
A file may not fit on a single cartridge. In this case, the library server will split the material
between cartridges as needed. Multicartridge files will be stored on separate tape cartridges
(cartridges with no other material). All of the cartridges used in a multicartridge set will be
taken from a pool of free cartridges. If the location of material on multicartridge sets is not
constrained, a facility’s cartridges would become interwoven.

The library server will decide if a multicartridge set is required when an archive command is
starting. If one of the media files is having material added while an archive command is
proceeding, the results will be unpredictable and can be undesirable.

Commands that reference a multicartridge set should use the cartridge label for the first
cartridge. An exception is the import cartridge command. It does not know a multicartridge
set is being processed so it deals with individual cartridges.

When the material on a multicartridge set is deleted, the set is broken up. The cartridges are
all returned to the pool of free cartridges.

Material categories
Cartridges can be assigned to categories. These are used when an application wants the library
server to select cartridges for storing files from a known group of cartridges. All of the
cartridges in a multicartridge set belong to the category specified for the first cartridge.

The programming model
In several cases the library server uses handles to bind resources between commands. These
handles are integers (actually void pointers) and can easily be used in C and C++ function calls
or network protocols. Handles are used as a compact representation of a resource or a
connection. They also represent the link between an application and an active resource or
other system state information.

In some instances an application can offer NULL for a handle to the library server. This means
the library server is free to use any resource that is available.

Connection and library handles
An application must establish communications with the library server using the TekRem
library. To acquire a connection handle, use RemOpenConnection. This function returns a
connection handle that is used with three function calls. These return the library server’s
major or minor version numbers or open a library server session.
Profile Software Development Kit User Preliminary — 12 July 2001

Library server API memory model
When an application wants to work with a library server, it opens a library handle. This is
logically a connection handle that can reference a local Profile or one somewhere on the
network. Each library handle has its own set of state variables. Some examples are the file
system path, a name that identifies the operator or application, and so on. As transport
handles, cartridge handles, file handles, and loop handles are created, they all are linked back
to the parent library handle. Closing a parent handle closes all associated child handles.

Loop handles are a special case. They are created when an application wants to acquire a
potentially long list of entries, like a bin or directory listing. A loop is opened and the handle
is returned with a FindFirst command. The loop handle serves as a reference point by
logically pointing to the state vector for that loop.

Applications should always close handles when they are no longer needed. You must use
PlsOpCodeGetAnyEvent to close down TransActionHandle. Closing a parent handle does
not automatically close a child. If these handles are not closed, the resources used by the
handle will not be released and eventually the library server could fail for lack of free handles.

Library server API memory model
When a structure is to be returned, the application must provide a pointer to memory. The
library server builds a structure in the application’s memory space. The application is
responsible for allocating and releasing this memory. The library server does not return large
structures with any single command. Collections of objects that require significant amounts
of space are returned one at a time.

Operations returning multiple data items
Some operations return bin maps and directories that can have a large number of entries.
These operations return results using an application-supplied pointer to memory and looping
constructs. One command is issued to start the looping operation. This is a loop-type
FindFirst command. It may have parameters that allow starting an operation at a location
other than the beginning. The loop-type FindFirst command returns a handle that can be used
with the loop-type FindNext command to retrieve successive responses. The loop is
terminated with a loop-type Close command.

An application must close an active loop handle. If it does not, the library server will
eventually run out of memory.

If a FindFirst command is issued for an empty list, the returned handle has the value of
NULL. In this case no active loop handle exists.

Some of the looping commands can restrict the set of items returned. This is done with an
action code parameter used in the loop-type FindFirst command.

Concurrent command execution
Some commands require long periods of time to execute. One of the parameters to these
commands is a pointer to a transaction handle. If this pointer is NULL, synchronous
command execution will occur. If the pointer to a concurrent command transaction handle is
not NULL, a handle is returned that can be used with a status command to track the concurrent
command execution. This handle can also be used to attempt to cancel concurrent commands.
Concurrent commands are considered complete when a command completion event is
processed.
Preliminary — 12 July 2001 Profile Software Development Kit User 133

Chapter 7 Programming the Profile Library System

134
While concurrent commands are executing, additional commands can be queued. The number
of commands that can be queued depends on physical and logical resources limitations. The
number of commands that can be queued is not specified. A single application’s commands
are always executed first in, first out. The order of execution of commands between different
applications is not specified.

Error codes
All commands return a Boolean, an integer, or a pointer. By convention, if the returned value
is 0, an error has occurred. A nonzero value can be useful information or simply a successful
command completion code. An error code can be acquired by calling GetLastError.

When a command is executed asynchronously, the initial function call may fail (that is, return
a 0) if something is wrong, in which case no concurrent execution will have started. If the
return value is not zero, an asynchronous execution will start.

Asynchronous commands send completion events when they terminate. Concurrent
command completion events contain an error code as part of the event structure. This error
code describes the execution after the successful start. It will be zero if the command has
completed successfully.

The inversion of the meaning of 0 from a function call return value (0 is an error) to event error
codes (0 means success) must be carefully considered when writing applications.

Configuration, status, and information commands
Configuration commands return data that describes the physical components installed in a
given system, such as the number of bins in a library. Status commands return data that
describes the current state, such as the number of bins that contain a cartridge. Information
commands are used when combining configuration and status information is appropriate.

Important notes and assumptions
It is important to consider the following notes when developing applications for library
servers:

• Archive and restore operations will use the same resources as disk recorder operations. As
a first approximation, one archive data stream requires the same resources as one video
stream. Since audio and video I/O takes precedence over all other operations, full-speed
tape operations may require shutting down disk recorder channels.

• Each library may be attached to only one Profile system, and each Profile system may have
only one library attached to it.

• Media files that only contain audio information will be addressed in video field time units.

• Protection for dangerous operations is the responsibility of the application level software,
not the library server. Examples of dangerous operations are reformatting cartridges and
deleting files.

• The library server will not move files. Files are copied.

• When current status information cannot be acquired from a device, the last accurate status
information is returned. For example, many tape drives will not return status while a format
is in progress, so the library server returns status information acquired when the format
operation was started.

• The PLS 200 can queue up to 250 commands.
Profile Software Development Kit User Preliminary — 12 July 2001

Configuration
• The PLS 200 can queue up to 100 asynchronous events (that is, events which are not
command completion events).

Configuration
A library with several tape transports attached to a single Profile system. Transports without
libraries are attached to a Profile system that supports the library server software. This is
named a stand-alone transport.

Tape partitioning
Digital computer tapes do not allow replacement of embedded portions of the stored data.
New data can be appended to existing data, at the cost of losing access to all data stored beyond
the freshly written data.

Since some types of material handled in broadcast facilities have a short life with high
turnover, the inability to replace parts of the data on a cartridge limits the applications. One
solution is the division of the tape into segments or partitions that can be individually written
without altering the contents of other partitions.

To support this facility, tapes must be formatted with special markers and buffer zones
between each partition. The buffer zones are used accommodate variances between drives and
media. They guarantee that under all circumstances the data in one partition can be replaced
without altering the information in the following partition.

When tapes are divided into more and more partitions, the buffer space and other overhead
grow as a percentage of the total tape. Eventually it becomes impractical to increase the
number of partitions. On some drives, other factors limit the number of available partitions.

Since the division of the tape is limited, the minimum size may be larger than is desired in
some applications. All current tape drives either don’t support partitioning, or limit the
minimum partition size. Unfortunately for some broadcast applications, the minimum
partition size is not as small as would be desirable. For PLS 200 tape drives the minimum size
is approximately 200MB. This is about 30 seconds of high quality material or 55 seconds of
highly compressed material. (See Table 7, PLS tap‘e partitioning on page 136 for tape
partitioning specifics.) Applications that work with tapes that are approaching their total
capacity should handle errors from tape overflows, as well as hard write errors.

Several variables alter the storage requirements, including how old the tape is, how worn
the heads are, when the drive was last cleaned, and how clean the video signals are.
Preliminary — 12 July 2001 Profile Software Development Kit User 135

Chapter 7 Programming the Profile Library System

136
Table 7. PLS tap‘e partitioning

Number of
partitions

Partition
size (MB)

Partition capacity (H:MM:SS) at given video rates (MBps)

24 32 40 48

63 199 0:00:56 0:00:44 0:00:36 0:00:30

62 199 0:00:56 0:00:44 0:00:36 0:00:30

61 199 0:00:56 0:00:44 0:00:36 0:00:30

60 199 0:00:56 0:00:44 0:00:36 0:00:30

59 199 0:00:56 0:00:44 0:00:36 0:00:30

58 200 0:00:56 0:00:44 0:00:36 0:00:30

57 207 0:00:58 0:00:45 0:00:37 0:00:32

56 212 0:01:00 0:00:47 0:00:38 0:00:32

55 218 0:01:01 0:00:48 0:00:39 0:00:33

54 225 0:01:03 0:00:49 0:00:40 0:00:34

53 231 0:01:05 0:00:51 0:00:42 0:00:35

52 238 0:01:07 0:00:52 0:00:43 0:00:36

51 245 0:01:09 0:00:54 0:00:44 0:00:37

50 252 0:01:11 0:00:55 0:00:45 0:00:38

49 260 0:01:13 0:00:57 0:00:47 0:00:40

48 268 0:01:15 0:00:59 0:00:48 0:00:41

47 276 0:01:18 0:01:01 0:00:50 0:00:42

46 285 0:01:20 0:01:03 0:00:51 0:00:43

45 294 0:01:23 0:01:05 0:00:53 0:00:45

44 303 0:01:25 0:01:07 0:00:55 0:00:46

43 313 0:01:28 0:01:09 0:00:56 0:00:48

42 324 0:01:31 0:01:11 0:00:58 0:00:49

41 334 0:01:34 0:01:13 0:01:00 0:00:51

40 346 0:01:37 0:01:16 0:01:02 0:00:53

39 358 0:01:41 0:01:19 0:01:04 0:00:55

38 370 0:01:44 0:01:21 0:01:07 0:00:56

37 383 0:01:48 0:01:24 0:01:09 0:00:58

36 397 0:01:52 0:01:27 0:01:11 0:01:01

35 412 0:01:56 0:01:30 0:01:14 0:01:03

34 428 0:02:00 0:01:34 0:01:17 0:01:05

33 445 0:02:05 0:01:38 0:01:20 0:01:08

32 462 0:02:10 0:01:41 0:01:23 0:01:10

31 481 0:02:15 0:01:46 0:01:27 0:01:13

30 501 0:02:21 0:01:50 0:01:30 0:01:16

29 523 0:02:27 0:01:55 0:01:34 0:01:20

28 546 0:02:34 0:02:00 0:01:38 0:01:23

27 571 0:02:41 0:02:05 0:01:43 0:01:27

26 597 0:02:48 0:02:11 0:01:47 0:01:31
Profile Software Development Kit User Preliminary — 12 July 2001

Library server commands
Library server commands
Table 8 below lists the command set available from the library server. These commands are
implemented as ANSI C functions.

25 625 0:02:56 0:02:17 0:01:52 0:01:35

24 657 0:03:05 0:02:24 0:01:58 0:01:40

23 690 0:03:14 0:02:31 0:02:04 0:01:45

22 727 0:03:25 0:02:40 0:02:11 0:01:51

21 768 0:03:36 0:02:49 0:02:18 0:01:57

20 813 0:03:49 0:02:58 0:02:26 0:02:04

19 862 0:04:03 0:03:09 0:02:35 0:02:11

18 917 0:04:18 0:03:21 0:02:45 0:02:20

17 978 0:04:35 0:03:35 0:02:56 0:02:29

16 1046 0:04:54 0:03:50 0:03:08 0:02:39

15 1124 0:05:16 0:04:07 0:03:22 0:02:51

14 1213 0:05:41 0:04:26 0:03:38 0:03:05

13 1316 0:06:10 0:04:49 0:03:57 0:03:21

12 1436 0:06:44 0:05:15 0:04:18 0:03:39

11 1578 0:07:24 0:05:46 0:04:44 0:04:01

10 1749 0:08:12 0:06:24 0:05:15 0:04:27

9 1957 0:09:11 0:07:10 0:05:52 0:04:58

8 2219 0:10:24 0:08:07 0:06:39 0:05:38

7 2552 0:11:58 0:09:20 0:07:39 0:06:29

6 3001 0:14:04 0:10:59 0:09:00 0:07:38

5 3631 0:17:02 0:13:17 0:10:53 0:09:14

4 4575 0:21:27 0:16:44 0:13:43 0:11:38

3 6156 0:28:52 0:22:31 0:18:28 0:15:39

2 9343 0:43:49 0:34:11 0:28:01 0:23:45

1 18999 1:29:06 1:09:31 0:56:59 0:48:17

Table 8. Frequently used C function parameters

Parameter Description

action code An enumeration type that specifies special actions in a command. This may
restrict or expand a search or request one of several processing options.

barcode label See cartridge label.

bin class A string that can be used to determine the capabilities of a given bin. Some
libraries store multiple kinds of cartridges that are physically incompatible.

Table 7. PLS tap‘e partitioning (Continued)

Number of
partitions

Partition
size (MB)

Partition capacity (H:MM:SS) at given video rates (MBps)

24 32 40 48
Preliminary — 12 July 2001 Profile Software Development Kit User 137

Chapter 7 Programming the Profile Library System

138
bin number An address assigned to a bin in the library. Bin numbers start at 0 and
increase to the maximum number, bins-1. The bin map is hard-wired so
applications can draw graphics using bin numbers to show locations in a
GUI.

cartridge class A string describing the type of cartridge. This can be used to find out capac-
ities and other attributes associated with each type of cartridge.

cartridge description
string

 A string that can be used to store user data.

cartridge handle An identifier that points to a specific cartridge and partition. If a NULL is
used, the library server is free to use any cartridge. This can be set up by an
application to point to a cartridge category, or a specific cartridge.

cartridge label This is a string that matches the barcode label from a tape cartridge. These
values only change if the printed barcode label on a cartridge is replaced.

category A cartridge can be assigned to a category that is used to organize material for
long term storage.

field number This represents an in or out point expressed in time units of fields. The
field’s number is established when the original source media file is recorded.

file description string A string that can be used for user defined-data.

file name A generic string with a file name.

library handle A library server identifier that is a library server connection handle.

library name A name (string) that is the host network name for the machine on which a
library server runs.

location info This is a string that describes where a cartridge is stored if it has been
removed from a library with an export command.

loop handle A library server returned identifier that is used in looping commands.

partition number Specifies the partition or segment of a cartridge to be used. A partition num-
ber of PlsAnyPartition or PlsNoPartition (-1) implies the whole cartridge or
no partition number specified.

path A partial directory path used when the library server references a part of a
Profile file system.

return values All commands return a boolean, an integer or a handle. In some cases these
are success/fail codes with the value of 0 used to indicate an error. When a
function returns a handle the value of NULL indicates an error. GetLastError
must be used to get detailed error information.

session name A string established when a library connection is opened. This string is
returned by some of the status commands so one can discover who is using
(reserving) devices or other resources. The session name has no meaning to
the library server.

time date This is a time and date stamp used as the system’s wall clock. It is not
intended for precise real time operations.

transaction handle A handle that can be used to get the status or cancel an asynchronous com-
mand. The transaction handle is returned with the event that completes a
concurrent execution.

transport class This is a string that can be used to identify what type (vendor and model) of
tape transport is installed.

transport handle A system-returned handle for a tape transport.

Table 8. Frequently used C function parameters

Parameter Description
Profile Software Development Kit User Preliminary — 12 July 2001

File selection rules
File selection rules
Files are located in the Profile file system using the following concepts. A file is specified
with a stored path name (dataset name and file name prefix) and a file name string from a
command. The resulting complete file name is used to find the material on a Profile.

The dataset name is the volume name for the Profile to be used. It must be the Profile to which
a transport is attached for archive and restore operations. The path string is not stored by the
library server as part of a file name. If a dataset name is not given, the default is the machine
to which the library is physically connected (the host Profile).

Cartridge selection rules
A specific cartridge can be requested by acquiring a handle for that cartridge. An application
can also use a handle value of NULL to indicate any cartridge can be used to archive new
material. In this case, the library server will attempt to find a cartridge with enough free space.

A cartridge can be assigned to a category by providing a category name when the cartridge is
formatted. The library server can be requested to limit the search when archiving new material
to cartridges in a selected category. This is intended to be used for storing departmental
material on a limited set of cartridges.

In many commands, a cartridge handle or cartridge label must be provided so the library server
can find the correct cartridge. Cartridges can be reserved when an application wants to control
access to the cartridge.

For stand-alone transports, if an application does not specify a cartridge, only cartridges in
ready transports will be considered for use.

Tape transport selection rules
In most commands, a transport handle of NULL means the library server can select any free
transport. The exceptions are commands where selecting an arbitrary transport yields
unpredictable results. For example, requesting the status of an arbitrary transport will not be
meaningful.

An application can specify a transport by reserving a transport and using that handle in a
command. This is useful when many commands should be executed in sequence or for near
real time operations.

An application can get a transport handle without reserving the device. This is important for
inquiring about a device’s status without waiting in a device reservation queue. In some
applications, using an unreserved transport handle can lead to undesirable and unpredictable
waits.

For stand-alone transports, the application must specify a transport.

transport number This is a number that identifies a specific tape transport. Transport numbers
are device addresses that have assigned values that only change when a
library is reconfigured. Transport numbers are always in the range of 0-255.

Table 8. Frequently used C function parameters

Parameter Description
Preliminary — 12 July 2001 Profile Software Development Kit User 139

Chapter 7 Programming the Profile Library System

140
Transport load/unload rules
Cartridges are loaded into transports on demand. The load request can be an explicit
PlsLoadTransport command or an implicit load request. A load request may result in an
implicit unload request if all transports are loaded and a transport appears to be idle. A
transport is idle when the transport is not reserved and no commands are using the loaded
cartridge.

An unload request to a transport that is not reserved will always be executed. If a transport is
reserved, all commands from users other than the device’s owner will be rejected until the
device is released.

If an application wants to control when cartridges are loaded and unloaded, it should reserve
the transport. Reserved transports will never be implicitly unloaded by the library server.

Application need to do some kind of optimization to keep multiple concurrent commands
from “thrashing” cartridges. For stand-alone transports, the application must preload a
cartridge. The library server does not have a robot to do an automatic load operation.

Library server API function descriptions
The following sections describe each of the C function calls. This set of function call
descriptions is organized into groups of similar functions.

Library functions
The following functions are used to open and close communications with a library. This group
also supports operations that act on the entire library or the catalog of known files and
cartridges. These functions can be used to get the major and minor version numbers for the
current library server. They do not require an open library handle.

The PlsGetMajorVersion and PlsGetMinorVersion functions retrieves the major and minor
version numbers for the current library server. Neither requires an open library handle.

PlsOpenLibrary returns a library connection handle, given a remote connection handle. The
remote connection handle can be acquired with RemOpenConnection. The library name is for
future use.

The connection handle for the local machine is LOCAL_CONNECTION. The library
handles for the local machine will not be NULL.

The session name is used to identify who owns a resource. It is returned with status
commands. The session name does not alter the execution of a command, nor does it control
how resource are allocated.

This command also has version information parameters. These represent the version of the
library server an application requires for correct operation. If the requested version is current
or the library server can perform all functions for the requested version, the connection is
accepted.

Power up and reset server initialization runs in the background. This reduces the Profile
system start up time. If an attempt is made to open a library connection before the robot
initialization process is complete, an error is reported and the library connection is refused.
When this occurs, the application should wait for a few seconds and attempt to open the library
connection again. The error issued for a server that is still initializing is:
PLS_AS_INIT_INCOMPLETE.
Profile Software Development Kit User Preliminary — 12 July 2001

Library and cartridge directory commands
PlsCloseLibrary logically closes a user’s or application’s session with a library server. The
communications link established with Prolink/TekRemote is not disrupted. The library handle
is no longer valid.

PlsGetLibraryConfig returns a description of a library. This command returns the total bins
in the library, number of robots installed, and so forth.

PlsGetLibraryStatus requests a status report on a library. Volatile library data and
device-specific information will be returned. The device-specific information will include
usage data, error recover information and so on. The report includes information such as
whether the library is active, the number of empty bins, and so on.

Transport configuration commands
The following set of commands is used to get a list of all transports under the control of a
library server. The library server is bound to a single library (robot).

The starting transport number can be specified as PlsAnyTransport. This will start the list of
transports at the first installed transport.

Library bin information commands
These commands return the bin map for a library. For each bin, an indicator is returned
describing the bins status and contents. A bin can contain a data cartridge, a cleaning
cartridge, and other types of tapes. A bin may also be empty or unavailable. Many libraries
have a few special bins. These include bins designated for cleaning cartridges. This results
in some bin usage restrictions based on library design.

The normal case is to return information on all bins. A subset of bins can be selected. The
selection operations are controlled with the action code parameter.

The application is responsible for converting bin map addresses to locations in a physical
library. This will be required for GUIs to draw a graphic display showing where a cartridge
is stored in a library.

This function is implemented with three commands. The first establishes a starting point.
This command also returns a handle to be used to retrieve the next entry. The second
command is used to acquire each successive entry. The third command is used to terminate
the loop, possibly before the list is exhausted.

For stand-alone transports, the PlsFindFirstBinInfo will yield an end of bins result; no bins
are installed.

List all cartridges commands
This set of commands is used to get a copy of the current library’s cartridge inventory. The
set of cartridge inventory entries can be restricted with a command action parameter. The
following actions are supported:

Library and cartridge directory commands
These commands request a directory (file information) report for a file, partition, cartridge, or
library. If the library server has a local catalog, it is used. If the server does not have a local
catalog, the operator or application must issue an PlsInventoryCartridge before executing a
FileInfo command.

The FileInfo commands will select a subset of files based on the action parameter. The action
code is used when the catalog for a complete library is being searched.
Preliminary — 12 July 2001 Profile Software Development Kit User 141

Chapter 7 Programming the Profile Library System

142
The commands PlsFindFirstHandle, PlsFindNextHandle, and PlsCloseFindHandle are
used to acquire information on all open or active handles. This provides a snapshot of the
current system state. Handles can be asynchronously closed or created by other users, which
may produce unpredictable results.

Transport functions
The following group of functions is used to manage tape transports.

PlsConnectTransport acquires a transport handle, given the number (address) for a transport.
The user may request any free transport by specifying a transport number of
PlsAnyTransport (–1). Acquiring a transport handle does not reserve the device for exclusive
use by one application.

PlsAllocateTransport reserves a tape transport for exclusive use. If the transport number is
not specified (PlsAnyTransport), the library server will reserve any available device. A
transport reservation requests a transport by number, not a transport handle. This was done so
the acquisition of a transport handle and its reservation are an atomic action. If these were
separate commands, error management software would be difficult to write. This capability
is being implemented to support applications that are archiving and restoring material in near
real time. It is assumed tape transports will be reserved for short periods of time (tens of
minutes, not hours). A second use of reserved devices is to force them into an unusable or
logically off-line state.

PlsCloseTransport releases a transport handle when an application no longer needs access to
that device. Closing a reserved transport handle releases the transport.

PlsGetTransportStatus requests the status of a tape transport. This command always returns
a standard set of parameters and some additional device-specific data. The device-specific
information will include usage data, error recovery counts, cleaning cycle codes and so on.
This command requires a transport handle. If a transport handle is not specified, an error is
issued. Failing to specify a transport handle would cause the library server to select a tape
transport, which would yield unpredictable results. The returned information includes:

PlsLoadTransport loads a cartridge into a tape transport. This command is intended to
preload transports for near real time applications. If the requested cartridge is already in the
requested transport, the command was successful. For stand-alone transports this command
is a no-operation if the cartridge is already loaded. It fails if the specified cartridge is not
loaded.

PlsUnloadTransport unloads the cartridge in the specified transport and returns it to the
library. The cartridge’s directory is updated and the cartridge rewound if appropriate. This
command is intended to be used to unload transports when the cartridge is no longer needed
in near real time applications. Unloading an empty transport is not considered an error. For
stand-alone transports, this command performs a rewind/unload tape operation. This is an
implicit execution of an export operation in normal mode (the cartridge directories are updated
and the cached directory information is removed from the local catalog).

PlsCleanTransport loads a cleaning cartridge into the specified transport and executes a
cleaning cycle. When the command is complete, the cleaning cartridge is returned to its
storage location in the library if it can be used again. If the cleaning cartridge has been used
the maximum number of times, it will be exported. For stand-alone transports that have
built-in cleaning functions, these functions will be executed. Otherwise this command is a
no-operation.
Profile Software Development Kit User Preliminary — 12 July 2001

Cartridge functions
Cartridge functions
PlsConnectCartridge binds a cartridge label to a handle for a cartridge. This binding is
always immediate so the command executes synchronously. An application can request a
cartridge handle for a cartridge it has reserved. The library server identifies who has reserved
the cartridge by comparing library handles. Multiple handles can be open to the same
cartridge.

PlsAllocateCartridge reserves a cartridge. Cartridges are reserved by label instead of a
cartridge handle so the acquisition of a cartridge and its reservation are an atomic action. It is
assumed this command will be used to reserve cartridges for short periods of time in near real
time applications.

PlsCloseCartridge releases and recycles a cartridge handle. It should be used when the
cartridge associated with the handle is no longer needed.

PlsGetCartridgeConfig returns a structure with information about a specific cartridge. This
command will draw an error if the cartridge handle is for a cartridge category.

PlsGetCartridgeStatus requests status information for a given tape cartridge. The
information returned is the same as the cartridge information commands
(PlsFindFirstCartridgeInfo).

PlsGetPartitionMap finds the free space in one or more partitions. The user may specify the
starting partition number and the number of values to be returned. The maximum number of
returned values is limited to PlsPartMapSize. If the starting partition number is 0, the value
returned is the space allocated to the tape directory partition. If the tape is not partitioned, the
directory size is returned as 0. If the starting partition value is greater than the number of
partitions on the tape, an error is returned. If the starting partition number plus the number of
partitions is greater than the number of partitions on the tape, the number of returned values
is limited to the actual partitions on the given cartridge. In the current implementation, the
directory partition size and data partition’s free space can’t be acquired in a single command.
The returned partition size information is a vector of not more than PlsPartMapSize values.
The size entries are 32 bit integers in units of megabytes. The function will return the number
of partitions and map vector during a synchronous function call as parameters, or with the
command completion event for a concurrent command execution.

PlsInventoryCartridge updates the inventory (read the directory) for a given cartridge and
update the local catalog. Operators can use this command when they think the local or master
catalog and the actual contents of a cartridge are not in agreement.

PlsUpdateCartridge forces directory updates on a cartridge. Delete and Rename will make
entries in a local catalog and not update a cartridge directory until the cartridge is loaded into
a transport. Exactly how and when tape directory updates are accomplished is not specified,
with two exceptions. Cartridge directories are always updated by a PlsUpdateCartridge
command and by an Export Cartridge (if “forget” is not specified.) This command can be used
to force cartridge directory updates when a tape may not be used for a long period of time.

PlsFormatCartridge formats a cartridge for later use. The cartridge label must be provided
to insure the correct cartridge is formatted. In systems without barcode readers (stand-alone
transports) no verification of the label can be performed. The cartridge master directory
records the barcode label at the time the cartridge is formatted. The value of the cartridge
barcode label stored on the tape is used as a hint only. The machine-readable barcode label is
always considered to be the correct cartridge label. The data partition size is in megabytes.
The cartridge is divided into as many equal-sized partitions as possible. If the partition size
Preliminary — 12 July 2001 Profile Software Development Kit User 143

Chapter 7 Programming the Profile Library System

144
does not exactly fill the cartridge, the extra space will be divided equally between all
partitions. The master directory size is actually a hint. Depending on the actual tape drive,
larger than requested master directories may be written.

On some vendors’ transports, the operator has no control over how the cartridge master
directory space will be allocated. The API has a parameter that allows the user to specify a
master directory size. This will be used if the tape transports support multiple partition sizes.
On partitioned cartridges the master directory is stored in a partition at the beginning of tape
(cartridge load/unload point.) On unpartitioned cartridges, the master directory will be stored
after all data files. An action code is provided with format cartridge. This can be used to force
a cartridge into a mode that only allows one file per partition. This is intended to be used for
automatic allocation of spots.

With PlsCopyCartridge, one tape cartridge is copied to another cartridge. The destination
cartridge must be empty, and formatted like the source cartridge. Both cartridges must have
the same number and size of partitions. Copying a cartridge does not change the order of the
files on a cartridge. It may change the partition the files are in. The options are:

Copy the cartridge and compact files within partitions. Files are not moved to lower partitions
on the cartridge. This allows the user to duplicate a cartridge without altering any partition
reference information that may be in other system-wide databases.

The following information may have been cached in the local catalog and it will be moved to
the cartridges directories:

• Rename file information.

• Delete file information. Deleted files are not copied.

• Purge time/date information. Files with expired purge dates are not removed.

• File description strings.

PlsExportCartridge removes a cartridge from a library using a library’s import/export
mechanism. A note can be made in the catalog describing the location of the cartridge. The
library server may need to load the cartridge into a tape transport before the cartridge leaves
the library. This will be done to update cartridge directory information. Cartridges will not
be exported unless the on-tape directories are current. An action code can be set to request
special processing:

• Export a cartridge, but don’t forget about it (Normal). Update the cartridge directories and
physically export the cartridge. The local and master catalog entries are marked to show
the cartridge is out of the library.

• Update cartridge directory, export it, and remove entries from the catalog (Retire). This is
used when cartridges are going to be sent to another site and the catalogs should be purged.
The cartridge’s directory is updated if it is not current. A cartridge can be reinstalled by
importing the cartridge.

• Export cartridge, don’t update cartridge directories and delete catalog entries (Forget). This
should be used when a cartridge is lost or damaged. This purges the local and global catalog
of information about the cartridge and its files. This can also be used when a cartridge is
damaged and the operator wants the cartridge removed without the cartridge directories
being updated. If a cartridge leaves a library without updating the directories and is later
imported, changes made since the last actual directory update on tape will be lost.
Profile Software Development Kit User Preliminary — 12 July 2001

Cartridge functions
Local catalog entries for cartridges that are not in a library can be deleted using the retire or
forget options. Exporting a cartridge from a multicartridge set causes all of the cartridges in
that set to be removed form the library. A location information string is provided by the
application. This string should have notes that can be presented to the operator so he knows
where to store the cartridge. The location information string is saved in the local catalog. If
the cartridge already has a location information string and a new one is not provided, the old
location string is retained. For a stand-alone transport, this command does the normal export
processing, followed by a tape rewind/unload operation to physically export the cartridge.

With PlsImportCartridge, a cartridge is accepted from the operator using a library’s import/
export mechanism. Cartridges that do not have a barcode label will not be loaded into the
library.

A cartridge label can be provided by the application. This is used in messages to an operator
where appropriate. It is also used to select the correct cartridge in libraries with multiple
import/export ports. Cartridge labels are verified by reading the printed barcode label when a
cartridge is loaded. Importing a cartridge does not change the location information
string-stored in the local catalog. An import command without a cartridge label parameter can
be used to load cartridges from another facility, unformatted tapes, and cleaning cartridges. In
this case, the location information string can be used for operator messages.

An action code describes the cartridge and what processing should be done. In some cases the
library server will reject a cartridge. This means it will be put back in an import/export port.
Import cartridge and assume the barcode label accurately identifies the cartridge. If the
barcode on the cartridge matches one in the catalog, assume this cartridge’s contents match
the catalog. If the catalog has no record of the cartridge label, store it as an unknown cartridge
for now. If the barcode matches a cartridge already in the library, reject the cartridge.

• Import cartridge and make simple checks to verify contents of tape. If the barcode on the
cartridge matches a cartridge already in the library, reject the cartridge. If the barcode on
the cartridge matches one in the catalog and the master directory on the cartridge has the
correct entries (format time, format date, system name match), assume this cartridge
contents match the catalog. If the barcode matches a catalog entry and the master cartridge
directories don’t agree with the information in the catalog, inventory the cartridge. If the
catalog has no record of the cartridge barcode label, store it as an unknown cartridge.

• Read cartridge directories. If the barcode is unique, load the cartridge into a transport and
use the cartridge directory to construct local and master catalog entries. If the barcode on
the cartridge matches one in the library, reject the cartridge.

• Import a cleaning cartridge. If it does not have a unique barcode, reject the cartridge. If it
has a unique barcode, store the cartridge in a cleaning cartridge bin.

Import operations are subject to a time-out. If an operator has not loaded a tape within the
allotted time-out, the command will fail. The current time-out value is 5 minutes. A second
version of the PlsImportLoadCartridge import command does the above import processing
and loads the cartridge into the specified transport. PlsImportLoadCartridge is intended to
be used with stand-alone transports. PlsImportCartridge is intended to be used with libraries
and stackers.

PlsImportLoadCartridge imports cartridges into a specified stand-alone transport. When
used in a full library, it physically imports the cartridge and automatically loads it into the
specified transport. A transport handle must be specified. With two exceptions, this command
is identical to PlsImportCartridge.

• The cartridge is loaded into the specified transport.
Preliminary — 12 July 2001 Profile Software Development Kit User 145

Chapter 7 Programming the Profile Library System

146
• The barcode label may not be tested for validity. Stand-alone transports may not have
barcode label readers.

PlsSetLocationString changes the location information string. It can be used for cartridges
that are in a library or out in a storage area. The purpose of this command is to allow errors
in the local catalog location information strings to be corrected. This command will fail if
another user has the cartridge reserved.

PlsGetLocationString acquires the current location information string stored in the local
catalog. An application may use this information to build operator message strings.

PlsSetCartDescription sets a user-specified string that can describe the cartridge’s contents.

