
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s esis in Informatics

A Visualization Toolkit for Simplifier Traces
in Isabelle/jEdit

Lars Hupel

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s esis in Informatics

A Visualization Toolkit for Simplifier Traces
in Isabelle/jEdit

Ein Visualisierungswerkzeug ür Simplifier Traces
in Isabelle/jEdit

Author: Lars Hupel
Supervisor: Prof. Tobias Nipkow, Ph.D.
Advisor: Dipl.-Inf. Lars Noschinski
Date: July 29th, 2013

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
ellen und Hilfsmiel verwendet habe.

München, July 29th, 2013 Lars Hupel

Abstract

e Isabelle proof assistant comes equipped with some very powerful tactics to discharge
goals automatically, or to at least simplify them significantly. One of these tactics is a
rewriting engine, called the simplifier. It repeatedly applies rules to a term by replacing
the le-hand side of an equation by the right-hand side.

While tremendously useful, the results of simplifying a term not always match the user’s
expectation: sometimes, the resulting term is not small enough, or the simplifier even
failed to apply any rule. For these cases, the simplifier offers a trace which logs all steps
which have been made.

However, these traces can be huge, especially because the library of Isabelle/HOL offers
many pre-defined rewriting rules. It is oen very difficult for the user to find the nec-
essary piece of information about why and what exactly failed. Furthermore, there is
no way to inspect or even influence the system while the simplification is still running.
Hence, a simple, linear trace is not sufficient in these situations.

In this thesis, a new tracing facility is developed, which offers structure, interactivity and
a high amount of configurability. It combines successful approaches from other logic
languages and adapts them to the Isabelle setup. Furthermore, it fits neatly into the
canonical IDE for Isabelle and is thus easy to use.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 System Integration . 1
1.3 Structure . 2

2 Preliminaries 3
2.1 Isabelle eories . 3
2.2 Simplifier Terminology . 3
2.3 Contexts . 4
2.4 Futures and Promises . 4

3 S – an Improved Simplifier Trace 6
3.1 Design . 6
3.2 Interactivity . 7
3.3 Message Types . 8
3.4 Interactive Messages . 9
3.5 Memoization . 11
3.6 Message Filtering . 12
3.7 Related Work . 14

3.7.1 Debugging and Tracing in SWI/Prolog 14
3.7.2 Debugging and Tracing in Maude 16

4 Implementation 19
4.1 Interaction Model . 19
4.2 Simplifier interaction . 20
4.3 System Interaction . 22

4.3.1 Data Model . 23
4.3.2 Public Message Interface . 25
4.3.3 Message Filtering . 28
4.3.4 Message Passing from the ML to the JVM Layer 29
4.3.5 Message Passing from the JVM to the ML Layer 31

4.4 IDE Interaction . 31
4.4.1 Manager Actor . 33
4.4.2 Panel Actor . 37

4.5 Summary . 38

iv

5 Case study: A Parallelized Simplifier 39

6 Evaluation and Future Work 42
6.1 Performance . 42
6.2 Future Work . 42
6.3 Conclusion . 43

A User manual 44
A.1 Fundamentals . 44
A.2 Configuration . 44
A.3 User Interaction . 47

A.3.1 Answeringestions . 47
A.3.2 Trace Window . 49

References 52

v

List of Figures

1 Message filtering . 13
2 Sequence diagram of the interaction . 20
3 Bracketed execution of a rewrite rule . 22
4 Actor communication . 32
5 Multiple questions presented at the same time 40
6 Menu: Open S panel . 45
7 S panel . 45
8 S window . 48

List of Tables

1 Key-value entries in messages . 9
2 Execution times by verbosity mode . 43
3 Seings change . 47

List of Listings

1 Prolog example . 15
2 Maude example . 17
3 Implementation of the bracketed execution 23
4 Excerpt of the context data . 24
5 Aributes in the Supertrace module . 25
6 Sending a request to the IDE . 30
7 estion types . 49

vi

Introduction

1 Introduction

Isabelle is a generic theorem proving assistant [16, 17]. e system consists of several
layers: fundamentally, it is implemented in the Standard ML programming language (Is-
abelle/ML), the primitive logic Isabelle/Pure resides on top of that and is in turn used to
provide an implementation of higher-order logic (Isabelle/HOL).

1.1 Motivation

Isabelle comes with some very powerful tactics which are able to discharge large classes
of proof goals automatically. iswork is concernedwith the rewriting tactic, oen called
the simplifier. It can be used to rewrite subterms according to a user-definable set of
equations, which generally means simplifying a term to a normal form. ese equations
can have conditions which are recursively solved by the simplifier itself. Hence, there can
be quite a huge number of steps between the original term and its normal form. Because
of that complex work in the background, it ultimately is not obvious to the user how
certain terms are derived from the input.

By default, this process is completely opaque to the user: the only observable effect is
– given that the simplification succeeded – the (hopefully) simpler term it produced. If
it failed, only an error message without any indication of the reasons is printed, or it
might not even terminate at all. us, there is a tracing facility which can be selectively
enabled by the user. It collects data about the steps the simplifier executed, and prints
each of them without any high-level structure. e resulting trace can easily contain
many screenfuls of items which the user has to laboriously search for interesting pieces
of information.

Hence, an improved trace resembling elements of debuggers from imperative program-
ming languages are desirable. e goal of this thesis is to implement exactly that: it
should allow the user to define criteria with which the trace gets filtered, focused, or
otherwise formaed to make it browsable more easily.

1.2 System Integration

e usual UI for the Isabelle system is the Isabelle/jEdit IDE which is implemented in
the JVM language Scala (Isabelle/jEdit) [21]. It provides common IDE functionalities,
including continuous proof checking which greatly increases interactivity.

1

Introduction

e interplay between the ML process and the JVM process hosting the prover and the
IDE, respectively, works via an underlying protocol, of which only a reasonably high-
level interface is exposed [20, §3]. Interestingly enough, apart from providing distinct
features, both sides also offer overlapping functionality. For example, general prey-
printing is implemented in ML, but a subset is also available in Scala. Bot sides provide
means to encode somewhat arbitrary data into an XML representation, and the other way
around.

e new simplifier trace works on both sides: there are new modules both in the ML
and the JVM layer. Both sides require significant effort on top of the naïve approach
of simply pre-rendering and sending all data to the IDE. Instead, a more sophisticated,
asynchronous approach including staged filtering of messages has been taken.

1.3 Structure

e next section will cover important fundamental concepts from Isabelle. Awerwards,
we will sketch the features of the new tracing, discuss its design goals, decisions and
arising difficulties. Furthermore, this work is compared to related work. en, we will
go into the implementation by giving a high-level overview and walking through central,
albeit simplified, code snippets. Before drawing a conclusion, a case study is presented
which shows the flexibility of the implemented system. Finally, the appendix of this thesis
contains a detailed user manual which explains the use of the tracing in the IDE.

2

Preliminaries

2 Preliminaries

In this section, wewill introduce general terminology and concurrency abstractionswhich
have been used in this work.

2.1 Isabelle Theories

A single file of Isabelle source code is called a theory. eories consist of declarations,
theorems, proofs, types, and many more elements. While typing text, the prover (which
runs in background) continually checks, the syntax and the validity of the proofs.

e smallest element in a theory is a command. Typically, a command is a keyword
followed by some keyword-specific tokens. An example for a command is apply simp,
which tells the prover to apply a tactic to the current goal, here: the simplifier tactic.

Conceptually, communication between the prover and the IDE works via the document
model. In this model, commands can have aached results. Results are arbitrary pieces of
data which may be interpreted by the IDE. For example, results carry the prey-printing
markup which is used to colour symbols, identifiers or numbers, highlight parts of the
source code or display the outcome of the executed command. In order to identify results,
they carry a serial, which is a unique number. Since the term “result” is highly ambiguous,
it is only used in this way in section 4 and within an explicit context of “document” or
“command”.

2.2 Simplifier Terminology

A (trace) message is a piece of structured information about the current state of the simpli-
fier. Each message has amessage type which signifies its sematics (i. e. whether it means
that a step is aempted or has failed). Messages requiring a response are called interactive
messages. Whether a message requires a response does not depend on its contents, but
only on its type and meta data. As a mere technical distinction, an interactive message
which will be displayed on the user side is called a question.

A rewrite rule is a theorem which has a certain form (i. e. it is an equality). A step is
one atomic application of a rewrite rule on a term. In the current implementation, this
is defined as an invocation of the rewritec function. e result of a succeeding step is a
theorem.

3

Preliminaries

If a rewrite rule is conditional, its preconditions are solved by a prover. By default, this
is just the simplifier itself. Hence, simplification is oen nested: while one step is still
running, the recursive call to the prover involves starting a new step.

2.3 Contexts

e Isabelle system uses contexts to track pieces of information. To quote one of the
manuals [22, §1.1], they “represent the background that is required for formulating state-
ments and composing proofs.” At any point in the source code, they contain theorems,
definitions, configuration data for proof tools and other declarations which have been
stated up until that point.

ere are basically two types of contexts, theory contexts and proof contexts. Both of
them can be extended with arbitrary, typed data. We call that theory and proof data,
respectively. For example, the simplifier uses the context to manage the set of rewrite
rules (simpset), but also its current depth.

eory data is – as the name indicates – aached to an Isabelle theory and can be changed
by commands. For example, datatype introduces a couple of definitions and theorems.
Furthermore, theory data needs to bemergeable, because theories can import from more
than one other theory.

On the other hand, a proof context is created afresh every time a new proof is started, for
example aer a lemma statement. Proof data needs to provide an initialization function,
taking the active theory as input.

2.4 Futures and Promises

e implementation of the new tracing heavily relies on a value-oriented concurrency
mechanism provided by Isabelle/ML [15, 19]. In short, it deals with future values [1, 13].
is concept is reified by the type constructor ’a future, which represents a value of
type ’a becoming available at a later time.

e high-level way to use futures is via fork: this function takes an (unevaluated) expres-
sion of type ’a -> unit and immediately returns a handle of type ’a future. Meanwhile,
the system computes the value of the expression in the background, usually on a set of
worker threads.

4

Preliminaries

In order to observe the result of a future, the join function can be used. It blocks the
calling thread until a result becomes available (which might be never).

