%ASS VALLEY GROUP

SOFTWARE DEVELOPMENT KIT
User Manual

software version 5.0

071-8017-XX

PRELIMINARY - JULY 2001

PROFILE & PROFILE XP FAMILY

VIDEO FILE SERVERS AND MEDIA PLATFORMS

Copyright

Trademarks

Disclaimer

U.S. Government
Restricted Rights
Legend

Revision Status

Copyright © 2000 Grass Valley Group Inc. All rights reserved. Printed in the United States of
America.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of Grass Valley
Group Inc., P.O. Box 59900, Nevada City, California 95959-7900

Grass Valley, GRASS VALLEY GROUP, Profile and Profile XP are either registered trademarks
or trademarks of Grass Valley Group in the United States and/or other countries. Other trademarks
used in this document are either registered trademarks or trademarks of the manufacturers or
vendors of the associated products. Grass Valley Group products are covered by U.S. and foreign
patents, issued and pending. Additional information regarding

Grass Valley Group's trademarks and other proprietary rights may be found at
www.grassvalleygroup.com.

Product options and specifications subject to change without notice. The information in this manual
is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Grass Valley Group. Grass Valley Group assumes no responsibility
or liability for any errors or inaccuracies that may appear in this publication.

Use, duplication, or disclosure by the United States Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.277-7013 or in subparagraph c(1) and (2) of the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19, as applicable. Manufacturer is Grass Valley Group
Inc., P.O. Box 59900, Nevada City, California 95959-7900 U.S.A.

Rev date Description
January 1995 Original issue. Manual part number 070-9187-00.
March 1995 Updated to support version 1.1.

Manual part number changed to 070-9187-01.

November 1995 Updated to support version 1.3.
Manual part number changed to 070-9187-02.

May 1996 Updated to support version 1.4. Reference material removed.
Manual part number changed to 070-9187-03.

May 1999 Updated to support version 3.0.
Manual part number changed to 070-9187-04.

April 2000 Updated to support version 4.0.
Manual part number changed to 071-8017-00.

July 12 2001 Updated to support version 5.0.
Preliminary version

Third-party License Agreements

Independent JPEG software license agreement

Theauthors make NO WARRANTY or representation, either express or implied, with respect to
this software, its quality, accuracy, merchantability, or fitness for a particular purpose. This
software isprovided “AS|S’, and you, its user, assume the entirerisk asto its quality and
accuracy.

This software is copyright © 1991, 1992, 1993, 1994, Thomas G. Lane. All Rights Reserved
except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this software (or portions
thereof) for any purpose, without fee, subject to these conditions: (1) If any part of the source
code for this software is distributed, then this README file must be included, with this
copyright and no-warranty notice unaltered; and any additions, deletions, or changes to the
original files must be clearly indicated in accompanying documentation. (2) If only executable
code is distributed, then the accompanying documentation must state that “this softwareis based
in part on the work of the Independent JPEG Group”. (3) Permission for use of this softwareis
granted only if the user acceptsfull responsibility for any undesirabl e consequences; the authors
accept NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the 1JG code, not just to the
unmodified library. If you use our work, you ought to acknowledge us.

Permission isNOT granted for the use of any 1JG author's name or company namein advertising
or publicity relating to this software or products derived from it. This software may be referred
to only as “the Independent JPEG Group's software”.

We specifically permit and encourage the use of this software as the basis of commercial
products, provided that all warranty or liability claims are assumed by the product vendor.

Intel GNU general public license agreement

Thefollowing listed PDR 100 tools are based on tools from the Intel GNU/960 Tools, some of
which were devel oped and/or distributed by an organization call ed the Free Software Foundation
(FSF): gdb9o60.exe and objcopy.exe.

These tools are covered by the GNU General Public License and have no warranty of any kind.
Thetext of thislicenseis built into gdb960.exe, and can be viewed by typing “info copying’ at
the gdbos0 prompt. Source code for the above listed tools is available under the terms of this
license by contacting Grass Valley Group.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 3

4

T
Chapter

Profile Software Development Kit User

Preliminary — 12 July 2001

Contents

Chapter 1

Chapter 2

Third-party LiCENSe AQreemMENTSottt ee e e 3

Independent JPEG software license agreementococcveeeeenne
Intel GNU general public license agreement

(@)Y= VA 1=\ T

About the Profile Software Development Kitcoccuiii i
ADOUL thiS MANUAL.eiiiiii e en e nnne s
Getting started.........ccocveeriiiiiee e
If you are new to Profile programming
If you are an experienced Profile programmer

Introduction
2 TS (ol oo Tol= o] £ 0 RPN
A Profile SYSIEM OVEIVIEWeuiiiiiiiiieiie ettt et
VLo [eTo o L] Q=S (o] =T [TEPRT
Video compression
Video and audio boards

Programming the Profile Video Server
The TekCfg library
The TekPdr library

USING STOrEA MOVIESeeeiie it ee ettt ettt e e e s et e e e e e atae e ee e e smsbeeee e s e aneeaesanes 21
COMMON MOVIE FOIMAL......coiiiieiiiiie ettt nn e ee e nnne s 22
Using library commands With CMF MOVIES..........cooiiiiiiiiieii et 22

Complex movie names
Movie attributes
L6 ET=T o - L= PRSP PRRPRPPTPRRI
Change NOLIICATION et et e e st ee e e nneaeean
Registry entries..................

The TekPlIs library

The TekRem library................

THe TEKVAT TIDIAIY ...ttt e et ee e e s be e e e e e nneeeeaan
PRYSICAI FTESOUICESottt ettt ettt e e e et e ee e e e st e ee e e s e aeaeeas e e
JPEG video resources

Video goal size
Luminance quantization levelccccccceeee
Chrominance quantization 1@Vel.............coi i
MPEG VIAEO FESOUICESeiiuieeeeiriee et es e es st eenee s e e sn et en e sme e s sn e s ene e s snneeesnreeeens
Chrominance sampling
GOP SEIUCTUIE ...ttt ee e e e e s s e e e snee e ean
BIIFATE ..o ee e e e n e ean
First and 1ast liN€ @NCOTINGceioiuuiiiiie et ee e
AUIO e e e e eas
Analog audio architecture
AUTIO FESOUICES ...ttt ettt et et n st e e ne e e s e e ee e e nnne e e nnes
Audio MiNimum play 18NGEN........e e
Timecode
The portccoeeveeiiiieeene
Port clock modes
Other ClOCK MOGEScoiviiii et
SHIMOUES ..o
Port lock IMitS........ooeeiiiiiee e
Synchronizing ports

EVENLS .

STATE BVEINTS ...t

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

T
Profile Family

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

AUAIO BVENTS ...ttt et e ettt en e e re e sn e e s sre e e n et nn s 41
TIMECOAE GENEIALOr BVENLS. ieiiieiieitieiie ettt ettt e e e see e e s et beee e e sbeeeee s snneeeeean 41
MEAIA FIIES .ot
Multiple files
THe TEKVES TIDF@IY ..ottt ettt ettt e e e ettt e e s eennaeee e e e 45
The TEKVME NIDFAIYciii it ettt e et e e e et e e e e s etbeaeeeseee 46
THhe TEKXIT DAY ...ttt ettt ee e e e et ee e e eaaneeee e e 47

Recording and Playing Movies
PIAYING @ MOVIE ...ttt ettt e ettt e e e e st be e e e st be e e e e e beeeee s e nnneeaean
Playing a movie with in and Ut Marks.........c..ooiioi e
Playing a list Of MOVIES........ciiiiiiiiiieie e

Playing a movie using Central Resource Management

Using the Profile Media File System

Browsing the media file SYStEM....... ..o e 81
Viewing CMF information
Checking free fil€ SPACEco e e

Using Events

Transferring Media with Fibre Channel
Configuring FIbre Channelooo e
MUItICAST PrOGIAMMINGeeieeieieiie ettt e et ee e e e teee e e s e beeeee e e taeeee e e sbnnbeeaeeannnseaaeasasens
Switched Fibre Channel networks.............
Multicasting errorsccccceeevveieeeeenens
The PDR network configuration service
L0 o (=S o [0 PSP PURS P
The flattenNed OPtioNc.ooveeeeeeeeee ettt
The exact option
The HOT option
USING UMLS ..ttt ettt ettt et et e e e et et e e e e e taeeee e et e beeaeeaannbeeae e anrees
Copying media via Fibre Channel
Copying media with TEKPAr fUNCHONScoieii i
Copying media files with TekVfs functions
Copying media with Media Managercceueiiiaiie e ee e e
Copying media With COPYMOVIEueiiiii ettt a e e raeee e e e eaeees
Using FTP for streaming transfers
FIlE MOOE ... e e e
MOVIE MOTE ...t et n e sr e nn e e e nn e eas
Sample code: Media copies.......
Streaming with Fibre Channel
XITADOIT ...
XITGEEACHVETOKENS ...ttt ettt ettt ns e er e e eeee e nnnee s
XITGEESTALUS ..o ettt et et e et e en e es e en e e e n e s e e nnree s
XEFREQUEST ...
Sample code: Fibre Channel streaming

Programming the Profile Library System

Programming model and serial ProtoCoIS...........oc.ueeieiiiiiiiie e 129
A C programmer’s view
Y= 1= 1 o] (] (o] o o] U SPRURRRIN

Library concepts overview
Local lIBrary Catalogoeoeei it e

6 Profile Software Devel opment Kit User Preliminary — 12 July 2001

BarCOAE [ADERIS et a e e e e e raaaan 131

Strings and file@ NAMESooii i e e 131
RESOUICE FESEIVALIONeeiiiiiiit ettt e et ee e e et ae e ee s e sae e ee e e sareeeeeaan 131
In/out points

FIEld NUMDEIS ... et e e s nre e e nen s
MUKLICArHIAQE SEES ...ttt ettt ee e e s bt te e s e sae e ee e e sabeeeeeaan
Material categories

The programming model
Connection and library handles.............
Library server APl memory model

Operations returning multiple data items ...
Concurrent command execution
ErrOr COUESooiiiiieiiiieec e
Configuration, status, and information commands ..

Important Notes and aSSUMPLIONSuuiiiii it e s e ee e e seeeeeee e

(©0] 1o U1 =110 o [PPSR U TPURURRR
Tape partitioning

Library Server COMMANAS ... vuiiie ettt ettt ee s e sae e ee s e snneeeeeean
File SEIECHON FUIESeiiiei e e e e
Cartridge SEIECHON FUIESeei et e e et ee e e eneees
Tape transport SEIECHION TUIESc.ooii et
Transport load/unload rules

Library server API function deSCrPtIONSccuueiiiiiiii e
[o] =1 VAN (1] [od o] o L= PRSP

Transport configuration commands

Library bin information commands...

List all cartridges commandscccceeeeveeeennn.

Library and cartridge directory commands
TraNSPOIt FUNCHIONSeei ettt ettt e e et e e e e ennn e ee e e s ennaes
Cartridge functions

Basic archive functions
Library server management functions ..
Local catalog management fUNCHONSuiiiiiiiiie e e
Command management fUNCHONS...........ooii i

Sample code: Managing a library system

TeKPIS XteNSION INVOCALIONccviiiieie et e e nre e e
The tEKPIS.EXE PrOGraMcviveeeececeeeee ettt ettt et et eae e et eeseeae e e eeeee e eaeenanas

The tEKPISEX.EXE PrOGIaMveieeeeeeeee ettt es e ee e ara s en e

Connecting to the TekPls extension

Obtaining a library handle

Archiving a file ...

Closing the library and CONNECHONooiiiiiiiiiii e
PLS CONSEANTS ... et e s e sre e e s e s ee e e
PLS error COUES DY VAIUE ..ottt ettt ee e e e e et eeee e

Chapter 8 Programming with MPEG
Compression/decompression algorithms ...
Some liMitationNs 10 MPEG........cooooiiiieie e e e e
Other MPEG notes
USING MPEG fUNCHONSeeie ettt et ettt e s et e s e sae e ee s e snneeeeeean
Archiving @and StrEAMIINGocuueeer ettt e e et e e e e et e e e e e e sanbeee e e seeeeeeaaan
BItrate ..ooveee e
Chrominance samplingoccoeiniiiiiiinniiieieene
First and last line of encoding..........c.ccccoeviiiiiieenes
GOP SHTUCTUIE ...ttt et e e e e s s e e e e e sn e e e e e ennnee s
MPEG closed caption teChNIQUEcoooiiiiiiiiiiie e ee e
Picture INFOrMAaLIONcceei e e

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

T
Profile Family

Sample program: MPEG encoding/deCcodingcuuueiiiaiiiiiie e e e eeieee e 183

Chapter 9 The Media Area Network
Key features of the Media Area NetWOIKocuiiiiiiiiiiii e
Overview of the Media Area NETWOIK...........coiiiiiiiirie e

Media Area Network NArdWarecooceeeriiie i
Media Area Network file system software
Movie database software
Fibre Channel redundancy
Fibre Channel fAIlOVETcoiiiii i
File System Manager redUNTANCYuiiiiai it ee et ee e ee e eeeeee s
File System Manager failover
SPECIfICAtIONS ...
Developing Media Area Network software applications....
File SYStEM ChANQES.... .. et e ee e et e e e eaeaee s
DAtaSEE NAIMEooiiie e e e e e e s r e e s e en e e e e e e ennnes
Application access to the file system....
TEKPAr CRANGES ...ttt ettt e s et e e e e aeee e e sanaeeens
Different OPeN MOUESoooi ittt e et e e e e eenebee e e e aneees
PdrDeleteMovie iS NOt SYNCAIONOUSooiiiuiiie it
PdrSetMovieReadOnly() and PdrSetMovieReadWrite()
PdrControlRO bit
PArREAAONIY ...ttt ettt ee e e et e e e e seebee e e e e annees
PAFEXIENSIONS ...ttt et r e nr e e nn e
Obsolete fUNCLIONSooeciviriee e
Common Movie Format database access
Recommendations for verifying applications

Chapter 10 PdrMovie Extensions
Grass Valley Group Common EXIENSIONS........uuuiiiiaiiiitie et e et ee e seee e ee e
Video Mix Effects Extensions
Simple Dissolve......................
AAVANCEA DISSOIVE ...ttt e ee e e e e e e eeeeaas
SIMPIE WIPE ...ttt e e e et e e ettt e e e e eann e e e e e enraes
Advanced Wipe
[0S VPR TP PP PPPPPPUPRPPPP
AV (o [STo T o= Lo (ST (o B 1 = 1 (Ot
AUIO MiIX EffBCES ...ttt e e e e e e e e e e e e e e ee e e e e e eeseesenrnnans
F XU Lo [T TN Y Ot
Audio Level
o) 1T T = 1 (=T o3 £
Yo 1 oY = 1 {=Tex £
EXternal CoNtrol..........ouueuviiiiee e e eee e

MOVIEDATAcoveivtiiee ettt e e e et et e e e e e e e e e e e tee e e ee e e e e eeeeesae st taneaaeaaas
SEOMENIDALA. ...ttt et e e e e e e e e e
The PArExtensionInfo Data StrUCTUIEc.ooeiieeeiieiiiieee e et e e

Chapter 11 Profile RS-422 Serial Control
Browsing a remote Profile file SYyStemooo i 223
Playing a movie remotely
Sending packets...........coceeeeen.
RECEIVING PACKELS ...ttt ettt et ee e e e sbe e ee e e sateee e e sannaeeens
Packet COMMUINICALIONcooiiiiieirii ittt sn e e nn e nnreeeane

8 Profile Software Devel opment Kit User Preliminary — 12 July 2001

List of tables

1 Punctuation for a compleXMOVIENAMEccoooi it 24
2 Movie attribute descriptions

3 PArCopyType deSCIPLIONSooieiiieie ettt ettt e et e e ae e e e e
4 Summary of available EVENTSooiiiii e
5 Streaming ErrOr COURS ... uuiiieit ettt ee ettt ee e e ee e e e e e eeeee e

6 Supported commands processed by the FTP daemon

7 PLS tap‘e partitioningccoooeiirieoie et

8 Frequently used C function Parametersc.ueeeeeiiiiieeereieiee e
9 PLS @VENTS DY NAME ..ottt ettt e e see e e emeaeaee e s
10 PLS events by value...............

11 PLS opcodes by name

12 PLS opcodes by value............

13 PLS Serial €ITON COUERSoiiiiiiiiiriiiiieies ittt sn e nnre e
14 PdrMovie extension EIEMENTScceeiiiieeiiriie e
15 Simple dissolve extension elements

16 Advanced diSSOIVE ElEMENTS.........cccvviiiiie e
17 Simple wipe exXtension ElEMENTSc.ueuii i e
18 Advanced wipe extension lemMeNtScooi it
19 Key extension €IEMENLScooo oot
20 Fade-tomatte extension elements

21 Audio mix eXtENSION EIEMENTS.......ccicciirieie et e e
22 Audio level extension ElEMENTSccccoiiiir i
23 Source effect extension elements

24 GPl extension element.........cccccoveeiieennne

25 MovieData extension elements

26 SegmentData extension EleMENTScceuiiiiiiiiiiie e

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 9

T

List of figures

1 The PDR200/300/400 blOCK diagramcooiiueiieiiiiiie e ee e
Timeline position in media fileS.........ooo e
PrOfilE STALE.....ccieieee ettt e e
Profile unit and video switcher under automation....
Pass-through Profiles iN SEHESueiiiii e e
Attaching a new media file to a timeling ...
Deleting media from timeline with effect on other media...........cccccoiiiiiiiniiiie. 44
Fibre Channel file transfer ... e 124

O~NO T WDN

10 Profile Software Devel opment Kit User Preliminary — 12 July 2001

List of examples

[=Tolo] o X o TP PP UPRI 51
1= Y2 o PR SOUPURPPUSRR 58
{1 E= YR 1 (=T o Y o PR URURT PRSPPI 64
L1 E= Y2 4 4T L o SRR 70
01 E= NV ol 42 e o o PSRRI PRSP 76
DIOWSE.C ot e e 82
VIBWECIME.C oottt ettt ettt et s e e en e e e n s ne e e aE e e ne e e e e n e s 88
LTSS o= Lo N PRSP 97
LS E= =T CN 1 o PR 100
SAMPIE NOSES fIlE ... e et e s e e e s e e e e e ens 108
UML usage in file MOAE ... et et e e e e e e ennaeaes 114
UML US@QE IN SLIEAMING .oiuitiiiie e ettt et et ee e ettt e e e sttt ee s e teeeee s e nbaeeee e e asnseeeaeeasnsbeeaeeannnnes 114
(o =TT oToTo] o)V 2K oL PR 119
D= (01001 X o PP P PP PPRPPPRR 125
01550 (=1 44T TN o RSP URTRPURU 151
g o T=To o =1 4o To T o RSP RPURU 183
18] 8]0 €01V o PSRRI 224
0] 0] 0] = 1Y 2K o PRSP 229
0] 0 1ST] Lo 1o RSP URR P URUN 234
0] 01 £=] o] Y/ oS TUPUPURU 254
o] o1elo] 1 011 ¢ T o TSP PP P PP PPPPPPPPP 268

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 11

12 Profile Software Devel opment Kit User Preliminary — 12 July 2001

Overview

About the Profile Software Development Kit
The Profile Software Development Kit (SDK) includes two manuals:

* TheProfile SDK User Manual which includes:

- aconceptual overview of the Profile system;
- ageneral discussion of the Profile programming libraries; and
- aseries of sample programs that demonstrate Profile functionality.
» The Profile SDK Reference Manual which includes:
- application programming interface (API) and serial command summary tables;
- afunctional and alphabetical listing of all available API commands; and

- afunctional and numerical listing of all serial commands.

About this manual

The Profile SDK User Manual describes programming applications for the Profile video
server:

Chapter 1, Introduction is a general overview of Profile application development. This
chapter offers a brief introduction to basic Profile concepts and the core API
libraries.

Chapter 2, Programming the Profile Video Server provides a more complete conceptual
overview of the API libraries and what it takes to make them work.

Chapter 3, Recording and Playing Movies explores the basic work of recording and
playing media.

Chapter 4, Using the Profile Media File System shows you how to write programs that
inventory media on the Profile file system.

Chapter 5, Using Events furnishes a sample program that demonstrates the Profile event
model.

Chapter 6, Transferring Media with Fibre Channel provides you with the code samples
you need to write applications that implement Fibre Channel transfers, including
streaming operations.

Chapter 7, Programming the Profile Library System helps you write programs for the
Profile library system, a device that caches media on digital cartridge tapes.
Chapter 8, Programming with MPEG provides a sample program to help you record and

play MPEG video.

Chapter 11, Profile RS422 Serial Control covers programs that perform serial

communication by using wrapper functions that implement the RS-422-based
Profile protocol.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 13

14

T
Chapter

Getting started

The Profile DK User Manual assumes that you understand basic Profile operations and that
you are already familiar with the following resources:

The Profile Installation Manual, containing essential information for the installation of
your Profile server and the proper cabling for the installed cards.

The Profile Family User Manual, containing essential information on properly configuring
a Profile server for your environment.

The VdrPanel application, which utilizes much of the Profile API functionality. Playing
and recording test clips from VdrPanel is a useful exercise for the Profile devel oper.

If you are new to Profile programming

If thisisyour first introduction to Profile programming, we recommend you acquaint yourself
with the libraries, commands, and examples before writing your own code.

Read Chapter 1 of this manual for a general overview of Profile application development,
an introduction to the core API libraries, and other basic Profile concepts.

Study the sample programs that follow in al the chapters (complete code samples are
availableinthe c:\profile sdk\src directory). Focusonthe APl or serial code as
appropriate to your development environment. Compile and run the sample applications.

Onceyou are comfortable with the basic sample programs, you will beready to create your
own. Usethe sample code as component building blocks. (Y ou may want to cut-and-paste
this code to create or customize your own work.)

If you are an experienced Profile programmer

We've made many changesto the SDK sincethelast release. We' ve added parametersto many
existing functions and created some new functionswhich implement new featuresand provide
convenient shortcuts.

Read the release notes for an overview of the changes.

Y ou may want to work with your Profile administrator and/or other Profile developersto
coordinate the upgrade to the current software.

If you have existing applications written for an earlier version of the API, you may want to
convert these as well.

Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 1

Introduction

TheProfile Software Devel opment Kit provides an Application Programming Interface (API)
for libraries of Profile functions that control the Profile video server. The software models
supported by the APl use a set of handles or identifiers to reference objects to which the
application has requested access, or has reserved. (For a detailed explanation of the eight
libraries, see Chapter 2, Programming the Profile Video Server.)

There aretwo programming models involved. The first programming model supports direct
function callsthat are issued by programs devel oped under Microsoft Visual C++. Thismodel
will also function across Ethernet, from a remote Win32 computer to the Profile. A second
programming model supports abyte-stream serial protocol used over RS-422 communication
lines.

All functions in aparticular library share athree-letter identifying prefix. For example, all
functions in the TekCfg library have the Cfg prefix. Thisis intended to help clarify the
differences between functions of similar names and to alphabetize function listingsin the
companion volume to this user manual, the Profile SDK Reference Manual.

L outh and Odetics RS-422 protocols are supported, although there is not a one-to-one
correspondence between these protocols and the Profile API. Louth and Odetics protocols do
not allow access to the full functionality of the Profile system.

Basic concepts

The software model presented by the integrated libraries of the Profile separate functions
according to the area of responsibility. Each library is associated with a major object of the
system. At thetop isthe TekVdr library which provides transport control for recording and
playing movies. Thislibrary provides access to the port clock and physical resources. Below
thislibrary isthe TekPdr library which maintains the inventory of movies, their Common
Movie Format descriptions, thelogical requirementsof the moviesfor resources, and how they
relate to the mediafiles.

A movi€e's description might be changed either while being associated with the physical
resources of the system and being prepared for playing, or while in the inventory of movies.
This means that there are two distinct, yet similar sets of functionsin the Profile API: oneis
for manipulating the movie associated with the physical resources, the other oneis associated
with the moviein theinventory. A function with atitle prefixed by Vdr is used to manipul ate
the movie associated with the physical resource. A functionwith atitle prefixed by Pdr isused
to manipulate the movie in the inventory. For example, Pdr SetM ediaOut sets the mark-out
point for a media file which will be stored permanently with the movie.

VdrSetM ediaM ar kOut, on the other hand, overrides any stored out-points, setting a
mark-out position which applies to the current session only. It isessential for Profile
developers to correctly distinguish which functionality they want.

A second aid to distinguishing the objects being manipulated is the naming convention for
various API datatypes: objects associated with the physical resources are represented by
handles, while objects associated with the movie inventory are represented by tokens. For
example, a MovieHandle datatype represents a movie associated with physical resources,
while a MovieToken represents a movie associated with the inventory.

Preliminary — 12 July 2001 Softwar e Devel opment Kit User

T Chapter 1 Introduction

A Profile system overview

Pleaserefer to the Profile X P System Guide for acomplete description of the Profile XP Media
Platform. The following sections describe the PDR 100, PDR200, PDR 300, PDR400 and
Profile PRO Series Professional Disk Recorders and Video File Servers.

The PDR series of video servers are multi-channel digital disk recorders. Both the PDR100
and PDR200 are capable of supporting up to four play/record channels of video; thevideo is
compressed using the JPEG algorithm for storage on disk. The PDR200 and all later (higher
numbered) models support Fiber Channel networking between systems so that content
material can be moved among networked Profiles without decompression and recompression
of the material. The PDR300 uses MPEG2 compression of the video for storage; both 4:2:0
and 4:2:2 video compression is supported. The PDR300 can support two record channels and
eight playback channels. The PDR400 supports the DV compression algorithm for video. It
can support up to sixchannels of DV CPRO25 or three channedl's of DV CPRO50 compression
and decompression; all channels can both record and playback.

The Profile system has an EISA motherboard with an internal digital video routing system.
There are sixteen EISA dotsand one | SA slot used for interface cards and routing audio data.
The server also uses a PCI bus for routing data between the master and slave enhanced disk
recorder (EDR) boards, Fibre Channel boards, and boardsfor compressing and decompressing
the video.

A video router chip set isintegrated on the mother board. It routes video signal s between the
video compression boards, video mix effects cards, and video 1/O cards. The video router isa
32x32 crosspoint matrix capable of full bandwidth 4:2:2 CCIR-601 8-hit digital video. The
video router allows real-time transfer of video throughout the system without impacting
overall system performance. The video router also makes possible simultaneous record and
playback on separate channels.

Figure 1, The PDR200/300/400 block diagram on page 18 shows ablock diagram of the
hardware layout of a PDR200 or above.

Video disk storage

In the video disk subsystem, video data is compressed and written to up to eight 4-gigabyte
(PDR100 only), 9-gigabyte, or 18-gigabyte disks, and then read from these disks and
decompressed. Thisvideo dataisread from and written to the video router in 8-bit, parallel
component digital video format. The video disk subsystem has disk recorder boards
(PDR100) and enhanced disk recorder boards (PDR200 and above), with an Intel 1960
real-time processor and a SCSI-2 interface to the disks.

The video disk subsystem uses master and slave disk recorder or enhanced disk recorder
(EDR) boards with two SCSI-2 channels on each board. The master disk recorder board
comes standard with atwo-channel JPEG codec. Bidirectional codec channelsallow channels
to be configured for recording or playback. Adding a slave disk recorder board makes a
Profile unit afour-channel JPEG system. The master board has an Intel 1960 real-time
processor which controls compression and the data flows on SCSI-2 channels and JPEG
codecs. Master and slave EDR boards also control MPEG encoder and decoder boards and
DV CPRO codec boards, which are connected to the master and dave via a PCI interconnect
board.

16 Software Development Kit User Preliminary — 12 July 2001

Video compression

Video compression

The processor on the master enhanced disk recorder board is used to control the flow of data
and load the coefficients of the compression encoder and decoder hardware. The amount of
video compression varies according to the setting of the compression coefficients. Higher
compression ratios store more video, but the result islower quality video. On the other hand,
lower compression ratios result in higher quality video and |ess storage capacity.

The compression coefficients are expressed in several ways, one of the more common ways
of expressing the compression isin the resulting bitrate of the video stream. In addition, with
MPEG compression the structure of the Group of Pix (GOP) will greatly effect the
compression; long GOP structures with many P and B frames will be more compressed than
an |-frame only compression.

Audio is not compressed on the Profile system.

Since the video compression ratio can be varied to change the video quality given available
storage time, the amount of storage depends on your choice of compression ratio. A quick
rule of thumb isthat five minutes of JPEG video—plus four channels of audio and two
channels of timecode—is roughly equal to one gigabyte of disk storage at 75,000 bytes per
field in 525-line video. For example, a PDX 208 Disk Expansion unit expands storage up to
twelve hours and a PRS200 RAID Storage System can bring it up to approximately 96 hours.
For video stored in the MPEG format at an average 24M bps, you can just about double these
capacities.

In addition to video compression, the disk recorder boards also integrate the digital audio data
coming from the EISA bus, with typically four channels of audio per channel of video (up to
32). These recorder boards communicate with the SCSI-2 interface using a Direct Memory
Access (DMA) interface. The PDR200 also supports the audio signal processing board
(ASPB). Thisboard is capable of delivering 16 channels of analog, embedded digital, or AES/
EBU digital audio. The PDR200 can be equipped with two of these boards, for atotal of 32
channels of audio.

Video and audio boards

Video and audio interface boards receive incoming and send outgoing video and audio data.
These boards are responsible for converting the video and audio to internal formats used by
the video server.

The PDR200, PDR300 and PDR400come with the audio signal processing board (ASPB).
This audio architecture accepts and simultaneously processes sixteen audio inputs and
outputs. Internally, all audio isprocessed with a selectabl e storage resol ution of 16 or 20 hits.
Inputs may beindividually clocked in groups of four, and any clock group may be referenced
to the system reference (house black) or any one of four video inputs. Output clocking is
synchronous to system reference. Sample rate conversion is available for all inputs (30 to
50kHz), providing uniform storage at 48kHz.

You can configure the PDR200, PDR 300, or PDR400 to operate with analog, AES/EBU
digital, or embedded (SMPTE 272M Level A) audio, depending on which optionsareinstalled
inyour system. All three audio formats are supported without external conversion equipment.
Analog audio isonly available with an optional PAC208 or PAC216 Analog/Digital Interface
chassis. You can expand the number of XLR or BNC connectors for AES/EBU audio with an
optional XLR216 or BNC 216 digital interface chassis. You can choose an audio format for
each video channdl. For example, you could enable analog audio on one channel, embedded
audio on another, and AES/EBU on the rest.

Preliminary — 12 July 2001 Softwar e Devel opment Kit User 17

-
E Chapter 1 Introduction

There are several video boards that allow a Profile server to be used with various standard
video formats. Composite analog, serial digital component, or component analog video are
all possible. All boards accept 525-line (NTSC) or 625-line (PAL) video standards.

The latest analog composite input and output board offers two input and output channels per
board. Thetwo output channelsfor thisboard are similar to the output channels of the original
analog composite board. An analog composite monitor board allows you to display text and
burn-in timecode on an output monitor.

The component analog input allows dithering, auto-timing, and vertical blanking. Aswith
other inputs, you can automate VITC detection. You can adjust input gain and also select an
input format such as Betacam.

A serial digital component board provides two channels of both input and output, plus
embedded audio when used with an ASPB. You can also enable dithering, auto-timing, and
automate VITC detection. The board aso has error detection and handling.

The standard reference genlock board allows you to time your Profile server to other devices
in abroadcast facility. You can lock aProfile unit to aPAL or NTSC reference signal (house
black). The genlock board also lets you have LTC inputs and outputs, with four inputs and
four outputs possible for each channel.

Figure 1. The PDR200/300/400 block diagram

Networking Applications Processor Digital Analog
+RS-422 ports(8) Subsystem Audio /O pmmmmx AudiollO :
+ Ethernet LAN 1/0 + Intel Pentium Processor (External Chassis)

EISA Bus

“IMPEG:: Fibre : Enhanced : | Enhanced Video 1/0
: Codec :: i 4:2:2 :iChannel : gSIave Recorder : | Master Recorder + Analog Composite
: : ! Decoder : : Encoder/ : © Arbirated : :*2JPEG CODECs : [+Inteli960 real-time + SDI w/Embed. Audio
Sioonly ::Decoder:: Loop ::eUlraSCSI-2 2| processor + Comp. Analog In
H B - i : | »2 JPEG CODECs + Analog Comp. mon.
: : |+ UraScsi2
o0 [S w—}
SCSI Devices

32x 32 CCIR 601
Video Router and Clocks

9955-1
¢ 1 Indicates optional board

18 Software Development Kit User Preliminary — 12 July 2001

Chapter 2
Programming the Profile Video Server

The Profile Software Development Kit (SDK) provides an application programming interface
(API) for libraries of functions that control the Profile video server. Software developers can
use this API to control the Profile server from third-party hardware devices. The Profile API
consists of eight libraries:

The TekCfg library provides an interface for configuring the Profile system. The Profile
Configuration Manager, a standard application that comes with system software,
implements many TekCfg functions.

The TekPdr library furnishes calls that inventory and manage moviesin Common Movie
Format (CMF), afileformat standard for storing video, audio, and timecode on disk.

The TekPlIslibrary suppliesfunction callsfor controlling alibrary of digital tape cartridges
that store video, audio, and timecode.

The TekRem library makesit possible for aremote Profile or Windows NT system to
control a Profile server over an Ethernet LAN.

The Tekvdr library provides an interface for playing and recording video and audio clips,
and manipulating resources and their interconnections.

The TekVfs library supports low-level accessto individual mediafilesin the mediafile
system, as opposed to movies which consist of sets of mediafiles.

The TekVme library controls the optional video mix effects board which enables you to
create various video transitions on a Profile server.

The TekXfr library supports media streaming over Fibre Channel connections.

Eight RS-422 serial ports come standard on a Profiledisk recorder. A Profiledisk recorder can
issue serial commands or receive them from an external device via RS-422 communication
lines. The Profile serial protocol associates each API call with a specific number that can be
sent over an RS-422 line. The ProLink application monitors Profile protocol calls over an
RS-422 link, allowing you to use compatible hardware devicesto issue commandsto a Profile
unit.

NOTE: Louth and Odetics RS-422 protocols are also supported, although thereisnot a

one-to-one correspondence between these protocols and the Profile API. Louth and
Odetics protocols do not allow full accessto the functionality of the Profile system.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 19

20

-
E Chapter 2 Programming the Profile Video Server

The TekCfg library

The TekCfqg library is responsible for providing information about the Profile server's
configuration. The major work of this configuration library takes place as the real-time
embedded system receives its software load and starts running. At this point, the software
discovers what hardwareis available; it communicates the hardware information back to the
configuration libraries in the host computer. The library formats the information and places it
in the Windows NT registry with other hardware start-up information.

At the same time, the libraries check the registry for the preferred settings for the driversin
the real-time embedded system and communicate those settings to the drivers. Any variable
parameters that have not been set previously, will be taken from default tablesin the libraries.
All the settings are placed in the registry.

After thereal-time system is started, the configuration librariesinterface to theinformationin
the registry for the application. The application does not need to directly access the Windows
NT registry and extract the information, but it can obtain the information from the functions
in the configuration library.

By using the information available in the registry, an application can create and display lists
for use by the user in selecting the components of the embedded system that are to be used by
the application. For example, the application can determine the preferred file system onto
which the media files are to be recorded, or the media inputsto be recorded. The application
is able to use the same names for the components as all other applications on the system since
the names are maintained by the configuration libraries. Thisaidsinincreasing the consistency
in the user interface.

Profile Software Development Kit User Preliminary — 12 July 2001

The TekPdr library

The TekPdr library

The TekPdr library provides an API for enumerating and managing an inventory of stored
movies described in a Common Movie Format (CMF), and for editing the descriptions of the
movies. A movie consists of multiple, synchronized streams of media, video, audio, and
timecode. Within the Profile, the streams of media are held as files in the mediafile system.
The CMF description of the movie specifies the relationship of segments of the stored media
filesto each other. Using the TekPdr library, the application can determine what moviesarein
the inventory, create and delete stored movies, and change the specification of the movie so
that the relationship of media file segments is changed.

The Common Movie Format provides a structure to the media files that comprise the movies
so that a single mediafile can participate in many movies. Additionally, a single movie track
can reference multiple mediafiles and contain segments of black media. By using the TekPdr
library, applications can share movies. A movie can be recorded by one application, edited by
a second application, and played by yet another application.

Using stored movies
There are two approaches to using stored movies.

Inthefirst approach, you rely primarily on TekVdr calls: Attach empty mediafilesto the port
timeline resources with Vdr AttachM ovie and record into the movie with Vdr CueRecord
and Vdr Shuttle. The VdrAttachM ovie function automatically creates the stored movie
representation without further effort on your part. Under this approach, you will still make
TekPdr library calls when you need to enumerate the movie database (for example, to select a
movie for playback or record.) The enumeration of the stored moviesis done in the TekPdr
subsystem; the enumeration of movies on the port timeline is done in the TekV dr subsystem.
(For enumeration of stored movies, see Complex movie names on page 23. Also, refer to the
functionsin the DK Reference Manual associated with the current dataset and current group,
and the functions associated with FindFir st, FindNext and CloseFind for the dataset, group
and movie).

With the second approach, you manipulate the stored definition of the movie, directly
accessing the lower level elements of the stored movie. Thereisfunctionality in the TekPdr
subsystem to access the tracks and the individual media that comprise atrack. Tracks exist
only because there is media on the track, and the track never has to be explicitly created or
deleted. Mediacan be added to existing tracks, or added to anew track causing it to comeinto
existence. Media referenced from one movie can be referenced from a second movie by
copying the mediatoken to the second movie. Likewise, amovie can reference the same media
multiple times by copying the mediatoken. The actual segment of the media participating in
any given referenceis controlled by setting in and out points for the mediain the mediatoken.
Indeed, the structure that represents amovie can be copied to provide a backup version of the
movie before changes are made.

The header file tekpdr.h contains the function prototypes for the capabilities implemented by
the library. The new data types of the library are specified in the header file pdrtypes.h. The
header file pdrattribs.h contains movie attribute definitions. In addition, the header file
pdrerror.h can be used to decode the extended error information that isreturned by the system
function GetL astError.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 21

-
E Chapter 2 Programming the Profile Video Server

Common Movie Format

Common Movie Format (CMF) describes movies by specifying the relationship of stored
mediafilesto each other. Most users don’t need to know more about CMF beyond this, its key
benefit: All Profile applications--those developed by Grass Valley Group and by third-party
vendors--share the same media files.

A movieisacombination of several multimedia streams of information (video, audio,
timecode) synchronized to form awhole unit. In television one expects video, two or three
audio inputs, and a timecode or two to be implicitly synchronized because al three were
(historically) recorded together on tape, not on separate channels or tracks. In adigital world
where these components can be filed as separate entities on discrete systems, however,
synchronization can be a problem. That's what makes CMF so valuable. A CMF movie
describes what information is in these various multimedia streams and how the streams are
synchronized.

Using library commands with CMF movies

Thefunctionality of the eight Profile API libraries provide notification to applications when
the CMF movie inventory changes.

A CMF movie created with Pdr CreateM ovie stores header information about all mediafiles
associated with the movie as awhole and is identified with a MovieToken. Once recorded, a
mediafileis referenced as a media segment, which is a portion of amediafile (although that
portion can comprise up to 100 percent). In order to define a portion of the mediafile to use,
adescriptor is needed. In CMF, the media segment descriptor isthe M ediaToken, created with
Pdr CreateM ediaToken. The MediaToken is a media segment reference. It pointsto amedia
file and contains two values (in/out) that specify what part of the file to use.

Themovie header thenreferencesalist of tracks. Each track isreferenced rel ative to the movie
with a TrackToken. It has some information about the track and references alist of media
segment references or MediaTokens. For example, suppose you have MovieToken 3. Using
that MovieToken, you can discover amovie's name (Pdr GetM ovieName), its group

(Pdr GetM ovieGroup), its dataset (Pdr GetM ovieDataset), its length

(PdrGetM ovieL ength), when it was created (Pdr GetM ovieCreateTime), when it was last
changed (Pdr GetM ovieL astChangeTime), and so on.

From the TrackToken, you can discover the length of the track (PdrGetTrackL ength) and
how many media segments are on the track (Pdr GetNumM ediaOnTrack). You can also
request the next TrackToken (Pdr GetNextTrack) or previous TrackToken

(Pdr GetPreviousTrack). In addition, you can query for information using the M ediaToken.
The MediaToken will help you determine which file is used for this media segment

(Pdr GetM ediaPath), what the infout points are (Pdr GetM edial n, Pdr GetM ediaOut,

Pdr GetM ediaM arks), and so on.

You can set moviesto read-only or locked mode, and you can open them in either exclusive
or shared mode (use Pdr GetM ediaAttributes or Pdr GetM ovieAttributes to test media or
move attributes). This format also makes it easier to create anew clip and to capture a feed
into separate clips for later use in a complex movie.

A read-only movie's mediafiles are protected against being rerecorded, but aread-only movie
can still be edited. A locked movieis protected against any change, including a name change.
However, because movies can share media, amoviecan acquirethe read-only attributeif some
of itsmediafiles are read-only. This effectively isawarning at the medialevel that the movie
cannot be recorded over.

22 Profile Software Development Kit User Preliminary — 12 July 2001

Complex movie names

When amovie is opened, it can be set to exclusive or shared mode. In exclusive mode, only
one person can have the movie open, so it is permitted to expand the movie definition by
adding media segment references. In fact, the only reason for opening a movie in exclusive
mode is because an edit operation is going to add media segment references to the movie. A
movie opened in shared mode may be opened by several people at once.

Complex movie names

The TekPdr library uses the complex movie names rather than separate group and movie
names. A complex movie name consists of three parts: the dataset, group, and movie name.
Either one (or both) of the first two parts can be implicit. (See Pdr SetCurrentDataset and
Pdr SetCurrentGroup.)

The complexMovieName is formed as a string with punctuation separating the three
components:
<dataset:> /<groups>/<movieName>

...where the values between the angle-brackets <> are the values supplied by the calling
application.

The component substrings must be comprised of charactersfromthefollowing sets: -z, a- z,
0-9,the <space> character, and the following special characters:

r#ES$SSse" () +, -. ;=@ 1~ {}~m"x<>s\ ad |.Thedash,
colon, and question mark characters(/, :, and ?) arenot allowed because they are used
for punctuation of the complex movie name, or in streaming file transfer requests. The slash
character is used to indicate the break between the components. The colon character should
only be used in the dataset component as the terminating character. The question mark should
only be used to specify optionsto aUML in Fibre Channel streaming transfers. The maximum
length of each portion of the complex movie name is specified in the pdrtypes.h header file.
(See PDR_MAX DSET NAME LEN, PDR_MAX GROUP NAME LEN, and

PDR_MAX MOVIE_ NAME LEN).

Thecharacters " * < > 2 \ | *~ and <space> have special meaning at the operating
system level. If these characters are included in the complex movie name, they are translated
into aspecial double-character value. This meansthat every one of these charactersusedinthe
complex movie name decreases the maximum length of that portion of the name by one
character.

Theoperating system al so reserves some namesthat cannot be used for movie or group names.
Thesenamesare: CON, PRN, AUX, CLOCKS, NUL, A:-%:, COM1-COM4, and LPT1-LPT3.
Using any of these names will cause the creation of a movie to fail.

While names allow the use of both uppercase and lowercase characters for testing whether the
nameisaduplicate or not, the comparison is not case-sensitive. (For example, the name Adam
is a duplicate of the name adam.)

The dataset portion of the complex name identifies one of thefile systems. For that reason, the
dataset portion of the name must be the same as one of the file system names returned from
CfgGetFileSystemName. The default dataset name is the name of file system O, which is
always available. The dataset name will always end with the colon as aterminator. To
emphasize that the nameis a dataset name, it may be terminated with the slash that starts the
group name. If the dataset portion of the name is not explicitly supplied, the value of the
current dataset is used for this component.

The group name portion of the complex name is chosen by the application/user to be
meaningful and to help group the moviesinto categories. The default group nameis default.
The group nameis identified in the complexMovieName because it is enclosed with slashes;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 23

24

-
E Chapter 2 Programming the Profile Video Server

it is separated from the dataset portion with a slash and from the movieName portion with a
slash. If the group portion of the nameis not explicitly supplied, the value of the current group
is used for this component.

The short movie name isthe final portion of the complex name. It cannot be implicit. By
default, the complex name is expected to contain a short movie name. To emphasize the
movieName portion, the short name of the movie can be prefixed with a slash.

Table 1 shows the punctuation of acomplexMovieName, and the resulting components after
the name is scanned and values are supplied for the missing components. In the following
exampl es, assumethat the default dataset nameis INT: and the default group nameisdefault.
Furthermore, assume that the name ExT: isavalid dataset name.

Table 1. Punctuation for a complexMovieName

complexMovieName | Dataset Group Short Movie Name
aaa INT: default aaa
/mygrp /bbb INT: mygrp bbb
EXT:/grp2/ccc EXT: grp2 cce
EXT:ddd EXT: default ddd
EXT:/eee EXT: default eee
//E£E INT: default fff

The last exampl e shows that the name can be formed from component parts even when the
dataset and group are empty. The extra punctuation does not invalidate the syntax of the name.
The syntax used for aaa, bbb, ccc,and f££f arethe preferred syntax.

Movie attributes

The attributes of a movie include access restrictions and information about sharing. Movie
attributes are presented to the application programmer asamask of bits, with each bit position
representing a specific attribute. The bit positions can be tested by doing a binary of the
attribute and seeing whether the result is nonzero.

The program attributes which can be set control the ability of programs to modify the movie.
A moviethat is ReadWrite (meaning ReadOnly is not set) allows the greatest degree of
modification asthe mediafiles can bererecorded. When amovieis made ReadOnly, the media
files cannot be rerecorded or written. However, the movie can be edited so that the in/out
points of amedia file can be adjusted, and media segments can be added or deleted from the
tracks of the movie. Finally, when a movie islocked, it cannot be modified; the in/out points
cannot be changed.

The attribute of ReadOnly (RO) has a passive effect on other movies that share the recorded
media of amoviethat has been set to RO. Those other movies using the media are not allowed
to rerecord the media. For this reason, those movies have their access mode set to RO to
identify at the highest level that the media file(s) included in the movie are RO. The
PdrControlRO bit of the attributes can detect whether the movie is RO because it was directly
set to RO, or because some mediait contains was set to RO. The PdrControl RO is set when a
movie is explicitly set to RO.

If amovieisto be extensively edited and new media segments are to be added to its definition,
the movie should be opened exclusively. This allows the application to use the movie without
impacting other applications that might try to use the same movie.

Profile Software Development Kit User Preliminary — 12 July 2001

Movie attributes

A movie with a single media segment on each of itstracksis a simple movie—thisis
recognized asaclip. Most recording is made into clips. Clips are used as the foundation pieces
for complex movies that have multiple media segments on a track. Because the clip can
sometimes be treated differently, a movie that has the simple characteristic will have an
attribute reflecting that. Attribute meanings are described in Table 2 below.

Only PdrReadOnly, PdrLocked, and PdrOpenExclusive attributes are directly controlled by
the programmer. The PdrControl RO attribute is set because the PdrReadOnly attribute was
explicitly set on the movie, and the PdrOpen and PdrOpenM ultiple attributes reflect the
dynamic changes of access to the movie.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 25

26

-
E Chapter 2 Programming the Profile Video Server

Table 2. Movie attribute descriptions

Attribute

Description

Pdr Audiol6Bit

This attribute indicates the predominate sample size for audio, 16-bit in this case.

Pdr Audio24Bit

This attribute indicates the predominate sample size for audio, 20-bit in a 24-bit
container for this case.

Pdr CodecConstruction

This attribute indicates that the movie is under construction and being recorded.

PdrControlRO

This attribute means that the movie was set ReadOnly, and all of its mediafiles
have been set ReadOnly. A ReadOnly movie cannot be directly set to ReadWrite
unless it has this attribute. Without this attribute, the ReadOnly attribute is a pas-
sive indicator that a shared media file has been set ReadOnly.

Pdr CopyConstruction

This attribute indicates that the movie is a target of a copy over Fibre Channel.

PdrError

This attribute is returned when there is an error in trying to get the attributes.

PdrL ocked This attribute indicates that the movie has been Locked so that no changes can be
made to the movie.
PdrOpen This attribute indicates that at least one “open” exists on the movie.

PdrOpenExclusive

This attribute indicates that the movie has been opened exclusively. Thiswill keep
anyone el se from opening the movie, but does allow the space for the movie data
(media tokens and tracks) to grow without concern.

PdrOpenMuultiple

This attribute indicates that more than one “open” exists on the movie.

PdrReadOnly

This attribute means that some of the mediafiles of the movie have been set to
ReadOnly and cannot be modified; the files cannot be written, and media cannot
be recorded into them.

PdrRestoreConstruction

This attribute indicates that the movie is the target of arestore operation from a
tape cartridge library.

Pdr SampleRate50

This attribute indicates the movie's predominant sample rate: 50Hz for PAL.

Pdr SampleRate60

This attribute indicates the movie's predominant sample rate: 60Hz for NTSC.

Pdr SimpleClip This attribute indicates that the movie is composed of exactly one media segment
on each track.

PdrTcDropFrame This attribute indicates that the moving is using drop-frame timecode.

Pdr TcNonDropFrame This attribute indicates that the movie is not using drop-frame timecode.

PdrUnder Construction

This attribute indicates the movie meets any of the three construction criteria
recording, Fibre Channel copy, or library restore.

PdrVideoFor matJPEG

This attribute indicates that you are using the JPEG video format.

PdrVideoFor matM PEG

This attribute indicates that you are using the MPEG video format.

Profile Software Development Kit User

Preliminary — 12 July 2001

User data

User data

Each object in amovie can contain associated user data. The user data can be associated with
the movie, a particular track of the movie, or a particular media segment of the movie, but it

has no significanceto thelibrary. The user datafunctions are responsiblefor storing datafrom
the application program, retrieving datafor the application program, moving the datawith the
movie object if it is copied, and deleting the data if the associated object is del eted.

The dataisidentified with a four-part key consisting of the MovieToken, TrackToken,
MediaToken and Tag. The tag enables each application to have its own data associated with
the movie object. Thetag consistsof two parts: a software vendor value and anitem value. The
high order bits of the tag are assigned to a software vendor so that each vendor can defineits
own use of thelow order bits of the tag field. See the header file pdrtags.h for more details on
assigning tag values (see the Pdr SetUser Data and Pdr GetUser Data functions).

Because the data that is stored and returned is not used by the library, the application is
responsiblefor casting the datato the correct type. User datais handled asan array of unsigned
bytesby thelibrary. The array sizeis specified in the Set function. If apreviously set user data
item is to be deleted, the item is set with an empty value (for example, the length of the data
is0.)

Change notification

The TekPdr library is responsible for maintaining the inventory of moviesin order that an
application can be notified when the inventory has changed, or when a moviein the inventory
has changed. The library contains functions that allow the application to receive change
notifications asynchronously.

The key to the mechanism isthat the application gets the handle for a notification event from
the library. The application can then create athread that uses the Win32 functions to
WaitForSingleObject or WaitForMultipleObject. The library will satisfy the wait condition
whenever a change of the desired type is made in the library. Once notified of a change, the
application can use the PdrGetM ovieChanges to identify the actual changes that are being
reported.

An application that does not want to wait for the change event and has its own timing
mechanism can use the PdrGetM ovieChanges function in a polling manner to determine the
changes to the stored movie inventory.

Saving amovie off the timeline

Some applications edit a movie directly on the dynamic timeline, and save the movie in the
Common Movie Format (CMF) once editing is complete. These applications can add
resources to the timeline, add mediato existing resources, and set in and out points, thus
creating an entire edited movie.

Oncethemovieisinitsfinal form on the timeline, it can be saved in the inventory of movies
with the Pdr SaveM ovie function. Pdr SaveM ovie can be invoked with one of three different
PdrCopy Types--PdrExactMedia, PdrRenderedM edia, and PdrSharedM edia--described in
Table 3.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 27

-
E Chapter 2 Programming the Profile Video Server

Table 3. PdrCopyType descriptions

PdrCopyType Description

PdrExactM edia This method uses the most bandwidth (and disk space). All mediafiles are copied
in their entirety, so that the stored movie owns one copy of each mediafile, while
the original copy remains on the timeline available for additional editing and is
referenced from the sources that were combined in the edit. This operation can
take a substantia amount of time depending on the amount of media being copied
and any other plays or records in progress.

PdrRenderedM edia This method copies every field currently on the timeline into a single mediafile,
honoring any in/out points or black on the timeline. Like the PdrExactM edia
mode, it can be resource- and time-intensive since mediais duplicated. Note,
though, that the amount of media duplicated may be much less than with PdrEx-
actM edia depending on the position of in/out points relaive to the extent of the
mediafiles on the timeline. For example, given two half-hour mediafiles on the
timeline with in/out points denoting a 10-second highlight, PdrRenderedMedia
will be much less resource-intensive than PdrExactMedia.

Pdr SharedM edia Thisisthe normal, and smplest, method of saving amovie. Themovieissavedin
the inventory; the media segments are shared with other movies. This method is
most efficient since no additional space or bandwidth is required from the embed-
ded mediafile system.

Registry entries

The TekPdr library uses a Windows NT registry section to communicate afew parameters,
namely HKEY LOCAL MACHINE. These parameters are stored under the key
\Software\Tektronix\Profile\PdrMovie. Thethree most important keys are as
follows:

1. Max Moviesisthe limit of all moviesin the system. Storage for the maximum number of
moviesis allocated as the system starts.

2. Max M edia Definitionsis the limit of total number of tracks and media segmentsin any
single movie. This number can be expanded for a particular movie if the movie is opened
exclusively while the additional media segments and tracks are being added to the movie.
The default value is large enough to allow the creation of aclip with nine tracks without
requiring any special operation. When any specific movie is opened exclusively, the
maximum number of media definitions can be increased without taking any special action:
the library will increase the space allowed for that movie as necessary.

3. Max M edia Referencesis the limit of total number of referencesto mediafiles by all
movies in the system. Each media segment of type PdrMediaFile in each movie causes a
media reference to be allocated.

Max Movies and Max M edia References values can be increased without any impact on the
existing inventory of movies. (These values may only be increased as decreased values may
causedatacorruption.) The system should be shutdown and restarted for the new valuesto take
effect.

ATTENTION: Direct editing of the NT registryispotentiallyrisky. Never edit theregistry
if you areunsurewhat the consequences may be. The TekPdr library provides a separate
interface to the registry settings above via the functions Pdr GetRegistry and

Pdr SetRegistry.

28 Profile Software Development Kit User Preliminary — 12 July 2001

The TekPlIs library

The TekPls library

The Profile Library System (PLS) uses the client/server model of computing. Thereis one
instance of the library server for each library. This server has a catalog that describes the
contents of every tape cartridge loaded in alibrary. The catalog is a cache for tape cartridge
directories. It can also retain residual knowledge of cartridges that have been removed from
the library and stored elsewhere.

Thelibrary server workswith filesasabasic unit of information. A file can beasimple stream
of bytes or amultiplexed stream of video, audio, and timecode. Thelibrary system copiesfiles
from a Profile system to tape cartridges and back, but does not delete files from a Profile
unit--file management is handled by the TekVfslibrary.

Thelibrary server keeps a catalog of all filesin the attached library. The purpose of this
databaseisto allow afast search for a given piece of material and to support requestsfor lists
of the available material. When cartridges are removed from alibrary, the operator or
application can have all referencesto material on the cartridge removed from the catalog. This
is useful when cartridges are not going to be used in the near future or are being sent to other
facilities. The catalog entries for removed cartridges can beretained. Having entriesin a
catalog makes locating the material faster. The catalog knows the cartridge isnot in alibrary,
and it has a note about where the cartridge is stored.

Tape cartridges are identified with unique barcode |abels. Barcode labels are used so machine
and human readabl e cartridge identification is avail able.

Some vendors' cartridges can be subdivided into partitions. A partition can be treated as if it
were a separate tape for material replacement purposes. The first partition on a cartridge (at
the load point) stores a master cartridge directory. Several types of tape cartridges may exist
in alibrary. Onetypeisclip, media and datafile archive cartridges. Another is tape transport
cleaning cartridges. Each cartridge must have unique barcode label. The library system reads
and writes basic units of data called files. These can be one of several types. datafiles, clip
files, and so forth.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 29

30

-
E Chapter 2 Programming the Profile Video Server

The TekRem library

The TekRem library is responsible for connections between aremote Win32 system and a
Profile. It is also responsible for communicating the calls made to the other API libraries
residing on the Profile server.

The TekRem library can access the Profile system, either locally or remotely. The application
makes a call to the TekRem library to get a ConnectHandl e that will indicate which system to
use. In the case of alocal system, the ConnectHandle is the defined value of
LOCAL_CONNECTION in the file remtypes.h.

The TekRem library makes remote Ethernet access possible between Profile systems or
between a Profile system and a personal computer. For example, with a remote connection,
you can control video operations over LAN from aPC in your office to aremote Profile
running in another part of the building.

Thefirst step in establishing a remote connection handle which identifies a Profile unit for the
application that wants to communicate with it. If an application is running directly on the
Profile unit, you can eliminate the remote connection by using the LOCAL_CONNECTION
value for the connHandle parameter of the RemOpenConnection command.

The RemOpenConnection function opens a remote connection from the local host to the
target remote system by specifying a host name or I nternet Protocol (1P) address. You can also
establish alocal connection where the handle is named LOCAL_CONNECTION. The call
returns a handle for the connection. RemCloseConnection close aremote host connection.

Profile Software Development Kit User Preliminary — 12 July 2001

The TekVdr library

The TekVdr library

TekVdrisresponsiblefor the Profile server’stransport control (record, stop, and play actions),
resource management, and connections. Resources are implicitly tied to a port and represent
streams of media. A port functionsin only one mode at atime and has asingle clock to control
all of itsresources. Profile resources include physical resources, video resources, audio
resources, and timecode resources.

Physical resources

Physical resources are the inputs and outputs of the video server and the JPEG, MPEG,

DV CPRO 25, and DV CPRO 50 encoder/decodersthat transfer the media streams to the media
files on the disks. Some resources can be shared among ports and applications while others
must be temporarily owned by the port and the application using them.

In general, input resources may be shared, that is, several ports can use the same video input
without conflict. Instead of allocating the input resource, the application gets a connection
handle that can be used in the same manner as an allocated handle. The codecs and output
resources need allocation so that the port and the application have ownership and no other
application can cause a conflict in their use.

JPEG, MPEG, DV CPRO 25, and DV CPRO 50 codec resources are the interface between the
media streams and the mediafiles. Drivers read and record the mediafiles. In order to
communicate which files, what segment of afile, and in what order to use the files, the
application attaches the mediafiles to the resources, setting in and out points for the file.

JPEG video resources

The JPEG video codec has three dimensions of control:
» fieldsizegoal;

e luminance quantization level; and

e chrominance quantization level.

These parameters interact. After the codec compresses afield, it compares the field size with
the target field size. If the field size is smaller than the target, the quantization level is
decreased. If the field size is larger, the quantization level isincreased. A complex scene
following afade to black would cause a problem if the quantization level for the black fields
is allowed to decrease too far. In that case, the complex scene would cause ajump in thefield
size that might swamp the system bandwidth. For this reason, there is an absolute minimum
guantization level. The greater the range of quantization levels allowed, the closer the codec
can keep the field size to the goal.

Video goal size

Thevideo goal size isthetarget field size the JPEG codec tries to achieve when compressing
the video. The actual field sizes after compression will vary on both sides of the target. The
default value for the goal size is 75,000 bytes per field. The major limitation in increasing the
bytes per field is the total bandwidth of the system. At 75,000 bytes per field, a single codec
is using about 36M bps (75,000 x 60 fields-per-second x 8 bits-per-byte). The maximum
bandwidth for all four JPEG video codecsis 192Mbps. Thiscan be partitioned among the four
video codecs.

Thefield size varies as afunction of the complexity of thefield and the quantization level. The
field size target is changed with the function Vdr SetVideoGoal Size. The actual field size of the
video going through the codec is obtained with the status function Vdr GetCurrentFieldSize.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 31

-
E Chapter 2 Programming the Profile Video Server

Luminance quantization level

The luminance quantization level is more important than the chrominance level. Asthe
luminance quantization level decreases, the field size of complex scenesincreases. The codec
setsthe actual level and an algorithm adjusts it for each field, trying to keep a constant field
size. Toavoid alargejump inthefield size that might cause system problems, the quantization
levels are bound by absolute minimums and maximums. You can narrow the range of
guantization levels by having the codec use areduced range within the absolute range of
minimum and maximum levels.

You obtain the value of the absolute minimum and maximum quantization levels for
luminance with the functions Vdr GetAbsMinLumQ and Vdr GetAbsM axL umQ, and set new
minimum and maximum val ues using the functions vVdr SetMinLumQ and Vdr SetM axL umQ.
To obtain the actual luminance quantization level of the video going through the codec, call
the status function Vdr GetCurrentL umQFactor.

Chrominance gquantization level

The chrominance quantization level islessimportant than the luminance level. Generally, the
change you will make to the chrominance quantization level isto reduce the maximum
allowed quantization on complex scenes. As with the luminance quantization level, you can
obtain the absol ute range of the chrominance quantization level with functions
VdrGetAbsMinChrQ and VdrGetAbsMaxChrQ, and set new minimum and maximum values
that reduce the range using the functions VdrSetMinChrQ and Vdr SetM axChr Q; however,
thereis no status function to get the chrominance quantification level of video currently going
through the codec.

MPEG video resources

The MPEG video codec has four dimensions of control:
e chrominance sampling;

e GOP structure;

e Ditrate and

» first and last line encoding.

Chrominance sampling

Use Vdr SetM pegChromakor mat to set the chrominance sampling to 4:2:0 or 4:2:2, and
Vdr GetM pegChromakor mat (which returns an M pegChromaFmt enumerator such as
M pegChromad20 or M pegChromad22) to query for the current format with.

GOP structure

Another early step isto set the GOP structure--the number of P- and B-frames you want to use
(up to 16 total, minus one for the single |-framethat is “heart” of the GOP). Use

Vdr SetM pegGopStructur eto set thestructureand Vdr GetM pegGopStructur eto query the
system for the current GOP. These functions use an enumerator of type MpegGopEnd that
determines how an MPEG video stream begins, either open (GopOpenEnd) or closed
(GopClosedEnd). In an open GOP, the initial B-frames have a preceding |-frame that is part
of the previous GOP. A closed GOP, on the other hand, hasinitial B-frames that have a
preceding I-framethat is part of the same GOP,

32 Profile Software Development Kit User Preliminary — 12 July 2001

Audio

Bitrate

The bitrate, expressed in megabits per second, essentially sets the video quality for MPEG.
Thehigher the bitrate, the higher the video quality. However, higher bitrates require more disk
space to store the data, limiting the number of hours of material you can store on disk. Use
Vdr SetBitRate to set the bitrate in the range of 4 to 45Mbps and Vdr GetBitRate to query
the system for the current bitrate.

First and last line encoding

Finally, you can select which of the incoming lines of video are encoded as MPEG.

Vdr SetEncodingRange allows you to set thefirst and last encoded line of video. For 525-line
systems, the starting and ending lines must be in the range 21 through 260, with an acceptable
total of 512 or fewer lines per frame. For 625-line systems, the range is 7 through 310, with
an acceptable total of 608 lines per frame. Vdr GetEncodingRange returns the first and last
lines as they are currently set.

Audio

This section discusses the differences between audio and video, including the architecture and
how it effects the ResourceTypes and EventTypes. Also included in this section are the
functions which reflect the difference in how things are heard versus how they are seen.

