RadiSys

IRMX®
Network User’'s Guide
and Reference

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0625-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999
Copyright 0 1999 by RadiSys Corporation

All rights reserved.

Quick Contents

Chapter 1. Introduction

Chapter 2. iRMX-NET Overview

Chapter 3. Network Access Using iRMX-NET

Chapter 4. Using the Network

Chapter 5. Example: Configuring an Administrative Unit
Chapter 6. Examples: Configuring Multiple Operating Systems
Chapter 7. Network Software Implementation

Chapter 8. iNA 960 Topology and Addressing

Chapter 9. The Multibus Il Subnet and Routing Between Subnets
Chapter 10. The Programmatic Interface

Chapter 11. Using and Programming the Name Server

Chapter 12. Programming the Transport Layer

Chapter 13. Programming the Data Link Layer

Chapter 14. Using the Network Management Facility

Chapter 15. Remote Booting

Chapter 16. Internetwork Routing

Appendix A. iIRMX-NET and iNA 960 Transport Configuration Values
Appendix B. Data Flow in MIP and COMMputer Jobs

Appendix C. iNA 960 Network Objects

Appendix D. Related Documentation

Appendix E. Network Error Messages

Glossary

Index

Networ k User’s Guide and Reference iii

Notational Conventions

The referencesto system callsin the text and graphics use C syntax instead of PL/M
(for example, the system call receive_message instead of receive$message). If you
areworking in C, use the C header files, rmx_c.h, udi_c.h and rmx_err.h. If you are
working in PL/M, use the rmxplm.ext and error.lit header files and use dollar signs
(%) inthe system calls. Additional header filesfor network programs are listed in this
manual.

This manual uses the following conventions:

User input, conmand syntax and conputer output are printed
like this, in regular nonospaced text.

I n exanpl es conbi ning user input and conputer output, user
input is printed like this, in bold nbnospaced text.

System call nhames and command names appear in bold, likethis.

All numbers are decimal unless otherwise stated. Hexadecimal numbers include
the Hradix character (for example, OFFH).

Bit 0 isthe low-order bit unless otherwise stated.

The following iIRMX Operating System layer abbreviations are used. The
Nucleus layer is unabbreviated.

AL Application Loader

BIOS Basic I/O System

EIOS Extended 1/0 System

HI Human Interface

uDI Universal Development Interface
Note

A note calls attention to an important fact.

CAUTION

A caution points out something that could damage your hardware
or data.

Contents

Introduction
HOW tO USE ThiSBOOKcveieieiiieiie e 1
Networking Concepts and TermMIiNOIOQYcccoererererereeerieeeeneeseesee e 2
Network Software ChOICES........coeiiiiierere e e 3
iNA 960 ProgrammatiC INerfaces.........ooovererereneneeieeeee e 3
TRIMX-NET oottt et 3
TCP/IP @NA NFS......ooiiiiiirinieieee e s 5
IRMX-NET Overview
IRMX-NET Client and SEIVESccorveiirreereeeenesreesesree s 7
NS Y 1@ o 1= = 1 o I 8
THE NAIME SEIVEN ...t 8
The User DEfinition File........ccviiieerreeenreee s 11
The Client Definition File.........cooovoreiincee e 11
NS T = ot U 12
Client-based ProteCtioN..........cocvererirreeereseese e 12
Server-hased ProteCtion..........oeevreineenneeess e 13
Network Access Using iIRMX-NET
OVEIVIBIV ...ttt ettt et re et bbb e st eae e e e e e eesee b e 17
Adding a Server to the Name Server Object Table.........oceoeieieiiiciciceene. 18
ChooSiNG @ SErVer NBME........c.oieiiieieeeeeeeeee e 18
Entering Information Into the Object Table.........ccceoeiiiiiiiieeee 18
Defining Network Usersinthe UDF ... 20
ACCESSING OthEr AUS ...t e 21
Backing Up the Master UDF File........ccocooiiiiiieieeeeee e 21
Adding aClient to the CDF ..o e 22
[DE="] 0 s USSR 23
WWNEE'S NEXE?. ..ttt ettt e b saennens 23
Network User’s Guide and Reference Contents v

4 Using the Network

ACCESSING REMOLE FIlES ... 27
Connecting to @aFil€ SEIVESocvvecieeeeee s 27
AAChING @ SEIVENoviiececec et 27
DEtaChing @ SEIVEScvevvee ettt et nes 28

Listing Remote CONNECLIONS........cccovevererene et se e 28

USING REMOLE FIES ...t s anea 28
Copying Files Acrossthe NEtWOrK...........cevveverenieseseseseseeseeseesee s 29
Copyingthe Master UDFcccovv i 29
CopyiNGthE CDFcceocieeecece et 30

Making Local Files Accessibleto Other NOCES.........ccccvvevvieeeeeeieiesiesiennens 31
Setting Up PUbliC DIireCLOri€S.ccvereesee et 33
Listing PuUbliC DIir€CtONES.......ceeeeeereeere sttt 33
Removing PubliC DIireCtOrEScucvvevere v 34
Protecting FilE€S 0N @ SEIVENc.ocv v 34
WRNEE'S INEXE? ..ottt 35

5 Example: Configuring an Administrative Unit

Configuring the SYSEEMSc..oiuiiiiieeee e e e 38
Configuring the Master NOE..........ccoeiiiirieeieeree e 38
System 1: iIRMX for PCSNOGE.......cccoeeieieeieiesere e 38
|CU-configurable Master NOde..........ccooerineneiineeeee e 39
Configuring the Other NOAESooiieiiiieee e 39
System 2: Multibus |, System 320........ccooiriieiereree e 40

System 3: Multibus 1, System 520cccooeiereieieiesereeeeeeeens 40

System 4: Multibus 1, System 520cccovereieieneneeeeeeeeeeeea 41

System 5: PC BUS PlatfOrm.........cooiieiiiiieeece e 42

Setting Up the Administrative Unit ..o 43
RS o 0 USSR SRSTSRRN 43
Modcdf EXAMPIE......ocoieiieeee e 44

SyStEMS 2 througN 5 ... e 45

6 Example: Configuring Multiple Operating Systems

LT DO ISV (= o S 49
Connecting aDOS Client to an iRMX Server........ccocveeeeeeceeeeveeseeeeseennns 49
ONhETRMX SEIVESooieiceececee e 49

ONthe DOS CHEMLcceeieesee et 50

iIRMX and DOS INteroperabilityccocvevverierieninieesese e enens 51
The PCL2 NAME SEIVENcueevevieciesie et seese st seeeas 51

DOS Client RESIIICLONS........ccveeeeeeeeeese e et 51

Vi Contents

THhE UNIX SYSIEIM ..ottt 53

Connecting a UNIX Client to an iIRMX SErvercccooeveveneneveneneee 53
ONhe TRMX SEIVES ...oeiiiceiieeeee e e 53
ONthEUNIX CHENE ...ttt 53

Connecting an iIRMX Client to a UNIX SErvercoccoveeeneneneveneneenn 54
ONhe UNIX SEIVEN ..ot 54
ONthe IRMX CHENEooeiiiieee e e 54

Setting Up the Administrative Unit ... 54
iIRMX and UNIX Nodesin Separate AUS........ccoceeeroeeieeieneeieieneee, 55
iRMX and UNIX Nodesinthe Same AUccccooieeieienene e 55

iIRMX and UNIX Interoperabilitycccooeeereieneneneeeee e 56
SV-OpenNET Server Features and Restrictions...........ccoceeevereneene. 56
IRMX Server ReStriCHONS.......ccceeeeiereeie e 58

Connecting to Nodes on Older Versions of SV-OpenNET..........ccccceue.. 58

7 Network Software Implementation
Hardware ENVIFONMENES.c.courieiiiieirieesieie e 59
Software COMM puter and MIP Environments..........ccoeeeeeveeveenesesceseseeseens 60
Overview Of INA 960 SOftWEIE€........cccoereirireerieree e 61

TREINA LAYENS....cui ettt e e s see st nnens 62
The NAME SEIVEN ...t e 63
The TranSport Layer.......ccoevveereeeeeereee e e s 63
The NEWOIK LAYEN ...c.vevecece et e 63
The Data LinK LaYercccceveeireceeesere et 63
The Network Management FaCilityccooveeeeveeeerencenescse e 64

The ProgrammatiC INterface.........cvvvivieeieiesece s 64

Overview of IRMX-NET SOftWArecccevireerennenerenesees e 64

Data Flow Through iRMX-NET and iNA 960 Software...........ccccevevenens 66

ConfiguriNg the MIP.........ceeee e e 67

8 INA 960 Topology and Addressing

TheiNA 960 Network TOPOIOGYcovereeeeerereeerese st 69
General SUDNEIWOTIK TYPESoiuiieirieieeieeicre et 70
INA 960 SUDNEIWOIKS ..ottt 71

= T QN [0 =SS oo TP 71
Network Service Access Point (NSAP) Address........cocooeveveneienenennens 72
SUDNEL AAUIESS......ceceieieteee et 73
INtErNEWOrK ROULING.cviitiieeeiieiieeeie et 73

iNA 960 Network Layer Addressing SChemes..........cooeeeeoereienenese e 74
NU2 NetWOrk AddreSSiNg......cceeeereerie e enea 74
Static Internetwork AddreSSiNgcoceeevererenerieneeee e 75

Network User’s Guide and Reference Contents vii

End System to Intermediate System (ES-1S) Network Addressing.......... 75
Choosing a Network Layer Configuration...........cc.cooeeereneenicniencese e 76

The Multibus Il Subnet and Routing Between Subnets

Configuring Networks with the Multibus I Subnet............ccocvevvvveencereenennn. 77
Routing BEtWEEN SUDNELS..........covieiee e 78

Definition Of A ROULEN.........ccoiriieirieecre e 78

ES-ISVS. NUII2 JODS......coiiiicee e 78

ES IS ROULING ..cveeieiee ettt et e e e 79
Ethernet Addressesin the Multibus 11 SUDNELcccoeoiveeieinnreee 80
Data Link Subsystem ID for the Multibus 1 Subnetccocoevvievececcvcennne, 80
Name Server SEarch DOMAINccovvviiiiriiirerieee e 81
Overview of Setting up the Multibus Il Subnet...........cccoceveeevececericececen 81
Step 1: Mapping the NEtWOrK........cccooeve i 82

Using Only TCP/IP Outside the Multibus Il Subnet............cc.ceeeveveennnns 85
Step 2: Choosing the iINA 960 JODS.......cc.ccueeeeeirire e enens 86
Step 3: Configuring JobSiNthe ICU.......ccocvve i 88
Step 4: Creating aLoadable Network Jobccccvevve i 89
Step 5: Using Loadable JOBS..........cccoveeiiieie e 90
Step 6: Changing Subnet IDs on Other SyStems........cocvvvvevereereecesese e 91
Step 7: Modifying the net/data Filec.cccveeeeeecereie e 92
Step 8 - 10 Overview: Configuring iNA 960 ROULINGccovveeeeeieeieiereeienes 93

Using Inamon to Configure ROULINGcccoeveveriesesie e 93
Step 8: Establishing ES and ISHEIOS.........cccoveieveviie e 94
Step 9: Getting the NET and Subnet Information...........ccoceeevveevevesieveecencennnns 96
Step 10: Setting Up theiNA 960 Static Routing Tables........cccevevvievevenne 98
Step 11: TCP/IP Configuration.........cccuceveeeieeeeeeseeesese e sese s 104
Increasing Performance for Remotely-Booted Boards...........ccceevevevrieeivennns 105

10

viii

The Programmatic Interface

Referencing Data Buffersin Request BIOCKScccoveiiiiiineniencneceeiee 107
Using Addressesin iNA 960 Request BIOCKS.........cccooereeirieeieneneieiens 108
Trangdating POINErScoiiiieieeere e 108
Limitations on BUffer Size........cccocoveinineiiinceeeeeee e 108
Interface Libraries and Link SEQUENCES.........ccoooiirireie i 109
INCIUAE FITES ...t 109
Programming With SErUCIUFES.c.oieiieieceeee e 110
Using the cg_ System CallS.......cooiiiieeee e 111
EXCEption HanAliNgcoeeueieiieieeee e 112
System CallStO INA 980ccuruiiririieririee et 113
CO_COMM_IMUIET_SEBEUS. ... ettt 114

Contents

(oo [eo 00 a 0T o) (g (o 0 VYo (o FO R 116

oo oo 211 4 11 1 o OO RSP RUSRR 117
COL_COMUM_SEBLUS ...ttt ettt st s sae e see bt eae e eaeesaeanbeebeenbesnnesane s 121
CO_CreaLE COIMIM_USEY .. .eiiueiiueeteetenstesutesseessessaeesseessessesasesaeasseansesnsesnsessesssenns 123
CO_Create MUItE_COMIM_USEN ...o.viieiieeeieeiceeeee et eee e s 124
CO_AElEE8 COMML_USEY ...ttt sttt 126

11 Using and Programming the Name Server

The Name Server Object Table.......ccoccvvviieeeeeses e 131
Adding an Object to the Name Server Object Table........ccceceeveeveeieveiiieinne 134
Loading Objects from the :sd:net/data File.........ccovveveveceieieie e 135
Editing the :sd:net/data.ex File........ccocveeeieceeieceesese e 136

Syntax of the :sd:net/data File..........cccveeveeeeieeceeee e, 138

Other Name Server Operations...........ccceecvevereresiesesesesreseeseeseeseese e see e 141
Deleting an Object from the Name Server Object Table..........ccccveveneen. 141
Obtaining Local Name Server Informationccoevevvveeeeereesieseseeneens 141
Obtaining Remote Name Server Information..........ccoceveveeeeeeeececreesennenns 141
Object Table Entriesat INitialiZation.........ccccvveveerieeeeieeieeeseesese e 142
Location of the NamME SENVETccciriieireeesee e 146
Request BIOCK ATQUMENTSccveiieieriesiesiesieseeeeseeseesie e sre e ssesaeseesaeseesnenns 146
EX@MPI € SOftWEAIE ..ot 147
Name Server COMMEBNGS.coeirerieire ettt st be s e seeae s 148
ADD_INAME......iiisetse ettt ettt ne e 150
ADD_SEARCH_DOMAIN ..ottt seetesesee et e sesesessenens 153
CHANGE_VALUE ...ttt 155
DELETE _NAME ...ttt sttt st 157
DELETE_PROPERTY ...cotitiietiisieteirieieesieteseseeseseseseesesassenessssesessssesessnsensssnses 159
DELETE_SEARCH_DOMAIN ...coiiieiieeeserieeeseee st seseneseseeseseeas 161
L I A Y S 163
GET_SEARCH_DOMAIN ..ottt seees 166
GET_SPOKESMANcoiiiieiirieteesie ettt sessene s 168
L I N L 170
IS 17N = SR 173

12 Programming the Transport Layer

TraNSPOIT SENVICES....cviiteieeeeeieeeeie ettt st se e b et e et et b naeas 175
Virtual CirCUIt SEIVICR......c.viuieeeiieieerte et 177
EXample SOftWaIec.ooe i 178
Datagram SEIVICEoiviieeieietereeeieee ettt sae e e se et see b saeeneas 178

BUI IS, .t 178
BUffer AAreSSINGcooeeeeieeresee e e 178

Networ k User’s Guide and Reference Contents iX

TSAP AQUreSS BUFFET ...ttt s 179

COoNtigUOUS BUFFEIS.....c.eiieiieie et 184
NONCONLIGUOUS BUFFEN'S.......ouiieiieiie e e 184
[SO REBSON COUES......coeeieitieierieeteeee ettt st ee e e aeseesbesbesaeene s e eneeneens 185
Virtual Circuit COMMENGS..........ooeerieriererere e 185
Commands to Establish a ConNECtionccooeiererene s 186
Commands for the Data Transfer Phase...........ccccooeoeniienenene s 186
Posting Receive Buffersfor Virtual CirCuits..........ccoceeveeeeeeeeienneeenee 187
Commandsto Terminate a CONNECLIONccceverrrerenere e 188
Datagram COMMEBNGS........coueeeruererieeienieseese st eeeeeseesees e seesee e saessesneeeeseens 188
Posting Receive Buffersfor Datagrams.........cccoceverereienenenceieeneee s 189
Transport Service COMMEANGScoerrieieiere e 189
ACCEPT_CONNECT_REQUESTooiitirieererieie it 190
AWAIT_CLOSE ...ttt st e e 193
AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENTccoitriiiiririeeriniee e 196
CLOSE ...ttt bbbkt b et b bt e et b 206
OPEN ...ttt bbbt b et e bbbt et e b 209
RECEIVE_ANY ..ottt st e s 211
RECEIVE_DATA ...ttt ettt 214
RECEIVE_DATAGRAM ..ottt 217
RECEIVE_EXPEDITED_DATA ..ottt 220
SEND_CONNECT_REQUEST ..ottt 223
SEND_DATA/SEND_EOM_DATA ..ottt 229
SEND_DATAGRAM ..ottt sttt 233
SEND_EXPEDITED _DATA . ..ottt 236
STATUS ettt bbbt e b et b et b b 239
WITHDRAW_DATAGRAM_RECEIVE_BUFFER........cccocoeiiriniinnieen 249
WITHDRAW_EXPEDITED_BUFFER........cccoiiirriirieene e 251
WITHDRAW_RECEIVE_BUFFER.......coiiieieersee e 253

13

Programming the Data Link Layer

Overview of the Data Link Layer........cccccevivreieniesesiseeeeeeseesesee e 255
The External DataLink (EDL) Interface.......cccccevvevererevesenieeieeseeie s 256
The RAWEDL INterfacec.ccovviieiriereeesese s 256

iNA 960-Supported Hardware Subnets and Protocols..........ccoovvvveviereeieneennens 257
LSAP IENtifIerS....c.ciueeeeirieeerieeeses e 258

Data Link COMMENGS..........curuirieiiriinieiirieieiesieeee s seenesnes 260

CONFIGUREooeiiieiet ettt ettt st ettt 264

CONNECT ...ttt ettt st ettt ettt 266

DISCONNECT ...ttt sttt sttt b sttt e st see e sne e 269

FLUSH <ottt 271

Contents

272
274
276
278
282
286
288
289

14 Using the Network Management Facility

NMF ServiCes......ccccvvvrereneerennnnns
NMF Operationccceeeveevvererennenn,
Managers and Agents................

Local Versus Remote NMF Operation.........ccovvereeeeeeseeseneneseesesnneens

Local Operation..................

Remote Operation

NMF Communications Services
Using NMF Commands....................

Net Agent Connection COMMAENGS..........ccevereereresesieeeeseeseeneseesreseennens

Layer Management Commands.
NMF Object IDs.................

Using Layer Management Commands..........cccceeveeveeeeveerenrieseesennnns

Event Notification
NMF Events.......ccccceeeveeee.
Debugging Commands..............
Maintenance Commands...........
Remote Load Operations...........

The NMF Commands...........cc..........
ATTACH_AGENT ...coeveeevecee,
AWAIT EVENT...cooveieeeeecen,
DETACH_AGENTccecveveereen

READ_AND_CLEAR_OBJECT
READ_MEMORY/SET_MEMORY

READ_OBJECT/SET_OBJECT READ_AND_CLEAR _OBJECT

SET_MEMORYccooovneirinernreens
SET_OBJECT ..o
SUPPLY_BUFFER.......c.ccocvnin.
TAKEBACK_BUFFER....................

Network User’s Guide and Reference

Contents

293
295
295
297
297
298
298
300
300
301
301
302
302
303
303
303
304
304
306
309
312
313
316
318
319
321
327
328
329
332

xi

15 Remote Booting

Hardware and Software REQUIFEMENES..........ceveeeieerere e see e 333
Overview of RemMOte BOOLNG........ccccvveriererise e 335
Configuring the Load FilES.........cccevvieie i 337
Operating System BOOt Fil€cccvciiiiiriceceece s 338
Generating an OSBOOt Fil€......ccveiveeieeeece e 338
Load-time Configuration File..........cccvveeeeieeieee e 340
Remote Third Stage Bootstrap LOadercceveveeverieveneseseseeeeiennens 341
INA 960 Load File....c.coiieirieieeecie et 342
Generating aFirst Stage EPROM for the Boot Client.......cccecvevvevvcevenienne 342
Creating a First Stage for EtherExpress 16 or EWENETcccccceeevenee. 343
Using the IPPS PROM Programmer..........cccveeeeeesreeseeseeseesessessessesessens 345
INStalling the EPROMcooiiiiiie i seeste et snens 346
Configuring the Remote BOOt SEIVEXccceveveeeeeceie e 346
Creating the CCINfO FIlecviee e 346
ClasS COUES........eeruirieeeiisieeete ettt se s 347
Generating the cCiNfO File.......ccviv e, 348

L0ading the BOOL SENVENccveeeieere e sesteeee e see et seeseenens 349
Installing the Load FIlES.......cccccviiiiiececcees e 350
Configuring the File SEIVEcueeee et 350
Loading Server Names into the Name Server Database.............ccceevenee. 351
Adding Client Namestothe CDF.........ccccovoveieieeiere e 352
Adding Server Names to the :config:terminals File.........cccceevevievienennene 352
REMOLE BOOE SEAIT ..ot 353
Booting MUltibuS | SYStEMS......ccco v 353
Booting Multibus | or PC BUS SYyStEMS........ccccoeveneresieseseseseeseeieneens 353
System Initialization on a Diskless NOde........cccceevvevecene v 353
If Remote BOOtiNG FallSocvieicieeceser e 355
B (018 0] 1= 10T 11 o TS 355
Creating Custom Server ApPliCaLIONSccvvveeererere e 358
Boot Request and RESPONSEccvvevereniise e 358
[I07="o [0 @)1= - 1 o o ISR 359
BOOt MOAUIE FOMMELccveeevereeiirieieie ettt 361
Using SUPPLY _BUFFER and TAKEBACK_BUFFERccccccoeune. 362

16 Internetwork Routing

Internetwork Routing ProtOCOIS.coiirererieiireeie e 365
S (o Lo LU 1] o SRS 365
ES- IS ROULING ...ttt e 365
Using Static and ES-IS Routing Together ... 366

ROULING TADIES ...t e 366

Xii Contents

Application Accessto Routing Tables........cocoeeiiiieiieieieeee e 367

Reading and Setting Static Routing ObjeCtS.........cccovririeerieieneere e 368
Command and Response Buffers for Static Routingccccoceevvinenenne. 368
Command BUFFENcceiiiiieeeere e 369
RESPONSE BUFFES ...t 370

Field Descriptions for Command and Response Buffers................... 371

Reading and Setting ES-1S Routing ObJECtS.........cooiririerieeiereese e 374
Command and Response Buffersfor ES-ISRouting.........ccccceeeeevneienenne. 376
Command BUFFEN.........cuiiiiieee e 376
RESPONSE BUFFEN ...t 377

Field Descriptions for Command and Response Buffers................... 377

The Local End System Table Structure...........cccoevereieneneienenene 379

The Intermediate System Table Structure............ccooeooeveveieieicnene 380

The Static Intermediate System Table Structure...........coceeceveeeeene 381

The Reachable NSAP Address Table Structureccoeeeeerereenee 382

The Subnet Table SIFUCLUIe.........oc.cvieieee e 383

The Local NSAP Address Table Structure...........cccoeeeeneneneneeennen. 384

A IRMX-NET and iNA 960 Transport Configuration Values

Files Containing iNA 960 Transport SOftWareccccevceeeerererieseseseseeseennns 385

INA 960 DOWNI0ad FilES........ccciieirieieerieerie e 385
INA 960 COMMPULES JODS........ceiveierieriesiesieseeeeseessesesre e ssesseeaesae e seesre e e 388
Configuration of iINA 960 MIP JODS.........cccccevirerieieseie e 388
Configuration of iIRMX-NET JOBS.......ccccceiirinise s 388

B Data Flow in MIP and COMMputer Jobs

Data Interchange With the MIP...........ccooi e 391
Multibus | and PCBUSMIPcooiiiiieceee e 393

MUILTBUS TT MIP....eiiitie e e 394

Data Interchange in a COMMPULEr JOD........cccoviiiiiiinene e 395

C INA 960 Network ODJects ..., 397
D Related Documentation ..., 415

E Network Error Messages
System Initialization Error MESSAQEScveveereereereerieseenieseeseeseseesseseessessesseens 417
MIP EITOr COUES.....c.ccueiieiieieitesieie ettt st sttt 419

Networ k User’s Guide and Reference Contents Xiii

Xiv Contents

Tables

Table 7-1. iNA 960 Services and 1SO SpeCificationS........ccccveeeceerveriereerese e 61
Table 9-1. iNA 960 COMMputer Jobs for the Multibus 11 Subnetccceevveveeenene 86
Table 9-2. Configuring ES and ISHEIIOS........cccveiiieieieiese e 94
Table 10-1. System Callsfor AccesstoiNA 960 and the Name Serverccoeeeee. 113
Table 11-1. Property Typesfor the Name SErVEr ... venieve e 133
Table 11-2. Object TablE ENIIES......cccceieeese et se e st 142
Table 11-3. Name Server COMMANAS.coeeeerierieerieiee et seeeerens 148
Table 11-4. Name Server ReSPONSE COUESccvvuerieriereeeerieseereeeeeeeeeeeseeesresne e 149
Table 12-1. Transport Layer COMMANGASccccevvrereeeereeresesesesreeesseeeeseesee e seeenes 176
Table 12-2. TSAP Address Buffer Field ValUes..........cooevvevininececeneeeeee e 182
Table 12-3. SO RE8SON COUES.......covrienirierieirie ettt 185
Table 12-4. Maximum Total Buffer Lengths.........ccceeveveveiie v 231
Table 13-1. DataLink ComMMENGS........cccceerieirerieiene et 261
Table 13-2. DataLink SUDSYSEEM IDS.......ccovieeeeieeee e 262
Table 13-3. 1EEE 802.3 RESPONSE COUES........ccviieriirieriereeriesiesieseeieseeseesaeeseesessessessens 262
Table 14-1. Network Management Facility Commandsccccceeveeereereneveeseseeseenns 305
Table 15-1. BOOt Client SYSEMSccocceiicececesese et 334
Table 15-2. Load Filesfor ReMOte BOOING.......cccccevvvverrerireeeeee s see st 337
Table 15-3. ICU Definition Filesfor Remote Booting..........cccoveveeeveeereeresiesenese e 338
Table 15-4. Remote Third Stage Bootstrap Loader Files........cccovveveevevevcevcse e 341
Table 15-5. Class Code Ranges and DefaultSccceveveverevenene e 347
Table 15-6. Remote Load File Trangationccoceovverninenenenee e 348
Table 15-7. Default Directoriesfor Load FIleS........cccoovvevivireieieneneeree e 350
Table A-1. iINA 960 DOWNI0ad FIlES.......ccooirieiriereereeee e 386
Table A-2. iNA 960 Download File Configuration............cceveveeeeeeereeseeseneeseeseeseeens 387
Table A-3. MIP Job CoNfigUIationcccccvievinieeee e 388
Table A-4. iIRMX-NET Configuration.........cccceeveerieereereseseseesesessesseeseessessesseseessenees 389
Table C-1. 802.3 Data Link OBJECESccvvivireiesiece e eneas 398
Table C-2. 802.3 Data Link Objects With the 825595TX Componentccccevrvenene 399
Table C-3. 802.3 Data Link Objects With the DEC21143 Component...........ccceevevenne. 400
Table C-4. 802.3 Data Link Objects for the Multibus Il Subnetccccccveevvvvevieinenene 401
Table C-5. 1P Network Layer ObJECES........cccviereeiereeresie e s eesee e sne s 402
Table C-6. RoUter ObJECES - SEALICccvviveieciereeieiereesese e e st sre s 402
Table C-7. Router ObJECIS - ES-IS.....ooiiiiciiece e 403
Table C-8. Transport Layer Objects - Virtual Circuit Connection Independent............ 406
Table C-9. Map 2.1 Transport OBJECES.......cccvieieriereeeeeeres e 409
Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent........ 411
Table C-11. Map 2.1 Transport Objects - Transport Datagramccceeveveveereseesennne. 413
Table C-12. NMF ODJECES.....ceciiieieieiieiee ettt 413
Table C-13. Network Layer EVENLScocoiiieieieeeee e 413
Table C-14. Transport Layer EVENLS.......ccooiii i 414
Table E-1. MIP EITOr COUES......cecviitireeieiiesieiente ettt st st s nne 419

Network User’s Guide and Reference Contents XV

Figures

Figure 1-1. iRMX-NET Interoperability with Other OpenNET Systems............c........ 4
Figure 2-1. Name Server OPeratioN.........ccceeeveresieseseseeseeseeseeseseesse e sressessesseseenees 9
Figure 2-2. Name Server EXaMPIE.......cccvieeiereiese ettt 10
Figure 2-3. Client-based Protection Within @n AU ... 12
Figure 2-4. Server-based Protection ACIOSS AUSc.ecveeeiererese e e seeneas 14
Figure 3-1. NEtWOrK SELUD......ccveiveceieececese et 16
Figure 4-1. ReMOLE Fil@ ACCESS......ccccveeeiereee sttt 26
Figure 4-2. Public Directories as Seen from aClient.........ccocvovvvvenerenceceeseeseeseeens 31
Figure 5-1. Single AdminiStrative UNit.........cccovviereiesese e see e e e 37
Figure 6-1. The OpPenNET NEIWOIKcoeveiieiirerieceeeeeeerese st eee s 47
Figure 6-2. Multiple Operating System NetWork..........ccocovvivvienenienienisieceeeeeeeeseens 48
Figure 7-1. 1SO OSI MOUEccooiveeiiiececeeee et st 59
Figure 7-2. iNA 960 SOftWare LayerS........coceeeverereseeeseeieseesiese e sre e sseseeseesessees 62
Figure 7-3. iIRMX-NET Data Flow on COMMputer Systems.........ceevveeeeieereeseereenens 66
Figure 7-4. iIRMX-NET Data Flow on COMMenging Systems..........ccceevevereereereereenens 66
Figure 8-1. A SiNgI€ SUDNEIWOIKccveverieieiiesiesieseseeeee et 69
Figure 8-2. Two Interconnected SUDNEIWOTKS.........ccccovvveeiiriereccse e 70
Figure 9-1. Mapping SUDNELS..........coueiieieieieieeeeeee e ere s 82
Figure 9-2. Mapping Subnets with an INternetwork...........ccccceveveviececeeeiecce s 84
Figure 9-3. Mapping Subnets for TCP/IP Access, but no iNA 960 Access.......cccueue. 85
Figure 9-4. EXampleiset.CSA Fil@coiiiiiece e 94
Figure 9-5. Routing Information on a Single External Networkccccceeveveveiereennn. 96
Figure 9-6. Example Routing Information on a Single External Network.................... 100
Figure 9-7. Routing Information on Multiple External Networks............ccccevvverereenn. 102
Figure 11-1. The Name Server Object Table.......ccocvvveereeieceses e 132
Figure 11-2. The :st:net/data.eX File.....cccccovivieieiiciceceeeeeee e 136
Figure 12-1. TSAP AdAreSS FOIMELcovevierieriisierieseereeeese e see e s e e eaesneeas 181
Figure 12-2. Connection Reguest Consideration POliCY.........cceovvveererieceeieeeeieseennns 205
Figure 13-1. DataLinK INtErfatecccveeeieiee e 259
Figure 14-1. A Typical Net Manager/Net Agent Interactionccceevveeeveveeriereneennn. 296
Figure 14-2. A Typical iNA 960 NEWOrKcccovveeierieee e 297
Figure 15-1. Remote Bootingthe iRMX 111 OS, Start and Finish.........cccccceveveieneenen. 335
Figure 15-2. Remote Booting a DiskIESSNOUE.ccevevereiene e 336
Figure 15-3. The :sd:net/ccinfo.bdf Fileccccveieeeecee e 347
Figure B-1. MIP Protocol MOGE!ccoceeieieresese et 391
Figure B-2. Multibus| and PC BUSMIP MOE!ccoeveievinese e 393
Figure B-3. MUltibus [T MIP MOGEL........ccceiiiririeirerieense e 394
Figure B-4. COMMOPpULEr MIP MOEccoveieiiresie et 395

XVi Contents

Introduction

Network User's Guide and Reference presents a number of networking options for
iRMXUE computers. iRMX systems can access the network through iRMX-NET,
standalone iNA 960, or TCP/IP software and NFS, all of which are provided with the
iRMX Operating Systems (OSs). Thismanual is primarily an introduction and
reference to iNA 960 and iRMX-NET.

Seealso: TCP/IP and NFSfor the iIRMX Operating System

How to Use This Book

This manual contains a variety of information for users of iIRMX networks,
application devel opers, and network administrators. Most of the earlier chapters
cover the installation, configuration, and use of IRMX-NET, which provides
transparent file access to any of Intel's family of OpenNET Local Area Network
(LAN) products. Most of the later chapters cover the interface to iINA 960, which
provides a programmatic interface to the ISO/OS| Transport software. iNA 960 is
the underlying software in IRMX network jobs.

Use this guide to determine which parts of the manual you should read.

If you are: Refer to:
AN IRMX-NET USErc.vvveveeeeiiiiiiiieeee e Chapters 1-4
Using multiple operating systems.............. Interoperability information in Chapter 6, in

addition to other chapters

A network administratorcccceeeeeenn. Chapters 1-5, 7, 9, 11, 14-16, Appendices
Aand C

Managing multiple operating systems....... Chapter 6, in addition to other chapters

An application developercccccceeeeiinns Chapters 1, 2, 7-16, Appendices A-E

Network User's Guide and Reference Chapter 1 1

Networking Concepts and Terminology

This manual uses these networking concepts and terminology:

A user has alogin on a computer system, which is called a node in the network. The
node you are logged into is the local node; any other oneis aremote node. The
nodes are connected into a Local Area Network (LAN) by some type of physical
connection, such as Ethernet.

There are two levels of networking software that provide communications between
nodes:

e Transport software like iNA 960 and TCP/IP allows you to write applications
that transfer data between nodes, typically by establishing avirtual circuit
between the nodes. TCP/IP software includes utilities to transfer files between
nodes or to log in to a remote node.

* Transparent file accessis provided by iRMX-NET running on iNA 960 software
or NFSrunning on TCP/IP. Transparent file accessis the ability to work on files
on aremote node as if they were local to your own system.

The function of a network is to allow computers to share resources, such asfiles,
printers, tape drives, diskette drives, and modems. A computer that enables other
nodes to use its resourcesis a server (or server node). A computer that accesses the
resources of another nodeisaclient (or client node). A node may be both a server
and aclient.

A network can be set up with one or more dedicated servers, computers used
exclusively to provide resources to the other nodes, which act as clients.
Alternatively, all the nodes can provide resources for each other, so each oneis both
aserver and a client, in a peer-to-peer relationship.

The glossary at the back of the manual provides additional terms and definitions.

See also: Glossary, Introducing the iIRMX Operating Systems

2 Chapter 1 Introduction

Network Software Choices
These network software packages are provided with the OS:

Transport iNA 960 programmatic TCP/IP for Internet protocol

Software interface to ISO OSI (requires iNA 960 on iRMX systems)
protocol

Transparent iRMX-NET client and NFS

File Access server (requires iNA 960) (requires TCP/IP)

INA 960 Programmatic Interfaces

If you only want a programmiatic interface to Transport services from your
application, instead of transparent file access by users at the iIRMX command line,
use iNA 960 jobs without loading iIRMX-NET jobs. By themselves, theiNA 960
jobs do not provide the iIRMX-NET interface to the remote file driver, or network
user administration.

See also: Network Software |mplementation, Chapter 7;
i*.job, System Configuration and Administration

IRMX-NET

iRMX-NET isdistributed as part of the iIRMX OS software, so this option is always
available on any iRMX computer with a compatible hardware environment.

See also: Network Software |mplementation, Chapter 7

One of the major features of IRMX-NET isthat it enablesiRM X computers to
interconnect and interoperate easily with other OpenNET file servers and clients
running a variety of OSs, as shown in Figure 1-1.

Servers Clients

\
\
\
iRMX | iRMX
\
\
, \
iRMX |
\
\
\
\
\
\

iRMX
Server

UNIX UNIX

Client

DOs

iRMX is a registered trademark of Intel Corporation 0OM02729

Arrows indicate flow of resource requests.

Network User's Guide and Reference Chapter 1 3

Figure1-1. iRMX-NET Interoperability with Other OpenNET Systems

OpenNET cannot connect iRM X clientsto DOS file servers. These software
modules do not use the same communication protocols.

Each node on iRMX-NET can be used as a server and a client smultaneoudly. This
provides great flexibility and saves the cost of a dedicated file server. On the other
hand, it increases administrative duties and can slow response times.

iRMX-NET makesit possible for users to access remote files with the same Human
Interface (HI) commands used for the equivalent operations on local files. Thisis
called transparent file access.

On computers running DOSRM X, the iIRMX-NET file server provides remote access
to both the iIRMX and the DOS file systems. Remote clients access the DOS file
system through the iIRMX-NET file server.

See also: iRMX-NET Overview, Chapter 2;
Network Access Using iRM X-Net, Chapter 3;
rnetserv.job and remotefd.job, System Configuration and Administration

Chapter 1 Introduction

TCP/IP and NFS

TCP/IP network software is available on any computer running the iRM X OS.
TCP/IP utilities enable users to access other computers on the network to transfer
filesand log in to remote systems.

TCP/IP software provides the advantage of industry standard networking protocols
that allow interoperability with most other OSs. Administrators of multiple OS
networks, as well as many users, are likely to be familiar with TCP/IP networks.

For transparent file access using TCP/IP protocols, NFS software is a so included
with theiRMX OS.

Theingtallation, configuration and use of TCP/IP and NFS software is covered in a
Sseparate manual.

See also: TCP/IP and NFSfor the iIRMX Operating System;
ip.job, rip.job, tcp.job, udp.job, mountd.job, nfsfd.job, nfsd.job, and
pmapd.job, System Configuration and Administration

Network User's Guide and Reference Chapter 1

Chapter 1 Introduction

IRMX-NET Overview

This chapter is ageneral description of how iIRMX-NET works. It discussesthe
software, network operation, and security methods. If you are an iRMX-NET user,
this chapter provides the background necessary for setting up the iIRMX-NET
software on your computer. If you are a network administrator or application
developer, read this as an introduction to the more detailed discussions of these topics
in later chapters.

See also: Programming the Name Server, Chapter 11;
Network Software |mplementation, Chapter 7

IRMX-NET Client and Server

iRMX-NET includes these jobs, which you can configure into the OS or |oad
separately:

iRMX-NET Client Containsthe iRMX-NET file consumer and the remote file
driver (RFD) The loadable version of thisjob isremotefd.jab.

iRMX-NET Server Thefile server. The loadable version of thisjob isrnetserv.job.

Y ou can use either the client or the server separately or run both on the same system.
These jobs require that you also run the appropriate iINA 960 job for your board.

See also: Network Software |mplementation, Chapter 7;
Loading network jobs, System Configuration and Administration;
Network configuration, ICU User's Guide and Quick Reference

Network User's Guide and Reference Chapter 2 7

Network Operation
The operation of iRMX-NET depends on information maintained in three places:

e The Name Server maps the names of network servicesto their addresses. It
contains information about al the servers on the network.

» The User Definition File (UDF) on each node contains names and other
information about network users that can access that node. It is used to validate
requests for remote access.

e Theoptiona Client Definition File (CDF) on a server contains the client names
and passwords of client nodes that can access that server. It isused to validate
requests for remote access.

The Name Server

To be accessible, every server node must register its file server name with the Name
Server. The Name Server is a subsystem of iRMX-NET that dynamically maps the
names of network servicesto their addresses. This allows clientsto find other
computers on the network.

Dynamic name resol ution means you can assign a server name to a computer at any
time. If it aready has another server name, you can add a second name. Once the
new name is registered with the Name Server, remote users can access the node by
using that name. They do not have to remember the network address, although they
can obtain the address associated with this server name, if they wish. This process
eliminates the administrative overhead of maintaining predetermined server names
and network addressesin a central file.

A node that is used strictly as a client does not have to be registered with the Name
Server. It may be, however, so remote users can find its net address.

Figure 2-1 shows the operation of the Name Server. Each system in the figure runs
its own Name Server software. The various Name Servers work together across the
network to provide name resolution to each node.

If your network has multiple subnets, the Name Server operates by default only on
the range of subnet 1Ds preconfigured into each iNA 960 job. However, you can
configure the default subnet 1Ds or extend the domain of subnets searched by the
Name Server.

See also: Multibus Il subnets, Chapter 9

8 Chapter 2 iIRMX-NET Overview

Name Server

T

3
1
iRMX 11l OS UNIX System V
Ethernet
2
MS-DOS

The Name Server consists of all the spokesman systems on the LAN. It maps
system names to Ethernet addresses.

Figure 2-1. Name Server Operation

The Name Server works by allowing each node on the network to maintain a table of
network objects. These objects are resources available to remote clients, like file
servers, print servers, or virtual terminal servers. The object table lists the names of
network objects and the attributes, or properties, associated with each object, such as
its address and the type of service it offers. In addition to services provided by the
local node, the object table can include the services of other nodes on the network.
The only restriction is that no other object table on the network can have an object
listing with the same name and property type (except for afew initial objects). A
node that lists another computer's network servicesin its own Name Server object
table is a spokesman for those services. A spokesman is required for any non-iRMX
server that does not have Name Server capability.

A server name listed in a node's Name Server object table is visible to the entire
network. When you ask for information about a server, your computer sends the
request to the other computers on the network. They search their object tables for the
requested information, and the computer that findsit sends the information back to
your computer. Figure 2-2 shows an example of finding a server on the network
through the Name Server.

See also: Programming the Name Server, Chapter 11

Network User's Guide and Reference Chapter 2 9

Ethernet

O

Name
adam Server

Name
Server

‘W-2950
1. System 1 sends a message for a system named "wendy".

System 1's Name Server broadcasts a message asking if there's a system named
"wendy".

2. System 2's Name Server ignores the message, since it is not a spokesman for "wendy".
3. System 3's Name Server replies that it is named "wendy" and sends its Ethernet address.

System 1 establishes a connection to System 3, using the Ethernet addresses, then
transfers the message.

Figure 2-2. Name Server Example

The User Definition File

10

Every iRMX computer has a UDF, which is not a special networking file, but part of
theiRMX OSitself. The UDF isan ASCII text file with users logon names,
encrypted passwords, and user IDs. To facilitate connections to UNIX workstations
on OpenNET networks, a user definition can also include agroup ID, UNIX home
directory, UNIX login shell, and a comment.

To access the network, you must be a verified user, that is, your logon name and
password must be recognized as belonging to a valid network user. Y our local node
does this validation by checking for your name and password in the local UDF before

Chapter 2 iIRMX-NET Overview

allowing you to log on. When you request network access, the remote server does
another validation, in one of two ways. First it checksthe identity of your local node
initsown CDF. If it does not recognize the computer, then it checksits own UDF
for your logon name and password.

See also: password command, Command Reference;
UDF, System Configuration and Administration

The Client Definition File

Y ou can access a remote server without being checked for avalid logon name and
password if your local node is a verified client, that is, its client name and password
are recognized by the server as belonging to avalid client. The server does this
validation by checking for the client name and password in its CDF.

The CDF isan ASCI| text file maintained on every server, listing the client names
and encrypted passwords of clients that access the server. CDFs can be used to
simplify network maintenance when multiple nodes are grouped together into one
Administrative Unit (AU). Clientsin other AUs are not listed in the CDF, so
connections across AUs require user validation.

Y ou can change the default client name and password in the rmx.ini file or in the
ICU, if thereisone. A node'sclient nameis not necessarily the same asiits server
name, which islisted in its Name Server object table.

See also: modcdf command, Command Reference;
CDF, System Configuration and Administration

Some other OSs (such as UNIX) use the term subnet or subnetwork in the way that
theiRMX OSuses AU. Ingeneral, you can think of an AU asasubnet. However,
the term subnet in iIRM X documentation also refers to the INA subnet addressthat is
defined by the Network Layer intheiNA 960 Transport Software. Thereisno
relation between the two uses of subnet.

See also: iNA Topology and Addressing, Chapter 8

Network Security

iRMX-NET providestwo levels of network security: client-based protection and
server-based protection.

Client-based Protection

To provide client-based protection within an AU, all the nodes should have identical
UDFs and all server nodes should have identical CDFs. The network administrator
can maintain a Master UDF with verified users on one central master node, for

Network User's Guide and Reference Chapter 2 11

12

distribution to the other nodes in the AU. The administrator can also maintain alist
of verified clients on the master node, which can be added to the CDFs on the AU's
servers.

For client-based protection within an AU:

e Theclient system uses the UDF to validate the user

* The server system uses the CDF to validate the client system
e Onesystem maintains a master copy of the UDF and CDF
Figure 2-3 illustrates the process of client-based security.

AU

Client Server

System A

1. User validation in UDF
2. User request transmitted
3. Client validation in CDF
4. Request granted
Figure 2-3. Client-based Protection Within an AU

A client-based security system requires these steps:

1. Theuser at System A isvalidated from the UDF at System A. Thisvalidation
occurs when the user logs onto System A.

2. |If step 1issuccessful and the user attemptsto access afile on System B, the
client transmits the user's request, along with the client name and password for
System A, to System B.

3. The server verifies the client name and password of System A using the CDF
located at System B. If the client name and password of System A are valid, the
server assumes that the user at System A isalso valid.

4. If step 3issuccessful, the user's request is processed.

Chapter 2 iIRMX-NET Overview

Server-based Protection

If System A's client name and password are not in the server's CDF, step 3 in the last
section fails. The connection can still be made, however, if the server can determine
that the user on System A isaverified user. This method of confirming users prior to
granting remote file accessis server-based protection, which offers the highest level
of security.

For server-based protection:

The user's name and password must be identical in both UDFs.

The user ID and group ID may be different. A user named Jill could have ID 5
on one system and 1D 20 on another. If the passwords on both systems are the
same, Jill can access files between systems.

The client system usesits UDF to validate the user.

The server system uses its UDF to validate the user.

Figure 2-4 illustrates the process of server-based security.

AU A AUB

Server

og

oo

System A

User validation in UDF
User request transmitted
User validation in UDF
Request granted

Figure 2-4. Server-based Protection Across AUs

A server-based security system requires these steps:

1

The user at System A isvalidated from the UDF at System A. Thisvalidation
occurs when the user logs onto System A.

If step 1 issuccessful and the user attempts to access afile on System B, the
client transmits the user's request, along with the client name and password for
System A, to System B.

Network User's Guide and Reference Chapter 2 13

14

3. Theserver isnot able to verify the client name and password of System A, using
the CDF located at System B.

4. If step 3 fails, the server verifies the user's name and password, using the UDF
located at System B.

5. If step 4 is successful, the user's request is processed.

For user validation to succeed, the user must be defined in both AUs. The UDFson

System A and System B must list identical user names and passwords, but the user
IDs can be different.

Chapter 2 iIRMX-NET Overview

Network Access Using iIRMX-NET

This chapter describes how to set up iIRMX-NET network access. This discussion
focuses on setting up the network files to automatically log on to the network at boot
time. However, there are many ways to set up and manage a system, and you may
prefer to do some of these operations from the command line or through the
programmatic interface.

See also: The Programmatic Interface, Chapter 10

The instructions and exampl es assume that the OS software has been installed in the
default directories specified in the installation instructions. If your software
installation is nonstandard, change the pathnames as needed.

Before you begin, make sure that:

e« TheiRMX OSisrunning.
» TheNIC appropriate for this bus configuration has been installed.
* TheNIC is connected to the Ethernet LAN hardware.

Because the network is part of the OS, some of the network setup is normally done
during general installation or system configuration. The network configuration is set
up in these places, depending on the OS:

/net/data file

» :config:loadinfo file for loadable network jobs

» Interactive Configuration Utility (ICU) for first-level network jobs
e :config:rmx.ini file for the DOSRMX and iRMX for PCs OSs

» bpsfilefor theiRMX Il OS onaMultibus Il system

That level of configuration should already be complete by the time you begin the
stepsin this chapter.

See also: AU configuration and setup example, Chapter 5;
Installation, Installation and Startup;
Loading network jobs, System Configuration and Administration;
ICU User's Guide and Quick Reference

Figure 3-1 gives an overview of connecting to the network. The lighter boxes show
the steps covered in this chapter. The stepsin the darker boxes are discussed
elsawhere in this or other manuals.

Network User's Guide and Reference Chapter 3 15

L Run-time B
i configuration i
i Load network layer .

Name Server
Map server name |€—————
to net address.

v

UDF
Set up network
access for users.

v

CDF

Set up server access
for clients.

DOS network
i osetup i

W-3275

Figure 3-1. Network Setup

Overview

The process of obtaining network access through iIRMX-NET varies, depending on
how you will use the node and what version of the OS it runs. These sections provide
the details of the various setup options, but here isa brief overview. You need to do
one or more of these:

Client only or If the AU includes other nodes, define your user name in the
client/server node Master UDF for distribution to all nodes. Add the client name
to the CDF on servers within the AU.

16 Chapter 3 Network Access Using iRMX-NET

Server only or
client/server node

Node
communicating
outsidethe AU

DOSRMX node

Add a server name for this computer to the Name Server object
table. If the AU includes other nodes, and you will use this
computer as a client, define your user name in the Master UDF
for distribution to al nodes. Add the other client namesin the
AU to the local CDFfile.

In addition to the previous steps, make sure this system has at
least one user name and password in common with each node
you will communicate with outside the AU.

In addition to the previous steps, make sure the OSiis set up to
load iRMX-NET at boot time. This gives you network access
from theiRMX OS.

Seealso: Using iRMX-NET in a DOS Environment, System
Configuration and Administration

Network User's Guide and Reference Chapter 3 17

Adding a Server to the Name Server Object Table

If the computer you are setting up will be used strictly as a client, you can skip this
section.

To make a server visible to the entire network, you must catalog its node name,
transport address, and the type of servicesit provides with the Name Server. Then
any other node on the network can contact this server, simply by supplying its server
name. This discussion explainsthe simplest case: adding the local hode name to its
own Name Server object table. However, there are many other things that can be
done with the Name Server.

See also: Programming the Name Server, Chapter 11

Choosing a Server Name

The server name must be unique on the network, not just within the AU. The nameis
not case-sensitive; that is, the Name Server sees COMMSY S, Commsys and
commsys as the same name. If you try to enter a duplicate name, the Name Server
displays an error message.

Entering Information Into the Object Table

The Name Server usually getsinformation from the loadname command.

L cadname reads the node name and description from an input file and enters the
information into the Name Server object table. By default the system is configured to
do an automatic loadname at boot time.

Theinput file for the loadname command is afile named data in the : sd: net
directory. Each line of the :sd: net/data file corresponds to one or two entriesin the
Name Server object table. The easiest way to create thisfile isto edit an example
file, data.ex, that is provided with the OS software. To create a data file this way:

1. Moveto the:sd:net directory and create a copy of the examplefile, by entering:

attachfile :sd:net
copy data.ex to data

18 Chapter 3 Network Access Using iRMX-NET

2. Editthedatafile. Thefirst line of the file isthe template for the local server
name information:

| ocal _name/nfs: TYPE=rnx: ADDRESS=;

Substitute the node name for | ocal _nane inthefirst line, and delete the
remaining lines. Y ou do not need to specify an address. The Name Server
obtains that from the NIC.

3. Enter the contents of the file into the Name Server with this command:
| oadnane

Y ou can also register a server name by executing a sethame command on the local
system from the command line.

See also: :sd:net/data.ex file, Chapter 11
loadname, unloadname, and setname commands, Command
Reference

Network User's Guide and Reference Chapter 3 19

Defining Network Users in the UDF

On any node running the iRM X OS, the UDF contains the network user definitions.
By default the UDF isin the :sd:rmx386/config directory. On systemswith an ICU,
thisis configurable.

See also: Network configuration examples, Chapter 5

To make network administration easier, each AU has one Master UDF on the AU's
master node. The Master UDF is distributed to all the nodes in the AU, so any user
name in thisfile is known throughout the AU.

To add a new network user:

1. Add the new name to the UDF on the user'slocal computer. Because the UDF
contains encrypted passwords, you must create and modify it with a special
utility, rather than ordinary text editors. To do this, log on as Super and enter:

password

For the Super user, a menu of options appears. Choose Add a user from the
menu and follow the prompts. When you are prompted, create directories for the
user:

Do you want to create the user directories? y

2. Add the new name to the Master UDF. To modify the UDF, log on to the AU's
master node as Super and enter:

password

When you are prompted, do not create user directories on the master node for
this user.

3. Make sure that each of the other nodes on the network attach to the master node
and copy the new version of the Master UDF.

See also: Adding users, System Configuration and Administration;
password command, Command Reference;
Copying the Master UDF, Chapter 4

20 Chapter 3 Network Access Using iRMX-NET

Accessing Other AUs

To access files across AUs, a user must have a definition in the UDF files on the
remote server and the local client. The user name and password must be identical in
both UDFs.

Static users cannot access files across AUs, with one exception. If the World user
with a password of <CR> (carriage return) is defined in the server's AU, then a
World static user can access the files that are available to World on that server.

See also: Static users, System Configuration and Administration

Backing Up the Master UDF File

If thisis not the master node in the AU, maintain a copy of the Master UDF file on
this computer. This enables you to detach the local node from the network and
continue to use it if the master node goes down. Of course, diskless nodes, which
cannot store local copies of the system software, require the network at all times.

To copy the UDF file, attach the master node and use the remote file copy procedure
discussed later in this book.

See also: Copying the Master UDF, Chapter 4

Network User's Guide and Reference Chapter 3 21

Adding a Client to the CDF

Every server has a Client Definition File (CDF) listing the names and passwords of
client nodesin the AU. By default the CDF isin the :sd:rmx386/config directory.
On systems with an ICU, thisis configurable.

See also: Network configuration examples, Chapter 5

To access a server within the AU, add this node's client name and password to the
server's CDF. If thisnodeis not listed in a server's CDF, access is controlled through
server-based protection.

Y ou must modify the CDF with a specia utility, rather than ordinary text editors.
Log on to the server as Super and enter:

nodcdf

Choose Add a cl i ent fromthemenu. At the appropriate prompts, enter this
node's client name and password, as specified during ICU configuration or in the
rmx.ini file. (Thisis not necessarily the same as the node's server name, which was
registered with the Name Server.) The client name must be unique within the CDF.
The name and password are case sensitive, so nodes named COMMSY S, Commsys
and commsys could al be listed in the same CDF.

Repeat the process on every server within the AU that this node will access. In AUs
where all nodes will be used as both servers and clients, it is faster to set the CDF up
on one node and then copy the file to the other nodes when they are connected to the
network.

D Note
To use modcdf to update the CDF, the iIRMX-NET server job must
be running on the system, either loaded with the sysload command

or configured into the OS with the ICU.

See also: modcdf command, Command Reference;
Server-based Protection, Chapter 2;
Network configuration and modcdf examples, Chapter 5;
Copying the CDF File, Chapter 4

22 Chapter 3 Network Access Using iRMX-NET

Diagnostics

iRMX-NET provides two ways to obtain more information during the network setup
process. The netinfo command returns the Ethernet address and status of the
communications board. The inamon utility provides a variety of information about
the status of iNA 960.

See dso: netinfo and inamon commands, Command Reference

What's Next?

TheiRMX-NET server and client are now ready to use.

iRMX Il and Local users can begin remote file access.
iRMX for PCs

nodes Remote users can access the public directories specified during

ICU configuration. Y ou can extend remote access to other
local directories with the offer command.

DOSRMX nodes Local users can begin remote file access from the iIRM X
screen.

Remote users can access the DOS file system as well asthe
iRMX file system through iRMX-NET. Y ou can extend
remote access to other DOS or iIRMX directories with the
offer command.

See also: Public directories, Chapter 4;
offer command, Command Reference;
Using iRMX-NET in a DOS Environment, System Configuration and
Administration

Network User's Guide and Reference Chapter 3 23

24 Chapter 3 Network Access Using iRMX-NET

Using the Network

This chapter explains how to share files across the iRMX-NET network, including
accessing files on other nodes (as a client) and providing access to local files for
users on other nodes (as a server). Y ou can use your node as a client, a server, or
both simultaneoudly.

This discussion assumes that your local computer and any other computers you plan
to access are already set up as nodes on the network.

See also: Network Access Using iRMX-NET, Chapter 3

Figure 4-1 gives an overview of remote file access from both the client and the server
points of view. The lighter boxes show the steps covered in this chapter.

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration, to use DOS networking with DOSRM X

Network User's Guide and Reference Chapter 4 25

 Network i
i connection i

Access the Access the
H network with network with
:DOS & DOS network iRMXO & iRMX-NET
: commands. commands.

Copy the Master
node

Master UDF.

Make server files
accessible over the

network with
offer command.

Only

iRMX

nodes

on network
2

HHE More setup
i on local & remote : Done
Hii nodes. oo

W-3277

Figure4-1. Remote File Access

Accessing Remote Files

Accessing files on another computer involves making a connection to the computer
and giving it alogical name. Then the remote files are manipulated in the same way
aslocal files, except that the logical name in the remote file's pathname is the remote

connection.

Connecting to a File Server

iRMX provides three commands for managing connections to remote servers:
attachdevice, detachdevice, and logicalnames. These commands are also used for
other purposes, which this discussion does not cover.

See also: attachdevice, detachdevice and |ogicalnames commands,
Command Reference

26 Chapter 4 Using the Network

Attaching a Server
Establish a connection to the server with the attachdevice command by entering:
attachdevi ce server_nane as | ogical _nane renote

Where:

server_nane
isthe node's server name registered with the iIRMX-NET Name Server

| ogi cal _nane
specifiesalogical name for the server

renot e indicates that the device being attached is a remote server

If more than one user logs into the local computer, you may want to invoke
attachdevice as Super. That makes the connection available to all local users, but
only Super can disconnect it.

|:| Note

If the attachdevice command is not successful, and the
server_name node is indeed configured as a server and is
running, check these items:

e TheiRMX-NET client (remotefd.job) and appropriate iNA
960 job (i*.job) are installed in the/rmx386/jobs directory.

* A sysdoad command for these jobsisin the : config:loadinfo
file and no semicolon precedes the command (assuming that
the network jobs are loaded at runtime rather than linked
with the ICU).

Detaching a Server

To detach from a server, log on with the user name that issued the attachdevice
command. Enter:

det achdevi ce | ogi cal _nane

Use the same logical name assigned to the server with the attachdevice command.

Listing Remote Connections
To list the remote servers connected to this computer, enter:

| ogi cal nanes |

Thislists all the current logical names. Connections to remote servers are identified
as| dev (logical device name) and REM(remote file driver). For example:

System Logi cal Nanes:

Network User's Guide and Reference Chapter 4 27

name type fdr con dev nane owner pat hnane
M | dev REM 0 system a #0 M
C | dev REM 0 systemc # 65505 1 C

Using Remote Files

28

Y ou can use amost any OS command or program to access files and devices on a
remote server. The exceptions are commands and programs that physically
manipulate the drives, such asformat. Also, accessto remote filesis governed by
access permissions established between the local and remote nodes.

See also: Making Local Files Accessible to Other Nodes, in this chapter

If you use aremote file's full pathname on a command line, the logical name of the
server becomes the prefix to the pathname. For example, suppose system_ais
attached as:m:. To list the files contained in the public directory usrl residing on
system_a, use this command:

dir :musril

Suppose that the usr1 directory contains afile named datal. To display the contents
of thefile, use this command:

copy :musrl/datal

Chapter 4 Using the Network

Copying Files Across the Network

In addition to accessing remote files, you can copy files from one computer to
another across the network. For example, suppose you want alocal copy of the datal
file that you just looked at on system a. Use this command to copy it to your local
computer:

copy :musrl/datal to usr2/datal

Copying the Master UDF

One of the first tasks when a node is connected to the network isto copy the Master
UDF from the master node of the AU. There are two ways this can happen. 1CU-
configurable systems provide an automatic UDF copy option, set on the UPD line of
the User Definition File screen. Or you can connect to the master node and do it
yourself.

See also: Setting Up the Administrative Unit, Chapter 5;
For ICU-configurable systems: UPD, ICU User's Guide and Quick
Reference

The UDF file must always be in your local : sd:rmx386/config directory. To copy the
file, you must be logged onto the client node, not the master node. For example,
suppose the master node in the AU is named pcmastr. From your local computer,
you could attach the master node and copy the file with commands similar to these:

attachdevi ce pcrmastr as ns renote
copy : ns:rnx386/config/udf over :config: udf

Notice that the logical name :config: is used instead of the longer rmx386/config
pathname on the local computer. The exact pathname of the remote UDF file may
vary, depending on how the master node's public directories are set up for network
access.

See also: Logical names, dir and copy commands, Command Reference

Network User's Guide and Reference Chapter 4 29

Copying the CDF

The CDF is also kept in your local :sd:rmx386/config directory. Unlike the UDF, the
CDF file can be copied between the master node and the client node while you are
logged on to either computer. If you are logged on to a client node, use commands
similar to these:

attachdevi ce pcrmastr as ns renote
copy :nms:rnx386/config/cdf over :config:cdf

On the other hand, if you have a number of computers to update, you can log on to
the master node and use commands similar to these:

attachdevi ce pcbus as pc renote

copy :config:cdf over :pc:rnx386/config/cdf
attachdevi ce sys320 as s3 renote

copy :config:cdf over :s3:rnx386/config/cdf
attachdevi ce sys520 as s5 renote

copy :config:cdf over :s5:rnx386/config/cdf

30 Chapter 4 Using the Network

Making Local Files Accessible to Other Nodes

Not all files on afile server are available for remote access. Only when directories
are specifically made available can their contents be accessed by client nodes.

Directories that are available for access by remote users are called public directories.
They are given public names, which can differ from their local directory names. A
client sees only the public directories. These include not only the directories that
were specified as public, but also each directory's subtree, which is al the datafiles
and nested directories contained in the directory.

As an example, assume that a file server has adirectory structure like System A in
Figure 4-2. Three of itsdirectories are public: :vol:dept3, :vol:dept4, and
:vol:dept5/usrl.

System A System B
System A Public directories System B
directories of System A directories
:vol:—‘ m: :sd:
deptl util386
dept2 rmx386
dept3 €« — — — — — — —— — — dept3 sys386
dept4 € — — — — — — —— — — acctg lang286
dept5 user
usrl—‘ <+ — 01— — usrlT World—‘
files files files

W-2946

System B attaches System A as logical name :m:. Users on System B see only the public
directory names from System A.

Figure 4-2. Public Directoriesas Seen from a Client

Now look at the view from the client, System B. It hasits own directory structure,
starting from :sd:. In addition, a second directory structure, starting from :m:, is
visible. Thedirectory :m: was created when a user on System B attached System A,
with acommand line like this:

attachdevi ce systema as mrenote

The directory :m: isthe root directory of the remote server, as seen from the client.
Thisiscalled the virtual root directory. From the client, al server directories
specified as public appear directly under the virtual root directory, regardless of
where they exist in the server's directory structure. Thus :vol:dept5/usrlisvisible
simply as :m:usrl on System B.

Network User's Guide and Reference Chapter 4 31

32

Notice the public names. The dept3 and usr1 directories have retained their names,
but dept4 has been given the public name acctg.

Making a directory public gives remote users access to its entire subtree. Inthis
example :vol:dept5/usrl is public, so :vol:deptS/usr1/filesis also accessible.
However, the directories above a public directory, like :vol: and :vol:dept5, are not
visible to clients and cannot be accessed.

When a directory becomes public, accessrights for local users do not change.
Remote users cannot delete a public directory on another computer, or change its
name. Otherwise, they have the same accessrights aslocal users. To delete afileon
another computer, remote users must have both append and update accessto it. File
and directory access rights are controlled by user name. For example, suppose that
the user World is given the right to list the filesin directory :vol:dept5/usrl on
System A. Then user World on System B can list the filesin directory :m:usrl.

If any nodes on the network are DOS clients, make sure the files they need are
accessible to World.

See also: attachdevice and per mit commands, Command Reference

Chapter 4 Using the Network

Setting Up Public Directories

Several public directories, mostly sd and its sub-directories, are defined by defaullt.
On ICU-configurable systems you can change the default on the PDIR screen of the
ICU.

Y ou can change the list of public directories at run time, using the iIRMX-NET offer
and remove commands. You must log on to the server to do this. Going back to the
example in Figure 4-2, suppose you want to give remote users access to all the files
on System A. The easiest way isto make :vol: a public directory, with this command
line:

offer :vol: as vol

Where:
:vol : is the pathname to the directory.
vol isthe directory's public name.

This lets remote users move at will from :vol: down through its entire subtree.

Listing Public Directories

To find out what public directories are defined on your computer, use the publicdir
command:

publicdir |

Thel (I ong) parameter displays the full pathname of each directory and the device
where it resides, aswell asits public name. For example, now that you have made
:vol: public on System A, the public directory list looks like this:

PUBLI C DI RECTORI ES OF THE SERVER

OFFERED NAME DEV NAME PATHNAME
ACCTG D _DCs / dept 4

VoL D _DOS /

DEPT3 D _DCs / dept 3

USR1 D _DCs / dept 5/ usr 1

Network User's Guide and Reference Chapter 4 33

Removing Public Directories

Now suppose you decide to remove the other public directories, because users can get
to them through :vol:. Usethis command line:

remove acctg, dept3, usrl

Any public directory can be removed, but you must be logged onto the server when
you do it.

See also: offer, publicdir, remove and per mit commands,
Command Reference

Protecting Files on a Server

When remote users access a server's file system, additional file protection is often
needed. If adirectory or filein a public directory's subtree does not need to be shared
with remote users, consider moving it. Especially on nodes where everything under
the :sd: directory is accessible, you might build a separate directory structure for
private files on a different logical drive.

Protect directories and files that need to be shared by using the per mit command to
limit user access to them. For example, you could give World read-only accessto
files, while Super gets read/append/update access. Thisisequally effective whether
the files are shared across the network or by a group of local users.

On DOSRMX servers, all users of a DOS file have the same access, because World
isthe only user supported by the DOS file system. If some users must have append
or update access to afile, while others should have read-only access, put the file on
aniRMX partition.

See also: permit command, Command Reference

34 Chapter 4 Using the Network

What's Next?

If your computer isa client, you have connected it to servers and begun accessing
remote files. If itisaserver, you have provided local file access to remote users. If
it is not the master node in the AU, you have made alocal copy of the Master UDF.

What happens next depends on the nature of the computers with which this node

communicates.

All iRMX nodes

DOS nodes

UNIX nodes

If al the nodes are running the iIRMX OS, nothing moreis
necessary.

If some DOS nodes are included, no more setup is necessary,
but you should be aware of certain restrictions.

Seeaso: iIRMX and DOS Interoperability, Chapter 6

Y ou must make changes to the iRMX UDF, and do setup on
the UNIX nodes. If these are nodes on older versions of
SV-OpenNET, they must be added to the IRMX-NET Name
Server using a spokesman node.

Seealso: iIRMX and UNIX Interoperability, Chapter 6;
Spokesman node, Chapter 11

Network User's Guide and Reference Chapter 4

35

36 Chapter 4 Using the Network

Example: Configuring
an Administrative Unit

This chapter shows how to set up multiple iIRMX-NET nodes in the same
Administrative Unit (AU). The example AU includes five nodes, as shown in Figure
5-1. System 1isaPC that isthe master nodeinthe AU. System 2 isan Intel System
320 with Multibus | architecture. Systems 3 and 4 are Intel System 520s with
Multibus I architecture. System 5 isanother PC.

The examples show the configuration of network parameters, but not the basic
configuration and generation of the OS.

e A
AU A
System 1 - MASTER
I ———
PC System
System 2
y — — System 3 System 4
27: 'E T T
[T gH g —= — =
CHEU M= : i
T LTI
System 320
System 5 . .
o o
PC System System 520 System 520
. J

W-2947

System 1 contains the master UDF for Systems 1 through 5.

Figure5-1. Single Administrative Unit

Configuring the Systems

Two of the nodes in this chapter use aload-time configuration file; the others have an
ICU. TheICU configuration examples assume the standard definition files for
networking applications, provided with the iIRMX 111 OS in the /rmx386/icu;
directory. When you use the files, the backup version is restored to a definition file
of the same name, but with an extension of .def instead of .bck.

Network User's Guide and Reference Chapter 5 37

See also: System Configuration and Administration;
ICU User's Guide and Quick Reference;
Standard definition files, Installation and Sartup

Configuring the Master Node

By default any node is configured to be both a server and a client, but you can change
that on systems with an ICU. Make sure the master node is configured as afile
server, however, because it contains the Master UDF that the other nodes need to
access. The only default iIRMX-NET parameters you must change on the master
node are the client name and password.

See also: The User Definition File, Chapter 2

System 1: iRMX for PCs Node

In this example the master node, named PCMASTR, is a PC platform running iRMX
for PCs. To configure aniRMX for PCs system, edit the : config: rmx.ini load-time
configuration file.

1. Put the client name and password in the appropriate lines of the rmx.ini file. For

example:
CNN=' PCVASTR Client Node Nane
CNP=' PCPASS' ; Client Node Password

2. Generate the system as usual, including setting up the : sd: net/data file and
booting the system.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Starting iIRMX for PCs, Installation and Sartup;
rmx.ini file, System Configuration and Administration

38 Chapter 5 Example: Configuring an Administrative Unit

ICU-configurable Master Node
If you choose a master node with an ICU, configure it this way:

1. Specify the client name and password on the ICU's Client Definition File (CDF)
screen. For example;

(CNN) dient Nane 320MASTR
(CNP) Cient Password 320PASS

2. Generate the system as usual, including setting up the : sd: net/data file and
booting the system.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Starting iIRMX 111.2, Installation and Sartup;
CDF screen, ICU User's Guide and Quick Reference

Configuring the Other Nodes

All nodes, except the master node, must be set up as clients. By default, they are
configured to be both client and server, but you can change that on systems with an
ICU. On client nodes you only need to change afew default iIRMX-NET parameters,
which are named in the sections that follow. In general, the setup involves these
steps:

1. Specify aclient name and password.

2. Set up nodes with an ICU to automatically copy the Master UDF file. This
reguires changing parameters on the User Definition File (UDF) and Logical
Names (LOGN) screens. On nodes without an ICU, skip this step; the Master
UDF file will be copied later.

Generate the system as usual.

4. Do not boot the computer yet. First the master node must be running, with a
server name assigned and with the Master UDF and CDF in place. This happens
later in the process.