Additionally, there are certain other operations which allow receivers to transform the
value of a future without actually observing it. For example, the map function takes an
’a future, a function ’a -> ’b, and returns a ’b future instantaneously. Blocking
on that resulting future would wait for the original future and the subsequent function
application to succeed.

Note that there are other ways to construct future values. However, for the receiver of
a future, that is of no interest, since the operations on futures deal with these details
automatically.

One example for this is when creating a future via Future.promise. While fork takes
an expression and evaluates it in a background thread, promise takes no parameters and
creates an “empty” future which can be fulfilled by other means. e corresponding
function in Isabelle/ML is Future.fulfill, which takes a future and a value and stores
that value in the future.

is abstraction is highly useful for concurrent programs which are not computation-
heavy, but employ asynchronous techniques. Instead of having to deal with threads or
shared state explicitly, abstract computations can be passed around and be transformed
using blocking and non-blocking operations.

5

S – an Improved Simplifier Trace

3 S – an Improved Simplifier Trace

S¹ is an interactive component of Isabelle and is – at the current stage of im-
plementation – only available to the Isabelle/jEdit prover IDE. In this section, we will
give an overview of the features of the system, discuss conceptual details and difficulties,
and contrast our design with related work.

3.1 Design

e fundamental idea for tracing is to instrument the simplifier in order to collect data
and influence the flow. e old tracing only does the former: at a set of certain points in
the program flow, it prints messages indicating the current state. In S, we do
the same on a higher level, by factoring out the processing into a separate module. e
simplifier is then extended with some calls into that module.

To make the conceptual improvement more clear, consider an example. Previously, when
the simplifier was invoked, the function trace_term was called, which took a term and a
string. e result then was to print the fixed string “Simplifier invoked…” and the term.
Now, the function recurse is called, also taking a term. However, the precise formaing
of the message, or if it gets printed at all, is le as an implementation detail to the new
module.

is has several advantages: Firstly, it reduces code cluer, because trace formaing and
output is not mixed with the program logic. Furthermore, the semantics of the program
flow is not lost, since it is clear that a call to recurse signifies a recursive invocation of
the simplifier. Lastly, influencing the simplifier becomes easy, because these specialized
methods can return a meaningful value, which can in turn be interpreted. In our im-
plementation, calls to the tracer frequently return an updated context, like many other
functions inside Isabelle do.

is conceptual shi does not readily lead to a change in the behaviour of the simplifier,
though. e novel concept implemented in this thesis is that the user is queried inter-
actively about the current state of the simplifier, instead of just being able to observe it.
At certain points in the process, the system presents a question to the user, which has
two effects: e simplifier gets stalled until the user answers to the question, and upon

¹e name can be considered transitional.

6

S – an Improved Simplifier Trace

answering, the program flow might deviate from the usual one, e. g. certain steps may
be skipped.

To implement all this, all components of the system have been extended:

• A new module (Supertrace) has been added to the base logic of Isabelle, which
adds numerous protocol messages.

• e existing simplifier has been amended to facilitate that module.

• e Isabelle/Scala layer has been modified to recognize the new S mes-
sages, and a couple of managing modules were introduced.

• Finally, the Isabelle/jEdit IDE has got two new “views” to allow the user to inspect
the current state.

e new tracing facility is highly configurable and goes to great lengths to keep the
number of unwanted messages low. A secondary design goal was efficiency, so that the
user does not experience delays which are longer than expected.

3.2 Interactivity

As already mentioned, the S system is fundamentally interactive. It might
present the user some questions about the current progress which it deems to be relevant.
e user can then decide how to progress. is is quite like debuggers in imperative
programming languages.

e important issue is how to determine which questions are relevant. Naturally, show-
ing a question for each step is not feasible, because it might take thousands of steps until
a term is rewrien into normal form. Hence, by default, the system shows no questions
at all.

However, the user can accurately specify the set of interesting rewrite steps by defining
breakpoints. If a step triggers such a breakpoint, the simplifier is intercepted and the
system displays a question.

In debuggers for imperative languages, the concept of breakpoints is very well-known.
Usually, breakpoints are set to lines in the source code, andwhen the sequential execution
of the program hits a line, the execution is halted. Furthermore, many debuggers support
conditional breakpoints, where users can specify a condition, and the breakpoint only
triggers if that condition is met.

7

S – an Improved Simplifier Trace

In S, the implementation obviously has to differ from traditional debuggers,
because it does not follow a strict sequential execution model. e principle is easy,
though: each rewrite step in the simplifier consists of a term and a theorem. Breakpoints
can be set for either of them. Term breakpoints usually contain schematic variables and
trigger when it matches the term to be rewrien. For example, the breakpoint ?x > 0
matches when term z > 0 is to be rewrien, where z can be any fixed or free variable.
Term breakpoints can refer to locally bound variables.

On the other hand, a theorem breakpoint is triggered simply when its name is identical to
the rewrite rule which is to be applied. As of the current implementation, it is not possible
to set a breakpoint on unnamed facts. e reason for that is that in almost all cases, facts
fed to the simplifier are slightly changed (e. g. replacing equality with meta-equality),
hence a simple comparison of the propositions would fail.

3.3 Message Types

On a high level, these are the types of trace messages the simplifier can send:

recurse tells the system that the main entry point of the simplifier has been invoked.

step guards the application of a (potentially conditional) rewrite rule by the sim-
plifier. It is invoked before the rule is applied, and the continuation of the
simplification depends on the user input. (interactive)

hint indicates whether a rewrite step failed or succeeded. If it failed, the user is
given a chance to inspect the failure, and can decide if the failing step should
be tried again (with different seings). (possibly interactive)

ignore marks a specific part of the trace as obsolete. In this implementation, this
message is only produced when the user does not wish to retry a failing step.
It is generated by the system and thus cannot be sent explicitly.

log emits an arbitrary log message which will not be further interpreted by the
system.

Every message consists of meta data and payload. e meta data is a list of key-value
pairs (some of which are mandatory, refer to table 1), whereas the payload is a chunk of
prey-printed text. As can be seen in that table, messages form a hierarchy. is closely
follows the actual, recursive nature of the simplifier.

8

S – an Improved Simplifier Trace

Key Value type Message type Description
serial int all unique identifier of a message
parent int all unique identifier of the parent mes-

sage
text string all short title of the message
conditional bool step rewrite rule is conditional?
trigger_thm bool step triggered by a theorem breakpoint
trigger_term bool step triggered by a term breakpoint
success bool hint triggered by a term breakpoint

Table 1: Key-value entries in messages

Messages can have children. For example, step messages are naturally associated with
the recurse message emied in the simplifier invocation. e trace keeps track of that
relationship by adding information about a message’s parent. Later on, the IDE will be
able to reconstruct the tree structure prior to presenting the full trace output to the user.

3.4 Interactive Messages

As seen earlier, there are two types of interactive messages which allow the user to in-
fluence the outcome of the simplifier: one before a simplification step is aempted, and
one for when a simplification step failed.

Message Type step: “Apply rewrite rule?”

When a step is aempted, the message contains the instantiated theorem, the term to
rewrite, and a number of different possible replies. e user can choose to continue the
computation, which instructs the simplifier to apply the specified rule and thus does not
influence the result of the simplifier. e other option is to skip the current step, even if
it would have succeeded.

As a result, the outcome of a simplification run is potentially different from when tracing
would be disabled. Hence, skipping should be used sparingly: the most common use case
would be to find overlapping rewrite rules.

9

S – an Improved Simplifier Trace

Message Type hint(failed): “Step failed”

Oen, the user wishes for immediate feedback as soon as the simplification failed. Prior
to this work, in case of failure the simplifier just does not produce any result, or produces
an unwanted result.

On the other hand, with this message type, the new tracing provides new insight into the
simplification process: It indicates that the simplifier tried to solve the preconditions of
a rewrite rule, but failed. ere are a number of different reasons for that, including that
the preconditions do not hold or the simplifier could not solve them, or a wrong theorem
has been produced in the recursive call, which usually indicates a problem in the tactic.
Regardless of the reason, it is possible to redo a failed step if (and only i) the original step
triggered a question previously.

Consider an example: e term f t1 is to be rewrien. e rewrite rule P1 x =⇒ f x ≡ g x
is applicable and gets instantiated to P1 t1 =⇒ f t1 ≡ g t1. Assume that there is a
breakpoint on that particular rule, hence the user is presented a question whether the
rule should be applied. e user chooses to continue, and the simplifier recursively tries
to solve the precondition P1 t1. Now assume that this entails application of another
conditional rule which does not trigger a breakpoint (hence no question), but this step
failed. In turn, the rewriting of f t1 failed. e system now displays the “step failed”
message to the user for the outermost failing step. Note that no messages are displayed
for the other failing steps which caused the outermost one to fail. is is by design for
two reasons:

• Oen, the simplifier has to try multiple rules to prove a precondition. is is the
case when there are multiple, overlapping rules for a predicate. Were the panel to
notify the user for each of those steps, this would quickly become very confusing
because of a flood of unrelated, and in the end, unimportant failures.

• If the innermost failure is several layers of recursions away from the original, in-
teresting step, it becomes difficult for the user to establish a causal relationship
between the previously answered “step” and the subsequent “failure” message.

Should the user choose to redo the computation, the simplifier state will be rolled back to
before the last question. In the above example, the system would ask for the application
of the rewrite rule P1 t1 =⇒ f t1 ≡ g t1 again. Of course, answering that question the
same way a second time would not change anything. But it is possible to change the

10

S – an Improved Simplifier Trace

seings and obtain more detailed information. is would actually cause the simplifier
to run anew, which is a consequence of the message filtering (see section 3.6).

3.5 Memoization

Imagine a situation where the user realizes during a simplification run that a rule is miss-
ing. e user then adds the rule with using and obviously does not wish to be asked the
same questions they already answered again. However, that expectation is not matched
by the system, since any changes in the proof text causes the system to discard and reini-
tialize all active command states. is also happens in other circumstances, e. g. when
the user moves the cursor position in the IDE.