Analog audio architecture

In the case of video, each stream of video is placed onto the video bus. Therefore any video
source to the bus can be connected to any destination on the bus. On the other hand, there is
no audio bus and the audio codecs are not independent from the audio inputs, so the choices
for resources are fewer than with video.

Each analog audio circuit board, standard with the PDR 100, has four inputs, four audio
codecs, and four outputs. Each audio input is permanently connected to its audio codec. Each
audio output contains a mixer with four inputs. These mixer inputs are connected to the four
audio codecs. The signal at the audio output depends on the percentage of each input signal
used and whether the codec isin record/idle or play mode.

In record/idle mode, the codec looks at the audio input and that signal is placed on the input
line of the audio output mixer. In play mode, the codec |ooks at the data coming from the disk
and that datais placed on the input line of the audio output mixer. The only difference between
record and idleisif theaudio codec driver is saving the digitized audio on disk in record mode.

The Audio Signal Processing Board (ASPB) comes with the PDR 200, PDR 300, and
PDR400. A similar board is used in the Profile XP Media Platform. The ASPB architecture
accepts and simultaneously processes up to 32 audio inputs and outputs (with two boards) at
up to four simultaneous clock rates. Inputs may beindividually clocked in groups of four, and
any clock group may be referenced to the system reference (house black) or any one of four
video inputs. Output clocking is synchronous to system reference.

You can configurethe ASPB to operate with analog, AES/EBU digital, or embedded (SMPTE
272M Level A) audio, depending on which options are installed in your system. All three
audio formats are supported without external conversion equipment. You can choose an audio
format for each video channel. For example, you could enable analog audio with one video
channel, embedded audio on another, and AES'EBU on the rest.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 33

-
E Chapter 2 Programming the Profile Video Server

Audio resources

The TekVdr library contains the enumerators ResourceAudioCodec, ResourceAudiol nput,
and ResourceAudioOutput. The application can provide orthogonal images of the media
types. Thisis accomplished by having both types of ResourceHandles for the audio codec
resources. Use the shared connection handle as the audio input handle and use the all ocated
handle for the audio codec handle. Since both handles represent the same resource, the
connection geometry is transparent and appears similar to the video connection geometry.

Also, with the audio resources, there may be some limitations on the audio connections, based
on the physical limitations of the audio hardware. For example, audio inputs cannot be
connected to outputs that are not on the same board. In the PDR 100, you may select which
output is participating in the connection, then offer only the four inputs/codecs that can
participate with that output. This group of four is identified by being resource numbers 0, 1,
2, and 3 modulo 4. That is, the sequence of numberswill be consistent with four resources per
circuit board in order. For the PDR200 and higher and the PV S1000, 16 or 32 inputs/codecs
are allowed, and so resource numbers are 0 and 1 modulo 32.

Audio minimum play length

To recognize sound, the length of audio being played needsto be more than asingle field.
Otherwise, the repetitive replay of the sound breaks down into a 60 or 50 cycle drone. Using
an audio window for looping the audio helps eliminate that problem. Instead of replaying just
asinglefield asthe video replays the field it is positioned over, the audio plays the media of
thefield itisover, plusseveral additional fields making the sound more easily understood. The
number of fields to play when looping on asingle position on thetimelineis called the audio
window. Call Vdr SetAudioWindow to set the size of the window.

Timecode

In the Profile system, timecode is treated like any other media. Input timecode may be
recorded in afile. A file of timecode may be output with the audio and video media streams.
In addition, a timecode generator can be used instead of the timecode input or timecode
recorder/codec to create timecode values. (Timecode, taken in its larger sense, includes user
bits).

Atthefirst level, timecodeislikevideo in that it hasall three componentsin the stream: input
resources, codecs, and output resources. Also, the resources are connected together using
events of the EventConnectResources type. A media file must be attached to the timecode
codec (recorder) in order to either record or playback timecode values. The function
VdrGetCurrentTimeCode gets the current timecode and the function
VdrGetCurrentUser Bits gets the current user bits. A timecode media file can be inspected
on afield-by-field basisto determine the timecode that corresponds to a specific field position
in thefile.

The port

In order to work with physical resources, an application must first obtain a port object. The
port is the center of the application’s relationship to Profile resources. The port has two
functions:

1. Tolink together aset of physical resources into a multimedia recorder.

2. To synchronize the resources while recording or playing.

Profile Software Development Kit User Preliminary — 12 July 2001

The port

A recorder operates on one or more streams of media (either video, audio, or timecode) and
records those streams to mediafiles, or plays back existing mediafiles into those media
streams. A recorder/port’sresources are linked together and all active resources must be doing
the same function: recording mediafiles, playing existing mediafiles, or idle. Different active
resources attached to a single port cannot do different things. All inactive resources are
considered to beidle.

The second function of the port isto keep all active physical resources of the multimedia
recorder synchronized. This means the port tells the different resource drivers which field to
play, and when, so that all of the tracks in the recorder work together. One model of the port
isatimeline with parallel tracks containing the mediafiles. The port clock can take any
position on the timeline, and the mediarelated to that position on the timeline are used by the
resource drivers. On record, the timeline position correspondsto the fields in the mediafiles
that receive the current field in the media streams. On playback, the timeline position
correspondsto thefieldsin themediafilesthat are the source of the current field on each media
stream (Figure 2).

An application that must record and play simultaneously needs at least two ports, one for
recording and one for playback. Likewise, if the application must play multimedia at two
different rates simultaneously, it needs multiple ports. A single port isasingle clock that ties
all of the port’s active resources together.

Two Codec Resour ces with Attached Media Files

IN ouT
Reouce#®?2 ——— Media File 3
Resource#1l Media File 1 Media File 2
| | | | | | |
-50 0 50 100 150 200 250 300 350

Port Clock Timeline V

TindineHdd Rdgtios

Figure 2. Timeline position in media files

Port clock modes

To this paint, the port clock mode has been the default MediaPlayM ode of PlayNormal. Inthis
mode, the clock position isimplicitly limited by the limits of the attached media. The
maximum clock value is determined by the track whose last media out point has the greatest
timeline position value. The minimum clock value is determined by the track whose first

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 35

-
E Chapter 2 Programming the Profile Video Server

mediain point has the smallest timeline position value. Asthe clock movesfrom one extreme
to the other, any track whose media does not exist at all possible clock positions plays black.
Any recording where thereisno mediafileis not saved. In general, when the shuttle command
isgiven, the clock changesits position at the rate and direction given in the shuttle command.
This means a negative rate makes the clock move backward. The clock does not always start
at the same point: it startswith thelast point at which it was located. The clock stops changing
its position when the last field within the implicit limits of the port is played. The resource
drivers continue to use that last field position until told otherwise.

Within the port, thereis complete symmetry between record and play operations. The port can
be set to jog while recording; the resource drivers continually use the field of the file that
corresponds to the clock position. Although the resource drivers are given the samefield
position many times before the clock position advances, only the first field from the media
stream is written into that position of the file. Other fields are discarded. Likewise, arecord
operation with arate that is greater than unity will cause empty field positionsin thefile. This
consistency between record and play modes al so exists with the clock modes described in the
following sections.

Other clock modes

There are three additional clock modes (MediaPlayModes): PlayLimited, PlayLoop, and
PlayBounce. In addition, thereis asecond explicit set of clock limitsthat are used with these
play modes. Set the explicit clock limits with the Vdr SetM inPosition and

Vdr SetM axPosition functions. Without setting these explicit limits, the additional clock
modes will not work. Change the clock mode with the Vdr SetPlayM ode.

The PlayLimited mode is similar to the PlayNormal mode, except that it plays within the
explicit limits on the clock position. The clock advancesin the desired direction at the desired
rate until the last position in the range is reached. Then the clock stops advancing and the last
field position is used repeatedly. In play mode, the last field is shown asif the port wasin jog
mode.

In PlayLoop mode, once the clock reaches the last field within the explicit clock limits, it
jumpsto the last field at the other end of the mediaand continues. If the clock is advancing
(forward), the last field of the media delimited by the explicit clock limits is used, then the
clock jumps to the first field of the delimited range.

In PlayBounce mode, once the clock reaches the last field within the explicit limits of the
clock, the sign of the rate changes, and the clock continues in the other direction.

Still modes

In addition to rate-based clock modes, there is a field-based mode that controls which fields
are used while in jog mode. In jog mode, the clock advances only as requested by the
application. Each time the clock advances, the application must call VdrJog. The function’s
parameter indicates the number of fields to change the clock and the sign is the direction. In
jog mode, the clock remains at the same position for many field times and the resourcedrivers
continually reuse the same field timein their files.

The application can control the fields used at this level with the StillMode setting. The
StillMode can be either PlayByField or PlayByFrame.

NOTE: MPEG does not support a StillMode of PlayByField but does support
PlayByFrame.

36 Profile Software Development Kit User Preliminary — 12 July 2001

The port

In PlayByField, the clock uses only the field whereiit is positioned. On playback, the video
resource driver uses line doubling to provide afull image. In PlayByFrame mode, the clock
alternates its position between the two fields that comprise a frame. On playback, this
enhances the video vertical resolution.

Port clock limits

Thetimeline of a port ranges between field numbers of approximately —2x10° to +2x10°. The
port clock is limited to a subrange of these field numbers. In Normal Clock mode, the clock
limits are applied implicitly, and you do not need to be concerned with the limits. Thisis the
default case. In NormalClock mode, the clock limits are set to the limits of the attached media
files. The clock limits just enclose the earliest and latest times that have associated files on the
timeline. The port clock will not take values outside these minimum and maximum limits.

Different codec timelines might start and end at different points after various files have been
attached, deleted, and had in/out points changed. This means that the port clock can take
positions in which thereis no mediafile for a codec to access. In these cases, the codec driver
plays black, or throws the recorded field away. (Black is defined as silence for the audio
codecs, 00:00:00:00 for timecode.)

Synchronizing ports

One port timeline can be controlled synchronously with asecond port timeline; every position
change in the master port will cause the same relative position change in the slave port while
the portsarein play or record mode.

The application should first establish the relative positions of the ports on their timelines.
Then, the application must place each port into the proper cue mode for the action desired on
the port; either CuePlay or CueRecord. The ports can be doing different functions.

The portswill now stay locked to their relative positions; when the master port position is
changed, a similar change will be seen by the dave port. It is possible to slave multiple ports
to asingle master port. The slave mode is established using the Vdr SetPlayM ode function.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 37

38

-
E Chapter 2 Programming the Profile Video Server

Events

With resources allocated to atimeline, the next issue is managing these resources. The
dynamic subsystem allows for scheduling of several types of resource-related events viathe
Events API. Specifically, you can programmatically control video and timecode crosspoints,
audio mixes, timecode val ues and timecode user hits. The following table summarizes the
available events. (See the SDK Reference Manual for full details on function parameters.)

Table 4. Summary of available events

To manage...

...use this event type

Video or timecode crosspoints

EventConnectResources

Audio mix levels

EventMixAudio

Timecode values

EventSetGTcTime

Timecode user bits

EventSetGTcBits

These events are coordinated with the API functions Vdr DefaultEvent, Vdr ScheduleEvent
and Vdr StateEvent. To understand how these functions control thetiming of events, be aware
of the various states a port may assume. Figure 3 presentsa simplified state diagram of a port,
including the API calls which can move a port between states.

Default events are not associated with a particular position on the timeline, but take effect any
timethe portisin anidle or record state. On the other hand, scheduled eventstake effect at a
givenvideo field whileaport isin the play state. It is possible to schedule multiple events for
agiven resource. The API also provides functionality to reschedule and cancel previoudy
scheduled events. Refer to the SDK Reference Manual for more details.

Default Events Scheduled Events
Apply May Apply
VdrCueRecord VdrCuePlay
VdrShuttle VdrShuttle
VdrJog Vdridle : VdrJog
vdridle :/\4 Vdridle ——@
Cue Record : Cue Play
Record Idle Play
Still Record vdrCuePlay : Still Play
«— VdrCueRecord =@ @ vdrShuttle :—>\
_K v vdrJog : /\
\ VdrCuePlay
VdrCueRecord
9187-2

Figure 3. Profile state

Profile Software Development Kit User

Preliminary — 12 July 2001

Sate events

State events

Vdr StateEvent adds flexibility to the event mechanism. Vdr StateEvent can replace the use
of VdrDefaultEvent and Vdr ScheduleEvent in most cases. You can view default and
schedule events as subsets of state events. State events can replace most usage of the scheduled
events because they are much more efficient and provide greater flexibility.

There are three states of the Profile port relevant to this discussion:

» Record/ldle state is active whenever the port isin Record or |dle mode.

» ActivePlay state is active whenever the port isin PlayShuttle or PlayJog mode.

* ReadyToPlay stateis active whenever the port isin CuePlay state, or the port would be in
ActivePlay state except that the position cannot be advanced because it is stopped by a
position limit.

The Vdr StateEvent function describes an event that occurs when the Profile port switches
into the specified state. The simplest explanation will use the existing Default- and
ScheduledEvents to show what happens. With a DefaultEvent declared, the event will occur
each time the Profile port switchesfrom any Play stateto either a Record state, or an Idle state.

Consider the EventConnectResources type of Event, which determines how the resources are
connected. Normally, the application will want the input routed to the output when in Idle or
Record modes. Thisisaccomplished by declaring a DefaultEvent with that connection. Each
time the application switches the port from Play to Idle, or Record, the input is connected to
the output.

Likewise, a ScheduledEvent isnormally used by the application to switch the connection such
that the codec is connected to the output when the Profile port goes into Play mode. While the
Scheduled Event can be used to control more specifically when the switch is made, most
applications set the time of occurrenceto be as early aspossible, and do not attempt to control
the switching at aspecific vertical interval. When thetimeis set to infinity, the event becomes
a StateEvent--it occurs on the change of state.

By having three states, awider variety of applicationsare possible. The use of the Profilevideo
server as a combination pass-through switcher and spot inserter underscores the need for the
separation of the Play state into two substates. Figure 4 shows a Profile unit and a video
switcher under automation control.

Program
video

Automation
RS422
control
RS422
control

Video

Profile 1 Switcher

Insert/ Mixed
Program Cache commercial video
video (both program and

insert/commercial video)

Figure 4. Profile unit and video switcher under automation

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 39

40

-
E Chapter 2 Programming the Profile Video Server

Normally, the Profile port would be placed into CuePlay as the spot is prepared for insertion.
Asthe mediafiles are buffered, the initial image of the spot is displayed on the output in a
freeze frame mode. Thisis a confidence check that the material is cued, and the video server
is ready.

In the case where a Profile system is acting as a pass-through switcher, it is not desirable to
show the cued first frame of the spot. The output needs to continue to show the input until it
isactually timeto show the spot. Then, asthe spot finishes, it is necessary to switch the output
back to theinput to continueto show program material that is passing through the video server.
Figure 5 shows the combination of two Profiles acting in series.

State Event

Automation
RS422
control
RS422
control

Profile 1 Profile 2

) Mixed
Commercial Cache video

Program Cache

(both program and
insert/commercia video)

Figure 5. Pass-through Profiles in series

By having three states, we can specify that the output of Profile 2 is connected to the input
during the Record/Idle state, and during the ReadyToPlay state, but the output is connected to
the codec during ActivePlay.

Current applications, such asthe example shown in Figure 6, Attaching a new mediafileto a
timeline on page 43, that are showing the first frame of the spot in a freeze frame manner are
using the three states such that the output is connected to the Input during the Record/Idle
state, but during the Ready ToPlay state and the ActivePlay states the output is connected to
the codec.

In the StateEvent, a subtle side effect of the current DefaultEvent and Scheduled Eventsis
eliminated. Currently, if there is no ScheduledEvent, the DefaultEvent will continue to be
active. In the StateEvent, the event for each state must be specified. If the same set of
connections are to be used in all states, this can be specified in the StateEvent. It is explicitly
specified, and not an implicit condition because another event was not specified.

This functionality is still available, but it is specified differently.

VdrDefaultEvent (hPort, NULL, EventComnectResources, hInput, hOutput) ;
...becomes:

VdrStateEvent (hPort, EventStateAll, EventConnectResources, hInput, hOutput) ;

To override the Play states, the previous Schedul edEvent:

VdrScheduleEvent (hPort, MOST NEG FIELD, EventConnectResources, hCodec, hOutput) ;
...becomes:

VdrStateEvent (hPort, EventStateAllPlay, EventComnnectResources, hCodec, hOutput) ;

Profile Software Development Kit User Preliminary — 12 July 2001

Audio events

In the above, the following defines are in effect from Vdr Types.h:

#define EventStateIdleRecord (1 << 0)

#define EventStatePlayActive (1 << 1)

#define EventStatePlayReady (1 << 2)

#define EventStateSwitcher (5)

#define EventStateAllPlay (6)

#define EventStateAll (7)

The function prototype of the Vdr StateEvent has the same form as Vdr DefaultEvent with
the one change that the reservedHandl e field which was NULL in Vdr DefaultEvent is now
the StateMask field. The StateM ask indicates in which states the event should be active. For
compatibility, Vdr DefaultEvent is equivalent to Vdr StateEvent with the StateMask set to
EventStateAll.

Example 9, stateevt.c on page 100 demonstrates how to use Vdr StateEvent to provide more
control over port connections during the Ready ToPlay state and how to use Vdr StateEvent
to replace Vdr DefaultEvent and ScheduleEvent.

Audio events

The audio event is of the type EventMixAudio. This event has two more parameters than the
corresponding EventConnectResources. These parameters are the target level (asa
percentage) of theinput signal in the output and the duration (asanumber of fields) over which
the change in level should take place. This isthe maximum duration of the change (the target
level might already bein use). Thus, events to play equal parts of audioCodecl and
audioCodec? into audioOut1 starting at port clock position 300 and getting to the target level
in 1/3 second would look like:

VdrScheduleEvent (port, 300, EventMixAudio, audioCodecl, audioOutl, (float)50., 20);
VdrScheduleEvent (port, 300, EventMixAudio, audioCodec2, audioOutl, (float)50., 20);

Timecode generator events

Instead of using afile of timecode during playback, or an external source of timecode during
record, the application can use atimecode generator. A timecode generator isanother resource
type. Once allocated to the port, it is connected to the timecode codec or output in the same
manner that any source would be connected to adestination. The generator is controlled both
by functions for control setup and by events for data setup.

The control functions of the timecode generator provide for setting the timecode format and
the generator mode. Timecode formats allowed are TcFormatDropFrame or
TcFormatNonDropFrame. These are set with the function Vdr SetGenT cFormat.

Generator modes are set with the function Vdr SetGenT cM ode. The possible modes are:
TcM odeFreeze, TcModeFreeRun, and TcM odeFieldL ocked. In Freeze mode, the identical
value is generated every field time. The TcModeFieldLocked mode is correlated to the port
clock, such that any non-linearity in the positions of the port clock will result in the same
non-linearity in the generator output.

The generator’s datavalues are initiated by events. The event types are EventSetGtcTime and
EventSetGtcBits. By using events, you can force the time value and the user bit valueto a
known value at a specific clock position. This could be used to mark the cut point between
different clipsin aplayback list.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 41

-
E Chapter 2 Programming the Profile Video Server

The encoding of the function parameters for these events would be as follows:

#define JAM TIME 500

VdrHandle port;

EventHandle setTime, setBits, clrBits;

ResourceHandle tcGenHandle;

UINT time = SET TIMECODE (1, 30, 15, 00);

// 1 hour, 30 min, 15 sec, 00 frame.

UINT bitsOn = 0x00008000; // set bit on

UINT bitsOff = 0x00000000; //set bit off after 60 fields.

setTime = VdrScheduleEvent (port, JAM TIME, EventSetGtcTime, tcGenHandle, time);
setBits VdrScheduleEvent (port, JAM TIME, EventSetGtcBits, tcGenHandle, bitsOn);
clrBits = VdrScheduleEvent (port, JAM TIME+60, EventSetGtcBits, tcGenHandle, bitsOff);
Timecode time is encoded in the system as packed decimal values, while the user bits are a
word of hexadecimal values.

Media files

Thefile system is shared by all applications, all ports, and all the media (audio, video, and
timecode). Thefiles have an addressabl e resolution of one video field (thisis more than a
single sample of audio.) The media file addresses (field numbers) are al positive, starting at
0. However, all fields of a media file do not need to be recorded.

A mediafile must be attached to a codec resource in order to be used with amediastream. The
file must be delimited with in/out points. Thein point isthe field position in the file used first
by the codec, while the out point isthe first field position beyond the last field used by the
codec. Thein/out points are relative to the mediafile, and not related to the codec timeline
where thefile is attached.

Thein/out points also protect the rest of the mediafile. The codec will only use segments of
the mediafile that are bracketed with in/out points.

For anew mediafile, the default out point isaways 0, and the file is empty. Until the in/out
points for the attached new media file are set, the file is not used: it is merely a place-holder
on the timeline with alength of 0. This means the out point of a new file must be set in order
to record into the file. The file appears on the timeline with the length specified by the out
point. However, the file system itself will only remember the highest field number that was
ever recorded (and not deleted). The file system automatically gives the file a length that
includes the highest numbered field actually recorded in thefile.

The mediafile attached to a codec resource is said to have a position on the timeline. The
position isthe rel ationship between the field numbers on the timeline and thosein thefile. The
position of the file is the timeline field number of the filein point.

Multiple files

A singleresource may have multiple mediafilesattached. | n that case, thefilesareplaced head
totail alongthetimeline. There are no gaps between files, and the last field position of thefirst
fileisimmediately beforethefirst field position of the second file. The out position of the first
fileis coincident with thein position of the second file. The resource uses the two fileswithout
any break between them.

There are several cases where the timeline must be adjusted by shifting. One caseiswhen a
fileisadded to thetimeline. Inthiscase, the additional file will be attached before another file,
and the position of some of the files on the timeline are shifted to make room for the added file

42 Profile Software Development Kit User Preliminary — 12 July 2001

Multiple files

fields. Other cases areif afileis deleted from the timeline, or if thein or out point of afileis
changed. In these exampl es, the number of fields in the abutted material changes, resulting in
changing of somefiles' positions.

In order to simplify things, you can specify how the shifting is accomplished. The shift can be
either before or after the point on the timeline where the change is being made. If the shift is
after the point, then any file that occupiesfield positions on the timeline falling at or after the
point of action is effected. In the case of the shift being before, then any file occupying field
positions on the timeline that fall at or before the point of action is affected.

The effect of shifting isthat the abutted files on the timeline may no longer begin at the
timeline position of 0. Any ShiftBefor e actions will move the beginning of the first file away
from the position 0, and the new position can be on either side of the position 0 depending
upon the action; adding fields to the timeline will move the beginning of the first file to the
left, while deleting fields from the timeline will move the beginning of thefirst fileto theright
(see Figure 6 and Figure 7).

Attach Media File 3 before Media File 2

Original Timeline State

[Media File 1 I Media File 2]
IllIIIIIIllilllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0

Timeline State after actions with ShiftAfter

Media File 1 Media File 3 Media File 2

IIIIIIIIIIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0

Timeline State after actions with ShiftBefore

Media File 1 Media File 3 Media File 2

IIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 9187-3

Figure 6. Attaching a new media file to a timeline

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 43

44

-
E Chapter 2 Programming the Profile Video Server

Detach Media File B

Original Timeline State

Media File A Media File B Media File C

0

Timeline State after actions with ShiftAfter

[Media File A I Media File C]
EER
1

0

Timeline State after actions with ShiftBefore

[Media File A I Media File C]

0 9187-4

Figure 7. Deleting media from timeline with effect on other media

You might choose to do a ShiftBefor e action if the point of action is before the current clock
position onthetimeline, and a ShiftAfter actionif the point of action is after the current clock
position. This method minimizes the impact of the shift. Consider an example in which the
current clock position is 30 when a change is made at the action point of 15. If a ShiftAfter
action is used, the relationship of the filesto the timeline at the current clock position of 30
changes, and what should have been a smooth playback could have sudden cuts into other
material. Since the application can only change the timeline of one resource at atime, the
results are even worse since some of the resources will continue with the expected material
and file field numbers.

Profile Software Development Kit User Preliminary — 12 July 2001

The TekVfslibrary

The TekVfs library

The TekVfslibrary provides an interface to the mediafile systems used by the real-time
embedded system. M ost of the functions of the host file system are available to the application
by using the TekVfslibrary.

While the functionsin the TekVfslibrary may be slightly different in the parameter list from
the host file system functions, the logic is similar. The application programmer opens afile by
using the CreateFile function with the flags set to OPEN_EXISTING. The sameistrue with
the mediafile system, only the function is VfsCreateFile. (There are minor differencesin the
actual parameterization of functions based on the need to remote the functions for the media
file system, and the lack of NT security in the mediafile system).

Thefiles of adirectory are enumerated using the Find functions: FindFir stFile,
FindNextFile, FindClose. Similarly, you enumerate the files of the mediafile system using
VfsFind functions; VfsFindFirstFile, VfsFindNextFile, and VfsFindClose. Thefind datais
even returned inaWIN32_FIND_DATA structure.

The big difference between the media file system and the host file system is the amount of
storage needed for media files. The mediafile system has a limited address space, so media
filesare stored in a special manner: the blocks of media are outside the address space of the
file system, and only a pointer to the block is stored in the file.

The mediafile contains a small header area that identifies a mediafile, and describesits
parameters. An empty mediafile has a length of 128 bytes. If the file system does not
recognize its header on afile being imported into the system, the file will be considered a
non-mediafile. Thiswill cause the fileto be stored within the address space of the file system,
and this, in turn, may use al the available space for the file system.

Themediafileisaddressable at thefield level. Individual fieldsof the file can beimported and
exported to memory buffers on the host system.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 45

-
E Chapter 2 Programming the Profile Video Server

The TekVme library

The Profile video mix effects board enables you to create various styles of video transitions.
This section includes definitions of the transitions that will be supported and the methods of
allocating the mixer segmentsin theinitial implementation of the video mix effects API.

The video mix effects board mixers can be allocated as two independent single stage mixers.
Each single stage mixer will have two video inputs, one video key input, one wipe generator,
and one video output. While this software implementation only supports single stage mixers,
the calls retain a stage specifier so that future implementations can support multiple stage
mixers without significant changes to the interface.
Thefollowing types of transitions are supported by any mixer stage:
» Dissolve between foreground and background.
» Keyed dissolve between foreground and background.
* Wipe between foreground and background, with or without border:

- Possible wipe styles are horizontal, vertical, horizontal split, vertical split, corner or
diagonal, box, diamond, and circle. These can also have multiplier values, be
positioned with x and y coordinates, have rotation, and have modulation edge.

- Borders have selectable matte color, width and softness, and can also be modul ated
by sawtooth, square or sine wave of selectable frequency with changing or fixed
phase.

» Keyed wipe between foreground and background without borders.
- Keyshave sdlectable clip, gain, and invert state.
e Push on/off between foreground and background, with or without border.
» Push over between foreground and background, with or without border or shadow.
» Dissolve between foreground or any of the above transition outputs and matte (fade to
black). This can happen at any time relative to any transition in progress.

Each transition is created in amix context which isreferenced through aVmeHandle. The mix
context is obtained, the desired transitions created for each stage within the context, then the
context is applied to the hardware. When no longer needed, the context can be freed.

46 Profile Software Development Kit User Preliminary — 12 July 2001

The TekXifr library

The TekXfr library

Fibre Channel enablesyou to copy mediabetween Profile systems faster than in real time. To
transfer media across Fibre Channel connections, Profile systems must have Ethernet local
areanetwork (LAN) and Fibre Channel boards installed and the systems need to be attached
to both networks in order to communicate. The Ethernet LAN carries commands between
Profile units while the Fibre Channel connections carry the actual video, audio, and timecode
data. Both networks use TCP/IP (Transmission Control Protocol/Internet Protocol).

Streaming over Fibre Channel makes it possible to transfer parallel tracks of media, such as
concurrent audio and video tracks, in small packets, and then reassemble them on the
destination Profile unit. This allows the network to transfer a clip whileit is still being
recorded, or to playback a clip before the transfer is complete. For example, soon after it
begins receiving aclip, a destination Profile unit can begin playing it. The streaming transfer
continues while playback occurs at the destination, delivering new packets at a fast enough
rate to allow playback to proceed uninterrupted.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User a7

-
E Chapter 2 Programming the Profile Video Server

48 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 3

Recording and Playing Movies

This chapter exploresthe basic work of recording and playing mediawith a Profile video disk
recorder/server, such as;

» Recording asimple movie.

» Playing asimple movie.

» Playing amovie that hasin and out marks.

» Playing multiple (complex) movies.

» Each explanation isfollowed by a sample program written in C.

» Recording amovie

Recording and playing back a movie are two very basic operations of the Profile video server.
In this section, we discuss the basi c steps necessary to accomplish these tasks, then present the
same steps in the form of small sample applications that record a movie clip to disk and play
back the saved movieclip.

Example 1, record.c illustrates the record function. (This example uses JPEG compression;
see Example 16, mpegdemo.c on page 183 in for asimilar example. It may be useful to
review the JPEG play sample before reviewing the MPEG example, since this example builds
on the basic play operations.)

The program processes the command line to obtain the movie name and duration for
recording. Then it calls the SetupResources routine in order to allocate and connect the
appropriate resources. A connection to the local machine is established with
RemOpenConnection, and a port is opened with Vdr OpenPortConnection. The standard
video format for the machine is determined with CfgGetStandard, and the port is set to that
format using the Vdr SetVideoFor mat function. The number of JPEG codecs is determined
with CfgGetNumCodecs and a free JPEG codec resource isidentified and allocated with
VdrAllocateResour ce. The codec allows video encoding and decoding to occur on the
specified port.

Similarly, two audio codecs are allocated for the port, one for each stereo channel. Audio
inputs are considered permanently attached to the audio codecs and, therefore, available with
the audio codecs.

The video input and the video and audio output resources are also allocated for the port, in
order to receive avideo signal and have somewhere to send it for testing.

Thevideo input resource is alocated using Vdr GetResour ceConnectionHandle, which
provides a handle value for the resource to which a connection can be made but doesn’t take
control of the resource the way VdrAllocateResource does. The video input resource is
described as “ shared”.

Lastly, audio output resources are allocated, compl eting the all ocation of resources. Audio
input resources do not need to be specified since the audio codes are assumed to be connected
to the identically numbered audio input resources.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 49

50

-
E Chapter 3 Recording and Playing Movies

After this, default (V dr DefaultEvent) and scheduled events (V dr ScheduleEvent) are used to
make the connectionsthat occur when the port isin various states. The connection made with
the scheduled event is only active during playback. It connects the video codec to the video
output resource. In al other states, the connections made with the default events are active,
connecting the video input to the video output--which allows viewing the video input at all
times that the port is not in play mode--and to the video codec. Since the audio connections
are even more complex, the normal pattern of connections has been set to the default. (See
Example 9, stateevt.con page 100in for moreinformation about these eventsand how to gain
more control over their behavior.)

Once theresources have been obtained, the main procedure performs the record operation by
calling StartRecord. The program tries to open the movie with PdrOpenMovie, to seeif it
already exists. If the program detects that the movie does not exist, the function
VdrAttachMovieWithM arks creates the movie and attaches it to the timeline with empty
media files. With the movie attached, the Vdr CueRecord function places the port in record
mode.

At this point, the port isready to record, and Vdr Shuttle starts recording.

After the specified duration is recorded, the current position (Vdr GetPosition) stops
changing, so that as soon as two samples of the position separated by 100ms show the same
position, the port is returned to idle mode (Vdrldle) and the move is detached from the port
timeline (Vdr DetachM ovie). The entire movieis played back because mark-in and mark-out
points are not specified.

Finally, the resources acquired during execution must be released. The main procedure calls
cleanup to release all of the handles acquired during the setup phase (V dr ReleaseResour ce)
and close the port (Vdr ClosePort). This completes the process and stops the program.

If an error occurs at any step of the way, an appropriate error message is output to the display
for troubleshooting.

Using a command-line program, the accompanying code sample illustrates theses steps by
recording and playing back aclip on alocal Profile system.

Profile Software Development Kit User Preliminary — 12 July 2001

Example 1. record.c

//

// File: record.c

// This sample program records a JPEG clip of a specified time (measured

// in seconds) and then plays it back.

// Copyright (c) Grass Valley Group Inc. 1996-1998
// All rights reserved.

// Usage: record movie name -s seconds
//

#include <stdio.h>

#include <windows.h>

#include <limits.h>

#include <tekrem.h>

#include <tekcfg.h>

#include <tekpdr.h>

#include <tekvdr.h>

#define SHUTTLE RATE 1.0
#define NUM_INPUT O
#define NUM OUTPUT O

// For demo application, we will have several resources. Enumerate
// them for use as indices into an array for VdrAttachMovie calls.

// First three are Codecs.

enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX CODEC };

enum ResEnum { VIN = MAX CODEC, VOUT, AOUT1, AOUT2, MAX RSRC };

// Module static variables.

static ConnectHandle sConn;

static VdrHandle sPort;

static ResourceHandle sResHdls[MAX RSRC];

static char* spMovieName;
static int sSeconds;
static int sRate;

//

// Print out usage line.

//

void Usage (const char* progName)

{

printf ("Usage: %s movie name -s seconds\n", progName) ;
} // Usage

//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources (void)

BOOL rtn;

BOOL eventl, event2;

VideoFormat videoFormat ;

int i, vlimit;

EventHandle evtHand;

printf ("Starting setup...\n");

Preliminary — 12 July 2001

Profile Software Devel opment Kit User

51

Chapter 3 Recording and Playing Movies

// Open the connection and the port.
rtn = RemOpenConnection (ConnectLocal, 0, 0, &sConn) ;
if (lrtn) {
printf ("Error opening connection.\n");
return FALSE;
}
sPort = VdrOpenPortConnection (sConn) ;
if (!sport) {
printf ("Error getting port \n");
return FALSE;

}

// Is this NTSC or PAL?
switch (CfgGetStandard(sComn)) {
case PCI_PAL 625 MODE:
videoFormat = Format625 50Hz 2Tol;
sRate = 50;
break;
case PCI_NTSC 525 MODE:

videoFormat = Format525 60Hz 2Tol;

sRate = 60;

break;
case PCI_INVALID MODE:
default:

printf ("Invalid or unknown video mode.\n") ;
return FALSE;

}

VdrSetVideoFormat (sPort, videoFormat) ;

//

// Now, get the necessary resources for the demo.

//

// Find first available codec.

vlimit = CfgGetNumCodecs (sConn, JpegCodec
// same as VideoCodec) ;

for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
sResHd1ls [VCOD] = VdrAllocateResource (sPort, ResourcedpegCodec,
// same as ResourceVideoCodec (unsigned int)i);

}

if (!sResHdls[vCOD]) {
printf ("Cannot allocate jpeg video codec.\n") ;
return FALSE;

}

// Get two audio codecs.
sResHd1s [ACOD1] = VdrAllocateResource (sPort, ResourceAudioCodec,

NUM_INPUT) ;

sResHd1s [ACOD2] = VdrAllocateResource (sPort, ResourceAudioCodec,
NUM_INPUT+1) ;

if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {

printf ("Cannot allocate audio codec.\n");
return FALSE;

}

// Get video in and out resources.

sResHd1s [VOUT] = VdrAllocateResource (sPort, ResourceVideoOutput,
NUM_OUTPUT) ;

if (!sResHdls[VOUT]) {
printf ("Cannot allocate video output.\n") ;
return FALSE;

}

52 Profile Software Development Kit User Preliminary — 12 July 2001

sResHd1s [VIN] = VdrGetResourceConnectionHandle (sPort,
ResourceVideoInput, NUM INPUT) ;

if (!sResHdls[VIN]) ({
printf ("Cannot get video input.\n");
return FALSE;

}

// Get audio resources.

sResHd1s [AOUT1] = VdrAllocateResource (sPort, ResourceRudioOutput,
NUM_OUTPUT) ;

sResHd1s [AOUT2] = VdrAllocateResource (sPort, ResourceRudioOutput,
NUM_OUTPUT+1) ;

if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
printf ("Cannot allocate audio resources.\n");
return FALSE;

}

// Set the default event.

eventl = VdrDefaultEvent (sPort, NULL, EventConnectResources,
sResHd1s [VIN], sResHdls[VOUT]) ;

event2 = VdrDefaultEvent (sPort, NULL, EventConnectResources,
sResHd1s [VIN], sResHdls[VCOD]) ;

if (eventl == FALSE || event2 == FALSE) {
printf ("Cannot schedule default events. \n");
return FALSE;

}

// Schedule the event.

evtHand = VdrScheduleEvent (sPort, INT MIN, EventConnectResources,
sResHdls [VCOD], sResHdls [VOUT]) ;

if (levtHand) {
printf ("Cannot schedule event.\n") ;
return FALSE;

}

return TRUE;

} // SetupResources

//

// Clean up by releasing resources and closing the control port.

//

void Cleanup (void)

{

int i;
printf ("Starting cleanup...\n");

for (i=0; i<MAX RSRC; ++i) {
if (sResHdls[i]) {
VdrReleaseResource (sResHdls [1]) ;
sResHd1ls [i1] = 0;
1
1

if (!VdrClosePort (sPort)) ({
printf ("Cannot close port. \n");
return;

1

sPort = 0;

} // Cleanup

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

53

Chapter 3 Recording and Playing Movies

//
// Play the movie clip.
//
void StartPlay (void)
{
INT oldpos, newpos;
MovieHandle movieHdl;

// Attach the movie that we just recorded.

if (!PdxMovieExists (sConn, spMovieName)) {
printf ("Movie %s does not exist \n", spMovieName) ;
return;

}

movieHdl = VdrAttachMovie (spMovieName, MAX CODEC, sResHdls, NULL,
ShiftAfter, MarkLongest) ;

if (!movieHdl) {
printf ("Error getting movie handle \n") ;
return;

}

// Cue up playback of media attached with VdrAttachMovie.
if (!VdrCuePlay (sPort, SHUTTLE RATE)) {

printf ("Cannot cue play \n");

return;

}

// Begin motion playback.

if (!VdrShuttle (sPort, SHUTTLE RATE)) {
printf ("Cannot begin playback \n");
return;

}
printf ("Starting playback...\n") ;

// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;
do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;
} while (newpos > oldpos);

// Cease play back.

if (!vdrIdle(sPort)) {
printf ("Cannot move to idle.\n");
return;

}

// Detach the movie handle from the chamnel.
if (!VdrDetachMovie (movieHdl, ShiftAfter)) ({
printf ("Cannot detach movie.\n") ;
return;

} // startPlay

//

// Record a clip in JPEG format.

//
BOOL StartRecord (void)

{

54 Profile Software Development Kit User Preliminary — 12 July 2001

INT oldpos, newpos;
int markout ;
MovieHandle movieHdl;

// Check to see if the movie already exists.

if (PdxMovieExists(sConn, spMovieName)) {
printf ("Movie name already exists.\n");
return FALSE;

}

markout = sSeconds * sRate;
movieHdl = VdrAttachMovieWithMarks (spMovieName, MAX CODEC, sResHdls,
NULL, ShiftAfter, Marklongest, 0, markout) ;

if (!movieHdl) {
printf ("Error getting movie handle \n");
return FALSE;

}

if (!VdrCueRecord (sPort)) ({
printf ("Cannot cue record \n");
return FALSE;

}

if (!VdrShuttle (sPort, SHUTTLE_RATE)) {
printf ("Cannot cue shuttle \n");
return FALSE;

}

printf ("Starting record...\n");

// Wait until record is done.

newpos = 0;

do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;

} while (newpos > oldpos) ;

// Stop the recording.

if (!vdrIdle(sPort)) {
printf ("Cannot idle port\n") ;
return FALSE;

}

// Detach the movie from the timeline.

if (!VdrDetachMovie (movieHdl, ShiftAfter)) ({
printf ("Cannot detach movie.\n") ;
return FALSE;

}

return TRUE;

} // StartRecord

//
// The main entry point.

//

void main(int argc, char *argv([])

{

BOOL rtn, rtnl = FALSE;
int i;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 55

56

-
E Chapter 3 Recording and Playing Movies

// Read in the new movie name.
i=1;
if (argviil) {
spMovieName = argv[i];
1
else {
Usage (argv[0]) ;
exit (1) ;
1

i++;

// Process seconds argument.
while (i < arge) {
if (argv[i] [0] == "-")
switch (argv([i] [1]) {
case 's’:
14++;
sSeconds = atoi (argv[i++]) ;
break;
default:
Usage (argv[0]) ;
exit (1) ;
1
else {
Usage (argv[0]) ;
exit (1) ;
1
1

rtn = SetupResources () ;

if (rtn)
rtnl = StartRecord() ;

if (rtnil)
StartPlay () ;

Cleanup() ;

} // main

Profile Software Development Kit User

Preliminary — 12 July 2001

Playing a movie

Playing a movie

Example 2, play.c shows you how to play amovie in the JPEG compression format, with
optional mark-in and mark-out points. (This example uses JPEG compression; see
Example 16, mpegdemo.c on page 183 in for asimilar example.)

First, the appropriate resources must be allocated for later use. A connection to the Profileis
established with RemOpenConnection, and a port is opened using a call to the function
VdrOpenPortConnection. The standard video format for the machine is determined with
CfgGetStandard, and the port is set to that format with Vdr SetVideoFor mat. Next, aJJPEG
codec resource is allocated and attached to the port with Vdr AllocateResource. The codec
allows video decoding to occur on the specified port.

Similarly, two audio codecs are allocated and attached to the port, again with
VdrAllocateResour ce, one for each stereo channel. The video input and output resources are
then allocated and attached to the port with similar calls.

Finally, default and scheduled events are setup, using Vdr DefaultEvent and

Vdr ScheduleEvent respectively. These calls describe the connections that occur when the
portisinvarious states. (See Example 9, stateevt.c on page 100in for moreinformation about
these events and how to gain more control over their behavior.)

Once the resources are obtained, you proceed to the playback. The movie is opened via

Pdr OpenM ovie and is attached with the function Vdr AttachOpenM ovie. The optional
mark-inand mark-out pointsare set with Vdr SetM ovieM ar kI n and Vdr SetM ovieM arkOut.
After that, the movieis cued for play (Vdr CuePlay). It begins playing when the video server
isinstructed to shuttle using Vdr Shuttle, and after the specified duration has passed—
determined by Vdr GetPosition—idle mode is set with VdrIdle and the movie is detached
using VdrAttachM ovie. The movieis closed with Pdr CloseM ovie.

Finally, the resources acquired during execution must be released. With a call to

Vdr ReleaseResour ce, the Profile unit istold to release all of the handles acquired during the
setup phase, and the port is closed with Vdr ClosePort. This completes the process and the
program is stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.

Example 2 illustrates these steps with a command-line program that plays back aclip.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 57

58

Chapter 3 Recording and Playing Movies

Example 2. play.c

//
// File: play.c
// This sample program plays a specified JPEG clip.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,

// is protected as an unpublished work under the copyright laws of
// the United States.

// Usage: play movie name [-i markin] [-o markout]

#include <stdio.h>

#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE RATE 1.0
#define NUM_INPUT O
#define NUM OUTPUT O

// For demo application, we will have several resources. Enumerate

// them for use as indeces into an array for VdrAttachMovie calls.
// First three are Codecs.

enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX CODEC };

enum ResEnum { VIN = MAX CODEC, VOUT, AOUT1, AOUT2, MAX RSRC };

// Module static variables.
static ConnectHandle sConn;
static VdrHandle sPort;

static ResourceHandle sResHdls[MAX RSRC];
static char* spMovieName;

static int sMarkIn;

static int sMarkOut ;

//

// Print out usage line.

//

void Usage (const char* progName)

{

printf (“Usage: %s movie name [-i markin]
} // Usage

//

// Initialize the Profile. Report any anomalies.

//

// Return TRUE if successful, otherwise FALSE.

//

BOOL SetupResources (void)

{

VideoFormat videoFormat ;

int i, vlimit;

EventHandle evtHand;

printf (“Starting setup...\n");

// Open the connection and the port.

Profile Software Development Kit User

[-o markout] \n”, progName) ;

Preliminary — 12 July 2001

Playing a movie

if (!RemOpenConnection (Connectlocal, 0, 0, &sComn)) {
printf (“Error opening connection.\n”);
return FALSE;
1
sPort = VdrOpenPortConnection (sConn) ;
if (!sport) {
printf (“Error getting port \n”);
return FALSE;

}

// Is this NTSC or PAL?
switch (CfgGetStandard(sComn)) {
case PCI_PAL 625 MODE:
videoFormat = Format625 50Hz 2Tol;
break;
case PCI_NTSC 525 MODE:
videoFormat = Format525 60Hz 2Tol;
break;
case PCI_INVALID MODE:
default:
printf (“*Invalid or unknown video mode.\n”) ;
return FALSE;

}

VdrSetVideoFormat (sPort, videoFormat) ;

//

// Now, get the necessary resources for the demo.

//

// Find first available codec.
vlimit = CfgGetNumCodecs (sConn,
JpegCodec // same as VideoCodec
)i
for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
sResHdls [VCOD] = VdrAllocateResource (sPort,
ResourcedpegCodec, // same as ResourceVideoCodec
(unsigned int)1i);

}

if (!sResHdls[vCOD]) {
printf (“Cannot allocate jpeg video codec.\n”) ;
return FALSE;

}

// Get two audio codecs.
sResHd1s [ACOD1] VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT) ;
sResHd1s [ACOD2] = VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT+1) ;
if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {

printf (“Cannot allocate audio codec.\n”);

return FALSE;

}

// Get video in and out resources.
sResHd1s [VOUT] = VdrAllocateResource (sPort, ResourceVideoOutput, NUM OUTPUT) ;
if (!sResHdls[VOUT]) {

printf (“Cannot allocate video output.\n”) ;

return FALSE;

}

sResHd1s [VIN] = VdrGetResourceConnectionHandle (sPort,
ResourceVideoInput, NUM INPUT) ;
if (!sResHdls[VIN]) ({
printf (“Cannot get video input.\n”);

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 59

Chapter 3 Recording and Playing Movies

return FALSE;

}

// Get audio resources.
sResHd1s [AOUT1] = VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT) ;
sResHd1s [AOUT2] = VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT+1) ;
if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {

printf (“Cannot allocate audio resources.\n”);

return FALSE;

}

// Set the default event.
if (!VdrDefaultEvent (sPort, NULL, EventConnectResources,
sResHdls [VIN] , sResHdls[voUT])) ({
printf (“Cannot schedule default event. \n”);
return FALSE;

}

// Schedule the event.

evtHand = VdrScheduleEvent (sPort, INT MIN, EventConnectResources, sResHdls[VCOD],
sResHd1s [VOUT]) ;

if (levtHand) {
printf (“Cannot schedule event.\n”) ;
return FALSE;

}

return TRUE;

} // SetupResources

//

// Cleanup by releasing resources and closing the control port.

//

void Cleanup (void)

{

int i;
printf (“Start cleanup...\n”);

for (i=0; i<MAX RSRC; ++i) {
if (sResHdls[i]) {
VdrReleaseResource (sResHdls [1]) ;
sResHd1ls [i] = 0;
1

}

if (!VdrClosePort (sPort)) ({
printf (“Cannot close port. \n”);
return;

1

sPort = 0;

} // Cleanup

//
// Play the movie clip.

//
void StartPlay (void)

INT oldpos, newpos;
MovieToken movieTok;

60 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie

MovieHandle movieHdl;

// Open and attach the movie.

movieTok = PdrOpenMovie (sConn, spMovieName, O);

if (!movieTok) {
printf (“Movie %s does not exist \n”, spMovieName) ;
return;

}

movieHdl = VdrAttachOpenMovie (movieTok, MAX CODEC, sResHdls, NULL,
ShiftAfter, Marklongest) ;
if (!movieHdl) {
printf (“Error getting movie handle \n”);
return;
1
if (sMarkIn) {
VdrSetMovieMarkIn (movieHdl, sMarkIn, ShiftAfter);

if (sMarkoOut) {
VdrSetMovieMarkOut (movieHdl, sMarkOut, ShiftAfter);

}

// Cue up playback of media attached with VdrAttachMovie.
if (!VdrCuePlay (sPort, SHUTTLE RATE)) {

printf (“Cannot cue play \n”) ;

return;

}

// Begin motion playback.

if (!VdrShuttle (sPort, SHUTTLE RATE)) {
printf (“Cannot begin playback \n”) ;
return;

printf (“Playing movie \”%s\”...\n”, spMovieName) ;

// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;
do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;
} while (newpos > oldpos) ;

// Cease play back.

if (!vdrIdle(sPort)) {
printf (“Cannot move to idle.\n”);
return;

}

// Detach the movie handle from the channel.
if (!VdrDetachMovie (movieHdl, ShiftAfter)) {
printf (“Cannot detach movie.\n”) ;
return;

}

if (!PdrCloseMovie (movieTok)) {
printf (“Cannot close movie.\n”);
return;

}

} // startPlay

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 61

62

-
E Chapter 3 Recording and Playing Movies

//
// The main entry point.
//
void main(int argc, char *argv([])
{
int i=1;
// Read in the new movie name.

if (argvli]) {

spMovieName = argv[i];

else {
Usage (argv[0]) ;
exit (1) ;
)
i++;
// Process optional markin and markout points.
while (i < arge) {
if (argv[i] [0] == *-")
switch (argv[i] [1]) {
case ‘i’:
++1;
sMarkIn = atoi(argv[i++]);
break;
case ‘o’:
++1;
sMarkOut = atoi (argv[i++]) ;
break;
default:
Usage (argv[0]) ;
exit (1) ;
1
else {
Usage (argv[0]) ;
exit (1) ;
1
1

if (SetupResources()) {
StartPlay () ;

Cleanup() ;

} // main

Profile Software Development Kit User

Preliminary — 12 July 2001

Playing a movie with in and out marks

Playing a movie with in and out marks

Example 3, play_fitted.c showsyou how to play amoviein the JPEG compression format with
optional mark-in and mark-out points for a given duration.

First, the appropriate video resources must be allocated for later use (this particular example
does not acquire audio resources). A connection handle to the local machine is established
with RemOpenConnection, and a port is opened using Vdr OpenPortConnection. Then the
standard video format for the machine is determined with CfgGetStandard, and the port is
set to that format via Vdr SetVideoFor mat.

Next, aJPEG codec resource is allocated and attached to the port with Vdr AllocateResour ce.
The codec allows video decoding to occur on the specified port. The video input and output
resources are then allocated and attached to the port, also using Vdr AllocateResour ce.
Finally, default (Vdr DefaultEvent) and scheduled events (Vdr ScheduleEvent) are setup to
describe the connections that occur when the port is in various states. (See Example 9,
stateevt.c in for more information about events and how to gain more control over their
behavior.)

Once the resources are obtained, you are ready to perform the playback. The movieisfirst
opened with PdrOpenM ovie. After the first track and media tokens are obtained with the
functions Pdr GetNextTrack and PdrGetNextM ediaToken, the media's path is determined
with Pdr GetM ediaPath.

Then the movie is attached and fitted to the specified duration with optional mark-in and
mark-out points being set (see VdrAttachFittedM edia or

VdrAttachFittedM ediaWithM arks). After that, the movie is cued for play using

Vdr CuePlay. It begins playing when the Profile unit is instructed to shuttle with VVdr Shuttle,
and after the specified duration has passed, idle mode is set (Vdrldle) and the movieis
detached with Pdr DetachM edia. The movie is then closed with Pdr CloseM ovie.

Finally, the resources acquired during execution must be released. The disk recorder/server is
told to release all of the handles acquired during the setup phase using Vdr Rel easeResour ce,
and the port is closed with Vdr ClosePort. This completes the process and the program is
stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 63

Chapter 3 Recording and Playing Movies

Example 3. play_fitted.c

//

// File: play fitted.c

// This sample program fits a recorded clip into a given time frame.
// It deals with video media only.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

// Usage: play fitted movie name duration [-i markin] [-o markout]

#include <stdio.h>

#include <stdlib.h>
#include <windows.h>
#include <limits.h>
#include <string.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE RATE 1.0
#define NUM_INPUT 0
#define NUM OUTPUT 0O

// Enumerate resource ID’s for use as indeces into an array.
enum CodecResEnum { VCOD, VIN, VOUT, MAX RSRC };

// Module static variables.

static ConnectHandle sConn;

static VdrHandle sPort;

static ResourceHandle sResHdls[MAX RSRC];

static char* spMovieName;
static int sMarkIn;

static int sMarkOut ;
static int sRate;

static int sSeconds;

//

// Print out usage line.

//

void Usage (const char* progName)
printf (“Usage: %s movie name duration [-i markin] [-o markout]\n”, progName) ;
} // Usage

//

// Initialize the Profile. Report any anomalies.
// Return TRUE if successful, otherwise FALSE.
//

BOOL SetupResources ()

{

VideoFormat videoFormat;
int i, vlimit;
EventHandle evtHand;

printf (“Starting setup...\n");

64 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie with in and out marks

// Open the connection and the port.
if (!RemOpenConnection (ConnectlLocal, 0, 0, &sComnn)) {
printf (“Error opening connection.\n”);
return FALSE;
}
sPort = VdrOpenPortConnection (sConn) ;
if (!sport) {
printf (“Error getting port.\n”);
return FALSE;

}

// Is this NTSC or PAL?
switch (CfgGetStandard(sComn)) {
case PCI_PAL 625 MODE:
videoFormat = Format625 50Hz 2Tol;
sRate = 50;
break;
case PCI_NTSC 525 MODE:

videoFormat = Format525 60Hz 2Tol;

sRate = 60;

break;
case PCI_INVALID MODE:
default:

printf (*Invalid or unknown video mode.\n”) ;
return FALSE;

}

VdrSetVideoFormat (sPort, videoFormat) ;
// Get the necessary resources--1 codec, 1 video output, 1 video input.

// Find first available codec.
vlimit = CfgGetNumCodecs (sConn, JpegCodec) ;
for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {
sResHd1ls [VCOD] = VdrAllocateResource (sPort, ResourcedpegCodec, 1i);
!
if (!sResHdls[vCOD]) {
printf (“Cannot allocate jpeg codec.\n”) ;
return FALSE;

}

// Get video in and out resources.
sResHd1s [VOUT] = VdrAllocateResource (sPort, ResourceVideoOutput, NUM OUTPUT) ;
if (!sResHdls[VOUT]) {
printf (“Cannot allocate video output\n”);
return FALSE;
1
sResHd1s [VIN] = VdrGetResourceConnectionHandle (sPort,
ResourceVideoInput, NUM INPUT) ;
if (!sResHdls[VIN]) ({
printf (“Cannot get video input.\n”);
return FALSE;

}

// Set the default event.
if (!VdrDefaultEvent (sPort, NULL, EventConnectResources, sResHdls[VIN],
sResHd1s [VOUT])) {
printf (“Cannot schedule default event.\n”);
return FALSE;

}

// Schedule the event.
evtHand = VdrScheduleEvent (sPort, INT MIN, EventConnectResources, sResHdls[VCOD],
sResHd1s [VOUT]) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

65

Chapter 3 Recording and Playing Movies

if (levtHand) {
printf (“Cannot schedule event.\n”) ;
return FALSE;

1

return TRUE;

} // SetupResources

//

// Cleanup by releasing resources and closing the control port.
//

void Cleanup ()

{

int i;
printf (“Starting cleanup...\n”);

for (i=0; i<MAX RSRC; ++i) {
if (sResHdls[i]) {
VdrReleaseResource (sResHdls [1]) ;
sResHdls[i] = 0;
1
1

if (!VdrClosePort (sPort)) ({
printf (“Cannot close port\n”) ;
return;

}

sPort = 0;
} // Cleanup

//

// Play the movie clip.

//

void StartPlay()

{
int oldpos, newpos;
MovieToken movieTok;
TrackToken trackTok;
MediaToken mediaTok;
MediaHandle mediaHdl;
char mediaFilePath[PDR MAX COMPLEX MEDIA NAME LEN+1];
int duration;

// Open the movie.

movieTok = PdrOpenMovie (sConn, spMovieName, O0);

if (!movieTok) {
printf (“Movie %s does not exist \n”, spMovieName) ;
return;

}

// Get the first track token for this movie.
trackTok = PdrGetNextTrack (movieTok, O0);
if (!trackTok) {
printf (“Can not get a track token.\n”);
return;

}

// Get the first media token on this track.
mediaTok = PdrGetNextMediaToken (movieTok, trackTok, PdrNullMediaToken()) ;

66 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie with in and out marks

if (PdrMediaTokenIsNull (mediaTok)) {
printf (“First track media token is null.\n”);
return;

}

// Get the pathname for the media we have selected.
if (PdrGetMediaPath (mediaTok, mediaFilePath,

PDR MAX COMPLEX MEDIA NAME LEN) == -1)
printf (“Error getting media path.\n”);
return;

}

duration = sSeconds * sRate;

if (sMarkIn || sMarkOut) {

mediaHdl = VdrAttachFittedMediaWithMarks (mediaFilePath, sResHdls [VCOD],
duration, NULL, ShiftAfter, sMarkIn, sMarkOut) ;

else {

mediaHdl = VdrAttachFittedMedia (mediaFilePath, sResHdls[VCOD], duration,
NULL, ShiftAfter);

!

if (!mediaHdl) {
printf (“Cannot attach the media.\n”) ;
return;

}

// Cue up playback of media that has been attached with VdrAttachMedia.
if (!VdrCuePlay (sPort, SHUTTLE RATE)) {

printf (“Cannot cue play.\n”) ;

return;

}

// Begin motion playback.

if (!VdrShuttle (sPort, SHUTTLE RATE)) {
printf (“Cannot begin playback.\n”) ;
return;

}

printf (“Starting playback...\n") ;

//
// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
//
newpos = 0;
do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;
} while (newpos > oldpos) ;

// Cease play back.

if (!vdrIdle(sPort)) {
printf (“Cannot move to idle.\n”);
return;

}

// Detach the moviehandle from the chamnel.
if (!VdrDetachMedia (mediaHdl, ShiftAfter)) ({
printf (“Cannot detach media.\n”) ;
return;

}

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 67

-
E Chapter 3 Recording and Playing Movies

if (!PdrCloseMovie (movieTok)) {
printf (“Cannot close movie.\n”);
return;

} // startPlay

//

// The main entry point.

//

void main(int argc, char *argv([])

{
int i = 1;

// Read in the required movie name.
if (argviil) {
spMovieName = argv[i];
1
else {
Usage (argv[0]) ;
exit (1) ;
1

i++;
sSeconds = atoi (argv[i++]) ;

// Process optional markin and markout points.
while (i < arge) {
if (argv[i] [0] == *-")
switch (argv[i] [1])
case ‘i’:
14++;
sMarkIn = atoi(argv[i++]);
break;
case ‘o’:
1++;
sMarkOut = atoi (argv[i++]) ;
break;
default:
Usage (argv[0]) ;
exit (1) ;
1

else {
Usage (argv[0]) ;
exit (1) ;

}
}

if (SetupResources()) {
StartPlay () ;

}

Cleanup() ;

} // main

68 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies

Playing a list of movies

Example 4, play_multi.c shows you how to play alist of moviesin the JPEG compression
format. First, the command lineis parsed for alist of movies. Up to five movies are
concatenated together and stored in an array. Each movie will be played in its entirety,
immediately followed by the next movie.

As aways, the appropriate resources must be allocated for later use. Therefore, the program
establishes a connection to the local machine with RemOpenConnection, and opens a port

using Vdr OpenPortConnection. Next, the program determines the standard video format for
the machine with CfgGetStandar d, and with VVdr SetVideoFor mat, sets the format.

Then the code allocates a JPEG codec resource with Vdr AllocateResour ce, and attached to
the port with a call to Vdr GetResour ceConnectionHandle. The codec allows video
decoding to occur on the specified port. Similarly, the program allocates two audio codecs,
again with Vdr AllocateResour ce, one for each stereo channel. The video input and output
resources arethen allocated and attached to the port using similar calls. Finally, default events
(VdrDefaultEvent) and scheduled events (Vdr ScheduleEvent) are setup that describe the
connections that occur when the port is in various states. (See Example 9, stateevt.c on

page 100 in for moreinformation about these events and how to gain more control over their
behavior.)

Once the resources are obtained, the code performs the playback. The program opens each
movie with PdrOpenM ovie and a call to the function Vdr AttachOpenM ovie attaches each
movie to the timeline. In this example, each moviein succession is attached to the end of the
timeline. Other applications could use different insertion methods to place moviesin a
different order, shifting before or after other mediafiles. After attachment, the port is cued for
play with Vdr CuePlay. It begins playing the movies in succession when the Profile is
instructed to shuttle (Vdr Shuttle). After all the movies have finished playing, idle modeis set
with Vdrldle and the movies are detached with Vdr DetachM ovie and closed with

Pdr CloseM ovie.

Finally, the resources acquired during execution must bereleased. The Profileistold to release
all of the handles acquired during the setup phase (Vdr ReleaseResour ce), and the port is
closed (VdrClosePort).

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 69

Chapter 3 Recording and Playing Movies

Example 4. play_multi.c

//
// File: play multi.c
// This sample program plays up to 5 specified JPEG clips.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

// Usage: play multi movie namel [... movie name5]

//

#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.h>

#define SHUTTLE RATE 1.0
#define NUM INPUT O
#define NUM OUTPUT O
#define MAX CLIPS 5

// For demo application, we will have several resources. Enumerate
// them for use as indeces into an array for VdrAttachMovie calls.
// First three are Codecs.

enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX CODEC };

enum ResEnum { VIN = MAX CODEC, VOUT, AOUT1, AOUT2, MAX RSRC };

// Module static variables.

static ConnectHandle sConn;

static VdrHandle sPort;

static char* spMovieNames [MAX CLIPS] ;
static ResourceHandle sResHdls[MAX RSRC];

//

// Print out usage line.

//

void Usage (const char* progName)
printf (“Usage: %s movie namel [... movie name%d]\n”, progName, MAX CLIPS);

} // Usage

//

// Initialize the Profile. Report any anomalies.

//

// Return TRUE if successful, otherwise FALSE.

//

BOOL SetupResources (void)

{

BOOL rtn;

VideoFormat videoFormat;

int i, vlimit;

EventHandle evtHand;

printf (“Starting setup...\n”);

// Open the connection and the port.

70 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies

rtn = RemOpenConnection (ConnectLocal, 0, 0, &sConn) ;
if (!lrtn) {
printf (“Error opening connection.\n”);
return FALSE;
1
sPort = VdrOpenPortConnection (sConn) ;
if (!sport) {
printf (“Error getting port \n”);
return FALSE;

}

// Is this NTSC or PAL?
switch (CfgGetStandard(sComn)) {
case PCI_PAL 625 MODE:
videoFormat = Format625 50Hz 2Tol;
break;
case PCI_NTSC 525 MODE:
videoFormat = Format525 60Hz 2Tol;
break;
case PCI_INVALID MODE:
default:
printf (*Invalid or unknown video mode.\n”) ;
return FALSE;

}

VdrSetVideoFormat (sPort, videoFormat) ;

//

// Now, get the necessary resources for the demo.

