E—

Q/"’Concordia

ECE Real-time System Laboratory

COEN421 Lab Manual

Revision No.: 1.3

Revision Date: 2014.12.18

Author: Dan Li, Iman Saboori, Samar Abdi

Department of Electrical and Computer Engineering
1515 St. Catherine West,
EV007.156
Montreal, Quebec, Canada
H3G 2W1 Tel: (514) 848-2424 x3148
Fax: (514) 848-2802
Web Site: www. ece.concordia.ca/~realtime

ECE Real-time System Laboratory The Department of ECE

CONFIDENTIAL

This document and the information disclosed herein is
the confidential property of Concordia University.
Neither this document nor the information contained
herein shall be used, reproduced or disclosed to others
without the written authorization of Department of
Electrical and Computer Engineering.

Department of Electrical and Computer Engineering,
CONCORDIA UNIVERSITY.
All rights reserved.

All trademarks and trade names are the properties of their respective owners.

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

REVIEW
MANDATORY REVIEWERS

The final review of this document must be attended by the following people (or an
authorized delegate):

- Authors of this document

- A peer of the authors’

- Authors’ manager

- Relevant Professors and TAs

If these people are not present at the review meeting and are not represented by an
authorized delegate, it must be rescheduled.

INTERESTED REVIEWERS

The following people must be notified of the final review of this document but are not
required to attend the review:

- Technicians

- TAs

- Labinstructors

- The professors

Revision History

Date Rev Author Reason for Change
2011.10.20 1.0 Dan, Li Initial release of document.
2012.01.15 1.1 Iman Saboori Add the experiments
2012.01.26 1.2 Dan Li Revise the release.

2014.12.16 1.3 Dan Li Change network settings, revise the
release.

2014.12.18 ECE-LAB-RT-02

ECE Real-time System Laboratory The Department of ECE

ABSTRACT and Keywords

Abstract

This document contains the relevant persons, current lab infrastructure, equipments,
basic configurations, current support to the teaching and research, and account
information, experiments etc. This manual introduces the structure of real-time system
laboratory, consistence of each setup, user account information and experiments.

The manual provides a practical example in real-time programming and an overview of
the various experiments that are to be performed by students in the real-time lab.
This document is for the students and TAs:

e To setup the lab configuration in the real-time system lab;

e To Login real-time network

e To manage workstation, target and plant(Qball);

Keywords
Real-time, Embedded system, Matlab/Simulink, QuaRC, QNX, RTOS

Reference
[1] Matlab r2009 User Guide
[2] Quanser Qball-x4 user manual
[3] Advantech PCM-9375 User manual.
[4] QNX6.3.2 User guide.

[5] The webpage of ECE Real-time lab: http://www.ece.concordia.ca/~realtime

ECE-LAB-RT-02 2014.12.18

The Department of ECE

GLOSSARY

This section defines all abbreviations and acronyms that appear in the document Any
words or actions which may not be readily understood are also included.

Term

Description

RTOS

SBC

QNX

A real-time operating system (RTOS) is an operating system (OS)
intended to serve real-time application requests. A key
characteristic of a RTOS is the level of its consistency concerning
the amount of time it takes to accept and complete an application's
task; the variability is jitter. A hard real-time operating system has
less jitter than a soft real-time operating system. The chief design
goal is not high throughput, but rather a guarantee of a soft or hard
performance category. A RTOS that can usually or generally meet a
deadline is a soft real-time OS, but if it can meet a deadline
deterministically it is a hard real-time OS. --wiki

A single-board computer (SBC) is a complete computer built on a
single circuit board, with microprocessor(s), memory, input/output
(1/0) and other features required of a functional computer. Unlike a
typical personal computer, an SBC may not include slots into which
accessory cards ("daughterboards") may be plugged. An SBC may
be based on almost any available microprocessor, and may be built
up from discrete logic or programmable logic. Simple designs, such
as built by computer hobbyists, often use static RAM and low-cost
eight or 16 bit processors.

QNX is a commercial Unix-like real-time operating system, aimed
primarily at the embedded systems market. The product was
originally developed by Canadian company, QNX Software Systems,
which was later acquired by Canadian BlackBerry-producer
Research In Motion.

2014.12.18

ECE-LAB-RT-02

ECE Real-time System Laboratory

Concordia University ECE Real-time System Laboratory

Table Of Contents
N {0 N 1
[o Yoo o oV AT =X SR 1
[I Yo) =V 2 t=Te 1V Lo L o] ¢ SRS 1
Task of Real Time SYStemMS LADOIALOIYccceeuueeeeieee et e eee ettt e e e e ettt e e e e e ettt aaaaeesssssssaaaaaesanees 1
Organization Of EACH EXPEIIMENTuueeeeeeeeeeieeieeeeeeeeettee e e e e ettt e e e e e e s sttt aaaeeessssasasaaaesessasssenaaaaeas 2
EXECULION Of @ EXPEIIMENTSeeveeeeeeeeieee et e ettt a e e e ettt a e e e e s et aas s e s e e esasasssasaaaesessssssensaaaaas 2
o] N e t=] o Yo] o SO PUP T 2
(C oo [1o TR Yol £ 1=1 1 -2 2
2. INTRODUCTIONoueiiiiineeiiissnneiiisneeiissseeisissseesssssseessssssesssssssesssssssessssssesssssssesssssssessssssesssssssesssssnses 4
(Y= 1= 4
Lab Structure QN SEALSveeeeeeeeeeeiieeesee e ese e e et e s caaeestea e Error! Bookmark not defined.
INEEWOIKS i TRE QD ...ttt ettt ettt ettt ettt e st e et e st e e nee e 5
REQAI-EIME ENVIFONMENT ...ttt ettt et et e et e st e e e st e esea e 6
GETTING STARTED ...t ettt e ettt e e ettt e e e e et a bt e e e e e e s asba e e e e eesaaasaseneaeeeas 8
HARDWARE COMPONENTS ..ottt ettt sttt ettt sas et sne e sane st e naeene s 10
SOFTWARE COMPONENTS. ...ttt ettt ettt sne et snenanes 18
3. EXPERIMENTS .ccooiiuiiiiineiiiinetiiisneeiisneesiisnnessssssessssssnesssssseessssssesssssssessssssesssssssesssssssessssnsesssssnness 25
EXPERIMENT #1: Use Matlab/Simulink to CONtrol QDAccooveeevuveeeieiieeeeiiieeiiiieesesiieeeessessessinnens 25
EXPERIMENT #2: develop socket programming ClASS...............ueueeeeeececieiiieeeeeeeciiieeeeeeeeeseiieeeaeeeeescseneas 30
EXPERIMENT #3: Develop Communication Program with Target and Display Sensors...............c..cccuu... 42
EXPERIMENT #4: JOYSEICK INTOITOUCE...........eeeeeeeeeeeeeeeeeee ettt e e e e ettt a e e e e e s saraaaaaeeeesasssnees 48
EXPERIMENT#5: Maneovue QBaAIl BY JOYSTICK............ueeeeeeeeieiieee ettt e e eseteaa e e e e e s 58
4. TEMPLATE FOR LAB REPORTScccoovttiiinneeiiisunniiisnneiiisneesssssneissssseessssssesssssnessssssssssssssesssssssessssans 62
L 7 Y 0 64
List Of Figures
FIBUIE 1: Lab StrUCTUIE.....iiiiiieie ettt s sbe e e s e e b s 4
FIgUre 2: ONE QDall ST ...ccoiiiiiiieeiee e e e e s e e e e e e e s e nareaeees 4
Figure 3: Changing PaSSWOITueeieeciiieiiiireeeeeeeeeeiiiirreeeeeeeesessssraeeseesessssssssreseessesssessssrsssees 9
Figure 4: Drives in Real-time Labcooovvieiieiiiiiiciiieee et 9
Figure 5: SBC BOArd Diagrammuuuuuuurueuuururuuusususususesnsssssssssssssssssssssssssrsssssssssssm... 11
FIgUre 6: QDall SYSTEIM cevviiiiiiiteiiee et e e e e e e e e e e e senbbsreeeeeeeeesennnes 13

2014.12.18 ECE-LAB-RT-02 i

ECE Real-time System Laboratory The Department of ECE

Figure 7: Integrated Development ENVIrONMENT......cccvveeeiiiiiiiiiiiiieeiee e eeeciirreeeee e e e e 20
FIZUIE 8: QUANC HEID wuveeeieiiiiieiieeeee ettt e e e e st bae e e e s e e s eesenbbsraeeeeeesesnnnnes 24
Figure 9: The experiment #1 SETUDcouvvviiiieiiee et eeeeirreee e e e e e e esbrrreeeeeeeeesennnes 25
Figure 10: host_joystick SImulink MOdElceeviiiiiiiiiiiiieeiei e 26
Figure 11: gball_motor_control Simulink model..........cccceveiiiiiiciiiieeiiieecreeeeee e, 27
Figure 12: IP address of WOrKStationcccvveeeeiiiiiiiiiiiiiieee e e 27
Figure 13: Change the oSt IP addressueeeeeiieiiiiiiiiiieeieeeeeceitieee e e e eeseiirreeeeeeeeeeenanns 28
FIgUre 14: PreferenCeS MENU.....uuueeiieeiiiieiiirieeeeeeeeeeieiireeeeeeeeeesessrseeeeeseessesessrsseseeesesssennes 28
Figure 15: Enter Qball IP @ddress........uuiiiiiiiiiiiiiiee ittt siee e e e s saae e e e 29
Figure 16: The eXperiment #2 SETUPcoiiiiriiiiiiee et e e e sire e e s ssaaee e e e 30
Figure 17: The experiment #3 SETUPcoiriiiie ettt sae e e e siee e e s saaaee e e e 42
Figure 18: The eXperiment #4 SETUPcovciiiriiiiiieeieiiiee et et sre e e e s saee e e s sseaeeeenaes 48
Figure 19: The experiment #5 SETUPccoiiiiii ittt sire e e s saae e e e 58
List Of Tables
Table 1: IP Tables ... 5
Table 2: QBAll IP tADIES .ot e e e e e e e e aaaee s 5
Table 3: The gstream sensors data format.........ccceveiiiiiiriiien e 42
Table 4: cgstreammsrv data formatcccveeeiiiieii e 58

2 ECE-LAB-RT-02 2014.12.18

Concordia University ECE Real-time System Laboratory

1. RULES

Laboratory Rules

Considering the large number of students attending the lab and in order for the lab to operate
properly, the students are asked to abide by the following rules:
e No eating or drinking is permitted in the laboratory.
e Overcoats and briefcases are not permitted in the laboratory.
e Students are supposed to sign in and sign out whenever they enter and leave the
laboratory.
e Students should bring their own laboratory manual. Any student who is more than 30
minutes late will not be permitted into the laboratory.
e The Qballs used in the experiments are very expensive and hence proper care must be
taken so that incidents like falling down the ground or bumping to the wall do not occur.
e Constant rebooting of the system should be avoided.
e Upon entering and leaving the safety cage, students should check whether the Qballs
are in proper stopping condition or not.
e Maximum care should be given to the Qballs, Joysticks and the SBCS.
e Students should immediately report to the demonstrator if any of these are damaged or
missing on their workbench. Failing to do so will result in students being charged for
damages or losses.

Lab Safety Regulation

The lab is a supervised lab. For the student’s safety and equipment security:
- The students should not play Qballs without TA’s supervision.
- Qball shall be put in cage when it is powered on, especially running a program on it.
- Wear a safety glass when you operate a Qball in close distance.

Task of Real Time Systems Laboratory

The main purposes of real time systems laboratory are as follows:
- To provide a practical experience working on a real-time platform.
- To work with Matlab/Simulink.
- Toimprove C++ and reusability skills.
- To improve programming syntax and algorithm checking.
- Tolearn QNX and the Integrated Development Environment (IDE).
- To provide experience in report writing.