One cartridge description string is stored per cartridge. PlsGetCartDescription returns the
cartridge description string.

Basic archive functions
PlsConnectFile provides a file handle for use in later commands. The application must
provide a file name. If the file handle refers to an existing file, the application must also
provide a cartridge handle and partition number.

PlsCloseFile disconnects a file handle.

PlsGetClipSize allows non-zero in/out points to find the size of a portion of a clip. Size is an
estimate based on uniform recording of media throughout the clip. Sections of black media
will greatly confuse the estimation process. This function returns the space required for a
specified clip when it is written to tape. If the specified in/out points are 0, the value returned
is sufficient to store the complete clip. A transport handle can be provided. If the transport
handle is NULL, the space returned is an estimate for an arbitrary tape drives. If a transport
handle is used, additional space is added for overhead that is specific to the specific tape drive.

Examples of additional overhead are space for tape marks, minimum tape record requirements
and overhead that are associated with logical-to-physical blocking. The user must specify a
file size pointer or a transaction handle pointer, but not both. If the transaction handle is given
(not NULL), the file size is returned with a command completion event. If the file size result
variable pointer is given, the function does not return until processing is complete. Note: The
information needed to calculate the clip size is on disk, so retrieving the information and
calculating the size will require some time.

PlsArchiveClip copies a file from a Profile unit to a cartridge. The machine that receives and
executes this command must be the host system for the library. The clips can be on the library
host or any machine that has a Fibre Channel connection to the library host. This command
always stores media streams as multiplexed MPEG streams. The compressed video track
(limited to JPEG for versions 2.2 and 2.4) is multiplex encoded, following the MPEG
standard. If a cartridge is not specified, the library server will select a cartridge with enough
space to store the file. With an archive operation, a pair of field numbers (in/out points) can
be specified.

MPEG video is archivable with version 2.5 software; DVCPRO 25 and DVCPRO 50
video is archivable with version 3.2.

The field numbers for the clip are not altered by an archive or restore command. This prevents
the logical field numbers for a clip from slipping as it is archived and restored. The pair of
field numbers specifies the in/out points for the part of the clip to be archived. Only material
that is actually recorded will be archived. The specification of in and out points beyond the
range of the actual recorded material is not considered to be an error. The user-specified in
Profile Software Development Kit User Preliminary — 12 July 2001

Basic archive functions
and out points are returned with a file information request. The default values for the in/out
pair is the actual beginning and end of the clip. The default is specified by using 0, 0 as an in/
out pair.

The mark-in and mark-out points for the movie are saved with the file. If an out point field
number is less than an in point field number, the command will not be executed and an error
issued. If the file name specified already exists in this partition, the archive command is
rejected with an error. This command returns the cartridge label and partition number used to
store the file. These are important when the library server does cartridge and space allocation.
If the FileStored parameter is NULL, no data is returned. This is not considered an error. The
FileStored data is returned when the command is completed, or with the completion event for
concurrent commands. The PlsFileStored structure contains:

• Partition number file was stored in.

• Cartridge label file was stored in.

PlsArchiveDataFile is similar to the PlsArchiveClip function except for the type of file
processed. This function archives an unstructured byte stream from a Windows NT file system
file. The data stream is assumed to be a play list, edit decision list or some other material that
is part of the program material. Unstructured files must be archived and restored as a complete
unit. The Windows NT file path is not saved on tape. The user must specify where the file
should be placed in the Windows NT file system when a restore is issued. This command
returns the cartridge label and partition number used to store the file.

PlsRestore copies the specified files from a cartridge to a Profile file system. The machine
that receives and executes this command must be the host system for the library. The restored
files can be on the library host or any machine that has a Fibre Channel network connection to
the library host. For clips, a pair of in/out point field numbers can be used to control the
material restored. If these are not specified (0, 0 given), the complete clip will be restored. If
the in or out points specified go beyond the range of the recorded material, only the archived
material will be restored. No error will be issued in this case. If the requested in point is later
than the requested out point, an error will be issued. This has the effect of providing black,
silent fields beyond the actual in/out points when the clip is replayed from a Profile. The
movie mark-in and mark-out points will be restored with the clip.

PlsRestoreDataFile restores Windows NT data files. It follows the same basic model as
PlsRestore. The user must supply the location in the Windows NT file system where the
restored file should be placed.

PlsRenameFile renames a file on a cartridge. To improve performance, file rename
operations will be saved in the local catalog. These changes will be recorded in the cartridge’s
directory the next time the cartridge is in a transport. Under some serious error conditions
(such as a power failure), it is conceivable a file will lose its new name and revert to the old
name.

PlsDeleteFile deletes a file from a cartridge. Most tape transports can’t delete the material
unless it is the last file on a cartridge. Therefore, deleting a file makes the material
unreachable, but the space is not reusable. When possible, the library server will recover free
space from deleted files. To improve performance, file delete operations will be saved in the
local catalog. These changes will be recorded in the cartridge directory the next time the
cartridge is in a transport.

Under some serious error conditions (such as a power failure), it is conceivable that a file will
reappear on a cartridge. This is better than the alternative, that is, losing material.
Preliminary — 12 July 2001 Profile Software Development Kit User 147

Chapter 7 Programming the Profile Library System

148
A free format file description string can be stored with each file with PlsSetFileDescription.
This data is saved for the host application’s use. If the string is set after a file handle is
acquired and before the file is created, the description string will be saved with the file. If it
is set or altered at a later date, it will be kept in the local catalog and saved in the cartridge
master directory the next time the cartridge is loaded into a transport. PlsGetFileDescription
returns the file description string.

Library server management functions
The following functions are system support features. They allow management of
asynchronous events, the time of day clock, the file name path and other functions.

PlsSetEventMask sets the library server asynchronous event mask. If a bit is set, it enables
the specified events. Asynchronous command completion events are always enabled. The
following classes of events can be controlled.

• Cartridge import, export, format and delete all files events.

• File add, delete and rename events.

• Transport on-line/off-line events.

• Extended data for import, export, and format on command completion.

The default mask is all zeros, meaning all events except concurrent command completion are
disabled.

PlsGetEventMask returns the current event mask value.

PlsGetAnyEvent gets information on asynchronous events and concurrent command
completion events. When called, it returns information on one event. The returned data has
sufficient tags and other information so an application can process the event. Two other
commands, PlsGetAsynchEvent and PlsGetCommandEvent, can be used to get events from
the asynchronous event and command completion queues respectively and these commands
offer a conceptually simpler model to the application developer. PlsGetAnyEvent requires
fewer serial link transactions in polling loops.

The event types include:

• “No Event Queued” indicator.

• Cartridge import (explicit and implicit), export, delete all and format events.

• Archive file creation, deletion and rename notifications.

• Transport on-line/off-line (transport add and remove) events.

• Concurrent command completion events.

All events, except concurrent command completion events, are sent to all open library handles
except the one that initiated the action. Concurrent command completion events are saved for
the library handle that started the operation. Concurrent command completion events are
queued for each open library handle so they will not be lost. Other events may be lost if they
are not processed in a timely manner. Cartridge import and export events include the cartridge
label. The files added or removed by an import, export, cartridge format or delete all files are
not reported with file change events. This is done to prevent event storms when cartridges are
moved in and out of libraries. Using the provided cartridge label, an application can get all of
the file information using PlsGetFileInfo.
Profile Software Development Kit User Preliminary — 12 July 2001

Library server management functions
For file creation, PlsArchiveClip, PlsArchiveFile, and PlsArchiveFile and file deletion, the
cartridge label, partition number and file name are part of the event message. For rename
operations, the cartridge label, partition, current file name string and new file name string are
returned. Adding or removing transports on a given library causes on-line or off-line events.
These allow an application to track the available physical resources. Concurrent command
completion events have more information than other events. The actual command completion
code (success or failure and coded error number), the handle used to track a concurrent
command, and any data a command normally returns are part of the event structure.
Concurrent command completion events are only returned for commands associated with the
current library handle. An event mask is part of the open library connection state. This mask
can be used to enable or disable each class of event.

The command completion events for PlsFormat, PlsImport, PlsImportLoad, and
PlsExport can have extended results if desired. If the extended data event mask bit is not set,
the return information matches all simple command completion events. In this mode, the
current version behaves like older versions of the software. If the extended event mask bit is
set, the target cartridge barcode label and other useful information is returned. In this mode,
the extended data fields are not compatible with old versions.

PlsGetAsynchEvent allows an application to retrieve events other than command completion.
It can be used in applications that have separate polling loops for concurrent command
tracking and external event management. With the exception of not retrieving command
completion events, this command is identical to PlsGetAnyEvent.

PlsGetCommandEvent allows an application to retrieve command completion events. With
the exception of retrieving only command completion events, this command is identical to
PlsGetAnyEvent.

The PlsSetModes function can be used to alter the fundamental operating modes for the
library server. The data returned from a PlsGetModes call is identical to the data used in a
PlsSetModes. An application can read the current library server mode set, alter a single
variable, and use the result as the argument of a PlsSetModes command. PlsGetModes
returns the current mode set for the library server.

PlsSetPath sets the dataset and file name prefix directory string used for finding files in the
Profile file system. It does not alter the names of files on cartridges. A path string is stored
for each open library handle.

PlsGetPath returns the string currently set as a directory path.

This command does not return a backslash (\) symbol at the end of the path string.

PlsGetTimeDate returns the current time of day.

PlsAddTransport adds transports to the library server. Transports appear in a library
configuration as soon as they are added. The transport number is an integer in the range of 0
to 255. It specifies the logical address of the transport. The robot address is an integer that
describes the physical location of a transport in a library. A Profile name is also supplied that
identifies a Profile the transport is attached to. If a Profile name is not given, the machine the
library server is running on is used as a default. The device address is a string that describes
the low-level device attachment. For the first implementation, the following syntax applies:
SCSI:<chan>.<scsi–addr>.<scsi-lun>

Where <chan> selects which SCSI interface the transport is attached to and is a single letter.
The SCSI device address (<scsi–addr>) is specified as a two digit number in the range of
00 to 15. SCSI logical units (<scsi-lun>) are not currently used, but are coded as a 00. An
example is: SCSI:A.01.00
Preliminary — 12 July 2001 Profile Software Development Kit User 149

Chapter 7 Programming the Profile Library System

150
PlsRemoveTransport removes a transport from the library server control files. As soon as
the command executes, the tape transport is no longer usable. A PlsRemoveTransport
command will be rejected if the transport is in use or reserved when the command is executed.

PlsInventoryLibrary verifies and corrects the bin map and cartridge inventory of the
specified library. The old inventory will be used as a baseline to continue operations while the
new inventory is in progress. This command checks for cartridges by cartridge labels.
Cartridges are not loaded into tape transports to verify their contents. This command can be
used when an operator has opened a library and loaded or removed cartridges. It can also be
used when an operator thinks the library server’s inventory is not correct.

When PlsHouseKeeping is executed, the library server will perform systems management
functions. The command has two parameters that currently are not used. The first is an integer
and should be coded as 0. The second is a pointer that should be coded as NULL. This
function also causes the internal directory cache database to remove any entries that are no
longer needed.

Local catalog management functions
This set of commands allow the user to save a mirrored copy of the local catalog on an
alternate Windows NT system. The directory path must point to a Windows NT machine
directory on a specified machine. For example:
\\<machine-name>\<disk-path>

The drive name parameter identifies the drive letter on the local machine (where the Library
system server resides) to be used to reference the remote machine.

Setting the directory does not cause a backup copy to be made. Executing PlsBackupCatalog
causes the local catalog to be copied to the alternate machine. PlsBackupCatalog also causes
the local catalog to purge any unused space and do other system maintenance functions.
PlsBackupCatalog can be issued without a backup directory specified to force local catalog
maintenance operations.

Command management functions
These two commands are used to manage concurrent command execution.

PlsGetStatusCommand requests the status of a concurrently executing command. If the
command is still in progress, the return code will specify an incomplete command. The
percent done valid code will be set if the command is waiting for busy or reserved resources.
When actual execution starts, the percent complete value will be set. If a previously started
command has finished, the return code describes a successful execution, or specifies what
error stopped the execution.

PlsCancelCommand cancels an asynchronous (concurrent) operation. Data (byte stream)
files and archive sets (multicartridge sets) will be deleted if a cancel occurs while they are
being archived or restored. Clips and media files will be truncated by a cancel, but the material
already copied to tape or disk will be retained. The transaction handle was a returned value
from another command. The concurrent command will be considered complete when a
command completion event is processed.

Sample code: Managing a library system
Example 15, plsdemo.c demonstrates Profile Library System use. It shows how to archive a
clip, restore a clip, format a cartridge, inventory a cartridge, import a cartridge, export a
cartridge, and back up a local catalog.
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system
Example 15. plsdemo.c

//
//
// File: plsdemo.cpp
// A demo program for use with the PLS software library.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
//

#include <windows.h>
#include <stdio.h>
#include “tekpls.h”
#include “tekrem.h”
#include “tekvdr.h”

// Here are the PLS Demo error codes.
#define DEMO_NO_ERROR 0
#define DEMO_INIT_FAIL -1
#define DEMO_NO_MEDIA -2
#define DEMO_MISSING_FILENAME -3
#define DEMO_MISSING_LABEL -4
#define DEMO_BACKUP_PATH_ERROR -5
#define DEMO_BACKUP_DRIVE_ERROR -6
#define DEMO_BAD_COMMAND_FORMAT -7

//
// Show the correct usage of the command-line app.
//
void Usage(const char* progName)
{
 printf(“Usage:\n”);
 printf(“%s profileName command [command options]\n”, progName);
 printf(“ profileName the name of a remote profile, or ‘local’\n”);
 printf(“ command: one of the following commands\n”);
 printf(“ archive clipName [plsPath]\n”);
 printf(“ restore clipName [plsPath]\n”);
 printf(“ format label\n”);
 printf(“ inventory label\n”);
 printf(“ import label\n”);
 printf(“ export label\n”);
 printf(“ backup path plsDrive\n”);

} // Usage
Preliminary — 12 July 2001 Profile Software Development Kit User 151

Chapter 7 Programming the Profile Library System

152
// This function is used to wait for a transaction to succeed or
// fail. Could also have used PlsGetCommandEvent and waited for success .
void WaitTransaction(PlsLibraryHandle hLibrary,
 PlsTransactionHandle hTransaction)
{
 PlsCmdStatus cmd;
 while ((PlsGetStatusCommand(hLibrary, &cmd, hTransaction))
 && (cmd.status & PlsCmdStatRunning)) {
 Sleep(100);
 }
 return;

} // WaitTransaction

// This command will archive the specified clip to a cartridge chosen
// by the PLS software. It will try to identify a free transport,
// failing that will let the PLS software make the selection.
int ArchiveClip(ConnectHandle ch, PlsFileNameStr clipName, PlsPathStr path)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsFileHandle hFile = NULL;
 PlsTransportHandle hTransport = NULL;
 PlsLibraryStatus libStatus; // used to find free transports
 PlsTransportStatus transStatus; // used to find free transport
 PlsTransportConfig transConfig; // used to find free transport
 PlsTransConfigLoopHandle hLoop; // used to find free transport
 PlsFileStored fileStored;
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;
 PlsModes modes;

 printf(“\nPreparing to archive clip...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL) {
 return DEMO_INIT_FAIL;
 }

 // Set modes to transport queuing.
 modes.flags = PlsModeTransQueuing;
 if (!PlsSetModes(hLibrary, &modes)) {
 return GetLastError();
 }

 // Get the library status to determine if there are any media
 // cartridges present and if there are any free transports.
 if (PlsGetLibraryStatus(hLibrary, &libStatus)) {
 if (libStatus.mediaBins == 0) {
 printf(“\nNo media cartridges\n”);
 return DEMO_NO_MEDIA;
 }
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system

 // See if the are any free transports, if so, select one for the archive.
 if (libStatus.freeTransports > 0) {
 // PlsAnyTransport means to search all transports.
 hLoop = PlsFindFirstTransportConfig(hLibrary, PlsAnyTransport,
 &transConfig);
 if (hLoop) {
 for (;;) {
 if (transConfig.location != PlsStandAloneTransport) {
 // Don’t use a standalone.
 hTransport = PlsConnectTransport(hLibrary,
 transConfig.transportNumber);
 if (!hTransport)
 break;
 if (PlsGetTransportStatus(hTransport, &transStatus)) {
 if (transStatus.status & PlsTransStatBusy)
 hTransport = NULL;
 else
 break;
 }
 }
 if (!PlsFindNextTransportConfig(hLoop, &transConfig)) {
 hTransport = NULL;
 break;
 }
 }
 }
 }

 // Set the path for the clip location in the video file system.
 if (!PlsSetPath(hLibrary, path))
 return GetLastError();

 // create a handle to the clip file to be archived
 hFile = PlsConnectFile(hLibrary,
 NULL, // PLS will choose the cart and
 PlsAnyPartition, // part in the archive command.
 clipName);

 if (hFile == NULL)
 return GetLastError();

 printf(“Archiving clip \”%s\”...\n”, clipName);

 // archive the clip
 result = PlsArchiveClip(hFile,
 0, // 0 for in and out point will force
 0, // the archiving of the entire clip.
 hTransport,
 &fileStored,
 &hTransaction);
 if (!result)
 return GetLastError();

 // Wait until the archive is complete.
 WaitTransaction(hLibrary, hTransaction);

 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Archive complete.\n”);

Preliminary — 12 July 2001 Profile Software Development Kit User 153

Chapter 7 Programming the Profile Library System

154
 return event.e.cmd.returnCode;

} // ArchiveClip

// This command will restore the specified clip to the video file system.
// (Note: The clip can not exist on the video file system.) Also, the format of
// the restore command will cause the PLS software to try to find a unique clip
// with the PLS file system. If the clip is not unique, this command will fail.
int RestoreClip(ConnectHandle ch, PlsFileNameStr clipName, PlsPathStr path)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsFileHandle hFile = NULL;
 PlsTransportHandle hTransport = NULL;
 PlsLibraryStatus libStatus; // Used to find free transport.
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;
 PlsModes modes;

 printf(“\nPreparing to restore clip...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

 // Set modes to transport and cartridge queuing.
 modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing);
 if (!PlsSetModes(hLibrary, &modes))
 return GetLastError();

 // Get the library status to determine if there are any media cartridges
 // present and if there are any free transports.
 if (PlsGetLibraryStatus(hLibrary, &libStatus)) {
 if (libStatus.mediaBins == 0) {
 printf(“\nNo media cartridges\n”);
 return DEMO_NO_MEDIA;
 }
 }

 // Set the path in the video file system to where the clip is to be
 // restored. If a clip by the same name exists in this path the
 // command will fail.
 if (!PlsSetPath(hLibrary, path))
 return GetLastError();

Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system
 // Create a handle to the clip file to be archived.
 hFile = PlsConnectFile(hLibrary,
 NULL, // PLS will try and find a unique clip.
 PlsAnyPartition, // If clip is not unique,
 // this will fail.
 clipName);
 if (hFile == NULL)
 return GetLastError();

 printf(“Restoring clip \”%s\”...\n”, clipName);

 // Restore the clip.
 result = PlsRestore(hFile,
 0, // 0 for in and out point will force
 0, // archiving of the entire clip.
 hTransport,
 &hTransaction);

 if (!result)
 return GetLastError();

 // Wait until the restore is complete.
 WaitTransaction(hLibrary, hTransaction);

 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Restore complete.\n”);

 return event.e.cmd.returnCode;

} // RestoreClip

// This command will format the specified cartridge to a single
// partition format.
int FormatCartridge(ConnectHandle ch, PlsCartridgeLabelStr cartLabel)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;
 PlsModes modes;

 printf(“\nPreparing to format cartridge...\n”);
Preliminary — 12 July 2001 Profile Software Development Kit User 155

Chapter 7 Programming the Profile Library System

156
 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

 // Set modes to transport and cartridge queuing.
 modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing);
 if (!PlsSetModes(hLibrary, &modes))
 return GetLastError();

 // Format the cartridge
 result = PlsFormatCartridge(hLibrary, NULL, PlsFormatCartNormal,
 // Can also be PlsFormatCartSingle
 // forcing only one file per partition.
 cartLabel, NULL, 0,
 // These parameters cause default 0,
 // single partition format. &hTransaction);
 if (!result)
 return GetLastError();

 printf(“Formating cartridge \”%s\”...\n”, cartLabel);

 // Wait until the format is complete.
 WaitTransaction(hLibrary, hTransaction);

 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Format complete.\n”);

 return event.e.cmd.returnCode;

} // FormatCartridge
Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system
// This command will cause the specified cartridge to be inventoried.
// This will update the local catalog with the information contained in the
// tape cartridge directory. This information supercedes the original
// contains of the local Catalog.
int InventoryCartridge(ConnectHandle ch, PlsCartridgeLabelStr cartLabel)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsCartridgeHandle hCartridge;
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;
 PlsModes modes;

 printf(“\nPreparing to inventory cartridge...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

 // Set modes to transport and cartridge queuing.
 modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing);
 if (!PlsSetModes(hLibrary, &modes))
 return GetLastError();

 // Connect to the target cartridge.
 hCartridge = PlsConnectCartridge(hLibrary, cartLabel);
 if (!hCartridge)
 return GetLastError();

 // Inventory the cartridge.
 result = PlsInventoryCartridge(NULL, // Let PLS choose transport.
 hCartridge, &hTransaction);
 if (!result)
 return GetLastError();

 printf(“Inventorying cartridge \”%s\”...\n”, cartLabel);

 // Wait until the format is complete.
 WaitTransaction(hLibrary, hTransaction);

Preliminary — 12 July 2001 Profile Software Development Kit User 157

Chapter 7 Programming the Profile Library System

158
 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Inventory complete.\n”);

 return event.e.cmd.returnCode;

} // InventoryCartridge

// This command will import a cartridge into the library system. The
// cartridge will be imported using the accept mode. Other modes
// include forcing an inventory, specifying cleaning, backup or
// unformatted cartridges, and simply verfying the cartridge.
int ImportCartridge(ConnectHandle ch, PlsCartridgeLabelStr cartLabel)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;

 printf(“\nPreparing to import cartridge...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

 // Import the cartridge.
 result = PlsImportCartridge(hLibrary, PlsImportActionAccept, cartLabel,
 “In the library”, &hTransaction);
 if (!result)
 return GetLastError();

 printf(“Importing cartridge \”%s\”...\n”, cartLabel);

 // Wait until the format is complete.
 WaitTransaction(hLibrary, hTransaction);

Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system
 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Import complete.\n”);

 return event.e.cmd.returnCode;

} // ImportCartridge

// This command will export a cartridge out of the library system. The
// Cartridge will be exported using the forget mode. Other modes force
// a cartridge update, and will ten either leave or remove knowledge of
// the cartridge in the local catalog.
int ExportCartridge(ConnectHandle ch, PlsCartridgeLabelStr cartLabel)
{
 PlsLibraryHandle hLibrary = NULL;
 PlsCartridgeHandle hCartridge;
 PlsTransactionHandle hTransaction;
 PlsEvent event;
 unsigned long err;
 BOOL result;
 PlsModes modes;

 printf(“\nPreparing to export cartridge...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

 // Set mode to cartridge queuing.
 modes.flags = PlsModeCartQueuing;
 if (!PlsSetModes(hLibrary, &modes))
 return GetLastError();

 // Connect to the target cartridge.
 hCartridge = PlsConnectCartridge(hLibrary, cartLabel);
 if (!hCartridge)
 return GetLastError();

Preliminary — 12 July 2001 Profile Software Development Kit User 159

Chapter 7 Programming the Profile Library System

160
 // Export the cartridge.
 result = PlsExportCartridge(hCartridge, PlsExportActionForget,
 “Out of the library”, &hTransaction);
 if (!result)
 return GetLastError();

 printf(“Exporting cartridge \”%s\”...\n”, cartLabel);

 // Wait until the format is complete.
 WaitTransaction(hLibrary, hTransaction);

 // Get the results.
 if (!PlsGetCommandEvent(hLibrary, hTransaction, &event))
 return GetLastError();

 printf(“Export complete.”);

 return event.e.cmd.returnCode;

} // ExportCartridge

int BackUpLocalCatalog(ConnectHandle ch, PlsBackupPathStr path,
 PlsBackupDriveStr drive)
{
 PlsLibraryHandle hLibrary = NULL;
 unsigned long err;

 printf(“\nPreparing to back up catalog...\n”);

 // Open library - loop is used to wait while library system initializes.
 err = PLS_AS_INIT_INCOMPLETE; // Set error to incomplete init.
 while ((hLibrary == NULL) && (err == PLS_AS_INIT_INCOMPLETE)) {
 hLibrary = PlsOpenLibrary(ch, “demo”, “demo_session”, 0, 0);
 if (hLibrary == NULL) {
 err = GetLastError();
 }
 }
 if (hLibrary == NULL)
 return DEMO_INIT_FAIL;

Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system
 // Set backup path.
 if (!PlsSetBackupDir(hLibrary, path, drive)) {
 err = GetLastError();
 return err;
 }

 printf(“Backing up catalog in path %s, drive %s \n”, path, drive);

if (!PlsBackupCatalog(hLibrary)) {
 err = GetLastError();
 return err;
 }

 printf(“Back up complete.\n”);

return DEMO_NO_ERROR;

} // BackUpLocalCatalog

int main(int argc, char *argv[])
{
 int result = 0;

 ConnectHandle cHdl = LOCAL_CONNECTION;
 if (argc > 2) {
 // Check to see if this is remote or local.
 if (strcmp(argv[1], “local”)) {
 // if remote, host name is argv[1]
 if (!RemOpenConnection(ConnectEthernet, 0, argv[1], &cHdl)) {
 cHdl = LOCAL_CONNECTION;
 }
 }
 if (!strcmp(argv[2], “archive”)) {
 if (argc < 4) {
 printf(“\nfile name missing\n”);
 Usage(argv[0]);
 return DEMO_MISSING_FILENAME;
 }
 if (argc < 5) {
 result = ArchiveClip(cHdl, argv[3], ““);
 }
 else {
 result = ArchiveClip(cHdl, argv[3], argv[4]);
 }
 }
 else if (!strcmp(argv[2], “restore”)) {
 if (argc < 4) {
 printf(“\nfile name missing\n”);
 Usage(argv[0]);
 return DEMO_MISSING_FILENAME;
 }
 if (argc < 5) {
 result = RestoreClip(cHdl, argv[3], ““);
 }
 else {
 result = RestoreClip(cHdl, argv[3], argv[4]);
 }

 }
 else if (!strcmp(argv[2], “format”)) {
 if (argc < 4) {
 printf(“\ncartridge label missing\n”);
Preliminary — 12 July 2001 Profile Software Development Kit User 161

Chapter 7 Programming the Profile Library System

162
 Usage(argv[0]);
 return DEMO_MISSING_LABEL;
 }
 result = FormatCartridge(cHdl, argv[3]);
 }
 else if (!strcmp(argv[2], “inventory”)) {
 if (argc < 4) {
 printf(“\ncartridge label missing\n”);
 Usage(argv[0]);
 return DEMO_MISSING_LABEL;
 }
 result = InventoryCartridge(cHdl, argv[3]);
 }
 else if (!strcmp(argv[2], “import”)) {
 if (argc < 4) {
 printf(“\ncartridge label missing\n”);
 Usage(argv[0]);
 return DEMO_MISSING_LABEL;
 }
 result = ImportCartridge(cHdl, argv[3]);
 }
 else if (!strcmp(argv[2], “export”)) {
 if (argc < 4) {
 printf(“\ncartridge label missing\n”);
 Usage(argv[0]);
 return DEMO_MISSING_LABEL;
 }
 result = ExportCartridge(cHdl, argv[3]);
 }
 else if (!strcmp(argv[2], “backup”)) {
 if (argc < 4) {
 printf(“\nbackup path missing\n”);
 Usage(argv[0]);
 return DEMO_BACKUP_PATH_ERROR;
 }
 if (argc < 5) {
 printf(“\nlocal device missing\n”);
 Usage(argv[0]);
 return DEMO_BACKUP_DRIVE_ERROR;
 }
 result = BackUpLocalCatalog(cHdl, argv[3], argv[4]);
 }
 else {
 Usage(argv[0]);
 return DEMO_BAD_COMMAND_FORMAT;
 }
 }
 else {
 printf(“\nImproperly formatted command.\n”);
 Usage(argv[0]);
 return DEMO_BAD_COMMAND_FORMAT;
 }

 if (result) {
 printf(“Command failed with error 0x%x\n”, result);
 }

 return result;

} // main
Profile Software Development Kit User Preliminary — 12 July 2001

TekPls extension invocation
TekPls extension invocation
Three of the commands described in SDK Reference Manual support ProLink/ProNet
extension services. These commands are:

• 0E 00, Create Externsion;

• 0E FF, Delete Extension; and

• 0E xx, Extension Command Execution.

These commands are provided by the TekPls LIB/DLL for programs local to the Profile. The
ProLink/ProNet extension services include the additional commands that ProLink supports
on behalf of additional services which wish to “piggy-back” on top of the Prolink or ProNet
session that is established. For example, the pair of programs tekpls.exe and tekplsex.exe
provide the PLS serial protocol commands which “piggy-back” on the Prolink or ProNet
session that was separately established.

The tekpls.exe program
The tekpls.exe program is invoked by using the ProLink/ProNet Extension Services Create
Extension command. Specify the string “tekpls” as the command data. The tekpls.exe
program will invoke the tekplsex.exe program and wait for the Profile to initialize before
returning the CMD2 value to be used to access the extension. Normally the CMD2 value will
be one but could be other values as additional extensions become possible. After the program
tekplsex.exe completes initialization the tekpls.exe program exits.

The tekplsex.exe program
The tekplsex.exe program processes the PLS serial protocol commands. The serial protocol
commands are sent as data in a ProLink/ProNet extension services Extension Command
Execution commands. The serial protocol reply always contains at least four bytes. The first
byte is the transaction number. The second byte is the PLS serial protocol library opcode
being replied to. The third and fourth bytes of the reply are the library error code for the
command execution that is documented in the plserror.h file. The tekplsex.exe programs
terminates after the ProLink/ProNet extension services receives a Delete Extension
command with the CMD2 value specified in the data byte. The Profile should beep as the
tekplsex.exe program begins and terminates execution if the hardware and software are
operating correctly.

Connecting to the TekPls extension
Here’s how to connect to the TekPls extension via ProNet:

ConnectHandle ch = LOCAL_CONNECTION;
BOOL remote = RemOpenConnection (ConnectEthernet, 0, "remote_name", &ch);
UINT major = PlsGetMajorVersion(ch);
UINT minor = PlsGetMinorVersion(ch);

Here’s how to connect to the TekPls extension via ProLink:
Cmd1 = 0E;
Cmd2 = 00;
Arg1 = "tekpls" // the PLS server extension
Arg2 = 02; // per EXT_TYPE_MACHINE

11:44:48..818--> CMD: 02 0A 0E 00 74 65 6B 70 6C 73 00 02 5D
11:44:48..818--> RSP: 04 00 00
11:44:48..949--> CMD: 02 03 00 00 00 00
11:44:48..949--> RSP: 04 00 00
Preliminary — 12 July 2001 Profile Software Development Kit User 163

Chapter 7 Programming the Profile Library System

164
11:44:50..451--> CMD: 02 03 00 00 00 00
11:44:50..451--> RSP: 04 00 00
11:44:50..551--> CMD: 02 03 00 00 00 00
11:44:50..551--> RSP: 02 04 0E 00 00 7E 74

Reply shows use Cmd2 = 7E for the extension.
11:45:18..832--> CMD: 02 03 0E 7E 01 73
11:45:18..832--> RSP: 04 00 01
11:45:18..862--> CMD: 02 03 00 00 01 FF
11:45:18..862--> RSP: 04 00 01
11:45:18..962--> CMD: 02 03 00 00 01 FF
11:45:18..962--> RSP: 02 08 0E 7E 01 01 00 00 01 00 71

Reply shows major version number is one.
11:45:26..322--> CMD: 02 03 0E 7E 02 72
11:45:26..332--> RSP: 04 00 02
11:45:26..352--> CMD: 02 03 00 00 02 FE
11:45:26..362--> RSP: 02 08 0E 7E 02 02 00 00 01 00 6F

Reply shows minor version number is one.

Obtaining a library handle
To obtain a library handle via ProNet after the extension has initialized, do the following:

PlsLibraryHandle hLib =
 PlsOpenLibrary(ch, libraryName, session, major, minor);
 while ((hLib == NULL) && (GetLastError() == PLS_AS_INIT_INCOMPLETE))
 {
 Sleep(1000);
 hLib = PlsOpenLibrary(ch, "", "test", 0, 0);
 }

To obtain a library handle via ProLink after the extension has initialized, do the following:
11:46:05..969--> CMD: 02 0D 0E 7E 03 00 00 00 00 00 74 65 73 74 00 B1
11:46:05..979--> RSP: 04 00 03
11:46:05..999--> CMD: 02 03 00 00 03 FD
11:46:05..999--> RSP: 02 0A 0E 7E 03 03 48 00 00 00 00 00 26

Reply shows PLS DLL not initialized.
11:47:41..377--> CMD: 02 0D 0E 7E 03 00 00 00 00 00 74 65 73 74 00 B1
11:47:41..377--> RSP: 04 00 04
11:47:41..407--> CMD: 02 03 00 00 04 FC
11:47:41..417--> RSP: 02 0A 0E 7E 04 03 48 00 00 00 00 00 25

Reply shows PLS DLL not initialized.
11:51:25..058--> CMD: 02 0D 0E 7E 03 00 00 00 00 00 74 65 73 74 00 B1
11:51:25..058--> RSP: 04 00 05
11:51:25..088--> CMD: 02 03 00 00 05 FB
11:51:25..088--> RSP: 02 0A 0E 7E 05 03 00 00 00 00 01 00 6B

Reply shows library handle of 0X00010000.