See also: Setting Up the Administrative Unit, in this chapter

Network User's Guide and Reference Chapter 5 39

System 2: Multibus I, System 320

System 2, named SY S320, isan iRMX 111 System 320. To configureit, invoke the
ICU using the 38620net.bck file and make these changes:

1. OntheClient Definition File (CDF) screen, specify these parameters:

(ONN)
(CNP)

Cient Nane
Cient Password

SYS320
320PASS

2. Onthe User Definition File (UDF) screen, specify these parameters:

(ML)
(MN)
(MPN)
(MD)

(LuL)
(LLN)
(LPN)
(LD

UDF Location

UDF Logi cal Nane
UDF Pat h Nane
UDF Devi ce

UDF Location

UDF Logi cal Nane
UDF Pat h Nanme
UDF Devi ce

Mast er
Mast er
Mast er
Mast er
Local
Local
Local
Local

REMOTE

PCM

/ RMX386/ CONFI G
PCVASTR

NAMED

SD

/ RMX386/ CONFI G
wo

3. Onthe Logical Names (LOGN) screen, add this entry:
PCM PCMASTR, REMOTE, OH

System 3: Multibus I, System 520

System 3 isnamed SY S520. ItisaniRMX Il Multibus Il System 520 with an SBC
486/133SE board. To configureit, invoke the ICU using the 486133.bck file and
make these changes:

1. OntheClient Definition File (CDF) screen, specify these parameters:

(ONN)
(CNP)

Cient Nane
Cient Password

SYS520
520PASS

2. Onthe User Definition File (UDF) screen, specify these parameters:

(ML)
(MN)
(MPN)
(MD)

(LuL)
(LLN)
(LPN)
(LD

UDF Location

UDF Logi cal Nane
UDF Pat h Nane
UDF Devi ce

UDF Location

UDF Logi cal Nane
UDF Pat h Nanme
UDF Devi ce

Mast er
Mast er
Mast er
Mast er
Local
Local
Local
Local

REMOTE

PCM

/ RMX386/ CONFI G
PCVASTR

NAMED

SD

/ RMX386/ CONFI G
SCW

3. Onthe Logical Names (LOGN) screen, add this entry:
PCM PCMASTR, REMOTE, OH

40 Chapter 5

Example: Configuring an Administrative Unit

System 4: Multibus I, System 520

System 4 isaMultibus Il system with multiple hosts. It hastwo CPU hosts and an
1/0 server: an SBC 386/258 with a CSM/002 in ot 0, an SBC 486/125 in ot 2, and
an SBC 386/120in slot 3. Any combination of CPU hosts and /O servers would
work, however. Each host has its own name, and you need to generate a separate
configuration for each one.

Host 1: 520SRV

The first host, named 520SRV, is configured as both a client and a server. It accesses
the local hard disk using the 1/O server. To configure it, invoke the ICU using the
486125net.bck file and make these changes:

1. OntheClient Definition File (CDF) screen, specify these parameters:

(CNN) dient Nane 520SRV
(CNP) Cient Password 520SPASS

2. Onthe User Definition File (UDF) screen, specify these parameters:

(MJL) Master UDF Location REMOTE

(M.N) Master UDF Logical Nane PCM

(MPN) Master UDF Path Nane / RMX386/ CONFI G
(MD) Master UDF Device PCVASTR

(LUL) Local UDF Location NAMED

(LLN) Local UDF Logi cal Nane SD

(LPN) Local UDF Path Nane / RMX386/ CONFI G
(LD) Local UDF Device SCW

3. Onthe Logical Names (LOGN) screen, add this entry:
PCM PCMASTR, REMOTE, OH

Host 2: 520CLI

The second host, named 520CLI, is configured as a client only. It accesses the local
hard disk through the iIRMX-NET file server software running on the first host's
CPU. To configureit, invoke the ICU using the 386120rsd.bck file and make these
changes:

1. OntheClient Definition File (CDF) screen, specify these parameters:

(CNN) dient Nane 520CLI
(CNP) Cient Password 520CPASS

Network User's Guide and Reference Chapter 5 41

2. Onthe User Definition File (UDF) screen, specify these parameters:

(ML)
(MN)
(MPN)
(MD)

(LuL)
(LLN)
(LPN)
(LD

Mast er
Mast er
Mast er
Mast er
Local
Local
Local
Local

UDF Location REMOTE
UDF Logi cal Nane PCM
UDF Pat h Nane / RMX386/ CONFI G
UDF Devi ce PCVASTR
UDF Location REMOTE
UDF Logi cal Nane SD
UDF Pat h Nane / RMX386/ CONFI G
UDF Devi ce 520SRV

3. Onthe Logical Names (LOGN) screen, add this entry:
PCM PCMASTR, REMOTE, OH

System 5: PC Bus Platform

System 5, named PCBUS, isa PC platform running DOSRMX. To configure this
node, the only default iIRMX-NET parameters you need to change are the client name
and password. (The extra parameters you changed on the client systems with ICUs
were used to automatically copy the Master UDF, which you cannot do here.) On an
DOSRMX system, change the client name and password by editing the
:config:rmx.ini load-time configuration file.

42

1. Put the client name and password into the appropriate lines of the rmx.ini file.

For example:
CNN=' PCBUS' ; Cl i ent Node Nane
CNP="' PCBPASS' ; Cient Node Password

2. Generate the system as usual, including setting up the :sd: net/data file and
booting the system.

Chapter 5

Example: Configuring an Administrative Unit

Setting Up the Administrative Unit

These sections describe the files you need to modify to set up an AU and the order in

which the nodes should be booted.
System 1
To set up the master node;
1. Boot the system.
2. By default the system is configured to do an automatic loadname at boot time.
To check whether this was done, enter:
get nane
If necessary, use the sethame command to assign the server name. For example,
to set a server name identical to its client name:
set nanme PCVASTR
Server names are not case-sensitive.
See also: Adding a Server to the Name Server Object Table, Chapter 3
3. Enter apublicdir command and make sure the : sd: rmx386 directory isincluded
inthe list of public directories, so the other nodes can copy the UDF and CDF
filesin :sd:rmx386/config. If necessary, offer the directory:
of fer :sd:rnmk386 as rmx386
4. InvoketheiRMX password command and enter the names and passwords of
each user inthe AU. Only these users are allowed to log on to any of the nodes
within the AU.
5. Invoke the iIRMX-NET modcdf command. For security, remove the default

client namer nx from the CDF. Then enter the client names and passwords of
each of the client nodesin the AU. Include the master node only if it operates as
aclient aswell asaserver. Unlike server names, both the client names and
client passwords of iIRMX-NET nodes are case-sensitive.

Network User's Guide and Reference Chapter 5 43

Modcdf Example

All client names and passwords in this example network were defined using
uppercase characters. Text following a semicolon isacomment.

MODCDF ; invoke the MODCDF comrand

D ; delete a node

r mx ; remove the default client nane
A ; add a node

PCVASTR ; add the master node (optional entry)
PCPASS ; add nmaster password

PCPASS ; repeat password

A ; add a node

SYS320 ; add System 2 nane

320PASS ; add System 2 password
320PASS ; repeat password

A ; add a node

SYS520 ; add System 3 nane

520PASS ; add System 3 password
520PASS ; repeat password

A ; add a node

520SRV ; add System 4 Host 1 nane
520SPASS ; add System 4 Host 1 password
520SPASS ; repeat password

A ; add a node

520CLI ; add System 4 Host 2 nane
520CPASS ; add System 4 Host 2 password
520CPASS ; repeat password

A ; add a node

PCBUS ; add System 5 nane

PCBPASS ; add System 5 password
PCBPASS ; repeat password

E ; update the CDF and exit

44 Chapter 5 Example: Configuring an Administrative Unit

Systems 2 through 5

After the master node is running, with a server name assigned and with the Master
UDF and CDF in place, complete the network setup for each of the other nodes
within the AU. For each node, reset and reboot the newly generated system.

During initialization an | CU-configurable node attaches to the master node and
assigns the logical name :pcm: to the remote device. Then it copies the Master UDF
over itsown local UDF. (In Figure 5-1, this happens on Systems 2 and 3 and on both
hosts on System 4.)

At this point the other nodes can only connect to the master node. To enable
connections between all the nodes, you need to perform these steps on Systems 2
through 5:

1. Logon asone of the users defined on System 1, the master node. If thelocal
node will act as aserver aswell as a client, make sure its server name was set
during iIRMX-NET initialization. Enter:

get name
See also: Adding a Server to the Name Server Object Table, Chapter 3

2. Copy the CDF file on the master node to :sd:rmx386/config/cdf on each local
node. Use these commands:

attachdevi ce PCVASTR as pcmrenpote
copy :pcmrnx386/config/cdf over :config:cdf

The :sd:rmx386/config directory is the default location, which was not changed
during the configuration of the example nodes. On ICU-configurable nodes,
however, you can specify another path name on the CDF screen.

See also: Copying the CDF, Chapter 4

3. On System 5, the DOSRM X node, copy the Master UDF file to the local
:sd: rmx386/config/udf file. For example:

copy :pcmrnx386/config/udf over :config: udf

See also: Copying the Master UDF, Chapter 4

Network User's Guide and Reference Chapter 5 45

46

Establish a connection to any server inthe AU. For example, Host 1 of System 4
is configured as both a client and a server. To attach to the Host 1 server, use
this command:

attachdevi ce 520SRV as 520 renote

The node hame (520SRV) required by the attachdevice command is the server
name registered with the Name Server, not the client name. In this example the
two names are identical, but they do not have to be.

Delete the connection to a server with the detachdevice command. For
example, to delete the connection created above, use this command:

det achdevi ce :520:

Chapter 5 Example: Configuring an Administrative Unit

Example: Configuring
Multiple Operating Systems

This chapter explains how to configure and use the DOS and UNIX systems for
maximum interoperability with the iRMX OS. After such configuration, these other
systems can share fileswith iIRMX nodes on iRMX-NET.

Each system runs with an OpenNET product that understands the Network File
Access (NFA) protocols, as shown in Figure 6-1. In afew cases, the server's OS
provides a capability that the client's does not, or vice versa. This chapter describes
those capabilities that are not fully transparent over OpenNET.

iRALL+HET Pz
o o
i Sexlams Do Spslems
LA
[-

SN OpertET
on

UL Sesham Y

Figure 6-1. The OpenNET Network

Examplesin this chapter add DOS and UNIX nodes to the iIRMX network examplein
the last chapter. The AU configured in the previous chapter, with itsfive iIRMX
nodes, isreferred to hereas AU A. Two new AUs are configured in this chapter:

AU B with one DOS node and AU C with one UNIX node. Figure 6-2 shows all
three AUs.

Network User's Guide and Reference Chapter 6 47

48

4 1\
AU A
System 1 - MASTER
T ——)
(————— ~ oo}
PC System
System E — System 3 System 4
= T T
(I q]lg - -
-] [T
I LTI
System 320
oystem s I]
———
(———— — 0o9]
PC System System 520 System 520
< Ny,
¢ Client-based protection
. J

Server-based protection

AU B \L AUC
—— ———

PC Running DOS

PC Running UNIX

W-2948

System 1 contains the master UDF for Systems 1 through 5.

Figure 6-2. Multiple Operating System Network

Chapter 6

Examples: Configuring Multiple Operating Systems

The DOS System

A PC executing DOS and the PCL2 R3.0 (or later) software can access iIRMX
servers. The MS-Net software, which is shipped with the PCL2(A) NIC, or the IBM
PC LAN software must be running on the PC.

See also: Software and hardware requirements for networking on a
DOS-based PC, OpenNET PCL2 for DOS Installation Guide

For this example, the DOS system is named SY SDOS. The AU containing the DOS
system is named AU B. Because DOS does not support multiple users, each DOS
node forms a separate AU. Users are specified only when establishing accessto a
remote server.

|:| Note

The system described hereis a PC running DOS asits only OS.
This section does not necessarily apply to DOSRM X systems,
which can run both DOS and the iRMX OS.

See also: Using iRMX-NET in a DOS Environment, System Configuration and
Administration

Connecting a DOS Client to an iRMX Server
To establish a connection between SY SDOS and any of the five iRM X nodesin AU
A, complete these steps.

On the iRMX Server

1. DefineaniRMX user name for the DOS system. Contact the system manager of
AU A for help. The system manager uses the password command to define a
user, as shown in the example below. (Text after a semicolon is a comment.)

password ; invoke the password command

a ; add a user

pcuser ; user nane

PASWD ; password nust be in UPPERCASE
PASWD ; password nust be in UPPERCASE
876 ; user id

<Ent er > ; group id = default

<Enter> ; comments = none

Network User's Guide and Reference Chapter 6 49

<Ent er > ; UNI X honme directory = none

<Ent er > ; UNI X shell = none

y ; add to the UDF?

y ; create the user directories?
e ;oexit

The password must be defined in upper case characters, because DOS converts
all entered passwords into upper case.

Add the new user on each of theiRMX systems. Either add it to each node
separately, or add it to the master system, PCMASTR. From the master system
it will be distributed to each of the iIRMX systems when they are rebooted or
updated.

See also: Copying the Master UDF, Chapter 4

Make sure that the server names of the iIRM X servers are in the Name Server
object table.

See also: Adding a Server to the Name Server Object Table, Chapter 3

On the DOS Client

50

1. AttachaniRMX server from the DOS system. In this example theiRMX server

isPCMASTR.

net start rdr sysdos
net use e: \\pcmastr\pcuser PASWD

Where:
e: isanunused DOSdrive, E:. A space must follow the colon.

pcmast r
isthe iIRMX server name registered with the Name Server.

pcuser
is the name of the user logging on to the iIRM X server. A space must follow
the name if there is a password.

PASWD
isthe optional user password. Y ou can enter it in either upper or lower case;
whatever you enter is converted to upper case.

Now you can use E: just as you would alocal drive, like A: or B:. The logical
device E: corresponds to the virtual root directory of the iIRMX server.

Chapter 6 Examples: Configuring Multiple Operating Systems

2. AccesstheiRMX server from the DOS system. For example:

e:

cd user\ pcuser
dir
c:

3. Todetach theiRMX server, enter:

net use e: /d

IRMX and DOS Interoperability

AniRMX client cannot access a PCL2 (DOS) server. The only possible network
connection isfrom aDOS client to an iRMX server.

The PCL2 Name Server

PCL2 R3.0 (and later) provides a Name Server that can accessthe iIRMX-NET Name
Server to find the Transport Address of an iRM X node.

DOS Client Restrictions

When aDOS client accesses an iRMX server, these restrictions apply:

TheiRMX-NET software does not support DOS messaging and DOS locking.
Applications that support these features cannot be used across the network.

A DOS pathname is limited to 63 or 66 characters, so paths for remote iRMX
filesare likewise limited. This restriction depends on the version of DOS, and
the character count includes 2 characters for a drive specifier (for example, C:).

DOS filenames are limited to eight characters plus a three-character extension.
iRMX filenames that do not conform to this limit are not recognized by the DOS
system.

A DOS application assumes that files can be created in the root directory, and
uses that directory for temporary files. Because iRMX-NET does not allow files
to be created at the virtual root, the first public directory defined in iIRMX-NET
isusedinstead. Inthe default configuration, thisisthe work directory. Files
that a DOS client attemptsto create or delete at the iIRM X root are actually
created and deleted from this work directory. All other commands must specify
the real pathname, such as : e:work/filename, rather than just the virtual root
pathname of :e:filename.

Network User's Guide and Reference Chapter 6 51

A DOS client cannot access afileon an iRMX server if the filename contains a
question mark character (?). Thisisbecause iRMX enables a question mark in a
directory or filename, but DOS does not. DOS recognizes the question mark
only as awildcard character. For example, a DOS client cannot read the
:prog:r?logon file of an iIRMX server. Attempting to access an iRMX directory
name with a ? from DOS causes an invalid path error message. Similarly,
attempting to access an iIRM X filename with a ? from DOS causes an ERROR
READI NG FI LE error message.

52 Chapter 6 Examples: Configuring Multiple Operating Systems

The UNIX System

The UNIX node in this sample network is a PC Bus system named sysunx. A UNIX
system can bein an AU with other UNIX and iRM X systems, or alone in a separate
AU. Inthisexample sysunx isthe only system in AU C. The example assumes that
the system is configured with the appropriate System V OpenNET software:

e SV-OpenNET R3.2.3 or later
e SV4-OpenNET R2.0 or later

The sample iIRMX server is 520SRV, and the iIRM X client is520CLI. Both iRMX
systemsarein AU A. Their setup and configuration was discussed earlier.

See also: AU configuration and setup example, Chapter 5

Connecting a UNIX Client to an iRMX Server
To establish a connection between sysunx and the iIRMX server 520SRV, complete
these steps.
On the iRMX Server
1. MakesuretheiRMX node's server name is registered with the Name Server.
See also: Adding a Server to the Name Server Object Table, Chapter 3

2. Usethe modcdf command to add the UNIX node's client name and password to
theiRMX server's CDF file.

See also: modcdf example, Chapter 5

On the UNIX Client
1. Createthelocal node's client name and password, using the modself utility.

2. Check that the server name of the IRMX server you intend to accessis registered
with the Name Server. For example, for the iRM X server 520SRV, use this
command:

nsl ocat e 520SRV

3. Attach aniRMX server from the UNIX system. For 520SRV, use this
command:

net use sys2 //520srv/world

This example defines //sys2 as the name for the remote server 520SRV. Here the
user nameiswor | d, but you can specify any user name and password defined in
the UDF of theiRMX server.

Network User's Guide and Reference Chapter 6 53

4. Enter the password for the specified user when prompted.
5. Todetach theiRMX server, enter:

net use sys2 /d

Connecting an iRMX Client to a UNIX Server
To establish a connection between sysunx and the iRM X client 520CL 1, complete
these steps.

On the UNIX Server

1. Usethe modcdf command to add the IRMX node's client name and password to
the UNIX server's CDF file.

Y ou can find thisinformation on the iRMX node, in the ICU's CDF screen or the
:config:rmx.ini file.
On the iRMX Client

1. Check that the server name of the UNIX server you intend to accessis registered
with the Name Server. For example, for the UNIX server sysunx, use this
command:

fi ndname sysunx
2. Attach aUNIX server from the iIRMX system:

attachdevi ce sysunx as unx renote
3. Toaccessfilesinthe UNIX system, use :unx: asthe logical name.
4. Todetach the UNIX system, enter:

det achdevi ce unx

Setting Up the Administrative Unit

This example puts the UNIX and iRMX systems in separate AUs, but you can also
combine them in asingle AU. If you are familiar with SV-OpenNET terminology,
the IRMX-NET term Administrative Unit (AU) is equivalent to the SV-OpenNET
term subnet.

54 Chapter 6 Examples: Configuring Multiple Operating Systems

iRMX and UNIX Nodes in Separate AUs
When UNIX and iRMX systems are in different AUs, compl ete these steps:

1. OnoneUNIX node within each AU (subnet), which contains a system being
accessed by an iRMX-NET client, edit the UNIX system files/etc/passwd,
/etc/group, and /etc/shadow to define iIRM X users who will be accessing the
UNIX server.

Do not define user names whose only difference is capitalization. UNIX
distingui shes between upper- and lower-case characters in user names, but the
iRMX OS does not. Passwords are always case-sensitive, on both UNIX and
iRMX systems.

See also: UNIX OS documentation for information on adding users

2. Copy the updated /etc/passwd, /etc/shadow, and /etc/group filesto all other
UNIX nodesin the same AU (subnet).

3. OntheiRMX-NET system containing the Master UDF, use the iRMX password
command to define any UNIX users who will access an iIRMX-NET server in the
AU. SinceiRMX systems do not support groups, add the UNIX groups to the
Master UDF asiRMX users.

4. Copy the Master UDF over the local UDFson all other iRMX systemsin the
AU.

iIRMX and UNIX Nodes in the Same AU

Within an AU (subnet), clients perform all user validation, and the servers then
validate the client. When UNIX and iRMX systems are in the same AU, complete
these steps:

1. Choose a UNIX node to be the master node within the AU (subnet).

2. Onthe master UNIX node, edit the UNIX system files/etc/passwd, /etc/group,
and /etc/shadow to define the iRM X users that will access the UNIX server.

Do not define user names whose only difference is capitalization. UNIX
distingui shes between upper- and lower-case characters in user names, but the
iRMX OS does not. Passwords are always case-sensitive, on both UNIX and
iRMX systems.

Make sure that UNIX group IDs do not conflict with the user IDs assigned.
Where conflicts occur, change the group IDs. The UNIX chgid utility can be
used to update the file system following such changes.

See also: UNIX OS documentation for information on adding users

Network User's Guide and Reference Chapter 6 55

Copy the updated /etc/passwd, /etc/shadow, and /etc/group filesto all other
UNIX nodesin the same AU (subnet).

Configure the /etc/passwd file as the IRMX-NET Master UDF.

Copy the Master UDF to any iRM X for PCs or DOSRM X nodesinthe AU. The
| CU-configurable iRM X nodes copy the Master UDF automatically when the
iRMX system is booted.

On each server in the AU, define all clientsin the AU using the UNIX netadm
utility or the iIRMX-NET modcdf command.

See also: modcdf example, Chapter 5

IRMX and UNIX Interoperability

Both UNIX and iRM X systems have capabilities that are not supported by the other
OS. These differences affect anyone going between the two systems:

UNIX and iRMX files have different line terminators. UNIX filesusealine-
feed, while iIRMX files use a combination of carriage return and line-feed.

iRMX-NET does not perform text format conversions, so file sharing between
iRMX and UNIX systems requires a compatible set of tools. Intel tools
combined with UNIX tools are often not a compatible set. For example, AEDIT
and iC-386 are compatible, and UNIX vi and cc are compatible; however,
AEDIT and cc are not compatible. Y ou cannot compile afile edited with
AEDIT with cc unless you change the line terminators.

These sections list other differences that are mainly concerns when going from iRMX
to UNIX nodes, or from UNIX to iRMX nodes, but not both.

SV-OpenNET Server Features and Restrictions

56

When an iRMX client accesses remote UNIX files, these restrictions apply:

iIRMX users see UNIX filenames without consideration for case. For example,
iRMX users cannot distinguish between the UNIX files ABC and abc. If the two
files are in the same directory, the iIRMX client can only address the first file.

iRMX users cannot specify theiRMX carat (*) and leading slash (/) symbols for
UNIX pathnames, but they can specify the UNIX . (dot) and .. (dot-dot) symbols
instead. iIRMX users cannot seethe . and .. in UNIX directory listings, however.

E_LI M T errors pertain to UNIX server resources.

Chapter 6 Examples: Configuring Multiple Operating Systems

e Therename command cannot move a UNIX directory out of the parent
directory. For example, this command, where tmpdir is a directory, succeeds:

rename :unx:tnp/tnpdir to :unx:tnp/newt npdir
This command fails:

rename :unx:tnp/tnpdir to :unx:usr/newt npdir
Thisrestriction does not apply to UNIX datafiles.

* UNIX supports groups, but iRMX doesnot. AniRMX client considers all
entries of an access list as accessors to be checked in the client's UDF. A UNIX
server considersthe first entry of an accesslist asthe file's owner, and checks the
entry in the server's UDF. The server considers the second entry of an access list
to be the group, and checks the entry in the Group Definition File.

e UNIX treatsthefirst ID of an access list asthe file owner. The per mit
command can change rights associated with the first ID, but not the ID itself.
The permit command can change both the second ID of the access list and the
rights associated with it. UNIX always contains the World's rightsin the third
entry of the access list; the per mit command cannot remove World from the
accesslist, even if World has no rights. When an iRMX user lists remote UNIX
directories, the iRMX client displays all three accessors (first ID, second ID, and
World) even if they have no rights.

* iRMX and UNIX servers calculate file access rights differently. The iRMX
servers grant the user the logical sum of the rights allowed if the user existsin
the access list, plus any rights given to World. UNIX servers grant only the
rights allowed to the first accessor in the access list whose 1D matches that of the
user ID. If theuser ID matchesthe first accesslist entry, a UNIX server grants
the rights allowed to the first accessor. If this check failsand if the group
affiliated with the user matches the second access list entry, a UNIX server
grants the rights for the second accessor. If both checksfail, a UNIX server
grants the third accessor's rights, which are the World's rights.

AniRMX client attempts to compensate for this discrepancy by this technique:
when the World user creates aremote UNIX file, theiRMX client places World
with full accessrightsin all three accesslist entries. When an iRMX user grants
rights to remote UNIX filesfor the user World, theiRMX client grants these
same permissions to all three accessors. When an iRMX user denies rightsto
remote UNIX files, theiRMX client does not remove from any of the accessors
the rights that the World accessor has.

Network User's Guide and Reference Chapter 6 57

iIRMX Server Restrictions

When a UNIX client accesses remote iRMX files, these restrictions apply:
* Neither the owner nor the group of an iRMX file can be changed.

* Links cannot be used to create additional names for iIRMX files. Thisrestriction
prevents the use of some UNIX utilities.

» Fileand record locking are not available for iRMX files.

e TheSTICKY, SETUID, and SETGID file attributes are not supported. Any
attempt to set these hitsto 1 isrejected, and any attempt to reset these bitsto O is
ignored.

* AniRMX file cannot be opened in append mode from a UNIX client.

Connecting to Nodes on Older Versions of SV-OpenNET

58

This example assumes that the UNIX nodes were on SV-OpenNET R3.2.3 or SV4-
OpenNET R2.0 or later. These versions provide Name Server capability. You can
also interoperate with older versions by creating some additional Name Server
entries.

AniRMX client can communicate with an earlier UNIX server if you load the
server's name and addressinto an iIRMX-NET Name Server object table. TheiRMX
node whose local object table includes the UNIX server'sinformation becomes a
spokesman for the server.

See also: Programming the Name Server, Chapter 11

For aUNIX client without Name Server capability to access an iRMX-NET server,
enter the name and Transport Address of the IRMX-NET server into the /net/data file
on the UNIX system. SV-OpenNET provides the netadm utility to manipulate the
/net/data file. The netadm utility assumes that the iRMX TSAP-ID is 1000H and the
subnet is 1. If you use different values (typically, the subnet is 0), use netadm to add
the address, and then manually edit the /net/data file to change those values.

See also: SV-OpenNET documentation for information on the netadm utility

Chapter 6 Examples: Configuring Multiple Operating Systems

Network Software Implementation

TheiRMX network jobs are part of theiRMX OS software. The basic network jobs
are called iNA 960. Separate iRMX-NET jobs run on top of iNA 960 to provide
transparent file access. Figure 7-1 illustrates how iNA 960 and iRMX-NET services
fit into the International Standards Organization (ISO) Open Systems | nterconnection
(OSl) model. iNA 960 general-purpose network services include the Data Link,
Network, and Transport layers defined in the OSI model. iNA 960 has no
relationship to, and does not run on, the Intel 1960~ microprocessor.

7 Application
6 Presentation
5 Session
4 Transport
3 Network
Logical Link Control
2 e Data Link-------------
Media Access Control
1 Physical

iRMX-NET

Implemented by iNA 960

Implemented by
Network Interface Hardware

OM04342

Figure 7-1. 1SO OS| Model

iRMX-NET includes a command-line interface and file services, in addition to the
programmatic network access provided by the underlying iNA 960 software.

Hardware Environments

The iNA 960 software is based on subnetworks that at the Data Link level use the
|EEE 802.3 Ethernet specification. The software supports the 82586, 82596, and
82595T X Ethernet components, aswell as the virtual Ethernet provided in the

Networ k User's Guide and Reference

Chapter 7 59

Multibus |1 subnet. Unless otherwise specified, this manual uses the term 82586 to
refer to all hardware Ethernet components.

iNA 960 supports PC Bus, Multibus I, and Multibus I systems.

Software COMMputer and MIP Environments

TheiNA 960 software is provided by avariety of board-specific network jobs that
can be configured with or loaded onto the iIRMX OS. These are called iNA 960
COMMputer jobs or MIP jobs:

60

A COMMputer job isaversion of iNA 960 that executes on the same board as
the OS and the application. The board can use either a hardware Ethernet
connection or the virtual Ethernet connection provided in the Multibus 11 subnet.
The Ethernet hardware can be built into the baseboard or can be a Network
Interface Connector (NIC), such asaMIX 560 module, that works integrally
with the baseboard.

See also: Multibus Il subnet, Chapter 9

MIP jobs support what is called a COMMengine environment, where the OS
runs on one board and iNA 960 runs on a separate board. If this separate board
isastandalone NIC, you set up the MIP job to download an iNA 960 file to the
NIC. However, in aMultibus |1 system you also have the option of using a
different COMMputer board as the NIC for aboard that runsaMIP job. Inthis
case, you do not download an iNA 960 file from the MIP job, because the
separate COMM puter already includesiNA 960. In either case, the MIP job acts
as an interface between iNA 960 on the other board and application programs on
the board that runs the MIP jab.

MIP jobs were formerly called Multibus I nterprocessor Praotocol jobs, but with
the added support for PCsin recent releases of the OS, the name has changed to
Message | nterprocess Protocol.

See also: MIP details and error messages, Appendix B

TheiNA 960 MIP and COMMputer jobs are referred to collectively asi*.job. This
manual uses the term iNA 960 to refer to the capabilities of both MIP and
COMMputer jobs. Asfar asyour application is concerned, there is no difference
between them. Both types of job provide the iINA 960 services described in this
manual.

Chapter 7 Network Software | mplementation

Some COMM puter jobs support multiple subnets so they can act as routers between
subnets. These jobs are preconfigured to use specific NICs as the ports to subnets.
Some of them can also use the Multibus Il backplane as a virtual Ethernet interface.

See also: Multibus Il Subnets, Chapter 9
i*.job, System Configuration and Administration for details about which
jobs run in which hardware environments

Overview of INA 960 Software

Table 7-1 shows the specific 1SO services provided by the INA 960 software and the
I SO specifications used to implement those services.

Table 7-1. iNA 960 Servicesand | SO Specifications

ISO Specifications Used
ISO Service Provided By iNA To Implement the Service
Transport Virtual Circuit IS 8073 Class 4
IS 8072
Transport Datagram IS 8602
IS 8072 Addendum 1
Connectionless Network Layer* IS 8473
IS 8348 Addendum 2
Internetwork Routing IS 9542 or Static User Entries
Data Link IEEE 802.2 Type 1 and
IEEE 802.2 IEEE 802.3 Ethernet

* There is no external interface to this service.

Network User's Guide and Reference Chapter 7 61

The iNA Layers

62

Figure 7-2 shows the layers of iNA 960 software.

iFEHET

Amplizalion I s ey

> T iHA 960

MameSerer

Trarcpod Laver

Wilual Ginc il areddalagram 2anyices

-~
L J
FeadvaTh Layer Feadvacrk

MU ireclive rdvac of F hsragemend
rdvert wilh ES {Sroding Farzilily

'

Dwila Lirk Laysr

ISOEtE Fdala link, LLSELL [E—3
ardreerHS0RAWEDL savices

.

g

L 2

Frasical Layer

Phadvacd i mlafTds e Frarcvsa e

Figure 7-2. iNA 960 Software Layers

Chapter 7 Network Software | mplementation

The Name Server

The Name Server maps network addresses and other numeric values to more easily-
remembered names. Y our application can use the programmatic interface to the
Name Server. If you run iRMX-NET in addition to iNA 960, iIRMX-NET uses the
Name Server servicesto provide user commands.

The Transport Layer

The Transport Layer provides transparent data transfer between processes. Two
types of data transfer service areimplemented: virtual circuit and datagram. The
virtual circuit service provides point-to-point, error-free, guaranteed delivery of
messages in the sequence they are sent. It also provides a high-priority message
delivery mechanism, called expedited data. The datagram service attemptsto deliver
messages without guaranteeing delivery, order of delivery, or integrity of the
message.

The Network Layer

The Network Layer performs message routing and relay. It delivers messages within
a subnetwork and across interconnected subnetworks. The Network Layer also offers

adatagram delivery service to higher layers. Thereisno direct application interface
to the Network Layer.

For each system bus type there are two preconfigured versions of iNA 960 that differ
at the Network Layer. The Null2 version does not provide internetwork routing. The
ES-IS version includes an IP-protocol internetwork routing service. The routing
tables can be built and updated statically by the application or dynamically using the
SO ES-IS routing protocol (1S 9542).

The Data Link Layer

The Data Link Layer transforms the raw transmitted and received data of the
Physical Layer into acommunication channel that appears error-free to the Network
Layer. A DataLink connection is built upon one or more physical connections. This
layer provides the functions and protocols used to establish, maintain and release
Data Link connections. In addition, the Data Link Layer isresponsible for framing
packets and detecting errors. The Data Link Layer has two interfaces:

» TheExternal DataLink (EDL) interface enables an application to bypass the
Transport and Network layers and directly access the services of the Data Link
layer (IEEE 802.2 LLC Type 1).

Network User's Guide and Reference Chapter 7 63

» The RawEDL interface lets an application access non-802.3 packets, so non-1SO
protocol stacks can run on top of iNA 960. Thusthe SO Transport services can
coexist with such non-1SO protocols as TCP/IP or NetWare, sharing the same
NIC. The RawEDL services can aso be used to capture and monitor non-1SO
packets for network analysis.

The Network Management Facility

The Network Management Facility (NMF) provides functions for reading and setting
database objects that are maintained internally by each of layer of iNA 960. By
monitoring these objects, an application can gather network usage information such
as peak activity, total packets sent, and CRC errors. The application can change the
values of database objects to optimize network performance or manage internetwork
routing tables.

The Programmatic Interface

An application requests iINA 960 services by using data structures called request
blocks. All request blocks contain a common set of header fields and, depending on
the function being requested, may have additional function-specific fields.

See also: Chapter 10 for the general request block interface and the system calls
used to manipulate request blocks,
Chapters 11-16 for request block structures for each iNA 960 or Name
Server function

Overview of IRMX-NET Software

The iIRMX-NET software executes within the boundaries of the Session,
Presentation, and Application Layers; however, the Presentation and Session Layers
are not formally implemented. Y ou can use one or both of these parts of iIRMX-

NET; they are jobs that you configure into the OS (with the ICU) or load separately
(with a sysoad command):

» Client, or File Consumer (remotefd.job) provides transparent file access to
systems that run the iIRMX-NET File Server.

e File Server (rnetserv.job) makesfiles on the local system available to remote
systems that run the iIRMX-NET Client.

64 Chapter 7 Network Software | mplementation

TheiRMX-NET Client and Server includes these parts:

Name Server

User
Administration

Apex File
Access

File Consumer

File Server

iRMX-NET usesthe iNA 960 Name Server to provide transparent
file access. Most iIRMX-NET user commands use the Name
Server to access remote files.

Seealso: Name Server, Chapter 2

The User Administration (UA) module maintains the files that are
used by a system administrator when making additions and
deletions of users and systemsin an iIRMX-NET environment. A
system administrator has the responsibility of overseeing the
assignment of users and systems, and of maintaining general
network security.

The Apex File Access (AFA) module is the operating system-
dependent part of the server. AFA receives requests from the File
Server module. The AFA executes the necessary file operations
that correspond to the user's requests.

The File Consumer module, with the Remote File Driver (RFD),
provides the functions of the client system. The RFD passes the
local user requests to the File Consumer, which then transmits the
requests across the network. The File Consumer isindependent of
the OS; it does not make iIRMX file system 1/O calls. However,
the RFD, as part of the BIOS, does make iRM X system calls.

Together, the File Server and AFA modules provide the server
functions. The File Server performs transactions for users at
remote nodes. When aremote user initiates arequest, the File
Server receives the request, interpretsit, and passes the request to
the AFA module for processing. The File Server is independent of
the OS; it does not use IRMX file system 1/0 calls.

Network User's Guide and Reference Chapter 7 65

Data Flow Through iRMX-NET and iNA 960 Software

Figures 7-3 and 7-4 illustrate the functions of the iRMX-NET modules for
COMM puter and COMMengine systems.

‘ iRMX Operating System ‘

(3

] File Consumer
File Server (Client)
aa Je>] ua || [ua l«> reo
iNA 960

$ Ethernet

OM04345

Figure 7-3. iRMX-NET Data Flow on COMM puter Systems

‘ iRMX Operating System ‘

(3

File Server File(%ﬁgﬁtj)mer
| A Je>] ua] | ua J<>| reo |
\—# MIP k—‘
A
A
Y
MIP
iNA 960 NIC
Name
V2 Ethernet

0OM04344

Figure 7-4. iIRMX-NET Data Flow on COM M engine Systems

66 Chapter 7 Network Software | mplementation

Configuring the MIP

In earlier releases of the OS you had to edit configuration files and use assembler
macros to configure the MIP driver used with iNA 960 software in a COMMengine
environment. 'Y ou now configure the MIP with the IMIPJ screen in the ICU.

Network User's Guide and Reference Chapter 7 67

68 Chapter 7 Network Software | mplementation

INA 960 Topology and Addressing

This chapter introduces and defines the topol ogy and addressing schemes used by the
iNA Network Layer. Topology refersto how the network is physically or logically
constructed. The topology of a network also plays an important role in determining
how entities within the network are addressed.

The iNA 960 Network Topology

AniNA 960 network is one or more interconnected subnetworks, usually called
subnets. A subnet istwo or more connected end systems, as shown in Figure 8-1.

An end system (ES) is anode that runs either the Null2 or the ES-IS Network Layer
of iINA 960 software. Subnets are connected by intermediate systems or internetwork
routers (also implementations of iNA 960 software). Intermediate systems (1S)
handle relay and routing between end systems in one subnet and end systems in other
subnets using the most efficient path. Depending on network topology, relay and
routing may occur across two subnets or across many subnets.

Figure 8-1 illustrates a network consisting of asingle subnet. Such a network
includes only end systems. The end systems may use either aNull2 or ES-IS
network job.

Ethernet

End co e End

System 1 System n

W-3398

Figure8-1. A Single Subnetwork

Network User's Guide and Reference Chapter 8 69

Figure 8-2 illustrates a network consisting of two subnets connected by an
intermediate system (an internetwork router). The end systems typically run the
ES-ISversion of iNA 960, which enables either static or ES-1S routing.

Subnet 1
End End End End
System 1 System 2 System 3 System 4
Intermediate
System
A
(Router)
Subnet 2
End End End
System 5 System 6 System 7

W-2955

Figure 8-2. Two Interconnected Subnetworks

General Subnetwork Types

The basic building block for a network is the subnet. There are three generic types of
subnets:

e Point-to-point subnet
* Broadcast subnet
e General topology subnet

A point-to-point subnet supports only two systems. The two systems can be either
two End Systems or an End System and an Intermediate System.

70 Chapter 8 iNA 960 Topology and Addressing

A broadcast subnet supports an arbitrary number of end systems and intermediate
systems. Any system in a broadcast subnet can transmit a single message to one, all,
or some subset of the systemsin the subnet. To transmit a message to all of the
systems, the application uses a broadcast address defined for the particular subnet
implementation. To transmit a message to a subset of the systems, the application
uses amulticast address defined for that subnet implementation. An example of a
broadcast subnet is one employing the IEEE 802.2 Type 1 LLC (Logical Link
Control) and |IEEE 802.3 MAC (Media Access Control).

Similar to a broadcast subnet, a general topology subnet supports an arbitrary number
of end systems and intermediate systems. However, a general topology subnet may
or may not support the broadcast and multicast transmission capability of a broadcast
subnet. An example of a general topology subnet is one employing the |EEE 802.2
TypellLLC.

INA 960 Subnetworks

iNA 960 subnet implementations are broadcast subnets which use the |IEEE 802.2
Type 1 LLC and the |EEE 802.3 MAC.

Network Addressing

Asdefined in the OS| Reference Model, the layer entities on a node can
communicate with their counterparts or peers on other nodes. The iNA 960 software
implements a mechanism that enables peer entities to communicate over a network.
The peersidentify and locate each other with an identifier called an address.

There are one or more addresses for each layer entity; for example, there are
transport (TSAP) addresses, network (NSAP) addresses, and data link or subnet
addresses. This section discusses the iINA NSAP (Network Service Access Point)
addresses and subnet addresses. TSAP (Transport Service Access Point) addresses
are described in the Transport Layer chapter.

The NSAP address tells how to reach a user of the Network Layer services. Inthe
iNA 960 software, the only user of the Network Layer servicesisthe Transport
Layer. An NSAP addresstellsiNA how to reach the Transport Layer services.
Applications cannot directly accessiNA Network Layer services.

Network User's Guide and Reference Chapter 8 71

Network Service Access Point (NSAP) Address

72

AniNA 960 NSAP isthe equivalent of an |P addressin TCP/IP protocols. However,
unlike TCP/IP, iNA 960 does not make the NSAP address available to the user at the
command line. Y ou can set NSAP addresses in the /net/data file and can access them
programmatically.

See also: /net/data.ex file, Chapter 11

The connection between the Network Layer and the Transport Layer isan NSAP,
identified by an NSAP address. The NSAP address supplies the information needed
by the Network Layer to identify the NSAP (and thereby the Transport Layer) at
either alocal or remote node. Because Network Layer users access services at
NSAPs, the NSAP address is how a Network Layer user may be identified.

An NSAP address should not be confused with adatalink or subnet (e.g., IEEE 802
MAC) address. Strictly speaking, an NSAP addressis alogical address assigned by
an addressing authority. For any network implementation, there may or may not be
some syntactic relationship between an NSAP address and the subnet address that
mapstoit. A syntactic relationship is not required by I SO standards.

NSAP addresses are defined hierarchically. An NSAP addressis assigned by an
addressing authority. That authority may allocate a complete NSAP address or
authorize a sub-authority to allocate addresses out of the authorizing authority's
address space. The sub-authority may in turn authorize lesser authorities to allocate
portions of its address space. Each authority administers a domain of the NSAP
address space. The NSAP address structure mirrors this domain structure.

An NSAP address consists of two parts, an Initial Domain Part (IDP) and a Domain
Specific Part (DSP). The IDPisfurther divided into two parts, an Authority and
Format Identifier (AFIl) and an Initial Domain Identifier (IDI). The AFI determines
the format of the IDI and the syntax of the DSP. Given an AFI, the maximum length
of an NSAP addressis known. The AFI specifies the authority that allocates values
of the IDI, and the IDI indicates which authorities allocate values for the DSP. The
DSP may in turn have further structure as defined by the authority indicated by the
IDI. Initial portions of an NSAP address are used for routing to a specific subnet
while some latter portion in the DSP is used for determining a specific node in the
subnet.

The least significant byte of the DSP isthe NSAP selector. The selector indicates
which one of the (possibly many) Transport Layer entities requesting service at an
NSAP that the NSAP address refers to.

Chapter 8 iNA 960 Topology and Addressing

Subnet Address

IniNA 960, subnet addresses are much simpler than NSAP addresses. A subnet
address identifies a Subnet Point of Attachment (SNPA). The SNPA isthe
conceptual point where a system is attached to a subnet. Like NSAPs, SNPAs are
abstractions and their meaning in network implementationsis up to the implementer.
A subnet address is the addressing information that the Network Layer givesto the
subnet service provider to indicate where the subnet service should send the message.
iNA 960 subnet addresses are a concatenation of a node's 48-bit |EEE 802 Media
Access Control (MAC) address and the Network Layer LSAP (Data Link Service
Access Point) selector. By convention, the LSAP selector is FEH. The MAC
addressis more commonly called an Ethernet address and is typically assigned by the
manufacturer of the network interface hardware, usually in PROM.

Internetwork Routing

The routing function maps an NSAP address supplied by the user to a subnet address
that the subnet service understands. That subnet address may be the address of the
message destination or the address of arouter that will perform another mapping and
relay the message to another router or to the message's destination. This routing
function can occur in both end systems and intermediate systems.

See also: Internet routing, Chapter 16

Network User's Guide and Reference Chapter 8 73

INA 960 Network Layer Addressing Schemes

TheiNA 960 software supports two Network Layer addressing schemes. These
addressing schemes recognize NSAP addresses that conform to the format described
in 1S 8348 Addendum 2:

e Null2, which isthe inactive subset of the IS 8473 protocol, does not support
internetwork routing

* ESIS (end system to intermediate system) addressing supports two internetwork
routing methods:

— Static, which uses the MAP 2.1 routing scheme for mapping NSAP
addresses to subnet addresses.

— End system to intermediate system (ES-1S), for dynamic routing. This
implements the protocol described in IS 9542.

TheiNA 960 software is preconfigured with a Network Layer using either Null2 or
ES-ISaddressing. The ES-1S jobs support both static and dynamic (ES-1S) routing.

See also: i*.job, System Configuration and Administration

Null2 Network Addressing

74

iNA Network Layers configured for Null2 addressing recognize 11-byte NSAP
addresses. When specified as a hexadecimal string, the Null2 address has this form:

4900xxyyyyyyyyyyyyFEQO

Where:

49 The Authority and Format Identifier (AFI). By convention, the AFI for
iNA NSAP addressesis 49H.

00xx A local subnet identification number. The second byte (xx) in a Null2
address has no meaning, but the value 0 is recommended.

YYYYYYYYYYYY
The six-byte Ethernet address for the node.

FE The Data Link LSAP selector. By convention the iNA LSAP selector is
OFEH.

00 The NSAP selector. For Null2, this byteis optional. If not present, it is
assumed to be 0. However, for compatibility with ES-IS routing, this
byte must always be present.

Chapter 8 iNA 960 Topology and Addressing

Static Internetwork Addressing

The ES-IS configurations of iNA 960 support static internetwork addressing, where
the application maintains static routing tables with NMF commands. Static routing
recognizes two NSAP address formats. One format isthe Null2 format described in
the previous section. The other format is an extension of the Null2 format as shown
inthis;

49XXXXYYYYYYYYYyYyYyyFEQO

Where:
XXXX A two-byte subnet identification number.
YYYYYYYYYYYY

The six-byte Ethernet address for the node.
The subnet ID specifies a particular subnet to which packets can be routed.

Except for the subnet ID, all other bytesin the address are the same asin aNull2
address. However, the NSAP selector (the last byte of the address) is not optional; it
must be present. An NSAP selector of 0 specifies the Null 2 addressing scheme. For
ES-IS addressing, the NSAP selector must not be 0.

ES-IS static addressing Network layers implement the MAP 2.1 static internetwork
routing scheme. Nodes can be configured as end systems or intermediate systems
(routers). Routing is determined by user-defined static tables located in intermediate
systems.

See also: Routing tables, Chapter 16

End System to Intermediate System (ES-1S) Network
Addressing

iNA Network Layers configured for ES-IS network addressing recognize the
previously described Null2 and Static internetwork addresses.

|:| Note

ES-IS addressing assumes that the last byte of an NSAP addressis
present and is the NSAP selector.

An NSAP addressin an ES-IS environment is given meaning by routing tables
located in End Systems and/or Intermediate Systems. These tables are dynamically
updated based on configurable parameters. Systemsin a network can periodically
notify other systems of their existence and new systems can announce their presence
at startup.

ES-IS configured Network layers implement the internetwork routing protocol
described in 1S 9542,

Network User's Guide and Reference Chapter 8 75

Choosing a Network Layer Configuration

TheiNA 960 jobs are available in both Null2 and ES-IS versions. If you use the
ES-ISversion of ajob, dynamic (ES-IS) routing is performed by default, unless you
set up static routing tables with NMF commands. The routing algorithm checks both
static and dynamic routing tablesto see if a subnet can be reached. Preconfigured
ES-ISversions of iNA 960 can store up to three static table entries (three
intermediate system addresses).

Use these guidelines to help determine which Network Layer configuration is right
for aparticular subnet implementation.

A Null2 configuration may provide the best network performance under these
conditions:

e The network has only one local subnet, with no internet router
» The node configurations are nearly homogeneous
e Itisunlikely that nodes are to be added or removed often

A Static internetwork configuration performs similarly to an ES-IS configuration if
both types of network remain stable. Thisistrue whether the subnet configurations
are homogeneous or nonhomogeneous. The key criterion is stability. A Static
configuration is best where:

* The network includes multiple subnets whose membership is stable
e Theinternetwork router connections are fixed (nonexpanding)
e Systemson the network don't regularly go down

An ES-IS configuration may provide the best tradeoff between performance and ease
of making changes, where:

e Thenetwork islarge and subnet membership is constantly changing
» The network requires the flexibility to be easily changed

e Theinternetwork router connections change often

76 Chapter 8 iNA 960 Topology and Addressing

The Multibus Il Subnet and
Routing Between Subnets

Configuring Networks with the Multibus Il Subnet

Although iNA 960 has always supported routing in the ES-1S configurations, the
software shipped with the iIRMX OS did not always contain jobs preconfigured to
support multiple NICs. Jobs without this support could not act as routers from one
subnet to another.

The OS now includes iNA 960 jobs for Multibus 11 systems that support all possible
combinations of NICs for those systems; these jobs act as routers between the
subnets. In addition, some jobs support the Multibus |1 subnet, which is avirtual
Ethernet interface across the backplane.

The Multibus 11 subnet enables all boardsin aMultibus Il system to act as
independent network hosts. Each host has at |east one network address and Ethernet
address, regardless of whether a given board includes its own Ethernet controller.
This allows communication between boards using iNA 960 (with or without iIRMX-
NET) or TCP/IP, using the Multibus backplane as the LAN medium. When the
system includes at least one iNA 960 router between the Multibus 11 subnet and a
hardware NIC, you have access to both thisinternal backplane network and any
external Ethernet networks.

With the Multibus |1 subnet, an iNA 960 transport stack runs on every board in the
Multibus |1 system. With a separate Ethernet address and iNA transport stack, each
board can run TCP/IP independently. This eliminates the need for systems where:

e Boards without NIC hardware had to set up a COMMengine environment (MIP
job) to share a single transport stack that ran on the board with NIC hardware.

» For boardsthat ran MIP jobs, GDT dots 4096-4767 were unavailable for use by
the application.

e Only one Ethernet address (per NIC) applied to all boardsin the system.

* Only oneiNA 960 RawEDL client was allowed in the system, which meant that
only the host board with a NIC could run TCP/IP.

This chapter describes mostly the configuration changes needed to use the Multibus
Il subnet, with or without routing to an external subnet. However, some iNA 960
jobs support multiple hardware NICs, and route between subnets without using the
Multibus |1 subnet. The routing principles described here also apply to those jobs.

Network User’s Guide and Reference Chapter 9 77

Routing Between Subnets

Any Multibus |1 board that has an Ethernet controller connecting to an external
network and that also uses the Multibus |1 subnet must be set up as a router between
the two subnets. If you use both iINA 960/iRMX-NET and TCP/IP on the external
subnet you must configure the board to be both an ES-1S router for iNA 960 and an
IP router for TCP/IP.

D Note

The descriptions in this chapter apply only to configuring iNA 960
routers. For details about configuring TCP/IP, see Configuring
TCP/IP for the Multibus || Subnet, TCP/IP and NFSfor the iRMX
Operating System

Definition of a Router

This manual refersto the hosts that transfer packets between subnets as routers,
whether they use iNA 960 or TCP/IP networking. Asused here, the term “router” is
synonymous with the term “ gateway” as commonly used in TCP/IP literature.

Some people define a gateway to mean a system that not only separates different
segments of network, but also trandlates protocols as it passes packets between the
networks. The term router used here does not mean that type of gateway.

The discussion of configuring routers applies only to iRMX systems used to route
packets between subnets. It is beyond the scope of this manual to describe
configuration of any independent routers you may use to separate interconnected
subnets. However, use the principles described here when you do any such
configuration. For example, if you support iNA 960 protocols across an independent
router, you must assign unique iNA 960 subnet IDs to each subnet.

ES-IS vs. Null2 Jobs
There are two basic kinds of network jobs defined by iNA 960:

» ESISjobsare capable of routing network packets. Jobs with namesthat end in
eare ESIS, for example, imix560e.

* Null2 jobs are not capable of routing network packets. Jobs with names that end
innare Null2, for example, imix560n.

An ES-I1Sjob isnot necessarily arouter, but it forms network addresses so that they
can be routed. Only ES-IS jobs that support multiple subnets can act as routers.

78 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

ES-IS Routing

Each iNA 960 ES-1S job maintains tables of systemsit can contact. The tables
contain the names and network addresses of those other systems. There are two parts
to these routing tables:

e Static routing tables specify all the other Intermediate Systems that can be
contacted from the local host (beit ESor 1S). You must set up the static routing
information on each IS.

* Dynamic routing tables are built by each system based on hellos, or
acknowledgments sent periodically between End Systems and | ntermediate
Systems. Each ISbuildsalist of all ES systems with which it has direct contact.
Conversely, each ES builds alist of the 1S(s) with which it has direct contact.

Y ou set up each board to be an ES or 1S by specifying what types of hellos it
sends and receives. Based on the hellos it receives, each system automatically
builds its own dynamic routing tables.

With the static and dynamic routing tables in place, you can send a packet from an
ES on one subnet to an ES on another subnet, without any direct knowledge of the
network path required to get there. When you send the message, your ES puts the
packet on your subnet. If the packet has a different subnet 1D than your own, the IS
forwards the packet to whatever 1Sin its routing tables is specified to handle that
subnet. If the destination ES is on the subnet connected to the second IS, the packet
is delivered there.

However, the ES you are attempting to contact may be separated from your subnet by
at least one intermediate subnet, each connected by one or more ISs. If so, the
second | S passes the packet along to whatever IS is specified in its (the second IS's)
static routing tables to handle the destination subnet, and so on. Through this process,
the packet is routed to the subnet for which it isintended, and is received by the
destination ES.

If there are multiple 1Ss on the same subnet, each one needs information about which
subnets the other I Ss can reach. Y ou add thisinformation when you set up the static
routing tables.

Later sectionsin this chapter describe the process of setting up iNA 960 routers.

See also: iNA 960 Topology and Addressing, Chapter 8
Internetwork Routing, Chapter 16

Network User’s Guide and Reference Chapter 9 79

Ethernet Addresses in the Multibus Il Subnet

An Ethernet address is a six-byte hexadecimal value used to identify a particular host
on the network. The Ethernet addressis also called aMAC (media access control)
address. Typically, MAC addresses are coded into the firmware on an Ethernet
network interface controller, or NIC.

Since there is no Ethernet hardware associated with the subnet on the backplane, the
iNA 960 jobs for the Multibus Il subnet assign MAC addresses to each board
according the slot number. In every system the base addressis A2 A4 A6 A8 AA 00.
Thisisthe MAC address of the board in dot 0. The software sets the last byte of the
addressto the slot number. The board in slot 1 has address A2 A4 A6 A8 AA 01, and
the addresses progressto A2 A4 A6 A8 AA 13 for a20-dot system. Thisensures
that each board on the subnet has a unique MAC address.

Although every Multibus 11 subnet uses the same range of MAC addresses, the
combination of a unique subnet 1D with the MAC address provides a unique iNA 960
network address for each board. With TCP/IP software, you assign a unique 1P
address to each board.

Router boards that use the Multibus I subnet and also have one or more hardware
NICs have multiple MAC addresses. The virtual NIC provided by the Multibus 1
subnet is assigned the MAC address described above. Each hardware NIC hasits
own MAC address embedded in the firmware.

Data Link Subsystem ID for the Multibus Il Subnet

In programming callsto iNA 960 you specify a subsystem ID as part of the request
block (RB) interface. The subsystem ID specifies the iNA 960 subsystem being
called. For the DataLink layer, there are several subsystem IDs, depending on the
type of subnet in use. To specify the Data Link for the Multibus |1 subnet, use the
subsystem value 2FH.

See also: DataLink calls, Chapter 13

80 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Name Server Search Domain

When you use the attachdevice command to connect to a remote system, the iNA
960 Name Server searches only subnet ID 1 by default. If your network includes
multiple subnets, or even if it includes only one subnet but you have changed the
subnet ID from the default, you must set the Name Server search domain to include
all appropriate subnet IDs. There are two waysto do this: in the ICU configuration
or with adomain command. The instructionsin this chapter describe using both
methods.

See dso: domain command, Command Reference

Y ou need to set the search domain only if you use iINA 960/RM X-NET across
different subnets. For TCP/IP access only, the Name Server search domain is not
needed.

Overview of Setting up the Multibus Il Subnet

These are the steps you will perform to make use of the Multibus 11 subnet. Some
steps are optional, depending on your system and the kind of networks you want to
use:

* Make amap of the total network to identify what iNA 960 subnet |Ds you need
to assign.

e Choose the correct iNA 960 job(s) for your hardware.

» Configure the iNA 960 job(s) into the OS with the ICU or set up aloadable
version of the job. In either case, you may have to change the subnet IDs
configured into the job, depending on your subnet map of the network.

e Optionally change subnet 1Ds on other systemsin the network to match those set
up in your Multibus Il system(s).

» Useeither theinamon utility or your application program to set up iNA 960
routing tables.

e If you plan to use TCP/IP on more than one board in the system, set up the
TCP/IP configuration files for the Multibus I Subnet and (optionally) for
routing.

Network User’s Guide and Reference Chapter 9 81

Step 1. Mapping the Network

82

Before you begin configuring the network software, set up amap of your network
and determine what iNA 960 subnet IDsto assign. For example, Figure 9-1 shows a
simple network consisting of two Multibus Il systems. Each is attached to an
external network through an Ethernet controller. This can be any onboard Ethernet
controller, such as on the SBC 486/166SE board.

External Ethernet Network

A

N,
>
subnet 1 subnet 1
Ethernet Ethernet
Adapter Adapter
Board1l (IS) Board4 (IS)
Backplane Backplane
subnet 2 subnet 3
Board2 (ES) Board5 (ES)
Board3 (ES) Board6 (ES)
System A System B

OMO03562

Figure 9-1. Mapping Subnets

The map of this network assigns subnet ID 1 to the Ethernet connections. The
backplane of each system has a unique subnet 1D, so that System A’ s backplaneis
subnet 2 and System B’ s is subnet 3.

Boards 1 and 4 are routers, called Intermediate Systems (1Ss) in iNA 960
terminology, because they have two network connections and connect two subnets.
In each case, one of the subnetsisthe Multibus 11 subnet, and the other subnet isthe
external Ethernet connection.

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Boards 2, 3, 5, and 6 are End Systems (ESs), because they have a single network
connection, in this case the Multibus Il subnet. You typically configure Intermediate
Systems to also be End Systems, but it is pointless to configure a system with only
one network attachment to be an Intermediate System.

Although it is not mandatory to assign subnet ID 1 to the external Ethernet
connection, this simplifies the work in configuring the systems. It also allows for
compatibility with existing systems on the external network that do not route packets,
since Null2 networking jobs are preconfigured to use subnet 1.

|:| Note

If necessary, you can configure aNull2 job to use a different subnet
ID, using the ICU. See Step 6, on page 91.

Y ou could have a more complicated internetwork scheme with multiple external
subnets connected by routers. If you use only TCP/IP to access interconnected
external subnets, each external subnet can have the same iNA 960 subnet ID. For
example, you could have the situation shown in the top and middle external subnets
of Figure 9-2, where the two subnets connected by Router A are both subnet 1, and
two of the Multibus systems on either side of the router are both subnet 3. Y ou can
use iNA 960/iRMX-NET on both subnets with ID 1, because each Multibus 11 subnet
attached to each subnet 1 has a unique subnet ID. (The non-Multibus systems on
these subnets use subnet 1D 1, since thereis no internal subnet.)

However, to use iNA 960 or iRMX-NET through a router, al subnets on either side
of the router must have a unique iNA 960 subnet ID. Thisis shown in the middlie and
bottom external subnets of Figure 9-2, on either side of Router B. Not only are the
external subnets unique (IDs 1 and 2), but each Multibus Il subnet has aunique ID.

In the example in Figure 9-2, you would configure Router A asa TCP/IP router only.
Y ou would configure Router B to be both a TCP/IP router and an iNA 960
Intermediate System.

Network User’s Guide and Reference Chapter 9 83

External Ethernet Network

A

subnet 1 subnet 1 subnet 1
Multibus Il System non-Multibus System Multibus Il System
subnet 2 subnet 3
Y
TCP/IP access only,
iRMX-NET communications
cannot cross this point Router A
due to identical iINA
subnet IDs on both sides
A
<
N
subnet 1 subnet 1 subnet 1
Multibus Il System non-Multibus System| Multibus 1l System
subnet 3 subnet 4
Y
TCP/IP and iRMX-NET
communications can cross
this point, iNA subnet IDs on Router B
both sides are unique
A
<
N
subnet 2 subnet 2 subnet 2
Multibus Il System non-Multibus System Multibus Il System
subnet 6 subnet 7
OMO03563

Figure 9-2. Mapping Subnetswith an I nter network

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Using Only TCP/IP Outside the Multibus Il Subnet

Y ou might want to use iNA 960 and/or iIRMX-NET transport services within the
Multibus |1 system, but not across the external network. In that case, al external
subnets could have ID 1, and al Multibus Il subnets could have ID 2 (or any other
ID), asillustrated in Figure 9-3. In this example, boards within System A can
communicate with each other using iNA 960/iRMX-NET, and so can boardsin
System B, but they must use TCP/IP to communicate between the systems.

In the example in Figure 9-3, you would not configure any iNA 960 Intermediate
Systems. 'Y ou would configure the boards connected to the external network as
TCP/IP routers, or gateways.

External Ethernet Network

< N,
N V.l
subnet 1 subnet 1
Multibus 1l System Multibus 1l System
subnet 2 subnet 2
System A System B

OMO03564

Figure 9-3. Mapping Subnetsfor TCP/IP Access, but no iNA 960 Access

Network User’s Guide and Reference Chapter 9 85

Step

2: Choosing the iNA 960 Jobs

For every board in the system, choose one of the iNA 960 jobs listed in Table 9-1.
Each job is preconfigured with one or more subnets. Table 9-1 indicates which
subnet is used for an onboard Ethernet NIC and which is used as the Multibus 11
(backplane) subnet. The order isimportant when you assign the subnet IDs, as
described in subsequent steps.

For boards that will act as routers, choose the correct multiple-subnet job for that
board. For boards that do not act as routers, use the impe job to give access to the
Multibus |1 subnet and the iNA 960 transport stack without using a hardware NIC. If
the system does not contain a router, you can use the Null2 version of the Multibus 11
subnet job, impn, but boards that use this job cannot send or receive packets across a
router to another subnet. Table 9-1 also lists jobs that do not include the Multibus 1
subnet, such asthe ihisxe job. Boards that use such jobs cannot use the backplane as
anetwork connection. These jobs support routing between multiple external subnets,
but not to the Multibus |1 subnet.

All jobs are available either as loadable or linkable jobs. Choose the type of job
according to your OS configuration for each board. For example, where you
configure the application into ROM, or on a diskless application (*rsd.bck definition
file), you must use the ICU to include the linkable version of the job. Otherwise, you
can use aloadable jab.

Table 9-1. iNA 960 COM M puter Jobsfor the Multibus|1 Subnet

Job OS Subnets NICs (and Default Subnet IDs) for 1st, 2nd, 3rd, 4th Subnet
ihisxe 11} 2 SBC 486/1xxSE (1), SBX 586 (2)

ihimpe 1 2 SBC 486/1xxSE (1), MB Il backplane (2)

ihisxmpe 1 3 SBC 486/1xxSE (1), SBX 586 (2), MB Il backplane (3)
imxmpe Il 2 1 MIX560 (1), MB 1l backplane (2)

i2mxe 1] 2 2 MIX 560s (1, 2)

i2mxmpe i 3 2 MIX 560s (1, 2), MB Il backplane (3)

i3mxe 1] 3 3 MIX 560s (1-3)

i3mxmpe Il 4 3 MIX 560s (1-3) MB Il backplane (4)

ielmpe all 2 SBC 486SX/DXxx with EWENET (1), MB Il backplane (2)
ie2mpe all 2 SBC P5090 or P5120 (1), MB Il backplane (2)

le3mpe all 2 SBC P5200(1), MB Il backplane (2)

imp? all 1 MB Il backplane only (1)

? Specify N for Null2 (no routing capability) or E for ES-IS routing
li/all iRMX Il OS only, or any of iRMX for PCs, DOSRMX, or iRMX Il OS

86

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Table 9-1 shows the default subnet 1D(s) associated with each subnet inajob. The
default subnet |Ds may not match the ones you have assigned in your map of the
network. If so, change the subnet | Ds either when you load the job (with SNIDx
parameters in the sysload command) or by reconfiguring the job with the ICU. The
process of using the ICU to generate either first-level or loadable iNA 960 jobsis
described in the next steps.

|:| Note

Y ou can use Multibus I subnet jobs on some boards in the system
along with non-Multibus |1 subnet jobs on other boards in the same
system. In other words, you might still choose to use aMIP job on
aboard for which you do not need to use the Multibus 11 subnet.

However, do not use a MIP job on any board for which you choose
aMultibus |1 subnet job. Also, do not use a MIP job on one board
as an interface to aMultibus |1 subnet version of iNA 960 running
on another board.

Table 9-1 does not list any of the MIP jobs or other iINA 960 jobs
that do not relate to the Multibus Il subnet or to routing.

See also: i*.job, System Configuration and Administration for a
complete list of iINA 960 jobs

Network User’s Guide and Reference Chapter 9 87

Step 3: Configuring Jobs in the ICU

If you use only the loadable iNA 960 jobs provided with the OS, ignore the
instructions in this step and proceed to Step 5. However, you can use the instructions
in this step and Step 4 to produce aloadable job that has different default subnet IDs
than the loadable jobs supplied with the OS.

88

For each board where you use a linkable iNA 960 job or need to change the
configuration of aloadable job, invoke the ICU and configure the job as follows:

A.

NET screen: Set the MIP parameter to No and the CMP parameter to Yes, to
include an iNA 960 COMMputer job. (Y ou may also choose to add the iIRM X-
NET server and client, and/or TCP/IP on this screen.)

ICMPJ screen: Specify the iINA 960 job name in the OFN parameter. Use one
of the names shown in Table 9-1 without a .job extension.

ICMPJ screen: For theimpn job, leave the Network Layer, or NL parameter set
to 1 for aNull2 network. For any other job, set NL to 3, for ES-IS.

ICMPJ screen: Specify the appropriate subnet IDs in the SN1 through SN4
parameters. For example, Table 9-1 shows that for the imxmpe job, the first
subnet applies to the M1X560 NIC and the second subnet is the backplane. Set
the values according to your subnet ID map of the network. If your external
network is subnet 3 and your internal network is subnet 7, set the SN1 parameter
to 3 and the SN2 parameter to 7. Do not set any SN* parameters that do not
apply; the imxmpe job contains only two subnets and you cannot add more.

NSDOM screen: Specify all subnet IDs that you want the Name Server to
search when you attach to aremote system. Use your map of the network and
include all subnet 1Ds to which you want to connect with either iNA 960 or
iRMX-NET. The maximum number of subnetsto be searched is 80 (the ICU
displays anew screen for each set of 20 IDs). Y ou can specify subnet IDs not
currently in use, for future expansion. However, adding more subnet IDsto the
search domain slows down Name Server operations.

If you plan to configure the iNA 960 job into the OS, make sure that on the
ICMPJ screen the CLJ parameter is set to No. Then continue with any other
necessary |CU configuration. Generate the system as usual and submit the .csd
file produced by the ICU to build the OS image. However, if you want to
produce aloadable job with the new configuration, do not generate the system
now, but proceed with the instructionsin Step 4.

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Note

Some preliminary instructions for using the Multibus Il subnet
described these changes. On the FC screen for the iIRMX-NET
File Consumer, you were instructed to change the DDS parameter
from 1488 to 1344. OntheiRMX-NET File Server AFAU screen
where the USS parameter is set to 70H, you were instructed to
change the SBS parameter from 1488 to 1344. Theseinstructions
applied only for preliminary software shipped prior to release 2.2
of the OS. Do not change the default value of 1488 for these
parameters. The value 1488 is required to work with all versions of
iNA 960 jobs shipped with the OS.

Step 4: Creating a Loadable Network Job

To create aloadable job from alinkable job that you have configured, asin Step 3,
follow this process:

A.

ICMPJ screen: While in the ICU, make any configuration changes you need,
such as changing the subnet IDs for the job.

ICMPJ screen: Specify the new network job name in the OFN parameter.
ICMPJ screen: Set the CLJ (create loadable job) parameter to Yes.

When done, use the ICU Generate command to generate the system, but don't
submit the .csd file produced by the ICU.

To create the loadable iINA 960 job, submit the icmp.csd file produced by the
ICU. This generates the loadable job in the directory where you invoked the
ICU, with the name of the linkable job and a .job extension.

If you made configuration changes to the IRMX-NET server, create aloadable
version of the job by submitting the rnetsrv.csd file produced by the ICU. This
generates a new rnetserv.job file in the directory where you invoked the ICU.

If you made configuration changes to the iIRMX-NET Consumer (the client and
remote file driver job), create aloadable version of the job by submitting the
rnetcln.csd file produced by the ICU. This generates a new remotefd.job filein
the directory where you invoked the ICU.

Add the new loadable job(s) to the loadinfo file as described in Step 5.

Network User’s Guide and Reference Chapter 9 89

Step 5: Using Loadable Jobs

90

If you use only linkable iNA 960 jabs, ignore the instructions in this step and proceed
to Step 6.

A. For each board in the system on which you use loadable network jobs, choose the
appropriate job from Table 9-1.

B. If thejob’sdefault subnet IDs are not correct for your map of the network,
configure new subnet IDs and create aloadable job from the linkable job as
described in Steps 3 and 4.

C. Edit the rmx386/config/loadinfo file to remove or comment out the sysload
invocation of any current iNA 960 jobs. Add alineto load the new iNA 960 job,
specifying the job’ s pathname and .job extension, for example:

sysl oad /rnx386/j obs/inxnpe.job

D. If you did not set up the job’s Name Server search domain in the ICU with the
NSDOM screens, use the domain command to set the search domain of all
subnets the Name Server will access. Y ou can add the command to the loadinfo
file following the sysload command that loads the iNA 960 job. The syntax is:

domain [-a ID[-range]] [-d I D -range]]

Without any parameters, domain displays the current search domain. The-a
parameter adds one or more subnet IDs. The - d parameter deletes one or more.
With either parameter, domain displays the current search domain after the
addition or deletion. Specify either a single subnet ID or arange of I1Ds,

separated with adash (-) and no spaces. The ID must be afour-digit
hexadecimal number followed by an H.