//

// Find first available codec.
vlimit = CfgGetNumCodecs (sConn, JpegCodec // same as VideoCodec) ;
for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {

sResHd1s [VCOD] = VdrAllocateResource (sPort,

ResourcedJpegCodec, // same as ResourceVideoCodec

(unsigned int)1i);

}

if (!sResHdls([vCOD]) {
printf (“Cannot allocate jpeg video codec.\n”) ;
return FALSE;

}

// Get two audio codecs.
sResHd1s [ACOD1] = VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT) ;
sResHdls [ACOD2] = VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT+1) ;
if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {

printf (“Cannot allocate audio codec.\n”);

return FALSE;

}

// Get video in and out resources.
sResHd1s [VOUT] = VdrAllocateResource (sPort, ResourceVideoOutput, NUM OUTPUT) ;
if (!sResHdls[VOUT]) {

printf (“Cannot allocate video output.\n”) ;

return FALSE;

}

sResHd1s [VIN] = VdrGetResourceConnectionHandle (sPort, ResourceVideoInput,
NUM_INPUT) ;
if (!sResHdls[VIN]) ({
printf (“Cannot get video input.\n”);
return FALSE;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 71

Chapter 3 Recording and Playing Movies

}

// Get audio resources.

sResHdls [AOUT1] VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT) ;
sResHdls [AOUT2] = VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT+1) ;
if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {

printf (“Cannot allocate audio resources.\n”);

return FALSE;

}

// Set the default event.
if (!VdrDefaultEvent (sPort, NULL, EventConnectResources,
sResHdls [VIN] , sResHdls[voUT])) ({
printf (“Cannot schedule default event.\n”);
return FALSE;

}

// Schedule the event.

evtHand = VdrScheduleEvent (sPort, INT MIN, EventConnectResources, sResHdls[VCOD],
sResHd1s [VOUT]) ;

if (levtHand) {
printf (“Cannot schedule event.\n”) ;
return FALSE;

}

return TRUE;

} // SetupResources

//

// Cleanup by releasing resources and closing the control port.

//

void Cleanup (void)

{

int i;
printf (“Starting cleanup...\n”);

for (i=0; i<MAX RSRC; ++i) {
if (sResHdls[i]) {
VdrReleaseResource (sResHdls [1]) ;
sResHd1ls [i] = 0;
1
1

if (!VdrClosePort (sPort)) ({
printf (“Cannot close port. \n”);
return;

}

sPort = 0;
} // Cleanup

//
// Play the movie clip.

//
void StartPlay (void)
{
int oldpos, newpos;
int i;
MovieToken movieToks [MAX CLIPS];
MovieHandle movieHdls [MAX CLIPS] ;

72 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a list of movies

memset (movieToks, 0, sizeof (movieToks)) ;
memset (movieHdls, 0, sizeof (movieHdls));

i=0;
while (spMovieNames[i] && 1 < MAX CLIPS) {
// Open and attach the movies.
movieToks [i] = PdrOpenMovie (sConn, spMovieNames([i], 0);
if (!lmovieToks([i])
printf (“Movie %s does not exist \n”, spMovieNames[i]);
return;

}

// NULL in this next command attaches the clips one after another. It could
// be replaced with the moviehandle of the movie “before” which the new one
// would be inserted.
movieHdls [i] = VdrAttachOpenMovie (movieToks [i], MAX CODEC, sResHdls, NULL,
ShiftAfter, Marklongest) ;
if (lmovieHdls[i]) {
printf (“Error getting movie handle for %s.\n”, spMovieNames[i]);
return;
)
1++;

}

// Cue up playback of media attached with VdrAttachMovie.
if (!VdrCuePlay (sPort, SHUTTLE RATE)) {

printf (“Cannot cue play \n”) ;

return;

}

// Begin motion playback.

if (!VdrShuttle (sPort, SHUTTLE RATE)) {
printf (“Cannot begin playback \n”) ;
return;

}

printf (“Starting playback...\n”) ;

// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;
do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;
} while (newpos > oldpos);

// Cease play back.

if (!vdrIdle(sPort)) {
printf (“Cannot move to idle.\n”);
return;

}

i=0;
while (spMovieNames[i] && i1 < MAX CLIPS) {

// Detach the movie handle from the chamnel.

if (!VdrDetachMovie (movieHdls[i], ShiftAfter)) {
printf (“Cannot detach movie %s.\n”, spMovieNames[i]);
return;

}

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 73

74

-
E Chapter 3 Recording and Playing Movies

if (!PdrCloseMovie (movieToks[1])) {
printf (“Cannot close movie %s.\n”, spMovieNames[i]) ;

return;

}
i++;

}

} // startPlay

//
// The main entry point.

//

void main(int argc, char *argv([])
{

BOOL rtn;

int i = 1;

// Read in the movie names.

if (arge > 6) {
printf (“Too many clips.\n”);
Usage (argv[0]) ;
exit (1) ;

1

if (largv[il) {
printf (*No clip names.\n”) ;
Usage (argv[0]) ;
exit (1) ;

// Process seconds argument.
while (i <= 5 && argv[i]) {
spMovieNames [i-1] = argv[i];

++1;

}

rtn = SetupResources () ;

if (rtn)
StartPlay () ;

Cleanup() ;

} // main

Profile Software Development Kit User

Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-

Playing a movie using Central Resource Management

Profile System Software 4.0 includes a new Configuration Manager that introduces new
resource management concepts. Configuration Manager now allows the user to create
channels, pre-defined groups of resources that can be used by ports for record and play
operations. Software applications no longer need to allocate individual video, audio, and
timecode resources to a port. They can allocate a channel that was created in Configuration
Manager, thus avoiding the complexity of allocating individual resources, and benefiting from
the Resource Manager’s resource conflict reporting.

Example 5, playcrm.cpp shows you how to allocate a channel to a port, how to play amovie
on that port, then close the port and free up the resources used by the channel. Note that this
process is independent of the compression format. The channel definition specifies the codec
type, and the attached movie type must match the codec type.

First, the appropriate resources must be allocated for later use. VdrGetNumChannelDefsis
used to obtain the number of entriesin the channel definition list. Then the definitionsareread
using VdrGetChannellnfoList. VdrAllocateChannel assigns the resources defined by a
channel to a port and opens that port. In this example, the first channel is arbitrarily assigned
to a port, although any named channel definition from thelist could be used. Note that the
application name is provided to assist in subsequent resource conflict reporting. If the port is
not successfully opened, the channel status if tested for problems or resource conflicts using
the structure defined in crmtypes.h and returned by Vdr AllocateChannel and
VdrGetChannellnfoList.

Once the channdl is assigned, you proceed to the playback. The movieis opened via
PdrOpenM ovie and is attached with the function Vdr AttachOpenM ovie. After that, the
movieiscued for play (Vdr CuePlay). It begins playing when the video server isinstructed to
shuttle using Vdr Shuttle, and after the clip has finished playing—determined by

Vdr GetPosition—idle mode is set with Vdrldle and the movieis detached using
VdrDetachM ovie. The movie is closed with PdrCloseM ovie.

Finally, the resources acquired during execution must be released. With a call to
VdrClosePort, the Profile unit is told to release all of the resource handles acquired during
the setup phase, and the port is closed. This compl etes the process and the program is stopped.

If an error occurs at any step of the way, an appropriate error message is output to the display,
so that troubleshooting may take place.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 75

Chapter 3 Recording and Playing Movies

Example 5. playcrm.cpp

/* Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
is protected as an unpublished work under the copyright laws of
the United States.

This source code is only intended as a sample code to demonstrate the
usage of the Profile XP API.

* Ok ok X X

*/

#include <stdio.h>
#include <windows.h>
#include <tekrem.h>
#include <crmtypes.h>
#include <tekpdr.h>
#include <tekvdr.h>
#include <vdrerror.h>

/* 1) Open connection to ProfileXP
* 2) Allocate Resources

* 3) Play MPEG clip

* 4) Shutdown

*/

/* Module static variables. */

static ConnectHandle hConn = LOCAL CONNECTION;
static VdrHandle hvdrPort = 0;

static ChannelInfochanInfo;

/**

* SetupResources
*

* Purpose: Set up the appropriate resources for playback
***/

BOOL SetupResources ()

{

printf ("Setup resources.\n") ;

/* USE IF REMOTING: Open the connection and the port.
if (!RemOpenConnection (ConnectlLocal, 0, 0, &hComn))
{
printf ("Error opening connection.\n");
return FALSE;
}
*/

/* Get channel definitions */
int iChanDefCount = VdrGetNumChannelDefs (hConn) ;

if (iChanDefCount <= 0)

{
printf ("No channel definitions exist on this Profile.");
return FALSE;

}

int iBufferSize = sizeof (ChannelInfo) * iChanDefCount;

ChannelInfo* pChanInfolist = (ChannelInfo*) malloc (iBufferSize) ;

int iFetched;

if ((!VdrGetChannelInfoList (hCorm, pChanInfolist, iBufferSize, iChanDefCount, &iFetched)) ||
(iFetched != iChanDefCount))

// Failed to get list, or the number fetched does not equal the number requested.

76 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-

printf ("Failed to get ChannelInfo list.");
free (pChanInfolist) ;
return FALSE;

/* Allocate the first channel in the list.
Note that this function opens a port, allocates all resources specified
in the channel definition, and connects the resources on each track.
The channel name is "playcrm"*/
hvdrPort = VdrAllocateChamnnel (hConn, pChanInfolist[0] .name, 0x00, "playcrm", &chanInfo);

if (hvdrPort)

{
printf ("Successfully allocated chamnel ’‘%s’ (port handle %d) .\n", pChanInfoList [0] .name,
hvdrPort) ;

}

else

{

if (chanInfo.status & CHAN STATUS IN USE)
printf ("Channel ’'%s’ is in use by '%s’ on '%s'",
pChanInfolist [0] .name, chanInfo.applicationName, chanInfo.hostName) ;

if (chanInfo.status & CHAN STATUS CONFLICTS)

{

printf ("Some resources are in use by another application.");

else

{

switch (GetLastError ())

{

case VDR ERROR CREATE DICTIONARY :

case VDR ERROR GET CHANNEL DEFINITION:
printf ("Could not find configuration for ’%s’", pChanInfolist [0] .name) ;
break;

case VDR _ERROR ADD RESOURCE OWNER:

case VDR _ERROR RESMON CREATE FAILED:

printf ("Unable to register resource use.");
break;

case VDR _ERROR PORT OPEN FATLED:

printf ("The system is out of ports.");
break;

default:

printf ("Unable to allocate chamnel.");

}
}

free (pChanInfolist) ;
return FALSE;

}

free (pChanInfolist) ;
return TRUE;
1

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 77

Chapter 3 Recording and Playing Movies

/**

* Cleanup
*

* Purpose: Release all the resources
***/
void Cleanup (void)

{

printf ("Start cleanup...\n");

if (!VdrClosePort (hvdrPort))
printf ("Error closing port. \n");
return;

}

hvdrPort = 0;

}

/**

* StartPlay

*
* Purpose: Play the clip
***/
void StartPlay(char *movieName)
{
INT oldpos, newpos =
MovieTokermovieToken = 0;
MovieHandlemovieHandle = 0;

0;

// Open and attach the movie.

movieToken = PdrOpenMovie (hConn, movieName, O);

if (!movieToken) {
printf ("Movie %s does not exist \n", movieName) ;
return;

}

movieHandle = VdrAttachOpenMovie (movieToken, chanInfo.resourceCount,
chanInfo.resourceHandles, NULL, ShiftAfter, MarkLongest) ;
if (!movieHandle) {
printf ("Error getting movie handle \n");
return;

}

// Cue up playback of media attached with VdrAttachMovie.
if (!VdrCuePlay (hvdrPort, 0.0))

printf ("Cannot cue play \n");

return;

}

// Begin motion playback.

if (!VdrShuttle (hvdrPort, 1.0))
printf ("Cannot begin playback \n") ;
return;

1
printf ("Playing movie \"%s\"...\n", movieName) ;
// Wait while movie plays.

// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;

do {
oldpos = newpos;
Sleep(100) ; // wait 1/10th second

newpos = VdrGetPosition (hvdrPort) ;
} while (newpos > oldpos) ;

78 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie using Central Resource Manage-

// Cease play back.

if (!vdrIdle (hvdrPort)) {
printf ("Cannot move to idle.\n");
return;

}

printf ("Detaching movie \"%s\"...\n", movieName) ;
// Detach the movie handle from the channel.
if (!VdrDetachMovie (movieHandle, ShiftAfter)) ({
printf ("Cannot detach movie.\n") ;
return;

}

if (!PdrCloseMovie (movieToken)) {
printf ("Cannot close movie.\n");
return;

}
}

/**
* main

*

* Purpose: Main entry point
***/

void main()

{

char movieName [PDR MAX MOVIE NAME LEN+1] ;
memset (movieName, 0, sizeof (movieName)) ;

/* Get the movie and channel name*/
printf ("Usage: playcrm [mpeg movie name] \n") ;
printf ("Enter a valid movie name (i.e. INT:/default/#1):\n");

scanf ("%s",movieName) ;

if (SetupResources() != FALSE) {
StartPlay (movieName) ;

}

Sleep(5000) ;

Cleanup() ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 79

-
E Chapter 3 Recording and Playing Movies

80 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 4

Using the Profile Media File System

The moviesthat you record on a Profile video file server or disk recorder are stored on a set
of high-capacity ultra SCSI disks. This set of disksis called adataset, not unlike avolume on
apersonal computer. A volume on a PC usually resides on a single disk, but a dataset always
consists of multiple disks.

Datasets contain collections of movies called groups. Thisis analogousto adirectory on aPC
file system. Moviesare stored in one or more mediafileswhich contain digitized JPEG video,
MPEG video, audio, or timecode.

This chapter discusses browsing the inventory of movies on a Profile disk recorder, viewing
information and characteristics of moviesin the inventory, and checking free disk file space.

Each explanation of coding methodsis followed by a sample program written in C.

Browsing the media file system

Example 6, browse.c demonstrates the use of API calls that print alocal or remote Profile’'s
entireinventory, similar tothe Unix 1s and MS-DOS dir commands. DVCPRO 25,

DV CPRO 50, MPEG or JPEG format is also noted, using the attributes element of the
PdrM ovieState structure.

Anoptional -v flag onthecommand line specifiesverbose mode, which provides more detail
about each moviein the inventory. (For more specific information about a single moviefile,
see Example 7, viewCMF.c on page 88.)

Once the connection is established with RemOpenConnection, the sample code function
Identifylnventory performs the majority of the work. Pdr FindFirstDataset and
PdrFindNextDataset walk through all of the available datasets. Pdr FindFirstGroup and
PdrFindNextGroup are used to walk through all of the available groups within each dataset.
Similarly, Pdr FindFirstM ovieand Pdr FindNextM ovie are used to walk through each movie
within a group. Pdr CloseFind ends each walk-through.

The sampl e code function PrintM ovieState uses Pdr GetM ovieStatel nfo to retrieve a
PdrM ovieState structure, which it then uses to format some basic information about a movie.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 81

Chapter 4 Using the Profile Media File System

Example 6. browse.c

//

// File: browse.c

// This sample program enumerates all clips in the inventory.
// It is able to work either locally or remotely.

//

// Copyright (c) Grass Valley Group Inc., 1996-1998.
// All rights reserved.

//

// Usage: browse [hostname]

//

#include <windows.h>
#include <stdio.h>
#include "tekpdr.h"
#include "pdrerror.h"
#include "tekrem.h"
#include "tekvfs.h"

static const char *sMonth[] = {
llJanll , llFebll , llMarll , llAprll , llMay-Il , "JUII" ,
llJul n , llAugll , llSepll , "OCt" , HNOVII , IlDecIl

Vi
static BOOL sVerbose = FALSE;

//

// This function is used if the input is either

// a ? or the word help. It shows the usage of the program.
//

void Usage (const char *progName)

printf ("Usage:\n") ;
printf ("$s [-v] [hostname]\n", progName) ;

printf (" - Verbose\n") ;

printf (" hostname Machine name to act upon remotely\n") ;

printf ("\n") ;

printf ("%s ? : Causes this message to be printed\n", progName) ;
printf ("$s help : Causes this message to be printed\n", progName) ;
printf ("\n") ;

printf ("This tool enumerates movies in the inventory of a Profile.\n");

} // Usage

//
// Convert a FILETIME to a string, using the array of month strings above.
//
void MakeTimeString (FILETIME *ft, char *string)
SYSTEMTIME st;
WORD thisYear, thisMonth;

GetLocalTime (&St) ;

thisYear = st.wYear;
thisMonth= st.wMonth;
FileTimeToSystemTime (ft, &st);

82 Profile Software Development Kit User Preliminary — 12 July 2001

Browsing the media file system

if ((thisYear == st.wYear) ||
((thisYear == (st.wYear+l)) && (thisMonth < st.wMonth))) {
sprintf (string, "%3s %2d %02d:%02d",
sMonth [st.wMonth-1], st.wDay, st.wHour, st.wMinute);

else {
sprintf (string, "%3s %2d, %4d",
sMonth [st.wMonth-1], st.wDay, st.wYear);

}

} // MakeTimeString

//
// This function gets and prints the movie video format (s) for an individual
// movie. When run in verbose mode, the movie state information is printed.
//
void PrintMovieState (ConnectHandle 1lch, const char* movieName)

char createl[16];

char changel[16];

PdrMovieState state;

BOOL ret = PdrGetMovieState (lch, movieName, &state) ;

if (ret) {
if (state.attributes & PdrVideoFormatJPEG) printf ("JPEG");
if (state.attributes & PdrVideoFormatMPEG) printf ("MPEG");
printf ("\n") ;

if (ret && sVerbose) {
printf (" > Length- min=%d, max=%d \n",
state.minLength, state.maxLength) ;
MakeTimeString(&state.createTime, create);
MakeTimeString (&state.lastChangedTime, change) ;

printf (" > Time- created: %s, changed: %s \n",
create, change) ;
printf (" > #Tracks- V=%d, A=%d, TC=%d \n",
state.nunV, state.numd, state.numT);
printf (" > Attr.- Open-%s, OpenMultiple-%s, OpenExclusive-%s,\n",

(state.attributes & PdrOpen)? "Yes":"No",
(state.attributes & PdrOpenMultiple)? "Yes":"No",
(state.attributes & PdrOpenkExclusive)? "Yes":"No");

printf (" > - ReadOnly-%s, CntlRO-%s, Locked-%s,\n",
(state.attributes & PdrReadOnly)? "Yes" : "No",
(state.attributes & PdrControlRO)? "Yes" : "No",
(state.attributes & PdrlLocked)? "Yes" : "No");

if (state.attributes & PdrOpenExclusive) {
printf (" > Exclusive open by process 0x%x\n",

state.exclusivePID) ;

}

printf (" \n") ;

if (lret) {
printf ("\n") ;
printf ("Failed to get movie state for \"%s\"\n", movieName) ;
printf ("Error code is 0x%x\n", GetlastError());

}

} // PrintMovieState

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 83

Chapter 4 Using the Profile Media File System

//
// Churn through datasets, groups and movies.
//
void IdentifyInventory (ConnectHandle 1lch)
{
EnumToken dset, grp, movie;
char dataset [PDR MAX DSET NAME LEN+1];
char group[PDR MAX GROUP NAME LEN+1];
char name[PDR MAX MOVIE NAME LEN+1];
char startName [PDR MAX COMPLEX MOVIE NAME LEN+1] ;

dset = PdrFindFirstDataset (1ch, dataset, sizeof (dataset));
if (dset <= 0) {
printf ("Failed to find the first dataset\n");
printf ("Error code is 0x%x\n", GetLastError());
return;
1
do {
// Process dataset information.
printf ("$s/\n", dataset) ;

// Now look for groups within this dataset.

strcpy (startName, dataset) ;

grp = PdrFindFirstGroup (lch, startName, group, sizeof (group));

if (grp <= 0) {
printf ("Failed to find the first group in dataset %s\n", dataset) ;
printf ("Error code is 0x%x\n", GetLastError());

continue;

}

do {
// Process group information.
printf (" --/%s/\n", group);

// Now look for movies within this group.
sprintf (startName, "%s/%s/", dataset, group);
movie = PdrFindFirstMovie (lch, startName, name, sizeof (name));
if (movie <= 0) {
printf ("Failed to find first movie in %s\n", startName);
printf ("Error code is 0x%x\n", GetLastError()) ;

continue;

do {
// Process movie information.
printf (" ---/%s - ", name);

sprintf (startName, "%s/%s/%s",
dataset, group, name);

PrintMovieState (1ch, startName) ;
} while (PdrFindNextMovie (movie, name, sizeof (name)));
if (GetLastError() != PDR FIND END) {

printf ("Failed to find next movie\n") ;
printf ("Error code is 0x%x\n", GetLastError()) ;

}

PdrCloseFind (movie) ;

} while (PdrFindNextGroup (grp, group, sizeof (group)));

84 Profile Software Development Kit User Preliminary — 12 July 2001

Browsing the media file system

if (GetlastError() != PDR FIND END) {
printf ("Failed to find next group\n") ;
printf ("Error code is 0x%x\n", GetLastError());

}

PdrCloseFind (grp) ;
} while (PdrFindNextDataset (dset, dataset, sizeof (dataset))) ;

if (GetLastError() != PDR FIND END) {
printf ("Failed to find next dataset\n");
printf ("Error code is 0x%x\n", GetlastError());

PdrClogeFind (dset) ;

} // IdentifyInventory

//

// In the main function, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays local.
// Then, the Inventory function is invoked.
// We also allow ? or help on the command line in order to get the
// usage printout.
//
main (int argc, char *argv(])
{

ConnectHandle ch = LOCAL CONNECTION;

const char *chDesc = "LOCAL CONNECTION";

BOOL success;

int hostArg=1;

if (arge > 1) {
// If user wants help, give it right away.
if ((strcmp(argv([l], "help") == 0)
|| (strcwp(argv[l], "?") == 0)) {
Usage (argv[0]) ;
return 0;

}

// Process optional verbose flag.
if (!stremp(argv([1i], "-v")) {
sVerbose = TRUE;
++hostArg;
}

// Process optional specific host name (otherwise it’s local) .
if (argc > hostArg) {
success = RemOpenConnection (ConnectEthernet, 0, argvl[hostArg], &ch);
if (success) {
chDesc = argv [hostArg] ;

else {
printf ("Failed to make a connection to %s\n", argv[hostArg]);
printf ("Error code is 0x%x\n", GetLastError()) ;
Usage (argv[0]) ;
return 0;

1
1
printf ("Inventory List of %$s\n", chDesc);

printf ("Interfacing to tekpdr version %d.%d\n",
PdrGetMajorVersion(ch) , PdrGetMinorVersion(ch)) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 85

-
E Chapter 4 Using the Profile Media File System

IdentifyInventory (ch) ;

success = RemCloseConnection (ch) ;

if (!success) {
printf ("Failed to close the comnection to %$s\n", chDesc);
printf ("Error code is 0x%x\n", GetLastError());

return O;

} // main

86 Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information

Viewing CMF information

The Profile API contains a number of functionsto help determine specific information about
a CMF (Common Movie Format) file. Example 7, viewCMF.c uses various functions by
determining and displaying information about a single movie stored on alocal or remote
Profile. To see how to list all available movieson aProfile system, see Browsing the mediafile
system on page 81.

First, the connectionis established with RemOpenConnection. The program then determines
if the movie exists with PdrM ovieExists and can be opened; if not, appropriate error
messages are generated. Then Pdr GetM ovieAttributes determinesif the movieis simple or
complex. Pdr GetM ovieStatel nfo fetches a PdrM ovieState structure, which isthen formatted
for output.

Next, the program walks through each track in the movie, and then walks through each media
token for each track. Information about each track is presented after querying the functions
PdrGetNumM ediaOnTrack, PdrGetTrackL ength, Pdr GetTrack TokenNum, and

Pdr GetTrack TokenType. For each mediatoken, PdrGetM ediaState fetchesa

PdrM ediaState structure, which is then formatted to output.

For each mediafile, the TekVfs library determines miscellaneous information about the file.
The size, type, format, modification time, default marks and other attributes are determined
using VfsFindFirstFile, VisGetFileType, VfsGetFileVideoFormat,

VisGetFileM odificationTime, VfsGetFileDefaultM ar ks, and VfsGetFileAttributes.

From examining the source code and running the program on afew target movies, you can see
that there is afair amount of information that can be obtained about a single moviefile. The
PdrM ovieState and PdrMediaState structures contain such information as JPEG compression
guantization factors, MPEG group of picture (GOP) values, audio gain settings, video sample
rates, and timecode formats.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 87

88

Chapter 4 Using the Profile Media File System

Example 7. viewCMF.c

//
// File: ViewCMF.c

// Sample code to view all aspects of a movie in the inventory.

// Copyright (c) Grass Valley Group Inc.
// is protected as an unpublished work under the copyright laws of

// the United States.

#include <windows.h>
#include <stdio.h>
#include "tekpdr.h"
#include "tekrem.h"
#include "tekvfs.h"

static const char *month[] = {

"Jan" , "Feb" , "Mar" , "Apr" , "May" ,
n"Jul" , "A'ng" , "Sep" , "Oct" , "Nov" ,

}i
//

// Print out usage line.

//

void Usage (const char* progName)

printf ("Usage:\n") ;

printf ("$s complexMovieName : \n", progName) ;
printf ("shows characteristics of the named movie.\n") ;
printf ("$s -h hostname complexMovieName :

"Jun" ,
"Dec"

\n", progName) ;

This program, or portions thereof,

printf ("shows characteristics of the named movie on the machine hostname\n") ;
printf ("$s ? : causes this message to be printed\n", progName) ;
printf ("$s help : causes this message to be printed\n", progName) ;
printf ("$s usage : causes this message to be printed\n", progName) ;

} // Usage

//

// Closes the connection (if remote) and exits.

//

void KillConnectionAndExit (ConnectHandle ch, char* hostname)

if (ch != LOCAL CONNECTION) {

if (!RemCloseConnection(ch)) {
printf ("Failed to close the connection to %s\n", hostname) ;

printf ("Error code is 0x%x\n", GetLastError());

}
}
exit (0) ;

} // KillConnectionAndDie

//

Profile Software Development Kit User

Preliminary — 12 July 2001

Viewing CMF information

// Converts a FILETIME to a string. Uses the array of month strings above.
//
void MakeTimeString (FILETIME *ft, char *string)

SYSTEMTIME st;

WORD y, m;

GetLocalTime (&St) ;
y = st.wYear;
m = st.wMonth;
FileTimeToSystemTime (ft, &st);
if (y == st.wYear || (y == st.wYear+l && m < st.wMonth)) {
sprintf (string, "%3s %2d %02d:%02d",
month [st.wMonth-1], st.wDay, st.wHour, st.wMinute);

}

else {
sprintf (string, "%3s %2d, %4d", month[st.wMonth-1], st.wDay, st.wYear);

} // MakeTimeString

//
// Convert a UINT timecode to a string. It uses the definitions in vdrtypes.h
//
void MakeTimeCodeString (UINT tc, char *string)
{
if (IS_TIMECODE INVALID(tc)) {
sprintf (string, "INVALID TC ");

else {
UINT fields GET TIMECODE FIELDS (te) ;
UINT frames = fields / 2;
char spacer = '.’;
if (fields & 1) spacer = ':’;
if (GET TIMECCDE DROPFRAME (tc)) {
spacer = ',’;
if (fields & 1) spacer = ';’;

1o

1

sprintf (string, "%$02d:%02d:%02d%c%02d",
GET_TIMECODE HOURS (tc), GET TIMECODE MINUTES (tc),
GET TIMECODE SECONDS (tc), spacer, frames);

}

} // MakeTimeCodeString

#define LEN SIZE 20
//
// Prints the information about a single media file from the 1960 perspective.
//
void PrintFileInfo (ConnectHandle ch, char* path)
{
BOOL success;
WIN32 FIND DATA find;
unsigned long high, low;

HANDLE file;

DWORD attributes;
FileType type;
VideoFormat format;

FILETIME time;

UINT markIn, markOut;
char len[LEN SIZE] ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 89

Chapter 4 Using the Profile Media File System

char modtime [16] ;
char testbit;
int bit, i, limit = 64;

success = VEsFileExists(ch, path);

if (!success) {
printf ("The media file ’'%s’ does NOT exist\n", path);
return;

1

// Use Vfs library to get the file size.

file = VEsFindFirstFile(ch, path, &find);

VEsFindClose (file) ;

// Miscellaneous information about the file.
attributes = VfsGetFileAttributes(ch, path) ;
type = VEsGetFileType (ch, path);
format = VEsGetFileVideoFormat (ch, path);
time = VEsGetFileModificationTime (ch, path) ;
success = VisGetFileDefaultMarks (ch,

path, &markIn, &markOut) ;

// Can we continue with this file?

if (file == INVALID HANDLE VALUE || !success) {
printf ("Vfs error getting file information\n");
printf ("Error code is 0x%x\n", GetLastError());
return;

}

MakeTimeString (&time, modtime) ;

// Initialize for 64 bit conversion.
for (i=0; i<LEN SIZE; i++) len[i] = 0;
high = find.nFileSizeHigh;

low = find.nFileSizeLow;

// Test each bit of the 64 bit size.

if (thigh) {
high = low;
low = 0;
limit = 32;

if (! (high & OxFFFF0000)) {
high = (high << 16) + (low >> 16);
low = (low << 16);
limit -= 16;
1
if (! (high & 0xFF000000)) {
high = (high << 8) + (low >> 24);
low = (low << 8);
limit -= 8;
1
for (bit=0; bit<limit; bit++) {
testbit = (char) (high >>31) & 1;
for (i=LEN SIZE-2; i>=0; i--) {
len[i] = (len[i] *2) + testbit;
testbit = 0;
if (len[i] > 9) {
len[i] -= 10;
testbit = 1;
1
1
testbit = (char) (low >>31) & 1;
high = (high *2) + (testbit);

90 Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information

low = (low *2);

// Change binary to ascii.
for (i=0; i<LEN SIZE; i++) len[i] += '0’;

// Change leading Os to blanks.
for (i=0; i<LEN SIZE-2; i++) {

if (len[i] '= '0’) break;
len[i] = " *;

}

len[LEN SIZE-1] = '\0’;

// Output info.

printf ("The file is of type %s, and format %s.\n",
(type == FileTypeNonMedia) ? "FileTypeNonMedia"
(type == FileTypedpegVideo) ? "FileTypedpegVideo"
(type == FileTypeMpegVideo) ? "FileTypeMpegVideo"
(type == FileTypeAudio) ? "FileTypeAudio"

(type == FileTypeTimecode) ? "FileTypeTimecode" : "UNKNOWN",
(format == Format525 60Hz 2Tol) ? "Format525 60Hz 2Tol"
(format == Format625 50Hz 2Tol) ? "Format625 50Hz 2Tol" : "UNKNOWN") ;
printf ("The file attributes (0x%x) are: -FILE ATTRIBUTE DIRECTORY %s\n",
attributes,
(attributes & FILE ATTRIBUTE DIRECTORY) ? "Yes" : "No");
printf (" -FILE ATTRIBUTE NORMAL %s, FILE ATTRIBUTE READONLY %s\n",
(attributes & FILE ATTRIBUTE NORMAL) ? "Yes" : "No",
(attributes & FILE ATTRIBUTE READONLY) ? "Yes" : "No");

printf ("The file length is %s bytes\n", len);

printf ("First/Last recorded fields (Default Marks) are- First %d, Last %d\n",
markIn, markOut) ;

printf ("File last modified %s\n", modtime) ;

} // PrintFileInfo
//
// Print info for an individual media segment from the NT perspective.
//
void PrintMediaInfo (PdrMediaState ms)
{
printf ("The media token for this segment is ”%d%c%c%02d”\n",
ms.thisSegment.a, (ms.thisSegment.b >>8) &O0xFF,
ms.thisSegment.b &0xFF, ms.thisSegment.c) ;
printf ("This media segment is of type %s\n",
(ms.type == PdrMediaBlack) ? "PdrMediaBlack"
(ms.type == PdrMediaFile) ? "PdrMediaFile"
(ms.type == PdrMediaTrackRecord) ? "PdrMediaTrackRecord" : "UNKNOWN") ;
printf ("It is at position %d and extends for %d fields\n",
ms.position, ms.out - ms.in);
printf ("The Pdr Track type is %s\n",
(ms.track type == PdrTrackInvalid) ? "Invalid"
(ms.track type == PdrJpegVideoTrack) ? "JpegVideo"
(ms.track type == PdrAudioTrack) ? "Audio"
(ms.track type == PdrTimeCodeTrack) ? "Timecode"
(ms.track type == PdrMpegVideoTrack) ? "MpegVideo"
"TrackType Unknown") ;
printf ("The file IN/OUT points are set at %d/%d\n",
ms.in, ms.out);
printf ("The segment attributes are (0x%x)\n", ms.attributes) ;

printf (" -PdrControlRO %s, -PdrReadOnly %s\n",
(ms.attributes & PdrControlRO) ? "Yes" : "No",
(ms.attributes & PdrReadOnly) ? "Yes" : "No");

if (ms.type == PdrMediaFile)
printf ("The media file pathname is %s\n", ms.path);
}

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

91

Chapter 4 Using the Profile Media File System

if (ms.fileType == FileTypeAudio) {
printf ("Audio ramp control is set as:\n");
printf (" in-fields %d to target %f; out-fields %d to target %f\n",
ms.aud.nFieldsl, ms.aud.aGainl, ms.aud.nFields2, ms.aud.aGain2) ;

if (ms.fileType == FileTypeJpegVideo) {
printf ("JPEG Compression Quantization Factors are set as: \n");

printf (" max Chroma Q %f, max Lumina Q %$f\n",
ms. jpeg.maxChrQ, ms.jpeg.maxlumQ) ;
printf (" min Chroma Q %f, min Iumina Q %f\n",

ms.jpeg.minChrQ, ms.jpeg.minlumQ) ;

if (ms.fileType == FileTypeMpegVideo) {

printf ("MPEG parameterization is set as:\n");

printf (" Chroma Format %s, GOP End %s\n",
(ms .mpeg.chroma == MpegChroma420) ? "MpegChromad20"
(ms .mpeg.chroma == MpegChroma422) ? "MpegChromad22"
"MpegChromaUnknown",
(ms .mpeg.gopEnd == GopOpenEnd) ? "GopOpenEnd"
(ms .mpeg.gopEnd == GopClosedEnd) ? "GopClosedEnd"
"GopEndUnknown") ;

printf (" Gop Structure is %d IPix per Gop, \n",
ms.mpeg . 1PixPerGop) ;

printf (" %d PPix per IPix, %d BPix per IPPix\n",
ms.mpeg.pPixPerIPix, ms.mpeg.bPixPerIPPix) ;

printf (" Pix Type is: %s\n",
(ms .mpeg.pixStructure == PixStructureFrame) ? "PixStructureFrame"
(ms .mpeg.pixStructure == PixStructureField) ? "PixStructureField"

"PixStructureUnknown") ;

if (ms.fileType == FileTypeTimecode) {
char firstTc[20];
char lastTc[20];
printf ("Timecode parameterization is:\n");

printf (" format is (0x%x) %s\n", ms.tc.format,
(ms.tc.format == TcFormatDropFrame) ? "DropFrame"
(ms.tc.format == TcFormatNonDropFrame) ? "NonDropFrame"

"TcFormatUnknown") ;
MakeTimeCodeString (ms.tc.firstTimeCode, firstTc);
MakeTimeCodeString (ms.tc.lastTimeCode, lastTc);
printf ("Timecode Values: first %s, (0x%x)\n",
firstTc, ms.tc.firstTimeCode) ;
printf (" : last %s, (0x%x)\n",
lastTc, ms.tc.lastTimeCode) ;
1
if (ms.fileType == FileTypeNonMedia) {
printf ("Cached file Type is unknown; no parameters can be decoded\n");

printf ("Neighboring media tokens are-\n") ;

printf (" Previous ”%d%c%c%02d”, Next "%$d%c%c%02d”\n",
ms.prev.a, (ms.prev.b >>8) &0xFF, ms.prev.b &xFF, ms.prev.c,
ms.next.a, (ms.next.b >>8) &0XFF, ms.next.b &0xFF, ms.next.c);

printf (" ---- RTS file system status of this media file ---- \n") ;

} // PrintMediaInfo

92 Profile Software Development Kit User Preliminary — 12 July 2001

//

// Print info

//

Viewing CMF information

for an individual track.

void PrintTrackInfo (MovieToken movie, TrackToken track)

{

int nMedia = PdrGetNumMediaOnTrack (movie, track);
int len = PdrGetTrackLength(movie, track);

int num = PdrGetTrackTokenNum (track) ;
PdrTrackType type = PdrGetTrackTokenType (track) ;

printf ("This track is of type %s, and is number %d\n",

(type == PdrTrackInvalid) ? "Invalid"
(type == PdrJpegVideoTrack) ? "JpegVideo"
(type == PdrAudioTrack) ? "Audio"

(type == PdrTimeCodeTrack) ? "Timecode"
(type == PdrMpegVideoTrack) ? "MpegVideo"
"UNKNOWN" , num) ;
printf ("The track is %d fields long, and contains %d media segment%s\n",
len, nMedia, nMedia == 1 ? "" : "g");

} // PrintTrackInfo

//

// Prints the state information for an individual movie.

/!

void PrintMovieState (PdrMovieState state)

{

char createl[16];
char changel[16];
char firstTc[20];
char lastTc[20];

printf ("Length- min=%d, max=%d \n", state.minlength, state.maxLength) ;

MakeTimeString(&state.createTime, create) ;

MakeTimeString (&state.lastChangedTime, change) ;

printf ("Time- created: %s, changed: %s \n", create, change);

printf ("Tracks- J=%x, M=%x. A=%x, TC=%x \n",
state.numJ, state.numM, state.numd, state.numT);

printf ("Attributes- 0x%08x\n", state.attributes);

printf (" - Open-%s, OpenMultiple-%s, OpenExclusive-%s,\n",
(state.attributes & PdrOpen)? "Yes":"No",
(state.attributes & PdrOpenMultiple)? "Yes":"No",
(state.attributes & PdrOpenkExclusive)? "Yes":"No") ;

printf (" - ReadOnly-%s, CntlRO-%s, Locked-%s,\n",
(state.attributes & PdrReadOnly)? "Yes" : "No",
(state.attributes & PdrControlRO)? "Yes" : "No",
(state.attributes & PdrlLocked)? "Yes" : "No");

printf (" - Construction: Codec %s, Copy %s, Restore %s\n",

(state.attributes & PdrCodecConstruction)? "Yes":"No",
(state.attributes & PdrCopyConstruction)? "Yes":"No",
(state.attributes & PdrRestoreConstruction)? "Yes":"No") ;

printf (" - Major Sample Rate 50Hz-%s, 60Hz-%s\n",
(state.attributes & PdrSampleRate50)? "Yes" : "No",
(state.attributes & PdrSampleRate60)? "Yes" : "No");

printf (" - Primary Video Format JPEG-%s, MPEG-%s\n",
(state.attributes & PdrVideoFormatJPEG)? "Yes" : "No",
(state.attributes & PdrVideoFormatMPEG)? "Yesg" : "No");

printf (" - Primary Timecode Format NonDF-%s, DropFrame-%s\n'",
(state.attributes & PdrTcNonDropFrame)? "Yes" : "No",
(state.attributes & PdrTcDropFrame)? "Yes" : "No");

printf (" - Primary Audio Sample Size 16bit-%s, 20bit-%s\n",
(state.attributes & PdrAudioléBit)? "Yes" : "No",
(state.attributes & PdrAudio24Bit)? "Yes" : "No");

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

93

Chapter 4 Using the Profile Media File System

if (state.attributes & PdrOpenExclusive) {
printf ("Exclusive open by process 0x%x\n", state.exclusivePID) ;

printf ("Marks- IN-%d, OUT-%d\n", state.markIn, state.markOut);

MakeTimeCodeString (state.firstTimeCode, firstTc);
MakeTimeCodeString (state.lastTimeCode, lastTc);

printf ("Timecode Values: first %s, (0x%x)\n", firstTc, state.firstTimeCode);
printf (" : last %s, (0x%x)\n", lastTc, state.lastTimeCode) ;

printf ("Timecode format appears to be %s\n",
(GET TIMECODE DROPFRAME (state.lastTimeCode)) ?
"TcFormatDropFrame" : "TcFormatNonDropFrame") ;

printf ("MPEG parameterization- Chroma Format- %s\n",
(state.mpegChroma == MpegChroma420) ? "MpegChromad20"
(state.mpegChroma == MpegChromad22) ? "MpegChromad22"
"MpegChromaUnknown") ;

printf (" -GOP End- %s, Pix Type- %s\n",
(state.mpegGopEnd == GopOpenknd) ? "GopOpenkEnd"
(state.mpegGopEnd == GopClosedEnd) ? "GopClosedEnd"

"GopEndUnknown",
(state.mpegPixStructure == PixStructureFrame) ? "PixStructureFrame"
(state.mpegPixStructure == PixStructureField) ? "PixStructureField"
"PixStructureUnknown") ;

printf (" -IPixPerGop-%d, PPixPerIPix-%d, BPixPerIPPix-%d\n",

state.mpegIPixPerGop, state.mpegPPixPerIPix,
state.mpegBPixPerIPPix) ;

} // PrintMovieState

//
// In the main program, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays local.
// We also allow ? or help on the command line in order to get the
// usage printout.
//
main (int argc, char *argv(])
{

ConnectHandle ch = LOCAL CONNECTION;

char* thisArg = argv[1l];

char* movieName = NULL;

char* hostname = NULL;

char dset[MAX PATH];

char group[MAX PATH] ;

char name[MAX PATH];

BOOL success;

PdrMovieState movieState;

PdrAttributes attributes;

PdrMediaState mediaState;

MovieToken movie;

TrackToken track;

MediaToken media;

MediaToken nullMedia = PdrNullMediaToken() ;

// Require a movie name.

if (arge < 2) {
Usage (argv[0]) ;
return O;

}

if (!stremp(thisArg, "help") || !strcmp(thisArg, "?")
|| !strcmp(thisArg, "usage")) {

94 Profile Software Development Kit User Preliminary — 12 July 2001

Viewing CMF information

Usage (argv[0]) ;
return O;

if (!strcmp(thisArg, "-h")) {

thisArg = argv[3];

hostname = argv([2];

success = RemOpenConnection (ConnectEthernet, 0, hostname, &ch);

if (!success) {
printf ("Failed to make a connection to %s\n", hostname) ;
printf ("Error code is 0x%x\n", GetLastError()) ;
return 0;

1

printf ("Interfacing to tekrem version %d.%d\n",
RemGetMajorVersion () , RemGetMinorVersion()) ;

}

movieName = thisArg;

printf ("Interfacing to tekpdr version %d.%d\n",
PdrGetMajorVersion(ch) , PdrGetMinorVersion(ch)) ;

printf ("Interfacing to tekvfs version %d.%d\n",
VisGetMajorVersion(ch) , VEsGetMinorVersion(ch)) ;

printf ("Interfacing to rts version %d.%d\n",
VisGetEngineMajorVersion (ch) , VEsGetEngineMinorVersion(ch)) ;

printf ("Compiled for PDR DB VERSION 0x%x\n", PDR DB VERSION) ;

printf ("\nIn the following description, the special pattern\n");
printf (" of a NullMediaToken prints at ’0Z 00’\n");
PraintE (Moo m o m oo \n") ;

// Do the exposure of the movie here.
// First, see if the movie exists; if not, go no farther.
success = PdrMovieExists (ch, movieName) ;
if (!success) {
printf ("Movie '%s' does not exist.\n", movieName) ;
KillConnectionAndExit (ch, hostname) ;

}

printf ("Information about movie %s is as follows:\n", movieName) ;

// Since the movie exists, get and print the movie state.

success = PdrGetMovieState (ch, movieName, &movieState) ;

if (!success) {
printf ("Failed to get movie state for '%s'\n", movieName);
printf ("Error code is 0x%x\n", GetLastError());
KillConnectionAndExit (ch, hostname) ;

}

PrintMovieState (movieState) ;

// Now the movie must be opened to go on; if can’t open, quit.
movie = PdrOpenMovie (ch, movieName, O0) ;
if (lmovie) {
printf ("Failed to open movie '%s'\n", movieName) ;
printf ("Error code is 0x%x\n", GetLastError());
KillConnectionAndExit (ch, hostname) ;

}

// Get the attributes; indicate if it is a simple clip.
attributes = PdrGetMovieAttributes (movie) ;
if ((attributes == PdrError)
|| !PdrGetMovieDataset (movie, dset, sizeof (dset))
|| !PdrGetMovieGroup (movie, group, sizeof (group))
|| !PdrGetMovieName (movie, name, sizeof (name))) {
printf ("Failed to get information for movie '%s'\n", movieName) ;
printf ("Error code is 0x%x\n", GetLastError());

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 95

Chapter 4 Using the Profile Media File System

KillConnectionAndExit (ch, hostname) ;

}

printf ("The movie name is fully qualified as ’%s/%s/%s’\n", dset, group, name);
printf ("It is %s a simple clip\n", (attributes & PdrSimpleClip)? "" : "not");
Printf (M--- - - m oo e o \n") ;

// Now, get the first track.

track = PdrGetNextTrack (movie, O0);

while (track) {

// For each track, display the track information, then walk the media.
PrintTrackInfo(movie, track) ;
media = PdrGetNextMediaToken (movie, track, nullMedia) ;
while (!PdrMediaTokenIsNull (media))
printf("- o - - - - o - \n") ;

// For each media token, get the media state and display it.
success = PdrGetMediaState (movie, track, media, PdrThisMedia,
&mediaState) ;
if (!lsuccess) {
printf ("Failed to get information for media %s\n", movieName) ;
printf ("Error code is 0x%x\n", GetLastError()) ;

else {
PrintMediaInfo (mediaState) ;

// For each File type media, get the Vfs information.
if (mediaState.type == PdrMediaFile) {
PrintFileInfo(ch, mediaState.path);
1
1

media = PdrGetNextMediaToken (movie, track, media);

}

PEinEE (Mmoo o m oo \n") ;
track = PdrGetNextTrack (movie, track) ;

}

// When finished with all tracks, close the movie, and the connection.
PdrCloseMovie (movie) ;

KillConnectionAndExit (ch, hostname) ;
return O;

} // main

96 Profile Software Development Kit User Preliminary — 12 July 2001

Checking free file space

Checking free file space

Example 8, freespace.c demonstrates use of the TekVfs library, which provides low-level
access to the media file system of a Profile. The program does the following:

1
2.

Example 8.

//
// File:

It opens a connection with RemOpenConnection.

It calls CfgGetNumFileSystemsto return the number of file systemsinto whichthemedia
disk space has been partitioned on the local machine. The function
CfgGetFileSystemName returns the name of the referenced file systems.

It uses VfsQuer yFileSystemSpace to obtain the amount of free space and total space on
the disks of alocal or remote Profile video server. The two values are displayed in
megabytes and as a percentage of free spaceto the total space.

freespace.c

frespace.c

// A demo program to determine free disk space on a local or remote Profile.

//
// Copyr

ight (c¢) Grass Valley Group Inc. This program, or portions thereof,

// is protected as an unpublished work under the copyright laws of
// the United States.

//

#include
#include
#include
#include

// Print

<stdio.h>

<tekrem.h>
<tekcfg.h>
<tekvfs.h>

the proper usage of this command line program.

void Usage (const char *progName)

printf ("Usage:\n%s [-r remote machine]\n", progName);
printf (" -r remote machine (local if not specified)\n");

} // Usage

// Determine the free file space on the given machine.
// A NULL input means the local machine.
void file space (char *remote machine)

{

ConnectHandle connHd1 ;
int numFileSystems;

int
char

i, len;
dset [PDR_MAX DSET NAME LEN] ;

ULARGE INTEGER totalSpace, spaceRemaining;
DWORD totalMB, remainMB;

doub

len
if (

}

else

numg

le percentFree;

= PDR MAX DSET NAME LEN;

remote machine) {

if (!RemOpenConnection (ConnectEthernet, 0, remote machine, &connHdl)) {
printf ("Cannot connect to %s\n", remote machine) ;
return;

connHdl = LOCAL CONNECTION;

ileSystems = CfgGetNumFileSystems (connHdl) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 97

Chapter 4 Using the Profile Media File System

printf ("\nMedia file system space for %s:\n", (remote machine) ?
remote machine :"Local");

if (numFileSystems <= 0)
printf ("\nNo File Systems found...");

for (1 = 0; i < numFileSystems; i++) {
CfgGetFileSystemName (connHdl, i, dset, len);
if (VEsQueryFileSystemSpace (conmHdl, i, &totalSpace, &spaceRemaining)) {
// A ULARGE INTEGER tells the number of bytes.
// Each kilobyte is 2710, so a shift by 20 on the low will equal MB (KB * KB).
// We assume that the upper 12 bits of the highPart are unused, since
// 1 exabyte (GB * GB) is more than the entire memory of all computers
// connected to the Internet in 1998.
totalMB = (totalSpace.HighPart << 12) + (totalSpace.lowPart >> 20);
remainMB = (spaceRemaining.HighPart << 12) + (spaceRemaining.LowPart >> 20);
printf ("\n%s Total = %d MB , Remaining = %d MB", dset, totalMB, remainMB) ;

percentFree = 100 * ((double)remainMB / (double)totalMB) ;
printf ("\n\tPercent Free = %.1£%%\n", percentFree) ;

else {
printf ("Failed to get File System Space for filesystem %s.
GetLastError reports 0x%x\n", dset, GetLastError());

1
1
RemCloseConnection (connHdl) ;
return;

} // file space

void main(int argc, char *argv([])
int i;
char *remote machine = NULL;

for (1 = 1; i < arge; i++) {
if (*argv[i] == ‘-") {

switch (tolower (* (argv[i]+1))) {

case ‘r’:
remote machine = argv[++i];
break;

default:
Usage (argv[0]) ;
return;

}

else {
Usage (argv[0]) ;
return;

}

file space(remote machine) ;

98 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 5
Using Events

Vdr StateEvent is a recent addition to the Profile SDK that adds flexibility to the events
mechanism. StateEvent can replace the use of DefaultEvent (Vdr DefaultEvent) and
ScheduledEvent (Vdr ScheduleEvent) in most cases. For the most part, the default and
schedule events can be viewed as a subset of StateEvent. StateEvents should replace most
usage of the ScheduledEvents, because they are much more efficient compared to
ScheduledEvents and provide greater flexibility. (For more information on the differences
between event types, see Events on page 38.)

The codein Example 9, stateevt.c steps through normal setup, such as opening a connection
with RemOpenConnection and opening a port with VdrOpenPortConnection. The video
standard is detected using the function CfgGet Standar d then set with Vdr SetVideoFor mat.
Then video and audio resources are alocated with several callsto the function
VdrAllocateResour ce.

Finally, the code calls Vdr StateEvent using the function as a replacement for
VdrDefaultEvent and Vdr ScheduleEvent. Vdr StateEvent actually provides more control
over port connections during the ReadyToPlay state than its predecessors. The function
prototypefor Vdr StateEvent hasthe sameform asVdrDefaultEvent with the one exception
that the reservedHandle field (NULL in Vdr DefaultEvent) isthe StateMask field. For the
sake of compatibility, Vdr DefaultEvent is equivalent to Vdr StateEvent with the StateM ask
field set to the value EventStateAll.

With this done, a movietoken is created by specifying afilename to save to with
PdrOpenM ovie. The movie is attached to the video codec with the function
VdrAttachOpenMovie. Themovieisthen cued (Vdr CuePlay), and actual play beginswhen
the video server isinstructed to shuttle (Vdr Shuttle) at the given rate (SHUTTLE_RATE).
Once the specified duration has passed as determined by Vdr GetPosition, the Profile unit is
again placed into idle mode (Vdrldle), and the movie is detached from the timeline with the
function Vdr DetachM ovie.

Next, the movie is detached with the function Vdr DetachM ovie. The entire movie is played
back because no special mark-in and mark-out points are specified. With a call to
Pdr CloseM ovie, the movieis closed.

Resources acquired during execution must be released. The Profile server istold to release all
handles acquired during the setup phase (Vdr ReleaseResour ce), and the port is closed
(VdrClosePort). This completes the process and stops the program.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 99

100

Chapter 5 Using Events

Example 9. stateevt.c

//

// File: stateevt.c

//
// This sample program plays a JPEG clip using StateEvents.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof, is
// protected as an unpublished work under the copyright laws of the United States.

//

// Usage: stateevt movie name [1]|[2]
//

#include <stdio.h>

#include <windows.h>

#include <limits.h>

#include <tekrem.h>

#include <tekcfg.h>

#include <tekpdr.h>

#include <tekvdr.h>

#define SHUTTLE RATE 1.0
#define NUM_INPUT 0
#define NUM OUTPUT 0

// For demo application, we will have several resources. Enumerate them for use
// as indexes into an array for VdrAttachMovie calls. The first three are Codecs.

//
enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX CODEC };
enum ResEnum { VIN = MAX CODEC, VOUT, AOUT1, AOUT2, MAX RSRC };

// Module static variables.

static ConnectHandle sConn;

static VdrHandle sPort;

static ResourceHandle sResHd1s [MAX RSRC] ;
static char* spMovieName;

static BOOL sUseStateEvents;
static BOOL sActAsSwitcher;

//

// Print out usage line.

//

void Usage (const char* progName)

printf ("Usage: %s movie name [l]|[2]\n", progName) ;

printf (" 1 Use StateEvents to emulate Default and Scheduled Events\n") ;
printf (" 2 Use StateEvents with ReadyToPlay state VIN -> VOUT\n") ;
// Usage
1 g

Profile Software Development Kit User

Preliminary — 12 July 2001

//

// Initialize the Profile. Report any anomalies.

//
// Return TRUE if successful, otherwise FALSE.
//
BOOL SetupResources (void)
{
BOOL rtn;
BOOL eventl, event2, event3;
VideoFormat videoFormat;
int i, vlimit;

EventHandle evtHand;
printf ("Starting setup...\n");

// Open the connection and the port.
rtn = RemOpenConnection (ConnectLocal, 0, 0, &sConn) ;
if (!rtn) {

printf ("Error opening connection.\n") ;

return FALSE;

}

sPort = VdrOpenPortConnection (sConn) ;

if (!sPort) {
printf ("Error getting port \n");
return FALSE;

}

// Is this NTSC or PAL?
switch (CfgGetStandard(sComn)) {
case PCI_PAL 625 MODE:
videoFormat = Format625 50Hz 2Tol;
break;
case PCI_NTSC 525 MODE:
videoFormat = Format525 60Hz 2Tol;
break;
case PCI_INVALID MODE:
default:
printf ("Invalid or unknown video mode.\n");
return FALSE;

}

VdrSetVideoFormat (sPort, videoFormat) ;

//

// Now, get the necessary resources for the demo.

//

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 101

102

Chapter 5 Using Events

// Find first available codec.

vlimit = CfgGetNumCodecs (sConn, JpegCodec // same as VideoCodec

)i
for (i=0; i<vlimit && !sResHdls[VCOD]; i++) {

sResHd1s [VCOD] = VdrAllocateResource (sPort, ResourcedpegCodec,

// same as ResourceVideoCodec

}

if (!sResHdls[vCOD]) {
printf ("Cannot allocate jpeg video codec.\n") ;
return FALSE;

(unsigned int)1i);

}

// Get two audio codecs.

sResHdls [ACOD1] = VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT) ;
sResHdls [ACOD2] = VdrAllocateResource (sPort, ResourceAudioCodec, NUM INPUT+1) ;

if (!sResHdls[ACOD1] || !sResHdls[ACOD2]) {
printf ("Cannot allocate audio codec.\n");
return FALSE;

}

// Get video in and out resources.

sResHd1ls [VOUT] = VdrAllocateResource (sPort, ResourceVideoOutput, NUM OUTPUT) ;

if (!sResHdls[VOUT]) {
printf ("Cannot allocate video output.\n") ;
return FALSE;

}

sResHd1ls [VIN] = VdrGetResourceConnectionHandle (sPort, ResourceVideoInput,

NUM_INPUT) ;
if (!sResHdls[VIN]) ({
printf ("Cannot get video input.\n") ;
return FALSE;

}

// Get audio resources.

sResHd1ls [AOUT1] = VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT) ;
sResHdls [AOUT2] = VdrAllocateResource (sPort, ResourceAudioOutput, NUM OUTPUT+1) ;

if (!sResHdls[AOUT1] || !sResHdls[AOUT2]) {
printf ("Cannot allocate audio resources.\n");
return FALSE;

}

if (sUseStateEvents) {

eventl = VdrStateEvent (sPort, EventStateAll, EventConnectResources,

sResHd1s [VIN], sResHdls [VOUT]) ;

event2 = VdrStateEvent (sPort, EventStateAll, EventConnectResources,

sResHd1s [VIN], sResHdls[VCOD]) ;

if (leventl || levent2) {
printf ("VdrStateEvent () failed. \n");
return FALSE;

}

if (!sActAsSwitcher) {

// With command line option 1, this acts like the old ScheduleEvent.
event3 = VdrStateEvent (sPort, EventStatePlayActive | EventStatePlayReady,

// Same as EventStateAllPlay

EventConnectResources, sResHdls [VCOD], sResHdls[VOUT]) ;

}

else {
// With command line option 2, only connect the codec to out
// during active play.

Profile Software Development Kit User

Preliminary — 12 July 2001

event3 = VdrStateEvent (sPort, EventStatePlayActive,
EventConnectResources, sResHdls [VCOD], sResHdls[VOUT]) ;

if (levent3) ({
printf ("VdrStateEvent () failed.\n");
return FALSE;
1
1
else {

// Set the default event.

eventl = VdrDefaultEvent (sPort, NULL, EventConnectResources, sResHdls [VIN],
sResHd1s [VOUT]) ;

event2 = VdrDefaultEvent (sPort, NULL, EventConnectResources, sResHdls [VIN],
sResHd1s [VCOD]) ;

if (leventl || levent2) {
printf ("Cannot schedule default events. \n");
return FALSE;

}

// Schedule the event.

evtHand = VdrScheduleEvent (sPort, INT MIN, EventConnectResources,
sResHd1s [VCOD], sResHdls [VOUT]) ;

if (levtHand) {
printf ("Cannot schedule event.\n");
return FALSE;

}

return TRUE;

} // SetupResources

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 103

Chapter 5 Using Events

//

// Cleanup by releasing resources and closing the control port.
//

void Cleanup (void)

{

int i;
printf ("Starting cleanup...\n");

for (i=0; i<MAX RSRC; ++1i) {
if (sResHdls[i]) {
VdrReleaseResource (sResHdls [i]) ;
sResHd1ls[i] = 0;

}

if (!VdrClosePort (sPort)) ({
printf ("Cannot close port. \n");
return;

}

sPort = 0;
} // Cleanup

//

// Play the movie clip.

//

void StartPlay (void)

{
INT oldpos, newpos;
MovieToken movieTok;
MovieHandle movieHdl;

// Open and attach the movie that we just recorded.
movieTok = PdrOpenMovie (sConn, spMovieName, O0);
if (!lmovieTok) {
printf ("Movie %s does not exist \n", spMovieName) ;
return;

}

movieHdl = VdrAttachOpenMovie (movieTok, MAX CODEC, sResHdls, NULL, ShiftAfter,
MarkLongest) ;

if (!lmovieHdl) {
printf ("Error getting movie handle \n") ;
return;

}

// Cue up playback of media attached with VdrAttachMovie.
if (!VdrCuePlay (sPort, SHUTTLE RATE)) {

printf ("Cannot cue play \n");

return;

}

// Wait 15 seconds, so user can see what happens in cue play state.
printf ("Waiting 15 seconds to play.\n");
Sleep(15000) ;

// Begin motion playback.

if (!VdrShuttle (sPort, SHUTTLE RATE)) {
printf ("Cannot begin playback \n");
return;

104 Profile Software Development Kit User Preliminary — 12 July 2001

printf ("Playing movie.\n") ;

// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;
do |
oldpos = newpos;
Sleep (100) ; // wait 1/10th second
newpos = VdrGetPosition (sPort) ;
} while (newpos > oldpos) ;

// Pause for 10 seconds, so you can watch the video screen.
// In regular mode, you’ll see the final frame frozen.

// In "switcher" mode, you’ll see video in on the output.
printf ("Waiting 10 seconds in idle mode.\n");

Sleep(10000) ;

// Cease play back.

if (!vdrIdle(sPort)) {
printf ("Cannot move to idle.\n");
return;

}

// Detach the movie handle from the chamnel.

if (!VdrDetachMovie (movieHdl, ShiftAfter)) ({
printf ("Cannot detach movie.\n") ;
return;

}

if (!PdrCloseMovie (movieTok)) {
printf ("Cannot close movie.\n");
return;

}

} // startPlay

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 105

-
E Chapter 5 Using Events

106

//
// The main entry point.

//

void main(int argc, char *argv([])

{

BOOL rtn;

// Read in the new movie name.
if (argvii]) {
spMovieName = argv[l];

else {
Usage (argv[0]) ;
exit (1) ;

}

// Optional argument shows state events usage.

if (argv(2]) {

// Make sure there is no third argument.

if (argvi3]) {
Usage (argv[0]) ;
exit (1) ;

1

if (!stremp(argv(2], "1")) {
sUseStateEvents = TRUE;

1

else if (!strcmp(argv([2], "2")) {
sUseStateEvents = TRUE;
sActAsSwitcher = TRUE;
else {
Usage (argv[0]) ;
exit (1) ;
1

rtn = SetupResources () ;

if (rtn)
StartPlay () ;

Cleanup () ;

} // main

Profile Software Development Kit User

Preliminary — 12 July 2001

Chapter 6

Transferring Media with Fibre Channel

Fibre Channel enables you to copy and transfer media between Profile systems faster than in
real-time. Not only can you copy media between Profiles, you can also transfer mediato and
from SGI servers, aslong as appropriate software is installed on the SGI server (refer to the
Profile Fibre Channel Server Interface Manual for complete information). Fibre Channel
transfers must be used with some care since they can consume a substantial amount of the
bandwidth of the mediadisks and could thus restrict the bandwidth available for playing and
recording video.

Streaming over Fibre Channel makes it possible to transfer parallel tracks of media, such as
concurrent audio and video tracks, in small packets, and then reassemble them on the
destination Profile unit.

Thisallows you to transfer aclip whileit is still being recorded or playback a clip before the
transfer is complete. For example, soon after it begins receiving a clip, a destination Profile
unit can begin playing it. The streaming transfer continues while playback occurs at the
destination, delivering new packets at a fast enough rate to allow playback to proceed
uninterrupted.

Transfer of complex movies over Fibre Channel is now supported. A complex movieisa
movie that consists of pointersto several other clips. Such amovieisnot rendered and is not
aphysical clip taking up disk space. Fibre Channel support for complex movies requires that
the source Profile send the appropriate pieces of the complex movie's constituent clips along
with the data required to reassembl e the pieces on the destination Profiles.

With Media Manager under Profile system software 2.5 or higher, all clips (simple movies)
and masters (complex movies) are streamed with Media Manager. SGI servers also can only
stream clips. Remote recording, playback, and editing of mediais not available on an SGI
server.

NOTE: You must have Profile system software version 2.2 to copy media via Fibre
Channel. Version 2.4 allows you to stream simple clips and interoperate with SGI
servers. Versions 2.5 and higher allow you to stream complex clips and archive across
Fibre Channel by specifying movie names prefixed with a Profile name.

To transfer media across Fibre Channel, a Profile system must have an Ethernet local area
network (LAN) board and a Fibre Channel board installed, each one connected to its
respective network. The Ethernet LAN carries commands between Profile units, while the
Fibre Channel connection carries the actual video, audio, and timecode data. Both networks
use TCP/IP (Transmission Control Protocol/Internet Protocol).

For instructions on setting up these two networks, see the installation manual that came with
your Profile system; if you have installed a Fibre Channel board as an f-kit, see the Profile
Family Local Area Network Installation Manual. You should also consult the chapter on Fibre
Channel video networking in the Profile Family User Manual.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 107

-
E Chapter 6 Transferring Media with Fibre Channel

Configuring Fibre Channel

To transfer media between Profiles over Fibre Channel, you must first configure two discrete
networks, Ethernet and Fibre Channel. Network configuration is covered in moredetail inthe
Profile Family User Manual, but here isa brief overview of what you need to do to configure
your Profilesfor Fibre Channel transfers (assuming your Profile system has the appropriate
hardware install ed).