2014.12.18 ECE-LAB-RT-02 1

Organization of Each Experiment

Each experiment is divided into the following sections:

- Objectives

- Diagram

- Lab description

- Class hierarchy diagram

- Design issues

- Hints and Sample code

- Check points
The first part gives the objectives of the experiment. The second part gives a rough idea about
the experiment in the form of a diagram.

Next comes the theoretical part of the experiment. The theory in this manual contains only a
brief experimental procedure and so students are asked to write their own descriptive
procedure in their lab reports.

The next section deals with the class hierarchy diagram. This is again a rough idea for students
to get a good understanding of the programming they are supposed to do. The class hierarchy
diagram provided in the manual is only a suggestion, and its up to the students to come up with
their own hierarchy diagram in their lab reports for each one of the experiments.

The last two sections provide a brief overview of the design issues, hints and sample code as
part of the different experiments.

Finally the experiment concludes with some questions as checkpoints

Execution of the Experiments

Each experiment must be studied in advance. Since the laboratory represents a significant
portion of the student’s practical training, it is imperative that the students perform all the
experiments. If a student has missed an experiment due to circumstances entirely beyond
his/her control, that student will have the opportunity to perform it at the end of the term. Any
student who misses more than one experiment will not be eligible for any form of passing
grade (“R” grade).

Lab Report

For each experiment a lab report must be written which can be regarded as a record of all
activities, observations and actual coding pertaining to that experiment. Lab report should be
well organized and well-presented and should contain as much information as possible.

Grading Scheme

The grading scheme is as follows:

2 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Objectives, introduction 10%
Results 50%
Questions and discussion and conclusion 20%
Preparation and participation* 20%

* It is important that the student prepares for each experiment by reading the
instructions before the student goes to the laboratory. Therefore, both the preparation and the

participation will be evaluated during the laboratory.

2014.12.18 ECE-LAB-RT-02 3

2. INTRODUCTION

Lab Overview

This manual includes the general information of ECE Real-time System Laboratory (H-907). This
document is supposed to help you understand the real-time Lab about its present

configuration, usage and some issues.

The lab is made up of real-time develop workstation running Window 7 and some small board
computers (SBCs) as the targets running QNX and mounting various file systems from ECE real-

time servers.

The bellowed diagram shows the structure of Real-time Lab.

Targef\xh /ﬂ/ //

GSAH-RT
172301280024

= —

Development
Workstations

Realtime Servers

'r Client bridge
1723012811

ENCS Networkintemet

%1 Joystick

Figure 1: Lab Structure

In the lab, there are four sets of Qball system.
Each set includes one Windows workstations, one
QNX SBC and a Qball-x4.

It can support four groups to use this lab at one
time. The maximum member in each group may
be three persons.

Figure 2: One Qball Set

MNetworks in
Realtime Lab

CanLi, April 2014.06

Real-time Qball Set

Development Workstation

e e e
i Wireless AP

,f'_“'“'"_"-d-""'

{

ECE Real-time Network |192.162.141.0/24

4 ECE-LAB-RT-02

2014.12.18

The Department of ECE ECE Real-time System Laboratory

Networks in the lab

ECE Real-time Network

One specified LAN is setup for real-time lab (192.168.141.0/24). It is used for running real-time
servers, user-management, system update on the equipment, etc. The following equipment
used for Embedded System lab are in this network:

- Two management servers: Tissot.realtime.private, Rolex.realtime.private

- Real-time Windows workstations with QNX package

- Real-time target machines (SBC) running on QNX
One gateway is setup to enable all real-time machines to access Internet. This network also
supports the labs of COEN320, ELEC481 and ELEC483.

Wireless Network

For wireless setup, one wireless router (G type) shall be used to setup a lab-area wireless
network, called GSAH, which is configured in access-point mode instead of Ad-hoc mode.

As factory default setup, Qball-X4 uses an ad-hoc peer-to-peer wireless TCP/IP connection for
communicating with the host computers. For real-time setup, the wireless more on Qball is
configured as access-point mode.

With a PCl wireless adapter the host computer (Development workstation) can have wireless
connection for working with the Qball-X4.

Here One G-type wireless router shall have four Ethernet ports as default. A SBC has two
Ethernet ports, one is connected ECE Real-time network, the other is connected this router to
enable it communicate with Qball also.

Table 1: IP Tables

Group# Wired IP Wireless IP

1 Bly.encs | 192.168.141.186 172.30.128.151
EBPC1 192.168.141.50 172.30.128.101

2 Pay.encs | 192.168.141.192 172.30.128.152
EBPC2 192.168.141.52 172.30.128.102

3 Dry.encs | 192.168.141.189 172.30.128.153
EBPC3 192.168.141.54 172.30.128.103

4 Sky.encs | 192.168.141.190 172.30.128.154
EBPC4 192.168.141.56 172.30.128.104

Table 2: Qball IP tables

Qball No | Wireless IP Wired IP
#224 172.30.128.224 172.16.0.224
#231 172.30.128.231 172.16.0.231
2014.12.18 ECE-LAB-RT-02 5

#232 172.30.128.232 172.16.0.232

#234 172.30.128.243 172.16.0.234

Real-time Servers
1. Real-time management server -Tissot.realtime.private (192.168.141.7)

Tissot provides service to real-time Windows workstations and acts as real-time domain
controller:
e Centralized users and groups management.
e Samba shared storage and Windows PDC.
e Network resource sharing- file server and web server.
2. QNX management Server - Rolex (192.168.141.8)

Rolex serves real-time QNX workstations, remote access QNX servers and QNX targets:
e (QNX account management: support real-time project accounts,
e User remote access account.
e NFS for QNX machines: provide QNX /home for QNX workstations, servers and targets.
3. Remote QNX Access Servers
e Mackay.realtime.private — 192.168.141.3
e Cartier.realtime.private — 192.168.141.9
e Timex.realtime.private —192.168.141.13

Real-time Environment

To write programs that run under the QNX Neutrino realtime operating system (RTOS), the first
thing you need is the QNX Software Development Platform (SDP). This includes the QNX
Momentics Tool Suite, which contains everything you need to develop programs that run on
Windows development host. The tool suite features an extensive Integrated Development
Environment (IDE).

—_— Communications
channel]

Development host Target system

The development host runs the QNX Momentics Tool Suite; the target system runs the QNX
Neutrino RTOS itself plus all the programs you're going to develop:

6 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Q Sy
IDE . QMY Meutring

, RTOS

‘ Dﬁj o EE—
Development Libraries
tools Drivers, ‘Your embedded
filesystams, application
e,
Documentation

QONX Momentics Tools Suite Target system

Real-time development Machine

In the lab real-time development host is Windows machine running Window 7 OS. The
following packages are installed to support real-time environment
e QNX Momentics 6.3.2
Matlab 2009b
QuaRC 2.1
e VMware (optional for QNX target)
Real-time Target machines

Real-time target machine is built on Advantech EBPC-3500 with PCM-9375 SBC. The SBC is
installed QNX 6.3.2 BSP.

A QNX target machine shall be ready so that the IDE on Windows development workstation can
interact with the QNX Neutrino on the target. The IDE supports host-target communications
using either an IP or a serial connection. Target systems need to run the target agent (gconn).
See Target agent in the IDE for more information.

Virtual Target

On each development workstation, QNX system can be running on local virtual machine,
(192.168.246.2). This virtual target can be used to debug your code without the support from
SBC.

(3]
To run Vmware, click the icon , or from ‘start’ —* All programs’ — Vmware server console’.
Shown in the following figure. To start QNX Virtual machine, click the green arrow or click the
command “Start this virtual machine’.

Note:

e The virtual machine may take serveral minutes to ‘boot up’.
e ItsIPis ‘192.168.246.2".
e No user login needed for debugging.

2014.12.18 ECE-LAB-RT-02 7

http://www.qnx.com/developers/docs

EZ Local host - VMware Server Console) — 151 =

J File Edit Wiew Host VM Power Snapshot Windows Help

[m w b & 8B & IE=RON=) (==

Inventory =

QNX —
State: Powered off
Guest OS: Other

Configuration file: C:\Wirtual Machines\QMNX\Other. vmx
Version: Current virtual machine for VMware Server 1.0, 10

Commands Devices
D Start this virtual machine g Memory 255 MB
ff Edit virtual machine settings & Hard Disk {IDE 0:0)
&y co-rom (IDE 1:0) Auto detect
E@ Ethernet Host-only
@USB Controller Present
ﬁ Processors 1
Notes
Type here to enter notes for this virtual machine

-
4| | *

VMware Server 1.0.10 4

ACCOUNTS and DRIVES

Real-time Account

Once you have registered ECE real-time course COEN421, one specific real-time account shall
be created after new semester starts. Real-time account is separated with your ENCS user
account. Initially user real-time account is created based-on ENCS account and managed on ECE
real-time server ‘Tissot.realtime.private’. One user real-time userlD is same as his/her ENCS
user ID but real-time password is created as same as the uer ID, e.g. if an user ID is named as
‘a_student’, then the pre-assigned password is * student’.

Account of Real-time Domain

Press ‘Ctrl+lt+Del’, input your real-time ID and password, you can login any workstation in the
lab. When you first time login real-time domain, the workstation may take more time to create
your profile.
At the lab, you may choose any machine and use it interchangeably with the others. Your home
directory will be the same on every workstation.
Once you log on real-time workstation with default password, you shall change it immediately.
Launch a web browser, and input the URL.:

Error! Hyperlink reference not valid./tissot.realtime.private: 8888/
Once the user enters his name and password, he can perform changes in his personal
configuration. The showed functionality is the following:

8 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

L zentyal

L Password management

Voicemail

Mail retrieval from

Mew password:l |
external accounts S —

Re-type new passwnrd:' |

| _Change |

Passwonrd

Figure 3: Changing password

Windows Powershell Credential Request

Enter your credentials.

IE danli

Password: I

Then you can change the current password in user’s corner.

QNX account

QNX account on real-time target (SBC) is only group type. A
group account can be used to upload your code to the
target. You can get a group account from your lab tutor.

User name:

cfl

In real-time lab, you can log in a real-time workstation, then
use SSH to connect its related target by a group account,
then you can upload your code.

Cancel

[1]

Map ENCS Drives

Once you log on real-time workstation, the system shall run a script to map your ENCS network
drives G: and U: . The log-in pop-up window is shown as the followed:

The detailed information about these two network drives please refer to ENCS helpdesk
webpage. After network drives are mounted, system shows your drives, see the followed

screenshot.
i3 Computer p i =] |
- = | .
O Q L‘ - Computer - - m I Search Computer E‘J‘
Organize ~ System properties Uninstall or change a program Map network drive Open Control Panel ji - E;l @
'r Favorites =1« Hard Disk Drives (6]
Bl Desktop Local Disk (C:)

41 Downloads
=1 RecentPlaces

= Libraries
[& pocuments
J‘r Music
[&=] Pictures

E Videos

1M Computer
ﬁ, Local Disk {C:)
5 danli (\Wfiler-users. encs.concordia.c
5 danli (Wissot) (H:)

5 danli (Wfiler-users. encs. concordia.

=i

F. .

Al

NAY

Domain: REALTIME
Real-time Workstation Processor: Intel{R) Core{TM)2 CPU ...

82,3GB free of 1492 GB

+ Devices with Removable Storage (2)

y Floppy Disk Drive (A:)

+ Metwork Location (3)

o
DVD RW Drive (D:)

danli (\\tissot) (H:)
|

danli {\\filer-users.encs.concordia. ca)

(—f_;?’ {G:) (—y“
e |

] e 99.9MB free of 100 MB

danli

‘T:_V" (\fler-users.encs. concordia. ca'unix. ..
cagg []

Memory: 2,00 GB

Figure 4: Drives in Real-time Lab

2014.12.18

ECE-LAB-RT-02 9

http://www.encs.concordia.ca/helpdesk/data.html
http://www.encs.concordia.ca/helpdesk/data.html

Drives

e G:\ -ENCS personal Windows home

e U:\ -ENCS personal Unix home

e H:\ - ECE real-time home
When you first time log in, real-time system will create a working directory at “G:\realtime”,
which is the primary real-time workspace. You shall store your file and code under this
directory. The reason is G:\ drive is easy to access and more safe than H.