Example 1: To add subnet 4 to the current search domain, enter:
domai n -a 0004H

Example 2: Assume that your external subnet ID is 3, with Multibus |1 subnets 4, 5,
and 6. Y our external subnet is connected through a router to subnet 1, which
contains Multibus Il subnets 10 through 26 (OAH through 1AH). To enable
searching of all subnets from 1to 1AH, enter:

domai n -a 0001H 001AH

The maximum number of subnetsto be searched is80. Y ou can specify subnet IDs
not currently in use. However, adding more subnet IDs to the search domain
dows down Name Server operations.

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Step 6: Changing Subnet IDs on Other Systems

Y ou may have non-Multibus Il systems on your network that use either ES-1S or
Null2 versions of iNA 960 jobs. The Null2 jobs (i* n jobs) do not implement routing.
However, both types of jobswill work properly on a network with an IS aslong as
their subnet | Ds match the one you assign to their subnet.

iNA 960 jobs with a single subnet are preconfigured with subnet ID 1. If you set up
the external network to be subnet 1, or if you don’t have any non-Multibus Il systems
using iNA 960 jobs on the network, ignore this step.

If you assign the external network any subnet ID other than 1, you must change the
subnet ID for both Null2 and ES-1S network jobs used by any systems on that
network:

A. Follow theinstructionsin Steps 3 and 4 to produce either linkable or loadable
versions of the jobs.

B. For loadable jobs, make a backup copy of the original iNA 960 job shipped with
the OS, then copy the new version of the job from your ICU generation directory
to the \rmx386\jobs directory on the target machine.

C. For loadable jobs, install the job as described in Step 5.

Network User’s Guide and Reference Chapter 9 a1

Step 7: Modifying the net/data File

For every diskless board (*rsd.bck files), you must change the network address for
the remote boot client in the /net/data file on the file server. This appliesto any
system that boots remotely, not only to remote-boot clients on Multibus 11 subnets.

iRMX-NET file serversthat support remotely booted nodes have an entry in the
/net/data file that contains the Ethernet (MAC) address of the client with the
Multibus |1 dot ID appended. Thedot ID field is 00 for Multibus | systems and PCs.
For example, in previous releases of the OS, the /net/data entry for aclient in slot 2
was like the one below, where the address is the MAC address used by the client
followed by the dot number:

client_name: TYPE=PTO0005: ADDRESS=00AA00021E2702;
[

Slot number
MAC address

OMO03570

This address has been expanded by two bytes to also include the subnet 1D, as shown
below:

client_name: TYPE=PTO0005: ADDRESS=0005A2A4A6A8AA0202;

92

\ Il |
Slot number

MAC address
Subnet ID

OMO03571

A. Modify the /net/data entry for every remote boot client to use the second form
shown above. Substitute the client name, subnet ID, MAC address and slot
number in your entries. Note that the MAC address in the example above is the
one imposed by the Multibus I subnet, where the last byte of the MAC address
is aso the dot number.

See also: /net/data.ex file, Chapter 11

Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Step 8 - 10 Overview: Configuring iNA 960 Routing

To set up routing on an iNA 960 job that supports multiple subnets, you need to
change a variety of network objectsin tables that control routing and interaction at
the network level between ESsand ISs. To change network objects, you can:

» Write an application program that modifies the objects directly or that accepts
user input regarding addresses and system names the router needs to contact.

* Usetheinamon utility to modify the objects directly from the command line.

e Modify and run a submit file supplied with the OS that invokes inamon to
supply the necessary information.

The following discussion and Steps 8 through 10 describe an example of the last
method: using the iset.csd submit file to invoke inamon and change the appropriate
network objects for routing. |f you want to set up routing in another way, use this
discussion as an example of what objects to examine and modify.

See also: List of network objects, Appendix C
Chapter 16 for information about programmatically changing objects
inamon, Command Reference

Using Inamon to Configure Routing

The OSinstalls a submit file, /net/iset.csd, that you can use to set iNA 960 ES-IS
routing objects. The submit file invokes the inamon utility in batch mode and
changes network objects according to the way you edit the file. Y ou can invoke it
from the : config:loadinfo file to automatically set up the network for each board,
using this syntax:

subnmit :sd:net/iset

For each board, make a copy of the file you will submit and edit the file according to
these guidelines (described in the following steps):

e Onevery board that uses the Multibus Il subnet, set four flags that determine
whether the system isan ES, IS, or both.

» OnlISboards only, configure the static routing tables, which specify all other IS
routers that can be contacted from this|S.

The format of the iset.csd fileis shown in Figure 9-4 on page 94; the line numbers are
not part of thefile. Edit the filein athree-step process as described in the following
sections.

Network User’s Guide and Reference Chapter 9 93

Line#

i nanon bat ch

set 3912 ff

set 3913 ff

set 3915 ff

set 3916 ff

; 3 set ST 49 00 03 00 aa 00 03 24 9f fe 00 ROUTER3 SBX586 00 aa 00
03 17 a3 fe

exit

3 set N ROUTER3 49 00 03
;oexit

10. exit

SO~ wWDNE

’

’

© o N

Figure 9-4. Exampleiset.csd File

Step 8: Establishing ES and IS Hellos

Table 9-2 lists the network objects that determine whether aboardisan ES, an IS, or
both. In this step you will set up the appropriate objects to make each board operate
in the ES-IS protocal.

Table 9-2. Configuring ESand ISHellos

Object # Object Name ES only IS only ESand IS
3912H Send ES Hellos True (FF) False (00) True (FF)
3913H Send IS Hellos False (00) True (FF) True (FF)
3915H Receive ES Hellos False (00) True (FF) True (FF)
3916H Receive IS Hellos True (FF) False (00) True (FF)

A. For every board in the system, make a copy of iset.csd. Edit lines 2-5 of each
file to specify whether the board isan ES, IS, or both. Set the final valuein each
lineto 00 (false) or FF (true) according to Table 9-2. In most cases, you should
configure every ISto also be an ES. The only reason you would not do thisis
when the ISis used purely as arouter, not as a workstation.

As Table 9-2 indicates, an End System is one that sends ES hellos and receives |S
hellos; it does not receive and process hellos from other End Systems. An
Intermediate System is one that sends IS hellos and receives ES hellos. An
Intermediate System does not receive and process hellos from other Intermediate
Systems unlessit is also an End System.

94 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

B. Leavelines6-9 of iset.csd commented out with a semicolon for this step.
I namon does not recognize the semicolon as a comment, but it does not perform
any commands that begin with a semicolon. Instead it issues an error message.
When you submit iset.csd later in this step, inamon will display this message for
each commented line:
I nval i d command
Y ou can ignore this error message.

C. Addthecommand subnit <pat hnanme>i set to the :config:loadinfo file, after
the invocation of any loadable network jobs and any domain commands. If you
use different filesto load different sets of jobs for remotely-booted boards, add
the appropriate submit line to the file for each board.

D. Assuming you have done all the other configuration steps to this point, reboot the
system. Do thisfor al Multibus 1 systems on the network.

E. With the systems running the Multibus I subnet jobs, and each board in its ES-
I'S configuration, remotely-booted boards should boot properly. Thisindicates
that the Multibus |1 subnet on each system is configured correctly. If remotely-
booted boards do not boot, review the configuration steps to this point.

The next step isto use inamon to get the routing information needed to complete the
editing of iset.csd. Thisisdescribed in the following section.

|:| Note

If you use only TCP/IP outside the Multibus Il subnet, you do not
need to configure the INA 960 static routing tables on IS boards.
Remove lines 6-9 of theiset.csd file. At thispoint in the
configuration, you can ignore Steps 9 and 10, and proceed to set up
TCP/IP.

Seealso: Configuring TCP/IP for the Multibus |1 subnet, TCP/IP
and NFSfor the iIRMX Operating System

If you useiNA 960 and/or iRMX-NET outside of the Multibus 1
subnet (in other words, on external subnets), continue with Step 9.

Network User’s Guide and Reference Chapter 9 95

Step 9: Getting the NET and Subnet Information

On every Intermediate System there are three items of information you need to
obtain:

* Network Entity Title (NET), which isthe primary NSAP address used by iNA
960 for this IS (an NSAP addressis the iINA 960 term for a network address, or
Network Service Access Point).

* Subnet name(s) used by this IS for any subnet(s) that lead to any other IS
MAC address(es) corresponding to the subnet(s) that |ead to any other 1S

Use the map of your system to record thisinformation so it is available for Step 10.
For example, assume your network looks like the onein Figure 9-5. Asyou perform
this step, fill in the information shown in the blanks in this figure.

External Ethernet Network subnet 1

< >
subnet 1 name subnet 1 name subnet 1 name
MAC address MAC address MAC address
Router A NET Router B NET Router C NET
(Network Entity Title) (Network Entity Title) (Network Entity Title)
Backplane Backplane Backplane
subnet 2 subnet 3 subnet 4
System A System B System C
OMO03565
Figure 9-5. Routing Information on a Single External Networ k
|:| Note
Each board may have a different name for the subnet it is attached
to, depending on the iNA 960 job running on that board. For
example, in Figure 9-5, there is not a single name for subnet 1. If
the three IS systems run different iINA 960 jobs, each may have a
different name for subnet 1.
A. Invokeinamon oneach IS
96 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

B. Type 3to get the Router Management menu.

C. Examine object 391E, which displays the subnet table, similar to the following.
Theitems you're interested in are the subnet names and IDs:

[391E] SUBNET TABLE

|1 82596 / O8H/ FEH/ 49 00 01 1 OOOOOOFE
VPSN / 08H/ FFH/ 49 00 02 0 OOOOOOFE

Subnet names

OMO03572

D. Refer to your map and record the name(s) of any subnet connections that lead to
other ISs. Inthe example listing above, if there were other 1Ss on both subnets 1
and 2, you would record 182596 as this board’ s name for subnet 1 and MPSN as
this board’ s name for subnet 2.

E. Now examine object 3919, which displays NSAP addresses for this host, similar
tothefollowing. An ESwould have only one NSAP address, but each IS has
multiple addresses. Thefirst addressin the list isthe NET, which isthe primary
NSAP address used for this host. Embedded in each NSAP addressis a subnet
ID and MAC address.

[3919] LOCAL NSAP ADDRESSES

49 00 01 00 AA 00 03 17 E3 FE 00 <——NET
49 00 02 A2 AA A6 AB AA 02 FE 00

\ I |
.
MAC addresses

Subnet IDs

OMO03573

F. Record the NET for this|S.

G. Refer to your map and record the MAC address(es) of any subnet connections
that lead to other ISs. In the example listing above, if there were other 1Ss on
both subnets 1 and 2, you would record MAC address 00 AA 00 03 17 E3 asthe
connection to subnet 1 and A2 A4 A6 A8 AA 02 as the connection to subnet 2.

H. Exitinamon by typing E twice.

Network User’s Guide and Reference Chapter 9 97

Step 10: Setting Up the INA 960 Static Routing
Tables

As shown in Figure 9-4 on page 94, lines 6 and 8 of iset.csd are examples of the two
pieces of information you need to establish on each IS.

Line 6 defines a path to another | S that has access to aremote subnet. It adds an
entry to the static routing table on this|S. Theformat is:

3 set ST 49 00 03 00 AA 00 02 1E 27 FE 00 ROUTER3 SBX586 00 AA 00 02 1E 27 FE

Sets a NET of destination router Arbitrary Source MAC address of port on
static name for router's the destination router that
route destination name for is attached to this subnet
L router subnet
Invokes menu 3, Router Management in inamon leading to Always FE,
destination standard LSAP
router (link service

access point)

OMO03574

Line 8tellsiNA 960 to use that IS for access to a specific subnet. It adds an entry to
the NSAP reachable table on this|S. Theformat is:

3 set N ROUTER3 49 00 05
\ I | \ |

I Subnet to be reached through this router

Always 49, standard Authority and Format Identifier (AFI)
Name specified for destination router in previous line
Sets this value in the NSAP reachable table

Invokes menu 3, Router Management in inamon

OMO03575

98 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

A. For each subnet to be reached, add a pair of such linesto iset.csd. For example, if
all routers are attached to a single external network as shown in Figure 9-6 (page
100), every router pointsto all the other routers on the network. Router A uses
two linesin iset.csd to point to Router B and two lines to point to Router C.
Router B pointsto A and C, while Router C pointsto A and B.

1. Inthefirstline (similar to line 6 of iset.csd), substitute:
* NET of the destination router
e Anarbitrary name for that router
« Name of the subnet leading to the destination router, as defined by this
(the source) router
* MAC address of the destination router on the subnet that connects the
two routers

2. Inthe second line (similar to line 8 of iset.csd), substitute:
e The name of the destination router that you used in the first line
* Subnet ID of the subnet that can be reached through the destination
router

For example, consider the possible routing information shown in Figure 9-6 on page
100 and Figure 9-7 on page 102.

Network User’s Guide and Reference Chapter 9 99

External Ethernet Network subnet 1

< N,
N Vel
subnet 1 name subnet 1 name subnet 1 name
_SBX586 182596 182586
MAC address MAC address MAC address
00AAO00AAAAAA 00AA00BBBBBB 00AAOO0CCCCCC
Router ANET Router B NET Router C NET
(Network Entity Title) (Network Entity Title) (Network Entity Title)
49000100AA00AAAAAAFEOQO 49000100AA00BBBBBBFEOO 49000100AA00CCCCCCFEO0
Backplane Backplane Backplane
subnet 2 subnet 3 subnet 4
System A System B System C

OMO03566

Figure 9-6. Example Routing Information on a Single External Networ k

Assume that Routers A, B, and C have the NET values, MAC addresses, and local
names for subnet 1 that are shown in Figure 9-6. Y ou would add the lines shown
below to the iset.csd files for the three routers (in place of lines 6-9 as shown in
Figure 9-4). You could substitute your own names for Router2, Router3, and Router4
intheselines.

Router A

3 set ST 49 00 01 00 AA 00 BB BB BB FE 00 ROUTER3 SBX586 00 AA 00 BB BB BB FE
exit

3 set N ROUTER3 49 00 03

exit

3 set ST 49 00 01 00 AA 00 CC CC CC FE 00 ROUTER4 SBX586 00 AA 00 CC CC CC FE
exit

3 set N ROUTER4 49 00 04

exit

Router B

3 set ST 49 00 01 00 AA 00 AA AA AA FE 00 ROUTER2 182596 00 AA 00 AA AA AA FE
exit

3 set N ROUTER2 49 00 02

exit

3 set ST 49 00 01 00 AA 00 CC CC CC FE 00 ROUTER4 182596 00 AA 00 CC CC CC FE
exit

3 set N ROUTER4 49 00 04

exit

100 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Router C

3 set ST 49 00 01 00 AA 00 AA AA AA FE 00 ROUTER2 182586 00 AA 00 AA AA AA FE
exit

3 set N ROUTER2 49 00 02

exit

3 set ST 49 00 01 00 AA 00 BB BB BB FE 00 ROUTER3 | 82586 00 AA 00 BB BB BB FE
exit

3 set N ROUTER3 49 00 03

exit

Network User’s Guide and Reference Chapter 9 101

To reach subnets that are separated by more than one IS, the first IS points to the next
I'S, which in turn pointsto the next. For example, Figure 9-7 shows two Multibus 11
systems. System A containsone IS, Router A. System B hastwo ISs, Routers B and
C. For boardsin System A to send messages on external subnet 5, Router A must
send packets through Router B, which forwards the packets to Router C.

External subnet 1

< N,
N >
subnet 1 name subnet 1 name
MAC address MAC address
Y _—
subnet 4 name
Router A NET Router B NET B —
(Network Entity Title (Network Entity Title) MAC address
<
Y
Backplane
subnet 2
subnet 4 name
System A Router C NET e
(Network Entity Title) MAC address
<
<
A subnet 5 name Backplane
subnet 4
MAC address
L External subnet 5
<
\ 4
System B

OMO03567

Figure 9-7. Routing Information on Multiple External Networks

102 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

B. For multiple router hops as shown in Figure 9-7, include lines like the following in
theiset.csd files for the routers. Make sureto add exi t statements after each line,
as show in Figure 9-4 on page 94.

Router A

3 set ST <NET_of _I'S B> ROUTER4 <I S_A nane_of subnet _1> <I'S B MAC on_subnet _1>FE
3 set N ROUTER4 49 00 04

3 set N ROUTER4 49 00 05

Thefirst line above defines the name Router4 (it could be any name) for
Intermediate System B. The second line says to use Router4 for access to subnet
4. Thethird line saysto also use Router4 for access to subnet 5.

Router B
3 set ST <NET_of IS A> ROUTER2 <I S B nane_of subnet _1> <I'S_A MAC on_subnet _1>FE

3 set N ROUTER2 49 00 02

3 set ST <NET_of IS C ROUTERS <I S B nane_of subnet _4> <I'S C MAC on_subnet _4>FE

3 set N ROUTER5 49 00 05
The first two lines above establish the name Router2 for Intermediate System A
and specify that Router2 is used for accessto subnet 2. The last two lines
establish the name Router5 for Intermediate System C and specify that Router5
isused for access to subnet 5. Note that the third line specifies Router C's MAC
address on Multibus Il subnet 4, since that is the route from Router B.

Router C

3 set ST <NET_of _I'S B> ROUTERL <I S_C nane_of subnet_4> <I'S B MAC on_subnet _4>FE
3 set N ROUTERL 49 00 01
3 set N ROUTERL 49 00 02

Thefirst line above defines the name Routerl for Intermediate System B. The
second line says to use Routerl for accessto subnet 1. Thethird line saysto also
use Routerl for access to subnet 2.

C. After editing theiset.csd file on every 1S in the overall network, reboot all the
systems. Y ou should now be able to connect from a board on one subnet to a
board on another, using iNA 960 transport or iIRMX-NET commands.

Network User’s Guide and Reference Chapter 9 103

Step 11: TCP/IP Configuration

After you have iNA 960 networking operable on the Multibus |1 subnet, you can set
up TCP/IP to work aswell. When using the Multibus |1 subnet, you can run TCP/IP
on more than one board in the system. However, there are configuration changes

necessary when some boards that run TCP/IP do not have alocal hard disk and must
boot remotely.

See also: Configuring TCP/IP for the Multibus |1 subnet, TCP/IP and NFSfor the
iRMX Operating System

104 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

Increasing Performance for Remotely-Booted
Boards

Once you have the configuration working, there is a performance enhancement step
for remotely-booted boards. These boards attach to the file server using the name of
the server from the /net/data file. By default, that means they use the external MAC
address for the server instead of the server’s Multibus II MAC address. To increase
the performance of file access, you can make a new file server name available, with
the NSAP address that includes the Multibus Il subnet MAC address and subnet ID.

A. Specify server names for individual subnetsin one of the following ways.

» Usethel ocal _nane/ nf sx mechanism in the /net/data file to specify
individual server names, asillustrated in the /net/data.ex file.

See also: /net/data.ex file, Chapter 11

e Usethe SNIDx parameter in the sethame command to specify server names
for individual subnets.

See also: setname, Command Reference

B. Set the new file server name as a BPS (bootstrap parameter string) value for the
boot clients. To do this, edit the /msa/config /bpsfile. Find the sections that
designate the boot client boards. For example, the BPS parameters for the board
indot 2 follow theline[bl _host _id = 2]. Inevery section of the file that
appliesto aboot client, add alinelike this:

rg_sd = newnane;

where newname is the new file server name you specified in the sethame command.
Use the syntax and spacing shown above. All lines except the last in each
section of the BPS file must end with a semicolon.

See als0: BPS Parameters, MSA for the iIRMX Operating System

Network User’s Guide and Reference Chapter 9 105

106 Chapter 9 The Multibus Il Subnet and Routing Between Subnets

The Programmatic Interface 10

Application programs request iNA 960 network services through data structures
called request blocks. Request blocks exchange control information and response
information between iNA 960 and the network application. A request block may also
contain data to be sent or received between applications, or may point to separate
buffers holding such data.

To perform a network function, the application first allocates and fills any data
buffers to be sent with the request block, and formats the request block. Then it
makes acq_comm_rb system call to deliver the request block to iNA 960. When
iNA 960 has executed the function specified in the request block, it returns the
reguest block and data (if any) to the application.

See also: cg_comm_rb in this chapter for the general request block format

The application must implement resource management system callsto reclaim
regquest blocks and any associated buffers that remain after the process that owns
them terminates or is aborted. The system calls described in this chapter ensure that
iNA 960 network services (e.g., open virtual circuits at the Transport Layer) are
closed when the application process terminates or is aborted.

Referencing Data Buffers in Request Blocks

Request blocks can only accommodate small amounts of data. Larger amounts of
data are held in application memory segments or buffers and referenced in the request
block. For example, an application that sends a data packet does not place the data
into the request block. Instead, it formats a request block that contains afield
pointing to a separate data buffer. In the same fashion, an application that expects to
receive a data packet formats a request block pointing to a data buffer where iINA 960
will write the received data.

Y ou cannot use pointers to data buffersin request blocks sent to iNA 960 and the
Name Server. Instead you must specify the absolute address of the buffer. Although
your code may use pointers, you must translate the pointers to addresses before
sending the request blocks.

Network User's Guide and Reference Chapter 10 107

Using Addresses in iNA 960 Request Blocks

For iNA 960, a data buffer reference must be a 32-bit value that is meaningful on the
board where iNA 960 operates. Asdescribed earlier, iINA 960 may be operating on a
separate NIC (using a MIP job in a COMMengine environment) or on the same CPU
as the application (a COMMputer job). The application does not know whether iNA
960 is on the same board or a different one.

However, since iNA 960 may be on a different board, you cannot use pointersin iNA
960 request blocks. Y our application must trandate pointers to absolute addresses
before sending the request block.

Translating Pointers

In a protected-mode environment, an application cannot easily trandate pointersto
physical (absolute) addresses. The iNA 960 interface libraries include the trandation
system call cg_comm_ptr_to_dword to trandate pointers to double word (32-bit)
physical addresses.

The application must use the cq_comm_ptr_to _dword call to convert any pointer
fieldsin the request block, before sending the request block. Each application must
keep track of its own pointers. When arequest block is returned, the application
accesses the data buffers by mapping the physical addressin the request block to the
corresponding pointer.

|:| Note

Beginning with release 2.2 of the OS, you must also perform the
pointer conversion described above in request blocks sent to the
Name Server. Earlier versions of iNA 960 used pointer fieldsin
the Name Server request blocks.

Limitations on Buffer Size

108

Typically, the application formats a request block as the first data structure in a
memory segment, with data buffers following the request block in the same segment.
Thereisno limit on the size of such a segment, or on the location of data buffers
within the segment. The data buffers need not be contiguous with the request block.
However, data buffers cannot be larger than 64K bytes.

Chapter 10 The Programmatic I nterface

Interface Libraries and Link Sequences

The general iIRMX system call libraries provide the interface to the cq_ system calls
described in this chapter.

See also: Interface Libraries, System Call Reference

|:| Caution
Prior to release 2.2 of the OS, applications that called the cq_
system calls used the cqc.lib, cql.lib, and cqc32.lib librariesin the
/rmx386/rmxnet/lib directory. These libraries are no longer
provided. You must link your existing applications with the
appropriate general OS interface libraries.

Bind the appropriate library with applications that call cq_ system calls. For an
example of the bind (link) sequence to use with your application, see the network
example programs under the \rmx386\demo directory.

See also: Bind sequences, Intel 386 Family Utilities

Include Files

Include the appropriate files listed below in your code. The include files provide
external declarations for system calls, and define constants and data types for request
blocks and other data structures used in this manual. The include filesfor C arein
the /intel/include directory; PL/M files are in the /rmx386/inc16 directory.

C PL/M Description

cgcomm.h cgcomm.ext External declarations of cq_ system calls

cgcommon.h cgcommon.lit Definition of the common request block
header and other literal values common to all
layers

cgname.h cgnam.lit Literals for the Name Server layer

cqtransp.h cqtransp.lit Literals for the Transport layer

cqdatal .h cqdatal .lit Literalsfor the Data Link layer

cgnmf.h cgnmf.lit Literals for the NMF layer

cgroute.h cgroute.lit Literals for routing structures

Two other PL/M files are in the /rmx386/inc16 directory strictly for backward
compatibility with older PL/M applications: cgrb.ext and cgname.lit. Y ou should
use cqcomm.ext and cgnam.lit, listed in the table above, instead of these older files.

Network User's Guide and Reference Chapter 10 109

Programming with Structures

Thismanual displays request blocks and data buffers as structures, using C syntax.
When you write a program that uses the structures shown in this manual, these
considerations apply:

e All structures shown as typedefs are defined in the appropriate header file, listed
in the previous section. In your program you may use these structure types
without defining them yourself.

e All structures must be packed; each field shown in the structure must be exactly
the length shown. Many C compilers pad structure fields with bytes of 0 so that
each field isamultiple of the compiler word size. If this padding is performed
by default, you must specifically disable the padding for iRM X and iNA 960
structures. In the iC-386 compiler, you disable padding with a#pr agma
noal i gn statement. Structures defined astypesin the C header files have the
padding disabled with such a statement. If you use these structure types, you do
not have to disable padding in your code. The PL/M compiler does not pad
structures.

e Many structuresin this manual include array fields whose lengths can vary.
Such arrays are shown with alength of 1, because the array length must be
specified to define the structure as atype. Array fields are typically preceded by
alength field, as shown in the Name Server structure below:

typedef struct name_buffer {
unsi gned char name_| engt h;
unsi gned char name[1] ;

} NAME_BUFFER;

When you use a structure with such an array, set the array length to the correct
value for your code. For example, in the structure above, you could specify a
value for name_| engt h, then set the name array to that length. Other
alternatives are to specify the length of a given array to its maximum allowable
size, or to a size that you consistently use in your code.

110 Chapter 10 The Programmatic I nterface

Using the cq_ System Calls
Invoke the system calls in this order:

1. Create auser for the application with the cq_create comm_user call. Thiscall
also ensures that network resources are released if the application is terminated
or aborted.

2. Create a message mailbox with therq_create mailbox system call. The
mailbox will be used to receive request block segment tokens that are returned
by iNA 960.

See also: rq_create mailbox, System Call Reference
Format arequest block and any associated data buffers.

4. Convert pointersto data buffersinto 32-bit absolute addresses, using the
cg_comm_ptr_to_dword system call. Place the addresses in pointer fields of
the request block.

5. Send the request block to iNA 960 using the cqg_comm_rb call.
6. Check theexcept _ptr field of cg_comm_rb for exception codes.

7. Wait at the mailbox with arq_receive_message system call for the request
block segment token to be returned.

See also: rq_receive_message, System Call Reference
8. Check ther esponse field of the returned request block for exceptions.
9. Continue processing with the results from the request block.

10. Returnto step 3. You need not repeat step 4 if the application uses the same data
buffers and keeps track of the pointersto them.

11. When the application is done with a particular user session, use the
cg_delete_ comm_user call to release network resources. The application
should also release its other resources, such as mailboxes and request blocks,
using the appropriate resource management system calls.

If you use the same data buffersin subsequent callsto iNA 960, you need not repeat
the cq_comm_ptr_to dword conversion. Use the same valuesin the request block
buffer fields after converting them to absolute addresses, then separately keep track
of the pointer values for these addresses.

Network User's Guide and Reference Chapter 10 111

The maximum number of response mailboxes in use by applications calling
cg_comm_rb islimited by the number of external mailboxesin MIP jobs. The
default value is 10. For an application that calls cg_comm_rb and usesa MIP job,
configure the MIP job increase the number to at least the number of mailboxes
created by the application. Usethe NEM parameter on the appropriate MIP1, MIP2,
or MIPAT screen of the ICU. If the number of external mailboxes exceeds the
maximum configured value, an E_ MBX_LIMIT (OFFF6H) exception is returned as a
response code in the request block.

In a COMMengine environment, if an application makes a cq_create_ comm_user or
cg_comm_rb call and theiNA 960 COMM puter or MIP is hot running, the system
will hang. To prevent this, look up the object INARDY in the root directory, with the
lookup_object system call. This object is cataloged when iNA 960 has been |oaded
and is functioning. If this object does not exist, do not make cq_ calls.

Exception Handling

112

If you develop an iNA 960 application that sets up its own exception handler, you
must bind the application so that the local exception handler resides in the lower 64K
of the code segment. Otherwise, theinternal cq_ routines that do a
get_exception_handler call followed by aset_exception_handler call will fail,
returning a code of 8003H.

Chapter 10 The Programmatic I nterface

System Calls to iNA 960

Table 10-1 lists the system calls you use to communicate with iNA 960 and the Name
Server. The following sections describe each iNA 960 system call. The descriptions
contain the calling syntax for both PL/M and C; the PL/M syntax is listed first.

Table 10-1. System Callsfor AccesstoiNA 960 and the Name Server

Call

Description

cq_comm_multi_status

Returns NIC and iNA 960 status information from a specified
NIC

cq_comm_ptr_to_dword

Converts a pointer to the corresponding 32-bit absolute
address

cq_comm_rb

Delivers a request block to iNA 960 or to the Name Server for
processing

cg_comm_status

Returns NIC and iNA 960 status information

cq_create_comm_user

Creates a user ID for programmatic access to iNA 960

cq_create_multi_comm_user

Creates a unique user ID for programmatic access to a
specified NIC and iNA 960 job

cq_delete_comm_user

Releases all resources and returns all request blocks held on
behalf of a specified user ID

Network User's Guide and Reference Chapter 10 113

cg_comm_multi_status

cq_comm_multi_status

Returns NIC and iNA 960 software status information for a specific NIC. This
routine is not applicable in environments where the application and the iNA 960
software run on the same processor.

Syntax, PL/M and C

call cq$comm®nul ti $status (instance, nane_ptr, host_id_ptr,
nic_status_ptr, except_ptr);

cq_commmulti_status (instance, name_ptr, host_id ptr,
nic_status_ptr, except_ptr);

Parameter PL/M Data Type C DataType
i nstance WORD_16 unsigned short
name_ptr POINTER unsigned char *
host _id_ptr POINTER unsigned char *
nic_status_ptr POINTER unsigned short far *
except _ptr POINTER unsigned short far *
Parameters
i nstance

A value between 0 and 19 that specifies the NIC board that is returning the software
status information.

name_ptr
A pointer to a string containing the name, in ASCI|I, of the NIC.
host _id_ptr
A pointer to a 6-byte array containing the Ethernet address of the NIC.
nic_status_ptr
A pointer to the test number that failed. The high byte isthe failed test number and
the low byte identifies the type of Multibus 1 test performed:

Low Byte Meaning

10H Microcontroller initialization check
11H Processor initialization check
12H Built-In Self Test (BIST)

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code.

114 Chapter 10 The Programmatic I nterface

cg_comm_multi_status

Condition Codes
0000H NIC has not yet been initialized.
0001H NIC isintherun state.
0003H NIC has been reset.
0004H NIC failed to respond to a command (timeout).
0005H There are no NIC boards in the system.
0006H The specified NIC board is not in the system
OOFFH NIC did not respond to a boot command.
OFFFEH Multi-NIC calls not supported by this system.

Network User's Guide and Reference Chapter 10 115

cg_comm_ptr_to_dword

cq_comm_ptr_to_dword
Converts a pointer to the corresponding 32-bit absolute address.

Syntax, PL/M and C

dw = cq$commpt r $t o$dword (ptr, except_ptr);
dw = cq_commptr_to_dword (ptr, except_ptr);
Parameter PL/M Data Type C DataType
dw WORD_32 unsigned long
ptr POINTER void far *
except _ptr POINTER unsigned short far *

Return Value
dw The returned absolute address.

Parameters

ptr The pointer to convert.

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code.

Additional Information

For request blocks to be sent to iINA 960, make this call to convert each pointer
before filling in pointer fields of the request block. iNA 960 request blocks that
reference data buffers must contain absol ute physical addresses rather than pointers
to the buffers.

The size of data buffers referenced in the request block must not be larger than 64K
bytes.

Condition Codes
0000H No exceptional conditions.

0008H Thisfunction call is not part of the present configuration.

116 Chapter 10 The Programmatic I nterface

cq_comm_rb

cq_comm_rb
Delivers arequest block to iNA 960 or to the Name Server for processing.

Syntax, PL/M and C
call cq$comm$rb (rb_token, except_ptr);

cqg_commrb (rb_token, except_ptr);

Parameter PL/M Data Type C DataType

rb_t oken SELECTOR selector

except _ptr POINTER unsigned short far *
Parameters
rb_token

TheiRMX token for a segment containing a request block.

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code. If aMIP exception occurs, the call returnsan E_MIP_ERROR exception. This
means the actual error isindicated in ther esponse field of the returned request
block, rather than in thisfield.

Additional Information

To request the services of INA 960, an application first formats a request block of
parameters, then sends the request block with the cq_comm_rb system call. The
system call returns without waiting for the request block to be processed. TheiNA
960 software receives the request block, executes the command, and writes values
into the request block. Then it returns the token for the request block's segment to a
mailbox specified in the request block itself. The application waits at the mailbox for
thistoken with arqg_receive_message system call. The application does not need to
catalog the return mailbox in any object directory.

The general format of arequest block is shown below. Each iNA 960 command is
specified by an opcode and a subsystem value. The first nine fields are common to
all request blocks; the application must set these fields before calling cqg_comm_rb.

Different INA 960 commands have varying lengths of request block arguments
following ther esponse field. The argument fields are described in the individual
commandsin thismanual. Initialize all reserved and unused fields to O before
sending arequest block.

Network User's Guide and Reference Chapter 10 117

cq_comm_rb

typedef struct rb_common {

unsi gned short reserved[2] ;
unsi gned char | engt h;
sel ector user _id;
unsi gned char resp_port;
sel ector resp_nbox;
sel ector rb_seg_t ok
unsi gned char subsyst em
unsi gned char opcode;
unsi gned short response;

} RB_COWMON;

struct rb {
RB_COMVON header ;
unsi gned char args[];

b

reserved
Setto 0.

| engt h The total number of bytes in the request block, which is 16 plus the length of the
arguments fields.

user _id
An identifier specifying the user issuing the command. Thisisthe value returned
from the cq_create_comm_user or cg_create multi_comm system calls.
resp_port
Specify OFFH as the response port for an iIRMX application.

resp_nbox
AniRMX token for the mailbox that receives a message when the request block is
returned.

rb_seg_t ok
TheiRMX token for the segment holding this request block.

118 Chapter 10 The Programmatic I nterface

cq_comm_rb

subsystem
A value

Value

20H
21H
22H
23H
24H

25H
2FH
40H
41H
50H
80H
81H

opcode

specifying an iNA 960 subsystem, as shown below:

Subsystem

Data Link for:
Boards with 82586 component, including first MIX560 board in the system
SBX 586 board, EWENET module, or EtherExpress™ 16
Second MIX560 board in the system
Third MIX560 board in the system
82595TX component, EtherExpress™ PRO/10, SBC P5090 and P5120
PC-compatible boards, all versions
DEC 21143 component, SBC P5200 PC-compatible boards, all versions
Multibus Il subnet

Transport Virtual Circuit

Transport Datagram

Name Server

Network Management Facility (NMF)

NMF boot server commands: SUPPLY_BUFFER and TAKEBACK_BUFFER

A code that specifies a particular iNA 960 command.

See also: Following chapters for each command's opcode

response

Initialize to 0 before calling cq_comm_rb. If iINA 960 receives the request block, it
fillsin the response code before returning the request block. The response code
indicates the success or failure of the command. Response codes applicable to each
command are listed in the individual command descriptionsin this manual.

The MIP job can also return response codes in the request block, if an error occurs
while sending the request block to iNA 960. The existence of these response codesis
indicated by an E_ MIP_ERROR inthe except _ptr parameter of the cq_comm_rb
system call. Any other MIP errors will print to the screen and del ete the network job.

OFFE8H TheiRMX-NET softwareisnot running yet. A problem occurred at

initialization that prevented the network job from coming up. Reboot the
system and look for error messages at initialization.

OFFECH All internal tables are currently full. Try the command again after a

OFFFOH

request block is returned.

The MIP has encountered an unexpected iRMX error. Verify the OS
configuration.

Network User's Guide and Reference Chapter 10 119

cq_comm_rb

OFFF6H The limit for the number of available user mailboxes has been reached.
Change the limit with one of these methods:

* InanICU-configurable system, increase the NEM parameter
(number of external mailboxes) in MIP configuration, and
regenerate the MIP jab.

» Wait before sending the request to iNA until after a posted request
block has been returned.
OFFF8H A fatal, unrecoverable error has occurred in the MIP driver that
communicates with iNA, for one of these reasons:
» Therequest block was incorrectly formatted
* iNA 960 is not responding

e For Multibus | systems, the MIP request queues have been
overwritten

 Thereisahardwarefailure

Verify that the request block is formatted correctly and that the iINA
transport software isfunctional. If the problem continues, reboot the OS
and try again.

OFFFAH iNA 960 isout of resources. Try the request later, after some posted
reguest blocks have been returned.

FFEEH (Multibus 11 only). MIP Driver Internal Buffer Management error. The
buffer size must be an even number of bytes.

See also: MIP Error Codes, Appendix E

Condition Codes
0000H No exceptional conditions.

OOFFH The MIP driver is unable to deliver the request block to the INA 960
software. See the request block response field for the error code returned
by MIP.

120 Chapter 10 The Programmatic I nterface

cg_comm_status

cq_comm_status

Returns NIC and iNA 960 software status information. This routine is not applicable
in environments where the application and the iNA 960 software run on the same
processor.

Syntax, PL/M and C

call cq$commstatus (nane_ptr, host_id_ptr, nic_status_ptr,
except _ptr);

cq_comm status (name_ptr, host_id ptr, nic_status_ptr,
except _ptr);

Parameter PL/M Data Type C DataType
name_ptr POINTER unsigned char *
host _id_ptr POINTER unsigned char *
nic_status_ptr POINTER unsigned short far *
except _ptr POINTER unsigned short far *
Parameters
name_ptr

A pointer to an iRMX OS string (RMX_STRING data type) containing the name, in
ASCII, of the NIC.
host _id_ptr
A pointer to a 6-byte array containing the Ethernet address of the NIC.
nic_status_ptr
A pointer to the test number that failed. If the low byteislessthan 10H, then the
board is Multibus | and the byte value is the failed test number. If the low byteis
greater than or equal to 10H, then the high byte is the failed test number and the low
byte identifies the type of Multibus 1 test performed:

Low Byte Meaning

10H Microcontroller initialization check
11H Processor initialization check
12H Built-In Self Test (BIST)
except _ptr
A pointer to avariable declared by the application where the call returns a condition
code.

Network User's Guide and Reference Chapter 10 121

cg_comm_status

Condition Codes

122

0O00H
0001H
0003H
0004H
OOFFH

NIC has not yet been initialized.

NIC isintherun state.

NIC has been reset.

NIC failed to respond to a command (timeout).

NIC did not respond to a boot command.

Chapter 10 The Programmatic I nterface

cg_create_comm_user

cg_create_comm_user

Creates auser ID for programmatic accessto iNA 960.

Syntax, PL/M and C
commbuser = cq$creat ebcommbuser (except_ptr);

comm user = cqg_create_conmuser (except_ptr);

Parameter PL/M Data Type C DataType
comm user WORD_16 selector
except _ptr POINTER unsigned short far *

Return Value

conm user
A unique value representing the created user. Usethisvalueintheuser _i d field of
request blocks.

Parameter

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code.

Additional Information

Call cg_create comm_user once before making any other cq_ calls. Inall
subsequent callsto iNA 960 from this application, specify the value returned from
cg_create_ comm_user intheuser _i d field of the request block.

This system call helps ensure that communi cation between iNA 960 and an
application job is gracefully rel eased when the application terminates, for example,
when the user types <Ctrl-C>. The clean-up mechanism frees resources such as
virtua circuits. It also preventsiNA 960 from returning request blocks or delivering
datainto memory that is no longer allocated to aterminated job.

Condition Codes
0000H No exceptional conditions.

Network User's Guide and Reference Chapter 10 123

cq_create_multi_comm_user

cq_create_multi_comm_user

Creates auser ID for programmatic access to iINA 960 associated with a specified
NIC.

Syntax, PL/M and C

commBuser = cq$create$nulti $commbuser (instance, except _ptr);
comm user = cqg_create_nulti_conm.user (instance, except_ptr);
Parameter PL/M Data Type C DataType
comm_ user WORD_16 selector
i nstance WORD_16 unsigned short
except _ptr POINTER unsigned short far *

Return Value

conm.user
A unique value representing the created user. Usethisvalueintheuser _i d field of
request blocks.

Parameters

i nstance
A value between 0 and 19 that specifies the NIC board for which the user ID is
obtained.

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code.

Additional Information

This system call helps ensure that communication between iNA 960 and an
application job is gracefully released when the application job terminates, for
example, when the user types <Ctrl-C>. The clean-up mechanism frees resources,
such asvirtual circuits. It also preventsiNA 960 from returning request blocks or
delivering data into memory that is no longer allocated to a terminated job.

124 Chapter 10 The Programmatic I nterface

cq_create_multi_comm_user

The mechanism works like this:

1. Theapplication job callscq_create multi_comm_user to obtain a unique user
ID token. This call should be made before any request blocks are sent to iNA
960.

2. The application includes the user ID token obtained from
cg_create_ multi_comm_user intheuser _i d field of all request blocks.

3. When the application job is terminated (normally or abnormally) the OS invokes
an MIP clean-up mechanism that will free up all iNA 960 resources held on
behalf of the job'suser ID. Thisincludes virtua circuits and unreturned request
blocks.

Condition Codes
0000H No exceptional conditions.
OFFF4H NIC isoff-line,

OFFFEH Multi-NIC calls not supported by this system.

Network User's Guide and Reference Chapter 10 125

cq_delete_comm_user

cq_delete_ comm _user

Invokes the clean-up mechanism described under cq_create_ comm_user and
cg_create_multi_comm_user, causing iNA 960 to release all resources (such as
virtua circuits) and return all request blocks held on behalf of a specified user ID.

Syntax, PL/M and C
cal |l cq$del et escommBuser (rb_t oken, except_ptr);

cq_del ete_conm user (rb_token, except_ptr);

Parameter PL/M Data Type C DataType

rb_t oken SELECTOR selector

except _ptr POINTER unsigned short far *
Parameters
rb_token

TheiRMX token for the delete request block. The contents of a delete request block
are described below. A delete request block causes the iNA 960 software to delete all
pending requests, and then return all request blocks associated with the user specified
inthe comm user _i d field of the delete request block. The request blocks are
returned to the iIRMX mailbox specified in ther esp_nbox field in the delete request
block.

except _ptr
A pointer to avariable declared by the application where the call returns a condition
code. If the condition code is OFFH, check the response field of the delete request
block for the condition code.

126 Chapter 10 The Programmatic I nterface

cq_delete_comm_user

Additional Information

A delete request block has this format:

typedef struct rb_common {
unsi gned short
unsi gned char
sel ector
unsi gned char
sel ector
sel ector
unsi gned char
unsi gned char
unsi gned short
} RB_COWMON;
struct delete_rb {
RB_COMMVON
sel ector

}s

reserved For the use of and filled in by the iINA 960 software. Set to 0.

reserved[2] ;
| engt h;

user _id;
resp_port;
resp_nbox;
rb_seg_tok;
subsyst em
opcode
response;

header ;
commuser id

| engt h Thelength in bytes of the entire request block, including the reserved
and length fields. Thisfield must be filled in by the user.

user _id A unique value associated with the resource management task making

the delete request. Thisisthe value returned from a call to the

cg_create_comm_user or cg_create multi_comm_user function in
the resource management task (not the user _i d value associated with

the aborted application job). The field value must befilled in by the

user.

resp_port

Specify OFFH as the response port for an iIRMX application.

resp_nbox

AniRMX token for the mailbox that will receive a message when the request block is

returned.
rb_seg_t ok

TheiRMX token for the segment holding this request block.

subsystem
Zero must be filled in by the user.

opcode
Zero must be filled in by the user.

Networ k User's Guide and Reference

Chapter 10

127

cq_delete_comm_user

response
A value returned by the INA 960 software that indicates the result of the delete
request. A valuein the range OH through 80H and FFFEH identify iNA 960 errors
while avalue in the FFxxH range (except FFFEH), identify aMIP error.

128

OFFF6H

OFFF8H

OFFFAH

OFFFCH

FFEEH

See dso:

The limit for the number of available user mailboxes has been reached.
Change the limit with one of these methods:

e InanICU-configurable system, increase the NEM parameter
(number of external mailboxes) in MIP configuration, and
regenerate the MIP jab.

» Wait before sending the request to iNA until after a posted request
block has been returned.

A fatal, unrecoverable error has occurred in the MIP driver that
communicates with iNA, for one of these reasons:

e Therequest block was incorrectly formatted

* iNA 960 is not responding

e For Multibus | systems, the MIP request queues have been
overwritten

e Thereisahardware failure

Verify that the request block is formatted correctly and that the iINA
transport software isfunctional. If the problem continues, reboot the OS
and try again.

iNA 960 isout of resources. Try the request later, after some posted
reguest blocks have been returned.

The port specified in the response_port field of the request block cannot
be used. Specify adifferent port and try again.

(Multibus 11 only). MIP Driver Internal Buffer Management error. The
buffer size must be an even number of bytes.

MIP Error Codes, Appendix E

Chapter 10 The Programmatic I nterface

cq_delete_comm_user

conm user_id
Theuser _i d value associated with the aborted application job. Thisisthe value
returned from a call to the cq_create_comm_user or cq_create_ multi_comm_user
function in the application job (not the user _i d value associated with the resource
management task). Thefield value must be filled in by the user.

Application programs loaded dynamically under the iRMX HI rarely use this call,
because the clean-up mechanism isinvoked automatically at the time the application
jobisterminated. However, some applications, particularly if they arerun as
background jobs, may find this call useful, such as when resetting themselves after a
catastrophic error.

The routine passes a specia delete request_block to the iNA 960 software. This
special delete request block releases the iINA 960 request blocks and internal iNA 960
resources associated with the specified application process.

After cq_delete comm_user iscalled, the User ID token obtained from
cg_create_comm_user or cq_create multi_comm_user isstill valid. This means
that multiple cq_delete_ comm_user calls can be made on this token.

Condition Codes

0000H No exceptional conditions.

OOFFH The MIP driver is unable to deliver the request block to the iINA 960
software. See the request block response field for the error code returned
by MIP.

Network User's Guide and Reference Chapter 10 129

cq_delete_comm_user

130 Chapter 10 The Programmatic I nterface

Using and Programming 1 1
the Name Server

This chapter covers the Name Server, which manipulates a distributed database of
network objects. The primary purpose of the Name Server isto correlate an OS-
defined or user-defined name with a numeric value, such as the network address of a
server system. This discussion assumes that you have read the introduction to the
Name Server earlier in this book.

See also: iRMX-NET Overview, Chapter 2

The proceduresin this chapter include several iRMX-NET commands used to
manipulate the Name Server. The full syntax and explanation of these commandsis
not covered here.

See also: Individual commands, Command Reference

Through the Name Server programming interfaces, an application can dynamically
add, delete, and inspect the network objects contained in the Name Server object
table. The application sends and receives request blocks using the cq_comm_rb call
to program the Name Server.

See also: Using the cq_ System Calls, Chapter 10

The Name Server Object Table

The Name Server's main function is to dynamically map the names of network
objectsto their addresses. OpenNET networks are made up of many kinds of objects:
AUs, servers, clients, devices, and users. The network objects the Name Server deals
with most often are servers.

The Name Server operates as a distributed database. Each node on the network
maintains its own Name Server object table, where it lists information about network
objects. Several entriesin the object table are placed there automatically when
iNA960/iIRMX-NET software isinitialized on acomputer. These fixed entries
include the Ethernet address and details about the network implementation and the
computer architecture. Y ou can add other local objects for resources on the local
node available to remote users, such as afile server or avirtual termina server.

Network User's Guide and Reference Chapter 11 131

If the network contains nodes that do not have Name Server capability, you can
catalog the node's server name and address in the local object table, making your
computer a spokesman for these objects. The only OpenNET nodes that require a
separate spokesman are UNIX systems earlier than SV-OpenNET R3.2.3.

Figure 11-1 shows the object table for an example node as displayed by the listhame
command. Each entry in the Name Server object table contains the name, property
type (Property column), and property value (Value column) of a network object. The
first two sectionsin the figure are fixed entries. The last two sections are entries for
the iIRMX-NET file server and client. These are not fixed entries and may appear in
the opposite order, depending on whether the server or client job loads first.

Nare Property Unique PV_Type Value
FSTSAP 00000H NO SIMPLE 10 OOH
FCTSAP 00001H NO SIMPLE 11 OOH
| NARELNUM 00004H NO SIMPLE 0O3H

I NANLNUM 00004H NO SIMPLE 01H
NSCOMMVENG NE 00004H NO SIMPLE FFH
TLCOMVENG NE 00004H NO SI MPLE OOH

The following entries depend on the number of subnetsin theiNA 960 job. For
example, there can be up to 4 MYHOSTI D entries, 1 for each subnet, where xx varies
from 01 to 04.

MYHOSTI D 00004H NO SIMPLE 00 AA 00 02 57 86H

MYHOSTI Dxx ~ 00004H NO SIMPLE 00 AA 00 02 57 86H

| NASUBNET 00004H NO SIMPLE 00 O1H

I NASUBNETxx 00004H NO SIMPLE 00 O1H
The following entries are added by file servers from the /net/data file. The BSMB2
entry isfor the server in slot 0 and the BSSLOT2 entry is needed by the client in slot
2 (note that the last two digits of addresses in the VValue column are the slot number
for these entries).

RNETSRV 00004H NO SIMPLE 52 4E 45 54 53 52 56 00 AA 00
02 57 86H

BSMVB2 00003H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH
00 02 10 OOH

BSMVB2 00005H YES SIMPLE 00 AA 00 02 57 86 OOH

BSMVB2 00006H YES SIMPLE 0B 49 00 00 00 AA 00 02 57 86 FEH
00 02 30 OOH

BSSLOT2 00005H YES SIMPLE 00 01 00 AA 00 02 57 86 02H

NSDONE 00004H NO SIMPLE 52 4D 58 00 AA 00 02 57 86H

The following entry isfor the client (file consumer), taken from the /net/data file.
MYNAMEOO 00002H NO SIMPLE 72 6D 78H

Figure 11-1. The Name Server Object Table

132 Chapter 11 Using and Programming the Name Server

In the object table, Name means the name of the object, such as the server name
BSMB2 in this example.

The Pr opert y column lists the property type, a numeric code that tells what kind of
information is represented by the property value in the last column. Table 11-1 lists
the possible property types:

Table 11-1. Property Typesfor the Name Server

Property Type M eaning

0000H File Server TSAPID

0001H File Consumer (client) TSAP 1D
0002H Name of the client

0003H File Server Transport Address
0004H Configuration objects

0005H Host-unique ID

0006H Remote Launch Server Transport Address
0007H Reserved

0008H VT Server Transport Address
0009H - 7FFFH Reserved

8000H - FFFFH Available for applications

Property types 0, 1, 2, and 4 are for fixed entries, automatically added by iNA 960.
Objects that you or iRMX-NET add to the table generally have property types 3, 5,
6 and 8.

Uni que indicates whether this combination of object name and property type are
unique on the network. The fixed entries are not unique; the object table on every
node in the network includes these objects. Other non-unique objects can be added to
the object table through the programmatic interface. Non-unique objects are, in
effect, local objects. Each computer can read the value of the object in its own object
table, but it cannot access the object with that name on aremote node. The Name
Server guarantees the uniqueness of any object entered through the Human Interface.
Before it accepts a new object, it checks all the other object tables on the network for
objects with the same name and property type.

SI MPLE in the PV_Type column means that the property value in the last column is
asimple string, rather than a complex structure in which each element is an object,
such asamail list made up of network users. Structured property types are not
supported in iINA 960/iRMX-NET.

The Val ue column isthe property value, afield containing specific information
about this object, usually based on the network address. For objects of property types
3, 6 and 8, the Val ue column contains the server's transport address. For objects of
property type 5, that column contains the host-unique 1D, combining the Ethernet
addressand aslot ID.

Network User's Guide and Reference Chapter 11 133

Adding an Object to the Name Server Object Table

Y ou can make entries in the object table by:

Performing an automatic loadname command during system initiaization. By
default, the iIRMX-NET file server job is configured to do this.

Invoking the loadname command on any iRMX-NET node.
Invoking the sethame command on any iRMX-NET server node.

Using the ICU to configure the iRM X OS to perform an automatic sethame
during system initialization, by setting the ICU's FSN parameter on the FS screen
to the name of the server.

Adding entries programmatically with a Name Server ADD_NAME command.

Enter information for the sethame command on the command line. For example, the
following command adds the name of the file server with the Ethernet address for the
second subnet configured into the iINA 960 job:

Or,

setnane bsnb2_2 SNI D2

for a computer that is used strictly as a client node:

setnane | absys2 H D

The loadname command, on the other hand, loads information from an input file,
typically /net/data. For convenience, loadname is most often used.

See dso: setname and loadname commands, Command Reference;

[

134

ADD_NAME command, in this chapter

Note

InaMultibus 11 system with boards that boot dependently, it is
important that you have a/net/data file with valid entries. The
client boards need the address of the server, and the existence of
thisfile enables an initialization sequence between the file server
and clients. Seethe NSDONE and RNETSRV parameters on page
145 for details.

Chapter 11 Using and Programming the Name Server

Loading Objects from the :sd:net/data File

The :sd:net/data file isthe input file for the loadname command. Typically, the only
entry you need in the fileisthe local file server (nfs) name. (Seethefirst linein
Figure 11-2). Y ou may need to add entries with the name and address of systems that
need a network spokesman or entries for a particular use by your application. For
example, you might want to store an iNA 960 transport address, which is a different
format than Name Server addresses. Y ou can copy an existing net/data file
containing all required servers from another iRM X or UNIX system. If noneis
available, copy and edit the examplefile, :sd: net/data.ex, or create the file yourself.

See also: Adding a Server to the Name Server Object Table, Chapter 3,
Transport addresses, Chapter 12

After you create the : sd: net/data file, invoke loadname to read the names and
property values of objects from the file and enter the information into the Name
Server object table. Each linein the file becomes one or two entries in the object
table. The next time you reboot the system, an automatic loadname loads the
information; you need not repeat the loadname at the command line.

Network User's Guide and Reference Chapter 11 135

Editing the :sd:net/data.ex File

The examplefile, :sd: net/data.ex, is provided with the OS. Each line of thefileisa
sample entry for a different network object. Figure 11-2 liststhe data.ex file. The
fieldsini tal i ¢ (including the # characters) are variables to be replaced with the
specific values for the object being entered. Each entry'sfirst variable is based on the
type of object the template isintended for, including the OS and architecture of the
computer where the object resides.

Using data.ex as an example, add all the required serversto the \net\data file and
delete any unused example lines. Then invoke the loadname command.

| ocal _nanel/ nfs: TYPE=r nx: ADDRESS=;
| ocal _nanme2/ nfs2: TYPE=r nx: ADDRESS=;
| ocal _name3/ nfs3: TYPE=r nx: ADDRESS=;
| ocal _nane4/ nf s4: TYPE=r nx: ADDRESS=;

sl ot 2:
sl ot 3:
sl ot 4:
sl ot 5:
sl ot 6:

rmx_nbl_rsd:
rmx_nb2_rsd:
rmx_nb2_nsd:

xnx_srv_i 1/ nfs:
Xnx_srv_i 2/ nfs:
Xnx_vts_i2/vts:

ndx_srv_i 1/ nfs:

vms_srv_i 1/ nfs:
vms_vts_i1l/vts:

unx_srv_i 1/ nfs:

unx_srvl_i 3/ nfs:

unx_vts_i3/vts:
unx_srv2_i3:

unx_nb2_srv/ nfs:

rmx_vts_nbl/vts:
rmx_vts_sl 2/vts:

any_obj ect:

136

TYPE=PTO0005:
TYPE=PTO0005:
TYPE=PTO0005:
TYPE=PTO0005:
TYPE=PTO0005:

TYPE=PTO0005:
TYPE=PTO0005:
TYPE=PTO0005:

TYPE=xeni Xx:
TYPE=xeni Xx:
TYPE=xeni Xx:

TYPE=i ndx:

TYPE=vns:
TYPE=vns:

TYPE=uni x:
TYPE=uni x:
TYPE=uni x:
TYPE=PTO0003:
TYPE=uni x:

TYPE=r nx:
TYPE=r nx:

TYPE=PTH#H###:

ADDRESS=s s s s#######HH#H#H##02,
ADDRESS=s s s s#######H###H##03,
ADDRESS=s s s s########H##H##04,
ADDRESS=s s s s#######H###H##05,
ADDRESS=s s s s##########H##006,

ADDRESS=s s s s############00,
ADDRESS=s s s s#tt##H####HIHHSS,
ADDRESS=ssssA2A4A6ABAAS$SS;

ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X40000A0000000 1 ############000000;

ADDRESS=0X80000A0000000 1 ############000000;

ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X40000A0000000 1 ############000000;

ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X40000A0000000 1 ############000000;
ADDRESS=0X80000A0000000 1 ############000000;
ADDRESS=0X80000A0000000 1 ############000000;

ADDRESS=0X40000A0000000 1 ############000000;
ADDRESS=0X40020A0000000 1 ############000000;

ADDRESS=####. . . #HH#HHHHHH,

Figure 11-2. The:sd:net/data.ex File

Chapter 11

Using and Programming the Name Server

Make substitutions in the data.ex file to create a/net/data file as follows:

| ocal _nane entries
For each subnet in ajob, make an entry for the local server. Each name
must be unique. These entries do not require an Ethernet address
because that value is aready stored in the local myhost i dxx object.
These entries set the local server name for the file server, VT server,
and remote load server.

The entry followed by / nf s (or / nf s1, which has the same effect)
appliesto thefirst subnet in ajob. The entry followed by / nf s2
appliesto the second subnet, etc. Use only the entries that apply to your
iNA 960 job. Any entriesthat do not apply revert to the first subnet.
For example, if youinclude! ocal _nane entriesfor/ nfs3 and

/ nf s4, but use ajob with only two subnets, the names for the/ nf s3
and / nf s4 objects are set to the Ethernet address of the first subnet.

See also: Chapter 9 for iNA 960 jobs with multiple subnets

sl ot entries
On aMultibus Il system where other host boards share the local
Ethernet address, include entries for the other hosts, such as sl ot 2-
sl ot 6. The entries are not limited to six dots; specify the appropriate
names for hosts in dots on your system. Include entries like these
examples only when you do not use the Multibus |1 subnet, where every
board on the subnet has its own Ethernet address assigned.

Inthessss part of the address, substitute the subnet ID that applies. In
the #u########## part, substitute the Ethernet (MAC) address,
followed by the dot number.

romx_nbl rsdandrnmk_nb2_rsd entries
On a system where remote boot clients use the local hard disk of the
boot server, include entries for the boot client hosts. The entries are not
limited to clientsin the same system. Specify the appropriate names for
the boot clients.

Inthessss part of the address, substitute the subnet ID that applies. In
the #u########## part, substitute the Ethernet (MAC) address,
followed by the slot number (in place of $$) for boot clientsin a
Multibus |1 dlot. For boot clientsin PCs or Multibus | systems, specify
00 for this last byte.

Network User's Guide and Reference Chapter 11 137

rmx_nb2_nsd entries

On a system where remote boot clients use the Multibus |1 subnet to
connect to the boot server in the same system, include an entry like this
for each boot client.

Inthessss part of the address, substitute the subnet ID that applies. In
thefirst $$, substitute the dot ID of the client as the last byte of the
special Multibus Il MAC address. In the second $$, also substitute the
slot ID of the client.

xnx_srv_i 1 throughrmx_vts_sl 2 entries

These are examples of how to specify file servers (/ nf s) and remote
login VT servers (/ vt s) on other OSs. For example, you would replace
unx_nb2_srv with the server name of a UNIX server on Multibus 11
and replace ############ With the Ethernet address.

any_obj ect entry

Thisis a general-purpose example of how to specify an object in the
/net/data file. These entriesrequire a4-digit property type; choose one
from Table 11-1 on page 133. Instead of the Ethernet address alone,
specify the entire 34-digit transport address.

See also: Transport addresses, Chapter 12

Syntax of the :sd:net/data File

138

The general syntax of linesin the :sd:net/data fileis:

nane/ obj ect _type: TYPE=syst em ADDRESS=net _addr ess;

Where:

nanme

The name of the network object being accessed on the system. The
name must follow the Name Server object-naming conventions.

obj ect _type

system

An optional field representing the type of network object. If you
specify object type nf s or nf s1 through nf s4 (network file server), the
loadname command generates two entries; one for property type 3 and
one for property type 5. If you specify object type vt s (virtual terminal
server), there is one entry for property type 8. The loadname command
ignores other object types.

| dentifies the system or property type of an object. The maximum
length of thisfield is six characters. If the object typeisnfs or vt s,
loadname ignores this field, but you can use the field to specify one of
the supported OSs uni x or r nx (entered in either upper or lower case
characters).

Chapter 11 Using and Programming the Name Server

If the object typeisnot nf s or vt s, then you must specify the property
type in the system field as follows:

TYPE = PT property

Where PT indicates that the characters to follow represent the property

type, and:
property

A string of four hexadecimal digits representing the numeric
property type.

net _address

The value for the specified property type. The syntax example in the
data.ex file for other OSs such as Unix (unx_mb2_srvinfs example) isa
transport address as follows (but without the separating spaces):

addr _id tsap OA subnet E_net 000000

Where:
addr _id

A two-character field indicating the format of the subsequent
address to be entered into the Name Server object table. The
two characters can be one of these two values:

0X

Indicates that the subsequent datais used to
generate an iNA 960 transport address that
corresponds to the version of iNA 960 used in the
local system.

Indicates that the subsequent addressisto be
entered in iINA R1.3 format, irrespective of the iNA
960 release running on the NIC. Thisis necessary
for communicating from an iNA R1.3 client to an
iNA R3.0 server, because the INA R1.3 client
cannot recognize the INA R3.0 server address
format.

tsap TheiNA 960 TSAP-ID for the server, from this list:

8000H for UNIX
1000H for iIRMX Multibus| or PC Bus
10xxH for IRMX Multibus 11, where xx represents the
dot ID of the server's host CPU
3000 forther ! s type
4000 for thevt s type
0A A constant for this form of address.

subnet A constant that identifies the subnet. For thisform of address,
the value must always be 00000001 for iIRMX and UNIX

Networ k User's Guide and Reference

Chapter 11 139

serversusing an iNA 960 Null2 network layer. Y ou cannot
substitute one of the subnet IDs used by the Multibus Il subnet
versions of iNA 960.

E_net The 12-digit (6-byte) hexadecimal Ethernet address of the
NIC. Thisisthe string shown as ############ in Figure 11-
2. Tofind the Ethernet address of a UNIX system, use the SV-
OpenNET enetinfo command.

000000 An unused field.

For example, if the addressisfor aVT server running on aMultibus 1
board in slot 3, with Ethernet address 00AA00025A70, the
net _addr ess would be:

0X40030A0000000100AA00025A70000000
You can omit the net _addr ess field when specifying alocal name. The syntax for
alocal system nameis:
nane/ nf s: TYPE=r nx: ADDRESS=;
The syntax of the address for property type5is:

subnet E_net sl ot
Where:
subnet The 4-digit (2-byte) hexadecimal subnet ID.
E_net The 12-digit hexadecimal address uniquely specifying an Ethernet NIC.

sl ot The 2-digit slot ID of the host CPU in Multibus Il systems. For
Multibus | and PC Bus systems, this value is 00.

140 Chapter 11 Using and Programming the Name Server

Other Name Server Operations

iRMX-NET commands can a so remove objects from the object table, display local
Name Server information, and obtain information about other nodes on the network.

See dso: Command Reference for details on commands described here

Deleting an Object from the Name Server Object Table

Objects remain in the object table until the system is rebooted or until they are
removed by the user that entered them. Y ou can use deletename to remove an object
that was entered into the object table with the sethame or loadname command. For
example:

del et enane bsnb2

To remove al the objectsin your : sd: net/data file from the object table, use the
unloadname command. Thisworks like loadname, in reverse.

Obtaining Local Name Server Information

To see the Name Server object table on your computer, use the listname command.
Sample output of this command is shown in Figure 11-1.

Use the getaddr command to retrieve the Ethernet address of the local system. This
returns the value for the local object named nyhost i d.

If you use an iNA 960 job with multiple subnets, use the netinfo command to get the
Ethernet address and other information about all subnetsin the job.

Obtaining Remote Name Server Information

Two commands allow you to get information about remote nodes. If you know the
server name, use the findname command with the L switch to find the Ethernet
address. For example;

fi ndname uni xs1l P=0008 L

The P=0008 isthe property value for the virtual terminal server. If you do not
specify a property value, the command defaults to property type 5, the file server.

If you know the Ethernet address, use the gethame command to return the name of
the server. Thisisthe object name of property type 5 in that computer's object table.
For example:

get name A=00AA00025A70

If you do not include an Ethernet address, gethame returns the local server name.

Network User's Guide and Reference Chapter 11 141

Object Table Entries at Initialization

When an iRM X network system is loaded, the system isinitialized with certain
entries in the Name Server abject table. These fixed entries are not configurable. All
of the entries are used internally by the iIRMX-NET subsystems; therefore, you must
not modify or delete the values. However, network applications can look up their
values, such as the Ethernet address of the system.

Theinitial fixed objects are non-unique; every Name Server object table on the
network containsthem. Table 11-2 gives a definition of the objects, and each oneis
explained in detail in the following pages. For the format of the object table entries,
see Figure 11-1 earlier in this chapter.

The server_name and MYNAMExx entriesin Table 11-2 are not fixed. They are
configurable and are added to the object table by iRMX-NET when it initializes.

Table 11-2. Object Table Entries

Property
Name Type Field Meaning
FSTSAP 0 The File Server TSAP-ID.
FCTSAP 1 The File Consumer TSAP-ID.
INARELNUM 4 The release number of the iINA 960 Software.
INANLNUM 4 Code for the Network Layer that is configured in the iNA 960

Transport Software.

NSCOMMENGINE 4 Indicates if the Name Server runs on the communications or host
board.

TLCOMMENGINE 4 Indicates if IRMX-NET runs in a COMMengine or COMMputer
environment.

MYHOSTIDxx 4 Ethernet address(es), where xx represents the first through fourth
subnet in the job.

INASUBNETxx 4 Subnet ID(s), where xx represents the first through fourth subnet
in the job.

server_name 3,5,6 File Server names.

MYNAMEXxx 4 The iRMX-NET client (File Consumer) name, where xx
represents the slot ID in a Multibus Il system.

RNETSRV 4 The iIRMX-NET server catalogs this object during its initialization.
RSD clients (boards that boot remotely) wait for the NSDONE
object below only if RNETSRV is cataloged.

NSDONE 4 The iRMX-NET server catalogs this object after loading entries

from /net/data so client systems can synchronize initialization.

142

Chapter 11 Using and Programming the Name Server

FSTSAP Thisobject indicates the File Server TSAP-ID. Although two bytes are
stored in the Name Server object table for the TSAP-ID, only the first
byteisvalid. For aniRMX file server, itis 10H. The second byteis
always stored asa 0. iRMX-NET leaves the second byte set to O for
Multibus | and PC Bus systems. In Multibus Il systems, iRMX-NET
overwrites the second byte with the dot ID of the host.

See also: TSAP addresses, Chapter 12

FCTSAP This object name represents the File Consumer (client) TSAP-ID. As
with FSTSAP, only the first byteisvalid. For an iRMX client, itis
11H. The second byteisaways stored asa0. iRMX-NET leavesthe
second byte set to O for Multibus | and PC Bus systems. In Multibus |
systems, iIRMX-NET overwrites the second byte with the dot ID of the
host.

INARELNUM
Thisisthe release number of the iNA 960 Transport software used with
iRMX-NET. Thevalue of thisentry is:

1 for iNA 960 Release 1.X

2 for iNA 960 Release 2.X

3 for iNA 960 Release 3.X

iRMX-NET only supportsiNA 960 Release 3.X.
INANLNUM

This object represents the network layer configuration of the iINA 960
Transport Software. In 1CU-configurable systems you can specify this
valuein the NL parameter of the ICMPJ or IMIPJ screen. The value of

thisentry is:

0 for the Null1 Network Layer
1 for the Null2 Network Layer
3 for the ES-1S Network Layer

TheiNA 960 software supplied with the OS includes either the Null2 or
the ES-1S Network Layer.

See also: iNA 960 Network Layer Addressing Schemes, Chapter 8

Network User's Guide and Reference Chapter 11 143

NSCOMMENGINE
Thisentry isaflag to indicate whether the Name Server runs on the
host board or the NIC. If thisvalue is 0, then the Name Server runs on
the host board. If thisvalue is OFFH, the Name Server runs on the NIC.
On COMMengine systems the Name Server runs on the NIC, even
though thisvalueisO.

See also: Network Software |mplementation, Chapter 7

TLCOMMENGINE
This object indicates whether iIRMX-NET operates in the
COMMengine environment or in the COMMputer environment. If the
valueis 0, the COMMengine environment isused. Otherwise, a
COMMputer is used.

MY HOSTIDxx
These entries contain the system's Ethernet addresses. If the job has
more than one subnet, there are multiple entries with the Ethernet
addresses for each subnet. The Ethernet addressis obtained from the
iNA 960 Transport Software NMF layer, and entered by the Name
Server when the system is booted. This entry can be used by an
application to locate the Ethernet address of the system.

This object should not be confused with the property type 5 objects that
contain a host's unique ID. This object contains only the Ethernet
address. The property type 5 object contains a combination of Ethernet
address and dlot-1D for Multibus Il systems, and Ethernet address and
00 for Multibus | and PC Bus systems.

If an application uses a configuration of iINA 960 that does not contain
NMF, or if anon-Ethernet subnet is used, the value for this object can
be provided by the application. The Name Server makes acall to a
procedure called ns_get_host_id (which you can supply) if the call to
iNA 960's NMF layer fails.

INASUBNETxx
These entries contain the iNA 960 subnet IDs used in iNA 960 transport
addresses in the Name Server protocol packets. If the job has more than
one subnet, there are multiple INASUBNETxx entries with the IDs for
each subnet. The subnet ID isalso used for transport addresses that are
loaded into the object table of the system. In ICU-configurable
systems, set the subnet 1D(s) in the SN1 through SN4 parameters of the
ICMPJ screen.