1. Set up your Ethernet LAN.

Using atwisted-pair cable, connect your Profile’sLAN board to astandard 10Base-T or
100Base-T Ethernet hub or switch. (Y ou cannot connect Profilesdirectly fromoneLAN
board to another without a special cable.) Set your Profile system’s Ethernet | P address
in Windows NT with the Control Panel | Networ k applet. (See your system
administrator for the correct | P addresses to use on your network.)

2. Set up your Fibre Channel network.

Each Profile requires a separate and distinct Fibre Channel IP address in addition to its
Ethernet IP address. Y ou can set your Fibre Channel | P address either through the Fibre
Channel dialog box in the Configuration Manager or with the fcconfig command line
utility. To use Configuration Manager, see the chapter describing the configuration
application inthe Profile Family User Manual. To usefcconfig, seethe chapter on Fibre
Channel video networking in the Profile Family User Manual.

3. Edit the hostsfile.

This file can usually be found in the c:\winnt\system32\drivers\etc directory.
Example 10 shows a sample hosts file with bogus | P addresses. (See your system
administrator for the correct | P addresses to use on your network.)

Example 10. Sample hosts file

Computer Name: PROFILE1l
Ethernet Address: 123.123.99.1
FC Address: 123.123.100.1
Computer Name: PROFILE2
Ethernet Address: 123.123.99.2
FC Address: 123.123.100.2

The hostsfilelists the Profile unit names (PROFILEL, PROFILEZ2, etc.) and their
respective Fibre Channel names (PROFILE1 fcO, PROFILE2 fcO, etc.) and which IP
addresses are associated with them. |f you make one comprehensive hosts file with the
IP addresses of all the Profile units on your network, you can copy that file from one
Profile to all others and save yourself alot of time editing each hosts file individually.
Y ou can also use aDNS server for name lookup, but that discussion is outside the scope
of thismanual. Another alternative isto use the PDR network configuration service
(fcnes) to automatically update and maintain the hosts file.

4, Set up the pdrstart.bat file for version 2.5 or earlier.

Both the htssvc service and Port Server program must be running at all times on all
Profiles where you are using Fibre Channel. The pdrstart.bat file (in the c:\profile
directory) starts htssvc and Port Server in the proper sequence. If you want, you can
place pdrstart.bat in astartup folder and set it to run minimized. Make sureit’srunning
on the other Profiles, too. After configuring all machines, you can verify name
resolution with fcping.

108 Profile Software Development Kit User Preliminary — 12 July 2001

Multicast programming

Multicast programming

Multicasting is the simultaneous transfer of a single streamed file to several destinations.
Multicasting can streamline applications in environments where one unit with alarge amount
of storage can multicast files to a network of several Profiles (up to a maximum of eight) for
playout. Multicast transfers, like unicast transfers, occur through the TekXfr library. Theonly
real differenceisthat, instead of asingle host/file destination pair for aunicast call, amulticast
call sendsalist of destination pairs.

Limitations include the following:

 Profile multicasting (one-to-many transfers) requires the dedicated bandwidth availablein
a Fibre Channel switch environment; multicasting is not available in a shared bandwidth
hub environment. To enable multicasting, the Fibre Channel network must be configured
with aFibre Channel switch. Multicast is not supported on Profile XP Media Platforms.

 Fibre Channel hubsand Fibre Channel switchescannot coexist on the same network. If you
are converting from a hub network to a switched network, you must convert all nodes on
the network.

» Converting from aFibre Channel hub network to a switched network may require a
firmware upgrade to each Profile’' s Fibre Channel board.

» Multicasting requires a software option that must be running on each Profile.

» Thecurrent limit iseight destinationsin asingletransfer. For more than eight destinations,
the transfer command must be called multiple times.

» Each destination host in a multicast must be unique.

» Thesource host in a multicast cannot also be a destination host.

NOTE: When multicasting, the transfer rate of the sending Profileis cut approximately
in half. Thus, multicasting makesthe most “performance” sense during transfers of a
1:3 (or higher) ratio. (A 1:2 multicast yields the same performance as making two
transfers.)

Switched Fibre Channel networks

There are many advantages to using a switched Fibre Channel network, the biggest being the
guaranteed bandwidth (as opposed to a hub environment’s shared bandwidth) between
devices. A switched environment also offersincreased system reliability through its complete
isolation between Profiles on the network. And with browser-based management tools, it is
easy to view complete statistics and information on each node and detect network problems,
simplifying Fibre Channel troubleshooting.

The greatest drawback to a switched Fibre Channel network is the price; switches are more
expensive than hubs.

If your expenses allow it, you should configure your Fibre Channel network with aswitch to
providefaster transfers, more robustness, and more advanced configuration/monitoring tools.
If, however, multicasting is not arequirement, and you are more interested in reducing costs,
you may wish to stick with a hub environment.

If you do choose to go with a switched network, you should consider connecting switches
redundantly by tying two ports together between two switches. If you have three switches,
connect each switch to the other two. (It ispossible to cascade up to 32 switches together.)
What thisdoesisallow your switchesto automatically default to the redundant path in case of

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 109

-
E Chapter 6 Transferring Media with Fibre Channel

110

afailure. Switch ports are hot-swappable too, so that if a port in the switch fails, you can
reconnect the Profile to a different port, and the system will resync in a few seconds without
powering down the Profile or the switch.

The drawback to using redundant paths is the reduction in the total number of connections
allowed. With redundant connections, each switch will lose two ports for interconnects, thus
a 16-port switch could have only fourteen Profiles connected and an 8-port switch could have
only six Profiles connected.

Multicasting errors

In amulticast, a calling application can discern between three results. complete success,
partial success, and complete failure. The transfer will continue until it is successful or an
error occurs. Inthe event that there is not complete success, it is up to the calling application
to determine which hosts did not get the movie.

» Complete success meansthat all the destination hosts successfully received the transferred
file.

» Partial success meansthat at least one destination host did successfully receive the
transferred file and at least one destination host did not. In a partial success situation, a
special error code is returned. Those hosts which have received the movie successfully
retain the file.

» Complete failure means that none the destination hosts successfully received the
transferred file.

Profile Software Development Kit User Preliminary — 12 July 2001

Switched Fibre Channel networks

Possible errors returned are shown in Table 5, Sreaming error codes. Most of these are the
same as unicast errors. Other modules involved in the transfer can return both multicast and

unicast error codes.

Table 5. Streaming error codes

Error code Error name

0x02030001 STRM_E_MALFORMED_UML
0x02030002 " STRM_E_BAD_UML_COUNT
0x02030003 STRM_E_NO_RESOURCE
0x02030004 STRM_E_INTERNAL
0x02030005 STRM_E_TIMEOUT
0x02030006 STRM_E_INVALID_STREAMID
0x02030007 STRM_IUE_INVALID_SESSION
0x02030008 STRM_E_NOT_SUPPORTED
0x02030009 STRM_E_BAD_ARGUMENTS
0x0203000a STRM_E_UNKNOWN_CODE
0x0203000b STRM_E_INCOMPLETE ™"
0x0203000c STRM_E_MALFORMED_LINE
0x0203000d STRM_E_REMOTE_FAILURE
0x0203000e STRM_E_NONETWORK
0x0203000f * STRM_E_NO_CONNECTION
0x02030010 STRM_E_OUT_OF RESOURCES
0x02030011 STRM_E_NO_SPACE
0x02030012 STRM_E_10

0x02030013 STRM_E_BADAUTH
0x02030014 STRM_E_SERVER

0x02030015 STRM_E_WRITE_PROTECT
0x02030016 STRM_E_VOLUME_OVERFLOW

* These errors are specific to multicast mode.

** Thisistheerror reported for partial success--when at least one but not all of the destina-
tions get the data successfully.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 111

-
E Chapter 6 Transferring Media with Fibre Channel

The PDR network configuration service

The PDR network configuration service (fcncs) collects information about other Profiles on
the network via multicast, and maintains a local table of the information. It also will update
the hosts fileif and only if the fcconfig -hta optionisset to on.

This service has the following command line options:

fcnes -install Installstheserviceonthesystem. Theservice startsautomatically when

installed.
fcnecs -remove — Removes the service from the system.
fcnes -start Starts the service.
fcnes -stop Stops the service.

UML descriptions

A UML (Uniform MediaLocator) providesacomplete description of the source or destination
of atransfer over Fibre Channel. In the Fibre Channel world, UMLsare similar in concept to
the URL (Universal Resource Locator) scheme used with HTTP on the Internet.

Hereisthe generic form for aUML.:

<host>/<type>/<typeSpecificInformations[?<optionss]

..0r, to use a specific example:

Profilel/explodedFile/INT1: /default/mymovie? (3600-21600)

The <nost> portion consists of the Windows NT computer name of the source or destination
computer, in the above example, Profilel. The host must be available on the Fibre Channel
network with the other associated machines; if the host is not specified, it will default to
LOCALHOST.

The <type> portion represents the type of transfer to be performed at the source or destination.
Presently, ExplodedFile is the only type defined for the external API.

The <typeSpecificInformation> portion isdescribed by the dataset (INT1:), the group
(default), and the name of the clip (mymovie).

The bracketed 2 <options> pieceindicates agroup of optional arguments that will allow you
to specify which fields will be copied from the clip and also to designate streaming priority.
If you choose to append any options to the UML, add the question mark and the rest of the
syntax described below for each option.

Currently, there are three options defined: flattened, exact, and HOT.

The flattened option

This option, the default mode of operation, requiresa (<startField>-<endField>) value
range after the question mark character. In the example below...
Profilel/explodedFile/INT1: /default/mymovie? (3600-21600)

..therange (3600-21600) specifiesafive-minute portion of an NTSC clip starting after
the first minute?.

In general, only the media found between the parenthetical movie marksis transferred;

however, material outside the marks may be transferred for MPEG files, because of the need
to tansfer I-frames on which some of the predictive frames are based. For example, material

1. A five-minute clip is defined as 5 x 60 seconds x 60 fields = 18,000 frames;
the starting point (one minute into the clip) is defined as 60 seconds x 60 fields = 3600 frames);
an 18000-frame (five-minute) clip, starting one minute into the clip, yields the range 3600-21600.

112 Profile Software Development Kit User Preliminary — 12 July 2001

UML descriptions

back to and including the previous I-frame will be transferred for closed-GOP streams, and
material back to and including the I-frame before the previous I-frame will be transferred for
open-GOP streams. Also, if the <endrie1id- frame (which is exclusive) comes just after a
P-frame, one additional frame will be transferred.

The exact option

Thisoption transfers an exact copy of all the different pieces of mediaintheir original format.
Thisincludes all material located between the movie'sfirst field and last field, plus all the
other datain the mediafilesthat is not included in the movie description, such as material
before the first field or after the last field. (Thisalows an archive of an edit session on a
complex movie).

Using the exact option...

Profilel/explodedFile/INT1: /default/mycomplexmovie?exact

...will transfer all mediafilestouched by the complex movie mycomplexmovie, even if the
complex movie uses only 10% of any one mediafile. In comparison, using the same UML
without the exact option...

Profilel/explodedFile/INT1: /default/mycomplexmovie

...will transfer only the media that appears between the movie marks (or just the 10%).

NOTE: You cannot specify startField and endField values with the exact option. Any
such request will fail.

The HOT option

This option allows you to designate a single stream asa “HOT” transfer that supercedes all
other transfers. This option suspends all other Fibre Channel transfers and reserves all
available Fibre Channel bandwidth for that one stream alone. After the HOT transfer has
finished, all suspended transfers will resume.

NOTE: The available bandwidth in a loop topology might not be enough to guarantee
that your HOT stream’s performance will not be degraded, but in a switched Fibre
Channel environment, the HOT option will allot full Profile-to-Profile bandwidth for
your stream, from source to sink.

The example below shows the syntax for the HOT option:
Profilel/explodedFile/INT1: /default/mymovie?HOT

Note that the word “HOT” must appear in capital letters after the question mark. Here are
some other requirements for HOT stream usage:

» Only one HOT stream is allowed per Profile; a second request for aHOT stream will fail.

» For an XfrRequest call, the option HOT must be specified on the source UML and on the
destination UML. Failureto do so will yield undefined results.

e For an FTP (STOR or RETR) call, the HOT option is specified on the UML.

It is possible to use the HOT option in conjunction with both the flattened and exact options,
but each option must be separated by its own question mark:

Profilel/explodedFile/INT1: /default/mymovie? (3600-21600) ?HOT
Profilel/explodedFile/INT1: /default/mymovie?exact ?HOT

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 113

-
E Chapter 6 Transferring Media with Fibre Channel

114

Using UMLs

Example 11 demonstrates how to use an FTP file transfer to get all mediafiles from amovie
mymovie consisting of onevideo track, two audio tracks, and atimecodetrack. Thefilesare
saved locally as mediafiles, then they are sent back as mediafiles yourmovie.xx tothe
Profile system called profile _fcO.

Example 11. UML usage in file mode

c: ftp profile fcO
User : anything (except movie) or RETURN

ftp > bin

ftp > get INT1:/PDR/default/default/mymovie.V0l mymovie.V01l
ftp > get INT1:/PDR/default/default/mymovie.A0l mymovie.A0l
ftp > get INT1:/PDR/default/default/mymovie.A02 mymovie.Ao2
ftp > get INT1:/PDR/default/default/mymovie.T0l mymovie.T01l
ftp > put mymovie.VOl INT1:/pdr/default/default/yourmovie.V0l
ftp > put mymovie.A0l INT1:/pdr/default/default/yourmovie.A0l
ftp > put mymovie.A02 INT1:/pdr/default/default/yourmovie.A02
ftp > put mymovie.TOl INT1:/pdr/default/default/yourmovie.T01l
ftp > quit

Out of band control viathe TekPdr API must be exercised to open the movie and query the
media file names on each track, before issuing the FTP request. When the mediafiles are
“put” onto aprofile,amovieisnot created, only mediafilesbearing the proposed movie name.
Again, out of band control viathe SDK must be exercised to construct movie yourmovie
from the mediafiles yourmovie.

Example 12 describes how to get amovie mymovie from aProfilesystem called profile fcO
viaFTP saveit localy as demo, then send the stream back as movie yourmovie. Thelocal
filename demo must be explicitly specified, asthe /explodedFile/INT1:/default
directory does not exist on the local system (the FTP client). Be sure to set the transfer type
to image (bin).

Example 12. UML usage in streaming

c: ftp profile fcO

User : movie

ftp > bin

ftp > get /explodedFile/INT1:/default/mymovie demo
ftp > put demo /explodedFile/INT1:/default/yourmovie

ftp > quit

V V V V

REQUIRED:
set the transfer type to image
ftp > bin

You can now play the movie yourmovie directly, without any other operations.

Profile Software Development Kit User Preliminary — 12 July 2001

Copying media via Fibre Channel

Copying media via Fibre Channel
Profile offers you several waysto write your own Fibre Channel mediatransfer applications:
» with TekXfr function calls (the preferred method);
» with TekPdr function calls;
* with TekVfsfunction calls;
» with the MediaManager application; and

» with the copymovie command line utility.

NOTE: A transfer may beinitiated from a remote, non-Profile PC running Windows NT
and connected via Ethernet, but the actual transfers must take place between units
connected via Fibre Channel.

Our recommended transfer method is through the recently added TekXfr library

Copying media with TekPdr functions

Fibre Channel copies are possible through several function calls in the TekPdr library of the
Profile SDK:

» ThePdrCopyM oviefunctioninitiates acopy, specifying the mediasource and destination.
This call also initiates a WaitToken which helps to manage the copy queue.

» ThePdr GetWaitOpStatus must be called in conjunction with Pdr CopyM ovie. Thiscall
pollsthe copy status until the copy is complete or it reportsafailure. The application must
poll with this function to ensure that the copy operation proceeds smoothly.

» The PdrTerminateWaitOperation concludes the copy operation. You must call this
functiontoterminateall copy operations, whether successful or not. The WaitToken closes
when PdrTerminateWaitOperation is called; therefore, subsequent callsto
Pdr CopyM ovie will not return aWaitToken until the previous WaitToken is terminated.
This function can also cancel a current copy operation.

For parameter and other information for these function calls, see the Profile SDK Reference
Manual.

A master (complex movie) definition may include many individual mediafiles. To optimize
network performance, the Pdr CopyM ovie function queues all mediafiles to be copied, but
will only initiate afixed number of copiesat atime. For example, amaster may consist of five
mediafiles (for example, one media file for video and four audio files), but Pdr CopyMovie
might elect to perform just three concurrent media copies.

As these copies complete, the remaining two media files will not be copied automatically.
They will only be copied when Pdr GetWaitOpStatusis called. Once a copy operation has
been started, subsequent media copies are initiated only when PdrGetWaitOpStatusis
called. Thus, thefirst three mediacopiesmight all complete successfully, but the next two will
not beinitiated until the application next issues a Pdr GetWaitOpStatus. If

Pdr Ter minateWaitOper ation were called before Pdr GetWaitOpStatus, thetwo remaining
fileswould never be copied.

A media copy can be initiated as one of the following:

 apush operation (where the source machine initiates the copy);

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 115

-
E Chapter 6 Transferring Media with Fibre Channel

» apull operation (where the destination machine initiates the copy); or

» aremote operation (where a third machine initiates copy).

Nonetheless, all copies are trandated into pulls. All copiesare pulls at both the movie
database level and at the video file system level. Although thisisall handled transparently by
the application, a brief understanding of the underlying mechanism may aid in application
design.

Any PdrCopyM ovie request, regardless of whereit isinitiated, isimmediately handed to the
destination machine. The destination machine then queries the source machine's movie
database for the movie definition. This includes all the data associated with the movie, such
asthe list of all mediafiles that are part of the movie. Once the destination machine has
compiled thislist of mediafiles, it commences queueing mediafile copies. Theseindividual
mediafile copies are all handled as pulls by the video file system.

As mentioned earlier, there is arestriction of one WaitToken per Profile system when using
TekPdr functions. Since all movie copies are movie database pulls, this restriction translates
to one WaitToken per destination Profile. This also meansthat a source Profile (server) mays
safely be involved in multiple copies.

Copying media files with TekVfs functions

The movie copying functionsin the TekPdr library--namely Pdr CopyM ovie,

Pdr GetWaitOpStatus, and Pdr Ter minateWaitOper ation--meet the needs of many
application developers. If you need finer control over the copy process, however, you may
want to use the lower-level TekVfslibrary commands. These commands do not copy movies,
they copy the underlying mediafiles. An application employing TekVfs calls must assume
the burden of maintaining integrity with the movie database. TekVfs calls are recommended
only for developers familiar with their implications.

Like TekPdr function calls, the TekVfs copies are handled by a set of three functions:

» The VfsCopyFile function initiates a mediafile copy, specifying the media source and
destination, and Boolean to wait for completion of the copy.

» The VfsStatusOfCopy polls the system for the status of the copy operation.

» The VfsCancelCopy function cancels a mediafile copy.

For parameter and other information for these function calls, see the Profile SDK Reference
manual. The pattern of use for these three functions is analogous to their equivalentsin the
TekPdr library. However, note the following differences:

» Thereisalimit of eight simultaneous TekVfs copies per destination machine.

» Synchronous operation is optional because VfsCopyFile has a Boolean
WaitForCompl etion parameter that monitors the WaitToken. Morethan one WaitTokenis
possible, so your application does not have to manage the queue.

» Since TekVfsdoes not implement queue management, the application is not required to use
VisStatusOfCopy if VfsCopyFileis given anonzero waitFor Completion flag.

» The source and destination file names take the following form:
profile8 fc0.INT:/PDR/default/#1-001.V0
This can be done using code like:

sprintf (szFinalName, “%s fc0.%s”, node, pathName) ;

In review, hereis a clarification of the limitations of the current system:

116 Profile Software Development Kit User Preliminary — 12 July 2001

Copying media with Media Manager

» When copying via TekPdr functions, there can be only one WaitToken per Profile system,
which means your application must manage copy task gqueuing.

* You can make no more than three concurrent copies from the same Profile server without
performance penalties.

» Nonmedia files cannot be copied across Fibre Channel except by VfsCopyFile.

Copying media with Media Manager

A simple way to test your work so far isto start Media Manager by double-clicking itsicon
on the Windows NT desktop. Use File| Add/Remove Machinein Media Manager to add or
remove a Profile machine on the network. For more information on copying media and
connecting to other Profile systems, see the chapter on Media Manager in the Profile Family
User Manual.

Copying media with copymovie

The copymovie command line utility also copies media between Profiles disk recorders using
the Fibre Channel. In this example, typed at a command line prompt, you copy mediafrom
INT:/default/moviel on PROFILE1tothelocal Profile where the command was run, where
itisnamed INT:/default/movie7.

copymovie PROFILEL INT:/default/moviel * INT:/default/movie?7

A companion to the copymovie command is the listnames command line utility. It provides
away to list media on a remote Profile without using Media Manager. In the example here,
you list all moviesin INT:/default on PROFILEL:

listnames -r PROFILELl -1 INT:/default/

Using FTP for streaming transfers

Another way to transfer media over Fibre Channel is through FTP.

FTP (File Transfer Protocol) isa TCP/IP protocol that has been used for many yearsto log on
to anetwork, list directories, copy files, and make other transfer operations. The FTP daemon
that runs on the Profile real -time processor has been enhanced to allow, not only traditional
FTPfile transfers, but streaming file transfers as well.

The streaming protocol, when called by FTP, is passed a UML (see UML descriptions on
page 112) that will start an FTP buffer source (or sink, depending on thedirection of transfer).
The external world sees an RFC-959-compliant data connection since the internal streaming
protocol processing is not visibleto the outside world.

FTP commands can run in file mode or in movie mode (see Table 6). File mode istraditional
FTP, used for straightforward file transfers; movie mode uses FTP to initiate a movie stream

transfer.
Table 6. Supported commands processed by the FTP daemon

FTP command File mode Movie mode
USER no operation movie
PASS no operation no operation
PORT yes yes
TYPE yes yes
SEND yes yes

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 117

-
E Chapter 6 Transferring Media with Fibre Channel

Table 6. Supported commands processed by the FTP daemon

FTP command File mode Movie mode
RECV yes yes
QUIT yes yes
PASV yes yes
ABOR yes yes
SITE yes yes
CWD yes n/a
NLST yes n/a
File mode

Whenin file mode, FTPisrunning directly onthe native Profilefile system (mediafile system
or MFS) in the real-time processor. The MFS stores mediafileswhich are actually individual
movie tracks such as the video track, the audio tracks and the timecode track. In this mode,
mediafilescan belisted, directories can be changed, etc.. Sinceno concept of a“movie” exists
inthe mediafilesystem, all transfers using this mode are done on atrack-by-track (file-by-file)
basis.

If an FTP client wishesto transfer a movie rather than mediafiles, the client may dictate that
the session be in movie mode. When in movie mode, all sEND and RECV commands are
processed by the streaming protocol on the targeted Profile. If movie modeisnot selected, all
SEND and RECV commands are processed by the FTP session directly on the mediafiles
specified by the request.

Movie mode

Movie mode is selected by initiating an FTP session with the user designated as MOV I E.
Movie mode provides a streamed file (multiplexed audio, video, and timecode) rather than a
track-by-track transfer. The notion of a“movie’ only exists in the Windows NT PDR
database. Since the FTP connection is actually on the real-time side rather than on the
Windows NT side, it is not possible to query the Windows NT database, change directories,
etc. when operating in movie mode. Queries must be handled out of band over Ethernet
through the Profile remote API.

Sample code: Media copies

Example 13, deepcopy.c demonstrates use of the Pdr CopyM ovie function call to copy a
moviefile. A single movie can be copied between any two Profiles on the Profile video
network. You can specify if the copy isto be exact, rendered, extract or shared. An exact copy
is the default option if noneis specified.

Once the command-line is parsed, Pdr CopyM ovie is called with the appropriate parameters
and aWaitToken is received. PdrGetWaitOpStatus then queries the state of the copy as it
happens. Finally, the function Pdr Ter minateWaitOper ation closes the copy operation.
Some timing and bandwidth information is displayed throughout the process, to allow you to
gauge the performance of the system.

Example 14, xferumls.c on page 125 provides asimilar example using Fibre Channel to
perform streaming operations.

118 Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Media copies

Example 13. deepcopy.c

//

// File: deepcopy.c

// Sample code to demonstrate PdrCopyMovie () .

//

// Copyright (c) Grass Valley Group, Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

//

#include <windows.h>

#include <stdio.h>

#include "tekpdr.h"

#include "tekrem.h"

//
// Display usage line.
//

void Usage (const char *progName)

printf ("Usage:\n") ;
printf ("$s srcMachine srcName destMachine destName [copy typel \n", progName) ;

printf (" if Machine is *, uses LOCAL CONNECTION\n");

printf (" copy type is exact (default), rendered, extract, or shared\n");
printf ("$s ? : causes this message to be printed\n", progName) ;

printf ("$s help : causes this message to be printed\n", progName) ;

printf ("$s usage : causes this message to be printed\n", progName) ;
} // Usage

//

// Take care of closing any remote connections.

//

void CloseConnections (ConnectHandle srcConn, ConnectHandle dstConn)

{
if (srcComn != LOCAL CONNECTION) {
RemCloseConnection (srcConn) ;
1

if (dstConn != LOCAL CONNECTION) {
RemCloseConnection (dstConn) ;
1

} // CloseConnections

//
// Parse the command-line and perform the copy. Determine if the Profile is remote,
// and open the connection if it is; Otherwise, the connection stays local.
// Also allow ? or help on the command line in order to get the usage printout.
//
main (int argc, char *argv(])
{
ConnectHandle srcComn = LOCAL CONNECTION;
ConnectHandle dstConn = LOCAL CONNECTION;
char* srcHost = NULL;
char* srcName;
char* dstHost = NULL;
char* dstName;

const char* thisArg;
DWORD tickStart, tickWait, tickFinish;
PArCopyType copyType;

BOOL success;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 119

120

Chapter 6 Transferring Media with Fibre Channel

WaitToken wait;
PdriWaitOpStatus status;
double bandwidth, average;

if (arge < 5) {
Usage (argv[0]) ;
return O;

if (arge < 6) {
// No copy type supplied, setting default.
copyType = PdrExactMedia;

else {
switch (argv([5] [0]) {
case ‘s’:
case ‘S’:
copyType = PdrShareMedia;
break;
case ‘r’:
case ‘R’:
copyType = PdrRenderedMedia;
break;
case ‘e’:
case ‘E’:
// Is the argument exact or extract?
switch (argv([5] [2]) {
case ‘a’:
copyType = PdrExactMedia;
break;
case ‘t’:
copyType = PdrExtractMedia;
break;
default:
Usage (argv[0]) ;
return 0;
1
break;
default:
Usage (argv[0]) ;
return 0;
1
1
if (!stremp(argv([l], "help") || !strcmp(argv[l], "?") || !strcmp(argv[l], "usage")) {

Usage (argv[0]) ;
return O;

if (stremp(argv([1i], "*")) {
srcHost = argv([1];
}

srcName = argv([2];

if (stremp(argv([3], "*")) {
dstHost = argv[3];

}

dstName = argv[4];
if (srcHost || dstHost) {
printf ("Interfacing to tekrem version %d.%d\n",
RemGetMajorVersion () , RemGetMinorVersion()) ;

if (srcHost) {

success = RemOpenConnection (ConnectEthernet, 0, srcHost, &srcComn) ;

if (!success) {

printf ("Failed to make a connection to %s\n", srcHost);

Profile Software Development Kit User

Preliminary — 12 July 2001

Sample code: Media copies

printf ("Error code is 0x%x\n", GetLastError()) ;
return 0;

}

printf ("srcHost %$s connection is 0x%x\n", srcHost, srcConn);

if (dstHost) ({
success = RemOpenConnection (ConnectEthernet, 0, dstHost, &dstConn) ;
if (!success) {
printf ("Failed to make a connection to %s\n", dstHost);
printf ("Error code is 0x%x\n", GetLastError()) ;
CloseConnections (srcConn, dstConn) ;
return 0;

printf ("dstHost %s connection is 0x%x\n", dstHost, dstConn);

}

if (!PdrMovieExists (srcConn, srcName)) {
printf ("src movie %s does NOT exist!\n", srcName) ;
printf ("Request failed.\n");
CloseConnections (srcConn, dstConn) ;
return O;

}

printf ("$06d: Input validated\n", GetTickCount ()%1000000) ;

printf (" srcConn 0x%x, srcMachine $%s, srcName %s\n",
srcConn, srcHost, srcName) ;
printf (" destComn 0x%x, destMachine %s, destName %s\n",

dstConn, dstHost, dstName) ;

// Everything is ready, grab the current time then start the transfer.
tickStart = GetTickCount () ;
wait = PdrCopyMovie (srcConn, srcName, dstConn, dstName, copyType);
tickWait = GetTickCount () ;
if (lwait) {

// Failed to get wait token.

printf ("Error in PdrCopyMovie call; WaitToken is 0\n") ;

printf (" LastError code is 0x%x\n", GetlLastError());

printf ("Request failed.\n");

CloseConnections (srcConn, dstConn) ;

return O;
printf (" WaitToken value is 0x%x\n", wait);
printf (" Ticks for startup of operation are %d\n", tickWait - tickStart) ;

printf ("$06d Time started\n%06d Start up completed\n",
tickStart%1000000, tickWait%1000000) ;

status.state = PdrWaitOpContinue;
success = TRUE;
while (success && status.state == PdrWaitOpContinue) {
success = PdrGetWaitOpStatus (wait, &status);
if (!success) {
printf ("PdrGetWaitOpStatus call failed\n");
printf (" reason is 0x%x\n", GetLastError());

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 121

122

Chapter 6 Transferring Media with Fibre Channel

else {
switch (status.state)
{

case PdrWaitOpError:
thisArg = "PdrWaitOpError";
break;

case PdrWaitOpRequest:
thisArg = "PdrWaitOpRequest";
break;

case PdrWaitOpCanceled:
thisArg = "PdrWaitOpCanceled";
break;

case PdrWaitOpContinue:
thisArg = "PdrWaitOpContinue";
break;

case PdrWaitOpInvalidHandle:
thisArg = "PdrWaitOpInvalidHandle";
break;

case PdrWaitOpCompleted:
thisArg = "PdrWaitOpCompleted";
break;

default:
thisArg = "?? ?2?";
break;

}

bandwidth = (double)status.lastBandWidth / 1000000.;
average = (double)status.averageBandWidth / 1000000. ;

printf ("$06d pcnt %3d, #W %$3d, #A %1d, BW %6.3f, aver %6.3f, %s\n",

GetTickCount () $1000000,
status.percentCompleted,

status.numOfFileWaiting, status.numOfFileCopying,

bandwidth, average, thisArg);
Sleep(990) ;

1
1
tickFinish = GetTickCount () ;

PdrTerminateWaitOperation (wait, NULL) ;

printf (" Total time: %d\n", tickFinish - tickStart);

CloseConnections (srcConn, dstConn) ;

return O;

} // main

Streaming with Fibre Channel

Fibre Channel streaming is made possible because of the TekXfr library in the Profile SDK.

The TekXfr library currently contains four function calls;
XfrAbort

XfrGetActiveTokens

XfrGetStatus

» XfrRequest

For detailed information on these functions, see the Profile SDK Reference Manual.

Profile Software Development Kit User

Preliminary — 12 July 2001

XfrAbort

XfrAbort

XfrAbort requests that atransfer in progress be stopped, or releases the XfrTokenina
streaming transfer that is already done.

XfrGetActiveTokens

XfrGetActiveTokens returns an array of the transfers currently occurring on the system it is
requested on. This allows applications to provide in-transit status. Given thislist, the
application canthen call XfrGetStatusfor all the transfers currently occurring or in the status
cache.

XfrGetStatus

XfrGetStatus returns the current status of atransfer in progress or atransfer that was
completed earlier. Thefinal status of any request is cached so that an application can request
it at alater time. This helps you keep track of transfers as a request may be queued and
finalized later automatically.

XfrRequest

The XfrRequest function initiates a transfer between a single data source and a destination.
This call returns immediately after initiation (NULL if unsuccessful).

Streaming function calls keep track of transfers by means of the XfrToken, which is specific
only to streaming operations. With XfrToken, it is possible to make any number of transfers,
though performance may degrade asthe number of transfersincreases. A transfer request may
be queued if bandwidth limitations keep a request from being performed immediately.

The source and destinations of thetransfer are specified by aUniform Media Locator (UML).
For a detailed explanation of UMLSs, see UML descriptions on page 112.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 123

-
E Chapter 6 Transferring Media with Fibre Channel

Sample code: Fibre Channel streaming

Figure8illustrateswhat happensinatypical Fibre Channel streaming filetransfer. (Although

aFibre Channel ring or loop topology is shown, aFibre Channel fabric topology relieson the
same principles.)

Figure 8. Fibre Channel file transfer

Ethernet

A4
Profile 1 Profile 2 IEEE

4

I
—_

-

Fibre Channel Ring

(or other Fibre Channel topology)

First, the Fibre Channel transfer request travels over Ethernet from the NT operating system
to Profilel. Then Profilel initiates a Fibre Channd transfer of the media file mymovie over

to Profile2 with the name mycopy. The example uses fully qualified UML names to avoid
any ambiguity.

Example 14, xferumls.c demonstrates the use of Fibre Channel streaming transfers. A source
clip, designated by a UML, is copied to a destination using the Fibre Channel transfer API.
Bandwidth and total time are reported as status output. Given that xferuml.exe iss executed on
aremote, non-Profile Windows NT system over Ethernet, the command would be formed like
this:

xferuml Profilel Profilel/explodedFile/INT:/default/mymovie Profile2/explodedFile/INT:/
default/mycopy

The C code required to accomplish thisisrelatively straightforward. Some initial setup and
parsing of the command line is performed. Then the API functions Xfr Request,
XfrGetStatus, and Xfr Abort are called to control transfer of data through Fibre Channel.

For asimilar exampl e using Fibre Channel to perform simple (nonstreaming) copy operations,

see Example 13, deepcopy.c on page 119. The Profile SDK abstracts the transfer control to a
much higher level.

124 Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Fibre Channel streaming

Example 14. xferumls.c

//
// File: xferuml.cpp
// Demonstrates using Fibre Channel transfers.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of

// the United States.

//

#include <windows.h>;

#include <stdio.h>;

#include "tekpdr.h"

#include "tekrem.h"

#include "tekxfr.h"

// This function is used if the input is either a ? or the word help.
// It shows the usage of the program.

void Usage (const char *progName)

printf ("Usage:\n") ;
printf ("$s srcProfile srcUml dstUml\n", progName) ;

printf (" srcProfile Profile to run streamcopy from\n");
printf (" srcUml Source UML\n") ;
printf (" dstUml Destination UML\n") ;

} // Usage

// In the main program, we determine if the Profile is remote, and
// open the connection if it is; otherwise, the connection stays
// local. We also allow ? or help on the command line in order to
// get the usage printout.

int main(int argc, char *argv[])
{
ConnectHandle srcComn = LOCAL CONNECTION;
char* srcHost = NULL;
char lochost [82];
char* srcUml;
char* dstUml = NULL;
char* dstlList = NULL;
const char* dstArrayl[l];
DWORD tickStart, tickFinish;
XfrToken waitxfer;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 125

126

Chapter 6 Transferring Media with Fibre Channel

// Parse command line arguments.
if (arge != 4) {
Usage (argv[0]) ;
return O;
1
srcHost = argv[1l];
srcUml = argv[2];
dstUml = argv([3];

// Validate the source movie.
gethostname (lochost, 82) ;
if (strcmp (srcHost,lochost) != 0) {

if (!RemOpenConnection (ConnectEthernet, 0, srcHost, &srcConn)) {
printf ("ERROR: Failed to connect to %s, error code 0x%x\n", srcHost,

GetLastError()) ;
return 1;

}
}

printf ("Source Profile %s connection is 0x%x\n", srcHost, srcConn) ;

printf ("The source UML is: %s\n", srcUml);

// Only one destination from the command line.
printf ("The destination UML is: %s\n", dstUml);
dstArray[0] = dstUml;

// Initiate the transfer.
tickStart = GetTickCount () ;

waitxfer = XfrRequest (srcConn, srcUml, 1, (const char **)dstArray) ;

if (waitxfer == 0) {
// We failed to get wait token.

printf ("ERROR: XfrRequest token is 0, error code 0x%x\n", GetLastError());

if (srcConn != LOCAL CONNECTION)
RemCloseConnection (srcConn) ;

return 1;
printf (" WaitToken value is 0x%x\n", waitxfer);
for (;;) {

const char* thisArg;
double bandwidth, average;
XfrStatus status;

if (!XfrGetStatus (waitxfer, &status)) {

printf ("\nERROR: XfrGetStatus call failed, error code 0x%x\n",

GetLastError()) ;
break;

Profile Software Development Kit User

Preliminary — 12 July 2001

Sample code: Fibre Channel streaming

switch (status.state) {
case XFR ST ERROR:
thisArg = "XFR ST ERROR';
printf ("\nERROR: Status error code %d\n", status.error);
break;
case XFR ST QUE:
thisArg = "XFR ST QUE'";
break;
case XFR ST ACTIVE:
thisArg = "XFR ST ACTIVE";
break;
case XFR ST DONE:
thisArg = "XFR ST DONE'";
break;
case XFR ST LAST:
thisArg = "XFR ST IAST";
break;
default:
thisArg = "UNKNOWN";
break;
1
bandwidth = (double)status.lastBandWidth / 1000000.;
average = (double)status.averageBandWwidth / 1000000. ;

printf (" %06d %3d%% BW %6.3f ave %6.3f %-15s\r", GetTickCount ()%1000000,
status.percentCompleted, bandwidth, average, thisArg) ;

fflush(stdout) ;
if ((status.state != XFR ST ACTIVE) && (status.state != XFR ST QUE))
break;

Sleep (990) ;

}

tickFinish = GetTickCount () ;

XfrAbort (waitxfer) ;
printf (“\nTotal time: %d\n”, tickFinish - tickStart);

if (srcComn != LOCAL CONNECTION) {
RemCloseConnection (srcConn) ;
1

return O;

} // main

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 127

-
E Chapter 6 Transferring Media with Fibre Channel

128 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 7
Programming the Profile Library System

The Profile Library System (PLS) uses the client/server model of computing. Thereisone
instance of the library server for each library. This server has a catalog that describes the
contents of every tape cartridge loaded in alibrary. The catalog is a cache for tape cartridge
directories. It can also retain residual knowledge of cartridges that have been removed from
the library and stored elsewhere.

Thelibrary server workswith filesasabasic unit of information. A file can beasimple stream
of bytes or amultiplexed stream of video, audio, and timecode. Thelibrary system copiesfiles
from a Profile system to tape cartridges and back, but does not del ete files from a Profile unit;
file management is handled by Media Manager or other third-party applications.

The programming model can be approached from two distinct views. Firstisthe ANSI C
function calls. The second model supports serial protocols used over RS-422 and Ethernet.
We have striven for a consistent model and feature set between these two programming
paradigms. In some cases, the limitations of one model have shaped the features of both. The
API isavailable for local applications and as remote procedure calls using the SDK over the
Ethernet.

The C programmer’smodel isbased on ANSI Cfunctions. These areimplemented asaremote
procedure call library that binds function calls to a network transport protocol. Memory
management is the responsibility of the application. This model lowerstherisk of
network-wide memory leaks. The library server uses a set of handles or identifiers to pass
linkages to objects the application references or reserves. The use of handles supports
communication of object references across serial links. This mechanism is proneto leaks if
the application programmer isnot careful. Leaksare dueto the application not closing handles
before exit. A concurrent execution model is supported for long commands.

Thebytestream serial protocol ismodeled after the existing RS-422 Profile protocol. We have
limited the length of transport packets in the command set because of the limits imposed by
the current RS-422 packet framing mode!.

Programming model and serial protocols

The programming model can be approached from two distinct views. the ANSI C function
callsand serial protocols used over RS-422 and Ethernet. We have tried to make a consistent
model and feature set between these two programming paradigms. In some cases, the
limitations of one model have shaped the features of both. The API isavailable for local
applications and as remote procedure calls using the SDK over the Ethernet.

A C programmer’s view

The C programmer’s moded is based on ANSI C functions. These are implemented as a
Remote Procedure Call library that binds function calls to a network transport protocol.
Memory management is the responsibility of the application. This model lowers the risk of
network-wide memory leaks. The library server uses a set of handles or identifiers to pass
linkages to objects the application references or reserves. The use of handles supports

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 129

-
E Chapter 7 Programming the Profile Library System

communication of object references across serial links. This mechanism is prone to leaks if
the application programmer is not careful. A concurrent execution model is supported for
slow commands.

Serial protocols

A byte stream serial protocol will beimplemented that is modeled after the existing RS-422
protocols. Several decisionsin the command set have been made to limit the length of
transport packets because of the limitsimposed by the current RS-422 packet framing model.

Library concepts overview

Here's a description of many of the basic concepts used to design the library server.

Local library catalog

Thelibrary server keeps acatalog of all filesin the attached library. The purpose of this
databaseisto allow afast search for agiven piece of material and to support requestsfor lists
of theavailable material. When cartridgesare removed from alibrary, the application can have
all references to material on the cartridge removed from the catalog. Thisis useful when
cartridges are not going to be used in the near future or are being sent to other facilities. The
catalog entries for removed cartridges can be retained. Having entriesin a catalog makes
locating the material faster. The catalog knows the cartridge isnot in alibrary, and it hasa
field noting where the cartridge is stored or where it can be placed.

Cartridges and partitions

Tape cartridges areidentified with unique barcode labels. Barcode labels are used so machine
and human readabl e cartridge identification is avail able.

You can subdivide cartridgesinto partitions. A partition can be treated asif it were a separate
tape for material replacement purposes. Thefirst partition on a cartridge (at the load point)
will be used to store a master cartridge directory. The master cartridge directory need not be
the same size asthe rest of the partitions. The remaining partitions will all be of equal size
and used to store data and mediafiles. From the customer’sview, partition numbers start at 1
and ascend as you move away from the cartridge's load point. Partition numbers
PIsAnyPartition and PIsNoPartition (- 1) are reserved to mean no partition or all partitions,
depending on the context.

The code design allows a directory partition to be of different size than data partitions. Data
partitions must all be the same size. Some vendor restrictions may require that all partitions
be the same size.

Several types of tape cartridges may exist in alibrary. Onetypeis clip, mediaand datafile
archive cartridges. Another istape transport cleaning cartridges. Each cartridge must have
unique barcode |label.

Files

Filesarethe basic unitsof datathelibrary system reads and writes. They can be one of several
types.

» Adatafile. A simpledatafile, astream of bytes. It must be local on the Profile server
attached to the PLS machine.

» Aclip file. Audio, video(motion-JPEG encoded), and timecode media files multiplexed

130 Profile Software Development Kit User Preliminary — 12 July 2001

Barcode labels

into an MPEG program element stream. MPEG compression formats are not used in
Profile system software version 2.4.

An archive clip fileis a degenerate case of amovie. It has video streams, audio streams,
and possibly time codes. An archiveclip fileisaflat or rendered media stream.

» A published (finished) moviefile. Thisisamultiplexed collection of audio, video,
timecodes, and control track information. Material is stored in the playout time sequence
and unused material is not archived.

Barcode labels

Tape cartridges are identified with barcoded labels. Thelibrary server supports barcode |abel
identifier strings of up to sixteen ASCII characters. While the design allows for sixteen
characters, the number offered by vendors may differ.

At each installation, barcode identifiers must be unique. If required, an operator can replace
aduplicate label on a cartridge from another facility, then load it into alibrary.

Strings and file names

Strings contain only printing characters and white space, that is, tab and space through tilde.
A null pointer to a string is considered to be anull string. Strings will always be null
terminated.

File names are stringsthat identify thefile. The path string (dataset name and file path prefix)
isomitted from file namesin alibrary. Thefile name on acartridge may have apartial Profile
file system path as well as the formal Profile file name and extension. File names must be
uniquein each partition. Filesin alibrary are found by qualifying the nameswith acartridge's
label.

The name spacesareflat for archived files. Thelibrary server will keep filesin the order they
are stored on cartridges, not in a hierarchical file system tree.

File names are a subset of ASCII strings. Thefile name character set excludes. NULL (0x00)
to US(0x1f), *, »,and (0x7f). Casedifferencesarenot considered when comparing
names. The case of provided stringswill be preserved by the library server. Namesthat only
differ by white space at the end will be considered matches; trailing white space is removed.
A null pointer to anameis considered equal to a null name.

Resource reservation

Some types of system resources, tape transports, and tape cartridges can be reserved by an
application or operator. Resource reservation is intended to control tape transport and
cartridge access when time critical operations are underway. It is assumed system resources
will not be reserved for extended periods of time.

When asingle application isdriving the library server, the application may implement its own
resource reservation model. When multiple applications share alibrary server, they should
reserve resources that will be required in the near future. Applications may also want to
reserve resources so other applications using the samelibrary server will not cause unexpected
problems.

In/out points

In/out points are used to control what portions of audio/video mediafiles are archived or
restored.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 131

-
E Chapter 7 Programming the Profile Library System

When an audio/video mediafile is archived, a pair of in/out points specifies the starting and
ending locations of the material to be saved. The mark-in and mark-out pointsfor amovie are
saved with thefile.

An optional set of infout points can be used with arestore command. Thisin/out pair is used
to restore a portion of the material from afile.

Field numbers

Fieldsin amediafile are addressed in time with field numbers. The first field number in a
mediafileor clipisO.

Multicartridge sets

A file may not fit on asingle cartridge. In this case, thelibrary server will split the material

between cartridges as needed. Multicartridge files will be stored on separate tape cartridges
(cartridges with no other material). All of the cartridges used in a multicartridge set will be
taken from a pool of free cartridges. If the location of material on multicartridge setsis not

constrained, afacility’s cartridges would become interwoven.

Thelibrary server will decide if a multicartridge set is required when an archive command is
starting. If one of the mediafiles is having material added while an archive command is
proceeding, the results will be unpredictable and can be undesirable.

Commands that reference a multicartridge set should use the cartridge labdl for the first
cartridge. An exception isthe import cartridge command. It does not know a multicartridge
set is being processed so it deals with individual cartridges.

When the material on a multicartridge set is deleted, the set is broken up. The cartridges are
all returned to the pool of free cartridges.

Material categories

Cartridgescan be assigned to categories. These are used when an application wantsthelibrary
server to select cartridges for storing files from a known group of cartridges. All of the
cartridges in a multicartridge set belong to the category specified for the first cartridge.

The programming model

In several casesthelibrary server uses handlesto bind resources between commands. These
handlesareintegers (actually void pointers) and can easily beused in C and C++ function calls
or network protocols. Handles are used as a compact representation of aresource or a
connection. They also represent the link between an application and an active resource or
other system state information.

In someinstances an application can offer NULL for ahandleto thelibrary server. Thismeans
the library server isfreeto use any resource that is avail able.

Connection and library handles

An application must establish communications with the library server using the TekRem
library. To acquire a connection handle, use RemOpenConnection. Thisfunction returns a
connection handle that is used with three function calls. These return the library server's
major or minor version numbers or open alibrary server session.

132 Profile Software Development Kit User Preliminary — 12 July 2001

Library server APl memory model

When an application wants to work with alibrary server, it opensalibrary handle. Thisis
logically a connection handle that can reference alocal Profile or one somewhere on the
network. Each library handle hasits own set of state variables. Some examples are the file
system path, a name that identifies the operator or application, and so on. Astransport
handles, cartridge handles, file handles, and loop handles are created, they all are linked back
to the parent library handle. Closing a parent handle closes all associated child handles.

Loop handles are a special case. They are created when an application wants to acquire a
potentially long list of entries, like abin or directory listing. A loop is opened and the handle
is returned with aFindFirst command. The loop handle serves as a reference point by
logically pointing to the state vector for that loop.

Applications should always close handles when they are no longer needed. You must use
PIsOpCodeGetAnyEvent to close down TransActionHandle. Closing a parent handle does
not automatically close a child. If these handles are not closed, the resources used by the
handle will not be released and eventually thelibrary server could fail for lack of free handles.

Library server APl memory model

When astructure is to be returned, the application must provide a pointer to memory. The
library server builds a structure in the application’s memory space. The application is
responsiblefor allocating and rel easing thismemory. Thelibrary server does not return large
structures with any single command. Collections of objects that require significant amounts
of space are returned one at atime.

Operations returning multiple data items

Some operations return bin maps and directories that can have a large number of entries.
These operations return results using an application-supplied pointer to memory and looping
constructs. One command isissued to start the looping operation. Thisisaloop-type
FindFirst command. It may have parametersthat allow starting an operation at alocation
other than the beginning. Theloop-type FindFirst command returns ahandle that can be used
with the loop-type FindNext command to retrieve successive responses. Theloop is
terminated with aloop-type Close command.

An application must close an active loop handle. If it does not, the library server will
eventually run out of memory.

If aFindFirst command is issued for an empty list, the returned handle has the value of
NULL. Inthiscase no active loop handle exists.

Some of the looping commands can restrict the set of itemsreturned. Thisis done with an
action code parameter used in the loop-type FindFir st command.

Concurrent command execution

Some commands require long periods of time to execute. One of the parameters to these
commands is a pointer to atransaction handle. If this pointer is NULL, synchronous
command execution will occur. If the pointer to a concurrent command transaction handle is
not NULL, ahandleisreturned that can be used with a status command to track the concurrent
command execution. Thishandlecan also be used to attempt to cancel concurrent commands.
Concurrent commands are considered complete when a command completion event is
processed.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 133

-
E Chapter 7 Programming the Profile Library System

While concurrent commands are executing, additional commands can be queued. The number
of commands that can be queued depends on physical and logical resources limitations. The
number of commands that can be queued is not specified. A single application’s commands
are always executed first in, first out. The order of execution of commands between different
applicationsis not specified.

Error codes

All commands return a Boolean, an integer, or a pointer. By convention, if the returned value
is0, an error has occurred. A nonzero value can be useful information or simply asuccessful
command completion code. An error code can be acquired by calling GetL astError.

When acommand is executed asynchronously, theinitial function call may fail (thatis, return
a0) if something iswrong, in which case no concurrent execution will have started. If the
return value is not zero, an asynchronous execution will start.

Asynchronous commands send completion events when they terminate. Concurrent
command compl etion events contain an error code as part of the event structure. This error
code describes the execution after the successful start. It will be zero if the command has
completed successfully.

Theinversion of the meaning of 0 from afunction call return value (O isan error) to event error
codes (0 means success) must be carefully considered when writing applications.

Configuration, status, and information commands

Configuration commands return data that describes the physical componentsingtalled in a
given system, such as the number of binsin alibrary. Status commands return data that
describes the current state, such as the number of bins that contain a cartridge. | nfor mation
commands are used when combining configuration and status information is appropriate.

Important notes and assumptions

It isimportant to consider the following notes when developing applications for library
servers:

» Archive and restore operations will use the same resources as disk recorder operations. As
afirst approximation, one archive data stream requires the same resources as one video
stream. Since audio and video 1/0 takes precedence over all other operations, full-speed
tape operations may require shutting down disk recorder channels.

» Each library may be attached to only one Profile system, and each Profile system may have
only one library attached to it.

» Mediafilesthat only contain audio information will be addressed in video field time units.

» Protection for dangerous operations is the responsibility of the application level software,
not the library server. Examples of dangerous operations are reformatting cartridges and
deleting files.

» Thelibrary server will not movefiles. Files are copied.

» When current status information cannot be acquired from a device, the last accurate status
informationisreturned. For example, many tapedriveswill not return statuswhile aformat
isin progress, so the library server returns status information acquired when the format
operation was started.

» ThePLS 200 can queue up to 250 commands.

134 Profile Software Development Kit User Preliminary — 12 July 2001

Configuration

e ThePLS 200 can queue up to 100 asynchronous events (that is, events which are not
command completion events).

Configuration

A library with several tape transports attached to a single Profile system. Transports without
libraries are attached to a Profile system that supportsthe library server software. Thisis
named a stand-al one transport.

Tape partitioning

Digital computer tapes do not allow replacement of embedded portions of the stored data.
New data can be appended to existing data, at the cost of losing accessto all datastored beyond
the freshly written data.

Since some types of material handled in broadcast facilities have a short life with high
turnover, the inability to replace parts of the data on a cartridge limits the applications. One
solution isthe division of the tape into segments or partitions that can be individually written
without altering the contents of other partitions.

To support this facility, tapes must be formatted with special markers and buffer zones
between each partition. The buffer zones are used accommodate variances between drivesand
media. They guarantee that under all circumstances the datain one partition can be replaced
without altering the information in the following partition.

When tapes are divided into more and more partitions, the buffer space and other overhead
grow as a percentage of the total tape. Eventually it becomes impractical to increase the
number of partitions. On some drives, other factors limit the number of available partitions.

Since the division of the tape is limited, the minimum size may be larger than is desired in
some applications. All current tape drives either don’t support partitioning, or limit the
minimum partition size. Unfortunately for some broadcast applications, the minimum
partition sizeisnot as small aswould be desirable. For PL S 200 tape drivesthe minimum size
is approximately 200MB. Thisis about 30 seconds of high quality material or 55 seconds of
highly compressed material. (See Table 7, PLStap'e partitioning on page 136 for tape
partitioning specifics.) Applications that work with tapes that are approaching their total
capacity should handle errors from tape overflows, as well as hard write errors.

Several variables alter the storage requirements, including how old thetapeis, how worn
the heads are, when the drive was last cleaned, and how clean the video signals are.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 135

-
E Chapter 7 Programming the Profile Library System

136

Table 7. PLS tap‘e partitioning

Number of Partition Partition capacity (H:MM:SS) at given video rates (MBps)
partitions size (MB) | o4 32 40 48

63 199 0:00:56 0:00:44 0:00:36 0:00:30
62 199 0:00:56 0:00:44 0:00:36 0:00:30
61 199 0:00:56 0:00:44 0:00:36 0:00:30
60 199 0:00:56 0:00:44 0:00:36 0:00:30
59 199 0:00:56 0:00:44 0:00:36 0:00:30
58 200 0:00:56 0:00:44 0:00:36 0:00:30
57 207 0:00:58 0:00:45 0:00:37 0:00:32
56 212 0:01:00 0:00:47 0:00:38 0:00:32
55 218 0:01:01 0:00:48 0:00:39 0:00:33
54 225 0:01:03 0:00:49 0:00:40 0:00:34
53 231 0:01:05 0:00:51 0:00:42 0:00:35
52 238 0:01:07 0:00:52 0:00:43 0:00:36
51 245 0:01:09 0:00:54 0:00:44 0:00:37
50 252 0:01:11 0:00:55 0:00:45 0:00:38
49 260 0:01:13 0:00:57 0:00:47 0:00:40
48 268 0:01:15 0:00:59 0:00:48 0:00:41
47 276 0:01:18 0:01:01 0:00:50 0:00:42
46 285 0:01:20 0:01:03 0:00:51 0:00:43
45 294 0:01:23 0:01:05 0:00:53 0:00:45
44 303 0:01:25 0:01:07 0:00:55 0:00:46
43 313 0:01:28 0:01:09 0:00:56 0:00:48
42 324 0:01:31 0:01:11 0:00:58 0:00:49
41 334 0:01:34 0:01:13 0:01:00 0:00:51
40 346 0:01:37 0:01:16 0:01:02 0:00:53
39 358 0:01:41 0:01:19 0:01:04 0:00:55
38 370 0:01:44 0:01:21 0:01:07 0:00:56
37 383 0:01:48 0:01:24 0:01:09 0:00:58
36 397 0:01:52 0:01:27 0:01:11 0:01:01
35 412 0:01:56 0:01:30 0:01:14 0:01:03
34 428 0:02:00 0:01:34 0:01:17 0:01:05
33 445 0:02:05 0:01:38 0:01:20 0:01:08
32 462 0:02:10 0:01:41 0:01:23 0:01:10
31 481 0:02:15 0:01:46 0:01:27 0:01:13
30 501 0:02:21 0:01:50 0:01:30 0:01:16
29 523 0:02:27 0:01:55 0:01:34 0:01:20
28 546 0:02:34 0:02:00 0:01:38 0:01:23
27 571 0:02:41 0:02:05 0:01:43 0:01:27
26 597 0:02:48 0:02:11 0:01:47 0:01:31

Profile Software Development Kit User

Preliminary — 12 July 2001

Library server commands

Table 7. PLS tap‘e partitioning (Continued)

Number of Partition Partition capacity (H:MM:SS) at given video rates (MBps)
partitions size (MB) | o4 32 40 48

25 625 0:02:56 0:02:17 0:01:52 0:01:35
24 657 0:03:05 0:02:24 0:01:58 0:01:40
23 690 0:03:14 0:02:31 0:02:04 0:01:45
22 727 0:03:25 0:02:40 0:02:11 0:01:51
21 768 0:03:36 0:02:49 0:02:18 0:01:57
20 813 0:03:49 0:02:58 0:02:26 0:02:04
19 862 0:04:03 0:03:09 0:02:35 0:02:11
18 917 0:04:18 0:03:21 0:02:45 0:02:20
17 978 0:04:35 0:03:35 0:02:56 0:02:29
16 1046 0:04:54 0:03:50 0:03:08 0:02:39
15 1124 0:05:16 0:04:07 0:03:22 0:02:51
14 1213 0:05:41 0:04:26 0:03:38 0:03:05
13 1316 0:06:10 0:04:49 0:03:57 0:03:21
12 1436 0:06:44 0:05:15 0:04:18 0:03:39
11 1578 0:07:24 0:05:46 0:04:44 0:04:01
10 1749 0:08:12 0:06:24 0:05:15 0:04:27
9 1957 0:09:11 0:07:10 0:05:52 0:04:58
8 2219 0:10:24 0:08:07 0:06:39 0:05:38
7 2552 0:11:58 0:09:20 0:07:39 0:06:29
6 3001 0:14:04 0:10:59 0:09:00 0:07:38
5 3631 0:17:02 0:13:17 0:10:53 0:09:14
4 4575 0:21:27 0:16:44 0:13:43 0:11:38
3 6156 0:28:52 0:22:31 0:18:28 0:15:39
2 9343 0:43:49 0:34:11 0:28:01 0:23:45
1 18999 1:29:06 1:09:31 0:56:59 0:48:17

Library server commands

Table 8 below lists the command set available from the library server. These commands are
implemented as ANSI C functions.

Table 8. Frequently used C function parameters

Parameter Description

action code An enumeration type that specifies special actionsin acommand. This may
restrict or expand a search or request one of several processing options.

barcode label See cartridge label.

bin class A string that can be used to determine the capabilities of agiven bin. Some
libraries store multiple kinds of cartridges that are physically incompatible.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 137

-
E Chapter 7 Programming the Profile Library System

138

Table 8. Frequently used C function parameters

Parameter

Description

bin number

An address assigned to abinin thelibrary. Bin numbersstartat 0 and
increase to the maximum number, bins-1. Thebin map ishard-wired so
applications can draw graphics using bin numbersto show locationsin a
GUI.

cartridge class

A string describing the type of cartridge. This can be used to find out capac-
ities and other attributes associated with each type of cartridge.

cartridge description
string

A string that can be used to store user data.

cartridge handle

An identifier that points to a specific cartridge and partition. If aNULL is
used, the library server isfreeto use any cartridge. Thiscan be set up by an
application to point to a cartridge category, or a specific cartridge.

cartridge | abel Thisis astring that matches the barcode label from atape cartridge. These
values only change if the printed barcode label on a cartridge is replaced.

category A cartridge can be assigned to a category that is used to organize material for
long term storage.

field number This represents an in or out point expressed in time units of fields. The

field’s number is established when the original source mediafileis recorded.

file description string

A string that can be used for user defined-data.

file name A generic string with afile name.

library handle A library server identifier that isalibrary server connection handle.

library name A name (string) that is the host network name for the machine on which a
library server runs.

location info Thisis astring that describes where a cartridge is stored if it has been
removed from alibrary with an export command.

loop handle A library server returned identifier that is used in looping commands.

partition number

Specifies the partition or segment of a cartridge to be used. A partition num-
ber of PIsAnyPartition or PlsNoPartition (-1) implies the whole cartridge or
no partition number specified.

path

A partia directory path used when the library server references a part of a
Profile file system.

return values

All commands return a boolean, an integer or a handle. In some cases these
are success/fail codes with the value of 0 used to indicate an error. When a
function returns a handle the value of NULL indicates an error. GetLastError
must be used to get detailed error information.

Session hame

A string established when alibrary connection is opened. Thisstringis
returned by some of the status commands so one can discover who is using
(reserving) devices or other resources. The session name has no meaning to
the library server.

time date

Thisis atime and date stamp used as the system’swall clock. Itisnot
intended for precise real time operations.

transaction handle

A handle that can be used to get the status or cancel an asynchronous com-
mand. The transaction handle is returned with the event that completes a
concurrent execution.

transport class Thisisastring that can be used to identify what type (vendor and model) of
tape transport isinstalled.
transport handle A system-returned handle for atape transport.

Profile Software Development Kit User

Preliminary — 12 July 2001

File selection rules

Table 8. Frequently used C function parameters

Parameter Description

transport number Thisis anumber that identifies a specific tape transport. Transport numbers
are device addresses that have assigned values that only change when a
library is reconfigured. Transport numbers are always in the range of 0-255.

File selection rules

Files are located in the Profile file system using the following concepts. A fileis specified
with a stored path name (dataset name and file name prefix) and a file name string from a
command. The resulting complete file nameis used to find the material on a Profile.

Thedataset nameisthe volume namefor the Profileto be used. 1t must bethe Profileto which
atransport is attached for archive and restore operations. The path string is not stored by the
library server as part of afile name. If adataset nameis not given, the default isthe machine
to which the library is physically connected (the host Profile).

Cartridge selection rules

A specific cartridge can be requested by acquiring ahandlefor that cartridge. An application
can also use a handle value of NULL to indicate any cartridge can be used to archive new
material. Inthiscase, thelibrary server will attempt to find a cartridge with enough free space.

A cartridge can be assigned to a category by providing a category name when the cartridge is
formatted. Thelibrary server can be requested to limit the search when archiving new material
to cartridgesin a selected category. Thisisintended to be used for storing departmental
material on alimited set of cartridges.

In many commands, acartridge handle or cartridge label must be provided so thelibrary server
can find the correct cartridge. Cartridges can be reserved when an application wantsto control
access to the cartridge.

For stand-alone transports, if an application does not specify a cartridge, only cartridgesin
ready transports will be considered for use.

Tape transport selection rules

In most commands, a transport handle of NULL meansthe library server can select any free
transport. The exceptions are commands where selecting an arbitrary transport yields
unpredictable results. For example, requesting the status of an arbitrary transport will not be
meaningful.

An application can specify atransport by reserving a transport and using that handlein a
command. Thisisuseful when many commands should be executed in sequence or for near
real time operations.

An application can get atransport handle without reserving the device. Thisisimportant for
inquiring about a device's status without waiting in a device reservation queue. In some
applications, using an unreserved transport handle can lead to undesirable and unpredictable
waits.

For stand-alone transports, the application must specify a transport.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 139

-
E Chapter 7 Programming the Profile Library System

Transport load/unload rules

Cartridges are loaded into transports on demand. The load request can be an explicit
PlsLoadTransport command or an implicit load request. A load request may result in an
implicit unload request if all transports are loaded and a transport appearsto beidle. A
transport is idle when the transport is not reserved and no commands are using the loaded
cartridge.

Anunload request to atransport that is not reserved will always be executed. If atransportis
reserved, all commands from users other than the device's owner will be rejected until the
deviceis released.

If an application wants to control when cartridges are loaded and unloaded, it should reserve
the transport. Reserved transports will never be implicitly unloaded by the library server.

Application need to do some kind of optimization to keep multiple concurrent commands
from “thrashing” cartridges. For stand-alone transports, the application must preload a
cartridge. Thelibrary server does not have a robot to do an automatic load operation.

Library server API function descriptions

The following sections describe each of the C function calls. This set of function call
descriptionsis organized into groups of similar functions.