Remote Access

There are several remote QNX servers installed for real-time network.

e Mackay.realtime.private

e Cartier.realtime.private
As default, real-time user doesn’t have an account to access these servers. But you can use
them as a remote target when you run QNX Memotics on your PC.
If you need to access these servers directly, you can send a request. Once you have an account
on these servers, you can also remotely access the QNX system from outside Concordia by
using secure ssh. Here you may have to install a SSH client, such as Secure SSH client. Once you
have a SSH client, you can access the encs.login server: login.encs.concordia.ca by using ENCS
account, then you can use ‘ssh mackay.realtime.private’.
Once you remotely log in QNX, you can’t run an application with GUI.

HARDWARE COMPONENTS

Real-time Windows Workstation

Real-time development workstation is built on Dell 390 PC, running
Windows 7 with some real-time packages.

e Intel's Dual Core Processor (3.0GHz x 2 Cores)

e CDRW/DVDRW Write DVD

e 500GB Hard Drive, 2GB DDR2

e ATI X600 High Density Dual Output PCle x16 Graphics Video

Embedded Target System -SBC

Embedded Industrial Chassis —-EBPC-3500

Main Features:
e Built-in DC-to-DC power supply, accepts DC 12V~ 24V
power input source, and ATX
e Accepts one PC/104 or PCI-104 or MIO card expansion

10 ECE-LAB-RT-02 2014.12.18

http://www.ssh.com/support/downloads/client/

The Department of ECE

ECE Real-time System Laboratory

e Supports one 2.5" HDD bay with anti-vibration design
e Easy installation of HDD and DRAM
e Built-in maximum 1/O ports on the front, and optional video ports on the rear
e Reserves I/0 cutouts for easy I/0 extension

e Compact, robust construction

e Simple and modularized service-friendly design.

Single Board Computer

The PCM-9375 is a fanless, best-cost, performance 3.5" SBC (Single Board Computer) geared to

satisfy the needs for various industrial computing equipment. PCM-9375 is ideal for

communication, gaming and medical applications that require flat panel support using digital

displays with TTL or LVDS interfaces and two Ethernet ports.

For those who want superior performance for various low-power embedded applications, PCM-
9375 uses an AMD LX-800 processor clocked at 500 MHz, in conjunction with flexible DDR333

system memory through one SODIMM socket.

PCM-9375 offers convenient connector layout, easy assembly, multiple 1/0, and includes two
10/100Mbps Ethernet, four USB (Universal Serial Bus) 2.0 and four serial ports for easy system

expansibility.

Board Diagram

LCD
Connector
(DF13-40P)

| 24EeTTL [:

VDS |
Connector -<'1—

1| mF13-20m)

AMD Geode LX 800

PCIBLIS

] #Analeg RSB >

CRT
Connector

] DODRII

DDR SDRAM
200-pin SODIMM x 1

PC104 PClto ISA Bridge
Connector ITa8E88G

[~ sama ACARD i
1| Connectar ARCTTZM
(o RO Ny s prireses Sl
r RS Slawe
| | IDE/DMAI2
1| Box Header 44P 2.0 mm t
Mazter
CompactFlash

| GPIC |Q:| PCAS554 Hmib

AMD Geode
C55536/C55535

BIOS LFC Buz

4

107100 LAN
(RTLE100 or B2551) ‘ L |

—

Box Header

10100 LAN
(RTL8100 or 82551)

LE0 USE2.0x 4
A X
Line-in
ACLink ACYT Codec I
pi
Mic-in

COM1/ComM2 .| PS/2KBEMS
COM3/COoMA LPC Super /0 j Lal LT
(SCH3114)
Watchdog

amp || Seadker

Figure 5: SBC Board D

iagram

2014.12.18

ECE-LAB-RT-02

11

THE PLANT - QBALL

Introduction of Qball

The Quanser Qball-X4 (Figure 1) is an innovative rotary wing vehicle platform suitable for a
wide variety of UAV research
applications. The Qball-X4 is a
guadrotor helicopter design
propelled by four motors fitted with
10-inch propellers. The entire
guadrotor is enclosed within a
protective carbon fiber cage (Patent
Pending). The Qball-X4's
proprietary design ensures safe
operation as well as opens the
possibilities for a variety of novel
applications. The protective cage is
a crucial feature since this
unmanned vehicle was designed for
use in an indoor laboratory, where
there are typically many close-
range hazards (including other
vehicles). The cage gives the Qball-X4 a decisive advantage over other vehicles that would
suffer significant damage if contact occurs between the vehicle and an obstacle.

To measure on-board sensors and drive the motors, the Qball-X4 utilizes Quanser's onboard
avionics data acquisition card (DAQ), the HiQ, and the embedded Gumstix computer. The HiQ
DAQ is a high-resolution inertial measurement unit (IMU) and avionics input/output (1/0) card
designed to accommodate a wide variety of research applications. QuaRC, Quanser's real-time
control software, allows researchers and developers to rapidly develop and test controllers on
actual hardware through a MATLAB Simulink interface. QuaRC's open-architecture hardware
and extensive Simulink blockset provides users with powerful controls development tools.
QuaRC can target the Gumstix embedded computer, automatically generating code and
executing controllers on-board the vehicle. During flights, while the controller is executing on
the Gumstix, users can tune parameters in real-time and observe sensor measurements from a
host ground station computer (PC or laptop).

The interface to the Qball-X4 is MATLAB Simulink with QuaRC. The controllers are developed in
Simulink with QuaRC on the host computer, and these models are downloaded and compiled
into executables on the target (Gumstix [2]) seamlessly. A diagram of this configuration is
shown in the following figure.

12 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

N,

update runtime parameters ™\

“\ \ \ Ny, |~ % £ HHRER
| \ — ERET

\

AR~
A ™. Runs model (controller)
Wifi Wip 0
Send code to target (Gumstix) N ViR
Send/Receive scope data, ™. N\ T

=) ™
(S =
~5 | =

1 .

o Host
£L————= " Generate code

HiQ and Gumstix

Figure 6: Qball System

Setup Qball

e Check that all motors are securely fastened to the vehicle frame.

e Check that the propellers are firmly attached to the motors in the correct order:
clockwise propellers (viewed from the top) on the front and back motors, counter-
clockwise propellers on the left and right motors. Note that the back motor is indicated
by a bright colored marking on the Qball-X4 frame.

e Check that the motors are firmly secured to the frame regularly (after every 2 hours of
flight). Over time, vibrations in the frame may loosen the motor mounts. If a motor or
mount feels loose, tighten it immediately.

This is a step by step guide to fly the Qball - X4 unmanned aerial vehicle. It is highly
recommended to follow this guide particularly if this is the first time flying the Qball. There are
many referrals to the Qball user manual in this manuscript. So please keep it handy.

STEP 1: Except for connecting the batteries, the Qball should be shipped completely assembled
and it does not require any assembly. However, before flying the Qball each time please make
sure the motors are mounted firmly, the blades are not broken and securely fastened and all
the wires are connected. If anything is broken or loose you need o fasten, repair or change the
part before attempting to fly otherwise it will cause damage r harm to the equipment and/or
the operator.

STEP 2: Make sure y have a properly licensed QUARC, a running Matlab/Simulink, and all the
reacquired files.

2014.12.18 ECE-LAB-RT-02 13

STEP 3: Connect the two fully charged Li - Po batteries to the Qball. Make sure they are
securely fastened using the provided straps. Also, make sure they are placed roughly under the
center of the frame. If not, this may cause imbalance and will affect the flight performance. For
the instructions on how to charge the batteries and their maintenance consult the Qball user
manual, Pages 10 and 17.

STEP 4: Make sure your wireless dongle (wireless card) is connected, installed and works
properly. Set the right IP address for the wireless connection and make sure it is connected o
the right network (GSAH). For detail instructions please refer to the Qball user manual, page 15.

STEP 5 (If you are using the OptiTrack positioning system): Before flying the Qball for the first
time you need to setup and calibrate the OptiTrack positioning system. Please refer to the
“Quanser OptiTrack Quick Start Guide” for more detail. Make sure that the OptiTrack
calibration square (for setting the ground plane) is oriented with the Z axis facing the operator
and X axis pointing to the left when setting the ground plane. This alignment is required for or
Qball autonomous flying using the provided models.

Remark: There are two main model files that will be used. One is the model file running on
the host ground station to get the joystick (and OptiTrack positioning) data and send the
information to the Qball. Second is the Qball control model running on the Qball which
gathers all the information and does the flight control. Note that there are safety features
in the Qball model that tries to land the Qball if the host model and Qball control model
communication stops for 1 second (see “Joystick from host\timeout safety” subsystem).

STEP 6: If this is the first time you are using the joystick you need to calibrate it in Windows.
Next, open the model file “HOST_joystick.mdI” (“HOST _joystick_optitrack.mdl” If you are using
the OptiTrack system). Build and run this model. Make sure the joystick channels are (in order):
Yaw, throttle, roll, pitch. Throttle should range between 0 and 1, and all other channels should
range from - 1 to +1 with the positive value corresponding to positive rotation about the axes
according to the right - hand rule (see Qball user manual or axes).

Remark 1: The joystick/OptiTrack model should always be started BEFORE starting the
Qball model. Failing to do so will cause a timeout in the Qball model and the Qball will not
e enabled. Even in closed - loop (sonar/OptiTrack) control modes the joystick throttle is till
used to enable the Qball (throttle >= 10% motors enabled, < 10% motors disabled).

Remark 2: The left stick controls the throttle and yaw (down - >up is 0 - >100% throttle,
left - >right is rotate counter - clockwise - > clockwise about vertical axis) and the right
stick controls pitch and roll (down - >up is pitch backwards - > forwards, left - > right is
roll left - >right). The standard point - of - view is always with the Qball facing away from
the operator, so he/she is viewing the Qball tail.

STEP 7: The Qball control model should be configured to target the gumstix on the Qball of the
Qball user manual.

14 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

STEP 8: In the Qball control model under the “joystick from host” subsystem you will see a
“Stream Client” block. Change the URI to match the IP of the host ground station PC. This block
receives the packets from the host joystick/OptiTrack model and passes the joystick commands
(and OptiTrack data) to the various Qball control subsystems.

STEP 9: Familiarize yourself with the Qball model. The main subsystems from the top level re
broken down into the following:

“Calculate Roll Pitch Heading Height”: This subsystem computes the Qball pose or states by
using the information provided by the HiQ sensors.

“Control signal mixing”: Combines the throttle, roll, pitch and yaw control signals to calculate
the output for each of the 4 motors. This subsystem also contains some safety for enabling the
motors.

“HiQ”: This is where you will find the HiQ DAQ blocks. Motor values (4 PWM output channels)
are output and various sensor values are read in. There is a large gain block just before the “HIL
Read Write” block that is primarily used to disable the motor outputs for testing. Change this
gainto [11 1 1]*0 to disable the motors or [1 1 1 1]*1 to enable the motor outputs.

“Joystick from host”: As mentioned before this subsystem receives packets from the host model
containing joystick (and optitrack) information. It also includes timeout safety and will land the
Qball if a timeout is detected.

“Mode control”: This subsystem controls the operating mode of the Qball, which can be either
joystick control or OptiTrack (or sonar depending on the selected source of height) control.

“Pitch controller”: This subsystem includes the controller for stabilizing the pitch of the vehicle
and to make it follow the commanded pitch. Pitch reference commands are either coming from
the joystick or from a position controller.

“Yaw controller”: This subsystem generates a yaw control signal from either the joystick or
measured heading depending on the mode setting.