144 Chapter 11 Using and Programming the Name Server

server_name
These entries represent the name of the iIRMX-NET File Server. On
iRMX for PCsor DOSRMX systems, set the server namein the rmx.ini
file. On ICU-configurable systems, set the name in the FSN parameter
of the FS screen. To add more names for servers, use the /net/data file.

MYNAMEslot-1D
This entry represents the name of the File Consumer (client) used by
iRMX-NET when making a connection with aremote file server. On
iRMX for PCs or DOSRMX systems, set the client name in the rmx.ini
file. On ICU-configurable systems, set the namein the CNN parameter
of the CDF screen. iRMX-NET addsthe slot ID asthe last byte in the
namein Multibus I systems. In Multibus | and PC systems, the dlot ID
isreplaced with a 0.

RNETSRV Thisentry isadded by the file server when itsinitialization begins. This
value is used together with NSDONE below during a dependent boot
sequence.

NSDONE Thisentry isadded by the file server once it has finished adding all the
entries from the /net/data file. In aMultibus Il system where some
diskless boards boot dependently, iIRMX-NET clientsin any other slot
than the file server use this value to synchronize their initialization with
the file server. These clients attempt to synchronize using NSDONE
only if the RNETSRV object is cataloged by the file server.

A CAUTION
The NSDONE initialization mechanism occurs automatically as
long asthereis a/net/data file with any entriesin it. If you do not
have such afileor if it is empty, the dependent boot sequence fails.

Network User's Guide and Reference Chapter 11 145

Location of the Name Server
The Name Server always runs with the iNA 960 software:

In COMMengine systems, the Name Server runs on the NIC along with the INA
960 transport software. The other iIRMX-NET modules run on the host CPU
board along with theiRMX OS. In these systems, regardless of the OS, the
Name Server is preconfigured along with the INA 960 download file.

Running the Name Server on Multibus II COMMengine systems facilitates the
presence of multiple hosts in the same chassis. One Name Server provides
services and acts as the spokesman for all hosts within the Multibus |1 system.

In COMM puter systems all the network software, including the Name Server,
runs on the same CPU board astheiRMX OS. In DOSRMX and iRMX for PCs,
the Name Server is preconfigured into the iNA 960 job. In 1CU-configurable
systems, you can configure Name Server values on the NS screen of the ICU.

See also: Name Server preconfigured values, Appendix A;

Overview of iIRMX-NET Software, Chapter 7

Request Block Arguments

The Name Server commands listed in this chapter all use the same argument
structure following the common header fields in the request block. However, not all
of the commands use every field in the request block arguments. Each command
description lists which fields are input and output arguments. Initialize reserved
fields and unused fields to 0. The argument fields have this structure:

typedef struct nane_server_rb {

RB_COVIVON header ;

unsi gned char reserved[6] ;

unsi gned | ong name_buf f er _addr;

unsi gned char uni que_nane_f1 ag;

unsi gned short property_type;

unsi gned char property_val ue_type;
unsi gned | ong pv_buf fer_addr;

unsi gned | ong extra_buffer_addr;
unsi gned short extra_buffer_length;;

} NAME_SERVER RB;

Where:
name_buf f er _addr

146

An address that points to a buffer containing the name of the object.
The name has a maximum length of 16 characters.

Chapter 11 Using and Programming the Name Server

uni que_namne_f1l ag
A flag that indicatesif the object is unique.

property_type
The property type of the object. This code specifies what type of
property valueis stored in this object.

See also: Defined property types, ADD_NAME command
property_val ue_type

Indicates whether the property value is ssimple (00H) or structured

(O1H). Structured property values are not supported; set thisto 0.

pv_buf f er _addr
An address that points to a buffer containing the property value. This
buffer can be up to 256 byteslong. The property value is the numeric
data associated with this object's name, typically a network address.

extra_buffer_addr
An address that points to a buffer where the Name Server returns
additional information for some commands. This buffer can be up to
4096 byteslong.

extra_buffer_length
The size of the extra buffer, in bytes.

|:| Note

For the addresses in the structure above, you must use the
cg_comm_ptr_to_dword call to convert pointers to addresses
before sending the request block in Name Server commands.

See also: Using Addressesin iNA 960 Request Blocks, Chapter
10

Example Software

The OS software includes an example application using the Name Server. Seethe
network example files under the /rmx386/demo directory.

Network User's Guide and Reference Chapter 11 147

Name Server Commands

Table 11-3 lists the opcodes and command names for the Name Server functions.
Use the subsyst emand opcode fieldsin the request block header (r b_conmon) to
specify the Name Server command. The command names are declared as literal
valuesin the include files for the Name Server; you can specify these command

names as opcodes.

See dso:

Include Files, Chapter 10,

Programming with Structures, Chapter 10

Table 11-3. Name Server Commands

Opcode Literal Description

OH ADD_NAME Adds a new object to the local object table.

08H ADD_SEARCH_DOMAIN Specifies subnet IDs the Name Server will search.

03H CHANGE_VALUE Changes the property value of an object in the
local object table.

01H DELETE_NAME Deletes all properties of an object from the local
object table.

04H DELETE_PROPERTY Deletes the property value of an object in the local
object table.

09H DELETE_SEARCH_DOMAIN Removes subnet IDs from the Name Server
search.

05H GET_NAME Returns the object name, given its property type
and value.

0AH GET_SEARCH_DOMAIN Returns subnet IDs currently enabled to search.

06H GET_SPOKESMAN Returns the Ethernet address for the local system.

02H GET_VALUE Returns the property value of an object.

07H LIST_TABLE Lists all objects in the local object table.

148 Chapter 11 Using and Programming the Name Server

Table 11-3 lists response codes that can be returned in Name Server request blocks.

Table 11-4. Name Server Response Codes

Code Literal Meaning

01H OK_RESPONSE The operation was successful.

02H E_NAME_EXIST The object name with the specified property already
exists in the network.

04H E_NAME_NOT_EXIST The object name with the specified property does not
exist in the network.

06H E_BAD_NAME The object name in the request block is not valid (for
example, it is longer than 16 characters), or the name
buffer pointer does not point to a valid buffer.

08H E_PT_EXIST The property type specified for the object already exists in
the network.

0AH E_PT_NEXIST The property type specified for the object does not exist
in the network.

OCH E_BAD_PVT The specified property value type is invalid.

OEH E_BAD_PV The length of the specified property value exceeds the
configured maximum, or pv_buffer_ptr is not valid.

10H E_NSPACE The local object table is full; no new objects can be added
unless the size of the table is increased.

12H E_BUFF_SPACE The buffer supplied for returning parameters is too small.

14H E_NAME_OPCODE The opcode specified in the request block is invalid.

16H E_MAX_RESP The number of responses received by the Name Server
for the query exceeds the configured limit.

18H E_BAD_BUF_PTR The extra buffer pointer is not valid.

1AH E_NO_MEMORY No internal buffers are available. Try the function after
some outstanding Name Server RBs are returned.

1CH E_NO_DELETION Deletion is not allowed on this object; entries needed by
iIRMX-NET cannot be deleted by applications.

1EH E_RB_FORMAT_BAD The request block is not formatted correctly.

Networ k User's Guide and Reference

Chapter 11 149

ADD_NAME Name Server

ADD_NAME
ADD_NAME adds a new object to the local Name Server object table and broadcasts

names over the network. The new object is composed of a name, a property type,
and a property value, which you supply asinput parameters to the function.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cqg_create_conmm.user
*/
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_t ok; /* segnent token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* OH or ADD_NAME */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /[* input */
unsi gned char uni que_nane_f I ag; /* input */
unsi gned short property_type; /* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /[* input */
unsi gned | ong extra_buffer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

150 Chapter 11 Using and Programming the Name Server

Name Server ADD_NAME

uni que_nane_f1l ag
Specifies whether the new object is unique (OFFH) or non-unique (0).

property_type
Specifies the type of property value stored in the new object, from these values:

Value Type

0000H File Server TSAPID (used by iRMX-NET)

0001H File Consumer TSAPID (iRMX-NET)

0002H Name of the consumer (IRMX-NET)

0003H File Server Transport Address (iIRMX-NET)

0004H Configuration objects

0005H Host-unique ID

0006H Remote Launch Server Transport Address

0007H Reserved

0008H VT Server Transport Address (iIRMX Virtual Terminal)

0009H - 7FFFH Reserved
8000H - FFFFH Available for applications

property_val ue_type
Setto 0.

pv_buf fer _addr
An address that points to a buffer containing the property value for the new object,

with this structure:
t ypedef struct val ue_buffer {
unsi gned short | engt h;
unsi gned char val ue[1] ; /* set to length */

} VALUE BUFFER

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Additional Information

The Name Server responds with an E_ BAD_NAME response code if the name
length is greater than 16 characters. The maximum length of the property valueisa
Name Server configuration parameter. The Name Server responds with an
E_BAD_PV response code if the property value length exceeds the configured
maximum length.

Network User's Guide and Reference Chapter 11 151

ADD_NAME Name Server

If the object already exists, either locally or remotely, the Name Server returns an
error. If you specify the new object as unique, the Name Server checksto seeif the
same object is used elsewhere in the network; if so, it returns an error. For non-
unigue objects, the Name Server checks to make sure the same object is not entered
as unique elsewhere in the network; if so, it returns an error.

152 Chapter 11 Using and Programming the Name Server

Name Server

ADD_SEARCH_DOMAIN

ADD_SEARCH_DOMAIN

ADD_SEARCH_DOMAIN adds new subnet IDs to the list of subnets the Name
Server searches to resolve a name into an address.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ect or
*/
unsi gned
sel ector
sel ect or
unsi gned
unsi gned

unsi gned
} RB_COWDON;

short
char

char

char

char

short

rb_comon {

reserved[2] ;

| engt h; /* of name_server_rb */
user _i d; /* cqg_create_conmm.user
resp_port; /* OFFH */
resp_nbox; /* mail box token */
rb_seg_t ok; /* segnent token */
subsyst em /* 50H or NAME_SERVER */
opcode; /* 8H or
ADD_SEARCH_DOVAI N */
response; /* initialize to 0 */

typedef struct name_server_rb {
RB_COMMON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
| ong
char
short
char
| ong
| ong
short

} NAMVE_SERVER RB;

Networ k User's Guide and Reference

header ;

reserved| 6] ;

name_buf f er _addr; /* not used */
uni que_nane_f I ag; /* not used */
property_type; /* not used */
property_val ue_type; /* set to 0 */
pv_buf fer_addr; /* input */
extra_buffer_addr; /* not used */
extra_buffer_| ength,; /* not used */

Chapter 11 153

ADD_SEARCH_DOMAIN Name Server

Input Arguments

property_val ue_type
Setto 0.
pv_buf f er _addr
The address pointing to a buffer that holds the list of subnet 1Ds, with this structure:

struct domain_list_struct {

unsi gned short | engt h; /* overall */

unsi gned char count;

unsi gned short search_domain_list[1l]; /* set to count */
} DOVAI N_LI ST_STRUCT;

Where:

| engt h The total number of bytesin length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entriesin the list, with a maximum of 80.
search_domai n_l i st
An array of subnet IDs to add to the search domain.

Responses

Response Codes

See Table 11-4 on page 149.

Additional Information

Y ou can add up to 80 subnet IDs. The Name Server will search all the specified
subnets when you make a request to attach to aremote device. If your network has
iNA 960 subnets that are not on the Name Server search domain, the Name Server
will not make requests of those subnets. Y ou can add subnet IDs that are not

currently in use, for future expansion, but searching unused subnet 1Ds slows down
the Name Server operations.

154 Chapter 11 Using and Programming the Name Server

Name Server CHANGE_VALUE

CHANGE_VALUE

CHANGE_VALUE overwrites the existing property value of an object in the local
Name Server object table.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 3H or CHANGE_VALUE */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /[* input */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /[* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* input */
unsi gned | ong extra_buffer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

Network User's Guide and Reference Chapter 11 155

CHANGE_VALUE Name Server

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the object name whose property valueis
to change. The buffer has this structure:

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

property_type
The type of property value whose value is to change.

See also: Property types, ADD_NAME command

property_val ue_type
Setto 0.

pv_buf f er _addr
An address that points to a buffer containing the new value for the property, with this
structure:

typedef struct val ue_buffer {

unsi gned short | engt h;

unsi gned char val ue[1] ; /* set to length */
} VALUE BUFFER;

Responses

Output Arguments

None

Response Codes

See Table 11-4 on page 149.

Additional Information

Y ou could accomplish the CHANGE_VALUE function by using the
DELETE_PROPERTY and ADD_NAME commands. However, ADD_NAME has
the additional overhead of broadcasting names over the network, which is not
necessary just to change the value of the property.

156 Chapter 11 Using and Programming the Name Server

Name Server DELETE_NAME

DELETE_NAME

DELETE_NAME deletes the specified object and all properties associated with it,
from the local Name Server object table. To delete only one property of an object,
use DELETE_PROPERTY.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 1H or DELETE_NAME */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /[* input */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* not used */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* not used */
unsi gned | ong extra_buffer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the name of the object to delete, with
this structure. The maximum length is 16 bytes.

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

property_val ue_type
Setto 0.

Network User's Guide and Reference Chapter 11 157

DELETE_NAME Name Server

Responses

Output Arguments

None

Response Codes
See Table 11-4 on page 149.

158 Chapter 11 Using and Programming the Name Server

Name Server DELETE_PROPERTY

DELETE_PROPERTY

DELETE_PROPERTY deletes a property from the specified object. To delete all the
object's properties, use the DELETE_NAME command.

Request Block

typedef struct rb_comon {

unsi gned short reserved|[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_t ok; /* segnent token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 4H or DELETE_PROPERTY */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* input */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* not used */
unsi gned | ong extra_buffer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

Network User's Guide and Reference Chapter 11 159

DELETE_PROPERTY Name Server

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

property_type
Specifies the type of property value to delete.

See also: Property types, ADD_NAME command

property_val ue_type
Setto 0.

Responses

Output Arguments

None

Response Codes
See Table 11-4 on page 149.

160 Chapter 11 Using and Programming the Name Server

Name Server

DELETE_SEARCH_DOMAIN

DELETE_SEARCH_DOMAIN

DELETE SEARCH_DOMAIN removes subnet | Ds from the list of subnets the
Name Server searches to resolve a name into an address.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ect or
unsi gned
sel ect or
sel ect or
unsi gned
unsi gned

unsi gned
} RB_COWON;

short
char

char

char

char

short

rb_comon {

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*
resp_nbox; /*

rb_seg_tok; /*
subsyst em /*
opcode; /*

DELETE_SEARCH_DOVAI N */

of nane_server_rb */

cg_create_conm user */

OFFH */
mai | box token */
segnment token */

50H or NAME_SERVER */

9H or

response; /* initialize to 0 */

t ypedef struct name_server_rb {
RB_COMMON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
| ong
char
short
char
| ong
| ong
short

} NAVE_SERVER RB;

Networ k User's Guide and Reference

header ;

reserved| 6] ;
name_buf f er _addr;
uni que_nane_f I ag;
property_type
property_val ue_type;
pv_buf fer_addr;
extra_buf fer_addr
extra_buffer_length

/* not used
/* not used
/* not used
/* set to O
/* input */
/* not used
/* not used

Chapter 11

*/
*/
*/
*/

*/
*/

161

DELETE_SEARCH_DOMAIN Name Server

Input Arguments

property_val ue_type
Setto 0.

pv_buf f er _addr
The address pointing to a buffer that holds the list of subnet 1Ds, with this structure:

struct domain_list_struct {
unsi gned short | engt h; /* overall */
unsi gned char count;

unsi gned short search_domain_list[1l]; /* set to count */
} DOVAI N_LI ST_STRUCT;

Where:

| engt h The total number of bytesin length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entriesin the list, with a maximum of 80.
search_domai n_l i st
An array of subnet IDs to remove from the search domain.

Responses

Response Codes

See Table 11-4 on page 149.

162 Chapter 11 Using and Programming the Name Server

Name Server GET_NAME

GET_NAME

GET_NAME returns the name(s) of the object that has the given property type and
value.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* B5H or GET_NAME */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* not used */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* input */
unsi gned | ong extra_buffer_addr; /* in/lout */
unsi gned short extra_buffer_| ength,; /* input */

} NAVE_SERVER RB;

Input Arguments

property_type
The type of property value for the object.

See also: Property types, ADD_NAME command

property_val ue_type
Setto 0.

Network User's Guide and Reference Chapter 11 163

GET_NAME Name Server

pv_buf f er _addr
An address that points to a buffer containing the property value, with this structure;

typedef struct val ue_buffer {

unsi gned short | engt h;

unsi gned char val ue[1] ; /* set to length */
} VALUE_BUFFER

extra_buffer_addr
An address that points to a buffer where the Name Server will return alist of names
having the given property type and value.

extra_buffer_length
The size of the extra buffer in bytes.

Responses

Output Arguments

extra_buffer_addr
An address that points to the buffer where the Name Server returns alist of names,

with this structure:
typedef struct each_nane {
unsi gned char entry_Il ength;
unsi gned char entry_nane[1];
} EACH_NAME;
struct extra_buffer {
unsi gned short | engt h; /* overall */
unsi gned char count; /* of nanes */
EACH_NAVE name_list[1l] /* set to count */
b
Where:
count The number of entriesin the list
name_|l i st

Thelist of returned names. The first byte of each entry contains the
length of the name that follows.

Response Codes
See Table 11-4 on page 149.

164 Chapter 11 Using and Programming the Name Server

Name Server GET_NAME

Additional Information

Since the Name Server enables you to enter different names for objects having the
same property type and value, more than one name may be returned for this function.
The request is retransmitted over the network and object names are collected and
returned by the Name Server.

The Name Server is preconfigured with values for the number of times the request is
retransmitted, the time interval between each retransmission, and the maximum
number of responses that can be handled by the Name Server. In ICU-configurable
systems you can configure these values with the RET, NR and RSP parameters on the
NS screen of the ICU.

If the number of responses is more than the configured maximum, the Name Server
returnsan E_ MAX_RESP response code. An E_ BUFF_SPACE response codeis
returned if the extra buffer length istoo short to hold al names. However, in both
cases, thelist of nameswill bevalid. If E BUFF_SPACE isreturned, try the
function again with alarger buffer.

See also: Name Server configuration values, Appendix A

Network User's Guide and Reference Chapter 11 165

GET_SEARCH_DOMAIN Name Server

GET_SEARCH_DOMAIN

GET_SEARCH_DOMAIN returnsthe list of subnet IDsthat the Name Server is
enabled to search.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* OAH or

GET_SEARCH DOMAI N */
unsi gned short response; /* initialize to 0 */

} RB_COWON;
t ypedef struct name_server_rb {

RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* not used */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* not used */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer_addr; /* inlout */
unsi gned | ong extra_buf fer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

166 Chapter 11 Using and Programming the Name Server

Name Server GET_SEARCH_DOMAIN

Input Arguments

property_val ue_type
Setto 0.

pv_buf fer _addr
An address pointing to an application buffer where the Name Server will return the
list of subnet IDs. The buffer must be large enough to hold all possible subnet IDs;
its maximum size is 163 bytes.

Responses

Output Arguments

pv_buf fer _addr
An address pointing to the application buffer where the Name Server returns the list
of subnet I1Ds, using this structure:

struct domain_list_struct {

unsi gned short | engt h; /* overall */

unsi gned char count;

unsi gned short search_domain_list[1l]; /* set to count */
} DOVAI N_LI ST_STRUCT;

Where:

| engt h The total number of bytesin length, count and the array of subnet IDs,
with a maximum value of 163.

count The number of entriesin the list, with a maximum of 80.

search_domai n_l i st
An array of subnet IDs currently in the search domain.

Response Codes
See Table 11-4 on page 149.

Network User's Guide and Reference Chapter 11 167

GET_SPOKESMAN Name Server

GET_SPOKESMAN

GET_SPOKESMAN finds the spokesman ID (Ethernet address) of the system whose
Name Server has cataloged the specified object.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 6H or GET_SPOKESMAN */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* input */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* not used */
unsi gned | ong extra_buffer_addr; /* in/lout */
unsi gned short extra_buffer_| ength,; /* inlout */

} NAVE_SERVER RB;

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the name of the object for which the
spokesman ID isrequired. The buffer has this structure.

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

168 Chapter 11 Using and Programming the Name Server

Name Server GET_SPOKESMAN

property_type
The property type of the object.

See also: Property types, ADD_NAME command

property_val ue_type
Setto 0.

extra_buffer_addr
An address that points to a buffer where the Name Server will return the Ethernet
address of the system where the object is cataloged.

extra_buffer_length
The size of the extra buffer in bytes. An Ethernet addressis six bytes long.

Responses

Output Arguments

extra_buffer_addr
An address that points to a buffer holding the returned Ethernet address.

extra_buffer_length
The size of the extra buffer in bytes. The Name Server changes the length of the
extra buffer to the actual length of the returned value.

Response Codes

See Table 11-4 on page 149.

Additional Information

The GET_SPOKESMAN function finds the Name Server system where a given
object isentered. Thisinformation is particularly helpful for administering and
maintaining a network.

Network User's Guide and Reference Chapter 11 169

GET_VALUE Name Server

GET_VALUE

GET_VALUE returns the property value of an object, which can be in either the local
Name Server object table or on another system.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 2H or GET_VALUE */
unsi gned short response; /* initialize to 0 */

} RB_COWON;

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* input */
unsi gned char uni que_nane_f I ag; /* input */
unsi gned short property_type; /* input */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* inlout */
unsi gned | ong extra_buffer_addr; /* not used */
unsi gned short extra_buffer_| ength,; /* not used */

} NAVE_SERVER RB;

Input Arguments

name_buf f er _addr
An address that points to a buffer containing the name of the object, with this
structure. The maximum length is 16 bytes.

typedef struct nanme_buffer {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* set to length */
} NAVE_BUFFER;

170 Chapter 11 Using and Programming the Name Server

Name Server GET_VALUE

uni que_nane_f1l ag
A flag indicating whether to return a unique value for the object: 00H for non-unique
and OFFH for unique. Y ou may specify unique even if the object is stored as non-
unique; the command will return the value for only the local non-unique object. For
example, if you want the value for the local MYHOSTID object of type 4H, specify
unique in thisfield even though the MYHOSTID object is non-unique.
property_type
Specifies the type of property value to return.

See also: Property types, ADD_NAME command

property_val ue_type
Setto 0.

pv_buf fer _addr
An address that points to a buffer where the Name Server returns the property value.
The structure of the value buffer depends on the value of uni que_nane_f | ag, but
in either case, set the length of the value buffer large enough to hold returned values
before issuing the request block.

typedef struct val ue_buffer {

unsi gned short | engt h;

unsi gned char val ue[1] ; /* set to length */
} VALUE BUFFER;

When uni que_nane_f | ag is set to unique, the buffer has this structure:

typedef struct val ue_buffer {
unsi gned short | engt h;
unsi gned char val ue[1] ;
} VALUE BUFFER;

When uni que_nane_f | ag is set to non-unique, the buffer has this structure:

t ypedef struct each_val ue {
unsi gned short val ue_| engt h;
unsi gned char val ue[1] ;

} EACH VALUE;

typedef struct nu_val ue_buffer {

unsi gned short | engt h; /* overall */
unsi gned char count;
EACH_VALUE value_list[1];

} NU_VALUE_BUFFER

Network User's Guide and Reference Chapter 11 171

GET_VALUE Name Server

Responses

Output Arguments

pv_buf f er _addr
An address that points to the value buffer returned by the Name Server (see the
structures shown above). Thecount andval ue fieldsarefilled in by the Name
Server.

Response Codes

See Table 11-4 on page 149.

Additional Information

The GET_VALUE function can retrieve the property value of a unique or hon-unique
object. For aunique object, the returned value buffer contains just one property
value. For anon-unique object, the returned buffer contains alist of property values.
The Name Server abtains the list of values by retransmitting the request over the
network up to a configured maximum number of times, and collecting the responses
from various systems. The list of returned values for a non-unique object is shown in
the nu_val ue_buf f er structure under the pv_buf f er _pt r parameter above.

The Name Server is preconfigured with values for the number of times the request is
retransmitted, the time interval between each retransmission, and the maximum
number of responses that can be handled by the Name Server. In ICU-configurable
systems you can configure these values with the RET, NR and RSP parameters on the
NS screen of the ICU.

If aresponseis not received after retransmitting the request the maximum number of
times, the Name Server returnsan E_ NAME_NOT_EXIST response code. |If the
number of responses received is more than the configured maximum, an
E_MAX_RESP response code is returned. However, in this case, property values
returned in the list are valid. A response code of E_ BUFF_SPACE isreturned if the
value buffer length is not sufficient to hold the property values.

See also: Name Server configuration values, Appendix A

172 Chapter 11 Using and Programming the Name Server

Name Server LIST_TABLE

LIST_TABLE

LIST_TABLE listsall objects cataloged in the local Name Server object table.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of name_server_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; [/* segnment token */
unsi gned char subsyst em /* 50H or NAME_SERVER */
unsi gned char opcode; /* 7H or LI ST_TABLE */
unsi gned short response; /* initialize to 0 */

} RB_COWVON

t ypedef struct name_server_rb {
RB_COVIVON header ;
unsi gned char reserved| 6] ;
unsi gned | ong name_buf f er _addr; /* not used */
unsi gned char uni que_nane_f I ag; /* not used */
unsi gned short property_type; /* not used */
unsi gned char property_val ue_type; /* set to 0 */
unsi gned | ong pv_buf fer _addr; /* not used */
unsi gned | ong extra_buf fer_addr; /* in/out */
unsi gned short extra_buffer_| ength,; /[* input */

} NAMVE_SERVER RB;

Input Arguments

property_val ue_type
Setto 0.

extra_buffer_addr
An address pointing to a buffer that will hold the list of objects returned by the Name
Server.

extra_buffer_length
The size of the extra buffer in bytes.

Network User's Guide and Reference Chapter 11 173

LIST_TABLE Name Server

Responses

Output Arguments

extra_buffer_addr
An address that points to the buffer where the Name Server returns the list of objects,
in this structure:

typedef struct each_object {

unsi gned char nanme_| engt h;

unsi gned char nare[1] ; /* name_l ength */
unsi gned char uni que_nane_f1 ag;

unsi gned short property_type;

unsi gned char pv_type;

unsi gned short pv_Il engt h;

unsi gned char property value[1l]; [/* pv_length */

} EACH_OBJECT;

struct list_buffer {

unsi gned short | engt h; /* overall */
unsi gned char count;
EACH_OBJECT object _list[1]; /* set to count */
} LI ST_BUFFER
Where:
count The number of entriesin the list.

object _|ist
An array of returned objects. For adescription of the fieldsin the
each_obj ect structure, see the request block fieldsin the
ADD_NAME command.

Response Codes
See Table 11-4 on page 149.

Additional Information

The LIST_TABLE function returns only the objects defined in the local object table.
It does not list objects cataloged on remote systems. The application must provide a
buffer large enough to hold all the returned names, property types and values. An
E_BUFF_SPACE response code indicates the buffer istoo small; however, thelist of
returned objectsisvalid.

174 Chapter 11 Using and Programming the Name Server

Programming the Transport Layer 1 2

TheiNA 960 Transport Layer provides message delivery or transport services
between application processes running on network end systems. The applications
send and receive request blocks using the Transport Layer, using the cq_comm_rb
cal.

See also: Using the cq_ System Calls, Chapter 10

The applications are identified by transport service access point (TSAP) addresses,
consisting of a network service access point (NSAP) address and TSAP selectors. A
TSAP selector identifies the access point between the client process and the
Transport service.

See also: NSAP (Network Service Access Point), Chapter 8

D Note

This chapter refersto the application asa client, meaningitisa
client of the Transport service. This has no meaning in terms of the
client/server relationship between applications. Both client and
server applications are clients of the Transport service.

Transport Services
The Transport service provides these two types of message delivery services:

« A rdliable connection-oriented virtual circuit (VC) message delivery service
between two TSAP addresses.

* A non-guaranteed connectionless datagram delivery service between one TSAP
address and another (point-to-point delivery), or between one TSAP address and
several other TSAP addresses (multicast delivery).

Network User's Guide and Reference Chapter 12 175

Table 12-1. Transport Layer Commands

Opcode Literal Description

4H ACCEPT_CONNECT_REQUEST Accepts the connection request after
the
AWAIT_CONNECT_REQUEST _CLIE
NT command

ODH AWAIT_CLOSE Notifies the client when a connection
is terminated

3H AWAIT_CONNECT_REQUEST_CLIENT Enables the application to directly
control whether a connection is
accepted

2H AWAIT_CONNECT_REQUEST_TRAN Permits the Transport service to
independently accept a connection
request

OCH CLOSE Closes a connection or indicates that
an incoming connection request is
being refused.

OH OPEN Sets up a CDB (connection database)
to manage a specific VC (virtual
circuit) connection between the
service client and the external process

16H RECEIVE_ANY Receives data by VC service using a
buffer that may be used by any CDB

7H RECEIVE_DATA Receives normal data by VC service
for a specific CDB

12H RECEIVE_DATAGRAM Receives datagrams

0AH RECEIVE_EXPEDITED_DATA Receives expedited data from the
remote node for a specific CDB

1H SEND_CONNECT_REQUEST Attempts to establish an active
connection to the remote node

5H SEND_DATA Sends data using normal VC service

11H SEND_DATAGRAM Sends data using datagram service

6H SEND_EOM_DATA Sends data using normal VC service
and marks EOM (end of message)

9H SEND_EXPEDITED_DATA Sends up to 16 bytes of data using
expedited VC delivery service

continued

176 Chapter 12 Programming the Transport Layer

Table 12-1. Transport Layer Commands (continued)

Opcode Literal Description

OEH STATUS Provides status information for VC
services from the Transport Layer and
for a specific CDB

13H WITHDRAW_DATAGRAM_RECEIVE_ Withdraws one or more datagram

BUFFER receive buffers to reclaim resources

0BH WITHDRAW_EXPEDITED_BUFFER Withdraws one or more expedited VC
receive buffers to reclaim resources

8H WITHDRAW_RECEIVE_BUFFER Withdraws one or more normal VC
receive buffers to reclaim resources

Virtual Circuit Service

The VC Transport service uses the 1SO 8073 standard Class 4 transport protocol
which provides these services:

Reliable Delivery

Data Rate Matching
(flow controal)

Process M ultiplexing

Variable Length
M essages

Expedited Data
Service

Dataon aVC isdelivered to the destination in the exact
order it was sent by the source with no errors, duplicates or
losses, regardless of the quality of service available from the
underlying network service.

The Transport service attempts to maximize throughput
while conserving communication subsystem resources by
controlling the rate at which messages are sent. Thisis based
on the availability of receive buffers at the destination and its
OWN resources.

Several processes can use the Transport service
simultaneously with no risk that progress or lack of progress
by one process will interfere with other processes.

Short or long messages can be arbitrarily submitted for
transmittal without regard for the minimum or maximum
network service data unit (NSDU) lengths supported by the
underlying network services.

Short, urgent messages can be transmitted ahead of the
normal messages by bypassing the normal flow control
mechanisms.

Network User's Guide and Reference Chapter 12 177

The Transport service provides these services by means of a connection or VC. A
pair of applications set up the connection (connection establishment phase), transfer
data (data transfer phase) and terminate or disconnect the connection (connection
termination phase) between themselves.

Example Software

The OS software includes an example application using the Transport VC services.
See the files under the /rmx386/demo/network directory.

Datagram Service

The datagram Transport service uses the | SO 8602 Connectionless Transport protocol
to transfer data between application processes without setting up a connection. This
service gives no guarantee of data delivery. Datamay be lost or misordered. In
addition, data may be multicast at one time to a single destination or to several
destinations.

Buffers

Use of the Transport service requires passing address information and data back and
forth between the Transport service client and the Transport service. The application
loads address information and data into a buffer memory area, and then uses a 32-bit
addresses to specify the location of the buffers.

There are three types of buffers used by the Transport service:
* TheTSAP Address Buffer
» Contiguous Buffers

» Noncontiguous Buffers

Buffer Addressing

178

If the Transport service client uses pointers to reference data buffers, the pointers
must be trandated to physical addresses for use in request blocks. Theclientis
responsible for both the forward and reverse trandation.

See also: Trandating pointers, Chapter 10

Chapter 12 Programming the Transport Layer

TSAP Address Buffer

The TSAP address buffer holds both the local and remote address information to
establish a Transport service connection or transfer. The TSAP address buffer
consists of local NSAP and TSAP selectors, aremote NSAP address, and a remote
TSAP selector. Thelocal TSAP selector describes the location of the local Transport
service client. The remote NSAP address identifies the remote node. This can be
either the remote end of the VV C connection or the remote destination of a datagram.
A remote TSAP selector must be specified for an active connection to a remote
client.

Thelocal network service access point ID (NSAP selector) specifies the access point
through which the Transport service gains the services of the Network Layer. The
local Transport service most often uses a default local NSAP selector, or optionally,
the application can specify one.

The formats for an NSAP address are specified in 1SO 8348 Addendum 2. The
NSAP selector isusually 1 byte long and is the last byte of the NSAP address. The
length of an NSAP address or NSAP selector depends on the underlying network
service provided to the Transport service. For an iNA 960 Network Layer, the
application should always specify the NSAP selector value and an NSAP selector
length of 1 byte (do not allow either to default). The content of the NSAP addressis
transparent to the Transport service, although the length must be known in order to
allocate memory that will be used to store the address.

The TSAP selector length has not been standardized (by 1SO) since it depends on the
conventions of the Transport service client. For theiNA 960 Transport service the
TSAP selector length is 2 bytes. The maximum length TSAP selector in iNA 960 is
32 bytes.

The Transport service enables for variable length NSAP addresses, NSAP selectors,
and TSAP selectors. The Transport service client stores these valuesin a client-
defined buffer and gives the address of this buffer to the Transport service.

This structure logically illustrates the contents of a TSAP address buffer allocated by
a Transport service client. For the actual structure see Figure 12-1 or the cgtransp.h
or cgtransp.litinclude files. The local NSAP selector is usually defaulted, with

| oc_nsap_sel _| en setto zero, and thel oc_nsap_sel fi el d doesnot appear in
the typedef for the structure t a_buf f er. Inthiscase, the Transport service depends
on the Network Layer to maintain the default local NSAP.

Network User's Guide and Reference Chapter 12 179

struct TSAP_address_buffer {

unsi gned char | oc_nsap_sel _l en;

unsi gned char | oc_nsap_sel [loc_nsap_sel _len];
unsi gned char | oc_tsap_sel _len;

unsi gned char loc_tsap_sel [loc_tsap_sel _len];
unsi gned char rem nsap_addr _| en;

unsi gned char rem nsap_addr [rem nsap_addr_I| en];
unsi gned char remtsap_sel _|en;

unsi gned char remtsap_sel [remtsap_sel _len];

}s

The client must be aware of the lengths and formats of the NSAP addresses used to
specify the remote ends of a connection or datagram transfer. The client loads the
length of the NSAP address into the remote NSAP address length field and all ocates
enough space in the TSAP address buffer to load the address.

Application processes communicating using the Transport service must agree on
formats and lengths of NSAP/TSAP selectors. The lengths are loaded into the
appropriate TSAP address buffer length fields where enough buffer space has been
allocated to accommodate them. Limits on the maximum lengths of the NSAP
address and TSAP selectors are configured into the iINA 960 software.

Use of NSAP or TSAP selectorsin an addressis optional. A null NSAP or TSAP
selector isone with alength of 0. In this case, there is no corresponding content field
in the TSAP address buffer. On transmission, anull local NSAP selector relieson
the underlying Network Layer to provide a default NSAP selector for transmitting the
transport protocol data units (TPDUS).

The default remote NSAP selector for iINA Network layersinther em nsap_sel
fieldinrenot e_nsap_addr ess isa1-byte NSAP selector set to 0. An NSAP
selector of 0 specifies the Null2 addressing scheme. A nonzero NSAP selector
specifies the |P addressing scheme. Null local or remote TSAP selectors cause the
Transport service to use adefault TSAP selector value. Thisvalue is determined by
the Transport Layer configuration. Incoming connect requests or connect confirm
TPDUsthat don't have TSAP selectorsin them also cause the Transport service to
use a default TSAP selector value. A connection with anull TSAP selector listens
for default incoming TSAP selectors.

See also: iNA Network Layer Addressing Schemes, Chapter 8,
Configuration values, Appendix A

180 Chapter 12 Programming the Transport Layer

Figure 12-1 shows a sample transport address as it might appear in the iIRMX
:sd:net/data file. Y our application could use the structuresin Figure 12-1 tofill a
TSAP address buffer with such an address. The numbers above elements of the
address correspond to the numbers at the end of linesin the structure declarations.
Thisisan example of afully specified TSAP address.

See also: :sd:net/data file, Chapter 11,
LSAP Identifiers, Chapter 13

1 2 3 4 5 6 7 8 9 10 11
node_1: address=0x 00 02 4141 OB 49 0003 O00AAO00003A2 FE 00 02 4141,

struct nsap_addr {

unsi gned char afi; /* 5 */

unsi gned short subnet ; /* 6 */

unsi gned char host _i d[6] ; [* 7 *]

unsi gned char | sap_sel ; [* 8 */

unsi gned char nsap_sel ; [* 9 */

} NSAP_ADDR;

struct ta_buffer {
unsi gned char |oc_nsap_sel _|en; /* 1, set to zero */
unsi gned char |oc_tsap_sel _|en; [* 2 *]
unsi gned char loc_tsap_sel [loc_tsap_sel _len]; [* 3 *]
unsi gned char remnsap_addr_| en; [* 4 *]
NSAP_ADDR rem nsap_addr;
unsi gned char remtsap_sel _|en; [* 10 */
unsi gned char remtsap_sel [remtsap_sel _len]; /[* 11 */

Figure 12-1. TSAP Address Format

Network User's Guide and Reference Chapter 12 181

Table 12-2 shows valid and invalid values for the fields in the TSAP address buffer
structure, t a_buf f er , for active and passive connections.

Table 12-2. TSAP Address Buffer Field Values

Address Buffer Field Active Connection Passive Connection

loc_nsap_sel_len

=0 Valid 1 Valid 1

=1 Valid Valid
loc_nsap_sel

=0 Valid 2 Valid 2

%0 Valid 2 Valid 2
loc_tsap_sel_len

=0 Valid 1 Valid 1

=2 Valid 3 Valid 3
loc_tsap_sel

=0 Invalid Invalid

0 Valid Valid
rem_nsap_addr_len

=0 Invalid Invalid

%0 Valid 4 Valid
rem_nsap_addr

=0 Invalid Valid °

0 Valid Valid
rem_tsap_sel_len

=0 Valid 1 Valid 1

=2 Valid & Valid
rem_tsap_sel

=0 Invalid Valid 7

0 Valid Valid

1 yse configuration default

2 Depends on Transport Layer configuration

3 Only if loc_tsap_sel # 0

4 Only if rem_nsap_addr # 0

5 NSAP address is unspecified and TSAP address is unspecified or partially specified
depending on value of rem_nsap_addr

6 Only if rem_tsap_sel 0

7 Only if NSAP address is unspecified (rem_nsap_addr = 0)

182 Chapter 12 Programming the Transport Layer

TSAP addresses are either specified, partially specified, or unspecified depending on
the contents of the TSAP address buffer.

Fully specified Required for active connections and has specified thel oc_t sap_sel ,
TSAP address rem nsap_addr,andrem t sap_sel fieldswith these values:

| oc_nsap_sel _len 0or 1
loc_tsap_sel _len = 0 or 2
loc_tsap_sel # 0
remnsap_addr_len # 0
remnsap_addr # 0
remtsap_sel _len #0
remtsap_sel #0

Partialy specified ~ Works only with passive connections and has these values:
TSAP address

|
o

or 1
or 2

| oc_nsap_sel _len =
| oc_tsap_sel _len
loc_tsap_sel #0
remnsap_addr_len # 0
remnsap_addr = 0
remtsap_sel _len = 0 or 2
remtsap_sel #0

1
o

Unspecified TSAP Works only with passive connections and has these values:
address

I
o
<)

-

| oc_nsap_sel _len =
| oc_tsap_sel _len
loc_tsap_sel #0
remnsap_addr_len # 0
remnsap_addr = 0

remtsap_sel _len = 2
remtsap_sel =0

I
o
<)
N

Use these guidelines for specifying addresses:
» Unspecified means that the address or selector value, not the length, is zero.
* Unspecified local TSAP selectors are invalid.

e Using fully specified NSAP addresses with unspecified remote TSAP selectorsis
invalid.

Network User's Guide and Reference Chapter 12 183

Contiguous Buffers

With the V C service, the transport protocol enables the optional transfer of a small
amount of data during the connection establishment and termination phases. Up to 32
bytes of data can be transferred during the connection establishment phase
(SEND_CONNECT_REQUEST and AWAIT_CONNECT_REQUEST commands)
and up to 64 bytes of data can be transferred during the connection termination phase
(CLOSE command). To transfer data during these phases, the Transport service
interface requires that a single contiguous buffer block be allocated in application
memory to send or receive the data.

TheiNA 960 software follows certain rules regarding the transfer of data during the
connection establishment and termination phases, depending on the values of buffer
length (cl i ent _dat a_l en) and address (cl i ent _dat a_buf _addr) fields
specified in the iNA 960 command request block. These rules are used by the iNA
960 software;

e Ifclient_data_|l en=0,nodataissent. Datacan bereceived if
client_data_buf_addr #0.

 Ifclient_data_l en#0, dataof specified length is sent.
e Ifclient_data_buf_addr =0, nodataissent or received.

e Ifclient_data_buf_addr #0, datamay or may not be sent depending on the
valueof cl i ent _data_| en.

Regardless of the value of cl i ent _dat a_| en for data to be sent, data may be
received and can be up to 64 bytesin length. Therefore, cl i ent _dat a_buf _addr
should always point to the start of a contiguous 64 byte block.

Noncontiguous Buffers

184

For transferring data through V Cs or datagrams, the application may allocate
multiblock noncontiguous buffersto hold the data. The buffers are set up as an array
of structures of this type within the request block. The address of each buffer in the
array must be converted from a pointer to a 32-bit physical address before sending
the request block to iNA 960.

typedef struct data_bl ock {
unsi gned | ong addr ess;
unsi gned short | engt h;
} DATA BLOCK;

Chapter 12 Programming the Transport Layer

ISO Reason Codes

Table 12-3 lists the I SO reason codes that can be returned in arequest block when a
transport connection is disconnected. The reasons are defined as constants in the

includefiles.
Table 12-3. 1SO Reason Codes

Code (Decimal) Reason

0 NOT_SPECIFIED

1 CONGESTION_AT_TSAP

2 CLIENT_NOT_ATTACHED_TO_TSAP

3 ADDRESS_UNKNOWN

80H 128 CLIENT_DISCONNECT (Normal disconnect started by client)

81H 129 CONNECT_REQ_TRANSPORT_CONGESTION (Remote
transport service congestion at connect request time)

82H 130 CONNECT_NEGOT_FAILURE (Connection negotiation failed; for
example, the proposed classes are not supported)

83H 131 DUPLICATE_CONNECTION

84H 132 MISMATCHED_REFS (connection references)

85H 133 PROTOCOL_ERROR

87H 135 REFERENCE_OVERFLOW

88H 136 CONNECTION_REQ_REFUSED (On this network connection)

8AH 138 INVALID_LENGTH (of header or parameter)

Virtual Circuit Commands

Establishing and using a V C connection encompasses three different operational

phases:

1. Connection Establishment Phase

2. DataTransfer Phase

3. Connection Termination Phase

There are Transgport commands for each phase that enable the Transport client to
establish a connection to aremote node, transfer data, and then terminate the
connection. The Transport service also provides a command to query the status of a

connection.

Network User's Guide and Reference Chapter 12 185

Commands to Establish a Connection

The connection establishment commands enable a Transport service client to open
and maintain a connection to aremote node. They are:

OPEN

SEND_CONNECT_REQUEST
AWAIT_CONNECT _REQUEST TRAN
AWAIT_CONNECT_REQUEST CLIENT
ACCEPT_CONNECT REQUEST

The OPEN command sets up an internal memory resource to manage aVC
connection between the Transport service client and the external process. A memory
segment called a connection database (CDB) is allocated by the OPEN command to
help manage the connection. The CDB contains information that reflects the current
state of an open connection.

Once the CDB is allocated, the Transport service client may attempt to establish an
active connection to the remote node using the SEND_CONNECT_REQUEST
command. Such arequest isreferred to as an active open.

To usethe VC to passively listen for an incoming connection request (as the remote
node would have to), the application can permit the Transport service to
independently accept a connection request by using the
AWAIT_CONNECT_REQUEST_TRAN command.

To directly control whether the connection is accepted, the application can instead
use the AWAIT_CONNECT_REQUEST_CLIENT command. To accept the
connection request after completion of an

AWAIT_CONNECT _REQUEST CLIENT command, the application uses an
ACCEPT_CONNECT_REQUEST command. This establishes an active connection.

Commands for the Data Transfer Phase

These data transfer commands enable a Transport service client and a remote process
to exchange expedited or normal data after the successful completion of the
Connection Establishment Phase.

SEND_DATA

SEND_EOM_DATA
RECEIVE_DATA
WITHDRAW_RECEIVE_BUFFER
SEND_EXPEDITED_DATA
RECEIVE_EXPEDITED DATA
WITHDRAW_EXPEDITED_BUFFER
RECEIVE_ANY

186 Chapter 12 Programming the Transport Layer

Normal (nonexpedited) datais presented to the Transport service for transmission as
arbitrarily long messages called Transport Service Data Units (TSDUs). When the
datais received by the remote Transport service, it is passed to receive buffers posted
by the client, if buffers are available. If abuffer isfilled before the end of the TSDU,
it isreturned to the client. When the end of the TSDU is buffered, the buffer is
returned even if it isnot filled. Such areturn buffer is marked EOM (end of
message) to indicate the end of the TSDU to the client. Thus, the Transport service
guarantees no more than one TSDU isreturned in a client's buffer.

Expedited data takes the form of short urgent messages that have a higher
transmission priority than normal data. The normal flow control mechanisms of the
Transport service are bypassed in order to transmit expedited data ahead of any
normal data. Thereisa configured limit of 16 bytes for the amount of expedited data
that may be transferred or received.

Posting Receive Buffers for Virtual Circuits

Some data transfer commands post receive buffers, which the Transport service uses
to store data received over a specific V C connection.

The Transport service relies on the application to post all receive buffersfor data
received for aVC. Use these guidelines to manage receive buffers:

« Datareceived on one connection cannot use a buffer specifically posted for
another connection.

* Multiple buffers can be posted (except with the RECEIVE_ANY command) in a
single command using the num bl ks argument, but they will al belong to the
same TSDU.

« TheRECEIVE_ANY command can be used to post a buffer that is not
referenced to a specific connection, but isreferenced to alist of up to 20
connections. If datais received on a connection for which there is no specific
buffer posted, and the connection isin the reference list for a buffer posted by
RECEIVE_ANY, the datais placed in that buffer.

» Only one buffer can be posted per RECEIVE_ANY command. Multiple buffers
must be posted with multiple RECEIVE_ANY commands.

The V C service supports both normal and expedited data services. Receive buffers
for normal data are posted and maintained separately from receive buffers for
expedited data.

Network User's Guide and Reference Chapter 12 187

Commands to Terminate a Connection

Connection termination commands enable a Transport service client to terminate an
open or active VC connection. Terminating an active V C also terminates any activity
on the connection during the data transfer phase. The commands are:

CLOSE
AWAIT_CLOSE

|:| Note

Connection termination is not graceful; datain transit may be lost.

The CLOSE command closes a connection or may serve as an indication that an
incoming connection request is being refused by the Transport service client, after an
AWAIT_CONNECT_REQUEST_CLIENT command.

The AWAIT_CLOSE command is used by aclient to ensure that the client is notified
when a connection is terminated.

Datagram Commands

188

The datagram commands enable aloca Transport service client and a remote user
process to exchange datagram messages. These are the datagram commands:

SEND_DATAGRAM
RECEIVE_DATAGRAM
WITHDRAW_DATAGRAM_BUFFER

Transmission of datagrams using these commands does not guarantee that the
datagram messages will arrive at their destination in the order that they were sent, nor
do they guarantee that the datagrams will arrive a all. The receiver of a datagram
transmission must post the necessary receive buffers.

Chapter 12 Programming the Transport Layer

Posting Receive Buffers for Datagrams

The Transport service relies on the application to post all receive buffersfor data
received from a remote Transport service using the datagram service. The posted
buffer is available only to a specific TSAP. Only datagrams addressed to that TSAP
can use that buffer for passing data.

The datain each datagram sent by the Transport service is a self-contained entity. |If
the total datagram buffer space available for a TSAP isless than the length of data
received in the datagram, the datagram is discarded with no data buffered.

Otherwise, the data is buffered. Datafrom one datagram can be buffered in one or
more posted receive buffers. The request block for the buffer containing the last byte
of datain the received datagram has a response code indicating that this buffer isthe
end-of-message (EOM). The EOM buffer is returned when the last data of the
datagram is buffered, even if space remainsin the buffer. Thus, areturned buffer can
contain data from no more than one received datagram.

Datagram receive buffers are posted and maintained separately from VC receive
buffers.

Transport Service Commands

The Transport service commands in this chapter are specified by the subsyst emand
opcode fieldsin the request block header, r b_common. The commands use similar
argument structures following the common header fields. Each command description
lists which fields are input and output arguments. Initialize reserved fields and
unused fieldsto 0. The structures are provided as typedefs in the include files for the
Transport Layer.

See also: Include Files, Chapter 10,
Programming with Structures, Chapter 10

Network User's Guide and Reference Chapter 12 189

ACCEPT_CONNECT_REQUEST

Transport Virtual Circuit

ACCEPT_CONNECT_REQUEST

ACCEPT_CONNECT_REQUEST indicates the application's acceptance of the
Transport connection specified by the reference. Thisisthe positive responseto a
previoudly returned AWAIT_CONNECT_REQUEST _CLIENT request block. The
application can return an optional buffer of client data with the connection
confirmation in a contiguous buffer. This command is only used by an application
that has received aresponse to an AWAIT_CONNECT_REQUEST _CLIENT
command. The AWAIT_CONNECT REQUEST TRAN command does hot
provide the option of accepting or rejecting a connection.

Request Block

190

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWDON;

typedef struct conn_req_rb {

rb_comon {
short
char

char

char

char
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
short
| ong
short
short
short
char
short
| ong
char

} CONN_REQ RB;

Chapter 12

reserved[2] ;

| engt h; /* of conn_req_rb */

user _i d; /* cq_create_comm.user */
resp_port; /* OFFH */

resp_nbox; /* mail box token */
rb_seg_tok; [/* segnment token */
subsyst em /* 40H */

opcode; [* 4H */

response; /* initialize to 0 */

header ;

i so_reason_code
reserved[4];
ack_del ay_esti mate;
ta_buffer_addr;
persi stence_count;
abort _timeout;
reference

qos;

negot _opti ons;

client_data_buf_addr;

client_data_l en

/* output */

/* output */
/* output */
/* unused */
/* unused */
/* input */
/* unused */
/* output */
/* inlout */
/* inlout */

Programming the Transport Layer

Transport Virtual Circuit ACCEPT_CONNECT_REQUEST

Input Arguments
ref erence
I dentifies the CDB this request appliesto.

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If the addressis
zero, no buffer is allocated and there is no client data sent with the request. Also, no
datawill be received. To send client data with the request, the buffer address and
length must be nonzero and the data (0 to 32 bytes) must be loaded in the buffer.

client_data_l en
The number of bytes of datato send.

Responses

Output Arguments

i so_reason_code
The I SO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
thisargument is 0.

See also: Table 12-3 on page 185

ack_del ay_estimate
0 isaways returned.

ta_buffer_addr
An address pointing to a TSAP address buffer that identifies the local and remote end

nodes of aVC connection.
See also: TSAP address buffer structure, page 180

negot _options
The agreed-upon negotiation options.

Seedso: negot_options, AWAIT _CONNECT REQUEST CLIENT and
AWAIT_CONNECT_REQUEST TRAN commands

Network User's Guide and Reference Chapter 12 191

ACCEPT_CONNECT_REQUEST Transport Virtual Circuit

client_data_buf_addr
If the connection attempt was successful and a buffer was allocated, the request block
will return in the buffer any data (at most 32 bytes) contained in the connection
confirmation received from the remote Transport service. If the connection attempt
was rejected by the remote Transport service and the local Transport service gives
up, the request block will return in the buffer up to 64 bytes of any data contained in
the disconnect request from the remote Transport service. The received data
overwrites any data in the buffer that was sent in the request block.

client_data_ |l en
The length of any data received.

Response Codes

OK_RESPONSE 1H The connection just became established on
completion of the three-way handshake.

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.

OK_CLOSED_RESP H Thelocal client aborted the connection before
completion of the three-way handshake.

BUFFER _TOO LONG OAH More than 32 bytes of client datawere sent. The

connection maintains its current state awaiting
another local client response.

REM_ABORT OEH The remote Transport service aborted the
connection before completion of the three-way
handshake.

LOC_TIMEOUT 10H Thelocal Transport service timed out before

completion of the three-way handshake. The
connection was aborted.

DUP_REQ 14H Thisis aduplicate connection response. The
connection is aready established. Thiserror can
occur if this call is made for a connection for
which a connection request has not previously
been returned to the client.

192 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CLOSE

AWAIT_CLOSE

AWAIT_CLOSE requests notification that a specified connection has terminated.
An SO reason code is returned to indicate the cause of the disconnection.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; [* ODH+/
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* inlout */
unsi gned short | engt h; /* inlout */
} DATA_BLOCK;
typedef struct vc_rb {
RB_COVIVON header ;
unsi gned char i so_reason_code; /* output */
unsi gned char reserved[15] ;
unsi gned short reference; /* inlout */
unsi gned char gos; /* unused */
unsi gned short buf _I en; /* output */
unsi gned char num bl ks; /* input */
DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */
} VC_RB;

Network User's Guide and Reference Chapter 12 193

AWAIT_CLOSE Transport Virtual Circuit

Input Arguments

ref erence
I dentifies the CDB this request appliesto.

num bl ks
The number of separate buffers to be received. Each buffer isablock of contiguous
memory defined by thedat a_bl k_| i st[i].address and
data_bl k_list[i].!|engtharguments. SettoOif nobuffer isallocated. Inthis
case, client data received in a disconnect request isignored.

data_bl k_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of theith buffer. The total length of datain all blocks cannot exceed 64
bytes.

Responses

Output Arguments

i so_reason_code
The I SO reason code received in the disconnect request.

See also: Table 12-3 on page 185

ref erence
The reference for the connection that was del eted.
buf | en

The total length of the data received in the buffers posted by this command.

data_bl k_list[i].address
The address for the start of the ith buffer.

data_blk_list[i].length
Thisvalue is the length of the data in the last posted buffer to receive data. Itisonly
meaningful for that buffer.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP H Thelocal client aborted the connection or the
connection was already closed when this
command was requested.

REM_ABORT OEH A disconnect request was received from the
remote Transport service on the specified
connection.

194 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CLOSE

LOC_TIMEOUT 10H Thelocal Transport service timed out.

DUP_REQ 14H Another AWAIT_CLOSE command was posted
previously on this connection.

Additional Information

If abuffer is allocated in this command, the remote application that sends the
disconnect request can send data that may explain the cause of the disconnection.
The longest disconnect message permitted by the 1SO standard is 64 bytes. If the
allocated buffer is smaller than the received data length, only the data that fitsin the
buffer isreturned. Theremainder islost. If no buffer is allocated, any received
disconnect datais discarded.

Network User's Guide and Reference Chapter 12 195

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit
AWAIT_CONNECT_REQUEST_CLIENT

AWAIT_CONNECT REQUEST TRAN
AWAIT_CONNECT_REQUEST CLIENT

There are two versions of the AWAIT_CONNECT_REQUEST _ command, with
different opcode values. Both commands wait for an incoming connection regquest to
the local TSAP address. The application specifies criteria for the type of request,
including addresses to listen for, negotiation options, and whether data sent with the
connection request will be received. The differences between the commands are:

e Withthe AWAIT_CONNECT_REQUEST_TRAN command, the transport
service determines whether to make the connection without further input from
the application. Thisiscalled a passive open.

* Withthe AWAIT_CONNECT_REQUEST CLIENT command, the transport
service passes the connection request to the application for further consideration.
Transport then waits for areply as to whether the connection is accepted or
rejected. Thisiscalled an active open. The application accepts the request with
an ACCEPT_CONNECT_REQUEST command or rejectsit with a CLOSE
command.

D Note

The description of these commands refers to the application asa
client, meaning the client of the Transport service. The application
that calls these commands is actually a server in the context of a
client/server network relationship, because it is the server
application that waits for connection requests.

The AWAIT_CONNECT_REQUEST CLIENT command is useful for a server
application that restricts access to itself based on criteria that can be passed in a
connection request. For example, the server might inspect a user login name against
apassword list or restricted user list before accepting the connection.

196 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

Request Block

typedef struct rb_comon {

unsi gned short reserved|[2] ;
unsi gned char | engt h; /* of conn_req_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; [/* segnment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; /* 2H for _TRAN

3H for _CLIENT */
unsi gned short response; /* initialize to 0 */

} RB_COWON;
typedef struct conn_req_rb {

RB_COVIVON header ;
unsi gned char i so_reason_code; /* output */
unsi gned char reserved[4] ;
unsi gned short ack_del ay_esti mate; /* output */
unsi gned | ong ta_buffer_addr; /* in/out */
unsi gned short persi stence_count; /[* input */
unsi gned short abort _timeout; /[* input */
unsi gned short reference; /[* input */
unsi gned char gos; /* input */
unsi gned short negot _opti ons; /* in/out */
unsi gned | ong client_data_buf_addr; /* in/out */
unsi gned char client_data_len; /* in/out */

} CONN_REQ RB;

Input Arguments

ta_buffer_addr
An address pointing to a TSAP address buffer that specifies the local and remote end
nodes of aVC connection. For the AWAIT_CONNECT _REQUEST CLIENT
command, the TSAP address must be fully specified. For the
AWAIT_CONNECT REQUEST TRAN command, the remote TSAP address may
be fully specified, partially specified, or unspecified. Specified TSAP selectors and
NSAP addresses must have a nonzero length.

Network User's Guide and Reference Chapter 12 197

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit
AWAIT_CONNECT_REQUEST_CLIENT

The contents field is filled with zeros for unspecified TSAP selectors or NSAP
address. The lengths of the remote net address and local or remote TSAP selectors
must not exceed the limits specified in the system configuration, otherwise an
addressing error will occur. Thelocal TSAP selector must either be null or specified
(nonzero). Thelocal NSAP selector may be specified (nonzero), unspecified (zero),
or null (zero length). Multiple connections to or from asingle TSAP address can be
reguested.

See also: TSAP address buffer structure, page 180

per si st ence_count

The number of times to retry an active connection attempt upon connection refusal,
before giving up. Connection refusal means that the remote system refuses the
connection, not that it failed to respond to the connection attempt. A connection
refusal typically occurs when the remote system is not listening (it hasn't executed a
passive open). Vaues may be:

Value M eaning

0 The configured value will be used

OFFFFH Retry forever

1to OFFFEH This value will be used as the persistence count

abort _ti nmeout

The retransmission timeout period before aborting the connection, in 51-millisecond
units. Possible values are:

Value M eaning

0 Use abort_timeout configuration value (not 0)
OFFFFH Never time out

1-OFFFEH Use this number of 51-millisecond time units

Thisis how long the Transport service will continue to transmit without receiving a
response. This appliesto both the connection establishment and data transfer phases.
During the connection establishment phase, this value controls how long a connection
reguest will be retransmitted when there is no response. During the data transfer
phase, this value controls how long data is retransmitted when thereisno ACK. The
timeout period does not apply to the connection termination phase; the timeout for
connection termination is a Transport service configuration parameter.

reference

gos

198

I dentifies the CDB this request appliesto.

Quiality of service: the only possible parameter is the transmit priority for underlying
subnetworks that support it. Thisisavaluein the range 0 to 15; 0 isthe highest
priority. For iNA 960 802.3 subnets, set qos to O; priority is not supported.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

negot _options
Specifies various classes of service and additional options requested for negotiation
on this connection. If negot _opt i ons is zero, default options are used, as specified
by the def _negot _opt i ons configuration parameter. Otherwise, break the value
into four nibbles and specify options, where nibble 1 isleast significant:

Nibble Value Meaning

1 0 use 7-bit sequence numbers
2 use 31-bit sequence numbers
2 4 classfour service
3 0 no expedited service, do checksums
1 expedited service, do checksums
2 no expedited service, no checksums
3 expedited service, no checksums
4 8 client specified (nondefault) negotiation options

These are valid values for this argument:

Value Meaning

8342H Expedited data; no checksum; transport class 4; 31-bit sequence numbers

8340H Expedited data; no checksum; transport class 4; 7-bit sequence numbers

8242H No expedited data; no checksum,; transport class 4; 31-bit sequence
numbers

8240H No expedited data; no checksum,; transport class 4; 7-bit sequence
numbers

8142H Expedited data; checksum; transport class 4; 31-bit sequence numbers

8140H Expedited data; checksum; transport class 4; 7-bit sequence numbers

8042H No expedited data; checksum; transport class 4; 31-bit sequence numbers

8040H No expedited data; checksum; transport class 4; 7-bit sequence numbers

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If the addressis
zero, no buffer is allocated and there is no client data sent with the request. Also, no
datawill be received. To receive any data that may be returned with the request, but
not send any data, specify anonzero addressand setcl i ent _dat a_| en to zero. If
the address is nonzero, the Transport service assumes that a 64-byte buffer is
allocated. To send client data with the request, the buffer address and length must be
nonzero and the data (1 to 32 bytes) must be loaded in the buffer.

client_data_ |l en
The number of bytes of data to send with this request.

Network User's Guide and Reference Chapter 12 199

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit
AWAIT_CONNECT_REQUEST_CLIENT

Responses

Output Arguments

i so_reason_code
The I SO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
thisargument is 0.

See also: Table 12-3 on page 185

ack_del ay_estimate
0 isaways returned.

ta_buffer_addr
The buffer contains returned values that identify the local and remote end nodes of
the VC connection. The returned remote address is fully specified.

negot _options
The agreed-upon negotiation options using the encoding defined in the input
argument description.

client_data_buf_addr
If abuffer was allocated, the request block returns in the buffer any data (at most 32
bytes) received from the connection request. The received data overwrites any data
in the buffer that was sent in the original request block.

client_data_l en
The length of any data received in the buffer.

Response Codes

OK_RESPONSE 1H Thisisonly returned for the
AWAIT_CONNECT_REQUEST_TRAN
command. The request was accepted. The
connection is now established and in the data
transfer phase.

OK_DECIDE_REQ RESP 5H Returned only for the
AWAIT_CONNECT_REQUEST_CLIENT
command. The request is acceptable based on
addressing, negotiation options and data buffer
availability. The request block isreturned so that
the application can decide whether to accept the
connection. The Transport service awaits the
application's response.

200 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.

OK_CLOSED_RESP H Thelocal client withdrew its willingnessto listen
for remote connection requests.

ILLEGAL_REQ OCH The client specified invalid negotiation options.
The connection attempt was aborted.

OK_CONN_REQ RESP ODH Thelocal client withdrew its willingnessto listen

for remote connection requests. Instead, it is
actively requesting a connection with aremote
Transport service using this connection.

REM_ABORT OEH The connection request was accepted by
Transport but the remote Transport service
aborted the connection during the connection
establishment phase.

LOC_TIMEOUT 10H Thisisonly returned for the
AWAIT_CONNECT_REQUEST_TRAN
command. The request was accepted but
Transport timed out before completion of the
three-way handshake. The connection is aborted.

DUP_REQ 14H Thisisaduplicate connection request: Transport
is already awaiting a remote request or the
connection is aready established.

ILLEGAL_ADDRESS 1AH The client specified invalid TSAP address
options or the local TSAP selector or remote
TSAP address length exceeds the configuration
limits.

NETWORK_ERROR 1CH A Network layer error was reported at the
transport/network interface.

Additional Information

These commands indicate that the Transport service client iswilling to consider
incoming connection requests from a remote transport service. It isassumed that a
local CDB was allocated and a reference was returned to the client as aresult of a
previous OPEN command. The client specifies that reference in the current
command.

Network User's Guide and Reference Chapter 12 201

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit
AWAIT_CONNECT_REQUEST_CLIENT

A SEND_CONNECT_REQUEST command for a connection will override an
existing AWAIT_CONNECT_REQUEST_ command for the same connection, as
long as the connection handshake has not begun under the
AWAIT_CONNECT_REQUEST . When this occurs, the
AWAIT_CONNECT_REQUEST _ command request block is returned with ODH
(OK_CONN_REQ RESP) inther esponse field.

Using a series of these commands, a client can await connection requests. For an
incoming connection request, the Transport service scans the CDBs listening for
reguests using these commands. A request is considered matched to a CDB if the
reguest passes these tests:

* Address match tests
* Negotiation option tests
+ Client data buffer availability test

Address Match Test

202

For the address match test, the remote address specified in
AWAIT_CONNECT _REQUEST _commands may be fully specified, partially
specified, or unspecified, with these results:

Fully Specified Only incoming connection requests from the exact remote
TSAP address will be considered. This application iswaiting
for arequest from a specific type of application on a specific
node.

Partialy Specified A connection request from only one specific TSAP selector at
any remote NSAP address, with an address length not
exceeding that specified in the command, will be considered.
This application iswaiting for a request from a specific type of
application on any node.

Unspecified A connection request from any remote TSAP address will be
considered. However, the lengths of the TSAP selector and
NSAP address from the remote node cannot exceed the lengths
specified in this command. This application iswaiting for a
request from any application anywhere that knows of the
existence of this application.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT_REQUEST_CLIENT

For each CDB listening for connection requests, the address matching is done with
this precedence:

1. A fully specified remote TSAP address
2. A partially specified remote TSAP address
3. Anunspecified remote TSAP address

If all three address match attempts fail for one CDB, then that CDB is skipped and
the incoming connection request is checked against other CDBs.

A connection request passes the address match test only if all of these conditions are
true:

e The AWAIT_CONNECT_REQUEST _command isissued prior to receipt of a
connection request whose TSAP address satisfies the remaining requirements.

* Thelengths of the source NSAP address and TSAP selector in the incoming
reguest do not exceed the corresponding lengths for the remote addressin this
command's address buffer. If fully specified, the lengths must be equal.

e The source TSAP address in the incoming request matches the remote TSAP
address specified in this command's address buffer. If this command's remote
TSAP address is unspecified, any incoming NSAP address and TSAP selector
pair will match. If this command's remote TSAP address is partially specified,
any incoming NSAP address will match, but the incoming source TSAP selector
must be an exact match. If this command's remote TSAP addressisfully
specified, the incoming NSAP address and TSAP selector must be exact
matches.

* Thelength of the destination TSAP selector in the incoming request equals the
length of the local TSAP selector in this command's TSAP address buffer.

e Thedestination TSAP selector in the incoming request matches the local TSAP
selector defined in this command's TSAP address buffer.
Negotiation Options Test

For the first CDB that passes the address match test, a check is made for compatible
negotiation options as defined by the SO standard. For incompatible options, the
connection request is checked against other CDBs awaiting requests, starting again
with the address match test.

Network User's Guide and Reference Chapter 12 203

AWAIT_CONNECT_REQUEST_TRAN Transport Virtual Circuit
AWAIT_CONNECT_REQUEST_CLIENT

Client Data Buffer Availability Test

For compatible addresses and negotiation options, a check is made to see if the
incoming request contains client data. 1f so, the CDB must be expecting data,
defined by a nonzero address descriptor pointing to the data buffer. If the CDB is not
expecting data, the connection request with data is not matched to the CDB specified
in this command and the incoming connection request with data is checked against
other CDBs. If the CDB is expecting data, the incoming request is matched to it.

If the incoming request has no data, it is matched to the first CDB that passes the
address match and negotiation options tests.

Differences Between the CLIENT and _TRAN Commands

204

If no awaiting CDB is found that matches the incoming connection request, the
Transport service rejects the connection request. No request blocks are returned to
ACCEPT_CONNECT_REQUEST_ commands. This permits the Transport service
to await further connection requests that may be valid.

Both versions of the AWAIT_CONNECT_REQUEST _ command operate identically
up to the point where a connection request is matched to a CDB.

For a CDB specified by the AWAIT_CONNECT_REQUEST_TRAN command, the
Transport service itself accepts the request, based only on addressing, negotiation
options, and client data buffer availability. The client thus pre-establishesits
connection-acceptance criteria with this command. 1f the incoming request matches
a CDB, the connection isimmediately accepted for the request. The request block is
not returned until completion of the three-way handshake that establishes the
connection. Thus, the return of this request block serves as a confirmation of
connection establishment. Any client data received with the request is returned in the
request block. Delivery of client data is a best-effort attempt and is not guaranteed.

For a CDB specified by the AWAIT_CONNECT_REQUEST_CLIENT command,
when a connection request matches the CDB, the Transport service returns the
reguest block for further consideration by the application. The request block contains
the remote address, negotiation options, and any client data. The Transport service
waits for areply from the application, which is either:

e AnACCEPT_CONNECT_REQUEST command to accept the connection
e A CLOSE command to reject the connection

Figure 12-2 summarizes the process used by the Transport service to accept
connection requests.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

AWAIT_CONNECT_REQUEST_TRAN
AWAIT_CONNECT REQUEST CLIENT

For either version of the command, the application may rescind 1ts willingness to
listen for connection requests by issuing a CL OSE command, with a reference

specifying the connection. This deletes the CDB and ends the use of the reference.

connection

listening for
requests
?

Address

match
?

Compatible

negotiation
options
?

Data

sent in connect

request
?

Nolg—————— Jves

AWAIT_CONNECT_REQUEST_TRAN

AWAIT_CONNECT_REQUEST_CLIENT

Data buffer

in await connect

request
?

Last

connection

scanned
?