Library functions

Thefollowing functions are used to open and close communicationswith alibrary. Thisgroup
al so supports operations that act on the entire library or the catalog of known files and
cartridges. These functions can be used to get the major and minor version numbers for the
current library server. They do not require an open library handle.

The PIsGetM aj or Ver sion and PlsGetM inor Ver sion functions retrieves the major and minor
version numbers for the current library server. Neither requires an open library handle.

PlsOpenLibrary returnsalibrary connection handle, given aremote connection handle. The
remote connection handle can be acquired with RemOpenConnection. Thelibrary nameisfor
future use.

The connection handle for the local machineis LOCAL_CONNECTION. Thelibrary
handlesfor the local machinewill not be NULL.

The session name is used to identify who owns aresource. It is returned with status
commands. The session name does not alter the execution of acommand, nor does it control
how resource are all ocated.

This command also has version information parameters. These represent the version of the
library server an application requires for correct operation. If the requested versionis current
or the library server can perform all functions for the requested version, the connection is
accepted.

Power up and reset server initialization runs in the background. This reducesthe Profile
system start up time. If an attempt is made to open alibrary connection before the robot
initialization processis complete, an error isreported and the library connection is refused.
When this occurs, the application should wait for afew seconds and attempt to open thelibrary
connection again. The error issued for a server that is still initializing is:

PLS AS INIT_INCOMPLETE.

140 Profile Software Development Kit User Preliminary — 12 July 2001

Library and cartridge directory commands

PIsCloseLibrary logically closes auser’s or application’s session with alibrary server. The
communicationslink established with Prolink/TekRemoteisnot disrupted. Thelibrary handle
isno longer valid.

PlsGetL ibraryConfig returns adescription of alibrary. Thiscommand returnsthetotal bins
in the library, number of robots installed, and so forth.

PlsGetL ibraryStatus requests astatus report on alibrary. Volatile library data and
device-specific information will be returned. The device-specific information will include
usage data, error recover information and so on. The report includes information such as
whether the library is active, the number of empty bins, and so on.

Transport configuration commands

Thefollowing set of commandsis used to get alist of all transports under the control of a
library server. Thelibrary server isbound to asingle library (robot).

The starting transport number can be specified as PlsAnyTransport. Thiswill start the list of
transports at the first installed transport.

Library bin information commands

These commands return the bin map for alibrary. For each bin, an indicator is returned
describing the bins status and contents. A bin can contain a data cartridge, a cleaning
cartridge, and other types of tapes. A bin may also be empty or unavailable. Many libraries
have afew special bins. These include bins designated for cleaning cartridges. This results
in some hin usage restrictions based on library design.

The normal caseis to return information on all bins. A subset of bins can be selected. The
sel ection operations are controlled with the action code parameter.

The application isresponsible for converting bin map addresses to locations in a physical
library. Thiswill berequired for GUIs to draw a graphic display showing where a cartridge
is stored in alibrary.

This function is implemented with three commands. The first establishes a starting point.
This command also returns a handle to be used to retrieve the next entry. The second
command is used to acquire each successive entry. The third command is used to terminate
the loop, possibly before the list is exhausted.

For stand-alone transports, the PlIsFindFir stBinl nfo will yield an end of bins result; no bins
are installed.

List all cartridges commands

This set of commands is used to get a copy of the current library’s cartridge inventory. The
set of cartridge inventory entries can be restricted with a command action parameter. The
following actions are supported:

Library and cartridge directory commands

These commands request adirectory (fileinformation) report for afile, partition, cartridge, or
library. If thelibrary server has alocal catalog, it isused. If the server does not have alocal
catal og, the operator or application must issue an PlslnventoryCartridge before executing a
Filelnfo command.

The Filelnfo commands will select a subset of files based on the action parameter. The action
code is used when the catalog for a complete library is being searched.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 141

-
E Chapter 7 Programming the Profile Library System

The commands PIsFindFirstHandle, PIsFindNextHandle, and PIsCloseFindHandle are
used to acquire information on all open or active handles. This provides a snapshot of the
current system state. Handles can be asynchronously closed or created by other users, which
may produce unpredictable results.

Transport functions
Thefollowing group of functionsis used to manage tape transports.

PlsConnectTransport acquiresatransport handl e, given the number (address) for atransport.
The user may request any free transport by specifying a transport number of
PIsAnyTransport (—1). Acquiring atransport handle does not reserve the devicefor exclusive
use by one application.

PlsAllocateTransport reserves atape transport for exclusive use. |If the transport number is
not specified (PlsAnyTransport), the library server will reserve any available device. A
transport reservation requests atransport by number, not atransport handle. Thiswas done so
the acquisition of atransport handle and its reservation are an atomic action. If these were
separate commands, error management software would be difficult to write. This capability
is being implemented to support applications that are archiving and restoring material in near
real time. It isassumed tape transports will be reserved for short periods of time (tens of
minutes, not hours). A second use of reserved devicesisto force them into an unusable or
logically off-line state.

PIsCloseTransport releases atransport handle when an application no longer needs accessto
that device. Closing areserved transport handle rel eases the transport.

PlsGetTranspor tStatusrequests the status of atape transport. Thiscommand always returns
a standard set of parameters and some additional device-specific data. The device-specific
information will include usage data, error recovery counts, cleaning cycle codes and so on.
This command requires atransport handle. If atransport handle is not specified, an error is
issued. Failing to specify atransport handle would cause the library server to select atape
transport, which would yield unpredictable results. The returned information includes:

PlsL oadTransport loads a cartridge into atape transport. This command is intended to
preload transports for near real time applications. If the requested cartridge is already in the
requested transport, the command was successful. For stand-al one transports this command
is a no-operation if the cartridge is already loaded. It failsif the specified cartridge is not
loaded.

PlsUnloadTransport unloads the cartridge in the specified transport and returns it to the
library. The cartridge's directory is updated and the cartridge rewound if appropriate. This
command is intended to be used to unload transports when the cartridge is no longer needed
in near real time applications. Unloading an empty transport is not considered an error. For
stand-al one transports, this command performs a rewind/unload tape operation. Thisisan
implicit execution of an export operation in normal mode (the cartridge directories are updated
and the cached directory information is removed from the local catalog).

PIsCleanTransport loads a cleaning cartridge into the specified transport and executes a
cleaning cycle. When the command is complete, the cleaning cartridge is returned to its
storage location in the library if it can be used again. If the cleaning cartridge has been used
the maximum number of times, it will be exported. For stand-al one transports that have
built-in cleaning functions, these functions will be executed. Otherwise thiscommandisa
no-operation.

142 Profile Software Development Kit User Preliminary — 12 July 2001

Cartridge functions

Cartridge functions

PlsConnectCartridge binds a cartridge label to a handle for a cartridge. Thisbinding is
always immediate so the command executes synchronously. An application can request a
cartridge handle for acartridge it hasreserved. Thelibrary server identifies who hasreserved
the cartridge by comparing library handles. Multiple handles can be open to the same
cartridge.

PlsAllocateCartridge reserves a cartridge. Cartridges are reserved by label instead of a
cartridge handle so the acquisition of a cartridge and itsreservation are an atomic action. Itis
assumed this command will be used to reserve cartridges for short periods of timein near rea
time applications.

PIsCloseCartridge releases and recycles a cartridge handle. It should be used when the
cartridge associated with the handle is no longer needed.

PlsGetCartridgeConfig returns a structure with information about a specific cartridge. This
command will draw an error if the cartridge handle is for a cartridge category.

PlsGetCartridgeStatus requests status information for a given tape cartridge. The
information returned is the same as the cartridge information commands
(PIsFindFirstCartridgel nfo).

PlsGetPartitionM ap finds the free space in one or more partitions. The user may specify the
starting partition number and the number of values to be returned. The maximum number of
returned valuesis limited to PIlsPartM apSize. |If the starting partition number is O, the value
returned is the space all ocated to the tape directory partition. If thetapeis not partitioned, the
directory sizeisreturned as 0. If the starting partition value is greater than the number of
partitions on the tape, an error isreturned. If the starting partition number plus the number of
partitionsis greater than the number of partitions on the tape, the number of returned values
is limited to the actual partitions on the given cartridge. In the current implementation, the
directory partition size and data partition’'s free space can’t be acquired in a single command.
The returned partition size information is a vector of not more than PlsPartM apSize values.
Thesize entriesare 32 bit integersin units of megabytes. The function will return the number
of partitions and map vector during a synchronous function call as parameters, or with the
command completion event for a concurrent command execution.

Plsl nventoryCartridge updates the inventory (read the directory) for agiven cartridge and
update the local catalog. Operators can use this command when they think the local or master
catalog and the actual contents of a cartridge are not in agreement.

PlsUpdateCartridge forces directory updates on acartridge. Delete and Rename will make
entriesin alocal catalog and not update a cartridge directory until the cartridge isloaded into
atransport. Exactly how and when tape directory updates are accomplished is not specified,
with two exceptions. Cartridge directories are always updated by a PIsUpdateCartridge
command and by an Export Cartridge (if “forget” isnot specified.) This command can be used
to force cartridge directory updates when a tape may not be used for along period of time.

PlsFormatCartridge formats a cartridge for later use. The cartridge label must be provided
to insure the correct cartridge is formatted. In systems without barcode readers (stand-alone
transports) no verification of the label can be performed. The cartridge master directory
records the barcode label at the time the cartridge is formatted. The value of the cartridge
barcode label stored on the tapeis used as a hint only. The machine-readable barcodelabel is
always considered to be the correct cartridge label. The data partition size isin megabytes.
The cartridge is divided into as many equal-sized partitions as possible. If the partition size

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 143

-
E Chapter 7 Programming the Profile Library System

does not exactly fill the cartridge, the extra space will be divided equally between all
partitions. The master directory size is actually ahint. Depending on the actual tape drive,
larger than requested master directories may be written.

On some vendors' transports, the operator has no control over how the cartridge master
directory space will be alocated. The API has a parameter that allows the user to specify a
master directory size. Thiswill be used if the tape transports support multiple partition sizes.
On partitioned cartridges the master directory is stored in a partition at the beginning of tape
(cartridge load/unload point.) On unpartitioned cartridges, the master directory will be stored
after all datafiles. Anaction codeisprovided with format cartridge. Thiscan be usedto force
acartridge into amode that only allows onefile per partition. Thisisintended to be used for
automatic allocation of spots.

With PIsCopyCartridge, one tape cartridge is copied to another cartridge. The destination
cartridge must be empty, and formatted like the source cartridge. Both cartridges must have
the same number and size of partitions. Copying a cartridge does not change the order of the
fileson acartridge. It may change the partition the files arein. The options are:

Copy the cartridge and compact fileswithin partitions. Filesare not moved to lower partitions
on the cartridge. This allows the user to duplicate a cartridge without altering any partition
reference information that may be in other system-wide databases.

Thefollowing information may have been cached in the local catalog and it will be moved to
the cartridges directories:

* Rename file information.

» Deletefileinformation. Deleted files are not copied.

» Purgetime/date information. Fileswith expired purge dates are not removed.
» Filedescription strings.

PlsExportCartridge removes a cartridge from alibrary using alibrary’s import/export
mechanism. A note can be made in the catalog describing the location of the cartridge. The
library server may need to load the cartridge into atape transport before the cartridge leaves
the library. Thiswill be done to update cartridge directory information. Cartridges will not
be exported unless the on-tape directories are current. An action code can be set to request
special processing:

» Export acartridge, but don’t forget about it (Normal). Update the cartridge directories and
physically export the cartridge. The local and master catal og entries are marked to show
the cartridge is out of the library.

» Update cartridge directory, export it, and remove entries from the catalog (Retire). Thisis
used when cartridges are going to be sent to another site and the catal ogs should be purged.
The cartridge' s directory is updated if it is not current. A cartridge can be reinstalled by
importing the cartridge.

» Export cartridge, don’t update cartridge directories and del ete catal og entries (Forget). This
should be used when acartridgeislost or damaged. Thispurgesthelocal and global catalog
of information about the cartridge and itsfiles. This can also be used when a cartridge is
damaged and the operator wants the cartridge removed without the cartridge directories
being updated. If a cartridge leaves alibrary without updating the directories and is later
imported, changes made since the last actual directory update on tape will be lost.

144 Profile Software Development Kit User Preliminary — 12 July 2001

Cartridge functions

Local catalog entries for cartridges that are not in a library can be deleted using the retire or
forget options. Exporting a cartridge from a multicartridge set causes all of the cartridges in
that set to be removed form the library. A location information string is provided by the
application. This string should have notes that can be presented to the operator so he knows
where to store the cartridge. The location information string is saved in the local catalog. |f
the cartridge already has alocation information string and a new oneis not provided, the old
location string is retained. For a stand-alone transport, this command does the normal export
processing, followed by atape rewind/unload operation to physically export the cartridge.

With PlslmportCartridge, a cartridge is accepted from the operator using alibrary’s import/
export mechanism. Cartridges that do not have a barcode label will not be loaded into the
library.

A cartridge label can be provided by the application. Thisis used in messages to an operator
where appropriate. It isalso used to select the correct cartridge in libraries with multiple
import/export ports. Cartridge labels are verified by reading the printed barcode label when a
cartridge isloaded. Importing a cartridge does not change the location information
string-stored inthelocal catalog. Animport command without acartridge label parameter can
be used to load cartridgesfrom another facility, unformatted tapes, and cleaning cartridges. In
this case, the location information string can be used for operator messages.

An action code describesthe cartridge and what processing should be done. In some casesthe
library server will reject acartridge. Thismeansit will be put back in an import/export port.
Import cartridge and assume the barcode label accurately identifies the cartridge. If the
barcode on the cartridge matches one in the catal og, assume this cartridge’s contents match
the catalog. If the catalog has no record of the cartridge label, store it as an unknown cartridge
for now. If the barcode matches a cartridge already in thelibrary, reject the cartridge.

» Import cartridge and make simple checks to verify contents of tape. If the barcode on the
cartridge matches a cartridge already in the library, reject the cartridge. 1f the barcode on
the cartridge matches onein the catalog and the master directory on the cartridge has the
correct entries (format time, format date, system name match), assume this cartridge
contents match the catalog. If the barcode matches a catalog entry and the master cartridge
directories don’t agree with the information in the catalog, inventory the cartridge. If the
catalog has no record of the cartridge barcode label, store it as an unknown cartridge.

» Read cartridge directories. If the barcodeis unique, load the cartridge into atransport and
use the cartridge directory to construct local and master catalog entries. |f the barcode on
the cartridge matches onein the library, reject the cartridge.

» Import acleaning cartridge. If it does not have a unique barcode, reject the cartridge. If it
has a unique barcode, store the cartridge in a cleaning cartridge bin.

Import operations are subject to atime-out. |f an operator has not loaded a tape within the
allotted time-out, the command will fail. The current time-out value is 5 minutes. A second
version of the PlslmportL cadCartridge import command does the above import processing
and loads the cartridge into the specified transport. PlslmportL oadCartridgeisintended to
be used with stand-alonetransports. PlslmportCartridgeisintended to be used withlibraries
and stackers.

PlslmportL oadCartridge imports cartridges into a specified stand-al one transport. When
used inafull library, it physically imports the cartridge and automatically loads it into the
specified transport. A transport handle must be specified. With two exceptions, thiscommand
isidentical to PlsimportCartridge.

» Thecartridge is loaded into the specified transport.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 145

-
E Chapter 7 Programming the Profile Library System

» The barcode label may not be tested for validity. Stand-alone transports may not have
barcode label readers.

PIsSetL ocationString changes the location information string. It can be used for cartridges
that arein alibrary or out in astorage area. The purpose of this command isto allow errors
in the local catalog location information strings to be corrected. This command will fail if
another user has the cartridge reserved.

PlsGetL ocationString acquires the current location information string stored in the local
catalog. An application may use thisinformation to build operator message strings.

PlsSetCar tDescription setsauser-specified string that can describe the cartridge’'s contents.

One cartridge description string is stored per cartridge. PlsGetCartDescription returns the
cartridge description string.

Basic archive functions

PlsConnectFile provides afile handle for use in later commands. The application must
provide afile name. If thefile handle refersto an existing file, the application must also
provide a cartridge handle and partition number.

PIsCloseFile disconnects a file handle.

PlsGetClipSize allows non-zero infout pointsto find the size of aportion of aclip. Sizeisan
estimate based on uniform recording of media throughout the clip. Sections of black media
will greatly confuse the estimation process. This function returns the space required for a
specified clip when it iswritten to tape. |If the specified in/out points are 0, the value returned
is sufficient to store the complete clip. A transport handle can be provided. If the transport
handle isNULL, the space returned is an estimate for an arbitrary tape drives. If atransport
handleis used, additional spaceisadded for overhead that is specific to the specific tape drive.

Examplesof additional overhead are space for tape marks, minimum tape record requirements
and overhead that are associated with logical-to-physical blocking. The user must specify a
filesize pointer or atransaction handle pointer, but not both. |f the transaction handleis given
(not NULL), thefile sizeis returned with acommand completion event. If thefile size result
variable pointer is given, the function does not return until processing is complete. Note: The
information needed to calculate the clip sizeis on disk, so retrieving the information and
calculating the size will require some time.

PlIsArchiveClip copies afilefrom aProfile unit to a cartridge. The machinethat receivesand
executes this command must be the host system for thelibrary. The clips can be onthelibrary
host or any machine that has a Fibre Channel connection to the library host. This command
always stores media streams as multiplexed MPEG streams. The compressed video track
(limited to JPEG for versions 2.2 and 2.4) is multiplex encoded, following the MPEG
standard. If acartridgeisnot specified, the library server will select a cartridge with enough
space to store the file. With an archive operation, a pair of field numbers (in/out points) can
be specified.

MPEG video is archivable with version 2.5 software; DVCPRO 25 and DVCPRO 50
video is archivable with version 3.2.

Thefield numbersfor the clip are not altered by an archive or restore command. This prevents
the logical field numbersfor aclip from slipping asit is archived and restored. The pair of
field numbers specifies the in/out points for the part of the clip to be archived. Only material
that is actually recorded will be archived. The specification of in and out points beyond the
range of the actual recorded material is not considered to be an error. The user-specified in

146 Profile Software Development Kit User Preliminary — 12 July 2001

Basic archive functions

and out points are returned with afile information request. The default values for the in/out
pair isthe actual beginning and end of the clip. The default is specified by using 0, 0 asanin/
out pair.

The mark-in and mark-out points for the movie are saved with the file. If an out point field
number islessthan an in point field number, the command will not be executed and an error
issued. If the file name specified already existsin this partition, the archive command is
rejected with an error. This command returns the cartridge label and partition number used to
storethefile. Theseareimportant whenthelibrary server does cartridge and space allocation.
If the FileStored parameter isNULL, no dataisreturned. Thisisnot considered an error. The
FileStored data is returned when the command is completed, or with the completion event for
concurrent commands. The PIsFileStored structure contains:

e Partition number file was stored in.
» Cartridge label file was stored in.

PlsArchiveDataFile issimilar to the PIsArchiveClip function except for the type of file
processed. Thisfunction archivesan unstructured byte stream fromaWindowsNT file system
file. The datastream isassumed to beaplay list, edit decision list or some other material that
is part of the program material. Unstructured files must be archived and restored asacomplete
unit. The Windows NT file path is not saved on tape. The user must specify where the file
should be placed in the Windows NT file system when arestoreisissued. Thiscommand
returns the cartridge label and partition number used to store thefile.

PlsRestor e copies the specified files from a cartridge to a Profile file system. The machine
that receives and executes this command must be the host system for the library. Therestored
files can be on the library host or any machinethat has a Fibre Channel network connection to
the library host. For clips, a pair of infout point field numbers can be used to control the
material restored. |f these are not specified (0, O given), the complete clip will berestored. |If
the in or out points specified go beyond the range of the recorded material, only the archived
material will berestored. No error will beissued inthiscase. If therequestedin pointislater
than the requested out point, an error will be issued. This has the effect of providing black,
silent fields beyond the actual in/out points when the clip is replayed from a Profile. The
movie mark-in and mark-out points will be restored with the clip.

PIsRestoreDataFile restores Windows NT data files. It follows the same basic model as

PlsRestore. The user must supply the location in the Windows NT file system where the
restored file should be placed.

PlsRenameFile renames afile on a cartridge. To improve performance, file rename
operationswill be saved inthelocal catalog. These changeswill berecorded in the cartridge’s
directory the next time the cartridge isin atransport. Under some serious error conditions
(such as a power failure), it is conceivable a file will lose its new name and revert to the old
name.

PlsDeleteFile deletes afile from acartridge. Most tape transports can’t del ete the material
unlessit isthe last file on a cartridge. Therefore, deleting a file makes the material
unreachable, but the space isnot reusable. When possible, the library server will recover free
space from deleted files. To improve performance, file delete operations will be saved in the
local catalog. These changes will be recorded in the cartridge directory the next time the
cartridge isin atransport.

Under some serious error conditions (such as apower failure), it is conceivable that afile will
reappear on a cartridge. This s better than the alternative, that is, losing material.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 147

-
E Chapter 7 Programming the Profile Library System

A freeformat file description string can be stored with each file with PIsSetFileDescription.
This datais saved for the host application’s use. If thestring is set after afile handleis
acquired and before the file is created, the description string will be saved with thefile. If it
is set or atered at alater date, it will be kept in the local catalog and saved in the cartridge
master directory the next timethe cartridgeisloaded into atransport. PlsGetFileDescription
returns the file description string.

Library server management functions

Thefollowing functions are system support features. They allow management of
asynchronous events, the time of day clock, the file name path and other functions.

PlsSetEventM ask setsthe library server asynchronous event mask. If abit isset, it enables
the specified events. Asynchronous command completion events are always enabled. The
following classes of events can be controlled.

 Cartridge import, export, format and delete all files events.
* Fileadd, delete and rename events.
» Transport on-line/off-line events.

» Extended data for import, export, and format on command completion.

The default mask isall zeros, meaning all events except concurrent command completion are
disabled.

PlsGetEventM ask returns the current event mask value.

PlsGetAnyEvent getsinformation on asynchronous events and concurrent command
completion events. When called, it returns information on one event. The returned data has
sufficient tags and other information so an application can process the event. Two other
commands, PIsGetAsynchEvent and PIsGetCommandEvent, can be used to get eventsfrom
the asynchronous event and command completion queues respectively and these commands
offer a conceptually simpler model to the application developer. PlsGetAnyEvent requires
fewer serial link transactions in polling loops.

The event types include:
* “No Event Queued” indicator.

» Cartridge import (explicit and implicit), export, delete all and format events.

Archive file creation, deletion and rename notifications.
» Transport on-line/off-line (transport add and remove) events.

» Concurrent command completion events.

All events, except concurrent command completion events, are sent to all open library handles
except the one that initiated the action. Concurrent command completion events are saved for
the library handle that started the operation. Concurrent command completion events are
gueued for each open library handle so they will not be lost. Other events may be lost if they
are not processed in atimely manner. Cartridge import and export eventsincludethe cartridge
label. Thefilesadded or removed by an import, export, cartridge format or delete all files are
not reported with file change events. Thisisdoneto prevent event ssormswhen cartridges are
moved inand out of libraries. Using the provided cartridge label, an application can get all of
the file information using PlsGetFilel nfo.

148 Profile Software Development Kit User Preliminary — 12 July 2001

Library server management functions

For file creation, PIsArchiveClip, PIsArchiveFile, and PIsArchiveFile and file deletion, the
cartridge label, partition number and file name are part of the event message. For rename
operations, the cartridge label, partition, current file name string and new file name string are
returned. Adding or removing transports on a given library causes on-line or off-line events.
These allow an application to track the available physical resources. Concurrent command
compl etion events have more information than other events. The actual command completion
code (success or failure and coded error number), the handle used to track a concurrent
command, and any dataa command normally returns are part of the event structure.
Concurrent command compl etion events are only returned for commands associated with the
current library handle. An event mask is part of the open library connection state. This mask
can be used to enable or disable each class of event.

The command compl etion events for PIsFor mat, Plslmport, PlslmportL oad, and
PIsExport can have extended resultsif desired. If the extended data event mask bit is not set,
the return information matches all simple command completion events. In this mode, the
current version behaves like older versions of the software. If the extended event mask bit is
set, the target cartridge barcode label and other useful information is returned. In this mode,
the extended data fields are not compatible with old versions.

PlsGetAsynchEvent allowsan application to retrieve events other than command completion.
It can be used in applications that have separate polling loops for concurrent command
tracking and external event management. With the exception of not retrieving command
completion events, this command is identical to PIsGetAnyEvent.

PlsGetCommandEvent allows an application to retrieve command completion events. With
the exception of retrieving only command compl etion events, this command is identical to
PlsGetAnyEvent.

The PIsSetM odes function can be used to alter the fundamental operating modes for the
library server. The data returned from a PIsGetM odes call isidentical to the dataused in a
PlsSetM odes. An application can read the current library server mode set, alter asingle
variable, and use the result as the argument of a PIsSetM odes command. PlIsGetM odes
returns the current mode set for the library server.

PlsSetPath sets the dataset and file name prefix directory string used for finding filesin the
Profile file system. It does not alter the names of files on cartridges. A path string is stored
for each open library handle.

PlsGetPath returns the string currently set as a directory path.
This command does not return a backdash (\) symbol at the end of the path string.

PlsGetTimeDate returns the current time of day.

PIsAddTransport adds transports to the library server. Transports appear in alibrary
configuration as soon as they are added. The transport number is an integer in the range of 0
to 255. It specifiesthe logical address of the transport. The robot address is an integer that
describes the physical location of atransport in alibrary. A Profile nameisalso supplied that
identifies a Profile the transport is attached to. If a Profile nameis not given, the machine the
library server is running on is used as a default. The device addressis astring that describes
the low-level device attachment. For the first implementation, the following syntax applies:
SCSI:<chan>.<scsi-addr>.<scsi-lun>

Where <chan> selectswhich SCSI interfacethetransport isattached to and isasingleletter.
The SCSI device address (<scsi-addrs) isspecified as atwo digit number in the range of

00to 15. SCSI logica units (<scsi-1uns) are not currently used, but are coded asa00. An
exampleis: SCSI:A.01.00

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 149

-
E Chapter 7 Programming the Profile Library System

150

PIsRemoveTransport removes a transport from the library server control files. Assoon as
the command executes, the tape transport is no longer usable. A PIsRemoveTransport
command will berejected if the transport isin use or reserved when the command is executed.

PlslnventoryL ibrary verifies and corrects the bin map and cartridge inventory of the
specified library. Theold inventory will be used as a baseline to continue operations while the
new inventory isin progress. Thiscommand checks for cartridges by cartridge labels.
Cartridges are not loaded into tape transports to verify their contents. This command can be
used when an operator has opened alibrary and loaded or removed cartridges. It can also be
used when an operator thinks the library server’'s inventory is not correct.

When PlIsHouseK eeping is executed, the library server will perform systems management
functions. The command hastwo parametersthat currently are not used. Thefirstisaninteger
and should be coded as 0. The second is a pointer that should be coded asNULL. This
function also causes the internal directory cache database to remove any entries that are no
longer needed.

Local catalog management functions

This set of commands allow the user to save amirrored copy of the local catalog on an
alternate Windows NT system. Thedirectory path must point to a Windows NT machine
directory on a specified machine. For example:

\\<machine-name>\<disk-path>

The drive name parameter identifies the drive letter on the local machine (where the Library
system server resides) to be used to reference the remote machine.

Setting the directory does not cause abackup copy to be made. Executing PIsBackupCatalog
causesthelocal catalog to be copied to the alternate machine. PIsBackupCatalog also causes
the local catalog to purge any unused space and do other system maintenance functions.
PlsBackupCatalog can be issued without a backup directory specified to force local catalog
maintenance operations.

Command management functions

These two commands are used to manage concurrent command execution.

PlsGetStatusCommand requests the status of a concurrently executing command. |f the
command is still in progress, the return code will specify an incomplete command. The
percent done valid code will be set if the command is waiting for busy or reserved resources.
When actual execution starts, the percent complete value will be set. If apreviously started
command has finished, the return code describes a successful execution, or specifies what
error stopped the execution.

PlsCancel Command cancels an asynchronous (concurrent) operation. Data (byte stream)
files and archive sets (multicartridge sets) will be deleted if a cancel occurs while they are
being archived or restored. Clipsand mediafileswill betruncated by acancel, but the material
already copied to tape or disk will be retained. The transaction handle was a returned value
from another command. The concurrent command will be considered complete when a
command completion event is processed.

Sample code: Managing a library system

Example 15, plsdemo.c demonstrates Profile Library System use. It shows how to archive a
clip, restore aclip, format a cartridge, inventory a cartridge, import a cartridge, export a
cartridge, and back up alocal catalog.

Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system

Example 15. plsdemo.c

//

//

// File: plsdemo.cpp

// A demo program for use with the PLS software library.

//

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of

// the United States.

//

//

#include <windows.h>
#include <stdio.h>
#include “tekpls.h”
#include “tekrem.h”
#include “tekvdr.h”

// Here are the PLS Demo error codes.

#define DEMO NO_ERROR 0
#define DEMO INIT FAIL -1
#define DEMO NO MEDIA -2
#define DEMO MISSING FILENAME -3
#define DEMO MISSING IABEL -4

#define DEMO BACKUP PATH ERROR -5
#define DEMO BACKUP DRIVE ERROR -6
#define DEMO BAD COMMAND FORMAT -7

//
// Show the correct usage of the command-line app.
//
void Usage (const char* progName)
{
printf (“Usage:\n") ;
printf (“%s profileName command [command options]\n”, progName) ;

printf (» profileName the name of a remote profile, or ‘local’\n”);
printf (» command : one of the following commands\n”) ;
printf (» archive clipName [plsPath]l\n”) ;
printf (» restore clipName [plsPath]l\n”) ;
printf (“ format label\n”) ;
printf (“ inventory label\n”) ;
printf (“ import label\n”) ;
printf (“ export label\n”) ;
printf (» backup path plsDrive\n”) ;
} // Usage

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 151

Chapter 7 Programming the Profile Library System

// This function is used to wait for a transaction to succeed or
// fail. Could also have used PlsGetCommandEvent and waited for success .
void WaitTransaction (PlsLibraryHandle hlLibrary,
PlsTransactionHandle hTransaction)
{

PlsCmdStatus cmd;
while ((PlsGetStatusCommand (hLibrary, &cmd, hTransaction))
&& (cmd.status & PlsCmdStatRumning)) {
Sleep (100) ;

return;

} // WaitTransaction

// This command will archive the specified clip to a cartridge chosen
// by the PLS software. It will try to identify a free transport,
// failing that will let the PLS software make the selection.
int ArchiveClip (ConnectHandle ch, PlsFileNameStr clipName, PlsPathStr path)
{
PlsLibraryHandle hlibrary = NULL;
PlsFileHandle hFile = NULL;
PlsTransportHandle hTransport = NULL;
PlsLibraryStatus libStatus; // used to find free transports
PlsTransportStatus transStatus; // used to find free transport
PlsTransportConfig transConfig; // used to find free transport
PlsTransConfigLoopHandle hloop; // used to find free transport
PlsFileStored fileStored;
PlsTransactionHandle hTransaction;
PlsEvent event;
unsigned long err;
BOOL result;
PlsModes modes;

printf (“\nPreparing to archive clip...\n");

// Open library - loop is used to wait while library system initializes.
err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1
!

if (hLibrary == NULL) {
return DEMO INIT FAIL;
}

// Set modes to transport queuing.

modes.flags = PlsModeTransQueuing;

if (!PlsSetModes (hLibrary, &modes)) {
return GetLastError() ;

}

// Get the library status to determine if there are any media
// cartridges present and if there are any free transports.
if (PlsGetLibraryStatus (hLibrary, &libStatus)) {
if (libStatus.mediaBins == 0) {
printf (“\nNo media cartridges\n”) ;
return DEMO NO MEDIA;

152 Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system

// See if the are any free transports, if so, select one for the archive.
if (libStatus.freeTransports > 0) {
// PlsAnyTransport means to search all transports.
hloop = PlsFindFirstTransportConfig(hlibrary, PlsAnyTransport,
&transConfig) ;
if (hLoop) {
for (;;) {
if (transConfig.location != PlsStandAloneTransport) {
// Don’'t use a standalone.
hTransport = PlsComnectTransport (hLibrary,
transConfig. transportNumber) ;
if (!hTransport)
break;
if (PlsGetTransportStatus (hTransport, &transStatus)) {
if (transStatus.status & PlsTransStatBusy)
hTransport = NULL;
else
break;

}

if (!PlsFindNextTransportConfig(hloop, &transConfig)) {
hTransport = NULL;
break;

}

// Set the path for the clip location in the video file system.
if (!PlsSetPath (hLibrary, path))
return GetLastError () ;

// create a handle to the clip file to be archived
hFile = PlsComnectFile (hLibrary,

NULL, // PLS will choose the cart and
PlsAnyPartition, // part in the archive command.
clipName) ;

if (hFile == NULL)
return GetLastError() ;

printf (“Archiving clip \”%s\”...\n”, clipName);

// archive the clip
result = PlsArchiveClip(hFile,

0, // 0 for in and out point will force
0, // the archiving of the entire clip.
hTransport,

&fileStored,

&hTransaction) ;

if (!result)
return GetLastError() ;

// Wait until the archive is complete.
WaitTransaction (hLibrary, hTransaction) ;

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))

return GetLastError () ;

printf (“Archive complete.\n”) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 153

Chapter 7 Programming the Profile Library System

return event.e.cmd.returnCode;

} // BrchiveClip

// This command will restore the specified clip to the video file system.
// (Note: The clip can not exist on the video file system.) Also, the format of
// the restore command will cause the PLS software to try to find a unique clip
// with the PLS file system. If the clip is not unique, this command will fail.
int RestoreClip (ConnectHandle ch, PlsFileNameStr clipName, PlsPathStr path)
{

PlsLibraryHandle hlibrary = NULL;

PlsFileHandle hFile = NULL;

PlsTransportHandle hTransport = NULL;

PlsLibraryStatus libStatus; // Used to find free transport.

PlsTransactionHandle hTransaction;

PlsEvent event;

unsigned long err;

BOOL result;

PlsModes modes;

printf (“\nPreparing to restore clip...\n");

// Open library - loop is used to wait while library system initializes.
err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlLibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1

if (hLibrary == NULL)
return DEMO INIT FATL;

// Set modes to transport and cartridge queuing.
modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing) ;
if (!PlsSetModes (hLibrary, &modes))

return GetLastError() ;

// Get the library status to determine if there are any media cartridges
// present and if there are any free transports.
if (PlsGetLibraryStatus (hLibrary, &libStatus)) {
if (libStatus.mediaBins == 0) {
printf (“\nNo media cartridges\n”) ;
return DEMO NO MEDIA;

}

// Set the path in the video file system to where the clip is to be
// restored. If a clip by the same name exists in this path the
// command will fail.
if (!PlsSetPath (hLibrary, path))
return GetLastError () ;

154 Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system

// Create a handle to the clip file to be archived.

hFile = PlsComnectFile (hLibrary,
NULL, // PLS will try and find a unique clip.
PlsAnyPartition, // If clip is not unique,

// this will fail.

clipName) ;

if (hFile == NULL)

return GetLastError () ;

printf (“Restoring clip \”%s\”...\n”, clipName);

// Restore the clip.
result = PlsRestore (hFile,

0, // 0 for in and out point will force
0, // archiving of the entire clip.
hTransport,

&hTransaction) ;

if (!result)
return GetLastError() ;

// Wait until the restore is complete.
WaitTransaction (hLibrary, hTransaction) ;

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))
return GetLastError () ;

printf (“*Restore complete.\n”) ;
return event.e.cmd.returnCode;

} // RestoreClip

// This command will format the specified cartridge to a single
// partition format.
int FormatCartridge (ConnectHandle ch, PlsCartridgelabelStr cartLabel)
{
PlsLibraryHandle hlibrary = NULL;
PlsTransactionHandle hTransaction;
PlsEvent event;
unsigned long err;
BOOL result;
PlsModes modes;

printf (“\nPreparing to format cartridge...\n”);

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

155

156

Chapter 7 Programming the Profile Library System

// Open library - loop is used to wait while library system initializes.

err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1
!

if (hLibrary == NULL)
return DEMO INIT FATL;

// Set modes to transport and cartridge queuing.
modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing) ;
if (!PlsSetModes (hLibrary, &modes))

return GetLastError () ;

// Format the cartridge
result = PlsFormatCartridge (hLibrary, NULL, PlsFormatCartNormal,
// Can also be PlsFormatCartSingle
// forcing only one file per partition.
cartLabel, NULL, O,
// These parameters cause default O,
// single partition format. &hTransaction);
if (!result)
return GetLastError () ;

printf (“Formating cartridge \”%s\”...\n”, cartLabel) ;

// Wait until the format is complete.
WaitTransaction (hLibrary, hTransaction) ;

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))
return GetLastError() ;

printf (“Format complete.\n”) ;

return event.e.cmd.returnCode;

} // FormatCartridge

Profile Software Development Kit User

Preliminary — 12 July 2001

Sample code: Managing a library system

// This command will cause the specified cartridge to be inventoried.
// This will update the local catalog with the information contained in the
// tape cartridge directory. This information supercedes the original
// contains of the local Catalog.
int InventoryCartridge (ConnectHandle ch, PlsCartridgelabelStr cartLabel)
{

PlsLibraryHandle hlibrary = NULL;

PlsCartridgeHandle hCartridge;

PlsTransactionHandle hTransaction;

PlsEvent event;

unsigned long err;

BOOL result;

PlsModes modes;

printf (“\nPreparing to inventory cartridge...\n”);

// Open library - loop is used to wait while library system initializes.
err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hLibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1
1

if (hLibrary == NULL)
return DEMO INIT FATL;

// Set modes to transport and cartridge queuing.
modes.flags = (PlsModeTransQueuing | PlsModeCartQueuing) ;
if (!PlsSetModes (hLibrary, &modes))

return GetLastError() ;

// Connect to the target cartridge.
hCartridge = PlsConnectCartridge (hLibrary, cartlLabel) ;
if (!hCartridge)

return GetLastError() ;

// Inventory the cartridge.
result = PlsInventoryCartridge (NULL, // Let PLS choose transport.
hCartridge, &hTransaction) ;
if (!result)
return GetLastError() ;

printf (“Inventorying cartridge \”%s\”...\n”, cartLabel);

// Wait until the format is complete.
WaitTransaction (hLibrary, hTransaction) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 157

158

Chapter 7 Programming the Profile Library System

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))
return GetLastError() ;

printf (“Inventory complete.\n”);
return event.e.cmd.returnCode;
} // InventoryCartridge

// This command will import a cartridge into the library system. The
// cartridge will be imported using the accept mode. Other modes
// include forcing an inventory, specifying cleaning, backup or
// unformatted cartridges, and simply verfying the cartridge.
int ImportCartridge (ConnectHandle ch, PlsCartridgelabelStr cartLabel)
{

PlsLibraryHandle hlibrary = NULL;

PlsTransactionHandle hTransaction;

PlsEvent event;

unsigned long err;

BOOL result;

printf (“\nPreparing to import cartridge...\n”);

// Open library - loop is used to wait while library system initializes.
err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1

if (hLibrary == NULL)
return DEMO INIT FATIL;

// Import the cartridge.
result = PlsImportCartridge (hLibrary, PlsImportActionAccept, cartlLabel,
“In the library”, &hTransaction) ;
if (!result)
return GetLastError() ;

printf (“Importing cartridge \”%s\”...\n”, cartLabel);

// Wait until the format is complete.
WaitTransaction (hLibrary, hTransaction) ;

Profile Software Development Kit User Preliminary — 12 July 2001

Sample code: Managing a library system

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))
return GetLastError() ;

printf (“Import complete.\n”) ;
return event.e.cmd.returnCode;

} // ImportCartridge

// This command will export a cartridge out of the library system. The
// Cartridge will be exported using the forget mode. Other modes force
// a cartridge update, and will ten either leave or remove knowledge of
// the cartridge in the local catalog.
int ExportCartridge (ConnectHandle ch, PlsCartridgelabelStr cartLabel)
{

PlsLibraryHandle hlLibrary = NULL;

PlsCartridgeHandle hCartridge;

PlsTransactionHandle hTransaction;

PlsEvent event;

unsigned long err;

BOOL result;

PlsModes modes;

printf (“\nPreparing to export cartridge...\n”);

// Open library - loop is used to wait while library system initializes.
err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1
1

if (hLibrary == NULL)
return DEMO INIT FATL;

// Set mode to cartridge queuing.

modes.flags = PlsModeCartQueuing;

if (!PlsSetModes (hLibrary, &modes))
return GetLastError() ;

// Connect to the target cartridge.
hCartridge = PlsConnectCartridge (hLibrary, cartLabel) ;
if (!hCartridge)

return GetLastError () ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 159

Chapter 7 Programming the Profile Library System

// Export the cartridge.
result = PlsExportCartridge (hCartridge, PlsExportActionForget,
“Oout of the library”, &hTransaction);
if (!result)
return GetLastError() ;

printf (“Exporting cartridge \”%s\”...\n”, cartLabel) ;

// Wait until the format is complete.
WaitTransaction (hLibrary, hTransaction) ;

// Get the results.
if (!PlsGetCommandEvent (hLibrary, hTransaction, &event))
return GetLastError () ;

printf (“Export complete.”) ;

return event.e.cmd.returnCode;

} // ExportCartridge

int BackUpLocalCatalog(ConnectHandle ch, PlsBackupPathStr path,

{

PlsBackupDriveStr drive)

PlsLibraryHandle hlibrary = NULL;
unsigned long err;

printf (“\nPreparing to back up catalog...\n") ;

// Open library - loop is used to wait while library system initializes.

err = PLS AS INIT INCOMPLETE; // Set error to incomplete init.
while ((hLibrary == NULL) && (err == PLS AS INIT INCOMPLETE)) {
hlLibrary = PlsOpenLibrary(ch, “demo”, “demo session”, 0, 0);
if (hLibrary == NULL) {
err = GetLastError() ;
1

if (hLibrary == NULL)
return DEMO INIT FATL;

160 Profile Software Development Kit User

Preliminary — 12 July 2001

Sample code: Managing a library system

// Set backup path.

if (!PlsSetBackupDir (hLibrary, path, drive)) {
err = GetlLastError() ;
return err;

}
printf (“Backing up catalog in path %s, drive %s \n”, path, drive);
if (!PlsBackupCatalog (hLibrary)) {
err = GetlastError() ;
return err;
}

printf (“*Back up complete.\n”) ;

return DEMO NO ERROR;

} // BackUpLocalCatalog

int main (int argc, char *argv[])
{

int result = 0;

ConnectHandle cHdl = LOCAL CONNECTION;
if (arge > 2) {
// Check to see if this is remote or local.
if (stremp(argv[1l], “local”)) {
// if remote, host name is argv([1]
if (!RemOpenConnection (ConnectEthernet, O,
CHAl = LOCAL CONNECTION;
1
1

if (!strcmp(argv([2], “archive”)) ({
if (arge < 4) {
printf (“\nfile name missing\n”) ;
Usage (argv[0]) ;
return DEMO MISSING FILENAME;

argv[1l], &cHd1))

if (arge < 5) {
result = ArchiveClip(cHdl, argv[3], “%);
1

else {
result = ArchiveClip(cHdl, argv[3], argv[4]);
1

1
else if (!strcmp(argv[2], “restore”)) {
if (arge < 4) {
printf (“\nfile name missing\n”) ;
Usage (argv[0]) ;
return DEMO MISSING FILENAME;

1
if (arge < 5) {
result = RestoreClip(cHdl, argv[3], “%);
1
else {
result = RestoreClip(cHdl, argv[3], argv[4]);
1

}

else if (!strcmp(argv([2], “format”)) {
if (arge < 4) {
printf (“\ncartridge label missing\n”) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 161

162

Chapter 7 Programming the Profile Library System

Usage (argv[0]) ;
return DEMO MISSING LABEL;

}

result = FormatCartridge (cHdl, argv[3]);

else if (!strcmp(argv([2], “inventory”)) {
if (arge < 4) {
printf (“\ncartridge label missing\n”) ;
Usage (argv[0]) ;
return DEMO MISSING IABEL;

}

result = InventoryCartridge(cHdl, argv[3]);

else if (!strcmp(argv([2], “import”))
if (arge < 4) {
printf (“\ncartridge label missing\n”) ;
Usage (argv[0]) ;
return DEMO MISSING IABEL;

}

result = ImportCartridge (cHdl, argv[3]);

else if (!strcmp(argv([2], “export”))
if (arge < 4) {
printf (“\ncartridge label missing\n”) ;
Usage (argv[0]) ;
return DEMO MISSING IABEL;

}

result = ExportCartridge (cHdl, argv[3]);

else if (!strcmp(argv([2], “backup”)) {

if (arge < 4) {
printf (“\nbackup path missing\n”) ;
Usage (argv[0]) ;
return DEMO BACKUP PATH ERROR;

1

if (arge < 5) {
printf (“\nlocal device missing\n”);
Usage (argv[0]) ;
return DEMO BACKUP DRIVE ERROR;

}

result = BackUpLocalCatalog(cHdl, argv[3], argv[4]);

}

else {

Usage (argv[0]) ;
return DEMO BAD COMMAND FORMAT;

}

else {

printf (“\nImproperly formatted command.\n”) ;
Usage (argv[0]) ;
return DEMO BAD COMMAND FORMAT;

}

if (result) {
printf (“Command failed with error 0x%x\n”, result);
1

return result;

} // main

Profile Software Development Kit User

Preliminary — 12 July 2001

TekPls extension invocation

TekPls extension invocation

Three of the commands described in SDK Reference Manual support ProLink/ProNet
extension services. These commands are:

* OE 00, Create Externsion;
* OE FF, Delete Extension; and

* OE xx, Extension Command Execution.

These commands are provided by the TekPIsLIB/DLL for programslocal to the Profile. The
ProLink/ProNet extension servicesinclude the additional commands that ProLink supports
on behalf of additional serviceswhich wish to “piggy-back” on top of the Prolink or ProNet
session that is established. For example, the pair of programs tekpls.exe and tekpl sex.exe
provide the PLS serial protocol commands which “piggy-back” on the Prolink or ProNet
session that was separately established.

The tekpls.exe program

The tekpls.exe program is invoked by using the ProLink/ProNet Extension Services Create
Extension command. Specify the string “tekpls’ asthe command data. The tekpls.exe
program will invoke the tekplsex.exe program and wait for the Profile to initialize before
returning the CM D2 value to be used to access the extension. Normally the CMD2 value will
be one but could be other values as additional extensions become possible. After the program
tekpl sex.exe compl etes initialization the tekpls.exe program exits.

The tekplsex.exe program

The tekplsex.exe program processes the PL S seria protocol commands. The serial protocol
commands are sent as datain a ProL ink/ProNet extension services Extension Command
Execution commands. The serial protocol reply always contains at least four bytes. Thefirst
byte is the transaction number. The second byte isthe PLS serial protocol library opcode
being replied to. The third and fourth bytes of the reply are thelibrary error code for the
command execution that is documented in the plserror.h file. The tekplsex.exe programs
terminates after the ProLink/ProNet extension services receives a Delete Extension
command with the CMD2 value specified in the data byte. The Profile should beep asthe
tekpl sex.exe program begins and terminates execution if the hardware and software are
operating correctly.

Connecting to the TekPIs extension

Here's how to connect to the TekPls extension via ProNet:

ConnectHandle ch = LOCAL CONNECTION;
BOOL remote = RemOpenConnection (ConnectEthernet, 0, "remote name", &ch);

UINT major = PlsGetMajorVersion(ch) ;
UINT minor = PlsGetMinorVersion(ch) ;
Here's how to connect to the TekPls extension via ProLink:
Cmdl = OE;
Cmd2 = 00;
Argl = "tekpls" // the PLS server extension

Arg2 02; // per EXT TYPE MACHINE

11:44:48..818--> CMD: 02 OA OE 00 74 65 6B 70 6C 73 00 02 5D
11:44:48..818--> RSP: 04 00 00

11:44:48..949--> CMD: 02 03 00 00 00 00

11:44:48..949--> RSP: 04 00 00

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 163

Chapter 7 Programming the Profile Library System

11:44:50..451--> CMD: 02 03 00 00 00 00
11:44:50..451--> RSP: 04 00 00
11:44:50..551--> CMD: 02 03 00 00 00 00
11:44:50..551--> RSP: 02 04 OE 00 00 7E 74

Reply shows use Cmd2 = 7E for the extension.

11:45:18..832--> CMD: 02 03 OE 7E 01 73
11:45:18..832--> RSP: 04 00 01

11:45:18..862--> CMD: 02 03 00 00 01 FF
11:45:18..862--> RSP: 04 00 01

11:45:18..962--> CMD: 02 03 00 00 01 FF
11:45:18..962--> RSP: 02 08 OE 7E 01 01 00 00 01 00 71

Reply shows major version number is one.

11:45:26..322--> CMD: 02 03 OE 7E 02 72
11:45:26..332--> RSP: 04 00 02

11:45:26..352--> CMD: 02 03 00 00 02 FE
11:45:26..362--> RSP: 02 08 OE 7E 02 02 00 00 01 00 6F

Reply shows minor version number isone.

Obtaining a library handle

To obtain alibrary handle via ProNet after the extension has initialized, do the following:

PlsLibraryHandle hlLib =
PlsOpenLibrary(ch, libraryName, session, major, minor) ;

while ((hLib == NULL) && (GetLastError() == PLS AS INIT INCOMPLETE))
Sleep (1000) ;
hlib = PlsOpenLibrary(ch, "", "test", 0, 0);

}
To obtain alibrary handle via ProLink after the extension has initialized, do the following:

11:46:05..969--> CMD: 02 0D OE 7E 03 00 00 00 00 00 74 65 73 74 00 Bl
11:46:05..979--> RSP: 04 00 03
11:46:05..999--> CMD: 02 03 00 00 03 FD
11:46:05..999--> RSP: 02 OA OE 7E 03 03 48 00 00 00 00 00 26
Reply shows PLS DLL not initialized.

11:47:41..377--> CMD: 02 OD OE 7E 03 00 00 00 00 00 74 65 73 74 00 Bl
11:47:41..377--> RSP: 04 00 04

11:47:41..407--> CMD: 02 03 00 00 04 FC

11:47:41..417--> RSP: 02 OA OE 7E 04 03 48 00 00 00 00 00 25

Reply shows PLS DLL not initialized.

11:51:25..058--> CMD: 02 OD OE 7E 03 00 00 00 00 00 74 65 73 74 00 Bl
11:51:25..058--> RSP: 04 00 05

11:51:25..088--> CMD: 02 03 00 00 05 FB

11:51:25..088--> RSP: 02 OA OE 7E 05 03 00 00 00 00 01 00 6B

Reply shows library handle of 0X00010000.

Archiving afile
You can archive afile using one of two methods:
» wait in DLL for archive operation to complete; or
 obtain atransaction handle and monitor archive operation.

To archive afile via ProNet, do the following:

// create file handle for archive
PlsFileHandle hFilel = PlsConnectFile (hLib, NULL,0, "test");
PlsFileHandle hFile2 = PlsConnectFile (hLib, NULL,0, "test");

164 Profile Software Development Kit User Preliminary — 12 July 2001

Archiving afile

// issue command and wait for archive to take place
// (not possible on serial link)
if (PlsArchiveClip(hFilel, 0, 0, hTransport, &fileStored, NULL))
printf (" archived to partition %i of cartridge \"%s\" ",
fileStored.partitionNumber, fileStored.cartLabel) ;
else
printf (" archive failed with error of 0x%1X", GetLastError());

// issue command and get transaction to monitor command
PlsTransactionHandle hTransaction;
if (PlesArchiveClip(hFile2, 0, 0, hTransport, &fileStored, &hTransaction))
printf (" archive is transaction 0x%01X ", hTransaction);
else
printf (" archive failed with error of 0x%1X", GetLastError());

// wait till command done or failed

PlsCmdStatus cmd;

while ((PlsGetStatusCommand (hLib, &cmd, hTransaction)) &&
(ecmd.status) && (! (cmd.status & PlsCmdStatError)))

Sleep(100) ;

// get command result
PlsEvent event;
if (PlsGetCommandEvent (hLib, hTransaction, &event))
printf (" archived to partition %i of cartridge \"%s\" ",
event.e.cmd.res.fileStored.partitionNumber,
event.e.cmd.res.fileStored.cartLabel) ;
else
printf (" archive failed with error of 0x%1X", GetLastError());

To archive afile via ProLink, do the following:

Obtain afile handle:

12:03:02..761--> CMD: 02 12 OE 7E 50 00 00 01 00 00 00 00 00
00 00 74 65 73 74 00 63

12:03:02..761--> RSP: 04 00 OD

12:03:02..781--> CMD: 02 03 00 00 OD F3

12:03:02..781--> RSP: 02 OA OE 7E 0D 50 00 00 02 00 01 00 14

Reply shows hFile of 0x00010002. Start archive:

12:03:23..381--> CMD: 02 13 OE 7E 53 02 00 01 00 00 00 00 00
00 00 00 00 00 00 00 00 1E

12:03:23..381--> RSP: 04 00 OE

12:03:23..401--> CMD: 02 03 00 00 OE F2

12:03:23..401--> RSP: 04 00 OE

12:03:23..501--> CMD: 02 03 00 00 OE F2

12:03:23..511--> RSP: 04 00 OE

12:03:23..601--> CMD: 02 03 00 00 OE F2

12:03:23..601--> RSP: 02 OD OE 7E OE 53 00 00 03 00 00 00 00
00 00 10

Reply shows hTransaction of 0x00000003. Check transaction status:

12:03:42..198--> CMD: 02 OB OE 7E 7D 00 00 01 00 03 00 00 00
F3
12:03:42..198--> RSP: 04 00 OF
12:03:42..228--> CMD: 02 03 00 00 OF F1
12:03:42..228--> RSP: 02 OB OE 7E OF 7D 00 00 0C 00 00 00 00 DC
12:03:50..380--> CMD: 02 OB OE 7E 7D 00 00 01 00 03 00 00 00 F3
12:03:50..380--> RSP: 04 00 10
12:03:50..400--> CMD: 02 03 00 00 10 FO
12:03:50..400--> RSP: 02 OB OE 7E 10 7D 00 00 OC 00 00 80 00 5B

Reply shows 0x800000C.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 165

Chapter 7 Programming the Profile Library System

12:03:59..163--> CMD: 02 OB OE 7E 7D 00 00 01 00 03 00 00 00 F3
12:03:59..173--> RSP: 04 00 11

12:03:59..193--> CMD: 02 03 00 00 11 EF

12:03:59..193--> RSP: 02 OB OE 7E 11 7D 00 00 O0C 00 00 00 00 DA
12:04:43..406--> CMD: 02 OB OE 7E 7D 00 00 01 00 03 00 00 00 F3
12:04:43..416--> RSP: 04 00 12

12:04:43..436--> CMD: 02 03 00 00 12 EE

12:04:43..436--> RSP: 02 OB OE 7E 12 7D 00 00 0C 00 00 00 42 97

Reply shows 0x0000000C. Check transaction status:

12:05:12..208--> CMD: 02 OB OE 7E 7D 00 00 01 00 03 00 00 00 F3
12:05:12..218--> RSP: 04 00 13

12:05:12..238--> CMD: 02 03 00 00 13 ED

12:05:12..238--> RSP: 02 OB OE 7E 13 7D 00 00 00 00 00 00 00 E4

Reply shows 0x00000000 (DONE). Check transaction resullt:

12:05:17..215--> CMD: 02 OB OE 7E 74 00 00 01 00 03 00 00 00 FC
12:05:17..215--> RSP: 04 00 14
12:05:17..245--> CMD: 02 03 00 00 14 EC
12:05:17..245--> RSP: 02 18 OE 7E 14 74 00 00 53 03 00 00 00
00 00 01 00 30 30 30 30 30 31 32 35 00 0D

Reply showsfile stored at partition 1 of cartridge “00000125".

Closing the library and connection

To close the library and connection via ProNet, do the following:

if (!PlsCloselibrary (hLib))
printf (" CloseLibrary failed - GetLastError() = 0x%1X\n",
GetLastError()) ;

if (!RemCloseConnection (ch))
printf (" CloseComnection failed - GetlastError () = 0x%1X\n",
GetLastError()) ;

Closethe library.

12:05:46..267--> CMD: 02 07 OE 7E 04 00 00 01 00 6F
12:05:46..267--> RSP: 04 00 15

12:05:46..297--> CMD: 02 03 00 00 15 EB
12:05:46..297--> RSP: 02 06 OE 7E 15 04 00 00 5B

Reply shows command succeeded.

166 Profile Software Development Kit User Preliminary — 12 July 2001

PLS constants

PLS constants

Thefollowing tables list PL S events and opcodes, sorted by name and val ue.

Table 9. PLS events by name

PIsEventCmdAllocateCartridge 0x32 PlsEventCmdRemoveTransport 0x7B
PIsEventCmdAllocateTransport 0x21 PlsEventCmdRenameFile 0x57
PIsEventCmdArchiveClip 0x53 PIsEventCmdRestore 0x56
PlsEventCmdArchiveDataFile 0x54 PlsEventCmdRestoreDataFile Ox5F
PlIsEventCmdCleanTransport 0x26 PlsEventCmdUnloadTransport 0x25
PlsEventCmdCopyCartridge 0x3A PlsEventCmdUpdateCartridge 0x37
PlsEventCmdDel eteFile 0x58 PlsEventDeleteAll OxE3
PIsEventCmdExportCartridge 0x3C PIsEventDeleteFile OXE5
PIsEventCmdFormatCartridge 0x38 PlsEventExport OxE1
PlIsEventCmdGetClipSize 0x63 PlsEventFormat OxEO
PlsEventCmdGetPartitionM ap 0x43 PlsEventimport OxE2
PlsEventCmdHouseK eeping Ox7F PlsEventL ast OxFF.
PlsEventCmdImportCartridge 0x3D PlsEventNewFile OxE4
PlsEventCmdl mportL oadCartridge 0x42 PlsEventNoEvent 0x00
PlsEventCmdlnventoryCartridge 0x36 PlsEventRenameFile OXE6
PlsEventCmdlnventoryLibrary 0x7C PlsEventTransOffline OXE8
PlsEventCmdL oadTransport 0x24 PlsEventTransOnline OxXE7

Table 10. PLS events by value

0x00 PIsEventNoEvent 0x57 PlsEventCmdRenameFile
0x21 PlsEventCmdAllocateTransport 0x58 PlsEventCmdDeleteFile
0x24 PlsEventCmdL oadTransport O0x5F PlsEventCmdRestoreDataFile
0x25 PIsEventCmdUnloadTransport 0x63 PlsEventCmdGetClipSize
0x26 PlsEventCmdCleanTransport 0x7B PlsEventCmdRemoveTransport
0x32 PlsEventCmdAllocateCartridge 0x7C PlsEventCmdinventoryLibrary
0x36 PIsEventCmdinventoryCartridge Ox7F PlsEventCmdHouseKeeping
0x37 PlsEventCmdUpdateCartridge OXEO PlsEventFormat

0x38 PIsEventCmdFormatCartridge OXE1 PlsEventExport

0x3A PlsEventCmdCopyCartridge OxE2 PlsEventimport

0x3C PIsEventCmdExportCartridge OXE3 PlsEventDeleteAll

0x3D PIsEventCmdI mportCartridge OxE4 PlsEventNewFile

0x42 PIsEventCmdlmportLoadCartridge OXE5 PlsEventDeleteFile

0x43 PlsEventCmdGetPartitionMap OxE6 PlsEventRenameFile

0x53 PIsEventCmdArchiveClip OXE7 PlsEventTransOnline

0x54 PIsEventCmdArchiveDataFile OxE8 PlsEventTransOffline

0x56 PIsEventCmdRestore OxFF PlsEventLast

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 167

T
Chapter 7

Programming the Profile Library System

Table 11. PLS opcodes by name

PIsOpCodeAddTransport
PIsOpCodeAllocateCartridge
PIsOpCodeAllocateTransport
PIsOpCodeArchiveClip
PIsOpCodeArchiveDataFile
PIsOpCodeBackupCatalog
PIsOpCodeCancel Command
PIsOpCodeCleanTransport
PIsOpCodeCloseBinlnfo
PIsOpCodeCloseCartridge
PIsOpCodeCloseCartridgelnfo
PIsOpCodeCloseFile
PIsOpCodeCloseFilelnfo
PIsOpCodeCloseFindHandle
PIsOpCodeClosel ibrary
PIsOpCodeCloseTransport
PIsOpCodeCloseTransportConfig
PIsOpCodeConnectCartridge
PIsOpCodeConnectFile
PIsOpCodeConnect Transport
PIsOpCodeCopyCartridge
PIsOpCodeDeleteFile
PIsOpCodeExportCartridge
PIsOpCodeFindFirstBinlnfo
PIsOpCodeFindFirstCartridgelnfo
PIsOpCodeFindFirstFilelnfo
PIsOpCodeFindFirstHandle
PIsOpCodeFindFirstTransportConfig
PIsOpCodeFindNextBininfo
PIsOpCodeFindNextCartridgel nfo
PIsOpCodeFindNextFilelnfo
PIsOpCodeFindNextHandle
PIsOpCodeFindNextTransportConfig
PIsOpCodeFormatCartridge
PIsOpCodeGetAnyEvent
PIsOpCodeGetA synchEvent
PIsOpCodeGetBackupDir
PIsOpCodeGetCartDescription
PIsOpCodeGetCartridgeConfig

168 Profile Software Development Kit User

Ox7A
0x32
0x21
0x53
0x54
0x62
OX7E
0x26
ox0C
0x33
OxOF
0x51
0x12
0x15
0x04
0x22
0x09
0x30
0x50
0x20
Ox3A
0x58
0x3C
Ox0A
0x0D
0x10
0x13
0x07
0x0B
Ox0E
Ox11
0x14
0x08
0x38
0x72
0x73
0x61
0x41
0x34

PIsOpCodeGetCartridgeStatus
PIsOpCodeGetClipSize
PlsOpCodeGetCommandEvent
PIsOpCodeGetEventMask
PIsOpCodeGetFil eDescription
PIsOpCodeGetL ibraryConfig
PISOpCodeGetL ibraryStatus
PIsOpCodeGetL ocationString
PISOpCodeGetMajorVersion
PISOpCodeGetMinorVersion
PIsOpCodeGetM odes
PISOpCodeGetPartitionM ap
PIsOpCodeGetPath
PIsOpCodeGetStatusCommand
PIsOpCodeGetTimeDate
PIsOpCodeGetTransportStatus
PIsOpCodeHouseK eeping
PIsOpCodelmportCartridge
PIsOpCodel mportL oadCartridge
PIsOpCodel nventoryCartridge
PIsOpCodel nventoryLibrary
PIsOpCodel astCommand
PIsOpCodel oadTransport
PIsOpCodeNoOp
PIsOpCodeOpenLibrary
PIsOpCodeRemoveTransport
PIsOpCodeRenameFile
PlsOpCodeRestore
PIsOpCodeRestoreDataFile
PIsOpCodeSetBackupDir
PIsOpCodeSetCartDescription
PlIsOpCodeSetEventM ask
PIsOpCodeSetFileDescription
PIsOpCodeSetL ocationString
PIsOpCodeSetM odes
PIsOpCodeSetPath
PIsOpCodeUnloadTransport
PIsOpCodeUpdateCartridge

0x35
0x63
0x74
0x71
0x5B
0x05
0x06
Ox3E
0x01
0x02
0x76
0x43
0x78
0x7D
0x79
0x23
OX7F
0x3D
0x42
0x36
0x7C
OxFF
0x24
0x00
0x03
0x7B
0x57
0x56
Ox5F
0x60
0x40
0x70
Ox5A
Ox3F
0x75
ox77
0x25
0x37

Preliminary — 12 July 2001

PLS constants

Table 12. PLS opcodes by value

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B
0x0C
0x0D
Ox0E
OxOF
0x10
Ox11
0x12
0x13
0x14
0x15
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x30
0x32
0x33
0x34
0x35
0x36
0x37
0x38
Ox3A
0x3C

Preliminary — 12 July 2001

PIsOpCodeNoOp
PIsOpCodeGetM gjorVersion
PIsOpCodeGetMinorVersion
PIsOpCodeOpenLibrary
PIsOpCodeCloseLibrary
PIsOpCodeGetL ibraryConfig
PIsOpCodeGetL ibraryStatus
PIsOpCodeFindFirstTransportConfig
PIsOpCodeFindNextTransportConfig
PIsOpCodeCloseTransportConfig
PIsOpCodeFindFirgtBininfo
PIsOpCodeFindNextBinlnfo
PIsOpCodeCloseBinInfo
PIsOpCodeFindFirstCartridgel nfo
PIsOpCodeFindNextCartridgelnfo
PIsOpCodeCl oseCartridgel nfo
PIsOpCodeFindFirstFilelnfo
PIsOpCodeFindNextFilelnfo
PIsOpCodeCloseFilelnfo
PIsOpCodeFindFirstHandle
PIsOpCodeFindNextHandle
PIsOpCodeCloseFindHandle
PIsOpCodeConnectTransport
PIsOpCodeAllocateTransport
PIsOpCodeCloseTransport
PIsOpCodeGetTransportStatus
PIsOpCodel oadTransport
PIsOpCodeUnload Transport
PIsOpCodeCleanTransport
PIsOpCodeConnectCartridge
PIsOpCodeAllocateCartridge
PIsOpCodeCloseCartridge
PIsOpCodeGetCartridgeConfig
PIsOpCodeGetCartridgeStatus
PIsOpCodel nventoryCartridge
PIsOpCodeUpdateCartridge
PIsOpCodeFormatCartridge
PIsOpCodeCopyCartridge
PIsOpCodeExportCartridge

0x3D
Ox3E
Ox3F
0x40
0x41
0x42
0x43
0x50
0x51
0x53
0x54
0x56
0x57
0x58
Ox5A
0x5B
Ox5F
0x60
0x61
0x62
0x63
0x70
0x71
0x72
0x73
0x74
0x75
0x76
ox77
0x78
0x79
Ox7A
0x7B
0x7C
0x7D
OX7E
Ox7F
OxFF

Profile Software Devel opment Kit User

PIsOpCodel mportCartridge
PIsOpCodeGetL ocationString
PIsOpCodeSetL ocationString
PIsOpCodeSetCartDescription
PIsOpCodeGetCartDescription
PIsOpCodel mportL oadCartridge
PIsOpCodeGetPartitionMap
PIsOpCodeConnectFile
PIsOpCodeCloseFile
PIsOpCodeArchiveClip
PIsOpCodeArchiveDataFile
PIsOpCodeRestore
PIsOpCodeRenameFile
PIsOpCodeDel eteFile
PIsOpCodeSetFileDescription
PIsOpCodeGetFileDescription
PIsOpCodeRestoreDataFile
PIsOpCodeSetBackupDir
PIsOpCodeGetBackupDir
PIsOpCodeBackupCata og
PIsOpCodeGetClipSize
PIsOpCodeSetEventMask
PIsOpCodeGetEventM ask
PIsOpCodeGetAnyEvent
PIsOpCodeGetAsynchEvent
PIsOpCodeGetCommandEvent
PIsOpCodeSetM odes
PIsOpCodeGetModes
PIsOpCodeSetPath
PIsOpCodeGetPath
PIsOpCodeGetTimeDate
PIsOpCodeAddTransport
PIsOpCodeRemoveTransport
PIsOpCodel nventoryLibrary
PIsOpCodeGetStatusCommand
PIsOpCodeCancel Command
PIsOpCodeHouseK eeping
PIsOpCodel astCommand

169

-
E Chapter 7 Programming the Profile Library System

PLS error codes by value

Archive server protocol errors returned to an application are of the form 0x20009<code>
where code isal2-bit number from the table below. Error codesin serial protocolsarea
12-bit codein a 16-bit field. The high-order 4 bits of the serial protocol error code are zeros.