Consider an analogy to debugging an imperative program: While stepping through the
execution, an error is found and the source code is changed accordingly. Aer restarting
the process, the user would like to continue at the same point (or a bit earlier) where the
debugging session has been exited previously.² Granted, the global state of the execution
might have changed, but as long as the local variables are the same, this seems to be safe
enough.

In S, a memoization system helps in mitigating that issue by trying to recon-
struct the original tracing state. Each time the user answers a step question, that answer
is recorded in a (global) storage. When the same question appears again later, be it in the
same simplification run or in another one, it is automatically answered identically.

Redoing a simplification step creates an interesting feature overlap with memoization.
Since fundamentally, redoing a stepmakes the system display the original question again,
a naïvely implemented cache would auto-answer that question. As a consequence, the
(unchanged) computation would fail again, which would obviously reduce this question
type to absurdity. Hence, care has been taken in the implementation so that the cache
is partially purged in order to avoid that problem. For implementation details, refer to
section 4.4.

Note that despite what the name “memory” might suggest, no fuzzy matching of any
sort is done. At the moment, questions are compared using simple textual identity of

²In fact, the Java debugger of the NetBeans IDE offers a similar feature. Code changes while debugging can
be applied to the running program, which requires reloading the affected classes in the JVM instance. is
completely avoids the problem of reconstructing the original state aer restarting the process, because
the process is not even being terminated. Unfortunately, no further documentation of this facility seems
to be available, so a thorough analysis cannot be made in this thesis.

11

S – an Improved Simplifier Trace

their contents. If the text of a message is slightly different, it will not be considered. is
is essentially a trade-off: the notion of “fuzziness” is extremely context-dependent. For
example, for some predicates, a simple change of a constant is meaningless, whereas for
other predicates, a conditional rule depends on it. Designing a reasonable fuzzy matcher
is outside of the scope of this thesis, but is an interesting starting point for future work.

3.6 Message Filtering

Based on the seings described in the previous chapters, messages get filtered. e pro-
cess is depicted in figure 1 and consists of multiple steps:³

1. Using normal verbosity, messages which have not been triggered by a breakpoint
are discarded right in the beginning. is happens immediately aer the simplifier
created them. Due to performance reasons, discarded messages are explicitly not
retained anywhere in the system. Unless tracing is disabled completely, accepted
interactive messages are then transferred to the IDE, where they will be treated as
questions.

2. If the tracer operates without user intervention (e. g. if the user explicitly disabled
it earlier), questions are merely logged and answered with a default reply. e
default reply is chosen so that it does not influence the simplifier in any way, i. e.
it proceeds as if tracing would be disabled.

3. Some questions are eligible for memoization. At this point, the memory is queried
to check for a match.

4. If auto reply is enabled (see figure 7 in section A) is selected, all remaining questions
are also automatically answered with a default reply. Otherwise, they are finally
being displayed. is is scoped to the current focus, i. e. only applies to the active
questions of the selected command. A use case for this facility arises when inter-
active tracing is globally enabled, but the user wishes to discharge active questions
of some selected commands without having to modify the proof document.

On a first glance, this pipeline might seem a lile convoluted. However, these steps are
necessary to match the user’s expectation to only get asked if desired, which (ideally)

³Note that this is a high-level overview. In practice, there are multiple shortcuts in the implementation in
order to avoid sending interactive messages which will be filtered out later in the pipeline.

12

S – an Improved Simplifier Trace

..mode.

triggers?

.

accept

.

discard

. full.

no

.

yes

.

disabled

.normal .

inter-
active?

.

memo-
ized?

.

reply from
memory

.

yes

.

yes

.

auto
reply?

.

display
question

.

default
reply

.

no

.

no

.

yes

.

no

Figure 1: Message filtering

13

S – an Improved Simplifier Trace

should happen rarely. Filtering helps keeping the number of unwanted messages at a
minimum.

3.7 Related Work

In this section, we will compare the contribution of this thesis with the SWI-Prolog pro-
gramming system and the Maude rewriting language. Both systems offer tracing and
debugging facilities where the user is able to step through the computation.

3.7.1 Debugging and Tracing in SWI/Prolog

Prolog is a logic programming language [8, 18]. A program consists of a set of clauses,
namely rules and facts. Rules are simple Horn clauses, with a head and a body. Facts are
merely rules with an empty body. Heads may contain variables, and bodies may contain
variables not occurring in the head. Variable names must begin with an upper-case leer
or an underscore, whereas atoms must begin with a lower-case laer.

e example in listing 1 defines a programwith two predicates, child and descendant. A
query is basically a predicate with possibly uninstantiated variables, and Prolog tries to
instantiate those. In Prolog terminology, such an expression is a goal, and the interpreter
aempts to prove it. (is is similar to declaring a schematic_lemma in Isabelle.)

When proving a goal, Prolog tries to unify the current goal with any of the available
clause heads, and proceeds recursively with each item in the body as new subgoals. is
is similar to how the simplifier works in Isabelle: e le-hand side of a rewrite rule is
matched to the current term, and if matches, it tries to solve the preconditions of the rule
recursively.

e Prolog implementation SWI-Prolog provides a tracing facility for queries [10, §§2.9,
4.38]. An example for the tracing output can be seen in listing 1 (the term creep denotes
continuing the normal process).⁴

Apart from continuing the process, SWI offers some additional commands. e com-
mands relevant for this work are:

abort exits the whole proof aempt

⁴A discussion of tracing in Prolog can be found in [8, §8], and further analyses in [9]. SWI uses a slightly
extended variant thereof.

14

S – an Improved Simplifier Trace

1 child(a, b).
2 child(b, c).
3

4 descendant(X, X).
5 descendant(X, Z) :- child(X, Y), descendant(Y, Z).

(a) Input database

1 [trace] ?- descendant(a, c).
2 Call: (6) descendant(a, c) ? creep
3 Call: (7) child(a, _G1949) ? creep
4 Exit: (7) child(a, b) ? creep
5 Call: (7) descendant(b, c) ? creep
6 Call: (8) child(b, _G1949) ? creep
7 Exit: (8) child(b, c) ? creep
8 Call: (8) descendant(c, c) ? creep
9 Exit: (8) descendant(c, c) ? creep
10 Exit: (7) descendant(b, c) ? creep
11 Exit: (6) descendant(a, c) ? creep
12 true ;
13 Redo: (8) descendant(c, c) ? creep
14 Call: (9) child(c, _G1949) ? creep
15 Fail: (9) child(c, _G1949) ? creep
16 Fail: (8) descendant(c, c) ? creep
17 Fail: (7) descendant(b, c) ? creep
18 Fail: (6) descendant(a, c) ? creep
19 false.

(b) ery with tracing enabled

Listing 1: Prolog example

fail the current goal is explicitly marked as failure, regardless whether it could
have been proved

ignore the current goal is explicitly marked as success

retry discards the proof of a subgoal and backtracks to the original state of the
parent goal

Albeit imaginable, marking a goal as success is not supported in S. It is not
possible per se to implement that in Isabelle, since the inference kernel would not allow
such a step. e workaround would be to introduce such theorems “by cheating”, i. e. the
same strategy which is used by sorry. It is an interesting discussion whether or not to
grant the simplifier the “privilege” to generate invalid theorems in tracing mode.

15

S – an Improved Simplifier Trace

Finally, it is possible to declare breakpoints on predicates. SWI allows to refine break-
points with the specific event (referred to as port). For example, the user can specify that
they are interested only in fail messages, but not call messages. However, as soon as
such a breakpoint is set, the tracing ceases to be interactive and switches to a log-only
mode.⁵ In S, the filtering concept is more sophisticated and allows a fine-
grained control over what is being asked, the precise conditions of which can also be
modified during a simplification run. In SWI, it is also not possible to set a breakpoint on
terms, or even on terms with schematic variables.

In summary, SWI’s features are quite similar to what S offers, but differ in a
few conceptual points. First and foremost, the “execution” model of Prolog and Isabelle
theories differ significantly. Evaluation of Prolog queries happens sequentially, and any
changes in the underlying source code must be explicitly reloaded. at also means that
running queries need to be aborted. On the other hand, using Isabelle/jEdit, changes in
a theory get reloaded immediately and affects pending computations directly. Hence, a
memory as implemented in S is not necessary in Prolog.

3.7.2 Debugging and Tracing in Maude

Maude is a logic language based on term rewriting [6, 7]. A program consists of datatype
declarations and equations. en, the user can issue a reduce command, which succes-
sively applies rewrite rules to an input term. A short example modelling natural numbers
can be seen in listing 2.

is snippet defines a data type for natural numbers, along with its two constructors
zero and s. Additionally, an addition function and a predicate to check whether a num-
ber is non-zero and two equalities to (partially) defining that predicate. Note that the
addition function does not have any defining equalities in this example (which are in fact
unneeded).

Similarly to the Isabelle simplifier, rewrite rules can be conditional. In the trace, it becomes
obvious that those are handled exactly like in Isabelle. A potentially applicable rule gets
instantiated with the concrete term, and the preconditions are solved recursively.

However, how they appear in the trace is more interesting. As can be seen, the Maude
tracing is purely sequential and offers lile to no insight into the hierarchical structure.

⁵is is possible with S, too. When in non-interactive mode, trace is only produced for steps
matching breakpoints, but no questions are presented to the user. is is actually the default behaviour.

16

S – an Improved Simplifier Trace

fmod SIMPLE-NAT is
sort Nat .
op zero : -> Nat .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
op nonzero_ : Nat -> Bool .

vars N M : Nat .
ceq nonzero (N + M) = true
if nonzero N /\ nonzero M .

eq nonzero (s N) = true .
endfm

(a) Programme (based on [6, §2.2])

Maude> reduce nonzero (s zero + s s zero) .
*********** trial #1
ceq nonzero (N + M) = true

if nonzero N = true /\ nonzero M = true .
N --> s zero
M --> s s zero
*********** solving condition fragment
nonzero N = true
*********** equation
eq nonzero s N = true .
N --> zero
nonzero s zero
--->
true
(...)
*********** success #1
*********** equation
(...)
nonzero (s zero + s s zero)
--->
true

(b) Reducing a term with trace enabled (excerpt)

Listing 2: Maude example

e trace can be tuned in various ways [6, §§14.1, 18.6]: for example, Maude allows
filtering for named rules and operations (albeit only the outermost operation in the redex
is considered). ere is also a wealth of seings which control verbosity of the trace, e. g.
whether solving preconditions or the definition of rules should be included in the trace.