Accept

conn

ection

Pass request
to client

Reject
connection

Y

(Retun)

W-2956

Figure 12-2. Connection Request Consideration Palicy

Networ k User's Guide and Reference

Chapter 12

205

CLOSE Transport Virtual Circuit

CLOSE

CLOSE requests termination of an existing connection or rejects an incoming
connection request.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; /* OCH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* input */
unsi gned short | engt h; /* input */
} DATA_BLOCK;
typedef struct vc_rb {
RB_COVIVON header ;
unsi gned char i so_reason_code; /* input */
unsi gned char reserved[15] ;
unsi gned short reference; /* input */
unsi gned char gos; /* unused */
unsi gned short buf _I en; /* unused */
unsi gned char num bl ks; /* input */
DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */
} VC_RB

Input Arguments

i so_reason_code
The encoded | SO standard reason for the close operation. To reject a connect request
received from AWAIT_CONNNECT_REQUEST_CLIENT, set to 88H.

See also: Table 12-3 on page 185

206 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit CLOSE

ref erence
I dentifies the CDB this request appliesto.

num bl ks
The number of separate buffers that contain optional datato send with the disconnect
request. Set to Oif thereis no datato transmit. Each buffer isablock of contiguous
memory that is defined by thedat a_bl k_l i st[i].address and
data_bl k_list[i].|ength arguments.

data_bl k_list[i].address
The address descriptor for the start of the ith buffer.

data_blk_list[i].length
The length of theith buffer. The total length of datain all blocks cannot exceed 64K
bytes

See also: Table 12-4 on page 231
Responses

Output Arguments

None

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP H Confirms disconnection, disconnect collision, or
already closing or closed.

BUFFER_TOO_LONG OAH A client data length greater than 64 bytes was
specified.

OK_REJECT_CONN_RESP OBH Successful rejection of a connection request.

LOC _TIMEOUT 10H Transport service timed out without receiving a

confirmation of its disconnect request.

Network User's Guide and Reference Chapter 12 207

CLOSE Transport Virtual Circuit

Additional Information

208

If the connection is aready established, this call initiates the SO transport connection
termination procedure. Any normal or expedited data queued for sending will not be
sent. The application may send up to 64 bytes of data with the disconnect request.

If the receiver has previoudy issued an AWAIT_CLOSE command, the 1SO reason
code and any data received with the disconnect request (along with the 1SO reason
code) will be passed to the buffer allocated with the command. Otherwise, the
disconnect request data may be discarded.

The CLOSE command is also used to reject a connection regquest received from an
AWAIT_CONNNECT_REQUEST_CLIENT command. Data passed with the
CLOSE can be sent to the remote Transport service to explain the reason for the
rejection.

A CLOSE issued in response to a connection request or issued to abort an already
established connection deletes the CDB. Any posted receive buffers (normal or
expedited) or queued send requests (normal or expedited) will be returned to the
application. An AWAIT_CLOSE command will also be returned. The CLOSE
request block is always the final request block returned.

If the connection is aborted by a remote Transport service, any posted receive
buffers, queued send requests, or AWAIT_CL OSE request blocks are returned to the
local application and the CDB isdeleted. If there are no queued request blocks to
report the remote abort, the CDB is not deleted, but is marked closed. The next time
the application tries to issue arequest block to that CDB, the request block is returned
with aREM_ABORT response (code OEH) and the CDB isdeleted. Any further
reguests on that connection generate an UNKNOWN_REFERENCE response.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit OPEN

OPEN

OPEN allocates a connection database (CDB) asthe first step in establishing a VC.
The returned value identifies the VV C in subsequent commands.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of open_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; [* OH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct open_rb {
RB_COVIVON header ;
unsi gned short reference; /* output */
} OPEN_RB;

Input Arguments

None

Responses

Output Arguments

reference
A valueidentifying the CDB allocated by this command. Store this value for usein
other Transport service commands.

Response Codes

OK_RESPONSE 1H The CDB was alocated and the reference
returned.
NO_RESOURCES 4H Could not allocate any more CDBs. The

reference isreturned as 0.

Network User's Guide and Reference Chapter 12 209

OPEN Transport Virtual Circuit

Additional Information

Thisisthe first command to issue whenever you open a new V C (connection); the
V C requires memory for the connection database (CDB). All CDBsresidein
memory on the same board that contains the communications software. Thereisa
preconfigured maximum number of CDBs, and therefore a maximum number of
VCs.

A CDB maintains the state of the connection. By means of entries in the CDB, the
Transport service can keep track of the sequencing of send and receive data, maintain
flow control status, and recover from unacknowledged data packets.

The Transport service client uses the connection by referencing the CDB through a
16-bit number called a connection reference. The referenceis returned to the
Transport service client when the CDB is allocated by this command. The Transport
service returns the reference to the client in the reference field of the open request
block. The application then refersto the connection in other Transport service
commands (e.g., data transfers) by supplying the connection reference number as an
input argument.

The very first reference returned by the Transport service after system initialization is
selected using a 16-bit random number generation scheme. Thereafter new
references returned are incremented by 1. When the 16-bit reference numbers
overflow, the value zero is skipped.

210 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

RECEIVE_ANY

RECEIVE_ANY

RECEIVE_ANY issimilar to the RECEIVE_DATA command; this command posts
abuffer to store data received using the transport normal delivery service. Unlike the
RECEIVE_DATA command, this command posts a receive buffer that can be used
by any CDB in alist of connection references. A RECEIVE_ANY buffer stores
received data for which there isno normal RECEIVE_DATA buffer posted. This
service is governed by the regular transport flow control mechanisms.

Request Block

typedef struct rb_comon {
unsi gned short

unsi gned char
sel ector
unsi gned char
sel ector
sel ector
unsi gned char
unsi gned char
unsi gned short

} RB_COWON,

typedef struct data_bl ock {

unsi gned | ong
unsi gned short

} DATA BLOCK;

typedef struct vc_ext_rb {

RB_COMMON

unsi gned char
unsi gned char
unsi gned short
unsi gned char
unsi gned short
unsi gned char
DATA_BLOCK
unsi gned short
unsi gned | ong

}: VC RB

Input Arguments

gos Set to zero.

Networ k User's Guide and Reference

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*
resp_nbox; /*

rb_seg_tok; /*
subsyst em /*
opcode; /*
response; /*

of vc_ext_rb */

cg_create_conm user */

OFFH */

mai | box token */
segnment token */
40H */

16H*/

initialize to 0 */

addr ess; /* input */
| engt h; /* input */
header ;

i so_reason_code
reserved[15] ;
reference

qos;

buf _I en;
num bl ks;

bl ock[1] ;

ref _list_count;
ref _list_ptr;

/* output */

/* output */

/* input */
/* output */
/* input */
/* input */
/* input */

Chapter 12 211

RECEIVE_ANY Transport Virtual Circuit

num bl ks
Only one buffer is posted with this command, so the value of this argument must
be 1.

bl ock[0] . addr ess
The address for the start of the buffer.

bl ock[0] .l ength
The length of the buffer, which cannot exceed 64K bytes.

ref |ist_count
The number of connection references in the reference list, up to 20. If thelocal
Transport service receives datain a CDB for which no specific normal
RECEIVE_DATA buffer has been posted, the reference list for the first available
RECEIVE_ANY buffer is checked for areference matching the reference for the
received data. If amatching referenceisfound, the received datais placed in that
RECEIVE_ANY buffer. If no matching reference isfound, the reference list for the
next RECEIVE_ANY buffer in the queue is checked.

ref _list_ptr
The address for the start of the reference list, whichis an array of unsigned short
values.

Responses

Output Arguments

i so_reason_code
The I SO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
thisargument is 0.

See also: Table 12-3 on page 185

reference
A valueidentifying the CDB that used the buffer.
buf | en

Thetotal length of the data received in the buffer posted by this command.

bl ock[0] . addr ess
The address descriptor for the start of the buffer.

bl ock[0] .l ength
The length of the data in the buffer.

Response Codes

OK_RESPONSE 1H All the buffers pointed to by the request block are
filled with data and no EOM was signaled.

212 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

RECEIVE_ANY

OK_EOM_RESP

NO_RESOURCES

UNKNOWN_REFERENCE

OK_CLOSED_RESP

REM_ABORT

LOC_TIMEOUT

BAD_REF_COUNT

Additional Information

3H

4H

6H

7H

OEH

10H

24H

Transport signaled an EOM. The datain the
buffer constitutes the end of a TSDU.

The CDB normal receive queueisfull. No more
normal receive buffers can be posted until some
already posted are returned.

The reference does not correspond to any
alocated CDB.

Thelocal client aborted the connection or the
connection was closing at the client's request
when the buffer was posted.

The remote Transport service aborted the
connection.

The buffer was returned due to a connection
timeout abort.

Zero was specified for theref_list_count field.

The maximum length of aRECEIVE_ANY buffer is 64K bytes. Depending on
Transport Layer configuration, buffers may be posted prior to establishment of the

connection.

Networ k User's Guide and Reference

Chapter 12 213

RECEIVE_DATA Transport Virtual Circuit

RECEIVE_DATA

RECEIVE_DATA posts one or more receive buffers for a specific connection. The
buffers store data received from the Transport normal delivery service. This service
is governed by the regular transport flow control mechanisms.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; [* TH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* inlout */
unsi gned short | engt h; /* in/out */

} DATA BLOCK;

typedef struct vc_rb {

RB_COVIVON header ;

unsi gned char i so_reason_code; /* output */

unsi gned char reserved[15] ;

unsi gned short reference; /* in/lout */

unsi gned char gos; /* unused */

unsi gned short buf _I en; /* output */

unsi gned char num bl ks; /* input */

DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */
} VC_RB

214 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit RECEIVE_DATA

Input Arguments

ref erence
I dentifies the CDB for which the receive buffer is being posted.

num bl ks
The number of separate buffers to receive data. Each buffer isablock of contiguous
memory that is defined by thedat a_bl k_l i st[i].address and
data_bl k_list[i].length arguments.

data_bl k_list[i].address
The address pointing to the start of the ith buffer.

data_blk_list[i].length
The length of theith buffer. The total length of datain all blocks cannot exceed 64K
bytes.

Responses

Output Arguments

i so_reason_code
The I SO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

reference
I dentifies the CDB that used the buffer.

buf | en
The total length of the data received in the buffer(s) posted by this command.

data_bl k_list[i].address
The address for the start of the ith buffer.

data_blk_list[i].length
Thisis meaningful only for the last posted buffer that received data. Thisvalue isthe
length of the data in that buffer.

Network User's Guide and Reference Chapter 12 215

RECEIVE_DATA

Transport Virtual Circuit

Response Codes
OK_RESPONSE

OK_EOM_RESP

NO_RESOURCES

UNKNOWN_REFERENCE

OK_CLOSED_RESP

OK_WITHDRAW_RESP

REM_ABORT

LOC_TIMEOUT

Additional Information

1H

3H

4H

6H

7H

9H

OEH

10H

All the buffers pointed to by the request block are
filled with data and no EOM was signaled.

Transport signaled an EOM. The datain the
buffers constitutes the end of a TSDU.

The CDB normal receive queueisfull. No more
normal receive buffers can be posted until some
already posted are returned.

The reference does not correspond to any
allocated CDB.

Thelocal client aborted the connection or the
connection was closing on client request when
the buffer was posted.

Zero or more normal receive buffers were
withdrawn from Transport service.

The remote Transport service aborted the
connection.

The buffer was returned due to a connection
timeout abort.

Thetotal length of all receive buffers pointed to by asingle RECEIVE_DATA
request block must not exceed 64K bytes. Depending on Transport Layer
configuration, buffers may be posted prior to establishment of the connection.

216 Chapter 12

Programming the Transport Layer

Transport Datagram RECEIVE_DATAGRAM

RECEIVE_DATAGRAM

RECEIVE_DATAGRAM posts areceive buffer on behalf of a TSAP to receive data
from atransport datagram. The datagram buffer queues are maintained separately
from the VC buffer queues.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of datagramrb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em [* 41H */
unsi gned char opcode; [* 12H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* inlout */
unsi gned short | engt h; /* in/out */
} DATA_BLOCK;
typedef struct datagramrb {
RB_COVIVON header ;
unsi gned char reserved[4] ;
unsi gned | ong ta_buffer_addr; /* inlout */
unsi gned char gos; /* input */
unsi gned short buf _I en; /* output */
unsi gned char num bl ks; /* input */
DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */

} DATAGRAM RB;

Network User's Guide and Reference Chapter 12 217

RECEIVE_DATAGRAM Transport Datagram

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes for a datagram transfer. The local TSAP selector must be loaded into the
buffer. The length of the local TSAP selector and NSAP selector must not exceed
the limit specified in the system configuration, otherwise an addressing error occurs.
Thelocal TSAP selector value (which must be nonzero) specifies the TSAP that
posts the buffer. The buffer is placed in a queue reserved only for that TSAP
selector. Any datagrams received with a destination TSAP selector matching the
TSAP selector of the queue can passiits data to the buffer.

Theremote TSAP isirrelevant and isignored. The remote address of the data link
entity associated with the remote Transport service, and the remote NSAP selector
and TSAP selector fields are not input parameters. However, the fields must be
reserved to the proper length to buffer the source TSAP address of areceived
datagram.

See also: TSAP address buffer structure, page 180

qos If the low order bit of the high order nibble is set, the Transport service verifies the
checksum (if present) of the incoming datagram.
num bl ks

The number of separate buffers to be received. Each buffer isablock of contiguous
memory defined by thedat a_bl k_l|ist[i].address and
data_bl k_list[i].length arguments.

data_bl k_list[i].address

The address pointing to the start of the ith buffer.

data_blk_list[i].length

218

The length of theith buffer, which must be nonzero. Thetotal length of datain all
blocks cannot exceed the maximum NSDU size minus a small overhead for the
transport datagram header.

Chapter 12 Programming the Transport Layer

Transport Datagram RECEIVE_DATAGRAM

Responses

Output Arguments

ta_buffer_addr
An address pointing to the returned buffer containing the remote NSAP address and
TSAP selector that specify the remote address of the received datagram.

See also: TSAP address buffer structure, page 180

buf | en

The total length of the data received in the buffers posted by this command.
data_bl k_list[i].address

The address descriptor for the start of the ith buffer.
data_blk_list[i].length

The length of the data in the last posted buffer to receive data. Thisvalueisonly

meaningful for that buffer.

Response Codes

OK_RESPONSE 1H The buffers pointed to by the request block are
completely filled with data.
OK_EOM_RESP 3H The buffer contains data to the end of the

datagram. A reguest block can return data from
no more than one transport datagram.

NO_RESOURCES 4H There are no more resources to manage the
buffers posted for the TSAP.
ILLEGAL_ADDRESS 1AH An addressing error was detected.

Network User's Guide and Reference Chapter 12 219

RECEIVE_EXPEDITED_DATA Transport Virtual Circuit

RECEIVE_EXPEDITED_DATA

RECEIVE_EXPEDITED DATA posts expedited receive buffers for a specific
connection. The buffers store data received from the transport expedited data
delivery service. Expedited data bypasses the normal transport flow control
mechanisms.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cq_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; [/* segnment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; /* OAH */
unsi gned short response; /* initialize to 0 */
} RB_COWDON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* inlout */
unsi gned short | engt h; /* in/out */
} DATA_BLOCK
typedef struct vc_rb {
RB_COVIVON header ;
unsi gned char i so_reason_code; /* output */
unsi gned char reserved[15] ;
unsi gned short reference; /* inlout */
unsi gned char gos; /* unused */
unsi gned short buf _I en; /* unused */
unsi gned char num bl ks; /* input */
DATA_BLOCK data_bl k_list[1];
} VC_RB;

220 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit RECEIVE_EXPEDITED_DATA

Input Arguments

ref erence
Identifies the CDB for which the expedited receive buffer is being posted.

num bl ks
Must be set to 1 because the expedited datawill be sent in asingle TPDU.

data_bl k_|ist[0].address
The address descriptor for the start of the buffer.

data_blk_list[0].length
Set to 16: the maximum amount of expedited data that can be sent is 16 bytes.

Responses

Output Arguments

i so_reason_code
Set to 14 if the request block was returned due to a remote abort; otherwise set to 0.

reference
Identifies the CDB that used the buffer.

data_bl k_|ist[0].address
The address for the start of the buffer containing the received expedited data.

data_blk_list[0].length
The length of the received data.

Response Codes

OK_EOM_RESP 3H The buffer isreturned with data from asingle
expedited TPDU.
NO_RESOURCES 4H The CDB expedited receive queueisfull. No

more expedited receiver buffers can be posted
until some that are posted are returned.

UNKNOWN_REFERENCE 6H The reference does not correspond to an allocated
CDB.

OK_CLOSED_RESP H Thelocal client aborted the connection.

BUFFER_TOO_SHORT 8H The length of the first buffer block posted with
the request isless than 16.

OK_WITHDRAW_RESP 9H Zero or more expedited receive buffers were
withdrawn from Transport service.

ILLEGAL_REQ OCH Expedited service not available.

Network User's Guide and Reference Chapter 12 221

RECEIVE_EXPEDITED_DATA Transport Virtual Circuit

REM_ABORT OEH The remote Transport service aborted the
connection.
LOC TIMEOUT 10H The connection terminated on a timeout.

Additional Information

Each receive buffer can hold data from only one expedited TPDU. Datafrom two or
more such TPDUs are not combined into one buffer even if the datawould fit. The
buffers for each request must be at least 16 bytes long to accommaodate the longest
expedited data TPDU that can be received.

Depending on Transport Layer configuration, expedited receive buffers may be
posted prior to establishment of the connection.

The queues of expedited receive buffers are maintained separately from the queues of
normal receive buffers. More than one expedited data buffer may be posted at a
time, but only one may be sent or received at atime.

222 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

SEND_CONNECT_REQUEST

SEND_CONNECT_REQUEST

SEND_CONNECT_REQUEST requests a connection to a fully specified remote

TSAP address. This performs an active open of the VC. The CDB must already be
allocated with an OPEN command. Data may be sent and received in the client data

buffer.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWDON;

typedef struct conn_req_rb {

short
char

char

char

char
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
short
| ong
short
short
short
char
short
| ong
char

} CONN_REQ RB;

Networ k User's Guide and Reference

rb_comon {

reserved[2] ;

| engt h; /* of conn_req_rb */

user _i d; /* cqg_create_comm.user */

resp_port; /* OFFH */

mai | box token */
rb_seg_tok; /* segment token */
subsyst em /* 40H */

1H */

initialize to 0 */

resp_nbox; /*

opcode; /*
response; /*

header ;

i so_reason_code
reserved[4] ;
ack_del ay_esti mate;
ta_buffer_addr;
persi stence_count;
abort _timeout;
reference

qos;

negot _opti ons;
client_data_buf_addr;
client_data_l en

Chapter 12

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

out put

out put

nput
nput
nput
nput
nput
nput

n/ out
n/ out

*/

*/

*/
*/
*/
*/
*/
*/

*/
*/

223

SEND_CONNECT_REQUEST Transport Virtual Circuit

Input Arguments
ta_buffer_addr

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes of aVC connection. The local TSAP selector must be fully specified, i.e.,
must have either zero length or nonzero length and nonzero value. The remote NSAP
address must be fully specified. The remote TSAP selector must be fully specified.
The length of the remote net address and local or remote TSAP selectors must not
exceed the limits specified in the system configuration, otherwise an addressing error
will occur. Multiple connections to, or from, asingle TSAP address can be
requested.

See also: TSAP address buffer structure, page 180

persi st ence_count

The number of timesto retry an active connection attempt upon connection refusal,
before giving up. Connection refusal means that the remote system refuses the
connection, not that it failed to respond to the connection attempt. A connection
refusal typically occurs when the remote system is not listening (it hasn't executed a
passive open). Values may be:

Value M eaning

0 The configured value will be used

OFFFFH Retry forever

1 to OFFFEH This value will be used as the persistence count

abort _ti meout

The retransmission timeout before aborting the connection, in 51-millisecond time
units. Values may be the same asfor per si st ence_count .

This specifies how long the Transport service will continue to transmit without
receiving aresponse. This applies to both the connection establishment and data
transfer phases. During the connection establishment phase, this controls how long a
connection request will be retransmitted when there is no response. During the data
transfer phase, this controls how long datais retransmitted when thereis no ACK.
This does not apply to the connection termination phase; the timeout for connection
termination is a Transport service configuration parameter.

reference

qos

224

| dentifies the CDB this request appliesto.

Quiality of service: the only possible parameter is the transmit priority, for underlying
subnetworks that support it. Thisisavalueintherange Oto 15, where O isthe
highest priority. For iNA 960 Data Link 802.3 subnets, set gqos to zero; transmit
priority is not supported.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit SEND_CONNECT_REQUEST

negot _options
Specifies various classes of service and additional options requested for negotiation
on this connection. If negot _opti ons is zero, default options are used, as specified
by the def _negot _opt i ons configuration parameter. Otherwise, break the value
into four nibbles and specify options, where nibble 1 isthe least significant:

Nibble Value Meaning

1 0 use 7-bit sequence numbers
2 use 31-hit sequence numbers
2 4 classfour service
3 0 no expedited service, do checksums
1 expedited service, do checksums
2 no expedited service, no checksums
3 expedited service, no checksums
4 8 client specified (nondefault) negotiation options

These are valid values for this argument:

Value Meaning

8342H Expedited data; no checksum; transport class 4; 31-hit sequence numbers

8340H Expedited data; no checksum; transport class 4; 7-bit sequence numbers

8242H No expedited data; no checksum; transport class 4; 31-bit sequence
numbers

8240H No expedited data; no checksum; transport class 4; 7-bit sequence
numbers

8142H Expedited data; checksum; transport class 4; 31-bit sequence numbers

8140H Expedited data; checksum; transport class 4; 7-bit sequence numbers

8042H No expedited data; checksum; transport class 4; 31-bit sequence numbers

8040H No expedited data; checksum; transport class 4; 7-bit sequence numbers

client_data_buf_addr
An address descriptor that identifies a contiguous 64-byte buffer. If thisvalueis
zero, no buffer is allocated and there is no client data sent with the request. Also, no
datawill be received. To receive any data that may be returned with the response but
not send any data, specify an addressand set cl i ent _dat a_| en to zero. If the
addressis not 0, a 64-byte buffer is assumed to be allocated. To send client data with
the request, the data (0 to 32 bytes) must be loaded in the buffer.

client_data_l en
The length of the client datain the client data buffer. The range of valid valuesis0
to 32. If thelengthis0, no datawill be sent.

Network User's Guide and Reference Chapter 12 225

SEND_CONNECT_REQUEST Transport Virtual Circuit

Responses

Output Arguments

i so_reason_code

82H if the connection negotiation failed. Thisindicates the request was accepted by
the remote Transport service, but the local Transport service aborted the connection
because the options the remote Transport service negotiated were unacceptable.

If the connection was rejected by the remote Transport service, i so_r eason_code
indicates the reason for the rejection. Otherwise, i so_r eason_code isO.

See also: Table 12-3 on page 185

ack_del ay_estimate

0 isaways returned.

client_data_buf_addr

If the connection attempt was successful and a buffer was allocated, the request block
will return in the referenced buffer any data (at most 32 bytes) contained in the
connection confirmation received from the remote Transport service. If the
connection attempt was rejected by the remote Transport service and the local
Transport service gives up, the request block returns up to 64 bytes of any data
contained in the disconnect request from the remote Transport service. The received
data overwrites any data in the buffer that was sent in the original connection request.

client_data_ |l en

The length of any data received in response to the connection request.

Response Codes
OK_RESPONSE 1H The request was accepted by the remote

Transport service and the connection is now
established in the data transfer phase.

UNKNOWN_REFERENCE 6H The client-specified reference does not

correspond to an allocated CDB.

OK_CLOSED_RESP H Thelocal client aborted the connection while the

connection request was outstanding.

BUFFER _TOO _LONG OAH Theclient_data len field was greater than 32

226

bytes. The connection attempt was aborted.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit SEND_CONNECT_REQUEST

ILLEGAL_REQ OCH Invalid negotiation options were specified. The
connection attempt was aborted.
LOC_TIMEOUT 10H The request was unanswered and the

retransmission timer timed out which aborted the
connection attempt.

DUP_REQ 14H Thisis a duplicate connection request; a request
was already in progress for this reference or the
connection was already established.

CONN_REJECT 16H The connection attempt was rejected by the
remote Transport service and the local Transport
service gave up after the persistence count
expired.

NEGOT_FAILED 18H The request was accepted by the remote
Transport service but the local Transport service
aborted the connection because of a negotiation
failure at the local end.

ILLEGAL_ADDRESS 1AH Invalid local or remote TSAP address specified,
or the NSAP address length exceeds
max_net_addr_len, or the local or remote TSAP
selector exceeds the max_tsap id_len parameter
that was specified at system configuration.

NETWORK_ERROR 1CH A Network layer error at the transport/network
interface. This usually means that the specified
NSAP addressis unreachable.

Additional Information

The SEND_CONNECT_REQUEST command actively requests a connection to a
fully specified remote TSAP address using specified SO connection negotiation
options. It is assumed that alocal CDB was allocated and a reference was returned to
the application as aresult of a previous OPEN command. The reference returned
previously is specified in the current command to request the connection using the
corresponding allocated CDB.

Network User's Guide and Reference Chapter 12 227

SEND_CONNECT_REQUEST Transport Virtual Circuit

228

The SEND_CONNECT_REQUEST command can actively request a connection
either immediately after a previous OPEN was issued, or after one of the connection
listening commands, AWAIT_CONNECT_REQUEST_TRAN or
AWAIT_CONNECT _REQUEST CLIENT, isissued. Inthelatter case, the current
command isvalid only if the connection is still listening for a connection request and
has not started the connection handshake with the remote Transport service. When a
SEND_CONNECT_REQUEST command overrides one of the
AWAIT_CONNECT_REQUEST _ commands, the request block for the overridden
command is returned to the client with a response code of ODH.

The client may ask that the Transport service regquest the connection a specified
number of timesin spite of arejection by the remote transport service. Thisretry
count isthe per si st ence_count specified in the request block by the client.
When the number of retries exceeds the count, the local Transport service gives up
and indicates connection rejection to the client. Persistence isinvoked only if the

I SO reason code returned in the remote Transport service's rejection TPDU is one of
these:

Value Meaning

0 Unspecified

2 No one listening at remote TSAP selector
81H TSAP congestion

88H Connection refused

Persistence is not applied in the case where the local client decides to close the
connection while transport is requesting the connection.

Abort _ti meout isusedif thereisno reply at all to the connection request.

This request block is returned to the client either upon detection of an error, upon
connection establishment, or upon rejection when local Transport service gives up.
Thus, the receipt of this request block by the client serves as a connection
confirmation or failure indication to the client.

Chapter 12 Programming the Transport Layer

Transport Virtual Circuit SEND_DATA /SEND_EOM_DATA

SEND _DATA/SEND_EOM_DATA

SEND_DATA and SEND_EOM_DATA reguest transmission of the datain the
buffers using the normal delivery service of the specified VC connection. The
normal delivery service uses the regular flow control mechanisms. The
SEND_EOM_DATA command specifies that the end of data in the buffers marksthe
end of the transport service data unit (TSDU).

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; /* 5H SEND_DATA
6H SEND_EOM DATA */
unsi gned short response; /* initialize to 0 */
} RB_COWDON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* input */
unsi gned short | engt h; /* input */
} DATA_BLOCK;
typedef struct vc_rb {
RB_COVIVON header ;
unsi gned char i so_reason_code; /* output */
unsi gned char reserved[15] ;
unsi gned short reference; /* input */
unsi gned char gos; /* unused */
unsi gned short buf _I en; /* unused */
unsi gned char num bl ks; /* input */
DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */
} VC_RB

Network User's Guide and Reference Chapter 12 229

SEND_DATA / SEND_EOM_DATA Transport Virtual Circuit

Input Arguments

reference
I dentifies the CDB this request appliesto.
num bl ks
The number of separate buffers, where each buffer isablock of contiguous memory
containing data to send. Each buffer is defined by the
data_blk_list[i].address anddata_bl k_list[i].|ength arguments.
data_bl k_list[i].address
The address pointing to the start of the ith buffer.
data_blk_list[i].length
The length of the datain the ith buffer. Thetotal length of datain all blocks cannot
exceed 64K bytes.

See also: Table 12-4 on page 231
Responses

Output Arguments

i so_reason_code
The I SO disconnect reason code, if the connection was aborted by the remote
Transport service during the connection establishment phase. Otherwise, the value of
this argument is 0.

See also: Table 12-3 on page 185

Response Codes

OK_RESPONSE 1H All the buffersin the request have been
successfully transmitted and acknowledged by
the remote Transport service.

NO_RESOURCES 4H The CDB send queueisfull. No more request
blocks can be queued until some already queued
SEND request blocks are returned.

UNKNOWN_REFERENCE 6H The CDB corresponding to this reference is not
allocated.
OK_CLOSED_RESP H Thelocal client aborted the connection and the

gueued request block is returned without
transmitting its data.

ILLEGAL_REQ OCH The connection was closing or was already
closed.

230 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit SEND_DATA /SEND_EOM_DATA

REM_ABORT OEH The remote Transport service aborted the
connection.
LOC_TIMEOUT 10H Thelocal Transport service timed out waiting for

aPDU acknowledgement. If thiserror occurs,
the local Transport service disconnects the
connection.

Additional Information

Any number of the blocks may have zero length; there may also be zero blocks. A
send request with zero bytes of datais allowed. If itisaSEND_EOM_DATA, then
an end-of-message (in 1SO called EOT) signal will be sent. If itisaSEND_DATA,
itisanull message, and no datawill be sent. The request block will be returned an
indeterminate amount of time later, but always after the previous send request is
returned and before any subsequent send requests are returned.

The sum of the lengths of all buffers pointed to by asingle SEND_DATA or
SEND_EOM_DATA request block is limited to a maximum value that depends on
the sequence number format, maximum TPDU size, and maximum NSDU size. The
maximum NSDU size is determined only at runtime. Table 12-4 showsthe
maximum total buffer length for various maximum TPDU sizes that can be
negotiated. Themax_t pdu_si ze valueisapower of 2 (27 = 128 bytes).

Table 12-4. Maximum Total Buffer Lengths

Negotiated Sequence Number Format
max_tpdu_size 7-Bit 31-Bit

7 (128 bytes) 15K* 64K

8 (256 bytes) 62K* 64K

9 (512 bytes) 64K* 64K

10 (1024 bytes) 64K 64K

11 (2048 bytes) 64K 64K

* For maximum TPDU size values of 7, 8, or 9 with 7-bit sequence
numbering, the values shown in Table 12-4 are approximate. The
actual values depend on the maximum NSDU size determined by the
Transport Layer at run time.

Network User's Guide and Reference Chapter 12 231

SEND_DATA / SEND_EOM_DATA Transport Virtual Circuit

232

An application can make a SEND_DATA request (depending on the Transport Layer
configuration) anytime after the initial OPEN command isissued. The Transport
service accepts SEND_DATA requests even if the connection has not yet entered the
established state. When a connection is established, the Transport service transmits
the corresponding transmit buffers in the order in which they are queued. Since the
Transport service aways attempts to send full TPDUS, it copies information from
transmit buffersinto the TPDU without concern for the buffer or block boundaries. It
never copies information from more than one request block into the same TPDU. In
addition, the Transport service guarantees that an EOM not only indicates the end of
amessage, but also the end of a TPDU.

The remote receive buffer sizes need not match the transmit buffer sizes; datais
delivered aslong asthere is any receive buffer space at the remote node.

Chapter 12 Programming the Transport Layer

Transport Datagram

SEND_DATAGRAM

SEND_DATAGRAM

SEND_DATAGRAM requests transmission of the datain the buffers using the
transport datagram service. This service is connectionless and gives no assurance of
delivery of the data. Data can be lost or misordered.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWON;

typedef struct data_bl ock {

unsi gned
unsi gned
} DATA_BLOCK;

typedef struct datagramrb {

short
char

char

char

char
short

| ong
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
| ong
char
short
char

DATA_BLOCK
} DATAGRAM RB;

Networ k User's Guide and Reference

rb_comon {

reserved[2] ;

/* of datagramrb */
/* cqg_create_comm.user */

mai | box token */

| engt h;

user _i d;

resp_port; /* OFFH */
resp_nbox; /*
rb_seg_t ok;

subsyst em /* 41H */
opcode; /* 11H */
response;

addr ess; /* input

| engt h; /* input
header ;

reserved[4] ;
ta_buffer_addr; /*
gos; /*
buf _I en; /*
num bl ks; /*

data_bl k_list[1]

; /*

/* segnent token */

/* initialize to 0 */

*/
*/

i nput */

i nput */
unused */

i nput */

[num bl ks] */

Chapter 12 233

SEND_DATAGRAM Transport Datagram

Input Arguments
ta_buffer_addr

gos

An address pointing to a TSAP address buffer that specifies the local and remote end
nodes for a datagram transfer. This buffer must be loaded with addressing
information specifying the local (source) TSAP selector, the remote NSAP address,
and remote (destination) TSAP selector of the datagram. The TSAP address must be
fully specified. The lengths of the remote net address and local or remote TSAP
selectors must not exceed the limits specified in the system configuration, otherwise
an addressing error occurs.

See also: TSAP address buffer structure, page 180

The low order nibble specifies the priority class used by underlying subnets that
support it., | EEE 802. 4 token bus). Therangeis0-15, with 0 being the
highest priority. For iNA 960 Data Link 802.3 subnets, set this nibble to zero;
transmit priority is not supported.

The low order hit of the high order nibble specifies whether to do a checksum on the
datagram (1 = do checksum). The next higher bit of the high order nibble specifies
whether to query the Network service for the maximum NSDU size or to use the
default value (1 = query).

num bl ks

The number of separate buffersto send. Each buffer isablock of contiguous
memory that is defined by thedat a_bl k_l i st[i].address and
data_bl k_list[i].length arguments.

data_bl k_list[i].address

The address descriptor for the start of the ith buffer.

data_blk_list[i].length

The length of theith buffer. The length must be nonzero. The total length of datain
all blocks cannot exceed the maximum NSDU size minus a small overhead for the
transport datagram header.

Responses

Output Arguments

234

None

Chapter 12 Programming the Transport Layer

Transport Datagram SEND_DATAGRAM

Response Codes

OK_RESPONSE 1H The data has been queued for transmission by the
Network Layer.

BUFFER _TOO_SHORT 8H The buffer length (dat a_bl k_list[i].1ength)
was set to 0.

BUFFER_TOO_LONG OAH The data length exceeds the maximum NSDU
size.

ILLEGAL_ADDRESS 1AH The local TSAP selector or remote TSAP address

exceeds the configuration limits, or an address
error was detected by the underlying Network
Layer.

Additional Information

Transport datagram service does not provide a fragmentation/reassembly capability.
Therefore, the length of the data cannot exceed the maximum network service data
unit (NSDU) size provided by the underlying service. If the Network Layer does not
provide a segmentation/reassembly service, the NSDU size is bounded by subnet data
length restrictions. If the Network Layer does provide segmentation/reassembly
capabilities, the NSDU size may be larger than the size imposed by subnet data
length restrictions. In any implementation, the maximum NSDU size is determined
by the Network Layer configuration.

The destination TSAP address can be either a single station, multicast, or broadcast
NSAP address. The multicast or broadcast NSAP address conventions are

transparent to the Transport Layer. They are dependent on the underlying network
service used.

Network User's Guide and Reference Chapter 12 235

SEND_EXPEDITED_DATA Transport Virtual Circuit

SEND_EXPEDITED_DATA

SEND_EXPEDITED_DATA requests transmission of up to 16 bytes of datain the
buffer using the expedited delivery service of the specified connection. More than
one expedited data buffer may be posted at atime, but only one may be sent at a
time.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of vc_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 40H */
unsi gned char opcode; /* 9H */
unsi gned short response; /* initialize to 0 */
} RB_COWDON;
typedef struct data_bl ock {
unsi gned | ong addr ess; /* input */
unsi gned short | engt h; /* input */
} DATA_BLOCK
typedef struct vc_rb {
RB_COVIVON header ;
unsi gned char i so_reason_code; /* output */
unsi gned char reserved[15] ;
unsi gned short reference; /* input */
unsi gned char gos; /* unused */
unsi gned short buf _I en; /* unused */
unsi gned char num bl ks; /* input */
DATA BLOCK data_bl k_list[1]; /* [num_bl ks] */
} VC_RB;

236 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit SEND_EXPEDITED_DATA

Input Arguments

ref erence
I dentifies the CDB this request appliesto.

num bl ks
Set to 1; only one buffer can be sent with this command.

data_bl k_|ist[0].address
The address descriptor for the start of the buffer.

data_blk_list[0].length
The length of the data in the buffer. The length must be greater than 0 and less than
or equal to 16.

Responses

Output Arguments

i so_reason_code
14 if the request block was returned due to a remote abort; otherwise set to 0.

Response Codes

OK_RESPONSE 1H The expedited data in the buffer was
acknowledged.
NO_RESOURCES 4H The CDB expedited send queue isfull. No more

expedited send request blocks can be queued at
this time until some already queued expedited
send request blocks are returned.

UNKNOWN_REFERENCE 6H The specified reference does not correspond to an
allocated CDB.

OK_CLOSED_RESP H Thelocal client aborted the connection.

BUFFER _TOO_SHORT 8H The buffer isempty. Either num_blksis O or the
block length is 0.

BUFFER_TOO_LONG OAH A data length greater than 16 bytes was specified,
or num_blksis greater than 1. The transmission
was aborted.

ILLEGAL_REQ OCH Either the service to transmit the expedited data

isnot available for this connection, or the
connection was closing or was already closed.

Network User's Guide and Reference Chapter 12 237

SEND_EXPEDITED_DATA Transport Virtual Circuit

REM_ABORT OEH The remote Transport service aborted the
connection.
LOC_TIMEOUT 10H Transport timed out without receiving expedited

acknowledgement of the data.

Additional Information

With this service, the expedited data is transmitted immediately and is guaranteed to
arrive before any data currently in the process of being transmitted. Expedited data
transmission is not subject to flow contral; it jumps the flow control queue.

In preconfigured versions of iNA 960, buffers may be posted prior to establishment
of the connection. Thisis dependent on Transport Layer configuration.

238 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

STATUS

STATUS

STATUS queries for information about the VVC services provided by the Transport
Layer, and if requested, for information pertaining to a specific VC connection. The
status information is returned immediately.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWON;

typedef struct data_bl ock {

unsi gned
unsi gned
} DATA_BLOCK;

typedef struct vc_rb {

short
char

char

char

char
short

| ong
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
short
char
short
char

DATA_BLOCK

} VC RB;

Networ k User's Guide and Reference

rb_comon {

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*

resp_nbox; /*
rb_seg_tok; /*

of vc_rb */
cg_create_comm.user */
OFFH */

mai | box token */
segment token */

subsyst em /* 40H */

opcode; /* OEH/

response; /* initialize to 0 */
addr ess; /* inl/out */

| engt h; /* in/out */

header ;

i so_reason_code
reserved[15] ;
reference

gos;

buf _I en;
num bl ks;
data_bl k_Iist[1]

/* output */

/* input */
/* unused */
/* output */
/* input */

Chapter 12 239

STATUS Transport Virtual Circuit

Input Arguments

ref erence
I dentifies the CDB for which statusis being requested. If thisvalueis zero, only
connection-independent status information isreturned. If thisvalueis nonzero, both
connection-independent status and information pertaining to the specified connection
isreturned.

num bl ks
Set to 1; only one buffer is posted with this command.

data_bl k_|ist[0].address

The address descriptor for the start of the status buffer.
data_blk_list[0].length

The length of the buffer, which must be enough to hold all the returned information.

For connection-independent status (r ef er ence = 0), the length is 48 bytes plus the
configured size of atransport address (t a_buf f er _si ze isa Transport Layer
configuration parameter).

For complete status (r ef er ence is nonzero), the length is 144 bytes plus the value of
ta_buffer_size.

Responses

Output Arguments

i so_reason_code
The I SO reason code received in the disconnect request.

See also: Table 12-3 on page 185

buf | en
The length of the status data being returned.

data_bl k_|ist[0].address
The address descriptor for the start of the status buffer. The buffer contains
connection-independent parameters at the start of the buffer. 1f connection-
dependent status was requested, the connection-dependent fields follow the
connection-independent ones. In multi-byte fields, the least significant byte appears
first in the buffer. The parameter fields are defined later in this description.
data_blk_list[0].length
The length of data returned in the buffer.

240 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

STATUS

Response Codes
OK_RESPONSE

UNKNOWN_REFERENCE

OK_CLOSED_RESP
BUFFER_TOO_SHORT

REM_ABORT

LOC_TIMEOUT

Additional Information

1H

6H

7H
gH

OEH

10H

The buffer contains the requested status
information or no buffer was posted.

The specified (nonzero) reference does not
correspond to an allocated CDB.

The referenced connection was closed.

The allocated buffer was too short for the
requested status information.

The connection was terminated by a remote
disconnect request.

The connection terminated on a timeout.

If no buffer is posted to receive the status information (num bl ks =0,

data bl k_list[0].address =0,0rdata_bl k_list[0].|ength=0)andthe
referenced connection (if any) is not closed, the command request block is returned
with an OK_RESPONSE. [f the referenced connection is closed, the command
request block is returned with an OK_CLOSED_RESP and the disconnect reason

code.

The information returned by the command is shown below, divided into structures of
connection-independent and connection-dependent fields. Some of the returned
values are the same as Transport Layer objects that can be read or set with NMF

commands.

See also: READ_OBJECT and SET_OBJECT commands, Chapter 14,
Object definitions, Appendix C

Networ k User's Guide and Reference

Chapter 12 241

STATUS

Transport Virtual Circuit

Connection-Independent Status Parameters

struct con_i
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

b

cur_nmax_cdbs

ndependent _status {

short
short
short
short
short
char
char
short
| ong
| ong
short
short
short
char

cur _max_cdbs

num cdbs;

def _persist;

def _abort _to;

def _negot _opti ons;
max_t pdu_si ze
reserved

cl osi ng_abort _to;
def _retran_to
mn_retrans_tine;
max_w ndow_si ze_n;
max_w ndow si ze_e;
mn _credit;
reserved[20] ;

The total number of connection databases (CDBs) configured into the iNA 960
Transport Layer (same as object 4003H).

num cdbs

The number of CDBs currently allocated (same as object 4006H).

def _persi st

Default per si st ence_count used if the application specifies a persistence value of
0inaSEND_CONNECT_REQUEST request block.

def _abort _to

Default abort timeout value in 51-millisecond units, used if the application specifies
anabort _timeout valueof 0inaSEND CONNECT REQUEST or
AWAIT_CONNECT_REQUEST_TRAN or
AWAIT_CONNECT_REQUEST_CLIENT request block.

242 Chapter 12

Programming the Transport Layer

Transport Virtual Circuit STATUS

def _negot _opti ons
Default negotiation options requested if the application specifiesanegot _opti ons
value of 0intherequest block of a SEND_CONNECT_ REQUEST,
AWAIT_CONNECT_REQUEST_TRAN, or
AWAIT_CONNECT REQUEST CLIENT command. These valuesarevalid:

Value Meaning

8342H Expedited data; no checksum; transport class 4; 31-hit sequence

8340H Expedited data; no checksum; transport class 4; 7-bit sequence

8242H No expedited data; no checksum; transport class 4; 31-bit sequence

8240H No expedited data; no checksum; transport class 4; 7-bit sequence

8142H Expedited data; checksum; transport class 4; 31-bit sequence

8140H Expedited data; checksum; transport class 4; 7-bit sequence

8042H No expedited data; checksum; transport class 4; 31-bit sequence

8040H No expedited data; checksum; transport class 4; 7-bit sequence
max_t pdu_si ze

Maximum TPDU size requested at the local node, specified as the exponent in a

power of 2 (range of 2 to 13).

cl osing_abort _to
The abort timeout in 51-millisecond units, used when closing a connection.

def _retran_to
Theinitial value of the default retransmit timeout in 51-millisecond units, used during
the connection establishment phase.

mn_retrans_tine
The minimum retransmission timeout in 51-millisecond units. Thisisalower bound
on the retransmission timeout used during the data transfer and connection
termination phases.

max_w ndow_si ze_n
The maximum flow control window size that can be reported to aremote node if
normal (7-bit) sequence numbers are used for a connection.

max_w ndow_si ze_e
The maximum flow control window size that can be reported to aremote node if
extended (31-bit) sequence numbers are used for a connection.

mn_credit
The minimum flow control credit that can be reported to aremote node. If 0, the
window may be closed. If nonzero, the window cannot close.

Network User's Guide and Reference Chapter 12 243

STATUS

Transport Virtual Circuit

Connection-Dependent Status Parameters

244

struct con_dependent _status {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

Chapter 12

char
char
short
short
short
short
| ong
short
short
short
char
char
char
char
char
char
short
short
| ong
| ong
| ong
| ong
| ong
| ong
short
short
short
char
char
char
char
short
short
short
char
char

st at e;

reserved

| oc_ref;

remref;

persi st;

abort _to_hi;
retran_to_dw
reserved

pendi ng_rec_data
rcv_buf _rej _cnt;
cbt g_buf _cnt;
pcbqg_buf _cnt;
exp_chbt g_buf _cnt;
exp_pcbg_buf _cnt;
cl ose_buf cnt;
reserved

loc _credit;
remcredit;

| oc_ack_no

rem ack_no

next _transmt;

hi ghest _sent;

| oc_exp_ack_no;
rem exp_ack_no

| oc_subseq_no
rem subseq_no
client_options
cl ass_opti ons;
opti ons;

conn_nax_t pdu_si ze;

qos;

max_t pdu_dat a_|I en;
reserved
max_nsdu_si ze
reserved[26] ;

cdb_ta_buffer[ta_buffer_len];

Programming the Transport Layer

Transport Virtual Circuit STATUS

State

The current state of the connection. Only the low order nibbleis significant, with

these possible values:

Value State Description

0 Listen Thelocal node iswaiting for an incoming connection request
from aremote node.

1 CrSent Thelocal node transmitted a connection request and is
waiting for connection confirmation from the remote node.

2 AckWait A listening node received a connection request, sent its
confirmation, and is now awaiting the completion of the 3-
way handshake.

3 Estab The connection is established and in the data transfer phase.

4 Closing The application initiated a disconnect of the VC; the node is
awaiting confirmation of the disconnect request from the
remote node.

5 Closed The CDB is closed to communication, but has not been
released, pending an application request block to give
notification of the format status of the connection.

6 Open The CDB was allocated using an OPEN command, but no
subsequent requests have been made on this connection.

7 Calling A transient internal state that should be ignored.

8 CrRevd A listening node received a connection request and sent an
indication to the client by returning an
AWAIT_CONNECT_REQUEST_CLIENT request block;
the connection is awaiting the response.

9 RefWait The connection is closed, but the reference is being timed out
before the CDB is deleted.

| oc_ref

The connection reference maintained by the local station. Thisis the value specified

inther ef er ence field of request blocks associated with the connection.

remref

The connection reference maintained by the remote station. During the lifetime of

the connection, the two connected nodes identify the connection for each other using

thisand thel oc_ref value.
persi st

The connection refusal per si st ence_count used by the connection.

abort _to_hi
The high-order word of the 32-bit abort timeout value used by the connection.

retran_to_dw
The current retransmission timeout value, in 100 millisecond units.

Network User's Guide and Reference Chapter 12 245

STATUS Transport Virtual Circuit

pendi ng_rec_data
The number of undelivered bytesin the last received TPDU.

rcv_buf _rej _cnt
The number of times a TPDU was discarded due to alack of receive buffers.
cbt g_buf _cnt
The number of SEND_EOM_DATA request blocks currently posted to this
connection.

pcbqg_buf _cnt
The number of RECEIVE_DATA request blocks currently posted to this connection.

exp_chbt g_buf _cnt
The number of SEND_EXPEDITED_DATA request blocks currently posted to this
connection.

exp_pcbg_buf _cnt
The number of RECEIVE_EXPEDITED_DATA request blocks currently posted to
this connection.

cl ose_buf _cnt
The number of CLOSE or AWAIT_CLOSE request blocks currently posted to this
connection.

| oc_credit
The current flow control credit the local station can report to the remote station. |If
min_credit =0andl oc_credit =0, thereare no normal receive bufferslocally
posted and the local station'swindow isclosed. If min_credit <> 0and
| oc_credit =0, there are no normal receive bufferslocally posted and the local
station's window cannot be closed, so received packets are lost.

remcredit
The current flow control credit the remote node has reported to the local node. If itis
0, the remote node has closed the window and no normal data can be transmitted at
thistime.

| oc_ack_no
The next normal-data TPDU sequence number the local hode expects from the
remote node.

rem ack_no
The (highest sequence number + 1) of a TPDU the local node transmitted that was
acknowledged by the remote node.

next _transmt
The sequence number of the next TPDU to be sent.

hi ghest _sent
The (highest sequence number + 1) of atransmitted TPDU. The TPDU may not yet
be acknowledged.

246 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit STATUS

| oc_exp_ack_no
The sequence number of the last expedited TPDU the local node received that it
acknowledged.

rem exp_ack_no
The sequence number of the next expedited data TPDU that can be transmitted by the
local node.

| oc_subseq_no
The next sub-sequence number the local node will transmit in an acknowledgement
TPDU.

rem subseq_no
The last sub-sequence number received in an acknowledgement from the remote
node.

client_options
The negotiation options requested by the client, with the same values described
earlier for thedef _negot _opt i ons field.

cl ass_options
The class of services (should be 4) and sequence humber format negotiated for the
connection. These are nibbles 1 and 2 of the optionsin the
SEND_CONNECT_REQUEST command:

Nibble Value Meaning

1 0 Use 7-bit sequence numbers
2 Use 31-bit sequence numbers
2 4 Class four service
options

The I SO expedited services and checksum options negotiated on the connection:

Value Meaning

0 No expedited service, do checksums
1 Expedited service, do checksums
2 No expedited service, no checksums
3 Expedited service, no checksums

conn_nax_t pdu_si ze
The maximum TPDU size finally negotiated for the connection. Thisis an exponent
of apower of 2 (range 7 to 13).

qos The low order nibble defines the network-transparent priority class that may be used
by the underlying subnet. The range is 0-15, with 0 being the highest priority. For
iNA 960 Data Link 802.3 subnets, transmit priority is not supported.

max_t pdu_data_| en
The maximum length of application data that can be in a data TPDU of the maximum
negotiated TPDU size and maximum configured NSDU size.

Network User's Guide and Reference Chapter 12 247

STATUS Transport Virtual Circuit

max_nsdu_si ze
The maximum size of an NSDU that the connection can pass to the underlying local
Network Layer.

cdb_ta_buffer[ta_buffer_Ien]
A copy of the transport address (TA) buffer maintained by the connection. The
length is variable and depends on the address field length defined in the buffer.

See also: TSAP address buffer structure, page 180

248 Chapter 12 Programming the Transport Layer

Transport Datagram WITHDRAW_DATAGRAM_RECEIVE_BUFFER

WITHDRAW_DATAGRAM_RECEIVE_

BUFFER

WITHDRAW_DATAGRAM_RECEIVE_BUFFER requests that datagram receive

buffers posted for alocal TSAP selector be withdrawn and returned to the client.

Only buffersthat have not yet received data are withdrawn. Buffers with data
received by Transport service are returned with the data intact, as described for the

RECEIVE_DATAGRAM command.

This command may be used to withdraw datagram receive buffers at any time. The
request block is returned after the receive buffers are returned.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of datagramrb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 41H */
unsi gned char opcode; /* 13H */
unsi gned short response; /* initialize to 0 */
} RB_COWVON
typedef struct data_bl ock {
unsi gned | ong addr ess; /* unused */
unsi gned short | engt h; /* unused */
} DATA_BLOCK
typedef struct datagramrb {
RB_COVIVON header ;
unsi gned char reserved[4] ;
unsi gned | ong ta_buffer_addr; /* input */
unsi gned char gos; /* input */
unsi gned short buf _I en; /* inlout */
unsi gned char num bl ks; /* unused */
DATA BLOCK data_bl k_list[1]; /* unused */

} DATAGRAM RB;

Networ k User's Guide and Reference

Chapter 12

249

WITHDRAW_DATAGRAM_RECEIVE_BUFFER Transport Datagram

Input Arguments

ta_buffer_addr
An address pointing to a TSAP address buffer. The local TSAP selector must be
loaded into the buffer. This command withdraws one or more receive datagram
buffers (if any) posted for that local TSAP selector. If no buffers are posted for the
local TSAP selector, the request block is returned indicating that no buffers were
withdrawn (buf _I en = 0). Theremote NSAP address and TSAP selectors are not
input parameters.

See also: TSAP address buffer structure, page 180

gos Set to 0.

buf _I'en
The total number of bytes to withdraw. Enough posted receive datagram buffers for
the TSAP are withdrawn to satisfy the byte specification. If the last buffer withdrawn
has more bytes than required to satisfy the specification, the entire buffer is
withdrawn. Thus, the original buffers posted are returned intact and more bytes may
be returned than specified. Any buffers posted after the byte specification is satisfied
will remain posted.

If buf _I en =0, or there are no buffers posted, this command is a null operation; zero
bytes are returned. If there are fewer bytes posted than specified, all posted buffers
arereturned. If buf _| en = OFFFFH, al buffers for the connection will be
withdrawn.

Responses

Output Arguments

buf | en
The exact number of bytesin all withdrawn buffers returned to the application. If the
value of thisargument is OFFFFH, all buffers for the connection were returned.

Response Codes

OK_WITHDRAW_RESP 9H Zero or more datagram receive buffers were
withdrawn from Transport service.
ILLEGAL_ADDRESS 1AH An addressing error was detected.

250 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

WITHDRAW_EXPEDITED_BUFFER

WITHDRAW_EXPEDITED_BUFFER

WITHDRAW_EXPEDITED BUFFER requests that expedited receive buffers
posted for a specific connection be withdrawn and returned to the client. Only
buffers that have not yet received data are withdrawn. Buffers with data received by
the Transport service are returned to the client with the data intact as described for
the RECEIVE_EXPEDITED_DATA command.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWON;

typedef struct data_bl ock {

unsi gned
unsi gned
} DATA_BLOCK;

typedef struct vc_rb {

short
char

char

char

char
short

| ong
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
short
char
short
char

DATA_BLOCK

} VC RB;

Networ k User's Guide and Reference

rb_comon {

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*

resp_nbox; /*
rb_seg_tok; /*

of vc_rb */
cg_create_comm.user */
OFFH */

mai | box token */
segment token */

subsyst em /* 40H */

opcode; /* OBH */

response; /* initialize to 0 */
addr ess; /* unused */

| engt h; /* unused */

header ;

i so_reason_code
reserved[15] ;
reference

gos;

buf _I en;
num bl ks;
data_bl k_|ist[1]

/* unused */

/* input */
/* unused */
/* inlout */
/* unused */
; /* unused */

Chapter 12 251

WITHDRAW_EXPEDITED_BUFFER Transport Virtual Circuit

Input Arguments

ref erence
| dentifies the CDB for which the expedited data buffer is being withdrawn. 1f no
buffers are posted for the connection, the request block is returned indicating that no
buffers were withdrawn (buf _I en = 0).

buf _l'en
Specifies the total number of bytes to withdraw. Enough buffers posted for the
connection are withdrawn to satisfy the byte specification. If the last buffer
withdrawn has more bytes posted than required to satisfy the specification, the entire
buffer iswithdrawn. Thus, the original buffers are returned intact, and more bytes
may be returned than specified. Any buffers posted after the byte specification is
satisfied will remain posted. If buf _I en = 0, or there are no buffers posted, this
command isanull operation. If there are fewer bytesin posted buffers than specified
here, all posted buffers are returned.

If buf _I en = OFFFFH, all expedited buffers for the connection will be withdrawn.
Responses

Output Arguments

buf | en
The sum of the lengths of all buffers that were withdrawn and returned to the client.
The value OFFFFH indicates that all buffers for the connection were withdrawn.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.
OK_WITHDRAW_RESP 9H Zero or more expedited receive buffers were

withdrawn from Transport service.

Additional Information

This command may be used to withdraw expedited receive buffers at any time. Itis
especially useful to reclaim resources that are no longer needed. This request block
isreturned following the return of all expedited receive buffersto the client.

252 Chapter 12 Programming the Transport Layer

Transport Virtual Circuit

WITHDRAW_RECEIVE_BUFFER

WITHDRAW_RECEIVE_BUFFER

WITHDRAW_RECEIVE_BUFFER requests that normal receive buffers previously
posted for a specific connection be withdrawn and returned to the client. Only
buffers that have not yet received data are withdrawn. Buffers with data received by
the Transport service are returned to the client with the data intact as described for

the RECEIVE_DATA command.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWON;

typedef struct data_bl ock {

unsi gned
unsi gned
} DATA_BLOCK;

typedef struct vc_rb {

short
char

char

char

char
short

| ong
short

RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
short
char
short
char

DATA_BLOCK

} VC RB;

Networ k User's Guide and Reference

rb_comon {

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*

resp_nbox; /*
rb_seg_tok; /*

of vc_rb */
cg_create_comm.user */
OFFH */

mai | box token */
segment token */

subsyst em /* 40H */

opcode; /* 8H */

response; /* initialize to 0 */
addr ess; /* input */

| engt h; /* input */

header ;

i so_reason_code
reserved[15] ;
reference

gos;

buf _I en;
num bl ks;
data_bl k_|ist[1]

/* unused */

/* input */
/* unused */
/* inlout */
/* unused */
; /* unused */

Chapter 12 253

WITHDRAW_RECEIVE_BUFFER Transport Virtual Circuit

Input Arguments

ref erence
Identifies the CDB for which the normal receive buffers are being withdrawn. If no
buffers are posted for the connection, the request block is returned indicating that no
buffers were withdrawn (buf _I en = 0).

buf _l'en
Specifies the total number of bytes to withdraw. Enough posted buffers are
withdrawn to satisfy the byte specification. If the last buffer withdrawn has more
bytes posted than required to satisfy the specification, the entire buffer is withdrawn.
Thus, the original buffers posted are returned intact, and more bytes may be returned
than specified. Any buffers posted after the byte specification is satisfied will remain
posted. If buf _I en =0, or there are no buffers posted, this command is a null
operation. If there are fewer bytes posted than specified, al posted buffers are
returned. If the value of this argument is OFFFFH, all buffers for the connection will
be withdrawn.

Responses

Output Arguments

buf | en
The sum of the lengths of all buffers that were withdrawn and returned. The value
OFFFFH indicates that all buffers for the connection were withdrawn.

Response Codes

UNKNOWN_REFERENCE 6H The reference does not correspond to any
allocated CDB.
OK_WITHDRAW_RESP 9H Zero or more normal receive buffers were

withdrawn from Transport service.

Additional Information

This command may be used to withdraw normal buffersat any time. It isespecially
useful when the client wishes to reclaim resources that are no longer needed.

Depending on the size and availability of posted buffers for this connection, this
command may withdraw fewer, more, or the same number of bytes specified in the
buf _I en input parameter. Buffers are withdrawn until either no more buffers
remain posted, or until the length specification is met.

oo

254 Chapter 12 Programming the Transport Layer

Programming the Data Link Layer

This chapter describes the facilities of the iINA 960 Data Link Layer and the subnets
supported by it.

Overview of the Data Link Layer

The Data Link Layer includes two application interfaces: the External Data Link
(EDL) directly accesses the SO data link Control Layer, and the RawEDL is anon-
ISO interface for lower-level functions.

The Data Link Layer transforms the raw transmission and reception facility of the
subnet-dependent Physical Layer into a communications channel that appears error-
free to the Network Layer. The Data Link Layer accomplishes this by assembling
raw data packets taken from the Physical Layer into frames that are transmitted
sequentially to the Network Layer. Conversely, the Data Link Layer takes frames
from the Network Layer and disassembles them into raw data packets for
transmission to the destination node. In addition, the Data Link Layer performs CRC
checks on packets received from the Physical Layer.

The Data Link Layer provides a datagram service that does not ensure accurate
reception of data. Reliable communications over the network is provided by the
Transport Layer VC service.

A subnet is a collection of equipment and physical media comprising a homogeneous
environment where end systems (nodes) are interconnected for communications
purposes. A subnet usually has a common physical interconnection technology, data
link protocol, and data link address mechanisms. Thisis especially true for Local
Area Networks (LANs) where the nodes have these characteristics in common:

» The physical medium and methodology to access the medium
e Theaddressing format
* A well-understood data link message (or frame) format

Subnets may be individually interconnected by internetwork routers designed to
resolve the incompatibilities between networks so that messages can be exchanged
between nodes residing on separate subnets.

Network User's Guide and Reference Chapter 13 255

Individual subnets interconnected by one or more routers collectively define what is
referred to as a Network. The Data Link Layer and the protocol used to control its
functionality reside at the lowest level of the Network end node addressing hierarchy.

See also: Addressing and network topology, Chapter 8

The Data Link Layer maintains statistics that monitor the performance of a network
node and record data error rates. Theinformation is stored as abjects that can be
manipulated by the iNA 960 Network Management Facility.

See also: NMF commands, Chapter 14

The External Data Link (EDL) Interface

The Data Link Layer control software implements Class 1 of the Logical Link
Contral (LLC) sublayer described in the IEEE 802.2 standard, and the Media Access
Control sublayer described in the IEEE 802.3 standard. The |EEE 802.3 standard
supports the Carrier-Sense Multiple Access with Collision Detection (CSMA/CD)
media access method.

The EDL commands are an interface to the Data Link control software. EDL
commands circumvent the Transport and Network Layers and access the services of
the DataLink Layer directly. The application that uses EDL commands must
sufficiently duplicate the routing and data integrity functions of the Transport and
Network Layersto ensure successful transmission and reception of data using the
DataLink Layer.

The RawEDL Interface

256

In addition to the EDL commands, iNA 960 provides an extended set of EDL
routines called RawEDL. Thisnon-1SO interface enables an application to send and
receive Ethernet packets directly to the network, bypassing the normal 802.3
interface provided by iNA 960. Theinterfaceis co-resident with the normal EDL
routines and enables full use of iINA 960's EDL, Network, and Transport interfaces.

The RawEDL interface addresses two classes of applications. Thefirstisan
application that implements a non-1SO protocol stack, such as TCP/IP, XNS, Novell
or DECnet, while retaining the functionality of iNA 960's |SO Transport. Examples
of this are a multiple-protocol gateway, or an application that lets Intel OpenNET
networking software co-exist with a TCP/IP stack.

Chapter 13 Programming the Data Link Layer

The second use is for an application that needs low-level accessto traffic on the
Ethernet without having to program alow-level driver for the 82586 chip. Examples
of this are a network monitor or bridge application. Such an application needs to
work in promiscuous mode, receiving al network traffic regardless of destination
address. The standard iNA 960 EDL interface would not alow such access.

An application that does protocol analysis aso could use RawEDL commands. Such
an application is normally interested in frames from only afew stations. RawEDL
can filter out all unwanted frames, so the host CPU need not be bothered with
unwanted traffic. Applications that want to receive all traffic can still do so.

Standard EDL commands return receive buffers as soon as aframeis received.
RawEDL can accumulate received frames in the buffers and return them only when
full. This further minimizes interaction with the main CPU, particularly when large
buffersare used. A header isinserted in front of each received frame to allow the
host to separate them again.

For protocol analysis purposes, it may not be necessary to record the entire frame
since only the protocol header will suffice. The RawEDL receive function can
automatically truncate frames longer than a specified maximum length.

INA 960-Supported Hardware Subnets and Protocols

TheiNA 960 software supports the IEEE 802.3 (Ethernet) specification.
Preconfigured LAN subnets of thistype are available for this Intel hardware:

» 82586/82596 LAN Coprocessor (LP 486, SBC 486/133SE, SBC 486/166SE)
e 82595TX (SBC P5090 for Multibus 11, EtherExpress PRO/10 card)
» DEC 211A3 (SBCP5200 for Multibus 11, various PC1 cards)

e SBC 186/530 Multibus || module

e MIX 386/560 Multibus || module

e SBC552A module

» SBX 586 module

e MIX 560 Multibus Il Ethernet COMM puter

« PCL2and PCL2A Ethernet cards

e EtherExpress 16 Ethernet card

e EWENET module

e Multibus Il subnet

The subsystem code in Data Link request blocks specifies the subnet type.

Network User's Guide and Reference Chapter 13 257

LSAP Identifiers

EDL applications communicate using link service access points (LSAPs). An LSAP
selector identifies the LSAP at which a specific task or client process requests or
receives Data Link services. Each receiving client isidentified by a destination
LSAP (DLSAP) sdlector, and each sending client isidentified by a source LSAP
(SLSAP) selector.

When a packet is sent, the destination process is identified by the DL SAP selector
field in the first data buffer. Before a destination process can receive a packet, its
DL SAP selector must be included in alist of the active L SAP selectors for the
destination datalink. The DataLink Layer only receives packets targeted for LSAP
selectors on its active list.

The EDL CONNECT command adds an L SAP selector to the active list. Any
incoming packet containing that L SAP selector is routed to that process. The
DISCONNECT command removes an L SAP selector from the active list when it is
no longer needed. The maximum number of L SAP selectors that may be active at
onetimeis specified in the subnet configuration.

EDL applications arbitrarily choose L SAP selectors that are a multiple of 4, in the
range 4 through OFCH. Applications cannot use L SAP selector 8; it isreserved for
the NMF. LSAP selector OFEH isused by theiNA 960 Network Layer.

The RawEDL interface uses L SAP selector 63H; an application uses this selector to
specify a RawEDL command.

258 Chapter 13 Programming the Data Link Layer

Figure 13-1illustrates how L SAPs identify applications (user tasks) and iNA 960
subsystems to the Data Link Layer.

\ \ \
Transport | User || | || User User User || |
layer | task | task task e task |
1 \ \ \
|LSAP =63H | LSAP =4H LSAP=12H ... LSAP = OFCH|
\ yvv
Data Link
Network NMF user
4 interface
A
LSAP = OFEH LSAP = 08H
Data Link interface

{

Data Link
controller

$ Ethernet

Figure13-1. Datalink Interface

W-2957

Network User's Guide and Reference Chapter 13 259

Data Link Commands

Table 13-1 liststhe EDL and RawEDL commands. The commands in this chapter
are specified by the subsyst emand opcode fields in the request block header,
rb_common. Where the commands have the same name, the opcode is the same for
both interfaces; specify the RawEDL interface with LSAP selector 63H. Detailed
descriptions of each command follow this section. Each command description lists
which fields are input and output arguments. Initialize reserved fields and unused
fieldsto 0. The structures are provided as typedefs in the Data Link layer'sinclude
files.
See also: Using the cq_ System Calls, Chapter 10;

Include Files, Chapter 10;

Programming with Structures, Chapter 10

Use EDL commands to perform these functions in your application:

e To establish and terminate the connection between the application and an LSAP,
use CONNECT and DISCONNECT.

* To send and receive data packets through the Data Link and over the network,
use TRANSMIT and POST_RPD.

e Todynamically change some configuration of the Data Link and the 82586
controller, use CONFIGURE, IA_SETUP, MC_ADD, and MC_REMOVE.

Use RawEDL commands to perform these functions:

* To establish and terminate the connection between the application and RawEDL,
use CONNECT and DISCONNECT.

e Tosend and receive data packets, use RAW_TRANSMIT,
RAW_POST_RECEIVE, and FLUSH.

» Todynamically change some configuration of the Data Link and the 82586
controller, use CONFIGURE, MC_ADD, and MC_REMOVE.

e Toget timinginformation, use READ_CLOCK.

260 Chapter 13 Programming the Data Link Layer

Table 13-1. Data Link Commands

EDL RawEDL Opcode Description

CONFIGURE CONFIGURE 88H Sends configuration information to the
data link controller

CONNECT CONNECT 82H Establishes a connection between a

process and an LSAP, assigning a
specific LSAP selector

DISCONNECT DISCONNECT 83H Terminates the connection for a
specified LSAP selector
FLUSH 81H Returns RawEDL receive buffers that
have collected any data
IA_SETUP 89H Sets the Ethernet address of the local
node
MC_ADD MC_ADD 87H Adds a multicast address to the list of
addresses the controller listens to
MC_REMOVE MC_REMOVE 8AH Removes a multicast address from the
controller's list
POST_RPD 85H Posts one or more receive buffers to
collect incoming data
RAW_POST RECEIVE 7FH Posts a receive buffer to collect
incoming data
RAW_TRANSMIT 7EH Transmits data
READ_CLOCK 80H Returns the current value of the local
network timer
TRANSMIT 84H Transmits a data packet

Network User's Guide and Reference Chapter 13 261

Table 13-2 lists the subsystem IDs you can use at the Data Link layer. Specify the
appropriate value in the susbsyst emfield of Data Link request blocks.

Table 13-2. DataLink Subsystem I1Ds

Table Subsystem

Data Link for:

20H Boards with 82586 component, including first MIX560 board in the system
21H SBX 586 board, EWENET module, or EtherExpress 16
22H Second MIX560 board in the system
23H Third MIX560 board in the system
24H 82595TX component, EtherExpress PRO/10, SBC P5090 PC-compatible board
25H DEC 21143 component, SBC P5200 PC-compatible boards, all versions
2FH Multibus Il subnet
Table 13-3 lists all response codes that can be returned from Data Link commands in
an iEEE 802.3 subnet. The command descriptions list response codes appropriate to
the individual command.
Table 13-3. |EEE 802.3 Response Codes
Literal Code Description
E_ERROR 0O0OH Failure: reason not specified or unknown
OK_RESPONSE 01H Execution with no errors; also implies that the end of the
packet has not been returned
E_CONFIG_COUNT 02H Number of configuration information bytes exceeds the

maximum for the subnet

OK_EOP_RESPONSE 03H

OK end_of_packet response, implies error free execution
and the return of the end of the packet

E_INSUFF_RCV_BUF 04H

Insufficient receive buffers

E_TX_SIZE_EXCEEDED 06H

Size of the transmit packet exceeds the configured
maximum

E_OPCODE

08H

Invalid opcode value for Data Link commands

E_LSAP_NOT_EXIST 0AH

Connect/Disconnect error. LSAP does not exist

E_SUBSYSTEM OCH Incorrect subsystem code

E_ADDR_COUNT OEH Number of address bytes exceeds the maximum of six
E_NOT_OK 10H The 82586 reports that command execution is not OK
E_MC_NOT_EXIST 12H The multicast address to be removed does not exist
E_BUFFER_COUNT 14H Buffer count exceeds the maximum of 4
E_NO_RESOURCES 16H Out of resources

262 Chapter 13 Programming the Data Link Layer

E_ZERO_LSAP 18H LSAPS with value zero are not allowed

Network User's Guide and Reference Chapter 13 263

CONFIGURE EDL and RawEDL

CONFIGURE

The CONFIGURE command configures the 82586 data link controller. The
configuration information is contained in a segment of memory that may be up to 12
byteslong. The actual configuration datais part of the request block.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of configure_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 88H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct configure_rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short count ; /* input */
unsi gned char configure[12]; /* input */

} CONFI GURE_RB;

Input Arguments

count Thesizein bytes of the configuration information. This can be up to 12 bytesfor the
| EEE 802.3 subnet.

configure
An array of configuration data. These 12 bytes are defined by the argument field of
the 82586 LAN coprocessor CONFIGURE command. The first byte of thisarray is
the one that contains the Byte Count field.

