GABBSPython Maps Library
User Manual

Scientific Solutions Group
Rosen Center for Advanced Computing

Purdue University

2015-10-20

Content

What is GABBS Python Maps Library?.....cccccceevvvvvvevviiiienennennn. 1
BaSICS ettt e 1
GABBS Maps OVErlaysSccevvuuuiiiieeeeeeeeeeeeerriiiiee e e e e eeeeeeransannans 4
GABBS Maps Events and Actions...........ccevvvvciieeeeeeeeeeeevennnnnnnn. 6

GABBS Maps APl REfErencCecceeeeeeeeeeveeeeiiiiiieee e, 8

1. What is GABBS Python Maps Library?

GABBS Python Maps Library allows MyGeoHub users and scientists to display maps, images,
vectors and other geospatial information within their Hubzero Tools. It includes the GABBS

Python Maps APl and GABBS Map Widgets
GABBSPython Maps APl enables developers to customize maps and the information on

maps.GABBS MapWidgets provide a container for displaying maps without programming, which
is an easy way to integrate maps into an application.

2. Basics

In this section we will show how to create a simple map using the GABBS Python Maps Library.
We will start with a simple example and then go through the code step by step.

2.1 Create a simple map

» ShapeViewer _ & X

-

A

vector %
#5 Lcs_2013052... @
B Lcs 2013052... @
& google hybrid =
[

Naperville}

Pittsburgh
B Q
r|

OHIO

ILEINOIS

This example creates a map show some vector of Michigan, U.S, and raster image of Purdue, West
Lafayette, Indiana, U.S.

"styleName": "SVG_MARKER_RED_MARKER"}
markerProp[“fileName"] = filePath
self.point = gabbs.maps.Delimited Text(markerProp)
self.mapContainer.addLayer(self.point)

The rest of this section describes the above example step by step.

2.2. Load the GABBS MapsAPI

The GABBS Maps APl is a Python library. It can be added to a Python main programas following:
import gabbs.maps

Initialize gabbs maps library

gabbs.maps.gbsLoadL.ibrary()

#adding your codes here

Unload gabbs maps library
gabbs.maps.gbsUnloadL.ibrary()

2.3. Create a map container

Create a mapContainerobject to contain the map. mapContaineris a widget in PyQT. Use layout to
size the element.

Note: The map will always "inherit" its size from its container layout.

In the initialize function, create adict object (canvasProp) to define the properties of the
mapContainer, such as enabling control panels on the toolbar. The following shows example code
that initializes the map container:

Create a Map Container, aka map canvas
canvasProp = {'panControl": True,
‘panControlOptions':
‘zoomControl': True,
‘selectControl': True,
'layerControl: True,
‘overviewControl":True}
self.mapContainer = gabbs.maps.MapContainer(canvasProp)
Add canvas as a widget to the layout
self.layout.addWidget(self.mapContainer)

2.4. Set map properties

The syntax for setting map properties follows the style of Google Maps API. All properties are
stored in a Python dictionary, where property nameis the key and property value is the value. And
the value is using native Python data types, such as Boolean, Integer, Float, and String.

In the initialize function, create a dict object (mapProp) to define the properties for the map. Here
are the steps to initialize a map:

Create a Map object

mapProp = {'center":
{'lon": -85.508742,
'lat': 46.120850},
‘zoom': 6,
'maxZoom': 18,
‘'minZoom': 1,
'mapTypeld': 'OSM'}

The center property specifies where to center the map. Create a Lat and Lonkey to center the map
on a specific point. Pass the coordinates in the order: longitude, latitude.The zoom property
specifies the zoom level for the map. A value of zero shows a map of the Earth fully zoomed out.
Higher zoom levels zoom in at a higher resolution.The mapTypeld property specifies the map type
to display. The following map types are supported:

® OSM (Open Street Map)

2.5. Create a map object
The following code creates a new map inside the main window class with member variable name
"self.map ", using the parameters that are passed through mapProp.

self.map = gabbs.maps.Map(mapProp)
self.mapContainer.addLayer(self.map)

3. GABBS Maps Overlays

Overlays are objects on the map that are bound to latitude/longitude coordinates. Scientists can
use overlay to display result images. GABBS Maps supports several types of overlays:

Vector:

This includes (1) polyline which includes series of straight lines on a map,(2) polygon which
includes series of straight lines on a map and the shape is "closed",(3)circle, and (4) rectangle.

Raster:
This includes any GDAL supported image file format, such as tiff, geoTiff. The file may be single
band or multiband.

DelimitedText:
This includes CSV, or other text file. This is often symbolized as markerson a map which can also
display custom icon images.

In the future, GABBS Maps will support info windows, displaying content within a popup balloon
on top of a map, and other custom overlays.

3.1.Vector

A vector polygon is similar to a polyline in that it consists of a series of coordinates in an ordered
4

sequence. However, polygons are designed to define regions within a closed loop.Polygons are
made of straight lines, and the shape is "closed" (all the lines connect up).