STEP 10: It is important to know that the Qball control model has two operating modes for the
height, position, and heading control. In the “Mode control” subsystem, make sure all of the
switches are set to JOYSTICK ON if you want to use the joystick to control the flight. You can
then switch the mode to use autonomous control for height, position, and heading of the Qball.
(Joystick mode is always recommended if this is the first time flying the Qball)

STEP 11: Disable the Qball motors by setting the gain to [1 1 1 1]*0 in the “HiQ” subsystem.

STEP 12: Compile and run the Qball control model. Make sure that the joystick packets arriving
at the Qball are correct when you move the joystick. Check the sensor outputs and pose
measurements (roll, pitch, and heading). Note that the heading offset may need to be adjusted

2014.12.18 ECE-LAB-RT-02 15

(you can find this setting in “Calculate Roll Pitch Heading Height \ Calculate heading”
subsystem).

STEP 13: Make sure the Qball model is stopped. Enable the motors through the gain block to [1
11 1]*1 in the “HiQ” subsystem.

STEP 14: Make sure the host joystick (OptiTrack) model is already running and the throttle is at
zero when starting the Qball control model.

STEP 15: When you are comfortable with the controls and are ready to try flying start the Qball
control model. Keep the throttle at zero for 3 seconds (the motors are always disabled for the
first 3 seconds to ensure the communication to the host model is working). Slowly increase the
throttle to get the motors to start spinning. If you wish, you can double - check the motor
rotations are correct (see the Qball user manual, Page 10). Slowly increase e throttle until the
Qball begins to take off. Try hovering at a height of 10 - 30 cm to become comfortable with the
system.

Remark 1: In the event you want to stop the system you can always bring the throttle to
Zero to stop the motors or you can stop the model.

Remark 2: It is always recommended to have a second operator to monitor the models
while you are flying. Here are some important points you need to pay attention to: Some
safety is built into the Qball model and in the event of a timeout you will get a message
popup on the screen. In case you are using the OptiTrack positioning system you will also
get an OptiTrack timeout message if the system cannot track the marker anymore.

***ALWAYS FULLY STOP THE MODEL AND PUT THE JOYSTICK THROTTLE TO ZERO BEFORE A
PPROACHING THE QBALL***

Recharge Batteries

Qball is using two 2500mAH 11.1v 3S1P Li-Polymer Battery packs. There is a low battery
warning message that comes up when the batteries reach 10.6V or less. Change the batteries
before they get very low or it may damage the batteries such that they can no longer be
recharged.

16 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Charge the battery

The following steps show how to recharge the battery set:

Connect the batter to A6 charger.

Power the charge.

Select the battery type ‘LiPo 11.1v 35, press the
Start/Enter key to make a blink, then change the
value with INC or DEC key.

|R: 38ER S: 3SER ||

[CONFIEMIENTER))

Slan
Entar

lLiPo CHARGE ||

2.0A_ 11.1V(38)
&) -+
ADEC [NCw

'Li3s 2.0A 12.59V|

- +
ADEC INCe C_HG 02::43 00682

oy

Set the charge current to 2.0A. number charging vy charod
0{:"3 fime charga village capacity

cumant

Start the charging process. Press Start key for more
than 3 seconds to start the process.

Confirm the settings. R: shows the number of cells found by the charger, and S: is your
setting. If both numbers are identical, you can start the process.

Monitor the situation during charge process.

2014.12.18 ECE-LAB-RT-02 17

e To stop charging press Stop once.

Install the batteries.

Placing the Qball-X4 upside down so that it rests on the top of the cage. Align the two Qball-X4
batteries with the plate located on the bottom of the frame and secure the batteries tightly
using the two velcro straps as shown in bellowing Figure. Connect the batteries to the battery
connectors and place the Qball-X4 upright again so it rests on the bottom of the cage.

Velcro

Ytrap

SOFTWARE COMPONENTS

Following are the main header files containing different class interfaces, which could be used in
coding for the various lab experiments. These interfaces, in fact, provide a clear design strategy
for the various tasks to be accomplished in each of the experiments.

A

QNX & Momentics IDE

Introduction
The QNX Momentics development suite 6.3.1 includes the following parts:

e QNX Neutrino RTOS - The whole point of it all. If Neutrino is the "engine" that will
empower the embedded system you're developing, then QNX Momentics is the
"factory" where you modify your engine as well as build, test, and finish your vehicles.

e Integrated Development Environment - This is your toolbox. The IDE's task-oriented
interface helps you quickly set up your project, choose your programming language,
choose a target processor, compile your code, connect to your target, transfer your
application to your target, run it, debug it, profile it, and fine-tune it.

18 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

e Command-line tools - If you aren't using the IDE, you can use command-line tools to
develop applications. For example, you can use gcc to compile and link, and mkifs to
create an OS image.

e Libraries - ANSI C, POSIX, Dinkum C++ (full and embedded), GNU C++ (x86 only),
graphics, widgets, compression, etc.

e Documentation - How-to guides, references, context-sensitive help, and technotes.

For more information, please visit www.gnx.com.

Get help

Within the IDE, Click Help-->Help Contents. There you'll find several booksets listed, including A
Roadmap to the QNX Momentics Development Suite. The other documents listed, such as the
Workbench User Guide and JDT Plug-in Developer Guide, pertain to the Eclipse platform and its
various plugins.

(@ cIC++ - my_first_project.c - QNX Momentics IDE
File Edit Refactor Mavigate Search Project Run Window NEE[s

- . . . - |
M-He | @ : B E@vﬁﬁvﬁvWelcume ¢
4} T e e & Help Contents

%C b N T B8R *my_First_projeck.c X %a_l: % Search
D ic Hel -
< || ginclude <stdlib.hs ynamic felp
2l B & #include <stdio.h> Kev Assist.., Chrl4+Shift4+L
© - Tips and Tricks...
IEC'mV—F'rStJDhat'J:'r' int main(int argco, cha cheat Sheets. ..
=h1=r my_first_project | printf("Welcome to
< Binaries return EXIT SUCCES Softwars Updates >
f/:,—:l Includes 1
= 6 About QM Momentics IDE
[[P R W

Overview of the documentation

For the latest documentation, In QNX Momentics, the online documents are in HTML, which
you can access in the IDE's help system. On self-hosted QNX Neutrino systems, you can also
look at the documentation in the Photon helpviewer.

or to download PDF versions, visit QNX website, http://www.qgnx.com. Printed books are also
available.

To help you find your way around the QNX Momentics documentation set, QNX has provided a
documentation roadmap.

QNX Momentics Development Suite

2014.12.18 ECE-LAB-RT-02 19

http://www.qnx.com/

Quickstart Guide: 10 Steps to Your First QNX Program, a tutorial that helps you install QNX
Momentics on a host machine, install the QNX Neutrino RTOS on a target machine, set up
communications between the two systems, and then use the IDE to develop a program on the
host machine and run it on the target.

Integrated Development Environment

IDE User's Guide, Describes the QNX Momentics Integrated Development Environment, how to
set up and start using the tools to build Neutrino-based target systems, etc..

Start Momentics

Start the QNX Momentics IDE on your development host. The first time you start the IDE, it asks
you to choose a workspace, a folder where it can store your projects and other files. The IDE

—
then displays its Welcome page. When you're ready to start, click the Momentics icon:

A=
e B Nefeciee beemste Gegech Crajel fon Vedow Hele

[i = fax i

Welcame to QONX Momenties1DE 4.0.1

m—

ONX SOFTWARE SYSTEMS “»

1§
Figure 7: Integrated Development Environment

It is a quick start to QNX Momentics 6.3.2 Integrated Development Environment (IDE). The
purpose is to introduce you to the QNX software environment of the real time system
laboratory, and to help you start writing your first program for QNX real-time system in a short
time.

@ cfc++ - my_first_projectfmy_first_project.c - QNX Momentics IDE

File Edit Refactor Mavigate Search Project Run tindow Help
4 [2 (=TI 8 R - R c A 2 B O S B | B crc— |
FE -
[Praject Explor 22 O || [c] my_first_project.c 53 = O|[BZ ouwlin 22~ @ make |~ O
== #include <stdlib.h> 1% W s e ¥
= &S my_First_profect #include <stdio.h> =1 rdibh
[Includes . R . = stdio.h
= x86 int mainiint args, char Targw[]] { ® main(int, char (] : int
T printf ("Uelcome to the ONX Momentics IDEYn™) :
& comman.mk : return EXIT_SUCCESS:
[& Makefile }
[2L Prablems &2 =] Tasks | Bl console | = Properties 3 ¥ =0
0 errors, 0 warnings, 0 infos
Description Resource Path Location
o* wricable Srnart Insert 101 3 el m R [=

20 ECE-LAB-RT-02 2014.12.18

http://www.qnx.com/developers/docs/6.4.1/momentics/quickstart/about.html

The Department of ECE ECE Real-time System Laboratory

Add a Target

A target system may be a SBC, a remote QNX server or a local virtual QNX machine. It must be
able to respond to requests from the development environment. Before adding a target, you

shall confirm a target available by the command ‘ping’.

To access your target system from the IDE, you have to create a target project. Open the
System Information perspective: in the Window menu, select Open Perspective-->QNX
System Information. In the empty Target Navigator view, press the right mouse button and

select New QNX Target... from the context menu:

O Target Mavigator &3 =08
i -
69| & -

Refresh
Delete

Mew QN Target. ..

)
Now provide a name for your target system and enter its IP address in the corresponding field:

MNew QMNX Target System Project = | I:I|£|
New QOMNX Target

Enter a convenient name for the Target. The address/hostname of the target
must be entered as the QMNX Connector Selection hostname.

— Target Mame
T Same as hostname

Target Mame: I wm-target

— QMY Connector Selection

Hostname or IP: | 192.168.2496.2 Port |s000
(7 Einish I Cancel |
Mew QMNX Target System Project = |I:I|1|

New QNX Target

Enter a convenient name for the Target. The address/hostname of the target must
be entered as the QMX Connector Selection hostname.

— Target Mame
¥ same as hostname

Target Mame: | mackay.realtime.private

— QMY Connector Selection

Hostname or IF: | mackay.realtime,private| Port | 000
)] Finish I Cancel

or

2014.12.18 ECE-LAB-RT-02

21

Click Finish, and then select your new target in the Target Navigator. You will now see a list of
all the processes in your QNX Neutrino system. The views (the tabs at the top) provide other
information to you. You can find even more useful views in the Window menu under Show
View.

Matlab/Simulink

On real-time workstation, Matlab R2009b is installed; see the following figure for the version
information. For more information of Matlab, please check Mathworks website.

E! Simulink Library Browser N ;Iglll
File Edit Wiew Help
JJ M = = |JJI Enter search term LI “

Libraries Library: Simulink I Search Results: (none) I Mos=st Freguenthy Used Blocks I
G+l Ngh| Simulink
38

Commonly Used

Communications Blockset Blodks

Continuous
Control System Toolbox
Data Acguisition Toolbox
Embedded IDE Link

Fuzzy Logic Toolbox

5 [

Discontinuities Discrete

(1
!

Logic and Bit
O perations

=%
Hiy

Image Acquisition Toolbox Lockup Tables

Meural Metwork Toolbox
QUARC Targets
Real-Time Workshop
Robust Control Toolbox
Signal Processing Block. ..

Math
O perations

Model
Werification

I
X1

Model-Wide
Liilities

Ports &
Subsystems
SimEwvents
SimPowerSystems Signal Attributes Signal Routing
Simscape

Simulink 2D Animation

Simulink Control Design

ferrrrreee e ees

Sinks Sources

Simulink Dre=sign Optimiza...
Simulink Extras

Stateflow

Syetem ldentification Too...
Target Support Package

Additional Math
& Disorete

Uses-Defined
Fundtions

7 (4 [B2 ° (2] [[

(1] B) [
Sl
ﬁ\

-

Showing: Simulink i

QUARC 2.1
About QuaRC

From teaching the fundamentals of control system design to conducting advanced research
where hard-real time is critical, QUARC 2.1 offers unbeatable power and flexibility. QUARC is a
rapid-prototyping and production system for real-time control that is so tightly integrated with
Simulink that it is virtually transparent. In fact, it is easy to forget that one is even using QUARC!