Archiving a file
You can archive a file using one of two methods:

• wait in DLL for archive operation to complete; or

• obtain a transaction handle and monitor archive operation.

To archive a file via ProNet, do the following:
// create file handle for archive
PlsFileHandle hFile1 = PlsConnectFile(hLib, NULL,0, "test");
PlsFileHandle hFile2 = PlsConnectFile(hLib, NULL,0, "test");
Profile Software Development Kit User Preliminary — 12 July 2001

Archiving a file
// issue command and wait for archive to take place
// (not possible on serial link)
if (PlsArchiveClip(hFile1, 0, 0, hTransport, &fileStored, NULL))
 printf(" archived to partition %i of cartridge \"%s\" ",
 fileStored.partitionNumber, fileStored.cartLabel);
else
 printf(" archive failed with error of 0x%lX", GetLastError());

// issue command and get transaction to monitor command
PlsTransactionHandle hTransaction;
if (PlsArchiveClip(hFile2, 0, 0, hTransport, &fileStored, &hTransaction))
 printf(" archive is transaction 0x%0lX ", hTransaction);
else
 printf(" archive failed with error of 0x%lX", GetLastError());

// wait till command done or failed
PlsCmdStatus cmd;
while ((PlsGetStatusCommand(hLib, &cmd, hTransaction)) &&
 (cmd.status) && (!(cmd.status & PlsCmdStatError)))
Sleep(100);

// get command result
PlsEvent event;
if (PlsGetCommandEvent(hLib, hTransaction, &event))
 printf(" archived to partition %i of cartridge \"%s\" ",
 event.e.cmd.res.fileStored.partitionNumber,
 event.e.cmd.res.fileStored.cartLabel);
else
 printf(" archive failed with error of 0x%lX", GetLastError());

To archive a file via ProLink, do the following:

Obtain a file handle:
12:03:02..761--> CMD: 02 12 0E 7E 50 00 00 01 00 00 00 00 00
 00 00 74 65 73 74 00 63
12:03:02..761--> RSP: 04 00 0D
12:03:02..781--> CMD: 02 03 00 00 0D F3
12:03:02..781--> RSP: 02 0A 0E 7E 0D 50 00 00 02 00 01 00 14

Reply shows hFile of 0x00010002. Start archive:
12:03:23..381--> CMD: 02 13 0E 7E 53 02 00 01 00 00 00 00 00
 00 00 00 00 00 00 00 00 1E
12:03:23..381--> RSP: 04 00 0E
12:03:23..401--> CMD: 02 03 00 00 0E F2
12:03:23..401--> RSP: 04 00 0E
12:03:23..501--> CMD: 02 03 00 00 0E F2
12:03:23..511--> RSP: 04 00 0E
12:03:23..601--> CMD: 02 03 00 00 0E F2
12:03:23..601--> RSP: 02 0D 0E 7E 0E 53 00 00 03 00 00 00 00
 00 00 10

Reply shows hTransaction of 0x00000003. Check transaction status:
12:03:42..198--> CMD: 02 0B 0E 7E 7D 00 00 01 00 03 00 00 00
 F3
12:03:42..198--> RSP: 04 00 0F
12:03:42..228--> CMD: 02 03 00 00 0F F1
12:03:42..228--> RSP: 02 0B 0E 7E 0F 7D 00 00 0C 00 00 00 00 DC
12:03:50..380--> CMD: 02 0B 0E 7E 7D 00 00 01 00 03 00 00 00 F3
12:03:50..380--> RSP: 04 00 10
12:03:50..400--> CMD: 02 03 00 00 10 F0
12:03:50..400--> RSP: 02 0B 0E 7E 10 7D 00 00 0C 00 00 80 00 5B

Reply shows 0x800000C.
Preliminary — 12 July 2001 Profile Software Development Kit User 165

Chapter 7 Programming the Profile Library System

166
12:03:59..163--> CMD: 02 0B 0E 7E 7D 00 00 01 00 03 00 00 00 F3
12:03:59..173--> RSP: 04 00 11
12:03:59..193--> CMD: 02 03 00 00 11 EF
12:03:59..193--> RSP: 02 0B 0E 7E 11 7D 00 00 0C 00 00 00 00 DA
12:04:43..406--> CMD: 02 0B 0E 7E 7D 00 00 01 00 03 00 00 00 F3
12:04:43..416--> RSP: 04 00 12
12:04:43..436--> CMD: 02 03 00 00 12 EE
12:04:43..436--> RSP: 02 0B 0E 7E 12 7D 00 00 0C 00 00 00 42 97

Reply shows 0x0000000C. Check transaction status:
12:05:12..208--> CMD: 02 0B 0E 7E 7D 00 00 01 00 03 00 00 00 F3
12:05:12..218--> RSP: 04 00 13
12:05:12..238--> CMD: 02 03 00 00 13 ED
12:05:12..238--> RSP: 02 0B 0E 7E 13 7D 00 00 00 00 00 00 00 E4

Reply shows 0x00000000 (DONE). Check transaction result:
12:05:17..215--> CMD: 02 0B 0E 7E 74 00 00 01 00 03 00 00 00 FC
12:05:17..215--> RSP: 04 00 14
12:05:17..245--> CMD: 02 03 00 00 14 EC
12:05:17..245--> RSP: 02 18 0E 7E 14 74 00 00 53 03 00 00 00
 00 00 01 00 30 30 30 30 30 31 32 35 00 0D

Reply shows file stored at partition 1 of cartridge “00000125”.

Closing the library and connection
To close the library and connection via ProNet, do the following:

if (!PlsCloseLibrary(hLib))
 printf(" CloseLibrary failed - GetLastError() = 0x%lX\n",
 GetLastError());

if (!RemCloseConnection(ch))
 printf(" CloseConnection failed - GetLastError() = 0x%lX\n",
 GetLastError());

Close the library.
12:05:46..267--> CMD: 02 07 0E 7E 04 00 00 01 00 6F
12:05:46..267--> RSP: 04 00 15
12:05:46..297--> CMD: 02 03 00 00 15 EB
12:05:46..297--> RSP: 02 06 0E 7E 15 04 00 00 5B

Reply shows command succeeded.
Profile Software Development Kit User Preliminary — 12 July 2001

PLS constants
PLS constants
The following tables list PLS events and opcodes, sorted by name and value.

Table 9. PLS events by name

PlsEventCmdAllocateCartridge 0x32 PlsEventCmdRemoveTransport 0x7B
PlsEventCmdAllocateTransport 0x21 PlsEventCmdRenameFile 0x57
PlsEventCmdArchiveClip 0x53 PlsEventCmdRestore 0x56
PlsEventCmdArchiveDataFile 0x54 PlsEventCmdRestoreDataFile 0x5F
PlsEventCmdCleanTransport 0x26 PlsEventCmdUnloadTransport 0x25
PlsEventCmdCopyCartridge 0x3A PlsEventCmdUpdateCartridge 0x37
PlsEventCmdDeleteFile 0x58 PlsEventDeleteAll 0xE3
PlsEventCmdExportCartridge 0x3C PlsEventDeleteFile 0xE5
PlsEventCmdFormatCartridge 0x38 PlsEventExport 0xE1
PlsEventCmdGetClipSize 0x63 PlsEventFormat 0xE0
PlsEventCmdGetPartitionMap 0x43 PlsEventImport 0xE2
PlsEventCmdHouseKeeping 0x7F PlsEventLast 0xFF.
PlsEventCmdImportCartridge 0x3D PlsEventNewFile 0xE4
PlsEventCmdImportLoadCartridge 0x42 PlsEventNoEvent 0x00
PlsEventCmdInventoryCartridge 0x36 PlsEventRenameFile 0xE6
PlsEventCmdInventoryLibrary 0x7C PlsEventTransOffline 0xE8
PlsEventCmdLoadTransport 0x24 PlsEventTransOnline 0xE7

Table 10. PLS events by value

0x00 PlsEventNoEvent 0x57 PlsEventCmdRenameFile
0x21 PlsEventCmdAllocateTransport 0x58 PlsEventCmdDeleteFile
0x24 PlsEventCmdLoadTransport 0x5F PlsEventCmdRestoreDataFile
0x25 PlsEventCmdUnloadTransport 0x63 PlsEventCmdGetClipSize
0x26 PlsEventCmdCleanTransport 0x7B PlsEventCmdRemoveTransport
0x32 PlsEventCmdAllocateCartridge 0x7C PlsEventCmdInventoryLibrary
0x36 PlsEventCmdInventoryCartridge 0x7F PlsEventCmdHouseKeeping
0x37 PlsEventCmdUpdateCartridge 0xE0 PlsEventFormat
0x38 PlsEventCmdFormatCartridge 0xE1 PlsEventExport
0x3A PlsEventCmdCopyCartridge 0xE2 PlsEventImport
0x3C PlsEventCmdExportCartridge 0xE3 PlsEventDeleteAll
0x3D PlsEventCmdImportCartridge 0xE4 PlsEventNewFile
0x42 PlsEventCmdImportLoadCartridge 0xE5 PlsEventDeleteFile
0x43 PlsEventCmdGetPartitionMap 0xE6 PlsEventRenameFile
0x53 PlsEventCmdArchiveClip 0xE7 PlsEventTransOnline
0x54 PlsEventCmdArchiveDataFile 0xE8 PlsEventTransOffline
0x56 PlsEventCmdRestore 0xFF PlsEventLast
Preliminary — 12 July 2001 Profile Software Development Kit User 167

Chapter 7 Programming the Profile Library System

168
Table 11. PLS opcodes by name

PlsOpCodeAddTransport 0x7A PlsOpCodeGetCartridgeStatus 0x35
PlsOpCodeAllocateCartridge 0x32 PlsOpCodeGetClipSize 0x63
PlsOpCodeAllocateTransport 0x21 PlsOpCodeGetCommandEvent 0x74
PlsOpCodeArchiveClip 0x53 PlsOpCodeGetEventMask 0x71
PlsOpCodeArchiveDataFile 0x54 PlsOpCodeGetFileDescription 0x5B
PlsOpCodeBackupCatalog 0x62 PlsOpCodeGetLibraryConfig 0x05
PlsOpCodeCancelCommand 0x7E PlsOpCodeGetLibraryStatus 0x06
PlsOpCodeCleanTransport 0x26 PlsOpCodeGetLocationString 0x3E
PlsOpCodeCloseBinInfo 0x0C PlsOpCodeGetMajorVersion 0x01
PlsOpCodeCloseCartridge 0x33 PlsOpCodeGetMinorVersion 0x02
PlsOpCodeCloseCartridgeInfo 0x0F PlsOpCodeGetModes 0x76
PlsOpCodeCloseFile 0x51 PlsOpCodeGetPartitionMap 0x43
PlsOpCodeCloseFileInfo 0x12 PlsOpCodeGetPath 0x78
PlsOpCodeCloseFindHandle 0x15 PlsOpCodeGetStatusCommand 0x7D
PlsOpCodeCloseLibrary 0x04 PlsOpCodeGetTimeDate 0x79
PlsOpCodeCloseTransport 0x22 PlsOpCodeGetTransportStatus 0x23
PlsOpCodeCloseTransportConfig 0x09 PlsOpCodeHouseKeeping 0x7F
PlsOpCodeConnectCartridge 0x30 PlsOpCodeImportCartridge 0x3D
PlsOpCodeConnectFile 0x50 PlsOpCodeImportLoadCartridge 0x42
PlsOpCodeConnectTransport 0x20 PlsOpCodeInventoryCartridge 0x36
PlsOpCodeCopyCartridge 0x3A PlsOpCodeInventoryLibrary 0x7C
PlsOpCodeDeleteFile 0x58 PlsOpCodeLastCommand 0xFF
PlsOpCodeExportCartridge 0x3C PlsOpCodeLoadTransport 0x24
PlsOpCodeFindFirstBinInfo 0x0A PlsOpCodeNoOp 0x00
PlsOpCodeFindFirstCartridgeInfo 0x0D PlsOpCodeOpenLibrary 0x03
PlsOpCodeFindFirstFileInfo 0x10 PlsOpCodeRemoveTransport 0x7B
PlsOpCodeFindFirstHandle 0x13 PlsOpCodeRenameFile 0x57
PlsOpCodeFindFirstTransportConfig 0x07 PlsOpCodeRestore 0x56
PlsOpCodeFindNextBinInfo 0x0B PlsOpCodeRestoreDataFile 0x5F
PlsOpCodeFindNextCartridgeInfo 0x0E PlsOpCodeSetBackupDir 0x60
PlsOpCodeFindNextFileInfo 0x11 PlsOpCodeSetCartDescription 0x40
PlsOpCodeFindNextHandle 0x14 PlsOpCodeSetEventMask 0x70
PlsOpCodeFindNextTransportConfig 0x08 PlsOpCodeSetFileDescription 0x5A
PlsOpCodeFormatCartridge 0x38 PlsOpCodeSetLocationString 0x3F
PlsOpCodeGetAnyEvent 0x72 PlsOpCodeSetModes 0x75
PlsOpCodeGetAsynchEvent 0x73 PlsOpCodeSetPath 0x77
PlsOpCodeGetBackupDir 0x61 PlsOpCodeUnloadTransport 0x25
PlsOpCodeGetCartDescription 0x41 PlsOpCodeUpdateCartridge 0x37
PlsOpCodeGetCartridgeConfig 0x34
Profile Software Development Kit User Preliminary — 12 July 2001

PLS constants
Table 12. PLS opcodes by value

0x00 PlsOpCodeNoOp 0x3D PlsOpCodeImportCartridge
0x01 PlsOpCodeGetMajorVersion 0x3E PlsOpCodeGetLocationString
0x02 PlsOpCodeGetMinorVersion 0x3F PlsOpCodeSetLocationString
0x03 PlsOpCodeOpenLibrary 0x40 PlsOpCodeSetCartDescription
0x04 PlsOpCodeCloseLibrary 0x41 PlsOpCodeGetCartDescription
0x05 PlsOpCodeGetLibraryConfig 0x42 PlsOpCodeImportLoadCartridge
0x06 PlsOpCodeGetLibraryStatus 0x43 PlsOpCodeGetPartitionMap
0x07 PlsOpCodeFindFirstTransportConfig 0x50 PlsOpCodeConnectFile
0x08 PlsOpCodeFindNextTransportConfig 0x51 PlsOpCodeCloseFile
0x09 PlsOpCodeCloseTransportConfig 0x53 PlsOpCodeArchiveClip
0x0A PlsOpCodeFindFirstBinInfo 0x54 PlsOpCodeArchiveDataFile
0x0B PlsOpCodeFindNextBinInfo 0x56 PlsOpCodeRestore
0x0C PlsOpCodeCloseBinInfo 0x57 PlsOpCodeRenameFile
0x0D PlsOpCodeFindFirstCartridgeInfo 0x58 PlsOpCodeDeleteFile
0x0E PlsOpCodeFindNextCartridgeInfo 0x5A PlsOpCodeSetFileDescription
0x0F PlsOpCodeCloseCartridgeInfo 0x5B PlsOpCodeGetFileDescription
0x10 PlsOpCodeFindFirstFileInfo 0x5F PlsOpCodeRestoreDataFile
0x11 PlsOpCodeFindNextFileInfo 0x60 PlsOpCodeSetBackupDir
0x12 PlsOpCodeCloseFileInfo 0x61 PlsOpCodeGetBackupDir
0x13 PlsOpCodeFindFirstHandle 0x62 PlsOpCodeBackupCatalog
0x14 PlsOpCodeFindNextHandle 0x63 PlsOpCodeGetClipSize
0x15 PlsOpCodeCloseFindHandle 0x70 PlsOpCodeSetEventMask
0x20 PlsOpCodeConnectTransport 0x71 PlsOpCodeGetEventMask
0x21 PlsOpCodeAllocateTransport 0x72 PlsOpCodeGetAnyEvent
0x22 PlsOpCodeCloseTransport 0x73 PlsOpCodeGetAsynchEvent
0x23 PlsOpCodeGetTransportStatus 0x74 PlsOpCodeGetCommandEvent
0x24 PlsOpCodeLoadTransport 0x75 PlsOpCodeSetModes
0x25 PlsOpCodeUnloadTransport 0x76 PlsOpCodeGetModes
0x26 PlsOpCodeCleanTransport 0x77 PlsOpCodeSetPath
0x30 PlsOpCodeConnectCartridge 0x78 PlsOpCodeGetPath
0x32 PlsOpCodeAllocateCartridge 0x79 PlsOpCodeGetTimeDate
0x33 PlsOpCodeCloseCartridge 0x7A PlsOpCodeAddTransport
0x34 PlsOpCodeGetCartridgeConfig 0x7B PlsOpCodeRemoveTransport
0x35 PlsOpCodeGetCartridgeStatus 0x7C PlsOpCodeInventoryLibrary
0x36 PlsOpCodeInventoryCartridge 0x7D PlsOpCodeGetStatusCommand
0x37 PlsOpCodeUpdateCartridge 0x7E PlsOpCodeCancelCommand
0x38 PlsOpCodeFormatCartridge 0x7F PlsOpCodeHouseKeeping
0x3A PlsOpCodeCopyCartridge 0xFF PlsOpCodeLastCommand
0x3C PlsOpCodeExportCartridge
Preliminary — 12 July 2001 Profile Software Development Kit User 169

Chapter 7 Programming the Profile Library System

170
PLS error codes by value
Archive server protocol errors returned to an application are of the form 0x20009<code>
where code is a 12-bit number from the table below. Error codes in serial protocols are a
12-bit code in a 16-bit field. The high-order 4 bits of the serial protocol error code are zeros.

Table 13. PLS serial error codes

Code Error Description

0x000 PLS_NO_ERROR No error/success.

0x001 PLS_AS_INIT_FAIL PLS classes initialization failed. One of the PLS
classes failed to instantiate. (Call Grass Valley
Group Customer Support.)

0x002 PLS_AS_LC_INIT_FAIL Local catalog initialization failure. Local catalog
failed to load in memory. (Call Grass Valley Group
Customer Support.)

0x003 PLS_AS_RES_INIT_FAIL OBSOLETE.

0x004 PLS_AS_TP_INIT_FAIL Transport class initialization failure. Unable to
instantiate a transport class or was not able to open
the local catalog file, C:\pls_lc\plstrans.lct. (Call
Grass Valley Group Customer Support.)

0x005 PLS_AS_LIB_INIT_FAIL Library class initialization failure. Unable to instan-
tiate robot class, initialize robot, or get local catalog
data. (Call Grass Valley Group Customer Support.)

0x006 PLS_AS_INIT_FILE_MISSING OBSOLETE.

0x007 PLS_AS_INIT_RECORD_FAIL OBSOLETE.

0x008 PLS_AS_CONOP_RESOURCE_ERROR Unable to allocate/deallocate desired resource (car-
tridge/transport). The desired resource is either in
use or has been reserved, and queuing mode for that
resource is not set. (See PlsSetModes on page 260
of the SDK Reference Manual.)

0x009 PLS_AS_LC_DELETE_FAIL Unable to delete local catalog record. A delete was
attempted on a local catalog record that no longer
exists.

0x00A PLS_AS_HND_DELETE_FAIL OBSOLETE.

0x00B PLS_AS_PATH_ERROR Invalid PDR movie (clip) path. Make sure that the
correct path is set (see PlsGetPath on page 240 and
PlsSetPath on page 261 of the SDK Reference Man-
ual) and that the desired movie exists within that
path.

0x00C PLS_AS_GET_MOVIE_ERROR Unable to open desired movie (clip). Make sure that
the movie (clip) exists and has not been opened
“exclusive” (see PdrOpenMovie on page 162 of the
SDK Reference Manual) by another application.

0x00D PLS_AS_INSUFFICIENT_CAPACITY Insufficient tape capacity to archive selected movie
(clip). The target cartridge/partition does not have
enough free space to accommodate the selected
movie (clip). Try a different cartridge/partition pair-
ing.

0x00E PLS_AS_DATA_RETRIVAL_ERROR Unable to retrieve desired local catalog record. The
desired local catalog record no longer exists.
Profile Software Development Kit User Preliminary — 12 July 2001

PLS error codes by value
0x00F PLS_AS_I960_HANDLE_ERROR OBSOLETE.

0x010 PLS_AS_INVALID_RECORD_ERROR Desired local catalog record does not exist.

0x011 PLS_AS_MOVIE_CREATE_ERROR Unable to create desired movie (clip) for restoring.

0x012 PLS_AS_CLOSE_MOVIE_ERROR Unable to close archived/restored movie (clip). (See
PdrCloseMovie on page 82 of the SDK Reference
Manual.)

0x013 PLS_AS_FILE_DELETED_ERROR Desired tape file is marked as deleted.

0x014 PLS_AS_HND_CREATE_FAIL Unable to create handle. Generally due to a bad
parameter. (Example: attempting to create a car-
tridge handle to a non-existent cartridge.)

0x015 PLS_AS_RECORD_CREATE_FAIL One of the PLS log files could not be opened/cre-
ated. (Call Grass Valley Group Customer Support.)

0x016 PLS_AS_LOG_INIT_FAIL Unable to create a local catalog record. Generally
this is caused when the memory needed for the new
record is unavailable. The only exception is file
records which will fail when a bad parameter is
detected (cartridge label, partition number).

0x017 PLS_AS_LC_UPDATE_FAIL Unable to update a local catalog record to the disk
file. RAM copy of the record is still valid. However,
once the PLS is restarted, that record’s data may be
invalid.

0x018 PLS_AS_UNFORMAT_FAIL Unable to unformat a cartridge. The cartridge still
contains old files and is in an unknown state.

0x019 PLS_AS_CARTRIDGE_MOUNTED Unable to unmount cartridge from target transport.
The command attempted to remove the cartridge
from the target transport to clear it for allocation by a
new transaction.

0x01A PLS_AS_HANDLE_MISSING A handle necessary for processing of this command
is missing or invalid.

0x01B PLS_AS_TRANSPORT_INUSE Target transport is being used by another transaction.
This will occur if a command tries to do an unload or
import load to a busy transport. Also attempting to
close a transport handle used to reserve a transport
which is busy will cause this error.

0x01C PLS_AS_TRANS_SLOT_OUT_OF_RANGE Transport device number (IPM address) or robot
location number is out of range.

0x01D PLS_AS_UNFORMATTED Cartridge must be formatted to perform this com-
mand.

0x01E PLS_AS_INVALID_ACTION_CODE The action code given for this command is invalid
(out of range).

0x01F PLS_AS_FILE_ALREADY_ARCHIVED A file by the same name already exists in target par-
tition.

0x020 PLS_AS_CARTRIDGE_NOT_SPECIFIED Cartridge handle/label must be specified for this
command.

Table 13. PLS serial error codes (Continued)

Code Error Description
Preliminary — 12 July 2001 Profile Software Development Kit User 171

Chapter 7 Programming the Profile Library System

172
0x021 PLS_AS_EMPTY_TRANSPORT_ERROR An command which expected a mounted cartridge
found the transport empty. This error can only occur
with the PlsUnloadTransport command or when
commands such as PlsArchiveClip are sent to
stand-alone transports.

0x022 PLS_AS_MISSING_LABEL Cartridge label required for this command was miss-
ing.

0x023 PLS_AS_MISSING_FILENAME File name required for this command was missing.

0x024 PLS_AS_FILE_NOT_ARCHIVED Occurs when attempting to restore or rename a tape
file, and the tape file has not been archived.

0x025 PLS_AS_WRONG_CARTRIDGE_TYPE Cartridge is of the wrong type for the specified com-
mand. (Example: a media cartridge is specified in a
PlsCleanTransport command.)

0x026 PLS_AS_ZERO_LENGTH_MOVIE Movie (clip) has zero length. The movie (clip)
exists, but has not recorded media. Can only occur
during a PlsArchiveClip command.

0x027 PLS_AS_CARTRIDGE_OUT_OF_LIBRARY The target cartridge is not in the robot library, or
mounted in a stand-alone transport.

0x028 PLS_AS_COMMAND_NOT_IMPLEMENTED This API command is not yet implemented.

0x029 PLS_AS_NO_FREE_TRANSPORT_SLOT There is no free IPM slot (address) to add a new
transport. There is currently a maximum of 4
archive IPM ports.

0x02A PLS_AS_TRANSPORT_SLOT_IN_USE The desired IPM slot (address) is in use.

0x02B PLS_AS_TRANSPORT_NOT_CONNECTED The transport requested does not exist.

0x02C PLS_AS_EXCEEDED_MAX_NUM_HANDLES The maximum number of handles for this handle
type (library, resource, etc.) is in use. Close a handle
of the desired type to proceed.

0x02D PLS_AS_RENAME_SAME_NAME Trying to rename a file with the same name.

0x02E PLS_AS_HANDLE_INUSE This handle is currently being used by another com-
mand. (Generally occurs when attempting to close a
handle.)

0x02F PLS_AS_INVALID_PARTITION The partition number associated with the file is
invalid, or the partition number is out of range. (The
range a partition number can take is vendor-depen-
dent.)

0x030 PLS_AS_MOVIE_ALREADY_EXISTS The command is attempting a restore operation for
an archived movie (clip) to a target path which
already contains a movie (clip) of the same name.
Renaming the tape file will solve this problem.

0x031 PLS_AS_BAD_IN_OUT_POINTS The in/out points specified for this movie (clip) are
invalid. The in point may be greater than the out
point, or the in/out points are outside the recorded
media.

0x032 PLS_AS_INVALID_SYSTEM_HANDLE The primary handle for a given operation was
invalid. The primary handle is the one required han-
dle for the given command (generally a library han-
dle).

Table 13. PLS serial error codes (Continued)

Code Error Description
Profile Software Development Kit User Preliminary — 12 July 2001

PLS error codes by value
0x033 PLS_AS_LOOP_COMPLETE First/next search loop has completed.

0x034 PLS_AS_INVALID_LOOP_HANDLE Invalid first/next search loop handle.

0x035 PLS_AS_NT_FILE_READ_ERROR There was an error while attempting a Win32 read
operation.

0x036 PLS_AS_NT_FILE_WRITE_ERROR There was an error while attempting a Win32 write
operation.

0x037 PLS_AS_NT_FILE_ALREADY_EXISTS The command is attempting to restore a Windows
NT file to a location when a file of that name already
exists. Renaming the tape file is one way to solve
this problem

0x038 PLS_AS_INVALID_NT_HANDLE Windows NT returned a handle creation error.

0x039 PLS_AS_CART_TABLE_BACKUP_FAILED Local catalog cartridge table backup failed. The
local catalog table is still intact, and normal opera-
tion can proceed. The previous instance (if any) of a
backup file still exists.

0x03A PLS_AS_FILE_TABLE_BACKUP_FAILED Local catalog file table backup failed. Local catalog
cartridge table backup failed. The local catalog table
is still intact, and normal operation can proceed. The
previous instance (if any) of a backup file still exists.

0x03B PLS_AS_PART_TABLE_BACKUP_FAILED Local catalog partition table backup failed. Local
catalog cartridge table backup failed. The local cata-
log table is still intact, and normal operation can pro-
ceed. The previous instance (if any) of a backup file
still exists.

0x03C PLS_AS_BACKUP_DIR_OPEN_FAILED Unable to open remote target for local catalog
backup. This is generally due to an invalid share
name.

0x03D PLS_AS_CARTRIDGE_ALLOC_ERROR Unable to allocate desired cartridge. If the cartridge
is not specified, then the command could find no free
cartridge. This error only occurs when cartridge
queuing is off. (See PlsSetModes on page 260 of the
SDK Reference Manual.)

0x03E PLS_AS_CARTRIDGE_DEALLOC_ERROR Unable to deallocate a given cartridge. If this
occurs, the cartridge could be unusable until the PLS
is re-initialized.

0x03F PLS_AS_TRANSPORT_ALLOC_ERROR Unable to allocate desired transport. If the transport
is not specified, then the operation could find no free
transport. This error only occurs when transport
queuing is off. (See PlsSetModes on page 260 of the
SDK Reference Manual.)

0x040 PLS_AS_TRANSPORT_DEALLOC_ERROR Unable to deallocate a given transport. If this
occurs, the transport could be unusable until the PLS
is re-initialized.

Table 13. PLS serial error codes (Continued)

Code Error Description
Preliminary — 12 July 2001 Profile Software Development Kit User 173

Chapter 7 Programming the Profile Library System

174
0x041 PLS_AS_FILE_NOT_UNIQUE File specified for restore is not unique. This occurs
when a file handle does not specify the cartridge
and/or the partition. The system is asked to find the
correct file. If more than one file of that name exists
based on the contents of the file handle. (i.e. Was
cartridge label and/or partition specified?), this error
will occur. Creating a file handle with the correct
cartridge and partition and using it for the command
will solve this problem.

0x042 PLS_AS_SOURCE_CARTRIDGE_EMPTY Source cartridge for a Copy Cartridge command is
empty. (See PlsCopyCartridge on page 207 of the
SDK Reference Manual.)

0x043 PLS_AS_TARGET_CART_NOT_EMPTY Target cartridge for a Copy Cartridge command is
not empty. (See PlsCopyCartridge on page 207 of
the SDK Reference Manual.)

0x044 PLS_AS_CART_FORMAT_MISMATCH Target cartridge for a Copy Cartridge command is
not the same format as the source cartridge. (See
PlsCopyCartridge on page 207 of the SDK Refer-
ence Manual.)

0x045 PLS_AS_TARGET_CART_INUSE Target cartridge for a Copy Cartridge command is
currently in use. This causes a copy cartridge to fail,
since the state of the target (destination) cartridge is
changing.

0x046 PLS_AS_CANCEL_FAILED Unable to cancel selected command. The command
is either non-cancelable, or is in a state where can-
celing is not allowed.

0x047 PLS_AS_INVALID_CONNECTION Application is not connected to the PLS library.

0x048 PLS_AS_INIT_INCOMPLETE PLS library is still initializing. This happens when a
PlsOpenLibrary is called before PLS initialization is
complete. Check periodically once PLS initializa-
tion is complete. Either a library handle or different
error will be returned.

0x049 PLS_AS_WRONG_BACKUP_DIR Local device name points to wrong remote directory.
The drive letter associated with backup command no
longer points to the set share path. (See PlsGetBack-
upDir on page 225 and PlsSetBackupDir on
page 255 of the SDK Reference Manual.)

0x04A PLS_AS_CARTRIDGE_IN_LIBRARY Occurs while attempting to import a cartridge with a
label the same as one already physically in the
library.

0x04B PLS_AS_MEMORY_ALLOCATION_ERROR Unable to allocate memory needed for the current
command. This usually happens when the system is
low on memory. Shutting down any un-needed pro-
cesses can clear this up.

0x04C PLS_AS_INVALID_DEVICE_ADDRESS SCSI device address specified is not the one associ-
ated with the specified transport. Transport SCSI
addresses are printed out in the PLS log (pls.log)
during PLS initialization.

Table 13. PLS serial error codes (Continued)

Code Error Description
Profile Software Development Kit User Preliminary — 12 July 2001

PLS error codes by value
0x04D PLS_AS_THREAD_RESUME_FAILED Unable to resume thread after suspension. The com-
mand belonging to this thread is lost. The command
can be re-issued.

0x04E PLS_AS_INVALID_MOVIE_TYPE Movie (clip) is of a type that is invalid for this opera-
tion. This will occur if an attempt is made to archive
movie type other than “simple”. (See PdrGetMovie-
Attributes on page 128 of the SDK Reference Man-
ual.)

0x04F PLS_AS_INVALID_TRANSPORT_NUMBER Transport number was not in the range of 0-255.

0x050 PLS_AS_LOCAL_CATALOG_PURGE_FAILED Unable to purge the local catalog.

0x101 PLS_AR_CONNECTION_FAILED Internal state during initialization. Unable to locate
SCSI library robot. (Call Grass Valley Group Cus-
tomer Support.)

0x102 PLS_AR_INITIALIZATION_FAILED Internal state during initialization. Unable to initial-
ize library robot. (Call Grass Valley Group Cus-
tomer Support.)

0x103 PLS_AR_INVENTORY_FAILED Library robot unable to scan barcodes. (Hardware
error. Call Grass Valley Group Customer Support.)

0x104 PLS_AR_INVALID_BIN Requested bin does not exist in library robot.
Attempting to find contents of a bin not available in
currently connected robot.

0x105 PLS_AR_BARCODE_NOT_FOUND Requested cartridge is not in the library robot or the
cartridge label is not readable. Attempting to find
location of a cartridge not currently in the robot.
Use library inventory to update PLS knowledge of
current robot state.

0x107 PLS_AR_DESTINATION_CONFLICT Library robot bin or transport already occupied by
another cartridge. Or, attempted to import another
cartridge into a full library robot.

0x108 PLS_AR_SOURCE_CONFLICT Requested cartridge not found in expected location.
May occur if tape cartridge did not properly eject
from the tape transport. Use library inventory to
update PLS knowledge of current robot state.

0x109 PLS_AR_NOT_ADDED Requested cartridge was not imported into the
library robot. The operation timed out without the
cartridge being added. Repeat the import operation.

0x10A PLS_AR_NOT_REMOVED Requested cartridge was not exported from the
library robot. The operation timed out without the
cartridge being removed. Repeat the export opera-
tion.

0x10C PLS_AR_NOT_REQUESTED_BARCODE Imported cartridge was not the cartridge requested.
Operator has inserted the wrong cartridge. Request
operator to insert the correct cartridge.

0x10E PLS_AR_NO_FREE_ENTRY_PORTS Cartridge import attempted with all entry ports occu-
pied. Wait for previous import operation to com-
plete and repeat the import operation.