A polygon overlay supports the following properties:

strokeColor - specifies a hexadecimal color for the line (format: "#FFFFFF")

strokeOpacity - specifies the opacity of the line (a value between 0.0 and 1.0)

strokeWeight - specifies the weight of the line's stroke in pixels

fillColor - specifies a hexadecimal color for the area within the enclosed region (format:
"#FFFFFF")

fillOpacity - specifies the opacity of the fill color (a value between 0 and 100)

visible- defines whether the layer is visible by users (true/false)

Here is an example:
Create a Vector object
filePath = os.path.join(".", "data", "Counties", "Counties.shp")
polygonProp = {"layerName": "vector",
"strokeColor": "#0000FF",
"strokeOpacity": 0.8,
"strokeWeight": 2,
"fillColor": (40, 200, 160),
"fillOpacity": 0.5}
polygonProp["fileName"] = filePath
self.polygon = gabbs.maps.Vector(polygonProp)
self.mapContainer.addLayer(self.polygon)

3.2 Raster

A rasteroverlay supports the following properties:

opacity - specifies the opacity of the fill color (a value between 0.0 and 1.0)
visible- defines whether the layer is visible by users (true/false)

Here is an example:

filePath = os.path.join(*'/home/mygeohub/wanwei/geo", "data", "LC8 20130524.tif")
rasterProp = {"layerName": "raster"}
rasterProp["fileName"] = filePath
self.raster = gabbs.maps.Raster(rasterProp)
self.mapContainer.addLayer(self.raster) Try it yourself

3.3 DelimitedText

The DelimitedTextoverlay constructor creates a point layer. (Note that the position property must
be set for the marker to display).Add the layer to the map by using the addLayer() method of
mapContainer object.

Here is an example:
Create a Point object

filePath = os.path.join("/home/mygeohub/wanwei/geo", "data",
"Burn_Point_Locations.csv")

markerProp = {"layerName": "layer",
"delimiter":
"xField": "Longitude"”,
"yField": "Latitude",

"strokeColor": "#0000FF",
"strokeOpacity": 0.8,
"strokeWeight": 2,
"fillColor": (255, 0, 0),
"fillOpacity": 1}
markerProp[“fileName"] = filePath
self.point = gabbs.maps.Delimited Text(markerProp)
self.mapContainer.addLayer(self.point)

4. GABBS Maps Events and Actions

4.1.Add an action to the map

Add an action that will execute a script function once a mouse click event is triggered when using
map tools. It is also possible to link the action to a specific layer of the maps on demand. It
provides an easy and safe way to add user defined functions to map events. In addition, user can
get map attributes by using built-in key words in the action. Please see the GABBS Maps Action
Reference for details.

The gbsAddAction function creates a GABBS Maps API action. The action script to perform
when an event is triggered is added as a parameter to the action.

Here is an example that shows a message box of clicked mouse coordinates when user clicks on
the map. It defines a “python” type of action to call the QMessageBox function. In the call to
gbsAddAction(), self.polygon is the target layer, "python" is the action type, "massage” is the
action name, “actionl” is a string that contains thescript to be executed.

actionl = ™"

from PyQt4.QtCore import *

from PyQt4.QtGui import *

QMessageBox.information(None, "Info", "left button clicked x:[% $clickx %], y: [% $clicky %]
")

gabbs.maps.gbsAddAction(self.polygon, "python", "massage", actionl)

Below is another example that echoes an attribute value when a feature is clicked. It defines a
6

“generic” type of action to call the system echo command:

action2 = """ echo "[% "fpa_name" %]" """
gabbs.maps.addAction(self.point, "generic", "name", action2)

4.2 GABBS Maps Action Reference
Action Type:
Generic*“generic”

Python“python”

Python, tr("Get feature id"), "QtGui.QMessageBox.information(None, \"Feature id\", \"feature
id is [% $id %]\")", ", false);

Python, tr("Selected field's value (Identify features tool)"),
"QtGui.QMessageBox.information(None, \"Current field's value\", \"[% $currentfield %]J\'")", ",
false);

Python, tr("Clicked coordinates (Run feature actions tool)"),
"QtGui.QMessageBox.information(None, \"Clicked coords\", \"layer: [% $layerid %]\\ncoords:
([% $clickx %],[% $clicky %])\")", "™, false);

OpenUrl“open”

OpenUrl, tr("Open file"), "[% \"PATH\" %]", "", false);

OpenUrl, tr("Search on web based on attribute's value™), "http://www.google.com/search?q=[%
\"ATTRIBUTE\" %]", "", false);

Action Keywords:
[%$clickx %],[% $clicky%s]
$clickx, $clicky keywords will be automatically replaced by the mouse cursor position when
a click event is triggered.
[% \"ATTRIBUTE\" %]
ATTRIBUTE keyword need to be the name of anattribute field, and the value of the attribute
field of certain feature will be required by the action tool.

4.3.Add an Event Listener to the Map
Add an event listener that will execute the user function on certain signal from the map object. It

is also possible to load the GABBS Maps API on demand.

This feature is currently under development.

5. GABBS Maps API Reference

GABBS Python Maps API

gabbs.maps.

No | API Return Value | Usage

1 gbsLoadLibrary() void Initialize GABBS maps library

2. gbsUnloadL.ibrary() void Exit GABBS maps library

3. MapContainer(dict canvasProp) MapContainer | Create a Map Container, aka map
canvas

4. Map(dict mapProp) Map Create a Map layer

5. Raster(dict rasterProp) Raster Create a Rasterlayer

6. Vector(dict vectorProp) Vector Create a Vectorlayer

7. DelimitedText(dict pointProp) DelimitedText | Create a DelimitedText, CSV or
other WKTlayer

8. MapContainer.addLayer(Layer) void Add layer to map canvas

9. MapContainer.removelLayer(Layer) void Remove layer to map canvas

10. | Layer.show() void Show layer

11. | Layer.hide() void Hide layer

12. | Layer.setProperty() void Update layer’s properties and
styles

13. | gbsGetSelectedAttributes() List[] Get all attributes in selected
features of current layer

14. | gbsGetSelectedBounds() QRectF Get the bounding box’s

coordinates of all selected features
of current layer

	What is GABBS Python Maps Library?
	Basics
	GABBS Maps Overlays
	GABBS Maps Events and Actions
	GABBS Maps API Reference