Key features include:
e Full support for Simulink® external mode, including Scopes, Floating Scopes, Displays, To
Workspace, online parameter tuning, etc.
e Single or multiple PC / board configurations supported
e Multi-processor support under Microsoft Windows® XP, Windows Vista and Windows 7
for improved sampling rates and performance
e Log data to MAT-file and M-files

22 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

e Run Multithreaded and Multirate models

e Run more than one model on a single target or multiple targets at the same time

e Standalone controller execution

e Support for multiple targets (OS’s and chipsets), such as Windows® XP, Windows Vista
and Windows 7 (soft real-time) and QNX (hard real-time)

e Flexible and extensible communications framework enabling distributed control, device
interfacing, teleoperation and general interprocess communication between models
and local or remote applications

e Unified, expandable data acquisition architecture supporting cards from Quanser,
National Instruments and other manufacturers

e Support for asynchronous threads in Simulink® models - ideal for asynchronous
communications, etc.

More detailed information, please check QuaRC website:
http://www.quanser.com/english/html/quarc/fs_overview.htm

QuaRC on Development Workstation

QUARC consists of a number of components that make this seamless integration possible:

e QUARC Code Generation
QUARC External Mode Communications
QUARC Target Management
QUARC Code Generation
QUARC extends the code generation capabilities of Real-Time Workshop by adding a new set of
targets, such as a Windows target and QNX x86 target. These targets appear in the system
target file browser of Real-Time Workshop. These targets change the source code generated by
Real-Time Workshop to suit the particular target platform. QUARC automatically compiles the C
source code generated from the model, links with the appropriate libraries for the target
platform and downloads the code to the target. All of these operations are performed with a
single click of a button!

QUARC External Mode Communications

QUARC provides an "external mode" communications module that allows the Simulink diagram
to communicate with real-time code generated from the model. Click Connect on the Simulink
diagram and the generated code is automatically loaded on the target, if necessary. Start the
model by simply clicking the Start button. Tune parameters of the running model by changing
block parameters in the Simulink diagram. Open a Simulink Scope or any other sink in the
diagram and view the status of that signal in the model as it runs on the target!

QUARC Target Management

Generated code is managed on the target by an application called the QUARC Target Manager.
It is the QUARC Target Manager that allows generated code to be seamlessly downloaded and
run on the target from Simulink. Additional components of the QUARC Target Management

2014.12.18 ECE-LAB-RT-02 23

System provide access to data acquisition hardware, communications protocols, etc. The
management system also supplies the ability to dynamically reconfigure the models running on
the target; a model may be replaced with another model while it is running with no
interruptions! Learn more about the dynamic reconfiguration capabilities of QUARC in the
Dynamic Reconfiguration section of this documentation

For detailed information, please check QuaRC Help on real-time Windows workstation. Click
start — All Program — Quanser — QuaRC — QuaRC Help.

I ol
= LT

Hide Back Print Options

el L [<4][b-] aumrer Reat-Time Gortrol sortwers (aUARG) I
Quanser Real-Time Control Software (QUARC]
T [«][»] (QUARC)

@ Getting Started with QUARC

|»

e Getting Started with QUARC
@ Blocks
@ Release Notes QUARC 15 a rapid-prototyping and production system for real-time control that is so tightly
PE“‘“ integrated with Simulink that it is virtually fransparent. In fact, it is easy to forget that one is even
WWeb Resources using QUARC! QUARC consists of a number of components that make this seamless integration
possible:

+» QUARC Code Generation
+» QUARC External Mode Communications
« QUARC Target Management

Refer to System Requirements for the host and target system requirements necessary to use
QUARC.

QUARC Code Generation

QUARC extends the code generation capabilities of Real-Time Workshop by adding a new set
of targets, such as a Windows target and QMNX x86 target. These targets appear in the system
target file browser of Real-Time Workshop. These targets change the source code generated by
Real-Time Workshop to suit the particular target platform. QUARC automatically compiles the C
source code generated from the model, links with the appropriate libraries for the target platform
and downloads the code to the target. All of these operations are performed with a single click of
a button!

=

Figure 8: Quarc Help

QuaRC on SBC QNX

QUARC v2.1 is installed on real-time target machine (SBC) which is running QNX Neutrino
v6.3.2. A "target" is a combination of operating system and processor for which QUARC can
generate code from a Simulink diagram. This can be done on Real-time Windows workstation.
The SBC target is where the QUARC-generated code runs.

The best deterministic hard-real-time performance with QUARC is currently achieved when
running the model on a QNX Neutrino target, taking advantage of the QNX Real-Time Operating
System (RTOS) industry-proven technology.

The corresponding QUARC controller robustly runs in hard-real-time under QNX at up to 1-kHz
sample rate (i.e., 1-ms sampling interval) by using the Quanser Stream API (to get the updated
sensor data in realtime). In addition, the Quanser Target API is also used to start/stop the
QUARC control model from the QNX custom application.

24 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

3. EXPERIMENTS

EXPERIMENT #1: Use Matlab/Simulink to Control Qball

Objectives

After this experiment you should be able to:
e Safely turn on/off the gball and change the batteries,
e Establish a wireless connection between gball and workstation

e Work with Quarc and Matlab Simulink and compile and run models on both workstation
and gball sides and:

e Receive and monitor the sensor data on the workstation,

e Read back the joystick data on workstation

e Send command to control rotors speed on the

Diagram

Real-time Qball Set

= C—

3 __—i;__ --"\..___
gl ; | Wireless AP :x
:'11_&_ ..;
5 J

Development Workstation

(]
ECE Realtime Metwork |192.168.141.0/24
Figure 9: The experiment #1 setup

Lab description

Open the “host_joystick” Simulink file in matlab and connect the blocks as show in following
figure and save the changes.

2014.12.18 ECE-LAB-RT-02 25

This model runs on the host ground station and sends

joystick data to the Qball-X4 model.

Run this model first before starting the Qball-X4 control model.
This model can be left running - the Qball-X4 model will reconnect when it is started.

Game
Cortraller

x

z
Rx

Ry

Rz
liclers
povs
huttons

double
double

double

Jouble
o
Pracuble
o

b
P

Game Cortraller

Rate Tranzition1

double

Rate Transitionz2

» double

Rate Transition3

double

Rate Transitiond

double E4l

zeros(1,4)

Constant

4

"tepipflocalhost:12005"

Constaritl

Joystick (awe, Throttle, Roll, Pitch)

Stream

errp
Server

sent pr

Stream Server

Gain

Figure 10: host_joystick Simulink model

Compile your model by clicking on the “Incremental built” button in toolbar as it shown in
following figure.

File Edit ‘iew Simulation Format Tools

b =zEE

QUARC Help

ERT

" L

B EE

|E:<ternal

B) bE
After that you compiled the model, connect the joystick to workstation and click on the
“connect to target” button in toolbar.

File Edit ‘iew Simulation

b =zEE

Format Toaols QUARC Help

e L, nf

Now you can run the model by clicking on “start real-time code” button as shown in following
figure.

| B[S BEB

|E:<ternal

File Edit “iew Sirmulation Format Tools

O =Hd&S +

QUARC Help

OE ind =] &

Start real-time code button in Simulink toolbar

BERE

|E:-:tema|

Open the “gball_motor_controll” Simulink file in matlab and connect the blocks as shown in the
following figure .

26 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Qball-X4 Motor Control

Control the angular speeds of the Qball-X4 motors using a joystick.

Doramrc
HIL HL
Set Property Watcheog
wwatcheog

HIL Wwatehdo:
HL Initslize1 HIL Set Praperty i
HIL-1 Chiq_agra-0) (HIL-AY
state b
Stream L
Setthe IP address of the hast PC (from the Server O
wireless |USB adapter) here » ui] "
Mator outputs: back, frort, left, right < FEnsors_np sentp
Constant Stream Server
"topipflocalhost: 12000
stote State "
p Resd o »]int
e &
et Saturetion! Saturalion Memory

Initialize sensors

HIL Read Write

Stream

(HILT)
Select gyros sroseoRE X, v, T
ewh Terminator s
Termingtor!
et —=] _.-—.. E
“topip:182 168.1.100:18008" Terminator2 5 Select accelerometers
acceleromster x, v, T

Terminators

Select magnetomets
FIECHMANEIONSIETS agnetometer x, v, 7

=
~«

Int battery voltage

Select bettery battery votage Display

sonar

=
~«

=
~

Select sonar

Figure 11: gball_motor_control Simulink model

Now, run “cmd.exe” to open command terminal. Use “ipconfig” command to find the IP
address of the workstation.

EM Command Prompt |i|£|-'£—hj

C:Userssumroot>ipconf ig P

Windows IP Configuration

Wirelesz LAM adapter Wireless Network Connection:

Connection—specific DNS Suffix =

IPuv4 Address. AV2.38.128 152
Subnet Mask D 2L5TESSTESS Y
Default Gateway = 172.389.128.1

Ethernet adapter Local Area Connection:

Connection—specific DHS Suffix encs.concordia.ca concordia.ca

IPv4 Address. : 192 .168.141.192
Subnet Mask = 255 255 25508
Default Gateway 192168141 .1

Figure 12: IP address of workstation

|II

Change the host IP address in the “gball_model _control” to the workstation IP address.

2014.12.18 ECE-LAB-RT-02 27

Control the angular speeds of the Qball-X4 motors using a joystick.

Source Block Parameters: Stream Client

Stream Client

Connects to & remote host and sends and/or receives data from that host.

Kain I Signal Data Types

Source of URL | Specify via dialog (do not evaluate) =
URI of host to which to connect:
|tcpip:i172.30.128.152:18005 | D
Set the IP address of the pést PC (from the . : . . .
wireless USE a ter) here. Apphy URI to all configurations (including normal simulation)
1 Send butfer size in bytes:
=
1450
Feceive buffer zize in bytes:
1450
err 3
Stream Ewyte ordering: |jittle endian (Intel - LSB first) -
Clignt :
Optimize for: | Minimum latency |
Implementation: | Use non-blocking 1O =)
|.\ Send optionz: | Do not send data |
“topip 1T 2. 5218005 Receive options: | Receive most recent data =

Default output value:
zeros(3,1)
Sample time (seconds):

qc_get step_size

Active during normal simulation

[oK][Cancel][Help Apphy

Figure 13: Change the host IP address

Click on “QUARC” menu and select “Preferences ...” to open “QUARC Preferences” dialog box.

[! qgball_motor__control2
File Edit WView Simulaton Format Tools | QUARC Help

O HS| R == Set cul+d B

Stop

Qbal |- e o >ont

Download

Console... . .
Control the angular speeds Consale for all. .. g a joystick
Upload MAT File...
Set Log File...
ﬂ_u F = | Terminate unconnected ports

Optons... PH IL
Set default options roperty
Upgrade blocks

P et Prope

Ll ntetes) | e S
Using QUARC
Tip of the Day
Demos

Web resources »

Set the IP addres=s of the ho=st PC (from the
wireless USB adapter) here.

._.I_ About... Mo
- - E_.m =1 douDIE = l

Figure 14: Preferences menu

28 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Enter the IP address of Qball as the target address.

n QUARC Preferences l = eS|

Preferences

Set the default preferences for QUARC,

Model I Target Target Type Logging Build
— Instructions
|
There iz a default model URI for each target type. Select l;

| a target type first and then fill in the default model URIL
| The default model URI may contain the following formsat specifiers:

“am = the model name

Target type: | linux_arm =

Default model URIL €epipi172.30.128.234:17001

Default URI

oK] [Cancel] [Help] Apph

Figure 15: Enter Qball IP address

Turn on the gball as it is described before, and make sure you can connect to it via wireless
network using the ping command in cmd shell. Now compile the model by clicking on the
“Incremental built” button in toolbar and click on the “connect to target” and run the model.