Table 13. PLS serial error codes (Continued)

Code Error Description
Preliminary — 12 July 2001 Profile Software Development Kit User 175

Chapter 7 Programming the Profile Library System

176
0x10F PLS_AR_NO_FREE_EXIT_PORTS Cartridge export attempted with all exit ports occu-
pied. Wait for previous export operation to complete
and repeat the export operation.

0x110 PLS_AR_CONNECTION_UNDERWAY Internal state during initialization. Robot status
while connecting to the SCSI library robot. (Call
Grass Valley Group Customer Support.)

0x111 PLS_AR_INITIALIZATION_NEEDED Internal state during initialization. Robot status
before initializing the SCSI library robot. (Call
Grass Valley Group Customer Support.)

0x112 PLS_AR_INITIALIZATION_UNDERWAY Internal state during initialization. Robot status
while initializing the SCSI library robot. (Call Grass
Valley Group Customer Support.)

0x113 PLS_AR_NEW_CARTRIDGE Operator error. Cartridge imported into library robot
during cartridge export operation. Use library inven-
tory to find label of cartridge.

0x114 PLS_AR_NO_ENTRY_PORTS Cartridge import attempted with no entry ports
installed in robot.

0x115 PLS_AR_NO_EXIT_PORTS Cartridge export attempted with no exit ports
installed in robot.

0x201 PLS_AT_INTERNAL The real-time processor has detected an unexpected
error which it does not know how to handle. Exam-
ine profile.log.

0x202 PLS_AT_BAD_HANDLE The real-time processor was given a bad transaction
handle by NT.

0x203 PLS_AT_NOT_IMPLEMENTED A SCSI device returned an ILLEGAL REQUEST
error.

0x205 PLS_AT_NBYTES_OUT_OF_RANGE An fread or fwrite request from the Windows NT
processor to the real-time processor had an illegal
byte count argument.

0x206 PLS_AT_BAD_DEVICE_CODE The real-time processor was given a request for an
operation on a non-existent tape drive.

0x207 PLS_AT_BAD_INOUT_POINTS An in-point specification was greater than the corre-
sponding out-point.

0x208 PLS_AT_BAD_PARTITION A request was made to position a tape to a non-exis-
tent partition.

0x209 PLS_AT_IPM_ERROR An error occurred on the communication channel
between the real-time and OS processors.

0x20A PLS_AT_EIO An unrecoverable I/O error occurred on a tape drive.

0x20B PLS_AT_WRITEPROT An attempt was made to write to a physically
write-protected tape.

0x20C PLS_AT_NOT_READY The tape drive is not ready.

0x20D PLS_AT_BAD_PARAMETER A SCSI device reported an illegal parameter.

0x20E PLS_AT_BLANK_CHECK An attempt was made to read a portion of tape which
has not been written, i.e. beyond end of data.

0x20F PLS_AT_VOLUME_OVERFLOW An attempt was made to write beyond the end of a
partition.

Table 13. PLS serial error codes (Continued)

Code Error Description
Profile Software Development Kit User Preliminary — 12 July 2001

PLS error codes by value
0x210 PLS_AT_MISC_SCSI_ERROR An unexpected error in the SCSI driver has occurred.
See profile.log.

0x211 PLS_AT_NO_MEDIUM There is no tape in the tape drive.

0x212 PLS_AT_UNKNOWN_FORMAT The tape is of unknown format or has never been for-
matted.

0x2FE PLS_AT_IPM_WRITE_FAIL An error occurred writing to the communication
channel between the the real-time and OS proces-
sors.

0x2FF PLS_AT_IPM_READ_FAIL An error occurred reading from the communication
channel between the the real-time and OS proces-
sors.

0x301 PLS_REMOTE_DLL_CMD_NOT_AVAILABLE PLS serial protocol does not support the PLS opera-
tion requested. Protocol may be expanded in a
future release to include the command.

0x302 PLS_REMOTE_CMD_INVALID PLS server does not support the opcode received.
Command may be supported in a future release.

0x303 PLS_REMOTE_CMD_FAILURE PLS server command failed without indicating a
specific PLS error code.

0x304 PLS_REMOTE_CMD_INPUT_FAILURE PLS server failed to receive all required information
in the command packet.

0x305 PLS_REMOTE_CMD_OUTPUT_FAILURE PLS server was not able to place all requested items
in the result packet.

0x311 PLS_LOCAL_SERVER_FAILURE Communication with the local PLS server has failed.
Restart the local server.

Table 13. PLS serial error codes (Continued)

Code Error Description
Preliminary — 12 July 2001 Profile Software Development Kit User 177

Chapter 7 Programming the Profile Library System

178
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 8

Programming with MPEG

Since limited bandwidth has always been a concern for those interested in sending video
across a network, the engineers of the Motion Picture Experts Group designed the MPEG
algorithm with a strong emphasis on compression. As a result, MPEG can double video
storage capacity over JPEG-only storage at similar quality levels. Due to the smaller sizes,
MPEG can also enable much faster data transfers over Fibre Channel.

Depending on the image, JPEG can achieve compression ratios of anywhere from 15:1 to 30:1.
MPEG can achieve compression ratios that approach 200:1.

MPEG manages this by not duplicating video that remains static from one frame to the next.
Since each frame in a sequence of motion picture frames is often very similar to the preceding
and succeeding frames, MPEG only saves the changed information from the previous frame
to reconstruct the present frame.

This use of backward and forward motion prediction involves GOPs (groups of pictures)
consisting of I-frames, P-frames, and B-frames. An I-frame (also known as an I-picture or
intracoded picture) is analogous to a single motion-JPEG frame, where all the data required
to display the frame is stored in one picture. An I-frame is the heart of a GOP, the one picture
on which the other pictures in the GOP base their predictive calculations. A P-frame (also
called a P-picture or predictive picture) uses a motion vector to predict what will happen in the
next frame and contains only the changed data rather than the entire frame of video. A
B-frame (also known as a B-picture or bidirectional picture) relies on data from both
backward and forward motion vectors to determine how a future frame will be composed.

A GOP consists of one I-frame and any number of P-frames and B-frames. In general, a
longer GOP (with many P-frames and B-frames) will yield a more efficient MPEG video
stream, at the possible expense of video quality; a shorter GOP (with fewer P-frames and
B-frames separating the I-frames) will yield a less efficient video stream while improving
video quality.

Compression/decompression algorithms
An algorithm for compressing and decompressing images is called a codec. The primary
purpose of a codec is to reduce the number of bits required to represent an image in a digital,
networked environment. Codecs are classified as lossless and lossy.

With lossless compression, no image information is lost, and reconstruction of the compressed
image is identical to the original image. Lossless codecs are often used to compress sensitive
medical images or scientific images that contain extremely important details. CCITT Group
3 and Group 4 are examples of lossless codecs.

With lossy compression, as the name implies, some of the information is lost, and
reconstruction of a compressed image will not be identical to the original image. In most
cases, however, the visual information lost is not noticeable. Both JPEG and MPEG are lossy
codecs.
 12 July 2001 Profile Software Development Kit User 179

Chapter 8 Programming with MPEG

180
Some limitations to MPEG
MPEG-2 was designed for one-pass recording and one-pass playback starting with the first
recorded pictures. In general, this is not good for editing, particularly linear insert editing.
Because of this, linear editing is restricted to streams that have been recorded with GOPs that
are I-frame only.

Other considerations:

• Off-speed playback of media stored in MPEG format will not produce the same quality and
smoothness of motion produced by JPEG codecs. It is intended only as a way to visually
locate material in a clip, and is not for on-air applications.

• Field dominance for field 1 only is supported at this time in MPEG. Field dominance for
field 2 or variable dominance for fields 1 or 2 is not supported.

• Recording at a rate other than normal speed (1.0) is not allowed with MPEG.

• Jog recording with VdrJog is not allowed with MPEG.

• Loop recording only works properly if the loop length is a multiple of the GOP length, and
the GOP encoding is closed-end. Otherwise, there will be a discontinuity at the beginning
of the stream.

Other MPEG notes
A Profile MPEG encoder board transforms, quantizes, and encodes CCIR-601 video to
MPEG-2 bitstream files for storage on disk. The MPEG decoder board, on the other hand,
decodes, inverse-quantizes, and transforms MPEG-2 bitstream files stored on disk to
CCIR-601 video. Input formats can be serial digital component, analog composite, or analog
component. Output is either serial digital component or analog composite. The shortest
MPEG clip that the Profile system can play is four GOPs or two seconds long, whichever is
greater.

The PDR200 with an MPEG upgrade and the PDR300 from the factory both use the MPEG-2
4:2:2 @ Main Level encoder and decoder boards. The MPEG encoder offers both 4:2:2 and
4:2:0 chroma sampling, variable bitrates, and GOP structures from I-frame only to 16-frame
GOPs.
Profile Software Development Kit User Preliminary — 12 July 2001

Using MPEG functions
Using MPEG functions
The TekVdr library has been extended with MPEG functionality. See the companion volume
to this manual, Profile SDK Reference Manual, for a complete description of these functions,
including parameters and parameter types. Also, see Chapter , for instructions on general
housekeeping for a Profile program, such as getting a resource handle, opening a port, and
allocating resources.

Archiving and streaming
Profile supports MPEG archiving, which, from the applications standpoint, works just as it
does for JPEG. Profile also supports streaming to/from the archive device for both MPEG and
JPEG. This lets you start to play a file before it is recovered from the tape device. In this
repsect, it is similar to the streaming capability with Fibre Channel.

PDR300s can stream MPEG and JPEG files to/from the PLS20, PLS200, and Ampex drives,
in addition to the SGI server.

Bitrate
The bitrate, expressed in megabits per second (Mbps), sets the video quality. The higher the
bitrate, the higher the video quality. However, higher bitrates require more disk space to store
the data, limiting the number of hours of material you can store on disk. Use VdrSetBitRate
to set the bitrate in the range of 4 to 45Mbps and VdrGetBitRate to query the system for the
current bitrate.

Chrominance sampling
One early step in programming MPEG is setting the chrominance sampling (chroma format)
to either 4:2:0 or 4:2:2. Call VdrSetMpegChromaFormat to set chroma sampling.
VdrGetMpegChromaFormat queries the system for the current format, returning an
enumerator of type MpegChromaFmt, such as MpegChroma422.

First and last line of encoding
You can select which of the incoming lines of video are encoded as MPEG.
VdrSetEncodingRange allows you to set the first and last encoded line of video. For 525
(NTSC) systems, the starting and ending lines must be in the range 21 through 260, with an
acceptable total of 512 or fewer lines per frame. For 625 (PAL), the range is 7 through 310,
with an acceptable total of 608 lines per frame. VdrGetEncodingRange returns the first and
last lines as they are currently set.

GOP structure
Another early step is to set the GOP structure, in other words, the number of P- and B-frames
you want to use (up to sixteen total, minus one for the single I-frame that is part of each GOP).
Use VdrSetMpegGopStructure to set the structure and VdrGetMpegGopStructure to
query the system for the current GOP. These functions use an enumerator of type
MpegGopEnd that determines how an MPEG video stream begins, either open
(GopOpenEnd) or closed (GopClosedEnd). In an open GOP, the initial B pictures have a
preceding I-frame that is part of the previous GOP. A closed GOP, on the other hand, has
initial B-frames that have a preceding I-frame that is part of the same GOP.
Preliminary — 12 July 2001 Profile Software Development Kit User 181

Chapter 8 Programming with MPEG

182
MPEG closed caption technique
MPEG-2 compression works on 16-by-16 macro-blocks of pixels. If closed caption
information is contained in the same macro-block as active video, the two will be compressed
together, which will degrade the closed captions. By ensuring that only black is compressed
with the closed caption information, you can minimize the compression degradation. Since
closed caption information is placed on line 21 in 525-line video, you should follow these
guidelines when recording video with closed caption information in MPEG format to help
ensure optimum closed caption integrity, even at lower bitrates.

1. Set the MPEG encoder to begin encoding at line 6, and end at line 261.

2. Where possible, ensure that lines 6 to 20 contain black.

This technique will allow you to minimize the degradation of closed caption information at
lower bitrates. You may also improve your results by using 4:2:0 encoding at very low
bitrates.

Picture information
VdrGetCurrentPictureStatus returns the size, coding, and structure of the picture at the
current position.
Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding
Sample program: MPEG encoding/decoding
Example 16, mpegdemo.c demonstrates the use of MPEG encoding and decoding. A specified
number of seconds of audio and video is recorded in MPEG format to the given filename, then
the recorded clip (simple movie) is played back. It is very similar to the JPEG record examples
in Chapter , , so you may want to become familiar with those first.

In this example, the first available MPEG encoder and first available MPEG decoder are used.
Unlike JPEG, which uses a single codec for both recording and playback, separate resources
must be allocated for MPEG encoding and decoding. The chroma format, GOP structure, and
bitrate of the encoding are set up after the encoder is allocated. See the Profile SDK Reference
Manual for further information about the parameters for the functions and how to vary them
for the needs of your specific application.

As with the JPEG examples, the first inputs and outputs on the Profile are used for video and
audio. Recording and playback are virtually the same once the resources have been set up
correctly for MPEG recording. Cleanup is also similar except there is one more resource to
free than in the JPEG example.

Example 16. mpegdemo.c

//
// This sample program records an MPEG clip of a specified time
// (measured in seconds) and then plays it back.
// Use with Profile release 2.4.2.3 or later.
//
// Usage: MpegDemo movieName -s recordTimeSeconds
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//

#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>s

// Number of audio channels to use:
#define NUM_AUDIO_CHANNELS 2

#define NUM_INDICES(array) (sizeof(array)/sizeof(*(array)))

// Handles to encoders, decoders, and codecs:
static ResourceHandle mpegEncoder = NULL;
static ResourceHandle mpegDecoder = NULL;
static ResourceHandle audioCodecs[NUM_AUDIO_CHANNELS] = {NULL};
// Table of all recorder resources:
static ResourceHandle recorders[2 + NUM_INDICES(audioCodecs)] = {NULL};

// Handles to inputs and outputs:
static ResourceHandle videoInput = NULL;
static ResourceHandle videoOutput = NULL;
static ResourceHandle audioOutputs[NUM_INDICES(audioCodecs)] = {NULL};

// Handle to the connection for the machine:
static ConnectHandle connectHandle = NULL;
Preliminary — 12 July 2001 Profile Software Development Kit User 183

Chapter 8 Programming with MPEG

184
// Handle to the port that controls the timeline:
static VdrHandle vdrHandle = NULL;

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf(“Usage: %s movieName -s durationInSeconds\n”, progName);

}

//
// Fxn: allocate any available resource of the given type
//
ResourceHandle AllocateAny(ConnectHandle connectHandle, ResourceType resourceType)
{
 ResourceHandle resourceHandle;
 UINT resourceNumber;
 UINT numResources;

 numResources = CfgGetNumResources(connectHandle, resourceType);
 for (resourceNumber = 0; resourceNumber < numResources; ++resourceNumber) {
 resourceHandle = VdrAllocateResource(vdrHandle, resourceType,

resourceNumber);
 if (resourceHandle != NULL) {
 // This resource is available:
 return(resourceHandle);
 }
 }
 return(NULL);
}

// Resource number for first audio input and output (remaining audio
// channels are sequential):
#define FIRST_AUDIO_INPUT 0
#define FIRST_AUDIO_OUTPUT 0

// Number of video input which should be recorded:
#define VIDEO_INPUT_NUM 0

// Number of video output at which playback should be seen:
#define VIDEO_OUTPUT_NUM 0

//
// Initialize resources in order to be able to perform record and
// playback. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL ConfigureResources(void)
{
 UINT index;
 EventHandle eventHandle;
 ResourceHandle* recorderPtr;

 // Open the connection (can be used to open connection to a remote
 // machine):
 if (! RemOpenConnection(ConnectLocal, 0, 0, &connectHandle)) {
 printf(“Cannot open local connection.\n”);
 return(FALSE);
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding
// Open the port which controls the timeline:
 vdrHandle = VdrOpenPortConnection(connectHandle);
 if (vdrHandle == NULL) {
 printf(“Cannot open port.\n”);
 return(FALSE);
 }

 // Used to add codecs, encoders, and decoders to list of all record
 // resources:
 recorderPtr= recorders;

 // Allocate the first available MPEG encoder:
 mpegEncoder = AllocateAny(connectHandle, ResourceMpegEncoder);
 if (mpegEncoder == NULL) {
 printf(“Cannot allocate MPEG encoder.\n”);
 return(FALSE);
 }
 *(recorderPtr++) = mpegEncoder;

 // Set the chroma format used to encode video:
 if (! VdrSetMpegChromaFormat(mpegEncoder, MpegChroma422)) {
 printf(“Cannot set the chroma format of encoder.\n”);
 return(FALSE);
 }

 // Set the group-of-pictures structure of the encoder; the values shown
 // (5 P pictures per GOP, 2 B pictures per anchor picture, closed-end GOPs,
 // and frame-based compression) are typical. The value for the third
 // argument (1) ensures future compatibility:
 if (! VdrSetMpegGopStructure(mpegEncoder, GopClosedEnd, 1, 5, 2,
 PixStructureFrame)) {
 printf(“Cannot set GOP structure of encoder.\n”);
 return(FALSE);
 }

 // Set the bit-rate to be used for encoding (36 Mbps):
 if (! VdrSetBitRate(mpegEncoder, 36.0e6)) {
 printf(“Cannot set bit-rate of encoder.\n”);
 return(FALSE);
 }

 // Allocate the first available MPEG decoder:
 mpegDecoder = AllocateAny(connectHandle, ResourceMpegDecoder);
 if (mpegDecoder == NULL) {
 printf(“Cannot allocate MPEG decoder.\n”);
 return(FALSE);
 }
 *(recorderPtr++) = mpegDecoder;

// Allocate audio codecs:
 for (index = 0; index < NUM_INDICES(audioCodecs); ++index) {
 audioCodecs[index] = VdrAllocateResource(vdrHandle, ResourceAudioCodec,

FIRST_AUDIO_INPUT + index);
 if (audioCodecs[index] == NULL) {
 printf(“Cannot allocate audio codec #%d.\n”, FIRST_AUDIO_INPUT +

index);
 return(FALSE);
 }
 *(recorderPtr++) = audioCodecs[index];
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 185

Chapter 8 Programming with MPEG

186
 // Allocate the video output:
 videoOutput = VdrAllocateResource(vdrHandle, ResourceVideoOutput,

VIDEO_OUTPUT_NUM);
 if (videoOutput == NULL) {
 printf(“Cannot allocate video output.\n”);
 return(FALSE);
 }

 // Get a handle used to connect to the video input:
 videoInput = VdrGetResourceConnectionHandle(vdrHandle, ResourceVideoInput,

VIDEO_INPUT_NUM);
 if (videoInput == NULL) {
 printf(“Cannot get video input.\n”);
 return(FALSE);
 }

 // Allocate audio outputs:
 for (index = 0; index < NUM_INDICES(audioOutputs); ++index) {
 audioOutputs[index] = VdrAllocateResource(vdrHandle, ResourceAudioOutput,

FIRST_AUDIO_OUTPUT + index);
 if (audioOutputs[index] == NULL) {
 printf(“Cannot allocate audio output #%d.\n”, FIRST_AUDIO_OUTPUT +

index);
 return(FALSE);
 }
 }

 // Make the default crosspoint connections videoInput->videoOutput and
 // videoInput->mpegEncoder:
 if (! VdrDefaultEvent(vdrHandle, NULL, EventConnectResources, videoInput,

videoOutput)) {
 printf(“Cannot connect input->output.\n”);
 return(FALSE);
 }

 if (! VdrDefaultEvent(vdrHandle, NULL, EventConnectResources, videoInput,

mpegEncoder)) {
 printf(“Cannot connect input->encoder.\n”);
 return(FALSE);
 }

 // Make a crosspoint connection from mpegDecoder->videoOutput except when
 // idle or recording:
 eventHandle = VdrScheduleEvent(vdrHandle, INT_MIN, EventConnectResources,

mpegDecoder, videoOutput);
 if (eventHandle == NULL) {
 printf(“Cannot connect decoder->output.\n”);
 return(FALSE);
 }

 return(TRUE);
}

//
// Fxn: Clean up by closing the control port
// Det: this also detaches any movies from the timeline, closes all handles
// for the port, and frees any resources allocated to the port.
//
BOOL Cleanup(void)
{
 UINT index;

 if (! VdrClosePort(vdrHandle)) {
 printf(“Cannot close port.\n”);
Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding
 return(FALSE);
 }
 // NULL all local handles (not strictly necessary if the program
 // exits immediately after calling Cleanup, but a good habit):
 mpegEncoder = NULL;
 mpegDecoder = NULL;
 videoInput = NULL;
 videoOutput = NULL;
 connectHandle = NULL;
 vdrHandle = NULL;
 for (index= 0; index < NUM_INDICES(audioCodecs); ++index) {
 audioCodecs[index] = NULL;
 }
 for (index= 0; index < NUM_INDICES(recorders); ++index) {
 recorders[index] = NULL;
 }
 for (index= 0; index < NUM_INDICES(recorders); ++index) {
 audioOutputs[index]= NULL;
 }
 return(TRUE);
}

// Shuttle rate for normal play/record:
#define SHUTTLE_RATE 1.0

//
// Fxn: play the given movie
//
BOOL PlayMovie(VdrHandle vdrHandle, UINT durationSeconds)
{

 // Cue for playback:
 if (! VdrCuePlay(vdrHandle, SHUTTLE_RATE)) {
 printf(“Cannot cue play.\n”);
 return(FALSE);
 }

 // Add a ‘Sleep(500)’ here if it is desirable to have the system
 // still before playback ...

 // Play:
 if (! VdrShuttle(vdrHandle, SHUTTLE_RATE)) {
 printf(“Cannot begin playback.\n”);
 return(FALSE);
 }

 // Wait until the movie is done playing (add an extra 200 msec
 // to ensure that we don’t stop playing early):
 Sleep((durationSeconds * 1000) + 200);

 return(TRUE);
}

//
// Fxn: record the given movie with the given duration (in seconds):
//
BOOL RecordMovie(VdrHandle vdrHandle, UINT durationSeconds)
{
 // Cue for record:
 if (! VdrCueRecord(vdrHandle)) {
 printf(“Cannot cue record \n”);
 return(FALSE);
Preliminary — 12 July 2001 Profile Software Development Kit User 187

Chapter 8 Programming with MPEG

188
 }

 // Record:
 if (! VdrShuttle(vdrHandle, SHUTTLE_RATE)) {
 printf(“Cannot cue shuttle \n”);
 return(FALSE);
 }

 // Wait until the movie is done recording (add an extra 200 msec
 // to ensure that we don’t stop recording early):
 Sleep((durationSeconds * 1000) + 200);

 // Stop recording:
 if (! VdrIdle(vdrHandle)) {
 printf(“Cannot idle.\n”);
 return(FALSE);
 }

 return(TRUE);

}

//
// Fxn: convert seconds to number of fields:
//
UINT SecondsToFields(ConnectHandle connectHandle, UINT seconds)
{
 if (CfgGetStandard(connectHandle) == PCI_PAL_625_MODE) {
 // 625-line mode:
 return(seconds * 50);
 }
 else {
 // 525-line mode:
 return((UINT) ((seconds * 60) / 1.001));
 }
}

//
// The main entry point.
//
void main(int argc, char *argv[])
{
 MovieHandle movieHandle;
 UINT durationSeconds;
 const CHAR* movieName= NULL;
 const CHAR* arg;
 INT argIndex;

 // Process arguments:
 for (argIndex = 1; argIndex < argc; ++argIndex) {
 arg= argv[argIndex];
 if (arg[0] == ‘-’) {
 // Option argument:
 switch (arg[1]) {
 case ‘s’:
 ++argIndex;
 durationSeconds = atoi(argv[argIndex]);
 break;
 default:
 Usage(argv[0]);
 exit(1);
 }
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding
 else {
 movieName= arg;
 }
 }

 if (movieName == NULL) {
 Usage(argv[0]);
 exit(1);
 }

 // Check to see if the movie already exists.
 if (PdrMovieExists(connectHandle, movieName)) {
 printf(“Movie name already exists.\n”);
 exit(1);
 }

 printf(“Configuring resources ...\n”);
 if (! ConfigureResources()) {
 exit(1);
 }

 // Attach the movie to the timeline; the mark-out point is set so that
 // the duration of the clip matches the desired time:
 printf(“Attaching movie \”%s\”...\n”, movieName);
 movieHandle = VdrAttachMovieWithMarks(movieName, NUM_INDICES(recorders),

recorders, NULL, ShiftAfter, MarkLongest, 0,
SecondsToFields(connectHandle, durationSeconds));

 if (movieHandle == NULL) {
 printf(“Cannot attach movie \”%s\”.\n”, movieName);
 exit(1);
 }

 printf(“Recording movie ...\n”);
 if (! RecordMovie(vdrHandle, durationSeconds)) {
 exit(1);
 }

 // Set the position back to the starting position for the movie:
 VdrSetPosition(vdrHandle, VdrGetMovieStartPosition(movieHandle,

mpegDecoder));

 printf(“Playing movie ...\n”);
 PlayMovie(vdrHandle, durationSeconds);

 // Detach the movie from the timeline (not really necessary, since
 // Cleanup() will detach the movie):
 printf(“Detaching movie ...\n”);
 if (! VdrDetachMovie(movieHandle, ShiftAfter)) {
 printf(“Cannot detach movie.\n”);
 exit(1);
 }

 printf(“Cleaning up ...\n”);
 Cleanup();
}

Preliminary — 12 July 2001 Profile Software Development Kit User 189

Chapter 8 Programming with MPEG

190
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 9

The Media Area Network

This chapter provides an overview of the Grass Valley Group Media Area Network (MAN) for
software application developers. It explains how the Media Area Network shared storage is
different from locally attached Profile XP Media Platform storage, and how software
applications must take these differences into account.

The Grass Valley Group Media Area Network Instruction Manual includes installation,
operation, and service information for the Media Area Network.

The Media Area Network is Grass Valley Group’s shared storage solution that gives multiple
Profile XP Media Platforms access to a common pool of media, as illustrated in the following
diagram.

The Media Area Network gives broadcast professionals the ability to do the following:

• Access media dynamically from multiple Profile XP Media Platforms

• Distribute media simultaneously from multiple Profile XP Media Platforms, even
while ingest is ongoing.

• Store media more efficiently, without the additional space requirements for
duplicate copies.

• Manage media simply without the need to track and update multiple copies.

Key features of the Media Area Network
The key features of the Media Area Network are as follows:

Many channels — Up to 48 channels of video and 300 channels of audio are available for
play and record operations.

Large storage capacity — Up to 20,000 movies can be stored in the shared database.

8118-3Media Storage

Profile XP
Media
Platforms

Media Ingest and Distribution

Real-Time, Simultaneous Access
 12 July 2001 191

Chapter 9 The Media Area Network

192
Concurrent access — New media can begin playing out before recording is completed.

Simultaneous access — Multiple channels can play out at the same time from the same
media.

Compatible with existing hardware and software — The Media Area Network works with
Profile XP products and options, including the PFC500, the Profile Network Archive and the
ContentShare platform.

No single-point-of-failure — You can set up your Media Area Network with full redundancy
and failover capabilities.

Automatic monitoring — The Media Area Network is ready to plug in to the NetCentral II
system for monitoring and preemptive fault detection.

Overview of the Media Area Network
The primary functionality of the Media Area Network is described in the following topics.
Please refer to the Profile Media Area Network Instruction Manual for detailed information
on installing, operating, and maintaining a Media Area Network

• Media Area Network hardware — Illustrates devices and cabling with explanations of data
flow for a basic system.

• Media Area Network file system software — Explains how the software components of the
file system control data transactions.

• Movie database software — Explains how the Movie database makes media equally
available from multiple Profile XP Media Platforms.

• Fibre Channel redundancy — Illustrates devices and cabling with explanations of failover
mechanisms for a system with Fibre Channel redundancy only.

• Fibre Channel failover — Explains the sequence of failover mechanisms and failover states
that maintain media access through the Fibre Channel switch fabric.

• File System Manager redundancy — Illustrates additional devices and cabling that extend
redundancy to the file system.

• File System Manager failover — Explains how the hardware and software components of
the failover system interact to enable continued operation.
Preliminary — 12 July 2001

Media Area Network hardware
Media Area Network hardware

The Profile XP Media Platforms and the RAID arrays are connected to the Fibre Channel
switch fabric. The Fibre Channel switch fabric is made up of one or more interconnected Fibre
Channel switches, depending on the number of connections needed. All media access takes
place over this Fibre Channel network, with the Fibre Channel switch fabric making the
connection between the Profile XP accessing the media and the RAID array containing the
media. The Fibre Channel network makes its maximum data rate available simultaneously to
each Fibre Channel port.

The File System Manager (FSM) and the Profile XP Media Platforms are connected to the
Ethernet switch. Control information flows through the Ethernet network as the File System
Manager directs the reading and writing of data between the Profile XP systems and the shared
storage. The File System Manager is also connected to the Fibre Channel network.

8118-1

File System
Manager (FSM)

RAID Storage

Ethernet Switch

Profile XP Media Platforms

Fibre Channel
Switch Fabric
Preliminary — 12 July 2001 193

Chapter 9 The Media Area Network

194
Media Area Network file system software
This section explains the software components that work together to control shared access to
the RAID storage. These components include:

• File system server software component

• File system client software component

• RAID controller

The Media Area Network file system is a licensed third-party file system that is directly
accessible to the Windows NT operating system. The Profile API has been modified to
manage media files on the Media Area Network file system. Although any Windows NT
application can directly access the media files, they must not move, modify, or delete media
files. All media file management must be accomplished through Profile XP applications
or the Profile API.

The Media Area Network file system has a client/server structure, with the server component
residing on the File System Manager and the client component residing on the Profile XP
Media Platform. These components run as Windows NT services. The server component acts
as the centralized file system and interacts with the client components to control all media
access within the Media Area Network.

On the File System Manager, the server component knows where the media is located, when
the media is being accessed, and which Profile XP systems are accessing the media. No Profile
XP Media Platform is allowed to access media without first obtaining instructions from the
server. In this way the server enforces strict rules so that each Profile XP Media Platform can
access media as it if “owned” the media, without regard for the access taking place on other
Profile XP Media Platforms.

8118-5

RAID
Controller

Media Access
Control

File System
Client

Component

File System
Server

Component

File System
Manager (FSM)

Profile XP

RAID Storage

Media
Access

File
Metadata

Request

Instructions

Report
Preliminary — 12 July 2001

Movie database software
The file system server component can store metadata information about the media (the
physical location of files on the disks) on the local hard drive of the FSM or on the RAID
storage of the Media Area Network. When metadata is on the RAID storage of the Media Area
Network, it is in a dedicated partition so that it is kept separate from the shared media.

On each Profile XP Media Platform, the client component of the Media Area Network file
system software implements all data read/write operations for the local Profile XP. The client
dialogs with the server to request media, receive instructions, and report results as media is
accessed by the local Profile XP.

On the RAID arrays, the RAID controller software receives the data read/write commands
from the Profile XP Media Platform and implements them across the structure of the RAID
array. The RAID controller software can also communicate with the server component of the
Media Area Network file system software. This communication path is used when file system
metadata is stored on the RAID arrays.

Movie database software
The movie database is built on an embedded version of the Microsoft SQL database.
Third-party software applications must not access, modify, or configure the database directly.
All movie management must be accomplished through Profile XP applications or the
Profile API.

The Movie database manages native Profile XP media. This section explains how the Movie
database works with the Media Area Network as media is created, shared and edited by
applications on multiple Profile XP Media Platforms.

Like the Media Area Network file system, the Movie database is structured as a client/server
application with the client residing on each Profile XP Media Platform and the server on the
File System Manager. While the file system views Profile XP media as generic data files, the
Movie database views Profile XP media as “Movies” and maintains a database record for each
Movie. The record describes the tracks and timing information that define the Movie.

The server component of the Movie database maintains a centralized and coherent view of the
Movies in the Media Area Network and propagates this view to the client components. In this
way Profile XP applications “see” the Movies through their client component and can interact
with the Movie database as if they alone “owned” the media.

8118-6

Movie
database server

File System
Manager (FSM)

Profile XPs

Profile XP
applications

Movie
database client
Preliminary — 12 July 2001 195

Chapter 9 The Media Area Network

196
Fibre Channel redundancy
This section explains the hardware for a Media Area Network with redundancy in the Fibre
Channel network only. Read “File System Manager redundancy” on page 198 to learn about
the fully redundant Media Area Network.

A Media Area Network with Fibre Channel redundancy requires dual Fibre Channel
connections for every device and a Fibre Channel switch fabric made up of two or more
switches, as required to support the number of devices. Each Profile XP Media Platform is
connected to two different switches. The same is true for each RAID storage device. The
interconnections of the Fibre Channel switch fabric are thereby able to negotiate alternate
pathways in the event of a fault. Read the next section, Fibre Channel failoverfor more
information.

8118-7

File System
Manager (FSM)

RAID Storage

Ethernet Switch

Profile XP Media Platforms

Fibre Channel
Switch Fabric
Preliminary — 12 July 2001

Fibre Channel failover
Fibre Channel failover
This section explains the sequence of failover mechanisms that work together to maintain
access between a host and the RAID storage through the Fibre Channel switch fabric. The
following diagrams use a Profile XP Media Platform as an example of the host. The diagrams
illustrate a simplified view of the different states in which access can continue successfully,
depending on the type of the fault.