Table 13. PLS serial error codes

Code

Error

Description

0x000

PLS NO ERROR

No error/success.

Ox001

PLS AS INIT_FAIL

PLS classesinitialization failed. One of the PLS
classes failed to instantiate. (Call Grass Valley
Group Customer Support.)

0x002

PLS AS LC INIT_FAIL

Local catalog initialization failure. Local catalog
failed to load in memory. (Call Grass Valley Group
Customer Support.)

0x003

PLS AS RES INIT_FAIL

OBSOLETE.

ox004

PLS AS TP INIT_FAIL

Transport classinitiaization failure. Unableto
instantiate a transport class or was not able to open
the local catalog file, C:\pls_Ic\plstrans.lct. (Call
Grass Valley Group Customer Support.)

0x005

PLS AS LIB_INIT_FAIL

Library classinitidization failure. Unable to instan-
tiate robot class, initialize robot, or get local catalog
data. (Call Grass Valey Group Customer Support.)

0x006

PLS AS INIT_FILE MISSING

OBSOLETE.

ox007

PLS AS INIT_RECORD_FAIL

OBSOLETE.

PLS AS CONOP RESOURCE_ERROR

Unable to allocate/dedllocate desired resource (car-
tridge/transport). The desired resource is either in
use or has been reserved, and queuing mode for that
resource is not set. (See PlsSetModes on page 260
of the SDK Reference Manual.)

Oox009

PLS AS LC DELETE FAIL

Unable to delete local catalog record. A delete was
attempted on alocal catalog record that no longer
exists.

Ox00A

PLS AS HND DELETE FAIL

OBSOLETE.

0x00B

PLS AS PATH_ERROR

Invalid PDR movie (clip) path. Make sure that the
correct path is set (see PIsGetPath on page 240 and
PIsSetPath on page 261 of the SDK Reference Man-
ual) and that the desired movie exists within that

path.

0x00C

PLS AS GET_MOVIE_ERROR

Unable to open desired movie (clip). Make surethat
the movie (clip) exists and has not been opened
“exclusive” (see PdrOpenMovie on page 162 of the
DK Reference Manual) by another application.

O0x00D

PLS AS INSUFFICIENT_CARACITY

Insufficient tape capacity to archive selected movie
(clip). The target cartridge/partition does not have
enough free space to accommodate the sel ected
movie (clip). Try adifferent cartridge/partition pair-
ing.

Ox00E

PLS AS DATA RETRIVAL_ERROR

Unable to retrieve desired local catalog record. The
desired local catalog record no longer exists.

170 Profile Software Development Kit User

Preliminary — 12 July 2001

PLSerror codes by value

Table 13. PLS serial error codes (Continued)

Code

Error

Description

OxO0F

PLS AS 1950 HANDLE _ERROR

OBSOLETE.

0x010

PLS AS INVALID RECORD ERROR

Desired local catalog record does not exist.

oxo11

PLS AS MOVIE_CREATE_ERROR

Unable to create desired movie (clip) for restoring.

ox012

PLS AS CLOSE_ MOVIE_ERROR

Unableto close archived/restored movie (clip). (See
PdrCloseMovie on page 82 of the SDK Reference
Manual.)

PLS AS FALE DELETED ERROR

Desired tape file is marked as del eted.

ox014

PLS AS HND_CREATE FAIL

Unable to create handle. Generally due to abad
parameter. (Example: attempting to create a car-
tridge handle to a non-existent cartridge.)

0x015

PLS AS RECORD CREATE FAIL

One of the PLS log files could not be opened/cre-
ated. (Call Grass Valey Group Customer Support.)

0x016

PLS AS LOG INIT_FAIL

Unableto create alocal catalog record. Generally
this is caused when the memory needed for the new
record is unavailable. The only exceptionisfile
records which will fail when abad parameter is
detected (cartridge label, partition number).

ox017

PLS AS LC_UPDATE FAIL

Unable to update alocal catalog record to the disk
file. RAM copy of therecordisstill valid. However,
oncethe PLSis restarted, that record’s data may be
invalid.

0x018

PLS AS UNFORMAT FAIL

Unable to unformat a cartridge. The cartridge still
contains old files and isin an unknown state.

ox019

PLS AS CARTRIDGE MOUNTED

Unable to unmount cartridge from target transport.
The command attempted to remove the cartridge
from the target transport to clear it for allocation by a
new transaction.

Ox01A

PLS AS HANDLE MISSNG

A handle necessary for processing of this command
ismissing or invalid.

ox01B

PLS AS TRANSPORT INUSE

Target transport is being used by another transaction.
Thiswill occur if acommand triesto do an unload or
import load to a busy transport. Also attempting to
close a transport handle used to reserve a transport
which is busy will cause this error.

ox01C

PLS AS TRANS SLOT_OUT OF RANGE

Transport device number (IPM address) or robot
location number is out of range.

PLS AS UNFORMATTED

Cartridge must be formatted to perform this com-
mand.

OxO1E

PLS AS INVALID_ACTION_CODE

The action code given for thiscommand isinvalid
(out of range).

OxO1F

PLS AS ALE ALREADY_ARCHIVED

A file by the same name aready exists in target par-
tition.

0x020

PLS AS CARTRIDGE NOT_SPECIFED

Cartridge handle/label must be specified for this
command.

Preliminary — 12 July 2001

Profile Software Devel opment Kit User

171

-
E Chapter 7 Programming the Profile Library System

Table 13. PLS serial error codes (Continued)

Code

Error

Description

PLS AS EMPTY_TRANSPORT ERROR

An command which expected a mounted cartridge
found the transport empty. Thiserror can only occur
with the PIsUnloadTransport command or when
commands such as PIsArchiveClip are sent to
stand-alone transports.

ox022

PLS AS MISING LABEL

Cartridge label required for this command was miss-
ing.

ox023

PLS AS MISING ALENAME

File name required for this command was missing.

ox024

PLS AS ALE NOT_ARCHIVED

Occurs when attempting to restore or rename a tape
file, and the tape file has not been archived.

ox025

PLS AS WRONG CARTRIDGE. TYPE

Cartridge is of the wrong type for the specified com-
mand. (Example: amediacartridge is specified in a
PIsCleanTransport command.)

ox026

PLS AS ZERO LENGTH_MOVIE

Movie (clip) has zero length. The movie (clip)
exists, but has not recorded media. Can only occur
during a PIsArchiveClip command.

ox027

PLS AS CARTRIDGE OUT OF LIBRARY

The target cartridge is not in the robot library, or
mounted in a stand-alone transport.

ox028

PLS AS COMMAND_NOT IMPLEMENTED

This APl command is not yet implemented.

0x029

PLS AS NO_FREE TRANSPORT S.OT

Thereisno free IPM slot (address) to add a new
trangport. Thereis currently a maximum of 4
archive IPM ports.

Ox02A

PLS AS TRANSPORT SLOT IN_USE

The desired IPM dot (address) isin use.

ox02B

PLS AS TRANSPORT NOT_CONNECTED

The transport requested does not exist.

ox02C

PLS AS EXCEEDED MAX_NUM_HANDLES

The maximum number of handles for this handle
type (library, resource, etc.) isin use. Close ahandle
of the desired type to proceed.

ox02D

PLS AS RENAME SAME NAME

Trying to rename afile with the same name.

OxO2E

PLS AS HANDLE INUSE

This handle s currently being used by another com-
mand. (Generally occurswhen attempting to close a
handle.)

Ox02F

PLS AS INVALID_PARTITION

The partition number associated with thefileis
invalid, or the partition number isout of range. (The
range a partition number can take is vendor-depen-
dent.)

0x030

PLS AS MOVIE_ ALREADY_EXISTS

The command is attempting a restore operation for
an archived movie (clip) to atarget path which
aready contains amovie (clip) of the same name.
Renaming the tape file will solve this problem.

Ox031

PLS AS BAD_IN_OUT POINTS

The infout points specified for this movie (clip) are
invalid. Thein point may be greater than the out
point, or the in/out points are outside the recorded
media

ox032

PLS AS INVALID_SYSTEM_HANDLE

The primary handle for a given operation was
invalid. The primary handle is the one required han-
dlefor the given command (generaly alibrary han-
de).

172

Profile Software Development Kit User

Preliminary — 12 July 2001

PLSerror codes by value

Table 13. PLS serial error codes (Continued)

Code

Error

Description

ox033

PLS AS LOOP COMPLETE

First/next search loop has compl eted.

ox034

PLS AS INVALID_LOOP HANDLE

Invalid first/next search loop handle.

0x035

PLS AS NT_ALE READ_ERROR

There was an error while attempting a Win32 read
operation.

0x036

PLS AS NT_ALE WRITE ERROR

There was an error while attempting a Win32 write
operation.

ox037

PLS AS NT_ALE ALREADY EXISTS

The command is attempting to restore a Windows
NT fileto alocation when afile of that name already
exists. Renaming the tape file is one way to solve
this problem

0x038

PLS AS INVALID NT_HANDLE

Windows NT returned a handle creation error.

0x039

PLS AS CART TABLE _BACKUP FAILED

Local catalog cartridge table backup failed. The
local catalog tableis still intact, and normal opera-
tion can proceed. The previousinstance (if any) of a
backup file still exists.

Ox03A

PLS AS FALE TABLE BACKUP FAILED

Local catalog file table backup failed. Local catalog
cartridge table backup failed. Thelocal catalog table
isstill intact, and normal operation can proceed. The
previous instance (if any) of a backup file still exists.

PLS AS PART TABLE BACKUP FAILED

Local catalog partition table backup failed. Local
catalog cartridge table backup failed. Thelocal cata
log tableis still intact, and normal operation can pro-
ceed. The previousinstance (if any) of a backup file
still exists.

Oox03C

PLS AS BACKUP DIR OPEN_FAILED

Unable to open remote target for local catalog
backup. Thisisgenerally dueto an invalid share
name.

0x03D

PLS AS CARTRIDGE ALLOC ERROR

Unable to allocate desired cartridge. If the cartridge
isnot specified, then the command could find no free
cartridge. This error only occurs when cartridge
queuingisoff. (SeePlsSetModes on page 260 of the
DK Reference Manual.)

OxO3E

PLS AS CARTRIDGE DEALLOC ERROR

Unable to deallocate a given cartridge. If this
occurs, the cartridge could be unusable until the PLS
isre-initialized.

OxO3F

PLS AS TRANSPORT ALLOC ERROR

Unable to all ocate desired transport. If the transport
is not specified, then the operation could find no free
trangport. This error only occurs when transport
queuingisoff. (See PlsSetModes on page 260 of the
DK Reference Manual.)

0x040

PLS AS TRANSPORT DEALLOC ERROR

Unable to deallocate a given transport. If this
occurs, the transport could be unusable until the PLS
isre-initialized.

Preliminary — 12 July 2001

Profile Software Devel opment Kit User

173

T
Chapter 7

174

Programming the Profile Library System

Table 13. PLS serial error codes (Continued)

Code

Error

Description

ox041

PLS AS ALE NOT_UNIQUE

File specified for restore is not unique. This occurs
when afile handle does not specify the cartridge
and/or the partition. The system is asked to find the
correct file. If more than onefile of that name exists
based on the contents of the file handle. (i.e. Was
cartridge label and/or partition specified?), thiserror
will occur. Creating a file handle with the correct
cartridge and partition and using it for the command
will solve this problem.

PLS AS SOURCE CARTRIDGE_EMPTY

Source cartridge for a Copy Cartridge command is
empty. (See PIsCopyCartridge on page 207 of the
DK Reference Manual.)

ox043

PLS AS TARGET CART NOT EMPTY

Target cartridge for a Copy Cartridge command is
not empty. (See PIsCopyCartridge on page 207 of
the SDK Reference Manual.)

ox044

PLS AS CART_FORMAT MISMATCH

Target cartridge for a Copy Cartridge command is
not the same format as the source cartridge. (See
PIsCopyCartridge on page 207 of the SDK Refer-
ence Manual.)

Ox045

PLS AS TARGET CART INUSE

Target cartridge for a Copy Cartridge command is
currently inuse. Thiscausesacopy cartridgeto fail,
since the state of the target (destination) cartridgeis
changing.

0x046

PLS AS CANCEL_FAILED

Unable to cancel sdlected command. The command
is either non-cancelable, or isin a state where can-
celing is not allowed.

oxo47

PLS AS INVALID_CONNECTION

Application is not connected to the PLS library.

ox048

PLS AS INIT_INCOMPLETE

PLS library is till initializing. This happenswhen a
PlsOpenLibrary is called before PL S initialization is
complete. Check periodically once PLS initializa-
tion iscomplete. Either alibrary handle or different
error will be returned.

ox049

PLS AS WRONG BACKUP DIR

Local device namepointstowrong remotedirectory.
The drive letter associated with backup command no
longer pointsto the set share path. (See PIsGetBack-
upDir on page 225 and PlsSetBackupDir on

page 255 of the SDK Reference Manual .)

OxO4A

PLS AS CARTRIDGE_IN_LIBRARY

Occurs while attempting to import a cartridge with a
label the same as one already physically in the
library.

PLS AS MEMORY_ALLOCATION_ERROR

Unable to allocate memory needed for the current
command. This usually happenswhen the system is
low on memory. Shutting down any un-needed pro-
cesses can clear this up.

oxo4C

PLS AS INVALID DEVICE ADDRESS

SCSI device address specified is not the one associ-
ated with the specified transport. Transport SCSI
addresses are printed out in the PLS log (pls.log)
during PLS initialization.

Profile Software Development Kit User

Preliminary — 12 July 2001

PLSerror codes by value

Table 13. PLS serial error codes (Continued)

Code | Error Description

ox0dD | PLS AS THREAD RESUME FAILED Unable to resume thread after suspension. The com-
mand belonging to thisthread islost. The command
can be re-issued.

OXO4E | PLS AS INVALID_MOVIE TYPE Movie (clip) is of atypethat isinvalid for this opera-
tion. Thiswill occur if an attempt is made to archive
movie type other than “simple”. (See PdrGetMovie-
Attributes on page 128 of the SDK Reference Man-
ual.)

OxO4F | PLS AS INVALID TRANSPORT NUMBER Transport number was not in the range of 0-255.
0x050 PLS AS LOCAL_CATALOG PURGE FAILED Unable to purge the local catal og.

0x101 PLS AR CONNECTION_FAILED Internal state during initialization. Unable to locate
SCSl library robot. (Cdl Grass Valley Group Cus-
tomer Support.)

ox102 PLS AR INITIALIZATION_FAILED Internal state during initialization. Unable to initial-
izelibrary robot. (Call Grass Vdley Group Cus-
tomer Support.)

0x103 PLS AR INVENTORY _FAILED Library robot unable to scan barcodes. (Hardware
error. Call Grass Valley Group Customer Support.)

0x104 | PLS AR INVALID BIN Reqguested bin does not exist in library robot.
Attempting to find contents of abin not availablein
currently connected robot.

0x105 PLS AR BARCODE NOT _FOUND Reguested cartridge is not in the library robot or the
cartridge label is not readable. Attempting to find
location of a cartridge not currently in the robot.
Use library inventory to update PL S knowledge of
current robot state.

0x107 | PLS AR DESTINATION_CONFLICT Library robot bin or transport already occupied by
another cartridge. Or, attempted to import another
cartridge into afull library robot.

0x108 | PLS AR SOURCE CONFLICT Requested cartridge not found in expected |ocation.
May occur if tape cartridge did not properly eject
from the tape transport. Use library inventory to
update PL S knowledge of current robot state.

0x109 | PLS AR NOT_ADDED Reguested cartridge was not imported into the
library robot. The operation timed out without the
cartridge being added. Repeat the import operation.

Ox10A | PLS AR NOT_REMOVED Reguested cartridge was not exported from the
library robot. The operation timed out without the
cartridge being removed. Repeat the export opera-
tion.

Ox10C | PLS AR NOT REQUESTED BARCODE Imported cartridge was not the cartridge requested.
Operator has inserted the wrong cartridge. Request
operator to insert the correct cartridge.

OX1I0E | PLS AR NO FREE ENTRY_PORTS Cartridge import attempted with all entry ports occu-
pied. Wait for previous import operation to com-
plete and repeat the import operation.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 175

-
E Chapter 7 Programming the Profile Library System

Table 13. PLS serial error codes (Continued)

Code

Error

Description

Ox10F

PLS AR NO FREE EXIT PORTS

Cartridge export attempted with all exit ports occu-
pied. Wait for previous export operation to complete
and repeat the export operation.

0x110

PLS AR CONNECTION_UNDERNAY

Internal state during initialization. Robot status
while connecting to the SCSI library robot. (Cal
Grass Valley Group Customer Support.)

ox111

PLS AR INITIALIZATION_NEEDED

Internal state during initialization. Robot status
before initializing the SCSI library robot. (Call
Grass Valley Group Customer Support.)

ox112

PLS AR INITIALIZATION_UNDERWAY

Internal state during initialization. Robot status
whileinitializing the SCSI library robot. (Call Grass
Valley Group Customer Support.)

0x113

PLS AR NEW_CARTRIDGE

Operator error. Cartridge imported into library robot
during cartridge export operation. Use library inven-
tory to find label of cartridge.

ox114

PLS AR NO ENTRY_PORTS

Cartridge import attempted with no entry ports
installed in robot.

ox115

PLS AR NO EXIT PORTS

Cartridge export attempted with no exit ports
installed in robot.

PLS AT _INTERNAL

The real-time processor has detected an unexpected
error which it does not know how to handle. Exam-
ine profile.log.

PLS AT _BAD HANDLE

The real-time processor was given a bad transaction
handle by NT.

PLS AT _NOT_IMPLEMENTED

A SCSl devicereturned an ILLEGAL REQUEST
error.

PLS AT _NBYTES OUT OF RANGE

An fread or fwrite request from the Windows NT
processor to the real-time processor had an illegal
byte count argument.

PLS AT _BAD DEVICE CODE

The real-time processor was given arequest for an
operation on a hon-existent tape drive.

ox207

PLS AT BAD_INOUT_POINTS

An in-point specification was greater than the corre-
sponding out-point.

PLS AT _BAD_PARTITION

A request was made to position atape to a non-exis-
tent partition.

PLS AT IPM_ERROR

An error occurred on the communication channel
between the real-time and OS processors.

PLS AT EIO

An unrecoverable |/O error occurred on atape drive.

PLS AT WRITEPROT

An attempt was made to write to a physically
write-protected tape.

PLS AT _NOT_READY

The tape drive is not ready.

PLS AT BAD PARAMETER

A SCSI device reported an illegal parameter.

PLS AT BLANK_CHECK

An attempt was made to read a portion of tape which
has not been written, i.e. beyond end of data.

PLS AT VOLUME OVERFLOW

An attempt was made to write beyond the end of a

partition.

176 Profile Software Development Kit User

Preliminary — 12 July 2001

PLSerror codes by value

Table 13. PLS serial error codes (Continued)

Code | Error Description

0x210 PLS AT MISC SCH ERROR An unexpected error inthe SCS| driver has occurred.
See profilelog.

ox211 PLS AT NO MEDIUM There is no tape in the tape drive.

ox212 PLS AT UNKNOWN_FORMAT Thetapeisof unknown format or has never been for-
matted.

O2FE | PLS AT IPM_WRITE FAIL An error occurred writing to the communication
channel between the the real-time and OS proces-
sors.

O2F- | PLS AT IPM_READ FAIL An error occurred reading from the communication
channel between the the real-time and OS proces-
sors.

0x301 PLS REMOTE DLL CMD_NOT_AVAILABLE PLS serid protocol does not support the PLS opera-
tion requested. Protocol may be expanded in a
future release to include the command.

0x302 | PLS REMOTE CMD_INVALID PLS server does not support the opcode received.
Command may be supported in afuture release.

0x303 PLS REMOTE CMD FAILURE PLS server command failed without indicating a
specific PLS error code.

ox34 PLS REMOTE CMD _INPUT_FAILURE PLS server failed to receive al required information
in the command packet.

0x305 PLS REMOTE CMD_OUTPUT FAILURE PLS server was not able to place dl requested items
in the result packet.

O0x311 PLS LOCAL_SERVER FAILURE Communication with thelocal PL S server hasfailed.

Restart the local server.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 177

-
E Chapter 7 Programming the Profile Library System

178 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 8

Programming with MPEG

Since limited bandwidth has always been a concern for those interested in sending video
across a network, the engineers of the Motion Picture Experts Group designed the MPEG
algorithm with a strong emphasis on compression. Asaresult, MPEG can double video
storage capacity over JPEG-only storage at similar quality levels. Due to the smaller sizes,
MPEG can also enable much faster data transfers over Fibre Channel.

Depending on theimage, JPEG can achievecompression ratios of anywherefrom 15:1 to 30:1.
MPEG can achieve compression ratios that approach 200:1.

MPEG manages this by not duplicating video that remains static from one frame to the next.

Since each framein a sequence of motion picture framesis often very similar to the preceding
and succeeding frames, MPEG only saves the changed information from the previous frame
to reconstruct the present frame.

This use of backward and forward motion prediction involves GOPs (groups of pictures)
consisting of |-frames, P-frames, and B-frames. An I-frame (also known as an | -picture or
intracoded picture) is analogous to a single motion-JPEG frame, where al the datarequired
to display the frameis stored in one picture. An |-frameisthe heart of a GOP, the one picture
on which the other pictures in the GOP base their predictive calculations. A P-frame (also
called aP-picture or predictive picture) uses amotion vector to predict what will happenin the
next frame and contains only the changed data rather than the entire frame of video. A
B-frame (also known as a B-picture or bidirectional picture) relies on data from both
backward and forward motion vectors to determine how a future frame will be composed.

A GOP consists of one I-frame and any number of P-frames and B-frames. In general, a
longer GOP (with many P-frames and B-frames) will yield amore efficient MPEG video
stream, at the possible expense of video quality; a shorter GOP (with fewer P-frames and
B-frames separating the |-frames) will yield a less efficient video stream while improving
video quality.

Compression/decompression algorithms

An agorithm for compressing and decompressing imagesis called acodec. The primary
purpose of a codec is to reduce the number of bits required to represent an imagein adigital,
networked environment. Codecs are classified as lossless and | ossy.

With lossless compression, noimageinformationislost, and reconstruction of the compressed
image isidentical to the original image. Lossless codecs are often used to compress sensitive
medical images or scientific images that contain extremely important details. CCITT Group
3 and Group 4 are examples of |ossless codecs.

With lossy compression, as the name implies, some of the information islost, and
reconstruction of acompressed image will not be identical to the original image. In most
cases, however, the visual information lost is not noticeable. Both JPEG and MPEG are lossy
codecs.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 179

-
E Chapter 8 Programming with MPEG

180

Some limitations to MPEG

MPEG-2 was designed for one-pass recording and one-pass playback starting with the first
recorded pictures. Ingeneral, thisisnot good for editing, particularly linear insert editing.
Because of this, linear editing isrestricted to streams that have been recorded with GOPs that
are |-frame only.

Other considerations:

» Off-speed playback of mediastored in MPEG format will not produce the same quality and
smoothness of motion produced by JPEG codecs. It is intended only as away to visually
locate material inaclip, and is not for on-air applications.

» Field dominance for field 1 only is supported at thistimein MPEG. Field dominance for
field 2 or variable dominance for fields 1 or 2 is not supported.

» Recording at arate other than normal speed (1.0) is not allowed with MPEG.
 Jog recording with VdrJog is not allowed with MPEG.

» Loop recording only works properly if the loop length is amultiple of the GOP length, and
the GOP encoding is closed-end. Otherwise, therewill be a discontinuity at the beginning
of the stream.

Other MPEG notes

A Profile MPEG encoder board transforms, quantizes, and encodes CCIR-601 video to
MPEG-2 hitstream files for storage on disk. The MPEG decoder board, on the other hand,
decodes, inverse-quantizes, and transforms MPEG-2 bitstream files stored on disk to
CCIR-601 video. Input formats can be serial digital component, analog composite, or analog
component. Output is either serial digital component or analog composite. The shortest
MPEG clip that the Profile system can play isfour GOPs or two seconds long, whichever is
greater.

The PDR200 with an MPEG upgrade and the PDR 300 from the factory both usethe MPEG-2
4:2:2 @ Main Level encoder and decoder boards. The MPEG encoder offers both 4:2:2 and
4.2:0 chroma sampling, variable hitrates, and GOP structures from I-frame only to 16-frame
GOPs.

Profile Software Development Kit User Preliminary — 12 July 2001

Using MPEG functions

Using MPEG functions

The TekVdr library has been extended with MPEG functionality. See the companion volume
to thismanual, Profile SDK Reference Manual, for a compl ete description of these functions,
including parameters and parameter types. Also, see Chapter , for instructions on general
housekeeping for a Profile program, such as getting a resource handle, opening a port, and
allocating resources.

Archiving and streaming

Profile supports MPEG archiving, which, from the applications standpoint, works just as it
doesfor JPEG. Profile al so supports streaming to/from the archive device for both MPEG and
JPEG. Thisletsyou start to play afile before it is recovered from the tape device. Inthis
repsect, it is similar to the streaming capability with Fibre Channel.

PDR300s can stream MPEG and JPEG filesto/from the PLS20, PL S200, and Ampex drives,
in addition to the SGI server.

Bitrate

The bitrate, expressed in megabits per second (Mbps), sets the video quality. The higher the
bitrate, the higher the video quality. However, higher bitrates require more disk space to store
the data, limiting the number of hours of material you can store on disk. Use Vdr SetBitRate
to set the hitrate in the range of 4 to 45Mbps and Vdr GetBitRate to query the system for the
current bitrate.

Chrominance sampling

One early step in programming M PEG is setting the chrominance sampling (chroma format)
to either 4:2:0 or 4:2:2. Call Vdr SetM pegChromakFor mat to set chroma sampling.

Vdr GetM pegChromalor mat queries the system for the current format, returning an
enumerator of type MpegChromaFmt, such as MpegChromad22.

First and last line of encoding

You can select which of the incoming lines of video are encoded as MPEG.

Vdr SetEncodingRange allows you to set the first and last encoded line of video. For 525
(NTSC) systems, the starting and ending lines must be in the range 21 through 260, with an
acceptable total of 512 or fewer lines per frame. For 625 (PAL), therangeis 7 through 310,
with an acceptabletotal of 608 lines per frame. Vdr GetEncodingRange returnsthefirst and
last lines as they are currently set.

GOP structure

Another early step isto set the GOP structure, in other words, the number of P- and B-frames
you want to use (up to sixteen total, minus one for the single|-framethat is part of each GOP).
Use Vdr SetM pegGopStructure to set the structure and Vdr GetM pegGopStructureto
guery the system for the current GOP. These functions use an enumerator of type

M pegGopEnd that determines how an MPEG video stream begins, either open
(GopOpenEnd) or closed (GopClosedEnd). In an open GOP, theinitial B pictures have a
preceding I-framethat is part of the previous GOP. A closed GOP, on the other hand, has
initial B-frames that have a preceding I-frame that is part of the same GOP.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 181

-
E Chapter 8 Programming with MPEG

MPEG closed caption technique

MPEG-2 compression works on 16-by-16 macro-blocks of pixels. If closed caption
information is contained in the same macro-block as active video, the two will be compressed
together, which will degrade the closed captions. By ensuring that only black is compressed
with the closed caption information, you can minimize the compression degradation. Since
closed caption information is placed on line 21 in 525-line video, you should follow these
guidelines when recording video with closed caption information in MPEG format to help
ensure optimum closed caption integrity, even at lower bitrates.

1. Set the MPEG encoder to begin encoding at line 6, and end at line 261.
2. Where possible, ensure that lines 6 to 20 contain black.

This technique will allow you to minimize the degradation of closed caption information at
lower bitrates. You may also improve your results by using 4:2:0 encoding at very low

bitrates.

Picture information
VdrGetCurrentPictureStatus returns the size, coding, and structure of the picture at the
current position.

182 Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding

Sample program: MPEG encoding/decoding

Example 16, mpegdemo.c demonstratesthe use of MPEG encoding and decoding. A specified
number of seconds of audio and video isrecorded in MPEG format to the given filename, then
therecorded clip (simple movie) isplayed back. Itisvery similar to the JPEG record examples

in Chapter , , so you may want to become familiar with those first.

In thisexampl e, thefirst available MPEG encoder and first avail able MPEG decoder are used.

Unlike JPEG, which uses a single codec for both recording and playback, separate resources
must be allocated for MPEG encoding and decoding. The chromaformat, GOP structure, and
bitrate of the encoding are set up after the encoder isallocated. SeetheProfile SDK Reference
Manual for further information about the parameters for the functions and how to vary them

for the needs of your specific application.

Aswith the JPEG examples, the first inputs and outputs on the Profile are used for video and

audio. Recording and playback are virtually the same once the resources have been set up
correctly for MPEG recording. Cleanup is also similar except there is one more resource to
free than in the JPEG example.

Example 16. mpegdemo.c

//

// This sample program records an MPEG clip of a specified time

// (measured in seconds) and then plays it back.

// Use with Profile release 2.4.2.3 or later.

//

// Usage: MpegDemo movieName -s recordTimeSeconds

//

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

//

#include <stdio.h>
#include <windows.h>
#include <limits.h>
#include <tekrem.h>
#include <tekcfg.h>
#include <tekpdr.h>
#include <tekvdr.hs>s

// Number of audio channels to use:
#define NUM AUDIO CHANNELS 2

#define NUM INDICES (array) (sizeof (array)/sizeof (* (array)))

// Handles to encoders, decoders, and codecs:

static ResourceHandle mpegEncoder = NULL;

static ResourceHandle mpegDecoder = NULL;

static ResourceHandle audioCodecs[NUM AUDIO CHANNELS] = {NULL};

// Table of all recorder resources:

static ResourceHandle recorders([2 + NUM INDICES (audioCodecs)] = {NULL};

// Handles to inputs and outputs:

static ResourceHandle videoInput = NULL;

static ResourceHandle videoOutput = NULL;

static ResourceHandle audioOutputs [NUM INDICES (audioCodecs)] = {NULL};

// Handle to the comnection for the machine:
static ConnectHandle connectHandle = NULL;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

183

Chapter 8 Programming with MPEG

// Handle to the port that controls the timeline:
static VdrHandle vdrHandle = NULL;

//
// Print out usage line.
//

void Usage (const char* progName)

printf (“Usage: %s movieName -s durationInSeconds\n”, progName) ;

}
//

// Fxn: allocate any available resource of the given type

//

ResourceHandle Allocatelny (ConnectHandle connectHandle, ResourceType resourceType)
ResourceHandle resourceHandle;
UINT resourceNumber ;
UINT numResources;

numResources = CfgGetNumResources (connectHandle, resourceType) ;
for (resourceNumber = 0; resourceNumber < numResources; ++resourceNumber) {

resourceHandle = VdrAllocateResource (vdrHandle, resourceType,
resourceNumber) ;

if (resourceHandle != NULL) {
// This resource is available:
return (resourceHandle) ;
1
1
return (NULL) ;

}

// Resource number for first audio input and output (remaining audio
// channels are sequential) :

#define FIRST AUDIO INPUT 0

#define FIRST AUDIO OUTPUT 0

// Number of video input which should be recorded:
#define VIDEO INPUT NUM 0

// Number of video output at which playback should be seen:
#define VIDEO OUTPUT NUM 0

//
// Initialize resources in order to be able to perform record and
// playback. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//
BOOL ConfigureResources (void)
{
UINT index;
EventHandle eventHandle;
ResourceHandle* recorderPtr;

// Open the connection (can be used to open connection to a remote
// machine) :
if (! RemOpenComnection (ComnectLocal, 0, 0, &connectHandle)) {
printf (“Cannot open local comnection.\n”) ;
return (FALSE) ;

184 Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding

// Open the port which controls the timeline:
vdrHandle = VdrOpenPortConnection (connectHandle) ;
if (vdrHandle == NULL)

printf (“Cannot open port.\n”) ;
return (FALSE) ;

}

// Used to add codecs, encoders, and decoders to list of all record
// resources:
recorderPtr= recorders;

// Allocate the first available MPEG encoder:
mpegEncoder = AllocateRny (connectHandle, ResourceMpegEncoder) ;
if (mpegEncoder == NULL) {

printf (“Cannot allocate MPEG encoder.\n”) ;

return (FALSE) ;

}

* (recorderPtr++) = mpegEncoder;

// Set the chroma format used to encode video:

if (! VdrSetMpegChromaFormat (mpegEncoder, MpegChroma422)) {
printf (“Cannot set the chroma format of encoder.\n”) ;
return (FALSE) ;

}

// Set the group-of-pictures structure of the encoder; the values shown
// (5 P pictures per GOP, 2 B pictures per anchor picture, closed-end GOPs,
// and frame-based compression) are typical. The value for the third
// argument (1) ensures future compatibility:
if (! VdrSetMpegGopStructure (mpegEncoder, GopClosedEnd, 1, 5, 2,
PixStructureFrame)) {
printf (“Cannot set GOP structure of encoder.\n”) ;
return (FALSE) ;

}

// Set the bit-rate to be used for encoding (36 Mbps) :
if (! VdrSetBitRate (mpegEncoder, 36.0e6)) {
printf (“Cannot set bit-rate of encoder.\n”);
return (FALSE) ;

}

// Allocate the first available MPEG decoder:
mpegDecoder = AllocateRny (connectHandle, ResourceMpegDecoder) ;
if (mpegDecoder == NULL) {

printf (“Cannot allocate MPEG decoder.\n”) ;

return (FALSE) ;

}

* (recorderPtr++) = mpegDecoder;

// Allocate audio codecs:
for (index = 0; index < NUM INDICES (audioCodecs); ++index) {

audioCodecs [index] = VdrAllocateResource (vdrHandle, ResourceAudioCodec,
FIRST AUDIO INPUT + index);
if (audioCodecs [index] == NULL)
print{f“%annot allocate audio codec #%d.\n”, FIRST AUDIO INPUT +
index) ;

return (FALSE) ;

}

* (recorderPtr++) = audioCodecs [index] ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 185

Chapter 8 Programming with MPEG

// Allocate the video output:

videoOutput = VdrAllocateResource (vdrHandle, ResourceVideoOutput,
VIDEO OUTPUT NUM) ;

if (videoOutput == NULL) {
printf (“Cannot allocate video output.\n”) ;
return (FALSE) ;

}

// Get a handle used to comnnect to the video input:

videoInput = VdrGetResourceConnectionHandle (vdrHandle, ResourceVideoInput,
VIDEO INPUT NUM) ;

if (videoInput == NULL) {
printf (“Cannot get video input.\n”) ;
return (FALSE) ;

}

// Allocate audio outputs:
for (index = 0; index < NUM INDICES (audioOutputs); ++index) {
audioOutputs [index] = VdrAllocateResource (vdrHandle, ResourceAudioOutput,
FIRST AUDIO OUTPUT + index) ;

if (audioOutputs[index] == NULL) {
printf (“Cannot allocate audio output #%d.\n”, FIRST AUDIO OUTPUT +
index) ;

return (FALSE) ;

}

// Make the default crosspoint connections videoInput->videoOutput and
// videoInput->mpegEncoder :

if (! VdrDefaultEvent (vdrHandle, NULL, EventConnectResources, videoInput,
videoOutput)) {

printf (“Cannot connect input->output.\n”) ;
return (FALSE) ;

}

if (! VdrDefaultEvent (vdrHandle, NULL, EventConnectResources, videoInput,
mpegEncoder))

printf (“Cannot connect input->encoder.\n”) ;
return (FALSE) ;

// Make a crosspoint connection from mpegDecoder->videoOutput except when
// idle or recording:

eventHandle = VdrScheduleEvent (vdrHandle, INT MIN, EventConnectResources,
mpegDecoder, videoOutput) ;

if (eventHandle == NULL) {
printf (“Cannot connect decoder-soutput.\n”) ;
return (FALSE) ;

}

return (TRUE) ;

}
//

// Fxn: Clean up by closing the control port
// Det: this also detaches any movies from the timeline, closes all handles
// for the port, and frees any resources allocated to the port.

//
BOOL Cleanup (void)

{

UINT index;

if (! VdrClosePort (vdrHandle)) {
printf (“Cannot close port.\n”);

186 Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding

return (FALSE) ;

}

// NULL all local handles (not strictly necessary if the program

// exits immediately after calling Cleanup, but a good habit) :

mpegEncoder = NULL;

mpegDecoder = NULL;

videoInput = NULL;

videoOutput = NULL;

connectHandle = NULL;

vdrHandle = NULL;

for (index= 0; index < NUM INDICES (audioCodecs); ++index) {
audioCodecs [index] = NULL;

}

for (index= 0; index < NUM INDICES (recorders); ++index) {
recorders [index] = NULL;
1

for (index= 0; index < NUM INDICES (recorders); ++index) {
audioOutputs [index] = NULL;
1

return (TRUE) ;

}

// Shuttle rate for normal play/record:
#define SHUTTLE RATE 1.0

//

// Fxn: play the given movie

//

BOOL PlayMovie (VdrHandle vdrHandle, UINT durationSeconds)

{

// Cue for playback:

if (! VdrCuePlay(vdrHandle, SHUTTLE RATE)) {
printf (“Cannot cue play.\n”) ;
return (FALSE) ;

}

// BAdd a ‘Sleep(500)’ here if it is desirable to have the system
// still before playback ...

// Play:

if (! vdrShuttle(vdrHandle, SHUTTLE RATE)) {
printf (“Cannot begin playback.\n”) ;
return (FALSE) ;

}

// Wait until the movie is done playing (add an extra 200 msec
// to ensure that we don’t stop playing early) :
Sleep ((durationSeconds * 1000) + 200);

return (TRUE) ;

//

// Fxn: record the given movie with the given duration (in seconds) :

//

BOOL RecordMovie (VdrHandle vdrHandle, UINT durationSeconds)

// Cue for record:

if (! VdrCueRecord (vdrHandle)) {
printf (“Cannot cue record \n”);
return (FALSE) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User

187

Chapter 8 Programming with MPEG

}

// Record:

if (! vVdrShuttle(vdrHandle, SHUTTLE RATE)) {
printf (“Cannot cue shuttle \n”);
return (FALSE) ;

}

// Wait until the movie is done recording (add an extra 200 msec
// to ensure that we don’t stop recording early) :
Sleep ((durationSeconds * 1000) + 200);

// Stop recording:

if (! vdrIdle (vdrHandle)) ({
printf (“Cannot idle.\n”) ;
return (FALSE) ;

}

return (TRUE) ;

}
//

// Fxn: convert seconds to number of fields:
//
UINT SecondsToFields (ConnectHandle connectHandle, UINT seconds)
{
if (CfgGetStandard(commectHandle) == PCI PAL 625 MODE) {
// 625-1line mode:
return (seconds * 50) ;
1
else {
// 525-line mode:
return((UINT) ((seconds * 60) / 1.001));

}

//
// The main entry point.
//
void main(int argc, char *argv([])
{
MovieHandle movieHandle;
UINT durationSeconds;
const CHAR* movieName= NULL;
const CHAR* arg;
INT argIndex;

// Process arguments:
for (argIndex = 1; argIndex < argc; ++argIndex) {
arg= argv [argIndex] ;
if (arglo] == '-) {
// Option argument :
switch (arg([1]) {
case ‘s’:
++argIndex;
durationSeconds = atoi (argv[argIndex]) ;
break;
default:
Usage (argv[0]) ;
exit (1) ;

188 Profile Software Development Kit User Preliminary — 12 July 2001

Sample program: MPEG encoding/decoding

else {
movieName= arg;
}

}

if (movieName == NULL) {
Usage (argv[0]) ;
exit (1) ;

}

// Check to see if the movie already exists.
if (PdrMovieExists (connectHandle, movieName)) {
printf (“Movie name already exists.\n”);

exit (1) ;
}
printf (“Configuring resources ...\n”);
if (! ConfigureResources()) {

exit (1) ;

}

// Attach the movie to the timeline; the mark-out point is set so that
// the duration of the clip matches the desired time:

printf (“Attaching movie \”%s\”...\n”, movieName) ;

movieHandle = VdrAttachMovieWithMarks (movieName, NUM INDICES (recorders),

recorders, NULL, ShiftAfter, MarklLongest, O,
SecondsToFields (connectHandle, durationSeconds)) ;

if (movieHandle == NULL) {
printf (“Cannot attach movie \”%s\”.\n”, movieName) ;

exit (1) ;

1

printf (*‘Recording movie ...\n”);

if (! RecordMovie (vdrHandle, durationSeconds)) {
exit (1) ;

}

// Set the position back to the starting position for the movie:

VdrSetPosition (vdrHandle, VdrGetMovieStartPosition (movieHandle,
mpegDecoder)) ;

printf (“*Playing movie ...\n”);
PlayMovie (vdrHandle, durationSeconds) ;

// Detach the movie from the timeline (not really necessary, since
// Cleanup() will detach the movie) :
printf (“Detaching movie ...\n”);
if (! VdrDetachMovie (movieHandle, ShiftAfter)) {
printf (“Cannot detach movie.\n”) ;
exit (1) ;

}

printf (“Cleaning up ...\n”);
Cleanup () ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 189

-
E Chapter 8 Programming with MPEG

190 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 9
The Media Area Network

This chapter providesan overview of the Grass Valley Group MediaAreaNetwork (MAN) for
software application devel opers. It explains how the Media Area Network shared storageis
different from locally attached Profile XP Media Platform storage, and how software
applications must take these differences into account.

The Grass Valley Group Media Area Network Instruction Manual includes installation,
operation, and service information for the Media Area Network.

The Media Area Network is Grass Valley Group's shared storage solution that gives multiple
Profile XP Media Platforms access to a common pool of media, asillustrated in the following
diagram.

Media Ingest and Distribution

Profile XP
= Media
be===|=l==k Platforms

Real-Time, Simultaneous Access

Media Storage 8118-3

The Media Area Network gives broadcast professionals the ability to do the following:
» Access media dynamically from multiple Profile XP Media Platforms

* Distribute media simultaneously from multiple Profile XP Media Platforms, even
while ingest is ongoing.

» Store media more efficiently, without the additional space requirements for
duplicate copies.

» Manage media simply without the need to track and update multiple copies.

Key features of the Media Area Network

The key features of the Media Area Network are as follows:

Many channels — Up to 48 channels of video and 300 channels of audio are available for
play and record operations.

Large storage capacity — Up to 20,000 movies can be stored in the shared database.

Preliminary — 12 July 2001 191

-
E Chapter 9 The Media Area Network

192

Concurrent access — New media can begin playing out before recording is completed.
Simultaneous access — Multiple channels can play out at the same time from the same
media.

Compatible with existing hardware and software — The Media Area Network works with
Profile X P products and options, including the PFC500, the Profile Network Archive and the
ContentShare platform.

No single-point-of-failure — You can set up your Media AreaNetwork with full redundancy
and failover capabilities.

Automatic monitoring — The Media Area Network is ready to plug in to the NetCentral 11
system for monitoring and preemptive fault detection.

Overview of the Media Area Network

The primary functionality of the Media Area Network is described in the following topics.
Please refer to the Profile Media Area Network Instruction Manual for detailed information
on ingtalling, operating, and maintaining a Media Area Network

» Media Area Network hardware — Illustrates devices and cabling with explanations of data
flow for a basic system.

» Media Area Network file system software — Explains how the software components of the
file system control data transactions.

* Movie database software — Explains how the Movie database makes media equally
available from multiple Profile XP Media Platforms.

» Fibre Channe redundancy — lllustrates devices and cabling with explanations of failover
mechanisms for a system with Fibre Channel redundancy only.

» FibreChannel failover — Explainsthe sequence of failover mechanismsand fail over states
that maintain media access through the Fibre Channel switch fabric.

» File System Manager redundancy — lllustrates additional devices and cabling that extend
redundancy to the file system.

» File System Manager failover — Explains how the hardware and software components of
the failover system interact to enable continued operation.

Preliminary — 12 July 2001

Media Area Network hardware

Media Area Network hardware

Profile XP Media Platforms

File System
Manager (FSM)

Ethernet Switch

Fibre Channel
Switch Fabric

N u
L[MHM]M]MM]M OO () - - HM]M]MMMMHMJ

~

RAID Storage 8118-1

The Profile XP Media Platforms and the RAID arrays are connected to the Fibre Channel
switch fabric. The Fibre Channel switch fabric ismade up of one or moreinterconnected Fibre
Channel switches, depending on the number of connections needed. All media access takes
place over this Fibre Channel network, with the Fibre Channel switch fabric making the
connection between the Profile X P accessing the media and the RAID array containing the
media. The Fibre Channel network makes its maximum data rate available simultaneously to
each Fibre Channel port.

The File System Manager (FSM) and the Profile XP Media Platforms are connected to the
Ethernet switch. Control information flows through the Ethernet network as the File System
Manager directsthereading and writing of data between the Profile X P systems and the shared
storage. The File System Manager is also connected to the Fibre Channel network.

Preliminary — 12 July 2001 193

-
E Chapter 9 The Media Area Network

194

Media Area Network file system software

This section explains the software components that work together to control shared accessto
the RAID storage. These components include:

» File system server software component
» File system client software component

* RAID controller

Media Access Profile XP

File System Control

Manager (FSM)
/——Request\
File System File System
T Instructions—

Server Client
Component Component
\Report —

File Media

Metadata Access

RAID Storage

RAID
Controller

8118-5

The Media Area Network file system is alicensed third-party file system that is directly
accessible to the Windows NT operating system. The Profile API has been modified to
manage media files on the Media Area Network file system. Although any Windows NT
application can directly access the mediafiles, they must not move, modify, or delete media
files. All media file management must be accomplished through Profile XP applications
or the Profile API.

The Media Area Network file system has a client/server structure, with the server component
residing on the File System Manager and the client component residing on the Profile XP
Media Platform. These components run as Windows NT services. The server component acts
as the centralized file system and interacts with the client components to control all media
access within the Media Area Network.

On the File System Manager, the server component knows where the mediais located, when
the mediaisbeing accessed, and which Profile X P systems are accessing the media. No Profile
XP Media Platform is allowed to access media without first obtaining instructions from the
server. Inthisway the server enforces strict rules so that each Profile XP Media Platform can
access mediaasit if “owned” the media, without regard for the access taking place on other
Profile XP Media Platforms.

Preliminary — 12 July 2001

Movie database software

Thefile system server component can store metadata information about the media (the
physical location of files on the disks) on the local hard drive of the FSM or on the RAID
storage of the MediaAreaNetwork. When metadataison the RAID storage of the MediaArea
Network, it isin adedicated partition so that it is kept separate from the shared media.

On each Profile XP Media Platform, the client component of the Media Area Network file
system software implements all data read/write operations for the local Profile XP. The client
dialogs with the server to request media, receive instructions, and report results as mediais
accessed by thelocal Profile XP.

On the RAID arrays, the RAID controller software receives the data read/write commands
from the Profile XP Media Platform and implements them across the structure of the RAID
array. The RAID controller software can also communicate with the server component of the
Media Area Network file system software. Thiscommunication path is used when file system
metadata is stored on the RAID arrays.

Movie database software

The movie database is built on an embedded version of the Microsoft SQL database.
Third-party software applications must not access, modify, or configure the database directly.
All movie management must be accomplished through Profile XP applications or the
Profile API.

The Movie database manages native Profile XP media. This section explains how the Movie
database works with the Media Area Network as media is created, shared and edited by
applications on multiple Profile XP Media Platforms.

Profile XPs

File System
Manager (FSM)

Profile XP
applications

()
Movie -
database server | «=——> Movie .
database client

8118-6

Like the Media Area Network file system, the Movie database is structured as a client/server
application with the client residing on each Profile XP Media Platform and the server on the
File System Manager. While the file system views Profile XP media as generic datafiles, the
Movie database views Profile XP mediaas“Movies’ and maintai ns a database record for each
Movie. The record describes the tracks and timing information that define the Movie.

The server component of the M ovie database maintains a centralized and coherent view of the
Moviesin the Media Area Network and propagates this view to the client components. In this
way Profile XP applications* see” the Moviesthrough their client component and can interact
with the Movie database asif they alone “owned” the media.

Preliminary — 12 July 2001 195

-
E Chapter 9 The Media Area Network

Fibre Channel redundancy

This section explains the hardware for a Media Area Network with redundancy in the Fibre

Channel network only. Read “File System Manager redundancy” on page 198 to learn about
the fully redundant Media Area Network.

Profile XP Media Platforms

File System
Manager (FSM)

4 [==k

Ethernet Switch

Fibre Channel
Switch Fabric

RAID Storage 8118-7

A Media Area Network with Fibre Channel redundancy requires dual Fibre Channel
connections for every device and a Fibre Channel switch fabric made up of two or more
switches, as required to support the number of devices. Each Profile XP MediaPlatform is
connected to two different switches. The sameistrue for each RAID storage device. The
interconnections of the Fibre Channel switch fabric are thereby able to negotiate alternate

pathways in the event of afault. Read the next section, Fibre Channel failoverfor more
information.

196 Preliminary — 12 July 2001

Fibre Channel failover

Fibre Channel failover

This section explains the sequence of failover mechanisms that work together to maintain
access between a host and the RAID storage through the Fibre Channel switch fabric. The
following diagrams use a Profile X P M edia Platform as an example of the host. The diagrams
illustrate a simplified view of the different states in which access can continue successfully,
depending on the type of the fault.

No Fault XP Path Fault RAID Path Fault Switch Fault
Profile XP [] |]
LA B B B
. L eo— —e— —— ——
Fibre W
Channel ~
Switch ~~
Fabric ® [Omlele'® | ° ~ °
\ .
——— —— ——— —— — —e—— — —e—
A A B B
RAIDs
8118-8

For asystemin which nofault hasyet occurred, aProfile X P system usesitsprimary (A) Fibre
Channel port for media access to and from the primary (A) controller on aRAID array. This
access takes place over the Fibre Channel switch fabric. When a fault occurs along the Fibre
Channel pathway and media access fails, the Profile XP system fails over to its backup (B)
Fibre Channel port and tries the media access again.

If the fault that caused the Profile X P failover isin the path on the Profile X P side of the Fibre
Channel switch, the Fibre Channel switch fabric isable to find an alternate pathway between
the Profile X P system’s backup (B) port and the primary (A) RAID controller. Thisallowsthe
media access to be completed successfully without requiring a RAID controller failover.

If the fault that caused the Profile XP failover isin the path on the RAID side of the Fibre
Channel switch or if the Fibre Channel switch itself is faulty, the Fibre Channel switch fabric
is unable to find an alternate pathway between the Profile XP system'’s backup (B) port and
the primary (A) RAID controller. This causes the mediaaccessto fail again, in which casethe
Profile XP system uses its backup (B) Fibre Channel port to send failover commands to the
RAID array. These commandsinstruct the RAID array to failover to itsbackup (B) controller.
Once more the Profile X P system tries the media access. Thistime the Fibre Channel switch
fabric is able to find the alternate pathway between the Profile XP system'’s backup (B) port
and the backup (B) RAID controller.

These alternate paths remain active for aslong as they operate without afault, as there are no
persistent primary/back-up relationships within the Fibre Channel network. When thefault is
repaired on the original path, that path then becomes available for use as an alternate path in
the event of subsequent faults.

NetCentral reports all faults, whether the fault occurs on a pathway in active use for current
media access or whether the fault occurs on areserve pathway that will be needed in the event
of afailover.

Preliminary — 12 July 2001 197

-
E Chapter 9 The Media Area Network

File System Manager redundancy

This section explainsthe hardware that provides redundancy for the File System Manager and
its Media Area Network management mechanisms, such asthe MAN file system and Movie
database. This hardware, combined with the redundant Fibre Channel explained earlier inthis
chapter, supports afully redundant Media Area Network with no single-point-of-failure
throughout the entire system.

Profile XP Media Platforms

Redundant File
System Managers (FSM)

==t ==t

l ﬂTJ J |

Ethernet
Switch Fabric

""" Fibre Channel
Switch Fabric

RAID Storage 8118-2

A Media Area Network with redundant File System Managers requires two FSMsthat are
interconnected through the cabling and devices of the failover system, as described in “File
System Manager failover” on page 199. The FSMs have redundant connections to the Fibre
Channel switch fabric and use failover mechanisms similar to those described in “Fibre
Channel failover” on page 197. The FSMs each have one connection to the Ethernet switch
fabric, whilethe Profile X P M edia Pl atf orms each have two connectionsto the Ethernet switch
fabric. Redundant pathways are thereby created so that management information can continue
to flow between the active FSM and the Profile XP Media Platformsin spite of faultsalong an
Ethernet pathway, a Fibre Channel pathway, or in the event of a FSM failover.

198 Preliminary — 12 July 2001

File System Manager failover

File System Manager failover

This section explains the software and hardware mechanisms that work together to provide
failover capabilities for the File System Manager's Media Area Network management

mechanisms.

Profile XP

Transaction
Monitor

Primary Backup
Connection Connection
Primary FSM Backup FSM
Heartbeat Monitoring
Failover Failover

Monitor Monitor

/

Aﬁmote
\ ': Power Control Power :. J
Switch Shut-off Switch

8118-9

On each File System Manager, the Fail-over Monitor software component runs as a Windows
NT service. The software monitors the status of its own FSM by constantly checking the
FSM’s Movie database, MAN file system and network connectivity. If everything checks out
OK, the software sends a heartbeat pulse over adedicated serial cableto the other FSM. If the
software detects a critical problem, it stops the heartbeat pulse.

When Fail-over Monitor software running on the current backup FSM detects that the
heartbeat coming from the current primary FSM has stopped, it triggersafailover inwhichthe
backup FSM takes control of the Media Area Network. The software then sends a shut-off
command over adedicated serial cableto the power switch of the primary FSM. This shut-off
is necessary to ensure that the two File System Managers do not attempt to simultaneously
manage the Media Area Network.

When Fail-over Monitor software running on the current primary FSM detects that the
heartbeat coming from the current backup FSM has stopped, it does not trigger afailover.
Rather, the software notifies the client devices of the Media Area Network that the backup
FSM isunavailable.

On the Profile XP Media Platforms, Transaction M onitor software monitors Movie database
transactions. If atransaction takestoo long, the software checkswith the backup FSM to verify
if afailover has occurred. If afailover has occurred, the software switches the Profile XP

Preliminary — 12 July 2001 199

-
E Chapter 9 The Media Area Network

200

system over to the backup FSM. If afailover has not occurred, the software continues to
monitor Movie database transactions, but waits longer before trying to verify afailover. This
allows any momentary, non-critical pauses in media access to clear without triggering a
failover.

When afailover occurs, the original backup FSM becomes the new primary FSM. Likewise,
when the original primary FSM is restored, it becomes the new backup FSM. Thereafter, the
new primary FSM remains active asthe primary for aslong asit operates continuously without
afault, asthere are no persistent primary/back-up relationshipsin the operation of the file
system.

NetCentral reports all faults, whether the fault occurs on a pathway in active use for current
media access or whether the fault occurs on areserve pathway that will be needed in the event
of afailover.

Specifications

Thefollowing specification are preliminary and subject to change. Please consult with your
Grass Valley Group representative to obtain the most recent specifications.

* Number of movies (masters) - 20,000, assuming the average movie references six media
files

» Movies per group - 8,000

» Shortest clip length - 5 seconds

» Back to back clip play-out - 5to 7 seconds

» Record to play-out time - 10 seconds

» Simultaneous play-outs of sameclip - TBD

* Queue time vs. number of clips- TBD

 Seria protocol foreground (synchronous) response time - 10 milliseconds

 Serial protocol backgroud (asynchronous) response time - network dependent, typically 90
milliseconds, up to 1 second on a busy network

» File System Manager failover - up to 20 seconds. Playout in progress continues during the
failover, although recordsfail.

Number of channels and bandwidth specifications are configuration dependent. Please consult
with your Grass Valley Group representative for Media Area Network design criteria and
guidance.

Developing Media Area Network software
applications

From a programmer’s point of view, a Profile XP Media Platform connected to aMediaArea
Network is very similar to a Profile XP Media Platform with local storage. Software
applications can run directly on the local system processor through the Profile API or the
Event Scheduler Engine, on aremote PC using PortServer and the TekRem library, or control
achannel through VDCP, Odetics, BVW, or Profile protocol by assigning the channdl to an
RS-422 port in VdrPanel. Many existing Profile applicationswill requirelittle or no changeto
operatein aMediaArea Network environment. Some movie ownership changesin the TekPdr

Preliminary — 12 July 2001

File system changes

library imposed by the use of a shared Pdr database may require minor adjustmentsin some
applications. Movie ownership becomes more critical in a Media Area Network. Refer to
“TekPdr changes’ on page 201 for more information.

Themost significant difference in Profile applicationsrunning on Profile XP Media Platforms
connected to a Media Area Network is that many of the previously required Video Network
(Fibre Channdl or Ethernet) transfers are no longer necessary. All material recorded by any
channel isimmediately available to all other channels without any intermediate operations.
Software applications must support this new model of material management.

Total system bandwidth is defined by the number of storage processors, drives, and
Inter-Switch Links. Grass Valley Group works closely with Media Area Network to design
systems that meet customer bandwidth and failover needs. Bandwidth must be managed on
each Profile XP Media Platform to ensure that the total system bandwidth is not exceeded.
Control applications must not use more bandwidth than allocated in the system design. The
application must manage the Profile XP Media Platform bandwidth including record and
playback of video through traditional I/O and SDTI, as well as streaming transfers over athe
Video Network. High-bandwidth operations such as off-speed play, jog, shuttle, and scrub
audio may require up to 50% more bandwidth per channel. Both the allocated bandwith on
each Profile XP Media Platform and the total Media Area Network bandwidth must be
respected.

Software applications must take into account failover events. Timeouts may need to be
lengthened, since requests will generally complete after the failover event. Timing-critical
operations need to be closely analysed and optimized in aMedia Area Network environment.

File system changes

Thefile system used in a Media Area Network is accessible from the Windows NT
environment.

Dataset name

By convention, the shared drive is mounted as V for video on all the clients. This drive letter
is used as the dataset identifier, replacing the INT or EXT of the Media File System.
Applicationsusing XfrRequest() or FTP to stream movies must use the new dataset name. The
dataset name must be a single letter in the Media Area Network.

Application access to the file system

Inthisrelease, no applications may access mediafiles directly on the Windows NT-accessible
file system. All manipulation of mediafiles must be accomplished through the Profile API.

TekPdr changes

TekPdr functions have been slightly modified to accommodate the database used in the Media
Area Network. The following sections describe the main diffencesin TekPdr behavior.

Different Open Modes
When opening clips with the modified TekPdr, the following open modes are in effect.
Pdr OpenExclusive: Unchanged from earlier releases.

Pdr OpenM ultiple/Pdr OpenReadWrite: PdrOpenReadWrite is highly preferred over
PdrOpenMultiple. The first instance of the movie opened in PdrOpenReadWrite mode is the
only one that can read/write to the Movie Database. Until that instance is closed, no other
instance will be able to record changes.

Preliminary — 12 July 2001 201

-
E Chapter 9 The Media Area Network

Pdr OpenReadOnly: This new mode allows amovie to be opened as read-only, and will not
allow awrite.

PdrDeleteMovie is not synchronous

When amovie is deleted with PdrDeleteM ovie, the corresponding mediafiles are moved to
V:\attic\ for subsequent deletion by the garbage collection mechanism.

PdrSetMovieReadOnly() and PdrSetMovieReadWrite()

These functions are now equivalent to PdrSetM oviel ocked() and PdrSetM ovieUnl ocked(),
respectively. They set and reset the same attribute, Pdr L ocked. Mediafiles are not set
read-only, only the movie attributes. Only the subject movie is affected. Other movies that
reference the same mediafiles will still be ReadWrite.