See also: 82586 and 82596, Intel Microcommunications data book

264 Chapter 13 Programming the Data Link Layer

EDL and RawEDL CONFIGURE

Responses

Output Arguments

None

Response Codes

OK_RESPONSE O1H Successful execution of the command.

E CONFIG_COUNT 02H The count argument value exceeds the maximum
of 12 for IEEE 802.3 or 30 for IEEE 802.4.

E SUBSYSTEM OCH Incorrect subsystem code.

Additional Information

These restrictions on the configuration data applies to boards based on the 82586
(including the sBX 586):

» Theaddress alocation bit is always reset.

e The save bad packet option is always OFF. If turned ON in a command, it will
be reset.

* The Ethernet address or data link address length must always be 6 bytes long.

» TheDataLink performs packet padding operations. The application must not
alter the minimum packet length parameter.

Network User's Guide and Reference Chapter 13 265

CONNECT EDL and RawEDL

CONNECT

Asan EDL command, CONNECT provides a connection between an application and
the LSAP identified by the specified L SAP selector.

To specify the RawEDL command, use L SAP selector 63H. This does not conflict
with concurrent use of EDL by other iNA 960 processes since 63H is not amultiple
of 4. Although the RawEDL receive process does not filter on L SAP selectors, the
CONNECT command is still required for house-keeping purposes.

For either version of the command, a connection must be made before any receive
regquest blocks are posted for the LSAP.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of connect_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 82H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct connect_rb {
RB_COVIVON header ;
unsi gned char | sap_sel ; /* input */
unsi gned char reserved; /* input for RawEDL */
unsi gned char port; /* input */
} CONNECT_RB;

Input Arguments

| sap_sel

266

For EDL, thisisan arbitrary L SAP selector for the connection. Use a multiple of 4;
Oisinvalid. Do not use an LSAP selector value bound in the subnet configuration to
one of the other iINA 960 layers. LSAPsOFEH or 08H. For RawEDL, set| sap_sel
to 63H.

Chapter 13 Programming the Data Link Layer

EDL and RawEDL CONNECT

reserved
Thisfield is meaningful only inthe RawEDL CONNECT command. In that context
it specifies the filter option to use. The RawEDL receive process uses these valuesto
determine which data to receive, rather than filtering on an LSAP selector:

Value Meaning

0 Filter on source address: the source address must match one of the
specified multicast addresses

1 Filter on destination address: the destination address must match one of the
specified addresses or it must be an Ethernet multicast or broadcast
address

2 Logical AND of 0 and 1: both source and destination must match

3 Logical OR of 0 and 1: either source or destination must match

4 No special filtering other than the 82586 hardware: thiswould be used in

anon-monitor application such as a bridge or application-implemented
protocol stack

port Firmware-dependent. For Intel hardware this value must always be OFFH.

Responses

Output Arguments

None

Response Codes

OK_RESPONSE O1H Successful execution of the command.
E LSAP NOT_EXIST OAH The specified L SAP does not exist.

E SUBSYSTEM OCH Incorrect subsystem code.

E ZERO LSAP 18H A null LSAP selector was specified.
E NO_RESOURCES 16H The Data Link isout of resources.

Network User's Guide and Reference Chapter 13 267

CONNECT EDL and RawEDL

Additional Information

If an LSAP has been established with the CONNECT command and there are receive
buffers posted for the LSAP (using the POST_RPD command), any received packet
that identifies this LSAP is placed in the buffers and the buffers are returned to their
owners. Only nonzero L SAP selectors are accepted for processing. If the LSAP
specified in this command is already active, a new association replaces the old one.

Only a configurable maximum number of L SAPs may be active at onetime. The
CONNECT command isignored if the maximum number of connections are
currently established.

268 Chapter 13 Programming the Data Link Layer

EDL and RawEDL DISCONNECT

DISCONNECT

DISCONNECT terminates the specified connection. If the connection does not exist,
the command isignored and an error is returned.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of disconnect_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 83H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
t ypedef struct disconnect_rb {
RB_COVIVON header ;
unsi gned char | sap_sel ; /* input */
unsi gned char reserved

} DI SCONNECT_RB;

Input Arguments

| sap_sel
The LSAP selector identifying the connection to terminate. Use amultiple of 4; Ois
invalid. Do not use an LSAP selector value bound in the subnet configuration to one
of the other iINA 960 layers. LSAP OFEH or 08H. To specify the RawEDL
DISCONNECT command, set | sap_sel to 63H.

Responses

Output Arguments

None

Network User's Guide and Reference Chapter 13 269

DISCONNECT

EDL and RawEDL

Response Codes
OK_RESPONSE

E SUBSYSTEM

E ZERO LSAP

E LSAP NOT_EXIST

Additional Information

01H
OCH
18H
OAH

Successful execution of the command.
Incorrect subsystem code.
A null LSAP selector was specified.

The specified LSAP selector identifiesa
nonexistent LSAP.

Once a connection is disconnected, all receive buffers and receive request blocks
posted with the L SAP being disconnected are returned to the application owning
them. The application must ensure that the number of buffers posted does not exceed
four times the number of receive request blocks.

The RawEDL application should issue a DISCONNECT before terminating. The
RAWEDL command operates the same as the EDL command; it returns empty and
partialy filled receive buffers. The response code on these request blocks will be

indeterminate.

270 Chapter 13

Programming the Data Link Layer

RawEDL

FLUSH

FLUSH

The FLUSH command returns the current receive request block (issued with a
RAW_POST_RECEIVE) if it has captured any data. This enables the application to
examine data by polling for partially-filled buffers. Only the opcode and

subsyst emfields are relevant; all other request block fields are ignored.

Request Block

typedef struct rb_comon {

unsi gned short

unsi gned char

sel ector

unsi gned char

sel ector

sel ector

unsi gned char

unsi gned char

unsi gned short
} RB_COWON;

typedef struct flush_rb {
RB_COMVON
} FLUSH_RSB;

Responses

Output Arguments

None

Response Code
OK_RESPONSE 01H

Networ k User's Guide and Reference

reserved[2] ;

| engt h; /* of flush_rb */

user _i d; /* cqg_create_comm.user */
resp_port; /* OFFH */

resp_nbox; /* mail box token */

rb_seg_tok; /* segment token */
subsyst em /* Table 13-2 */

opcode; /* 81H */
response; /* initialize to 0 */
header ;

Successful execution of the command.

Chapter 13 271

IA_SETUP EDL

IA_SETUP

The lA_SETUP (Individual Address Setup) command sets the Ethernet address for a
node, overriding the Ethernet address set up by the hardware at system initialization.

|:| Note

IA_SETUP isnot supported by all subnets. For instance, the 595 Subnet driver
returns an E_OPCODE error in response to an |A_SETUP command.

Request Block

t ypedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of ia_setup_rb */
sel ect or user _i d; /* cqg_create_conmmuser */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnent token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 89H */
unsi gned short response; /* initialize to 0 */
} RB_COWON
typedef struct ia _setup rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short count; /* input */
unsi gned char addr ess[6] ; /* input */

} 1A SETUP_RB;

Input Arguments

count Thesizein bytes of the Ethernet address; this value must be 6.

addr ess
The new six-byte Ethernet address.

272 Chapter 13 Programming the Data Link Layer

EDL IA_SETUP

Responses

Output Arguments

None

Response Codes

OK_RESPONSE O1H Successful execution of the command.
E SUBSYSTEM OCH Incorrect subsystem code.
E ADDR_COUNT OEH The number of bytesin the Ethernet address

exceeds the maximum of 6.

Network User's Guide and Reference Chapter 13 273

MC_ADD EDL and RawEDL

MC_ADD

The MC_ADD command adds a multicast address to the data link multicast address
list. These are addresses for which the controller will receive incoming data packets,
in addition to broadcast packets and packets addressed to the address of thisnode. In
a network-monitor or bridge application, this command can be used to specify a
station to listen to.

An address of FFFFFFFFFFFFH puts this node in promiscuous mode (receiving all
network data packets) at the RawEDL level. The 82586 controller must also be
programmed as promiscuous, using the CONFIGURE command.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of nc_add_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 87H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct nc_add_rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short count ; /* input */
unsi gned char nc_address|[6] ; /* input */
} MC_ADD RB

Input Arguments

count
The size in bytes of the multicast address; this number must be 6.

nc_addr ess
The six-byte multicast address. The least significant bit of the first (most significant)
byte must be 1, to specify the address is multicast.

274 Chapter 13 Programming the Data Link Layer

EDL and RawEDL MC_ADD

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H The address is successfully added to the multicast
address list.

E SUBSYSTEM OCH Incorrect subsystem code.

E ADDR_COUNT OEH The number of bytesin the Ethernet address
exceeds the maximum of 6.

E NO_RESOURCES 16H The Data Link is out of resources.

Additional Information

Each address must be added with a separate command. The iNA 960 Data Link
performs perfect multicast filtering, whereas the 82586 controller performs imperfect
multicast filtering. The maximum number of multicast addresses that can be active at
one timeis determined by the subnet configuration.

See also: Broadcast and multicast addresses, 82596 User's Manual or
32-Bit LAN Component User's Manual

Network User's Guide and Reference Chapter 13 275

MC_REMOVE EDL and RawEDL

MC_REMOVE

The MC_REMOVE command removes a single multicast address from the list of
active multicast addresses for a given datalink. Each address must be 6 bytes long.
Removing the address FFFFFFFFFFFFH results in the station being non-
promiscuous (not listening to all messages) at the RawEDL level. An address of all
zeroes clears the multicast list.

Request Block

typedef struct rb_comon {

unsi gned short reserved|[2] ;
unsi gned char | engt h; /* of nc_renove_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 8AH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct nt_renove_rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short count ; /* input */
unsi gned char nc_address|[6] ; /* input */

} MC_REMOVE_RB;

Input Arguments

count
The size in bytes of a multicast address; this number must be 6.

nc_addr ess
The six-byte multicast address. If the addressisall zeroes, the multicast list is
cleared.

276 Chapter 13 Programming the Data Link Layer

EDL and RawEDL MC_REMOVE

Responses

Output Arguments

None

Response Codes

OK_RESPONSE 01H The address is successfully removed from the
active multicast addresslist.

E SUBSYSTEM OCH Incorrect subsystem code.

E ADDR_COUNT OEH The number of bytesin the Ethernet address
exceeds the maximum of 6.

E MC NOT_EXIST 12H The specified multicast address was never added.

Network User's Guide and Reference Chapter 13 277

POST_RPD EDL

POST RPD

POST_RPD posts a single receive request block together with up to four buffers.
Thisreceive request block and any associated buffers are kept by the data link
software until the request block buffers are filled with incoming packets intended for
the process that posted the buffers. An LSAP must be established with the
CONNECT command before receive request blocks and their associated buffers may
be posted for that L SAP.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of post_rpd_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 85H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct post_rpd_rb {
RB_COVIVON header ;
unsi gned char | sap_sel ector; /* input */
unsi gned char reserved
unsi gned short buf _count; /* input */
unsi gned short return_count; /* output */
unsi gned short byte_count[4]; /* inlout */
unsi gned | ong buf _| oc[4]; /* inlout */

} POST_RPD RB;

Input Arguments

| sap_sel ector

278

The LSAP selector used to identify the connection. This parameter must match a
value returned in a previous CONNECT command. Only data packets destined for
this LSAP selector will be passed to the buffers posted for it by an application. Once
the buffers are full, the receive request block and the associated buffers are returned
to the application owning them.

Chapter 13 Programming the Data Link Layer

EDL POST_RPD

buf _count
The number of buffers associated with the receive request block. The value may
range from Oto 4.

byt e_count
An array of four valueswherebyt e_count [i] isthe sizein bytes of the buffer
specified by buf _I oc[i]. For thefirst buffer, byt e_count must be at least 17

See also: The returned output below

buf _| oc
An array of four addresseswherebuf _| oc[i] pointsto the start of bufferi .

Responses

Output Arguments

retur n_count
The size in bytes of the information returned in this request block (up to four buffers),
less the length of header information. If the returned packet fits in the buffers of this
request block, or if this request block contains the beginning of a packet split between
multiple request blocks, thenr et ur n_count is 14 |less than the total number of
bytes returned in this request block. The byt e_count values contain the actual
length. The 14 bytesisthe Media Access Control (MAC) header at the beginning of
the first buffer.

When an incoming packet is split between more than one request block,
return_count inthe second and subsequent request blocks is the accurate number
of bytes of data returned in the buffers of that request block.

byt e_count
An array of four valueswhere byt e_count [i] isthe sizein bytes of information
returned in the buffer specified by buf _I oc[i]. Inthefirst request block returned,
this contains the full size of the first returned buffer, including the 14 bytes of the
MAC header (destination and source addresses, | SO control information, and
application data). Thisargument field is not updated for subsequent buffersif any
were posted by this command; ther et ur n_count accurately specifies the size of
subsequent receive buffers.

buf _I oc
The addresses of the returned data buffers.

Network User's Guide and Reference Chapter 13 279

POST_RPD EDL

Response Codes

OK_RESPONSE O1H Successful execution of the command; end of
packet not returned.

OK_EOP_RESPONSE 03H Successful execution and the end of packet is
returned.

E SUBSYSTEM OCH Incorrect subsystem code.

E LSAP NOT_EXIST OAH The specified LSAP selector identifiesa
nonexistent LSAP.

E BUFFER_COUNT 14H The buf_count field exceeds the maximum of 4.

Additional Information

Whenever a packet isreceived by EDL, its LSAP selector associates it with areceive
request block and any buffers that were posted by an application for the LSAP
identified by that destination L SAP selector.

A maximum of one |EEE 802 receive packet may be passed to an application for
every receive request block (and application buffers) posted. If the received packet is
larger than the buffer space available in one receive request block, more than one
request block must be posted. If the packet islarger than the total space available for
all receive request blocks currently posted, the packet is discarded. There must be
sufficient buffer space available (through one or more request blocks) to hold at |east
one packet of the size expected.

If areturned packet is split between more than one request block, the packet header
information is only added to the beginning of the first buffer in the first request block.
The first buffer of subsequent request blocks for that packet contain only application
data.

280 Chapter 13 Programming the Data Link Layer

EDL POST_RPD

Application Data Buffers

Thefirst buffer returned with a receive regquest block contains destination and source
addresses, 1SO control information, and data. 1t must be at least 17 byteslong, plus
the length of received data. The second and all subsequent buffers (to a maximum of
4) contain only data. The last buffer returned may contain fewer data bytes than the
buffer is capable of holding. The format of the buffersis shown below:

typedef struct first_receive_buffer {

unsi gned char destination_addr[6];

unsi gned char source_addr[6] ;

unsi gned short information_l en

unsi gned char destination_| sap_sel ector
unsi gned char source_| sap_sel ector;
unsi gned char i so_cnd,

unsi gned char data[1];

} FI RST_RECEI VE_BUFFER ;

typedef struct next_receive_ buffer {
unsi gned char data[1];
} NEXT_RECEI VE_BUFFER ;

Where:

desti nati on_addr
The Ethernet address of the node that received the packet.

sour ce_addr
The Ethernet address of the node that sent the packet.

information_| en
The length in bytes of the information in the packet (excluding header)
received from the datalink. The valueisidentical to the
return_count field specified in the request block, if the packet's data
fitsinto the buffers of a single request block. Thisvalue isthe number
of bytesreceived following thei nf or mat i on_I en field.

destination_| sap_sel ector
The LSAP selector for the Data Link entity that received the packet.

sour ce_l sap_sel ect or
The LSAP selector for the Data Link entity that sent the packet.

iso_cmd 03H for the 82586 component and 82586-based boards.
dat a An array of bytesthat contains the actual data.

Network User's Guide and Reference Chapter 13 281

RAW_POST RECEIVE RawEDL

RAW_POST RECEIVE

The RAW_POST_RECEIVE command acts as a garbage collector at the Data Link
level. All packets not otherwise claimed by the OSl Network Layer or other EDL
applications are sent to thisinterface.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;

unsi gned char | engt h; /* raw_post _receive_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* TFH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;

typedef struct raw _post_receive_rb {

RB_COVIVON header ;

unsi gned char | sap_sel ector; /* input */
unsi gned char reserved

unsi gned short num bl ks; /* input */
unsi gned short filled_l ength; /* output */
unsi gned short buf fer _| engt h; /* input */
unsi gned short max_copy_| en; /* input */
unsi gned short max_franes; /* input */
unsi gned short actual _franes; /* output */
unsi gned | ong buf fer_ptr; /* input */

} RAW POST_RECEI VE_RB;

282 Chapter 13 Programming the Data Link Layer

RawEDL RAW_POST_RECEIVE

Input Arguments

| sap_sel ector
Set to 63H.

num bl ks
The number of buffers; set to 1.

buffer_length
The length of the buffer specified by the buf f er _pt r field. For an application such

as anetwork monitor, it may be best to use a very long buffer.

max_copy_l en
The length at which to truncate received frames. This length includes the header
inserted before each frame. The minimum value of 22 accommodates the frame
header plus the 802.3 header. Specify FFFFH to record the full length of each frame.
Vaues smaller than 22 default to FFFFH.

max_franes
The maximum number of framesto receive. If 0, the request block is not returned
until the buffer isfull. If not O, the request block is returned when the buffer isfull or
when the specified number of frames has been received. A monitor application could
put a 0 value here (receive only full buffers). More interactive applications may
specify 1 to have frames returned immediately.

buffer_ptr
The address pointing to the buffer where frames are received.

Responses

Output Arguments

filled_length
The actual number of bytes received in the buffer.

actual _franes
The total number of frames contained in the buffer. If the last framein the buffer is

incompl ete (to be continued in the next buffer), it is not included in this count. If the
first framein the buffer is a continuation, it is not included in this count.

Network User's Guide and Reference Chapter 13 283

RAW_POST RECEIVE RawEDL

buffer_ptr

Theindicated buffer contains returned frames. A 22-byte header isinserted before

each frame:

typedef struct frame_header {
unsi gned short record_Il engt h;
unsi gned | ong ti me_stanp;
unsi gned short | ost _count;
unsi gned char dest _address[6] ;
unsi gned char src_address[6] ;
unsi gned short | en_or_type;
unsi gned char frame_data[1];

} FRAME_HEADER,

record_l ength
The length of the frame plus header, including thisfield. If the frame
has been truncated, thisis the truncated length.

ti me_stanp
The time this frame was received, in clock ticks since iNA 960 began
execution. The granularity of the time stamp depends on the configured
clock rate. For standard iNA 960 configurations, the clock is
configured as 2000; for 8 Mhz boards this gives a granularity of
approximately 25 milliseconds. To find the true granularity, use the
READ_CLOCK command.

| ost _count
Number of frames lost since the last frame due to lack of buffer space.
dest _addr Destination Ethernet address of the packet.

src_addr Source Ethernet address of the packet.

| en_or_type
Unlike the 802.3 header, the Ethernet header contains a Type field
instead of a Length field. The application can determineif itisaType,
since al currently used Types areillegal lengths for 802.3 networks. If
thisisaLength field, it specifies the number of bytesin the
frame_dat a field.

frame_data
The received data.

284 Chapter 13 Programming the Data Link Layer

RawEDL RAW_POST_RECEIVE

Response Codes

OK_RESPONSE O1H Successful execution of the command. If the last
frame in the buffer isincomplete; the frame will
be continued in the next buffer. The first 22 bytes
are never split across buffers.

OK_EOP_RESPONSE O3H Thelast frame in the buffer is complete.

Additional Information

A frameiseligible for reception by RAW_POST _RECEIVE if itisanon-1SO
packet, has a destination address other than the currently configured 82586 address,
or isan 1SO packet for which no other processis waiting (for example, when an SO
packet with a DLSAP not currently connected is received by the hardware). Itisthe
responsibility of the application to do any demultiplexing that may be required, such
as separating TCP/IP packets from XNS packets.

Network User's Guide and Reference Chapter 13 285

RAW_TRANSMIT RawEDL

RAW_TRANSMIT

RAW_TRANSMIT transmits a packet of data. Unlikethe EDL TRANSMIT
command, RawEDL does not fragment data; this command only takes a single data
buffer.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* raw_transmt_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* TEH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct raw transmit_rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short len_or_type; [/* input */
unsi gned char src_addr[6]; /* input */
unsi gned short buf _cnt; /* input */
unsi gned | ong buffer_ptr; /* input */
unsi gned | ong dst _addr_ptr; /* input */

} RAW TRANSM T_RB;

Input Arguments

| en_or_type
The first word to send after the source and destination addresses in an Ethernet
packet; typically used as atype field in non-1SO networks.

src_addr
Currently, thisarray must be set to O.

A CAUTION
If thisfield contains any value other than 0, the 82586 is
programmed to that value as a source address. No further packets
sent to this node at the former (true) address will be received.

286 Chapter 13 Programming the Data Link Layer

RawEDL

RAW_TRANSMIT

buf _cnt

The number of bytes of datain the buffer to send.

buffer_ptr

The address pointing to the data buffer.

dest _addr _ptr

The address pointing to a six-byte destination Ethernet address.

Responses

Output Arguments

None

Response Codes
OK_RESPONSE
E TX_SIZE_ EXCEEDED

E_SUBSYSTEM
E_NO_RESOURCES

Networ k User's Guide and Reference

01H
06H

OCH
16H

Successful execution of the command.

The size of the transmit packet exceeds the

maximum configured for the Data Link Layer.

Incorrect subsystem code.

The Data Link is out of resources.

Chapter 13

287

READ_CLOCK

RawEDL

READ CLOCK

The READ_CLOCK command returns the value of the internal network job timer as
a 32-bit value. With this command, the application can calibrate the time stamps
received from the RAW_POST_RECEIVE command. For example, the application
could issue the command twice at a one-second interval and derive the number of
network clock ticks per second. For the typical preconfigured iNA file, aclock tick
is approximately 20 milliseconds (iTP4) to 25 milliseconds (iNA 960). With the
READ_CLOCK command, the application can determine the value accurately.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWON;

t ypedef struct

short
char

char

char

char
short

RB_COMVON

unsi gned

| ong

} READ CLOCK_RB;

Responses

Output Arguments

timer_va

rb_comon {

reserved|[2] ;
| engt h;
user _i d;
resp_port;
resp_nbox;
rb_seg_t ok;
subsyst em
opcode;
response;

read_clock_rb {

header ;
timer_val

/* of read_clock_rb */

/* cqg_create_comm.user */
/* OFFH */

/* mail box token */

/* segnent token */

/* Table 13-2 */

/* 80H */

/* initialize to 0 */

/* output */

The number of internal clock ticks since the network job started. The length of the
network clock tick is determined by a configuration parameter.

Response Code

OK_RESPONSE

288 Chapter 13

Successful execution of the command.

Programming the Data Link Layer

EDL TRANSMIT

TRANSMIT

TRANSMIT transmits a packet consisting of from 1 to 4 buffers. This command can
be used without there being an established connection to the destination L SAP.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of transmt_rb /
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* Table 13-2 */
unsi gned char opcode; /* 84H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct transmit_rb {
RB_COVIVON header ;
unsi gned short reserved
unsi gned short buf _count; /* input */
unsi gned short byte_count[4]; /* input */
unsi gned | ong buf _I oc[4]; /* input */
unsi gned | ong dest _addr _ptr; /* input */

} TRANSM T_RB;

Input Arguments

buf _count
The number of buffers specified by the TRANSMIT command, ranging from 0 to 4.

byt e_count
An array of four valueswhere byt e_count [i] isthe sizein bytes of the buffer
specified by buf _I oc[i]. For thefirst buffer, the value of byt e_count includes
destination_| sap_sel ector,source_| sap_sel ector,andi so_cnd,in
addition to data (see the buf _| oc parameter).

Network User's Guide and Reference Chapter 13 289

TRANSMIT EDL

buf _| oc
An array of four addresses wherebuf _| oc[i] pointsto the start of bufferi . The
first buffer contains SO control information in addition to data. Any subsequent
buffers contain only data. The buffers have the format shown below:

typedef struct first_transmt_buffer {

unsi gned char destination_| sap_sel ector;
unsi gned char source_| sap_sel ector;

unsi gned char i so_cnd;

unsi gned char data[1];

} FI RST_TRANSM T_BUFFER

typedef struct next_transmit_buffer {
unsi gned char data[1];
} NEXT_TRANSM T_BUFFER,

Where:

destination_| sap_sel ector
The LSAP identifying the destination entity to which the packet is
forwarded.

sour ce_l sap_sel ect or
The LSAP for the source entity that sends the packet.

iso_cmd 03H for the 82586 component and 82586-based boards.

dat a An array of bytesthat contains the actual datato transmit.

dest _addr _ptr
An address pointing to an array of 6 bytes where the destination Ethernet addressis
stored.

Responses

Output Arguments

None

290 Chapter 13 Programming the Data Link Layer

EDL TRANSMIT

Response Codes

OK_RESPONSE O1H Successful execution of the command.

E TX SIZE EXCEEDED O6H The size of the transmit packet exceeds the
maximum configured for the Data Link Layer.

E SUBSYSTEM OCH Incorrect subsystem code.

E BUFFER_COUNT 14H The buf_count field exceeds the maximum of 4.

E NO_RESOURCES 16H The Data Link is out of resources.

Additional Information

If the total number of bytes transmitted isless than the minimum packet size, the
Data Link pads the packet to the minimum size. The padding is transparent to the
requesting application.

Network User's Guide and Reference Chapter 13 291

TRANSMIT EDL

292 Chapter 13 Programming the Data Link Layer

Using the Network 14
Management Facility

In addition to the three layer services, INA 960 provides a set of tools called the
Network Management Facility (NMF). Using NMF commands, an application
(typically for a network administrator) can gather information from the layer
databases. The application uses this information to monitor, debug, and tune network
performance.

Similar to the iNA 960 layer services, the NMF commands are based on a request
block interface. The application sends and receives request blocks using the
cg_comm_rb call to access NMF services. This chapter describes request blocks for
the NMF commands.

See also: Using the cq_ System Calls, Chapter 10;
Chapter 16 for the structure of buffers used in NMF commands to
perform network routing

Each of the iNA 960 layer services maintains a database of objects that may be
accessed by the NMF. These objects are layer-dependent parameters and variables
that control and log layer activity.

The NMF provides commands for accessing host memory at anode. The NMF also
provides remote download capability that makesit possible for one or more nodes to
provide boot service to other nodes on the network.

Theinamon (iNA Monitor) utility provides an interactive human interface to NMF
commands.

Seedso inamon, Command Reference

NMF Services

The NMF provides these services:
e Attach Operations

e Layer Management

« Event Notification Operation
» Debugging Operations

e Maintenance Operations

* Remote Load Operations

Network User's Guide and Reference Chapter 14 293

294

The Attach Operations service can establish communications with all nodes on a
network. This service requires the services of the iNA 960 Transport Layer to
establish a connection, and will operate through internet routers.

The Layer Management service provides the capability to examine and modify iNA
960 database objects. TheiNA 960 database objects are layer-dependent parameters
and variables that control and log layer activity. This service requires the services of
the iNA 960 Transport Layer to operate remotely, and will operate through internet
routers. The Transport Layer is not needed for local functions.

The Event Notification service monitors event objectsin the iINA 960 database.
Event notifications are unsolicited messages typically associated with abnormal
occurrences in the Transport and Network layers. Because event notification is
unsolicited, a specific AWAIT_EVENT command is provided for an application to
receive those messages.

The Debugging Operations service provides the capability to read or alter memory at
anode. Thisrequiresthe services of theiNA 960 Transport Layer, and will operate
through internet routers.

The Maintenance Operations service provides two functions, Dumping and Echo
Testing.

« Dumping isinitiated by arequesting node and directed towards a target node.
The target receives the dump command and responds by transmitting the dump
datato the requester. Thisfunction is essentially aread-memory operation that
uses the iINA 960 Data Link services of both nodes to send the dump data to the
requester.

» Echo Testing enables one node to determine if another node is present on the
network by testing the lowest-level communication path to that node. The
testing node uses the iNA 960 Data Link services to transmit data to the target
node and then listen for the target to return the transmitted data.

The Remote L oad Operations service provides the capability to download software
from one node to another. This serviceistypically used to download OS and
network communications software and to initiate their execution. Nodes providing
this service are referred to as boot servers and nodes receiving the service are
referred to as boot clients.

Data transmitted between nodes during Dumping, Echo Testing, and Remote L oading
uses the lowest-level services of the network. Those services are provided by the
iNA 960 Data Link Control Layer and will not operate through internet routers.

Chapter 14 Using the Network M anagement Facility

NMF Operation

The services of the Network Management Facility are provided by specific NMF
commands. Where (on what nodes) the NMF commands can be executed depends on
how iNA 960 is configured for each NMF node.

Specific configurations provide nodes with the ability to issue and/or execute
different types of NMF operations. A node configured as a net manager can issue
NMF commands, while a node configured as a net agent can only execute and
respond to NMF commands. Y ou may configure a node as both a net manager and a
net agent. These nodes may be anywhere on the network as long as they are
configured appropriately.

Managers and Agents

NMF interactions within a network are between one net manager and one net agent.
The net manager node typically contains high-level human interface software, not
provided by iNA 960, that permits an application (like the Network Administrator) to
perform various network management functions. The human interface software
converts the application requests into NMF requests. The NMF requests are then sent
to theiNA 960 NMF that is configured as a net manager. The net manager controls
all NMF interactions with the target net agent.

The net agent contains NMF services that are configured to receive net manager
requests, execute the requested operations, and pass responses back to the requesting
net manager.

TheiNA 960 NMF may be configured as one of these:
» For local operations only

¢ Asanet agent

e Asanet manager

e Asboth a net manager and a net agent

|:| Note

Except in extreme memory-restricted situations, all iNA 960 nodes
should at least be configured as net agents. That makes all iNA
960 layer databases available to all net manager nodes.

A node configured for local operations has only the Layer Management and
Debugging Operations services available. The node'siNA 960 layer databases are
not accessible (except through the Dump and Echo Test functions) by iNA 960 net
manager nodes on the network.

Network User's Guide and Reference Chapter 14 295

An example of the type of interactions that occur between a net manager and a net
agent is where an application requests a net manager to read or set the value of an
iNA 960 layer object in one of the layer databases at a net agent. Figure 14-1 shows
the steps taken to execute such an operation.

Net manager Net agent
(active) (passive)

Network
administration
software

[[Userrequest

iNA NMF

iNA NMF

0 Execute
command
| NMFcommand
0

W-2958

Figure 14-1. A Typical Net Manager/Net Agent Interaction

The interaction steps shown in the figure are:

1. Theapplication sends an NMF request to the iNA 960 NMF, which must be
configured as a net manager.

2. The NMF net manager opens a connection to the net agent and passes the
application request to the net agent as an NMF command.

3. The net agent executes the command by reading or setting the object in the
specified INA 960 layer database.

4. The net agent passes the result of the operation back to the requesting net
manager.

5. The net manager closes the connection to the net agent.

Local Versus Remote NMF Operation

This section briefly reviews the overall structure of a simple network as viewed by an
iNA 960 NMF node. Figure 14-2 illustrates this network; to simplify the discussion,
the network structure shown does not contain any internet routers.

296 Chapter 14 Using the Network M anagement Facility

End system 1 End system 2 End system 3 End system 4

administratio
software

administratiol
software

Network
n

Network ’}

NMF
net manager

NMF
net manager

NMF
net agent

NMF

net agent } net agent

NMF }

W-2959

Figure 14-2. A Typical iNA 960 Network

Local Operation

Interactions between a net manager and a net agent that occur at the same node
illustrate the local operation of NMF services (see Node 2 in Figure 14-2). Inthe
example shown in the figure, no special data communications protocol is required
beyond the internal communications capabilities of the node.

The net management requests are sent by the Network Administration Software such
asiRMX-NET, (not part of iNA 960) to the iNA 960 NMF to be processed. The
results are returned to the Network Administration Software. For example, requests
may be made to query the local iNA 960 databases to monitor the communications
performance of the local system.

Network User's Guide and Reference Chapter 14 297

Remote Operation

Remote NMF operations, on the other hand, require the network communication
services provided by the iNA 960 layer servicesto transmit the net manager requests
and net agent responses over the network.

A net manager and a net agent on physically separate network nodes may interact
using the remote operation of NMF services. An example of aremote NMF
operation would be to use a single net manager to monitor the functions and
performance of al other nodes on the global network. In Figure 14-2, Nodes 2, 3,
and 4 can be accessed and monitored remotely by Node 1. Thisis possible because
the NMF on Node 1 is configured as a net manager and the NMFs on Nodes 2, 3, and
4 are configured as net agents. Node 2 can aso access and monitor Nodes 3 and 4,
but cannot access Node 1 because its NMF is not configured as a net agent, only asa
net manager.

Excluding net agency from a node's NMF configuration protects that node'siNA 960
databases from remote access by other net managers.

The NMF commands that rely on Transport Layer services will operate through
internet routers. NMF commands that rely on Data Link Control Layer serviceswill
not operate through internet routers.

NMF Communications Services

298

TheiNA 960 NMF accesses remote nodes using the communications services
provided by the iNA 960 layers. Most of the NMF services use the iNA 960
Transport Layer to provide reliable communications between a net manager and a
remote net agent. Some of the NMF services use the lower-level services of theiNA
960 Data Link Control Layer for communications between a net manager and a
remote net agent.

The address used by the NMF to locate the remote net agent is specified either asa
Transport Layer address buffer (if the Transport Layer isused) or as a Data Link
address buffer (if the Data Link Control Layer is used).

If the Transport Layer communications services are needed for a remote command, a
connection must be explicitly established before the command is issued.

For example, assume that a net manager wants to issue certain net management
reguests to aremote node. The net manager must first make an explicit connection to
the target net agent node using the NMF command ATTACH_AGENT. The
established connection defines the path to the remote net agent node.

Once the net manager has completed the desired remote commands, it must explicitly
remove the connection between itself and the remote net agent using the NMF
command DETACH_AGENT.

Chapter 14 Using the Network M anagement Facility

The NMF supports only one open connection at atime. Multiple simultaneous open
connections are not supported. Only net managers can establish connections and a
single net manager can open only one connection at atime. A net agent can have
only one connection from one net manager. Another net manager wanting to connect
to that net agent must wait until the current connection is closed.

If the Data Link Control Layer communications services are used for aremote
command, an explicit connection between a net manager and a net agent is not
necessary.

Network User's Guide and Reference Chapter 14 299

Using NMF Commands

These sections describe how to use the NMF commands.

Net Agent Connection Commands

300

The ATTACH_AGENT and DETACH_AGENT commands are issued by a net
manager that wants to establish or remove a connection to alocal or remote net

agen.

For local connections, the ATTACH_AGENT and DETACH_AGENT commands
areoptional. A DETACH_AGENT at the end of a communications exchange will
return al unused AWAIT_EVENT buffers posted that were not returned through
event reporting.

For remote connections, the ATTACH_AGENT command must be used to establish
aconnection to the target net agent. The connection must be established before the
net manager is permitted to issue any commands that require the services of the INA
960 Transport Layer. The DETACH_AGENT command ends an established
connection and returns all unused AWAIT_EVENT buffers.

A number of the NMF commands must be preceded by an ATTACH_AGENT
command before they are issued to aremote net agent. They are:

« READ_OBJECT and SET_OBJECT commands
- READ_AND_CLEAR OBJECT command
« READ_MEMORY and SET_MEMORY commands

A typical sequence of NMF commands requested by a network administration
application might be:

1. ATTACH_AGENT Open aconnection to a net agent.

2. READ_OBJECT Read the value of layer objects at atarget net agent.
3. SET_OBJECT Change the value of layer objects at target net agent.
4. (Any other NMF commands)

5. DETACH_AGENT Remove the connection to the target net agent.

For remote connections, the structure of the Transport Address Buffer isimportant
because it contains the address used to locate the remote net agent. The structureis
described inthe ATTACH_AGENT command.

Chapter 14 Using the Network M anagement Facility

Layer Management Commands

The Layer Management service provided by NMF enables a network administration
application to examine or modify the internal layer databases maintained by each
iNA 960 subsystem.

Each iNA 960 layer (Transport, Network, Data Link) maintains a database of
network management data structures called objects that represent various layer
parameters. The objects contain configuration parameters or counters that indicate
how the network is performing.

See also: iNA Network Objects, Appendix C

NMF Object IDs
NMF objects are identified by atwo-byte ID code. The ID code appearsin the form

WXYZ.

Where:

WX The w specifies the OSI layer that the object belongs to and the x
specifies the layer or subsystem that the object belongs to.

yz | dentifies the object.

TheiNA 960 layers and subsystems have these wx values:

20yzH 82586 Data Link, including first MIX560 board in a Multibus 11 system
21y7H Data Link for SBX 586, EWENET, or EtherExpress 16
22y7H Data Link for second M1X560 board in aMultibus Il system
23yzH Data Link for third M1X560 board in a Multibus |1 system
24y7H Data Link for 82595TX, EtherExpress PRO/10, or SBC P5090
2FyzH Message passing Data Link for Multibus 11 subnet
31yzH Network Layer
38yzH Static Routing | P Network
39yzH ES-IS Routing I P Network
40yzH Transport Virtual Circuit

4000H - 4020H Connection independent

4040H - 405AH MAP2.1

4081H - 4093H Connection dependent
41yzH Transport Datagram
80yzH iNA 960 NMF
81lyzH iNA 960 NMF Boot Server

Values 38 and 39 are not valid in Null2 configurations.

Network User's Guide and Reference Chapter 14 301

Using Layer Management Commands

These three Layer Management commands enable a network manager to read or set
the value of layer objects:

READ_OBJECT
Returns the value of the specified object or event.

SET_OBJECT
Sets the selected object with a specified value.

READ_AND_CLEAR_OBJECT
Returns the value of the specified object, then setsthe valueto 0.

Except for the local-only configuration of the NMF, the Layer Management
commands rely on the Transport Layer to provide communication services between
the net manager and a net agent. Therefore, an application that uses these commands
must issuean ATTACH_AGENT command before issuing a Layer Management
command and aDETACH_AGENT command after receiving the command
response.

The connection reference number returned from the ATTACH_AGENT command is
arequired field in Layer Management command request blocks. If the command is
only for the local net agent, an ATTACH_AGENT command is not needed; set the
connection reference number to 0 in the request block.

The Layer Management commands can access one or more iNA 960 objectsin a
single command; however, all of the objects must be in the same layer. For example,
a Transport Layer object and a Network Layer object cannot be read by asingle
invocation of the READ_OBJECT command.

Event Notification

302

An NMF net manager can receive notification of the occurrence of some layer event.
Event notification is possible only from local net agents. The net manager uses the
AWAIT_EVENT command to post a buffer that will record an event. When an event
occurs, it is recorded in the buffer and the buffer is returned to the net manager that
posted it.

Since event notification is alocal-only function, the ATTACH_AGENT command is
not necessary and the connection referenceis always 0. The DETACH_AGENT
command returns all unused AWAIT_EVENT buffers to the net manager.

See also: Layer Events, Appendix C

Chapter 14 Using the Network M anagement Facility

NMF Events
Only Network and Transport Layer events are managed by the iNA 960 NMF.

NMF events are identified by atwo-byte ID code scheme similar to the one used for
the NMF objects. These high byte (wx) values are used in event ID codes:

Value Meaning
3lyzH Network Layer event
40yzH Transport Layer event

Debugging Commands

As an aid to debugging operations, the NMF provides commands to read or set the
host memory of any net agent on the network. The commands are
READ_MEMORY and SET_MEMORY. These commands rely on the Transport
Layer to provide communication services between the net manager and a net agent.
Therefore, an application that uses these commands must issue an
ATTACH_AGENT command before issuing acommand and aDETACH_AGENT
command after receiving the command response.

The READ_MEMORY and SET_MEMORY commands utilize the connection
reference number returned by the ATTACH_AGENT command to identify the target
net agent for the command.

Maintenance Commands

NMF Maintenance commands enable the net manager to dump the host memory of a
local or remote net agent, or to determine if aremote net agent is present on the
network. The DUMP command obtains a snapshot of the host memory of a net
agent. The ECHO command verifies the existence of a net agent on the network.

The Maintenance commands use the Data Link Control Layer for communication
between net managers and net agents. Since these commands do not use the
Transport Layer for communication between nodes, they will not operate through an
internet router.

For these commands, do not first use an ATTACH_AGENT command. Instead,
specify a subnet address to locate the target local or remote net agent.

Network User's Guide and Reference Chapter 14 303

Remote Load Operations

The NMF provides a service for downloading OS and network communication
software to remote network nodes. This service can be used to download software to
and boot diskless remote nodes on the network. Alternately, the service can be used
to download software to and boot a set of network nodes with the same version of
software.

A remote loading operation requires the cooperation of two nodes. The node to be
loaded is called the Boot Client. The node that does the downloading is called the
Boot Server. The Boot Server is supplied as a separate job that uses the iNA 960
NMF; the Boot Client serviceisnot. These are discussed together in another chapter.
Two commands used for remote loading, SUPPLY _BUFFER and
TAKEBACK_BUFFER, appear among the NMF commands at the end of this
chapter.

See also: Remote Booting, Chapter 15

The NMF Commands

The NMF commandsin this chapter are specified by the subsyst emand opcode
fieldsin the request block header, r b_common. Thesubsyst emfield must have one
of these values:

e 80H for all NMF services except Remote Load Operations
e 81H for the Remote Load Operations

The commands use similar argument structures, following the common header fields.
Each command description lists which fields are input and output arguments.
Initialize reserved fields and unused fields to 0. The structures are provided as
typedefsin the NMF include files.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

304 Chapter 14 Using the Network M anagement Facility

Table 14-1 briefly describes each NMF command. Detailed descriptions of each
command follow.

Table 14-1. Network Management Facility Commands

NMF COMMAND

Opcode Layer

Location

Description

Connection Operations

ATTACH_AGENT OBH Transport Remote/Local Establish connection to net
agent
DETACH_AGENT OCH Transport Remote/Local Break connection to net agent
Layer Management
READ_OBJECT OH Transport Remote/Local Query or change layer
SET_OBJECT 2H database objects
READ_AND_
CLEAR_OBJECT 1H
Event Notification
AWAIT_EVENT OAH None Local Supply buffer to receive event
notification
Debugging Operations
READ_MEMORY 03H Transport Remote/Local Read or Set memory of target
SET_MEMORY 04H agent host
Maintenance Operations
ECHO 06H Data Link Remote Test network path to target
agent
DUMP 05H Data Link Remote Read memory of target agent
host
Remote Boot Loading
SUPPLY_BUFFER 8H Data Link Local Supply or take back buffer to

TAKEBACK_BUFFER 9H

receive load data

Networ k User's Guide and Reference

Chapter 14 305

ATTACH_AGENT NMF

ATTACH_AGENT

The ATTACH_AGENT command is used by a network manager to establish a
connection to alocal or remote network agent. This command is optional for setting
up alocal connection, but is mandatory for setting up a remote connection.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* attach_agent _rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 80H */
unsi gned char opcode; /* OBH */
unsi gned short response; /* initialize to 0 */
} RB_COWON;
typedef struct attach_agent_rb {
RB_COVIVON header ;
unsi gned short reference; /* output */
unsi gned | ong address_buf _ptr; /* input */

} ATTACH AGENT RB ;

Input Arguments

address_buf _ptr
A pointer to (absolute address of) the buffer where the transport address of the
remote net agent is stored. For connections to alocal net agent, this value must be 0.

See also: Chapter 10 for information concerning the use of pointers and absolute
addresses in iNA 960 request blocks

306 Chapter 14 Using the Network M anagement Facility

NMF ATTACH_AGENT

The format of aremote transport address is shown below.

struct address_buffer

unsi gned char | ocal _nsap_sel _len;
unsi gned char | ocal __nsap_sel [local nsap_sel _|en];
unsi gned char | ocal _tsap_sel _len;
unsi gned char | ocal _tsap_sel [local tsap_sel |en];
unsi gned char renot e_nsap_addr _| en;
unsi gned char renote_nsap_addr [renpte_net _addr_I| en];
unsi gned char renote_tsap_sel _|en;
unsi gned char renote_tsap_sel [renpte_tsap_sel len];
b
Where:

| ocal _nsap_sel _|l en
The length of the local NSAP selector. The value for iINA 960
configurationsis 1.

| ocal _nsap_sel
Thelocal NSAP selector. The value for iNA 960 configurationsis 0.

| ocal _tsap_sel _len
The length of the local TSAP selector. The value for iNA 960
configurationsiis 2.

| ocal _tsap_sel
The configured value for the local NMF TSAP selector. The value for
iNA 960 configurations is 0300H.

renot e_nsap_addr _| en
The length of the remote target agent's NSAP address (including an
NSAP selector of O, whichisthe last byte of the address).

renot e_nsap_addr
The target agent's NSAP address.

See also: NSAP addresses, Chapter 8

renmote_tsap_sel _|len
Must be set to 2.

renote_tsap_sel
The configured value for the remote NMF TSAP selector. The value
for iINA 960 configurations is 0300H.

The addressing conventions presented here are valid even in cases where the target
net agent node is reached through a network router.

Network User's Guide and Reference Chapter 14 307

ATTACH_AGENT

NMF

Output Arguments

reference

A unique 16-bit number returned by the ATTACH_AGENT command that identifies
the connection to the net agent. If addr ess_buf _pt r was specified as 0 (local
operation only), a0 isreturned in this field.

Response Codes

OK_RESPONSE 1H
E_NO_RESPONSE 2H
E_CONNECTION 8H
NOT_CONFIGURED 0AH
E_NMF_OPCODE OCH
E_MAX_CONN 16H
E_NO_NMF OFFEH

308 Chapter 14

Operation completed successfully.
No response from remote net agent.

An error occurred while attempting to establish a
connection with aremote net agent.

The requested command is not configured for the
net manager.

The specified opcode field isnot avalid NMF
command.

The maximum number of connections permitted
for the net manager are currently open. Currently,
only one open connection is permitted for each net
manager.

No NMF available.

Using the Network M anagement Facility

NMF AWAIT_EVENT

AWAIT_EVENT

The AWAIT_EVENT command posts a buffer that isfilled and returned by iNA 960
when alayer event occurs. This command only records events from local net agents.
Only one event isrecorded for each AWAIT_EVENT buffer posted. Post multiple
buffersto record multiple events.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of await_event_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 80H */
unsi gned char opcode; /* OAH */
unsi gned short response; /* initialize to 0 */

} RB_COWVON

typedef struct await_event _rb {
RB_COVIVON header ;
unsi gned short reference; /* input */
unsi gned short filled_l ength; /* output */
unsi gned | ong event _buf _ptr; /* inlout */
unsi gned short event _buf _| ength; /* input */

} AWAI T_EVENT_RB;

Input Arguments

ref erence
Specify 0, because event notification does not use a V C connection.

event _buf _ptr
A pointer to (absolute address of) the AWAIT_EVENT buffer.

event _buf | ength
Thelength, in bytes, of the AWAIT_EVENT buffer.

Network User's Guide and Reference Chapter 14 309

AWAIT_EVENT NMF

Output Arguments

filled_length
Thelength, in bytes, of the datarecorded in the AWAIT_EVENT buffer. The NMF
updates the field once the AWAIT_EVENT command is executed.

event _buf _ptr
The event information is returned in the buffer, with this structure:

typedef struct await_event_buffer {

unsi gned short event _| en;
unsi gned short event _id;
unsi gned char event _time[17];
unsi gned short reset _time_ctr;
} AWAI T_EVENT_BUFFER;
Where:

event _| en Thelength, in bytes, of the data recorded in the buffer.

event _id ThelD number of the NMF event, specifying the iNA 960 layer and the
event number.

See also: Event IDs, Appendix C

event _time
The time the event occurred, specified asan ASCII string that shows
Greenwich Mean Time (GMT). The format of the string is:

YYMVDDhhmss[+/ -] hhnm
Where YY = year (0-99), MM= month, DD = day, hh = hours, nm=

minutes, and ss = seconds. The[+/ -] hhnmisan offset, in hours and
minutes, from GMT to local time.

reset _time_ctr
A counter that indicates how many times the net agent's system time has
been set.

310 Chapter 14 Using the Network M anagement Facility

NMF AWAIT_EVENT

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E OK_COMMAND 5H Command completed. The request block was
returned without a posted event.

E CONNECTION 8H Connection error.

NOT_CONFIGURED OAH No local net manager.

E_NMF_OPCODE OCH The specified opcode field isnot avalid NMF
command.

E_REFERENCE 14H Incorrect reference number.

E_NO_NMF OFFEH Nolocal NMF.

Network User's Guide and Reference Chapter 14 311

DETACH_AGENT

NMF

DETACH_AGENT

The DETACH_AGENT command is used by a net manager to remove an established
connection to aremote or local net agent. If the connection isto aremote agent, the
DETACH_AGENT command ends the connection and returns all unused
AWAIT_EVENT buffersto the Network Administration application software. If the
connection isto alocal agent, the DETACH_AGENT command simply returns
unused AWAIT_EVENT buffersto the local net manager.

Request Block

typedef struct rb_comon {

unsi gned short

unsi gned char

sel ector

unsi gned char

sel ector

sel ector

unsi gned char

unsi gned char

unsi gned short
} RB_COWDON;

reserved[2] ;

| engt h; /* detach_agent _rb */
user _i d; /* cqg_create_comm.user */
resp_port; /* OFFH */

resp_nbox; /* mail box token */

rb_seg_tok; /* segment token */
subsyst em /* 80H */

opcode; /* OCH */

response; /* initialize to 0 */

typedef struct detach_agent_rb {

RB_COMMON
unsi gned short
} DETACH_AGENT_RB;

Input Arguments

reference

header ;
reference; /* input */

The connection reference code returned by the ATTACH_AGENT command.

Response Codes
OK_RESPONSE
NOT_CONFIGURED

E_NMF_OPCODE
E_REFERENCE

E_NO_NMF

312 Chapter 14

1H
OAH

OCH

14H
OFFEH

Operation completed successfully.

The requested command is not configured for the
net manager.

The specified opcode field isnot avalid NMF
command.

Unrecognized reference number.
No local NMF.

Using the Network M anagement Facility

NMF

DUMP

DUMP

The DUMP command requests a snapshot of host memory from aremote net agent,
beginning at a specified address. If the net agent does not respond, the net manager
tries twice again before assuming that the net agent is not responding. The maximum
size of the memory image that can be returned by the command is limited by the
maximum packet size of the subnet linking the net manager to the net agent. Before
using the DUMP command, the application must set aside a buffer to receive the host
memory image. The buffer must be at least as large as the largest requested memory

image.

Request Block

t ypedef struct

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned
unsi gned
} RB_COWDON;

typedef struct dunp_rb {

short
char

char

char

char
short

RB_COMVON

unsi gned

unsi gned

unsi gned

unsi gned

unsi gned
} DUVP_RB;

Networ k User's Guide and Reference

| ong
short
| ong
short
| ong

rb_comon {

reserved[2] ;

| engt h; /*
user _i d; /*
resp_port; /*

resp_nbox; /*
rb_seg_tok; /*

subsyst em /*
opcode; /*
response; /*

header ;

subnet _addr _ptr
filled_length
buffer_ptr;
buffer_length
start _address;

of dunp_rb */
cg_create_comm.user */
OFFH */

mai | box token */
segment token */

80H */

05H */

initialize to 0 */

/* input */
/* output */
/* input */
/* input */
/* input */

Chapter 14 313

DUMP NMF

Input Arguments

subnet _addr _ptr
A pointer to a buffer containing the subnet address of the target remote net agent.

The structure of the subnet addressis:

t ypedef struct subnet_address {

unsi gned char host _i d[6] ;
unsi gned char nnf _| sap;

} SUBNET_ADDRESS;

Where:

host _id The Ethernet address of the target net agent.

nnf _| sap Thelink service access point (LSAP) of the target net agent's NMF.
This parameter specifies the address of the target net agent's Data Link
Layer. The LSAP for theiNA 960 NMF is O8H.

buffer_ptr
A pointer to a buffer that will be used by the net manager to store the memory image
dumped from the target net agent.

buffer_length
Thelength, in bytes, of the buffer indicated by the buf f er _pt r parameter.

start_address
The starting address in the host memory of the target net agent where the DUMP

operation will be performed. The NMF expects a 32-hit value that is meaningful on
the host system.

Output Arguments

filled_length
The size, in bytes, of the data supplied by the net agent. Thisfield is updated by the

NMF after the net agent executes the DUMP command.

314 Chapter 14 Using the Network M anagement Facility

NMF DUMP

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E NO_RESPONSE 2H No response from remote net agent.

E PACKET_LENGTH 4H The packet of data received from the net agent has
an incorrect packet length field.

NOT_CONFIGURED OAH No local net manager.

E_NMF_OPCODE OCH The specified opcode field isnot avalid NMF
command.

E_NO_NMF OFFEH Noloca NMF.

Additional Information

The DUMP command is similar to the READ_MEMORY command. The main
difference between them is the mechanism they use to establish connections to net
agents. The READ_MEMORY command uses the Transport Layer, which requires a
prior ATTACH_AGENT command to establish a connection and a
DETACH_AGENT command to remove the connection. The DUMP command uses
the DataLink Layer. Thisdoes not requirethe ATTACH_AGENT command, but
does require a subnet address.

Network User's Guide and Reference Chapter 14 315

ECHO

NMF

ECHO

The ECHO command determines whether a given remote net agent is present on the
network and, if it is present, tests the communications path to the agent. The
application specifies a count of random data bytes to transmit. If the net agent does
not respond, the net manager tries twice again before assuming that the net agent is
not responding. If the net agent responds, the net manager checks that the returned
block of data exactly matches the transmitted block.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of echo_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 80H */
unsi gned char opcode; /* 06H */
unsi gned short response; /* initialize to 0 */
} RB_COWVON
typedef struct echo_rb {
RB_COVIVON header ;
unsi gned | ong subnet _addr _ptr; /* input */
unsi gned short transmt_data_cnt; /* input */
unsi gned short recei ved_data_cnt; /* output */
} ECHO_RB

subnet _addr _ptr

316

A pointer to a buffer containing the subnet address of the target remote net agent.
The structure of the subnet addressis:

typedef struct subnet_address {
unsi gned char host _i d[6] ;
unsi gned char nnf _| sap;

} SUBNET_ADDRESS;

Chapter 14 Using the Network M anagement Facility

NMF ECHO

Where:
host _id The Ethernet address of the target net agent.

nnf _| sap Thelink service access point (LSAP) of the target net agent's NMF.
This parameter specifies the address of the target net agent's Data Link
Layer. The LSAPfor theiNA 960 NMF is O8H.

transnmt_data_cnt
The number of random bytes to transmit.

Output Argument

recei ved_dat a_cnt
The number of bytes present in the request block returned by the target net agent.

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E NO_RESPONSE 2H No response from remote net agent.

E DATA_MATCH 6H Transmitted data and received data do not match.

NOT_CONFIGURED OAH No local net manager.

E_NMF_OPCODE OCH The specified opcode field isnot avalid NMF
command.

E_NO_NMF OFFEH Nolocal NMF.

Additional Information

The ECHO command uses the Data Link Layer rather than the Transport Layer. This
means the command does not require a previous ATTACH_AGENT command, but
does require a subnet address.

Network User's Guide and Reference Chapter 14 317

READ_AND_CLEAR_OBJECT NMF

READ_AND_CLEAR_OBJECT

318

The READ_AND_CLEAR _OBJECT command returns the value of one or more
iNA 960 objects. The request block and buffers for this command are the same as
those for the READ_OBJECT command.

See also: READ_OBJECT, in this chapter

Chapter 14 Using the Network M anagement Facility

NMF READ_MEMORY / SET_MEMORY

READ_MEMORY/SET_MEMORY

This command description applies to both the READ_MEMORY and
SET_MEMORY commands. The READ_MEMORY command reads host memory
from the net agent specified by ther ef er ence parameter. The SET_MEMORY
command writes to the host memory.

The application must set aside a buffer in host memory before this command can be
issued. For the READ_MEMORY command, the NMF writes the memory image to
the buffer. For the SET_MEMORY command, the application writes the memory
image to the buffer.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of read_or_set_memrb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 80H */
unsi gned char opcode; /* 3H = READ_MEMORY
4H = SET_MEMORY */
unsi gned short response; /* initialize to 0 */
} RB_COWVON
typedef struct read_or_set_memrb {
RB_COVIVON header ;
unsi gned short reference; /* input */
unsi gned short filled_l ength; /* output */
unsi gned | ong buffer_ptr; /* inlout */
unsi gned short num byt es; /* input */
unsi gned | ong start _addr; /* input */

} READ OR SET_MEM RB;

Network User's Guide and Reference Chapter 14 319

READ_MEMORY / SET_MEMORY NMF

Input Arguments

reference
The connection reference number returned by the ATTACH_AGENT command. For
alocal agent, the ATTACH_AGENT command is not necessary; specify 0.

buffer_ptr
A pointer to the buffer holding the memory image to write (for SET_MEMORY) or
where the NMF writes the memory image (for READ_MEMORY).

num byt es
The number of data bytesto read or write. The buffer pointed to by the buf f er _ptr
parameter must be at least aslong as the num byt es value.

start _addr
The starting address in the host memory of the target net agent where the operation
will be performed. The NMF expects a 32-bit value meaningful to the host's message
delivery mechanism (e.g., MIP).

Output Arguments

filled_length
For the READ_MEMORY command, thisisthe number of bytes of data stored in the
response buffer, filled in by the NMF after executing the command.

buffer_ptr
For the READ_MEMORY command, the buffer holds returned data.

Response Codes

OK_RESPONSE 1H Operation completed successfully.

E_NO_RESPONSE 2H No response from remote net agent.

E_CONNECTION 8H Connection error.

NOT_CONFIGURED OAH No local net manager.

E NMF_OPCODE OCH The specified opcode field isnot avalid NMF
command.

E INSUFF_RESP BUF OEH Response buffer istoo small.

E_REFERENCE 14H Unknown reference.

E PROTOCOL_ERR 18H Protocol error in the reply from the target net
agent.

E_NO_NMF OFFEH Nolocal NMF.

320 Chapter 14 Using the Network M anagement Facility

NMF

READ_OBJECT/SET OBJECT
READ AND CLEAR OBJECT

READ OBJECT/SET _OBJECT
READ_AND CLEAR_OBJECT

The READ_OBJECT command returns the value of one or more iNA 960 objects or
events. Since the request block and buffers for this command are the same as those
for the READ_AND_CLEAR OBJECT and SET_OBJECT commands, this
description applies to all three commands. READ_AND_CLEAR_OBJECT returns
the current object value and setsthe value to 0. SET_OBJECT changes the value of
the specified objects. The command buffer referenced in the request block describes
which object to act upon. iNA 960 fillsin the response buffer with values read from
the objects. For the SET_OBJECT command, the response buffer contains the new
value of the object.

Request Block

t ypedef struct rb_comon {

unsi gned
unsi gned
sel ector
unsi gned
sel ector
sel ector
unsi gned
unsi gned

unsi gned
} RB_COWDN;

short
char

char

char
char

short

reserved[2] ;

| engt h; | *
user _i d; | *
resp_port; /*
resp_nbox; /*
rb_seg_tok; [/*

of nnf_object _rb */

cg_create_comm user */
OFFH */
mai | box token */
segnent token */

READ_OBJECT

READ_AND_CLEAR
SET_OBJECT */

subsyst em /* 80H */
opcode; /* OH =
1H =
2H =
response;

typedef struct nnf_object _rb {
RB_COMVON

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
| ong
short
| ong
short

} NVF_OBJECT_RB:

Networ k User's Guide and Reference

header ;

ref erence
filled_length
resp_buf _ptr;
resp_buf | ength;
cmd_buf _ptr;
cmd_buf _| engt h;

/*
/*
/*
/*
/*
/*

/* initialize to 0 */

i nput */
out put */
in/fout */
i nput */
i nput */
i nput */

Chapter 14 321

READ_OBJECT/SET OBJECT
READ_AND_CLEAR OBJECT

NMF

Input Arguments

reference

The connection reference number returned by the ATTACH_AGENT command. For

alocal agent, specify O.
resp_buf _ptr

A pointer or an absolute address to the response buffer.

resp_buf _length

The length of the response buffer.

cmd_buf _ptr

A pointer or an absolute address to the command buffer.

See also: Buffer format, later in this description

cmd_buf _length

The length of the command buffer.

Output Arguments
filled_length

The number of bytes of data stored in the response buffer. Thisvalueisfilled in by
the NMF after it executes the command.

resp_buf _ptr

The buffer contains the value returned by this command. For aSET_OBJECT
command, the new value is returned.

See also: Buffer format, later in this description

Response Codes
OK_RESPONSE
E_CONNECTION

NOT_CONFIGURED
E_NMF_OPCODE

E_INSUFF_RESP BUF
E_LAYER NOT_SUPP
E_OBJ MIX

322 Chapter 14

1H
8H

OAH
OCH

OEH
10H
12H

Operation completed successfully.

Connection error. This usually means that the
remote address was incorrect.

No local net manager.

The specified opcode field isnot avalid NMF
command.

Response buffer istoo small.
Layer not supported.

Bad mix of objects. Each request block can
contain objects from only one layer.

Using the Network M anagement Facility

NMF READ _OBJECT /SET_OBJECT
READ_AND CLEAR_OBJECT

E_REFERENCE 14H Unknown connection reference in the reference
parameter.

E PROTOCOL_ERR 18H Protocol error in the reply from the target net
agent.

E INTERNAL_BUF 1AH Fatal Error, connection removed. The application
must reattach the target agent.

E_NO_NMF OFFEH Nolocal NMF.

Additional Information

The application must set aside a command buffer and a response buffer in host
memory before invoking one of these commands. The command buffer specifies the
list of objectsthat are subject to the command and, in the case of the SET_OBJECT
command, contains the new object values. Create and fill in the command buffer
before issuing the command.

The response buffer is used by the NMF to return object values and command
execution status. For each object in the response buffer, there is a status code field.
If the status code is O (successful completion), the value of the object is returned in
the value field of the structure. If the status code is not 0, the value may or may not
have been returned, depending upon the status code. Thel engt h field of the
structure indicates whether or not a value was returned.

If the response code returned in the request block is equal to 1, the command was
successfully executed for each object specified in the command buffer.

Usually, if the response code is not equal to 1, the net agent could not execute the
command and nothing is returned in the response buffer. For example, if the net
agent does not respond to a command, the net manager times out, a connection error
occurs, and the response code will not be equal to 1.

If multiple objects specified in the command buffer are not in the same layer, the

NMF returns the response code 12H. This error indicates that the net agent could not
execute the command on all of the objects requested, but has executed the command
up to the point where a different layer's object was encountered. The response buffer
will contain the objects that were acted on prior to the error.

Network User's Guide and Reference Chapter 14 323

READ_OBJECT/SET OBJECT NME
READ_AND_CLEAR OBJECT

Command Buffer Format

typedef struct obj_cnd_info {

unsi gned short obj ect ;

unsi gned short nodi fi er;

unsi gned short | engt h;

unsi gned char val ue[1] ; /* set to length */

} OBJ_CMD_I NFO,

t ypedef struct command_buffer {

unsi gned char num obj ;

OBJ_CMD_I NFO obj _info[1l]; /* set to numobj */
} COVMAND BUFFER;
Where:

num obj The number of objectsincluded in the buffer.

obj ect The ID code for an object. All objects in the command buffer must be
in the same layer.

See also: ID codesfor iNA 960 objects, Appendix C

modi fi er For virtual circuit connection-dependent objects, specify the connection
reference or router table entry whose values are to be accessed. For any
other object, specify 0. Virtual circuit connection IDs can be found by
reading Transport Layer object 4001H, which returns an array
containing the connection references for all established VCs.

| engt h Thelength of the val ue field, in bytes. For the READ_OBJECT and
READ _AND_CLEAR_OBJECT commands, set | engt h to 0.

val ue For aSET_OBJECT command, specify the new value of the object.
Thisfield isignored for the READ_OBJECT and
READ_AND_CLEAR_OBJECT commands.

See also: Object values, Appendix C

324 Chapter 14 Using the Network M anagement Facility

NMF

READ_OBJECT/SET OBJECT
READ AND CLEAR OBJECT

Response Buffer Format

t ypedef struct obj_resp_info {

unsi gned short

unsi gned short

unsi gned char

unsi gned short

unsi gned char
} OBJ_RESP_I NFO

obj ect ;

nodi fi er;

st at us;

| engt h;

val ue[1] ; /* set to length */

struct response_buffer {

unsi gned char
OBJ_RESP_| NFO
} RESPONSE_BUFFER;

num obj ;
obj info[1l]; /* set to num.obj */

num obj The number of objectsincluded in the buffer.

obj ect The ID code for an abject.

modi fi er For virtual circuit connection-dependent objects, thisis the connection
reference or router table entry whose values are to be accessed. For any
other object, thisfield has no meaning.

status One of these status codes that indicates the success or failure of the
requested operation:

Status Description

0 Successful completion.

1H - 5H Reserved.

6H The object ID does not exist or is hot supported.

H Incorrect access operation (e.g., an attempt was made to
set aread-only object). Seeaso: Appendix C for a
listing of the access permissions for each object.

8H Reserved.

9H Incorrect parameter value. The object value specified is
out of range.

OAH - ODH Reserved.

80H Incorrect modifier.

81H The response buffer istoo small.

82H End of routing table. The specified table index (modifier
field) is past the end of the table.

83H Routing table entry empty. The specified table index
(modifier field) corresponds to an empty table entry.

84H No free routing table entry. The requested table entry

cannot be created because the table is full.

Network User's Guide and Reference Chapter 14 325

READ_OBJECT/SET OBJECT NME
READ_AND_CLEAR OBJECT

| ength Thelength of theval ue field, in bytes. If the operation was not
successful (st at us not equal to 0), | engt h may or may not be 0.

val ue The value of an object. For the READ_AND_CLEAR OBJECT
command, thisisthe value before the object is cleared. For the
READ_OBJECT and SET_OBJECT commands this is the value after
the object is read or set.

See also: Object values, Appendix C

326 Chapter 14 Using the Network M anagement Facility

NMF SET_MEMORY

SET_MEMORY

The SET_MEMORY command writes to the host memory on the net agent specified
in the request block. This command uses the same structure as the
READ _MEMORY command.

See also: READ_MEMORY, in this chapter

Network User's Guide and Reference Chapter 14 327

SET_OBJECT NMF

SET OBJECT

The SET_OBJECT command changes the value of one or more iNA 960 objects.
The request block and buffers for this command are the same as those for the

READ_OBJECT commands.
See also: READ_OBJECT, in this chapter

328 Chapter 14 Using the Network M anagement Facility

NMF SUPPLY_BUFFER

SUPPLY_BUFFER

The SUPPLY_BUFFER command supplies a buffer to the NMF to receive adata
packet destined for the application rather than the NMF. When the NMF receives a
Data Link packet with the NMF LSAP, the NMF checks the command field. If the
NMF does not recognize the command and a buffer has been supplied, the NMF
places the packet in the buffer and returns the SUPPLY _BUFFER request block. A
remote-load application can use this mechanism to communicate.

See also: Remote Load Operations, in this chapter,
Remote Booting, Chapter 15
Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* of supply_buf_rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ector resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segment token */
unsi gned char subsyst em /* 81H */
unsi gned char opcode; /* 8H */
unsi gned short response; /* initialize to 0 */
} RB_COWVON
typedef struct supply_buf _rb {
RB_COVIVON header ;
unsi gned short filled_l ength; /* output */
unsi gned | ong buf fer_ptr; /* inlout */
unsi gned short buf fer _| engt h; /* input */

} SUPPLY_BUF_RB;

Input Arguments

buffer_ptr
A pointer to (absolute address of) the supplied buffer.

buffer_length
Thelength, in bytes, of the supplied buffer.

Output Arguments

filled_length
The amount, in bytes, of the supplied buffer actually taken up by the message packet.

Network User's Guide and Reference Chapter 14 329

SUPPLY_BUFFER NMF

buffer_ptr
The buffer contains a packet of information, with the format shown below. The
packet header is put in the buffer so that the application will know the source of the
message. The header isin the same format as an |EEE 802.2 Type 1 subnet packet
header, regardless of what type of Data Link service delivers the message.

typedef struct supply_buff {

unsi gned char destinati on_addr[6];
unsi gned char source_addr|[6] ;
unsi gned short | engt h;
unsi gned char dest | sap_sel;
unsi gned char src_| sap_sel;
unsi gned char control;
unsi gned char data[1];
} SUPPLY_BUFF;
Where:

desti nati on_addr
The Ethernet address of the message destination.

sour ce_addr
The Ethernet address of the message source.

I ength Thetotal length of the remaining fieldsin the buffer (dest _| sap_sel
through dat a).

dest _| sap_sel
The NMF LSAP selector at the destination, which is 8H.

src_| sap_sel
The NMF LSAP selector at the source, which is 8H.

control Thisfield isset to 3H.
dat a The data sent in the message packet.

330 Chapter 14 Using the Network M anagement Facility

NMF

SUPPLY_BUFFER

Response Codes
OK_RESPONSE

E_OK_BUFF_RELEASE

E_NMF_OPCODE

E_INSUFF_RESP BUF

Additional Information

1H

3H

OCH

OEH

Command completed successfully; this buffer
contains a returned packet.

Rather than being used, the buffer has been
released with a TAKEBACK_BUFFER
command.

The specified opcode field isnot avalid NMF
command.

The buffer istoo small. This occurs when the
buffer istoo small to even hold the packet header.
The buffer must be at least 18 byteslong.

The supplied buffer must be as least the length of the largest packet expected. If the
buffer is shorter than the length of areceived packet, one of two things can happen:

» |f the buffer istoo short to hold the packet header, the entire packet is discarded;
no error is returned to the source.

» |f the buffer islong enough to hold the packet header but too short to hold the
data, the header is put in the buffer and the rest of the packet is discarded; no

error isreturned to the source.