For a system in which no fault has yet occurred, a Profile XP system uses its primary (A) Fibre
Channel port for media access to and from the primary (A) controller on a RAID array. This
access takes place over the Fibre Channel switch fabric. When a fault occurs along the Fibre
Channel pathway and media access fails, the Profile XP system fails over to its backup (B)
Fibre Channel port and tries the media access again.

If the fault that caused the Profile XP failover is in the path on the Profile XP side of the Fibre
Channel switch, the Fibre Channel switch fabric is able to find an alternate pathway between
the Profile XP system’s backup (B) port and the primary (A) RAID controller. This allows the
media access to be completed successfully without requiring a RAID controller failover.

If the fault that caused the Profile XP failover is in the path on the RAID side of the Fibre
Channel switch or if the Fibre Channel switch itself is faulty, the Fibre Channel switch fabric
is unable to find an alternate pathway between the Profile XP system’s backup (B) port and
the primary (A) RAID controller. This causes the media access to fail again, in which case the
Profile XP system uses its backup (B) Fibre Channel port to send failover commands to the
RAID array. These commands instruct the RAID array to failover to its backup (B) controller.
Once more the Profile XP system tries the media access. This time the Fibre Channel switch
fabric is able to find the alternate pathway between the Profile XP system’s backup (B) port
and the backup (B) RAID controller.

These alternate paths remain active for as long as they operate without a fault, as there are no
persistent primary/back-up relationships within the Fibre Channel network. When the fault is
repaired on the original path, that path then becomes available for use as an alternate path in
the event of subsequent faults.

NetCentral reports all faults, whether the fault occurs on a pathway in active use for current
media access or whether the fault occurs on a reserve pathway that will be needed in the event
of a failover.

8118-8

A B

A

No Fault

Profile XP

Fibre
Channel
Switch
Fabric

RAIDs

XP Path Fault RAID Path Fault Switch Fault

B

A B

A B

A B

A B

A B

A B
Preliminary — 12 July 2001 197

Chapter 9 The Media Area Network

198
File System Manager redundancy
This section explains the hardware that provides redundancy for the File System Manager and
its Media Area Network management mechanisms, such as the MAN file system and Movie
database. This hardware, combined with the redundant Fibre Channel explained earlier in this
chapter, supports a fully redundant Media Area Network with no single-point-of-failure
throughout the entire system.

A Media Area Network with redundant File System Managers requires two FSMs that are
interconnected through the cabling and devices of the failover system, as described in “File
System Manager failover” on page 199. The FSMs have redundant connections to the Fibre
Channel switch fabric and use failover mechanisms similar to those described in “Fibre
Channel failover” on page 197. The FSMs each have one connection to the Ethernet switch
fabric, while the Profile XP Media Platforms each have two connections to the Ethernet switch
fabric. Redundant pathways are thereby created so that management information can continue
to flow between the active FSM and the Profile XP Media Platforms in spite of faults along an
Ethernet pathway, a Fibre Channel pathway, or in the event of a FSM failover.

8118-2

Redundant File
System Managers (FSM)

RAID Storage

Ethernet
Switch Fabric

Profile XP Media Platforms

Fibre Channel
Switch Fabric
Preliminary — 12 July 2001

File System Manager failover
File System Manager failover
This section explains the software and hardware mechanisms that work together to provide
failover capabilities for the File System Manager’s Media Area Network management
mechanisms.

On each File System Manager, the Fail-over Monitor software component runs as a Windows
NT service. The software monitors the status of its own FSM by constantly checking the
FSM’s Movie database, MAN file system and network connectivity. If everything checks out
OK, the software sends a heartbeat pulse over a dedicated serial cable to the other FSM. If the
software detects a critical problem, it stops the heartbeat pulse.

When Fail-over Monitor software running on the current backup FSM detects that the
heartbeat coming from the current primary FSM has stopped, it triggers a failover in which the
backup FSM takes control of the Media Area Network. The software then sends a shut-off
command over a dedicated serial cable to the power switch of the primary FSM. This shut-off
is necessary to ensure that the two File System Managers do not attempt to simultaneously
manage the Media Area Network.

When Fail-over Monitor software running on the current primary FSM detects that the
heartbeat coming from the current backup FSM has stopped, it does not trigger a failover.
Rather, the software notifies the client devices of the Media Area Network that the backup
FSM is unavailable.

On the Profile XP Media Platforms, Transaction Monitor software monitors Movie database
transactions. If a transaction takes too long, the software checks with the backup FSM to verify
if a failover has occurred. If a failover has occurred, the software switches the Profile XP

8118-9

Failover
Monitor

Transaction
Monitor

Primary FSM Backup FSM

Profile XP

Power
Switch

Failover
Monitor

Power
Switch

Heartbeat Monitoring

Remote
Control
Shut-off

Primary
Connection

Backup
Connection
Preliminary — 12 July 2001 199

Chapter 9 The Media Area Network

200
system over to the backup FSM. If a failover has not occurred, the software continues to
monitor Movie database transactions, but waits longer before trying to verify a failover. This
allows any momentary, non-critical pauses in media access to clear without triggering a
failover.

When a failover occurs, the original backup FSM becomes the new primary FSM. Likewise,
when the original primary FSM is restored, it becomes the new backup FSM. Thereafter, the
new primary FSM remains active as the primary for as long as it operates continuously without
a fault, as there are no persistent primary/back-up relationships in the operation of the file
system.

NetCentral reports all faults, whether the fault occurs on a pathway in active use for current
media access or whether the fault occurs on a reserve pathway that will be needed in the event
of a failover.

Specifications
The following specification are preliminary and subject to change. Please consult with your
Grass Valley Group representative to obtain the most recent specifications.

• Number of movies (masters) - 20,000, assuming the average movie references six media
files

• Movies per group - 8,000

• Shortest clip length - 5 seconds

• Back to back clip play-out - 5 to 7 seconds

• Record to play-out time - 10 seconds

• Simultaneous play-outs of same clip - TBD

• Queue time vs. number of clips - TBD

• Serial protocol foreground (synchronous) response time - 10 milliseconds

• Serial protocol backgroud (asynchronous) response time - network dependent, typically 90
milliseconds, up to 1 second on a busy network

• File System Manager failover - up to 20 seconds. Playout in progress continues during the
failover, although records fail.

Number of channels and bandwidth specifications are configuration dependent. Please consult
with your Grass Valley Group representative for Media Area Network design criteria and
guidance.

Developing Media Area Network software
applications

From a programmer’s point of view, a Profile XP Media Platform connected to a Media Area
Network is very similar to a Profile XP Media Platform with local storage. Software
applications can run directly on the local system processor through the Profile API or the
Event Scheduler Engine, on a remote PC using PortServer and the TekRem library, or control
a channel through VDCP, Odetics, BVW, or Profile protocol by assigning the channel to an
RS-422 port in VdrPanel. Many existing Profile applications will require little or no change to
operate in a Media Area Network environment. Some movie ownership changes in the TekPdr
Preliminary — 12 July 2001

File system changes
library imposed by the use of a shared Pdr database may require minor adjustments in some
applications. Movie ownership becomes more critical in a Media Area Network. Refer to
“TekPdr changes” on page 201 for more information.

The most significant difference in Profile applications running on Profile XP Media Platforms
connected to a Media Area Network is that many of the previously required Video Network
(Fibre Channel or Ethernet) transfers are no longer necessary. All material recorded by any
channel is immediately available to all other channels without any intermediate operations.
Software applications must support this new model of material management.

Total system bandwidth is defined by the number of storage processors, drives, and
Inter-Switch Links. Grass Valley Group works closely with Media Area Network to design
systems that meet customer bandwidth and failover needs. Bandwidth must be managed on
each Profile XP Media Platform to ensure that the total system bandwidth is not exceeded.
Control applications must not use more bandwidth than allocated in the system design. The
application must manage the Profile XP Media Platform bandwidth including record and
playback of video through traditional I/O and SDTI, as well as streaming transfers over a the
Video Network. High-bandwidth operations such as off-speed play, jog, shuttle, and scrub
audio may require up to 50% more bandwidth per channel. Both the allocated bandwith on
each Profile XP Media Platform and the total Media Area Network bandwidth must be
respected.

Software applications must take into account failover events. Timeouts may need to be
lengthened, since requests will generally complete after the failover event. Timing-critical
operations need to be closely analysed and optimized in a Media Area Network environment.

File system changes
The file system used in a Media Area Network is accessible from the Windows NT
environment.

Dataset name
By convention, the shared drive is mounted as V for video on all the clients. This drive letter
is used as the dataset identifier, replacing the INT or EXT of the Media File System.
Applications using XfrRequest() or FTP to stream movies must use the new dataset name. The
dataset name must be a single letter in the Media Area Network.

Application access to the file system
In this release, no applications may access media files directly on the Windows NT-accessible
file system. All manipulation of media files must be accomplished through the Profile API.

TekPdr changes
TekPdr functions have been slightly modified to accommodate the database used in the Media
Area Network. The following sections describe the main diffences in TekPdr behavior.

Different Open Modes
When opening clips with the modified TekPdr, the following open modes are in effect.

PdrOpenExclusive: Unchanged from earlier releases.

PdrOpenMultiple/PdrOpenReadWrite: PdrOpenReadWrite is highly preferred over
PdrOpenMultiple. The first instance of the movie opened in PdrOpenReadWrite mode is the
only one that can read/write to the Movie Database. Until that instance is closed, no other
instance will be able to record changes.
Preliminary — 12 July 2001 201

Chapter 9 The Media Area Network

202
PdrOpenReadOnly: This new mode allows a movie to be opened as read-only, and will not
allow a write.

PdrDeleteMovie is not synchronous
When a movie is deleted with PdrDeleteMovie, the corresponding media files are moved to
V:\attic\ for subsequent deletion by the garbage collection mechanism.

PdrSetMovieReadOnly() and PdrSetMovieReadWrite()
These functions are now equivalent to PdrSetMovieLocked() and PdrSetMovieUnlocked(),
respectively. They set and reset the same attribute, PdrLocked. Media files are not set
read-only, only the movie attributes. Only the subject movie is affected. Other movies that
reference the same media files will still be ReadWrite.

PdrControlRO bit
This bit in the movie attributes is now obsolete.

PdrReadOnly
This movie attribute is now purely informational, indicating that a movie was opened in the
read-only mode, or that this instance of a movie was not the first instance to be opened
"multiple".

PdrExtensions
PdrExtensions API functions will not be compatible with VIP applications. User data is now
a special case of PdrExtensions. Therefore using PdrFindFirst/NextExtensionPos() will also
enumerate the userdata records.

Obsolete functions
The following functions are not supported in Profile System Software version 5.0 and higher.

• PdrCopyMovie

• PdrGetRegistry

• PdrSetRegistry

Common Movie Format database access
Although the Common Movie Format remains the same, movie definitions are now stored in
the centralized movie database, and not in a .cmf file. Access to movie definitions through the
Profile API remain unchanged, although response time may be lengthened due to the network
link to the database.

Tools and utilities that accessed the .cmf file directly can no longer be used. Access to the
database must occur through the Profile API, or through tools and utilities provided by Grass
Valley Group.

Direct third-party access to the movie database is not permitted due to licensing requirements.

Recommendations for verifying applications
It is usually best to begin verification of software application operation on a very basic Media
Area Network consisting of two Profile XP Media Platforms. By limiting the complexity of
the environment, it is easier to simulate error conditions and to verify appropriate responses.
Preliminary — 12 July 2001

Recommendations for verifying applications
Once basic functionality is confirmed, verification of operation on a "busy" system should
include a larger number of clients, more active software applications, etc. This verification
might test the application’s sensitivity to PDR response time, for example.

Finally, the software application should be verified on a very large Media Area Network to
discover scaling issues, for example.
Preliminary — 12 July 2001 203

Chapter 9 The Media Area Network

204
 Preliminary — 12 July 2001

Preliminary —

Chapter
 10

PdrMovie Extensions

PdrMovie extensions make use of the existing user data mechanism but allows new,
user-specific extension data to be added to and associated with the standard PdrMovie
structure, thus taking advantage of existing networking and archive features. Any Profile
software developer can make use of the PdrMovie extensions. Since all extensions use a
standard header, applications may exchange nonmovie data if they understand the underlying
data structure identified by the extension header. For a listing of the C data structure for the
extensions, refer to “The PdrExtensionInfo Data Structure” on page 221.

NOTE: Though user data is used to store extension data structures, the functions
PdrSetUserData() and PdrGetUserData() cannot be used with these extensions.

Like all user data, extensions may be associated with a movie, track, or media segment. This
is known as the extension’s location. Extensions differ from regular TekPdr user data in the
following ways:

• No size limit.

• A single extension may be stored across multiple user data blocks.

• Larger, more meaningful header.

• More sophisticated lookup mechanism. Extensions may be enumerated using specific
search/filter criteria.

• No location restriction.

• User data can only be associated with a track if it contains segments. An extension may be
associated with a track without regard to the presence of segments on that track. Multiple
extensions may also be associated with the same location and time.

A new bit is added to the movie state attributes mask to identify movies that have been
extended. Both simple and complex movies may have the extension bit set. The extension bit
is set and cleared automatically by the system when extensions are inserted or deleted. The
Media Manager application will distinguish between movies with extensions and without, but
will not show any specific vendor information in the contents list.

A PdrMovie extension contains the elements listed in Table 14.

Table 14. PdrMovie extension elements

Element Description

fieldOffset (int) Extensions influence a single point of time or a range of
time starting at fieldOffset.

vendorName (char[32]) Name of the software vendor which defined the specific
dataClass and dataType. For example: “Lightworks,”
“EditStar,” or “Grass Valley Group.”
 12 July 2001 Profile Software Development Kit User 205

Chapter 10 PdrMovie Extensions

206
This version of the Profile SDK includes eight functions that control PdrMovie extensions:

• PdrInsertExtension() copies data into a movie’s list of extensions, and
PdrDeleteExtensionAtPos() removes an extension from the movie structure.

• PdrReadExtension() returns a data buffer that corresponds to the named movie data
structure, and PdrFreeExtension() frees the memory that was allocated with
PdrReadExtension().

• PdrFindFirstExtensionPos() initiates the enumeration of extensions in a particular movie.
The enumeration begins by choosing which extension to use as search criteria.
PdrFindNextExtensionPos() continues the enumeration that
PdrFindFirstExtensionPos() began, returning the next extension that matches the given
search criteria.

• PdrGetExtensionAtPos() returns the extension data for the given extension position while
PdrGetExtensionIntoAtPos() returns only header information from an extension.

For more specifics on these functions, see the Profile Family Software Development Kit
Reference Manual.

dataClass (char[32]) Class this type of extension data falls into. This field
may be used by client applications to exclude certain
classes of extensions. For example, an extension whose
category is “AudioMixEffect” may be ignored by clients
that don’t use audio.

dataType (char[80]) Identifies the specific extension data structure.

dataName (char[80]) This string allows you to give the extension a meaningful
name.

dataVersion (char[32]) Anticipates future changes to a particular extension data
structure.

dataLen (UINT) Number of bytes in the extension data structure.

data (variable length) The actual extension data structure that follows the
header.

Table 14. PdrMovie extension elements
Profile Software Development Kit User Preliminary — 12 July 2001

Grass Valley Group Common Extensions
Grass Valley Group Common Extensions
The TekPdr library defines several extension structures that you may use to store edit and
hardware setup information that doesn’t appear in the basic movie structure. These are referred
to as the Grass Valley Group Common Extensions. Currently, there are common extensions
available for digital video effects (DVE), audio, motion, General Purpose Interface (GPI), and
metadata:

• Simple dissolves

• Advanced dissolves

• Simple wipes

• Advanced wipes

• Keys

• Video fade-to-matte

• Audio mix

• Audio levels

• Source motion effects

• General Purpose Interface (GPI)

• Movie metadata

• Segment metadata

More discussions on these extensions follow in the next pages.
Preliminary — 12 July 2001 Profile Software Development Kit User 207

Chapter 10 PdrMovie Extensions

208
Video Mix Effects Extensions
This class of extension is used to control the Profile mix effects board.

Simple Dissolve
The most basic video mix-effect extension is the dissolve. This extension allows you to
dissolve from one video source to another across time.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "Dissolve"
fieldOffset = +-<0..n>

Table 15. Simple dissolve extension elements

Element Description

 numFields (int) Duration of the dissolve in fields.

 endingMix (int) Value between 0 and VME_MAX_PROGRESS.
Video is dissolved in the background to foreground
direction with 0 being fully background and
VME_MAX_PROGRESS fully foreground. The
mix value persists beyond the duration of the dis-
solve, therefore if the endingMix is less than
VME_MAX_PROGRESS, the mix-effects output
will continue to show a combination of the fore-
ground and background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output
resource that will be used when the movie is later
attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated
with the mixer’s background input. This value
allows the system to connect the appropriate codec
resource to the mix-effect background input when
the movie is attached to a port.
Profile Software Development Kit User Preliminary — 12 July 2001

Video Mix Effects Extensions
Advanced Dissolve
The advanced dissolve extension adds fields for modulating the dissolve using a key signal.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "AdvancedDissolve"
fieldOffset = +-<0..n>

Table 16. Advanced dissolve elements

Element Description

numFields (int) Duration of the dissolve in fields.

endingMix (int) Value range 0 thru VME_MAX_PROGRESS. Video is
dissolved in the background to foreground direction with
0 being fully background and VME_MAX_PROGRESS
fully foreground. The mix value persists beyond the
duration of the dissolve, therefore if the endingMix is
less than VME_MAX_PROGRESS, the mix-effects out-
put will continue to show a combination of the fore-
ground and background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output resource that
will be used when the movie is later attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated with
the mixer’s background input. This value allows the sys-
tem to connect the appropriate codec resource to the
mix-effect background input when the movie is attached
to a port.

keySrc (int) Logical, zero-based video track number associated with
the mixer’s key input. This value allows the system to
connect the appropriate codec resource to the mix-effect
key input when the movie is attached to a port.

nClipLevel (int) A clip level in range 0 thru VME_MAX_CLIP_LEVEL.

eGain (float) A gain value for the key in range
VME_MIN_GAIN_LEVEL thru
VME_MAX_GAIN_LEVEL

invertMode (int) Enumerated type specifying the key invert mode. Must
be one of VmeNormalKey or VmeInvertedKey.

edgeMode (int) Enumerated type specifying the key edge mode. Must be
one of VmeAdditiveKey or VmeMultiplativeKey.
Preliminary — 12 July 2001 Profile Software Development Kit User 209

Chapter 10 PdrMovie Extensions

210
Simple Wipe
The simple wipe uses these fields to perform a simple, background to foreground wipe.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "Wipe"
fieldOffset = +-<0..n>

Table 17. Simple wipe extension elements

Element Description

numFields (int) Duration of the wipe transition in fields.

endingMix (int) Value range 0 thru VME_MAX_PROGRESS. Video is
wiped from background to foreground with 0 being fully
background and VME_MAX_PROGRESS fully fore-
ground. The mix value persists beyond the duration of
the dissolve, therefore if the endingMix is less than
VME_MAX_PROGRESS, the mix-effects output will
continue to show a combination of the foreground and
background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output resource that
will be used when the movie is later attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated with
the mixer’s background input. This value allows the sys-
tem to connect the appropriate codec resource to the
mix-effect background input when the movie is attached
to a port.

wipeShape (int) SMPTE wipe code. All wipe codes may not be sup-
ported.
Profile Software Development Kit User Preliminary — 12 July 2001

Video Mix Effects Extensions
Advanced Wipe
The advanced wipe extension adds fields for rotation and position transforms, horizontal and
vertical wipe modulation, border matte and edge control, and modulating the wipe using a key
signal. Rotation and position settings are assumed to be valid when bTransform equals 1. If
bTransform equals 0, these settings are ignored. Horizontal and vertical wipe modulation
settings are valid when bHVMod equals 1. Keyer modulation settings are valid when bKeyer
equals 1. Border settings are valid when bBorder equals 1.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "AdvancedWipe"
fieldOffset = +-<0..n>

Table 18. Advanced wipe extension elements

Element Description

numFields (int) Duration of the wipe transition in fields.

endingMix (int) Value range 0 thru VME_MAX_PROGRESS. Video is wiped
from background to foreground with 0 being fully background
and VME_MAX_PROGRESS fully foreground. The mix value
persists beyond the duration of the dissolve, therefore if the end-
ingMix is less than VME_MAX_PROGRESS, the mix-effects
output will continue to show a combination of the foreground
and background video sources.

videoOutput (int) Logical video output number connected to the mix-effects out-
put. This refers to the output resource that will be used when the
movie is later attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated with the
mixer’s background input. This value allows the system to con-
nect the appropriate codec resource to the mix-effect back-
ground input when the movie is attached to a port.

wipeShape (int) SMPTE wipe code. All wipe codes may not be supported.

bTransform (byte) 1 to indicate valid transform parameters, 0 to ignore transform
parameters.

nX (int) The position of the end of the transition, range: –10 *
VME_MAX_SCREEN_HEIGHT thru 10 *
VME_MAX_SCREEN_HEIGHT.

nY (int) The position of the end of the transition, range: –10 *
VME_MAX_SCREEN_HEIGHT thru 10 *
VME_MAX_SCREEN_HEIGHT.

rotation (int) The integer number mapped to the range: 0 thru
VME_MAX_ROTATION.

nHMult (int) The horizontal integer multiplier value. Limit to range 1 thru
VME_MAX_MULTIPLIER.

nVMult (int) The vertical integer multiplier value. Limit to range 1 thru
VME_MAX_MULTIPLIER.

bKeyer (byte) 1 to turn key modulation on, 0 to turn the key modulation off.
Preliminary — 12 July 2001 Profile Software Development Kit User 211

Chapter 10 PdrMovie Extensions

212
keySrc (int) Logical, zero-based video track number associated with the
mixer’s key input. This value allows the system to connect the
appropriate codec resource to the mix-effect key input when the
movie is attached to a port.

nClipLevel (int) A clip level in the range: 0 thru VME_MAX_CLIP_LEVEL.

eGain (float) A gain value for the key in range VME_MIN_GAIN_VALUE
thru VME_MAX_GAIN_VALUE.

invertMode (int) Enumerated type specifying the key invert mode. Must be one
of VmeNormalKey or VmeInvertedKey.

edgeMode (int) Enumerated type specifying the key edge mode. Must be one of
VmeAdditiveKey or VmeMultiplativeKey.

bHVMod (byte) 1 to turn horizontal/vertical modulation on, 0 to turn modulation
off.

modTypeH (int) The modulation waveform type.

nHAmp (int) The peak-to-peak amplitude of the waveform. Units match other
screen units where VmeMaxHeight is full screen height.

eHFreq (float) A frequency value for the waveform.

nHPhase (int) The starting phase of the waveform.

nHDeltaPhase (int) The change in phase from frame to frame.

modTypeV (int) The modulation waveform type.

nVAmp (int) The peak-to-peak amplitude of the waveform. Units match other
screen units where VmeMaxHeight is full screen height.

eVFreq (float) A frequency value for the waveform.

nVPhase (int) The starting phase of the waveform.

nVDeltaPhase (int) The change in phase from frame to frame.

bBorder (byte) 1 to turn border on, 0 to turn the border off.

borderWidth (int) The integer width of the border.

nSoftness (int) The integer which specifies the edge softness.

nHue (int) The border hue value in degrees.

nChroma (int) The border chroma saturation value.

nLuma (int) The border luminance value.

Table 18. Advanced wipe extension elements
Profile Software Development Kit User Preliminary — 12 July 2001

Video Mix Effects Extensions
Key
The key extension allows you to use an arbitrary video source as a key to reveal a background
video source.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "Key"
fieldOffset = +-<0..n>

Table 19. Key extension elements

Element Description

bKeyer (byte) 1 to turn the keyer on. 0 to turn the keyer off.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output
resource that will be used when the movie is later
attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated
with the mixer’s ‘background’ input. This value
allows the system to connect the appropriate codec
resource to the mix-effect background input when
the movie is attached to a port.

keySrc (int) Logical, zero-based video track number associated
with the mixer’s ‘key’ input. This value allows the
system to connect the appropriate codec resource
to the mix-effect key input when the movie is
attached to a port.

nClipLevel (int) A clip level in range
0..VME_MAX_CLIP_LEVEL

eGain (float) A gain value for the key in range
VME_MIN_GAIN_LEVEL..VME_MAX_GAIN_
LEVEL

invertMode (int) Enumerated type specifying the key invert mode.
Must be one of VmeNormalKey or VmeInverted-
Key.

edgeMode (int) Enumerated type specifying the key edge mode.
Must be one of VmeAdditiveKey or VmeMulti-
plativeKey.
Preliminary — 12 July 2001 Profile Software Development Kit User 213

Chapter 10 PdrMovie Extensions

214
Video Fade-to-Matte
The video fade extensions allows you to control the video mixer’s fade-to-matte hardware
which is independent of its dissolve/wipe capabilities.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "FadeToMatte"
fieldOffset = +-<0..n>

Table 20. Fade-tomatte extension elements

Element Description

numFields (int) Length of the fade in number of video fields.

endingMix (int) Value between 0 and VME_MAX_PROGRESS,
where 0 is the pre-fade state and
VME_MAX_PROGRESS is the post-fade state.
The mix value persists beyond the duration of the
fade, therefore if the endingMix is less than
VME_MAX_PROGRESS, the mix-effects output
will continue to show a combination of the video
and matte sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output
resource that will be used when the movie is later
attached to a port.

fadeDirection (int) The enumerated type specifying the direction of
the fade. This must be VmeFadeDown or VmeFa-
deUp.

nHue (int) The hue value in degrees.

nChroma (int) The chroma saturation value.

nLuma (int) The luminance value.
Profile Software Development Kit User Preliminary — 12 July 2001

Audio Mix Effects
Audio Mix Effects
This class off extensions are used to control the Profile audio mixing hardware.

Audio Mix
Settings include audio source to destination routing and mix coefficients. A single AudioMix
extension is used to describe a single audio mix adjustment. An audio mix may involve
multiple audio inputs mixing to a common audio output.

vendorName = "Grass Valley Group"
dataClass = "AudioMixEffect"
dataType = "AudioMix"
fieldOffset = +-<0..n>

Table 21. Audio mix extension elements

Element Description

numFields (int) Duration of the audio transition in fields.

audioOutput (int) Logical audio output number. This refers to the output
resource that will be used when the movie is later
attached to a port.

numSources (int) The number of audio inputs that contribute to the audio
output.

audioSrc (int) Logical, zero-based audio track number. This value
allows the system to adjust the appropriate physical mix
coefficient when the movie is attached to a port.

endingMix (double) Level at which the audio source should be mixed into the
audio output.

audioSrc (int) Logical, zero-based audio track number. This value
allows the system to adjust the appropriate physical mix
coefficient when the movie is attached to a port.

endingMix (double) Level at which the audio source should be mixed into the
audio output.
Preliminary — 12 July 2001 Profile Software Development Kit User 215

Chapter 10 PdrMovie Extensions

216
Audio Level
This extension is used to control the Profile audio mixing hardware (current level values are
multiplied with the current audio mix state). A single AudioLevel extension may be used to
make any number of level adjustments, even on a field-by-field basis.

vendorName = "Grass Valley Group"
dataClass = "AudioMixEffect"
dataType = "AudioLevel"
fieldOffset = +-<0..n>

Table 22. Audio level extension elements

Element Description

numLevelChanges (int) Level at which the audio source should be mixed into the
audio output.

fieldPos (int) Number of fields after the extension field offset the
audio level should match thze specified level.

level (double) Level at which the audio source should be mixed into the
audio output. Audio levels and mix values are additive.

fieldPos (int) Number of fields after the extension field offset the
audio level should match the specified level.

level (double) Level at which the audio source should be mixed into the
audio output. Audio levels and mix values are additive.
Profile Software Development Kit User Preliminary — 12 July 2001

Motion Effects
Motion Effects
Currently, there is only one kind of motion effect: source effects.

Source Effects
The source effects extension is used to control slow and fast motion playback as well as
indicate extra “source handles” to be transferred with the movie when it is copied to a new
location. This allows edits to be trimmed after transfer.

vendorName = "Grass Valley Group"
dataClass = "MotionEffect"
dataType = "SourceEffect"
fieldOffset = undefined

Table 23. Source effect extension elements

Element Description

srcFieldOffset (int) Indicates number of fields after the movie segment’s
media mark-in value represent playable material. This
value is used to transfer extra source material when the
movie is copied to a new location.

srcNumFields (int) Length, in fields, of playable material after the srcField-
Offset.

targetNumFields (int) Number of fields in which to execute the playable mate-
rial. A targetNumFields shorter than srcNumFields indi-
cates fast-motion playback. A targetNumFields value
longer than srcNumFields indicates slow-motion play-
back.
Preliminary — 12 July 2001 Profile Software Development Kit User 217

Chapter 10 PdrMovie Extensions

218
External Control
This class of extensions is used to control devices external to the Profile video server.

GPI
This extension allows programmers to assert General Purpose Interface (GPI) triggers to
control a device external to the Profile server. Triggered devices are indicated by name. The
Profile configuration will associate the device name with a port, output number, trigger
voltage and period, and pre-roll offset.

vendorName = "Grass Valley Group"
dataClass = "ExternalControl"
dataType = "GPI"
fieldOffset = +-<0..n>

Table 24. GPI extension element

Element Description

deviceName (char[80]) Logical GPI device name.
Profile Software Development Kit User Preliminary — 12 July 2001

Meta Data Extensions
Meta Data Extensions
There are two meta data extensions, MovieData and SegmentData.

MovieData
This extension is used for media management. Strings stored in this extension are assumed to
be in Unicode. Since Grass Valley Group cannot anticipate customer specific meta data, the
MovieData extension provides generic tag/value string pairs.

vendorName = "Grass Valley Group"
dataClass = "MetaData"
dataType = "MovieData"
fieldOffset = undefined

Table 25. MovieData extension elements

Element Description

movieID (GUID) Globally unique movie identifier. This is currently
just a place-holder.

nextEditNum (unsigned int) Integer that is incremented each time a new edit
adds media references to the movie.

commentsLen (int) Number of Unicode characters in comments string.

comments(wchar_t[com-
mentsLen])

Comments

tag (wchar_t[80]) MetaData label string.

valueLen (int) Number of unicode characters in value string.

value (wchar_t [valueLen]) MetaData value string.

tag (wchar_t[80]) MetaData label string.

valueLen (int) Number of unicode characters in value string.

value (wchar_t [valueLen]) MetaData value string.
Preliminary — 12 July 2001 Profile Software Development Kit User 219

Chapter 10 PdrMovie Extensions

220
SegmentData
This extension is used for media management applications and to support editing clients.

vendorName = "Grass Valley Group"
category = "MetaData"
dataType = "SegmentData"
fieldOffset = undefined

Table 26. SegmentData extension elements

Element Description

mediaID (GUID) Globally unique media identifier. This is currently just a
placeholder.

name (char[80]) Segment name string.

movieName(char[80]) Name of the movie that originally contained this seg-
ment.

editNum (unsigned int) ID used to identify synchronous segments.
Profile Software Development Kit User Preliminary — 12 July 2001

The PdrExtensionInfo Data Structure
The PdrExtensionInfo Data Structure
#define PDR_EXTENSION_LABEL_LEN 32
#define PDR_EXTENSION_DESCRIPTION_LEN 80

typedef struct
{
MovieToken movie; /* The token for the movie with which the extension is to be regis-

tered. */

TrackToken track; /* The token for a track with which the extension is to be associ-
ated. The data can be associated with the movie itself by using 0
for the track value. */

MediaToken media; /* A media segment with which the extension is to be associated.
The data can be associated with the movie or track by using
PdrNullMediaToken for the media value. */

int fieldOffset; /* Number of fields from the start of the segment/track/movie.
Extensions influence a single point of time or a range of time
starting at fieldOffset. */

char vendorName[PDR_EXTENSION_LABEL_LEN+1]; /* Name of the software vendor which
defined the specific dataClass and dataType. For example: “Light-
works”, “EditStar”, or “Grass Valley Group”. */

char dataClass[PDR_EXTENSION_LABEL_LEN+1]; /* Class this type of extension data falls
into. This field may be used by client applications to exclude
certain classes of extensions. For example an extension whose cat-
egory is “AudioMixEffect” may be ignored by clients that don’t use
audio. */

char dataType[PDR_EXTENSION_DESCRIPTION_LEN+1]; /* Identifies the extension data
structure */

char dataName[PDR_EXTENSION_DESCRIPTION_LEN+1]; /* This string allows you to give the
extension a meaningful name. */

char dataVersion[PDR_EXTENSION_LABEL_LEN+1]; /* Anticipates future changes to a par-
ticular extension data structure. */

UINT dataLen; /* Number of bytes in the extension data structure.*/

} PdrExtensionInfo;
Preliminary — 12 July 2001 Profile Software Development Kit User 221

Chapter 10 PdrMovie Extensions

222
 Profile Software Development Kit User Preliminary — 12 July 2001

Preliminary —

Chapter
 11

Profile RS-422 Serial Control

This chapter looks at programs that perform serial communication by using wrapper functions
that implement the RS-422-based Profile serial protocol. The functions with the prefix Pp are
wrappers that contain the serial commands. For reference information on the serial
communication calls, see Chapter 3, Profile Serial Communication Protocol of the Profile
SDK Reference Manual.

The programs in this chapter demonstrate how to:

• browse a Profile file system remotely;

• play a movie remotely;

• send packets over a network;

• receive packets; and

• perform packet communications.

Near the end of this chapter is a listing of the RS-422 communication header file, ppheader.h.
The function declarations in that header file specify the serial utility functions. The definitions
of these functions are contained in the following examples:

• Example 19, ppsend.c on page 234;

• Example 20, ppreply.c on page 254; and

• Example 21, ppcomm.c on page 268.