You should be able to change the speed of gball propellers by the joystick handles. To stop

running the model you should click on “stop real-time code” button in toolbar as depicted in
below figure.

File Edit ‘iew Simulation Format Tools QUARC Help

O =E&E oﬁ_ |inf |E>:tema| J & B EE

Stop real-time code button in Simulink toolbar

Check points
Your performance in this lab will be evaluated based on the following operations properly being
implemented.
e Be able to turn on/off the gball safely.
Complete, compile and run host_joystick model in Simulink.
Complete, compile and run gball_motor_control model in Simulink.
Change the speed of gball propellers using the joystick

2014.12.18 ECE-LAB-RT-02 29

EXPERIMENT #2: develop socket programming class
Objectives

You should develop a csocket class to do the followings:
e Establish a TCP/IP connection
e Bind toa TCP port
e Listen to connection requests
e Accept connection requests
e Receive data
e Send data

Diagram

Development Workstation SBC- EBPC-3500

L)
- , T
ECE Real-ima Network 192 168.141.0/24

Figure 16: The experiment #2 setup

Lab description

Before you start your work please make sure you add “socket” library in the library list of IDE
or use the -1 socket option to qcc to link against this library. To add a library in IDE, open the

project->properties menu as shown in figure 2.

C/C 4+ - QNX Momentics IDE

File Edit Refactor MNawigate Search Run ‘“Window Help
- D-@u- @ s~ -

Close Project

= =
i | [a

& C/C++ Prajects 22 =

an Build Al Ctrl+B
= 7T
=

Build Project

Build Waorking Set 3
Clean...

Euild Automatically

Create hlake Target...
Euild Make Target...

In the opened dialog box select “QNX C/C++ Project” in the left side, and then, goto “Linker”
and select “Extra libraries” in the “Category” combo box. Click on “Add” button and add

“socket” in the list as shown in following figure.

30 ECE-LAB-RT-02

2014.12.18

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/utilities/q/qcc.html

The Department of ECE ECE Real-time System Laboratory

= ||-E-|[=E3
type filter text QNX C/C+ + Project (I
Info
i~ Builders
CAC++ Docurmentatior
i CAC 4+ + File Types
CAC++ Indexer
Project References
TR C/C++ Projec Marne Type Use proper wariant @
Refactaring History I, socket Dynamic Mo =
W hiddi Dynarmic Mo
P T — lchoncedpane| (GastoneGefoully| |l
[oK | Cancel |

After developing the csocket class, you should create two threads as sender and receiver and
send a test message from the sender thread to the receiver thread and display it. You can use
following sample codes to implement csocket class and test its functionality.

List 1: csoket.h

2014.12.18 ECE-LAB-RT-02 31

List 2: csocket.cpp

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

2014.12.18 ECE-LAB-RT-02

List 3: csocket_test.cpp

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Useful API functions

The following gqnx api function are needed to implement the csocket class. You can find more
details in http://www.gnx.com/developers/docs/6.3.0SP3/neutrino/

socket() - Create an endpoint for communication

Arguments:

- Domain, the communications domain that you want to use. This selects the protocol
family that should be used. These families are defined in <sys/socket.h>.

- type, the type of socket you want to create. This determines the semantics of
communication. Here are the currently defined types:

2014.12.18 ECE-LAB-RT-02 35

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/

(0}

(0}

SOCK_STREAM -- provides sequenced, reliable, two-way, connection-based byte
streams. An out-of-band data transmission mechanism may be supported.
SOCK_DGRAM -- supports datagrams, which are connectionless, unreliable
messages of a fixed (typically small) maximum length.

SOCK_RAW -- provides access to internal network protocols and interfaces.
Available only to the superuser, this type isn't described here.

For more information, see below.

- Protocol, the particular protocol that you want to use with the socket. Normally, only a
single protocol exists to support a particular socket type within a given protocol family.
But if many protocols exist, you must specify one. The protocol number you give is
particular to the communication domain where communication is to take place (see
/etc/protocols in the Utilities Reference).

Description:

The socket() function creates an endpoint for communication and returns a descriptor.

int close(int filedes);

Arguments: filedes

The file descriptor of the file you want to close. This can be a file descriptor returned by
a successful call to accept(), creat(), dup(), dup2(), fcntl(), modem_open(), open(),
shm_open(), socket() or sopen().

Description:

The close() function closes the file specified by the given file descriptor.

| int bind(Iint s, const struct sockaddr * name, socklen_t namelen);

bind() - Bind a name to a socket

Arguments:

s -The file descriptor to be bound.

name -A pointer to the sockaddr structure that holds the address to be bound to the
socket. The socket length and format depend upon its address family.

namelen -The length of the sockaddr structure pointed to by name.

Description:

36

ECE-LAB-RT-02 2014.12.18

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/utilities/p/protocols.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/a/accept.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/c/creat.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/d/dup.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/d/dup2.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/f/fcntl.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/m/modem_open.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/o/open.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/shm_open.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/sopen.html

The Department of ECE ECE Real-time System Laboratory

When a socket is created with socket(), it exists in a namespace (address family) but has
no name assigned to it. The bind() function assigns a name to that unnamed socket.

| int listen(int s, int backlog);

listen()- Listen for a connection on socket

Arguments:

S -The descriptor for the socket that you want to listen on. You can create a socket by
calling socket().

Backlog -The maximum length that the queue of pending connections may grow to.
Description:

The listen() function listens for connections on a socket and puts the socket into the
LISTEN state. For connections to be accepted, you must:

Create a socket by calling socket().

Indicate a willingness to accept incoming connections and a queue limit for them by
calling listen().

Call accept() to accept the connections.

If a connection request arrives with the queue full, the client may receive an error with
an indication of ECONNREFUSED. But if the underlying protocol supports retransmission,
the request may be ignored so that retries may succeed.

int connect(int s,
const struct sockaddr * name,
socklen_t namelen);

connect() -Initiate a connection on a socket

Arguments:
S -The descriptor of the socket on which to initiate the connection.
Name -The name of the socket to connect to for a SOCK_STREAM connection.
Namelen -The length of the name, in bytes.

Description:

The connect() function establishes the connection according to the socket type specified
by s:

2014.12.18 ECE-LAB-RT-02 37

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.4.0/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.4.0/neutrino/lib_ref/a/accept.html

SOCK_DGRAM

Specifies the peer that the socket is to be associated with. This address is the one that
datagrams are to be sent to, and the only one that datagrams are to be received from.

SOCK_STREAM

This call attempts to make a connection to another socket. The other socket is specified
by name, which is an address in the communications space of that socket. Each
communications space interprets name in its own way.

Stream sockets may successfully connect only once, whereas datagram sockets may use
connect() multiple times to change their association. Datagram sockets may dissolve the
association by connecting to an invalid address, such as a null address.

int accept(int s,
struct sockaddr * addr,
socklen_t * addrlen);

accept() - Accept a connection on a socket
Arguments:
s - A socket that's been created with socket().

addr - A result parameter that's filled in with the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the connection was made.

addrlen -A value-result parameter. It should initially contain the amount of space
pointed to by addr; on return it contains the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with
SOCK_STREAM.

Description:
The accept() function:
Extracts the first connection request on the queue of pending connections.

Creates a new socket with the same properties of s, where s is a socket that's been
created with socket(), bound to an address with bind(), and is listening for connections
after a listen().

Allocates a new file descriptor for the socket.

38 ECE-LAB-RT-02 2014.12.18

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/b/bind.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/l/listen.html

The Department of ECE ECE Real-time System Laboratory

If no pending connections are present on the queue, and the socket isn't marked as
nonblocking, accept() blocks the caller until a connection is present. If the socket is
marked as nonblocking and no pending connections are present on the queue, accept()
returns an error as described below. The accepted socket may not be used to accept
more connections. The original socket s remains open.

If you do a select() for read on an unconnected socket (on which a listen() has been
done), the select() indicates when a connect request has occurred. In this way, an
accept() can be made that won't block. For more information, see select().

For certain protocols that require an explicit confirmation, accept() can be thought of as
merely dequeuing the next connection request and not implying confirmation.
Confirmation can be implied by a normal read or write on the new file descriptor, and
rejection can be implied by closing the new socket.

ssize_t send(int s,
const void * msg,
size_t len,
int flags);

send() - Send a message to a connected socket

Arguments:
S - The descriptor for the socket; see socket().
Msg -A pointer to the message that you want to send.
Len -The length of the message.

Flags - A combination of the following:
MSG_OOB -- process out-of-band data. Use this bit when you send "out-of-band" data
on sockets that support this notion (e.g. SOCK_STREAM). The underlying protocol must
also support out-of-band data.
MSG_DONTROUTE -- bypass routing; create a direct interface. You normally use this bit
only in diagnostic or routing programs.

Description:
The send(), sendto(), and sendmsg() functions are used to transmit a message to
another socket. The send() function can be used only when the socket is in a connected
state, while sendto() and sendmsg() can be used at any time.
The length of the message is given by len. If the message is too long to pass atomically
through the underlying protocol, the error EMSGSIZE is returned, and the message isn't
transmitted.
No indication of failure to deliver is implicit in a send(). Locally detected errors are
indicated by a return value of -1.

2014.12.18 ECE-LAB-RT-02 39

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/select.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/select.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/sendto.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/sendmsg.html

If no message space is available at the socket to hold the message to be transmitted,
then send() normally blocks, unless the socket has been placed in nonblocking I/O
mode. You can use select() to determine when it's possible to send more data.

ssize t recv(int s,

void * buf,
size t len,
int flags);

recv() - Receive a message from a socket

Arguments:

S - The descriptor for the socket; see socket().

Buf -A pointer to a buffer where the function can store the message.

Len - The size of the buffer.

Flags - A combination formed by ORing one or more of the values:

MSG_OOB -- process out-of-band data. This flag requests receipt of out-of-band data
that wouldn't be received in the normal data stream. You can't use this flag with
protocols that place expedited data at the head of the normal data queue.

MSG_PEEK -- peek at the incoming message. This flag causes the receive operation to
return data from the beginning of the receive queue without removing that data from
the queue. Thus, a subsequent receive call will return the same data.

MSG_WAITALL -- wait for full request or error. This flag requests that the operation
block until the full request is satisfied. But the call may still return less data than
requested if a signal is caught, if an error or disconnect occurs, or if the next data to be
received is of a different type than that returned.

Description:

The recv() function receives a message from a socket. It's normally used only on a
connected socket -- see connect() -- and is identical to recvfrom() with a zero from
parameter.

This routine returns the length of the message on successful completion. If a message is
too long for the supplied buffer, buf, then excess bytes might be discarded, depending
on the type of socket that the message is received from; see socket().

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking -- see ioctl() -- in which case -1 is returned and the
external variable errno is set to EWOULDBLOCK. Normally, the receive calls return any
data available, up to the requested amount, rather than wait for the full amount

40

ECE-LAB-RT-02 2014.12.18

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/select.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/c/connect.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/r/recvfrom.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/s/socket.html
http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/i/ioctl.html

The Department of ECE ECE Real-time System Laboratory

requested; this behavior is affected by the socket-level options SO_RCVLOWAT and
SO_RCVTIMEO described in getsockopt().

You can use select() to determine when more data is to arrive.

Check points

Your performance in this lab will be evaluated based on the following operations properly being
implemented.