Apart from controlling the textual output, it is also possible to enable output colouring,
similarly to the highlighting in Isabelle. e major difference here is that Maude distin-
guishes between constructor and nonconstructor symbols, where the laermaps to regular
“functions” in Isabelle/HOL parlance. An indicator for problems in the set of rewrite rules
is when a term does not get fully rewrien, which is defined as nonconstructor symbols
still occur aer reducing [6, §14.1.2]. Hence, colouring symbols differently greatly im-
proves debugging experience in Maude, because it also gives hints into when exactly a
problem has been introduced.

Additionally to tracing, there is also a debugging facility. It can be configured with break-
points in the same way as the tracing. When a breakpoint is hit, the user can resume or
abort the whole computation, but also (on request) observe the call stack. e laer also

17

S – an Improved Simplifier Trace

includes a textual explanation, e. g. that the current term is being rewrien to solve a
precondition.

A distinguishing feature of the debugger is that it allows to execute a new reduce com-
mand when a debugging session is active. is allows the user to quickly check related
terms and hence beer understand an issue with the original term.

Maude has been an active target for research for refining the trace even further, providing
insights into when and how a particular term emerged during reducing (refer to e. g. [2]
and related work).

18

Implementation

4 Implementation

In this section, the underlying implementation will be explored. Unless otherwise noted,
all presented code snippets are excerpts from the actual code with reduced complexity
and represent original work by the author of this thesis.

4.1 Interaction Model

e fundamental idea is that the simplifier communicates bi-directionally with the user
workingwith the IDE, where the SupertraceMLmodule acts as a “broker”. e simplifier
continually emits tracing information in a structured and hierarchical manner, but only
with a limited amount of concrete formaing. For some types of messages, it also expects
a response, i. e. some guidance how the rewriting process should proceed. (Other types
of messages are merely for reporting purposes , e. g. that a certain step succeeded.)

e ML broker then decides, based on user configuration, what should happen to mes-
sages. In the normal, interactive mode, the messages get filtered for certain criteria, for-
maed (using the built-in prey-printing mechanism), and subsequently sent to the IDE.
If a message got filtered out, the simplifier gets a default response. If not, the ML bro-
ker waits for an actual response from the IDE, which it parses and sends back to the
simplifier.

On the IDE side, there is also a broker which acts as a counterpart to the ML broker.
It collects the messages from the simplifier and provides a high-level view on the set
of current messages, and forwards responses from the user, or even responds early if
necessary.

is whole process is completely transparent to the simplification engine. Hence it would
be somewhat trivial to change the current implementation to, say, post the messages to
a web service instead of to the user.

ere is another type of interaction happening outside that model, but this is currently
only used for notifying the IDE of obsolete messages for which the broker does not expect
a response any more.

In the following sections, we will describe all stages of the user interaction, starting from
the simplifier emiing trace and ending with the user clicking on a buon. e overall
process of a single interactive message is depicted as a sequence diagram in figure 2. e

19

Implementation

.... Simplifier... ML broker.. Protocol.. Scala broker.. UI... User....

message

...

result

...

changed

.......

future

...

join(future)

...

handle

...

context

...

question

...

response

...

handle

...

input

.......

parse

...

response

...

response

Protocol refers to the low-level communication between the ML and the JVM process, thick
arrows denote function calls with return values (with the return value denoted by a dashed line
below), thin arrows denote function calls without return values.

Figure 2: Sequence diagram of the interaction

description will follow the implementation, i. e. not in chronological order of the steps of
the interaction.

e general interplay between the prover and the IDE is laid out in [20, 23].

4.2 Simplifier interaction

Sending a non-interactive message is trivial: it merely involves calling a function, but its
result can be ignored, since no answer is expected.

On the other hand, sending an interactive message requires waiting for the user. As
already indicated, communication between the simplifier and the user happens in at least
two stages. e first stage is the most straightforward one, as it does not have to cross
any language or process barrier, because both the simplifier and the broker live inside the

20

Implementation

prover in the same (ML) world. Hence, “emiing” an interactive trace message from the
simplifier is as easy as for a non-interactive one. However, instead of returning unit, the
corresponding function will immediately return an asynchronous future (recall figure 2).
Meanwhile, the message is transmied to the IDE, and is waiting for the user to act upon
it. As soon as that happens, the future value becomes available, which in turn allows the
simplifier to observe the user’s response.

At the moment, the simplifier is purely sequential, i. e. it needs to know the response in
order to continue, instead of being able to do other meaningful work (e. g. speculatively
trying to solve the preconditions in parallel). As a result, the simplifier has to block on the
future right aer receiving it. However, the infrastructure in this work is explicitly de-
signed to take parallelism into account. If at some point the simplifier will be parallelized,
it would be easy to present multiple queries to the user simultaneously (see section 5 for
a case study).

Previously, the trace was read only, i. e. merely presenting the user its activity. Now, the
user can actively influence the outcome of the process by two means:

1. specifying whether a given rewrite rule should be applied to a given term

2. requesting that a failed step should be redone

In fact, the user has more ways to interact with the system, but those are about the level
of detail in the trace, which is of no concern to the simplifier.⁶

Observe that the actual work – invoking the prover on the preconditions of a rewrite
rule – is bracketed by two messages: the step and hint messages are sent beforehand
and aerwards, respectively (as depicted in figure 3). In total, that can amount to two
interactive messages, and depending on the outcome of hint in case of failure, evenmore.
Because of that, the resulting control flow gets quite complex. Its execution is therefore
abstracted in the function supertrace_if_continue (see listing 3 for the stripped-down
implementation) which gets called whenever the simplifier aempts to apply a rewrite
rule.

e function takes a context, the term to be simplified, the candidate rewrite rule, and
two continuations for invoking the prover and skipping the step, respectively.

As a consequence, this means that the necessary amount of changes for hooking into the
simplifier is greatly reduced: it operates as it used to, except that some calls are wrapped

⁶e simplifier naïvely emits messages for each step, whereas the filtering is done by the system.

21

Implementation

..Message
step
.

Use rule?

.

invoke
prover

.

skip
step

.

Success?

.

Message
hint

success = true

.

Message
hint

success = false

.

Redo?

.

Message
ignore

.

no

.

yes

.

yes

.

no

.

no

.

yes

Figure 3: Bracketed execution of a rewrite rule

by that function. For example, should the simplification step fail, and the user requests
redoing the step, the function merely calls itself, without giving control flow back to the
simplifier.

4.3 System Interaction

While the simplifier only emits messages, the “heavy liing” is done by the module
Supertrace which lives inside Isabelle/Pure. Its tasks are to:

• store the current configuration,

22

Implementation

1 fun supertrace_if_continue ctxt term thm skip cont =
2 let
3 val data = (* ... *)
4 in
5 case Future.join (Supertrace.step data) of
6 Skip =>
7 skip ctxt
8 | Continue ctxt’ =>
9 let val res = cont ctxt’
10 in
11 case res of
12 NONE =>
13 (case Future.join (Supertrace.indicate_failure data ctxt’) of
14 Exit =>
15 skip ctxt’
16 | Redo =>
17 supertrace_if_continue ctxt term thm skip cont)
18 | SOME (thm, _) =>
19 (Supertrace.indicate_success thm ctxt’; res)
20 end
21 end

Listing 3: Implementation of the bracketed execution

• track the state of the simplification process, i. e. record the recurse message to
preserve the hierarchical call stack,

• filter the stepmessages for potentially interesting content; not all of them are being
presented to the user,

• format high-level messages and converting them to an interchange format (XML),
and

• send data to and receive data from the IDE, while maintaining a list of interactive
messages with pending responses

4.3.1 Data Model

To fulfil these tasks, the module needs to aach certain pieces of data to the proof con-
text, following the usual Isabelle conventions of declaring appropriate structures in the
module. As an implementation detail, that is split up into three types (listing 4):

23

Implementation

1 datatype mode = Disabled | Legacy | Normal | Full
2

3 type config =
4 {max_depth: int,
5 init_mode: mode,
6 init_interactive: bool}
7

8 type runtime =
9 {max_depth: int,
10 depth: int,
11 mode: mode,
12 interactive: bool,
13 parent: int}
14

15 type breakpoints =
16 {terms: term Net.net,
17 thms: string Ord_List.T}

Listing 4: Excerpt of the context data

config Global, mergable configuration. is contains all options specified via
the supertrace aribute (see section A.2).

breakpoints Term and theorem breakpoints, declared as generic data, i. e. exists at
the theory level, but allows for local changes in a proof block.

runtime Local configuration and runtime data. is is separate from the other
structures because configuration can be changed inside of a proof or
even during a single invocation (see sectionA.3) by the user and by the
system, but these changes should not affect the toplevel, and runtime
data is strictly local, i. e. does not exist at the toplevel.⁷

For changing config and runtime, the module exposes certain aributes (listing 5), which
are in turn set up in a theory file.

⁷runtime cannot be defined as generic data because firstly, it is not mergeable and secondly, the mergeable
parts need to be changed inside a context, and the ML signature of Generic_Data does not provide a
put function on context, but only on generic. is leads to the somewhat clunky duplication of certain
fields. Obviously, the put function returns a wrapped context again when passed in a wrapped context,
but that is not communicated in the type signature. Relying on that behaviour is therefore considered
unsafe, and the proper fix would be to amend the signature of Generic_Data.

24

Implementation

1 val config: string -> bool -> int -> attribute
2 val config_legacy: int -> attribute
3 val thm_breakpoint: attribute
4 val term_breakpoint: term list -> attribute

Listing 5: Aributes in the Supertrace module

4.3.2 Public Message Interface

emodule aims to provide a neutral interface which is not tied to the existing simplifier
in any way.⁸ It models typical operations for any tactic: recursion, steps, success and
failure. erefore, we will generically refer to the simplifier as a “tactic”.

A common theme across the interface is that some functions return contexts: it is crucial
for the tactic to continue with that possibly updated context, or else it becomes impos-
sible to track the actual hierarchical course of events and configuration changes.