Browsing a remote Profile file system
Example 17, ppbrowse.c demonstrates the use of the serial Pdr inventory API calls to output
an entire inventory on a remote Profile video server using a RS-422 connection. This code is
similar to the browse sample operating on a local Profile or a remote Profile using Ethernet.
(See Browsing a remote Profile file system on page 223.)

Example 17 makes use of various serial programming utility functions provided in
Example 19, Example 20, and Example 21. Tokens for dataset, group and clip enumeration are
used in the low-level support utilities.

Once the connection is established with PpOpenComm (see Packet communication on
page 268), the sample code function IdentifyInventory performs the majority of the work.
PpFindFirstDataset and PpFindNextDataset walk through all of the available datasets. The
TekPdr library equivalents of these functions are PdrFindFirstDataset and
PdrFindNextDataset, respectively.

PpFindFirstGroup and PpFindNextGroup walk through all of the available groups within
each dataset. PdrFindFirstGroup and PdrFindNextGroup are equivalents.
 12 July 2001 Profile Software Development Kit User 223

Chapter 11 Profile RS-422 Serial Control

224
Similarly, PpFindFirstMovie (like PdrFindFirstMovie) and PpFindNextMovie (similar to
PdrFindNextMovie) walk through each movie within a group. PpGetMovieState retrieves a
PdrMovieState structure, which it then uses to format some basic information about a movie.
The walk-through of datasets, movies and groups is straightforward, demonstrated in three
nested control loops.

Example 17. ppbrowse.c

//
// File: ppbrowse.c
// This is a part of the Grass Valley Group Profile Source Code Samples.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.
//
// Sample code to list all the movie clips in the inventory.
//

#include <stdio.h>
#include <<stdlib.h>
#include <windows.h>
#include <limits.h>
#include <string.h>
#include <tekvdr.h>
#include <profcmd.h>
#include "ppheader.h"

// Module global variables.
static VdrHandle sPort;

// String that specifies which comm port to use.
char *comm;

// Fxn: convert a FILETIME to a string.
static const char *sMonth[] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};

//
// Format the FILETIME date for printout.
//
void MakeTimeString(FILETIME *ft, char *string)
{
 SYSTEMTIME st;
 WORD thisYear, thisMonth;

 GetLocalTime(&st);
 thisYear = st.wYear;
 thisMonth= st.wMonth;
 FileTimeToSystemTime(ft, &st);
 if ((thisYear == st.wYear) ||
 ((thisYear == (st.wYear+1)) && (thisMonth < st.wMonth))) {
 sprintf(string, "%3s %2d %02d:%02d",
 sMonth[st.wMonth-1], st.wDay, st.wHour, st.wMinute);
 }
 else {
Profile Software Development Kit User Preliminary — 12 July 2001

Browsing a remote Profile file system
 sprintf(string, "%3s %2d, %4d", sMonth[st.wMonth-1], st.wDay, st.wYear);
 }

} // MakeTimeString

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf("Usage: %s comm_port\n", progName);

} // Usage

//
// initialize the PDR100. Report any anomalies.
//
BOOL SetupResources(void)
{
 // Open the connection and port.
 if (!PpOpenComm()) {
 printf("Open comm failed.\n");
 exit(1);
 }
 if (!PpOpenPort(0, &sPort)) {
 printf("Could not open port.\n");
 exit(1);
 }
 return TRUE;

} // SetupResources
//
// Walk through the movie inventory and print it out.
//
void IdentifyInventory(void)
{
 char create[16];
 char last[16];
 BOOL dsetGood, grpGood;

 static char dataset[PDR_MAX_DSET_NAME_LEN+1];
 static char name[PDR_MAX_MOVIE_NAME_LEN+1];
 static char group[PDR_MAX_GROUP_NAME_LEN+1];
 static char startName[PDR_MAX_COMPLEX_MEDIA_NAME_LEN+1];

 //
 // Find the first known dataset. The name is placed in the buffer dataset.
 // process the dataset information
 //
 if (!PpFindFirstDataset(dataset)) {
 printf("Cannot get first dataset.\n");
 return;
 }
 dsetGood = TRUE;
 while (ppDsetTok > 0 && dsetGood) {

 // Now look for groups within this dataset.
 grpGood = TRUE;
 strcpy(startName, dataset);

 // Find the first group within the dataset.
 // Returns the group name in the buffer "group".
 if (!PpFindFirstGroup(startName, group)) {
Preliminary — 12 July 2001 Profile Software Development Kit User 225

Chapter 11 Profile RS-422 Serial Control

226
 printf("Cannot get the first group in %s\n", startName);
 return;
 }

 // Process the group information.
 while (ppGrpTok > 0 && grpGood) {
 printf("%s/%s\n", dataset, group);

 // Start build the complex movie name.
 sprintf(startName, "%s/%s/", dataset, group);

 // Find the first movie name within this group.
 if (!PpFindFirstMovie(startName, name)) {
 printf("Cannot get the first movie name.\n");
 return;
 }

 // Process the movie information.
 while (ppMovieTok > 0) {
 // State structure found in pdrtypes.h
 PdrMovieState state;

 printf(" /%s\n", name);

 // Complete building the complex movie name.
 sprintf(startName, "%s/%s/%s", dataset, group, name);

 // Get information about a stored movie without opening it.
 // StartName is now the complex Movie name.
 if (!PpGetMovieState(startName, &state)) {
 printf("Cannot get state of %s\n", startName);
 return;
 }

 // Print out the status of the movie.
 printf(" Length- min %d, max %d\n",
 state.minLength, state.maxLength);
 MakeTimeString(&state.createTime, create);
 MakeTimeString(&state.lastChangedTime, last);
 printf(" Time- create %s, changed %s\n", create, last);
 printf(" #Tracks- v %d, a %d, tc %d\n",
 state.numV, state.numA, state.numT);
 printf(" Attr.- OpenExclusive %s,\n",
 (state.attributes & PdrOpenExclusive)? "Yes":"No");
 printf(" RO %s, Cntlr %s, Locked %s,\n",
 (state.attributes & PdrReadOnly)? "Yes" : "No",
 (state.attributes & PdrControlRO)? "Yes" : "No",
 (state.attributes & PdrLocked)? "Yes" : "No");

 // Find the next movie in this group.
 if (!PpFindNextMovie(name)) {
 printf("Cannot get next movie.\n");
 return;
 }
 if (!name[0]) {
 break;
 }

 }

 // Release the movie enumeration token used to track the current
 // position within the an enumeration list.
 if (!PpCloseFind(ppMovieTok)) {
Profile Software Development Kit User Preliminary — 12 July 2001

Browsing a remote Profile file system
 printf("Cannot close movie find\n");
 return;
 }
 if (!PpFindNextGroup(group)) {
 printf("Cannot find next group\n");
 return;
 }
 if (!group[0]) {
 grpGood = FALSE;
 }
 }

 printf(" \n");
 if (!PpCloseFind(ppGrpTok)) {
 printf("Cannot close group find\n");
 return;
 }

 // Look for the next dataset.
 if (!PpFindNextDataset(dataset)) {
 printf("Can’t find next dataset\n");
 return;
 }
 if (!dataset[0]) {
 dsetGood = FALSE;
 }
 }

 if (!PpCloseFind(ppDsetTok)) {
 printf("Cannot close dataset find\n");
 }

} // IdentifyInventory

//
// The main entry point.
//
void main(int argc, char *argv[])
{
 int i = 1;

 // Read in the required comm_port.
 if (argv[i] && argv[i][0] != ‘-’) {
 comm = argv[i];
 } else {
 Usage(argv[0]);
 exit(1);
 }

 if (SetupResources()) {
 IdentifyInventory();

 if (!PpClosePort(sPort)) {
 printf("Could not close port\n");
 exit(1);
 }
 }

} // main
Preliminary — 12 July 2001 Profile Software Development Kit User 227

Chapter 11 Profile RS-422 Serial Control

228
Playing a movie remotely
Example 18, ppplay.c shows you how to play a movie using RS-422 serial communication
with a Profile video server. In this example, the compression format of the video must be
JPEG, and optional mark-in and mark-out points may be specified on the command line.
Example 18 is similar to the nonserial code in Example 2, play.c on page 58, which plays to a
local Profile or over the Ethernet connection (see).

First, the appropriate resources must be allocated for later use. A connection to the remote
machine is established over RS-422 with PpOpenComm, and a port is opened using a call to
the function PpOpenPort.

Next, a JPEG codec resource is allocated and attached to the port with PpAllocateResource.
The codec allows video decoding to occur on the specified port. Similarly, two audio codecs
are allocated and attached to the port, also with PpAllocateResource, one for each stereo
channel. Likewise, the video input and output resources are then allocated and attached to the
port. Finally, default and scheduled events (defined with PpDefaultEvent and
PpScheduledEvent) are set up to describe the connections that occur when the port is in
various states.

Once the resources are obtained, we can perform the playback. The movie is opened with
PpOpenMovie and attached using the wrapper PpAttachOpenMovie. Optional mark-in and
mark-out points are set with the functions PpSetMovieMarkIn and PpSetMovieMarkOut.

After this, the program cues the movie for play (PpCuePlay). It begins playing when the video
server is instructed to shuttle (PpShuttlePlay). After the specified duration has passed, idle
mode is set with PpIdlePort and the movie is detached using PpDetachMovie and closed
with PpCloseMovie. Finally, the port is closed (PpClosePort). This completes the process
and the program is stopped.

If an error occurs at any step of the way, an appropriate error message is sent to the display to
help troubleshoot.
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely
Example 18. ppplay.c

//
// File: ppplay.c
// This sample program plays a specified JPEG clip, using
// serial communications in Profile Protocol over RS422.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// Usage: play movie_name [-i markin] [-o markout]
//
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <limits.h>
#include <string.h>
#include <tekvdr.h>
#include <profcmd.h>
#include "ppheader.h"

#define SHUTTLE_RATE 1.0
#define NUM_INPUT 0
#define NUM_OUTPUT 0
#define NUM_CODEC 0

// For demo application, we will have several resources. Enumerate
// them for use as indeces into an array for AttachMovie calls.
// First three are Codecs.
enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX_CODEC };
enum ResEnum { VIN = MAX_CODEC, VOUT, AOUT1, AOUT2, MAX_RSRC };

// Module static variables.
static VdrHandle sPort;
static ResourceHandle sResHdls[MAX_RSRC];
static char* spMovieName;
static UINT sMarkIn = 0;
static UINT sMarkOut = 0;

// String that specifies which comm port to use.
char *comm;

//
// Print out usage line.
//
void Usage(const char* progName)
{
 printf("Usage: %s movie_name comm_port [-i markin] [-o markout]\n", progName);

} // Usage

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources(void)
{
 printf("Starting setup...\n");

 // Open the communications port.
Preliminary — 12 July 2001 Profile Software Development Kit User 229

Chapter 11 Profile RS-422 Serial Control

230
 if (!PpOpenComm()) {
 printf("Open comm failed.\n");
 return FALSE;
 }
 if (!PpOpenPort(0, &sPort)) {
 printf("Could not open port.\n");
 return FALSE;
 }

 //
 // Now, get the necessary resources for the demo.
 //

 // Allocate a Video Codec.
 if (!PpAllocateResource(sPort, ResourceVideoCodec, NUM_CODEC, &sResHdls[VCOD])) {
 printf("Could not allocate video port.\n");
 return FALSE;
 }

 // Allocate two Audio Codecs.
 if (!PpAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT, &sResHdls[ACOD1])) {
 printf("Could not allocate the first audio codec.\n");
 return FALSE;
 }
 if (!PpAllocateResource(sPort, ResourceAudioCodec, NUM_INPUT+1, &sResHdls[ACOD2])) {
 printf("Could not allocate the second audio codec.\n");
 return FALSE;
 }

 // Get video out and in resources.
 if (!PpAllocateResource(sPort, ResourceVideoOutput, NUM_OUTPUT, &sResHdls[VOUT])) {
 printf("Could not allocate video out.\n");
 return FALSE;
 }
 if (!PpGetResourceConnectHandle(sPort, ResourceVideoInput, NUM_INPUT, &sResHdls[VIN])) {
 printf("Could not allocate video in.\n");
 return FALSE;
 }

 // Get audio resources.
 if (!PpAllocateResource(sPort, ResourceAudioOutput, NUM_INPUT, &sResHdls[AOUT1])) {
 printf("Could not allocate the first audio output.\n");
 return FALSE;
 }
 if (!PpAllocateResource(sPort, ResourceAudioOutput, NUM_INPUT+1, &sResHdls[AOUT2])) {
 printf("Could not allocate the first audio output.\n");
 return FALSE;
 }

 // Set the default event.
 if (!PpDefaultEvent(sPort, EventConnectResources, sResHdls[VIN],

 sResHdls[VOUT], 0, 0)) {
 printf("Could not set default event.\n");
 return FALSE;
 }

 // Schedule the event.
 if (!PpScheduleEvent(sPort, INT_MIN, EventConnectResources, sResHdls[VCOD],
 sResHdls[VOUT], 0, 0)) {
 printf("Could not schedule event.\n");
 return FALSE;
 }
 return TRUE;
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely
} // SetupResources

//
// Play the movie clip.
//
void StartPlay(void)
{
 INT oldpos, newpos;
 MovieToken movieTok;
 MovieHandle movieHdl;
 UINT portStatusArray[8];
 UINT mask;

 // Open and attach the movie.
 if (!PpOpenMovie(spMovieName, 0, &movieTok)) {
 printf("Movie %s does not exist.\n", spMovieName);
 return;
 }
 if (!PpAttachOpenMovie(movieTok, MAX_CODEC, sResHdls, 0, ShiftAfter, &movieHdl)) {
 printf("Cannot attach the open movie.\n");
 return;
 }

 // Set markin and markout if required.
 if (sMarkIn) {
 if (!PpSetMovieMarkIn(movieHdl, sMarkIn)) {
 printf("Could not set markin.\n");
 return;
 }
 }
 if (sMarkOut) {
 if (!PpSetMovieMarkOut(movieHdl, sMarkOut)) {
 printf("Could not set markout.\n");
 return;
 }
 }

 // Cue up playback of media attached with PpAttachOpenMovie.
 if (!PpCuePlay(sPort)) {
 printf("Cannot cue play.\n");
 return;
 }

 // Begin motion playback.
 if (!PpShuttlePlay(sPort, SHUTTLE_RATE)) {
 printf("Cannot begin playback.\n");
 return;
 }

 printf("Starting playback...\n");

 // Wait while movie plays.
 // When newpos and oldpos are the same, we’re done playing out.
 newpos = 0;
 mask = Dat1_GetPosition;
 do {
 oldpos = newpos;
 Sleep(100); // wait 1/10th second
 if (!PpGetPortStatus(sPort, &mask, portStatusArray, 6)) {
 printf("Can not get Port status.\n");
 return;
Preliminary — 12 July 2001 Profile Software Development Kit User 231

Chapter 11 Profile RS-422 Serial Control

232
 }
 newpos = portStatusArray[1];

 } while (newpos > oldpos);

 // Cease play back.
 if (!PpIdlePort(sPort)) {
 printf("Cannot move to idle.\n");
 return;
 }

 // Detach the movie handle from the channel.
 if (!PpDetachMovie(movieHdl)) {
 printf("Cannot detach movie.\n");
 return;
 }

 // Close the movie.
 if (!PpCloseMovie(movieTok)) {
 printf("Cannot close movie.\n");
 return;
 }

} // StartPlay

//
// Cleanup by releasing resources and closing the control port.
//
void Cleanup(void)
{
 printf("Starting cleanup...\n");

 if (!PpClosePort(sPort)) {
 printf("Cannot close port.\n");
 return;
 }
 sPort = 0;

} // Cleanup
//
// The main entry point.
//
void main(int argc, char *argv[])
{

 BOOL rtn = TRUE;
 int i=1;

 // Read in the required movie name.
 i = 1;
 if (argv[i]) {
 spMovieName = argv[i];
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 i++;

 // Read in the required communications port.
 if (argv[i] && argv[i][0] != ‘-’) {
 comm = argv[i];
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely
 else {
 Usage(argv[0]);
 exit(1);
 }
 i++;

 // Process optional markin and markout points.
 while (i < argc) {
 if (argv[i][0] == ‘-’)
 switch (argv[i][1]) {
 case ‘i’:
 i++;
 sMarkIn = atoi(argv[i++]);
 break;
 case ‘o’:
 i++;
 sMarkOut = atoi(argv[i++]);
 break;
 default:
 Usage(argv[0]);
 exit(1);
 }
 else {
 Usage(argv[0]);
 exit(1);
 }
 }

 if (SetupResources()) {
 StartPlay();
 }

 Cleanup();

} // main
Preliminary — 12 July 2001 Profile Software Development Kit User 233

Chapter 11 Profile RS-422 Serial Control

234
Sending packets
Example 19, ppsend.c contains various utility functions for sending packets in Profile protocol
over a serial RS-422 connection. The function declarations are shown in ppheader.h.

The majority of functions is this group act as wrappers around specific Profile API calls and
use the lower-level reply functions, defined in Example 20, ppreply.c. For example,
PpGetPortStatus issues the command to get the port status, then calls
PpGetPortStatusReply to parse the specific reply to that command. Each wrapper function
returns TRUE upon success, otherwise FALSE.

Example 19. ppsend.c

//
// File: ppsend.c
// This is a part of the Grass Valley Group Profile Source Code Samples.
//
/// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.
//
#include <stdio.h>
#include <windows.h>
#include <tekvdr.h>
#include "ppcomm.h"
#include <profhdr.h>
#include <profcmd.h>
#include "sample.h"

#define MAX_CLIP 5

extern MovieHandle moviehandle[MAX_CLIP];
extern EventHandle eventhandle;
extern ConnectHandle connection;

#define MAX_RESOURCE 32

//
// Get Transaction Reply
// cmd:
// data1: transaction number; the command will return the reply for the given
// transaction if it is available.
// reply:
// If the given transaction reply is ready, the "transaction reply" for the
// command which started the transaction is returned (see details for each
// command).
// If the given transaction reply is unavailable, the following is returned:
// byte0: 0x02 (Stx)
// byte1: byte count (2)
// byte2: 0x00
// byte3: 0xff
// byte4: checksum
//
BOOL PpGetTransactionReply(UINT xactno)
{
 char buffer[256];

 buffer[PRO_DATA1_INDEX] = xactno;
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
 if (!PpSendCommand(buffer, 1, Cmd1_SystemAccess, Cmd2_GetTransactionReply)) {
 return FALSE;
 }

 return TRUE;

} // PpGetTransactionReply

//
// Get Port Status
// cmd:
// data1-4: handle of port for which status is to be returned.
// data5-6: mask indicating what status information is to be returned:
// bit0: play/record state
// bit1: current position (field number) along timeline
// bit2: movie at current position
// bit3: motion-play mode
// bit4: still-play mode
// bit5: current play rate
// bit6 .. bit15: reserved
// reply:
// data1-2: a copy of the request mask from command data5-6
// (if the bit is not implemented, it will be cleared)
// data3-n: status values requested
// (value corresponding to the lowest bit in the mask first):
// Play/record state (1 byte): one of the following values:
// 2: record-cued
// 3: jog-play
// 4: jog-record
// 5: shuttle-play
// 6: shuttle-record
// Current position along timeline (integer, 4 bytes)
// Current movie on timeline (4 bytes)
// Motion-play mode (1 byte): one of the following values:
// 0: normal play
// 1: loop play
// 2: bounce play
// 3: limited play
// 4: slaved play
// Still-play mode (1 byte): one of the following values:
// 0: still play by field
// 1: still play by frame
// Current play rate (float, 4 bytes)
//
BOOL PpGetPortStatus(VdrHandle portHandle, UINT* mask, UINT values[], UINT numvals)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 *((USHORT *)(&buffer[PRO_DATA1_INDEX+4])) = (USHORT)(*mask);
 if (!PpSendCommand(buffer, 6, Cmd1_PortAccess, Cmd2_GetPortStatus)) {
 return FALSE;
 }

 if (!PpGetPortStatusReply(mask, values, numvals)) {
 return FALSE;
 }

 return TRUE;

} // PpGetPortStatus
Preliminary — 12 July 2001 Profile Software Development Kit User 235

Chapter 11 Profile RS-422 Serial Control

236
//
// Open Port
// cmd:
// (no agruments are needed for this command. The following is optional
// data1-8: Named Configuration Space
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle for port. If port cannot be opened, this value will be 0.
//
BOOL PpOpenPort(char* ncsname, VdrHandle* portHandle)
{
 char buffer[16];
 UINT len;

 if (ncsname) {
 strcpy(&buffer[PRO_DATA1_INDEX], ncsname);
 len = strlen(ncsname)+1;
 }
 else {
 len = 0;
 }

 if (!PpSendCommand(buffer, len, Cmd1_PortAccess, Cmd2_OpenPort)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpOpenPortReply(portHandle)) {
 return FALSE;
 }

 return TRUE;

} // PpOpenPort

//
// Close Port
// cmd:
// data1-4: handle of port
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpClosePort(VdrHandle portHandle)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;

 if (!PpSendCommand(buffer, 4, Cmd1_PortAccess, Cmd2_ClosePort)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_ClosePort)) {
 return FALSE;
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
 }

 return TRUE;

} // PpClosePort

//
// Close Movie
//
// cmd:
// data1-4: movie token
//
// reply:
// 0: OK
// 1-255 (error condition)
//
//
BOOL PpCloseMovie(MovieToken movie)
{
 char buffer[16];

 *((MovieToken *)(&buffer[PRO_DATA1_INDEX])) = movie;

 if (!PpSendCommand(buffer, 4, Cmd1_PdrMovieAccess, Cmd2_PdrCloseMovie)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpPdrErrorNumReply(Cmd1_PdrMovieAccess, Cmd2_PdrCloseMovie)) {
 return FALSE;
 }
 return TRUE;

} // PpCloseMovie

//
// Idle Port
// cmd:
// data1-4: handle of port
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpIdlePort(VdrHandle portHandle)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 if (!PpSendCommand(buffer, 4, Cmd1_PortAccess, Cmd2_Idle)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_Idle)) {
 return FALSE;
 }
 return TRUE;

} // PpIdlePort
Preliminary — 12 July 2001 Profile Software Development Kit User 237

Chapter 11 Profile RS-422 Serial Control

238
//
// Cue Play
// cmd:
// data1-4: handle of port
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpCuePlay(VdrHandle portHandle)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 if (!PpSendCommand(buffer, 4, Cmd1_PortAccess, Cmd2_CuePlay)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_CuePlay)) {
 return FALSE;
 }
 return TRUE;

} // PpCuePlay

//
// Shuttle Play
// cmd:
// data1-4: handle of port
// data5-8: shuttle speed (float); if no bytes 5-8, speed 1.0 assumed.
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpShuttlePlay(VdrHandle portHandle, double rate)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 *((float *)(&buffer[PRO_DATA1_INDEX+4])) = (float)rate;
 if (!PpSendCommand(buffer, 8, Cmd1_PortAccess, Cmd2_ShuttlePlay)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_ShuttlePlay)) {
 return FALSE;
 }
 return TRUE;

} // PpShuttlePlay
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
//
// Set Movie Mark In
// cmd:
// data1-4: movie handle
// data5-data8: mark-in field number
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpSetMovieMarkIn(MovieHandle movieHandle, UINT markin)
{
 char buffer[16];

 *((MovieHandle *)(&buffer[PRO_DATA1_INDEX])) = movieHandle;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+4])) = markin;

 if (!PpSendCommand(buffer, 8, Cmd1_AttachedMovieAccess, Cmd2_SetMovieMarkIn)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_AttachedMovieAccess, Cmd2_SetMovieMarkIn)) {
 return FALSE;
 }
 return TRUE;

} // PpSetMovieMarkIn

//
// Set Movie Mark Out
// cmd:
// data1-4: movie handle
// data5-data8: mark-out field number
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpSetMovieMarkOut(MovieHandle movieHandle, UINT markout)
{
 char buffer[16];

 *((MovieHandle *)(&buffer[PRO_DATA1_INDEX])) = movieHandle;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+4])) = markout;

 if (!PpSendCommand(buffer, 8, Cmd1_AttachedMovieAccess, Cmd2_SetMovieMarkOut)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_AttachedMovieAccess, Cmd2_SetMovieMarkOut)) {
 return FALSE;
 }

 return TRUE;

} // PpSetMovieMarkOut
//
Preliminary — 12 July 2001 Profile Software Development Kit User 239

Chapter 11 Profile RS-422 Serial Control

240
// Attach Movie with Marks
// cmd:
// data1-n: ASCIZ name
// data(n+1)-(n+4): mark-in field number
// data(n+5)-(n+8): mark-out field number
// data(n+9)-(n+13): handle of port to which movie is to be attaached
// --- if no more arguments -> attached at end of list w/ appropriate shift
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle of attached movie (0 if failure)
//
BOOL PpAttachMovie_Marks(VdrHandle portHandle, char* nambuf, UINT markin,
 UINT markout, MovieHandle* movieHandle)
{
 char buffer[256];
 // Include trailing null.
 UINT len = strlen(nambuf) + 1;

 if (len > 235) {
 // Too much.
 return FALSE;
 }
 strcpy(&buffer[PRO_DATA1_INDEX], nambuf);
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len])) = markin;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+4])) = markout;
 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX+len+8])) = portHandle;

 if (!PpSendCommand(buffer, len+12, Cmd1_AttachedMovieAccess,
 Cmd2_AttachMovieWithMarks)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpAttachMovieReply(movieHandle, Cmd2_AttachMovieWithMarks)) {
 return FALSE;
 }

 return TRUE;

} // PpAttachMovie_Marks

//
// Detach Movie
// cmd:
// data1-4: movie handle
// --- if no more arguments -> use appropriate shift
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle of attached movie (0 if failure)
//
BOOL PpDetachMovie(MovieHandle movieHandle)
{
 char buffer[16];

 *((MovieHandle *)(&buffer[PRO_DATA1_INDEX])) = movieHandle;
 if (!PpSendCommand(buffer, 4, Cmd1_AttachedMovieAccess, Cmd2_DetachMovie)) {
 return FALSE;
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_AttachedMovieAccess, Cmd2_DetachMovie)) {
 return FALSE;
 }
 return TRUE;

} // PpDetachMovie

//
// Detach Media
// cmd:
// data1-4: movie handle
// --- if no more arguments -> use appropriate shift
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle of attached movie (0 if failure)
//
BOOL PpDetachMedia(MediaHandle mediaHandle, UINT shift)
{
 char buffer[16];

 *((MovieHandle *)(&buffer[PRO_DATA1_INDEX])) = mediaHandle;
 buffer[PRO_DATA1_INDEX+4] = (UCHAR)shift;
 if (!PpSendCommand(buffer, 5, Cmd1_AttachedMediaAccess, Cmd2_DetachMedia)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_AttachedMediaAccess, Cmd2_DetachMedia)) {
 return FALSE;
 }
 return TRUE;

} // PpDetachMedia

//
// Allocate Resource
// cmd:
// data1-4: handle of port
// data5: type of resource to be allocated; one of
// 0: audio codec
// 1: video codec
// 2: video input
// 3: video output
// 4: LTC input
// 5: VITC input
// 6: timecode generator
// 7: LTC output
// 8: VITC output
// 9: timecode recorder
// a: audio output
// data6: physical number of resource to be allocated.
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle to allocated resource (0 if resource could not be allocated)
//
BOOL PpAllocateResource(VdrHandle portHandle, UCHAR type, UINT num, ResourceHandle* rscHandle)
{

Preliminary — 12 July 2001 Profile Software Development Kit User 241

Chapter 11 Profile RS-422 Serial Control

242
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 buffer[PRO_DATA1_INDEX+4] = type;
 buffer[PRO_DATA1_INDEX+5] = (UCHAR)num;

 if (!PpSendCommand(buffer, 6, Cmd1_ResourceAccess, Cmd2_AllocateResource)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpResourceHandleReply(rscHandle, Cmd2_AllocateResource)) {
 return FALSE;
 }

 return TRUE;

} // PpAllocateResource

//
// Get Resource Connect Handle
// cmd:
// data1-4: handle of port
// data5: type of resource; one of
// 0: audio codec
// 1: video codec
// 2: video input
// 3: video output
// 4: LTC input
// 5: VITC input
// 6: timecode generator
// 7: LTC output
// 8: VITC output
// 9: timecode recorder
// a: audio output
// data6: physical number of resource to be allocated.
// reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: connect handle to resource (0 if resource has no connection capability)
//
BOOL PpGetResourceConnectHandle(VdrHandle portHandle, UCHAR type, UINT num, ResourceHandle*
rscHandle)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = portHandle;
 buffer[PRO_DATA1_INDEX+4] = type;
 buffer[PRO_DATA1_INDEX+5] = (UCHAR)num;

 if (!PpSendCommand(buffer, 6, Cmd1_ResourceAccess, Cmd2_GetResConnectHandle)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpResourceHandleReply(rscHandle, Cmd2_GetResConnectHandle)) {
 return FALSE;
 }
 return TRUE;

} // PpGetResourceConnectHandle
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
//
// Default Event
//
// cmd:
// data1-4: Port handle
// data-5: Event type:
// 2: mix audio
// 3: connect Resources
// 4: set timecode generator time
// 5: set timecode generator user bits
// data6-9 source resource handle
// [This section is dependant on the type of event as follows:]
// data 10-13: Connect Resource: destination resource handle
// Mix Audio: destination resource handle
// 14-17 mix level (0.0...1.0)
// 18-21: number of fields for duration of mix
// Set TC Gen Time: timecode
// 14-17: field number at which to activate
// Set TC Gen bits: use bits pattern
//
BOOL DefaultEvent(VdrHandle vdrHandle, UINT evttyp, ResourceHandle srcHandle, ResourceHandle
destHandle, double mix, UINT noflds)
{
 char buffer[24];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = vdrHandle;
 buffer[PRO_DATA1_INDEX+4] = evttyp;
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+5])) = srcHandle;
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+9])) = destHandle;

 if (!PpSendCommand(buffer, 13, Cmd1_EventAccess, Cmd2_DefaultEvent)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_EventAccess, Cmd2_DefaultEvent)) {
 return FALSE;
 }

 return TRUE;

} // PpDefaultEvent
//
// Schedule Event
// cmd:
// data 1-4: port handle
// 5-8: field number for the event timing
// 9: Event type broken down as follows:
// 3: Connect Resource
// 2: Mix Audio
// 4: Set Timecode Generator Time
// 5: Set Timecode Generator User bits
// 10-13: source resource handle
// [this next section is dependaant on the type of event as follows]
// 14-17: Connect Resource: destination resource handle
// Mix Audio: destination resource handle
// 18-21: mix level (0.0...1.0)
// 22-25: number of fields for duration of mix
// Set TC Gen Time: timecode
// Set TC Gen bits: use bits pattern
//
//
BOOL PpScheduleEvent(VdrHandle vdrHandle, INT fldno, UINT evttyp,
 ResourceHandle srcHandle, ResourceHandle destHandle,
Preliminary — 12 July 2001 Profile Software Development Kit User 243

Chapter 11 Profile RS-422 Serial Control

244
 double mix, UINT noflds)
{
 char buffer[24];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = vdrHandle;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+4])) = fldno;
 buffer[PRO_DATA1_INDEX+8] = evttyp;
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+9])) = srcHandle;
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+13])) = destHandle;

 if (!PpSendCommand(buffer, 17, Cmd1_EventAccess, Cmd2_ScheduleEvent)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpGetScheduleEventReply(&eventhandle)) {
 return FALSE;
 }
 return TRUE;

} // PpScheduleEvent

//
// Open Movie
//
// cmd:
// data 1-n: complex move name
// data (n+1)-(n+4): flags
// PdrExclusive - 0x0040 (else 0)
//
BOOL PpOpenMovie(char *moviename, UINT flags, MovieToken* movietoken)
{
 char buffer[256];
 UINT len = strlen(moviename) + 1;

 strcpy(&buffer[PRO_DATA1_INDEX], moviename);
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len])) = flags;

 if (!PpSendCommand(buffer, len+4, Cmd1_PdrMovieAccess, Cmd2_PdrOpenMovie)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpGetOpenMovieReply(movietoken)) {
 return FALSE;
 }
 return TRUE;

} // PpOpenMovie

//
// Attach Open Movie
//
// cmd:
// data1-4: movie token from OpenMovie
// data5: number of resources to use
// data6-(n): resource handles to use (maxiumum of 32)
// [if there are no arguments after the port handle, the movie will be
// attached at the end of the list with a shift appropriate to the current position]
// data(n+1)-(n+4): handle of movie before which this movie should be attached
// Use value 0 to attach at the end of the list of movies.
// data(n+5): shift move, one of
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
// 0: shift previously attached movies before newly attached movie
// 1: shift previously attached movies after newly attached movie
//
BOOL PpAttachOpenMovie(MovieToken movietoken, UINT num, ResourceHandle* rsrchands,
 UINT after, UINT shift, MovieHandle* moviehandle)
{
 char buffer[256];
 int len;
 UINT i;

 *((MovieToken *)(&buffer[PRO_DATA1_INDEX])) = movietoken;
 if (num > MAX_RESOURCE) {
 printf("Resources exceed maximun number.\n");
 return FALSE;
 }
 buffer[PRO_DATA1_INDEX+4] = num;
 len = 5;
 for (i = 0; i < num; i++) {
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+len])) = (ResourceHandle)(*rsrchands++);
 len = len+4;
 }
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len])) = after;
 buffer[PRO_DATA1_INDEX+len+4] = (UCHAR)shift;
 buffer[PRO_DATA1_INDEX+len+5] = MarkLongest; // mark mode

 if (!PpSendCommand(buffer, len+6, Cmd1_AttachedMovieAccess, Cmd2_AttachOpenMovie)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpGetAttachOpenMovieReply(moviehandle)) {
 return FALSE;
 }
 return TRUE;