- Create two threads as sender and receiver

- Bind and listen to a TCP/IP port in receiver thread

- Connect to the receiver from sender thread

- Accept the connection in receiver thread

- Send a test data to the receiver thread

- Receive and display the received data

2014.12.18 ECE-LAB-RT-02 41

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/lib_ref/g/getsockopt.html

EXPERIMENT #3: Develop Communication Program with Target
and Display Sensors

Objectives
You should develop a cgstreamclient class to receive and display data of sensors of the Qball.
Diagram

Real-time Qball Set

- o

) Pt v i, Wireless AP i

A

N

Development Workstation

i]
ECE Real-fime Metwork |192.168.141.0/24

Figure 17: The experiment #3 setup

Lab description

Turn on the gball and check that it is connected the workstation as you did in first experiment.
Run matlab/ simulink and open the gball_motor_control simulink model developed in first
experiment. After you load and compile it into the gball, it sends the sensors data via wireless
connection to the gstream clients. To receive and display these data you need to develop a
cgstreamclient class to connect the gstream server on the gball side and receive the data. The
gstreamserver listens to TCP/IP port 18000 and sends sensors data every 5 msec. The data sent
by server is an array of 12 doubles and it is formatted as follows:

Table 3: The gstream sensors data format
Array index Sensor description
Gyroscope x-axis
Gyroscope y-axis
Gyroscope z-axis
Accelerometer x-axis
Accelerometer y-axis
Accelerometer z-axis
Magnetometer x-axis
Magnetometer y-axis
Magnetometer z-axis
Battery voltage (V-10)/10

OO N IW|IN | |O

42 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

10 Sonar
11 Reserved

You can use following sample codes to implement your code. Please make sure you add
“socket” library in the library list of IDE or use the -1 socket option to gcc to link against this
library as it explained in experiment 2.

List 1: ctimer.h

List 2:ctimer.cpp

2014.12.18 ECE-LAB-RT-02 43

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/utilities/q/qcc.html

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

List 3: cqstreamclient.h

2014.12.18 ECE-LAB-RT-02

List 4: cqstreamclient.cpp

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Check points

Your performance in this lab will be evaluated based on the following operations properly being
implemented.

- Develop cgstreamclient class

- Connect to the gball gsreamserver

- Receive and display the sensors value every 5 msec.

2014.12.18 ECE-LAB-RT-02 47

EXPERIMENT #4: Joystick Interface

Objectives

Develop a driver for joystick and build a cjoystick class
Readback the joystick X,Y,Z and RZ data and display the data

Diagram

Development Workstation SBC- EBPC-3500

L]
. ! L
ECE Real-fime Metwork 197 168,141 0/24

Figure 18: The experiment #4 setup
Lab description

To read the joystick data you should use Qnx HID interface APIs. Therefore please please make
sure you add “hiddi” library in the library list of IDE or use the -1 hiddi option to gcc to link
against this library before you start your work. To add a library in IDE open the project-
>properties menu as shown in figure 2.

C/C++ - QMK Maomentics IDE

File Edit Refactor Mawigate Search Run Window Help
i~ |nTn - Do~ @ 5 oo - - oo -

Close Project
=

0 C/C++ Projects &3

g Build &l Ctrl+B
<|P o1y
=03

Build Project
Build Working Set +
Clean,..

Build &utomatically

Create Make Target..,
Build bake Target...

In the opened dialog box select “QNX C/C++ Project” in the left side, and then, goto “Linker”
and select “Extra libraries” in the “Category” combo box. Click on “Add” button and add “hiddi”
in the list as shown in figure 3.

48 ECE-LAB-RT-02 2014.12.18

http://www.qnx.com/developers/docs/6.3.0SP3/neutrino/utilities/q/qcc.html

The Department of ECE ECE Real-time System Laboratory

[EF] Properties for QuarcCannect = | =]
type filter text ONX C/C+ + Project & v -
o Info
- Builders) [% options | % Build variants | 2| General | o CDmpilerw hake Builder | Error Parsers |
(- CAT++ Documentatior
-+ C/Co++ File Types Cateqong [Extra libraries % -J
po CAC 4+ Indexer
i Project References —
=TT CAC++ Projec Mame Type Use properwariant Cl Sudd 3
i.. Refactormg Fistony il socket Dyriarmic Mo
ks hiddi Dyhiamic Mo lm
QM target...
< s Advanced == | | Restare Defaults | | Apply |
@ [oK | [cancer |

The class cjoystick should provide an interface to the XFX Game Controller (Vendor ID: OXOESF
and PRODUCT _ID: 0x0003) USB HID compliant joysticks:To use the joystick please ensure that
the USB manager (devu-uhci or devu-ohci) and manager for HID devices (io-hid) are running.
You will need to be root to use this class. Here are the commands to start the device managers

(as root) :
/sbin/devu-uhci & (or /sbin/devu-ohci &)
/sbin/io-hid &
mount -Tio-hid devh-usb.so &

You can use following sample codes to implement your code. Please note that range of data
sent by joystick is between 0x25 and 0xC4 and you should rescale it in the range of -1 and 1.

List 1: cjoystick.h

//

// cjoystick.hpp : XFX Game Controller HID Joystick Interface

// Version 1.0

//

// Author : Vilas Kumar Chitrakaran <cvilas@ces.clemson.edu>
// Author : Vilas Kumar Chitrakaran <cvilas@ces.clemson.edu>
// Modified by : Iman Saboori

// Date :June 2011

//

#ifndef _CJOYSTICK_HPP_INCLUDED
#define _CJOYSTICK_HPP_INCLUDED

2014.12.18 ECE-LAB-RT-02 49

#include <sys/hiddi.h>

/1

/*!\struct joystick_data
\brief A structure for holding joystick data */

/1

typedef struct joystick_data
{

bool status_flag; //'< 'true' if device status is OK.

char status_msg_buff[80]; //!< Char buffer to hold device status message.

int x;

inty;

int z;

int rx;

int ry;

intrz;
}joystick_data_t;

/1

/*!\struct joystick_report
\brief A structure for device reports (for driver internal use) */

/l

typedef struct joystick_report

{

struct hidd_report_instance *creport_instance;
struct hidd_report *creport;

_uint16 *cbtnbuf; // current button buffer
}joystick_report_t;

/l

/*!\struct joystick_device
\brief A structure for joystick devices (for driver internal use) */

/1

typedef struct joystick_device

{

joystick_data_t data; //!< device current data.

joystick_report_t *report;
hidd_device_instance_t *device_instance;
}joystick_device_t;

/l

class cjoystick

{
public:
cjoystick();
// The default constructor. Establishes connection with the HID driver.
// devNum The address of the joystick device to connect to (default = 0).

~cjoystick();
// The default destructor disconnects from the HID driver and cleans up.

50

ECE-LAB-RT-02

2014.12.18

The Department of ECE ECE Real-time System Laboratory

int getX() const;
// return The X position

int getY() const;
// return TheY position

int getZ() const;
// return TheY position

int getRX() const;
// return TheY position

int getRY() const;
// return TheY position

int getRZ() const;
// return TheY position

bool is_status_ok() const;
// return true if no error, else false.

char *get_status_msg() const;
// return A string carrying current status of the device. This string
// also carries error messages when is_status_ok() returns false.

void print_device_info(int verbosity = 1) const;
// Print information about the device to stdout. Higher values of
// \a verbosity mean more detailed information.

protected:

joystick_data_t get_joystick_data() const;
// return The whole data structure for device
// with current joystick data

private:

struct hidd_connection *d_connection;
// connection handle to HID server

/] - HID server connection functions ------
static joystick_device_t s_joystick;
static void on_insertion(struct hidd_connection *connection, hidd_device_instance_t *instance);
static void on_removal(struct hidd_connection *connection, hidd_device_instance_t *instance);
static void on_hid_report(struct hidd_connection *connection, struct hidd_report *handle,

void *report_data, _uint32 report_len, _uint32 flags, void *user);

|3

#endif // #ifndef _CJOYSTICK_HPP_INCLUDED

2014.12.18 ECE-LAB-RT-02 51

List 2: cjoystick.cpp

/l

// cjoystick.cop : XFX Game Controller HID Joystick Interface
// Version 1.0

//

// Author : Vilas Kumar Chitrakaran <cvilas@ces.clemson.edu>
// Modified by : Iman Saboori

// Date :11 June 2011

//

#include "cjoystick.h"

#include <sys/hidut.h>
#include <sys/hiddi.h>
#include <unistd.h>
#include <iostream.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define HID_VENDOR_XFX OxOE8F
#define HID_PRODUCT_XFX 0x0003

#define JOYSTICK_MIN_VAL 0x25
#define JOYSTICK_MAX_VAL 0xC4

joystick_device_t cjoystick::s_joystick;

/l

// cjoystick::cjoystick
//

cjoystick::cjoystick()
{

s_joystick.data.status_flag = true;
strncpy(s_joystick.data.status_msg_buff, "cjoystick : not initialized", 80);
d_connection = NULL;

s_joystick.device_instance = NULL;

if (geteuid() !=0)
{
s_joystick.data.status_flag = false;
strncpy(s_joystick.data.status_msg_buff,

"cjoystick : Requires superuser privileges", 80);
return;

}

hidd_device_ident_t interest = {HID_VENDOR_XFX,
HIDD_CONNECT_WILDCARD /* HID_PRODUCT_XFX */,
(_uint32)HIDD_CONNECT _WILDCARD /* HID_VERSION */};

52

ECE-LAB-RT-02

2014.12.18

The Department of ECE

ECE Real-time System Laboratory

hidd_funcs_t funcs = {_HIDDI_NFUNCS,
on_insertion,
on_removal,
on_hid_report,
NULLY;

hidd_connect_parm_t parm = {NULL,
HID_VERSION,
HIDD_VERSION,
0,
0,
&interest,
&funcs,
HIDD_CONNECT_WAIT};

if (hidd_connect(&parm, &d_connection) != EOK)
{
s_joystick.data.status_flag = false;
strncpy(s_joystick.data.status_msg_buff,
"cjoystick : Connection with HID driver failed: ", 80);
strncat(s_joystick.data.status_msg_buff, strerror(errno),
80 - strlen(s_joystick.data.status_msg_buff));
return;
}
strncpy(s_joystick.data.status_msg_buff,
"cjoystick : Waiting for Joystick", 80);
}

/l

// cjoystick::~cjoystick

/l

cjoystick::~cjoystick()

{

if(d_connection)
hidd_disconnect(d_connection);

}

//

// cjoystick::getX()

/1

int cjoystick::getX() const
{

// return X-axis value

}

//

// cjoystick::getY()

/1

int cjoystick::getY() const
{

// return Y-axis value

}

2014.12.18 ECE-LAB-RT-02

53

//
// cjoystick::getZ()

/1
int cjoystick::getZ() const

{

// return Z-axis value

}

//
// cjoystick::getRX()

/1
int cjoystick::getRX() const

{

// return RX-axis value

}

/1

// cjoystick::getRY()

/1

int cjoystick::getRY() const
{

// return RY-axis value

}

/1

// cjoystick::getRZ()

/1

int cjoystick::getRZ() const
{

// return RZ-axis value

}

/1

// cjoystick::is_status_ok()

/l

bool cjoystick::is_status_ok() const

{

return s_joystick.data.status_flag;

}

/1

// cjoystick::get_status_msg()

/l

char * cjoystick::get_status_msg() const

{

return (char *)s_joystick.data.status_msg_buff;

}

/1

// cjoystick::print_device_info

/l

void cjoystick::print_device_info(int verbosity) const

54

ECE-LAB-RT-02

2014.12.18

The Department of ECE ECE Real-time System Laboratory

{
hidd_device_instance_t *device_instance =
s_joystick.device_instance;
if(device_instance == NULL)
return;

char buffer[100];

hidd_get_manufacturer_string(d_connection, device_instance, buffer, 100);
cout << "Manufacturer :" << buffer << endl;
hidd_get_product_string(d_connection, device_instance, buffer, 100);

cout << "Product : " << buffer << endl;

if(verbosity < 2)
return;

cout << "Software Version : 1.0, June 2011" << end|;
cout << "Status message :" <<s_joystick.data.status_msg_buff << endl;