Responses

Responses are usually supplied by the user, but can also be generated by the system under
certain circumstances. e tactic is generally expected to obey the response in order to
not confuse the user with further unexpected messages, e. g. when a “skipped” process
is continued.

datatype step_response = Continue of Proof.context | Skip

Indicates whether the tactic should proceed with a given piece of work. e default
response is Continue with unchanged context.

datatype fail_response = Exit | Redo

Indicates whether the tactic should backtrack to a state before aempting a failed step.
It needs to be made sure that immediately aer rolling back, the step function is called
with the same parameters again. Usually, that requires the tactic to save a reference
to the context used earlier. If the response is Exit, the tactic should abandon the step
and clear any references to the context produced by the earlier call to step.

⁸Granted, the strings used to build up parts of the message contents are not configurable at the moment.

25

Implementation

Operations without User Interaction

val recurse: string -> term -> Proof.context -> Proof.context

is function should be called whenever a new recursive invocation of a tactic is
started – in particular the first invocation – and has no observable side-effects. e
tactic should then continue with the returned context, otherwise further messages do
not get properly associatedwith that specific invocation. recurse updates the context
with an increased depth counter. Should the depth counter exceed max_depth, tracing
will be disabled.

val indicate_success: thm -> Proof.context -> unit

is function can be called when an (aempted) piece of work has been finished.
e thm argument should be the proved theorem. e context argument must be a
context obtained from the preceding call of step. Aer the call, the tactic should not
do anything else with that piece of work, instead continuing with the next piece. If
the tactic has no notion of “failed” or “successful” steps, it is not necessary to call this
function.

Operations with (Potential) User Interaction

ese operations have in common that their return value is wrapped inside the future

type constructor. If tracing is disabled, they return values which contain a reasonable
default, i. e. no waiting or blocking occurs.

type trace_data = {term: term, conditional: bool, ctxt: Proof.context,

thm: thm, name: string}

val step: trace_data -> step_response future

is function should be called when the tactic aempts to solve a piece of work, speci-
fied by term. e conditional parameter indicates whether the step will likely induce
a recursive call of the tactic.⁹ thm and name are the theorem and its name which is used
to solve the work. Both term and name are used to match the step against the set of
defined breakpoints. Because some tactics mangle the internal name of theorems, the
original name has to be specified explicitly.

⁹currently unused

26

Implementation

val indicate_failure: trace_data -> Proof.context -> fail_response future

Communicates that the execution of a step failed, as opposed to the indicate_success
function (same conventions apply). It is not necessary, but recommended to pass the
same trace_data as to the earlier call of step. Note that the context parameter and
the context field in the trace_data parameter are different from each other. (ey
denote the context aer and before the step was aempted, respectively.)

Example Implementation

For illustration purposes, we will explain a stripped-down implementation of the step

function.

fun step {term, ctxt, ...} =

let

val body_term =

Syntax.pretty_term ctxt term

is generates the content of the message. Because the IDE is unable to prey-print
messages by itself, that needs to be done directly in the ML layer.

fun payload () =

{props = flags,

body = (* ... *)}

Apart from body_term, there are many other components which constitute a message.
Together, they are referred to as payload and wrapped in a thunk to avoid unnecessary
prey-printing (which can slow down the process significantly when the terms grow in
size).

fun mk_promise result =

let

val mode = (* extract current mode from ctxt *)

fun to_response str = case str of

”skip” => Skip

| ”continue” => Continue (put mode true)

| ”continue_trace” => Continue (put Full true)

(* ... *)

in

27

Implementation

(* send request, then: *)

if not interactive

then Future.value (Continue (put mode false))

else Future.map to_response promise

end

is is the heart and soul of the procedure. It sends the data to the IDE, and depending on
whether the user enabled interactive mode, it immediately returns a value or generates a
promise. e to_response helper function parses the plaintext reply from the user. Here,
put is a function which updates the current context with new configuration.

in mk_promise (mk_generic_result payload ctxt) end

In the end, the payload is packaged into a message using a suitable representation. ere
is another shortcut (omied for brevity) here which avoids sending a request under even
more circumstances.¹⁰

4.3.3 Message Filtering

Under certain circumstances, messages are being filtered and not presented to the user.
ere are a couple of waysmessagesmight get rejected, with themost prominent example
being breakpoints when normal verbosity is selected (refer to section 3.6 for an overview).
Since it is generally desirable to avoid generating messages which will be rejected later,
but rejecting happens inmultiple stages, the code which avoids generating them is spread
across the implementation. Here, we will explore the term breakpointing mechanism
more closely (theorem breakpointing works similarly, but does not require sophisticated
data structures).

Term breakpoints are kept in discrimination nets [5, §11]. eir Isabelle implementation
lives in the Net module. Basically, nets are a map-like structure with terms (with free
variables) used for indexing data. e most fundamental operations are:

val empty: ’a net

val insert_term: (’a * ’a -> bool) -> term * ’a -> ’a net -> ’a net

val match_term: ’a net -> term -> ’a list

¹⁰Basically, mk_generic_result returns an option. e actual code performs a paern match, where the
NONE represents ineligibility of the message (not triggered by a breakpoint, depth exceeded, …), and
continues by putting and returning an unchanged context.

28

Implementation

e function passed to insert_term denotes equality of the indexed values. is is needed
because nets do not associate terms with a multiset of values, but rather only a set. To
quote the implementation, match_term “returns items whose key could match [the given
term]”.¹¹

Given these operations, it becomes almost trivial to obtain the set of matching break-
points given a term:

fun find_term_breakpoints thy term net =

let fun matches pattern = Pattern.matches thy (pattern, term)

in List.filter matches (Net.match_term net term) end

Observe that it is necessary to filter the results, because nets are allowed to return an
overapproximation.

is function is called for each step message. Should it return a non-empty set, the
message is triggered.

4.3.4 Message Passing from the ML to the JVM Layer

All these operations aach result data to the corresponding command. Emiing a result
is easy: it merely involves calling the Output.result function, which takes a serial

number and some content.

For a non-interactive message, that is all, because no response is expected. On the other
hand, when an interactive message is sent, the caller expects a (future) response. is is
realized in the send_request function (listing 6).

First, it creates a new and empty promise, which will be added to a global table of active
promises. e key for the new entry is the same number as the identifier for the result.
Because that table contains mutable state shared across (potentially) different threads,
it is wrapped into a synchronized var [22, §0.7.3] which provides atomic access via the
Synchronized.change function. Secondly, the given content is added to the document
model. Finally, the new promise is returned to the caller.

Producing a result generates a Commands_Changed event in the IDE. e handling of this
and other events is described in section 4.4.

¹¹File ~~/src/Pure/net.ML by Lawrence C Paulson

29

Implementation

1 val futures =
2 Synchronized.var ”Supertrace.futures” (Inttab.empty: string future Inttab.table)
3

4 fun send_request (result_id, content) =
5 let
6 fun break () =
7 (Output.protocol_message
8 [(Markup.functionN, cancelN),
9 (futureN, Markup.print_int result_id)]
10 ””;
11 Synchronized.change futures (Inttab.delete_safe result_id))
12 val promise = Future.promise break : string future
13 in
14 Synchronized.change futures (Inttab.update_new (result_id, promise));
15 Output.result (result_id, content);
16 promise
17 end

Listing 6: Sending a request to the IDE

A slight complication arises when creating a promise, though. Because a running com-
mand could become stale at some point during execution (for example, when the user
changed the source code above the invocation, changing the parameters), the system
needs to know how to cancel a future. For regular futures, that is trivial, because it
only requires cancelling the running computation on the corresponding worker thread.
However, for promises, a cancellation behaviour has to be specified explicitly (function
break in listing 6). In the context of the tracing, it means telling the IDE that interactive
messages which do not have a response yet can be deleted.

e naïve approach would be to add a dedicated message to the document using the
result mechanism, too. is fails, because as soon as a command becomes stale, it will
be removed from the document model. For the IDE, that means that all results disappear
and it will thus be unable to observe the cancellation message.

Hence, an out-of-band mechanism is needed. In that case, it is done via a low-level proto-
col message. ose are completely independent from the document model and can thus
still be parsed by the IDE.

30

Implementation

4.3.5 Message Passing from the JVM to the ML Layer

e reverse direction is completely done via protocol messages. ere is just onemessage
type here: reply. It carries just the serial used to create the promise, and a string

denoting an automatically generated answer or the answer from the user.

Fortunately, seing this up is rather simple (reproduced here without error handling):

fun react xs = case xs of

[s, r] =>

let

val serial = Markup.parse_int s

e serial and plaintext reply is obtained from the message.

fun lookup_delete tab =

(Inttab.lookup tab serial, Inttab.delete_safe serial tab)

In turn, the serial is used to retrieve and remove the pending future from the global
table.

fun apply_result promise =

Future.fulfill (the promise) r

in Synchronized.change_result futures lookup_delete |> apply_result end

en, that promise is fulfilled with the (unparsed) reply of the IDE.

val _ =

Isabelle_Process.protocol_command ”Document.supertrace_reply” react;

Finally, the procedure has to be registered with Isabelle.

4.4 IDE Interaction

e code responsible for the IDE is divided into a general part which does not depend
on jEdit or GUI features, and one that does. e former mirrors the data model of trace
messages (section 3.3), tracks the current interactive state and communicates with the
prover. e laer consumes that state and converts the abstract data into user-facing
text and control elements.

31

Implementation

..system.

manager

.

panel

.

ha
nd
le_
can

cel

.

rep
ly

.

changed

.

handle_results, send_reply,
generate_trace, clear_memory

.

repaint

Figure 4: Actor communication

To facilitate the asynchronous nature of the interaction between prover and user, the
Isabelle/Scala layer heavily relies on actors [11, 12, 20, 23]. Actors are a concurrency
abstraction and can be seen as individual lightweight threads which are activated when
a message is sent. Usually, actors have some hidden internal state. is greatly reduces
the amount of coupling and helps avoid shared mutable state. Actors can reply to the
sender of a message, but are also allowed to initiate communication with other actors.