} // PpAttachOpenMovie

//
// Get Standard
//
// cmd:
// (no data bytes)
// reply:
// data1: the system standard
//
BOOL PpGetStandard(ConnectHandle* connection)
{
 char buffer[16];

 if (!PpSendCommand(buffer, 0, Cmd1_SystemAccess, Cmd2_GetStandard)) {
 return FALSE;
 }
 if (!PpGetStandardReply(connection)) {
 return FALSE;
 }
 return TRUE;

} // PpGetStandard

//
// Cue Record
Preliminary — 12 July 2001 Profile Software Development Kit User 245

Chapter 11 Profile RS-422 Serial Control

246
//
// cmd:
// data1-4: Port handle
//
BOOL PpCueRecord(VdrHandle porthandle)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = porthandle;
 if (!PpSendCommand(buffer, 4, Cmd1_PortAccess, Cmd2_CueRecord)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_CueRecord)) {
 return FALSE;
 }
 return TRUE;

} // PpCueRecord

//
// Shuttle Record
//
// cmd:
// data1-4: Port handle
// data5-8: shuttle speed (float); if no bytes 5-8, assume speed 1.0
//
BOOL PpShuttleRecord(VdrHandle porthandle, double rate)
{
 char buffer[16];

 *((VdrHandle *)(&buffer[PRO_DATA1_INDEX])) = porthandle;
 *((float *)(&buffer[PRO_DATA1_INDEX+4])) = (float)rate;

 if (!PpSendCommand(buffer, 8, Cmd1_PortAccess, Cmd2_ShuttleRecord)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpErrorNumReply(Cmd1_PortAccess, Cmd2_ShuttleRecord)) {
 return FALSE;
 }
 return TRUE;

} // PpShuttleRecord

//
// Close Find
// cmd:
// data1-4: token from Find First Dataset, Group, or Movie calls
//
BOOL PpCloseFind(EnumToken tok)
{
 char buffer[16];

 *((EnumToken *)(&buffer[PRO_DATA1_INDEX])) = tok;

 if (!PpSendCommand(buffer, 4, Cmd1_PdrMovieAccess, Cmd2_PdrCloseFind)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpPdrErrorNumReply(Cmd1_PdrMovieAccess, Cmd2_PdrCloseFind)) {
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
 return FALSE;
 }

 return TRUE;

} // PpCloseFind

//
// Movie Exist
//
// cmd:
// data1-n: complex movie name
//
BOOL PpMovieExist(char* moviename, UINT* exist)
{
 char buffer[256];
 UINT len = strlen(moviename) + 1;

 strcpy(&buffer[PRO_DATA1_INDEX], moviename);

 if (!PpSendCommand(buffer, len+4, Cmd1_PdrMovieAccess, Cmd2_PdrMovieExist)) {
 return FALSE;
 }

 // Synchronous operation.
 if (!PpGetMovieExistReply(exist)) {
 return FALSE;
 }
 return TRUE;

} // PpMovieExis

//
// Find First Dataset
//
// cmd:
// (not data bytes)
//
//
BOOL PpFindFirstDataset(char* dataset)
{
 char buffer[16];

 if (!PpSendCommand(buffer, 0, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstDataset)) {
 return FALSE;
 }
 if (!PpGetFirstDatasetReply(dataset)) {
 return FALSE;
 }
 return TRUE;

} // PpFindFirstDataset

//
//
// Find First Group
//
// cmd:
// data1-n: Datset name to walk through
//
Preliminary — 12 July 2001 Profile Software Development Kit User 247

Chapter 11 Profile RS-422 Serial Control

248
BOOL PpFindFirstGroup(char* dataset, char* group)
{
 char buffer[32];
 UINT len = strlen(dataset) + 1;

 strcpy(&buffer[PRO_DATA1_INDEX], dataset);

 if (!PpSendCommand(buffer, len, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstGroup)) {
 return FALSE;
 }
 if (!PpGetFirstGroupReply(group)) {
 return FALSE;
 }
 return TRUE;

} // PpFindFirstGroup

//
// Find First Movie
//
// cmd:
// data1-n: dataset/group name to walk through
//
BOOL PpFindFirstMovie(char* datagrp, char* name)
{
 char buffer[256];
 UINT len = strlen(datagrp) + 1;

 strcpy(&buffer[PRO_DATA1_INDEX], datagrp);

 if (!PpSendCommand(buffer, len, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstMovie)) {
 return FALSE;
 }
 if (!PpGetFirstMovieReply(name)) {
 return FALSE;
 }
 return TRUE;

} // PpFindFirstMovie

//
// Find Next Dataset
//
// cmd:
// data1-4: token from subsquent calls
//
BOOL PpFindNextDataset(char* dataset)
{
 char buffer[16];

 *((EnumToken *)(&buffer[PRO_DATA1_INDEX])) = dset;

 if (!PpSendCommand(buffer, 4, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextDataset)) {
 return FALSE;
 }
 if (!PpGetNextDatasetReply(dataset)) {
 return FALSE;
 }

 return TRUE;
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
} // PpFindNextDataset

//
// Find Next Group
//
// cmd:
// data1-4: token from subsquent calls
//
BOOL PpFindNextGroup(char* group)
{
 char buffer[32];

 *((EnumToken *)(&buffer[PRO_DATA1_INDEX])) = grp;

 if (!PpSendCommand(buffer, 4, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextGroup)) {
 return FALSE;
 }
 if (!PpGetNextGroupReply(group)) {
 return FALSE;
 }
 return TRUE;

} // PpFindNextGroup

//
// Find Next Movie
//
// cmd:
// data1-4: token from subsquent calls
//
BOOL PpFindNextMovie(char* name)
{
 char buffer[16];

 *((EnumToken *)(&buffer[PRO_DATA1_INDEX])) = movie;

 if (!PpSendCommand(buffer, 4, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextMovie)) {
 return FALSE;
 }
 if (!PpGetNextMovieReply(name)) {
 return FALSE;
 }
 return TRUE;

} // PpFindNextMovie

//
// Get Movie State
//
// cmd:
// data1-n: Complex movie name.
//
BOOL PpGetMovieState(char* name, PdrMovieState* state)
{
 char buffer[256];
 UINT len = strlen(name) + 1;

 strcpy(&buffer[PRO_DATA1_INDEX], name);

 if (!PpSendCommand(buffer, len, Cmd1_PdrMovieAccess, Cmd2_PdrGetMovieState)) {
Preliminary — 12 July 2001 Profile Software Development Kit User 249

Chapter 11 Profile RS-422 Serial Control

250
 return FALSE;
 }
 if (!PpGetMovieStateReply(state)) {
 return FALSE;
 }
 return TRUE;

} // PpGetMovieState

//
// Get Next Track Token
//
// cmd:
// data1-4: Movie token.
// data5-6: Track Token.
//
// reply:
// data1-2: Next track token.
//
BOOL PpGetNextTrack(MovieToken movietoken, TrackToken* tracktoken)
{
 char buffer[16];

 *((MovieToken *)(&buffer[PRO_DATA1_INDEX])) = movietoken;
 *((TrackToken *)(&buffer[PRO_DATA1_INDEX]+4)) = (USHORT)(*tracktoken);

 if (!PpSendCommand(buffer, 6, Cmd1_StoredMediaAccess, Cmd2_GetNextTrack)) {
 return FALSE;
 }
 if (!PpGetNextTrackReply(tracktoken)) {
 return FALSE;
 }
 return TRUE;

} // PpGetNextTrack

//
// Get Null Media Token
//
// cmd:
// (No command data bytes required
//
// reply:
// data1-8: Null media token
//
BOOL PpGetNullMediaToken(MediaToken* mediatoken)
{
 char buffer[16];

 if (!PpSendCommand(buffer, 0, Cmd1_StoredMediaAccess, Cmd2_GetNullMediaToken)) {
 return FALSE;
 }
 if (!PpGetNullMediaTokenReply(mediatoken)) {
 return FALSE;
 }
 return TRUE;

} // PpGetNullMediaToken
//
// Get Media File Path
//
BOOL PpGetMediaPath(UINT* mask, MediaToken mediatoken, char* mediapath)
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
{
 char buffer[16];

 *((USHORT *)(&buffer[PRO_DATA1_INDEX])) = (USHORT)(*mask);
 *((MediaToken *)(&buffer[PRO_DATA1_INDEX+2])) = mediatoken;

 if (!PpSendCommand(buffer, 10, Cmd1_StoredMediaAccess, Cmd2_GetStoredMediaStatus)) {
 return FALSE;
 }
 if (!PpGetMediaPathReply(mask, mediapath)) {
 return FALSE;
 }
 return TRUE;

} // PpGetMediaPath

//
// Attach Media
//
// cmd:
// data1-n: name of media (Null terminated)
// data(n+1)-(n+4): handle of resource to wich media is to be attached
// data(n+5)-(n+8): Optional number of fields duration
// data(n+9)-(n+12): handle of media before which this media is attached
// data(n+13): Shiftmode
//
// reply:
// data1: transaction number
// data2-5: handle of attached media (0, if media could not be attachted
//
//
//
BOOL PpAttachMedia(char* namebuf, ResourceHandle rsrc, UINT duration,
 MediaHandle* mediahandle, UINT after, UINT shift)
{
 char buffer[256];

 // Include trailing null.
 UINT len = strlen(namebuf) + 1;

 if (len > 235) {
 // Too much.
 return FALSE;
 }

 strcpy(&buffer[PRO_DATA1_INDEX], namebuf);
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+len])) = rsrc;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+4])) = duration;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+8])) = after;
 buffer[PRO_DATA1_INDEX+len+12] = (UCHAR)shift;

 if (!PpSendCommand(buffer, len+13, Cmd1_AttachedMediaAccess, Cmd2_AttachMedia)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpAttachMediaReply(mediahandle, Cmd2_AttachMedia)) {
 return FALSE;
 }
 return TRUE;

} // PpAttachMedia
Preliminary — 12 July 2001 Profile Software Development Kit User 251

Chapter 11 Profile RS-422 Serial Control

252
//
// Attach Media With Marks
//
// cmd:
// data1-n: name of media (Null terminated)
// data(n+1)-(n+4): mark-in
// data(n+5)-(n+8): mark-out
// data(n+9)-(n+12): handle of resource to wich media is to be attached
// data(n+13)-(n+16): Optional number of fields duration
// data(n+17)-(n+20): handle of media before which this media is attached
// data(n+21): Shiftmode
//
// reply:
// data1: transaction number
// data2-5: handle of attached media (0, if media could not be attachted
//
BOOL PpAttachMediaWithMarks(char* namebuf, ResourceHandle rsrc, UINT duration,
 MediaHandle* mediahandle, UINT after, UINT shift,
 UINT markin, UINT markout)
{
 char buffer[256];

 // Include trailing null.
 UINT len = strlen(namebuf) + 1;

 if (len > 235) {
 // Too much.
 return FALSE;
 }

 strcpy(&buffer[PRO_DATA1_INDEX], namebuf);
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len])) = markin;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+4])) = markout;
 *((ResourceHandle *)(&buffer[PRO_DATA1_INDEX+len+8])) = rsrc;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+12])) = duration;
 *((UINT *)(&buffer[PRO_DATA1_INDEX+len+16])) = after;
 buffer[PRO_DATA1_INDEX+len+20] = (UCHAR)shift;

 if (!PpSendCommand(buffer, len+21, Cmd1_AttachedMediaAccess, Cmd2_AttachMediaWithMarks)) {
 return FALSE;
 }
 // Synchronous operation.
 if (!PpAttachMediaReply(mediahandle, Cmd2_AttachMediaWithMarks)) {
 return FALSE;
 }
 return TRUE;

} // PpAttachMediaWithMarks

//
// Get Next Media Token
//
// cmd:
// data1-4: Movie token.
// data5-6: Track Token
// data7-14: Media Token
//
// reply:
// data1-8: Next Media token
//
BOOL PpGetNextMediaToken(MovieToken movietoken, TrackToken tracktoken,
Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets
 MediaToken* mediatoken)
{
 char buffer[32];

 *((MovieToken *)(&buffer[PRO_DATA1_INDEX])) = movietoken;
 *((TrackToken *)(&buffer[PRO_DATA1_INDEX]+4)) = tracktoken;
 *((MediaToken *)(&buffer[PRO_DATA1_INDEX]+6)) = *mediatoken;

 if (!PpSendCommand(buffer, 14, Cmd1_StoredMediaAccess, Cmd2_GetNextMediaToken)) {
 return FALSE;
 }
 if (!PpGetNextMediaReply(mediatoken)) {
 return FALSE;
 }
 return TRUE;

} // PpGetNextMediaToken

//
// Is Media Token Null
//
// cmd:
// data1-8: Media token.
//
// reply:
// data1: 0= True, it is a null media token
// 1= False, it is not a null media Token Next
//
BOOL PpIsMediaTokenNull(MediaToken* mediatoken)
{
 char buffer[16];

 *((MediaToken *)(&buffer[PRO_DATA1_INDEX])) = *mediatoken;

 if (!PpSendCommand(buffer, 8, Cmd1_StoredMediaAccess, Cmd2_GetNullMediaToken)) {
 return FALSE;
 }
 if (!PpIsMediaTokenNullReply()) {
 return FALSE;
 }
 return TRUE;

} // PpIsMediaTokenNull
Preliminary — 12 July 2001 Profile Software Development Kit User 253

Chapter 11 Profile RS-422 Serial Control

254
Receiving packets
Example 20, ppreply.c contains various utility functions to facilitate the reception of packets
in Profile protocol over a serial RS-422 connection. The function declarations are shown in
ppheader.h. PpGetReply uses the generic function PpRcvReply (defined in ppcomm.c) to get
a synchronous transaction reply. As in Example 19, ppsend.c, the majority of functions in this
group act as wrappers around specific Profile API calls.

Example 20. ppreply.c

//
// File: ppreply.c
// This is a part of the Grass Valley Group Profile Source Code Samples.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.
//
#include <stdio.h>
#include <windows.h>
#include <tekvdr.h>
#include "ppcomm.h"
#include "vdrtypes.h"
#include <profhdr.h>
#include <profcmd.h>
#include "sample.h"

//
// Get the reply packet.
//
BOOL PpGetReply(UCHAR* buffer, UINT* bcnt, UINT cmd1, UINT cmd2)
{
 UINT tno;
 UCHAR tbuf[8];

 if (!PpRcvReply(buffer, bcnt, cmd1, cmd2)) {
 return FALSE;
 }

 if (buffer[PRO_STX_INDEX] != Stx_Ack) {
 return TRUE;
 }
 // This is only for synchronous receive operations.

 // Pickup transaction number.
 tno = (UINT)buffer[PRO_CMD1_INDEX];
 tbuf[PRO_DATA1_INDEX] = tno;
 do {
 if (buffer[PRO_CMD1_INDEX] != tno) {
 printf("Error on Synchronous Transaction Number Mismatch\n");
 return FALSE;
 }
 if (!PpSendCommand(tbuf, 1, Cmd1_SystemAccess, Cmd2_GetTransactionReply)) {
 printf("Error on Synchronous Transaction Request\n");
 return FALSE;
 }
 Sleep(15); // Allow time for reply.
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
 if (!PpRcvReply(buffer, bcnt, cmd1, cmd2)) {
 printf("Error on Synchronous Transaction Reply\n");
 return FALSE;
 }
 } while (buffer[0] == Stx_Ack);

 return TRUE;

} // PpGetReply

//
// Get Transaction Reply
//
// If the given transaction reply is ready, the "transaction reply" for the
// command that started the transaction is returned (see details for each
// command). If the transaction reply is unavailable, the following is returned:
// byte0: 0x02 (Stx)
// byte1: byte count (2)
// byte2: 0x00
// byte3: 0x00
// byte4: checksum
//
BOOL PpTransactionReply(UINT xactno)
{
 char buffer[256];
 UINT len;

 buffer[PRO_DATA1_INDEX] = xactno;

 if (!PpGetReply(buffer, &len, Cmd1_SystemAccess, Cmd2_GetTransactionReply)) {
 return FALSE;
 }
 return TRUE;

} // PpTransactionReply
//
// Get Port Status Reply
//
// data1-2: a copy of the request mask from command data5-6
// (if the bit is not implemented, it will be cleared)
// bit0: play/record state
// bit1: current position (field number) along timeline
// bit2: movie at current position
// bit3: motion-play mode
// bit4: still-play mode
// bit5: current play rate
// bit6 .. bit15: reserved
//
// data3-n: status values requested
// (value corresponding to the lowest bit in the mask first):
// Play/record state (1 byte): one of the following values:
// 0: idle
// 1: play-cued
// 2: record-cued
// 3: jog-play
// 4: jog-record
// 5: shuttle-play
// 6: shuttle-record
// Current position along timeline (integer, 4 bytes)
// Current movie on timeline (4 bytes)
// Motion-play mode (1 byte): one of the following values:
// 0: normal play
// 1: loop play
Preliminary — 12 July 2001 Profile Software Development Kit User 255

Chapter 11 Profile RS-422 Serial Control

256
// 2: bounce play
// 3: limited play
// 4: slaved play
// Still-play mode (1 byte): one of the following values:
// 0: still play by field
// 1: still play by frame
// Current play rate (float, 4 bytes)
//
BOOL PpGetPortStatusReply(UINT* mask, UINT values[], UINT numvals)
{
 char buffer[256];
 UINT len, i;
 UINT bits = 0;

 if (!PpGetReply(buffer, &len, Cmd1_PortAccess, Cmd2_GetPortStatus)) {
 return FALSE;
 }

 if ((UINT)((USHORT *)(buffer[PRO_DATA1_INDEX])) != *mask) {
 printf("Port Status changed mask\n");
 }

 *mask = (UINT)((UINT *)(buffer[PRO_DATA1_INDEX]));

 for (i = 0; i < 16; i++) {
 if (*mask & (1<<i)) {
 bits++;
 }
 }
 if (bits > numvals) {
 printf("Port Status not enough room for reply\n");
 return FALSE;
 }

 for (i = 0, len = Bytes_RequestMask; i < numvals; i++) {
 if (*mask & (1<<i)) {
 switch (1<<i) {
 case Dat1_GetPlayRecordState:
 values[i] = (UINT)buffer[PRO_DATA1_INDEX+len];
 len += Bytes_PlayRecordState;
 break;
 case Dat1_GetPosition:
 values[i] = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+len])));
 len += Bytes_Position;
 break;
 case Dat1_GetCurrentMovie:
 values[i] = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+len])));
 len += Bytes_MovieHandle;
 break;
 case Dat1_GetMotionPlayMode:
 values[i] = (UINT)buffer[PRO_DATA1_INDEX+len];
 len += Bytes_MotionPlayMode;
 break;
 case Dat1_GetStillPlayMode:
 values[i] = (UINT)buffer[PRO_DATA1_INDEX+len];
 len += Bytes_StillPlayMode;
 break;
 case Dat1_GetCurrentRate:
 values[i] = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+len])));
 len += Bytes_CurrentRate;
 break;
 }
 }
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
 }
 return TRUE;

} // PpGetPortStatusReply

//
// Open Port
//
// Reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle for open port. If port cannot be opened, this value will be 0.
//
BOOL PpOpenPortReply(VdrHandle* portHandle)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PortAccess, Cmd2_OpenPort))
 return FALSE;

 portHandle = (VdrHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 return TRUE;

} // PpOpenPortReply

//
// Generic Error Number reply routine
//
// Reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2: one of the following:
// 0: OK
// 1-255: (error conditions)
//
BOOL PpErrorNumReply(UINT cmd1, UINT cmd2)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, cmd1, cmd2)) {
 return FALSE;
 }
 if (buffer[PRO_DATA1_INDEX+1] == ‘\0’) {
 return TRUE;
 }

 printf("PpErrorNumReply received %02.2X", buffer[PRO_DATA1_INDEX+1]);
 return FALSE;

} // PpErrorNumReply
//
// Specific Error Number reply routine
//
// Reply:
// data1: one of the following:
// 0: OK
// 1-255: (error conditions)
//
Preliminary — 12 July 2001 Profile Software Development Kit User 257

Chapter 11 Profile RS-422 Serial Control

258
BOOL PpPdrErrorNumReply(UINT cmd1, UINT cmd2)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, cmd1, cmd2)) {
 return FALSE;
 }
 if (buffer[PRO_DATA1_INDEX] == ‘\0’) {
 return TRUE;
 }

 printf("PpErrorNumReply received %02.2X", buffer[PRO_DATA1_INDEX]);
 return FALSE;

} // PpPdrErrorNumReply

//
// PpAllocateResource
// PpGetResourceConnectHandle
//
// Reply:
// data1: transaction number
// data2-5: resource handle
//
BOOL PpPortHandleReply(VdrHandle* portHandle, UINT cmd2)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_ResourceAccess, cmd2)) {
 return FALSE;
 }
 portHandle = (VdrHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 return TRUE;

} // PpPortHandleReply

//
// Attach Movie
// Attach Movie with Marks
//
// Reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle of attached movie (0 if failure)
//
BOOL PpAttachMovieReply(MovieHandle* movieHandle, UINT cmd2)
{
 char buffer[256];
 UINT len;

 // Synchronous operation.
 if (!PpGetReply(buffer, &len, Cmd1_AttachedMovieAccess, cmd2)) {
 return FALSE;
 }
 movieHandle = (MovieHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 return TRUE;

} // PpAttachMovieReply
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
//
// Get Resource Status Reply
//
// data1-2: a copy of the request mask from command data5-6 (any request which is
// not implemented will cause the corresponding bit in the mask to be cleared)
// data3-n: status values requested (value corresponding to the lowest bit in the
// mask first:
// (video codecs only:)
// Current field size (integer, 4 bytes)
// Current luminance Q factor (float, 4 bytes)
// (audio codecs only:)
// Current audio level (integer, 4 bytes)
// (timecode recorder/generators only:)
// Current time code (time code, 4 bytes)
// Current user bits (integer, 4 bytes)
//
BOOL PpGetResourceStatusReply(UINT* mask, UINT values[], UINT numvals)
{
 char buffer[256];
 UINT len, i;
 UINT bits = 0;

 if (!PpGetReply(buffer, &len, Cmd1_ResourceAccess, Cmd2_GetResourceStatus)) {
 return FALSE;
 }

 if ((UINT)((USHORT *)(buffer[PRO_DATA1_INDEX])) != *mask) {
 printf("Get Resource Status changed mask\n");
 }

 *mask = (UINT)((UINT *)(buffer[PRO_DATA1_INDEX]));

 for (i = 0; i < 16; i++) {
 if (*mask & (1<<i)) {
 bits++;
 }
 }
 if (bits > numvals) {
 printf("Get Resource Status not enough room for reply\n");
 return FALSE;
 }

 for (i = 0, len = Bytes_RequestMask; i < numvals; i++) {
 if (*mask & (1<<i)) {
 switch (1<<i) {
 case Dat1_GetCurrentFieldSize:
 values[i] = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+len])));
 // All codec have 4 bytes for first value.
 len += Bytes_FieldSize;
 break;
 case Dat1_GetCurrentLumQFactor:
 values[i] = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+len])));
 len += Bytes_Position;
 break;
 }
 }
 }
 return TRUE;

} // PpGetResourceStatusReply
Preliminary — 12 July 2001 Profile Software Development Kit User 259

Chapter 11 Profile RS-422 Serial Control

260
//
// PpAllocateResource
// PpGetResourceConnectHandle
//
// Reply:
// data1: transaction number
// data2-5: resource handle
//
BOOL PpResourceHandleReply(ResourceHandle* rscHandle, UINT cmd2)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_ResourceAccess, cmd2)) {
 return FALSE;
 }

 rscHandle = (ResourceHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));

 if (*rscHandle == NULL) {
 return FALSE;
 }

 return TRUE;

} // PpResourceHandleReply

//
// Get Standard Reply
//
// data1: the system standard
//
BOOL PpGetStandardReply(ConnectHandle* connection)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_SystemAccess, Cmd2_GetStandard)) {
 return FALSE;
 }

 connection = (ConnectHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (*connection == NULL) {
 return FALSE;
 }
 return TRUE;

} // PpGetStandardReply
//
// Get Open Movie Reply
//
// data1: transaction number
// data2-5: movie token for new movie (Null if error)
//
BOOL PpGetOpenMovieReply(UINT* movietoken)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrOpenMovie)) {
 return FALSE;
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
 }
 movietoken = (UINT)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (!movietoken) {
 return FALSE;
 }
 return TRUE;

} // PpGetOpenMovieReply

//
// Get Attach Open Movie Reply
//
// data1: transaction number
// data2-5: movie handle for new movie (Null if error)
//
BOOL PpGetAttachOpenMovieReply(MovieHandle* moviehandle)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_AttachedMovieAccess, Cmd2_AttachOpenMovie)) {
 return FALSE;
 }
 moviehandle = (MovieHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));

 if (*moviehandle == NULL) {
 return FALSE;
 }
 return TRUE;

} // PpGetAttachMovieReply

//
// Get Schedule Event Reply
//
// data1: transaction number
// data2-5: event handle for new movie (Null if error)
//
BOOL PpGetScheduleEventReply(EventHandle* eventhandle)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_EventAccess, Cmd2_ScheduleEvent)) {
 return FALSE;
 }
 eventhandle = (EventHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));

 if (*eventhandle == NULL) {
 return FALSE;
 }
 return TRUE;

} // PpGetScheduleEventReply

//
// Get First Dataset Reply
//
// data1: transaction number
// data2-5: token to use fro subsquent calls
Preliminary — 12 July 2001 Profile Software Development Kit User 261

Chapter 11 Profile RS-422 Serial Control

262
// data6-n: name of the first dataset
//
BOOL PpGetFirstDatasetReply(char* dataset)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstDataset)) {
 return FALSE;
 }
 dset = (EnumToken)(*((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (!dset) {
 return FALSE;
 }
 strcpy(dataset, &buffer[PRO_DATA1_INDEX+5]);
 return TRUE;

} // PpGetFirstDatasetReply

//
// Get First Group Reply
//
// data1: transaction number
// data2-5: token to use for subsquent calls
// data6-n: name of the first group
//
BOOL PpGetFirstGroupReply(char* group)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstGroup)) {
 return FALSE;
 }
 grp = (EnumToken)(*((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (!grp) {
 return FALSE;
 }
 strcpy(group, &buffer[PRO_DATA1_INDEX+5]);
 return TRUE;

} // PpGetFirstGroupReply

//
// Get First Movie Reply
//
// data1: transaction number
// data2-5: token to use for subsquent calls
// data6-n: name of the first movie
//
BOOL PpGetFirstMovieReply(char* name)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindFirstMovie)) {
 printf("Error, get first movie\n");
 return FALSE;
 }
 movie = (EnumToken)(*((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (!movie) {
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
 return FALSE;
 }
 strcpy(name, &buffer[PRO_DATA1_INDEX+5]);
 return TRUE;

} // PpGetFirstMovieReply
//
// Get Next Dataset Reply
//
// data1: transaction number
// data2-n: name of the next dataset
//
BOOL PpGetNextDatasetReply(char* dataset)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextDataset)) {
 printf("Error, get next dataset\n");
 return FALSE;
 }
 strcpy(dataset, &buffer[PRO_DATA1_INDEX+1]);
 return TRUE;

} // PpGetNextDatasetReply

//
// Get Next Group Reply
//
// data1: transaction number
// data2-n: name of the next group
//
BOOL PpGetNextGroupReply(char* group)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextGroup)) {
 printf("Error, get next grouop\n");
 return FALSE;
 }
 strcpy(group, &buffer[PRO_DATA1_INDEX+1]);
 return TRUE;

} // PpGetNextGroupReply

//
// Get Next Movie Reply
//
// data1: transaction number
// data2-n: name of the next movie
//
BOOL PpGetNextMovieReply(char* name)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrFindNextMovie)) {
 printf("Error, get next movie\n");
 return FALSE;
 }
Preliminary — 12 July 2001 Profile Software Development Kit User 263

Chapter 11 Profile RS-422 Serial Control

264
 strcpy(name, &buffer[PRO_DATA1_INDEX+1]);
 return TRUE;

} // PpGetNextMovieReply

//
// Get Movie State Reply
//
// data1: status of call (0-ok, else error)
// data2-5: Movie attributes
// data6-9: Minimum length
// data10-13: Maximum length
// data14-17: Movie creation time (date, time 2 bytes each)
// data18-21: Movie last modification time (date, time 2 bytes each)
// data22: number of video tracks
// data23: number of audio tracks
// data24: number of timecode tracks
//
BOOL PpGetMovieStateReply(PdrMovieState* state)
{
 char buffer[256];
 UINT len;
 FILETIME time;
 WORD dosDate;
 WORD dosTime;

 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrGetMovieState)) {
 printf("Get movie status error\n");
 return FALSE;
 }
 // Fill in the state structure.
 state->attributes = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 state->minLength = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+5])));
 state->maxLength = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+9])));

 // Get the create time.
 // Read it in MS-DOS date and time and turn it into 64 bit Filetime.
 dosDate = (USHORT)(*((USHORT *)(&buffer[PRO_DATA1_INDEX+13])));
 dosTime = (USHORT)(*((USHORT *)(&buffer[PRO_DATA1_INDEX+15])));
 if (!DosDateTimeToFileTime(dosDate, dosTime, &time)) {
 printf("DOS TIME\n");
 return FALSE;
 }
 state->createTime = time;

 // Get the last change time.
 dosDate = (USHORT)(*((USHORT *)(&buffer[PRO_DATA1_INDEX+17])));
 dosTime = (USHORT)(*((USHORT *)(&buffer[PRO_DATA1_INDEX+19])));
 if (!DosDateTimeToFileTime(dosDate, dosTime, &time)) {
 printf("DOS TIME\n");
 return FALSE;
 }
 state->lastChangedTime = time;

 state->numV = buffer[PRO_DATA1_INDEX+21];
 state->numA = buffer[PRO_DATA1_INDEX+22];
 state->numT = buffer[PRO_DATA1_INDEX+23];
 state->exclusivePID = (UINT)(*((UINT *)(&buffer[PRO_DATA1_INDEX+24])));

 return TRUE;
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
} // PpGetMovieStateReply

//
// Get Next Track Reply
//
// data1-2: Next Track Token
//
BOOL PpGetNextTrackReply(TrackToken* tracktoken)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_StoredMediaAccess, Cmd2_GetNextTrack)) {
 return FALSE;
 }
 tracktoken = (USHORT)(((USHORT *)(&buffer[PRO_DATA1_INDEX])));
 if (*tracktoken == 0) {
 printf("Can not get tracktoken\n");
 return FALSE;
 }
 return TRUE;

} // PpGetNextTrackReply

//
// Get Next Media Token Reply
//
// data1-8: media token
//
BOOL PpGetNextMediaReply(MediaToken* mediatoken)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_StoredMediaAccess, Cmd2_GetNextMediaToken)) {
 return FALSE;
 }
 mediatoken = (((MediaToken *)(&buffer[PRO_DATA1_INDEX])));
 if (!mediatoken) {
 return FALSE;
 }
 return TRUE;

} // PpGetNextMediaReply

//
// Get Null Media Token Reply
//
// data1-8: track token
//
BOOL PpGetNullMediaTokenReply(MediaToken* mediatoken)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_StoredMediaAccess, Cmd2_GetNullMediaToken)) {
 return FALSE;
 }

 mediatoken = (((MediaToken *)(&buffer[PRO_DATA1_INDEX])));
Preliminary — 12 July 2001 Profile Software Development Kit User 265

Chapter 11 Profile RS-422 Serial Control

266
 if (PpIsMediaTokenNull(mediatoken)) {
 return FALSE;
 }
 return TRUE;

} // PpGetNullMediaTokenReply

//
// Get Media Path Reply
//
// data1-2: mask
// data1-n: media path
//
BOOL PpGetMediaPathReply(UINT* mask, char* mediapath)
{
 char buffer[256];
 UINT len;

 if (!PpGetReply(buffer, &len, Cmd1_StoredMediaAccess, Cmd2_GetStoredMediaStatus)) {
 return FALSE;
 }

 strcpy(mediapath, &buffer[PRO_DATA1_INDEX+2]);

 return TRUE;

} // PpGetMediaPathReply

//
// Attach Media Reply
// Attach Media with Marks
//
// Reply:
// Ack + transaction number
// xact:
// data1: transaction number
// data2-5: handle of attached media (0 if failure)
//
BOOL PpAttachMediaReply(MediaHandle* mediahandle, UINT cmd2)
{
 char buffer[256];
 UINT len;

 // ssynchronous operation.
 if (!PpGetReply(buffer, &len, Cmd1_AttachedMediaAccess, cmd2)) {
 return FALSE;
 }

 mediahandle = (MediaHandle)(((UINT *)(&buffer[PRO_DATA1_INDEX+1])));
 if (*mediahandle == 0) {
 printf("Can not get mediahandle\n");
 return FALSE;
 }
 return TRUE;

} // PpAttachMediaReply

//
// Get Movie Exist Reply
//
BOOL PpGetMovieExistReply(UINT* exist)
Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets
{
 char buffer[256];
 UINT len;

 // Synchronous operation.
 if (!PpGetReply(buffer, &len, Cmd1_PdrMovieAccess, Cmd2_PdrMovieExist)) {
 return FALSE;
 }
 exist = (UINT)(((UCHAR *)(&buffer[PRO_DATA1_INDEX])));
 if (!exist) {
 return FALSE;
 }

 return TRUE;

} // PpGetMovieExistReply
//
// Is Media Token Null Reply
//
BOOL PpIsMediaTokenNullReply(void)
{
 char buffer[256];
 UINT len;
 UCHAR isnull;

 if (!PpGetReply(buffer, &len, Cmd1_StoredMediaAccess, Cmd2_IsMediaTokenNull)) {
 return FALSE;
 }
 isnull = buffer[PRO_DATA1_INDEX];
 if (isnull == 1) {
 return FALSE;
 }
 return TRUE;

} // PpIsMediaTokenNullReply
Preliminary — 12 July 2001 Profile Software Development Kit User 267

Chapter 11 Profile RS-422 Serial Control

268
Packet communication
Example 21, ppcomm.c contains various generic utility functions to enable the communication
of packets in Profile protocol over a serial RS-422 connection. These are common functions
used by all of the Profile serial programming sample applications.