}

/1
// cjoystick::get_joystick_data
//
joystick_data_t cjoystick::get_joystick_data() const
{

return s_joystick.data;

}

//
// cjoystick::on_insertion
//
void cjoystick::on_insertion(struct hidd_connection *connection,
hidd_device_instance_t *device_instance)

{

struct hidd_collection **hidd_collections, **hidd_mcollections, **hidd_ncollections;
struct hidd_report_instance *report_instance;

struct hidd_report *report;

joystick_report_t *jstk_report = NULL;

_uintl6 num_col, num_mcol, num_ncol;

_uintl6 usage_page, usage;

_uint16 max_but=0;

inti;

s_joystick.device_instance = device_instance;

// Get root level HID collections
hidd_get_collections(device_instance, NULL, &hidd_collections, &num_col);

// for each top level collection

for(i = 0; i < num_col; i++)

{

// Get usage for the collection

hidd_collection_usage(hidd_collectionsli], &usage_page, &usage);

2014.12.18 ECE-LAB-RT-02 55

// Ignore collection if it doesn't describe joystick functionality

if(usage_page != HIDD_PAGE_DESKTOP || usage != HIDD_USAGE_JOYSTICK)
continue;

if(hidd_get_report_instance(hidd_collections[i], 0, HID_INPUT_REPORT,
&report_instance) == EOK)
{
hidd_num_buttons(report_instance, &max_but);
if(hidd_report_attach(connection, device_instance, report_instance, 0,
sizeof(joystick_report_t) + (max_but * sizeof(_int32)) , &report) == EOK)
{
jstk_report = (joystick_report_t *)hidd_report_extra(report);
jstk_report->creport = report;
jstk_report->creport_instance = report_instance;
jstk_report->cbtnbuf = (_uint16 *) (jstk_report + 1); // setup pointer to button data
s_joystick.report = jstk_report;
break;
}
}

// *** The following is a bad hack. Fix it as recursive search for report ****
hidd_get_collections(NULL, hidd_collections[i], &hidd_mcollections, &num_mcol);

if (num_col && hidd_get_report_instance(hidd_mcollections[0], 0, HID_INPUT_REPORT,
&report_instance) == EOK))
{

hidd_num_buttons(report_instance, &max_but);

if(hidd_report_attach(connection, device_instance, report_instance, 0,
sizeof(joystick_report_t) + (max_but * sizeof(_int32)) , &report) == EOK)

{
jstk_report = (joystick_report_t *)hidd_report_extra(report);
jstk_report->creport = report;

jstk_report->creport_instance = report_instance;

jstk_report->cbtnbuf = (_uint16 *) (jstk_report + 1); // setup pointer to button data
s_joystick.report = jstk_report;
break;

}

}

hidd_get_collections(NULL, hidd_mcollections]i], &hidd_ncollections, &num_ncol);

if (num_mcol && hidd_get_report_instance(hidd_ncollections[0], 0, HID_INPUT_REPORT,
&report_instance) == EOK))

{

hidd_num_buttons(report_instance, &max_but);

if(hidd_report_attach(connection, device_instance, report_instance, 0,
sizeof(joystick_report_t) + (max_but * sizeof(_int32)) , &report) == EOK)

{

jstk_report = (joystick_report_t *)hidd_report_extra(report);

jstk_report->creport = report;

jstk_report->creport_instance = report_instance;

56

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

jstk_report->cbtnbuf = (_uint16 *) (jstk_report + 1); // setup pointer to button data
s_joystick.report = jstk_report;

break;

}

}
}// end for

s_joystick.data.status_flag = true;
strncpy(s_joystick.data.status_msg_buff,
"cjoystick : Joystick present", 80);
}
/1
// cjoystick::on_removal
//
void cjoystick::on_removal(struct hidd_connection *connection,
hidd_device_instance_t *instance)

{

hidd_reports_detach(connection, instance);

s_joystick.data.status_flag = true;

strncpy(s_joystick.data.status_msg_buff,
"cjoystick : Joystick unplugged", 80);

}

//
// cjoystick::on_hid_report
/1
void cjoystick::on_hid_report(struct hidd_connection *connection,
struct hidd_report *handle, void *report_data,
_uint32 report_len, _uint32 flags, void *user)

{

_uint32 xval, yval, zval, rxval, ryval, rzval;
struct hidd_collection *collection;
struct hidd_report_instance *report_instance;

report_instance = s_joystick.report->creport_instance;
hidd_report_collection(report_instance, &collection);

// Read the joystick data
// hidd_get_usage_value(report_instance, NULL, HIDD_PAGE_DESKTOP, HIDD_USAGE_X, report_data,

&xval);

}

Check points
Your performance in this lab will be evaluated based on the following operations properly being
implemented.

Read the joystick data and display the X,Y,Z and RZ values

2014.12.18 ECE-LAB-RT-02 57

EXPERIMENT#5: Maneovue Qball by Joystick

Objectives

- Use ctimer class and cjoystick class to readback the joystick X,Y,Z and RZ data

- Develop a cgstreamsrv class to send the joystick data to gball

- Use ctimer class and cgstreamclient class to read the gball sensors and diplay it

- Use gball_motor_control Simulink model to send the sensors data to SPC and receive
commands from SPC to control the motors speeds.

Diagram
Real-time Qball Set

- e

. __—i____ i _—
A gl _ | Wireless AP]
b EJ g

o

",

Development Workstation

ECE Real-fime Network |192.163.141.0/24
Figure 19: The experiment #5 setup

Lab description

In this experiment you should all the classes which are developed in the last experiments
should be used to control the speed of gball propellers using the joystick. Turn on the gball and
check that it is connected the workstation as you did in first experiment. Run matlab/ simulink
and open the gball_motor_control simulink model developed in first experiment. After you load
and compile it into the gball, it sends the sensors data via wireless connection to the gstream
clients. Use cgstreamclient class to connect to gstream server on gball at TCP/IP port 18000 and
read and display sensors data every 5 msec. Use cjoystick class to read joystick data and
develop a cgstreamsrv class to send the joystick data to the gball every 5 msec. The
cgstreamsrv class should bind to TCP/IP port 18005 and accept the connection requests from
the gstream client on the gball side. The data sent by server should be an array of 8 doubles

and it is formatted as follows:
Table 4: cqstreammsrv data format

Array index Data description
0 Joystick X-axis

1 Joystick Y-axis

2 Joystick Z-axis

3 Joystick RZ-axis

58 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Noju|b~
o|jo|Oo|Oo

List 1: cgstreamsrv.h

List2: cqstreamsrv.cpp

2014.12.18 ECE-LAB-RT-02 59

ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

Check points
Your performance in this lab will be evaluated based on the following operations properly being

implemented.

Receive and display the received data

2014.12.18 ECE-LAB-RT-02 61

4. TEMPLATE FOR LAB REPORTS

Page 1 - Cover Page
Include: Lab number, Lab Title, Student name(s), Student ID(s), Team ID, Workstation ID,
Due date.

Page 2 - Contributions by each member
In one page (about 1 paragraph per person), explain what work each team member
accomplished.

Pages 3 to n, (where n <= 15)

1. Objective:
In two or three sentences, state the objectives of the lab experiment.

2. Introduction:

Introduce the experiment in three parts:

2.1 Background: Provide any necessary background information about the experiment so
that someone outside of the class, who hasn’t read your previous work, can understand
your context.

2.2 Approach: Give an overview of how you intend on meeting the objectives stated in
section 1.

2.3 Requirements: In your own words (i.e. don’t just copy from the lab manual), state what
the requirements of the experiment are. Prioritize them.

3. Analysis:

Write a page or two discussing what to do exactly. Detail your understanding of the

requirements, or how you interpret them. What does your interpretation imply? Use-Case

Diagrams (with natural language descriptions) and scenarios may help.

4. Design:

Write two or three pages discussing how you plan to solve the problem. Describe any

algorithms or important procedures. A detailed Class Diagram (with attributes and

methods), Interaction Diagrams, State Diagrams, or Activity Diagrams may be necessary to
explain your design.
5. Implementation:

In a tabular format, say what was implemented, what was partly implemented, and what

was not implemented. Also state if you were able to test each item, and if it passed or failed

the test. It would be a good idea to describe the test too. Your requirements listed in the
table will come from section 2.3 and section 3 of your report

You should also discuss any problems encountered, or why you were not able to implement

features to satisfy all the requirements of the experiment. State whether these problems

are solvable and how?
6. Future Work:
In one or two paragraphs, describe what your future project plans are and how the work
accomplished in this experiment fits into the picture.
7. Answers to Lab Manual Questions:
Answer the questions in the lab manual here.
8. Lessons Learned:

62 ECE-LAB-RT-02 2014.12.18

The Department of ECE ECE Real-time System Laboratory

What did you learn? What would you do differently next time?
9. Conclusion:

Briefly summarize your results (successes and otherwise). Highlight what was the most

important concept(s) or issue(s) that you dealt with. Give a brief statement related to future
work.

2014.12.18 ECE-LAB-RT-02 63

5.FAQs

Which accounts do | have in the real-time lab?

Normally you will have a personal real-time account for developing real-time program.
And you can also have a testing account on QNX SBCs to run your final application. You
can save your files or data to your ENCS /homes or Real-time home.

How to restore my password?

If you forgot your real-time password, you can send email to Danli@ece for help.
Can linstall some application tools on the workstations?

No!
Where to get the door code? Or Can | come to the lab alone?

Real-time system lab is a supervised lab. It won’t be allowed for any student to come
the lab without any supervision. If you can’t finish the work in your section, you may
have to contact your TA for the extra section.

64 ECE-LAB-RT-02 2014.12.18

	ECE Real-time System Laboratory
	COEN421 Lab Manual
	Revision No.: 1.3
	Revision Date: 2014.12.18
	Author: Dan Li, Iman Saboori, Samar Abdi
	REVIEW
	Revision History
	ABSTRACT and Keywords
	Abstract
	Keywords
	Reference
	GLOSSARY
	Table Of Contents
	List Of Figures
	List Of Tables
	1. RULES
	Laboratory Rules
	Lab Safety Regulation
	Task of Real Time Systems Laboratory
	Organization of Each Experiment
	Execution of the Experiments
	Lab Report
	Grading Scheme

	2. INTRODUCTION
	Lab Overview
	Networks in the lab
	ECE Real-time Network
	Wireless Network
	Real-time Servers

	Real-time Environment
	Real-time development Machine
	Real-time Target machines
	Virtual Target

	ACCOUNTS and DRIVES
	Real-time Account
	Account of Real-time Domain
	QNX account
	Map ENCS Drives
	Drives
	Remote Access

	HARDWARE COMPONENTS
	Real-time Windows Workstation
	Embedded Target System –SBC
	Embedded Industrial Chassis –EBPC-3500
	Single Board Computer

	THE PLANT – QBALL
	Introduction of Qball
	Setup Qball

	Recharge Batteries

	SOFTWARE COMPONENTS
	QNX & Momentics IDE
	Introduction
	Get help
	Overview of the documentation

	Start Momentics
	Add a Target
	Matlab/Simulink
	QUARC 2.1
	About QuaRC
	QuaRC on Development Workstation

	QuaRC on SBC QNX

	3. EXPERIMENTs
	EXPERIMENT #1: Use Matlab/Simulink to Control Qball
	Objectives
	Diagram
	Lab description
	Check points

	EXPERIMENT #2: develop socket programming class Objectives
	Diagram
	Lab description
	Useful API functions
	Check points

	EXPERIMENT #3: Develop Communication Program with Target and Display Sensors
	Objectives
	Diagram
	Lab description
	Check points

	EXPERIMENT #4: Joystick Interface
	Objectives
	Diagram
	Lab description
	Check points

	EXPERIMENT#5: Maneovue Qball by Joystick
	Objectives
	Diagram
	Lab description
	Check points

	4. TEMPLATE FOR LAB REPORTS
	5. FAQs