Networ k User's Guide and Reference

Chapter 14 331

TAKEBACK_BUFFER NMF

TAKEBACK_BUFFER

The TAKEBACK_BUFFER command releases a buffer previoudly supplied to the
NMF with the SUPPLY BUFFER command.

Request Block

typedef struct rb_comon {

unsi gned short reserved[2] ;
unsi gned char | engt h; /* takeback_buf _rb */
sel ect or user _i d; /* cqg_create_comm.user */
unsi gned char resp_port; /* OFFH */
sel ect or resp_nbox; /* mail box token */
sel ect or rb_seg_tok; /* segnment token */
unsi gned char subsyst em /* 81H */
unsi gned char opcode; /* 9H */
unsi gned short response; /* initialize to 0 */
} RB_COWON;

typedef struct takeback_buf_rb {
RB_COVIVON header ;
} TAKEBACK_BUF_RB;

Response Codes

OK_RESPONSE 1H Command completed successfully.
E_NMF_OPCODE OCH The specified opcode field isnot avalid NMF
command.
b

332 Chapter 14 Using the Network M anagement Facility

Remote Booting 15

This chapter explains the process of remote booting and how to configure the
computers involved in the process. The discussion also covers how to configure and
use software for diskless nodes, which have no local mass storage devices.
Computers that are booted remotely do not have to be diskless nodes, but they often
are.

The bootstrap loading process (or booting) loads software into a computer's RAM
using a program called the Bootstrap Loader. Remote booting loads a software image
obtained across the network from a remote mass storage device, rather than one
stored on alocal disk. Remote booting is the standard way to boot diskless nodes, but
you can boot any iRM X computer thisway. This makesit possible to control
common application software on anumber of computers, by loading all the software
from one boot server. The boot server isacomputer that provides software to other
nodes requesting a remote boot. A computer whose memory is loaded during remote
booting is called the boot client. If the boot client is a diskless node, it also needs a
fileserver. A file server isacomputer that provides remote accessto the files on its
local hard disk to other nodes on the network.

Hardware and Software Requirements

Boot server This can be any computer running the iRMX OS, iNA 960 software,
and the Boot Server software, which is supplied with the OS as a
loadable job (rbootsrv.job). Note that thisisthe Remote Boot Server,
not the MSA Boot Server (which is bootserv.job, used for booting
within aMultibus |1 chassis).

See also: Creating Custom Server Applications, in this chapter

Fileserver Thiscan be any computer running the iRMX OS, iNA 960 software,
and theiRMX-NET server (rnetserv.job). The File Server softwareis
one of the basic modules of iIRMX-NET. The file server and boot
server can be asingle node that provides both file and boot services.

Boot client Thisis often adiskless node, but it does not have to be. Table 15-1 lists
the CPU boards and NICs that can be used for a boot client.

Network User's Guide and Reference Chapter 15 333

Table 15-1. Boot Client Systems

System Bus* CPU NIC Operating System**

PC 386 or higher EtherExpress 16 RPC or RFW

MB2 SBC 486DX33 EWENET module RPC
SBC 486DX66
SBC 486SX25

MB1 SBC 386/2X SBC 552A 1]
SBC 386/3X
SBC 386/12
SBC 486/12

* MB1 specifies Multibus I; MB2 specifies Multibus II; PC specifies PC Bus
** || specifies iIRMX Ill OS; RPC specifies iRMX for PCs; RFW specifies DOSRMX.

For smplicity, this chapter often refers to the three remote boot client configurations
asthe Multibus I, Multibus I, and PC Bus systems. Remember, however, that
remote booting also requires one of the supported CPU boards and NICs listed in
Table 15-1 and that each hardware configuration runs only one or two versions of the
iRMX OS. The following regquirements also apply:

Asageneral rule, the boot client must contain, in PROM, aniRMX remote first stage
bootstrap loader. However, thisis not necessarily true for PCs.

PC Bus and Multibus Il systems; there are two possible methods:

e Theboot client NIC contains, in ROM, an iRMX remote first stage bootstrap
loader. Y ou create the ROM using software supplied with the iRMX OS and the
instructions later in this chapter.

* Toremotely boot DOSRMX on a PC or PC-compatible Multibus Il board, you
can boot DOS from alocal disk or diskette. Then you can use the loadrmx
command to remotely boot DOSRM X.

See dso: loadr mx, Command Reference

Multibus | systems
The CPU boards that support remote booting come with the iIRMX remote first
stage bootstrap loader in PROM. The first stage includes the remote device
driver for the 552A board.

See also: Bootstrap Loader Reference for more about remote booting
Multibus | systems

334 Chapter 15 Remote Booting

Overview of Remote Booting

Figure 15-1 shows a boot client and boot server before remote booting and again
afterwards. Theclient isaMultibus | system, with the networking software running
on a separate NIC.

System B
System A boot client boot server
Host CPU Hard disk
board NIC =
: <> S—
Bootstrap |l\;2r\tl)§ro t T— A
Loader
1 Ethernet |
iRMX iNA
boot file load file
System B
System A boot client boot server
Host CPU Hard disk
board NIC e
<> 2
iNA boot ——
iNA server
\ Ethernet ‘
iRMX is a registered trademark of Intel Corporation. W-0918

Figure 15-1. Remote BootingtheiRMX 111 OS, Start and Finish

The top diagram includes all the pieces required for remote booting the IRMX 111 OS;

* A boot client (System A) with afirst stage Bootstrap L oader and other remote
boot firmware in PROM

e A boot server (System B) running the iNA Remote Boot Server software, which
stores the files to be loaded onto the boot client: the iIRMX [11 OS boot file, a
remote third stage Bootstrap Loader, and an iNA 960 file

In the bottom diagram of Figure 15-1, booting is finished, and the iIRMX OS and iNA
960 are running on the boot client.

If the boot client is a diskless node, during remote booting it attaches afile server and
assignsit the logical name :sd:. Any referencesto :sd: on the diskless node use the
remote disk provided by the file server.

Figure 15-2 shows the finish of remote booting when the boot client (System A) isa
diskless node. During the processit has attached a file server (System C) across the

Network User's Guide and Reference Chapter 15 335

network. Herethefile server (System C) and boot server (System B) are two
separate nodes, but the same node could serve as both.

System B
Ethernet boot server
Hard disk
»] N—
System A boot client boot server ——
Host CPU
board NIC

System C
iNA file server
Hard disk

.
iIRMX-NET

.

file server

:sd:
iRMX is a registered trademark of Intel Corporation. 0OM04346

Figure 15-2. Remote Booting a Diskless Node

336 Chapter 15 Remote Booting

In brief, the process of remote booting is:

1
2.

You start by resetting the boot client.

The boot client sends a remote load request across the subnet. The request isa
multicast message, so it does not go through routers into other subnets.

Each boot server that receives the message checksto seeiif it can service the
request. If it can provide the service, it returns an accept message to the boot
client; if it cannot, it does not respond.

Once it receives an accept message, the boot client notes the source address and
sends a series of data request messages to that boot server.

The boot server responds with messages containing the requested data.

Asit receives the data messages from the boot server, the boot client places the
datainto memory.

When the last of the datais loaded, the boot client software knows that loading is
complete.

See also: Creating Custom Server Applications, in this chapter, for more detail on

the remote booting process

Configuring the Load Files

The software loaded onto the boot client varies with the version of the OS to be
booted, as shown in Table 15-2. For booting, the files must be on the boot server. If
you need new versions of the files, however, you can generate them on another host
and copy them to the boot server. Y ou might need to do thisif the server does not

have an ICU.
Table 15-2. Load Filesfor Remote Booting

File iRMX 1l OS iRMX for PCs DOSRMX

iIRMX OS boot file *rsd.bck required required required

load-time configuration file none - ICU configurable optional optional

rmx.ini

remote 3rd stage bootstrap required required none - loaded from

loader *.rem32 DOS

iNA 960 load file ina*.32r optional none - uses none - uses
COMMputer COMMputer

Network User's Guide and Reference Chapter 15 337

Operating System Boot File
The only file that is always required for remote booting is the OS boot file.

Generating an OS Boot File

To generate an OS boot file, configure a definition file using the ICU. Table 15-3
shows the remote boot definition files provided with the OS in the /rmx386/icu
directory. The ICU restores the backup version of the file to a definition file with the
extension .def instead of .bck. Thersd in the filenames means they are intended for
use with aremote system device, which isthe standard configuration for remote boot
clients. Thefilescontain all of the iRMX subsystems and the iIRMX-NET File
Consumer module, but not the iIRMX-NET File Server software.

Table 15-3. 1CU Definition Filesfor Remote Booting

File CPU

38620rsd.bck SBC 386/2X,3X

38612rsd.bck SBC 386/12

48612rsd.bck SBC 486/12

pccprsd.bck PC with EtherExpress 16
|:| Note

The pecprsd.bek file can run the DOSRM X OS (with DOS present)
or iRMX for PCs (without DOS). You can also usethisfile onan
SBC 486SX/DX board with an EWENET module. To do so, you
need to make only one change.

Use the ICU to configure pccprsd.bck. Change the iNA 960 file
configured into the OS with the OFN parameter on the ICMPJ
screen. For the EWENET module, specify either the iewexpn
(NULLZ2) job or iewexpe (ES-1S) job, instead of the iethxpn(e) job
used with the EtherExpress 16.

See also: i*.job, System Configuration and Administration

338 Chapter 15 Remote Booting

ICU Configuration

To create adiskless configuration of theiRM X I11 OS, generate the iIRMX OS with
the ICU in the usual way. Y ou must change several ICU screensto replace the
default file server name, FILESRV, with the name of the node you will use asthe file
server. Useits server name, which is registered with the Name Server.

See dso: listname command, Command Reference

Invoke the ICU, using the definition file in Table 15-3 that matches the boot client's
hardware, and make these changes:

1

For Multibus | boot clients only, on the Logical Names (LOGN) screen add this
entry, whereser ver _nane isthe name of thefile server:

SD, server_nane, REMOTE, OH

|:| Note

Only perform this step if ABR (automatic boot device
recognition) is set to NO in the EIOS screen (this step applies
only for remote booting aMultibus | client). If ABR=YESin the
EIOS screen and you perform this step, the OS initialization will
fail with EIOS initialization error OO05H.

On the User Definition File (UDF) screen, specify this parameter:
(MD) Master UDF Device server _nane

On the Client Definition File (CDF) screen, specify this parameter:
(CDD) CDF Device server _nane

Y ou can also use the CDF screen to set a unique client name and password for
the boot client board. Both parameters are case-sensitive. The default entries

arermx and 1234567. Y ou can use the defaullts, but every diskless client using
this configuration will have the same client name and password.

The definition file assumes that the file server is running the same version of the
iRMX OSastheboot client. If it isadifferent version, specify the correct
pathname for the configuration directory on the EIOS screen.

(CD) Configuration Directory path_nane

The ICU generates an OSfile in the local directory. The file has the same name
asthe definition file, but with a.rem extension.

Network User's Guide and Reference Chapter 15 339

5. Verify on the following screens that these parameters are set:

Screen Parameter

EIOS ABR=Yesfor aPC or Multibus 1I, ABR=No for Multibus|
ABDR DPN = <server name> (only applies when ABR=Y es)
ABDR DFD = Remote (only applies when ABR=Y es)
MIP1 LD =No (only applies when ABR=NO)
GEN RMB =Yes

6. Invoke the generation submit file created by the ICU, *.csd. This creates a boot
filein the /rboot32 directory. Thetypical filename extensions are .rem or .386,
asshown in Table 15-4.

The boot file is now ready for the default remote booting process. If you intend to
boot it without an iNA 960 load file, instructions are provided later in this chapter.

See also: Creating the ccinfo File, in this chapter;
User Definition File and Client Definition File, Chapter 2;
ICU User's Guide and Quick Reference

Load-time Configuration File

For iRMX for PCs and DOSRMX only, use the load-time configuration file, rmx.ini,
to override default parameters. Y ou need a separate file if you are using different
nodes for the boot server and the file server. By default, the OS looks for its system
files on the boot server. Y ou can also make any other optional changesin thisfile,
like resetting the default client name and password.

To prepare a configuration file for remote booting:

1. Copy the default rmx.ini fileto the /rboot32 directory. Thisfile will be used by
the boot client; be sure it is not a version that has been configured for the local
node.

2. Edit thefile server name:
DN =' SD ;. Devi ce Name
where SD isthe name of the file server, asregistered with the Name Server.

3. You can aso specify a unique client name and password for the boot client.
Both parameters are case-sensitive:

CNN ='client_nane' ; Consuner Nane
CNP =' password’ ;. Consuner Password

The default Consumer Name is ‘rmx’ and the default Consumer Password is
1234567'. Y ou can use the defaults, but every diskless client using this
configuration would have the same client name and password.

340 Chapter 15 Remote Booting

4. Inthe EIOS block, add these parameters, where ser ver _nane isthe name of
thefile server:

ADV ='server_nane'
AFD =05H

5. IntheHI block, add this parameter, wherei nit _fi | e isafileinthe:config:
directory to use as a replacement for r?init:

SCF ='init_file'
6. Trandatethefileinto iNA load file format, using the remini command:
remni rnx.ini torini_at.rem

This creates a configuration file for a PC Bus system. For Multibus|1, use the
filename rini_mb2.rem

See also: L oad-time configuration, System Configuration and Administration;
remini command, Command Reference

Remote Third Stage Bootstrap Loader

The remote third stage is provided with the iRM X Bootstrap L oader in the /bsl
directory. Itisused for booting remote clients with iRMX for PCs or iRMX I11 OS.
On DOSRMX systems, DOS loads the iRM X OS.

Third stage file names have a .rem32 extension. Table 15-4 shows all the files and
the OS boot files they are used with.

Table 15-4. Remote Third Stage Bootstrap L oader Files

Third Stage File Default OS Boot File
exp.rem32 pccprsd.rem
38620.rem32 38620rsd.386
38612.rem32 38612rsd.386
48612.rem32 48612rsd.386

|:| Note

When installed on a DOS file system, the third-stage filename
extensions are truncated to .remfrom .rem32.

OntheiRMX IIl OS you can configure and generate a new third stage. Use the
/bsl/br38.csd submit file to create a Multibus | third stage, or /bsl/br3expgen.csd for a
Multibus Il or PC Bus third stage.

Network User's Guide and Reference Chapter 15 341

To remote boot, the remote third stage that matches the OS boot file must be in the
/rboot32 directory. Copy the appropriate file from the /bdl directory. For example:

copy /bsl/exp.renB2 to /rboot 32/ exp. renB2

The remote third stage is different from other iRMX third stagesin that it does not
really load the OS into memory. The first stage and the firmware on the boot client,
working with the iINA Remote Boot Server software, actually load both the OS and
the remote third stage. The remote third stage receives control directly from the first
stage and puts the processor into protected mode before starting execution of the OS.
(Remote booting does not use a second stage, unlike booting from alocal disk.)

See also: Bootstrap Loader Reference for more on the third stage for Multibus |

INA 960 Load File

Preconfigured iNA 960 remote load files are provided with the OS for boot clients.
Use the /net/ina* .32r files, which are iNA 960 load file format. The ina*.32l filesare
for local use. You can boot theiRMX [11 OS without loading iNA 960, but this
requires changes to the ccinfo and OSfiles.

Remotely booted iRM X for PCs and DOSRM X systems use a COMM puter
configuration. They do not have a separate NIC to be downloaded.

See also: Creating the ccinfo File, in this chapter

Generating a First Stage EPROM for the Boot Client

The boot client has no software to configure, but it must contain, in EPROM, an
iRMX remote first stage bootstrap loader.

The hardware configuration required to remote boot the iIRMX I11 OS includes
Multibus I, the SBC 552A NIC, and CPUs that come with the first stagein ROM.
The first stage includes the remote device driver RO for the SBC 552A NIC. You can
replace the first stage with one that you have configured.

See also: Configuring the first stage, Bootstrap Loader Reference, for Multibus |

342 Chapter 15 Remote Booting

Creating a First Stage for EtherExpress 16 or EWENET

For booting iRM X for PCs and DOSRM X, the first stage must be onthe NIC. You
create an EPROM for the EtherExpress 16 NIC (PC Bus) or EWENET module
(Multibus 1), using software supplied with the iIRMX OS. Thisinvolves editing the
configuration file, generating the first stage files, and burning a new EPROM.

OnaniRMX IIl computer with an EPROM burner attached, complete these steps:
1. Movetothe/bd directory to generate the EPROM.

2. Configure the bexp.a86 file, if necessary. If you intend to boot iRMX for PCs on
aMultibus |1 system and you want the bootstrap loader menu to be displayed,
you can use the default configuration. If you need to edit the file, make a backup
copy. Besure you are not changing comment lines that begin with a semicolon
(;) instead of the command lines.

e To change the class code, replace the value 4001 in following line with one
of the entries in the : sd: net/ccinfo file.

default _cl ass_code DB ' 4001', O0OH
See also: Creating the ccinfo File, in this chapter

* To change the default menu display or check for adisplay adapter, replace
the value OFFH in following line with the one appropriate to your system.

cnos_check_byte DB OFFH ; Display Menu

Use 000H to suppress the menu, 01FH to indicate a Phoenix BIOS
keyboard, or 014H for Standard BIOS equipment. If you use
cmos_check_byt e value O1FH or 014H to check for a display adapter,
you also need to set the cnmos_check_mask to specify whether the menuis
displayed.

cmos_check_nmask DB 001H ; Phoeni x Bl CS keyboard

A logical and is performed on the cnos_check_byt e value 01FH or
014H and the cnos_check_mask value. If theresultisnot O, the menuis

displayed.

e Ifyouchangethedefaul t _cl ass_code, cnos_check_byte, or
cnos_check_nask parameters, also change the value in thisline so that the
file produces a checksum ending in 00 when you program the EPROM.

checksum fix DB OB8H

Network User's Guide and Reference Chapter 15 343

344

3.

Invoke the submit file bexp.csd.
submit bexp

This step generates alocated object file bexprb.loc for use with the iPPS PROM
Programmer and a HEX file bexprb.hex for use with third party PROM
programmers. Thiswarning appears; thisis normal.

WARNI NG 66: START ADDRESS NOT SPECI FI ED I N OUTPUT MODULE
Program the EPROM.

e If youareusing athird party PROM programmer, move the bexprb.hex file
to the proper location and follow the vendor's instructions to create the
EPROM.

* If you are using the iPPS PROM Programmer, follow the instructions in the
next section.

If the process of programming the EPROM produces a checksum that does not
end in 00, adjust the value of checksum f i x in the bexp.a86 file and repeat the
process.

Chapter 15 Remote Booting

Using the iPPS PROM Programmer

To place thefirst stage into an EPROM device, stay in the /bgl directory and
compl ete these steps:

1. Attach the physical device asipps.
ad ternminal _device as ipps p

Wheret er i nal _devi ce isthe terminal device name for your system, for
example, t82530_0.

2. Set the baud rate of the terminal to 2400 baud.
term:ipps: in=2400

3. Invoke the iPPS PROM Programmer:
i pps

4. AttheiPPS prompt, enter:
i 86
t 2764
format bexprb.loc (92000)
3
1
1

0 to bexprb.rom
y

copy bexprb.romto b
copy b to bexprb.rom
y

copy bexprb.romto p
exit

The commands above are for programming a 2764 EPROM, using the bexprb.loc file
prepared with the instructionsin previous sections. This command (from the list
above) copies the buffer back to afile.

copy b to bexprb.rom

The checksum reported in this step must end in 00, or the ROM BIOS will not
execute the code. If necessary, adjust the checksum f i x variablein the bexp.a86
configuration file and try again.

Network User's Guide and Reference Chapter 15 345

Installing the EPROM
Toinstall the remote first stage in the boot client, complete these steps:

1
2.

4.

Plug the EPROM into an EtherExpress™ 16 or EWENET board.

Place the board in the boot client or, if it isdiskless, in acomputer with a disk
drive.

Run the SOFTSET program from the DOS prompt to configure the board. Use
the Manual Setup option to configure the board for the boot client. Set the boot
ROM address parameter to any available address range.

Move the board to the boot client, if you configured it somewhere else.

See also: Manual configuration and installation in diskless workstations, The

Complete Guide to installing and configuring the Intel EtherExpress 16
and 16 TP Network Adapters for | SA computers

Configuring the Remote Boot Server

The boot server downloads OS and network communication software to remote
nodes. It can handle simultaneous requests from multiple boot clients. The
maximum number is an iNA 960 configuration option.

These are the basic steps for setting up a boot server:

1
2.

Create the : sd: net/ccinfo file.

Sysload the boot server job rbootsrv.job using the proper command line
parameters.

See also: rbootsrv.job, System Configuration and Administration

Place the load filesin the directories specified in the ccinfo file.

Creating the ccinfo File

346

Every boot server must have a Class Code Information (ccinfo) file. Thistellsthe
server which files to send in response to a boot client's request, and in what order.
The boot server reads the ccinfo file during initialization.

The :sd:net/ccinfo file isabinary file generated by the bcl utility from atemplatefile,
:sd:net/ccinfo.bdf. Each line of thisfileis a predefined entry for a different class
code.

Chapter 15 Remote Booting

Class Codes

A class code is a 16-bit number that determines which files the boot server sendsto a
boot client, and in what order. Table 15-5 shows the default codes predefined in the
ccinfo.bdf file. Y ou can define your own class codes within the specified ranges.

Table 15-5. Class Code Ranges and Defaults

Host/Comm Images Class Code Default Value
Available for applications 0000H - OFFFH 0000H
iNA 960 1000H - 1FFFH 1000H
DOS 2000H - 2FFFH 2000H
iRMX OS 3000H - 4FFFH
1 MB1**/386 3000H
1] MB1/486 4000H
RPC* MB2** 4001H
RPC pPC** 4002H
RFW* PC 4003H

* |1l specifies iRMX 11l OS; RPC is iRMX for PCs; RFW is DOSRMX
** MB1 specifies Multibus I; MB2 is Multibus II; PC is PC Bus

Every boot request includes a class code. When the boot client sends a boot request,
the boot server checks whether it has a definition for the class code. If it does, the
server sends all the files associated with that code to the boot client.

For example, the load files for booting a Multibus | boot client consist of a remote
third stage, the OS, and usually an iNA 960 file. Asyou can seein the ccinfo.bdf file
in Figure 15-3, by default all three files are matched to codes 3000H and 4000H.

Y ou could define a code 4004H to match only the first two files. A client
broadcasting the code 4004H would receive only the third stage and OS files from the
boot server.

4000 IS /rboot 32/48612rsd. renB82, /rboot 32/ 48612rsd. 386,
/ net/i nab52an. 32r;

4001 1S /rboot 32/ exp.renB2, /rboot32/rini_nb2.rem /rboot32/pccprsd.rem
4002 1S /rboot 32/ exp.renB82, /rboot32/rini_at.rem /rboot32/pccprsd.rem
4003 |I'S /rboot 32/ pcexprsd. rem

3000 I'S /rboot 32/38620rsd. renB82, /rboot 32/ 38620rsd. 386,
/ net/ina552an. 32r;

1032 | S / net/inab552an. 32R;
1033 | S / net/inab52ae. 32R;

Figure 15-3. The:sd:net/ccinfo.bdf File

Network User's Guide and Reference Chapter 15 347

Thefiles are sent in the order they arelisted in the class code entry. Thisis
important, because most of the files are trandated with the N flag set on the xlate
command, which tells the boot client to look for the next file. When afile transated
without the flag arrives, the boot client stops sending data messages to the server, and
loading stops.

Both predefined and custom-generated files are trand ated to fit the order of the
default ccinfo.bdf entries, as shown in Table 15-6.

Table 15-6. Remote Load File Trandation

File Xlate N Flag Order of Loading
*.rem32 remote third stage yes first
rini_*.rem load-time configuration file yes before the OS
iIRMX OS boot file
*rsd.386 III** yes before iNA 960
pc*rsd.rem RPC** or RFW** no last
ina*.32r iNA 960 files no last

** Il specifies iRMX IIl OS; RPC is iRMX for PCs; RFW is DOSRMX

However, two class codes in the ccinfo.bdf file, 1032H and 1033H, load iNA 960
separately. If you do this, you need to create a class code that loads the IRMX 111 OS
without iNA 960. Add alinelike thisto the ccinfo.bdf file:

4004 1S /rboot 32/ nyrsd. renB82, /rboot 32/ myrsd. 386;

Then you must generate anew version of theiRMX 111 OS that is trandated without
the N flag. The ICU places the proper xlate translation command line into the
generation submit file it creates.

If you are not sure about the state of a particular file, the unxlate command displays
tranglation information about it.

See dso: xlate and unxlate commands, Command Reference

Generating the ccinfo File
Y ou can use the default entriesin the ccinfo.bdf file or edit the file to change them.
1. Makeacopy of the :sd: net/ccinfo.bdf file to use as a backup example.
2. Editthefile. Be sure not to change the order of the filesin an entry.

If you are booting iIRMX for PCs or DOSRM X without an rini_at.rem or
rini_mb2.remfile, take the files out of the definitions for class codes 4001H and
4002H, or create a new code without it.

348 Chapter 15 Remote Booting

For example, you might have an DOSRM X system where you boot DOS locally
but boot the iIRMX OS remotely. In this case, you could include an rmx.ini file
on the local DOS disk, and would not need a separate rini_at.remfile on the
server.

3. Create the ccinfo file, using the bcl command:

attachfile :sd: net
bcl ccinfo.bdf ccinfo

See dso: bcl and inamon commands, Command Reference

Make sure the ccinfo file is small enough to fit into the boot server's buffer in
memory. The boot server is configured for a maximum file size of 1024 bytes.

See also: rbootsrv.job, System Configuration and Administration, to increase the
default file size on the sysload command line

|:| Note

If the ccinfo fileistoo large, no error message appears. |nstead,
only the bytes that fit into the buffer are |loaded and any entries that
do not fit are not supported by the boot server.

If thefileistoo large, use multiple boot servers, each supporting certain boot clients.
Split the entries in the ccinfo file among the ccinfo files on different servers. Make
sure they do not have different definitions of the same class codes. The boot client
boots off the server that responds first, so the results would be unpredictable.

See also: iNA configuration values, Appendix A

Loading the Boot Server

After creating the ccinfo file, you must load the boot server. This reads the ccinfo file
and tests the INA Remote Boot Server software. If the boot server job is aready
running, first reboot the system. Then load rbootsrv.job with a sysload command.

See also: rbootsrv.job, System Configuration and Administration, for loading
syntax and switches you can set on the command line

Network User's Guide and Reference Chapter 15 349

Installing the Load Files

Make sure the load files are on the boot server system, in the directories specified in
the boot server's ccinfo file. Table 15-7 shows the defaults. The server uses the path
names in the ccinfo file to find the load files.

Table 15-7. Default Directoriesfor Load Files

File Directory
iIRMX OS boot file :sd:rboot32
load-time configuration file :sd:rboot32
remote third stage bootstrap loader :sd:rboot32
iNA 960 file :sd:net

At this point the boot server is ready to respond to requests from boot clients on the
network.

Configuring the File Server

350

Thefile server isanode with alocal hard disk that is used as a system device for a
diskless node or adiskless host CPU. The server must provide remote accessto all of
the files that the IRMX OS and iRMX-NET assume are available during
initialization. This means offering, as public directories, any root-level directories
that are required. These public directories are listed in the file server configuration
information later in this chapter.

Any iRMX OS generated using adefault iIRMX-NET configuration is ready to act as
afile server. You do not need to make any special configuration changes, and the
steps for setup are the same as for any other iRM X computer. If you are using a
custom configuration of iIRMX-NET, however, then these parameters must be set
appropriately for the diskless boot client to initialize and function properly.

See also: Network jobs, System Configuration and Administration

Thisinformation outlines which iRMX-NET file server system parameters are
important when the iRMX OS and iRMX-NET run in a diskless environment.

On thefile server:

1. Make sure the server names of the file server and the boot client are in the Name
Server object table.

2. Add the boot clients to the Client Definition File (CDF).

3. Enter the names of the boot clients and their terminal typesinto the
:config:terminalsfile.

Chapter 15 Remote Booting

Loading Server Names into the Name Server Database

The server name of the file server must be available to the OS being booted, so the
boot client can attach to the file server. This name should aready be in the Name
Server object table; use the listname command to check. If necessary, add thisline
to the : sd: net/data file:

fsnane/ nfs: TYPE=rnx: ADDRESS:
where f snane isthe server name of the file server.
See dso: listname command, Command Reference

The boot client must also have a server name available, so the HI of the OS being
booted can find its own name. It needs the name when it reads the : config:terminals
file, which lists terminal types for diskless nodes by name.

To make this server a spokesman for the boot client, add aline like one of these to
the :sd:net/data file:

nblsys: TYPE=pt 0005: ADDRESS=ssss############00;
nb2sl ot 2: TYPE=pt 0005: ADDRESS=ssss############02;
pcsys: TYPE=pt 0005: ADDRESS=ssss############00,

Where:
nblsys The server names for boot clients, as defined in the ICU or the
mb2sl ot 2 rmx.ini file during load file configuration.
pcsys
SSSS The subnet ID configured into the iINA 960 job. The default

number is 0001 (assuming the first subnet in multiple-subnet
jobs). However, you can override the default by reconfiguring
the job with the ICU or with an SNID parameter on the sysload
command line when you load the job.

See also: i*.job, System Configuration and Administration

#u The Ethernet address of the boot client where the OS will run.
PC Bus and Multibus Il systems display the Ethernet address on
theinitial screen. On Multibus| systems, display the Ethernet
address by attempting a remote boot.

The example lines above show a two-digit number following the
Ethernet address. On aMultibus Il system, specify the dot
number of the boot client board. On aPC or Multibus | system,
specify 00 after the Ethernet address.

Each boot client must have its own linein thefile.

Network User's Guide and Reference Chapter 15 351

Reboot the file server or invoke the loadname command after you edit the
:sd:net/data file.

See also: Adding a Server to the Name Server Object Table, Chapter 3;
Editing the : sd: net/data.ex File, Chapter 11, for more about the format
of the entries

Adding Client Names to the CDF

Add the boot clients to the Client Definition File (CDF). The CDF on thefile server
must contain the client name and password for any boot clients. Y ou defined the
client name and password during configuration of the OS boot file on the boot server.
The client name can be the same as the server name specified earlier, but it does not
haveto be. The client name and password are both case-sensitive.

See also: modcdf example, Chapter 5

Adding Server Names to the :config:terminals File

Enter the server name of the boot client and its terminal type into the
:config:terminals file. The name must match the boot client's server name registered
with the Name Server in the : sd:net/data file. For example:

/1

1, <pcsys>
comt, , , any
/1

1, <nblsys>
to,,,any

/1

1, <nb2sl ot 2>
t279_0,,, any

See also: Diskless workstations, System Configuration and Administration, for
information about the format of the :config:terminalsfile

352 Chapter 15 Remote Booting

Remote Boot Start

When the software isin place on al of the nodes, and the file server and boot server
are running, the remote booting can begin. Table 15-5 shows the predefined class
codes you can use.

Booting Multibus | Systems

To boot the iRMX I11 OS on Multibus| clients, enter the SDM monitor by resetting
the system. At the monitor prompt, specify aboot command line with aremote
device name and a class code. For example:

b :r0: 4000H
Where:
r0: The remote device name.
4000H The 16-bit class code. Make sureto add an H on the end for a hex value.

L eave a space between the remote device and the class code. If you omit the class
code, the Bootstrap L oader uses the default value configured in the first stage.

See also: First stage configuration, Bootstrap Loader Reference

Booting Multibus Il or PC Bus Systems

On PC Bus and Multibus 11 clients, a screen with a default class code appears when
you reset the computer. Enter adifferent class code, if necessary, or allow the
computer to reboot automatically using the default. A remote device name is not
used.

System Initialization on a Diskless Node

During the initiaization of the iRMX OS on the boot client, any file accesses go to
the file server through iRMX-NET. The EIOS performs alogical attachdevice on
the system device, but the first file access does not actually occur until the HI does an
attachfile on that device. This happens when the HI creates the logical names
specified in the ICU on the boot server when you configured the OS boot file. The
HI also accessesthe file server's :config: terminalsfile. If the user logson asa
dynamic user, the CLI accesses the file server to obtain the UDF file and any user
files, such as :prog:r?logon.

Network User's Guide and Reference Chapter 15 353

34

During HI initialization, the system configuration fileisinvoked. On adiskfull node,
the default system configuration file is :config:r?init, which submits the
:config:loadinfo file. The loadinfo file contains sysload commands to load the
system jobs.

Diskless nodes cannot use the r?init file or the loadinfo file; these typically apply to
the server system. By default, the *msd.bck and *rsd.bck definition files (which
apply to diskless nodes) are configured to use file :config:initrsd as the system
configuration file, instead of r?init. If you want to use a different file than
:config:initrsd, specify your file in the SCF parameter on the HI screen of the ICU or
in the SCF parameter of the rmx.ini file (or your rmx.ini replacement for remote
booting).

In the :config:initrsd file (or your alternate SCF file), submit afile like
:config:loadinfo that contains sysload commands appropriate for the diskless node.
For example, you might submit a file named loadinfo.rsd.

Regardless of what file is specified as the SCF, the HI initialization also submits a
file of the same name with “2” appended, if such afile existsin the : config:
directory. For example, the HI submits :config:r?init2 on a diskfull node. With the
default configuration of the * msd.bck and * rsd.bck definition files, the HI submitsa
file named initrsd2 if it exists. If you change the system configuration file with the
SCF parameter, the HI will submit your new SCF file as well as the same filename
with “2” appended, if it exists.

|:| Note
If you use the SCF mechanism on a DOS-controlled hard disk ,
specify an SCF filename with a maximum of 7 characters or with a
maximum filename extension of 2 characters. ThisalowstheHl
to append a“2" and form afilename that fits the DOS 8.3 filename
limits.
Ther?init2 file on adiskfull node typically submits these TCP/IP-related files with
esubmit commands:

/etc/tcpstart.csd
/etc/nfsstart.csd
/etc/tcpd.csd

To run TCP/IP on diskless nodes, use your SCF file with “2” appended (for example,
initrsd2) to submit similar files that properly set up TCP/IP for those nodes.

See also: TCP/IP and NFSfor the iRMX Operating System

Chapter 15 Remote Booting

If Remote Booting Fails

If it gets no response to its boot request message, the boot client waits one second and
retransmits the message. After transmitting three times, the boot client gives up and
returns an error.

Many other problems on the boot client, boot server, file server, or network can
prevent remote booting. If it fails, correct the problem and try again.

Troubleshooting

These messages could appear on the boot client.

REMOTE BOOTI NG NOT SUPPORTED ONNI C
The NIC isincorrect; replace it with a supported one.

- RO: DEVI CE DOES NOT EXI ST
Incorrect version of the First Stage Bootstrap Loader isin PROM, or the remote
device, :RO:, was not configured into the Bootstrap Loader. Replace PROMS on the
CPU board with the Bootstrap L oader from the iRMX 111 OS. (Multibus | only)

See also: Configuring the first stage, Bootstrap Loader Reference, for details on
burning new PROMSss that include the remote device, : RO:.

Error 02H
No boot server responded to the remote boot requests of the boot client. Several
problems can cause this.

The boot server could not find the : sd: net/ccinfo file during initialization. Check
these items on the boot server:

1. Therbootsrv.jobisloaded.

2. Theccinfofile exists.

3. The:sd:net/ccinfo.bdf file was trandated into the ccinfo file, using bcl.
4. The:sd:net directory isapublic directory.

See also: Setting Up Public Directories, Chapter 4

The boot server could not find the files listed in the ccinfo file for the specified class
code. Make sure the first directory in the path for each fileis a public directory. The
default is/rboot32.

Network User's Guide and Reference Chapter 15 355

The boot server did not honor the boot request for a particular class code. Check
these items on the boot server:

1. The ccinfo.bdf file contains an entry for that class code. The class code specified
in the ccinfo.bdf file is assumed to be a hexadecimal value.

2. All of the ccinfo file fits into the boot server's buffer in memory.

3. Entriesin the ccinfo file for other class codes do not specify the boot client's
Ethernet address.

See dso: bcl command, Command Reference

The physical connection between the boot client and the boot server has been broken.
Reconnect the systems to the network.

06 Undefined Operation

HI

356

The wrong third stage Bootstrap L oader was used. Use the remote third stage
shipped with theiRMX OS. If the boot client isaMultibus | host, make sure that the
remote third stage contains a module located at 1060H. Use unxlate to check.

See also:unxlate command, Command Reference

If the boot client is a diskless node, these messages could also appear.

I NI TI ALI ZATI ON ERROR: 0021H

Several problems can cause this.

The boot client did not attach to the file server. Make sure the file server name has
been entered into a Name Server database.

See also:Adding a Server to the Name Server Object Table, Chapter 3

The boot client could not find the file to be assigned alogical name. Make sure that
the file server has offered as public those directories needed for the logical names.
Thelogical names are defined in the :config:loadinfo file or the Public Directory
screen of the ICU. The default directories needed are listed in this chapter.

See also:Making Local Files Accessible to Other Nodes, Chapter 4

The boot client is executing a different OS than the file server and the path name of
the configuration directory on the ICU's EIOS screen was not changed to reflect the
different OS. Reconfigure the OS boot file to use : sd:rmx386/config for the correct
file server OS.

A Multibus | boot client istrying to use : RO: asthe system device. Turn off
automatic device recognition in the EIOS screen of the ICU, and add an entry for a
remote SD in the logical names screen of the ICU. Regenerate the OS boot file.

Chapter 15 Remote Booting

H | NI TI ALl ZATI ON ERROR: 004BH
Thefile server cannot find a client name and password for the boot client in the
Client Definition File (CDF). Use modcdf on the file server to add the information.

See also:Adding a Client to the CDF, Chapter 3

The system boots, but the recovery user comes up, not the login prompt. Check for
these two problems:

The name of the boot client is not in the file server's : config:terminalsfile.
See also:: config:terminal s file, System Configuration and Administration

The name of the boot client is not in the Name Server object table on the file server.
Enter atype O005H object in the /net/data file and invoke the loadname command on
thefile server to load the name.

See also: Adding an Object to the Name Server Object Table, Chapter 11

Network User's Guide and Reference Chapter 15 357

Creating Custom Server Applications

This section provides additional information about the Boot Service provided by the
iNA NMF, for those who are implementing custom servers. Thisincludes the boot
service message fields recognized by the NMF and the iNA boot file format. A more
detailed discussion of the NMF Boot Service architecture and protocol is beyond the

scope of this manual.

Boot Request and Response

The boot request and boot response messages have this format.

Boot Request Message Fields

char desti nati on_address| 6]
char sour ce_addr ess|[6]

unsi gned short LLC PDU | ength

char destinati on_LSAP_sel ect or
char sour ce_LSAP_sel ect or

char control

char reserved

char comrand

unsi gned short cl ass_code

" 01AAOOFFFFFF"

7h
8h
8h
3h
Oh
4h

Thefieldsdesti nati on_address and LLC_PDU_| engt h through command must

have the values indicated following the equal signs.

Boot Response Message Fields

358

char desti nati on_address|[6]
char sour ce_addr ess|[6]

unsi gned short LLC PDU | ength

char destinati on_LSAP_sel ect or
char sour ce_LSAP_sel ect or

char control

char reserved

char commrand

5H
8H
8H
3H
OH
5H

ThefieldsLLC _PDU_| engt h through command must have the values indicated

following the equal signs.

Chapter 15

Remote Booting

Loading Operation
Once the boot request and response is completed, the actual 1oading operation begins.

From the class code specified in the boot request, the boot server knows exactly
which modules the boot client needs. The boot server breaks the modulesinto an
arbitrary number of blocks of unspecified size. The size of each block must be small
enough to fit into a boot response packet, which can contain up to 1496 bytes of data.
The protocol enables any number of modules to be loaded.

The boot client begins transmitting requests for blocks of data. Block numbers start
at 0 and increase by 1 for each successive request. The algorithm for transmitting
these requests is the same as described earlier for the initial boot request. Upon
receiving a response from the boot server, the boot client processes the response and
transmits a request for the next block of data.

When the boot client has received all blocks of data, it Ssimply stops transmitting
reguests for more. The boot server then times out waiting for the next request from
the client and releases resources that were reserved for the timed-out client.

When the iRM X first stage Bootstrap L oader receives the indication that the remote
load is done, it jumps to location 1060H in memory.

The data request and data response messages have this format.

Data Request Message Fields

char destinati on_address] 6]

char sour ce_addr ess|[6]

unsi gned short LLC PDU | ength = 7h
char destinati on_LSAP_sel ector = 8H
char source_LSAP_sel ect or = 8H
char control = 3H
char reserved = OH
char comrand = 6H
unsi gned short bl ock

ThefieldsLLC_PDU_| engt h through command must have the values indicated
following the equal signs. The bl ock field is the data block number. Block numbers
start at 0 and increase by 1 for each successive request.

Network User's Guide and Reference Chapter 15 359

Data Response Message Fields

char destinati on_address| 6]

char sour ce_addr ess|[6]

unsi gned short LLC PDU | ength =7h +n
char destinati on_LSAP_sel ector = 8H
char source_LSAP_sel ect or = 8H
char control = 3H
char reserved = OH
char comrand = 7H
unsi gned short bl ock

char dat a[n]

ThefieldsLLC _PDU_| engt h through command must have the values indicated
following the equal signs. TheLLC_PDU_| engt h value must be 7H plus the length
of the dat a field, including padding. Thebl ock field is the number of the data
block in the dat a field.

On Multibus | systems a portion of the remote third stage has been loaded into
memory, starting at 1060H. The code at this location jumps to the configurable start
of the rest of the remote third stage. The default location of this remote third stage is
6000H. The remote third stage then sets up the GDT, IDT, and TSS. The
information for the GDT, IDT, TSS and start of the OSislocated in 14 bytes starting
at 1050H. The 14 bytes are added by the xlate utility and are always part of the
iRMX OS. The third stage places the processor into protected mode and starts the
execution of the OS. On PC Bus and Multibus |1 systems the process is similar.

See also: xlate and unxlate commands, Command Reference, for information
about how the firmware determines where to place the data;
GDT dlots, System Configuration and Administration;
IDT and task states, System Concepts

360 Chapter 15 Remote Booting

Boot Module Format

Thisload file (or boot module) format is the one recognized by the boot client
firmware on Intel network communication boards. Thisisthe format of the iNA load

file.

typedef struct boot_nodul e {

unsi gned char

unsi gned | ong

unsi gned short

unsi gned | ong

unsi gned char
} BOOT_MODULE;

comand;

| oad_addr;

| engt h;

executi on_addr;
nmenory_i mage[1] ;

command Indicates whether to execute the module and whether to load more
modules. Only the four low-order bits are meaningful, as shown below.

Bits 4 through 7 must be O.

Bit Value Meaning

0 0 Thisisthe last load module.

1 Other modules follow this one.

1 0 Save the execution address to jump to when a
GO command is received.

1 Jump to the execution address immediately after
loading the module.

2 0 The load and execution addresses are in pointer
format, typically used for a module to load onto a
communication controller.

1 The load and execution addresses are absolute
addresses, typically used for amodule to load
onto the boot client host.

3 0 Load this module onto a communication
controller.

1 Load this module into host memory.

Bits 0 and 1 act together and have this meaning:

Bit 0 Bit 1
0 1
0 Load complete Load complete
Wait for GO Execute now
1 More to load More to load
Save execute address | But jump to execute address now

Networ k User's Guide and Reference

Chapter 15 361

d_addr The address to begin writing the memory image. This must be a 32-bit
value that is meaningful to the firmware on the target being loaded.

| ength The number of bytesin menory_i mage, from 0 to 64K.

execut i on_addr
The execution address of the loaded memory image. This must be a 32-
bit value that is meaningful to the firmware on the target being loaded.
nmenory_i nage
The datato load.

Using SUPPLY_BUFFER and TAKEBACK_BUFFER

362

Two NMF commands support remote load applications. The SUPPLY_BUFFER
and TAKEBACK_BUFFER commands provide a mechanism for the NMF to pass
remote load requests and responses that it does not support between applications (for
example, between custom boot clients and boot servers).

The application is free to define a protocol for remote load request and response
messages. Thereis, however, aconstraint on ther eser ved and command fields of
the messages; they must be set to 0.

For a custom remote load application, the NMF boot server is not required in the iINA
NMF configuration used by the application. However, the
NMF_SUBNET_FUNCTIONS macro call must beincluded in theiNA NMF
configuration used by the application. All preconfigured iINA modules supplied with
iRMX-NET include this macro except for those specifically for the SBX 552 board.

For the NMF to pass messages between the applications, buffers are needed to store
the incoming and outgoing message packets. If packets are received by the NMF that
contain commands NMF doesn't recognize and no buffers have been supplied to
handle them, the message packets are dropped; no acknowledgment is sent to the
source.

When the NMF receives a Data Link packet with the NMF LSAP, the command field
is checked to determine if the NMF recognizes the command. If it does, the NMF
executes the command.

If the NMF does not recognize the command and a buffer has been supplied, the
packet is placed in the buffer and a request block pointing to it is forwarded to the
application.

The application responds to the command by writing the response data to another
buffer and then responding to the source of the Data Link packet in an agreed-upon
manner (e.g., using EDL or datagram services). The response to the command
contains a pointer to the buffer containing the response data.

Chapter 15 Remote Booting

This capability makesit possible for the application to implement custom NMF-level
commands that the application executes, rather than the INA NMF.

The SUPPLY_BUFFER command supplies buffers for the purpose described above
and the TAKEBACK_BUFFER command rel eases them.

Seealso: SUPPLY_BUFFER and TAKEBACK_BUFFER commands,
Chapter 14

Network User's Guide and Reference Chapter 15 363

364 Chapter 15 Remote Booting

Internetwork Routing

Network addressing and internetwork routing concepts are introduced in Chapters 8
and 9 of this manual; read those chapters before this one.

Internetwork Routing Protocols
TheiNA 960 ES-1S software supports two internetwork routing methods:

e Static, which usesthe MAP 2.1 routing scheme for mapping NSAP addresses to
subnet addresses.

* End system to intermediate system (ES-1S), which implements the protocol
described in 1S 9542,

The main difference between static and ES-1S routing is the way routing information
isinitially defined and subsequently maintained in end systems and intermediate
systems. In both static and ES-IS routing, routing information is defined by tables
located in end systems and intermediate systems.

Static Routing

In the Static routing scheme, you build routing tables on each end system and
intermediate system in the network when you initially configure them. If the network
configuration and/or membership changes, you must update the routing tables
explicitly, using some mechanism such as the iNA 960 Network Management
Facility (NMF).

ES-IS Routing

In the ES-IS routing protocol, iNA 960 builds routing tables on each end system and
intermediate system dynamically asit starts up and comes onto the network. Part of
the startup process of an end system isto notify the intermediate systemsin the
subnet of its existence. Similarly, intermediate systems notify end systems of their
existence when they start up. If the subnet configuration and/or membership
changes, (whether temporary or permanent), the protocol provides a mechanism for
automatic periodic updates to the routing tables. This ensures that routing
information for inactive systems is removed where necessary throughout the subnet.

Network User's Guide and Reference Chapter 16 365

If an end system needs to send a message to some destination, it sends the message to
an intermediate system which forwards the message. If the destination is directly
reachable from the end system that sent the message, the intermediate system sends
the end system the information necessary to send future messages directly to that
destination.

An intermediate system does not have to be present in a subnet. 1n the absence of an
intermediate system, end systems can determine each other's existence and correctly
exchange messages.

Using Static and ES-IS Routing Together

ES-IS routing does not dynamically define or update the information necessary to
deliver messages between intermediate systemsin different subnets. Y ou must set up
the table containing this information when you configure the intermediate systems.
Thus, when you configure systems to perform internetwork routing, you must use a
combination of Static and ES-ISrouting. On the | Ss (intermediate systems, or
routers), you set up static routing tables to point to each IS attached to the same
subnet, and also to indicate which IS to use to get to any subnets that could possibly
be accessed (including subnets anywhere that you might want to send or receive

messages from).

Once you have set up the static routing on all 1Ss, iNA 960 automatically performs

ES-ISrouting to locate ESs (end systems). Y ou do not have to set up static routing

tables on ESs, nor do you have to indicate ESsin the static routing tables you set up
on|Ss.

See also: Chapter 9 for examples of setting up static routing with the Multibus 11
subnet

Routing Tables

366

iNA 960 makes internetwork routing decisions based on information defined in a set
of tables maintained at all end systems and intermediate systems. The tables are
objectsthat are part of the internal database maintained by the iNA 960 software.

See also: Static and ES-I S router objects, Appendix C

The routing tables at end systems define mappings of NSAP address to subnet
address for the local subnet. The routing tables at intermediate systems define the
same information as end systems, plus information on remote subnets and other
intermediate systems. The Network Layer uses the routing tables to determine how
to deliver a message.

Chapter 16 Internetwork Routing

Application Access to Routing Tables

Y ou can access the routing tables asiNA 960 routing objects. To perform network
routing, the application uses the NMF commands READ_OBJECT and
SET_OBJECT.

See also: READ_OBJECT, Chapter 14

The remainder of this chapter describes the command buffer and response buffer
structures that are unique to the Static and ES-I S routing objects. The Static routing
objects are different than the ES-1S routing objects and they have different command
and response buffer structures. The application references these buffersin the
READ_OBJECT and SET_OBJECT request blocks.

Network User's Guide and Reference Chapter 16 367

Reading and Setting Static Routing Objects

The Static routing objects are four routing tables:

e TheLocal Subnet Table, specifying al of the subnetsto which the system is
physically connected.

» The Specific Router Table, specifying al of the intermediate systems that can be
reached directly from the system.

» The Destination Subnet Table, specifying al of the subnets that can be reached
through the intermediate systems listed in the Specific Router Table. Thistable
associates a remote subnet with the specific intermediate system through which it
can be reached.

» The Default Router Table, specifying a single intermediate system to use if none
of the systems in the Specific Router Table works. Only end systems use this
table.

All of the parameter val ues associated with the Static routing objects can be read and
most of them can be set. The objects that cannot be set are all in the Local Subnet
Table: the subnet name, the subnet address, and the transmit packet size. These are
set when the system containing the table is configured.

Command and Response Buffers for Static Routing

Use these structures for command and response buffers when reading and setting
Static routing objects. Most of the fieldsin the two structures are the same; the field
descriptions follow the structure definitions. The structures are provided as typedefs
in the include files for routing structures.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

|:| Note

The application must supply afilled-in command buffer for both
the SET_OBJECT and READ_OBJECT commands.

368 Chapter 16 Internetwork Routing

Command Buffer

The command buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects to read or set. Set the command buffer
pointer to referencethe st at _r out i ng_cnd structure below.

Inthe SET_OBJECT command, each object in the array specifiesthis
stat_rout _i nfo structure of data. In READ_OBJECT command buffers, the
stat _rout _i nf o structure need not be present; fill inthe obj _cnmd_struc
structureand set cnd_| en to O.

typedef struct stat_rout_info {
unsi gned char rout er _nane_| en;
unsi gned char router_nane[12];
unsi gned char subnet _nanme_| en;
unsi gned char subnet _name[12] ;
unsi gned char lifetine;
unsi gned char afi;
unsi gned char subnet _no_I en;
unsi gned char subnet _no[6] ;

unsi gned char addr _| en;
unsi gned char addr[12];
unsi gned short t x_pkt _si ze;

} STAT_ROUT_I NFO

typedef struct obj_cnd_struc {

unsi gned short obj ect;
unsi gned short nodi fier;
unsi gned short crmd_| en;
STAT_ROUT_I NFO cmd_i nfo;

} OBJ_CMD_STRUC,

typedef struct stat_routing cnd {

unsi gned char
OBJ_CMD_STRUC
} STAT_ROUTI NG_CMD;

Networ k User's Guide and Reference

num obj ;
obj _info[1];

Chapter 16

/* set to num_obj

369

Response Buffer

The response buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects for which information is returned. In the
SET_OBJECT command, the application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure. Set
the response buffer pointer to referencethe st at _routi ng_r esp structure below.

typedef struct stat_rout_info {

unsi gned char rout er _nane_| en;
unsi gned char router_nane[12];
unsi gned char subnet _name_| en;
unsi gned char subnet _name[12] ;
unsi gned char lifetine;

unsi gned char afi;

unsi gned char subnet _no_I en;
unsi gned char subnet _no[6] ;
unsi gned char addr _| en;

unsi gned char addr[12];

unsi gned short t x_pkt _si ze;

} STAT_ROUT_I NFO

typedef struct obj_resp_info {

unsi gned short obj ect;
unsi gned short nodi fier;
unsi gned char st at us;
unsi gned short resp_|l en;
STAT_ROUT_I NFO resp_info;

} OBJ_RESP_|I NFO

typedef struct stat_routing_resp {

unsi gned char num obj ;

OBJ_RESP_I NFO obj info[1l]; /* set to num.obj */
} STAT_ROUTI NG _RESP;

370 Chapter 16 Internetwork Routing

Field Descriptions for Command and Response Buffers

num obj
The number of objects being read or set by the command.

obj _info
An array of structures where each structure contains the information pertaining to the
object being read or set.

obj ect

The object ID of the routing table to act upon.

See also: Appendix C for the Static routing table |D numbers

nodi fier
For the READ_OBJECT command buffer, thisis an index number specifying the
table entry toread. Thefirst entry in atable hasindex number 1. Thisfieldis not
used inaREAD_OBJECT response buffer or in a SET_OBJECT command.

st at us
Present only in the response buffer; it contains a status code indicating the result of
the requested NMF operation.
See also: READ_OBJECT command, Chapter 14, for codes
cmd_| en
In the command buffer this field must be set to 50 bytes.
cmd_info

In the command buffer of a SET_OBJECT command thisis a structure specifying
valuesto set. The structureisunused in READ_OBJECT command buffers.

resp_len
In the response buffer this value is set to 50 bytes.

resp_info
In the response buffer thisis a structure containing returned parameter values for the
table entry.

router_name_| en
The actual length in bytes of the router name specified in ther out er _nane field
(not the length of the array containing the name). Thisfield is not use when reading
or setting Local Subnet Table objects.

Network User's Guide and Reference Chapter 16 371

rout er _nane

An application-specified alias. Router names are ASCII character strings up to 12
characters long, stored as an array of bytes. A SET_OBJECT command buffer for
the Specific Router or Default Router Tables that specifies arouter name already in
the table causes the object values for that router name to be overwritten with the
values specified in the remaining fields of the structure. Thisfield is not used when
reading or setting entries in the Local Subnet Table.

subnet _nane_| en

The actual length in bytes of the subnet name specified in the subnet _nane field
(not the length of the array containing the name). For the Local Subnet Table, the
value of this parameter can be changed only by reconfiguring the system, not by
using the SET_OBJECT command.

In SET_OBJECT commands for the other tables, specifying a subnet name length of
0 causes the existing table entry for the specified router name, or subnet number in
the case of the Destination Subnet Table, to be deleted from the table.

subnet _nane

The name of the local subnet that is chosen when the system is configured. Thisfield
is not used when setting Destination Subnet Table entries; the association of a subnet
with arouter in this table uses the router name and the subnet number.

lifetinme

afi

The maximum time a message can remain in the network if it cannot be delivered to
its destination end system. Thisvalueis specified in units of 0.5 secondsup to a
maximum of 255 units (127.5 seconds). |f the message lifetime expires before
delivery of the message to the destination end system, the message is discarded.
Notification may be sent to the message originator, but message reception is not
guaranteed. Thisfield isnot used when reading or setting entries in the Specific
Router table.

The authority and format identifier (AFI) portion of the Initial Domain Part (IDP) of
the NSAP address for the subnet. By definition, the AFI for Static routing NSAP
addressesisfixed at 49H. Thisfield is not used when setting entries in the Specific
Router or Default Router tables.

subnet _no_l en

372

The actual length in bytes of the subnet ID specified in the subnet _no field (not the
length of the array containing the number). Thisfield is not used when setting entries
in the Specific Router or Default Router tables.

Chapter 16 Internetwork Routing

subnet _no
The 2-byte subnet ID. Thisfield is not used when setting entries in the Specific
Router or Default Router tables. For the Destination Subnet Table, thisisthe ID
number of a subnet that is reachable through the router specified in the
rout er _nane field.

addr _| en
The actual length in bytes of the subnet address specified in the addr field (not the
length of the array containing the address). Thisfield isnot used when setting entries
in the Local Subnet or Destination Subnet tables, and not used when reading entries
in the Destination Subnet Table.

addr The subnet address. Thisfield isnot used when setting entriesin the Local Subnet or
Destination Subnet tables and when reading entries in the Destination Subnet table.
When reading or setting entries in the Specific Router and Default Router tables, this
field specifies the subnet address of the router. When reading entriesin the Local
Subnet Table, thisfield contains the local subnet address.

See also: Subnet Address, Chapter 8

t x_pkt _size
The maximum size of adatalink transmit packet. Thisfield isonly used in the
response buffer for aREAD_OBJECT command on the Local Subnet table.

Network User's Guide and Reference Chapter 16 373

Reading and Setting ES-IS Routing Objects

Part of the ES-IS routing objects are these six routing tables. 1n addition to these six
routing tables, there are several objects relating to routing operations and the size of

374

the routing tables.
See dso:
The ES-IS tables are:

Local End System

ES-1Srouting objects, Appendix C

Local End System Table
Intermediate System Hello Table
Static Intermediate System Table
Reachable NSAP Address Table

Subnet Table

Local NSAP Address Table

Table

Intermediate System

Hello Table

Static Intermediate

System Table

Chapter 16

Contains information about the end systems physically
attached to the same subnet as the system containing the table
(that is, al of the end systems reachable in one hop). This
tableistypically present in all end systems and intermediate
systems. Thistableisthe first one searched to map an NSAP
address to a subnet address.

Contains routing information derived from received
intermediate system Hello PDUs. When an end system
searches the Local End System Table for an NSAP address and
does not find it there and there is no Static Intermediate System
Table present on the system, it chooses a router from this table
and maps the NSAP address to the subnet address of that
router. Thistableis present only in end systems.

Is primarily an intermediate system table; however, it may also
be present in end systems. Thistableis not updated
dynamically. Instead, it isbuilt when the system is configured
and can later be modified using iINA 960 NMF commands.
The information in this table identifies the intermediate
systemsthat are available on local subnets. Thistable and the
Reachable NSAP Address Table are used by an intermediate
system when it determines that the destination end system is
not available on the local subnet. In this case, the NPDU is
forwarded to an intermediate system chosen from thistable.

Internetwork Routing

Reachable NSAP Is always present in intermediate systems. Like the Static

Address Table Intermediate System Table, it may also be present in end
systems and is also built when the system is configured and can
be modified with NMF commands. Each entry in thistable
corresponds to an entry in the Static Intermediate System
Table. Entriesin thistable contain an NSAP address prefix.
All NSAP addresses beginning with that prefix are considered
to be reachable through the intermediate system identified by
the Static Intermediate System Table entry corresponding to
the entry in thistable.

Subnet Table Contains information about each of the local subnets to which
the system is physically connected. Thistableispresentin
both end systems and intermediate systems. For each subnet,
the table identifies:

e The name of the subnet.

» Thelifetime value to use when sending a PDU on the
subnet.

* Theloca SNPA-ID of the subnet.

* A flagindicating whether or not to use the ES-1S routing
protocol over the subnet. Thisflag isuseful when the
subnet described by the table entry is of atype that does
not support multicast addresses (e.g., X.25).

Local NSAP Specifies the NSAP addresses available on the local system. In
Address Table the case of intermediate systems, the first entry in thistableis

used as the Network Entity Title (NET). The NSAP addresses
in this table do not specify the NSAP selector portion of the
NSAP address; thisis specified at initialization time by the
network service user. Thistable is present in both end systems
and intermediate systems.

Network User's Guide and Reference Chapter 16 375

Command and Response Buffers for ES-IS Routing

Use these structures for command and response buffers when reading and setting ES-
ISrouting objects. Most of the fieldsin the two structures are the same; the field
descriptions follow the structure definitions. The structures are provided as typedefs
in the include files for routing structures for your use.

See also: Include Files, Chapter 10;
Programming with Structures, Chapter 10

In READ_OBJECT request blocks, both command and response buffers are used.
The command buffer specifies the objects to read; the response buffer is filled with
the values read.

In SET_OBJECT request blocks, the command buffer specifies the objects to set and
the data to write to the objects. The application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure.

Command Buffer

376

The command buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects to read or set. Set the command buffer
pointer to referencethees_i s_nnf _cnmd_buf structure below. Inthe
SET_OBJECT command, each object in the command buffer array specifiesa
structure of datainthe cnd_i nf o field. In READ_OBJECT command buffers, the
cmd_i nf o field need not be present; fill inthees_i s_cnd structure and set

cnd_l entoO.

The datainthe cnd_i nf o field varies depending on which routing table is being
accessed. The structures for the various tables are described after the response buffer
section.

typedef struct es_is_cnd {

unsi gned short obj ect ;

unsi gned short nodi fi er;

unsi gned short cmd_| en;

OBJ_CMD_STRUC cmd_i nf o; /* object-specific */
} ES IS CVD;
typedef struct es_is_nnf_cnd_buf {

unsi gned char num obj

ES IS CVD obj info[1l]; /* set to num.obj */

} ES IS _NVF_CMD_BUF;

Chapter 16 Internetwork Routing

Response Buffer

The response buffer pointer in the READ_OBJECT and SET_OBJECT commands
references an array of one or more objects for which information is returned. In the
SET_OBJECT command, the application need not read the data returned in the
response buffer, but the buffer must be large enough to hold the entire structure. Set
the response buffer pointer to referencethees_i s_nnf _resp_buf structure below.

The datareturned inther esp_i nf o field varies depending on which routing table is
being accessed. The structures for the various tables are described in following

sections.
typedef struct es_is_resp {
unsi gned short obj ect;
unsi gned short nodi fier;
unsi gned char st at us;
unsi gned short resp_l en;
OBJ_RESP_I NFO resp_info; /* object-specific */

} ES IS RESP;

typedef struct es_is_nnf_resp_buf {

unsi gned char num obj

ES I S_RESP obj info[1l]; /* set to num.obj */
} ES_|'S_NVF_RESP_BUF;

Field Descriptions for Command and Response Buffers

num obj
The number of objects being read or set by the command.

obj _info
An array of structures where each structure contains the information pertaining to the
object being read or set.

obj ect

The object ID of the routing table to act upon.
See also: ES-1Srouting objects, Appendix C, for ID numbers

Network User's Guide and Reference Chapter 16 377

nodi fier
For the SET_OBJECT command, thisfield is not used for most objects. The objects
for which the modifier has meaning are the Local NSAP Address and the Reachable
NSAP Address tables.

For the READ_OBJECT command buffer, thisis an index number specifying the
table entry to read. Thefirst entry in atable hasindex number 1. Anindex beyond
the end of the table results in an end-of-table status (82H) in the response buffer.
Table entries are not maintained in any particular order; atable must be read
sequentialy to find the desired value.

status
Present only in the response buffer; it contains a status code indicating the result of
the requested NMF operation.
See also: READ_OBJECT command, Chapter 14, for codes
cmd_| en
Thelength in bytes of datain thecnd_i nf o field.
cmd_info

In the command buffer of a SET_OBJECT command thisis an object-specific
structure containing valuesto set. The structureis unused in READ_OBJECT
command buffers.

resp_len
Thelengthin bytes of datain ther esp_i nf o field.

resp_info
In the response buffer of a READ_OBJECT command thisis an object-specific
structure containing the values read from the object.

Datainthecnd_i nf o and r esp_i nf o fields may be any of these structures
described in these sections:

e Jocal _es_table_cnd_struc

e ish_table_cnmd_struc

e static_is_table_cnd_struc

* nsap_addr_reachabl e_cnd_buf
e subnet_table_cnmd_struc

e local _nsap_table_cnd_struc

378 Chapter 16 Internetwork Routing

The Local End System Table Structure

typedef struct local _es_table cnd_struc {

unsi gned char nsap_addr _| en;
unsi gned char nsap_addr[20];
unsi gned char subnet _addr _| en;
unsi gned char subnet _addr[12];
unsi gned char subnet _nane_| en;
unsi gned char subnet _name[12] ;
unsi gned short hol di ng_ti ne;

} LOCAL_ES TABLE_CMD_STRUC;

nsap_addr _| en
The actual length of the NSAP address being read or entered into the table (not the
length of the 20-byte array that contains the address). The NSAP address may be
fewer than twenty byteslong, but afull 20-byte array must be used to hold the
address.

nsap_addr
The NSAP address being read or entered, including an NSAP selector (encoded as an
array of bytes with the selector as the last byte). The address can be at most twenty
byteslong. ThisNSAP addressis entered into the table and mapped to the subnet
address specified in thisfield. If thisNSAP addressis already present in the routing
table, the parameter values for it are replaced by the values specified in this
command.

subnet _addr _| en
The actual length of the subnet address (not the length of the array).

subnet _addr
The subnet address to which the preceding NSAP address maps.

subnet _nane_| en
The actual length of the subnet name (not the length of the array).

subnet _nane
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet addressis located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (alength of 0) indicates that the
preceding NSAP address and its associated subnet address are to be deleted from the
table.

hol di ng_ti ne
The number of seconds thisinformation isvalid. The value OFFFFH indicates
infinite time. After the specified time expires, if the information specified in this
command has not been somehow refreshed, it is removed from the table.

Network User's Guide and Reference Chapter 16 379

The Intermediate System Table Structure

typedef struct ish_table_cnd_struc {

unsi gned char net _entity title_len;
unsi gned char net _entity title[20];
unsi gned char subnet _address_| en;
unsi gned char subnet _address[12];
unsi gned char subnet _nane_| en;

unsi gned char subnet _name[12] ;

unsi gned short hol di ng_ti ne;

} 1 SH_TABLE_CMD_STRUC,

net _entity_ title_len
The actual length in bytes of the Network Entity Title (not the length of the array that
contains the NET).

net _entity title
The Network Entity Title (NET) of the intermediate system (1S) that is reached by
the subnet address. A NET has the same syntax as an NSAP address, but is distinct
from any NSAP address. NETs should have an NSAP selector (the last byte) of O.

subnet _address_I en
The actual length in bytes of the subnet address (not the length of the array).

subnet _address
The subnet address where the intermediate system identified by the preceding NET
can be reached.

subnet _nane_| en
The actual length of the subnet name (not the length of the array).

subnet _nane
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet addressis located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (alength of 0) indicates that the
preceding NET and its associated subnet address are to be deleted from the table.

hol di ng_ti ne
The number of seconds thisinformationisvalid. The value OFFFFH indicates
infinite time. After the specified time expires, if the information specified in this
command has not been refreshed by receipt of an Intermediate System Hello, the
information is removed from the table.

380 Chapter 16 Internetwork Routing

The Static Intermediate System Table Structure

typedef struct static_is_table_cnd_struc {

unsi gned char net _entity title_len;
unsi gned char net _entity title[20];
unsi gned char subnet _address_| en;
unsi gned char subnet _address[12];
unsi gned char subnet _nane_| en;

unsi gned char subnet _name[12] ;

unsi gned char rout er _nane_| en;

unsi gned char router_nane[12];

unsi gned short num prefi xes;

} STATIC_|I' S TABLE_CVD_STRUCG;

net _entity_ title_len
The actual length in bytes of the Network Entity Title (NET). Thisis not the length
of the array that contains the NET.

net _entity title
The Network Entity Title (NET) of the intermediate system (1S) that is reached by
the subnet address. A NET has the same syntax as an NSAP address, but is distinct
from any NSAP address. NETs should have an NSAP selector (the last byte) of O.

subnet _address_I en
The actual length in bytes of the subnet address (not the length of the array).

subnet _address
The subnet address where the intermediate system identified by the preceding NET
can be reached.

subnet _nane_| en
The actual length of the subnet name (not the length of the array).

subnet _nane
An ASCII string, encoded as an array of bytes, identifying the subnet where the
subnet addressis located. The subnet names are defined by the system builder when
the system is configured. A null subnet name (alength of 0) indicates that the
preceding NET and its associated subnet address are to be deleted from the table.

router_nane_| en
The actual length in bytes of the router name (not the length of the array).

router _hanme
An application-defined name for the router; any string of up to 12 characters. A
SET_OBJECT command specifying a router name for which an entry already exists
in the table causes the parameter values for that router to be overwritten with the new
values specified in the command. Specifying arouter name that does not exist in the
table creates a new entry in the table.

Network User's Guide and Reference Chapter 16 381

num prefi xes
A read-only parameter (it cannot be set) whose value is the number of NSAP prefixes
registered in the Reachable NSAP Address Table that corresponds to this Static
Intermediate System Table entry.

The Reachable NSAP Address Table Structure

A SET_OBJECT command on the Reachable NSAP Address table uses the

modi fi er field of the command buffer. If thenodi fier fieldissetto O, atable
entry for the specified router is created. If thenodi fi er fieldisset toanot O value,
the table entry for the specified router is deleted.

typedef struct nsap_addr_reachabl e_cnd_buf {

unsi gned char rout er _nane_| en;
unsi gned char router_nane[12];
unsi gned char nsap_prefix_|en;
unsi gned char nsap_prefix[20];

} NSAP_ADDR REACHABLE_CMD BUF;

router_nane_| en
The actual length in bytes of the router name (not the length of the array).

router _hanme
An application-defined name for the router; any string of up to twelve characters. All
NSAP addresses starting with the prefix specified in the fields are considered
reachable through the router specified by thisname. The router name must be
specified in the Static Intermediate System Table before this command can be used.

nsap_prefix_len
The actual length in bytes of the NSAP prefix (not the length of the array).

nsap_prefix
Specifies which NSAP addresses may be reachabl e through the router specified in the
preceding Router Name field. All NSAP addresses beginning with the prefix are
reachable through the specified router. For example, suppose all of the NSAP
addresses reachable by a router named HF1 began with 49 0001. The prefix
490001H would be registered in this table with the router name HF1. If all the NSAP
addresses reachable by a router named HF2 began with 49 0002, the prefix 490002H
would be registered in this table with the router name HF2. The length of the NSAP
prefix array istwenty bytes so that full NSAP addresses can be mapped.