The function declarations described here are shown in the file ppheader.h:

• PpOpenComm opens a serial COM port using Windows SDK calls (Win16/Win32). It
also sets up appropriate parameters for flow control of the RS-422 connection.

• PpAddChksum computes the required checksum for a given buffer.

• PpValidateChksum ensures that a return packet contains a valid checksum.

• PpSendCommand sends a command buffer out the RS-422 serial port, using the Win16/
Win32 function WriteFile with the appropriate communication handle.

• PpRcvReply receives a reply packet from the remote Profile.

Example 21. ppcomm.c

//
// File: ppcomm.c
// This is a part of the Grass Valley Group Profile Source Code Samples.
//
// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.
//
// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.
//

#include <stdio.h>
#include <windows.h>
#include <tekvdr.h>
#include "ppcomm.h"
#include <profhdr.h>
#include <profcmd.h>

static HANDLE sCommHdl;

extern char* comm;

//
// Add a checksum to the buffer.
//
void PpAddChksum(UCHAR* buffer, UINT bcnt)
{
 UINT i;
 UCHAR cksum = 0;

 // Skip the header.
 bcnt += PRO_CMD1_INDEX;

 for (i = PRO_CMD1_INDEX; i < bcnt; i++) {
 cksum += buffer[i];
 }
 cksum = (~cksum) + 1;
 buffer[bcnt] = cksum;
Profile Software Development Kit User Preliminary — 12 July 2001

Packet communication
} // PpAddChksum

//
// Send out the command.
//
BOOL PpSendCommand(UCHAR* buffer, UINT bcnt, UINT cmd1, UINT cmd2)
{
 DWORD wrcnt;

 // Bump for cmds.
 bcnt += NUM_PRO_HEADER_BYTES;
 if (bcnt > 0xff) {
 // If illegal count - return error.
 return FALSE;
 }

 buffer[PRO_STX_INDEX] = PRO_STX_HEADER; // Add the STX, and...
 buffer[PRO_BYTE_COUNT_INDEX] = bcnt; // the byte count from cmd1 to end.
 buffer[PRO_CMD1_INDEX] = cmd1; // Put down the commands,
 buffer[PRO_CMD2_INDEX] = cmd2;
 PpAddChksum(buffer, bcnt); // and tack on the checksum.

 // Do the transaction (len bcnt+NUM_PRO_HEADER_BYTES+NUM_PRO_CHECKSUM_BYTES).
 bcnt += NUM_PRO_HEADER_BYTES + NUM_PRO_CHECKSUM_BYTES;
 if (!WriteFile(sCommHdl, buffer, (DWORD)bcnt, &wrcnt, NULL)) {
 printf("Error writing to Comm Device \n");
 return FALSE;
 }
 return TRUE;

} // PpSendCommand

//
// Validate the checksum in the buffer
//
BOOL PpValidateChksum(UCHAR* buffer)
{
 UINT i, bcnt;
 UCHAR cksum = 0;

 bcnt = buffer[PRO_BYTE_COUNT_INDEX]; // Get the byte count.
 bcnt += PRO_CMD1_INDEX; // Skip the header.
 for (i = PRO_CMD1_INDEX; i < bcnt; i++) {
 cksum += buffer[i];
 }
 cksum = (~cksum) + 1;
 if (buffer[bcnt] != cksum) {
 return FALSE;
 }
 return TRUE;

} // PpValidateChksum
//
// Reply - this buffer must be 256 bytes in length
// Input:
// buffer is unsigned char pointer of at least 256 bytes.
// bcnt is unsigned int pointer to where the return length should be supplied.
// cmd1 and cmd2 are the commands expected if data is available
//
BOOL PpRcvReply(UCHAR* buffer, UINT* bcnt, UINT cmd1, UINT cmd2)
{
 BOOL retstat;
Preliminary — 12 July 2001 Profile Software Development Kit User 269

Chapter 11 Profile RS-422 Serial Control

270
 DWORD rdcnt;

 // First get the reply byte and byte count or status.
 if (!ReadFile(sCommHdl, buffer, (DWORD)2, &rdcnt, NULL)) {
 return FALSE;
 }
 if (rdcnt != 2) {
 return FALSE;
 }

 switch (buffer[0]) {
 case Stx_Nak:
 // if NAK just show cause.
 *bcnt = 2;
 switch (buffer[PRO_BYTE_COUNT_INDEX]) {
 case Dat1_UndefinedError:
 printf("Undefined Error\n");
 break;
 case Dat1_CheckSumError:
 printf("NAK - Checksum Error\n");
 break;
 case Dat1_ParityError:
 printf("NAK - Parity Error\n");
 break;
 case Dat1_OverRun:
 printf("NAK - Overrun Error\n");
 break;
 case Dat1_FramingError:
 printf("UNAK - Framing Error\n");
 break;
 case Dat1_TimeOut:
 printf("UNAK - Timeout Error\n");
 break;
 default:
 printf("Unspecified Error\n");
 break;
 }
 retstat = FALSE;
 break;

 case Stx_Stx:
 // if ACK use bytecount+1 for next read to include reply + checksum
 rdcnt = *bcnt = (UINT)buffer[1] + 1;

 if (!ReadFile(sCommHdl, &buffer[PRO_CMD1_INDEX], (DWORD)rdcnt, &rdcnt, NULL) || *bcnt
!= rdcnt) {
 retstat = FALSE;
 break;
 }

 // Now validate the checksum and the assumed command return.
 if (!PpValidateChksum(buffer)) {
 retstat = FALSE;
 }
 else {
 if (buffer[PRO_CMD1_INDEX] == cmd1 && buffer[PRO_CMD2_INDEX] == cmd2) {
 retstat = TRUE;
 }
 else {
 retstat = FALSE;
 }
 }
 *bcnt += 2;
Profile Software Development Kit User Preliminary — 12 July 2001

Packet communication
 break;

 case Stx_Ack:
 // If transaction then read the transaction number.
 if (!ReadFile(sCommHdl, &buffer[PRO_CMD1_INDEX], (DWORD)1, &rdcnt, NULL)

|| rdcnt != 1) {
 return FALSE;
 }
 *bcnt = 3;

 // First check to see if all is fine.
 if (buffer[PRO_BYTE_COUNT_INDEX] == Dat1_Ok) {
 retstat = TRUE;
 }
 else {
 switch (buffer[PRO_BYTE_COUNT_INDEX]) {
 case Dat1_NotImplemented:
 printf("Command Not Implemented\n");
 break;
 case Dat1_PortBusy:
 printf("Port Busy\n");
 break;
 case Dat1_IncorrectNumBytes:
 printf("Incorrect Number of Bytes\n");
 break;
 }
 retstat = FALSE;
 }
 break;

 default:
 // Unknown response received.
 sprintf(buffer, "UNKNOWN reply %02.2X"<, buffer[0]);
 retstat = FALSE;
 *bcnt = 1;
 break;
 }

 return retstat;

} // PpRcvReply

//
// Open the communication port
//
BOOL PpOpenComm(void)
{
 COMMTIMEOUTS CommTimeOuts;
 DCB dcb;

 if (sCommHdl) {
 CloseHandle(sCommHdl);
 }

 sCommHdl = CreateFile(comm, GENERIC_READ | GENERIC_WRITE, 0, NULL,
 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 if (!sCommHdl) {
 return FALSE;
 }

 CommTimeOuts.ReadIntervalTimeout = 25;
 CommTimeOuts.ReadTotalTimeoutMultiplier = 25;
 CommTimeOuts.ReadTotalTimeoutConstant = 300;
Preliminary — 12 July 2001 Profile Software Development Kit User 271

Chapter 11 Profile RS-422 Serial Control

272
 CommTimeOuts.WriteTotalTimeoutMultiplier = 0;
 CommTimeOuts.WriteTotalTimeoutConstant = 0;

 if (!SetCommTimeouts(sCommHdl, &CommTimeOuts)) {
 return FALSE;
 }

 dcb.DCBlength = sizeof(DCB);

 if (!GetCommState(sCommHdl, &dcb)) {
 return FALSE;
 }

 dcb.BaudRate = CBR_38400;
 dcb.ByteSize = DATABITS_8;
 dcb.Parity = ODDPARITY;
 dcb.StopBits = ONESTOPBIT;
 dcb.fBinary = TRUE;
 dcb.fOutxCtsFlow = FALSE;
 dcb.fOutxDsrFlow = FALSE;
 dcb.fDtrControl = FALSE;
 dcb.fOutX = FALSE;
 dcb.fInX = FALSE;
 dcb.fRtsControl = FALSE;
 dcb.fAbortOnError = TRUE;

 // Setup hardware flow control.
 dcb.fOutxDsrFlow = FALSE;
 dcb.fDtrControl = DTR_CONTROL_DISABLE;

 dcb.fOutxCtsFlow = FALSE;
 dcb.fRtsControl = RTS_CONTROL_DISABLE;

 // Setup software flow control.
 dcb.fInX = dcb.fOutX = FALSE;

 // Setup other various settings.
 dcb.fParity = TRUE;

 if (!SetCommState(sCommHdl, &dcb)) {
 return FALSE;
 }

 if (!SetCommMask(sCommHdl, EV_RXCHAR)) {
 return FALSE;
 }

 return TRUE;

} // PpOpenComm
Profile Software Development Kit User Preliminary — 12 July 2001

 Index

Numerics
10Base-T 108
4:2:2 digital video 16, 180

A
ActivePlay 39
AES/EBU 17, 33
API libraries 13, 19

TekCfg library 20
TekPdr library 21, 115, 116
TekPls library 29, 129
TekRem library 30
TekVdr library 31, 181
TekVfs library 29, 45, 97, 116
TekVme library 46
TekXfr library 47, 109, 115, 122

archive functions 146
archiving 164
audio 33

architecture 33
events 41
minimum play length 34
resources 34

audio signal processing board 17

B
barcode labels 131
basic concepts 15
B-frame 179
black media 21, 36, 37, 182
BNC 216 digital interface chassis 17
burn-in timecode 18

C
C function parameters

action code 137
barcode label 137
bin class 137
bin number 138
cartridge class 138
cartridge description string 138
cartridge handle 138
cartridge label 138

category 138
field number 138
file description string 138
file name 138
library handle 138
library name 138
location info 138
loop handle 138
partition number 138
path 138
return values 138
session name 138
time date 138
transaction handle 138
transport class 138
transport handle 138
transport number 139

cartridge functions 143
CCIR-601 video 16, 180
CfgGetFileSystemName 23, 97
CfgGetNumCodecs 49
CfgGetNumFileSystems 97
CfgGetStandard 49, 57, 63, 69, 99
change notification 27

PdrGetMovieChanges 27
chrominance quantization level 31, 32

VdrGetAbsMaxChrQ 32
VdrGetAbsMinChrQ 32
VdrSetMaxChrQ 32
VdrSetMinChrQ 32

clock 35
(See also port clock)

clock modes 36
closed captions 182
CMF

(See Common Movie Format)
codecs 179

compression ratio 17, 179
lossless 179
lossy 179

command line utilities
copymovie 115, 117
fcconfig 108
Preliminary — 12 July 2001 Profile Software Development Kit User 273

Profile Family

274
fcncs 108, 112
fcping 108
listnames 117
pdrstart.bat 108
tekpls.exe 163
tekplsex.exe 163

command management functions 150
Common Movie Format 15, 21, 22, 27, 87
complex movie names 23

complexMovieName 23
PdrSetCurrentDataset 23
PdrSetCurrentGroup 23

complex movies 107
compression 17

compression ratio 17, 179
lossless 179
lossy 179

ConnectHandle 30
connection handles 132
connections 31
copymovie 115, 117
Create Extension 163
CuePlay 39

D
datasets 81

EXT 24
INT 24
names 23

datatypes 15
default events

DefaultEvent 99
VdrDefaultEvent 38

Delete Extension 163
digital interface chassis

BNC 216 17
XLR 216 17

Direct Memory Access (DMA) interface 17
dissolve 46
DNS server 108
drone 34
DVCPRO support 146

E
EISA 16

enumerating files
VfsFindClose 45
VfsFindFirstFile 45
VfsFindNextFile 45

Ethernet 47, 107, 108
EventConnectResources 38, 39
EventMixAudio 38
events 99

audio 41
state events 39
timecode generator events 41
VdrDefaultEvent 38
VdrScheduleEvent 38

EventSetGTcBits 38
EventSetGTcTime 38
EventStateAll 99
EventType 33
EXT dataset 24
Extension Command Execution 163
extensions 163

F
fcconfig 108
fcncs 108, 112
fcping 108
Fibre Channel 47, 107

configuration 108
fcconfig 108
fcncs 108, 112
fcping 108
IP address 108
multicasting 109
streaming 47, 107, 124
switched network 109
topologies 124
UML usage 112

field size goal 31, 32
file system name 23
FTP

file mode 118
FTP daemon 117
movie mode 118
streaming transfers 117
Profile Software Development Kit User Preliminary — 12 July 2001

G
genlock 18
GetLastError 21
GOP 32, 87, 179
groups (of movies) 81

H
handles 15, 132

(See also ResourceHandles)
header files

pdrattribs.h 21
pdrerror.h 21
pdrtags.h 27
pdrtypes.h 21, 23
plserror.h 163
tekpdr.h 21

HKEY_LOCAL_MACHINE 28
hosts file 108
HOT stream transfers 113
htssvc 108

I
I-frame 179
in/out points 24, 28, 37, 42, 131
INT dataset 24
Intel GNU general public license agreement 3
Intel i960 real-time processor 16
IP address 108
ISA 16

J
jog mode 36
JPEG 57, 63, 69, 87

motion JPEG 16
resources 31
streaming 181

JPEG software license agreement 3

L
LAN 30, 47, 107
library handles 132, 164
library server management functions 148
listnames 117
local catalog 130, 170
local catalog management functions 150
LOCAL_CONNECTION 30

LOCALHOST 112
lossless compression 179
lossy compression 179
Louth 19
LTC 18
luminance quantization level 31, 32

VdrGetAbsMaxLumQ 32
VdrGetAbsMinLumQ 32
VdrGetCurrentLumQFactor 32
VdrSetMaxLumQ 32
VdrSetMinLumQ 32

M
material categories 132
matte 46
Max Media Definitions 28
Max Media References 28
Max Movies 28
media file system 42, 45, 118
Media Manager 107, 117
MediaPlayMode 35, 36
mix effects board 46
movie attributes 24

PdrControlRO 26
PdrError 26
PdrLocked 26
PdrOpen 26
PdrOpenExclusive 26
PdrOpenMultiple 26
PdrReadOnly 26
PdrSimpleClip 26

movie management 21
MovieHandle 15
MovieToken 15
MPEG 180, 183

archiving 181
B-frame 179
bitrate 33, 181
chrominance sampling 32, 181
encoding/decoding 183
GOP structure 32, 87, 181
I-frame 179
limitations 180
P-frame 179
resources 32
Preliminary — 12 July 2001 Profile Software Development Kit User 275

Profile Family

276
streaming 181
multicartridge sets 132
multicasting 109
multiple files on a codec 42

N
network configuration service 108, 112
NormalClock 37
NTSC 18

O
Odetics 19
OPEN_EXISTING 45

P
packets 47, 107, 129
PAL 18
PDR 100 16
PDR 200 16
PDR 300 16
PDR 400 16
pdrattribs.h 21
PdrAudio16Bit 26
PdrAudio24Bit 26
PdrCloseMovie 63, 69, 99, 171
PdrCodecConstruction 26
PdrControlRO 24, 26
PdrCopyConstruction 26
PdrCopyMovie 115, 116, 118
PdrCreateMediaToken 22
PdrCreateMovie 22
PdrDeleteExtensionAtPos 206
PdrDetachMedia 63
PdrError 26
pdrerror.h 21
PdrExactMedia 28
PdrFindFirstDataset 81, 223
PdrFindFirstExtensionPos 206
PdrFindFirstGroup 81, 223
PdrFindFirstMovie 81, 224
PdrFindNextDataset 81, 223
PdrFindNextExtensionPos 206
PdrFindNextGroup 81, 223
PdrFindNextMovie 81, 224
PdrFreeExtension 206

PdrGetExtensionAtPos 206
PdrGetExtensionIntoAtPos 206
PdrGetMediaAttributes 22
PdrGetMediaIn 22
PdrGetMediaMarks 22
PdrGetMediaOut 22
PdrGetMediaPath 22, 63
PdrGetMediaState 87
PdrGetMovieAttributes 22, 87, 175
PdrGetMovieChanges 27
PdrGetMovieCreateTime 22
PdrGetMovieDataset 22
PdrGetMovieGroup 22
PdrGetMovieLastChangeTime 22
PdrGetMovieLength 22
PdrGetMovieName 22
PdrGetMovieStateInfo 81, 87
PdrGetNextMediaToken 63
PdrGetNextTrack 22, 63
PdrGetNumMediaOnTrack 22, 87
PdrGetPreviousTrack 22
PdrGetRegistry 28
PdrGetTrackLength 22, 87
PdrGetTrackTokenNum 87
PdrGetTrackTokenType 87
PdrGetUserData 27
PdrGetWaitOpStatus 115, 116, 118
PdrInsertExtension 206
PdrLocked 26
PdrMediaState 87
PdrMovieExists 87
PdrMovieState 81, 87
PdrOpen 26
PdrOpenExclusive 26
PdrOpenMovie 50, 57, 63, 69, 75, 99, 170
PdrOpenMultiple 26
PdrReadExtension 206
PdrReadOnly 26
PdrRenderedMedia 28
PdrRestoreConstruction 26
PdrSampleRate50 26
PdrSampleRate60 26
PdrSaveMovie 27
PdrSetCurrentDataset 23
PdrSetCurrentGroup 23
Profile Software Development Kit User Preliminary — 12 July 2001

PdrSetMediaOut 15
PdrSetRegistry 28
PdrSetUserData 27
PdrSharedMedia 28
PdrSimpleClip 26
pdrstart.bat 108
pdrtags.h 27
PdrTcDropFrame 26
PdrTcNonDropFrame 26
PdrTerminateWaitOperation 115, 116, 118
pdrtypes.h 21, 23
PdrUnderConstruction 26
PdrVideoFormatJPEG 26
PdrVideoFormatMPEG 26
PDX 208 17
P-frame 179
physical resources 15, 31, 34
PlayBounce 36
PlayByField 36, 37
PlayByFrame 36
playing lists of movies 69
playing movies 63
PlayJog 39
PlayLimited 36
PlayLoop 36
PlayNormal 35
PlayShuttle 39
PLS constants 167
PLS error codes 170
PLS events 167
PLS opcodes 168, 169
PlsAddTransport 149
PlsAllocateCartridge 143
PlsAllocateTransport 142
PlsAnyPartition 130
PlsAnyTransport 142
PlsArchiveClip 146, 147, 149, 172
PlsArchiveDataFile 147
PlsArchiveFile 149
PlsBackupCatalog 150
PlsCancelCommand 150
PlsCleanTransport 142, 172
PlsCloseCartridge 143
PlsCloseFile 146
PlsCloseFindHandle 142

PlsCloseLibrary 141
PlsCloseTransport 142
PlsConnectCartridge 143
PlsConnectFile 146
PlsConnectTransport 142
PlsCopyCartridge 144, 174
PlsDeleteFile 147
plserror.h 163
PlsExport 149
PlsExportCartridge 144
PlsFindFirstBinInfo 141
PlsFindFirstHandle 142
PlsFindNextHandle 142
PlsFormat 149
PlsFormatCartridge 143
PlsGetAnyEvent 148, 149
PlsGetAsynchEvent 148, 149
PlsGetBackupDir 174
PlsGetCartDescription 146
PlsGetCartridgeConfig 143
PlsGetCartridgeStatus 143
PlsGetClipSize 146
PlsGetCommandEvent 148, 149
PlsGetEventMask 148
PlsGetFileDescription 148
PlsGetFileInfo 148
PlsGetLibraryConfig 141
PlsGetLibraryStatus 141
PlsGetLocationString 146
PlsGetMajorVersion 140
PlsGetMinorVersion 140
PlsGetModes 149
PlsGetPartitionMap 143
PlsGetPath 149, 170
PlsGetStatusCommand 150
PlsGetTimeDate 149
PlsGetTransportStatus 142
PlsHouseKeeping 150
PlsImport 149
PlsImportCartridge 145
PlsImportLoad 149
PlsImportLoadCartridge 145
PlsInventoryCartridge 143
PlsInventoryLibrary 150
PlsLoadTransport 142
Preliminary — 12 July 2001 Profile Software Development Kit User 277

Profile Family

278
PlsNoPartition 130
PlsOpCodeGetAnyEvent 133
PlsOpenLibrary 140
PlsRemoveTransport 150
PlsRenameFile 147
PlsRestore 147
PlsRestoreDataFile 147
PlsSetBackupDir 174
PlsSetCartDescription 146
PlsSetEventMask 148
PlsSetFileDescription 148
PlsSetLocationString 146
PlsSetModes 149, 170, 173
PlsSetPath 149, 170
PlsUnloadTransport 142, 172
PlsUpdateCartridge 143
port clock 34

functions 34
limits 37
other clock modes 36
still mode 36

Profile serial protocol 19, 129
Profile XP Media Platform, description 16
ProLink 19, 163
ProNet 163
PRS 200 17
push-pull operation 115

R
ReadOnly 24
ReadWrite 24
ReadyToPlay 39, 99
Record/Idle state 39
recording movies 49
registry entries 28

HKEY_LOCAL_MACHINE 28
Max Media Definitions 28
Max Media References 28
Max Movies 28
PdrGetRegistry 28
PdrSetRegistry 28
Windows NT registry 20

RemCloseConnection 30
RemOpenConnection 30, 49, 57, 63, 69, 87,

97, 99, 132

resource reservation 131
ResourceAudioCodec 34
ResourceAudioInput 34
ResourceAudioOutput 34
ResourceHandles 34
resources 31

audio 34
JPEG 31
MPEG 32
physical 15, 31, 34

ResourceTypes 33
RS-422 19

S
saving movies 27

PdrExactMedia 28
PdrRenderedMedia 28
PdrSaveMovie 27
PdrSharedMedia 28

scheduled events
VdrScheduleEvent 38

SCSI 16
serial digital component board 18
SetupResources 49
SGI servers 107
ShiftAfter 44
ShiftBefore 44
slave mode 16, 37
SMPTE 272M Level A 17, 33
StartRecord 50
state events 39

VdrStateEvent 39
StateEvent 99
StateMask 99
still mode 36
StillMode 36
streaming 47, 107, 124

(See also Fibre Channel)
strings and file names 131

T
tape cartridges 130
tape partitions 130, 135
TCP/IP 47, 107
TekCfg library 20
Profile Software Development Kit User Preliminary — 12 July 2001

TekPdr library 21, 115, 116
change notification 27
Common Movie Format 22
complex movie names 23
copying media 115

tekpdr.h 21
TekPls library 29, 129

archive functions 146
archiving 164
barcode labels 131
cartridge functions 143
cartridge selection rules 139
command management functions 150
concurrent commands 133
configuration commands 134
connection handles 132
error codes 134
extension invocation 163
extensions 163
file selection rules 139
files 130
handles 132
in/out points 131
information commands 134
library handles 132, 164
library server management functions 148
local catalog 130
local catalog management functions 150
material categories 132
memory model 133
multicartridge sets 132
PLS constants 167
PLS error codes 170
PLS events 167
PLS opcodes 168, 169
resource reservation 131
status commands 134
strings and file names 131
tape cartridges 130
tape partitions 130, 135
tape transport selection rules 139
transport functions 142
transport load/unload rules 140

tekpls.exe 163
tekplsex.exe 163

TekRem library 30, 132
TekVdr library 31, 181
TekVfs library 29, 45, 97

copying media 116
TekVme library 46
TekXfr library 47, 109, 122

copying media 115
timecode 34

burn-in timecode 18
media file 34
timecode generator events 41
VdrGetCurrentTimeCode 34
VdrGetCurrentUserBits 34
VdrSetGenTcFormat 41
VdrSetGenTcMode 41

timeline 35, 37, 42
shifting timeline 42

tokens 15
transport control 31
transport functions 142
twisted-pair 108

U
ultra SCSI 81
UML 112, 123, 124
UML options

exact 113
flattened 112
HOT 113

Uniform Media Locator
(See UML)

user data 27
PdrGetUserData 27
PdrSetUserData 27

V
VdrAllocateChannel 75
VdrAllocateResource 49, 57, 63, 69, 99
VdrAttachFittedMedia 63
VdrAttachFittedMediaWithMarks 63
VdrAttachMovie 21, 57
VdrAttachMovieWithMarks 50
VdrAttachOpenMovie 57, 69, 75
VdrClosePort 50, 57, 63, 69, 75, 99
VdrCuePlay 57, 63, 69, 75
Preliminary — 12 July 2001 Profile Software Development Kit User 279

Profile Family

280
VdrCueRecord 21, 50, 99
VdrDefaultEvent 38, 50, 57, 63, 69, 99
VdrDetachMovie 50, 69, 75, 99
VdrGetAbsMaxChrQ 32
VdrGetAbsMaxLumQ 32
VdrGetAbsMinChrQ 32
VdrGetAbsMinLumQ 32
VdrGetBitRate 181
VdrGetChannelInfoList 75
VdrGetCurrentFieldSize 31
VdrGetCurrentLumQFactor 32
VdrGetCurrentPictureStatus 182
VdrGetCurrentTimeCode 34
VdrGetCurrentUserBits 34
VdrGetEncodingRange 33, 181
VdrGetMpegChromaFormat 32, 181
VdrGetMpegGopStructure 32, 181
VdrGetNumChannelDefs 75
VdrGetPosition 50, 57, 75, 99
VdrGetResourceConnectionHandle 49, 69
VdrIdle 50, 63, 69, 75, 99
VdrJog 36, 180
VdrOpenPortConnection 49, 57, 63, 69, 99
VdrPanel 14
VdrReleaseResource 50, 57, 63, 69, 99
VdrScheduleEvent 38, 50, 57, 63, 69
VdrSetAudioWindow 34
VdrSetBitRate 181
VdrSetEncodingRange 33, 181
VdrSetGenTcFormat 41
VdrSetGenTcMode 41
VdrSetMaxChrQ 32
VdrSetMaxLumQ 32
VdrSetMaxPosition 36
VdrSetMediaMarkOut 15
VdrSetMinChrQ 32
VdrSetMinLumQ 32
VdrSetMinPosition 36
VdrSetMovieMarkIn 57
VdrSetMovieMarkOut 57
VdrSetMpegChromaFormat 32, 181
VdrSetMpegGopStructure 32, 181
VdrSetPlayMode 36, 37
VdrSetVideoFormat 49, 57, 63, 69, 99
VdrSetVideoGoalSize 31

VdrShuttle 21, 50, 57, 63, 69, 75, 99
VdrStateEvent 38, 39, 99
VfsCancelCopy 116
VfsCopyFile 116
VfsCreateFile 45
VfsFindClose 45
VfsFindFirstFile 45, 87
VfsFindNextFile 45
VfsGetFileAttributes 87
VfsGetFileDefaultMarks 87
VfsGetFileModificationTime 87
VfsGetFileType 87
VfsGetFileVideoFormat 87
VfsQueryFileSystemSpace 97
VfsStatusOfCopy 116
video goal size 31
video mix effects board 46
video resources 31, 32
video router 16
VITC detection 18
VmeHandle 46
volume 81

W
WaitForCompletion 116
WaitForMultipleObject 27
WaitForSingleObject 27
WaitToken 116
WIN32_FIND_DATA 45
Windows NT services

htssvc 108
network configuration service 108, 112

wipe generator 46
wipe styles 46

X
XfrAbort 123
XfrGetActiveTokens 123
XfrGetStatus 123
XfrRequest 113, 123
XfrToken 123
XLR 216 digital interface chassis 17
Profile Software Development Kit User Preliminary — 12 July 2001

	Third-party License Agreements
	Independent JPEG software license agreement
	Intel GNU general public license agreement

	Overview
	About the Profile Software Development Kit
	About this manual
	Getting started
	If you are new to Profile programming
	If you are an experienced Profile programmer

	Introduction
	Basic concepts
	A Profile system overview
	Video disk storage
	Video compression
	Video and audio boards

	Programming the Profile Video Server
	The TekCfg library
	The TekPdr library
	Using stored movies
	Common Movie Format
	Using library commands with CMF movies

	Complex movie names
	Movie attributes
	User data
	Change notification
	Registry entries

	The TekPls library
	The TekRem library
	The TekVdr library
	Physical resources
	JPEG video resources
	Video goal size
	Luminance quantization level
	Chrominance quantization level

	MPEG video resources
	Chrominance sampling
	GOP structure
	Bitrate
	First and last line encoding

	Audio
	Analog audio architecture
	Audio resources
	Audio minimum play length

	Timecode
	The port
	Port clock modes
	Other clock modes
	Still modes
	Port clock limits
	Synchronizing ports

	Events
	State events
	Audio events
	Timecode generator events
	Media files
	Multiple files

	The TekVfs library
	The TekVme library
	The TekXfr library

	Recording and Playing Movies
	Playing a movie
	Playing a movie with in and out marks
	Playing a list of movies
	Playing a movie using Central Resource Management

	Using the Profile Media File System
	Browsing the media file system
	Viewing CMF information
	Checking free file space

	Using Events
	Transferring Media with Fibre Channel
	Configuring Fibre Channel
	Multicast programming
	Switched Fibre Channel networks
	Multicasting errors

	The PDR network configuration service
	UML descriptions
	The flattened option
	The exact option
	The HOT option

	Using UMLs
	Copying media via Fibre Channel
	Copying media with TekPdr functions
	Copying media files with TekVfs functions
	Copying media with Media Manager
	Copying media with copymovie
	Using FTP for streaming transfers
	File mode
	Movie mode

	Sample code: Media copies
	Streaming with Fibre Channel
	XfrAbort
	XfrGetActiveTokens
	XfrGetStatus
	XfrRequest
	Sample code: Fibre Channel streaming

	Programming the Profile Library System
	Programming model and serial protocols
	A C programmer’s view
	Serial protocols

	Library concepts overview
	Local library catalog
	Cartridges and partitions
	Files
	Barcode labels
	Strings and file names
	Resource reservation
	In/out points
	Field numbers
	Multicartridge sets
	Material categories

	The programming model
	Connection and library handles
	Library server API memory model
	Operations returning multiple data items

	Concurrent command execution
	Error codes
	Configuration, status, and information commands

	Important notes and assumptions
	Configuration
	Tape partitioning

	Library server commands
	File selection rules
	Cartridge selection rules
	Tape transport selection rules
	Transport load/unload rules

	Library server API function descriptions
	Library functions
	Transport configuration commands
	Library bin information commands
	List all cartridges commands

	Library and cartridge directory commands
	Transport functions
	Cartridge functions
	Basic archive functions
	Library server management functions
	Local catalog management functions
	Command management functions

	Sample code: Managing a library system
	TekPls extension invocation
	The tekpls.exe program
	The tekplsex.exe program
	Connecting to the TekPls extension
	Obtaining a library handle
	Archiving a file
	Closing the library and connection

	PLS constants
	PLS error codes by value

	Programming with MPEG
	Compression/decompression algorithms
	Some limitations to MPEG
	Other MPEG notes

	Using MPEG functions
	Archiving and streaming
	Bitrate
	Chrominance sampling
	First and last line of encoding
	GOP structure
	MPEG closed caption technique
	Picture information

	Sample program: MPEG encoding/decoding

	The Media Area Network
	Key features of the Media Area Network
	Overview of the Media Area Network
	Media Area Network hardware
	Media Area Network file system software
	Movie database software
	Fibre Channel redundancy
	Fibre Channel failover
	File System Manager redundancy
	File System Manager failover

	Specifications
	Developing Media Area Network software applications
	File system changes
	Dataset name
	Application access to the file system

	TekPdr changes
	Different Open Modes
	PdrDeleteMovie is not synchronous
	PdrSetMovieReadOnly() and PdrSetMovieReadWrite()
	PdrControlRO bit
	PdrReadOnly
	PdrExtensions
	Obsolete functions

	Common Movie Format database access
	Recommendations for verifying applications

	PdrMovie Extensions
	Grass Valley Group Common Extensions
	Video Mix Effects Extensions
	Simple Dissolve
	Advanced Dissolve
	Simple Wipe
	Advanced Wipe
	Key
	Video Fade-to-Matte

	Audio Mix Effects
	Audio Mix
	Audio Level

	Motion Effects
	Source Effects

	External Control
	GPI

	Meta Data Extensions
	MovieData
	SegmentData

	The PdrExtensionInfo Data Structure

	Profile RS-422 Serial Control
	Browsing a remote Profile file system
	Playing a movie remotely
	Sending packets
	Receiving packets
	Packet communication

	Index