PdrControlRO bit
This bit in the movie attributes is now obsol ete.

PdrReadOnly

This movie attribute is now purely informational, indicating that a movie was opened in the
read-only mode, or that this instance of a movie was not the first instance to be opened
"multiple’.

PdrExtensions

PdrExtensions API functions will not be compatible with VIP applications. User datais now
aspecial case of PdrExtensions. Therefore using PdrFindFirst/NextExtensionPos() will also
enumerate the userdata records.

Obsolete functions
Thefollowing functions are not supported in Profile System Software version 5.0 and higher.

» PdrCopyMovie
» PdrGetRegistry
» PdrSetRegistry

Common Movie Format database access

Although the Common Movie Format remains the same, movie definitions are now stored in
the centralized movie database, and not in a.cnmf file. Access to movie definitions through the
Profile API remain unchanged, although response time may be lengthened due to the network
link to the database.

Tools and utilities that accessed the .cmf file directly can no longer be used. Accessto the
database must occur through the Profile API, or through tools and utilities provided by Grass
Valley Group.

Direct third-party accessto the movie databaseis not permitted dueto licensing requirements.

Recommendations for verifying applications

Itisusually best to begin verification of software application operation on avery basic Media
Area Network consisting of two Profile XP Media Platforms. By limiting the complexity of
the environment, it is easier to simulate error conditions and to verify appropriate responses.

202 Preliminary — 12 July 2001

Recommendations for verifying applications

Once basic functionality is confirmed, verification of operation on a"busy" system should
include alarger number of clients, more active software applications, etc. This verification
might test the application’s sensitivity to PDR response time, for example.

Finally, the software application should be verified on a very large Media Area Network to
discover scaling issues, for example.

Preliminary — 12 July 2001 203

-
E Chapter 9 The Media Area Network

204 Preliminary — 12 July 2001

Chapter 10

PdrMovie Extensions

PdrM ovie extensions make use of the existing user data mechanism but allows new,
user-specific extension data to be added to and associated with the standard PdrMovie
structure, thus taking advantage of existing networking and archive features. Any Profile
software developer can make use of the PdrMovie extensions. Since all extensions use a
standard header, applications may exchange nonmovie dataif they understand the underlying
data structure identified by the extension header. For alisting of the C data structure for the
extensions, refer to “ The PdrExtensioninfo Data Structure” on page 221.

NOTE: Though user data is used to store extension data structures, the functions
PdrSetUserData() and PdrGetUser Data() cannot be used with these extensions.

Like all user data, extensions may be associated with a movie, track, or media segment. This
is known as the extension’s location. Extensions differ from regular TekPdr user datain the
following ways:

* Nosizelimit.
» A single extension may be stored across multiple user data blocks.
 Larger, more meaningful header.

» More sophisticated lookup mechanism. Extensions may be enumerated using specific
search/filter criteria.

* No location restriction.

» User datacan only be associated with atrack if it contains segments. An extension may be
associated with atrack without regard to the presence of segments on that track. Multiple
extensions may also be associated with the same location and time.

A new bit is added to the movie state attributes mask to identify movies that have been
extended. Both simple and complex movies may have the extension bit set. The extension bit
is set and cleared automatically by the system when extensions are inserted or deleted. The
MediaManager application will distinguish between movieswith extensions and without, but
will not show any specific vendor information in the contents list.

A PdrMovie extension contains the elements listed in Table 14.

Table 14. PdrMovie extension elements

Element Description

fieldOffset (int) Extensions influence a single point of time or a range of
time starting at fieldOffset.

vendorName (char[32]) Name of the software vendor which defined the specific
dataClass and dataType. For example: “Lightworks,”
“EditStar,” or “Grass Valley Group.”

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 205

-
E Chapter 10 PdrMovie Extensions

Table 14. PdrMovie extension elements

dataClass (char[32]) Class this type of extension datafallsinto. Thisfield
may be used by client applications to exclude certain
classes of extensions. For example, an extension whose
category is“AudioMixEffect” may beignored by clients
that don’t use audio.

dataType (char[80]) Identifies the specific extension data structure.

dataName (char[80]) Thisstring allows you to give the extension ameaningful
name.

dataVersion (char[32]) Anticipates future changes to a particular extension data
structure.

dataLen (UINT) Number of bytesin the extension data structure.

data (variable length) The actual extension data structure that follows the
header.

This version of the Profile SDK includes eight functions that control PdrMovie extensions:

» PdrinsertExtension() copiesdatainto amovie'slist of extensions, and
Pdr DeleteExtensionAtPos() removes an extension from the movie structure.

» PdrReadExtension() returns a data buffer that corresponds to the named movie data
structure, and Pdr FreeExtension() frees the memory that was allocated with
Pdr ReadExtension().

» PdrFindFirstExtensionPos() initiatesthe enumeration of extensionsin aparticular movie.
The enumeration begins by choosing which extension to use as search criteria.
Pdr FindNextExtensionPos() continues the enumeration that
Pdr FindFirstExtensionPos() began, returning the next extension that matches the given
search criteria.

» PdrGetExtensionAtPos() returnsthe extension datafor the given extension position while
Pdr GetExtensionl ntoAtPos() returns only header information from an extension.

For more specifics on these functions, see the Profile Family Software Devel opment Kit
Reference Manual.

206 Profile Software Development Kit User Preliminary — 12 July 2001

Grass Valley Group Common Extensions

Grass Valley Group Common Extensions

The TekPdr library defines several extension structures that you may use to store edit and
hardware setup information that doesn’t appear in the basic moviestructure. Thesearereferred
to asthe Grass Valley Group Common Extensions. Currently, there are common extensions
availablefor digital video effects (DVE), audio, maotion, General Purpose I nterface (GPI), and

metadata:

More discussions on these extensions follow in the next pages.

Preliminary — 12 July 2001

Simple dissolves
Advanced dissolves
Simple wipes
Advanced wipes
Keys

Video fade-to-matte
Audio mix

Audio levels

Source motion effects
General Purpose Interface (GPI)
Movie metadata
Segment metadata

Profile Software Devel opment Kit User

207

-
E Chapter 10 PdrMovie Extensions

Video Mix Effects Extensions
This class of extension is used to control the Profile mix effects board.

Simple Dissolve

The most basic video mix-effect extension is the dissolve. This extension allows you to
dissolve from one video source to another acrosstime.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "Dissolve"

fieldOffset = +-<0..n>

Table 15. Simple dissolve extension elements

Element Description
numFields (int) Duration of the dissolvein fields.
endingMix (int) Value between 0 and VME_MAX_PROGRESS.

Video is dissolved in the background to foreground
direction with 0 being fully background and
VME_MAX_PROGRESS fully foreground. The
mix value persists beyond the duration of the dis-
solve, therefore if the endingMix islessthan
VME_MAX_PROGRESS, the mix-effects output
will continue to show a combination of the fore-
ground and background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output
resource that will be used when the movieis later
attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated
with the mixer’s background input. Thisvalue
allows the system to connect the appropriate codec
resource to the mix-effect background input when
the movie is attached to a port.

208 Profile Software Development Kit User Preliminary — 12 July 2001

Video Mix Effects Extensions

Advanced Dissolve
The advanced dissolve extension adds fields for modulating the dissolve using a key signal.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "AdvancedDissolve"

fieldOffset = +-<0..n>

Table 16. Advanced dissolve elements

Element Description
numFields (int) Duration of the dissolve in fields.
endingMix (int) Value range 0 thru VME_MAX_PROGRESS. Video is

dissolved in the background to foreground direction with
0 being fully background and VME_MAX_PROGRESS
fully foreground. The mix value persists beyond the
duration of the dissolve, therefore if the endingMix is
lessthan VME_MAX_PROGRESS, the mix-effects out-
put will continue to show a combination of the fore-
ground and background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. Thisrefersto the output resource that
will be used when the movieis later attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated with
the mixer’s background input. This value alows the sys-
tem to connect the appropriate codec resource to the
mix-effect background input when the movieis attached
to aport.

keySrc (int) Logical, zero-based video track number associated with
the mixer’s key input. This value allows the system to
connect the appropriate codec resource to the mix-effect
key input when the movie is attached to a port.

nClipLevel (int) A cliplevel inrange 0 thru VME_MAX_CLIP_LEVEL.

eGain (float) A gain vaue for the key in range
VME_MIN_GAIN_LEVEL thru
VME_MAX_GAIN_LEVEL

invertMode (int) Enumerated type specifying the key invert mode. Must
be one of VmeNormalKey or VmelnvertedKey.

edgeMode (int) Enumerated type specifying the key edge mode. Must be
one of VmeAdditiveK ey or VmeM ultiplativeK ey.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 209

-
E Chapter 10 PdrMovie Extensions

Simple Wipe
The simple wipe uses these fields to perform a simple, background to foreground wipe.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "Wipe"

fieldOffset = +-<0..n>

Table 17. Simple wipe extension elements

Element Description
numFields (int) Duration of the wipe transition in fields.
endingMix (int) Vaue range 0 thru VME_MAX_PROGRESS. Video is

wiped from background to foreground with O being fully
background and VME_MAX_PROGRESS fully fore-
ground. The mix value persists beyond the duration of
the dissolve, therefore if the endingMix islessthan
VME_MAX_PROGRESS, the mix-effects output will
continue to show a combination of the foreground and
background video sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. Thisrefersto the output resource that
will be used when the movieis later attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated with
the mixer’s background input. This value alows the sys-
tem to connect the appropriate codec resource to the
mix-effect background input when the movieis attached
to aport.

wipeShape (int) SMPTE wipe code. All wipe codes may not be sup-
ported.

210 Profile Software Development Kit User Preliminary — 12 July 2001

Advanced Wipe

The advanced wipe extension adds fields for rotation and position transforms, horizontal and
vertical wipe modulation, border matte and edge control, and modul ating the wipe using akey

Video Mix Effects Extensions

signal. Rotation and position settings are assumed to be valid when bTransform equals 1. If
bTransform equals 0, these settings are ignored. Horizontal and vertical wipe modulation

settings are valid when bHVMod equals 1. Keyer modulation settings are valid when bKeyer

equals 1. Border settings are valid when bBorder equals 1.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "AdvancedWipe"

fieldOffset = +-<0..n>

Table 18. Advanced wipe extension elements

Element

Description

numFields (int)

Duration of the wipe transition in fields.

endingMix (int)

Value range 0 thru VME_MAX_PROGRESS. Video iswiped
from background to foreground with 0 being fully background
and VME_MAX_PROGRESS fully foreground. The mix value
persists beyond the duration of the dissolve, therefore if the end-
ingMix islessthan VME_MAX_PROGRESS, the mix-effects
output will continue to show a combination of the foreground
and background video sources.

videoOutput (int)

Logical video output number connected to the mix-effects out-
put. This refersto the output resource that will be used when the
movieis later attached to a port.

backgroundSrc (int)

Logical, zero-based video track number associated with the
mixer's background input. This value allows the system to con-
nect the appropriate codec resource to the mix-effect back-
ground input when the movie is attached to a port.

wipeShape (int) SMPTE wipe code. All wipe codes may not be supported.

bTransform (byte) 1 to indicate valid transform parameters, O to ignore transform
parameters.

nX (int) The position of the end of the transition, range: —10 *
VME_MAX_SCREEN_HEIGHT thru 10 *
VME_MAX_SCREEN_HEIGHT.

nY (int) The position of the end of the transition, range: —10 *

VME_MAX_SCREEN_HEIGHT thru 10 *
VME_MAX_SCREEN_HEIGHT.

rotation (int)

Theinteger number mapped to the range: 0 thru
VME_MAX_ROTATION.

nHMult (int) The horizontal integer multiplier value. Limit to range 1 thru
VME_MAX_MULTIPLIER.

nVMult (int) The vertical integer multiplier value. Limit to range 1 thru
VME_MAX_MULTIPLIER.

bKeyer (byte) 1 to turn key modulation on, O to turn the key modulation off.

Preliminary — 12 July 2001

Profile Software Devel opment Kit User

211

-
E Chapter 10 PdrMovie Extensions

Table 18. Advanced wipe extension elements

keySrc (int)

Logical, zero-based video track number associated with the
mixer’s key input. This value allows the system to connect the
appropriate codec resource to the mix-effect key input when the
movieis attached to a port.

nClipLevel (int)

A clip level in therange: 0 thru VME_MAX_CLIP_LEVEL.

eGain (float)

A gain vauefor the key inrange VME_MIN_GAIN_VALUE
thru VME_MAX_GAIN_VALUE.

invertMode (int)

Enumerated type specifying the key invert mode. Must be one
of VmeNormalKey or Vmel nvertedKey.

edgeMode (int) Enumerated type specifying the key edge mode. M ust be one of
VmeAdditiveK ey or VmeMultiplativeK ey.
bHVMod (byte) 1 to turn horizontal/vertical modulation on, O to turn modulation

off.

modTypeH (int)

The modulation waveform type.

nHAmMp (int)

The peak-to-peak amplitude of the waveform. Units match other
screen units where VmeM axHeight is full screen height.

eHFreq (float)

A frequency value for the waveform.

nHPhase (int)

The starting phase of the waveform.

nHDe taPhase (int)

The change in phase from frame to frame.

modTypeV (int)

The modulation waveform type.

nVAmp (int)

The peak-to-peak amplitude of the waveform. Units match other
screen units where VmeM axHeight is full screen height.

eVFreq (float)

A frequency value for the waveform.

nV Phase (int)

The starting phase of the waveform.

nV DeltaPhase (int)

The change in phase from frame to frame.

bBorder (byte)

1 to turn border on, 0 to turn the border off.

borderWidth (int)

Theinteger width of the border.

nSoftness (int)

Theinteger which specifies the edge softness.

nHue (int)

The border hue value in degrees.

nChroma (int)

The border chroma saturation value.

nLuma (int)

The border luminance value.

Profile Software Development Kit User

Preliminary — 12 July 2001

Video Mix Effects Extensions

Key

The key extension allows you to use an arbitrary video source as akey to reveal abackground
video source.

vendorName = "Grass Valley Group"

dataClass = "VideoMixEffect"

dataType = "Key"

fieldOffset = +-<0..n>

Table 19. Key extension elements

Element Description
bKeyer (byte) 1 to turn the keyer on. 0 to turn the keyer off.
videoOutput (int) Logical video output number connected to the

mix-effects output. This refers to the output
resource that will be used when the movieis later
attached to a port.

backgroundSrc (int) Logical, zero-based video track number associated
with the mixer’s ‘ background’ input. This value
allows the system to connect the appropriate codec
resource to the mix-effect background input when
the movie is attached to a port.

keySrc (int) Logical, zero-based video track number associated
with the mixer’s ‘key’ input. This value allowsthe
system to connect the appropriate codec resource
to the mix-effect key input when the movieis
attached to a port.

nClipLevel (int) A cliplevel inrange
0.VME_MAX_CLIP_LEVEL

eGain (float) A gain value for the key in range
VME_MIN_GAIN_LEVEL.VME_MAX_GAIN_
LEVEL

invertM ode (int) Enumerated type specifying the key invert mode.
Must be one of VmeNormalKey or Vmel nverted-

Key.

edgeMode (int) Enumerated type specifying the key edge mode.
Must be one of VmeAdditiveKey or VmeMulti-
plativeK ey.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 213

-
E Chapter 10 PdrMovie Extensions

Video Fade-to-Matte

The video fade extensions allows you to control the video mixer's fade-to-matte hardware
which isindependent of its dissolve/wipe capabilities.

vendorName = "Grass Valley Group"
dataClass = "VideoMixEffect"
dataType = "FadeToMatte"

fieldOffset = +-<0..n>

Table 20. Fade-tomatte extension elements

Element Description
numFields (int) Length of the fade in number of video fields.
endingMix (int) Value between 0 and VME_MAX_PROGRESS,

where 0 isthe pre-fade state and
VME_MAX_PROGRESS is the post-fade state.
The mix value persists beyond the duration of the
fade, therefore if the endingMix isless than
VME_MAX_PROGRESS, the mix-effects output
will continue to show a combination of the video
and matte sources.

videoOutput (int) Logical video output number connected to the
mix-effects output. This refers to the output
resource that will be used when the movieis later

attached to a port.

fadeDirection (int) The enumerated type specifying the direction of
the fade. This must be VmeFadeDown or VmeFa-
deUp.

nHue (int) The hue value in degrees.

nChroma (int) The chroma saturation value.

nLuma (int) The luminance value.

214 Profile Software Development Kit User Preliminary — 12 July 2001

Audio Mix Effects

Audio Mix Effects

This class off extensions are used to control the Profile audio mixing hardware.

Audio Mix

Settings include audio source to destination routing and mix coefficients. A single AudioMix
extension is used to describe a single audio mix adjustment. An audio mix may involve
multiple audio inputs mixing to a common audio output.

vendorName = "Grass Valley Group"
dataClass = "AudioMixEffect"
dataType = "AudioMix"

fieldOffset = +-<0..n>

Table 21. Audio mix extension elements

Element Description
numFields (int) Duration of the audio transition in fields.
audioOutput (int) Logical audio output number. This refers to the output

resource that will be used when the movieis later
attached to a port.

numSources (int) The number of audio inputs that contribute to the audio
output.
audioSrc (int) Logical, zero-based audio track number. This value

allows the system to adjust the appropriate physical mix
coefficient when the movieis attached to a port.

endingMix (double) Level at which the audio source should be mixed into the
audio output.
audioSrc (int) Logical, zero-based audio track number. This value

allows the system to adjust the appropriate physical mix
coefficient when the movieis attached to a port.

endingMix (double) Level at which the audio source should be mixed into the
audio output.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 215

-
E Chapter 10 PdrMovie Extensions

Audio Level

This extension is used to control the Profile audio mixing hardware (current level values are
multiplied with the current audio mix state). A single AudioL evel extension may be used to
make any number of level adjustments, even on afield-by-field basis.

vendorName = "Grass Valley Group"
dataClass = "AudioMixEffect"
dataType = "AudioLevel"

fieldOffset = +-<0..n>

Table 22. Audio level extension elements

Element Description
numL evel Changes (int) Level at which the audio source should be mixed into the
audio output.
fieldPos (int) Number of fields after the extension field offset the

audio level should match thze specified level.

level (double) Level a which the audio source should be mixed into the
audio output. Audio levels and mix values are additive.

fieldPos (int) Number of fields after the extension field offset the
audio level should match the specified level.

level (double) Level a which the audio source should be mixed into the
audio output. Audio levels and mix values are additive.

216 Profile Software Development Kit User Preliminary — 12 July 2001

Motion Effects

Motion Effects
Currently, thereis only one kind of motion effect: source effects.

Source Effects

The source effects extension is used to control slow and fast motion playback aswell as
indicate extra“ source handles’ to be transferred with the movie when it is copied to a new
location. This alows edits to be trimmed after transfer.

vendorName = "Grass Valley Group"
dataClass = "MotionEffect"
dataType = "SourceEffect"

fieldOffset = undefined

Table 23. Source effect extension elements

Element Description

srcFiedOffset (int) Indicates number of fields after the movie segment’s
media mark-in value represent playable materia. This
valueis used to transfer extra source material when the
movieis copied to a new location.

sreNumFields (int) Length, in fields, of playable material after the srcField-
Offset.
targetNumFields (int) Number of fieldsin which to execute the playable mate-

rid. A targetNumFields shorter than srcNumFields indi-
cates fast-motion playback. A targetNumFields value
longer than srcNumFields indicates s ow-motion play-
back.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 217

-
E Chapter 10 PdrMovie Extensions

External Control
This class of extensions is used to control devices external to the Profile video server.

GPI

This extension allows programmers to assert General Purpose Interface (GPI) triggersto
control a device external to the Profile server. Triggered devices are indicated by name. The
Profile configuration will associate the device name with a port, output number, trigger
voltage and period, and pre-roll offset.

vendorName = "Grass Valley Group"
dataClass = "ExternalControl"
dataType = "GPI"

fieldOffset = +-<0..n>

Table 24. GPI extension element

Element Description

deviceName (char[80]) Logical GPI device name.

218 Profile Software Development Kit User Preliminary — 12 July 2001

Meta Data Extensions

Meta Data Extensions
There are two meta data extensions, MovieData and SegmentData.

MovieData

Thisextension is used for media management. Strings stored in this extension are assumed to
be in Unicode. Since Grass Valley Group cannot anticipate customer specific meta data, the
MovieData extension provides generic tag/value string pairs.

vendorName = "Grass Valley Group"
dataClass = "MetaData"
dataType = "MovieData"

fieldOffset = undefined

Table 25. MovieData extension elements

Element Description

movielD (GUID) Globally unigue movie identifier. Thisis currently
just a place-holder.

nextEditNum (unsigned int) Integer that is incremented each time a new edit
adds media references to the movie.

commentsL en (int) Number of Unicode charactersin comments string.
comments(wchar_t[com- Comments

mentsL en])

tag (wchar_t[80]) MetaData label string.

valuel en (int) Number of unicode charactersin value string.

value (wchar_t [valueLen]) MetaData value string.

tag (wchar_t[80]) MetaData label string.

valuelen (int) Number of unicode charactersin value string.

value (wchar_t [valueLen]) MetaData value string.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 219

-
E Chapter 10 PdrMovie Extensions

SegmentData
This extension is used for media management applications and to support editing clients.

vendorName = "Grass Valley Group"
category = "MetaData"

dataType = "SegmentData"
fieldOffset = undefined

Table 26. SegmentData extension elements

Element Description
medial D (GUID) Globally unique mediaidentifier. Thisis currently just a
placehol der.
name (char[80]) Segment name string.
movieName(char[80]) Name of the movie that originally contained this seg-
ment.
editNum (unsigned int) ID used to identify synchronous segments.

220 Profile Software Development Kit User Preliminary — 12 July 2001

The PdrExtensionlnfo Data Structure

The PdrExtensioninfo Data Structure

#define PDR_EXTENSION LABEL LEN 32
#define PDR_EXTENSION DESCRIPTION LEN 80

typedef struct
MovieToken movie; /* The token for the movie with which the extension is to be regis-
tered. */

TrackToken track; /* The token for a track with which the extension is to be associ-
ated. The data can be associated with the movie itself by using 0
for the track value. */

MediaToken media; /* A media segment with which the extension is to be associated.
The data can be associated with the movie or track by using
PdrNullMediaToken for the media value. */

int fieldOffset; /* Number of fields from the start of the segment/track/movie.
Extensions influence a single point of time or a range of time
starting at fieldOffset. */

char vendorName [PDR_EXTENSION LABEL LEN+1]; /* Name of the software vendor which
defined the specific dataClass and dataType. For example: “Light-
works”, “EditStar”, or “Grass Valley Group”. */

char dataClass[PDR_EXTENSION LABEL LEN+1]; /* Class this type of extension data falls
into. This field may be used by client applications to exclude
certain classes of extensions. For example an extension whose cat-
egory 1s “AudioMixEffect” may be ignored by clients that don’t use

audio. */

char dataType [PDR_EXTENSION DESCRIPTION_ LEN+1]; /* Identifies the extension data
structure */

char dataName [PDR_EXTENSION DESCRIPTION LEN+1]; /* This string allows you to give the
extension a meaningful name. */

char dataVersion[PDR_EXTENSION LABEL LEN+1]; /* Anticipates future changes to a par-
ticular extension data structure. */

UINT datalen; /* Number of bytes in the extension data structure.*/

} PdrExtensionInfo;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 221

-
E Chapter 10 PdrMovie Extensions

222 Profile Software Development Kit User Preliminary — 12 July 2001

Chapter 1 1

Profile RS-422 Serial Control

This chapter looksat programsthat perform serial communication by using wrapper functions
that implement the RS-422-based Profile serial protocol. The functions with the prefix Pp are
wrappers that contain the serial commands. For reference information on the serial
communication calls, see Chapter 3, Profile Serial Communication Protocol of the Profile
DK Reference Manual.

The programs in this chapter demonstrate how to:
» browse a Profile file system remotely;

» play amovie remotdly;

» send packets over a network;

 receive packets; and

» perform packet communications.

Near the end of this chapter isalisting of the RS-422 communication header file, ppheader.h.
Thefunction declarationsin that header file specify the serial utility functions. The definitions
of these functions are contained in the following examples:

» Example 19, ppsend.c on page 234,
» Example 20, ppreply.c on page 254; and
e Example 21, ppcomm.c on page 268.

Browsing a remote Profile file system

Example 17, ppbrowse.c demonstrates the use of the serial Pdr inventory API calls to output
an entire inventory on aremote Profile video server using a RS-422 connection. This codeis
similar to the browse sample operating on alocal Profile or aremote Profile using Ethernet.

(See Browsing a remote Profile file system on page 223.)

Example 17 makes use of various serial programming utility functions provided in
Example 19, Example 20, and Example 21. Tokensfor dataset, group and clip enumeration are
used in the low-level support utilities.

Once the connection is established with PpOpenComm (see Packet communication on
page 268), the sample code function Identifylnventory performs the majority of the work.
PpFindFirstDataset and PpFindNextDataset walk through all of the available datasets. The
TekPdr library equivalents of these functions are PdrFindFir stDataset and
PdrFindNextDataset, respectively.

PpFindFirstGroup and PpFindNextGroup walk through all of the available groups within
each dataset. PdrFindFirstGroup and PdrFindNextGroup are equivalents.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 223

Chapter 11 Profile RS-422 Serial Control

Similarly, PpFindFirstM ovie (like Pdr FindFirstM ovie) and PpFindNextM ovie (similar to
Pdr FindNextM ovie) walk through each movie within agroup. PpGetM ovieStateretrievesa
PdrM ovieState structure, which it then uses to format some basic information about a movie.
The walk-through of datasets, movies and groupsis straightforward, demonstrated in three
nested control loops.

Example 17. ppbrowse.c

//
// File: ppbrowse.c
// This is a part of the Grass Valley Group Profile Source Code Samples.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.

// Sample code to list all the movie clips in the inventory.

#include <stdio.h>
#include <<stdlib.h>
#include <windows.h>
#include <limits.h>
#include <string.h>
#include <tekvdr.h>
#include <profcmd.h>
#include "ppheader.h"

// Module global variables.
static VdrHandle sPort;

// String that specifies which comm port to use.
char *comm;

// Fxn: convert a FILETIME to a string.
static const char *sMonth[] = {
llJanll , llFeb n , llMarIl , IlAprll , IlMay-Il , IIJLmH ,
llJul n , llAugll , llSepll , "OCt n , IINOVH , IlDec n

}i
//

// Format the FILETIME date for printout.

//

void MakeTimeString (FILETIME *ft, char *string)
SYSTEMTIME st;
WORD thisYear, thisMonth;

GetLocalTime (&St) ;
thisYear = st.wYear;
thisMonth= st.wMonth;
FileTimeToSystemTime (ft, &st);
if ((thisYear == st.wYear) |
((thisYear == (st.wYear+l)) && (thisMonth < st.wMonth))) {
sprintf (string, "%3s %2d %02d:%02d",
sMonth [st.wMonth-1], st.wDay, st.wHour, st.wMinute);

else {

224 Profile Software Development Kit User Preliminary — 12 July 2001

Browsing a remote Profile file system

sprintf (string, "%3s %2d, %4d", sMonth[st.wMonth-1], st.wDay, st.wYear);

}

} // MakeTimeString

//
// Print out usage line.
//

void Usage (const char* progName)
printf ("Usage: %s comm port\n", progName) ;
} // Usage

//
// initialize the PDR100. Report any anomalies.
//
BOOL SetupResources (void)
{
// Open the connection and port.
if (!PpOpenComm())
printf ("Open comm failed.\n");
exit (1) ;
!
if (!PpOpenPort (0, &sPort)) {
printf ("Could not open port.\n") ;
exit (1) ;
1

return TRUE;

} // SetupResources
//
// Walk through the movie inventory and print it out.
//
void IdentifyInventory (void)
{
char create[16];
char last[16];
BOOL dsetGood, grpGood;

static char dataset [PDR MAX DSET NAME LEN+1];

static char name[PDR MAX MOVIE NAME LEN+1];

static char group [PDR MAX GROUP NAME LEN+1] ;

static char startName [PDR MAX COMPLEX MEDIA NAME LEN+1];

//
// Find the first known dataset. The name is placed in the buffer dataset.
// process the dataset information
//
if (!PpFindFirstDataset (dataset)) {
printf ("Cannot get first dataset.\n");
return;

}

dsetGood = TRUE;
while (ppDsetTok > 0 && dsetGood) {

// Now look for groups within this dataset.
grpGood = TRUE;
strcpy (startName, dataset) ;

// Find the first group within the dataset.

// Returns the group name in the buffer "group".
if (!PpFindFirstGroup (startName, group)) {

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 225

Chapter 11 Profile RS-422 Serial Control

printf ("Cannot get the first group in %s\n", startName);
return;

}

// Process the group information.
while (ppGrpTok > 0 && grpGood) {
printf ("$s/%$s\n", dataset, group) ;

// Start build the complex movie name.
sprintf (startName, "%s/%s/", dataset, group);

// Find the first movie name within this group.
if (!PpFindFirstMovie (startName, name)) {
printf ("Cannot get the first movie name.\n") ;
return;

}

// Process the movie information.

while (ppMovieTok > 0) {
// State structure found in pdrtypes.h
PdrMovieState state;

printf (" /%s\n", name) ;

// Complete building the complex movie name.
sprintf (startName, "%s/%s/%s", dataset, group, name) ;

// Get information about a stored movie without opening it.
// StartName is now the complex Movie name.
if (!PpGetMovieState (startName, &state)) {

printf ("Cannot get state of %s\n", startName);

return;

}

// Print out the status of the movie.

printf (" Length- min %d, max %d\n",
state.minLength, state.maxLength) ;

MakeTimeString (&state.createTime, create);

MakeTimeString (&state.lastChangedTime, last);

printf (" Time- create %s, changed %$s\n", create, last);

printf (" #Tracks- v %d, a %d, tc %d\n",
state.numV, state.numd, state.numT);

printf (" Attr.- OpenExclusive %s,\n",
(state.attributes & PdrOpenExclusive)? "Yes":"No") ;

printf (" RO %s, Cntlr %s, Locked %s,\n",
(state.attributes & PdrReadOnly)? "Yes" : "No",
(state.attributes & PdrControlRO)? "Yes" : "No",
(state.attributes & PdrLocked)? "Yes" : "No");

// Find the next movie in this group.
if (!PpFindNextMovie (name)) {
printf ("Cannot get next movie.\n");
return;

if (lname([0]) {
break;
}

}

// Release the movie enumeration token used to track the current
// position within the an enumeration list.
if (!PpCloseFind (ppMovieTok)) {

226 Profile Software Development Kit User Preliminary — 12 July 2001

printf ("Cannot close movie find\n") ;
return;

1

if (!PpFindNextGroup (group)) {
printf ("Cannot find next group\n");
return;

1

if (!group[0]) {
grpGood = FALSE;

}

printf (" \n");

if (!PpCloseFind (ppGrpTok)) {
printf ("Cannot close group find\n") ;
return;

}

// Look for the next dataset.

if (!PpFindNextDataset (dataset)) ({
printf ("Can’t find next dataset\n");
return;

if (!dataset[0]) {
dsetGood = FALSE;
1

}

if (!PpCloseFind (ppDsetTok)) {
printf ("Cannot close dataset find\n");
1

} // IdentifyInventory

//
// The main entry point.

//

void main(int argc, char *argv([])

{

int i = 1;

// Read in the required comm port.
if (argv[i]l && argv[i] [0] != *-") {
comm = argv[i];
} else {
Usage (argv[0]) ;
exit (1) ;

}

if (SetupResources()) {
IdentifyInventory () ;

if (!PpClosePort (sPort)) {

printf ("Could not close port\n") ;
exit (1) ;

}

} // main

Preliminary — 12 July 2001

Browsing a remote Profilefile system

Profile Software Devel opment Kit User 227

-
E Chapter 11 Profile RS-422 Serial Control

228

Playing a movie remotely

Example 18, ppplay.c shows you how to play a movie using RS-422 serial communication
with a Profile video server. In this example, the compression format of the video must be
JPEG, and optiona mark-in and mark-out points may be specified on the command line.
Example 18 is similar to the nonserial code in Example 2, play.c on page 58, which playsto a
local Profile or over the Ethernet connection (see).

First, the appropriate resources must be allocated for later use. A connection to the remote
machineis established over RS-422 with PpOpenComm, and aport isopened using a call to
the function PpOpenPort.

Next, a JPEG codec resource is allocated and attached to the port with PpAllocateResour ce.
The codec allows video decoding to occur on the specified port. Similarly, two audio codecs
are allocated and attached to the port, also with PpAllocateResource, one for each stereo
channel. Likewise, the video input and output resources are then allocated and attached to the
port. Finally, default and scheduled events (defined with PpDefaultEvent and
PpScheduledEvent) are set up to describe the connections that occur when the port isin
various states.

Once the resources are obtained, we can perform the playback. The movieis opened with
PpOpenM ovie and attached using the wrapper PpAttachOpenM ovie. Optional mark-in and
mark-out points are set with the functions PpSetM ovieM ar kln and PpSetM ovieM ar kOut.

After this, the program cuesthe moviefor play (PpCuePlay). It begins playing when thevideo
server isinstructed to shuttle (PpShuttlePlay). After the specified duration has passed, idle
mode is set with PpldlePort and the movie is detached using PpDetachM ovie and closed
with PpCloseM ovie. Finally, the port is closed (PpClosePort). This completes the process
and the program is stopped.

If an error occurs at any step of the way, an appropriate error message is sent to the display to
help troubleshoot.

Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely

Example 18. ppplay.c

//

// File: ppplay.c

// This sample program plays a specified JPEG clip, using
// serial communications in Profile Protocol over RS422.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

// Usage: play movie name [-i markin] [-o markout]
//

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include <limits.h>

#include <string.h>

#include <tekvdr.h>

#include <profcmd.h>

#include "ppheader.h"

#define SHUTTLE RATE 1.0
#define NUM INPUT 0
#define NUM OUTPUT 0

#define NUM CODEC 0

// For demo application, we will have several resources. Enumerate
// them for use as indeces into an array for AttachMovie calls.

// First three are Codecs.

enum CodecResEnum { VCOD, ACOD1, ACOD2, MAX CODEC };

enum ResEnum { VIN = MAX CODEC, VOUT, AOUT1, AOUT2, MAX RSRC };

// Module static variables.

static VdrHandle sPort;

static ResourceHandle sResHdls [MAX RSRC] ;
static char* spMovieName;

static UINT sMarkIn = 0;

static UINT sMarkOut = 0;

// String that specifies which comm port to use.
char *comm;

//
// Print out usage line.
//
void Usage (const char* progName)
printf ("Usage: %s movie name comm port [-i markin] [-o markout]\n", progName) ;
} // Usage
//
// Initialize the Profile. Report any anomalies.
//
// Return TRUE if successful, otherwise FALSE.
//

BOOL SetupResources (void)
{

printf ("Starting setup...\n");

// Open the communications port.

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 229

Chapter 11 Profile RS-422 Serial Control

if (!PpOpenComm())
printf ("Open comm failed.\n");
return FALSE;

if (!PpOpenPort (0, &sPort)) {
printf ("Could not open port.\n") ;
return FALSE;

//

// Now, get the necessary resources for the demo.

//

// Allocate a Video Codec.

if (!PpAllocateResource(sPort, ResourceVideoCodec, NUM CODEC, &sResHdls[VCOD])) {
printf ("Could not allocate video port.\n") ;
return FALSE;

// Allocate two Audio Codecs.

if (!PpAllocateResource(sPort, ResourceAudioCodec, NUM INPUT, &sResHdls[ACOD1])) {
printf ("Could not allocate the first audio codec.\n");
return FALSE;

if (!PpAllocateResource(sPort, ResourceAudioCodec, NUM INPUT+1l, &sResHdls [ACOD2])) {
printf ("Could not allocate the second audio codec.\n") ;
return FALSE;

// Get video out and in resources.

if (!PpAllocateResource(sPort, ResourceVideoOutput, NUM OUTPUT, &sResHdls [VOUT])) {
printf ("Could not allocate video out.\n");
return FALSE;

if (!PpGetResourceConnectHandle (sPort, ResourceVideoInput, NUM INPUT, &sResHdls [VIN])) {
printf ("Could not allocate video in.\n");
return FALSE;

// Get audio resources.

if (!PpAllocateResource(sPort, ResourceAudioOutput, NUM INPUT, &sResHdls[AOUT1])) {
printf ("Could not allocate the first audio output.\n");
return FALSE;

if (!PpAllocateResource(sPort, ResourceAudioOutput, NUM INPUT+1, &sResHdls[AOUT2])) {
printf ("Could not allocate the first audio output.\n");
return FALSE;

// Set the default event.
if (!PpDefaultEvent (sPort, EventComnectResources, sResHdls[VIN],
sResHdls [VOUT], 0, 0)) {
printf ("Could not set default event.\n");
return FALSE;

// Schedule the event.
if (!PpScheduleEvent (sPort, INT MIN, EventConnectResources, sResHdls [VCOD],
sResHdls [VOUT], 0, 0)) {
printf ("Could not schedule event.\n") ;
return FALSE;

}

return TRUE;

230 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely

} // SetupResources

//
// Play the movie clip.

//

void StartPlay (void)

{
INT oldpos, newpos;
MovieToken movieTok;
MovieHandle movieHdl;
UINT portStatusArray[8];
UINT mask;

// Open and attach the movie.
if (!PpOpenMovie (spMovieName, 0, &movieTok)) {
printf ("Movie %s does not exist.\n", spMovieName) ;
return;
!
if (!PpAttachOpenMovie (movieTok, MAX CODEC, sResHdls, 0, ShiftAfter, &movieHdl)) {
printf ("Cannot attach the open movie.\n") ;
return;

}

// Set markin and markout if required.
if (sMarkIn) {
if (!PpSetMovieMarkIn (movieHdl, sMarkIn)) {
printf ("Could not set markin.\n");
return;

}

if (sMarkOut) {
if (!PpSetMovieMarkOut (movieHdl, sMarkoOut)) {
printf ("Could not set markout.\n");
return;

}

// Cue up playback of media attached with PpAttachOpenMovie.
if (!PpCuePlay(sPort)) {

printf ("Cannot cue play.\n");

return;

}

// Begin motion playback.

if (!PpShuttlePlay(sPort, SHUTTLE RATE)) {
printf ("Cannot begin playback.\n") ;
return;

}

printf ("Starting playback...\n") ;

// Wait while movie plays.
// When newpos and oldpos are the same, we’re done playing out.
newpos = 0;
mask = Datl GetPosition;
do |
oldpos = newpos;
Sleep (100) ; // wait 1/10th second
if (!PpGetPortStatus (sPort, &mask, portStatusArray, 6)) {
printf ("Can not get Port status.\n");
return;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 231

Chapter 11 Profile RS-422 Serial Control

}

newpos = portStatusArray[1];
} while (newpos > oldpos) ;

// Cease play back.

if (!PpIdlePort (sPort)) {
printf ("Cannot move to idle.\n");
return;

}

// Detach the movie handle from the chamnnel.
if (!PpDetachMovie (movieHdl)) ({
printf ("Cannot detach movie.\n") ;
return;

}

// Close the movie.

if (!PpCloseMovie (movieTok)) {
printf ("Cannot close movie.\n");
return;

}

} // StartPlay

//
// Cleanup by releasing resources and closing the control port.

//

void Cleanup (void)

{

printf ("Starting cleanup...\n");

if (!PpClosePort (sPort)) {
printf ("Cannot close port.\n");
return;

}

sPort = 0;

} // Cleanup
//

// The main entry point.

//
void main(int argc, char *argv([])

{

BOOL rtn = TRUE;
int i=1;

// Read in the required movie name.
i=1;
if (argv[il) {
spMovieName = argv[i];
1

else {
Usage (argv[0]) ;
exit (1) ;

!

i++;
// Read in the required communications port.

if (argv[i] && argv[i] [0] != ‘-7) {
comm = argv[i];
1

232 Profile Software Development Kit User Preliminary — 12 July 2001

Playing a movie remotely

else {
Usage (argv[0]) ;
exit (1) ;

!

i++;

// Process optional markin and markout points.
while (i < arge) {
if (argv[i] [0] == *-')
switch (argv[i] [1]) {
case ‘i’:
1++;
sMarkIn = atoi (argv[i++]);
break;
case ‘o’:
1++;
sMarkOut = atoi(argv([i++]);
break;
default:
Usage (argv[0]) ;
exit (1) ;
1
else {
Usage (argv[0]) ;
exit (1) ;

}

if (SetupResources()) {
StartPlay () ;
}

Cleanup () ;

} // main

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 233

Chapter 11 Profile RS-422 Serial Control

Sending packets

Example 19, ppsend.c contains various utility functionsfor sending packetsin Profile protocol
over aserial RS-422 connection. The function declarations are shown in ppheader.h.

The mgjority of functionsisthis group act as wrappers around specific Profile API calls and
use the lower-level reply functions, defined in Example 20, ppreply.c. For example,
PpGetPortStatus issues the command to get the port status, then calls
PpGetPortStatusReply to parse the specific reply to that command. Each wrapper function
returns TRUE upon success, otherwise FAL SE.

Example 19. ppsend.c

//

// File: ppsend.c

// This is a part of the Grass Valley Group Profile Source Code Samples.
//

/// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of

// the United States.

//

// This source code is only intended as a supplement to

// Profile Development Tools and documentation of Native Protocol.

//

#include <stdio.h>

#include <windows.h>

#include <tekvdr.h>

#include "ppcomm.h"

#include <profhdr.h>

#include <profcmd.h>

#include "sample.h"

#define MAX CLIP 5
extern MovieHandle moviehandle [MAX CLIP];
extern EventHandle eventhandle;

extern ConnectHandle connection;

#define MAX RESOURCE 32

//

// Get Transaction Reply

// cmd:

// datal: transaction number; the command will return the reply for the given
// transaction if it is available.

// reply:

// If the given transaction reply is ready, the "transaction reply" for the
// command which started the transaction is returned (see details for each

// command) .

// If the given transaction reply is unavailable, the following is returned:
// byte0: 0x02 (Stx)

// bytel: byte count (2)

// byte2: 0x00

// byte3: Oxff

// byte4: checksum

//

BOOL PpGetTransactionReply (UINT xactno)

char buffer[256];

buffer [PRO DATAl INDEX] = xactno;

234 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

if (!PpSendCommand (buffer, 1, Cmdl SystemAccess, Cmd2 GetTransactionReply)) {
return FALSE;
1

return TRUE;

} // PpGetTransactionReply

//

// Get Port Status

// cmd:

// datal-4: handle of port for which status is to be returned.
// data5-6: mask indicating what status information is to be returned:
// bit0: play/record state

// bitl: current position (field number) along timeline
// bit2: movie at current position

// bit3: motion-play mode

// bit4: still-play mode

// bit5: current play rate

// bit6 .. bitl5: reserved

// reply:

// datal-2: a copy of the request mask from command data5-6
// (if the bit is not implemented, it will be cleared)

// data3-n: status values requested

// (value corresponding to the lowest bit in the mask first):
// Play/record state (1 byte): one of the following values:
// 2: record-cued

// 3: jog-play

// 4: jog-record

// 5: shuttle-play

// 6: shuttle-record

// Current position along timeline (integer, 4 bytes)

// Current movie on timeline (4 bytes)

// Motion-play mode (1 byte): one of the following values:
// 0: normal play

// 1: loop play

// 2: bounce play

// 3: limited play

// 4: slaved play

// Still-play mode (1 byte): one of the following values:
// 0: still play by field

// 1: still play by frame

// Current play rate (float, 4 bytes)

//

BOOL PpGetPortStatus (VdrHandle portHandle, UINT* mask, UINT values[], UINT numvals)

{
char buffer[16];
* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;
* ((USHORT *)(&buffer[PRO_DATAl_INDEX+4])) = (USHORT) (*mask) ;

if (!PpSendCommand (buffer, 6, Cmdl PortAccess, Cmd2 GetPortStatus)) {
return FALSE;
1

if (!PpGetPortStatusReply(mask, values, numvals)) {
return FALSE;
1

return TRUE;

} // PpGetPortStatus

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 235

Chapter 11 Profile RS-422 Serial Control

//

// Open Por

// cmd:

// (no agruments are needed for this command. The following is optional
// datal-8: Named Configuration Space

// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: handle for port. If port cannot be opened, this value will be 0.
//

BOOL PpOpenPort (char* ncsname, VdrHandle* portHandle)
{

char buffer[16];

UINT len;

if (ncsname) {
strcpy (&buffer [PRO DATAl INDEX], ncsname) ;
len = strlen(ncsname)+1;

else {

len = 0;
1

if (!PpSendCommand (buffer, len, Cmdl PortAccess, Cmd2 OpenPort)) {
return FALSE;
1

// Synchronous operation.

if (!PpOpenPortReply (portHandle)) {
return FALSE;

}

return TRUE;

} // PpOpenPort

//

// Close Port

// cmd:

// datal-4: handle of port

// reply:

// Ack + transaction number

// xact :

// datal: transaction number
// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpClosePort (VdrHandle portHandle)

{
char buffer[16];
* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;
if (!PpSendCommand (buffer, 4, Cmdl PortAccess, Cmd2 ClosePort)) {
return FALSE;
1

// Synchronous operation.
if (!PpErrorNumReply(Cmdl PortAccess, Cmd2 ClosePort)) {
return FALSE;

236 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

}

return TRUE;

} // PpClosePort

//

// Close Movie

//

// cmd:

// datal-4: movie token
//

// reply:

// 0: OK

// 1-255 (error condition)
//

//

BOOL PpCloseMovie (MovieToken movie)
{
char buffer[16];
* ((MovieToken *) (&buffer [PRO DATA1l INDEX])) = movie;

if (!PpSendCommand (buffer, 4, Cmdl PdrMovieAccess, Cmd2 PdrCloseMovie)) {
return FALSE;
1

// Synchronous operation.

if (!PpPdrErrorNumReply (Cmdl PdrMovieAccess, Cmd2 PdrCloseMovie)) {
return FALSE;

1

return TRUE;

} // PpCloseMovie

//

// Idle Port

// cmd:

// datal-4: handle of port

// reply:

// Ack + transaction number

// xact:

// datal: transaction number
// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpIdlePort (VdrHandle portHandle)

{
char buffer[16];
* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;

if (!PpSendCommand (buffer, 4, Cmdl PortAccess, Cmd2 Idle)) {
return FALSE;
1

// Synchronous operation.

if (!PpErrorNumReply(Cmdl PortAccess, Cmd2 Idle)) {
return FALSE;

1

return TRUE;

} // PpIdlePort

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 237

Chapter 11 Profile RS-422 Serial Control

//

// Cue Play

// cmd:

// datal-4: handle of port

// reply:

// Ack + transaction number

// xact:

// datal: transaction number
// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpCuePlay (VdrHandle portHandle)

{

char buffer[16];
* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;

if (!PpSendCommand(buffer, 4, Cmdl PortAccess, Cmd2 CuePlay)) {
return FALSE;
1

// Synchronous operation.

if (!PpErrorNumReply (Cmdl PortAccess, Cmd2 CuePlay)) {
return FALSE;

1

return TRUE;

} // PpCuePlay

//

// Shuttle Play

// cmd:

// datal-4: handle of port

// data5-8: shuttle speed (float); if no bytes 5-8, speed 1.0 assumed.
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpShuttlePlay (VdrHandle portHandle, double rate)

{

char buffer[16];

* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;

*((float *) (&buffer [PRO DATAl INDEX+4])) = (float)rate;

if (!PpSendCommand (buffer, 8, Cmdl PortAccess, Cmd2 ShuttlePlay)) {
return FALSE;

1

// Synchronous operation.

if (!PpErrorNumReply(Cmdl PortAccess, Cmd2 ShuttlePlay)) {
return FALSE;

1

return TRUE;

} // PpShuttlePlay

238 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

//

// Set Movie Mark In

// cmd:

// datal-4: movie handle

// data5-data8: mark-in field number
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpSetMovieMarkIn (MovieHandle movieHandle, UINT markin)

{

char buffer[16];

* ((MovieHandle *) (&buffer [PRO DATA1 INDEX])) = movieHandle;
* ((UINT *)(&buffer[PRO_DATAI_INDEX+4])) = markin;

if (!PpSendCommand (buffer, 8, Cmdl AttachedMovieAccess, Cmd2 SetMovieMarkIn)) {
return FALSE;

// Synchronous operation.

if (!PpErrorNumReply(Cmdl AttachedMovieAccess, Cmd2 SetMovieMarkIn)) {
return FALSE;

1

return TRUE;

} // PpSetMovieMarkIn

//

// Set Movie Mark Out

// cmd:

// datal-4: movie handle

// data5-data8: mark-out field number
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpSetMovieMarkOut (MovieHandle movieHandle, UINT markout)

{

char buffer[16];

* ((MovieHandle *) (&buffer [PRO DATA1 INDEX])) = movieHandle;
* ((UINT *)(&buffer[PRO_DATAI_INDEX+4])) = markout;

if (!PpSendCommand (buffer, 8, Cmdl AttachedMovieAccess, Cmd2 SetMovieMarkOut)) {
return FALSE;
1

// Synchronous operation.

if (!PpErrorNumReply (Cmdl AttachedMovieAccess, Cmd2 SetMovieMarkOut)) {
return FALSE;

1

return TRUE;

} // PpSetMovieMarkOut
//

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 239

Chapter 11 Profile RS-422 Serial Control

// Attach Movie with Marks

// cmd:

// datal-n: ASCIZ name

// data (n+l) - (n+4) : mark-in field number

// data (n+5) - (n+8) : mark-out field number

// data (n+9) - (n+13) : handle of port to which movie is to be attaached
// --- if no more arguments -> attached at end of list w/ appropriate shift
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: handle of attached movie (0 if failure)

//

BOOL PpAttachMovie Marks (VdrHandle portHandle, char* nambuf, UINT markin,
UINT markout, MovieHandle* movieHandle)
{

char buffer[256];
// Include trailing null.
UINT len = strlen(nambuf) + 1;

if (len > 235) {
// Too much.
return FALSE;

}

strcpy (&buffer [PRO DATA1 INDEX], nambuf) ;

* ((UINT *) (&buffer [PRO DATA1 INDEX+len])) = markin;
* ((UINT *)(&buffer[PRO_DATAl_INDEX+len+4])) = markout;
* ((VdrHandle *) (&buffer [PRO DATAl INDEX+len+8])) = portHandle;

if (!PpSendCommand (buffer, len+l12, Cmdl AttachedMovieAccess,
Cmd2_AttachMovieWithMarks)) {
return FALSE;

}

// Synchronous operation.

if (!PpAttachMovieReply (movieHandle, Cmd2 AttachMovieWithMarks)) {
return FALSE;

1

return TRUE;

} // PpAttachMovie Marks

//

// Detach Movie

// cmd:

// datal-4: movie handle

// --- if no more arguments -> use appropriate shift
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: handle of attached movie (0 if failure)
//

BOOL PpDetachMovie (MovieHandle movieHandle)

{

char buffer[16];
* ((MovieHandle *) (&buffer [PRO DATA1 INDEX])) = movieHandle;

if (!PpSendCommand (buffer, 4, Cmdl AttachedMovieAccess, Cmd2 DetachMovie)) {
return FALSE;
1

240 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

// Synchronous operation.

if (!PpErrorNumReply (Cmdl AttachedMovieAccess, Cmd2 DetachMovie)) {
return FALSE;

1

return TRUE;

} // PpDetachMovie

//

// Detach Media

// cmd:

// datal-4: movie handle

// --- if no more arguments -> use appropriate shift
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: handle of attached movie (0 if failure)
//

BOOL PpDetachMedia (MediaHandle mediaHandle, UINT shift)

{

char buffer[16];

* ((MovieHandle *) (&buffer [PRO DATA1 INDEX])) = mediaHandle;

buffer[PRO_DATAl_INDEX+4] = (UCHAR)shift;

if (!PpSendCommand (buffer, 5, Cmdl AttachedMediaAccess, Cmd2 DetachMedia)) {
return FALSE;

// Synchronous operation.

if (!PpErrorNumReply (Cmdl AttachedMediaAccess, Cmd2 DetachMedia)) {
return FALSE;

1

return TRUE;

} // PpDetachMedia

//

// Allocate Resource

// cmd:

// datal-4: handle of port

// data5: type of resource to be allocated; one of
// 0: audio codec

// 1: video codec

// 2: video input

// 3: video output

// 4: LTC input

// 5: VITC input

// 6: timecode generator

// 7: LTC output

// 8: VITC output

// 9: timecode recorder

// a: audio output

// data6: physical number of resource to be allocated.
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: handle to allocated resource (0 if resource could not be allocated)
//

BOOL PpAllocateResource (VdrHandle portHandle, UCHAR type, UINT num, ResourceHandle* rscHandle)

{

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 241

242

Chapter 11 Profile RS-422 Serial Control

char buffer[16];

* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;
buffer [PRO DATA1l INDEX+4] = type;
buffer[PRO_DATAl_INDEX+5] = (UCHAR) num;

if (!PpSendCommand (buffer, 6, Cmdl ResourceAccess, Cmd2 AllocateResource)) {

return FALSE;

}

// Synchronous operation.

if (!PpResourceHandleReply (rscHandle, Cmd2 AllocateResource)) {

return FALSE;

}

return TRUE;

} // PpAllocateResource

//

// Get Resource Connect Handle

// cmd:

// datal-4: handle of port

// data5: type of resource; one of
// 0: audio codec

// 1: video codec

// 2: video input

// 3: video output

// 4: LTC input

// 5: VITC input

// 6: timecode generator

// 7: LTC output

// 8: VITC output

// 9: timecode recorder

// a: audio output

// data6: physical number of resource to be allocated.
// reply:

// Ack + transaction number

// xact:

// datal: transaction number

// data2-5: connect handle to resource (0 if resource has no connection capability)
//

BOOL PpGetResourceConnectHandle (VdrHandle portHandle, UCHAR type, UINT num, ResourceHandle*

rscHandle)

{

char buffer[16];

* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = portHandle;

buffer [PRO DATA1 INDEX+4] = type;
buffer [PRO DATA1 INDEX+5] = (UCHAR)num;

if (!PpSendCommand (buffer, 6, Cmdl ResourceAccess, Cmd2 GetResConnectHandle)) {

return FALSE;

}

// Synchronous operation.

if (!PpResourceHandleReply (rscHandle, Cmd2 GetResConnectHandle)) {

return FALSE;

return TRUE;

} // PpGetResourceConnectHandle

Profile Software Development Kit User

Preliminary — 12 July 2001

//

// Default Event

//

cmd:
datal-4: Port handle
data-5: Event type:
2: mix audio
3: connect Resources
4: set timecode generator time
5: set timecode generator user bits
data6-9 source resource handle
[This section is dependant on the type of event as follows:]
data 10-13: Connect Resource: destination resource handle
Mix Audio: destination resource handle
14-17 mix level (0.0...1.0)
18-21: number of fields for duration of mix
Set TC Gen Time: timecode
14-17: field number at which to activate
Set TC Gen bits: use bits pattern

Sending packets

BOOL DefaultEvent (VdrHandle vdrHandle, UINT evttyp, ResourceHandle srcHandle, ResourceHandle
destHandle, double mix, UINT noflds)

{

char buffer[24];

* ((VdrHandle *) (&buffer [PRO DATA1 INDEX])) = vdrHandle;
buffer[PRO_DATAl_INDEX+4] = evttyp;
* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+5])) = srcHandle;

* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+9])) destHandle;

if (!PpSendCommand (buffer, 13, Cmdl EventAccess, Cmd2 DefaultEvent)) {
return FALSE;

// Synchronous operation.

if (!PpErrorNumReply(Cmdl EventAccess, Cmd2 DefaultEvent)) {
return FALSE;
1

return TRUE;

} // PpDefaultEvent

//

// Schedule Event

//
//
//
//
//

cmd:
data 1-4: port handle
5-8: field number for the event timing
9: Event type broken down as follows:

3: Commect Resource

2: Mix Audio

4: Set Timecode Generator Time

5: Set Timecode Generator User bits

10-13: source resource handle
[this next section is dependaant on the type of event as follows]
14-17: Connect Resource: destination resource handle
Mix Audio: destination resource handle
18-21: mix level (0.0...1.0)
22-25: number of fields for duration of mix
Set TC Gen Time: timecode
Set TC Gen bits: use bits pattern

BOOL PpScheduleEvent (VdrHandle vdrHandle, INT fldno, UINT evttyp,

Preliminary — 12 July 2001

ResourceHandle srcHandle, ResourceHandle destHandle,

Profile Software Devel opment Kit User 243

Chapter 11 Profile RS-422 Serial Control

double mix, UINT noflds)

char buffer[24];

* ((VdrHandle *) (&buffer [PRO DATA1 INDEX])) = vdrHandle;

* ((UINT *)(&buffer[PRO_DATAI_INDEX+4])) = fldno;

buffer [PRO DATA1 INDEX+8] = evttyp;

* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+9])) = srcHandle;

* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+13])) = destHandle;

if (!PpSendCommand (buffer, 17, Cmdl EventAccess, Cmd2 ScheduleEvent)) {
return FALSE;

}

// Synchronous operation.
if (!PpGetScheduleEventReply (&eventhandle)) {
return FALSE;

}

return

TRUE;

} // PpScheduleEvent

//

// Open Movie

//
//
//
//
//
//

cmd:

data 1-n: complex move name
data (n+l)-(n+4): flags
PdrExclusive - 0x0040 (else 0)

BOOL PpOpenMovie (char *moviename, UINT flags, MovieToken* movietoken)

{

char buffer[256];
UINT len = strlen(moviename) + 1;

strcpy (&buffer [PRO DATA1 INDEX], moviename) ;
* ((UINT *) (&buffer [PRO DATA1 INDEX+len])) = flags;

if (!PpSendCommand (buffer, len+4, Cmdl PdrMovieAccess, Cmd2 PdrOpenMovie)) {
return FALSE;

}

// Synchronous operation.
if (!PpGetOpenMovieReply (movietoken)) {
return FALSE;

}

return

TRUE;

} // PpOpenMovie

//

// Attach Open Movie

//
//

cmd:

datal-4: movie token from OpenMovie
data5: number of resources to use
dataé- (n) : resource handles to use (maxiumum of 32)

[if there are no arguments after the port handle, the movie will be
attached at the end of the list with a shift appropriate to the current position]
data (n+l) - (n+4) : handle of movie before which this movie should be attached
Use value 0 to attach at the end of the list of movies.
data (n+5) : shift move, one of

244 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

// 0: shift previously attached movies before newly attached movie
// 1: shift previously attached movies after newly attached movie
//

BOOL PpAttachOpenMovie (MovieToken movietoken, UINT num, ResourceHandle* rsrchands,
UINT after, UINT shift, MovieHandle* moviehandle)

char buffer[256];
int len;
UINT i;

* ((MovieToken *) (&buffer [PRO DATA1l INDEX])) = movietoken;
if (num > MAX RESOURCE) ({
printf ("Resources exceed maximun number.\n") ;
return FALSE;
1
buffer [PRO DATA1 INDEX+4] = num;
len = 5;
for (1 = 0; 1 < num; i++) {
* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+len])) = (ResourceHandle) (*rsrchands++) ;
len = len+4;

* ((UINT *) (&buffer[PRO DATA1 INDEX+len])) = after;
buffer[PRO_DATAl_INDEX+len+4] = (UCHAR) shift;
buffer [PRO DATAl INDEX+len+5] = MarkLongest; // mark mode

if (!PpSendCommand (buffer, len+6, Cmdl AttachedMovieAccess, Cmd2 AttachOpenMovie)) {
return FALSE;
1

// Synchronous operation.

if (!PpGetAttachOpenMovieReply (moviehandle))
return FALSE;

1

return TRUE;

} // PpAttachOpenMovie

//

// Get Standard

//

// cmd:

// (no data bytes)

// reply:

// datal: the system standard
//

BOOL PpGetStandard (ConnectHandle* comnection)
{

char buffer[16];

if (!PpSendCommand (buffer, 0, Cmdl SystemAccess, Cmd2 GetStandard)) {
return FALSE;
1

if (!PpGetStandardReply (connection)) {
return FALSE;
1

return TRUE;

} // PpGetStandard

//
// Cue Record

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 245

Chapter 11 Profile RS-422 Serial Control

//

// cmd:

// datal-4: Port handle

//

BOOL PpCueRecord (VdrHandle porthandle)

{

char buffer[16];

* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = porthandle;
if (!PpSendCommand (buffer, 4, Cmdl PortAccess, Cmd2 CueRecord)) {
return FALSE;

// Synchronous operation.

if (!PpErrorNumReply(Cmdl PortAccess, Cmd2 CueRecord)) {
return FALSE;

1

return TRUE;

} // PpCueRecord

//
// Shuttle Record

//

// cmd:

// datal-4: Port handle

// data5-8: shuttle speed (float); if no bytes 5-8, assume speed 1.0
//

BOOL PpShuttleRecord (VdrHandle porthandle, double rate)

{

char buffer[16];

* ((VdrHandle *) (&buffer [PRO DATAl INDEX])) = porthandle;
*((float *) (&buffer [PRO DATAl INDEX+4])) = (float)rate;

if (!PpSendCommand (buffer, 8, Cmdl PortAccess, Cmd2 ShuttleRecord)) {
return FALSE;

// Synchronous operation.

if (!PpErrorNumReply(Cmdl PortAccess, Cmd2 ShuttleRecord)) {
return FALSE;

1

return TRUE;

} // PpShuttleRecord

//

// Close Find

// cmd:

// datal-4: token from Find First Dataset, Group, or Movie calls
//

BOOL PpCloseFind (EnumToken tok)
{
char buffer[16];
* ((EnumToken *) (&buffer [PRO DATA1 INDEX])) = tok;

if (!PpSendCommand (buffer, 4, Cmdl PdrMovieAccess, Cmd2 PdrCloseFind)) {
return FALSE;
1

// Synchronous operation.
if (!PpPdrErrorNumReply (Cmdl PdrMovieAccess, Cmd2 PdrCloseFind)) {

246 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

return FALSE;

}

return TRUE;

} // PpCloseFind

//

// Movie Exist

//
// cmd:
// datal-n: complex movie name

//

BOOL PpMovieExist (char* moviename, UINT* exist)

{

char buffer [256] ;
UINT len = strlen(moviename) + 1;

strcpy (&buffer [PRO DATA1 INDEX], moviename) ;

if (!PpSendCommand (buffer, len+4, Cmdl PdrMovieAccess, Cmd2 PdrMovieExist)) {
return FALSE;
1

// Synchronous operation.

if (!PpGetMovieExistReply (exist)) {
return FALSE;

}

return TRUE;

} // PpMovieExis

//

// Find First Dataset

//

// cmd:

// (not data bytes)

//

//

BOOL PpFindFirstDataset (char* dataset)

{

char buffer[16];

if (!PpSendCommand (buffer, 0, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstDataset)) {
return FALSE;
1

if (!PpGetFirstDatasetReply (dataset))
return FALSE;
}

return TRUE;

} // PpFindFirstDataset

//
//

// Find First Group

//
// cmd:
// datal-n: Datset name to walk through

//

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 247

Chapter 11 Profile RS-422 Serial Control

BOOL PpFindFirstGroup (char* dataset, char* group)

{

char buffer[32];
UINT len = strlen(dataset) + 1;

strcpy (&buffer [PRO DATA1 INDEX], dataset);

if (!PpSendCommand (buffer, len, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstGroup)) {
return FALSE;
1

if (!PpGetFirstGroupReply (group)) {
return FALSE;
}

return TRUE;

} // PpFindFirstGroup

//

// Find First Movie

//
// cmd:
// datal-n: dataset/group name to walk through

//
BOOL PpFindFirstMovie (char* datagrp, char* name)

{

char buffer[256];
UINT len = strlen(datagrp) + 1;

strcpy (&buffer [PRO DATA1 INDEX], datagrp);

if (!PpSendCommand (buffer, len, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstMovie)) {
return FALSE;
1

if (!PpGetFirstMovieReply (name)) {
return FALSE;
}

return TRUE;

} // PpFindFirstMovie

//

// Find Next Dataset

//
// cmd:
// datal-4: token from subsquent calls

//

BOOL PpFindNextDataset (char* dataset)
{
char buffer[16];
* ((EnumToken *) (&buffer [PRO DATAl INDEX])) = dset;

if (!PpSendCommand (buffer, 4, Cmdl PdrMovieAccess, Cmd2 PdrFindNextDataset)) {
return FALSE;
1

if (!PpGetNextDatasetReply (dataset)) {

return FALSE;

return TRUE;

248 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

} // PpFindNextDataset

//
// Find Next Group

//
// cmd:
// datal-4: token from subsquent calls

//
BOOL PpFindNextGroup (char* group)

{

char buffer[32];
* ((EnumToken *) (&buffer [PRO DATA1 INDEX])) = grp;

if (!PpSendCommand (buffer, 4, Cmdl PdrMovieAccess, Cmd2 PdrFindNextGroup)) {
return FALSE;
1

if (!PpGetNextGroupReply (group)) {
return FALSE;
}

return TRUE;

} // PpFindNextGroup

//

// Find Next Movie

//
// cmd:
// datal-4: token from subsquent calls

//

BOOL PpFindNextMovie (char* name)

{

char buffer[16];
* ((EnumToken *) (&buffer [PRO DATAl INDEX])) = movie;

if (!PpSendCommand (buffer, 4, Cmdl PdrMovieAccess, Cmd2 PdrFindNextMovie)) {
return FALSE;

if (!PpGetNextMovieReply (name)) {
return FALSE;
}

return TRUE;

} // PpFindNextMovie

//

// Get Movie State

//
// cmd:
// datal-n: Complex movie name.