Without going into too much detail of the internals of the IDE implementation, the basic
infrastructure consists of a session actor which sends and receives protocol messages
and actors for each part of the window (e. g. some of the dockable panels in jEdit have
their own actors) to which processed messages are dispatched to. In this work, that
infrastructure is extended by a S manager actor which serves as the “broker”
between the system and the GUI, and a panel actor which coordinates the S
panel in jEdit.

at particular actor is bound to the session actor, but also interacts with a newly intro-
duced dockable S panel. e communication is depicted in figure 4.

Unfortunately, there is a naming clash in the following sections. We have been referring
to the pieces of trace information sent to the IDE as “messages”, but here, that term is
used for the more low-level data which is exchanged between actors. However, since the
transmission of trace information is internally realized via Output.result, we will call
them results.

32

Implementation

4.4.1 Manager Actor

e manager actor both receives and sends messages. Probably coming from the Erlang
tradition of actors,¹² the interface of an actor is usually untyped, that is, anybody with
a reference to an actor can send arbitrary messages, but get no guarantees whether a
message will bring about a reply or what type that reply has.

Traditionally, an actor only exposes a tell function (abbreviated with !) to send a mes-
sage. e Scala actor library additionally offers a !? function, which waits for the actor
to finish processing the message and returns its reply. ese functions take and return
Any, which in practice turns out to be a huge burden for clients of the interface, especially
in a strongly-typed language like Scala.

Hence, a decision has been made to hide the actor-based implementation of the manager
and provide just a strongly-typed interface.¹³ at greatly reduces time spent on de-
bugging, because if programmed carelessly, untyped actors which receive an unknown
message might become unresponsive for the rest of their lifecycle.

Incoming Messages

As already indicated, different actors communicate with the manager actor. No access
control is needed: e side-effecting methods are idempotent, i. e. they return the same
result when invoked with the same arguments repeatedly. In the following, the public
API of the manager actor is described.

type Question = (Data, List[String], String)

type Context = Map[Long, Question]

type Results = Map[Long, XML.Tree]

A question consists of parsed result data (representing the trace information), a list of
possible answers, and a default answer. A context (not to be confused with proof or

¹²e author of the current actor implementation in Scala, Philipp Haller, draws parallels to Erlang and
writes that “in that model, it is common to have nested receives […] Now, if [their types] are unrelated,
then certainly, the actor must be able to accept messages of type Any”. (Any, quite similarly to Java’s
Object, models the top of the inheritance hierarchy. It is the supertype of all Scala types.) e archived
post can be found at http://article.gmane.org/gmane.comp.lang.scala/12988.

¹³As a side note, the current (2.10) implementation of Scala actors are deprecated in favour of the Akka
library [14]. at library provides a notion of typed channels, which encode the message type in the
type of an actor [4, §4.4]. is constitutes a great opportunity for an overall design improvement of
Isabelle/Scala by leveraging compile-time type checking.

33

http://article.gmane.org/gmane.comp.lang.scala/12988

Implementation

theory contexts) contains all open questions for a certain scope. e type Results is
merely associating raw results with their serials.

def handle_results(id: Document.Command_ID, results: Results): Context

is can be called by any entity which is interested in displaying the currently unan-
swered questions (i. e. interactive messages from the simplifier which have not been
replied to yet). e id parameter represents the current position in the document, and
results holds all results for this command. is call side-effects by updating internal
state and might reply to some results, which in turn do not appear as questions in the
returned context. e method does not process all results, but only new results since
the last invocation. Since results are added incrementally (new results are guaranteed
to have a higher serial number than the old ones), this is safe.

e processing deals with the different result types as follows:

step Looks up the result in the memory. If it has already been answered, it will
answer exactly the same way as earlier. Otherwise, it will be converted
to a question and added to the context.

hint Success hints can be ignored, because they are not interactive. On the
other hand, failure hints are interactive.

For those, it is checked whether the step they are referring to is actually
known. If yes, a question is added to the context. If not, the default reply
is sent.

(e laer happens e. g. when a step failed which has not been triggered
by a breakpoint; such an event is still logged by the system, but not in-
teresting to the user.)

ignore An ignore result is emied by the Supertrace module if and only if a
failed step is about to be repeated and marks the subtree of the failed
step as stale.

is involves a partial clearing of the memory, based on the provenance
of a memoized question. All answers to question which originated from
the stale subtree will be purged.

Other result types are inherently non-interactive and can be ignored.

34

Implementation

In the current implementation, this function is only called by the panel actor with
the results of the active command. Conceptually, this has the advantage that only
the results which are actually needed by the user are being processed, thus avoiding
spending time producing superfluous data.

However, this leads to a somewhat odd effect: If a question can be answered from
memory, this only happens when this method is called, i. e. when the user clicks on
the corresponding command and thus moves the focus in the editor.

e alternative would be to let the session actor invoke this method as soon as a
Commands_Changedmessage is sent, shiing the above trade-off away from unexpected
behaviour at the cost of a perhaps negligible performance drop. It is not possible to
implement at the moment, though: e information about which commands have
updated results is not available for that actor. Obtaining that information requires a
Document_View which conceptually lives in the Isabelle/jEdit layer which is on top of
the Isabelle/Pure layer.

type Cancel = Long

def handle_cancel(cancel: Cancel): Unit

is function takes a serial, and removes it from the internal state if necessary. It is
invoked by the session actor, because it receives that message directly via the system
protocol.

Since cancellation indicates a stale command, a Commands_Changed message for the
new command will be issued. Hence, the management actor does not need to issue a
repainting message to the panel.

type Trace = List[Data]

def generate_trace(results: Results): Trace

Called by the panel actor when the user requests a full view of all trace information
up to that point. is function does not update internal state in any way and is pure.

e interesting behaviour is that at this point, the hierarchical structure of the trace
has to be reconstructed. In our data model, each message also contains the serial of its
parent message to allow for precisely that. On the ML side, observe that the functions
for each message type which may have children (recurse, step) return an updated
context: in there, the parent is set to the serial of the message. en, when aaching
a result to the command, both serial and parent are included.

35

Implementation

e Scala side just sees a list of results, sorted by serial. Tree reconstruction works
on a tree with a focussed node, initially set to root element without children. It then
performs these steps for each result:

1. Extract the parent from the result and find the node with that serial.

2. Add the result as a child to that node.

3. Set the focus to the newly generated child.

e first step does not need to search the whole tree, but just the parents of the fo-
cussed node. is works because the list of results represents an in-order traversal of
the original tree.

def clear_memory(): Unit

is is called by the panel actor and completely purges all memoized questions from
the memory, including provenance.

type Reply = (Long, Answer)

def send_reply(reply: Reply): Unit

In order, a call performs the following steps:

1. looks up the corresponding question from the set of unanswered questions

2. if the question is related to a step message record the reply and its provenance
in the memory (replies to hint messages are not memoized)

3. remove the question from the set of unanswered questions

4. reply to the prover by sending actual reply message to the session actor

5. send repaint message to the panel actor

Conceptually speaking, this method is only called by the panel actor. For details, see
section 4.4.2.

Outgoing Messages

ere are two outgoing message types:

sealed trait Event

36

Implementation

An event merely indicates that the GUI should repaint itself because its contents have
been changed. Emied during a send_reply call.

type Reply = (Long, Answer)

Issued to the session actor during a call to handle_results (reply found in the mem-
ory) or to send_reply (reply determined by the user).

4.4.2 Panel Actor

Every S dockable panel has its own actor. Note that there might be multiple
instances open at the same time. By default, that is not very useful because all of them
share the same cursor, but when Auto update is disabled, their focus will not be changed
when a different command is selected in the editor area. is is very useful when tracking
multiple simplifier states in different places.

e panel actor performs no communication apart from what is already described in the
previous section and what the other panel types (e. g. the Output panel) do.

However, the panel communicates with an out-of-system actor: the user. Every time a
command has changed, the panel actor obtains the current context from the management
actor and renders its questions. e rendering target is a Pretty_Text_Area, a built-in
component which supports standard Isabelle syntactic and semantic markup. However, it
is extensible: It also allows for custommarkup, thus aaching arbitrary information to the
output. ese “special” ranges in the output text are highlighted differently and thus sig-
nal “clickability” to the user. Despite that the implementation uses standard Java/Swing
technology, clicking on such an active range does not produce a regular Swing event, but
triggers the action method in the Active object. In order to enable this method to react
properly to the clicking event, the panel actor aaches the serial and the plaintext string
to each possible answer:

def make_button(answer: Supertrace.Answer): Tree =

XML.Wrapped_Elem(

Markup(SUPERTRACE_BUTTON, Future(data.serial)),

answer.string,

answer.label

)

37

Implementation

e action method in turns extracts this information:

def action(view: View, text: String, elem: XML.Elem)

{

// ...

elem match {

// ...

case Supertrace.Button(reply) =>

PIDE.session.supertrace_manager.send_reply(reply)

}

}

4.5 Summary

is concludes the full interaction between the system, the IDE and the user. Recall the
sequence diagram in figure 2. Let us briefly summarize the course of actions:

• During a run of the simplifier (or any other tactic, for that maer), tracing infor-
mation accumulates, some of which necessitates user interaction.

• e tactic then calls an asynchronous API which manages pre-filtering of “inter-
esting” messages, converts them to a suitable representation, sends those over to
the IDE, and provides the tactic with a read handle on the reply. e only tac-
tic supporting S as of now, the simplifier, uses that API synchronously
though.

• emessage is received and parsed by the IDE andmore filtering is done. Accepted
messages are turned into questions and presented to the user, along with a number
of possible answers.

• e user eventually clicks on an answer. is triggers a cascade of events, most
notably sending the reply back to the prover.

• e prover receives and parses the reply and hands it back to the tactic, which
can now continue working. e further activity of the tactic may or may not be
influenced by the answer the user gave, including backtracking or early exiting.

All in all, this constitutes a full round-trip.

38

Case study: A Parallelized Simplifier

5 Case study: A Parallelized Simplifier

For testing purposes, an extremely stripped-down version of the simplifier has been im-
plemented to demonstrate the capabilities of the tracing infrastructure. It uses exactly
the same interface as the “real” simplifier, but is not nearly as powerful (it consists only
of 100 lines of code). However, it splits off some of the work into parallel tasks. In the
simple test cases, that does not translate to a speed-up of the simplification, but rather
interesting insights into the concurrency features of this work.