382 Chapter 16 Internetwork Routing

The Subnet Table Structure

typedef struct subnet_table_cnd_struc {

unsi gned char subnet _nanme_| en;
unsi gned char subnet _nanme[12] ;
unsi gned char lifetine;

unsi gned char use_protocol ;
unsi gned char nsap_prefix_|en;
unsi gned char nsap_prefix[10];
unsi gned | ong snpa_i d;

} SUBNET_TABLE_CMD_STRUC;

subnet _nane_| en
The actual length of the subnet name (not the length of the array).

subnet _nane
An ASCII string identifying the subnet to which the rest of the information in the
structure pertains. The subnet names are defined when the system is configured.
Subnet names cannot be deleted from the table; only the values for the parameters
can be changed.

lifetine
The maximum time a message originating on this subnet can remain in the network if
it cannot be delivered to its destination end system. Thisvalueis specified in units of
0.5 seconds up to a maximum of 255 units (127.5 seconds). If the message lifetime
expires before delivery of the message to the destination end system, the message is
discarded. Notification may be sent to the message originator, but reception is not
guaranteed.

use_pr ot ocol
A flag indicating whether to send and receive ES-IS Hello and Redirect function
PDUs over the subnet defined by this structure. Thisflag isfalse (Hello and Redirect
PDUswill not be sent or received) when its value is 0 and true (Hello and Redirect
PDUswill be sent and received) when itsvalue is not 0.

Thisflag serves as amask for the send and receive hello flags. If the send hello flag
istrue and thisflag isfalse, End System Hellos will not be sent. If the send hello flag
isfalse and thisflag istrue, End System Hellos will still not be sent.

Thisflag is useful to intermediate systems that are attached to multiple subnets, that
use the ES-IS routing protocol, and where one of the attached subnets does not
support multicast addressing. For example, if one of the attached subnetsis an X.25
subnet and the others are all 802.3 subnets, the flag can be set false for the X.25
subnet, and true for all of the others.

nsap_prefix_len
The actual length in bytes of the NSAP prefix (not the length of the array).

Network User's Guide and Reference Chapter 16 383

nsap_prefix

Used for compatibility with the Null2 (inactive subset) and Static ES-1S Network
Layer configurations. The prefix is added to the source subnet address of areceived
Null2 network PDU (NPDU) in order to form the source NSAP address. Thisis
necessary because the Null2 subnet address does not contain the source NSAP
address.

Thisfield aso indicates which NSAP addresses exist on the local subnet. If thelocal
addressing flag istrue, all destination NSAP addresses are matched against the NSAP
prefixesinthe Local Subnet Table entries. If amatch isfound, the destination is
directly reachable on the local subnet and the portion of the NSAP address
immediately following the matching prefix is used as the subnet address of the
destination.

This parameter is known as the AFI and subnet number combination in Null2
addressing. For example, avalue for this parameter for use with Null2 addressing is
490003H.

snpa_id

A read-only parameter whose value is the source L SAP selector for outgoing subnet
PDUs (SNPDUSs). The value of this parameter is defined when the system is
configured.

The Local NSAP Address Table Structure

A SET_OBJECT command on the Local NSAP Address table uses the nodi fi er
field of the command buffer. If the nodi fi er field isset to 0, atable entry for the
specified NSAP addressis created. If thenodi fi er fieldis set to anot O value, the
table entry for the specified NSAP addressis deleted.

typedef struct |ocal _nsap_table_cnd_struc {
unsi gned char nsap_address[1];
} LOCAL_NSAP_TABLE CMD_STRUC

nsap_address

384

The NSAP address to enter, delete, or read from the table. ThisNSAP addressisa
string of bytes; the length of which is specified by thecnd_I en field in the
SET_OBJECT or READ_OBJECT command buffer structure. The NSAP address
must not include the NSAP selector; the selector is dynamically determined by the
Network Layer at run time.

Chapter 16 Internetwork Routing

IRMX-NET and iNA 960
Transport Configuration Values

This appendix describes the values preconfigured into these network files:

iNA 960 These are files loaded onto the NIC by MIP jobs. The MIP

download files jobsareipcl2.job for aPC, i552a.job in aMultibus | system,
or icemb2.job in aMultibus Il system. Table A-1 liststhe
download files.

MIP jobs Jobs that interface to INA 960 download files or to iNA 960
COMM puter jobs running on another board

iRMX-NET jobs Thefile server rnetserv.job and client, remotefd.job

See also: Network Software |mplementation, Chapter 7;
i*.job, System Configuration and Administration

Files Containing iNA 960 Transport Software

TheiNA 960 transport software existsin one of two places. It iseither aniNA 960
file downloaded to aNIC, or an iNA 960 COMM puter job running on the same board
asthe OS. This section describes the files and their preconfigured values.

INA 960 Download Files

MIP jobsin a COMMengine environment load iNA transport software from disk to
the NIC. TheiNA 960 download filenames have the form:

| NA<boar d><a>. 32<| >
Where:

<board> An encoded board name.

<a> An N or E specifying the type of transport address: N stands for Null2
and E stands for ES- IS format. If your application programs the
network addresses or uses a network with multiple subnets, you could
use an ES-IS network, which isroutable.

<l > An L specifying alocal load file or an R specifying remote load.
To find the iINA release version to which the file applies, use the ver sion command.

Table A-1 liststhe iNA 960 files available for downloading, depending on your
system type and NIC. Asshown in the table, most files are specific to certain
versions of the OS.

Network User's Guide and Reference Appendix A 385

Table A-1. iNA 960 Download Files

Filename Board Configuration System* OS**
inapcl2n.32l PCL2 Null2 local load PC RPC, RFW
inapl2an.32I PCL2A Null2 local load PC RPC, RFW
ina552an.32| SBC 552A Null2 local load MB1 11}
inab52an.32r SBC 552A Null2 remote load MB1 i
ina552ae.32| SBC 552A ES-IS local load MB1 1}
inab52ae.32r SBC 552A ES-IS remote load MB1 i
ina530n.32| SBC 186/530 Null2 local load MB2 all
ina530e.32| SBC 186/530 ES-IS local load MB2 i
ina560n.32| MIX 386/560 Null2 local load MB2 all
ina560e.32| MIX 386/560 ES-IS local load MB2 I

* MB1 indicates Multibus |, MB2 indicates Multibus I

** Il indicates the iRMX Il OS, RPC indicates iRMX for PCs, RFW indicates DOSRMX

For ICU-configurable systems, you can specify the download file in the appropriate
MIP job screen: MIPL1 for Multibus |, CEBI for Multibus I, or MIPAT for PCs. On
aMultibus |1 system you can override the configuration inther g_mi p_xx parameter
of the BPSfile. Inthe DOSRMX or iRMX for PCs OS, you can specify the
download file in the rmx.ini file.

See also: rg_m p_xx , MSA for the iIRMX Operating System;
rmx.ini file, System Configuration and Administration

386 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

Table A-2 lists values configured into the iNA 960 download files, according to the
NIC. For values configured into iNA 960 COM M puter jobs, see the default values

on screensin the ICU. ICU.

Table A-2. iNA 960 Download File Configuration

Parameter PCL2 PCL2A |552A 186/530 | 386/560
Name Server
Maximum number of objects Null2 25 80 40 50 80
ES-IS 20 25 25 80 80
Maximum length of value (Null2/ES-IS) 90 90/32 90 40/90 20
TSAP ID - initiator 4200 4200 4200 4200 4200
TSAP ID - responder 4300 4300 4300 4300 4300
Retry timeout (msec.) 614 614 614 820 820
TSAP ID - file server 1000 1000 1000 1000 1000
TSAP ID - file consumer 1100 1100 1100 1100 1100
Transport Layer
Maximum TSAP length (bytes) 32 32 32 32 32
Maximum network address length (bytes) |20 20 20 20 20
Number of virtual circuits Null2 101 160 92 201 201
ES-IS 25 101 87 201 201
Number of datagram TSAPs Null2 30 30 30 30 30
ES-IS 19 30 30 30 30
Retransmission timeout - dynamic Null2 |0.1-1.0{0.1-1.0(0.1-1.0(0.1-1.0(0.1-1.0
(sec.) ES-1S|0.2-1.0|0.2-1.0|0.1-1.0(0.2-1.0|0.2-1.0
Inactivity timeout (sec.) 30 30 30 30 30
Closing abort timeout (sec.) 6 6 6 6 6
Open window timeout (sec.) 1 1 1 1 1
Maximum window size 15 15 15 15 15
Data Link Layer
Number of Rx buffers (*bytes) Null2 17*1510 | 40*1510 | 230*256 | 40*1600 | 201510
ES-IS 14*1510 | 32*1510 | 200*256 | 401600 | 201510
Number of Tx buffers (*bytes) Null2 5*1500 |[20*1500 [4*1500 |[20*1500 |4*1500
ES-IS 2*1500 (5*1500 |[4*1500 ([4*1500 (4*1500
Number of EDL LSAPs 16 16 16 16 16
Network User's Guide and Reference Appendix A 387

INA 960 COMMputer Jobs

TheiNA 960 COMMputer jobs are available either as first-level jobs that you include
with the ICU or asloadable jobs that you install with the sydoad command. For
values configured into iINA 960 COMM puter jobs, see the default values on screens

inthe |CU.

See also: i*.job, System Configuration and Administration

Configuration of iNA 960 MIP Jobs

Table A-3 lists values configured into the MIP jobs.

Table A-3. MIP Job Configuration

Parameter ipcl2.job i552a.job icemb2.job

NIC (see Note 1) | not applicable SBC 552A 186/530

Multibus Il port ID not applicable not applicable 505H

Number of external mailboxes 10 10 10

Number of internal ports 10 10 10

Default wakeup port (see Note 2) | 360H 8B4H not applicable

Default interrupt level (see Note 2) | 214 48H not applicable

Default download file (see Note 1) | /net/inapcl2n.32] | /net/ina552an.361 | /net/ina530n.32
|

Boot address 0CCO00H 1040H not applicable

Off-board layers (on the NIC)

Name Server

External Data Link

Transport Virtual Circuit
Transport Datagram

Network Management Facility

Note 1: Change these values in the rmx.ini file or the ICU, or with a BPS parameter for the iRMX Il OS.
Note 2: This is specified in the sysload invocation for DOSRMX.

See also: MIP configuration values on the IMIPJ, MIP1, MIP2, and MIPAT
screens of the ICU

Configuration of iIRMX-NET Jobs

Table A-4 lists values configured into the iIRMX-NET jobs. Y ou can change some of
these values in the rmx.ini file or in the ICU.

388 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

Table A-4. iRMX-NET Configuration

Parameter

Value

User Administration

User Definition File

:sd:rmx386/config/udf

Client Definition File

:sd:rmx386/config/cdf

Loadname File

/net/data

Public directories (display with the publicdir command)

Default client node name rmx
Default client password 1234567
File Server

Max virtual circuits (VCs, 1 per client) 20

Max users per client VC 5

Max client jobs per VC 30

Max file attachments per VC 100
Max open files per VC 40

Max open files per client job 30

Max outstanding client requests 35
Number of small read/write buffers (* size in bytes) 37*1488
Number of large read/write buffers (* size in bytes) 3*10240
File Consumer

Max remote file driver requests 21

Max server connections 20

Data Link packet size (bytes, + 12 for header) 1488
Wait for server connection (sec.) 45

Wait for server response to request (sec.) 60
Apex File Access (AFA)

Max public devices 5

Max public directories 30

Max concurrent 1/O requests (AFA tasks) 15
Support DOS and UNIX file attributes yes
Support DOS wildcard file delete yes

Max concurrent file searches (wildcard) 32

Hold file connection after wildcard search (sec.) 3
Remote boot server yes
Public devices sd: and :bb:

Networ k User's Guide and Reference

Appendix A

389

390 Appendix A iRMX-NET and iNA 960 Transport Configuration Values

Data Flow in MIP and
COMMputer Jobs

Y our application requests iNA 960 network services through special data structures
called request blocks. Asfar asthe application is concerned, the interchange of
request blocks is the same whether you use a COMMputer job or aMIP job. This
appendix describes how the interchange actually occurs for the different kinds of jab.

Data Interchange with the MIP

A MIPjob providesaway to exchange request blocks between the application,
which runs with the OS, and iNA 960 software that runs on a separate NIC. What we
call aMIP job runs on the board with the OS. However, the MIP actually includes
not only the MIP job, but also aMIP interfaceto iNA 960 on the NIC itself. As
shown in the diagram below, the MIP interface on the NIC is called an iNA 960
environment interface.

Figure B-1. MIP Protocol Model

The particular system environment determines how the MIP actually exchanges the
iNA 960 request blocks. The exchange may occur over a system bus, or a host board

Network User's Guide and Reference Appendix B 391

392

and NIC may share memory. Thisiswhy each MIP job and iNA 960 download file
are configured for a specific system environment.

To the application job, the MIP is completely transparent because a single high-level
call, cq_comm_rb, exchanges request blocks. The MIP handles the lower-level
primitive functions that perform the exchange for a specific physical environment.

To theiNA 960 transport service, the MIP is completely transparent, because access
to it and other environmental resources occur through an environment interface. The
iNA 960 transport service requests logical functions, which the environment interface
convertsto physical resource functions.

TheiNA 960 software includes three MIP jobs for specific bus types:
e ib52a.job for Multibus |
e ipcl2jobfor PCs

e icemb2.job for the Multibus || MIP, also called the LAN Controller Interface
(LCI

The following sections describe these MIPs in more detail.

See also: Network Software Implementation, Chapter 7, for COMMengine and
COMMputer environments

Appendix B Data Flow in MIP and COMM puter Jobs

Multibus | and PC Bus MIP

(MIP
|
|

In the Multibus | and PC Bus system architectures, the application runs on an iRMX
host single-board computer and the iINA 960 software runs on a separate NIC. The
iNA 960 request blocks, transport address buffers, and user data are not physically
exchanged over the bus. Because host memory is dua ported, only the buffer
addresses in host memory are exchanged over the bus.

Access to the shared host memory (using the system bus) by the iNA 960 transport
service occurs through alogical window. Thislogical window is managed by the
iNA 960 environment interface on the NIC and maps a portion of the NIC's local
address space to the part of the host memory address space that contains the buffers
pertaining to the user'siNA 960 service requests. To the iNA 960 transport service,
the shared memory is part of itslocal address space.

The MIP model for the Multibus | and PC Bus system architecture is shown in Figure
B-2. The MIP consists basically of two drivers, one for the iRM X host and one for
the NIC.

iRMX host SBC NIC

User
application
job

iNA 960
transport
service

MIP call RB, TA, &
interface data buffers Environment interface

i {

Multibus 1 or PC system bus >
T

W2049

Figure B-2. Multibus| and PC Bus MIP Model

Network User's Guide and Reference Appendix B 393

Multibus 1l MIP

Environment interface ‘
N -)71 *****j” T T T

The MIP for the Multibus Il system architecture is also known as the LAN Controller
Interface (LCI). Inthe Multibus |1 system architecture, there may be multiple user
applications running on multiple iIRMX host single-board computers and asingle
instance of the iINA 960 software running on asingle NIC. TheiNA 960 request
blocks, transport address buffers, and user data are physically exchanged over the bus
using the Multibus Il message passing service. The MIP puts all three data structures
into a message, transmits the message over the bus, and on the other end parses the
message into the three data structures. The request block goes on to its destination,
and the transport address and user data buffers are copied to local memory.

In addition to the Multibus |1 transport service, the MIP for this environment provides
server functions for the iNA 960 environment interface. The Multibus |1 MIP shown
in Figure B-3 consists of MIP jobs for each iIRMX host and a MIP server for the NIC,
which is part of theiNA 960 download file.

iRMX host SBC iRMX host SBC NIC

User User -
application application iNA 960
iob Ei job transport
service
MIP call RB,TA, & MIP call RB,TA, &
interface Data Buffers interface Data Buffers

MIP driver MIP driver MIP server

MIP @ @ @

394

Multibus 1l system bus >

W2052

Figure B-3. Multibus!l MIP Model

Appendix B Data Flow in MIP and COMM puter Jobs

Data Interchange in a COMMputer Job

In the COMM puter architecture shown in Figure B-4, the application and the
iNA 960 software are jobs running under the iRMX OS. In this environment,
iNA 960 request blocks and referenced user data are stored in local memory and
thereisno MIP.

Figure B-4. COMM puter MIP Model

Network User's Guide and Reference Appendix B 395

396 Appendix B Data Flow in MIP and COMM puter Jobs

INA 960 Network Objects

This appendix lists and describes the iINA 960 network objects and events that can be
accessed through the Network Management Facility. The list includes the object ID
number, object type, access permissions, the size of the object, and a brief
description. The objects are listed according to which iNA subsystem they belong to.

The object types are:

Counter A 16- or 32-bit counter that records the number of times a particular
action occurs. It isan unsigned integer and may be either of two types:

Wrap-around, which resets to 0 on overflow. Thistypeisindicated by
WCounter in the table.

Sticky, which sticks at its highest value on overflow. Thistypeis
indicated by SCounter in the table.

Threshold A 16-bit threshold value for the number of events that may occur before
the net agent notifies the net manager. Threshold objectsare used in
event notification.

Timerval A 32-bit timer value specified in milliseconds.

Time An ASCII string which showsthe time in ayear, month, day, hour,
minutes, and seconds format.

Parameter Adjusts the actual operation of alayer (Intel private objects only).
Value Anything that is not one of the types listed above.

Each object is assigned access permissions that are enforced by the NMF functions.
The access permissions are:

R READ_OBJECT isallowed
S SET_OBJECT isalowed
C READ_AND_CLEAR _OBJECT isallowed

Network User's Guide and Reference Appendix C 397

In Table C-1, the first two characters of the object ID represent the Data Link
subsystem. Substitute the characters 2x in the ID column with:

Value Subsystem

20H Data Link for boards with the 82586 component, including the first
MIX560 board in the system

21H DataLink for SBX 586 board

22H Data Link for the second M1X560 board in the system

23H Data Link for the third MIX560 board in the system

24H Data Link for boards with the 825595TX component, including the
EtherExpress PRO/10 and SBC P5090 (See also Table C-2)

25H DEC 21143 component, SBC P5200 PC-compatible boards, all versions

Table C-1. 802.3 Data Link Objects

ID Type Access Size Description

2x00H Value R BYTE Data Link type: returned value is 2xH

2x01H Value R WORD_32 Line speed: physical transmission rate in
bits/second

2x02H Value R 6 BYTES Host ID: hardware MAC (Ethernet) address

2x03H WCounter RC WORD_32 Total number of packets sent

2x04H SCounter RC WORD_16 Primary collisions: number of packets
transmitted that had at least 1 collision

2x05H SCounter RC WORD_16 Secondary collisions: total of collisions
encountered after a primary collision

2x06H SCounter RC WORD_16 Number of packets discarded because the
maximum number of collisions was exceeded

2x07H WCounter RC WORD_32 Total of packets received from the network

2x08H WCounter RC WORD_16 Total of packets dropped due to CRC errors

2x09H WCounter RC WORD_16 Packets dropped due to alignment errors

2x0AH WCounter RC WORD_16 Resource errors: number of times the Data
Link service ran out of resources

2x0BH WCounter RC WORD_16 DMA overruns: number of times a received
packet was dropped because of an 82586
DMA overrun error (the 82586 does not
provide statistics on transmit DMA
underruns)

2x0CH WCounter RC WORD_16 Number of restarts: total of times software
has reset the 82586 due to a lockup failure

continued
398 Appendix C iNA 960 Network Objects

Table C-1. 802.3 Data Link Objects (continued)

2x0DH Value R Variable Multicast address list: List of 48-bit multicast
addresses for which the subnet is listening

2x0EH WCounter RC WORD_32 RawEDL: number of frames lost due to lack
of posted EDL buffers

ID Type Access Size Description

2x0FH WCounter RC WORD_32 RawEDL: total frames delivered to EDL user

2x10H WCounter RC WORD_32 Bytes received by Data Link for RawEDL

Table C-2 lists objects that are specific to the Data Link subsystem for iNA 960
software on boards that use the 825595TX component, including the EtherExpress
PRO/10 and SBC P5090.

Table C-2. 802.3 Data Link Objects With the 825595T X Component

ID Type Access Size Description

2411H Value RC WORD_32 Total transmission errors

2412H Value RC WORD_32 Number of late collision errors

2413H Value RC WORD_32 Number of lost carrier errors

2414H Value RC WORD_32 Number of underrun errors

2415H Value RC WORD_16 Number of short frames received

2416H Value RC WORD_16 Number of received packets with collisions
2417H Value R WORD_16 Number of packets to be transmitted onchip
2418H Value R BYTE Flag indicates if EarlyTx is on

2419H Value R BYTE Flag indicates if EarlyRx is on

241AH Value R BYTE 1/0 speed

BR@work User's Guide and Reference

Appendix C

Table C-3 lists objects that are specific to the Data Link subsystem for iNA 960
software on boards that use the DEC21143 component, including various PCl-based

NICs and SBC P5200.

Table C-3. 802.3 Data Link Objects With the DEC21143 Component

ID Type Access Size Description

2511H Value RC WORD_32 Total transmission errors

2512H Value RC WORD_32 Number of late collision errors

2513H Value RC WORD_32 Number of lost carrier errors

2514H Value RC WORD_32 Number of underrun errors

2515H Value RC WORD_16 Number of short frames received

2516H Value RC WORD_16 Number of received packets with collisions
2517H Value R WORD_16 Number of packets to be transmitted onchip
2518H Value R BYTE Flag indicates if EarlyTx is on

2519H Value R BYTE Flag indicates if EarlyRx is on

251AH Value R BYTE 1/0 speed

400 Appendix C iNA 960 Network Objects

Table C-4 lists objects that are specific to the Data Link subsystem for iNA 960
software that uses the Multibus |1 subnet.

Table C-4. 802.3 Data Link Objectsfor the Multibus |1l Subnet

ID Type Access Size Description

2FO0H Value R BYTE Data Link type: returned value is 2FH

2F01H Value R WORD_32 Line speed: physical transmission rate in
bits/second

2F02H Value R 6 BYTES Host ID: the MAC (Ethernet) address

2FO03H WCounter RC WORD_32 Total number of packets sent

2F04H WCounter RC WORD_32 Total number of packets received

2FO5H WCounter RC WORD_16 Resource errors: number of times the Data
Link service ran out of resources

2F06H Value R Variable Multicast address list: List of 48-bit multicast
addresses for which the subnet is listening

2FO7H WCounter RC WORD_32 RawEDL: number of frames lost due to lack
of posted EDL buffers

2F08H WCounter RC WORD_32 RawEDL: total frames delivered to EDL user

2F09H WCounter RC WORD_32 Bytes received by Data Link for RawEDL

2FOAH Value RC WORD_32 Number of rg_send errors

2FOBH Value R Variable Indicates which slots are using the Multibus Il

subnet. If you access this value
programmatically, it is an array of 20 7-byte
fields. The first 7-byte field applies to slot O,
on up to slot 19. The first 6 bytes of each
field contain the Ethernet address for that
slot. The last byte is either 0 (does not use
Multibus Il subnet) or OFFH (uses Multibus I
subnet).

If you access this value with inamon, the
slots that use the Multibus Il subnet are
indicated with an asterisk; Ethernet
addresses are not displayed.

Awor k User's Guide and Reference

Appendix C

Table C-5. IP Network Layer Objects

ID Type Access Size Description

3140H WCounter RC WORD_32 Number of null header packets sent

3141H WCounter RC WORD_32 Number of null header packets received

3142H WCounter RC WORD_32 Number of non-null header packets sent

3143H WCounter RC WORD_32 Number of non-null header packets received

3144H WCounter RC WORD_32 Number of packets discarded due to lack of
Network Layer resources

3145H WCounter RC WORD_32 Number of error PDUs received

3147H WCounter RC WORD_16 Number of packets discarded due to
checksum failure

3148H WCounter RC WORD_16 Number of packets discarded due to lifetime
exceeded in transit

3149H WCounter RC WORD_16 Number of packets discarded due to ISO
protocol or procedure violations

314AH WCounter RC WORD_16 Number of packets with unrecognized
destination NSAP selector

314BH Threshold RSC WORD_16 Threshold for number of packets with lifetime
exceeded: an event is generated if this
threshold is exceeded

Table C-6. Router Objects - Static

ID Type Access Size Description

3801H Table RS struct* Local Subnet Table

3802H Table RS struct* Specific Router Table

3803H Table RS struct* Default Router Table

3804H Table RS struct* Destination Subnet Table

* See Chapter 16 for structure definitions

402

Appendix C

iNA 960 Network Objects

Table C-7. Router Objects- ES-1S

ID Type Access Size Description

3900H Value R WORD_16 Maximum number of entries allowed in the
Local End System Table

3901H WCounter R WORD_16 Number of Local End System Table entries
currently used

3902H Value R WORD_16 Maximum number of entries allowed in the
Intermediate System Hello Table

3903H WCounter R WORD_16 Number of Intermediate System Table
entries currently used

3904H Value R WORD_16 Maximum number of entries allowed in the
Static Intermediate System Table

3905H WCounter R WORD_16 Number of Static Intermediate System Table
entries currently used

3906H Value R WORD_16 Maximum number of entries allowed in the
Reachable NSAP Address Table

3907H WCounter R WORD_16 Number of Reachable NSAP Address Table
entries currently used

3908H Value R WORD_16 Maximum number of entries allowed in the
Local NSAP Address Table

3909H WCounter R WORD_16 Number of Local NSAP Address Table
entries currently used

390AH Value R WORD_16 Maximum number of entries allowed in the
Subnet Table

390BH WCounter R WORD_16 Number of Subnet Table entries currently
used

390CH Flag RS BYTE Indicates whether to use Refresh Redirect
function; true if not 0

390DH Flag RS BYTE Indicates whether to use Configuration
Notification function; true if not 0

390EH Value RS WORD_16 Specifies how frequently to send End System
Hellos, in 500 ms. units

390FH Value RS WORD_16 Specifies how frequently to send
Intermediate System Hellos, in 500 ms. units

3910H Value RS WORD_16 Specifies a holding time to send with End

System Hellos, in 500 ms. units

A8wor k User's Guide and Reference

continued

Appendix C

Table C-7. Router Objects- ES-|S (continued)

ID Type Access Size Description

3911H Value RS WORD_16 Specifies a holding time to send with
Intermediate System Hellos, in 500 ms. units

3912H Flag RS BYTE Indicates whether to send End System
Hellos; true if not O

3913H Flag RS BYTE Indicates whether to send Intermediate
System Hellos; true if not 0

3914H Flag RS BYTE Indicates if Redirect PDUs should be
transmitted when necessary; true if not 0

3915H Flag RS BYTE Indicates if End System Hellos should be
received and processed; true if not 0

3916H Flag RS BYTE Indicates if Intermediate System Hellos
should be received and processed; true if not
0

3917H Flag RS BYTE Indicates if Redirect PDUs should be
received and processed; true if not 0

3918H Flag RS BYTE Indicates if checksums should be sent with
ES-IS PDUs; true if not 0

3919H Table RS struct * Local NSAP Address Table

391AH Table RS struct * Local End System Table

391BH Table RS struct * Intermediate System Hello Table

391CH Table RS struct * Static Intermediate System Table

391DH Table RS struct * Reachable NSAP Address Table

391EH Table RS struct * Subnet Table

391FH Value RS BYTE Array containing the subnet address for
multicast messages to all End Systems;
address length is the first byte of the array.

3920H Value RS BYTE Array containing the subnet address for
multicast messages to all Intermediate
Systems; address length is first byte of array.

continued
* See Chapter 16 for structure definitions

404 Appendix C iNA 960 Network Objects

Table C-7. Router Objects- ES-|S (continued)

ID Type Access Size

Description

3921H Flag RS BYTE

MAP 2.1 compatibility; true if not 0. This
enables sending null header PDUs if there is
an entry for the destination NSAP address in
the Local End System Table or if the address
is recognized through local addressing (local
addressing flag is true and the NSAP
address matches a NSAP prefix in the
Subnet Table).

3922H Flag RS BYTE

Local addressing; true if not 0. This enables
decomposition of the destination NSAP
address to attempt to match it to an NSAP
prefix in the Subnet Table.

3923H Flag RS BYTE

iNA 960 Release 1 addressing; true if not 0.
This enables recognition of INA 960 R1
format network addresses: R1 addresses
always contain the destination subnet
address.

3924H Flag R BYTE

Automatically configure local NSAP address;
true if not 0. This causes iNA 960 to
determine its own NSAP address when it
initializes; this flag can only be set in the INA
960 configuration file, not with the NMF
SET_OBJECT command.

3937H Value R WORD_16

Maximum number of entries allowed in the
Multicast NSAP Address Table.

3938H WCounter R WORD_16

Number of Multicast NSAP Address Table
entries currently used.

3939H Value R WORD_16

The unique multicast address used by the
Name Server.

A%wor k User's Guide and Reference

Appendix C

Table C-8. Transport Layer Objects- Virtual Circuit Connection Independent

Type

Access Size

Description

4000H

Value

R

BYTE

Virtual circuit type: returned value is 0.

4001H

Value

R

Connection ID vector: WORD_16 array
where each not 0 element is an allocated
connection ID. Size of this object is twice as
many bytes as the maximum number of
connections.

4002H

Value

BYTE

ISO transport number: version number of the
ISO VC subsystem.

4003H

Value

WORD_16

Max VCs: maximum number of connections
supported by the VC subsystem.

4004H

Value

WORD_16

Same as 4003H.

4005H

Value

WORD_16

Same as 4003H.

4006H

Value

WORD_16

Active CDB's: number of connection
databases currently open but not necessarily
established.

4007H

Value

R

WORD_16

CDB size: size in bytes of a connection
database.

4008H

Parameter

RS

WORD_16

Default persistence count: number of times
the local transport entity attempts to establish
a connection when the remote transport
entity explicitly rejects the connection
attempt. The default count is assigned to
new connections that request it.

4009H

Parameter

RS

WORD_16

Default abort timeout: amount of time (in
units of 51 ms.) an unacknowledged segment
is transmitted before automatically aborting
the connection. The default timeout is
assigned to new connections that request it.
Value OFFFFH indicates that an automatic
abort is never to occur (this does not apply to
sending a disconnect request without a
response).

406

Appendix C

continued

iNA 960 Network Objects

TableC-8. Transport Layer Objects- VC Connection Independent (continued)

ID Type

Access Size

Description

400AH Parameter

RS

WORD_32

Default retransmit timeout: initial amount of
time (in 100 microsecond units) the Transport
Layer waits before retransmitting an
unacknowledged TPDU. This value is used
on all new connections. The retransmit
timeout may be subsequently altered by a
dynamic algorithm.

400BH Parameter

RS

WORD_32

Minimum retransmit timeout: minimum time
(in 100 microsecond units) the Transport
Layer will ever wait before transmitting an
unacknowledged TPDU. The initial value is
configurable.

400CH Parameter

RS

WORD_16

Closing abort timeout: amount of time (in 51
ms. units) for which the Transport Layer will
attempt to send a connection close request
without receiving a response before aborting
the connection.

400DH Parameter

RS

WORD_32

Flow control window timeout. Once a
connection is established, the local transport
entity sends flow control window
acknowledgement packets (AK TPDUSs) to
the remote entity at regular intervals, to
signal to the remote entity that it is still
functioning when there is no other activity on
the connection. These packets also inform
the remote transport of the most current local
flow control window status. This object
specifies the time interval (in 100
microsecond units) between these packets.

400EH Parameter

RS

WORD_16

Inactivity maximum count: number of times
local transport transmits an unacknowledged
flow control window acknowledgement
packet (AK TPDU) before aborting the
connection.

400FH SCounter

RC

WORD_16

Total duplicate TPDUSs rejected: total
number (over all connections) of received
TPDUs rejected due to duplicate sequence
numbers.

A¥wor k User's Guide and Reference

continued

Appendix C

TableC-8. Transport Layer Objects- VC Connection Independent (continued)

Type

Access Size

Description

4010H

SCounter

RC

WORD_16

Total checksum errors: The total number
(over all connections) of received TPDUs that
were rejected because of checksum errors.

4011H

SCounter

RC

WORD_16

Total retransmission: The total number of
times (over all connections) that
acknowledgeable TPDUs were retransmitted.

4012H

SCounter

RC

WORD_16

Total resource errors: The total number
(over all connections) of data TPDUs
discarded because receive buffers were not
available.

4013H

Value

BYTE

Maximum NSAP address length: The
maximum length of a remote NSAP address.

4014H

Value

BYTE

Maximum TSAP selector length: The
maximum length of local or remote TSAP
selectors.

4015H

Value

WORD_16

Local NSAP selector: The NSAP selector
bound to the local Network Layer.

4018H

Parameter

RS

WORD_16

Default connection negotiation options.

4019H

Parameter

RS

BYTE

Maximum TPDU Size: The value (specified
as a power of 2) used for maximum TPDU
size in the negotiation phase of connection
establishment by the local transport entity.

401AH

Parameter

RS

BYTE

An additional option field (encoded as in ISO
8073) assumed to be requested by a remote
entity when no such option parameter is in
the received TPDU.

401BH

Parameter

RS

BYTE

The maximum TPDU size (specified as a
power of 2) assumed, when no size is
specified by a remote entity in the received
TPDU.

401CH

Parameter

RS

WORD_16

Maximum normal window size: largest
receive buffer credit that can be reported on
a connection by the local transport entity to a
remote transport entity on a connection using
normal sequence number format.

408

Appendix C

continued

iNA 960 Network Objects

TableC-8. Transport Layer Objects- VC Connection Independent (continued)

Type

Access Size

Description

401DH

Parameter

RS

WORD_16

Maximum extended window size: largest
receive buffer credit that can be reported on
a connection by the local transport entity to a
remote transport entity on a connection using
extended sequence number format.

401EH

Parameter

RS

WORD_16

Minimum credit: smallest receive buffer
credit that can be reported on a connection
by the local transport entity to a remote
transport entity.

401FH

Parameter

RS

WORD_32

Open window timeout: interval (in 100
microsecond units) between successive
acknowledgements (AK TPDU's) that
announce the opening of a previously closed
credit window to avoid flow control deadlock.

4020H

Parameter

RS

WORD_16

Maximum open window count: maximum
number of open window AK TPDUs
transmitted before the sender assumes that
the remote transport entity has received the
open window credit information. When this
count is reached, the local transport entity
stops transmitting open window AK TPDUs.

Table C-9. Map 2.1 Transport Objects

Type

Access Size

Description

4040H

WCounter

RS

WORD_32

Total number of bytes of application data
sent over Transport Layer VCs (does not
include datagrams).

4041H

WCounter

RS

WORD_32

Total number of bytes of application data
received over Transport Layer VCs (does not
include datagrams).

4042H

WCounter

RS

WORD_32

Total bytes of expedited data sent.

4043H

WCounter

RS

WORD_32

Total bytes of expedited data received.

4044H

WCounter

RS

WORD_32

Total number of TPDUs successfully
transmitted.

4045H

WCounter

RS

WORD_32

Total number of TPDUs retransmitted
(overlaps object 4011H).

4046H

WCounter

RS

WORD_32

Total number of TPDUs received.

A@wor k User's Guide and Reference

continued

Appendix C

Table C-9. Map 2.1 Transport Objects (continued)

ID Type Access Size Description

4047H WCounter RS WORD_32 Total number of data TPDUs retransmitted.

4048H WCounter RS WORD_16 Total number of retransmitted AK TPDUs.

404AH WCounter RS WORD_16 Total number of application disconnect
requests.

404BH WCounter R WORD_16 Number of open connections (same as object
4006H, Active CDBSs).

404CH WCounter RS WORD_16 Total number of Type 1 connection refusals:
connection exceeds node connection limit.

404DH WCounter RS WORD_16 Total number of Type 2 connection refusals:
all others.

404EH WCounter RS WORD_16 Total of successful inbound connections.

404FH WCounter RS WORD_16 Total of successful outbound connections.

4050H WCounter RS WORD_16 Total of unsuccessful inbound connections.

4051H WCounter RS WORD_16 Total of unsuccessful outbound connections.

4052H WCounter RS WORD_16 Total number of timed out connections.

4053H WCounter RS WORD_16 Total of connect request retransmissions.

4054H Timerval R WORD_32 Maximum local acknowledge time, between
receipt of TPDU and transmission of
acknowledgement. This object is set when
the system is configured.

4055H Timerval R WORD_32 Maximum local retransmission time; set when
the system is configured.

4056H Integer R WORD_16 Maximum number of retransmissions
allowed; set when the system is configured.

4057H Timerval R WORD_32 Default connection inactivity time: how long
a connection can be inactive before a
disconnect request is sent. This is set when
the system is configured.

4058H Integer R WORD_16 Maximum TPDU size in bytes; set when the
system is configured.

4059H WCounter RS WORD_16 Total number of protocol errors.

405AH WCounter RS WORD_16 Total number of invalid received TPDUs.

410 Appendix C iNA 960 Network Objects

Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent

ID

Type

Access Size

Description

4081H

Value

R

Variable

Local TSAP selector for the connection
(specified in the modifier field of the NMF
READ_OBJECT request block). The first
byte of the value is the length of the selector.

4082H

Value

Variable

Remote NSAP address: of the entity at the
remote end of the connection. If the
application performs a partially specified or
unspecified passive open, this object will be
0 until the connection is established. The
first byte of the value is the length of the
address.

4083H

Value

Variable

Remote TSAP selector for the specified
connection. The first byte of the value is the
length of the selector.

4084H

Value

BYTE

Connection State: For descriptions, see the
state parameter under connection dependent
status in the Transport STATUS command.

4085H

Value

WORD_16

Remote connection ID: the reference of the
specified connection, set after the connection
is established.

4086H

Parameter

RS

WORD_16

Persistence Count: number of times a
connection request is retransmitted when the
remote entity explicitly refuses it.

4087H

Parameter

RS

WORD_16

Abort Timeout for this connection: amount of
time (in units of 51 ms.) an unacknowledged
segment is transmitted before automatically
aborting the connection.

4088H

Parameter

RS

WORD_32

Retransmit Timeout for this connection:
amount of time (in 100 microsecond units)
the Transport Layer waits before
retransmitting an unacknowledged TPDU.
This is determined by a dynamic algorithm.

4089H

Value

WORD_32

Next Transmit Sequence Number: to be
used with the next TPDU transmitted (not
always the highest number).

408AH

SCounter

RC

WORD_16

Duplicate TPDUs Rejected: total of duplicate
received TPDUs discarded by the transport
entity for this connection.

AlEtwor k User's Guide and Reference

continued

Appendix C

Table C-10. Map 2.1 Transport Objects - Virtual Circuit Connection Dependent
(continued)

Type

Access Size

Description

408BH

SCounter

RC WORD_16

Retransmitted TPDUs: total number of times
an unacknowledged TPDU has been
retransmitted for this connection.

408CH

SCounter

RC WORD_16

Resource Errors: total of times that TPDUs
received on this connection were rejected
because receive buffers were not available.

408DH

Value

R WORD_16

Client Options: specified by the client in the
connection request.

408EH

Value

R BYTE

Class Options: the ISO class of services and
sequence number format negotiated on this
connection are:

40H - Class 4 and normal (7-bit) format
42H - Class 4 and extended (31-bit) format

408FH

Value

R BYTE

Additional Options: negotiated on the
connection, where only bits 0 and 1 are
meaningful. The values are:

0 - no expedited service and checksum

1 - expedited service and checksum

2 - no expedited service and no checksum
3 - expedited service and no checksum

4090H

Value

R BYTE

Maximum TPDU Size (as a power of 2),
negotiated for this connection.

4091H

Value

R WORD_16

Maximum TPDU Data Length: maximum
length in bytes of data that can be sent in
one TPDU. This is the smaller of the
Maximum TPDU Size or the configured
maximum NSDU size, minus the header
length.

4092H

Value

R WORD_16

Inactivity Count: number of times an
inactivity AK has been sent without response
from the remote entity.

4093H

Value

R Variable

Local NSAP selector for this connection; the
first byte is the length of the selector.

412

Appendix C

iNA 960 Network Objects

TableC-11. Map 2.1 Transport Objects- Transport Datagram

ID Type Access Size Description

4100H Value R BYTE Datagram Type: returned value is 1.

4101H Value R BYTE Datagram receive queue size: maximum
number of TSAP selectors for which the
client can post buffers.

4103H SCounter RC WORD_16 Total number of datagrams transmitted.

4104H SCounter RC WORD_16 Total number of datagrams received.

4105H SCounter RC WORD_16 Total datagram resource errors: number of
datagrams discarded due to lack of buffers.

4106H SCounter RC WORD_16 Total datagram checksum errors: number of
datagrams discarded due to checksum
errors.

4107H SCounter RC WORD_16 Total datagram address errors: number of
datagrams discarded due to illegal address
fields in the header.

Table C-12. NMF Objects

ID Type Access Size Description

8049H Time RS 17 BYTES System time.

804AH WCounter R WORD_16 Time reset counter: This is incremented
every time the system time is set.

804BH Value R 2 BYTES iNA 960 version number.

Table C-13. Network Layer Events
ID Name Description
3100H PDU Lifetime Threshold Exceeded The number of packets discarded because

they were unclaimed longer than the PDU
lifetime threshold value.

AlEBwor k User's Guide and Reference

Appendix C

Table C-14. Transport Layer Events

ID Name Description
4000H Abnormal Transport Layer The provider of an established transport
Connection Abort connection has terminated the connection.
4001H Transport Layer Bad Destination The destination TSAP address in a connection
Address request does not exist; there is no entity
waiting at the destination TSAP selector. This
applies to both incoming and outgoing PDUs.
4002H Transport Layer Protocol Violation =~ Some violation of Transport Layer protocol
has occurred
[y
414 Appendix C iNA 960 Network Objects

Related Documentation

The manuals listed here provide additional network information. Many are available
from your sales representative:

+ iRMXVirtual Terminal Software User's Guide

« OpenNET PCL2 for DOSInstallation Guide

+ PCL2LAN Controller User's Guide

e SV-OpenNET User's Manual

e SV-OpenNET Ingtallation and Administration Manual

« SBC/SXM 552A | EEE, 802.3 Communications Controller User's Guide
« 32-Bit Local Area Network (LAN) Component User's Manual

Network User's Guide and Reference Appendix D 415

416 Appendix D Related Documentation

Index

/net/datafile, 18, 135
:config/

terminalsfile, 352
:sd:net/datafile, 38, 39, 42, 51, 58, 135
:sd:net/data.ex file, 18, 135
? (question mark) character, 52

A

abort timeout, 406, 407, 411
abort timeout value, 228
ACCEPT_CONNECT_REQUEST, Transport
command, 190
active open, 186
ADD_NAME, Name Server command, 150
ADD_SEARCH_DOMAIN, Name Server
command, 153
address format, 181
address match tests, 202
addressing authority, 72
addressing network buffers, 178
Administrative Unit, see AU
AFI, 72,74
Apex File Access (AFA) module, 65
ATTACH_AGENT, NMF command, 306
attachdevice command, 27, 31, 46, 54
AU (administrative Unit), IRMX-NET
configuration example, 37
AU (Administrative Unit), iIRMX-NET, 11
master node, 12, 20
Master UDF, 12, 20
security, 12
AWAIT_CLOSE, Transport command, 193
AWAIT_CONNECT_REQUEST_CLIENT,
Transport command, 196
AWAIT_CONNECT_REQUEST_TRAN,
Transport command, 196

Networ k User's Guide and Reference

AWAIT_EVENT, NMF command, 309

B

bcl command, 346

bexp.a86 file, 343

bexp.csd file, 344

BIOS, 65

boot client, 294, 304, 333, 335
adding name to CDF, 352
hardware and OS requirements, 333

boot file
configuration of, 339
format of, 361
generating, 338

boot requests, 358

boot response, 358

boot server, 294, 304, 333, 335
configuring, 346
load filesfor, 350

booting
diskless nodes, 333
remote, 333

bootstrap loader, 333

br38.csd file, 341

br3expgen.csd file, 341

broadcast subnet, 71

buffers
addressing network, 178
availability test, 202
contiguous, 184

maximum transport protocol length, 231

network data, 108
noncontiguous, 184

C

carrier errors, 399, 400
case sensitivity, 49, 55, 56

Index

417

ccinfofile, 343
creating, 346
generating, 348
ccinfo.bdf file, 347
CDB (connection database), 186
maximum number of, 210
CDF (Client Definition File), 352
CDF (Client Definition File), 11, 12, 13, 22
CHANGE_VALUE, Name Server command,
155
checksum errors, 408
chgid utility, UNIX, 55
circuit, virtual, 2
class codes, 347, 348
client, 2
iRMX-NET, 3
iRMX-NET, name, 11, 22
validation, 13
verified, 12, 22
verifying, 11
Client Definition File, see CDF
client-based protection, iRMX-NET, 12, 13
CLOSE, Transport command, 206
collision errors, 399, 400
collisions, 398, 399, 400
COMMengine, 60, 144
COMMputer, 40, 60, 144
dataflow in, 395
Configuration Notification function, 403
CONFIGURE, Data Link command, 264
configuring
AU, 37
CONNECT, DataLink command, 266
connection database, 186
connectionless transport, 178
connections
establishing network, 184, 186
reference D, 210
terminating, 184, 188
contiguous buffers, 184
copy command, 28, 29
cqg*.ext files, 109
cg*.hfiles, 109
cq_comm_multi_status call, 114
cq_comm_ptr_to_dword call, 111, 116
cq_comm_rbcall, 111, 117
cq_comm_status call, 121

418 Index

cq_create_comm_user cal, 111, 123
cq_create_ multi_comm_user call, 124
cq_delete_comm_user cal, 111, 126
cqtransp.h file, 179

cqtransp.lit file, 179

CSMA/CD, 256

D

data
buffers, 108
structures, 110
transferring, 186
Data
Link layer, 255
Link objects, 398
for 82595TX, 399
for DEC21143, 400
for Multibus 11 subnet, 401
datafile iIRMX-NET), 18
DataLink
type, 401
data.ex file, 18, 135
datagram objects, 413
datagram service, 178, 189, 235, 255
DEC21143 component
Data Link objectsfor, 400
dedicated server, 2
Default Router Table, 368, 402
default TSAP selector, 180
delete request block data structure, 127
DELETE _NAME, Name Server command,
157
DELETE_PROPERTY, Name Server
command, 159
DELETE_SEARCH_DOMAIN, Name Server
command, 161
deletename command, 141
Destination Subnet Table, 368, 402
DETACH_AGENT, NMF command, 312
detachdevice command, 28, 46, 54
dir command, 28
directories
/bsl, 343
/net, 18
/rmx386/demo/network, 147
/rmx386/jobs, 27

disconnect

message, 195

reguest, 208
DISCONNECT, Data Link command, 269
diskless nodes, booting, 333
DL SAP (destination LSAP), 258
domain, 72
DOS, 4

client, 51

client, 49, 52

filenames, 51

interoperability, 47

pathname, 51

server, 49, 51

system, 49, 50

user, 49

wildcard characters, 52
DOSRMX

networking, 17
DUMP, NMF command, 313
dynamic name resolution, 8
dynamic routing, 74, 75

E

EarlyRx, 399, 400
EarlyTx, 399, 400
ECHO, NMF command, 316
EDL (External Data Link), 255, 256
end of message, 231
end system, 69
End System Hellos, 403, 404
enetinfo, UNIX command, 140
EOM, 231
EOT (end of transmission), 231
EPROM
programming first stagein, 343
error messages
remote boot, 355
ESIS
address, 75
objects, 403
protocol, 75
routing, 74, 365
EtherExpress, 257, 334, 338
programming EPROM for, 343

Networ k User's Guide and Reference

Ethernet address, 73, 139, 140, 142, 144, 398,
401
changing, 272
in NSAP address, 74, 75
of spokesman, 168
events
Network Layer, 413
Transport Layer, 414
EWENET module, 257, 334, 338
programming EPROM for, 343
examples
applications, 147
applications, 178
AU configuration, 37
copying the CDF, 30
copying the UDF, 29
iRMX-NET setup, 37
modcdf command, 44
exp.rem32 file, 341
expedited data, 187, 222, 238
buffer, 236
External DataLink Interface, 256

F

FCTSAP, 143

File Consumer, 66

file server, 333
configuring, 350
specifying name of, 351

File Server, 66

files
accessrightsin UNIX, 57
accessrightsin UNIX, 57
accessrightsto, 32
accessing remote, 27
granting remote access to, 31
iNA 960 download files, 385
transparent accessto, 2
with ?in name, 52

findname command, 141

flow control, 177, 238

flow control window timeout, 407

FLUSH, Data Link command, 271

FSTSAP, 143

Index 419

G

general topology subnet, 71

GET_NAME, Name Server command, 163

GET_SEARCH_DOMAIN, Name Server
command, 166

GET_SPOKESMAN, Name Server command,
168

GET_VALUE, Name Server command, 170

getaddr command, 141

getname command, 141

group ID, UNIX, 11

H

hardware requirements
boot client, 333

header files, 109

header packets, 402

home directory, UNIX, 11

host memory, 303

IA_SETUP, Data Link command, 272
ICU (Interactive Configuration Utility)
iRMX-NET configuration, 11, 15, 22
|IEEE 802 LAN, 257
iNA 960, 59, 60
configuration values, 387
download files, 385
files, 385
Network Management Facility (NMF),
144
Null2, 140
subnet, 11
subnet number, 144
Transport Address, 144
Transport Software, 11, 60
Transport Software, 144
ina*.32l files, 342
ina*.32r files, 342
inab30n.32l file, 349
inactivity count, 412
inamon command, 23
INANLNUM, 143
INARDY object, 112

420 Index

INARELNUM, 143
INASUBNETxx, 144
includefiles, 109
Intermediate System Hello Table, 403, 404
Intermediate System Hellos, 403, 404
intermediate systems, 69
hello table, 374
International Standards Organization, see SO
internetwork routing, 69, 73
ESIS, 365
protocol, 74
static, 365
interoperability
iRMX-NET, 4
IP
addressing, 74
routing objects, 402
iRMX, 51
and UNIX compatibility, 56
client, 56
files, 51
interoperability, 47
logon name, 11
root, 51
static user, 21
Super user, 20
symbols, 56
UDF (User Definition File), 11, 12, 13,
14, 20, 22
user directories, 20
World user, 21
iRMX 111, 40
iIRMX-NET
AU (Administrative Unit), 11, 12, 20, 22
CDF (Client Definition File), 11, 12, 13,
22
client, 3,7
client name, 11, 22
client-based protection, 12, 13
configuration values, 388
default parameters, 38, 42
features, 3
ICU configuration, 11, 15, 22
interoperability, 4
loadable jobs, 388
load-time configuration, 11, 15, 22
Master UDF, 56

Name Server, 8,9, 18, 51
network access, 15
nodes, 58
security, 12
server, 3
server name, 8, 18, 19
setup example, 37
software, 7
software, 47
spokesman node, 9

ISO (International Standards Organization), 59
OSl Model, 59

protocols, 61
reason codes, 185
services, 61

J

jobs
iRMX-NET, 388
MIP, 388
remotefd.job, 7

L

LAN (Loca AreaNetwork), 1,2
Controller Interface (LCI), see LCI
|anstatus command, 23
LCI (LAN Controller Interface), 394
line speed, 401
line terminators, 56
LIST_TABLE, Name Server command, 173
listname command, 132, 141, 351
literal files, 109
LLC (logical link control), 61, 71, 256
load file
format of, 361
load files, 350
loadinfo file, 15
|oadname command, 18
|oadname command, 27, 50, 132, 134, 135,
136, 138
loadrmx command, 334
load-time configuration
iRMX-NET, 11, 15, 22
local
end system table, 374

Networ k User's Guide and Reference

node, 2
object table, 141
Local
NSAP Address Table, 375
Subnet Table, 368
Local End System Table, 403, 404
Local NSAP Address Table, 403, 404
Local Subnet Table, 402
Logical Link Control, seeLLC
|ogicalnames command, 28
login shell, UNIX, 11
logon name, iRMX, 11
lookup_object cal, 112
LP486, 257
LSAP (link service access point), 73, 74
identifiers, 258

M

MAC (media access control), 61, 71, 73, 74,
256
mailbox, 111
MAP 2.1, 405
MAP2.1 objects, 409
MC_ADD, DataLink command, 274
MC_REMOVE, DataLink command, 276
Media Access Control, see MAC
MIP, 60, 117, 119, 120, 128, 393
configuration values, 388
configuring, 67
errors, 119
jobs, 388
LAN Controller Interface (LCI), 392, 394
Multibus|1, 393
Multibus 11, 392, 394
PC Bus, 393
MIX 386/560, 257
MIX 560, 257
modcdf command, 11, 22, 43, 44, 53, 56
modself, UNIX command, 53
Multibus 1, 40, 60, 139, 143, 144
Multibus 11, 40, 41, 60, 139, 143, 144
Multibus |1 subnet, 401
DataLink objectsfor, 401
multicast address, 274, 399, 401
Name Server, 405
multicast messages, 404

Index 421

Multicast NSAP Address Table, 405
MYHOSTIDxx, 144
MYNAMExx, 145

N

name resolution, dynamic, 8
Name Server, 8, 18, 131

example, 10

multicast address, 405

operation, 9

using pointers, 108, 147
Name Server object table, 9, 18, 50, 58, 131,

139, 144, 174

adding objects, 134

deleting objects, 141

entries at initialization, 142

listing local information, 141
negotiation option tests, 202
net agent, 295
net manager, 295
net start, MS-Net command, 50
net use, MS-Net command, 50, 53
netadm, UNIX command, 56, 58
network

access, iIRMX-NET, 15

address, 18

address, 8

management, 64

object, 9

peer-to-peer, 2

security, iRMX-NET, 12

topology, 69

user definition, 14

user definition, 11

user validation, 13, 14
Network

Management Facility, 293

Service Access Point, 72
Network File Access (NFA) protocols, 47
network files

preconfigured values, 385
Network Layer, 63

addressing, 71, 74

configuration, 76

events, 413
network objects, 397

422 Index

networking

DOSRMX, 17

iRMX features, 1
NIC (Network Interface Card), 257
NMF, 293

and remote booting, 362

boot requests, 358

boot response, 358

objects, 413
nmfcfg.a86 file, 349
node, 2

client, 2

diskless, 333

server, 2
noncontiguous buffers, 184
ns get_host_id procedure, 144
NSAP (Network Service Access Point), 71,

72,74

address, 175, 179

selector, 72
NSAP address, 411
NSAP address length, 408
NSAP selector, 408
NSCOMMENGINE, 144
NSDONE, 145
NSDU (network service data unit), 177, 231
null TSAP selector, 180
Null2 addressing, 74

O

object table, IRMX-NET Name Server, 9, 18,
131, 139, 144

adding objects, 134

deleting objects, 141

entries at initialization, 142
objects

DataLink, 398, 399, 400, 401

ESIS, 403

iNA 960, 293, 397

IP, 402

MAP2.1, 409

Name Server, 131

network, 9, 131

NMF, 413

static routing, 402

Transport Layer, 406

offer command, 33
OPEN, Transport command, 209
OpenNET, 3, 4, 47, 49, 53, 132
Local AreaNetwork, 1
networking, 1
user definition, 11
options
iNA 960, 412
OS| Reference Moddl, 59

P
packets
discarded, 402, 413
received, 401
sent, 401
packets received, 398
padding

DataLink packet, 291

structures, 110
partially specified TSAP address, 183
passive open, 186
password command, 11, 20, 43, 49, 55
PC Bus, 53, 60, 139, 140, 143
pccprsd.bek file, 338

PCL2
PCL2R3.0, 51
PCL2(A), 257

peer-to-peer network, 2
permit command, 34, 57
persistence count, 228, 406, 411
physical addresses, 108
Physical Layer, 255
pointers
Name Server, 108, 147
trandating, 108
point-to-point subnet, 70
POST_RPD, Data Link command, 278
promiscuous mode, 274
publicdir command, 33

Q

question mark (?) character, 52

Networ k User's Guide and Reference

R

RAW_POST_RECEIVE, Data Link command,
282
RAW_TRANSMIT, Data Link command, 286
RawEDL, 399, 401
rb_common data structure, 118
rbootsrv.job, 333, 349
Reachable NSAP Address Table, 375, 403,
404
READ_AND_CLEAR_OBJECT, NMF
command, 321
READ_CLOCK, DataLink command, 288
READ_MEMORY, NMF command, 319
READ_OBJECT, NMF command, 321
reason codes, 185
receive buffers, 216
RECEIVE_ANY, iNA command, 211
RECEIVE_DATA, Transport command, 214
RECEIVE_DATAGRAM, Transport
command, 217
RECEIVE_EXPEDITED_DATA, Transport
command, 220
Redirect PDUs, 404
Refresh Redirect function, 403
remini command, 341
remote
booting, 333
node, 2
remote access
acrossAUs, 14, 21
iRMX-NET, 15
withinan AU, 13
remote boot, 353
error messages, 355
failures, 355
troubleshooting, 355
remote booting, 337
Remote File Driver (RFD), 7
remote third stage, 341
remove command, 34
rename command, 57
request block, 107, 117
data structure, 118
MIP response codes, 119
resource management, 107
restarts, 398

Index 423

retransmit timeout, 407, 411
RFD (Remote File Driver), 65
rmx.ini file, 15, 22, 340
RNETSRV, 145
routing
network packets, 69
tables, 75, 366
rq_create_ mailbox call, 111
rq_lookup_object call, 112
rq_receive_message call, 111

S

SBC 186/530, 257
SBC 386/12(S), 334
SBC 386/2X, 334
SBC 386/3X, 334
SBC 486/12(S), 334
SBC 486/133SE, 257
SBC 486/166SE, 257
SBC 486DX33, 334
SBC 486DX66, 334
SBC 4865X25, 334
SBC 552A, 257,334
SBC P5090, 257
SBX 586 Multimodule, 257
SDM
booting from, 353
SEND_CONNECT_REQUEST, Transport
command, 223
SEND_DATA, Transport command, 229
SEND_DATAGRAM, Transport command,
233
SEND_EOM_DATA, Transport command,
229
SEND_EXPEDITED_DATA, Transport
command, 236
server, 2
dedicated, 2
iRMX-NET, 3
names, iIRMX-NET, 8, 18, 19
server_name object, 145
server-based security, 14
service information, inside back cover
SET_MEMORY, NMF command, 319
SET_OBJECT, NMF command, 321

424 Index

setname command, 19, 27, 43, 50, 132, 134,
144
SLSAP (source LSAP), 258
SNPA (subnet point of attachment), 73
Specific Router Table, 368, 402
specified TSAP address, 183
spokesman node, iIRMX-NET, 9, 132
Static Intermediate System Table, 374, 403,
404
static routing, 74, 365
address, 75
objects, 368, 402
static user, 21
STATUS, Transport command, 239
structures
padding, 110
using, 110
Subnet Table, 375, 403, 404
subnetwork, 11, 54, 55, 69, 70
address, 73, 314
iNA 960, 11
Super user, iRMX, 20
SUPPLY_BUFFER, NMF command, 329,
362
supported architectures, 60
SV-OpenNET, 55, 58, 132
SV4-OpenNET, 132
SV4-OpenNET R2.0, 53
SV-OpenNET R3.2.3, 53

T

TAKEBACK_BUFFER, NMF command,

332, 362
TCP/IP, 1
third stage bootstrap loader, 341
TLCOMMENGINE, 144
TPDU (transport protocol data unit), 232
TPDU Size, 408, 412
transferring data, 186
trandating pointers, 108
transmission errors, 399, 400
TRANSMIT, DataLink command, 289
transparent file access, 2
transport address, 18, 181
Transport Layer, 63, 175

events, 414

objects, 406
transport protocol, 177
TSAP (Transport Service Access Point), 71
address, 175
address buffer, 179
address format, 181
selector, 175, 179
TSAP address, 414
TSAP selector, 411
TSAP sdlector length, 408
TSDU (transport service data unit), 229

typedef, 110

U

UDF (User Definition File), 11, 12, 13, 14, 20,

22
underrun errors, 399, 400
UNIX, 4,139
Inet/datafile, 58
and iRMX compatibility, 56
file access, 54
files, remote, 56
group ID, 11
home directory, 11
interoperability, 47
login shell, 11
pathnames, 56
server, 140
server, 53, 132
subnetwork, 11
symbols, 56
system, 53, 55, 58
tools, 56
unspecified TSAP address, 183
user
defining, OpenNET, 11
definition, 11, 14
groups, UNIX, 55, 57
static, 21
Super, 20
validation, 13, 14
verified, 11, 12, 22
World, 21
User Administration module, 66
User Definition File, see UDF

Networ k User's Guide and Reference

Vv

validating
client, 13
user, 13,14
VC, seevirtual circuit
verified client, 11, 12, 22
verified user, 11, 12, 22
virtual circuit, 406
virtual circuit (VC), 2, 177
maximum number of, 210
virtual root directory, 51

w

WITHDRAW_DATAGRAM_RECEIVE_BU

FFER, Transport command, 249
WITHDRAW_EXPEDITED_BUFFER,
Transport command, 251
WITHDRAW_RECEIVE_BUFFER,
Transport command, 253
work directory, 51
World user, 21, 53, 57

X

xlate command, 348

Index

425

	iRMX® Network User’s Guide and Reference
	Quick Contents
	Contents
	Chapter 1: Introduction
	How to Use This Book
	Networking Concepts and Terminology
	Network Software Choices
	iNA 960 Programmatic Interfaces
	iRMX-NET
	TCP/IP and NFS

	Chapter 2: iRMX-NET Overview
	iRMX-NET Client and Server
	Network Operation
	The Name Server
	The User Definition File
	The Client Definition File

	Network Security
	Client-based Protection
	Server-based Protection

	Chapter 3: Network Access Using iRMX-NET
	Overview
	Adding a Server to the Name Server Object Table
	Choosing a Server Name
	Entering Information Into the Object Table

	Defining Network Users in the UDF
	Accessing Other AUs
	Backing Up the Master UDF File

	Adding a Client to the CDF
	Diagnostics
	What's Next?

	Chapter 4: Using the Network
	Accessing Remote Files
	Connecting to a File Server
	Using Remote Files
	Copying Files Across the Network

	Making Local Files Accessible to Other Nodes
	Setting Up Public Directories
	Protecting Files on a Server

	What's Next?

	Chapter 5: Example: Configuringan Administrative Unit
	Configuring the Systems
	Configuring the Master Node
	Configuring the Other Nodes

	Setting Up the Administrative Unit
	System 1
	Systems 2 through 5

	Chapter 6: Example: Configuring€Multiple Operating Systems
	The DOS System
	Connecting a DOS Client to an iRMX Server
	iRMX and DOS Interoperability

	The UNIX System
	Connecting a UNIX Client to an iRMX Server
	Connecting an iRMX Client to a UNIX Server
	Setting Up the Administrative Unit
	iRMX and UNIX Interoperability
	Connecting to Nodes on Older Versions of SV-OpenNET

	Chapter 7: Network Software Implementation
	Hardware Environments
	Software COMMputer and MIP Environments
	Overview of iNA 960 Software
	The iNA Layers
	The Programmatic Interface

	Overview of iRMX-NET Software
	Data Flow Through iRMX-NET and iNA 960 Software
	Configuring the MIP

	Chapter 8: iNA 960 Topology and Addressing
	The iNA 960 Network Topology
	General Subnetwork Types
	iNA 960 Subnetworks

	Network Addressing
	Network Service Access Point (NSAP) Address
	Subnet Address
	Internetwork Routing

	iNA 960 Network Layer Addressing Schemes
	Null2 Network Addressing
	Static Internetwork Addressing
	End System to Intermediate System (ES-IS) Network Addressing

	Choosing a Network Layer Configuration

	Chapter 9: The Multibus II Subnet and Routing Between Subnets
	Configuring Networks with the Multibus II Subnet
	Routing Between Subnets
	Definition of a Router
	ES-IS vs. Null2 Jobs
	ES-IS Routing

	Ethernet Addresses in the Multibus II Subnet
	Data Link Subsystem ID for the Multibus II Subnet
	Name Server Search Domain
	Overview of Setting up the Multibus II Subnet
	Step 1: Mapping the Network
	Using Only TCP/IP Outside the Multibus II Subnet

	Step 2: Choosing the iNA 960 Jobs
	Step 3: Configuring Jobs in the ICU
	Step 4: Creating a Loadable Network Job
	Step 5: Using Loadable Jobs
	Step 6: Changing Subnet IDs on Other Systems
	Step 7: Modifying the net/data File
	Step 8 - 10 Overview: Configuring iNA 960 Routing
	Using Inamon to Configure Routing

	Step 8: Establishing ES and IS Hellos
	Step 9: Getting the NET and Subnet Information
	Step 10: Setting Up the iNA 960 Static Routing Tables
	Step 11: TCP/IP Configuration
	Increasing Performance for Remotely-Booted Boards

	Chapter 10: The Programmatic Interface
	Referencing Data Buffers in Request Blocks
	Using Addresses in iNA 960 Request Blocks

	Interface Libraries and Link Sequences
	Include Files
	Programming with Structures
	Using the cq_ System Calls
	Exception Handling
	System Calls to iNA 960
	cq_comm_multi_status
	cq_comm_ptr_to_dword
	cq_comm_rb
	cq_comm_status
	cq_create_comm_user
	cq_create_multi_comm_user
	cq_delete_comm_user

	Chapter 11: Using and Programming the Name Server
	The Name Server Object Table
	Adding an Object to the Name Server Object Table
	Loading Objects from the :sd:net/data File

	Other Name Server Operations
	Deleting an Object from the Name Server Object Table
	Obtaining Local Name Server Information
	Obtaining Remote Name Server Information

	Object Table Entries at Initialization
	Location of the Name Server
	Request Block Arguments
	Example Software

	Name Server Commands
	ADD_NAME
	ADD_SEARCH_DOMAIN
	CHANGE_VALUE
	DELETE_NAME
	DELETE_PROPERTY
	DELETE_SEARCH_DOMAIN
	GET_NAME
	GET_SEARCH_DOMAIN
	GET_SPOKESMAN
	GET_VALUE
	LIST_TABLE

	Chapter 12: Programming the Transport Layer
	Transport Services
	Virtual Circuit Service
	Datagram Service

	Buffers
	Buffer Addressing
	TSAP Address Buffer
	Contiguous Buffers
	Noncontiguous Buffers

	ISO Reason Codes
	Virtual Circuit Commands
	Commands to Establish a Connection
	Commands for the Data Transfer Phase
	Commands to Terminate a Connection

	Datagram Commands
	Posting Receive Buffers for Datagrams

	Transport Service Commands
	ACCEPT_CONNECT_REQUEST
	AWAIT_CLOSE
	AWAIT_CONNECT_REQUEST_TRAN�AWAIT_CONNECT_REQUEST_CLIENT
	CLOSE
	OPEN
	RECEIVE_ANY
	RECEIVE_DATA
	RECEIVE_DATAGRAM
	RECEIVE_EXPEDITED_DATA
	SEND_CONNECT_REQUEST
	SEND_DATA/SEND_EOM_DATA
	SEND_DATAGRAM
	SEND_EXPEDITED_DATA
	STATUS
	WITHDRAW_DATAGRAM_RECEIVE_BUFFER
	WITHDRAW_EXPEDITED_BUFFER
	WITHDRAW_RECEIVE_BUFFER

	Chapter 13: Programming the Data Link Layer
	Overview of the Data Link Layer
	The External Data Link (EDL) Interface
	The RawEDL Interface

	iNA 960-Supported Hardware Subnets and Protocols
	LSAP Identifiers

	Data Link Commands
	CONFIGURE
	CONNECT
	DISCONNECT
	FLUSH
	IA_SETUP
	MC_ADD
	MC_REMOVE
	POST_RPD
	RAW_POST_RECEIVE
	RAW_TRANSMIT
	READ_CLOCK
	TRANSMIT

	Chapter 14: Using the Network Management Facility
	NMF Services
	NMF Operation
	Managers and Agents
	Local Versus Remote NMF Operation
	NMF Communications Services

	Using NMF Commands
	Net Agent Connection Commands
	Layer Management Commands
	Event Notification
	Debugging Commands
	Maintenance Commands
	Remote Load Operations

	The NMF Commands
	ATTACH_AGENT
	AWAIT_EVENT
	DETACH_AGENT
	DUMP
	ECHO
	READ_AND_CLEAR_OBJECT
	READ_MEMORY/SET_MEMORY
	READ_OBJECT/SET_OBJECT�READ_AND_CLEAR_OBJECT
	SET_MEMORY
	SET_OBJECT
	SUPPLY_BUFFER
	TAKEBACK_BUFFER

	Chapter 15: Remote Booting
	Hardware and Software Requirements
	Overview of Remote Booting
	Configuring the Load Files
	Operating System Boot File
	Load-time Configuration File
	Remote Third Stage Bootstrap Loader
	iNA 960 Load File

	Generating a First Stage EPROM for the Boot Client
	Creating a First Stage for EtherExpress 16 or EWENET
	Using the iPPS PROM Programmer
	Installing the EPROM

	Configuring the Remote Boot Server
	Creating the ccinfo File
	Loading the Boot Server
	Installing the Load Files

	Configuring the File Server
	Loading Server Names into the Name Server Database
	Adding Client Names to the CDF
	Adding Server Names to the :config:terminals File

	Remote Boot Start
	Booting Multibus I Systems
	Booting Multibus II or PC Bus Systems

	System Initialization on a Diskless Node
	If Remote Booting Fails
	Troubleshooting
	Creating Custom Server Applications
	Boot Request and Response
	Loading Operation
	Boot Module Format
	Using SUPPLY_BUFFER and TAKEBACK_BUFFER

	Chapter 16: Internetwork Routing
	Internetwork Routing Protocols
	Static Routing
	ES-IS Routing
	Using Static and ES-IS Routing Together

	Routing Tables
	Application Access to Routing Tables

	Reading and Setting Static Routing Objects
	Command and Response Buffers for Static Routing

	Reading and Setting ES-IS Routing Objects
	Command and Response Buffers for ES-IS Routing

	Appendix A: iRMX-NET and iNA 960 Transport Configuration Values
	Files Containing iNA 960 Transport Software
	iNA 960 Download Files

	iNA 960 COMMputer Jobs
	Configuration of iNA 960 MIP Jobs
	Configuration of iRMX-NET Jobs

	Appendix B: Data Flow in MIP and COMMputer Jobs
	Data Interchange with the MIP
	Multibus I and PC Bus MIP
	Multibus II MIP

	Data Interchange in a COMMputer Job

	Appendix C: iNA 960 Network Objects
	Appendix D: Related Documentation
	Index