//

BOOL PpGetMovieState (char* name, PdrMovieState* state)

{

char buffer[256] ;
UINT len = strlen(name) + 1;

strcpy (&buffer [PRO DATA1 INDEX], name) ;

if (!PpSendCommand (buffer, len, Cmdl PdrMovieAccess, Cmd2 PdrGetMovieState)) {

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 249

250

Chapter 11 Profile RS-422 Serial Control

return FALSE;

}

if (!PpGetMovieStateReply (state)) {
return FALSE;
}

return TRUE;

} // PpGetMovieState

//

// Get Next Track Token

//

// cmd:

// datal-4: Movie token.

// data5-6: Track Token.

//

// reply:

// datal-2: Next track token.
//

BOOL PpGetNextTrack (MovieToken movietoken, TrackToken* tracktoken)

{

char buffer[16];

* ((MovieToken *) (&buffer [PRO DATA1l INDEX])) = movietoken;

* ((TrackToken *) (&buffer [PRO DATA1l INDEX]+4)) = (USHORT) (*tracktcken) ;

if (!PpSendCommand (buffer, 6, Cmdl StoredMediaAccess, Cmd2 GetNextTrack)) {

return FALSE;

}

if (!PpGetNextTrackReply (tracktoken)) {
return FALSE;
}

return TRUE;
} // PpGetNextTrack

//

// Get Null Media Token

//

// cmd:

// (No command data bytes required
//

// reply:

// datal-8: Null media token

//

BOOL PpGetNullMediaToken (MediaToken* mediatoken)

{

char buffer[16];

if (!PpSendCommand (buffer, 0, Cmdl StoredMediaAccess, Cmd2 GetNullMediaToken)) {

return FALSE;

}

if (!PpGetNullMediaTokenReply (mediatoken)) {
return FALSE;
}

return TRUE;

} // PpGetNullMediaToken

//
// Get Media File Path

//

BOOL PpGetMediaPath (UINT* mask, MediaToken mediatoken, char* mediapath)

Profile Software Development Kit User

Preliminary — 12 July 2001

Sending packets

char buffer[16];

* ((USHORT *)(&buffer[PRO_DATAI_INDEX])) = (USHORT) (*mask) ;
* ((MediaToken *) (&buffer [PRO DATA1l INDEX+2])) = mediatoken;

if (!PpSendCommand (buffer, 10, Cmdl StoredMediaAccess, Cmd2 GetStoredMediaStatus)) {
return FALSE;
1

if (!PpGetMediaPathReply (mask, mediapath)) {
return FALSE;
}

return TRUE;

} // PpGetMediaPath

//

// Attach Media

//

// cmd:

// datal-n: name of media (Null terminated)

// data (n+1) - (n+4) : handle of resource to wich media is to be attached
// data (n+5) - (n+8) : Optional number of fields duration

// data (n+9) - (n+12) : handle of media before which this media is attached
// data (n+13) : Shiftmode

//

// reply:

// datal: transaction number

// data2-5: handle of attached media (0, if media could not be attachted
//

//

//

BOOL PpAttachMedia (char* namebuf, ResourceHandle rsrc, UINT duration,
MediaHandle* mediahandle, UINT after, UINT shift)

char buffer[256];

// Include trailing null.
UINT len = strlen (namebuf) + 1;

if (len > 235) {
// Too much.
return FALSE;

}

strcpy (&buffer [PRO DATA1 INDEX], namebuf) ;

* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+len])) = rsrc;
* ((UINT *) (&buffer [PRO DATA1 INDEX+len+4])) = duration;

* ((UINT *) (&buffer [PRO DATA1 INDEX+len+8])) = after;
buffer[PRO_DATAl_INDEX+len+l2] = (UCHAR) shift;

if (!PpSendCommand (buffer, len+13, Cmdl AttachedMediaAccess, Cmd2 AttachMedia)) {
return FALSE;
1

// Synchronous operation.

if (!PpAttachMediaReply (mediahandle, Cmd2 AttachMedia)) {
return FALSE;

1

return TRUE;

} // PpAttachMedia

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 251

Chapter 11 Profile RS-422 Serial Control

//

// Attach Media With Marks

//

// cmd:

// datal-n: name of media (Null terminated)

// data (n+1) - (n+4) : mark-in

// data (n+5) - (n+8) : mark-out

// data (n+9) - (n+12) : handle of resource to wich media is to be attached
// data (n+13) - (n+16) : Optional number of fields duration

// data (n+17) - (n+20) : handle of media before which this media is attached
// data (n+21) : Shiftmode

//

// reply:

// datal: transaction number

// data2-5: handle of attached media (0, if media could not be attachted
//

BOOL PpAttachMediaWithMarks (char* namebuf, ResourceHandle rsrc, UINT duration,
MediaHandle* mediahandle, UINT after, UINT shift,
UINT markin, UINT markout)

char buffer[256];

// Include trailing null.
UINT len = strlen (namebuf) + 1;

if (len > 235) {
// Too much.
return FALSE;

}

strcpy (&buffer [PRO DATA1 INDEX], namebuf) ;

* ((UINT *) (&buffer [PRO DATA1 INDEX+len])) = markin;

* ((UINT *)(&buffer[PRO_DATAl_INDEX+len+4])) = markout;

* ((ResourceHandle *) (&buffer [PRO DATA1 INDEX+len+8])) = rsrc;
* ((UINT *) (&buffer [PRO DATA1 INDEX+len+12])) = duration;

* ((UINT *) (&buffer [PRO DATA1 INDEX+len+16])) = after;
buffer[PRO_DATAl_INDEX+len+20] = (UCHAR) shift;

if (!PpSendCommand (buffer, len+21, Cmdl AttachedMediaAccess, Cmd2 AttachMediaWithMarks)) {
return FALSE;
1

// Synchronous operation.

if (!PpAttachMediaReply (mediahandle, Cmd2 AttachMediaWithMarks)) {
return FALSE;

1

return TRUE;

} // PpAttachMediaWithMarks

//

// Get Next Media Token

//

// cmd

// datal-4: Movie token.
// data5-6: Track Token
// data7-14: Media Token
//

// reply:

// datal-8: Next Media token
//

BOOL PpGetNextMediaToken (MovieToken movietoken, TrackToken tracktoken,

252 Profile Software Development Kit User Preliminary — 12 July 2001

Sending packets

MediaToken* mediatoken)

char buffer[32];

* ((MovieToken *) (&buffer [PRO DATA1l INDEX])) = movietoken;
* ((TrackToken *) (&buffer [PRO DATA1l INDEX]+4)) = tracktoken;
* ((MediaToken *) (&buffer [PRO DATA1l INDEX]+6)) = *mediatoken;

if (!PpSendCommand (buffer, 14, Cmdl StoredMediaAccess, Cmd2 GetNextMediaToken)) {
return FALSE;
1

if (!PpGetNextMediaReply (mediatoken))
return FALSE;
}

return TRUE;

} // PpGetNextMediaToken

//
// Is Media Token Null

//

// cmd:

// datal-8: Media token.

//

// reply:

// datal: 0= True, it is a null media token

// 1= False, it is not a null media Token Next

//

BOOL PpIsMediaTokenNull (MediaToken* mediatoken)
{
char buffer[16];
* ((MediaToken *) (&buffer [PRO DATA1l INDEX])) = *mediatoken;

if (!PpSendCommand (buffer, 8, Cmdl StoredMediaAccess, Cmd2 GetNullMediaToken)) {
return FALSE;
!

if (!PpIsMediaTokenNullReply())
return FALSE;
}

return TRUE;

} // PpIlsMediaTokenNull

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 253

Chapter 11 Profile RS-422 Serial Control

Receiving packets

Example 20, ppreply.c contains various utility functions to facilitate the reception of packets
in Profile protocol over a serial RS-422 connection. The function declarations are shown in
ppheader.h. PpGetReply uses the generic function PpRcvReply (defined in ppcomm.c) to get
asynchronous transaction reply. Asin Example 19, ppsend.c, the mgjority of functionsin this
group act as wrappers around specific Profile API calls.

Example 20. ppreply.c

//
// File: ppreply.c
// This is a part of the Grass Valley Group Profile Source Code Samples.

// Copyright (c) Grass Valley Group Inc. This program, or portions thereof,
// is protected as an unpublished work under the copyright laws of
// the United States.

// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.
//

#include <stdio.h>

#include <windows.h>

#include <tekvdr.h>

#include "ppcomm.h"

#include "vdrtypes.h"

#include <profhdr.h>

#include <profcmd.h>

#include "sample.h"

//
// Get the reply packet.
//
BOOL PpGetReply (UCHAR* buffer, UINT* bcnt, UINT cmdl, UINT cmd2)
{
UINT tno;
UCHAR tbuf [8] ;

if (!PpRcvReply (buffer, bent, cmdl, cmd2)) {
return FALSE;
}

if (buffer[PRO STX INDEX] != Stx Ack) {
return TRUE;

// This is only for synchronous receive operations.

// Pickup transaction number.
tno = (UINT)buffer [PRO CMD1 INDEX] ;
tbuf [PRO DATA1 INDEX] = tno;
do
if (buffer[PRO CMD1 INDEX] != tno) {
printf ("Error on Synchronous Transaction Number Mismatch\n") ;
return FALSE;
1
if (!PpSendCommand(tbuf, 1, Cmdl SystemAccess, Cmd2 GetTransactionReply)) {
printf ("Exrror on Synchronous Transaction Request\n") ;
return FALSE;

}

Sleep(15); // Allow time for reply.

254 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

if (!PpRcvReply (buffer, bent, cmdl, cmd2)) {
printf ("Exrror on Synchronous Transaction Reply\n") ;
return FALSE;

} while (buffer[0] == Stx Ack);
return TRUE;

} // PpGetReply

//

// Get Transaction Reply

//

// If the given transaction reply is ready, the "transaction reply" for the

// command that started the transaction is returned (see details for each

// command) . If the transaction reply is unavailable, the following is returned:

// byte0: 0x02 (Stx)

// bytel: byte count (2)
// byte2: 0x00

// byte3: 0x00

// byte4: checksum

//

BOOL PpTransactionReply (UINT xactno)

{

char buffer[256];
UINT len;

buffer [PRO DATAl INDEX] = xactno;

if (!PpGetReply (buffer, &len, Cmdl SystemAccess, Cmd2 GetTransactionReply)) {
return FALSE;
}

return TRUE;

} // PpTransactionReply

//

// Get Port Status Reply

//

// datal-2: a copy of the request mask from command data5-6

// (if the bit is not implemented, it will be cleared)

// bit0: play/record state

// bitl: current position (field number) along timeline

// bit2: movie at current position

// bit3: motion-play mode

// bit4: still-play mode

// bit5: current play rate

// bit6 .. bitl5: reserved

//

// data3-n: status values requested

// (value corresponding to the lowest bit in the mask first):
// Play/record state (1 byte): one of the following values:
// 0: idle

// 1: play-cued

// 2: record-cued

// 3: jog-play

// 4: jog-record

// 5: shuttle-play

// 6: shuttle-record

// Current position along timeline (integer, 4 bytes)

// Current movie on timeline (4 bytes)

// Motion-play mode (1 byte): one of the following values:
// 0: normal play

// 1: loop play

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 255

Chapter 11 Profile RS-422 Serial Control

// 2: bounce play

// 3: limited play

// 4: slaved play

// Still-play mode (1 byte): one of the following values:
// 0: still play by field

// 1: still play by frame

// Current play rate (float, 4 bytes)

//

BOOL PpGetPortStatusReply (UINT* mask, UINT values[], UINT numvals)
{

char buffer[256];

UINT len, i;

UINT bits = 0;

if (!PpGetReply (buffer, &len, Cmdl PortAccess, Cmd2 GetPortStatus)) {
return FALSE;
1

if ((UINT) ((USHORT *) (buffer [PRO_DATAl_INDEX])) != *mask) {
printf ("Port Status changed mask\n") ;
1

*mask = (UINT) ((UINT *) (buffer [PRO DATA1l INDEX])) ;

for (i = 0; 1 < 16; i++) {
if (*mask & (1<<i)) {
bits++;
}

if (bits > numvals) {
printf ("Port Status not enough room for reply\n") ;
return FALSE;

}

for (i = 0, len = Bytes RequestMask; i < numvals; i++) {
if (*mask & (1<<i)) {

switch (1<<i) {

case Datl GetPlayRecordState:
values[i] = (UINT)buffer [PRO DATAl INDEX+len];
len += Bytes PlayRecordState;
break;

case Datl GetPosition:
values[i] = (UINT) (* ((UINT *) (&buffer [PRO DATAl INDEX+len])));
len += Bytes Position;
break;

case Datl GetCurrentMovie:
values[i] = (UINT) (* ((UINT *) (&buffer [PRO DATA1 INDEX+len])));
len += Bytes MovieHandle;
break;

case Datl GetMotionPlayMode:
values[i] = (UINT)buffer [PRO DATAl INDEX+len];
len += Bytes MotionPlayMode;
break;

case Datl GetStillPlayMode:
values[i] = (UINT)buffer [PRO DATAl INDEX+len];
len += Bytes StillPlayMode;
break;

case Datl GetCurrentRate:
values[i] = (UINT) (* ((UINT *) (&buffer [PRO DATA1 INDEX+len])));
len += Bytes CurrentRate;
break;

256 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

}

return TRUE;

} // PpGetPortStatusReply

//
// Open Port
//
// Reply:
// Ack + transaction number
// xact:
// datal: transaction number
// data2-5: handle for open port. If port cannot be opened, this value will be 0.
//
BOOL PpOpenPortReply (VdrHandle* portHandle)
{
char buffer [256] ;
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PortAccess, Cmd2 OpenPort))
return FALSE;

portHandle = (VdrHandle) (((UINT *) (&buffer [PRO DATAl INDEX+1])));
return TRUE;

} // PpOpenPortReply

//

// Generic Error Number reply routine
//

// Reply:

// Ack + transaction number

// xact:

// datal: transaction number
// data2: one of the following:
// 0: OK

// 1-255: (error conditions)
//

BOOL PpErrorNumReply (UINT cmdl, UINT cmd2)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, cmdl, cmd2)) ({
return FALSE;

if (buffer[PRO DATAl INDEX+1] == ‘\0’) {
return TRUE;
1
printf ("PpErrorNumReply received %02.2X", buffer [PRO DATA1 INDEX+1]) ;

return FALSE;

} // PpErrorNumReply

//

// Specific Error Number reply routine
//

// Reply:

// datal: one of the following:

// 0: OK

// 1-255: (error conditions)
//

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 257

Chapter 11 Profile RS-422 Serial Control

BOOL PpPdrErrorNumReply (UINT cmdl, UINT cmd2)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, cmdl, cmd2)) ({
return FALSE;
}

if (buffer[PRO DATA1l INDEX] == ‘\0’) {
return TRUE;
1
printf ("PpErrorNumReply received %02.2X", buffer [PRO DATA1 INDEX]) ;
return FALSE;
} // PpPdrErrorNumReply
//

// PpAllocateResource
// PpGetResourceConnectHandle

//

// Reply:

// datal: transaction number
// data2-5: resource handle
//

BOOL PpPortHandleReply (VdrHandle* portHandle, UINT cmd2)
{

char buffer[256];

UINT len;

if (!PpGetReply (buffer, &len, Cmdl ResourceAccess, cmd2)) {
return FALSE;
1

portHandle = (VdrHandle) (((UINT *) (&buffer [PRO DATAl INDEX+1])));
return TRUE;

} // PpPortHandleReply

//
// Attach Movie
// Attach Movie with Marks
//
// Reply:
// Ack + transaction number
// xact :
// datal: transaction number
// data2-5: handle of attached movie (0 if failure)
//
BOOL PpAttachMovieReply (MovieHandle* movieHandle, UINT cmd2)
{
char buffer[256];
UINT len;

// Synchronous operation.

if (!PpGetReply (buffer, &len, Cmdl AttachedMovieAccess, cmd2)) {
return FALSE;

1

movieHandle = (MovieHandle) (((UINT *) (&buffer [PRO DATAl INDEX+1])));
return TRUE;

} // PpAttachMovieReply

258 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

//

// Get Resource Status Reply

//

// datal-2: a copy of the request mask from command data5-6 (any request which is
// not implemented will cause the corresponding bit in the mask to be cleared)
// data3-n: status values requested (value corresponding to the lowest bit in the
// mask first:

// (video codecs only:)

// Current field size (integer, 4 bytes)

// Current luminance Q factor (float, 4 bytes)

// (audio codecs only:)

// Current audio level (integer, 4 bytes)

// (timecode recorder/generators only:)

// Current time code (time code, 4 bytes)

// Current user bits (integer, 4 bytes)

//

BOOL PpGetResourceStatusReply (UINT* mask, UINT values[], UINT numvals)
{

char buffer [256] ;

UINT len, i;

UINT bits = 0;

if (!PpGetReply (buffer, &len, Cmdl ResourceAccess, Cmd2 GetResourceStatus)) {
return FALSE;
1

if ((UINT) ((USHORT *) (buffer [PRO_DATAl_INDEX])) != *mask) {
printf ("Get Resource Status changed mask\n") ;
1

*mask = (UINT) ((UINT *) (buffer [PRO DATAl INDEX])) ;

for (1 = 0; i < 16; i++) {
if (*mask & (1<<i)) {
bits++;
}

if (bits > numvals) {
printf ("Get Resource Status not enough room for reply\n");
return FALSE;

}

for (i = 0, len = Bytes RequestMask; i < numvals; i++) {
if (*mask & (1<<i)) {
switch (1<<i) {
case Datl GetCurrentFieldSize:
values[i] = (UINT) (* ((UINT *) (&buffer [PRO_DATAl_INDEX+len])));
// All codec have 4 bytes for first value.
len += Bytes FieldSize;

break;
case Datl GetCurrentLumQFactor:
values[i] = (UINT) (* ((UINT *) (&buffer [PRO DATA1l INDEX+len])));
len += Bytes Position;
break;

}
}
return TRUE;

} // PpGetResourceStatusReply

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 259

Chapter 11 Profile RS-422 Serial Control

//
// PpAllocateResource
// PpGetResourceConnectHandle

//

// Reply:

// datal: transaction number
// data2-5: resource handle

//

BOOL PpResourceHandleReply (ResourceHandle* rscHandle, UINT cmd2)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl ResourceAccess, cmd2)) {
return FALSE;
1
rscHandle = (ResourceHandle) (((UINT *) (&buffer [PRO DATA1 INDEX+1])));
if (*rscHandle == NULL) {
return FALSE;
1
return TRUE;

} // PpResourceHandleReply

//

// Get Standard Reply

//

// datal: the system standard
//

BOOL PpGetStandardReply (ConnectHandle* cornnection)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl SystemAccess, Cmd2 GetStandard)) {

return FALSE;

connection = (ComnectHandle) (((UINT *) (&buffer [PRO DATA1 INDEX+1])));
if (*commection == NULL) {
return FALSE;
1
return TRUE;

} // PpGetStandardReply

//

// Get Open Movie Reply

//

// datal: transaction number

// data2-5: movie token for new movie (Null if error)
//

BOOL PpGetOpenMovieReply (UINT* movietoken)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrOpenMovie)) {
return FALSE;

260 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

}

movietoken = (UINT) (((UINT *)(&buffer[PRO_DATAl_INDEX+l])));
if (!movietoken) {
return FALSE;
}
return TRUE;

} // PpGetOpenMovieReply

//

// Get Attach Open Movie Reply

//

// datal: transaction number

// data2-5: movie handle for new movie (Null if error)
//

BOOL PpGetAttachOpenMovieReply (MovieHandle* moviehandle)

{
char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl AttachedMovieAccess, Cmd2 AttachOpenMovie)) {
return FALSE;
}

moviehandle = (MovieHandle) (((UINT *) (&buffer [PRO DATA1l INDEX+1])));

if (*moviehandle == NULL) {
return FALSE;
}

return TRUE;

} // PpGetAttachMovieReply

//

// Get Schedule Event Reply

//

// datal: transaction number

// data2-5: event handle for new movie (Null if error)
//

BOOL PpGetScheduleEventReply (EventHandle* eventhandle)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl EventAccess, Cmd2 ScheduleEvent)) {
return FALSE;
1

eventhandle = (EventHandle) (((UINT *) (&buffer [PRO DATAl INDEX+1])));

if (*eventhandle == NULL) {
return FALSE;
}

return TRUE;

} // PpGetScheduleEventReply

//

// Get First Dataset Reply

//

// datal: transaction number

// data2-5: token to use fro subsquent calls

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 261

Chapter 11 Profile RS-422 Serial Control

// data6-n: name of the first dataset
//
BOOL PpGetFirstDatasetReply (char* dataset)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstDataset)) {
return FALSE;
1

dset = (EnumToken) (* ((UINT *) (&buffer [PRO DATA1 INDEX+1])));
if (!dset) {

return FALSE;
1

strcpy (dataset, &buffer[PRO DATA1 INDEX+5]) ;
return TRUE;

} // PpGetFirstDatasetReply

//

// Get First Group Reply

//

// datal: transaction number

// data2-5: token to use for subsquent calls
// data6-n: name of the first group

//

BOOL PpGetFirstGroupReply (char* group)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstGroup)) {
return FALSE;
1

grp = (EnumToken) (* ((UINT *) (&buffer [PRO DATA1 INDEX+1]))) ;
if (igrp) {

return FALSE;
1

strcpy (group, &buffer [PRO DATAL INDEX+5]) ;
return TRUE;

} // PpGetFirstGroupReply

//

// Get First Movie Reply

//

// datal: transaction number

// data2-5: token to use for subsquent calls
// data6-n: name of the first movie

//

BOOL PpGetFirstMovieReply (char* name)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindFirstMovie)) {
printf ("Error, get first movie\n");
return FALSE;

}

movie = (EnumToken) (* ((UINT *) (&buffer [PRO DATA1l INDEX+1])));
if (lmovie) {

262 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

return FALSE;

}

strcpy (name, &buffer [PRO DATA1 INDEX+5]) ;
return TRUE;

} // PpGetFirstMovieReply

//

// Get Next Dataset Reply

//

// datal: transaction number

// data2-n: name of the next dataset
//

BOOL PpGetNextDatasetReply (char* dataset)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindNextDataset)) {
printf ("Error, get next dataset\n");
return FALSE;

}

strcpy (dataset, &buffer[PRO DATA1 INDEX+1]) ;
return TRUE;

} // PpGetNextDatasetReply

//

// Get Next Group Reply

//

// datal: transaction number

// data2-n: name of the next group
//

BOOL PpGetNextGroupReply (char* group)
{

char buffer [256] ;

UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindNextGroup)) {
printf ("Error, get next grouop\n") ;
return FALSE;

}

strcpy (group, &buffer [PRO DATAL INDEX+1]) ;
return TRUE;

} // PpGetNextGroupReply

//

// Get Next Movie Reply

//

// datal: transaction number

// data2-n: name of the next movie
//

BOOL PpGetNextMovieReply (char* name)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrFindNextMovie)) {

printf ("Error, get next movie\n");
return FALSE;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 263

Chapter 11 Profile RS-422 Serial Control

strcpy (name, &buffer [PRO DATA1 INDEX+1]) ;
return TRUE;

} // PpGetNextMovieReply

//

// Get Movie State Reply

//

// datal: status of call (0-ok, else error)

// data2-5: Movie attributes

// data6-9: Minimum length

// datal0-13: Maximum length

// datal4-17: Movie creation time (date, time 2 bytes each)
// datal8-21: Movie last modification time (date, time 2 bytes each)
// data22: number of video tracks

// data23: number of audio tracks

// data24: number of timecode tracks

//

BOOL PpGetMovieStateReply (PdrMovieState* state)
{

char buffer[256] ;

UINT len;

FILETIME time;

WORD dosDate;

WORD dosTime;

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrGetMovieState)) {
printf ("Get movie status error\n");
return FALSE;

// Fill in the state structure.

state->attributes = (UINT) (* ((UINT *) (&buffer [PRO_DATAl_INDEX+l])));
state->minLength = (UINT) (* ((UINT *) (&buffer [PRO_DATAl_INDEX+5])));
state-s>maxlength = (UINT) (* ((UINT ¥*) (&buffer[PRO_DATAl_INDEX+9])));

// Get the create time.
// Read it in MS-DOS date and time and turn it into 64 bit Filetime.
dosDate = (USHORT) (* ((USHORT *) (&buffer [PRO_DATAl_INDEX+l3])));
dosTime = (USHORT) (* ((USHORT *) (&buffer [PRO_DATAl_INDEX+15])));
if (!DosDateTimeToFileTime (dosDate, dosTime, &time)) {

printf ("DOS TIME\n") ;

return FALSE;

}

state->createTime = time;

// Get the last change time.
dosDate = (USHORT) (* ((USHORT *) (&buffer [PRO_DATAl_INDEX+l7])));
dosTime = (USHORT) (* ((USHORT *) (&buffer [PRO_DATAl_INDEX+l9])));
if (!DosDateTimeToFileTime (dosDate, dosTime, &time)) {

printf ("DOS TIME\n") ;

return FALSE;

}

state->lastChangedTime = time;

state->numV = buffer [PRO DATA1 INDEX+21] ;
state->numA = buffer [PRO DATA1 INDEX+22] ;
state->numT = buffer [PRO DATA1 INDEX+23];
state->exclusivePID = (UINT) (* ((UINT *) (&buffer [PRO_DATAl_INDEX+24])));

return TRUE;

264 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

} // PpGetMovieStateReply

//

// Get Next Track Reply

//

// datal-2: Next Track Token
//

BOOL PpGetNextTrackReply (TrackToken* tracktoken)
{

char buffer [256] ;

UINT len;

if (!PpGetReply (buffer, &len, Cmdl StoredMediaAccess, Cmd2 GetNextTrack)) {
return FALSE;
1

tracktoken = (USHORT) (((USHORT *)(&buffer[PRO_DATAI_INDEX])));
if (*tracktoken == 0) {

printf ("Can not get tracktoken\n") ;

return FALSE;

}

return TRUE;

} // PpGetNextTrackReply

//

// Get Next Media Token Reply
//

// datal-8: media token
//

BOOL PpGetNextMediaReply (MediaToken* mediatoken)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl StoredMediaAccess, Cmd2 GetNextMediaToken)) {
return FALSE;
1

mediatoken = (((MediaToken *) (&buffer [PRO DATA1 INDEX]))) ;
if (!mediatoken) {

return FALSE;
1

return TRUE;

} // PpGetNextMediaReply

//

// Get Null Media Token Reply
//

// datal-8: track token
//

BOOL PpGetNullMediaTokenReply (MediaToken* mediatoken)

{

char buffer[256];
UINT len;

if (!PpGetReply (buffer, &len, Cmdl StoredMediaAccess, Cmd2 GetNullMediaToken)) {

return FALSE;

mediatoken = (((MediaToken *) (&buffer [PRO DATA1 INDEX]))) ;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 265

Chapter 11 Profile RS-422 Serial Control

if (PpIsMediaTokenNull (mediatoken)) {
return FALSE;
}

return TRUE;

} // PpGetNullMediaTokenReply

//

// Get Media Path Reply

//

// datal-2: mask

// datal-n: media path
//

BOOL PpGetMediaPathReply (UINT* mask, char* mediapath)
{

char buffer[256];

UINT len;

if (!PpGetReply (buffer, &len, Cmdl StoredMediaAccess, Cmd2 GetStoredMediaStatus)) {
return FALSE;
1

strcpy (mediapath, &buffer [PRO DATAl INDEX+2]) ;
return TRUE;

} // PpGetMediaPathReply

//
// Attach Media Reply
// Attach Media with Marks
//
// Reply:
// Ack + transaction number
// xact :
// datal: transaction number
// data2-5: handle of attached media (0 if failure)
//
BOOL PpAttachMediaReply (MediaHandle* mediahandle, UINT cmd2)
{
char buffer[256];
UINT len;

// ssynchronous operation.

if (!PpGetReply (buffer, &len, Cmdl AttachedMediaAccess, cmd2)) {
return FALSE;

1

mediahandle = (MediaHandle) (((UINT *) (&buffer [PRO DATAl INDEX+1])));
if (*mediahandle == 0) {

printf ("Can not get mediahandle\n") ;

return FALSE;

}

return TRUE;
} // PpAttachMediaReply

//
// Get Movie Exist Reply

//
BOOL PpGetMovieExistReply (UINT* exist)

266 Profile Software Development Kit User Preliminary — 12 July 2001

Receiving packets

char buffer[256];
UINT len;

// Synchronous operation.

if (!PpGetReply (buffer, &len, Cmdl PdrMovieAccess, Cmd2 PdrMovieExist)) {
return FALSE;

1

exist = (UINT) (((UCHAR *) (&buffer[PRO DATA1 INDEX]))) ;
if (lexist) {

return FALSE;
1

return TRUE;

} // PpGetMovieExistReply

//
// Is Media Token Null Reply

//
BOOL PpIsMediaTokenNullReply (void)

{

char buffer[256];
UINT len;
UCHAR isnull;

if (!PpGetReply (buffer, &len, Cmdl StoredMediaAccess, Cmd2 IsMediaTokenNull)) {
return FALSE;
1

isnull = buffer [PRO DATA1 INDEX] ;
if (isnull == 1) {

return FALSE;
1

return TRUE;

} // PpIsMediaTokenNullReply

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 267

-
E Chapter 11 Profile RS-422 Serial Control

Packet

communication

Example 21, ppcomm.c contains various generic utility functionsto enablethe communication
of packetsin Profile protocol over a serial RS-422 connection. These are common functions

used by all of the Profile serial programming sample applications.

The function declarations described here are shown in the file ppheader.h:

PpOpenComm opens aserial COM port using Windows SDK calls (Win16/Win32). It
also sets up appropriate parameters for flow control of the RS-422 connection.

Example 21.

//
// File:
// This
//
// Copyr

// is protected as an unpublished work under the copyright laws of

PpAddChksum computes the required checksum for a given buffer.

PpValidateChksum ensures that a return packet contains avalid checksum.

PpSendCommand sends a command buffer out the RS-422 serial port, using the Win16/
Win32 function WriteFile with the appropriate communication handle.

PpRcvReply receives areply packet from the remote Profile.

ppcomm.c

ppcomm. ¢

is a part of the Grass Valley Group Profile Source Code Samples.

ight (c¢) Grass Valley Group Inc. This program, or portions thereof,

// the United States.

//

// This source code is only intended as a supplement to
// Profile Development Tools and documentation of Native Protocol.

//

#include
#include
#include
#include
#include
#include

<stdio.h>
<windows.h>
<tekvdr.h>
"ppcomm. h"
<profhdr.h>
<profcmd.h>

static HANDLE sCommHdl;

extern char* comm;

//
// Add a

//

checksum to the buffer.

void PpAddChksum (UCHAR* buffer, UINT bcnt)

{

UINT 1i;
UCHAR cksum = 0;

//'S
bent

for

}

kip the header.
+= PRO_CMD1_INDEX;

(1 = PRO OMD1_INDEX; i < bent; i++) {

cksum += buffer[i];

cksum = (~cksum) + 1;

buff

er[bcnt] = cksum;

268 Profile Software Development Kit User

Preliminary — 12 July 2001

Packet communication

} // PpAddChksum

//

// Send out the command.

//

BOOL PpSendCommand (UCHAR* buffer, UINT bcnt, UINT cmdl, UINT cmd2)

{

DWORD wrcnt ;

// Bump for cmds.

bent += NUM_PRO HEADER BYTES;

if (bent > O0xff) {
// If illegal count - return error.
return FALSE;

}

buffer [PRO_STX INDEX] = PRO STX HEADER; // Add the STX, and...

buffer [PRO BYTE COUNT INDEX] = bcnt; // the byte count from cmdl to end.
buffer [PRO_ CMD1_INDEX] cmdl; // Put down the commands,

buffer [PRO CMD2 INDEX] = cmd2;

PpAddChksum (buffer, bent) ; // and tack on the checksum.

// Do the transaction (len bcnt+NUM PRO HEADER BYTES+NUM PRO CHECKSUM BYTES) .
bent += NUM PRO HEADER BYTES + NUM _PRO CHECKSUM BYTES;
if (!WriteFile (sCommHdl, buffer, (DWORD)bcnt, &wrent, NULL))

printf ("Error writing to Comm Device \n") ;

return FALSE;

}

return TRUE;

} // PpSendCommand

//
// Validate the checksum in the buffer
//
BOOL PpValidateChksum (UCHAR* buffer)
{
UINT i, bent;
UCHAR cksum = 0;

bent = buffer [PRO BYTE COUNT INDEX] ; // Get the byte count.
bent += PRO_CMD1 INDEX; // Skip the header.
for (i = PRO CMD1 INDEX; i < bent; i++) {

cksum += buffer[i];
}

cksum = (~cksum) + 1;

if (buffer(bcnt] != cksum) {
return FALSE;

1

return TRUE;

} // PpvalidateChksum

//

// Reply - this buffer must be 256 bytes in length

// Input:

// buffer is unsigned char pointer of at least 256 bytes.

// ~bcnt is unsigned int pointer to where the return length should be supplied.
// cmdl and cmd2 are the commands expected if data is available

//

BOOL PpRcvReply (UCHAR* buffer, UINT* bcnt, UINT cmdl, UINT cmd2)

{

BOOL retstat;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 269

Chapter 11 Profile RS-422 Serial Control

DWORD rdcnt;

// First get the reply byte and byte count or status.

if (!ReadFile(sCommHdl, buffer, (DWORD)2, &rdcnt, NULL)) {
return FALSE;

}

if (rdent !'= 2) {
return FALSE;
1

switch (buffer[0]) {
case Stx Nak:

// if NAK just show cause.

*bent = 2;

switch (buffer[PRO BYTE COUNT INDEX]) {

case Datl UndefinedError:
printf ("Undefined Error\n") ;
break;

case Datl CheckSumError:
printf ("NAK - Checksum Error\n") ;
break;

case Datl ParityError:
printf ("NAK - Parity Error\n");
break;

case Datl OverRun:
printf ("NAK - Overrun Error\n") ;
break;

case Datl FramingError:
printf ("UNAK - Framing Error\n") ;
break;

case Datl TimeOut:
printf ("UNAK - Timeout Error\n") ;
break;

default:
printf ("Unspecified Error\n") ;
break;

1

retstat = FALSE;

break;

case Stx Stx:
// if ACK use bytecount+l for next read to include reply + checksum
rdent = *bent = (UINT)buffer[1l] + 1;

if (!ReadFile (sCommHdl, sbuffer [PRO CMD1 INDEX], (DWORD)rdcnt, &rdent, NULL) || *bent
= rdecnt)
retstat = FALSE;
break;

}

// Now validate the checksum and the assumed command return.
if (!PpValidateChksum(buffer)) {

retstat = FALSE;
1

else {
if (buffer[PRO CMD1 INDEX] == cmdl && buffer[PRO CMD2 INDEX] == cmd2) {
retstat = TRUE;
else {
retstat = FALSE;
1
1
*bent += 2;

270 Profile Software Development Kit User Preliminary — 12 July 2001

Packet communication

break;

case Stx Ack:
// If transaction then read the transaction number.
if (!ReadFile (sCommHdl, &buffer[PRO CMD1 INDEX], (DWORD)1, &rdcnt, NULL)
|| rdent != 1) {
return FALSE;

}

*bcent = 3;

// First check to see if all is fine.
if (buffer [PRO BYTE COUNT INDEX] == Datl Ok) {
retstat = TRUE;

else {

switch (buffer [PRO BYTE COUNT INDEX]) {

case Datl NotImplemented:
printf ("Command Not Implemented\n") ;
break;

case Datl PortBusy:
printf ("Port Busy\n");
break;

case Datl IncorrectNumBytes:
printf ("Incorrect Number of Bytes\n");
break;

}

retstat = FALSE;

}

break;

default:
// Unknown response received.
sprintf (buffer, "UNKNOWN reply %02.2X"<, buffer([0]);
retstat = FALSE;
*bent = 1;
break;

}

return retstat;
} // PpRcvReply

//
// Open the communication port
//
BOOL PpOpenComm (void)
{
COMMTIMEOUTS CommTimeOuts;
DCB dcb;

if (sCommHdl) {
CloseHandle (sCommHdl) ;
1

sCommHdl = CreateFile (comm, GENERIC READ | GENERIC WRITE, 0, NULL,
OPEN_EXISTING, FILE ATTRIBUTE NORMAL, NULL) ;

if (!sCommHdl) {
return FALSE;

1

CommTimeOuts.ReadIntervalTimeout = 25;
CommTimeOuts.ReadTotalTimeoutMultiplier = 25;
CommTimeOuts.ReadTotalTimeoutConstant = 300;

Preliminary — 12 July 2001 Profile Software Devel opment Kit User 271

Chapter 11 Profile RS-422 Serial Control

CommTimeOuts.WriteTotalTimeoutMultiplier

= 0;
CommTimeOuts.WriteTotalTimeoutConstant = 0;

if (!SetCommTimeouts (sCommHdl, &CommTimeOuts)) {
return FALSE;

1

dcb.DCBlength = sizeof (DCB) ;

if (!GetCommState (sCommHdl, &dcb)) {
return FALSE;
}

dcb.BaudRate = CBR 38400;
dcb.ByteSize = DATABITS 8;
dcb.Parity = ODDPARITY;
dcb. StopBits = ONESTOPBIT;
dcb. fBinary = TRUE;

dcb. fOutxCtsFlow = FALSE;
dcb. fOutxDsrFlow = FALSE;

dcb. fDtrControl = FALSE;
deb. foutxX = FALSE;
deb. fInX = FALSE;
dcb. fRtsControl = FALSE;

dcb. fAbortOnError = TRUE;

// Setup hardware flow control.

dcb. fOutxDsrFlow = FALSE;

dcb. fDtrControl = DTR_CONTROL DISABLE;

dcb. fOutxCtsFlow = FALSE;
dcb. fRtsControl = RTS CONTROL DISABLE;

// Setup software flow control.
dcb.fInX = dcb.fOutX = FALSE;

// Setup other various settings.
dcb. fParity = TRUE;

if (!SetCommState (sCommHdl, &dcb)) {
return FALSE;
}

if (!SetCommMask (sCommHdl, EV RXCHAR)) {
return FALSE;
}

return TRUE;

} // PpOpenComm

272 Profile Software Development Kit User Preliminary — 12 July 2001

Index

Numerics
10Base-T 108
4:2:2 digital video 16, 180

A
ActivePlay 39
AES/EBU 17, 33
APl libraries 13, 19
TekCfg library 20
TekPdr library 21, 115, 116
TekPIslibrary 29, 129
TekRem library 30
TekVdr library 31, 181
TekVfslibrary 29, 45, 97, 116
TekVme library 46
TekXfr library 47, 109, 115, 122
archive functions 146
archiving 164
audio 33
architecture 33
events 41
minimum play length 34
resources 34
audio signal processing board 17

B

barcode labels 131

basic concepts 15

B-frame 179

black media 21, 36, 37, 182

BNC 216 digital interface chassis 17
burn-in timecode 18

C
C function parameters
action code 137
barcode label 137
bin class 137
bin number 138
cartridge class 138
cartridge description string 138
cartridge handle 138
cartridge label 138

Preliminary — 12 July 2001

category 138

field number 138

file description string 138

file name 138

library handle 138

library name 138

location info 138

loop handle 138

partition number 138

path 138

return values 138

session name 138

time date 138

transaction handle 138

transport class 138

transport handle 138

transport number 139
cartridge functions 143
CCIR-601 video 16, 180
CfgGetFileSystemName 23, 97
CfgGetNumCodecs 49
CfgGetNumFileSystems 97
CfgGetStandard 49, 57, 63, 69, 99
change notification 27

PdrGetMovieChanges 27
chrominance quantization level 31, 32

VdrGetAbsMaxChrQ 32

VdrGetAbsMinChrQ 32

VdrSetMaxChrQ 32

VdrSetMinChrQ 32
clock 35

(See ad'so port clock)
clock modes 36
closed captions 182
CMF

(See Common Movie Format)
codecs 179

compression ratio 17, 179

lossless 179

lossy 179
command line utilities

copymovie 115, 117

fcconfig 108

Profile Software Devel opment Kit User

273

T
Profile Family

fcnes 108, 112

fcping 108

listnames 117

pdrstart.bat 108

tekpls.exe 163

tekplsex.exe 163
command management functions 150
Common Movie Format 15, 21, 22, 27, 87
complex movie names 23

complexMovieName 23

PdrSetCurrentDataset 23

PdrSetCurrentGroup 23
complex movies 107
compression 17

compression ratio 17, 179

lossless 179

lossy 179
ConnectHandle 30
connection handles 132
connections 31
copymovie 115, 117
Create Extension 163
CuePlay 39

D
datasets 81
EXT 24
INT 24
names 23
datatypes 15
default events
DefaultEvent 99
VdrDefaultEvent 38
Delete Extension 163
digital interface chassis
BNC 216 17
XLR 216 17
Direct Memory Access (DMA) interface 17
dissolve 46
DNS server 108
drone 34
DV CPRO support 146

E
EISA 16

Profile Software Development Kit User

enumerating files
VfsFindClose 45
VisFindFirstFile 45
VfsFindNextFile 45
Ethernet 47, 107, 108
EventConnectResources 38, 39
EventMixAudio 38
events 99
audio 41
state events 39
timecode generator events 41
VdrDefaultEvent 38
VdrScheduleEvent 38
EventSetGTcBits 38
EventSetGTcTime 38
EventStateAll 99
EventType 33
EXT dataset 24
Extension Command Execution 163
extensions 163

F

fcconfig 108

fcnes 108, 112

fcping 108

Fibre Channel 47, 107
configuration 108
fcconfig 108
fcnes 108, 112
fcping 108
IP address 108
multicasting 109
streaming 47, 107, 124
switched network 109
topologies 124
UML usage 112

field size goal 31, 32

file system name 23

FTP
filemode 118
FTP daemon 117
movie mode 118
streaming transfers 117

Preliminary — 12 July 2001

G

genlock 18
GetLastError 21
GOP 32, 87, 179
groups (of movies) 81

H
handles 15, 132

(See a'so ResourceHandles)
header files

pdrattribs.h 21

pdrerror.h 21

pdrtags.h 27

pdrtypes.h 21, 23

plserror.h 163

tekpdr.h 21
HKEY_LOCAL_MACHINE 28
hosts file 108
HOT stream transfers 113
htssvc 108

I

I-frame 179

infout points 24, 28, 37, 42, 131

INT dataset 24

Intel GNU general public license agreement 3
Intel 1960 real-time processor 16

IP address 108

ISA 16

J
jog mode 36
JPEG 57, 63, 69, 87
motion JPEG 16
resources 31
streaming 181
JPEG software license agreement 3

L

LAN 30, 47, 107

library handles 132, 164

library server management functions 148
listnames 117

local catalog 130, 170

local catalog management functions 150
LOCAL_CONNECTION 30

Preliminary — 12 July 2001

LOCALHOST 112

|ossless compression 179

lossy compression 179

Louth 19

LTC 18

luminance quantization level 31, 32
VdrGetAbsMaxLumQ 32
VdrGetAbsMinLumQ 32
V drGetCurrentLumQFactor 32
VdrSetMaxLumQ 32
VdrSetMinLumQ 32

M
material categories 132
matte 46
Max Media Definitions 28
Max Media References 28
Max Movies 28
media file system 42, 45, 118
Media Manager 107, 117
MediaPlayMode 35, 36
mix effects board 46
movie attributes 24
PdrControlRO 26
PdrError 26
PdrL ocked 26
PdrOpen 26
PdrOpenExclusive 26
PdrOpenMultiple 26
PdrReadOnly 26
PdrSimpleClip 26
movie management 21
MovieHandle 15
MovieToken 15
MPEG 180, 183
archiving 181
B-frame 179
bitrate 33, 181
chrominance sampling 32, 181
encoding/decoding 183
GOP structure 32, 87, 181
|-frame 179
limitations 180
P-frame 179
resources 32

Profile Software Devel opment Kit User

275

T
Profile Family

276

streaming 181
multicartridge sets 132
multicasting 109
multiple files on a codec 42

N

network configuration service 108, 112
NormalClock 37

NTSC 18

O
Odetics 19
OPEN_EXISTING 45

]
packets 47, 107, 129

PAL 18

PDR 100 16

PDR 200 16

PDR 300 16

PDR 400 16

pdrattribs.h 21

PdrAudiol6Bit 26
PdrAudio24Bit 26
PdrCloseMovie 63, 69, 99, 171
PdrCodecConstruction 26
PdrControlRO 24, 26
PdrCopyConstruction 26
PdrCopyMovie 115, 116, 118
PdrCreateMediaT oken 22
PdrCreateMovie 22

PdrDel eteExtensionAtPos 206
PdrDetachMedia 63

PdrError 26

pdrerror.h 21

PdrExactMedia 28
PdrFindFirstDataset 81, 223
PdrFindFirstExtensionPos 206
PdrFindFirstGroup 81, 223
PdrFindFirstMovie 81, 224
PdrFindNextDataset 81, 223
PdrFindNextExtensionPos 206
PdrFindNextGroup 81, 223
PdrFindNextMovie 81, 224
PdrFreeExtension 206

Profile Software Development Kit User

PdrGetExtensionAtPos 206
PdrGetExtensionl ntoAtPos 206
PdrGetM ediaAttributes 22
PdrGetMedialn 22
PdrGetMediaMarks 22
PdrGetMediaOut 22

PdrGetM ediaPath 22, 63
PdrGetMediaState 87
PdrGetMovieAttributes 22, 87, 175
PdrGetMovieChanges 27
PdrGetMovieCreateTime 22
PdrGetMovieDataset 22
PdrGetMovieGroup 22
PdrGetMoviel astChangeTime 22
PdrGetMoviel ength 22
PdrGetMovieName 22
PdrGetMovieStatel nfo 81, 87
PdrGetNextM ediaToken 63
PdrGetNextTrack 22, 63
PdrGetNumMediaOnTrack 22, 87
PdrGetPreviousTrack 22
PdrGetRegistry 28
PdrGetTrackLength 22, 87
PdrGetTrackTokenNum 87
PdrGetTrackTokenType 87
PdrGetUserData 27
PdrGetWaitOpStatus 115, 116, 118
PdrinsertExtension 206
PdrLocked 26

PdrMediaState 87
PdrMovieExists 87
PdrMovieState 81, 87

PdrOpen 26

PdrOpenExclusive 26
PdrOpenMovie 50, 57, 63, 69, 75, 99, 170
PdrOpenMultiple 26
PdrReadExtension 206
PdrReadOnly 26

PdrRenderedM edia 28
PdrRestoreConstruction 26
PdrSampleRate50 26
PdrSampleRate60 26
PdrSaveMovie 27
PdrSetCurrentDataset 23
PdrSetCurrentGroup 23

Preliminary — 12 July 2001

PdrSetMediaOut 15
PdrSetRegistry 28
PdrSetUserData 27
PdrSharedMedia 28
PdrSimpleClip 26
pdrstart.bat 108

pdrtags.h 27
PdrTcDropFrame 26
PdrTcNonDropFrame 26
PdrTerminateWaitOperation 115, 116, 118
pdrtypes.h 21, 23
PdrUnderConstruction 26
PdrVideoFormatJPEG 26
PdrVideoFormatM PEG 26
PDX 208 17

P-frame 179

physical resources 15, 31, 34
PlayBounce 36
PlayByField 36, 37
PlayByFrame 36

playing lists of movies 69
playing movies 63

PlayJog 39

PlayLimited 36

PlayLoop 36

PlayNormal 35
PlayShuttle 39

PLS constants 167
PLSerror codes 170

PLS events 167

PLS opcodes 168, 169
PIsAddTransport 149
PIsAllocateCartridge 143
PIsAllocateTransport 142
PIsAnyPartition 130
PIsAnyTransport 142
PlsArchiveClip 146, 147, 149, 172
PlsArchiveDataFile 147
PlsArchiveFile 149
PIsBackupCatalog 150
PlsCancel Command 150
PIsCleanTransport 142, 172
PIsCloseCartridge 143
PIsCloseFile 146
PIsCloseFindHandle 142

Preliminary — 12 July 2001

PIsCloseLibrary 141
PIsCloseTransport 142
PIsConnectCartridge 143
PIsConnectFile 146
PIsConnectTransport 142
PIsCopyCartridge 144, 174
PlsDeleteFile 147
plserror.h 163

PIsExport 149
PIsExportCartridge 144
PlsFindFirstBininfo 141
PlsFindFirstHandle 142
PlsFindNextHandle 142
PlsFormat 149
PlsFormatCartridge 143
PIsGetAnyEvent 148, 149
PIsGetAsynchEvent 148, 149
PIsGetBackupDir 174
PlsGetCartDescription 146
PlsGetCartridgeConfig 143
PlsGetCartridgeStatus 143
PIsGetClipSize 146
PlsGetCommandEvent 148, 149
PlsGetEventMask 148
PIsGetFileDescription 148
PIsGetFilelnfo 148
PIsGetLibraryConfig 141
PIsGetLibraryStatus 141
PIsGetL ocationString 146
PIsGetM gjorVersion 140
PIsGetMinorVersion 140
PlsGetM odes 149
PlsGetPartitionMap 143
PlsGetPath 149, 170
PIsGetStatusCommand 150
PlsGetTimeDate 149
PIsGetTransportStatus 142
PIsHouseK eeping 150
Plsimport 149
PlsimportCartridge 145
PlsimportLoad 149
PIsimportL oadCartridge 145
PlsinventoryCartridge 143
PlsinventoryLibrary 150
PlsLoadTransport 142

Profile Software Devel opment Kit User

277

T
Profile Family

PIsNoPartition 130
PIsOpCodeGetAnyEvent 133
PIsOpenLibrary 140
PIsRemoveTransport 150
PIsRenameFile 147
PlsRestore 147
PlsRestoreDataFile 147
PIsSetBackupDir 174
PIsSetCartDescription 146
PlsSetEventMask 148
PIsSetFileDescription 148
PIsSetL ocationString 146
PlsSetModes 149, 170, 173
PlsSetPath 149, 170
PIsUnloadTransport 142, 172
PIsUpdateCartridge 143
port clock 34

functions 34

limits 37

other clock modes 36

still mode 36
Profile serial protocol 19, 129
Profile XP Media Platform, description 16
ProLink 19, 163
ProNet 163
PRS 200 17
push-pull operation 115

R
ReadOnly 24
ReadWrite 24
ReadyToPlay 39, 99
Record/Idle state 39
recording movies 49
registry entries 28
HKEY_LOCAL_MACHINE 28
Max Media Definitions 28
Max Media References 28
Max Movies 28
PdrGetRegistry 28
PdrSetRegistry 28
Windows NT registry 20
RemCloseConnection 30
RemOpenConnection 30, 49, 57, 63, 69, 87,
97, 99, 132

278 Profile Software Development Kit User

resource reservation 131
ResourceAudioCodec 34
ResourceAudiol nput 34
ResourceAudioOutput 34
ResourceHandles 34
resources 31

audio 34

JPEG 31

MPEG 32

physical 15, 31, 34
ResourceTypes 33
RS-422 19

S

saving movies 27
PdrExactMedia 28
PdrRenderedM edia 28
PdrSaveMovie 27
PdrSharedM edia 28

scheduled events
VdrScheduleEvent 38

SCSl 16

serial digital component board 18

SetupResources 49

SGI servers 107

ShiftAfter 44

ShiftBefore 44

slave mode 16, 37

SMPTE 272M Level A 17, 33

StartRecord 50

state events 39
VdrStateEvent 39

StateEvent 99

StateMask 99

still mode 36

StillMode 36

streaming 47, 107, 124
(See dso Fibre Channel)

strings and file names 131

T
tape cartridges 130
tape partitions 130, 135
TCP/IP 47, 107
TekCfg library 20

Preliminary — 12 July 2001

TekPdr library 21, 115, 116
change notification 27
Common Movie Format 22
complex movie names 23
copying media 115

tekpdr.h 21

TekPIslibrary 29, 129
archive functions 146
archiving 164
barcode labels 131
cartridge functions 143
cartridge selection rules 139
command management functions 150
concurrent commands 133
configuration commands 134
connection handles 132
error codes 134
extension invocation 163
extensions 163
file selection rules 139
files 130
handles 132
infout points 131
information commands 134
library handles 132, 164
library server management functions 148
local catalog 130
local catalog management functions 150
material categories 132
memory model 133
multicartridge sets 132
PLS constants 167
PLSerror codes 170
PLS events 167
PLS opcodes 168, 169
resource reservation 131
status commands 134
strings and file names 131
tape cartridges 130
tape partitions 130, 135
tape transport selection rules 139
transport functions 142
transport load/unload rules 140

tekpls.exe 163

tekplsex.exe 163

Preliminary — 12 July 2001

TekRem library 30, 132
TekVdr library 31, 181
TekVfslibrary 29, 45, 97
copying media 116
TekVmelibrary 46
TekXfr library 47, 109, 122
copying media 115
timecode 34
burn-in timecode 18
mediafile 34
timecode generator events 41
VdrGetCurrentTimeCode 34
VdrGetCurrentUserBits 34
VdrSetGenTcFormat 41
VdrSetGenTcMode 41
timeline 35, 37, 42
shifting timeline 42
tokens 15
transport control 31
transport functions 142
twisted-pair 108

U

ultra SCSI 81

UML 112,123, 124

UML options
exact 113
flattened 112
HOT 113

Uniform Media Locator
(See UML)

user data 27
PdrGetUserData 27
PdrSetUserData 27

\Y

VdrAllocateChannel 75
VdrAllocateResource 49, 57, 63, 69, 99
VdrAttachFittedM edia 63
VdrAttachFittedM ediaWithM arks 63
VdrAttachMovie 21, 57
VdrAttachMovieWithMarks 50
VdrAttachOpenMovie 57, 69, 75
VdrClosePort 50, 57, 63, 69, 75, 99
VdrCuePlay 57, 63, 69, 75

Profile Software Devel opment Kit User

279

T
Profile Family

280

VdrCueRecord 21, 50, 99
VdrDefaultEvent 38, 50, 57, 63, 69, 99
VdrDetachMovie 50, 69, 75, 99
VdrGetAbsMaxChrQ 32
VdrGetAbsMaxLumQ 32
VdrGetAbsMinChrQ 32
VdrGetAbsMinLumQ 32
VdrGetBitRate 181
VdrGetChannelInfoList 75
VdrGetCurrentFieldSize 31
VdrGetCurrentLumQFactor 32
VdrGetCurrentPictureStatus 182
VdrGetCurrentTimeCode 34
VdrGetCurrentUserBits 34
VdrGetEncodingRange 33, 181
VdrGetM pegChromaFormat 32, 181
VdrGetM pegGopStructure 32, 181
VdrGetNumChannel Defs 75
VdrGetPosition 50, 57, 75, 99

V drGetResourceConnectionHandl e 49, 69
Vdrldle 50, 63, 69, 75, 99

VdrJog 36, 180

V drOpenPortConnection 49, 57, 63, 69, 99
VdrPanel 14

VdrReleaseResource 50, 57, 63, 69, 99
VdrScheduleEvent 38, 50, 57, 63, 69
VdrSetAudioWindow 34
VdrSetBitRate 181
VdrSetEncodingRange 33, 181
VdrSetGenTcFormat 41
VdrSetGenTcMode 41
VdrSetMaxChrQ 32
VdrSetMaxLumQ 32

V drSetM axPosition 36
VdrSetMediaMarkOut 15
VdrSetMinChrQ 32

VdrSetMinLumQ 32
VdrSetMinPosition 36
VdrSetMovieMarkln 57
VdrSetMovieMarkOut 57

VdrSetM pegChromaFormat 32, 181

V drSetM pegGopStructure 32, 181
VdrSetPlayMode 36, 37
VdrSetVideoFormat 49, 57, 63, 69, 99
VdrSetVideoGoal Size 31

Profile Software Development Kit User

VdrShuttle 21, 50, 57, 63, 69, 75, 99
VdrStateEvent 38, 39, 99
VfsCancelCopy 116
VisCopyFile 116
VfsCreateFile 45
VfsFindClose 45
VfsFindFirstFile 45, 87
VfsFindNextFile 45
VfsGetFileAttributes 87
VfsGetFileDefaultMarks 87
VfsGetFileModificationTime 87
VisGetFileType 87
VfsGetFileVideoFormat 87
VisQueryFileSystemSpace 97
V{sStatusOfCopy 116

video goal size 31

video mix effects board 46
video resources 31, 32

video router 16

VITC detection 18
VmeHandle 46

volume 81

w
WaitForCompletion 116
WaitForMultipleObject 27
WaitForSingleObject 27
WaitToken 116
WIN32_FIND_DATA 45
Windows NT services
htssvc 108
network configuration service 108, 112
wipe generator 46
wipe styles 46

X

XfrAbort 123

XfrGetActiveTokens 123
XfrGetStatus 123

XfrRequest 113, 123

XfrToken 123

XLR 216 digital interface chassis 17

Preliminary — 12 July 2001

	Third-party License Agreements
	Independent JPEG software license agreement
	Intel GNU general public license agreement

	Overview
	About the Profile Software Development Kit
	About this manual
	Getting started
	If you are new to Profile programming
	If you are an experienced Profile programmer

	Introduction
	Basic concepts
	A Profile system overview
	Video disk storage
	Video compression
	Video and audio boards

	Programming the Profile Video Server
	The TekCfg library
	The TekPdr library
	Using stored movies
	Common Movie Format
	Using library commands with CMF movies

	Complex movie names
	Movie attributes
	User data
	Change notification
	Registry entries

	The TekPls library
	The TekRem library
	The TekVdr library
	Physical resources
	JPEG video resources
	Video goal size
	Luminance quantization level
	Chrominance quantization level

	MPEG video resources
	Chrominance sampling
	GOP structure
	Bitrate
	First and last line encoding

	Audio
	Analog audio architecture
	Audio resources
	Audio minimum play length

	Timecode
	The port
	Port clock modes
	Other clock modes
	Still modes
	Port clock limits
	Synchronizing ports

	Events
	State events
	Audio events
	Timecode generator events
	Media files
	Multiple files

	The TekVfs library
	The TekVme library
	The TekXfr library

	Recording and Playing Movies
	Playing a movie
	Playing a movie with in and out marks
	Playing a list of movies
	Playing a movie using Central Resource Management

	Using the Profile Media File System
	Browsing the media file system
	Viewing CMF information
	Checking free file space

	Using Events
	Transferring Media with Fibre Channel
	Configuring Fibre Channel
	Multicast programming
	Switched Fibre Channel networks
	Multicasting errors

	The PDR network configuration service
	UML descriptions
	The flattened option
	The exact option
	The HOT option

	Using UMLs
	Copying media via Fibre Channel
	Copying media with TekPdr functions
	Copying media files with TekVfs functions
	Copying media with Media Manager
	Copying media with copymovie
	Using FTP for streaming transfers
	File mode
	Movie mode

	Sample code: Media copies
	Streaming with Fibre Channel
	XfrAbort
	XfrGetActiveTokens
	XfrGetStatus
	XfrRequest
	Sample code: Fibre Channel streaming

	Programming the Profile Library System
	Programming model and serial protocols
	A C programmer’s view
	Serial protocols

	Library concepts overview
	Local library catalog
	Cartridges and partitions
	Files
	Barcode labels
	Strings and file names
	Resource reservation
	In/out points
	Field numbers
	Multicartridge sets
	Material categories

	The programming model
	Connection and library handles
	Library server API memory model
	Operations returning multiple data items

	Concurrent command execution
	Error codes
	Configuration, status, and information commands

	Important notes and assumptions
	Configuration
	Tape partitioning

	Library server commands
	File selection rules
	Cartridge selection rules
	Tape transport selection rules
	Transport load/unload rules

	Library server API function descriptions
	Library functions
	Transport configuration commands
	Library bin information commands
	List all cartridges commands

	Library and cartridge directory commands
	Transport functions
	Cartridge functions
	Basic archive functions
	Library server management functions
	Local catalog management functions
	Command management functions

	Sample code: Managing a library system
	TekPls extension invocation
	The tekpls.exe program
	The tekplsex.exe program
	Connecting to the TekPls extension
	Obtaining a library handle
	Archiving a file
	Closing the library and connection

	PLS constants
	PLS error codes by value

	Programming with MPEG
	Compression/decompression algorithms
	Some limitations to MPEG
	Other MPEG notes

	Using MPEG functions
	Archiving and streaming
	Bitrate
	Chrominance sampling
	First and last line of encoding
	GOP structure
	MPEG closed caption technique
	Picture information

	Sample program: MPEG encoding/decoding

	The Media Area Network
	Key features of the Media Area Network
	Overview of the Media Area Network
	Media Area Network hardware
	Media Area Network file system software
	Movie database software
	Fibre Channel redundancy
	Fibre Channel failover
	File System Manager redundancy
	File System Manager failover

	Specifications
	Developing Media Area Network software applications
	File system changes
	Dataset name
	Application access to the file system

	TekPdr changes
	Different Open Modes
	PdrDeleteMovie is not synchronous
	PdrSetMovieReadOnly() and PdrSetMovieReadWrite()
	PdrControlRO bit
	PdrReadOnly
	PdrExtensions
	Obsolete functions

	Common Movie Format database access
	Recommendations for verifying applications

	PdrMovie Extensions
	Grass Valley Group Common Extensions
	Video Mix Effects Extensions
	Simple Dissolve
	Advanced Dissolve
	Simple Wipe
	Advanced Wipe
	Key
	Video Fade-to-Matte

	Audio Mix Effects
	Audio Mix
	Audio Level

	Motion Effects
	Source Effects

	External Control
	GPI

	Meta Data Extensions
	MovieData
	SegmentData

	The PdrExtensionInfo Data Structure

	Profile RS-422 Serial Control
	Browsing a remote Profile file system
	Playing a movie remotely
	Sending packets
	Receiving packets
	Packet communication

	Index