An example of that interaction can be seen in figure 5. Clicking on an answer makes the
question disappear as usual, but the others remain there.

Parallelism is introduced in two distinct places: when solving multiple preconditions,
and when trying multiple matching rules.

For illustration purposes, we will briefly discuss the first of them.

fun try_solve_prems thm conv =

e function try_solve_prems aempts to solve all premises of thm using the conversion
conv (the details of which are unimportant).

let

fun solve_future ct = Future.fork (fn () => try_solve_prem ct conv)

val futures = map solve_future (cprems_of thm)

Here, the parallel computations are initiated using Future.fork. try_solve_prem itself is
a helper function which massages the term before it is being passed into the conversion,
and checks the result aerwards. e type of futures is thm option future list: a list
of results (represented by an optional theorem) which are wrapped into a future each.

fun aux (future, thm) = case Future.join future of

NONE => raise Fail ”Could not solve subgoal”

| SOME prem => prem COMP thm

in List.foldl aux thm futures end

39

Case study: A Parallelized Simplifier

(a) … before clicking on the answer marked red

(b) … and aer

Figure 5: Multiple questions presented at the same time

40

Case study: A Parallelized Simplifier

e last step consists of collecting all the values. e end result of that function is a
theorem. Note that this function is blocking, that is, it does not return immediately, but
rather waits for all subgoals to finish.¹⁴

Apart from that, the above code snippet nicely demonstrates that adding parallelism to
the simplifier is not very hard. However, care needs to be taken about the user interface
and interaction. Important issues are:

• At most how many questions should be presented to the user at any given time?
e goal should be to not overburden the user. Should the number of questions be
limited, how are those selected? Alternatives are “most recent”, “least recent”, or
some grouping depending on the proximity in the tree.

• Should similar or identical questions be folded together? e answer here is proba-
bly “yes”, but once again, careful tuning is needed: the user might expect to see two
instances of the same question if they originated at different points in the trace.

• How can the context of an active question be depicted? In a sequential setup, this is
not really important, because the user can always open the trace window to recall
the overall state. If the simplifier runs in parallel though, there are multiple nodes
in that tree which are currently pending.

ere are no clear answers to these yet. e course of action should be to collect more
data about the actual usage paerns of the simplifier trace first. Also, several extension
of the concurrency library in Isabelle are necessary to constitute a fully asynchronous
system.

¹⁴With the current future implementation in Isabelle, a workaround for that is conceptually impossible
without blocking a thread internally. Observe that the implementation uses Future.join to turn a ’a fu-

ture list to a ’a list future. In Haskell, such a function is called sequence [24, p. 47] and requires the
future implementation to offer a function with type ’a future -> (’a -> ’b future) -> ’b future.
Unfortunately, such a function is currently not implemented.

41

Evaluation and Future Work

6 Evaluation and Future Work

In this section, we will briefly discuss the performance of the S extension and
the practical usability. Furthermore, possibilities for future work are explored.

6.1 Performance

Logging the simplification process obviously incurs a measurable overhead. For example,
consider the expression 10x · 10y. e test machine is an Intel Core i7-2600 with a peak
frequency of about 3.5GHz. Execution times have been collected using the Timing panel
in Isabelle/jEdit without having the IDE render the trace data. e results can be seen in
table 2.

As can be seen in the table, the simplifier itself is prey fast, but enabling the trace slows
down the process significantly. Note that for measuring in normal mode, no breakpoints
have been set, hence these numbers show just the overhead of the S module.
e most interesting comparison is between legacy and full mode, where the ratio is
roughly 1 : 2. is can be explained by the fact that the full mode collects more informa-
tion and processes them more thoroughly than the legacy mode.

e slowest component overall is the GUI though, which requires about 7 s to display the
full trace for x = y = 10. is is at least double the time the legacy trace needs. However
– once rendered – scrolling, collapsing and expanding nodes is instantaneous.

An important fact to keep inmind is that GUI actionswhich take longer than half a second
are generally perceived to be “laggy”, i. e. they disrupt the usual workflow. Hence, it is
generally advisable to enable the simplifier trace only if necessary.

6.2 Future Work

ere are multiple dimensions in which this work can be extended in the future.

Integration into the Isabelle system would benefit by adapting more tactics to use the
new tracing mechanisms, since many of them can be modelled in a hierarchical manner,
and more message types could be introduced.

e user experience could be improved by asking even less questions (introduce fuzzy
matching in the memoization) or providing more information. Interesting context data

42

Evaluation and Future Work

x y disabled legacy normal full

10 10 0.0 1.0 0.8 1.9
20 10 0.1 3.1 2.5 6.3
20 20 0.2 6.3 5.3 12.1

Table 2: Execution times by verbosity mode

includes for example term provenance, i. e. tracking how a particular subterm in the result
emerged during the rewriting process.

From an implementation perspective, tighter integration with the Isabelle/jEdit would be
desirable, that is, to avoid the delay effects described in section 4.4. However, that would
most likely involve significant changes in the Isabelle/Scala layer.

As already laid out in section 5, there is much work which can be done in parallelizing the
simplifier. Furthermore, the current implementation would hang indefinitely if the sim-
plifier fails to terminate. A facility which could perform some basic termination checks,
along with a newmessage type informing the user of the problem, would thus be of great
benefit.

Support for the other Isabelle IDE, Proof General [3], is currently not planned. Albeit the
ML code wrien for this thesis could largely stay the same, a complete reimplementation
of the manager actor (amongst others) in Emacs Lisp would be required.

6.3 Conclusion

We have developed a generic tracing facility for Isabelle tactics which strives to replace
the old simplifier trace. at new facility is interactive, highly configurable and reason-
ably intuitive to operate. e impact on the rest of the system turned out to be rather
small. Nonetheless, it became possible to provide more insights for the user into the
simplification process.

e design goal that the amount of interaction with the user should be kept low has been
achieved. Various sophisticated filtering and memoization techniques help maintaining
a good trade-off between flexibility and opacity of the system. e user does not have to
learn how these work, though, because in most cases they behave just as expected.

43

User manual

A User manual

In this section, we will explain how to set up the Isabelle/jEdit IDE to display the S
 panel. en, the configuration aributes are introduced. Finally, the remaining
section describes the interaction with the system.

A.1 Fundamentals

e interaction happens inside of a panel which can be activated as depicted in figure 6.
e panel consists of two sets of controls and a message text area. e upper set of con-
trols (figure 7, ..1 – ..4) is used to influence the handling of the messages by the IDE. e
text area shows zero or more active questions, i. e. interactive messages from the sim-
plifier. At the moment, there will be at most one question displayed simultaneously, and
the simplifier cannot advance without user intervention if there is an active question.

A.2 Configuration

ere are multiple configuration axes: interactivity, verbosity, and maximal depth. Ex-
cept for the last dimension, those seings can be changed during a simplification run.
Furthermore, the user can set breakpoints for terms and theorems.

By default, the trace is disabled and the panel will not show any contents. To enable, one
has to declare the supertrace aribute.

e full syntax to enable the trace is as follows:

declare [[supertrace mode=normal interactive depth=10]]

Usually, one would want to just specify interactive and skip the other fields.

If interactivity is disabled (which is the default), the progress of the simplifier can be
observed by opening the trace window which shows the steps the simplifier made (fig-
ure 8 and section A.3). Interactivity can be switched on by specifying the interactive

aribute. estions then become visible as can be seen in figure 7.

(Verbosity) Modes

For interoperability reasons the tracer offers a legacy mode. In legacy mode, the output
is almost identical to the “old” simplifier trace. It can be enabled by declaring

44

User manual

Figure 6: Menu: Open S panel

..1 if enabled, panel contents follow cursor position

..2 if enabled, automatically reply with a default response

..3 show accumulated trace information in new window

..4 clears the response cache

..5 list of possible responses for the active question

Figure 7: S panel

45

User manual

declare [[supertrace legacy]]

which requires that the interactive flag is not set.

Apart from that, the three “regular” modes of operation are:

disabled does not produce any trace messages at all

normal produces messages, but displays them only if their contents are triggering a
breakpoint

full produces messages and displays all of them

In most cases, it is reasonable to stay away from the full mode: even for seemingly small
terms, the potential amount of applied rewrite rules can get quite high. While the system
has no problem producing and transmiing these messages, displaying them might take
a while.

Depth

is seing works as expected from the legacy trace: it merely specifies the maximum
depth until which trace messages are being produced. e default is 10.¹⁵

It can occasionally be useful to increase the default to a higher number, and in normal
mode it rarely makes a difference, since most of the messages get filtered out anyway in
this mode. In full mode, it is strongly advised against increasing the limit.

Breakpoints

Breakpoints can be set with

declare [[break_term ”?x > 0”]]

declare conjI[break_thm]

Because term breakpoints might want to capture locally fixed variables, it is possible to
declare them “on the fly”:

¹⁵As indicated earlier, the maximum depth seing cannot be changed while a simplification run is in
progress. e problem is – once again – designing an appropriate user interface. e GUI component
used to display the questions supports only showing text, some of which might be clickable, but not
entering text.

46

User manual

Reply Verbosity Interactivity
(default) set to normal le unchanged
with full trace set to full le unchanged
without asking le unchanged disabled
without any trace set to disabled disabled

Table 3: Seings change

proof

fix x

have ”...”

using [[break_term ”?z > x”]] ...

...

qed

A.3 User Interaction

estions behave just like regular output: they are aached to a command. at means
that in order to see and react to a message, the cursor must be placed on the originating
command. (Usually, that is an invocation of a tactic involving the simplifier, such as simp
or auto.) Fortunately, the IDE highlights active commands.

Every time a command is selected, its active questions are displayed immediately in the
text area of the S panel (figure 7). Similarly to the output panel, this behaviour
can be overridden: if the checkbox Auto update ..1 is deselected, the panel will keep its
focus, even if the cursor moves to another command. Explicit updating can be done by
clicking on the Update buon.

e text area offers the usual markup as provided in other places in the IDE. For example,
clicking on a symbol in a term opens the corresponding definition in the editing area.

A.3.1 Answeringestions

is is a trivial undertaking: questions are shown in the text area of the panel (figure 7),
together with the possible answers ..5 . An example for each question type is shown in
listing 7.

47

User manual

..6 search box

..7 if enabled, search string is interpreted as a regular expression

..8 collapse/expand trace items

Figure 8: S window

48

User manual

Apply conditional rewrite rule?
Instance of thm:
pre1 =⇒ pre2 =⇒ lhs ≡ rhs

Trying to rewrite: f lhs

Continue,
Continue (with full trace),
Continue (without asking),
Continue (without any trace),
Skip

(a) Applying a (conditional) rule

Step failed
In an instance of thm:
pre1 =⇒ pre2 =⇒ lhs ≡ rhs

Was trying to rewrite: f lhs

Redo,
Exit

(b) Rewrite step failed

Listing 7: estion types

e user can freely choose and click on an answer, upon which the question disappears.
Automatic choosing of the default answer can be enabled by checking Auto reply ..2 .

Note that for the question about applying a rewrite rule, the seings with which the
tracing continues can be influenced. For example, if the user wishes to get more detailed
information in the recursive call, they can click on the option Continue (with full

trace). e seings changes for each answer are listed in table 3.

A.3.2 Trace Window

At any time, the user can choose to open a window with the accumulated trace informa-
tion (figure 8) by clicking ..3 (in figure 7). In particular, that can also happen before the
simplifier has terminated.

e window offers a hierarchical view on the process. Hence, the nodes can be collapsed
and expanded (..8 , figure 8).

Note that the window contents are not updated, neither automatically nor manually.
is allows for convenient side-by-side comparison of old and new traces when the set
of rewrite rules has been changed. It also enables displaying a (finite) snapshot of a non-
terminating simplifier run, where otherwise the system would get stalled indefinitely
while trying to print all trace information.

However, it is possible to filter the contents by typing any string into ..6 and pressing
the ..Enter key. Only the items where that string occurs in the body (not in the title) and
their parents will remain. e search supports (Java) regular expressions. Finally, it is

49

User manual

possible to search inside of terms, because all formaing is stripped beforehand. Input
for special symbols is not available yet.

50

Acknowledgements

I would like to thank my advisor, Lars Noschinski, for fruitful discussions about how
the tracing should behave and helpful remarks about the structure of my writing. Fur-
thermore, Makarius Wenzel, who patiently explained the inner workings of the various
Isabelle layers to me, as well as Stefan Berghofer and Holger Gast who provided insights
into the implementation of the simplifier. Finally, my supervisor, Tobias Nipkow, for
supporting me and this topic.

I am very grateful to Cornelius Diekmann and Lukas Erlacher for their great review and
comments about this thesis.

51

References

[1] Erika Ábrahám, ImmoGrabe, Andreas Grüner, andMartin Steffen. Behavioral inter-
face description of an object-oriented language with futures and promises. Journal
of Logic and Algebraic Programming, 78(7):491–518, 2009. URL http://heim.ifi.

uio.no/msteffen/download/07/futures.pdf.

[2] María Alpuente, Demis Ballis, Francisco Frechina, and Julia Sapiña. Slicing-Based
Trace Analysis of Rewriting Logic Specifications with iJulienne. In ESOP, pages
121–124, 2013.

[3] David Aspinall. Proof General: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 38–43. Springer, 2000.
URL http://homepages.inf.ed.ac.uk/da/papers/pgoutline/pgoutline.pdf.

[4] Eugene Burmako. Scala Macros: Let Our Powers Combine! In Proceedings of the 4th
Annual Scala Workshop, 2013. URL http://infoscience.epfl.ch/record/186844/

files/2013-04-22-LetOurPowersCombine.pdf.

[5] Eugene Charniak, Christopher K Riesbeck, Drew V McDermo, and James R Mee-
han. Artificial Intelligence Programming. Lawrence Erlbaum Associates, 1987.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-Oliet,
José Meseguer, and Carolyn Talco. Maude manual (version 2.6).

[7] Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of
maude. In J. Meseguer, editor, Electronic Notes in eoretical Computer Science, vol-
ume 4. Elsevier Science Publishers, 1996. URL http://maude.cs.uiuc.edu/papers/

postscript/tcs4006.ps.gz.

[8] William F Clocksin and Christopher S Mellish. Programming in Prolog: Using the
ISO standard. Springer, 2003.

[9] Mireille Ducassé and Jacques Noyé. Logic programming environments: Dynamic
program analysis and debugging. e Journal of Logic Programming, 19–20, Sup-
plement 1:351–384, 1994. ISSN 0743-1066. URL http://www.sciencedirect.com/

science/article/pii/0743106694900302.

[10] om Fruehwirth, Jan Wielemaker, and Leslie De Koninck. SWI Prolog Reference
Manual 6.2.2. Books on Demand, 2012. ISBN 9783848226177. URL http://www.

swi-prolog.org/pldoc/refman/.

52

http://heim.ifi.uio.no/msteffen/download/07/futures.pdf
http://heim.ifi.uio.no/msteffen/download/07/futures.pdf
http://homepages.inf.ed.ac.uk/da/papers/pgoutline/pgoutline.pdf
http://infoscience.epfl.ch/record/186844/files/2013-04-22-LetOurPowersCombine.pdf
http://infoscience.epfl.ch/record/186844/files/2013-04-22-LetOurPowersCombine.pdf
http://maude.cs.uiuc.edu/papers/postscript/tcs4006.ps.gz
http://maude.cs.uiuc.edu/papers/postscript/tcs4006.ps.gz
http://www.sciencedirect.com/science/article/pii/0743106694900302
http://www.sciencedirect.com/science/article/pii/0743106694900302
http://www.swi-prolog.org/pldoc/refman/
http://www.swi-prolog.org/pldoc/refman/

[11] Philipp Haller and Martin Odersky. Scala Actors: Unifying thread-based and
event-based programming. eoretical Computer Science, 410(2–3):202–220, 2009.
ISSN 0304-3975. URL http://www.sciencedirect.com/science/article/pii/

S0304397508006695.

[12] Philipp Haller and Frank Sommers. Actors in Scala. Artima Incorporation, 2012.

[13] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,
and Vojin Jovanovic. Futures and Promises, 2012. URL http://docs.scala-lang.

org/overviews/core/futures.html.

[14] Vojin Jovanovic and Philipp Haller. e Scala Actors Migration Guide, 2012. URL
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html.

[15] David CJ Mahews and Makarius Wenzel. Efficient parallel programming in
Poly/ML and Isabelle/ML. In Proceedings of the 5th ACM SIGPLAN workshop on
Declarative aspects of multicore programming, pages 53–62. ACM, 2010. URL http:

//www4.in.tum.de/~wenzelm/papers/parallel-ml.pdf.

[16] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer, 2002. URL http://isabelle.

in.tum.de/doc/tutorial.pdf.

[17] Lawrence C Paulson. Isabelle: A Genericeorem Prover, volume 828. Springer, 1994.

[18] Leon Sterling and Ehud Y Shapiro. e Art of Prolog: Advanced Programming Tech-
niques. MIT Press Cambridge, 1994.

[19] Makarius Wenzel. Parallel proof checking in Isabelle/Isar. In Proceedings of the
ACM SIGSAM 2009 International Workshop on Programming Languages for Mecha-
nized Mathematics Systems, pages 13–29. ACM, 2009. URL http://www4.in.tum.

de/~wenzelm/papers/parallel-isabelle.pdf.

[20] MakariusWenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/-
jEdit. Electronic Notes in eoretical Computer Science, 285:101–114, 2012. URL
http://www4.in.tum.de/~wenzelm/papers/async-isabelle-scala.pdf.

[21] Makarius Wenzel. Isabelle/jEdit – a Prover IDE within the PIDE framework. In In-
telligent Computer Mathematics, pages 468–471. Springer, 2012. URL http://arxiv.

org/pdf/1207.3441.

53

http://www.sciencedirect.com/science/article/pii/S0304397508006695
http://www.sciencedirect.com/science/article/pii/S0304397508006695
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://www4.in.tum.de/~wenzelm/papers/parallel-ml.pdf
http://www4.in.tum.de/~wenzelm/papers/parallel-ml.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://www4.in.tum.de/~wenzelm/papers/parallel-isabelle.pdf
http://www4.in.tum.de/~wenzelm/papers/parallel-isabelle.pdf
http://www4.in.tum.de/~wenzelm/papers/async-isabelle-scala.pdf
http://arxiv.org/pdf/1207.3441
http://arxiv.org/pdf/1207.3441

[22] Makarius Wenzel. e Isabelle/Isar Implementation, 2013. URL http://isabelle.

in.tum.de/dist/Isabelle2013/doc/implementation.pdf.

[23] Makarius Wenzel and Burkhart Wolff. Isabelle/PIDE as Platform for Educational
Tools. In THedu’11, pages 143–153, 2011. URL http://arxiv.org/pdf/1202.4835v1.

[24] Brent Yorgey. e Typeclassopedia. e Monad.Reader, 13:17–68, 2009.

54

http://isabelle.in.tum.de/dist/Isabelle2013/doc/implementation.pdf
http://isabelle.in.tum.de/dist/Isabelle2013/doc/implementation.pdf
http://arxiv.org/pdf/1202.4835v1

	Introduction
	Motivation
	System Integration
	Structure

	Preliminaries
	Isabelle Theories
	Simplifier Terminology
	Contexts
	Futures and Promises

	Supertrace – an Improved Simplifier Trace
	Design
	Interactivity
	Message Types
	Interactive Messages
	Memoization
	Message Filtering
	Related Work
	Debugging and Tracing in SWI/Prolog
	Debugging and Tracing in Maude

	Implementation
	Interaction Model
	Simplifier interaction
	System Interaction
	Data Model
	Public Message Interface
	Message Filtering
	Message Passing from the ML to the JVM Layer
	Message Passing from the JVM to the ML Layer

	IDE Interaction
	Manager Actor
	Panel Actor

	Summary

	Case study: A Parallelized Simplifier
	Evaluation and Future Work
	Performance
	Future Work
	Conclusion

	User manual
	Fundamentals
	Configuration
	User Interaction
	Answering Questions
	Trace Window

	References

